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Preface

In recent years, we have witnessed a paradigm shift in cancer treatment.
Greater understanding of signaling pathways that regulate cell growth, cell
cycle progression, and programmed cell death has provided new insights
into the molecular mechanisms of disease. While traditional cytotoxic
agents still form the backbone of cancer therapy, advances in molecular bi-
ology and immunology have led to the identification of novel therapeutic
targets and treatment strategies. This volume highlights many of the major
developments in biologically targeted, immunologic, and chemotherapeutic
approaches to the treatment of leukemia and lymphoma over the past
decade.

The remarkable activity of imatinib mesylate, an inhibitor of the ABL
kinase of the BCR/ABL fusion protein that causes chronic myeloid leukemia
(CML), provides ‘‘proof-of-concept’’ that molecularly targeted therapies
will become an important new class of cancer therapeutics. In addition to
describing the development and use of imatinib, Levis and Small (Chapter
1) examine other kinases, such as flt-3, that may be clinically useful targets.
The success of imatinib in CML, however, has been difficult to translate to
other malignancies. Unlike CML, where BCR/ABL is the causative molecu-
lar abnormality and may be the sole leukemogenic event early in the disease,
single pathogenetic abnormalities do not exist for the vast majority of ma-
lignancies. For small-molecule inhibitors to achieve broader success, it is
likely that the most useful agents will target early oncogenic events and that
blocking multiple pathways critical for cell survival will be required for clin-
ically meaningful responses. Estey (Chapter 4) provides a framework for
investigating these new agents by addressing issues regarding patient selec-
tion, efficacy endpoints, and the need for comparative studies.
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Like CML, acute promyelocytic leukemia (APL) has become an ideal
model for the study of molecularly targeted therapies. In contrast to the de-
velopment of imatinib, however, which represents a rationally designed
compound targeting specific molecular lesions, the success of empiric
therapies in APL has led to a new biological understanding of the disease.
Differentiation therapy with all-trans retinoic acid that directly targets
PML-RARa, the underlying molecular abnormality in APL, has produced
complete remissions in up to 90% of patients. Similarly, arsenic trioxide,
which degrades PML-RARa and leads to non-terminal differentiation and
apoptosis, has shown significant activity. Soignet and Maslak (Chapter 2)
outline the current role of these agents in the treatment of APL.

Until the widespread application of molecularly targeted therapies
proves more clinically useful, new chemotherapeutic agents will be re-
quired. An expanding knowledge of cancer biology has led to the develop-
ment of a large number of novel drugs, including inhibitors of multi-drug
resistance, angiogenesis, farnesyltransferase, and proteosomes, all compre-
hensively reviewed by Cortes (Chapter 3). Among the most promising ther-
apeutic approaches, hypomethylating agents such as 5-azacitidine and
decitabine, capable of activating silenced genes, have shown significant ac-
tivity in myelodysplastic syndromes and acute myeloid leukemia (AML).
Additionally, inhibition of histone deacetylases by phenylbutyrate, SAHA,
and depsipeptide, among others, may reverse transcriptional repression
caused by histone binding to DNA. In combination, hypomethylation and
histone deacetylase inhibition provide an attractive therapeutic strategy
for APL and other core binding-factor leukemias, where transcriptional
block may play a particularly important role in leukemogenesis. Lamanna
and Weiss (Chapter 5) focus on the purine analogs that have shown activity
in lymphoid malignancies and the more recent clinical evidence leading to
their use in a variety of applications, including non-myeloablative stem cell
transplantation and treatment of graft-versus-host disease.

Monoclonal antibodies have now become an important therapeutic
modality for cancer, but the overly optimistic view of the early 1980s that
they were ‘‘magic bullets’’ has now been replaced by a more realistic under-
standing of their therapeutic potential. The intrinsic immunologic activity
seen with the anti-CD20 antibody rituximab against low-grade lymphoma
has provided a foundation for further development of native antibody ther-
apy. Lin and Byrd (Chapter 6) outline recent advances using this approach
for the treatment of chronic lymphocytic leukemia (CLL), including new
therapeutic targets and chemoimmunotherapy combinations; Weiner and
Link (Chapter 10) discuss similar applications for lymphoma.

In an effort to enhance potency, antibodies may be used as vehicles to
deliver radioisotopes, drugs, and toxins directly to tumor cells. Weiner
and Link discuss radioimmunotherapeutic approaches for lymphoma, in-
cluding iodine-131-tositumomab and yttrium-90-ibritumomab tiuxetan. In
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examining the radioimmunotherapy of leukemia, Burke and Jurcic (Chapter
8) highlight the use of a particle-emitting isotopes, which may allow for
more specific tumor cell killing compared to �-emitters. Sievers (Chapter
7) details the development of the anti-CD33-calicheamicin construct gemtu-
zumab ozogamicin for AML, while Rosenblum (Chapter 9) reviews various
strategies for targeting toxins to tumor cells, including cytokines and
growth factors, in addition to monoclonal antibodies.

While passive treatment with antibody-based therapies has shown po-
tent anti-tumor effects, it represents only one immunotherapeutic approach.
In addition to eliciting antibody responses, vaccine strategies may also
produce T-cell responses that allow ongoing surveillance against tumor
cells. Lu and colleagues (Chapter 11) review the biological basis of antileu-
kemia immunity and highlight potential leukemia-associated target anti-
gens. Timmerman (Chapter 12) focuses on therapeutic vaccines targeting
lymphoma ‘‘idiotype.’’ Farag and Caligiuri (Chapter 13) examine the use
of cytokines to harness effector cells, including natural killer (NK) cells
and monocytes, against autologous leukemia and lymphoma.

Passive cellular therapy has also gained a role in the management of he-
matologic malignancies, as demonstrated by the ability of donor lympho-
cyte infusions (DLIs) to induce durable complete remissions in CML. Ho
and Alyea (Chapter 14) discuss the biological basis for a graft-versus-tumor
effect, current clinical applications of DLI, and the development of non-
myeloablative approaches for allogeneic stem cell transplantation. Finally,
Brentjens and Sadelain (Chapter 15) explore the use of gene transfer techni-
ques to engineer tumor cells capable of activating host immune cells, to
modify dendritic cells to express tumor antigens, and to alter patient T-cell
specificity to recognize antigens present on tumor cells.

The comprehensive reviews in this volume reflect our rapidly expanding
knowledge of hematologic malignancies and should provide an exceptional
resource for clinicians caring for patients with leukemia and lymphoma as
well as clinical or laboratory researchers. In closing, we would like to thank
all those who contributed to this collection and Tom August for the invita-
tion to edit this volume.

Joseph G. Jurcic
David A. Scheinberg

April 26, 2004
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Mark Levis* and Donald Small*,y

Johns Hopkins University School of Medicine

Departments of *Oncology and yPediatrics

Baltimore, Maryland

Kinase Inhibitors in Leukemia

I. Chapter Overview

Constitutively activated kinases appear to play a role in the development
and maintenance of a significant number of leukemias. The remarkable early
clinical successes of imatinib mesylate, an orally available tyrosine kinase
inhibitor, in the treatment of BCR/ABL-expressing leukemias imply that
small-molecule kinase inhibitors will likely become an important new class
of agents used to treat these diseases. The introduction of these drugs has
broadened our understanding of the molecular basis of leukemia, as well as
increased the treatment options available to patients. In this chapter, we
review the mechanism of action of these compounds and discuss the poten-
tial range of disorders to which they can be applied. A large number of
kinase inhibitors are in clinical development, but imatinib is thus far the only
such drug approved for use in patients with leukemia. Therefore, in addition
to carefully examining the development and clinical use of imatinib, we
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focus on those kinases that appear to be promising targets in hematologic
disorders, hoping that the introduction of clinically useful inhibitors for
these kinases will soon follow.

II. Introduction

In 1980, the transforming protein of Rous sarcoma virus was discovered
to be a tyrosine kinase (Sefton et al., 1980). Following this seminal finding,
researchers have struggled to unravel the complex roles of the enzyme in the
normal functions of a cell and have sought to understand how the dysregu-
lation of protein kinases leads to malignant transformation. The intent of
such research is to better understand the molecular basis of human cancer
and to exploit this knowledge in the development of new therapies. Protein
kinases seem to be particularly important in the pathogenesis of hematologic
malignancies, especially myeloid leukemias. Beginning with the discovery of
the Philadelphia chromosome (Phþ) product, BCR/ABL, and proceeding
through to the recent characterization of a PDGFR� fusion protein in
hypereosinophilic syndrome (HES) and eosinophilic leukemia, mutation-
activated tyrosine kinases continue to be identified as causative factors in
hematopoietic disorders (Ben-Neriah et al., 1986; Cools et al., 2003).
Indeed, the first successful clinical use of a small-molecule kinase inhibitor
was in the treatment of chronic myeloid leukemia (CML) (Druker et al.,
2001b).

At present, with the cloning of the human genome and the advent of
technologies such as proteomics and microarray analysis, potential new
oncogenic kinases are being identified at an increasing rate. The fields of
structural biology and pharmaceutical chemistry have kept pace with these
advances in our understanding of carcinogenesis. There is no shortage of
candidate small molecules designed to inhibit the kinase activity of these
potential therapeutic targets (at least in vitro), and it seems safe to assume
that for virtually any kinase found, a relatively selective inhibitor suitable for
clinical testing can be produced.

III. Factors in Identifying an Ideal Therapeutic Target _______________________________________________________________________________________________________________________________

Which kinases should be targeted for leukemia therapy? Presumably, the
focus should be on kinases that are essential in generating or maintaining the
transformed state. BCR/ABL, the sine qua non of CML, is an example of
such a kinase. Other choices are less obvious, however, given that malignant
transformation is probably a multistep process, with many aberrant proteins
playing a role (Vogelstein and Kinzler, 1993). Nonetheless, some guiding
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principles can be used to establish the credentials of a kinase as a suitable
target for therapy.

A. Activating Mutations

The highest-priority targets should probably be kinases that have
increased activity through some form of mutation. The most easily recog-
nizable of these are the kinases activated by chromosomal translocation,
such as BCR/ABL (a product of the 9;21 translocation in CML) or TEL-
PDGFR (caused by the 5;12 translocation occasionally seen in chronic
myelomonocytic leukemia) (Golub et al., 1994; Nowell and Hungerford,
1960; Rowley, 1973). Cytogenetic analysis, performed on virtually all clini-
cal cases of leukemia, facilitated the relatively early discovery of these fusion
oncoproteins. However, translocations (at least those apparent with clinical
cytogenetic analysis) cause only a fraction of the known kinase-activating
mutations associated with cancer. Other types of constitutively activat-
ing mutations are less easily identified, as there are remarkably diverse
means of abnormally upregulating the activity of a kinase. Receptor tyrosine
kinases illustrate this point well.

A receptor tyrosine kinase (Fig. 1) typically consists of an extracellular
ligand-binding domain, a transmembrane domain, and, intracellularly, a jux-
tamembrane domain and a kinase domain containing the adenosine triphos-
phate (ATP)-binding pocket (van der Geer et al., 1994). On binding of ligand,
the receptors dimerize and undergo autophosphorylation, a covalent modifi-
cation that stimulates the activity of the kinase domain. The activated receptor
then transduces its signals via transfer of phosphate from ATP to tyrosine
residues on various downstream proteins. For many cell surface receptors,
the juxtamembrane domain serves as a negative regulatory domain, inhibiting
the activity of the kinase domain until ligand binding occurs (Hubbard, 2001).

Abnormal activation of these receptors can occur in a variety of ways.
Perhaps the simplest is through overexpression of the wild-type receptor.
This can occur by gene amplification, or, presumably, through epigenetic
alterations affecting transcription, translation, and perhaps even receptor
turnover. A classic example of this type of gene amplification is found in the
epidermal growth factor family of receptors in solid tumors, most notably
c-erbB in breast cancer (Slamon et al., 1987).

Point mutations localized to the so-called activation loop of the kinase
domain can constitutively activate a receptor by shifting the ATP-binding
pocket to a more open, accessible conformation. Such mutations in the
kinase domain have been identified in KIT, MET, FLT3, and PDGFR�, all
associated with malignancy (Furitsu et al., 1993; Hirota et al., 2003; Jeffers
et al., 1997; Yamamoto et al., 2001).

Crystal structure analysis of the EphB2 receptor suggests that mutations
within the juxtamembrane region disrupt the inhibitory influence this
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domain exerts over the kinase domain (Wybenga-Groot et al., 2001). Point
mutations, deletions, insertions, and internal tandem duplications have been
found in the juxtamembrane domain of the KIT receptor in gastrointestinal
stromal tumors (GISTs), all associated with a constitutively phosphorylated
receptor (Antonescu et al., 2003). Likewise, internal tandem duplications of
the Fms-like tyrosine kinase-3 (FLT3) gene (FLT3/ITD mutations) constitu-
tively activate FLT3 and are the most common molecular abnormality found
in acute myeloid leukemia (AML) (Gilliland and Griffin, 2002; Levis and
Small, 2003).

Activating mutations can likewise be found within the extracellular
domain. Some of these mutations in the KIT receptor in GIST appear to
activate the receptor by promoting dimerization through an abnormal disul-
fide bond (Santoro et al., 1995). For other mutations in the extracellular
domain, the mechanism of constitutive activation is unclear (Lux et al.,
2000).

Adding to the complexity of this situation is the likelihood that a given
kinase inhibitor will be effective against only a subset of the mutations
affecting a particular kinase. In particular, a number of small-molecule
kinase inhibitors appear to be ineffective against mutations in the kinase

FIGURE 1 Left: A stylized receptor tyrosine kinase with cognate ligand bound. The receptor

has dimerized and undergone autophosphorylation. Right: The assay commonly used to

determine in vitro efficacy of a small molecule inhibitor. Cells expressing the activated receptor

are exposed to the inhibitor in question, and then the cells are lysed and subject to
immunoprecipitation, using antireceptor antibodies. The immunoprecipitate is resolved by

sodium dodecylsulfate–polyacrylamide gel electrophoresis (SDS–PAGE) and transferred to a

membrane. The membrane can be probed with either an antiphosphotyrosine antibody (upper

row) or the antireceptor antibody (lower row).
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domain. For example, imatinib has little effect on the activity of some of the
less frequent KIT kinase domain mutations that occur in GIST, and AG1296,
a tyrphostin, is ineffective against analogous mutations in the FLT3 receptor
(Frost et al., 2002; Grundler et al., 2003).

B. Prognosis

A kinase becomes a more inviting target for therapy if activating muta-
tions of the kinase are associated with a worse prognosis. In breast cancer,
patients whose tumors have an amplification of the Her2 (c-erbB) gene have
a worse overall survival compared with patients lacking Her2 overexpres-
sion. In acute lymphoblastic leukemia (ALL), patients whose blasts contain
the BCR/ABL translocation product are usually incurable without allogeneic
stem cell transplantation. It remains to be seen whether imatinib will impact
this grim reality in any way.

C. Is the Target Expressed by the Stem Cell?

A final issue in selecting an appropriate kinase to target relates to the
origins of a malignancy. Cancer cells appear to be derived from progenitor
cells that in many ways resemble the stem cells from which nontransformed
cells arise (Reya et al., 2001). These cancer stem cells might not have the
phenotypic properties identical to those of the bulk tumor (or in the case of
leukemia, the malignant cells circulating in peripheral blood), and a therapy
directed against the bulk of the tumor might have no impact on the stem cell.
It is possible that a kinase-activating mutation could occur as a late hit in a
subpopulation of transformed cells, conferring a growth advantage to cells
with the mutation. A kinase inhibitor might effectively eliminate this sub-
population (which could make up most of the visible tumor), but have no
effect on the stem cell. This might render the kinase inhibitor useful as a
palliative measure but ultimately ineffective in helping to cure the disease.
Stem cells, malignant or normal, are difficult to isolate and characterize, but
an effort should always be made to identify kinase targets within these
crucial cells.

IV. Kinase Targets in Leukemia: Current
Treatment Options

At present, imatinib and gefitinib (Fig. 2) are the only small-molecule
kinase inhibitors approved for use in patients (Cohen et al., 2003; Johnson
et al., 2003). Gefitinib is an EGFR (c-erbB1) inhibitor, whereas imatinib was
introduced as an inhibitor of BCR/ABL. Imatinib, however, has quickly
demonstrated clinical usefulness as a KIT and PDGFR� inhibitor, which
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illustrates an important point about these molecules: none of them is truly
specific for a single kinase. Each new kinase inhibitor entering clinical use
will have a number of defined targets and possibly a greater number of
targets that are either unknown or whose role in normal or malignant cell
function is unclear. Therefore, in analyzing the potential role of kinase
inhibitors in leukemia therapy, it is of greater utility to examine the potential
targets that have thus far been uncovered rather than focus on what drugs
are available.

A. BCR/ABL

Phþ, a hallmark of CML, is the result of a balanced translocation
between chromosomes 9 and 22 and leads to the generation of a fusion
gene, BCR/ABL (Nowell and Hungerford, 1960; Rowley, 1973). This trans-
location, when it occurs within a hematopoietic stem cell, appears to be of
fundamental importance for the development of CML. The wild-type ABL
gene encodes a tyrosine kinase that normally shuttles between the cytoplasm
and the nucleus and is a key regulator of apoptosis in response to DNA
damage (Wang, 2000). The BCR gene (breakpoint cluster region) encodes
a multipurpose protein with an oligomerization domain. When the
N-terminus of BCR is fused to the C-terminus of ABL, the fusion product

FIGURE 2 Two small-molecule tyrosine kinase inhibitors currently in clinical use.
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is localized exclusively to the cytoplasm and its tyrosine kinase domain is
constitutively activated through homooligomerization (McWhirter et al.,
1993; Van Etten et al., 1989). The t(9;22) translocation gives rise to three
major variants of BCR/ABL, depending on where the breakpoints occur
(Fig. 3). In the vast majority of CML cases, the breakpoints occur within
the major breakpoint cluster region (M-BCR) of BCR, between exons 13
and 14 (b2) or exons 14 and 15 (b3) and within the first or second intron of
ABL (just prior to exon a2) (Ben-Neriah et al., 1986). The resultant mRNA
is designated b2a2 or b3a2, and the final protein product is the 210-kDa
fusion protein p210BCR/ABL. In adult ALL, 17–30% of patients are Phþ, but
the breakpoint in BCR occurs between the e1 and e2 exons (Bloomfield et al.,
1986; Clark et al., 1988; Westbrook et al., 1992). This leads to the shorter
e1a2 transcript and the smaller protein p190BCR/ABL. These patients have a
much worse prognosis than do BCR/ABL-negative ALL patients. Finally, an
entirely different breakpoint in BCR can result in the e19a2 transcript,
encoding for the larger p230BCR/ABL, which is associated with chronic neu-
trophilic leukemia (CNL) (Pane et al., 1996). The transforming activity of
the BCR/ABL oncoproteins has been demonstrated in vitro through diverse
assays, including transformation of fibroblasts, induction of long-term sur-
vival of bone marrow progenitors, and conferring IL-3 independence to Ba/
F3 cells (Daley and Baltimore, 1988; Lugo and Witte, 1989; McLaughlin
et al., 1987). All three BCR/ABL variants activate downstream signaling
pathways such as JAK/STAT, RAS/MAPK, CRK-L, and PI-3 kinase, but
differences in the BCR sequence content lead to very different cellular, and
therefore clinical, consequences. For example, in studies that used mouse
bone marrow, p210BCR/ABL and p230BCR/ABL expression induced myeloid

FIGURE 3 The three major splice variants of BCR/ABL. Arrows denote the breakpoints

generating the fusion proteins.
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differentiation, whereas p190BCR/ABL led to lymphoid differentiation
(Quackenbush et al., 2000). BCR/ABL, then, is an example of an ideal target
for a kinase inhibitor. It is a kinase activated by mutation, is present in the
stem cell that gives rise to CML, and confers a poor prognosis in ALL.

Imatinib mesylate, originally known as CGP 57148 and later as STI-
571, is a 2-phenylaminopyrimidine derivative that is a relatively potent
inhibitor of the tyrosine kinase activity of ABL, the BCR/ABL variants,
PDGFR� and �, and KIT (Table I; Buchdunger et al., 1996, 2000; Carroll
et al., 1997; Druker et al., 1996). In preclinical studies, imatinib inhibited
proliferation and induced apoptosis in a variety of BCR/ABL-expressing
myeloid and lymphoid cell lines in vitro and preferentially inhibited the
growth of CML progenitor cells in colony-forming assays of bone marrow
from CML patients (Beran et al., 1998; Carroll et al., 1997; Deininger et al.,
1997; Druker et al., 1996). In murine models of CML, the drug inhibited
BCR/ABL phosphorylation in vivo and prolonged survival (le Coutre et al.,
1999; Wolff and Ilaria, 2001).

As might be predicted from the preclinical data, imatinib has met with
initial success in human patients. It has a favorable pharmacokinetic profile,
allowing a once-daily oral dosing with a minimum of side effects. Imatinib
inhibits BCR/ABL activity in vivo as evidenced by the suppression of down-
stream signaling in the circulating leukemia cells of treated patients (Druker
et al., 2001b). It induces hematologic and cytogenetic responses in the
majority of newly diagnosed CML cases, as well as in a significant number
of CML patients who have failed �-interferon therapy. In a Phase I trial, the
drug induced hematologic responses in 55% of patients with CML in
myeloid blast crisis and in 70% of patients with CML in lymphoid blast
crisis or with Phþ ALL. The responses in the blast crisis or ALL patients
were typically of short duration, but in the chronic-phase patients, hemato-
logic and cytogenetic responses appeared to be sustained (Kantarjian et al.,

TABLE I Spectrum of Kinases Inhibited by Imatinib Mesylate

Kinase IC50 (nM) Reference

v-ABL 300 Buchdunger et al., 1996

c-ABL 250 Carroll et al., 1997
p210 250 Druker et al., 1996

Wild-type KIT 100 Buchdunger et al., 2000

D815 KIT >1000 Frost et al., 2002
Other KIT <100 Frost et al., 2002

Wild-type PDGFR� 100 Buchdunger et al., 2000

Wild-type PDGFR� 100 Buchdunger et al., 2000

Fip1L1-PDGFR� 5 Cools et al., 2003
Tel-PDGFR� 150 Carroll et al., 1997

8 Levis and Small



2002). A small number of patients have actually become RT-PCR negative
for detection of BCR/ABL transcripts. On the basis of this data, the U.S.
Food and Drug Administration (FDA) granted accelerated approval of
imatinib for the treatment of CML in blast crisis. In a randomized compari-
son of imatinib and interferon/cytarabine for newly diagnosed CML, the
imatinib-treated group had superior rates of hematologic and cytogenetic
responses, had a lower rate of clinical progression, and the inhibitor was
better tolerated (O’Brien et al., 2003). The FDA thereupon approved the use
of imatinib for newly diagnosed CML, contingent on the completion of
Phase IV studies confirming an improvement in overall long-term survival
(Johnson et al., 2003).

The FDA stipulation that Phase IV studies be completed and that the
survival benefit be established was an important one. CML is, by definition,
a chronic disease, with a median survival of 5–6 years (Sawyers, 1999). Any
new treatment for this disease cannot be truly assessed until it has been used
for at least this amount of time. Allogeneic stem cell transplantation remains
a curative option, but is available to only roughly 30% of patients (Savage
and Goldman, 1997). �-Interferon can induce hematologic and cytogenetic
responses and in a minority of patients can cure the disease, but it causes
significant side effects and is often poorly tolerated (Bonifazi et al., 2001).
Prior to the development of imatinib, most patients were relegated to main-
tenance therapy with nonspecific cytotoxic agents such as hydroxyurea or
busulfan, and death from blast crisis would occur after 5–6 years (Silver
et al., 1999). Imatinib has moved quickly to fill the void in treatment for
many CML patients, but it remains to be seen whether survival is truly
improved by this drug.

Resistance to imatinib was seen with the relatively short responses in
patients with CML blast crisis and Phþ-ALL, but it was subsequently
observed in accelerated phase and then in chronic-phase CML patients
(Druker et al., 2001a,b; Gorre et al., 2001; Hochhaus et al., 2002). Clinical
resistance to imatinib typically occurs coincident with reactivation of the
kinase activity of BCR/ABL, and the molecular mechanisms of this reactiva-
tion can be divided into two major categories. The first consists of point
mutations within the kinase domain. Crystal structure studies of ABL in
complex with imatinib confirm that many of these point mutations involve
amino acid residues clustered around the ATP-binding pocket, especially the
A-loop, P-loop, and Thr-315 (Gorre et al., 2001; Hochhaus et al., 2002;
Nagar et al., 2002; Schindler et al., 2000). These residues interact directly
with imatinib through hydrophobic interaction or hydrogen bonding. Thus,
the mutations are felt to interfere with the ability of imatinib to compete
with ATP for binding to the active site. When the mutations were studied
in vitro in cell-based assays, virtually all of them were found to increase the
IC50 of imatinib for inhibition of BCR/ABL kinase activity, some dramati-
cally so (Corbin et al., 2003; Hochhaus et al., 2002; La Rosee et al., 2002).
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The increased IC50 is accompanied by a resultant decrease in cytotoxic effect
in vitro. A fascinating feature of these point mutations is that in most, if not
all, cases, they are probably present prior to the initiation of imatinib treat-
ment (Roche-Lestienne et al., 2002; Shah et al., 2002). The imatinib
treatment then acts as a selective pressure, increasing the prevalence of
these resistant cells.

The second major category of molecular resistance is the overexpression
of p210BCR/ABL. Gene amplification of BCR/ABL was initially seen in resis-
tant cell lines, typically generated by continuous culture in imatinib
(le Coutre et al., 2000; Mahon et al., 2000; Weisberg and Griffin, 2000).
Analysis of leukemia specimens from resistant patients in the early trials
quickly confirmed that the phenomenon occurs with a significant frequency
in vivo. The increased levels of p210BCR/ABL expression are due to a variety
of mechanisms, including gene amplification, increased levels of mRNA
transcripts, and acquisition of additional copies of Phþ (Gorre et al.,
2001; Hochhaus et al., 2002).

Imatinib-resistant BCR/ABL activity represents the most common
mechanism of treatment failure in CML at present, but at least this appears
to be an obstacle that can be surmounted. Novel BCR/ABL inhibitors are
currently in development, and their combination with imatinib could allow
for more effective, sustained inhibition of BCR/ABL within the leukemic
clone (La Rosee et al., 2002; Von Bubnoff et al., 2003). The use of multiple
inhibitors of BCR/ABL, each binding to the ATP pocket in slightly different
ways, would likely overcome the problem of selection of resistant CML
clones expressing BCR/ABL mutants resistant to imatinib. This might enable
CML to be treated as a chronic disease, albeit one that requires therapy
throughout the lifetime of an individual.

Additional, possibly clinically relevant mechanisms of resistance to
imatinib that are unrelated to BCR/ABL have been uncovered as well. In a
study of CML patients in myeloid blast crisis, imatinib response correlated
with these patients showing only low-level expression of the transmem-
brane transporter protein mrp-1 (Lange et al., 2003). This suggests that
drug transporters might affect intracellular levels of imatinib. Plasma
protein binding might also play a role in a patient’s response to the drug,
as the levels of �-1-acid glycoprotein, an important drug-binding protein in
human plasma, fluctuate sufficiently to affect free imatinib levels, thereby
affecting the clinical response (Gambacorti-Passerini et al., 2000; Sausville,
2000).

Perhaps the most important obstacle that stands between imatinib and
the cure of CML is the leukemic stem cell. CML is a disease of the hemato-
poietic stem cell, a cell type with properties that are probably very different
from those of the bulk of leukemia cells. These cells have proven resistant
to chemotherapy and might very well prove resistant to imatinib therapy.
Newly diagnosed chronic-phase CML patients achieve a complete
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cytogenetic response to imatinib at a relatively high rate. However, cyto-
genetic analysis using standard karyotype analysis is relatively insensitive at
detecting minimal residual disease, and even RT-PCR has its limits. Most
RT-PCR assays for BCR/ABL can detect 1 positive cell in 106 (Bose et al.,
1998). If a patient’s tumor burden at diagnosis is 1012 cells, this potentially
leaves 106 Phþ cells as residual disease. As might therefore be predicted, even
in CML patients achieving a complete cytogenetic remission, CD34þ bone
marrow cells and long-term culture-initiating cells were found to still be
BCR/ABL positive, indicating the persistence of the leukemic clone (Bhatia
et al., 2003). More recently, the majority of a small cohort of patients who
had achieved a complete molecular remission by imatinib treatment (as
defined by RT-PCR negativity) were found to be in either molecular or
frank clinical relapse (Mauro et al., 2003). Possibly explaining this is the
finding of a population of primitive stem cells in CML patients that are
maintained in a quiescent but viable state despite imatinib therapy
(Graham et al., 2002). It might be that inhibition of p210BCR/ABL merely
prevents leukemic stem cells from entering the cell cycle, but is insufficient to
induce them to undergo apoptosis.

Thus, a significant body of data has now emerged suggesting that
although imatinib might limit progression of CML in the short term, it is
unlikely to ever cure the disease by itself. Nonetheless, this drug represents a
tremendous advance in the field of cancer medicine in general and leukemia
therapy in particular. With regard to CML, the combination of imatinib
with additional BCR/ABL inhibitors could be used to maintain the disease in
a quiescent state for years. The paradigm would be similar to the one
established in the treatment of HIV, in which several inhibitors of viral
replication are used to overcome clinical resistance but never actually cure
the disease (Yeni et al., 2002).

Blast crisis CML and Phþ ALL have proven much less responsive to
imatinib therapy. These are acute leukemias by nature and, as such, are
much more aggressive diseases than chronic-phase CML. Unlike Ph� ALL,
Phþ ALL is not considered curable with chemotherapy, and therefore allo-
geneic stem cell transplant remains the only curative option. Hematologic
responses to imatinib are generally fair (50–70%) but of short duration,
although occasional patients achieve a durable cytogenetic response
(Ottmann et al., 2002). Phþ ALL is an example of a malignancy in which
the presence of a kinase activated by mutation confers a prognosis worse
than that of patients lacking the mutation. Targeting the mutated kinase
has improved survival for a few patients, but only marginally. Likewise,
although many CML blast crisis patients respond hematologically to imati-
nib, most eventually lose responsiveness and die (Druker et al., 2001a).
These results are likely a reflection of a disease characterized by numerous
mutations rather than one. Chronic-phase CML might be characterized as
having relatively few genetic hits, whereas the acute BCR/ABL-positive
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leukemias are known to have additional alterations that would be
unaffected by imatinib therapy (Mahon et al., 2000). Thus, the limited
effectiveness of the single targeted therapy in acute BCR/ABL leukemias is
not unexpected.

B. ETV6–PDGFRb

Chronic myelomonocytic leukemia (CMMoL) is an unusual leukemia
with features of both a myeloproliferative and myelodysplastic disorder
(Cortes, 2003). An uncommon variant of CMMoL is characterized by
eosinophilia and the presence of a 5;12 translocation, involving the
PDGFR� gene, and, most commonly, the transcription factor ETV6
(Berkowicz et al., 1991; Golub et al., 1994). The resultant fusion product,
ETV6–PDGFR� (also known as TEL–PDGFR�), is an oncoprotein that, like
BCR/ABL, spontaneously associates, leading to constitutive activation of the
tyrosine kinase domain (Carroll et al., 1996; Golub et al., 1994). ETV6–
PDGFR� confers factor independence when transfected into murine cell
lines and can induce a myeloproliferative disease in transgenic mice
(Tomasson et al., 1999). Imatinib was shown to inhibit autophosphorylation
of ETV6–PDGFR� and prolonged survival in the transgenic model system
(Carroll et al., 1997). Accordingly, case reports are now accumulating in the
literature wherein imatinib induces complete remissions in patients with
CMMoL harboring t(5;12) (Apperley et al., 2002; Gunby et al., 2003;
Magnusson et al., 2002; Pitini et al., 2003). The remissions have generally
extended to the molecular level and appear durable. Unfortunately (and not
surprisingly), imatinib has had little effect on CMMoL lacking a PDGFR�
rearrangement (Cortes et al., 2003).

C. FIP1-L1-PDGFRa

Idiopathic HES is a rare disorder characterized by persistent eosinophil-
ia with organ dysfunction from infiltration of eosinophils (Chusid et al.,
1975). When there is a clonal cytogenetic abnormality, or increased marrow
blasts, the disorder is labeled chronic eosinophilic leukemia (CEL). Like
CML, these diseases occasionally respond to interferon-�, although neither
HES nor CEL carries a BCR/ABL abnormality. When imatinib was ap-
proved for use in CML, clinicians, following a rather curious logic, used it
to treat HES patients. They reasoned that because both CML and HES
responded to interferon-�, perhaps HES, like CML, would respond to
imatinib. Anecdotal reports began to surface describing HES patients
responding in dramatic fashion to imatinib (often at a dose lower than
that required for treating CML) (Ault et al., 2002; Gleich et al., 2002;
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Pardanani et al., 2003b; Schaller and Burkland, 2001). Following up on a
t(1;4) translocation present in a responding patient, investigators identified a
new fusion gene, FIP1-L1-PDGFR�, that was the result of an interstitial
deletion on chromosome 4 (Cools et al., 2003). This mutation was subse-
quently found in EOL-1 cells, which are derived from a patient with CEL
(Griffin et al., 2003; Saito et al., 1985). The protein product of the fusion
gene, containing the kinase domain of PDGFR�, was constitutively phos-
phorylated and conferred factor independence in Ba/F3 cells. As expected,
imatinib was a potent inhibitor of the mutated kinase and was cytotoxic to
EOL-1 cells. Interestingly, in keeping with what had been observed clinical-
ly, the IC50 of imatinib for inhibiting FIP1-L1-PDGFR� was 3.2 nM, much
lower than the IC50 for inhibiting BCR/ABL. This again illustrates that the
type of activating mutation can greatly influence the potency of a given
inhibitor for a given kinase.

In the study that first reported the discovery of FIP1-L1-PDGFR�, 15
patients with HES and one with CEL were screened for the presence of the
fusion protein (Cools et al., 2003). Nine patients (including the CEL patient)
harbored the mutation, and five of these had a clinically significant, durable
response to imatinib. One of the responders subsequently relapsed; DNA
sequence analysis of the imatinib-resistant cells revealed the presence of a
point mutation in the ATP-binding pocket of FIP1-L1-PDGFR� that was
analogous to the imatinib-resistant Thr-315 mutation of BCR/ABL seen
commonly in CML.

This story is far from complete. Reports of the success of imatinib in
treating HES continue to surface, but the original investigators noted that
four patients harboring FIP1-L1-PDGFR� failed to respond, whereas four of
five patients lacking the abnormality did respond to the drug. This implies
the existence of additional imatinib-responsive alterations in this disorder
that have yet to be characterized. The tantalizing association of PDGFR
(� or �) abnormalities with elevated eosinophil counts potentially justifies an
empiric trial of imatinib in any patient with a myeloproliferative disorder
and unexplained eosinophilia.

Perhaps to justify this, another disease associated with eosinophilia has
turned up that might respond to imatinib. Systemic mast cell disease
(SMCD) is an unusual disorder in which mast cells proliferate beyond the
skin, with resultant organ infiltration and dysfunction (Valent et al., 2001).
SMCD is normally associated with activating mutations of KIT (see later),
and occasionally patients are noted to have peripheral eosinophilia. Recent-
ly, investigators empirically treated five patients with SMCD and eosinophil-
ia with imatinib (Pardanani et al., 2003a). Three of the five so treated
achieved clinical remission, and all three harbored the FIP1-L1-PDGFR�
rearrangement. The two patients who failed to respond harbored KIT
mutations.
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V. Kinase Targets in Leukemia: On the Horizon _________________________________________________________________________________________________________________________________________________________________________________________________________________________

A. FLT3

FLT3 is a member of the class III or so-called split kinase subfamily of
receptor tyrosine kinases (van der Geer et al., 1994). This group includes the
structurally related receptors KIT, FMS, and PDGFR� and �. FLT3, cloned
out of a human hematopoietic stem cell cDNA library, was recognized early
on as a receptor that had an important role in hematopoiesis. In human
hematopoietic cells, FLT3 expression is restricted to the CD34þ fraction,
along with a smaller fraction of CD34� dendritic precursors (Gotze et al.,
1998; Small et al., 1994). Targeted disruption of either the FLT3 receptor or
its ligand (FL) in mice is not lethal, but leads to reduced numbers of bone
marrow hematopoietic precursors in general and a reduction of lymphoid
precursors in particular (Mackarehtschian et al., 1995; McKenna et al.,
2000). FLT3 appears to act in synergy with other cytokine receptors to
promote expansion of hematopoietic precursors (Broxmeyer et al., 1995;
Hirayama et al., 1995; Nicholls et al., 1999; Ray et al., 1996; Veiby et al.,
1996). Studies in murine and human systems suggest that FLT3 expression
and function is mainly associated with the so-called short-term reconstitut-
ing hematopoietic stem cells, that is, those capable of multilineage myeloid
reconstitution but lacking unlimited self-renewal capacity (Adolfsson et al.,
2001; Christensen and Weissman, 2001). However, a recent study showed
that in human CD34þ cells, the FLT3-positive fraction has the active
long-term reconstituting activity (Sitnicka et al., 2003).

In common with the other members of its receptor subfamily, FLT3 has
an extracellular portion comprising five immunoglobulin-like domains, a
single transmembrane domain, and an intracellular portion consisting of a
juxtamembrane domain followed by the interrupted kinase domains (Fig. 4;
Small et al., 1994; van der Geer et al., 1994). Following ligand-induced
dimerization and autophosphorylation, FLT3 transduces proliferative and
antiapoptotic signals through downstream proteins such as Ras-GAP, PLC-
�, PI3-kinase, STAT5, and MAP kinase (Dosil et al., 1993; Lavagna-Sevenier
et al., 1998; Rosnet et al., 1996a; Zhang et al., 1999). The juxtamembrane
domain of FLT3 is of particular interest because it apparently exerts a
negative regulatory influence on the tyrosine kinase activity of the receptor,
the exact nature of which has yet to be elucidated. Another part of FLT3
of particular interest is the activation loop (A-loop), localized to the N-
terminal kinase domain (Fig. 4). When the ligand binds to the receptor, the
activation loop assumes an open conformation, allowing ATP access to
the ATP-binding pocket.

Wild-type FLT3 is expressed by the leukemic blasts in the majority of
cases of acute leukemia, and the expression is no longer tightly coupled to
CD34 expression (Birg et al., 1992; Carow et al., 1996; Drexler, 1996;
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Meierhoff et al., 1995; Rosnet et al., 1996b). In 1996, internal tandem
duplication mutations of FLT3 (FLT3/ITD mutations) localized to the jux-
tamembrane domain were discovered in a significant fraction of AML cases
(Nakao et al., 1996). FLT3/ITD mutations range in size from three to more
than 400 base pairs (bp) and always occur in multiples of three so that the
reading frame is maintained (Schnittger et al., 2002). They are usually
contained within exon 14 typically, but not always, near amino acid residues
590 to 600 of the FLT3 sequence within the juxtamembrane domain. Infer-
ring from the crystal structure analysis of the EphB2 receptor, it seems likely
that any such insertion (or a deletion) in this domain would be expected
to disrupt its influence over the kinase domain, facilitating activation
(Wybenga-Groot et al., 2001). In confirmation of this, FLT3/ITD mutations
lead to constitutive FLT3 activation and when transfected into Ba/F3 and
32D cells confer factor independence and cause transformation (Hayakawa
et al., 2000; Kiyoi et al., 1998, 2002; Mizuki et al., 2000). This influence of
the juxtamembrane region appears to be a common feature of this receptor
subfamily, as activating mutations of KIT and PDGFR� also occur within
this domain (Hirota et al., 1998, 2003; Ma et al., 1999).

The other type of FLT3-activating mutation is located within the activa-
tion loop of the kinase domain. The Asp-835 of FLT3, which follows a well-
characterized Asp-Phe-Gly motif, is conserved across several subfamilies of
receptor tyrosine kinases. Activating point mutations of the corresponding
residue in a number of different receptors have been identified and in KIT,

FIGURE 4 A model of the FLT3 receptor showing the location of the major types of

activating mutations.
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MET, and RET are associated with human malignancies. Shortly after the
discovery of FLT3/ITD mutations, two independent groups of investigators
reported finding point mutations at this aspartate residue in AML patients
(Abu-Duhier et al., 2001; Yamamoto et al., 2001). Additional activating
point mutations at Ile-836, as well as small deletions or insertions at nearby
amino acids, have also been reported to occur less frequently (Spiekermann
et al., 2002; Yamamoto et al., 2001). The mechanism by which these types of
mutations cause constitutive kinase activity is assumed to be the same as that
determined in other receptor tyrosine kinases, namely, that the mutations
stabilize the activation loop in the open ATP-binding conformation
(Hubbard et al., 1994; Till et al., 2001).

Following these initial observations, dozens of studies comprising the
results of screening more than 5000 adult and pediatric AML samples for
FLT3 mutations have been published (Abu-Duhier et al., 2000; Boissel et al.,
2002; Iwai et al., 1999; Kiyoi et al., 1999; Kondo et al., 1999; Kottaridis
et al., 2001; Meshinchi et al., 2001; Rombouts et al., 2000; Schnittger et al.,
2002; Stirewalt et al., 2001; Thiede et al., 2002; Whitman et al., 2001; Xu
et al., 1999). From these studies, FLT3/ITD mutations can be estimated to
occur in 22.9% of de novo AML (i.e., AML not arising from preexisting
myelodysplasia) and their presence clearly confers a poor prognosis (Levis
and Small, 2003). D835 mutations occur in 7% of cases, with a less certain
clinical impact (Abu-Duhier et al., 2000; Levis and Small, 2003; Yamamoto
et al., 2001). Finally, the recently described mixed lineage leukemia (MLL)
has been shown through microarray analysis to express high levels of FLT3
mRNA (Armstrong et al., 2002). Of 30 clinical MLL specimens, 5 were
found to harbor FLT3 D835 mutations, and MLL-derived cell lines dis-
played a cytotoxic response to FLT3 inhibition (Armstrong et al., 2003).
Overall, FLT3 mutations now represent the most common molecular abnor-
mality in AML, and the receptor appears to be a very important contributor
to leukemogenesis in general. The large body of data on the incidence and
prognostic impact of FLT3 mutations establishes this receptor as a worthy
therapeutic target.

Finally, FLT3 appears to often be constitutively activated in leukemia
cells through an autocrine loop. Although the majority of AML blasts
express the FLT3 receptor (either wild type or mutant), virtually 100% of
them also coexpress FL, with resultant autocrine- or paracrine-mediated
FLT3 autophosphorylation (Zheng et al., 2004).

In response to the evidence that FLT3 plays an important role in the
pathogenesis of a significant proportion of AML cases, various research
groups worldwide are investigating more than a dozen small-molecule
ATP-competitive FLT3 inhibitors in the hope of developing a new molecu-
larly targeted therapy for this disease (Table II; Gazit et al., 2003; Kelly et al.,
2002; Levis et al., 2001, 2002; Murata et al., 2003; O’Farrell et al., 2003;
Teller et al., 2002; Tse et al., 2001; Weisberg et al., 2002; Yee et al., 2002).
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These FLT3 inhibitors span several different chemical classes, including
indolocarbazoles, indolinones, and quinazolines, and they have a relatively
broad range of potency and selectivity. Not surprisingly, many of them
inhibit KIT and PDGFR� and � with similar potency. In general, these
compounds have been found to inhibit FLT3 autophosphorylation in
FLT3/ITD-expressing cell lines in vitro (with resultant cytotoxic effects)
and to improve survival in a variety of mouse models of FLT3/ITD leukemia
(Kelly et al., 2002; Levis et al., 2002; O’Farrell et al., 2003; Weisberg et al.,
2002).

The indolocarbazoles CEP-701 and PKC412 have been tested in Phase II
trials with relapsed/refractory AML patients harboring FLT3-activating
mutations (Smith et al., 2002; Stone et al., 2002). In both trials in vivo
FLT3 autophosphorylation was monitored and correlated with responses,
and for both drugs plasma levels that could effectively inhibit FLT3 were
achieved without significant toxicity. In the CEP-701 study, 5 of 14 patients
treated achieved significant reductions in peripheral blood or marrow blast
percentages, although no complete remissions were seen. Patients who
showed no response were demonstrated either to have blasts that were
resistant in vitro to the cytotoxic effects of CEP-701 or to have failed to
achieve adequate FLT3 inhibition in vivo. In the PKC412 trial, 7 of 20
patients treated achieved a clinically significant reduction in peripheral
blast counts, and 1 patient achieved complete remission. The responses in
both trials were typically of short duration (i.e., weeks), indicating that
resistance to this monotherapy develops relatively quickly. Both drugs are
proceeding into trials in which they are combined with standard AML
chemotherapy regimens in the hope of attaining more durable responses.

Phase I trials of SU11248 (an indolinone) and of MLN-518 (a quinazo-
line) have been conducted. Preliminary results suggest that both drugs can
successfully inhibit FLT3 in vivo (Foran et al., 2002; Heinrich et al., 2002b).
However, SU11248, a multitargeted compound, was associated with some
degree of toxicity, necessitating intermittent dosing schedules. The relative

TABLE II Small-Molecule FLT3 Inhibitors Currently in Clinical Development

Compound Class
FLT3 IC50

(nM)
Other receptors
inhibiteda Reference

CEP-701 Indolocarbazole 3 TrkA Levis et al., 2002

PKC412 Indolocarbazole 10 PDGFR� Weisberg et al., 2002

MLN-518 Quinazoline 30 KIT, PDGFR�, PDGFR� Kelly et al., 2002

SU11248 Indolinone 50 KIT, PDGFR�, VEGFR2 O’Farrell et al., 2002

Note: The listed IC50 refers to results obtained from cell-based autophosphorylation assays.
a Inhibition occurs with an IC50 that is within one order of magnitude of the IC50 for FLT3

inhibition.

Kinase Inhibitors in Leukemia 17



selectivity of FLT3 inhibitors, therefore, might play a crucial role in deter-
mining which drugs can be safely combined with traditional cytotoxic
chemotherapy.

B. KIT

Another member of the class III receptor tyrosine kinase family, this
145-kDa glycoprotein is the product of the c-kit gene, the cellular homo-
logue of the viral oncogene v-kit (Besmer et al., 1986; Yarden et al., 1987).
KIT appears to play an important role in the pathogenesis of a number of
malignancies (reviewed in Heinrich et al., 2002a) and is expressed by the
leukemic blasts in the majority of AML cases (Ikeda et al., 1991). Like FLT3,
KIT is constitutively activated by juxtamembrane and A-loop mutations,
and these mutations, along with overexpression or autocrine activation of
the receptor, are associated with specific types of malignancies, including
SMCD and AML (Longley et al., 2001).

SMCD, as noted previously, is a rare disorder caused by mast cell
accumulation in a variety of tissues that can progress to mast cell leukemia
or AML (Valent et al., 2001). The D816 A-loop mutation of c-kit
was originally isolated and characterized from mast cell lines and subse-
quently from the cells of patients with SMCD (Nagata et al., 1995;
Tsujimura et al., 1994). Although there are possibly rare variants of
SMCD that harbor juxtamembrane mutations of KIT, in the vast majority
of these cases the KIT-activating mutation resides within the A-loop
(Longley et al., 2001).

Two independent groups have noted an increased incidence of KIT
mutations in AML patients with core binding factor abnormalities t(8;21)
and inv(16) (Beghini et al., 2000; Care et al., 2003). In t(8;21) patients, these
have mostly been the D816 A-loop mutations. One group found 15 of 63
patients with inv(16) harbored deletions or insertion in exon 8 of c-kit, and
these patients appeared to have a higher probability of relapse (Care et al.,
2003). It is not known whether these extracellular mutations cause consti-
tutive kinase activity (like the exon 9 mutations seen in GIST), but if so they
would likely be imatinib sensitive.

There have been anecdotal reports of responses by AML patients to
imatinib (Kindler et al., 2003; Schittenhelm et al., 2003). Likewise, admin-
istration of the indolinone SU5416 led to a complete remission in a patient
with AML who expressed high levels of KIT (Mesters et al., 2001). Howev-
er, the receptor targeted in these cases was not clearly established. In general,
the KIT mutations found in AML and SMCD or mast cell leukemia are
localized to the A-loop; therefore, imatinib will not be a treatment option, as
it has essentially no activity against this type of mutation (Frost et al., 2002;
Zermati et al., 2003). Interestingly, the indolocarbazole FLT3 inhibitors are
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active against the FLT3 A-loop mutants, so it seems likely that compounds
can be developed that will be effective against these KIT mutations
(Grundler et al., 2003; Levis et al., 2002).

C. Other Targets

There are a number of other kinases that are being investigated as
potential therapeutic targets in leukemia. Vascular endothelial growth factor
(VEGF) appears to be important to hematopoietic stem cell survival, and
VEGF receptors are often expressed by leukemic blasts in AML (Fiedler
et al., 1997a,b; Gerber et al., 2002; Verstovsek et al., 2002). Moreover,
increased levels of soluble VEGF are commonly noted in AML patients,
and higher levels seem to correlate with a poor prognosis (Aguayo et al.,
2002; Padro et al., 2002). However, no activating mutations for the VEGF
receptors have been described, and the presence of the wild-type receptors
on leukemic blasts has no prognostic impact (Meshinchi et al., 2003;
Verstovsek et al., 2002). It is possible that the increased level of plasma
VEGF in AML is merely reflective of the increased metabolic activity of the
bone marrow, and, like an elevated white blood cell count or lactate dehy-
drogenase level, is a result rather than a cause of the underlying disease.
Angiogenesis inhibitors are currently being widely investigated in a number
of solid tumors with some preliminary reports of efficacy. Bevacizumab, an
anti-VEGFR monoclonal antibody with efficacy in colorectal and renal
cancer, is currently being tested in Phase I/II trials in AML patients (Yang
et al., 2003).

B-RAF kinase, a serine/threonine kinase that plays a pivotal role in the
RAS-MAP kinase pathway, is activated by mutation in a number of solid
tumors, notably melanoma (Davies et al., 2002; Mercer and Pritchard,
2003). However, hematologic malignancies have not been found to harbor
these mutations (Smith et al., 2003). BAY 43-9006, a small-molecule RAF
kinase inhibitor, is being tested in a variety of malignancies, but this drug at
present does not seem to have a clear therapeutic role in leukemia (Lyons
et al., 2001). On the other hand, the FGF receptor is activated by a translo-
cation in some cases of multiple myeloma and might represent a suitable
target when a clinically useful inhibitor can be identified (Chesi et al., 2001;
Li et al., 2001). Likewise, both ARG and TrkA are kinases that have been
activated by translocation events in rare cases of AML (Okuda et al., 2001;
Reuther et al., 2000). Both these enzymes are readily amenable to inhibition
by agents currently in development (ARG by imatinib and TrkA by CEP-
701) (George et al., 1999; Okuda et al., 2001). Finally, heteroduplex analy-
sis has been used to screen a variety of malignancies for kinase mutations,
and this technique will almost certainly uncover new potential kinases to
target in leukemia (Bardelli et al., 2003).
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VI. Conclusions

Kinase inhibitors now have an increasingly prominent role in the treat-
ment of myeloid leukemias. ABL and PDGFR� and � have proven creden-
tials as therapeutic targets, and FLT3 and KIT are likely to be established as
targets very soon. The clinical successes that have resulted from the targeting
of these kinases illustrate some important points about selecting an appro-
priate target for the therapy of any kind of cancer. These points relate to the
presence and significance of activating mutations. When malignant cells
express a kinase that has been activated by mutation, it implies that the
function of that kinase is of fundamental importance to those cells. When
such a mutation is pathognomonic for the disease (such as BCR/ABL), it
becomes an even more inviting target. Whether the mutation is present in, or
important to, the cancer stem cell population will always be an important
issue. However, even if the genetic defect is found in only those cancer cells
that lack the potential for self-renewal, inhibiting the activated product of
the gene can still lead to significant clinical benefit: these progeny cells are
usually responsible for most of the symptoms of a malignancy.

Only a few mutation-activated kinases have thus far been found in
lymphoid malignancies [Phþ ALL and the NMP/ALK fusion protein of
anaplastic lymphoma (Morris et al., 1994)], but it is only a matter of time
before more are identified. The kinase-activating genetic alterations in these
neoplasms might tend to fall along the lines of gene amplification, which
will require screening approaches different from those used for identifying
translocations or point mutants.

The enthusiasm for using kinase inhibitors in the treatment of leukemia
must be tempered by the fact that none of these agents has thus far led to
cures, although some patients with CML have been able to undergo alloge-
neic stem cell transplantation after achieving disease control with imatinib.
In addition, the follow-up duration with these agents is not long enough to
definitively establish a survival benefit. Nonetheless, the clinical impact of
imatinib in CML, HES, and some cases of CMMoL has been dramatic, and
the expectation is that additional agents will have an equally dramatic
impact in other hematologic diseases in the near future.
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I. Chapter Overview

Acute promyelocytic leukemia (APL) is a form of myeloid leukemia for
which the introduction of targeted therapies has radically altered the treat-
ment paradigm. This chapter highlights the biology of this disease and
reviews the therapeutic strategies currently employed to manage it.

II. Introduction _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Although APL is a relatively rare disorder, it has proven invaluable as a
model of targeted therapy in modern oncology. The initial experience in
employing alternatives to the standard anthracycline–cytarabine-based regi-
mens was tempered by empiricism borne out of a need to establish a
therapeutic approach for a fulminant disorder in the face of rare resources.

Advances in Pharmacology, Volume 51
Copyright 2004, Elsevier Inc. All rights reserved.
1054-3589/04 $35.00 35



Subsequently, the recognition that the clinical responses were intimately
linked to the underlying biology of the disease led not only to the introduc-
tion of a new standard of care in treating leukemia but also to a further
understanding of fundamental mechanisms of leukemogenesis.

III. Disease Background and Biology ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

The clinical syndrome of APL is often characterized by the patient
presenting with the most common complications associated with acute leu-
kemia: infection and hemorrhage. The incidence of hemorrhagic com-
plications might be exceptionally severe and out of proportion to the
thrombocytopenia, as patients often develop an additional coagulopathy
(Drapkin et al., 1978; Gralnick et al., 1972). The initial diagnostic work-up
includes examination of the peripheral blood and bone marrow. Periphe-
ral white blood cell (WBC) counts are often below normal, but the bone
marrow aspirate is generally replaced with abnormal promyelocytes with
a characteristic hypergranular appearance. Some morphologic variants of the
disorder exist, but the clinical course is determined primarily by the genotype
(Golomb et al., 1980; McKenna et al., 1982; Sainty et al., 2000).

More than 95% of APL cases are characterized by a balanced translo-
cation between chromosomes 15 and 17 at the q22 and q21 loci on the
respective chromosomes (Larson et al., 1984; Rowley et al., 1997). The
ability to detect this translocation by conventional cytogenetics is diagnostic
of APL and is often used in cases in which the morphology might be
problematic. On a molecular level, the chromosomal translocation results
in fusion of RAR� gene on chromosome 17 to a portion of the PML gene on
chromosome 15 (de Thé et al., 1990; Kakizuka et al., 1991). This chimeric
fusion gene product has profound implications for the cell and has been
established to be a key event in leukemogenesis.

A model for the ability of the PML/RAR� to transform normal cells
has been developed by correlating clinical data with experimental data
generated by using cell lines and transgeneic mice (Guidez et al., 1998; He
et al., 1998). Under normal physiologic conditions, RAR� is thought to
play an important role in myeloid differentiation because of its ability to
bind nuclear corepressors, which in turn control the regulation of tran-
scription by binding histone deacetylases. Nuclear corepressors and histone
deacetylases regulate transcription through their effects on chromatin
conformation. Binding of the corepressor complex results in a closed confor-
mation of the chromatin, shutting down transcription of functionally
active genes. Physiologic binding of retinoic acid causes a dissociation of
the corepressor complex, allowing various transcriptional activators access
to an open conformation of chromatin, facilitating gene transcription.
The genes downstream from this regulatory switch are thought to be
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important in the process of myeloid maturation. In the pathologic state, the
PML/RAR� gene product is substituted for RAR�. This fusion protein has
different properties, the most important being a greater affinity for the
corepressor complex. Therefore, the stronger avidity of binding is not re-
sponsive to physiologic concentrations of retinoic acid. Instead, the supra-
physiologic concentration achieved by the administration of all-trans
retinoic acid (ATRA) is required to recapitulate the physiologic response
and allow normal differentiation to proceed.

Although the vast majority of APL is defined by the t(15;17) resulting
in the critical PML/RAR abnormality, variant translocations have been de-
scribed (Arnould et al., 1999; Licht et al., 1995; Redner et al., 2000; Wells
et al., 1997). These cytogenetic/molecular variants are clinically rare, but
useful in further refining the model of transcriptional repression suggested by
the experimental data. The most common variants involve translocations
between chromosome 17 and either chromosome 11 or 5. Although the
breakpoint in the RAR� gene on chromosome 17 is invariable, the different
‘‘partner’’ chromosomes contain different ‘‘partner’’ genes. The molecular
consequences of these variant translocations have distinct effects on the
phenotype of the leukemia, particularly with regard to the response to
ATRA. The (11;17) (q23q21) translocation is most notable in this regard,
because resistance to the differentiating effects of ATRA is well described.
In the new chimeric combination, PML is replaced by the leucine zinc finger
PLZF as the molecular partner gene for RAR�. PLZF interacts differently
with the nuclear corepressor complex by binding in multiple sites, rendering
the retinoic acid alone insufficient to reverse transcriptional inhibition. This
translocation also renders the patient insensitive to standard chemotherapy,
although the actual mechanism behind this resistance is not well understood.

The molecular genetics of APL has significance beyond mechanistic
explanations of transformation in that the novel fusion gene can be used
to clinically diagnose and manage patients with this disorder. In morpho-
logic variants in which the characteristic microscopic features are not rea-
dily apparent, detecting either t(15;17) by conventional cytogenetics or
PML/RAR� through the use of reverse transcriptase polymerase chain reac-
tion (RT-PCR) confirms the diagnosis of APL (LoCoco et al., 1992; Miller
et al., 1992). The molecular technique has the advantage in this setting,
because the turnaround time tends to be more rapid and the results are
available in a timeframe that is meaningful for the clinician. The presence
of PML/RAR� in the setting of morphologic remission provides evidence of
minimal residual disease. Patients in whom PML/RAR� is able to be
detected following completion of therapy have a poor prognosis and ulti-
mately relapse with overt disease (Diverio et al., 1998; Jurcic et al., 2001).
Other patients who become negative for PML/RAR� by RT-PCR but later
convert back to a positive result also ultimately relapse with clinically
apparent disease.
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Therefore, RT-PCR has become a standard tool for monitoring
response, because this technique detects residual or recurrent disease before
it can be detected by conventional microscopic means. The clinical advan-
tage to this is that an improved outcome can be obtained if therapy is
instituted at an earlier stage when the leukemia burden is at a minimum.
This situation is in marked contrast to most other subtypes of acute mye-
loid leukemia (AML) for which no molecular markers exist or for which
molecular monitoring of existing markers has not been validated by clini-
cal data. In these forms of AML, the ‘‘gold standard’’ for response remains
morphologic assessment of the bone marrow and peripheral blood.
The ability to assess early relapse is, however, hampered by the inhe-
rent insensitivity of light microscopy, making the criteria for complete
remission (CR) relatively imprecise with regard to the presence of minimal
residual disease. The consequences of the inability to detect minimal
disease can be seen in the high relapse rates and the inability to adapt
the amount of therapy based on measurable criteria. For most patients
with AML, ‘‘one size fits all’’ and patients receive the same amount of
therapy whether they are cured of all traces of disease or have remnants
of the original clone in the bone marrow. In APL, the ability to detect
minimal residual disease through molecular techniques has allowed ther-
apy to be adapted to the relative amount of disease present and has led to a
new definition of response known as molecular remission. For cure to
be accomplished in APL, molecular remission is required. In the modern
era, the means toward this end is achieved through a combination of con-
ventional chemotherapeutic agents, retinoids, and, in the relapsed setting,
arsenicals.

IV. Treatment Approaches ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

APL is a subtype of AML, and prior to the late 1980s this disease
was treated with the standard therapy for AML. Treatment for AML is
generally divided into two phases of therapy: induction and postremis-
sion therapy. Induction therapy traditionally consists of intensive chemo-
therapy designed to produce aplasia, eradicate morphologically apparent
disease, and result in CR. Postremission therapy can take a variety of forms,
but the ultimate purpose of this continuing treatment past CR is to eradi-
cate minimal residual disease and effect cure. A number of terms have been
adopted to describe the various forms of postremission therapy (Bloomfield,
1985). Consolidation therapy describes chemotherapy that is similar to
induction therapy but given in the immediate postremission setting. Intensi-
fication is a form of high-dose consolidation, and maintenance therapy
is dose-attenuated treatment generally given over a prolonged period of
time (typically more than 6 months).
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In the modern era, standard induction therapy for AML consists of
cytosine arabinoside (Ara-C) combined with an anthracycline or anthracene-
dione (Scheinberg et al., 2001). Ara-C is generally administered as a continu-
ous infusion over 7 days, whereas daunorubicin (or idarubicin or
mitoxantrone) is given by intravenous bolus or push on the first 3 days of
therapy. The daunorubicin/Ara-C regimen has become known as 7 þ 3 or 3 þ
7. Minor variations of this schedule exist, but the original daunorubicin/Ara-C
is still widely employed.

Given the profound coagulopathy that accompanies the diagnosis of
APL, the ability to distinguish APL from the other forms of AML at a
relatively early time in the patient’s presentation is key in the clinical man-
agement of the disorder (Drapkin et al., 1978; Gralnick et al., 1972).
Historically, the CR rate in APL with standard chemotherapy might have
been slightly lower than that achieved in other forms of AML because of the
morbidity or mortality associated with the institution of therapy (Kantarjian
et al., 1986). However, as supportive care improved, many more patients
could be sustained through the coagulopathy and CR rates increased to as
high as 80%. Despite the relatively high CR rate, the long-term disease-free
survival for patients with APL treated with standard therapy was 30–40%
(Marty et al., 1984). This outcome was superior to the survival data for
AML as a whole, but it underscored the need to develop new treatment
strategies to improve cure rate.

One such strategy was in a reevaluation of the standard chemotherapy
regimen with modification of the doses used. Data from various clinical
trials suggest that APL is particularly sensitive to the anthracycline compo-
nent of induction therapy. This may be reflective of the underlying biology of
the disease as demonstrated by the rare occurrence of drug-resistant pheno-
types in de novo disease. A number of trials have reported CR rates compa-
rable to standard induction regimens using monotherapy with either
daunorubicin or idarubicin (Avvisati et al., 1990; Petti et al., 1987). Several
other retrospective studies suggested a positive effect on survival when dose
intensification of the anthracycline was employed. In the study from the
Southwest Oncology Group (SWOG), this effect was seen in patients who
received the higher cumulative anthracycline dose but not in those who
received high-dose cytarabine (Head et al., 1995). This finding is in contrast
to the data in other forms of AML in which high-dose cytarabine has
been emphasized in various treatment regimens. Another randomized
study compared high-dose single-agent idarubicin with a standard idarubi-
cin/cytarabine combination and showed no difference in CR rate. Therefore,
these data suggest that anthracycline is of primary importance in this disease
and a strategy of dose-intensive single-agent anthracycline as part of the
modern treatment regimen for APL might be beneficial both in terms of
toxicity and efficacy. The choice of the optimal anthracycline, however,
remains controversial.
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A. All-trans Retinoic Acid

The addition of ATRA into the treatment strategy of APL has greatly
improved the outcome of this disease. ATRA was the first successful clinical
application of differentiation therapy. The initial series of patients treated
with ATRA was reported in 1987 (Huang et al., 1987), and by the mid
1990s, more than 3000 APL patients worldwide had been treated with
this drug. Collectively, these studies with ATRA had a reported median
complete remission rate in excess of 85% (Fenaux et al., 1993; Huang
et al., 1987, 1988; Lo Coco et al., 1991; Warrell et al., 1991). These
responses were obtained with doses of ATRA up to 100 mg/m2/day. How-
ever, no particular dose–effect correlation was determined. Most clinical
experience has been obtained with a dose of 45 mg/m2/day administered as
a single daily dose or in two equally divided doses given approximately 12 h
apart. Although lower doses of ATRA given daily have less typical retinoid
side effects (i.e., cheilitis and headaches) and are similar in terms of CR
rates and pharmacokinetic parameters to ATRA at 45 mg/m2/day, the inci-
dence of life-threatening adverse events unique to APL (hyperleukocytosis
and retinoic acid syndrome) was not reduced. In addition, the long-term
therapeutic effects of a lower dose of ATRA have not been established, and
therefore 45 mg/m2/day is used as the standard dose for treatment of this
disease.

Importantly, the clinical response to ATRA is correlated with the pres-
ence of the 15;17 chromosomal translocation assessed either by conventional
cytogenetics or by RT-PCR (Diverio et al., 1998; Lo Coco et al., 1992;
Miller et al., 1992). This translocation involves the molecular rearrange-
ment of RAR�, which seems to be the link to the responsiveness of APL
to ATRA therapy. For example, patients with equivocal cellular morphology
and normal karyotypes show typical rearrangements of RAR� by molecular
testing and are clinically responsive to ATRA (Lo Coco et al., 1992; Miller
et al., 1993). Alternatively, patients who are negative by RT-PCR for
PML/RAR� and/or do not exhibit the karyotypic t(15;17) do not respond
to ATRA (Lo Coco et al., 1992; Miller et al., 1992). Therefore, patients with
acute leukemia with cytogenetic or molecular findings other than
those distinctly found in APL should be treated with standard antileukemic
therapy and not with ATRA.

Despite the high remission rate obtained with single-agent ATRA, initial
studies revealed that remissions induced and maintained exclusively by
ATRA are brief in duration (median duration <6 months) (Frankel et al.,
1994; Warrell et al., 1994). In the series of studies in which ATRA was used
alone, rarely did any patient maintain a remission of more than 1 year (Di
Bona et al., 2000; Lo Coco et al., 1991). Subsequently, both randomized and
nonrandomized studies have shown that by combining ATRA with standard
induction therapy, followed by consolidation treatments using several
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cycles of anthracycline-based regimens, remissions were not only durable
but also superior to those achieved by chemotherapy alone (Avvisati et al.,
1998; Castaigne et al., 1990; Warrell et al., 1994).

In initial APL trials incorporating ATRA, the drug was given as a single
agent until CR was achieved; then patients were consolidated with chemo-
therapy. However, the optimal schedule and duration of ATRA therapy
needed to be determined to obtain the best clinical outcome. Subsequently,
many large randomized studies have been conducted worldwide.

In the U.S. Intergroup study (Tallman et al., 1997), 346 newly diagnosed
APL patients were randomized to receive either ATRA or daunorubicin plus
Ara-C for remission induction. Patients who obtained a CR received two
cycles of consolidation therapy: the first cycle of treatment was identical to
induction chemotherapy and the second cycle of consolidation consisted of
high-dose Ara-C plus daunorubicin. Patients who remained in remission
after completing consolidation therapy were randomized to either observa-
tion only or maintenance treatment with ATRA. Therefore, the majority of
patients in this trial received ATRA, either as induction therapy or mainte-
nance or both. Although there was no significant difference in the CR rate
between the ATRA (72%) and chemotherapy (69%) induction groups, the
3-year disease-free survival (DFS) was statistically improved in ATRA-
treated patients than in those treated with standard antileukemic therapy
(72% vs. 32%, p < 0.001). The group of patients who received no ATRA as
either induction or maintenance had a 3-year DFS of only 18%, which was
consistent with the historical survival rate of APL patients. This trial clearly
defined the benefit of ATRA in the management of APL, particularly when
ATRA was incorporated as part of induction therapy.

A large-scale European study (Fenaux et al., 1999) evaluated the clinical
impact of the scheduling of ATRA/chemotherapy by prospectively rando-
mizing 413 untreated APL patients between concurrent ATRA plus chemo-
therapy (daunorubicin and Ara-C) and sequential ATRA followed by the
same chemotherapy. Induction therapy was stratified based on both age
(>65 years or �65 years) and on presenting WBC count (>5000 or
�5000/�l). Patients who had WBC counts >5000/�l and were younger
than 65 years (163 patients) were not randomized but were treated with
concurrent ATRA and chemotherapy starting on Day 1. Patients who were
older than 65 years (66 patients) were not randomized but were treated with
ATRA followed sequentially by chemotherapy. Patients who achieved a CR
irrespective of their induction regimen received one or two additional
courses of consolidation chemotherapy (one course if older than 65) and
then were randomized to receive either 2 years of maintenance chemothera-
py consisting of ATRA alone, methotrexate plus 6-mercaptopurine (6-MP),
ATRA plus methotrexate and 6-MP, or no maintenance chemother-
apy (observation only). The proportion of patients achieving a CR in these
two induction groups was not different, with an overall CR rate of 92%.
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However, the event-free survival (EFS) at 2 years was estimated at 84% in
the concurrent ATRA plus chemotherapy group vs. 77% in the ATRA
followed by chemotherapy group (p ¼ 0.1). This benefit appears to occur
from a reduction in the risk of relapse, which at 2 years was 6% in the
concurrent arm and 16% in the sequential arm (p ¼ 0.04). An added
possible advantage from the concurrent ATRA plus chemotherapy treatment
approach appears to be a >50% reduction in the incidence of the potential
fatal retinoic acid syndrome (RAS) (Tallman et al., 2002).

The Italian Cooperative Group [Gruppo Italiano Malattie Ematolo-
giche maligne dell’ Adulto (GIMEMA)] eliminated Ara-C from induction
therapy and used the combination of ATRA and idarubicin (referred to as
the AIDA for all-trans retinoic acid plus idarubicin) for remission induction
in newly diagnosed APL (Mandelli et al., 1997). In the GIMEMA multicen-
ter trial, 253 patients with cytogenetics positive for t(15;17) and/or molecu-
larly positive by RT-PCR for the PML/RAR� fusion gene were treated with
ATRA until CR. Intravenous idarubicin (12 mg/m2/day) was given concur-
rently with ATRA on Days 2, 4, 6, and 8. Patients who achieved a CR were
consolidated with three cycles of combination cytotoxic chemotherapy.
With this induction regimen, 229 of 240 (95%) evaluable patients achieved
a CR. There were 11 deaths related to early complications. Molecular
conversion rate from PCR positive to PCR negative for PML/RAR� after
induction therapy was 60.5%, which increased to 95% by the completion
of the third cycle of consolidation therapy. The estimated actuarial EFS
for all 253 patients was 83% and 79% at 1 and 2 years, respectively.
These were unequivocally the best results reported for treating adults with
acute leukemia.

B. Duration of ATRA

ATRA is recommended as part of the induction regimen and as mainte-
nance therapy, which is initiated after the completion of consolidation
chemotherapy. There is no gain from ongoing treatment with ATRA in
induction once patients have achieved complete remission. Continuous
ATRA therapy beyond complete remission can potentially have negative
clinical implications by losing the benefits ATRA provides as maintenance.
Generally, patients who relapse while taking ATRA or shortly after discon-
tinuing ATRA fail to respond to further treatment with standard or high-
dose ATRA therapy (Huang et al., 1987; Warrell et al., 1994). It would be
exceptionally unusual for patients with a molecular diagnosis of APL who
are retinoid naı̈ve to be resistant to ATRA. Considering the limited duration
of remission with ATRA as a single agent, acquired resistance to ATRA
could theoretically result from genetic or epigenetic events (Warrell, 1993).
Although acquired resistance in HL-60, a retinoid-sensitive leukemic cell
line, has been associated with point mutations the in RAR� fusion gene (Li
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et al., 1994; Robertson et al., 1992), clinical specimens collected from
patients prior to treatment with ATRA and at the time of relapse have not
shown additional mutations in PML/RAR� (Warrell, 1996). Therefore, it
appears that multiple mechanisms are likely involved in the development of
resistance.

Continuous daily treatment with ATRA is associated with a marked
decrease in plasma drug concentrations occurring as early as 1–2 weeks of
initiation of therapy (Muindi et al., 1992). The mechanisms by which this
occurs include induction of cytochrome-P450 catabolic enzymes, increased
expression of oxidative cofactors, and/or upregulation of cellular retinoic
acid binding proteins (Muindi et al., 1992, 1994). These biologic mecha-
nisms function cooperatively to modulate intracellular retinoid concentra-
tions. As a result, it is plausible that prolonged administration of ATRA
could result in the development of clinical resistance because of an inability
to sustain effective concentrations in vivo that would be required to achieve
cytodifferentiation. Also, upregulation of the respective metabolic enzymes
reverses after a defined period from discontinuation of therapy (Adamson
et al., 1995; Delva et al., 1993). When reinstituting therapy with standard
doses of ATRA, the therapeutic levels needed clinically to induce myeloid
differentiation are once again obtained. Therefore, ATRA therapy should be
discontinued once a complete remission has been achieved and not used
again until maintenance therapy is initiated.

C. Postremission Consolidation Therapy

As discussed previously, treatment of APL with ATRA alone or in
combination with chemotherapy yields a complete clinical remission rate
as high as 85–95%. However, minimal residual disease (MRD) detected by a
positive RT-PCR for the PML/RAR� transcript is present in 80–90% of
patients following induction therapy with ATRA alone and in approximate-
ly 50% of patients when ATRA is given with chemotherapy (Jurcic et al.,
2001; Sanz et al., 1999). Consistently, patients with positive cytogenetics for
t(15:17) or MRD determined by RT-PCR clinically relapse (Fenaux et al.,
1994; Grimwade et al., 1996; Lo Coco et al., 1992; Miller et al., 1992). The
proportion of patients with MRD is considerably reduced by the adminis-
tration of postremission chemotherapy. Jurcic et al. (2001) did serial PCR
analysis on the bone marrow of 47 patients with untreated APL who
received ATRA induction followed by consolidation treatment with chemo-
therapy and biologic agents. In this study, 40 of 47 (85%) patients had MRD
detectable by RT-PCR after ATRA induction and only 4 (10%) patients after
completing three cycles of consolidation therapy. This benefit likely results
in a higher percentage of patients with APL cured (Grimwade et al., 1996;
Lo Coco et al., 1992; Sanz et al., 1999).
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Although several groups have incorporated high-dose Ara-C as part of
the consolidation strategy (Burnett et al., 1999; Lengfelder et al., 2000;
Tallman et al., 1997), there have been no substantial data to support the
benefit of this approach in either induction or consolidation. The exact role
of cytarabine in the treatment of APL is questionable. In a recent nonrando-
mized prospective study conducted by the Spanish PETHEMA group, 123
newly diagnosed molecularly confirmed APL patients were treated with a
modified AIDA regimen for induction and consolidation (Ara-C and etopo-
side were eliminated from consolidation) (Sanz et al., 1999). Complete
hematologic remission was obtained in 89% (109) of the patients. In addi-
tion, 51% of patients after induction therapy and 93% after the completion
of consolidation treatment achieved a molecular remission. The 2-year DFS
and overall survival (OS) estimates were 92% and 82%, respectively. These
results are comparable to those obtained (CR 92%, DFS 96%, OS 88%) in
the German AML Cooperative Group study (Lengfelder et al., 2000), in
which intensified double-induction therapy with high-dose Ara-C with
ATRA was administered. Similar results were observed in other trials that
employed dose-intense Ara-C.

Currently, for newly diagnosed APL untreated patients, most clinicians
use a combination of ATRA and chemotherapy (anthracycline based) for
remission induction. Once remission is achieved, ATRA is discontinued and
an anthracycline-based regimen is administered as consolidation therapy,
with the goal of eliminating MRD. As previously discussed, results of this
approach have been extremely good, with 80–85% of patients achieving
long-term DFS and in all likelihood cured (Fenaux et al., 1994; Warrell et al.,
1994). However, patients in remission should be monitored by RT-PCR for
evidence of MRD. The experience to date shows that patients who remain
positive during clinical remission or those who convert from negative to
positive will ultimately relapse clinically (Jurcic et al., 2001; Lo Coco et al.,
1992; Miller et al., 1992). Therefore, it is important that sequential PCR
analysis for MRD be part of the routine monitoring of patients with APL.
The results of such analyses drive important clinical decisions, such as which
patients could potentially benefit from additional therapy, and, equally
important, which patients can be spared the toxicity and risks of further
treatment, such as in allogeneic bone marrow or stem cell transplantation.

D. Maintenance Therapy

Conventionally, maintenance therapy has not been a critical component
of the management of AML. However in APL, recent studies have suggested
a possible benefit of maintenance therapy (De Botton et al., 1998;
Kantarjian et al., 1987). In a study reported by Kantarjian et al. (1987), 39
of 70 patients with APL who received 6-MP and methotrexate as mainte-
nance had an approximate twofold (56% vs. 30%, p < 0.01) higher
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sustained 3-year remission rate than patients who did not receive mainte-
nance. Subsequently, results of a single nonrandomized (Sanz et al., 1999)
and two randomized trials (Fenaux et al., 1999; Tallman et al., 1997) have
shown a reduction in the risk of relapse in patients, treated with ATRA or
chemotherapy, or both, as maintenance. In the largest of these three studies,
the European APL 93 trial (Fenaux et al., 1999), 289 patients, after com-
pleting their consolidation therapy, were randomized to observation only or
to maintenance therapy with either ATRA (45 mg/m2/day for 15 days every
3 months) or continuous low-dose chemotherapy with 6-MP (90 mg/m2/
day) plus methotrexate (50 mg/m2 given weekly), or both. The 2-year re-
lapse incidence was 13% compared with 25% (p ¼ 0.2) and 11% compared
with 27% (p ¼ 0.0003) in patients who received vs. those who did not
receive ATRA and in patients who received vs. those who did not receive
chemotherapy as maintenance, respectively. Notably, the relapse rate (6 of
74 patients, 8%) was lowest in patients who were randomized to both
ATRA and low-dose chemotherapy. In addition, there was an improvement
in overall survival (p ¼ 0.01) in patients who received chemotherapy main-
tenance and a similar trend in patients who received ATRA maintenance (p
¼ 0.22). Of interest, high-risk patients (presenting WBC counts >5000, and
>60 years old) who received both ATRA and low-dose chemotherapy as
maintenance seemed to benefit the most. At present, there are two large
ongoing randomized trials further evaluating the dose, schedule, and role of
ATRA and chemotherapy maintenance in APL. The GIMEMA Cooperative
Group is randomizing newly diagnosed APL patients to either no mainte-
nance or maintenance therapy using the same dose and schedules used in the
APL 93 study, and the North American Intergroup is evaluating ATRA given
alone every other week vs. ATRA every other week with continuous low-
dose 6-MP plus methotrexate every week.

E. Adverse Effects of ATRA

In the initial studies using ATRA in the treatment of APL, two unique
adverse events emerged: hyperleukocytosis and the RAS, which often in the
initial experience with ATRA proved fatal. Subsequently, a number of
successful treatment strategies have been developed that have reduced the
associated morbidity mortality of these adverse events.

In general, the toxicity profile of ATRA is comparable to that of other
retinoids. As mentioned previously, APL patients are uniquely prone to the
development of a hyperleukocytosis and the RAS, with a reported incidence
as high at 50% (Frankel et al., 1992). RAS is characterized by fever, respira-
tory distress, radiographic pulmonary infiltrates, pleural or pericardial effu-
sions, weight gain due to fluid overload, episodic hypotension, and acute
renal failure. Clinical diagnosis can be difficult, because this patient popula-
tion is at risk to develop pneumonia, sepsis, and congestive heart failure as a
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result of the disease or because of complications of cytotoxic chemotherapy.
The first signs and or symptoms of RAS can occur any time during therapy.
Most often, they occurs within the first few days to weeks of initiating ATRA
therapy (Warrell, 1993), but have also occurred toward the end of induction
therapy in patients maintained on ATRA and whose marrow was recovering
from postmyelosuppressive doses of chemotherapy (De Botton et al., 1998).
Although hyperleukocytosis is frequently observed preceding RAS, up to
one-third of patients who have RAS have a normal leukocyte count (Frankel
et al., 1992, 1994; Vahdat et al., 1994).

The basis of RAS is unknown; however, clinically it resembles a capillary
leak syndrome. Postmortem examinations revealed extensive infiltration of
maturing myeloid cells into lung, skin, kidney, liver, and lymph nodes of
patients who died with progressive hypoxemia and multiorgan failure
(Frankel et al., 1992). Several potential contributing mechanisms have
been proposed, including release of vasoactive cytokines, increased expres-
sion of adhesion molecules on myeloid cell surfaces, and attainment of
migratory capabilities by malignant promyelocytes as they undergo differ-
entiation (Frankel et al., 1992; Vahdat et al., 1994). ATRA has been shown
to increase the expression of the surface integrin ICAM-1 in certain cell lines.
Of clinical importance is that this effect can be blocked by treatment with
dexamethasone (Dedhar et al., 1991; Zhang et al., 1993). Development of
RAS is also correlated with expression of CD13 (aminopeptidase N; Vahdat
et al., 1994), which is has been associated with a poor outcome in patients
with AML. These observations suggest a association with the clinical expe-
rience of extravascular adhesion and migration of differentiating cells in this
reaction.

Progression of RAS can be abated by early intervention with a brief
course of high-dose dexamethasone (10 mg twice a day for 3 days), and, as a
result, the morbidity and mortality from this adverse event has decreased
significantly (Tallman et al., 2002). Most important is early recognition
accompanied by prompt intervention. Development of any unexplained
signs or symptoms, particularly fluid retention, hectic fevers, and pulmonary
infiltrates, should prompt immediate dexamethasone treatment. Once RAS
is fully established, it is especially difficult to manage and often results in
significant morbidity and/or death. Therefore, the benefits of empiric steroid
therapy far outweigh the risk of complications associated with its use in
leukemic patients. Some groups have advocated prophylactic use of corti-
costeroids, based on a nonrandomized prospective study reported by the
Australian Study Group in which patients were treated with prophylaxis
corticosteroids (prednisone 75 mg/day) and reported a lower incidence of
pulmonary toxicity and the RAS (Wiley and Firkin, 1995). However, most
groups have not adopted this as a standard approach, given the risks and
benefits of corticosteroids, but instead administer dexamethasone at the
earliest appearance of any of the signs or symptoms suggestive of RAS.
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APL is generally associated with leukopenia at the time of presentation;
however, leukocytosis (�10,000 cells/mm3) frequently occurs in these
patients when treated with ATRA alone. Although leukocytosis in itself
might not result in any immediate consequences such as leukostasis, it has
been suggested that development of leukocytosis and the RAS is associated
with a higher risk of extramedullary relapse (Ko et al., 1999). The preven-
tion and management of leukocytosis involves using full-dose chemotherapy
along with ATRA. The concurrent administration of these agents not only
eliminates the occurrence of leukocytosis but also appears to result in a
lower incidence of RAS. Whereas with ATRA alone the incidence of RAS
is approximately 25%, when given concurrently with chemotherapy (the
GIMEMA trial, the Japanese Adult Leukemia Study Group, and the Euro-
pean APL study) the reported incidence ranged between 6 and 15% (Fenaux
et al., 1999; Sanz et al., 1999; Tallman et al., 1997).

F. Management of Relapsed APL

Although there has been significant improvement in the cure rate of
patients with APL since the addition of ATRA therapy, still 15–20% of the
patients relapse (Fenaux et al., 1993, 1994; Warrell et al., 1991). Some
patients, particularly those who have relapsed >6 months after completing
their last ATRA therapy, can achieve a second CR when retreated with
ATRA (Fenaux et al., 2001). However, patients who achieve a second CR,
irrespective of agent(s) used, need additional curative therapy. Salvage ther-
apy often involves high doses of cytotoxic chemotherapy followed by allo-
geneic bone marrow or stem cell transplantation, which is contingent on
finding an HLA-matched donor. However, such an approach carries a risk of
significant morbidity and mortality and might not be appropriate for all
patients, particularly the very young or old.

There are evolving clinical data assessing the role of dose intense che-
motherapy followed by transplantation in patients who have relapsed
from prior ATRA-based treatment. In the European APL 91 trial (Fenaux
et al., 1999), 4 of 5 patients who underwent allografts in second CR ob-
tained a prolonged CR. Similarly, 6 of 15 patients in the Italian GIMEMA
study (Mandelli et al., 1997) who underwent such therapy in second
CR benefited. More recently, Thomas et al. (2000) treated 50 APL patients
in the first relapse with single-agent ATRA and induced a second CR in 45
(90%) patients. With an intent to transplant, those patients in CR received
sequential dose-intense chemotherapy (etoposide 200 mg/m2/day for 3 days,
mitoxantrone 12 mg/m2day for 3 days, and Ara-C 500 mg/m2/day for
two sequences of 3 days). Subsequently, 11 patients underwent HLA-identi-
cal allogeneic transplant and had a median DFS of 8.2 months and 22
patients underwent autologous transplants and had a 3-year DFS rate of
77%. An important consideration for patients undergoing an autologous
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transplantation is the RT-PCR status for PML/RAR�. Patients who have
evidence for molecular disease are less likely to benefit from an autologous
transplantation. Meloni et al. (1997) evaluated the outcomes of 15 relapsed
APL patients who underwent autologous transplantation in second CR. All
patients whose stem cells were positive for PML/RAR� relapsed in less than
9 months posttransplant. In comparison, only 1 of 8 patients whose cells
were RT-PCR negative for PML/RAR� relapsed.

1. Arsenic Trioxide

Based on initial reports from China (Shen et al., 1997; Sun et al., 1992;
Zhang et al., 1996), a pilot trial conducted at Sloan-Kettering, using arsenic
trioxide (ATO) in patients with relapsed APL, resulted in a complete remis-
sion rate of 92% (Soignet et al., 1998). This was followed by a U.S.
multicenter study (Soignet et al., 2001) that was designed to evaluate the
efficacy of ATO for remission induction and consolidation in patients with
APL who had relapsed from prior retinoid- and anthracycline-based therapy.
In this study, 34 (85%) of 40 patients achieved a hematological CR. The
median time to bone marrow remission was 35 days (range 20/85 days), and
the median time to clinical CR was 59 days (range 28/85 days). In addition
to the high CR rate, 78% of the patients who achieved a CR also converted
from positive to negative for the PML-RAR� transcript by RT-PCR by the
completion of their consolidation therapy. Of the 34 patients who achieved a
CR, 18 patients received additional ATO as maintenance on a different
protocol and 12 patients underwent allogeneic (N ¼ 9) or autologous
(N ¼ 3) transplant post ATO treatment while in CR. When the data from
the 12 patients treated in the original pilot study of ATO are combined with
results from these 40 patients, the Kaplan–Meier 18-month estimate of
overall and relapse-free survival was 66% and 50%, respectively (Soignet
et al., 2001). More than half of these patients were alive at the 18-month
follow-up, irrespective of age or number of prior relapses.

Based on the results of the U.S. pilot and multicenter trials, ATO
(Trisenox�) received approval in the U.S. and in Europe for patients with
relapse APL. The best treatment strategy, however, for patients who achieve
a CR with ATO remains to be determined. Although 10 of 21 patients
treated on the U.S. multicenter study who received ATO only were without
evidence of either clinical or molecular recurrence at a median of the 18-
month follow-up, there is little data on the long-term outcome. Therefore,
patients who relapse and are candidates for either allogeneic or autologous
transplants should be managed accordingly. Subsequently, many groups
have reported their successful experience with ATO as a single agent or in
combination with ATRA for remission induction (Raffoux et al., 2003) in
patients with relapsed APL. In addition, the potential role of ATO in newly
diagnosed APL patients is being explored.
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In the initial pilot APL study of ATO conducted by Soignet et al. (1998a)
a flat dose of 10 mg/day for up to 60 doses was employed until bone mar-
row remission was achieved. Subsequently, 0.15 mg/kg/day was established
as the standard daily dose for the treatment of APL. Considering the exten-
sive use of ATO in the treatment of relapsed APL, as well as the broader
application of this agent, a limited amount of pharmacokinetic data is
available for ATO. The metabolism of arsenic in humans involves the
cycling of arsenic between trivalent (Asþ3) and pentavalent (Asþ5) states
and conversion to mono-, di-, and trimethylated metabolites. Previous stud-
ies have shown that when Asþ3 is ingested, a small amount is excreted in
the urine as Asþ3 and a larger proportion is methylated and excreted as
dimethylarsonic and methylarsonic acids (Crecelius, 1977; Mann et al.,
1996). Urinary excretion of Asþ3 occurred rapidly (within 5 h of ingestion)
and was usually undetectable 60 h after ingestion. The urinary excretion of
methylated arsenic species was also detectable within the first 6 h and
declined at 85 h, with an apparent half-life of 30 h (Crecelius, 1977).

In preclinical models, a wide range of arsenic concentrations have been
reported to have antiproliferative effects. ATO has demonstrated in vitro
activity against bladder, ovary, breast, kidney, cervix, and stomach cancer
cell lines at concentrations from 0.34 to 2.84 �M (Crecelius, 1977). NB4
cells, an APL cell line, are sensitive to the effects of ATO at concentrations
from 0.5 to 3 �M (Chen et al., 1996). Shen et al. (1997) reported the
pharmacokinetics of ATO on blood samples taken from eight patients
with APL who received daily doses of 10 mg. In their analysis, they deserved
peak levels of 5.54 �M/l to 7.30 �M/l followed by a rapid decline in plasma
arsenic concentrations. Coinciding urine samples from these patients
showed rising daily urinary excretion levels of arsenic ranging from 1 to
8% of the total daily dose of ATO administered. Also, continuous adminis-
tration of ATO did not appear to alter its pharmacokinetic behavior. In a
study conducted by the Sloan-Kettering group, using a daily administration
schedule, concentrations of total arsenic from 0.14 to 3.0 �M ranging over a
5-day period were reported (Soignet et al., 1998b, 2000). After a single
intravenous dose of ATO, blood samples for pharmacokinetic analyses
were collected at time points out to 168 h. Soignet and coworkers reported
peak plasma arsenic concentrations occurring near the end of infusion and
declined with at t1/2 of �92 h and volume of distribution >400 l. AUC0–24 h

data suggested a dose–concentration relationship (Soignet, 1998b). These
early pharmacokinetic studies show that in vivo concentrations of ATO can
be achieved to match the concentrations that have shown in vitro activity;
however, the clinical relevance of these findings in diseases other than APL is
unknown.

The most common adverse events observed with ATO in the U.S. pilot
and multicenter studies included leukocytosis (>10,000 WBC/mm3) during
induction therapy, mild hyperglycemia, nausea, and fatigue (Soignet et al.,
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2001). Also, 30% of patients developed one or more signs or symptoms,
or both, suggestive of the RAS and were effectively treated with dexametha-
sone (Camacho et al., 2000; Soignet, 2001). One of the most concerning
and frequent side effects of ATO therapy observed is QT prolongation on
the electrocardiogram. This adverse event was observed to some degree in
more than 60% of the patients treated with ATO in either Phase I or
II clinical studies, which included the APL trials (Barbey et al., 2003). This
effect does not appear to be dose related and occurs more frequently
in female patients. Although all the patients were asymptomatic, inclu-
ding one patient who developed a brief episode of torsades de pointe,
more recently there have been reports of sudden cardiac death
(Unnikrishnan et al., 2001; Westervelt et al., 2001) associated with ATO
therapy. Therefore, close monitoring, including aggressive management of
electrolytes, particularly potassium and magnesium, is recommended in
conjunction with ATO therapy (Trisenox package insert, Cell Therapeutics,
Inc; Rust and Soignet, 2001). Both intravenous and oral supplements are
liberally provided to maintain the serum potassium >4 mEq/l and the mag-
nesium level >1.8 mg/dl (Rust and Soignet, 2001). In addition, the concom-
itant use of other agents known to prolong QT intervals or induce
ventricular arrhythmias should be avoided (see www.arizonacert.org for
listings).

2. Other Agents for Relapse APL

Gemtuzumab ozogamicin (Mylotarg�) is an anti-CD33 antibody con-
jugated with calicheamicin, a potent antitumor antibiotic. This agent binds
to the CD33 antigen, which is highly expressed on the surface of the
majority of APL cells universally. The group at the M. D. Anderson Cancer
Center reported a clinical CR rate of 84% in newly diagnosed APL patients
when combining gemtuzumab ozogamicin with ATRA (Estey et al., 2002).
In addition, it observed a 100% molecular remission rate in 12 evaluable
patients. Although this clinical response rate is similar to what would be
expected with ATRA alone in treating naı̈ve APL patients, the molecular
remission rate is several-fold higher than what is traditionally expected from
single-agent ATRA. Also, others have reported induction of a clinical and
molecular remission in patients with multiple-relapsed APL (Petti et al.,
2001). However, definitive studies are needed to establish the efficacy of
gemtuzumab alone or in combination in patients with relapsed APL.

Another potential agent that warrants further consideration for relapsed
APL is liposomal ATRA. Douer et al. (2001) reported intravenously admin-
istering liposomal ATRA in 69 patients with newly diagnosed (32 patients)
or relapsed (35 patients) APL and achieving a CR in 62% and 70%,
respectively, of patients with the first relapse who were ATRA-naı̈ve or off
oral ATRA for more than 1 year. Of the patients who were in the first relapse
and off oral ATRA for less than 1 year or in their second or higher relapse,
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20% achieved a CR. This agent clearly has a role in a patient population in
which oral ATRA is not ideal, such as patients who are not able to tolerate or
absorb the oral formulation. However, the exact benefit in relapsed APL
needs to be defined.

3. Extramedullary Relapse

Until recently, the incidence of extramedullary disease (EMD) in
patients with APL was considered rare (Liso et al., 1998; Marra et al.,
1989). However, the reported incidence has increased since the early
1990s, with numerous cases being diagnosed at the time of clinical relapse
(Ko et al., 1999; Liso et al., 1998; Menendez et al., 2000; Weiss and Warrell,
1994). In the Italian GIMEMA study and the European APL 93 trial, EMD
was detected in 13 of 97 patients and 3 of 75 cases, respectively. Central
nervous system (CNS) involvement appears to be more common than either
skin or organ infiltration. The relationship of the incorporation of ATRA in
the treatment of APL and the subsequent rising incidence of extramedullary
relapse is unclear. In an evaluation of the incidence of EMD involvement in a
series of APL patients treated with either chemotherapy alone or with ATRA
and idarubicin (AIDA regimen) and subsequently relapsed (Specchia et al.,
2001), there were no conclusive data to support a higher incidence of EMD
in patients treated with ATRA. However, the proportion of patients with
EMD that had CNS involvement was significantly higher in the group that
received ATRA as part of its induction therapy compared with the group
that received chemotherapy only. One explanation for this observation is
that ATRA therapy induces the expression of adhesion molecules such as
CD11c, CD13, and CD56 in the malignant promyelocytes and thereby
might facilitate CNS infiltration (Di Noto et al., 1996; Evans et al., 1999;
Ferrara et al., 2000). There was no comparative difference in the incidence
of the other site of EMD.

Of clinical importance is that 14 of the 16 patients on the AIDA trial
with EMD found at relapse also had hematologic or molecular evidence of
disease. Treatment for CNS relapse requires systemic reinduction along with
four to six cycles of intrathecal methotrexate or Ara-C. Some patients might
benefit from additional cranial–spinal radiation. To date, there is no specific
risk factor identified to predict CNS relapse. In addition, CNS prophylaxis
with either intrathecal chemotherapy alone or combined with cranial irradi-
ation does not improve DFS in adults with AML. This is likely because the
majority of the patients have systemic relapse in addition to CNS or EMD.

G. Summary

The advances in the treatment of APL exemplify the recent progress in
medical science and serve as a model for modern medicine. APL is unique in
that its etiology evolves from a specific cytogenetic alteration, t(15;17). With
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current technologies, we are able to use this genotype information to diag-
nose, monitor minimal residual disease, and detect early relapse. It has also
resulted in a greater understanding of the fundamental biology of APL,
which serves as a template for the development of targeted therapies. For
example, transgenic mice models that stably carry the t(15;17) genotype and
express a malignant phenotype have been developed and are currently used
to test potential novel agents and identify new targets for future
clinical development (Kogan et al., 2000). Also, APL is the first success-
ful clinical application of differentiation therapy, and, as a result, the con-
ventional approach for the treatment of leukemia has been irrevocably
altered. As medical science evolves through the era of genomics, proteomics,
and rationale drug design, the models of pathogenesis based on interactions
between the PML/RAR� fusion products, corepressor-binding proteins, and
histone deacetylase will no doubt further our understanding and treatment
of other forms of cancer.
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I. Chapter Overview

Advances in molecular diagnostics and understanding of the biology of
neoplastic transformation have begun to provide clinicians treating myeloid
disorders with new therapeutic tools. The progress in treating myeloid dis-
orders over the past several decades can be largely attributed to improved
supportive care. New cytotoxic agents with minor differences in their structure
and mechanism of action have yet to translate to meaningful improvements in
survival. With the realization of the activity of all-trans retinoic acid (ATRA)
and later the description of its mechanism of action in acute promyelocytic
leukemia, the benefits of a truly targeted agent have become clear. Further-
more, scientific progress in understanding mechanisms of drug resistance and
means of overcoming them has led to the modification of some of the existing
cytotoxic agents. This, together with the discovery of new targets and new
agents aimed at these targets, has led to the current availability of a large
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number of potentially useful agents. Learning from the lessons of the past, our
challenge would be to design and conduct rational clinical trials, which would
ensure that the full potential of these new agents is recognized. More impor-
tantly, the intelligent development of these agents could result in a significant
improvement in the prognosis of patients with myeloid malignancies.

II. Introduction _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Myeloid hematological disorders, including acute myeloid leukemia
(AML), myelodysplastic syndrome (MDS), and myeloproliferative disorders
(MPDs), have traditionally been classified based on morphologic features in
systems such as the French–American–British (FAB) classification. With
increased understanding of the biology of these disorders, it is becoming
clear that these classifications require reevaluation. New molecular tech-
niques have led to the discovery of specific molecular abnormalities that
might define specific disorders (e.g., acute promyelocytic leukemia (APL) and
core-binding factor leukemias) within the previous broad categories. Thus, the
heterogeneity of AML and MDS is increasingly apparent. Therefore, myeloid
neoplasms can be considered a spectrum of diseases ranging from the more
indolent to the highly proliferative and aggressive entities, in which various
molecular events probably contribute at different steps of their pathogenesis.

The increased awareness of molecular abnormalities occurring in mye-
loid disorders has led to the identification of multiple potential agents for
therapeutic intervention in these diseases. Traditional therapy for these
disorders (i.e., cytotoxic chemotherapeutic agents) has been for the most
part unsatisfactory, with the majority of patients eventually succumbing to
their disease. Thus, the need for new therapeutic strategies in myeloid
disorders is unquestionable.

In this chapter, some of the new promising agents undergoing evaluation
in treating myeloid malignancies are discussed (Table I). Some of these drugs
are addressed in more detail in other chapters. These agents are divided
arbitrarily into those with the more traditional cytotoxic activity, agents
with a putative biological mode of action, and agents that target cellular
signaling pathways. There is significant overlap among these groups, and
this division by no means assumes the exact mechanism of action, which for
most agents described is largely unknown.

III. Nucleoside Analogs

Nucleoside analogs (NAs) in general and cytosine arabinoside (Ara-C) in
particular have been essential components of therapy of myeloid malignan-
cies. These compounds mimic physiologic nucleosides in terms of uptake by
transporters and metabolism by intracellular enzymes and are incorporated
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into newly synthesized DNA, resulting in chain termination and inhibition
of DNA synthesis. The cytotoxic activity of Ara-C, as well as that of other
NAs, is dependent on conversion to its active phosphorylated metabolites by
intracellular enzymes such as deoxycytidine kinase (dCK) (Galmarini et al.,
2001). Deamination by enzymes such as deoxycytidine deaminase (dCD) to
nontoxic metabolites is one mechanism of inactivation. Also, cytoplasmic
50-nucleotidase activity opposes that of dCK by dephosphorylating 50-mono-
phosphate derivatives, thereby preventing the synthesis of active forms
(Galmarini et al., 2001). Over the past 2 decades, there has been significant
increase in the understanding of mechanisms of action and resistance to NAs
(Galmarini et al., 2001). To overcome resistance, modifications of their
structure have been attempted. Several new agents have been developed
and investigated in preclinical models and clinical trials. Some of these
agents have already demonstrated significant activity in myeloid (as well as
some lymphoid) malignancies.

A. Troxacitabine

The naturally occurring nucleosides, as well as the majority of NAs used
in cancer therapy, are D-enantiomers. Until recently, L-enantiomers were
thought to be inactive, as they would not be recognized by the activating

TABLE I Examples of New Agents in Myeloid Malignancies

New nucleoside analogs Hypomethylating agents

Decitabine
5AZA

Structural modifications

Gemcitabine

Clofarabine
Troxacitabine

Reversal of multidrug resistance Cyclosporine

PSC-833

Others
Biological agents Monoclonal antibodies

Myelotarg

HuM195

Immunoconjugates
Radioimmunoisotopes

Angiogenesis inhibitors

Anti Bcl-2 antisense
Histone deacetylase inhibitors

Signaling pathway/cell cycle modulators Kinase inhibitors

Farnesyltransferase inhibitors

Proteasome inhibitors
Others
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enzymes (Giles et al., 2001a). Troxacitabine is a NA developed by the
exchange of the sulfur endocyclic atom with an oxygen in the structure of
the antiviral drug lamivudine (Mansour et al., 1995). It is the first nucleoside
L-enantiomer with substantial cytotoxic activity (Grove and Cheng, 1996;
Grove et al., 1995) and has been shown to have significant activity in
myeloid disorders (Giles et al., 2001a, 2002, 2003a). As with ara-C, dCK
catalyzes the phosphorylation of troxacitabine to its active metabolite,
whereas dCD is unable to inactivate it by deamination because of its chiral
specificity (Grove and Cheng, 1996; Grove et al., 1995). In an initial Phase
I study, escalating doses of troxacitabine were administered to 42 patients
with refractory or advanced hematological malignancies, including 31
patients with AML and 6 patients with MDS. Stomatitis and hand–foot
syndrome were dose limiting, with a maximum tolerated dose of 8 mg/m2/
day � 5. Three complete remissions (CRs) and one partial remission (PR)
were observed in 30 assessable patients with AML (Giles et al., 2001a).
These results led to a Phase II study of 8 mg/m2/day troxacitabine adminis-
tered as an intravenous infusion to 42 patients with refractory or relapsed
hematological malignancies. Among 16 evaluable patients with AML,
2 achieved CR and 1 PR (Giles et al., 2002). Six (37%) of 16 assessable
patients with blast phase-chronic myeloid leukemia (CML-BP) returned to
chronic phase. Combinations of troxacitabine with other cytotoxic agents
have been evaluated in patients with refractory or relapsed AML, MDS, or
CML-BP (Giles et al., 2003a). Giles et al. (2003a) reported their experience
combining troxacitabine with Ara-C (TA), idarubicin (TI), or topotecan
(TT). Among 74 evaluable patients with AML or MDS, 10 (13%) achieved
CR (Giles et al., 2003a). These included 7 (11%) of 66 evaluable patients
with AML: 4 patients received TA, 2 received TI, and 1 received TT. Four
additional patients with AML (all receiving TA) showed hematological
improvement (Giles et al., 2003a). In addition, 3 patients with advanced
MDS obtained CR: 2 received TA and 1 TI. Based on the evidence of clinical
activity and acceptable toxicity profile in this population of heavily pre-
treated patients, a study in patients with previously untreated AML or MDS
was initiated. In this adaptively randomized prospective study, standard
chemotherapy (IA) was compared with TA and TI in older patients (�50
years) with unfavorable karyotype AML (Of the patients, 53% had mono-
somies of chromosome 5 or 7, or both, or deletions of the long arms of these
chromosomes) (Giles et al., 2003b). The CR rates were 10/18 for IA, 5/11
for TA, and 1/5 for TI. In this study, the patients randomized to receive IA
had an overall better profile with respect to cytogenetics and presence of
antecedent hematological disorder, but poorer performance status and an
age distribution similar to that of the TA and TI groups. However, because of
the small number of patients randomized, no definite conclusions regarding
the possibility of imbalances in the distribution of important prognostic
covariates could be made. Overall, troxacitabine-based regimens were
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deemed equivalent to standard chemotherapy (Giles et al., 2003b).
A larger randomized trial comparing troxacitabine-based regimens vs. stan-
dard chemotherapy is ongoing to better define the role of troxacitabine
in AML.

B. Gemcitabine

Gemcitabine has been shown to have significant activity, alone or in
combination with other agents, in a number of solid tumors and lymphoid
malignancies (Perez-Manga et al., 2000; Santoro et al., 2000; Zinzani et al.,
2000). Recent studies have reported clinical activity in myeloid malignancies
also. Gandhi et al. (2002) administered gemcitabine at a fixed dose of
10 mg/m2/min to patients with relapsed or refractory AML and investigated
dose escalation by prolonging the duration of administration in a Phase
I setting. They proposed that a continuous infusion of gemcitabine at the
given schedule would allow plasma gemcitabine concentrations sufficient to
maximize the rate of gemcitabine triphosphate accumulation, which would
then optimize any antileukemia effect. The dose escalation in this study was
done by increasing the duration of infusion while keeping the dose and rate
constant. With this approach, gemcitabine could be administered for longer
than 12 h without significant toxicity. However, with more prolonged infu-
sions, grade 3 mucositis and rash were observed. The authors concluded that
although it was difficult to ascertain the exact maximum tolerated duration
(MTD), it appeared that the MTD of infusion at the fixed rate of 10 mg/m2/min
is between 12 and 15.4 h. Among 19 patients treated, 1 had a PR and 2
hematological improvement (Gandhi et al., 2002). Combinations of gem-
citabine with other cytotoxic agents have been investigated in patients with
refractory acute leukemia. Rizzieri et al. (2002) used a combination of
gemcitabine at a fixed rate of 10 mg/m2/min, for an escalating duration of
infusion (based on the study by Gandhi and coworkers), with 12 mg/m2/day
of mitoxantrone for 3 days. They reported a maximum recommended
duration of gemcitabine of 12 h (total dose of gemcitabine 7200 mg/m2)
with an overall response rate of 42% among 26 patients with relapsed or
refractory leukemia, including a CR rate of 25% in the 25 patients treated at
the recommended Phase II dose (Rizzieri et al., 2002). The most common
dose-limiting toxic effects of the regimen were severe myelosuppression and
mucositis. A second study with a similar regimen reported a CR rate of 11%
among 18 patients with advanced leukemia (Apostolidou et al., 2003b).
Combinations of prolonged-infusion gemcitabine with irinotecan and pro-
longed-infusion gemcitabine with fludarabine have also been investigated,
with reported response rates of 18% and 28%, respectively (Bass et al.,
2002; Rizzieri et al., 2003). These studies suggest that gemcitabine might
have more clinical activity in AML and MDS than previously recognized,
and further studies are warranted.
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C. Clofarabine

Clofarabine (2-chloro-20-fluoro-deoxy-9-�-d-arabinofuranosyladenine)
has been developed to incorporate some of the favorable antitumor pro-
perties of fludarabine and cladribine (Kantarjian et al., 2003b). A chloride
chain in the adenosine ring makes clofarabine, like cladribine, resistant to
deamination by adenosine deaminase. A fluoride in the 20 position of the
arabinofuranosyl ring makes it resistant to phosphorolysis by purine nucle-
oside phosphorylase (PNP). As with other NAs, clofarabine is phosphory-
lated to its active metabolite by dCK. Clofarabine triphosphate inhibits
DNA polymerases and ribonucleotide reductase, leading to cell death
(Kantarjian et al., 2003b; Parker et al., 1991). In a Phase I study of this
drug, reversible dose-limiting hepatotoxicity was noted at a dose of 55 mg/m2

and the recommended dose for acute leukemia studies in adults was 40 mg/m2

daily for 5 days (Kantarjian et al., 2003b). Among 32 patients with acute
leukemia, 2 achieved a CR and 3 had a marrow remission without a platelet
recovery, for an overall response rate of 16% (Kantarjian et al., 2003b).
A single-institution Phase II study using clofarabine 40 mg/m2 daily for 5
days every 3–4 weeks included 62 patients with relapsed or refractory acute
leukemia, high-risk MDS, or CML-BP (Cortes et al., 2002d; Kantarjian
et al., 2003a). Among 31 evaluable patients with AML, 17 (55%) patients
with AML achieved CR. Similarly, 4 of 8 (50%) patients with MDS and 7 of
11 (64%) patients with CML-BP achieved CR. A further 9 patients (15%)
achieved CR without full platelet recovery. The regimen was well tolerated
with few greater than or equal to grade 3 toxicities, including skin rash
(10%), transient elevation of transaminases (24%), palmoplantar erythro-
dysesthesia (11%), and nausea and vomiting (3%) (Cortes et al., 2002d;
Kantarjian et al., 2003a). In addition to its significant antileukemia activity,
clofarabine has significant synergy with Ara-C through increased Ara-C
triphosphate formation by dCK. Thus, combination studies of clofarabine
and ara-C have been initiated. This combination is currently being evaluated
in frontline therapy of AML and high-risk MDS.

D. Hypomethylating Agents (Decitabine
and 5-Azacytidine)

Epigenetic events, such as aberrant DNA methylation, can be important
in the progression of a number of human neoplasms (Jones and Laird,
1999; Santini et al., 2001; Singal and Ginder, 1999). Hypermethylation of
promoter-associated CpG-rich regions (CpG islands) can result in silencing
of genes such as tumor suppressor genes (as an alternative mechanism to
deletions and mutations), leading to their inactivation (Baylin et al., 1998;
Toyota et al., 2001). Increased methylation of promoters of genes such as
p15 have been associated with disease progression in myeloid malignancies
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and correlate with an inferior outcome (Au et al., 2003; Teofili et al., 2003).
Decitabine [5-aza-20-deoxycitidine (DAC)] is a pyrimidine analog with sig-
nificant antileukemic activity (Pinto and Zagonel, 1993). Although it is a,
NA, its mechanism of action is believed to be related to the inhibition of the
enzyme cytosine methyltransferase, which results in the reduction of meth-
ylation of CpG dinucleotide islands in the DNA and activation of silenced
genes (Issa et al., 1997; Momparler et al., 1984; Santi et al., 1983). This
leads to the terminal differentiation of leukemic cells (Issa et al., 1997;
Momparler et al., 1984; Santi et al., 1983). Decitabine is an S-phase specific
agent, which is activated by dCK and then incorporated into DNA strands
by a DNA polymerase.

Decitabine has demonstrated clinical efficacy in achieving responses in
patients with relapsed or refractory leukemia (Momparler et al., 1985;
Richel et al., 1991; Rivard et al., 1981). Initial dose-finding studies demon-
strated minimal extramedullary toxicity, with the dose-limiting toxicity
being prolonged myelosuppression (De Lima et al., 2003; Kantarjian et al.,
1997a; Petti et al., 1993; Pinto and Zagonel, 1993; Ravandi et al., 2001;
Willemze et al., 1993; Zagonel et al., 1993). Kantarjian et al. (1997b)
administered decitabine at a dose of 100 mg/m2 every 12 h for a total of
10 doses (total dose 1000 mg/m2) to 37 patients with accelerated (n ¼ 17)
or blast phase (n ¼ 20) CML and observed an overall response rate of 25%
in blast phase and 53% in accelerated phase. The median time to recovery of
more than 500 �l granulocytes was 48 days (Kantarjian et al., 1997b).
Other investigators have combined decitabine with other antileukemia
agents (amsacrine, idarubicin, and daunorubicin) and have reported clinical
activity in AML (Schwartsmann et al., 1997; Willemze et al., 1997). These
studies have generally used the MTD defined in the Phase I setting. However,
an optimal biologic (hypomethylating) effect can be achieved in vitro with
low concentrations of decitabine. Increasing concentrations do not result
in more hypomethylation, but rather result in a direct cytotoxic effect.
Thus, Issa et al. (2001) conducted a Phase I study to determine the optimal
biologic dose in patients with relapsed or refractory myeloid malignancies.
The starting dose was 5 mg/m2 daily for 10 days, with escalation until
maximal hypomethylation was achieved. A total of 39 patients were treated
and responses were seen at all dose levels for an overall response rate of 39%
(95% CI 28–61%). A dose of 15 mg/m2 for 10 days gave the best response
rate and was associated with minimal toxicity. This total dose was only 15%
of that used in previous studies, with higher doses associated with increased
toxicity and lower response rates (Issa et al., 2001).

Decitabine and the related drug 5-azacytidine (AZA) have also demon-
strated significant activity in patients with MDS. Silverman et al. (2002)
recently reported the results of a study by the Cancer and Leukemia Group
B (CALGB) in which 191 patients with MDS were randomized to receive
AZA (75 mg/m2/day subcutaneously for 7 days every 28 days) vs. supportive
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care with a crossover design. Responses occurred in 60% of the patients
treated with AZA (7% CR, 16% PR, 37% hematological improvement).
This resulted in a significant improvement in time to transformation to AML
or death for patients treated with AZA (p ¼ 0.007) (Silverman et al., 2002).
Landmark analysis after 6 months (to adjust for the confounding effect of
early crossover to AZA) showed a significant improvement in median sur-
vival for patients randomized to receive the drug (18 months vs. 11 months,
p ¼ 0.03) (Silverman et al., 2002). Furthermore, there was a significant
difference in favor of the AZA-treated group with regard to a number of
quality-of-life measures, such as fatigue and psychologic state (Kornblith
et al., 2002).

Decitabine has also been investigated for the therapy of elderly patients
with MDS (Wijermans et al., 1997, 2000). Decitabine was administered to
66 patients with MDS at a dose of 45 mg/m2/day for 3 days every 6 weeks
for a maximum of 6 cycles (Wijermans et al., 2000). The overall response
rate was 49%, with similar response rates across international prognostic
scoring system (IPSS) risk groups. The median response duration was 31
weeks and median overall survival 15 months (Wijermans et al., 2000).
Responses were associated with the disappearance of chromosomal abnor-
malities in patients with abnormal cytogenetics before start of therapy
(Lubbert et al., 2001). In addition, reversal of hypermethylation was ob-
served in responding patients (Daskalakis et al., 2002; Sigalotti et al., 2003).
Treatment was well tolerated, with an induction mortality of 7% in a
population with a median age of 68 years. On the basis of these encouraging
results, a randomized multicenter study comparing decitabine to supportive
care in patients with MDS is currently ongoing. Other studies are inves-
tigating alternative schedules, decitabine-based combinations, and the
role of decitabine in AML and CML after failure to respond to imatinib
mesylate.

IV. Reversal of Multidrug Resistance ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Anthracyclines and epipodophyllotoxins have significant activity in
myeloid malignancies and are usually used in combination with cytarabine
as induction therapy for patients with AML and high-risk MDS. Resistance
to these chemotherapeutic agents has been correlated with expression of
P-glycoprotein (Pgp), as well as the multidrug resistance protein (MRP) and
the major vault protein (LRP) in myeloid disorders and other malignancies
(Sonneveld, 2000). Pgp is a highly conserved 170-kDa plasma membrane
protein that functions as an ATP-dependent multidrug exporter with broad
specificity for natural-product-derived agents (Ueda et al., 1987). Overex-
pression of Pgp is associated with a relative in vitro resistance to anthracy-
clines as a result of decreased intracellular accumulation of the agents.
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Agents such as cyclosporine A, verapamil, and PSC-833 that inhibit Pgp
can overcome this resistance in vitro (Nooter et al., 1990). Expression of the
multidrug resistance (MDR1) gene coding for Pgp is high in elderly patients
with AML and is associated with a significantly poorer CR rate (Leith et al.,
1997).

A. Cyclosporine A

List et al. (2001) investigated the benefit of adding cyclosporine
A to therapy with cytarabine and daunorubicin in patients with poor-risk
AML. A total of 226 patients were randomly assigned to sequential therapy
with cytarabine and infusional daunorubicin with or without intravenous
cyclosporine A. Patients randomized to receive cyclosporine A had a slightly
higher CR rate (40% vs. 33%, p ¼ 0.14) but a significantly better relapse-
free (34% vs. 9% at 2 years, p ¼ 0.031) and overall survival (22% vs. 12%,
p ¼ 0.046) (List et al., 2001). The benefit of cyclosporine was seen in
both MDR1-positive and MDR1-negative patients, but was more significant
in the former (median survival 12 months vs. 4 months in the latter). Steady-
state daunorubicin serum concentrations were higher for cyclosporine-
treated patients, possibly because of inhibition of the hepatic metabolism
of daunorubicin (List et al., 2001).

B. PSC-833

PSC-833 is a nonimmunosuppressive cyclosporine analog that is 20
times more potent than cyclosporine in increasing daunorubicin retention
in MDR cells (Boesch et al., 1991). Moreover, PSC-833 lacks renal toxicity,
and concentrations sufficient to block Pgp function in vitro are easily
achieved in patients with doses that are relatively free of side effects
(Tidefelt et al., 2000). As PSC-833 can retard hepatic clearance of cyto-
toxic drugs, their dose often needs to be reduced when coadministered with
PSC-833. Addition of PSC-833 to mitoxantrone, etoposide, and Ara-C
(PSC–MEC) was found to be safe and induced a CR rate of 29% in patients
with relapsed or refractory AML (Advani et al., 1999). However, in a
randomized trial by the Eastern Cooperative Oncology Group (ECOG) in
113 patients with relapsed or refractory AML, no advantage was reported
for PSC–MEC over MEC alone (Greenberg et al., 1999). Also Baer et al.
(2002a) randomized 120 patients with AML who were older than 60 years
between a combination of cytarabine, daunorubicin, and etoposide with
(ADEP) or without (ADE) PSC-833. Excessive early mortality in the ADEP
arm (despite dose adjustments for daunorubicin and etoposide) led to the
closure of this arm. The outcomes of induction therapy were different in the
two groups, with rates of CR and induction death of 46% and 20%, respec-
tively, for ADE vs. 39% and 44%, respectively, for ADEP (p ¼ 0.008)
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(Baer et al., 2002a). This group is currently undertaking a similar study in
patients younger than 60 years with a reduction in the dose of etoposide
(40 mg/m2/day for 3 days) in order to avoid the early induction toxicity.
More selective and specific MDR modulators such as pipecolinate deriva-
tives VX-710 and VX-853 that target Pgp, as well as the multidrug resis-
tance protein (MRP-1) and the breast cancer resistance protein (BCRP), are
in development (Baer et al., 2002b). A drawback of this approach is that it
addresses only one of the many known mechanisms of drug resistance and
does not address resistance to some of the most active agents in myeloid
malignancies, such as cytarabine.

V. Biological Agents

A. Monoclonal Antibodies

A number of monoclonal antibodies against antigens expressed by
tumor cells have been developed that are currently in clinical use (Caron
and Scheinberg, 1997; Winter and Milstein, 1991). The prototypes were
generally murine monoclonal antibodies raised against human antigens and
were associated with the problem of immunogenicity. This obstacle has been
overcome through genetic engineering and humanization of the parent
mouse antibody, resulting in human–mouse chimeric antibodies with the
human constant region and mouse hypervariable region (Caron et al., 1992).
Such a chimera has the advantage of eliciting very little human antimouse
antibody (HAMA) neutralizing response. Avoidance of HAMA allows for
repeated treatments without loss of effectiveness and a longer circulation
time.

CD33 provides a useful target antigen for AML therapy because it is
expressed on the leukemia cell surface in more than 90% of patients with
AML, with an average antigen density of 10,000 sites/cell (Scheinberg et al.,
1989; Tanimoto et al., 1989). It is also expressed on normal granulocyte/
monocyte colony forming units (CFU-GM) and some primitive erythroid
progenitors. However, it is not prominently expressed on tissues other than
the hematopoietic system and normal pluripotent hematopoietic stem cells
(Scheinberg et al., 1989; Tanimoto et al., 1989).

A naked antibody to CD33, HuM195, was developed at the Memorial
Sloan-Kettering Cancer Center. Reports from early studies demonstrated
minimal toxicity confined to infusion reactions associated with these anti-
bodies (Caron et al., 1994a,b). In vitro and in vivo studies have shown that
HuM195 is capable of rapidly internalizing into target cells on binding to
the antigen (Caron et al., 1994b). Jurcic et al. (2000) have used HuM195 in
treating patients with APL and reported a higher rate of PCR negativity (as
compared with ATRA alone) when the antibody was given to PCR-positive
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patients in hematologic CR after an induction course of ATRA with or
without chemotherapy (Jurcic et al., 2000). Feldman et al. (2003) have
reported on their experience with HuM195 in 50 patients with relapsed or
refractory AML. Two patients achieved CR, and one patient had a PR by
using the antibody alone. Minimal toxicity related to infusion of first dose of
the antibody was reported (Feldman et al., 2003). More recently, addition
of HuM195 to chemotherapy [mitoxantrone, etoposide, and cytarabine
(MEC)] was compared with MEC alone in 191 adults with primary refrac-
tory or first relapse of AML (Feldman et al., 2002). An overall response rate
of 43% [27 CR and 13 CR with incomplete platelet recovery (CRp)] was
reported in 94 patients receiving the combination vs. 26% (20 CR and 5
CRp) in 97 patients given chemotherapy alone (p ¼ 0.015). Addition of
HuM195 did not result in any increase in chemotherapy-related toxicity
(Feldman et al., 2002). Thus, this antibody has promising activity in myeloid
malignancies, particularly when combined with chemotherapy.

Another approach has been to conjugate these monoclonal antibodies
with toxins or radioisotopes (Sievers et al., 1999). Such immunoconjugates
would theoretically deliver the intended toxin or radiation selectively to the
tumor and its vicinity and would be associated with improved efficacy and
reduced toxicity.

Gemtuzumab ozogamicin (GO) is a conjugate of an antibody to CD33
and the antitumor drug calicheamicin (Sievers et al., 2001). Calicheamicin is
a potent toxin that is highly lethal in preclinical models. Its conjugation with
the specific anti-CD33 antibody through a stable linker allows its delivery
into a selected cell population. In the pivotal multicenter trial, 142 patients
with AML in first relapse with no history of an antecedent hematologic
disorder and a median age of 61 years were treated with GO given at a dose
of 9 mg/m2 at 2-week intervals for two doses. Of the patients, 30% obtained
remission, as characterized by 5% or less blasts in the marrow, recovery of
neutrophils to at least 1.5 � 109/l, and RBC and platelet transfusion inde-
pendence. Approximately half these patients did not recover their platelet
count to 100 � 109/l and were categorized as having a CRp. This newly
defined category (CRp) translates into a survival advantage for patients
compared to those with no response, although it is inferior to a CR as
conventionally described. Of the patients, 23% (33 of 142) had grade 3 or
4 usually transient hyperbilirubinemia and 17% (24 of 142) grade 3 or 4
increases in AST or ALT levels (Sievers et al., 2001).

There has been some concern that treatment with GO may induce veno-
occlusive disease (VOD). Giles et al. (2001b) reported the occurrence of this
phenomenon in 14 of 119 (12%) patients treated with GO alone or in combi-
nation with other chemotherapeutic agents. These included five patients
who had received no prior antileukemic cytotoxic therapy. The diagnosis of
VOD was made clinically in most patients. Later, Rajvanshi et al. (2002)
reported liver toxicity in 11 of 23 patients who received GO for AML that
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had relapsed after stem cell transplant. Histological examination of the liver
demonstrated sinusoidal injury with extensive fibrosis, centrilobular conges-
tion, and hepatocyte necrosis (Rajvanshi et al., 2002). Thus, it appears that
VOD of the liver might occur in a small percentage of patients treated with
GO. More recently, in a study of 62 patients with AML and MDS who
underwent allogeneic stem cell transplantation, 13 (21%) developed VOD,
including 9 of 14 (64%) with prior GO exposure and 4 of 48 (8%) without
prior GO exposure (p < 0.0001) (Wadleigh et al., 2003). Therefore, the
principal risk factor for VOD appears to be its administration before or after
a stem cell transplant (Wadleigh et al., 2003). However, administration of
GO with other chemotherapeutic agents (such as 6-thioguanine) has also
been reported to increase the risk of VOD (Kell et al., 2002).

A study by Leopold and coworkers provides useful insights on the
possible role of the agent in patients with relapsed AML (Estey, 2002).
They compared GO to high-dose Ara-C-containing regimens in patients in
first relapse after an initial CR duration of >3 months. GO was more likely
than Ara-C to produce a second CR if the duration of CR1 was less than 6
months, whereas Ara-C-containing regimens were more likely to achieve a
second CR if the duration of CR1 was >1 year (Estey, 2002). There was no
statistically significant difference in the probability of achieving a second CR
with either therapy for patients whose CR1 was 6–13 months (Estey, 2002).
These data supported the use of GO in older patients in first relapse with
a short duration of CR1. However, patients with long first CR and younger
patients should probably still be treated with a high-dose Ara-C-based
regimen instead (Estey, 2002).

Despite the results seen in the salvage setting, the use of this agent as
first-line therapy for older patients with AML has been unsatisfactory. At the
M. D. Anderson Cancer Center, 51 newly diagnosed patients with AML
who were older than 64 years were treated with two doses of GO and the
responses were compared with historical controls. CR rates of 45% in 20
patients with a normal karyotype and 6% of 31 patients with an unfavor-
able karyotype fared unfavorably as compared with historical controls
treated with a combination of Ara-C and idarubicin in which the
corresponding CR rates were 54% and 44%, respectively (Estey et al.,
2002). This probably reflects the selection bias of the original studies in
which only patients who had achieved a CR and relapsed after a minimum
of 3 months (6 months for the younger) were included.

There has been considerable interest in exploring the use of GO in com-
bination with other agents. De Angelo et al. (2002) have reported prelimi-
nary results of a Phase II study combining cytarabine and daunorubicin
with GO in patients below 60 years with untreated AML. The maximum
tolerated dose arrived at the Phase I portion of the study: 100 mg/m2/day
Ara-C on Days 1–7, 45 mg/m2/day daunorubicin on Days 1–3, and 6 mg/
m2 GO on Day 4. At the time of reporting, 42 patients were enrolled and 15
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of 18 (83%) evaluable patients achieved a CR. The regimen was well
tolerated and no cases of VOD were reported (De Angelo et al., 2002). In
another study, GO 3 mg/m2 was administered on Day 1 of induction che-
motherapy with one of three regimens: DAT, DA, or FALG-IDA (Kell et al.,
2002). Of 55 patients treated, 41 (85%) entered CR with Course 1. Non-
hematopoietic toxicity was confined to the liver, with the regimen containing
both thioguanine and GO associated with a higher risk of liver toxicity.
Administration of GO with consolidation courses was reported to be well
tolerated, with VOD-like syndromes noted in 2 of 15 patients receiving GO
with Courses 1 and 2 and none of the 17 patients receiving GO with Course
3 (Kell et al., 2002). Several other GO-based combinations have been
reported (Alvarado et al., 2003; Apostolidou et al., 2003a; Cortes et al.,
2002a; Tsimberidou et al., 2003a,b). The questions that need to be resolved
include the ideal combination, the proper scheduling and the most appro-
priate dose of GO, and whether using GO in combination with other agents
might increase the risk of toxicity, particularly VOD.

Monoclonal antibody/radioisotope combinations are also under inves-
tigation. Monoclonal antibodies conjugated to �-emitting radioisotopes
such as 213(Bi) and 211(At) have been constructed and have shown preclinical
activity (McDevitt et al., 2001). The HuM195-213(Bi) conjugate was used in
a Phase I study of 18 patients with relapsed for refractory AML or chronic
myelomonocytic leukemia (CMML) (Jurcic et al., 2002). No significant
extramedullary toxicity was observed and all the 17 evaluable patients
became myelosuppressed. Reductions of circulating and bone marrow blasts
were reported in 14 of 15 (93%) and 14 of 18 (78%) evaluable patients,
respectively (Jurcic et al., 2002). �-emitting radioconjugates using 131I and
90Y have also been constructed and produce profound myelosuppression
with elimination of large leukemic burdens, making them attractive for stem
cell transplantation (Schwartz et al., 1993). Similarly, radiolabeled antibo-
dies against CD45 have been studied in combination with high-dose cyclo-
phosphamide and total body radiation as a preparative regimen for
allogeneic transplantation (Matthews et al., 1999).

By using �-emitting constructs, the ratio of the amount of radiation
delivered to the bone marrow, liver, and spleen relative to that delivered
to the rest of the body is found to be 1000-fold greater than that achieved
with �-emitting constructs. This reflects the shorter pathway length of
�-emitters and suggests that �-emitting radioconjugates are likely to have
lower toxicity and to be preferable at least in the nontransplant setting.

DT388–GMCSF is a fusion toxin consisting of the catalytic and trans-
location subunits of diphtheria toxin (DT388) linked to the human granulo-
cyte-macrophage colony-stimulating factor (GMCSF) and directed against
the GMCSF receptor that is strongly expressed by most human leukemic
blasts (Hall et al., 1999). In preclinical studies, leukemic progenitors isolated
from patients with AML were sensitive to DT388–GMCSF irrespective of
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clinical responsiveness of the patients to standard chemotherapeutic agents
(Hogge et al., 1998). In a Phase I clinical trial in 31 patients with AML
who were resistant to chemotherapy, 1 had a CR and 2 had PR; all 3
responders were treated at or above the maximal tolerated dose and all
had baseline marrow blast percentages of <30% (Frankel et al., 2002).
Other fusion toxins such as DT(388)IL-3, composed of DT388 and human
interleukin 3 (IL-3), have also been examined in preclinical models of
leukemia (Black et al., 2003; Frankel et al., 2000). These agents are currently
under evaluation in larger multicenter trials.

B. Angiogenesis

Although angiogenesis was first thought to have an important role in the
pathogenesis and progression of solid tumors, it has become evident that
angiogenesis and angiogenic cytokines play a major role in hematological
malignancies (Aguayo et al., 2000; Giles, 2002; Hussong et al., 2000).
Increased levels of angiogenic factors, as well as increased microvessel
density, are identified in patients with AML, MDS, and CML (Aguayo
et al., 2000). The vascular endothelial growth factor (VEGF) can stimulate
the proliferation of leukemic progenitors, and this can be blocked by specific
anti-VEGF antibodies in preclinical models (Ratajczak et al., 1998). Also,
VEGF can inhibit the development and activation of dendritic cells, and
antibodies to VEGF can enhance antitumor response by improving endoge-
nous dendritic cell function (Gabrilovich et al., 1999). In addition, cellular
receptors for VEGF are members of receptor tyrosine kinases. There has
been growing interest in developing antiangiogenic strategies through one of
two mechanisms: first is the inhibition of circulating angiogenic factors such
as VEGF by using agents such as thalidomide or monoclonal antibodies, and
the second is through direct inhibition of the VEGF receptor family. Thalid-
omide alone (Steins et al., 2002) or in combination with standard induction
chemotherapy (Cortes et al., 2003d) has little if any activity in AML and
MDS. Bevacizumab, an anti-VEGF monoclonal antibody, has undergone
Phase I testing in solid tumors and is currently under evaluation in AML,
MDS, and CML (Giles, 2002). Karp et al. (2002) reported their Phase II
experience with bevacizumab administered in a time-sequential combination
with ara-C and mitoxantrone. Thirty-two patients with high-risk refractory
or relapsed AML were treated. Fourteen of 32 (44%) evaluable patients
achieved CR (Karp et al., 2002). Several receptor tyrosine kinase inhibitors
directed at the VEGF signaling pathway (see later), including SU5416,
SU6668, ZD6474, ZK1222584, and CGP41251, are in development (Laird
et al., 2000, Thavasu et al., 1999). SU5416 was associated with a stable PR in
a patient with refractory AML together with a decrease in bone marrow
microvessel density, a marker of angiogenesis (Mesters et al., 2001). More
recently, Giles et al. (2003c) investigated this agent in 55 patients, including
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33 with AML and 22 with MDS. Grade 3 or 4 toxicities included headache,
infusion-related reactions, dyspnea, fatigue, thrombosis, and gastrointesti-
nal disturbances. Three patients achieved PRs with two hematological
improvements (Giles et al., 2003c). These responses demonstrate the
biological activity of these agents. However, they are mostly cytostatic in
preclinical models. Thus, it is possible that either combinations with chemo-
therapy or the setting of minimal residual disease (i.e., maintenance therapy
in CR) would be more appropriate.

C. Anti Bcl-2 Antisense

The process of leukemic transformation is dependent not only on
increased proliferation but also, at least to some extent, on suppression of
programmed cell death (apoptosis) (Reed, 1997, 1999). Dysregulation of the
processes governing apoptosis can prolong the life span of the cell, resulting
in leukemic cell expansion independently of cell division. Moreover, such
defects might contribute to leukemogenesis by creating a permissive envi-
ronment for genetic instability and accumulation of gene mutations. Fur-
thermore, defects of apoptotic machinery promote resistance to immune-
based destruction, facilitate growth factor-independent cell survival, and
confer resistance to cytotoxic drugs (Reed, 1999). Thus, treatment strategies
that target the apoptotic machinery are of great interest in myeloid malig-
nancies.

Among the first candidates for therapy directed at apoptosis-regulating
pathways is Bcl-2, which is frequently overexpressed in myeloid neoplasms.
In addition to its antiapoptotic function, overexpression of Bcl-2 has been
shown to be associated with resistance to chemotherapy (Reed, 1997, 1999).
Therefore, it is conceivable that downregulation of Bcl-2 can reduce the
threshold for chemotherapy resistance and restore chemosensitivity to leu-
kemia cells (Andreeff et al., 2002; Cotter, 1999; Gewirtz, 1998). Genasense
(G3139) is an 18-mer phosphorothioate oligodeoxynucleotide (ODN) anti-
sense designed to bind the first six codons of human Bcl-2 mRNA. Based on
the potential increase of chemosensitivity, Marcucci et al. (2003) designed a
study in which G3139 was given in combination with fludarabine and
cytarabine and G-CSF (FLAG) to 20 patients with refractory AML or
acute lymphoblastic leukemia (ALL) (Marcucci et al., 2003) They demon-
strated that G3139 could be administered in this setting with minimal
increase in toxicity. Bcl-2 mRNA levels were downregulated in 75% (9 of
12) of the patients evaluated, proving the biological effect of G3139. Signifi-
cant responses, including a CR rate of 35%, were encouraging in this
refractory population (Marcucci et al., 2003). However, it is unclear how
much of the biological or clinical effects could be expected from the chemo-
therapy alone. Further studies examining the utility of this agent in leukemia
and other hematological malignancies are therefore needed.
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D. Histone Deacetylase Inhibitors

Hypomethylating agents, including 5-azacytidine and decitabine, have
been discussed earlier. Their mechanism of action when administered at low
doses is related to their ability to inhibit DNA methyltransferases and hence
influence chromatin remodeling (Issa et al., 1997; Toyota et al., 2001; Villar-
Garea and Esteller, 2003). DNA silencing of tumor suppressor genes by
methylation of their promoter regions is one of the events in chromatin
remodeling that might lead to carcinogenesis (Santini et al., 2001). In
addition, abnormal recruitment of histone deacetylases (HDACs) to promo-
ters of regulatory and other genes results in transcriptional repression
(Amann et al., 2001; Faretta et al., 2001; Ferrara et al., 2001; Hiebert
et al., 2001). Removal of acetyl groups by HDAC allows tighter binding of
histones to DNA, hence preventing gene transcription. It has been suggested
that this might work in a two-step process with DNA methylation toward
gene silencing. Several HDAC inhibitors, such as phenylbutyrate, trichosta-
tin A, SAHA, valproic acid, and depsipeptide, have been investigated in vitro
for their ability to reverse this process (He et al., 2001; Klisovic et al., 2003;
Kramer et al., 2003; Warrell et al., 1998). In a recent Phase I clinical study,
depsipeptide, 3 mg/m2 was infused on Days 1, 8, and 15 while repeating the
cycle every 28 days (Marcucci et al., 2002). Nine patients, including six with
relapsed AML, one with primary refractory disease, and two previously
untreated patients older than 60 years, were treated with this regimen.
None of the patients achieved a response, but some experienced transient
declines in their blast count and one patient developed tumor lysis syn-
drome. The drug induced its classical biologic effect. The median increase
in histone acetylation was 40% (range 10–160%) and 100% (range 0–
240%) for H3 and H4 histone acetylation, respectively, at 4 h following
depsipeptide infusion in 6 patients analyzed. Further dose escalation is
underway to achieve the minimum effective pharmacologic dose. However,
as the weekly schedule was associated with a cumulative increase in gastro-
intestinal and constitutional side effects, an alternative dosing schedule is
also being explored (Marcucci et al., 2002). Studies to examine how these
agents can be combined with chemotherapy and hypomethylating agents are
currently in progress.

VI. Signaling Modulators __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Molecules such as cytokines, as well as hormones and intercellular inter-
actions mediated by neighboring cell surface antigens, influence cellular pro-
cesses such as proliferation, differentiation, and cell death. Ultimately,
these interactions result in gene transcription either directly, or indirectly by
activating intracellular signaling pathways, which in turn activate appropriate
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cellular machinery (Alberts et al., 1994). Conversion of such external stimuli
into intracellular signals by surface receptors is of pivotal importance in this
process. These receptors can be activated by proteins with inherent enzy-
matic function or through mediators linked with other catalytic enzymes.
Indeed, most growth factors and cytokines bind the cell surface receptors
and exert their function through their activation, commonly by phosphory-
lation (Alberts et al., 1994). These events usually trigger intracellular path-
ways that lead to proliferation, increased cell survival, and malignant
transformation.

The normal functioning of the hematopoietic system depends on a
number of intricately regulated signaling cascades that are mediated by
cytokines and their receptors. As a result of orderly function of these path-
ways, an appropriate constellation of hematopoietic cells is produced;
similarly, their abnormal activation results in neoplastic transformation.

Three major classes of proteins are involved in cellular signaling:
kinases, adaptor or docking proteins, and transcription factors (Fig. 1).
Inappropriate function of members of each group has been linked to a
number of hematological malignancies (Ravandi et al., 2003). A number
of kinase cascades have been described. In general, these kinases mediate
their action through phosphorylation of tyrosine or serine/threonine resi-
dues of their substrates. Also, disorderly function of a number of adaptor
proteins and transcription factors (such as Ras and Myc) has been intimately
linked with neoplastic transformation.

The description of a number of oncogenes with constitutive kinase
activity has generated considerable interest as therapeutic targets. These

FIGURE 1 Signal transduction cascades.
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oncogenes are derived from genes including c-ABL, c-FMS, FLT3, c-kit,
PDGFR� and PDGFR�, which are normally involved in the regulation of
hematopoiesis (Scheijen and Griffin, 2002). Mutations that remove inhibi-
tory domains of the molecule or induce the kinase domain to adopt an
activated configuration lead to the constitutive activation of the protein
product (Scheijen and Griffin, 2002). A number of downstream signaling
cascades such as the Jak–Stat pathway, the Ras/Raf/MAPK pathway, and the
PI3K pathway are then switched on and lead to inappropriate proliferation
and cell survival.

Signaling pathways can be particularly attractive targets in treating
myeloid malignancies because they are frequently inappropriately activated
in leukemic cells. Therefore, their partial inhibition might be sufficient to
interfere with malignant cell growth without causing significant toxicity
(Frank, 1999). As a result, despite the pivotal role of these pathways in
normal cellular function, their inhibition might not be associated with
significant clinical toxicity.

A. Imatinib Mesylate

A clear example in which these pathways are activated and targeted
therapeutic intervention has resulted in clinical benefit is the constitutive
activation of the platelet-derived growth factor, PDGFR�, in patients with
CMML who have the translocation t(5;12)(q33;p13) generating the fusion
protein TEL-PDGFR� (Golub et al., 1994). This fusion leads to ligand-
independent dimerization and autophosphorylation of the PDGF �-subunit
and its constitutive activation. PDGF is able to stimulate the growth of
primitive hematopoietic, erythroid, and megakaryocytic precursors, and
TEL-PDGFR� can confer cytokine-independent growth to Ba/F3 cells
(Magnusson et al., 2001). Imatinib mesylate inhibits the kinase PDGFR�
and has been shown to be highly effective in patients with this translocation
and other similar fusion genes (Apperley et al., 2002; Kulkarni et al., 2000;
Magnusson et al., 2002; Ross et al., 1998). Similarly, a number of patients
with the idiopathic hypereosino-philic syndrome (HES) have been shown to
harbor the fusion gene FIP1-L1-PDGFR� in their neoplastic clone, leading
to the constitutive activation of PDGFR� kinase. A fraction of patients
with HES, including all those with this novel fusion gene, respond to
therapy with imatinib mesylate (Cools et al., 2003; Cortes et al., 2003b).
Patients with this clonal abnormality should indeed be now reclassified as
chronic eosinophilic leukemia. Imatinib has also been used in AML because
of its inhibition of the kinase activity of c-kit, which is expressed in more
than 90% of patients with AML. Anecdotal responses have been reported
(Kindler et al., 2003), but larger series demonstrated minimal or no activity
(Cortes et al., 2003c).

76 Ravandi and Cortes



B. FLT3 Inhibitors and Other Receptor Tyrosine
Kinase Inhibitors

Receptor tyrosine kinases are membrane-bound enzymes with an extra-
cellular ligand-binding domain, a transmembrane domain, and a highly
conserved intracellular domain that mediates the activation, through tyro-
sine phosphorylation, of a number of downstream signaling proteins (Blume-
Jensen and Hunter, 2001; Drexler, 1996; Porter and Vaillancourt, 1998).
Ligand binding, as well as cell–cell interactions via cell adhesion molecules,
can activate these enzymes (Weiss et al., 1997), and phosphorylated tyrosine
residues serve as high-affinity docking sites for SH2-containing adaptor and
effector proteins (Weiss and Schlessinger, 1998). Receptor tyrosine kinases
include diverse molecules, which are considered as members of four distinct
classes. Of particular interest in myeloid malignancies are the members of
class III receptor tyrosine kinases, such as platelet-derived growth factor
receptor (PDGFR), macrophage colony-stimulating factor (FMS-R or CSF-
1R), stem cell factor receptor (kit), and FMS-like tyrosine kinase 3 receptor
(FLT3R) (Drexler, 1996; Matthews et al., 1991; Sherr, 1990). Constitutive
activation of FLT3R resulting in stimulation of multiple signaling pathways
and leading to malignant transformation has been demonstrated in up to
30% of patients with AML (Gilliland and Griffin, 2002b; Tse et al., 2000).
This figure might be an overrepresentation of the actual incidence of this
phenomenon, and recent studies including all patients with newly diagnosed
AML report a 15–20% incidence. This activation results from two well-
described molecular events. One is internal tandem duplication of the
FLT3R gene occurring at exons 11 and 12 of the gene that codes for the
juxtamembrane domain of the receptor (Gilliland and Griffin, 2002a; Kelly
et al., 2002; Kiyoi et al., 2002; Thiede et al., 2002). The second mechanism
involves point mutations of codon 835 of the FLT3R receptor gene, located in
the activation loop of its tyrosine kinase domain, and has been reported in up
to 7% of patients with AML (Thiede et al., 2002; Yamamoto et al., 2001).
Patients with these activating mutations of FLT3R have a significantly worse
outcome, particularly when there is a homozygous inactivation (Abu-Duhier
et al., 2000; Kottaridis et al., 2001; Whitman et al., 2001). Inhibitors of such
aberrant activation are undergoing clinical evaluation (Levis et al., 2001,
2002). The preliminary results of these trials are summarized in Table II.
Although these agents are considerably different in their chemical structure
and selectivity for FLT3R, and despite the different designs, these trials have
clearly demonstrated significant activity of FLT3 inhibitors, particularly in
patients with FLT3R mutations. The in vitro and modest clinical activity in
patients with wild-type FLT3R is intriguing and suggests a role in all patients
with AML, although most likely in combination with other agents. Ongoing
studies are further exploring the role of FLT3 inhibitors in leukemia, in
particular in combination with chemotherapy and other targeted therapies.
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TABLE II Recently Reported Trials of FLT3R Inhibitors

Reference Agent

FLT3R
wild-type
eligibility

Study
phase Dose schedule Patients (n) Response Toxicity reported

Stone et al.,
2002

PKC412 Yes II 75 mg po tid 8 6 Pts with decreased PB blasts

Foran et al.,
2002b

SU11248 Yes I 25/50/75/100 mg

po qd 2 weeks
on/2 weeks off

32 13/16 Evaluable with

>50% decreased PB blasts

One G3 fatigue each

at 50 and 75 mg
dose levels

Foran et al.,
2002a

SU11248 Yes I Single-dose po

50 to 350 mg

29 >50% Inhibition of FLT3R

in all pts receiving �200 mg

Smith et al.,
2002

CEP701 No II 40/60/80 mg po bid 5 1 CRp at 60 mg

Heinrich, et al.,
2002

MLN518 Yes I 50 mg po q12h 6 2/3 Evaluable with

>50% decreased PB blasts

Note: Pts: patients; G3: grade 3; PB: peripheral blood; CRp: complete remission without platelet recovery to >100 � 109/l.



C. Farnesyltransferase Inhibitors

Ras proteins play a significant role in human carcinogenesis, and inhibi-
tion of Ras signal transduction has been considered a target for antineoplas-
tic therapy. Ras-mediated signaling can be inhibited by preventing its
localization to cell membrane, by inhibition of Ras protein expression
using antisense nucleotides, or by inhibition of its downstream targets
(Adjei, 2001; Lee and McCubrey, 2002). Farnesyltransferase (Ftase) is an
enzyme responsible for the C-terminal prenylation of Ras that is required for
its association with the cell membrane, a prerequisite for its transforming
activity. Several pharmacological inhibitors of Ftase have been developed,
and clinical trials of their efficacy in leukemia are underway (Table III;
Beaupre and Kurzrock, 1999; Cortes et al., 2003a; Gibbs, 1991; James
et al., 1993; Karp et al., 2001; Kohl et al., 1993). Four such farnesyltransfer-
ase inhibitors are currently at various stages of clinical testing: R115777,
SCH66336, L778123, and BMS214662 (Adjei et al., 2000; Cortes et al.,
2003a; Karp, 2001; Lee and McCubrey, 2002). Karp et al. (2001) conducted
a Phase I study using R115777 (Zarnestra�) administered orally for 21 days
every 28 days for up to four cycles in patients with poor-risk acute leuke-
mias. Reliable inhibition of Ftase activity occurred at or above the 300-mg
bid dosing level, and dose-limiting toxicity, manifested as a reversible neu-
rotoxicity, was observed at the 1200-mg bid dosing level. Clinical responses
were observed in 10 of 34 (30%) patients, including two with CR. Interest-
ingly, responses occurred across the entire range of dosing levels (100–
900 mg bid) and independently of Ras mutational status (Karp et al.,
2001). Lancet et al. (2002) have reported a Phase II study of Zarnestra
600 mg twice daily for 21 days in 41 patients with untreated poor-risk
AML (defined as any of age �65 years, age �18 years with adverse cytoge-
netics, secondary AML) and MDS with IPSS score �1.5. Complete and
partial hematological responses were observed in 10 of 30 (33%) evaluable
patients, including 8 CRs and 2 PRs, 9 of which occurred after one cycle
of therapy. An additional 12 patients had stable disease after one cycle of
therapy (Lancet et al., 2002).

Kurzrock et al. (2001) have reported results of their Phase I and Phase II
clinical trials using Zarnestra in MDS. In the Phase I study, using a 21-day
cycle every 28 days, the dose-limiting toxicity was fatigue, occurring at
900 mg bid, although mostly among older patients. A response rate of
33% was reported. In the Phase II trial in patients with relapsed or poor-
risk MDS, a more prolonged schedule was used (28 days every 42 days). This
resulted in higher toxicity and a lower response rate, suggesting a depen-
dence on the schedule. Similar responses have been obtained with other
members of this family of drugs.

Although the intended target of these drugs is Ras, it is now clear that
these agents might have Ras-independent effects on other cellular signaling
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TABLE III Recently Reported Studies of Ftase Inhibitors

Reference Agent Disease Phase Schedule Patients (n)
Ras mutations
present Response Toxicity

Cortes
et al., 2002b

SCH66336 CML Pilot 200 mg po bid 12 ? 2 Grade 3 GI in 33%

Ravoet

et al., 2002

SCH66336 MDS, sAML I/II 200 mg po bid for

4 weeks

16 5/11 PR in 2/12

evaluable

Diarrhea, rash, fatigue

Gotlib
et al., 2002

R115777 CML, Ph�
CML,

CMML

I/II 300 mg po bid for
3 weeks (400 mg

in 7 patients)

13 0/9 8 Biological
4 Clinical

Grade 3 decreased
platelets, increased

SGOT, increased

creatinine, tremor 6/36

Lancet
et al., 2002

R115777 AML, MDS II 600 mg po bid for
3 weeks

41 2/13 10/30, 8CR,
2PR

Grade 4 NF

Note: CML: chronic myelogenous leukemia; MDS: myelodysplastic syndrome; sAML: secondary acute myeloid leukemia; Ph�: Philadelphia

chromosome negative; CMML: chronic myelomonocytic leukemia; CR: complete remission; PR: partial remission; GI: gastrointestinal; NF: neutropenic

fever.



components and that these effects might contribute to their antineoplastic
action (Kurzrock et al., 2001). Some of the proposed targets that may be
responsible for their clinical activity include RhoB and the mitotic kinasins,
CENP-E and -F (Ashar et al., 2000). Ftase inhibitors are currently being
further investigated in combination with chemotherapy and other targeted
therapies and in the setting of minimal residual disease.

D. Proteasome Inhibitors

The ubiquitin–proteasome pathway is the central pathway for degrada-
tion of intracellular proteins (Almond and Cohen, 2002; Ciechanover,
1994). Targeting of proteins to proteasome is through covalent attachment
of a polyubiquitin chain. The proteasome system can degrade decaying
proteins (i.e., housekeeping function) as well as important proteins involved
in the regulation of the cell cycle and other functions, thus regulating cell
proliferation and maturation (Almond and Cohen, 2002). Important sub-
strates for proteasome degradation include cyclins and CDKIs; transcription
factors such as p53, NF�B, c-Myc, c-fos, and c-Jun; a number of apoptosis
families of proteins; inhibitor of apoptosis proteins (IAPs); and some cas-
pases (Almond and Cohen, 2002; Breitschopf et al., 2000; Chang et al.,
1998; Karin and Ben-Neriah, 2000; King et al., 1996; Li and Dou, 2000;
Marshansky et al., 2001). Different classes of proteasome inhibitors can
therefore be used to differentially affect cellular levels of oncogenic proteins
(Almond and Cohen, 2002). PS-341 (bortezomib) is a specific and potent
inhibitor of proteasome (Gardner et al., 2000). It induces apoptosis and
overcomes resistance in a number of cell lines, as well as primary cells from
patients with CLL (Adams et al., 1999; Almond et al., 2001; Chandra et al.,
1998; Masdehors et al., 1999, 2000). Its in vitro activity in myeloma has led
to its ongoing examination in other hematological malignancies and solid
tumors (Hideshima et al., 2001, 2002; Mitsiades et al., 2002). A Phase
I clinical trial in 15 patients with acute leukemias and MDS showed signifi-
cant proteasome inhibition but no significant clinical activity (Cortes et al.,
2002c). However, there was significant apoptosis of leukemic cells in
some patients. This and the reported synergy with agents such as topoisom-
erase I inhibitors have led to currently ongoing studies of bortezomib in
combination with chemotherapy.

E. Other Potential Targets

Other steps in the serine/threonine cascades, from the cell surface recep-
tor to gene transcription, are also being examined as possible targets for
therapy (Lee and McCubrey, 2002) (Fig. 1). Compounds such as geldana-
mycin and derivatives of radicicol are known to destabilize Raf protein and
interfere with Raf signaling (Blagosklonny et al., 2001; Shiotsu et al., 2000;
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Soga et al., 1999). Several staurosporine derivatives, including UCN-O1,
CGP41251, and PKC412, are able to inhibit PKC signaling and have been
examined in cell lines and clinical studies (Propper et al., 2001; Seynaeve
et al., 1994; Thavasu et al., 1999). Aberrant MEK and ERK activity has been
demonstrated in AML and CML (Kang et al., 2000; Kim et al., 1999;
Morgan et al., 2001; Okuda et al., 1994), and MEK inhibitors such as
PD098059, PD184352, and UO126 are able to modulate cellular prolifera-
tion, differentiation, and apoptosis (Alessi et al., 1995; Dudley et al., 1995;
Favata et al., 1998). PD184352 has been examined in Phase I trials
in patients (Sebolt-Leopold, 2000). Pharmacological inhibitors of PI3K,
wortmannin and LY294002, have shown significant potency in preclinical
studies (Powis et al., 1994; Vlahos et al., 1994).

VII. Conclusions

Recent advances in the investigation of the biology of leukemias have
led the way in the discovery of multiple potential targets for therapy. Many
of these agents are currently under investigation, and some have already
shown significant clinical activity. Many important questions have arisen
and will need to be answered. Many of these agents can clearly produce the
intended biological response (i.e., hit the target), but clinical responses might
be modest at best. The questions then arise of whether a drug is worth
developing further and how to best define responses to it. Furthermore,
many of these agents affect only one of many steps in a specific pathway,
whereas biology of cells, in particular malignant cells, is a complex
and multistep process with multiple targets. Therefore, a multistep approach
is likely needed. As we discover the ever-growing heterogeneity of myeloid
malignancies, it is likely that treatments will have to be designed for spe-
cific subgroups of patients rather than a general approach encompassing all
patients as previously used with combination chemotherapy (e.g., Ara-C and
anthracyclines for all patients with AML). This brings another challenge—
how to more effectively combine and sequence different biological agents.
Although, these challenges are significant, continued translation of labora-
tory findings into the clinic and clinical findings into the laboratory will
eventually lead to the promised cure of leukemias.
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I. Chapter Overview

The treatment of acute myeloid leukemia (AML) is undergoing change
due to the introduction of various ‘‘targeted therapies.’’ These are qualita-
tively different from prior investigational regimens in that they are less toxic
but may also have less chance of producing responses as traditionally de-
fined. This chapter considers methodologic issues relevant to investigation of
targeted therapies.

II. Introduction _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Throughout this section, targeted therapies (TTs) are defined as those
likely associated with much lower rates of treatment-related mortality than
more conventional chemotherapy (CT) typically used for AML. TTs are
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frequently administered orally and do not require initial hospitalization.
Thus, TTs have great intuitive appeal to both patients and physicians; in
contrast, CT is currently viewed as a much less attractive option. This can be
appreciated by contrasting the proportion of patients over the age of 60
years with untreated AML or high-risk myelodysplastic syndrome (MDS;
>10% blasts in the bone marrow, >5% in the peripheral blood) who
received CT, both on- and off-protocol, during the last 6 months of
two CT protocols: June 1997–December 1997 vs. September 2002–March
2003. These proportions were 85% (of 55 patients) during the former and
75% (of 79 patients) during the latter. Despite a nonsignificant p-value
(0.11), the 95% confidence limits for the true difference in these rates is
[�0.03, 24], suggesting as much evidence for a true 20% difference as for no
difference.

Leaving aside the significance of this trend for interpretation of results
of CT studies, the trend makes this an appropriate time to explore certain
issues relevant to investigation of TTs, specifically (1) selection of appropri-
ate candidates for these therapies, (2) selection of endpoints to measure
the success of these therapies, and (3) the need for comparative studies,
both of various TTs with each other and of TT with CT. These topics,
which are clearly interrelated, have received insufficient attention. This
belief motivates this section.

III. Patient Selection for Targeted Therapy
Trials in Acute Myeloid Leukemia ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Not infrequently, protocols governing conduct of trials of TTs, at least
in AML, allow enrollment of all patients who are not suitable candidates for
myelosuppressive therapy; more specific eligibility criteria often permit en-
rollment of a wide variety of patients, both untreated and relapsed or
refractory. The total sample size is however, typically, small. Although it is
likely that results in one group are not totally irrelevant to results in another,
statistical methods that allow ‘‘borrowing strength’’ across prognostic
groups (Berry, 2003) are not yet in vogue. As a consequence, such protocols
are often faced with the equally undesirable alternatives of considering all
patients as comprising one group or considering them as several groups,
results in each of which are surrounded by very wide confidence limits.

At the M. D. Anderson Cancer Center, given the sample size constraint
noted previously, two considerations have dictated selection of which
patients with AML are reasonable candidates for TT. The first is implicit,
that is, the benefit:risk ratio associated with TT relative to the ratio asso-
ciated with CT must plausibly be high. Second, and subject to the previous
principle, the prime candidates for TTs should be untreated patients. This
follows from the possibility that untreated AML is more likely to respond to
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TTs than relapsed or refractory AML and from the desire to avoid falsely
negative results with TT, recalling that the sample size limitations make it
impractical to enter large numbers of both untreated and relapsed patients.
It can be argued that, although the negative prognosis associated with prior
CT is indisputable with CT (Estey et al., 1996), CT and TT are qualitatively
different; accordingly, the same relation might not pertain with TT. I accede
to this possibility (and to the point that allocating more untreated patients to
TT means fewer remain to receive investigational CT), but believe that the
burden of proof rests on those who believe, unconservatively, that results of
TT in relapsed AML can be generalized to untreated AML.

Perhaps the ideal candidates for TT are patients in first complete remis-
sion (CR). There are three reasons. First, the AML is in the state of minimal
residual disease (MRD), in which TTs are often judged to be particularly
effective (although the difference between the number of cells present in this
state and in the active disease state is far less than the comparable difference
between cured and MRD states). Second, the AML has proven at least
minimally responsive to CT (although the relationship between responsive-
ness to TT and to CT remains unknown, as noted previously). Third, with
continued CT, the expected interval between CR and relapse is often very
short, for example, 3–6 months in patients with chromosome 5 or 7 abnor-
malities, or both, or complex karyotypes, thus allowing results of TT to be
estimated relatively quickly (Estey, 2000).

Nonetheless, in general, such patients have been ineligible for TT trials.
(An exception is a trial of the farnesyl transferase inhibitor R115777.)
Hence, patients with untreated disease are the most appropriate candidates
for studies of TT in AML or high-risk MDS. Comparative benefit:risk ratios
have led us to select patients aged 65 years or more or patients aged 60–64
years with abnormal karyotypes as those in whom TT could be plausibly
substituted for CT as initial therapy. Any such groupings are arbitrary;
however, with CTs used at the M. D. Anderson Cancer Center from 1997
to 2001, such patients (n ¼ 344) had a CR rate of 43%, a 50-day mortality
rate of 20% (the source paper details the selection of the 50 days), a median
relapse-free survival (RFS) time of 35 weeks, and a probability of remaining
alive in CR at 1 year of 36%. Thus, 15% of all the patients are predicted to
be alive in CR at 1 year. Some patients under 60 years, for example, those
with chromosome 5 or 7 abnormalities, or both, or complex karyotypes or
whose blasts show homozygous FLT3 internal tandem duplications (ITDs),
might have similar 15% 1-year rates, but are unlikely to incur the 20% 50-
day mortality rates. The low level of risk at least previously associated with
use of CT in these patients mitigates against employment of TTs.

Administration of TTs should not be limited to patients in whom
the therapeutic target can be identified. To do so risks overestimating
our knowledge of what these targets are. For example, imatinib mesylate,
widely viewed as the exemplar par excellence of a targeted therapy, is now
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known to inhibit tyrosine kinases (TKs) other than those resulting from the
BCR/ABL rearrangement. As another example, at M.D. Anderson Cancer
Center, PKC412, which presumably targets the TK arising consequent
to FLT3 ITDs, has affected the circulating blast count in not only the two
patients with these ITDs but also in three of six patients in whom neither
FLT3 ITDs nor mutations have been detectable by conventional techniques
(Estey et al., in press).

IV. Endpoints for Clinical Trials of TTs in AML __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Two types of response to TTs should be distinguished. The first is
one that indicates that the TT is not inert. An example is a fall in circulating
blast count. Because this type of response can also be produced by agents
such as hydroxyurea that are acknowledged to be of only cosmetic value,
it is important to note the second type of response, that is, one that improves
survival or improves quality of life. Although this type distinction appears
elementary, experience suggests that the two types of responses are frequent-
ly confused when protocols are written. For example, the statistical section
of a protocol investigating the antiangiogenesis agent SU5416 in AML
stated that ‘‘because this agent has a unique mechanism of action, a response
rate as low as 10% is of interest.’’ Left unsaid was that in several groups
eligible for the trial, namely patients who developed AML after a period
of MDS or even untreated patients with abnormal karyotypes, the CR rate
with CT has been 30–40%. Because of the simple inverse relation between
the target response rate and the number of patients needed to effectively rule
out such a rate, such a protocol could result in accrual of patients even after
it was known to be highly unlikely that the proposed treatment would
produce CR rates even as high as those seen with other available treatments.
In their defense, the investigators (who included the author) point out
that the CT-induced CRs would likely be transient and obtained only
with considerable mortality or morbidity. Nonetheless, the stopping rule in
the protocol was formally predicated only on response rate and not on these
other outcomes.

Many trials of TT in AML focus on response broadly defined to include
CR þ major response (MR) [or hematologic improvement (HI)]. Thus,
patients continue to be accrued unless it becomes likely that the CR þ MR
rate falls below a certain level, often taken as 20–30%, without any require-
ment for a minimum CR rate. This practice is based on the possibility that
CR, as defined for CT, will occur infrequently with CTand on the hypothesis
that MR will translate into improvement in either survival time or quality of
life. A problem with this formulation is that, at least as applied to CT, this
hypothesis appears incorrect. In particular, we examined whether the sub-
type of resistance affected survival among all 314 M. D. Anderson Cancer
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Center patients declared resistant to CT between 1991 and 2001, with
resistance defined as the complement of CR and induction death (Lopez
et al., 2001). The resistance date was taken as whichever came first among
the date a second course of the initial CT was begun (with this second course
not producing CR), the date alternative therapy was begun, or 50 days from
the start of the initial course of chemotherapy. Patients with marrow CR
(<5% blasts but <100,000 platelets/�l, or <1000 neutrophils/�l, at resis-
tance date, or both) typically lived 2–4 months longer than patients without
marrow CR (>5% blasts at resistance date), with this distinction reaching
statistical significance. There was no indication that platelet count at resis-
tance date, at least when grouped as <50,000/�l vs. 50,000–100,000/�l vs.
>100,000 �l, or neutrophil count (grouped as <500/�l vs. 500–1000/�l
vs. >1000/�l) affected survival time. The rare patients (6% of all resistant
patients) with CRp, that is, <5% marrow blasts, >1000 neutrophils/�l, and
>50,000 platelets/�l at resistance date, lived longer than those in the mar-
row CR group. Most strikingly, however, the difference in survival between
the 946 patients who entered CR in one course during the same 1991–2001
period and the CR patients was much greater than the difference in survival
between the CRp group and the other subtypes of resistant patients. This
difference did not result from differences in time to achieve CR vs. time to
resistance date. The results suggest that only CR lengthens survival in AML.
Given that many CRs, because of their transiency, do not prolong survival, it
is perhaps not surprising that responses short of CR do not in general
increase survival. It can be contended that these results might not be relevant
for TTs; specifically, these therapies might improve survival without produc-
ing CR. This hypothesis remains unproven. It follows that endpoints such as
survival time or quality of life must be included in TT trials if these trials are
to be plausibly seen as potentially benefiting patients, with stopping rules
explicitly based on achieving minimal goals for these outcomes. The short
survival time of untreated AML in patients over 59 years makes it feasible to
monitor survival for purposes of early stopping.

V. Need for Randomized Trials of TTs and a
Proposed Statistical Design __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

The great majority of TTs are tested in single-agent Phase II trials.
A problem with this approach is that therapeutic trials in AML are inher-
ently comparative (Estey and Thall, 2003). Thus, patients are fundamentally
interested in whether a particular TT (TT1) is superior to another TT (TT2)
and whether TT1, TT2, TT3, etc., are superior to CT. The comparative
nature of Phase II trials is implicit in designs, such as the Simon two-stage
design that governs conduct of such trials. For example, the Simon design
specifies p0 and p1, the former corresponding to a response rate of no interest
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and the latter to a minimum target response rate. If, after the initial stage of
the trial, it appears that p1 is unlikely to be achieved, accrual is terminated.
Clearly, p0 and p1 can only be derived from historical data.

Use of single-arm Phase II trials to compare TTs with each other or with
CT is complicated, however, given the limited sample size of Phase II trials
in the face of the prognostic diversity of AML. In particular, the current
trial might accrue more poor-prognosis patients than the previous trial
did and vice versa; thus, the effects of treatment are confounded with the
effects of prognosis. Previously, we have tried to address this problem by
using multivariate regression to examine whether treatment (e.g., TT1 rath-
er than TT2) affected outcome after accounting for prognostic covariates
such as age or cytogenetics. The limitations of such an approach were
recently demonstrated (Estey and Thall, 2003). A single-arm trial of fludar-
abine þ Ara-C þ idarubicin þ G-CSF þ all-trans retinoic acid (FAIGA) for
treatment of AML/MDS was conducted at the M. D. Anderson Cancer
Center (in 1995). Subsequently (from 1996 to 1998), the FAIGA combina-
tion was studied as one arm of a randomized Phase II trial. Because FAIGA
was studied in two separate trials, the resulting data provide a basis for
estimating the between-trial effect. We analyzed the data from the two trials
by using a Bayesian survival time regression model accounting for the
between-trial effect and also the effects of prognostic covariates, including
performance status, type of cytogenetic abnormality, and whether the pa-
tient was treated in a laminar airflow room. Patients in the second trial
had a much lower death rate. Such between-trial effects are due to the
composite effects of latent (unobserved) variables and the play of chance.
The salient point here is that, in separate trials of two different treatments
A and B, the trial effect and the A vs. B treatment effect cannot be estimated
separately, but rather are completely confounded by each other. Given the
conventional widespread practice of conducting sequences of single-arm
Phase II trials of different treatments and then comparing their results, it
appears that many of the so-called treatment effects reported in the medical
literature are nothing more than trial effects and that accounting for the
effects of patient prognostic covariates cannot solve this problem. This
example provides a strong motivation for randomizing in Phase II, because
this is the only method that can effectively do away with treatment-trial
effect confounding.

An example of how such randomization might be conducted is provided
by a planned M. D. Anderson Cancer Center trial comparing TT and CT
in patients more than 64 years old (or age 60–64 years but with abnor-
mal cytogenetics) with untreated AML or high-risk MDS. A simple trial of
TT vs. CT ignores the effect of subsequent treatment on survival; in com-
mon with many statistical designs, it thus wastes information. Thus, we
decided to compare strategies as well as treatments; in particular, we com-
pared the strategy of TT followed at failure by CT vs. the alternative strategy
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of CT followed by TT. Response is defined as CR þ partial remission
(PR) þ major HI, the latter as specified by National Cancer Institute (NCI)
MDS criteria (Cheson et al., 2000). To avoid the criticism raised that
responses such as PR or HI are artificial constructs without proven benefits
to patients, we monitor survival as well as response. Accounting for both
response and death is accomplished by use of an objective function (a utility)
that quantifies the clinically acceptable trade-off between these two out-
comes, as specified by the physician based on prior experience. In this trial,
we assign a utility of 0 to the average historical probabilities of response and
death, (0.50, 0.20), with the utility 0 also given to the pairs (0, 0), (0.15,
0.10), and (0.60, 0.35), so that these pairs are considered equivalent. A utility
of 1 denotes a desirable outcome and corresponds to the following, equally
desirable, pairs of probabilities of response and death: (0.30, 0), (0.50,
0.10), (0.70, 0.30). A utility less than 0 corresponds to a situation worse
than the historical. This utility function is used as the basis for the interim
decisions and the final selection.

The trial is conducted as follows. Patients are randomized among
CT (clofarabine þ cytarabine), TT1 (PKC412 þ low-dose cytarabine),
TT2 (R115777 þ low-dose cytarabine), and TT3 (decitabine). PKC421
inhibits the constitutively activated TK formed as a result of ITDs of the
FLT3 gene, and R115777 is a farnesyl transferase inhibitor. The combina-
tion of PKC412 and of R155777 with chemotherapy bespeaks the likelihood
that TT will be more effective when thus combined. On the other hand, the
CT, that is, low-dose cytarabine, while unlikely to be effective per se, is
also unlikely to produce the mortality rates associated with higher-dose
regimens, for example, an anthracycline with standard-dose cytarabine
given in a 3 þ 7 fashion. Patients who fail CT are randomized among
TT1, TT2, and TT3. Patients who fail TT1, TT2, or TT3 receive CT. The
strategies TT1!TT2, TT1!TT3, TT2!TT1, TT2!TT3, TT3!TT1,
and TT3!TT2 are disallowed in deference to the notion that CT is the
standard therapy whereas TT is the experimental therapy. After a first
stage of randomizing approximately 60 patients, inferior arms (CT, TT1,
TT2, TT3) and strategies are dropped and another 60 patients randomized
among the remaining arms and strategies. At the end of this second stage, the
superior arms and strategies are selected for further investigation. The
design allows for the possibility that the best arms or strategy might differ
across prognostic groups as defined by cytogenetics (normal vs. abnormal)
and age. Thall et al. (2002) give the operating characteristics (i.e., probabil-
ities of correctly selecting superior arms/strategies). The design’s ability to
efficiently evaluate each of CT, TT1, TT2, and TT3 as initial therapy and as
first salvage therapy and to evaluate the six two-course strategies (CT!TT1,
CT!TT2, CT!TT3, TT1!CT, TT2!CT, and TT3!CT) follows from its
statistical framework, which is based on a family of models that incorpo-
rates historical data, while accommodating multiple treatment courses, the
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trinary outcome (response, failure, death) in each course, and prognostic
covariates.
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Purine Analogs in Leukemia

I. Chapter Overview

The mechanism of action and the use of purine analogs in leukemia will
be reviewed in this chapter.

II. Introduction

Three closely related purine analogs (fludarabine, cladribine, and pen-
tostatin) were introduced in the early 1980s, and their role as important
chemotherapeutic agents in hematologic malignancies was quickly estab-
lished. Mechanistically, these agents inhibit DNA synthesis, which initiates
drug-induced programmed cell death. These drugs were initially used as
single agents in low-grade lymphoid malignancies. However, as more data
emerge about other potential actions of this class of agents, they have been
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shown to have activity in other settings, including myeloid leukemias and
reduced-intensity allogeneic stem cell transplants. More recently, there has
been growing clinical evidence regarding the synergy between purine analogs
and other cytotoxic agents in the treatment of hematologic malignancies,
leading to the development of several new treatment regimens.

III. Mechanisms of Action

Fludarabine, pentostatin, and cladribine are structurally similar analogs
of adenosine, but differ in their interaction with the purine salvage enzyme
adenosine deaminase (ADA). This enzyme normally regulates intracellu-
lar adenosine levels through irreversible deamination of adenosine to inosine
and ultimately serves to degrade purine and deoxypurine nucleotides. Ara-
binosyladenine (Ara-A) can be viewed as the progenitor of purine analogs.
Its rapid deamination limited its further development as a cancer therapeu-
tic. However, the presence of a halogen atom on the nucleobase produces a
congener of Ara-A that is resistant to deamination (Montgomery and
Hewson, 1957). Montgomery synthesized fludarabine phosphate [2-fluoro,
50-phosphate derivative of 9-�-d-arabinofuranosyl adenine (Ara-A)], which
was more water soluble and resistant to deamination than was Ara-A. The
active metabolite of fludarabine, F-Ara-A (9-�-d-arabinofuranosyl-2-
fluoroadenine) triphosphate, is incorporated into elongating nucleic acid
chains, resulting in the termination of DNA or RNA synthesis (Huang
et al., 1990; Seto et al., 1985). It also inhibits several intracellular enzymes,
including DNA and RNA polymerases, DNA primase, DNA ligase, and
ribonucleotide reductase, and potentiates deoxycytidine kinase activity
(Adkins et al., 1997; Plunkett et al., 1990). As a result of these actions,
there is a lowering of cellular deoxynucleotide pools that are normally
maintained by ribonucleotide reductase and thus a change in the ratio of
F-Ara-ATP to dATP, resulting in the self-potentiation of the DNA-synthesis-
directed actions of fludarabine (Gandhi and Plunkett, 2002; Seymour et al.,
1996). The exact mechanism by which fludarabine-induced programmed
cell death or apoptosis occurs is not fully established, although it is
believed that the incorporation of this agent into DNA might play a role
(Robertson et al., 1993). Alternative mechanisms including the depletion of
adenosine, including ATP and NAD, might lead to a devitalized state and
might also be involved. Fludarabine is extensively bound to body tissues and
is eliminated primarily by the kidneys. After termination of a fludarabine
infusion, the peak intracellular level of F-Ara-A after it has been phosphory-
lated to its active metabolite occurs within 3–4 h, with a median half-life of
approximately 23 h (Gutheil and Kearns, 1997). Fludarabine is available
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orally, with a bioavailability of approximately 50% that is unaffected by
food.

Another halogenated congener, cladribine (2-chlorodeoxyadenosine)
was soon thereafter synthesized by Carson. Cladribine is resistant to de-
amination of adenosine deaminase. It is also a prodrug and its intracellular
phosphorylation by deoxycytidine kinase is necessary for cytostatic effect to
occur. It accumulates as chlorodeoxyadenosine triphosphate (2-CdA ATP),
and this metabolite disrupts cell metabolism by incorporating into the DNA
of actively dividing cells, including DNA single-strand breaks, and inhibiting
DNA synthesis (Griffig et al., 1989; Hirota et al., 1989). It also works by
inhibiting ribonucleotide reductase, resulting in disturbances of intracellular
deoxynucleotide triphosphate pools and interference with the formation of
NAD. Cladribine also induces apoptosis, but laboratory studies suggest that
it can induce cell death by direct mitochondrial injury as well (Genini et al.,
2000). Cladribine is approximately 25% protein bound. The oral bioavail-
ability is approximately 50% of the administered dose. It is 100% bioavail-
able after subcutaneous administration. Cladribine also enters the cerebral
spinal fluid with concentrations reaching approximately 12–38% of the
concurrent plasma concentrations during continuous intravenous infusions.
Renal elimination of cladribine accounts for approximately 50% of the
dose, and it has a linear biphasic pharmacokinetic profile with an � half-
life of approximately 3–35 min and a � half-life of approximately 6–20 h
(Gutheil and Kearns, 1997).

Unlike fludarabine and cladribine, pentostatin (deoxycoformycin) is an
irreversible inhibitor of adenosine deaminase. As a result of the high ratio of the
phosphorylating enzyme deoxycytidine kinase (dCK) to the dephosphorylating
enzyme 50-nucleotidase in lymphocytes, adenosine and deoxyadenosine are
converted to triphosphate metabolites. Accumulation of these metabolites
inhibits ribonucleotide reductase, which in turn inhibits DNA synthesis
(Grever et al., 1981). Cells most susceptible to the effects of ADA inhibition
are those with a relatively high dCK ratio, such as T lymphocytes. Again, the
exact mechanism by which cytotoxicity occurs is not entirely clear and might
also include incorporation of triphosphate derivatives of deoxycoformycin
into DNA (Siaw and Coleman, 1984) and interference with NAD formation
(Carson et al., 1983). Congenital adenosine deaminase deficiency has been
identified as one of the causes of severe combined immunodeficiency (SCID), a
disease characterized by severe T-lymphocyte deficiency and impaired B-lym-
phocyte function. Pentostatin is minimally protein bound and, like cladribine,
displays a biphasic pharmacokinetic profile. The � half-life is approximately
10 min, followed by a more prolonged � half-life of approximately 5–6 h
(Gutheil and Kearns, 1997). Pentostatin is mainly renally eliminated, and thus
dose reduction is necessary in patients with renal dysfunction.
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IV. Purine Analogs in Chronic Lymphocytic
Leukemia

Purine analogs have been most extensively studied in chronic lympho-
cytic leukemia (CLL). The first report of these agents having activity in CLL
were the descriptions of Grever and colleagues that pentostatin (Grever et al.,
1985) and fludarabine (Grever et al., 1988) induced responses in heavily
pretreated patients with CLL. Keating et al. (1989), in a seminal series of
papers, confirmed the utility of fludarabine in previously treated patients,
and, in subsequent work, reported that in previously untreated patients
fludarabine induced complete remissions (CRs) in 33%, a finding that
was unheard of with alkylating-agent-based treatments. To build on the
success of single-agent fludarabine, a few groups in the early 1990s treated
patients with fludarabine in combination with other active agents. The
group at the M. D. Anderson Cancer Center combined fludarabine 30 mg/
m2/day with prednisone 30 mg/m2/day orally for 5 days and repeated cycles
every 28 days. The patients were a mixed population consisting of both
previously untreated and treated patients. An overall response rate of 60%
was obtained (Robertson et al., 1992). Despite early enthusiasm for the high
frequency of response, subsequent reports of severe opportunistic infections,
including Pneumocystis carinii pneumonia and Listeria meningitis, led to
the abandonment of this combination (Anaissie et al., 1992). A more recent
analysis (nonrandomized) revealed that patients receiving single-agent flu-
darabine as initial therapy had comparable or superior survival (Keating
et al., 1988) compared to patients receiving fludarabine and prednisone as
initial therapy. In the early 1990s, two other groups investigated fludarabine
in combination. Both the Southwest Oncology Group (SWOG) (Elias et al.,
1993) and Memorial Sloan-Kettering Cancer Center (MSKCC) (Weiss et al.,
1994) trials investigated combinations of fludarabine and chlorambucil.
Both trials had similar results. Because of overlapping synergistic toxicities,
the initial dose level of these Phase I trials were too toxic to administer, and
the dose intensity of chlorambucil was reduced by 50%. Even with this
dose reduction, the overlapping myelosuppression and immunosuppression
required compromised dosing of both agents, with generally increased tox-
icity and no obvious benefit in terms of response. The results of these three
early combination trials led to abandoning of combination therapy with
prednisone or chlorambucil.

In previously untreated patients, single-agent fludarabine induced
responses in a majority of patients and CRs in a significant minority
(Keating et al., 1991). These results led to the initiation of a large rando-
mized intergroup trial (Rai et al., 1996). A total of 509 patients were
randomized between 1990 and 1994 to receive fludarabine, chlorambucil,
or combination chemotherapy with fludarabine and chlorambucil. Treat-
ments were administered every 4 weeks for up to 12 months. The frequency
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of response in the fludarabine arm was 63% [20% CR, 43% PR (partial
response)], which was significantly better than the response rate of 37% in
the chlorambucil arm (4% CR, 33% PR). Median response duration was
superior for patients in the fludarabine group at 25 months compared
with those in the chlorambucil group at 14 months. Despite the improve-
ment in frequency and duration of response, patients initially randomized to
fludarabine did not have improved survival compared with those patients
receiving chlorambucil as initial therapy. Another important finding was
confirmation of the results reported by Elias and Weiss: the combined
fludarabine and chlorambucil arm was closed early as too toxic to adminis-
ter even to previously untreated patients. Similar results have been obtained
in other studies that also demonstrate that fludarabine is more active than
alkylator-based therapy, but despite improvement in response frequency and
duration, there is no benefit in terms of overall survival (Rai et al., 2000).

The failure of early attempts to combine fludarabine with chlorambucil
is thought to be because of overlapping synergistic myelosuppression and
immunosuppression. In an attempt to maximize therapy with fludarabine
and alkylators, we at MSKCC have studied a sequential treatment approach
(Weiss et al., 2000). Patients received fludarabine (25 mg/m2/day for 5 days
every 4 weeks for six cycles) as induction. Subsequently, patients received
consolidation with high-dose cyclophosphamide (3000 mg/m2 every 3 weeks
for three cycles). Such consolidation improved the quality of response in
48% of patients and substantially increased the frequency of CR from 8% to
32%. Other groups have chosen to combine fludarabine with cyclophospha-
mide in a concomitant fashion. The best known of these studies reported by
O’Brien et al. (2001) details the results of combination fludarabine and
cyclophosphamide in 128 patients. The doses initially chosen (fludarabine
30 mg/m2/day and cyclophosphamide 500 mg/m2/day both administered on
three consecutive days) proved too toxic to administer. The cyclophospha-
mide dose was then decreased initially to 350 mg/m2/day but, as this was
still too toxic, a final dose reduction of cyclophosphamide to 300 mg/m2/day
was chosen for further study. Patients were subdivided into four groups:
(1) previously untreated, (2) previously treated with alkylating agents,
(3) previously treated with alkylating agents and fludarabine but relapsing,
and (4) refractory to fludarabine with or without alkylating agents. This
combination of fludarabine and cyclophosphamide produced responses in
88% of previously untreated patients and in 82% of previously treated
fludarabine (naı̈ve or) sensitive patients. In patients known to be refractory
to fludarabine, responses were seen in 39%. The main complication of ther-
apy was related to myelosuppression with neutropenia in 48% of patients,
even at the reduced cyclophosphamide dose of 300 mg/m2. Further cyclo-
phosphamide dose reductions (to 250 mg/m2/day) were required in 29% of
patients. Documented pneumonia or sepsis occurred in 25% of patients, and
fever of unknown origin occurred in another 25%. Subsequently, the group
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at M. D. Anderson Cancer Center has added rituximab to this regimen, with
preliminary reports indicating that it is well tolerated and very active. Other
groups have also reported the significant activity of the fludarabine and
cyclophosphamide combination with modifications of dose and schedule
(Flinn et al., 2000; Hallek et al., 2001).

Most recently, we have further modified the sequential approach studied
at MSKCC include a third treatment with rituximab (Lamanna et al., 2003).
In this study, patients receive induction therapy with fludarabine 25 mg/m2

for 5 days every 4 weeks for six cycles. This is followed by consolidation
with high-dose cyclophosphamide (3000 mg/m2 every 3 weeks for three
cycles) and then by a second consolidation with rituximab (375 mg/m2

weekly for 4 weeks). Our preliminary results confirm that this regimen has
acceptable toxicity and that each phase of consolidation therapy leads to an
improvement in response.

Several investigators have also looked at combination therapy with
fludarabine and rituximab (Byrd et al., 2003; Czuczman et al., 2002). In
the study by Byrd et al. (2003), patients with previously untreated CLL were
randomized to receive either six monthly courses of fludarabine (25 mg/m2

on Days 1–5) concurrently with rituximab (375 mg/m2 on Days 1 and 4 of
Cycle 1, and then on Day 1 of Cycles 2–6), followed 2 months later by four
weekly doses of rituximab (375 mg/m2) for consolidation therapy or se-
quential fludarabine alone (25 mg/m2 on Days 1–5) followed 2 months later
by four weekly doses of rituximab (375 mg/m2). A total of 104 patients were
randomized to the concurrent (n ¼ 51) and sequential regimens (n ¼ 53).
Overall response rate with the concurrent regimen was 90% (47% CR, 43%
PR) compared with 77% (28% CR, 49% PR) with the sequential regimen.
However, patients in the concurrent regimen received a substantially higher
dose of rituximab (11 doses) than those in the sequential arm (4 doses). This
imbalance in the treatment between the two arms confounds the analysis as
to whether concurrent or sequential therapy is preferred.

Although fludarabine is the most extensively tested purine analog in
CLL, both cladribine and pentostatin have also been studied in combination
therapy. A prospective randomized trial of cladribine and prednisone com-
pared with chlorambucil and prednisone in previously untreated patients
with CLL was performed at nine centers in Poland between 1995 and 1998
(Robak et al., 2000). The cladribine group achieved both a superior frequen-
cy of response (87% vs. 57%) and a complete response (47% vs. 12%)
compared with the chlorambucil group. This was offset by increased toxicity
in the cladribine arm, and ultimately survival was comparable for the two
groups (78% vs. 82% at 2 years). Cladribine has also been combined with
cyclophosphamide in a study of 29 patients with refractory or recurrent
CLL/PLL (Montillo et al., 2003). This combination had activity but signifi-
cant toxicity, and the authors concluded that this regimen was inferior to
fludarabine-containing combinations.
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Given our prior experience that fludarabine combinations are limited by
severe combined myelosuppression and immunosuppression, we have cho-
sen to study combination therapy with pentostatin, the least myelosuppres-
sive of these purine analogs. We hypothesized that combining pentostatin
with cyclophosphamide would result in less myelosuppression than would
combinations incorporating either fludarabine or cladribine and that the
improved therapeutic index would permit us to exploit the antileukemic
effect of this synergistic combination. Initially, we studied combination
pentostatin (4 mg/m2) and cyclophosphamide (600 mg/m2) in heavily pre-
treated patients with CLL (Weiss et al., 2003b). This regimen was quite active
(74% overall response, 17% CR) and had relatively little myelosuppression.
Subsequently, we have added rituximab to this combination regimen and
again noted a highly active, well-tolerated regimen (Weiss et al., 2003a). The
three-drug PCR regimen combines pentostatin (4 mg/m2), cyclophospha-
mide (600 mg/m2), and rituximab (375 mg/m2). For Cycle 1, patients
received only pentostatin and cyclophosphamide. For Cycles 2–6, all three
drugs were administered on Day 1. Cycles were repeated every 3 weeks
for six treatments. Supportive measures included hydration with each treat-
ment (and monitoring of renal function) and prophylactic administration of
filgrastim, sulfamethoxazole/trimethoprim, acyclovir, and antiemetics.

Another purine analog that might show some promise in the treatment
of indolent as well as other leukemias is nelarabine, an Ara-G prodrug. Ara-
G (9-�-d-arabinosylguanine) was synthesized in 1964 (Reist and Goodman,
1964); however, its low solubility and difficulty in synthesis did not allow for
further clinical development until much later. Nelarabine is a water-soluble
prodrug of Ara-G (2-amino-6-methoxypurine arabinoside) synthesized en-
zymatically from diaminopurine arabinoside. Demethoxylation of nelara-
bine by adenosine deaminase converts it to biologically active Ara-G.
(Krenitsky et al., 1981; Lambe et al., 1995). Cohen et al. (1983) reported
that the nucleobase arabinosyl guanine was resistant to cleavage by purine
nucleoside phosphorylase and was toxic to T lymphocytes. Further data
indicate that accumulation of arabinosyl GTP in leukemic blasts has been
associated with cytotoxic activity against malignant cells (Kurtzberg et al.,
1999). Phase I studies by Kurtzberg et al. (1999) in both pediatric and adult
patients with refractory hematological malignancies confirmed the high rate
of response in patients with T-cell malignancies. In this study, 54% of
patients with T-cell acute lymphoblastic leukemia (ALL) achieved a com-
plete or partial response after one or two courses. The maximum tolerated
dose was defined at 60 mg/kg/day for 5 days in children and 40 mg/kg/day
for 5 days in adults. Relatively little myelosuppression was observed with
nelarabine, and this prompted combination with other active nucleoside
analogs such as fludarabine. Gandhi et al. (2001) reported a combination
study with nelarabine and fludarabine in 13 patients (7 with CLL, 2 with
PLL, 2 with T-ALL, 1 with chronic myeloid leukemia (CML), 1 with mycosis
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fungoides). Nelarabine (1.2 g/m2) was infused on Days 1, 3, and 5, and
fludarabine (30 mg/m2) was given on Days 3 and 5 prior to nelarabine
infusion. Seven patients had a partial or complete response, six of whom
had indolent leukemias. Four of the responders had failed prior fludarabine
therapy. One of the two patients with T-ALL had a complete response. There
was modest grade 3 and 4 hematologic toxicity in 31% and 13%, res-
pectively. Grade 3 and 4 nonhematologic toxicity consisted of muscle weak-
ness in two patients. These findings suggest that nelarabine has activity in
indolent and T-cell leukemias and warrants further investigation.

V. Purine Analogs in Hairy Cell Leukemia _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

One of the great ironies of medical oncology is that the biggest advances
are made in the most uncommon diseases. Hairy cell leukemia is the para-
digm, and three drugs (interferon, pentostatin, and cladribine) have received
their initial Food and Drug Administration (FDA) approval for this rare
disease. The introduction of interferon-� in 1984 altered the management of
hairy cell leukemia with a high overall response rate, though few patients
achieved a complete response. The purine analogs (pentostatin and cladri-
bine, but not fludarabine), however, are much more active, with complete
responses noted in the majority of patients. In a Phase III intergroup study
sponsored by the National Cancer Institute (NCI), pentostatin produced
significantly more complete responses than did interferon-� (76% vs.
11%) (Grever et al., 1995). Long-term follow-up of this study reveals that
remarkably only 2 patients (1%) of the 241 who received pentostatin died
because of hairy cell leukemia (Flinn et al., 2000).

Cladribine was next introduced to treat hairy cell leukemia, and, most
remarkably, often produces complete responses after only a single cycle (Piro
et al., 1990). In addition, relapse rates with cladribine also appear to be
infrequent and in the same range as those for pentostatin (Hoffman et al.,
1997; Seymour et al., 1994; Tallman et al., 1996). In one long-term follow-
up study of 358 patients treated with a single course of cladribine, 26% of
the 349 evaluated patients had relapsed at a median of 29 months. Although
a randomized comparison between cladribine and pentostatin has never
been performed, most clinicians favor cladribine because of the need for
only a single course of therapy for most patients (Saven et al., 1998).

VI. Purine Analogs in Acute Myeloid Leukemia _________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Purine analogs not only demonstrate significant activity in lymphoid
malignancies, but, as shown by several investigators, are active in myeloid
malignancies as well. In fact, fludarabine was initially evaluated in acute
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leukemia; however, the high doses required for activity in those patients led
to severe unacceptable neurotoxicity, including cortical blindness and death.
(Spriggs et al., 1986; Warrell and Berman, 1986). Currently, fludarabine is
used in the treatment of acute myeloid leukemia (AML) to potentiate the
metabolism of cytarabine. To act as a cytotoxic agent, cytarabine must be
phosphorylated to its 50-triphosphate form (Ara-CTP). Furthermore, it is the
cellular accumulation and retention of Ara-CTP that is associated with cyto-
toxicity (Kornblau et al., 1996). Work performed by Gandhi et al. (1993)
has demonstrated that infusion of fludarabine prior to intermittent infusion
of intermediate-dose cytarabine increases Ara-CTP accumulation in circu-
lating blasts from patients with AML. It has also been shown that the
inhibition of ribonucleotide reductase and subsequent lowering of endoge-
nous deoxynucleosides are major factors for this interaction (Kufe et al.,
1984). This combination has been investigated mainly in refractory or
relapsed adult AML. At the M. D. Anderson Cancer Center, 30 mg/m2

fludarabine once daily for five doses, and Ara-C 0.5 g/m2/h for 2–6 h daily
for six doses was examined in this setting (Estey et al., 1993). Fludarabine
doses preceded those of Ara-C by 4 h. CR was achieved in 21 of 59 (36%)
patients, with a median response duration of 39 weeks. In patients with new
or relapsed AML, patients tolerated the protocol well, with myelosuppres-
sion as the principal toxicity (Kornblau et al., 1993). However, neurologic
toxicity was also observed in 8 of 219 patients, with 2 patients developing
cerebral dysfunction that was ultimately lethal. In another study, this com-
bination was examined in newly diagnosed poor-prognosis patients with
AML with CR achieved in 41% (Gandhi, 1993). As a randomized compari-
son to high-dose cytarabine has not been performed; this combination cannot
be routinely recommended for clinical use. Despite initial enthusiasm for
fludarabine and cytarabine combinations, recent (nonrandomized) compar-
isons have failed to show a benefit for fludarabine-containing combinations,
and the group at the M. D. Anderson Cancer Center no longer recommends
this regimen outside the setting of a clinical trial (Estey et al., 2001).

Cladribine has also been investigated in both pediatric and adult
patients with AML (Gordon et al., 2000; Santana et al., 1991, 1992,
1994; Van Den Neste, 1998). Unfortunately, cladribine as monotherapy
has limited activity and significant neurotoxicity (at the doses used to treat
AML) in the adult population (Bryson and Sorkin, 1993; Vahdat et al.,
1994). Similar to fludarabine, cladribine also increases Ara-CTP accumula-
tion if given as pretreatment with cytarabine (Gandhi et al., 1996). Based on
these observations, Kornblau et al. (1996) studied sequential therapy in
relapsed patients with AML or MDS with cladribine at a dose of 12 mg/
m2/day and cytarabine at a dose of 1 g/m2 over 2 h/day for 5 consecutive
days. Such combinations (with or without other agents) have failed to offer
an obvious advantage over regimens lacking the purine analog. A large
randomized multicenter study in Poland comparing cladribine, cytarabine
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(Ara-C), and daunorubicin (DAC-7) with standard 3 þ 7 (DA-7) daunoru-
bicin and cytarabine in 280 newly diagnosed patients failed to demonstrate a
substantial benefit to the addition of cladribine, with CR seen in 70% of
DAC-7 treated patients and 66% of DA-7 treated patients (Holowiecki et al.,
2001, 2002). Patients receiving the cladribine combination, however, were
more likely to achieve CR with one course of induction.

One of the newer purine nucleoside analogs, clofarabine (2-chloro-
20fluoro-deoxy-9-�-d-arabinofuranoyladenine), is currently being studied
in acute leukemia. It is similar to fludarabine and cladribine in that it is
resistant to deamination by adenosine deaminase and requires intracellular
phosphorylation by deoxycytidine kinase to the cytotoxic triphosphate
form. However, clofarabine has favorable properties of both congeners by
affecting DNA elongation (like fludarabine) and ribonucleotide reductase
(like cladribine) (Parker et al., 2001; Plunkett and Gandhi, 2001; Xie and
Plunkett, 1996). In a Phase I study of clofarabine in acute leukemia, severe
reversible hepatotoxicity defined the nonmyelosuppressive dose-limiting
toxicity, suggesting a clofarabine dose of 40 mg/m2 daily for 5 days
(Kantarjian et al., 2003b). Of the 32 evaluable patients, 2 complete
responses and 3 marrow CRs were observed. Based on these results, the
Phase II study proceeded at the set dose of 40 mg/m2 intravenously over 1 h
daily for 5 days repeated every 3–6 weeks (Kantarjian et al., 2003a). Sixty-
two patients with relapsed or refractory AML (n ¼ 31), MDS (n ¼ 8), CML
in blastic phase (n ¼ 11), and acute lymphocytic leukemia (n ¼ 12) were
included on the study. A complete response was noted in 20 patients (32%),
and lesser responses were achieved in 10 additional patients. Responses were
observed in all disease types studied. Severe reversible liver dysfunction was
noted in 15–24%. As expected, the main toxicity was associated with
myelosuppression with fever in 14 of 62 (23%) patients and documented
infections in 31 of 62 (50%) patients. Five patients died during induction
therapy. This study indicates that clofarabine has activity in acute leukemia
and warrants further study.

VII. Purine Analogs in Chronic Myeloid Leukemia _________________________________________________________________________________________________________________________________________________________________________________________

In vivo studies have shown that purine analogs can inhibit proliferation
and induce apoptosis of CML cells (Konwalinka et al., 1992; Zinzani et al.,
1994). Thus, several Phase II studies have examined the role of these agents
in CML. These studies indicate that purine analogs can suppress the leuko-
cyte count in patients with CML, but no study has demonstrated a selective
advantage, and cytogenetic responses have not been seen (Cortes et al.,
1997; Marks et al., 1994; Saven et al., 1994). Cladribine and fludarabine
alone or in combination regimens have also been examined in patients with
CML in blast crisis (Dann et al., 1998; Martinelli et al., 1996; Sacchi et al.,
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1999; Tedeschi et al., 2000). These studies demonstrate some cytoreduction
of leukemic cells in the blood, with responses seen in 28–47% of patients, but
such treatments rarely produce cytogenetic remissions. In the era of imatinib,
which is both extremely well tolerated and highly active, it is unlikely
that purine analogs will play an important role in the treatment of CML.
The one exception to this is their inclusion as potent immunosuppressants in
reduced intensity (mini) transplants.

VIII. Purine Analogs in Allogeneic Stem
Cell Transplantation

Nonmyeloablative conditioning regimens have been introduced for
allogeneic transplantation in recent years (Bornhauser et al., 2001; Giralt
et al., 1997, 2001; Khouri et al., 1998; Michallet et al., 2001; Saito et al.,
2002; Schlenk et al., 2002; Slavin et al., 1998; Wasch et al., 2002). These
low-intensity regimens, which are immunosuppressive but not myeloabla-
tive, can be safer for high-risk patients who are not candidates for fully
myeloablative protocols. In addition, these reduced conditioning regimens
allow allogeneic transplantation to be performed in older patients or in
patients with comorbidities or advanced diseases. Initial studies by Giralt
et al. (1997) with fludarabine (30 mg/m2/day) and either cytarabine (2 g/m2)
or idarubicin (12 mg/m2) demonstrated that purine-analog-containing non-
myeloablative chemotherapy followed by allogeneic transplant is feasible in
older or debilitated patients with advanced AML or MDS who are not
eligible for myeloablative therapy. Additional studies by this group (Giralt
et al., 2001) with a nonmyeloablative regimen consisting of melphalan and
either fludarabine or cladribine in 86 patients (43 with AML/MDS, 27 with
CML) revealed excessive toxicity with the cladribine regimen. Disease-free
survival at 1 year in patients in first remission or chronic phase was 57% and
49% in patients with untreated first relapse or in a second or later remission.
Other investigators have evaluated cladribine, but at reduced doses than
those in the study by Giralt et al. (1997). In one study by Saito et al. (2002),
16 patients (6 with AML, 2 with CML, 6 with MDS) received a regimen of
cladribine, busulfan, and antithymocyte globulin. The incidence of grade II–
IV graft-versus-host disease was 43%, and 1-year overall survival and
disease-free survival rates were 69% and 50%, respectively. Because of
the heterogenous populations studied, small cohort of patients, and short-
term follow-up in these studies, it clear that additional studies and long-term
follow-up is necessary to evaluate regimens containing purine analogs
as a component of nonmyeloablative chemotherapy prior to allogeneic
transplantation.

Several investigators have also examined the use of pentostain in non-
myeloablative stem cell transplantation conditioning regimens (Chan et al.,

Purine Analogs in Leukemia 117



2001; Liu et al., 2002; Pavletic et al., 2002). Liu et al. looked at a condition-
ing regimen of mitoxantrone (40 mg/m2 for one cycle), cytarabine (2 g/m2

for three cycles), and pentostatin (Phase I dose escalating) in 25 patients with
either relapsed or poor prognostic hematologic diseases (10 NHL, 4 HD, 6
AML, 2 MDS-RAEBt, 1 CLL, 2 multiple myeloma). Thirteen had failed
autologous transplantation. The maximum tolerated dose of pentostatin at
14 mg/m2 given over 3 days was not reached. The regimen was well toler-
ated, median time to neutrophil recovery >500/�l was 2 days, and platelet
recovery >20,000/�l was 9 days. Median donor chimerism at 3 months was
98% for the related stem cell transplantations. At a median follow-up of 9
months (0–22), the median survival was 9 months, disease-free survival was
32%, and overall survival for these patients with extremely poor prognosis
was 44%. In another study by Chan et al. (2001), 42 patients (14 AML, 7
MDS, 7 CML, 6 NHL, 3 HD, 2 MF, 1 CLL 1 MM, 1 other) were treated
with extracorporeal phototherapy, pentostatin, and total body irradiation
(TBI). The overall survival was 63% at a median follow-up of 185 days.
These results are particularly encouraging given the high-risk nature of the
population treated, which included eight match unrelated donor transplants
and seven mismatched donor transplants.

IX. Conclusion and Future Directions __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Purine analogs have clearly demonstrated their role in low-grade lym-
phoid leukemias, specifically in the treatment of CLL and hairy cell leuke-
mia, in which these agents play a dominant role. Their utility in the acute
leukemias are more limited, but new agents such as clofarabine hold promise
in treating acute leukemias as well. Purine analogs have also demonstrated a
role in nonmyeloablative allogeneic transplantation. In conclusion, as the
pharmacology of the established and the newer purine analogs is further
elucidated, refinements in dosing and schedule can improve both their
single-agent activity as well as their role in combination therapy in both
acute and chronic leukemias.
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I. Chapter Overview

Monoclonal antibodies have played an increasingly important role in
the treatment of hematological malignancies over the past several years.
Monoclonal antibodies offer the potential of targeted therapy with minimal
toxicity to normal cells, and clinical studies over the past decade have
demonstrated the feasibility, safety, and clinical efficacy of these agents
in myriad solid and hematological cancers. Monoclonal antibodies are
at present used to treat diseases as diverse as acute myeloid leukemia
(AML), diffuse large B-cell non-Hodgkin’s lymphoma (NHL), mycosis
fungoides, and chronic lymphocytic leukemia (CLL) (Byrd et al., 2001;
Coiffier et al., 2002; Huhn et al., 2001; McLaughlin in et al., 1998; Olsen
et al., 2001; Osterborg et al., 1997; Sievers et al., 2001). This chapter focuses
on monoclonal antibody therapy in lymphoid leukemias.
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II. Introduction

A. Introduction of Monoclonal Antibodies into
Clinical Practice

Several problems had to be surmounted to successfully introduce mono-
clonal antibody therapies into clinical practice. These obstacles included
(1) identification of tumor-specific antigens, (2) antigen surface density,
(3) antibody production, (4) internalization of antigen or antigen–antibody
complex, (5) host sensitization and formation of antibodies against the
monoclonal antibody, (6) infusion toxicity from host humoral response,
and (7) penetration of antibody into bulky tumors. The ideal antigen should
be expressed at relatively high density on tumor cells, but not on most
normal cells, and should not undergo shedding, internalization, or other
modification. B-cell lymphoid malignancies each express a unique immuno-
globulin (Ig) idiotype (Id), which is generated by recombination of the
genetic sequences for variable Ig light and heavy chains. Each clonal B-cell
lymphoid malignancy produces a unique Id protein; thus, Id would be the
ideal antigen for monoclonal antibody therapy. Early studies of immuno-
therapy focused on monoclonal antibodies directed against tumor-specific
idiotype (anti-Id MoAb). These studies yielded promising results, and sever-
al patients with NHL achieved long-lasting remissions (Brown et al.,
1989a,b; Maloney et al., 1992; Meeker et al., 1985b; Miller et al., 1982).
However, relapse was common and was usually due to genetic mutation of
the Id protein (Cleary et al., 1986; Levy et al., 1988; Meeker et al., 1985a).
Anti-Id MoAb therapy was tested primarily in patients with indolent B-cell
NHL, although a small number of patients with CLL responded to anti-Id
MoAb (Allebes et al., 1988, 1991; Caulfield et al., 1989).

Although patient-specific anti-Id MoAb is attractive theoretically, iden-
tification of an individual patient’s Id protein sequence and generation of an
individualized anti-Id MoAb for each patient are not practical on a large
scale with current available technology. Id vaccines might be one alternative
approach; such vaccines have shown promise in B-cell NHL and are now
entering clinical trials in CLL. Thus, the focus has turned toward develop-
ment of monoclonal antibodies targeted against tumor-specific, rather than
patient-specific, antigens. This change has allowed the development of
monoclonal antibodies with much broader therapeutic applicability than
that by the initial anti-Id MoAb approach.

B. Humanization of Monoclonal Antibodies

The clinical utility of initial monoclonal antibodies was limited by sig-
nificant infusion-related toxicity due to host recognition of xenotropic
sequences in the murine monoclonal antibodies. Patients developed human
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antimouse antibodies (HAMAs) that limited the use of these antibodies, and
patients experienced significant serum sickness (Goodman et al., 1990;
Scheinberg et al., 1990). However, recombinant DNA technology has allowed
the generation of chimeric and humanized murine monoclonal IgG antibodies.
Murine sequences are replaced with the human Fc fragment, resulting in
humanized IgG molecules whose Fab portions contain only the murine
sequences required to recognize the target tumor-specific antigen. These chi-
maeric and humanized antibodies are significantly less immunogenic and pro-
duce less infusion toxicity (Baselga et al., 1999; Maloney et al., 1997; Pegram
et al., 1998). In addition, the human Fc fragment allows chimeric antibodies to
activate patients’ host immune systems through induction of antibody-de-
pendent cellular cytotoxicity (ADCC) and complement-dependent cytotox-
icity (CDC). Thus, patients and more effective better tolerate humanized
monoclonal antibodies. Despite these technological advances, technical
problems must be addressed with each new individual monoclonal antibody.

C. Limitations of Radioimmunotherapy in
Lymphoid Leukemias

A growing field of research is the use of radioisotope-conjugated antibo-
dies to deliver targeted radiotherapy to tumor cells. Most work to data in this
field has focused on indolent and aggressive NHL, although a few groups have
examined radioimmunotherapy in lymphoid leukemias. A preliminary report
indicated that the 131I-labeled anti-CD20 antibody tositumomab (Bexxar�) is
effective in previously treated patients with advanced CLL (Gupta et al.,
2001). To date, no clinical data are available regarding the use of the 90Y-
labeled anti-CD20 antibody ibritumomab (Zevalin�) in the treatment of CLL.
Several technical limitations make it doubtful that radioisotope-conjugated
antibodies will play a significant role in the nontransplant therapy of lymphoid
leukemias. The primary limitation is the high degree to which leukemia cells
infiltrate the blood, bone marrow, and spleen. The effectiveness of radioimmu-
notherapy is predicated on the ability to deliver targeted radiation therapy to a
single or several sites of concentrated tumor cells. The radioisotope is targeted
directly to an individual cell, and each cell is also subjected to emitted
radiation from delivery of radioisotope-conjugated antibodies to neighbor-
ing cells. Marrow toxicity or myelodysplasia, because of exposure of ‘‘by-
stander’’ normal hematopoietic stem cells to radiation, will likely limit the
use of radioimmunotherapy in lymphoid leukemias. Myelosuppression was
the dose-limiting toxicity in CLL patients given tositumomab and was
related to the total body dose of radiation (Gupta et al., 2001).

D. Summary

Monoclonal antibody therapy in lymphoid leukemias, especially in
CLL, is an active area of laboratory and clinical research. Advances in
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recombinant DNA technology now allow production of monoclonal anti-
bodies against many potential tumor-specific antigens, and several antibo-
dies are in clinical use. However, the identification of new monoclonal
antibodies and the incorporation of these antibodies into clinical therapy
remain active areas of research. The development of new antibodies against
different cell surface antigens and the optimal use of current monoclonal
antibodies in combination chemotherapy regimens are primary areas of
ongoing investigation.

III. Chronic Lymphocytic Leukemia ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

A. The Disease

Indolent B-cell lymphoproliferative disorders such as CLL are ideal
targets for monoclonal antibody therapies. Although CLL responds to cyto-
toxic chemotherapy, most patients do not achieve complete remission (CR)
and treatment remains palliative. For many years therapy for CLL consisted
of oral alkylating agents, such as chlorambucil, and combination chemo-
therapeutic regimens, such as cyclophosphamide, vincristine, and predni-
sone (CVP) (Montserrat et al., 1985; Raphael et al., 1991; Sawitsky et al.,
1977). In recent years the purine analog fludarabine and fludarabine-
containing combination regimens have shown significant clinical efficacy
in relapsed and previously untreated CLL (Boogaerts et al., 2001; Flinn
et al., 2000a; Grever et al., 1990; Keating et al., 1989, 1991, 1993, 1998;
O’Brien et al., 2001a). Despite improved response rates and durations of
response, these new regimens are not curative. The failure of traditional
cytotoxic agents to cure CLL, as well as other indolent B-cell lymphoprolif-
erative disorders, might result from these diseases’ indolent nature as well as
intrinsic resistance mechanisms to chemotherapy. Only a small fraction of
CLL cells undergo growth and division at a time. Cytotoxic chemotherapy
often acts only against actively dividing cells undergoing transcription
and DNA replication and is ineffective against resting cells. Fludarabine,
which acts against both dividing and nondividing cells, is an exception to
this rule.

The inherent resistance of CLL and other indolent B-cell lymphoproli-
ferative disorders to chemotherapy is due to defective apoptosis. Unlike
acute leukemias or aggressive lymphomas, which are characterized by un-
controlled growth, CLL arises from cellular defects in programmed cell
death. Antiapoptotic proteins such as Bcl-2, Mcl-1, and X-linked inactivator
of apoptosis (XIAP) are overexpressed in CLL, and high levels of Mcl-1
might be associated with failure to achieve CR to fludarabine (Kitada et al.,
1998). ADCC and CDC are observed after antibody therapy (Golay et al.,
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2000; Treon et al., 2001), but monoclonal antibodies might exert their
anticancer effects in CLL primarily by inducing apoptosis (Byrd et al.,
2002; Pedersen et al., 2002). Although multiple mechanisms of action
might play a role, monoclonal antibodies act directly against the cellular
defects in apoptosis that give rise to CLL.

B. Rituximab

1. Preclinical Studies

Rituximab (Rituxan�, IDEC-C2B8), a chimeric murine monoclonal
antibody that recognizes the CD20 antigen on the surface of normal and
malignant B cells, is the best studied and most widely used monoclonal
antibody in lymphoid malignancies. CD20 is a calcium channel that inter-
acts with the B-cell immunoglobulin receptor complex (Bubien et al., 1993;
Leveille et al., 1999). CD20 is an excellent target; it is expressed in 90–100%
of CLL and B-cell NHL, and the antigen is not internalized or shed. Howev-
er, significant levels of soluble CD20 have been detected in sera of patients
with CLL and B-cell NHL, and increased levels of soluble CD20 correlated
with poorer survival (Keating et al., 2002; Vose et al., 2001a). Circulating
CD20 levels correlated with beta-2-microglobulin levels and advanced stage
disease. Circulating CD20 levels correlated with poor survival, and the
prognostic value was independent of Rai stage (Manshouri et al., 2003).

Rituximab exerts its anticancer effects on CLL cells by several mecha-
nisms. Rituximab induces both ADCC and CDC, and the antibody activates
caspase 3 and induces apoptosis (Byrd et al., 2002; Golay et al., 2000;
Pederson et al., 2002; Treon et al., 2001). Rituximab also induces calcium
influx, contributing to apoptosis. Rituximab induces apoptosis in vitro
within 4 h; this induction is independent of complement but requires cross-
linking with anti-Fc� antibody. The ratio of the antiapoptotic protein Mcl-1
to the proapoptotic protein Bax was significantly elevated in CLL patients
who did not respond to rituximab compared with that in responders
(Bannerji et al., 2003). Complement activation might be important, as in-
creased expression of complement inhibitors CD55 and CD59 resulted in
resistance to rituximab in NHL cell lines and CLL cells (Golay et al., 2001;
Treon et al., 2001). Blocking CD55 and CD59 resulted in a fivefold to
sixfold increase in rituximab-induced cell lysis of poorly responding CLL
samples, although CD55 and CD59 levels did not predict complement
susceptibility (Golay et al., 2001). However, baseline expression of CD55
and CD59 were not associated with clinical response to rituximab in 21 trea-
ted patients (Bannerji et al., 2003). Thus, rituximab might exert its antican-
cer effects through more than one mechanism of action, but induction of
apoptosis appears to be critical.

Monoclonal Antibody Therapy in Lymphoid Leukemias 131



2. Clinical Studies: Single-Agent Weekly Rituximab

Phase I clinical studies in indolent B-cell NHL established a dose of
375 mg/m2 given by intravenous (IV) infusion weekly for four doses,
although the length of treatment was empirically established. In the pivotal
Phase II trial in 166 patients with relapsed or refractory indolent B-cell NHL
or CLL, an overall response rate (ORR) of 48% was seen (CR 6%), with a
median response duration of 12 months (McLaughlin et al., 1998). Sub-
sequent analysis of this study showed that patients with indolent follicle
center B-cell NHL had an ORR of 60%, whereas only 4 of 30 patients with
SLL/CLL (13%) responded. A British study of 48 patients employing the
same dosing schedule achieved only one PR in 10 patients (10%) with
relapsed or refractory SLL/CLL, although the ORR was only 27% in
patients with follicular lymphoma (Nguyen et al., 1999). A similar study
observed only one PR in nine evaluable patients (11%) with fludarabine-
refractory CLL, although seven patients had stable disease (Winkler et al.,
1999). A study of seven patients with refractory or relapsed CLL observed a
striking, but transient, reduction (median 93%) in peripheral lymphocyte
count, but nodal disease was not affected (Ladetto et al., 2000). The German
CLL Study Group administered weekly rituximab to 28 patients with previ-
ously treated CLL; seven patients (25%) achieved PR with a median dura-
tion of 20 weeks. Forty-five percent of patients experienced at least 50%
reduction of peripheral lymphocyte count lasting 4 weeks or longer (Huhn
et al., 2001). Finally, a Nordic multicenter study observed an ORR of 35%
in 24 heavily pretreated CLL patients, with a median duration of response of
only 12.5 weeks. Interestingly, 17 of 20 (85%) patients with adenopathy
experienced >50% reduction in nodal disease, whereas only 2 of 18 (11%)
patients (Itala et al., 2002) had reduction of marrow infiltration.

Thus, weekly administration of rituximab has limited activity in CLL.
Rituximab effectively reduces peripheral blood lymphocytosis, but is less
effective at reducing bone marrow or nodal disease. The preferential re-
sponse of peripheral lymphocyte count might be due to increased CD20
expression on circulating CLL cells compared with that in bone marrow
cells. In quantitative flow cytometric studies, circulating CLL cells bound an
average of 9050 anti-CD20 molecules, compared with only 4070 molecules
for bone marrow CLL cells and 3950 molecules for lymph node CLL cells
(Huh et al., 2001). This increased binding to circulating peripheral blood
CLL cells might explain the ability of rituximab to preferentially reduce
peripheral lymphocyte count. Stromal cells in bone marrow and lymph
nodes might also provide an additional survival advantage to CLL cells in
these environments over circulating CLL cells.

3. Upfront Therapy with Rituximab

Data suggest that weekly rituximab might be more effective in previously
untreated SLL/CLL. Forty-four previously untreated patients with SLL/CLL
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received four weekly doses of rituximab 375 mg/m2; the ORR after the first
course of rituximab was 51% (CR 4%). Twenty-eight patients with stable or
responsive disease received additional maintenance therapy with 4-week
courses of rituximab every 6 months for up to four cycles. Maintenance
therapy increased the ORR to 58% (CR 9%). However, the median pro-
gression-free survival (PFS) of 19 months was shorter than the 36–40 medi-
an PFS obtained by the same group, using an identical regimen in previously
untreated patients with follicle center NHL (Hainsworth et al., 2003).
A study of eight weekly doses of rituximab 375 mg/m2 in 31 untreated,
early-stage CLL patients (21 evaluable) with beta-2 microglobulin levels �
2.0 mg/dl showed an ORR of 90% (CR 19%, nodular PR 19%) (Thomas
et al., 2001). Even in this group of previously untreated patients with limited
disease, the majority of patients achieved PR only, with few patients attain-
ing CR. In addition, initial results indicate that median PFS in response to
upfront rituximab is inferior to that observed in response to frontline fludar-
abine therapy. Thus, rituximab as a single agent is unlikely to significantly
alter long-term survival in CLL. The results of clinical trials using weekly
dosing of rituximab in CLL are summarized in Table I.

4. Limitations of Weekly Rituximab in CLL

Several theories may explain the inferior efficacy of weekly rituximab in
CLL compared to its activity in indolent follicle center NHL. First, CLL/SLL
cells express lower CD20 density than follicle center NHL cells, decreasing
the number of target antigen sites and the amount of antibody delivered to
individual tumor cells. In an analysis of 70 patients with chronic B-cell
leukemias and 17 normal donors, normal B lymphocytes expressed 94,000
CD20 molecules per cell. Other chronic B-cell leukemias such as mantle cell
lymphoma and hairy cell leukemia expressed between 123,000 and 312,000
CD20 molecules per cell, but CLL cells expressed only 65,000 CD20 mole-
cules per cell (Ginaldi et al., 1998). However, an analysis of 10 patients with

TABLE 1 Selected Phase II trials of weekly Rituximab in CLL/SLL

Reference
(Authors/year) Doses Prior therapy

Evaluable
patients

Response rate
(ORR)

McLaughlin et al., 1998 4 Yes 30 13%

Nguyen et al., 1999 4 Yes 10 10%

Winkler et al., 1999 4 Yes 9 11%

Ladetto et al., 2000 4 Yes 7 0%
Huhn et al., 2001 4 Yes 28 25%

Hainsworth et al., 2003 4 No 44 51%

Thomas et al., 2001 8 No 21 90%
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CLL did not identify a correlation between CD20 expression and clinical
response to rituximab (Perz et al., 2002).

A more plausible explanation is that the large intravascular burden of
circulating CLL cells might alter the pharmacokinetics of rituximab and
result in accelerated clearance of antibody from plasma. Lower trough
concentrations of rituximab were observed in CLL patients who did not
respond to therapy, and the importance of serum rituximab levels was
previously documented in follicle center NHL (Berinstein et al., 1998; J. C.
Byrd, personal communication, 2001). Detectable plasma levels of rituxi-
mab are seen for more than 6 months after therapy in follicle center NHL,
but serum concentrations of rituximab decrease more rapidly after treat-
ment in CLL. In addition, the presence of soluble CD20 in the serum of CLL
patients suggests that free CD20, derived from cell membrane fragments or
shed antigen, might contribute to rapid clearance of rituximab. However, a
relationship between soluble CD20 levels and response to rituximab has
not been demonstrated (Keating et al., 2002d). Finally, intrinsic mechanisms
of resistance, such as overexpression of the antiapoptotic proteins Bcl-2,
Mcl-1, and XIAP or p53 mutations or deletions, might contribute to the
common resistance of CLL to rituximab and cytotoxic therapy. As previously
discussed, the ratio of Mcl-1 to Bax was significantly elevated in nonre-
sponding compared with responding CLL patients treated with rituximab
(Bannerji et al., 2003).

5. Dose Escalation: Improved Clinical Response

Investigators have taken two different strategies to overcome these
pharmacokinetic and pharmacodynamic obstacles. In a single-institution
study, 50 patients with previously treated CLL (n ¼ 40) or other B-cell leu-
kemias (n ¼ 10) received weekly rituximab dose escalated to 2250 mg/m2

(Keating and O’Brien, 2000; O’Brien et al., 2001b). Although no CLL
patient achieved CR, the ORR was 40% and a statistically significant
dose–response relationship was observed; 22% of patients treated with
500–850 mg/m2 responded, compared with 75% of patients treated with
2250 mg/m2. The ORR was 36% for CLL and 60% for other B-cell leuke-
mias; median response duration was 8 months. Eight of 12 patients (67%) at
2250 mg/m2 developed grade 2 toxicity, primarily fatigue, but no grade 3 or
4 toxicity was observed.

In an alternative approach, 33 patients with relapsed or refractory SLL/
CLL received thrice-weekly rituximab for 4 weeks (Byrd et al., 2001).
Patients received 100 mg over 4 h on the first day of therapy and 375 mg/
m2 thereafter. This stepped-up dosing schedule was designed to minimize
infusion-related toxicity. The ORR was 45% (CR 3%), and median re-
sponse duration was 10 months. Thirteen patients developed transient infu-
sion-related toxicity that appeared to be related to cytokine release (TNF-�,
IFN-�, IL-8, and IL-6) and resolved by the third infusion. Thus, both dose
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escalation and thrice-weekly dosing improved the response rate in SLL/CLL
and established a role for rituximab in the treatment of relapsed CLL.
Although both approaches produced few complete responses, it is important
to remember that no therapeutic agent achieves a significant CR rate in
relapsed or refractory CLL.

6. Toxicity

Infusion-related side effects constitute the most common toxicity of ri-
tuximab; however, these toxicities are generally manageable, particularly
with use of a stepped-up dosing schedule. Patients can develop transient
hypoxemia, dyspnea, and hypotension, which are partly due to inflammato-
ry cytokine release. Although initial studies suggested that patients with
lymphocyte counts higher than 50,000/�l might be at greater risk of this
cytokine release syndrome, subsequent larger studies failed to support this
finding. Tumor necrosis factor-alpha (TNF-�) and interleukin-6 (IL-6) peak
90 min after start of infusion, and their rise is accompanied by fever, chills,
hypotension, and nausea (Winkler et al., 1999). These side effects are most
severe with the first rituximab infusion and resolve by the third infusion in
the thrice-weekly dosing schedule (Byrd et al., 2001). An uncommon but
potentially severe toxicity is tumor lysis syndrome, which is generally ob-
served in patients with high numbers of circulating CLL cells (Byrd et al.,
1999; Jensen et al., 1998). Patients at risk should receive prophylactic
allopurinol, hydration, and careful observation, and it might be necessary
to administer the first dose of rituximab in an in-patient setting. However,
patients who develop tumor lysis syndrome to the first dose of rituximab can
safely receive subsequent doses, especially after the number of circulating
CLL cells is reduced (Byrd et al., 1999). Other toxicities are minimal and
should not affect administration of this antibody. Rare toxicities that can
be serious include skin toxicity, pure red cell aplasia, and hepatitis
B reactivation.

7. Combination Therapy

There is great interest in combining monoclonal antibody therapy with
cytotoxic chemotherapy in the treatment of lymphoid malignancies, and
several studies have specifically examined rituximab. The low CR rates to
single-agent rituximab indicate that combination with traditional cytotoxic
drugs or other monoclonal antibodies might be necessary for rituximab to
significantly impact long-term survival in CLL. Several clinical trials exam-
ined the use of rituximab in combination regimens against B-cell lymphoid
malignancies, including CLL (Coiffier et al., 2002; Czuczman et al., 1999;
Keating et al., 2000b; McLaughlin et al., 2000; Vose et al., 2001b). The
results of these studies are summarized in Table II. Rituximab was success-
fully combined with fludarabine in both NHL and CLL (Byrd et al., 2003;
Czuczman et al., 2000). Concurrent administration of these two agents to
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104 previously untreated CLL patients in a randomized Phase II CALGB trial
yielded a higher CR rate (47%) than did sequential administration (28%)
(Byrd et al., 2003). Patients received standard fludarabine 25 mg/m2 Days
1–5 every 4 weeks for six cycles. Patients were randomized to receive
concurrent rituximab 375 mg/m2 on Day 1 of each cycle, with an additional
Day 4 dose during Cycle 1, or sequential rituximab 375 mg/m2 weekly for 4
doses beginning 2 months after completion of fludarabine. The median
duration of response was not reached at 23 months.

A multicenter European Phase II study of concurrent fludarabine and
rituximab in 31 evaluable patients with CLL achieved an ORR of 87% (CR
32%), with a median duration of response of 75 weeks. Patients received
fludarabine 25 mg/m2 Days 1–5 every 4 weeks for four cycles, and ritux-
imab 375 mg/m2 every 4 weeks for four doses, beginning Day 1 of Cycle 3 of
fludarabine. ORR and CR were similar in previously treated (ORR 91%,
CR 45%) and untreated patients (ORR 85%, CR 25%). Sixteen patients
developed 32 infections, and one patient died of cerebral hemorrhage due to
prolonged thrombocytopenia (Schulz et al., 2002). The highest CR rate was
achieved by a single-institution study, using a combination regimen of
fludarabine, cyclophosphamide, and rituximab (FCR). A total of 102 evalu-
able patients received fludarabine 25 mg/m2 and cyclophosphamide
250 mg/m2 on Days 2–4 of Cycle 1 and on Days 1–3 of Cycles 2–6, in
addition to rituximab 375 mg/m2 on Day 1 of Cycle 1 and 500 mg/m2 on
Day 1 of Cycles 2–6. The ORR was 73% (CR 23%), and 5 of 13 patients in
CR achieved molecular remission (Garcia-Manero et al., 2001). The same
authors administered FCR to 135 previously untreated CLL patients with
symptomatic disease requiring initiation of therapy by NCI criteria, achiev-
ing a CR rate of 67% (Keating et al., 2002). Molecular remissions were
observed in 35 of 61 (57%) tested patients who achieved CR; 11 of these 35
patients developed molecular evidence of relapse, usually within 6 months of
completing treatment. The major toxicities of this regimen were grade 4
neutropenia and infection, which occurred in 20% and 17%, respectively, of
treatment cycles (Wierda et al., 2001).

TABLE II Selected trials of Fludarabine combination regimens in previously untreated

CLL

Reference
(Authors/year) Regimen

Evaluable
patients

Response
ORR (CR)

Median
PFS (mo)

Flinn et al., 2000a FC 17 100% (47%) N/A

O’Brien et al., 2001a FC 34 88% (35%) N/A
Byrd et al., 2003 FR 51 90% (47%) N/A

Keating et al., 2002 FCR 135 95% (67%) N/A

Abbreviations: Fludarabine (F), Cyclophosphamide (C), Rituximab (R).
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Finally, an aggressive upfront regimen incorporating fludarabine and
rituximab has been given to previously untreated patients with CLL, as
cytoreductive therapy prior to autologous stem cell transplantation.
Thirteen patients, with a median age of 47 years, received fludarabine
25 mg/m2 Days 1–3, cyclophosphamide 200 mg/m2 Days 1–3, and mitox-
antrone 10 mg/m2 Day 1 every 4 weeks for four to six cycles, followed by
rituximab 375 mg/m2 weekly for four doses. All patients responded (ORR
100%, CR 77%), and four patients (31%) achieved a molecular remission
(Polliack et al., 2001). The ability of this regimen to induce complete
hematologic and molecular remissions is promising, although patients
have not been followed long enough to determine whether these initial
remissions will be durable.

8. Radioisotope Conjugates of Anti-CD20

Anti-CD20 monoclonal antibody has been conjugated to the radioiso-
topes yttrium-90 (90Y-ibritumomab, Zevalin) and iodine-131 (131I-tositu-
momab, Bexxar). Several published clinical trials have demonstrated the
efficacy of Zevalin and Bexxar in indolent B-cell NHL, particularly follicle
center grades I and II NHL (Kaminski et al., 1993, 1996, 2001; Press et al.,
1993; Vose et al., 2000b; Wiseman et al., 1999; Witzig et al., 1999). The
results of these trials have been extensively reviewed and are not discussed
here. There has been reluctance to use Zevalin and Bexxar in patients with
SLL/CLL, because of the concern about myelotoxicity resulting from by-
stander radiation to normal hematopoietic cells in patients with significant
marrow disease. However, results of a Phase I dose escalation study indi-
cated that Bexxar is effective in previously treated patients with advanced
CLL. Eleven patients with heavily pretreated CLL received a total body dose
of 35–55 cGy; three patients (27%) achieved PR and six patients (55%) had
stable disease (Gupta et al., 2001). As expected, myelosuppression was the
dose-limiting toxicity and was related to the total radiation dose. Thus,
though CLL cells are sensitive to radiation, myelotoxicity limits the clinical
use of Zevalin and Bexxar in patients with significant marrow involvement.
However, radioisotope conjugates might be more effective than rituximab in
SLL/CLL patients with bulky nodal disease, because of delivery of radiation
to surrounding tumor cells. Future studies of Zevalin and Bexxar in SLL/
CLL should focus on patients with primarily bulky lymphadenopathy and
limited marrow involvement. In addition, sequential combination regimens
with agents such as Campath-1H, which effectively reduces blood and
marrow disease but has limited activity against nodal disease, should be
investigated.

9. Summary

Rituximab, the best characterized and most widely used monoclonal
antibody in hematological malignancies, is active in CLL, although dose
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intensification is necessary to obtain maximal clinical benefit. However,
single-agent rituximab produces few complete responses and does not, by
itself, substantially improve long-term survival in CLL. The combination of
rituximab with fludarabine has yielded improved CR rates, and further
studies of such combination regimens are needed to determine whether
these higher CR rates result in improved long-term survival. Although
most studies have combined rituximab with traditional cytotoxic agents,
several trials are now examining the use of rituximab with other monoclonal
antibodies such as Campath-1H. Thus, the optimal role of rituximab in
treatment of CLL remains to be established.

C. Campath-1H

1. Preclinical Studies

Campath-1H� (alemtuzumab) is a humanized anti-CD52 monoclonal
antibody that effectively fixes complement and depletes normal lymphocytes
and lymphoma cells (Flynn and Byrd, 2000; Hale et al., 1983, 1988). CD52
is a 21- to 28-kDa glycopeptide expressed on the surface of nearly all human
lymphocytes, monocytes, and macrophages (Domagala and Kurpisz, 2001;
Rowan et al., 1998; Treumann et al., 1995). CD52 is expressed on a small
subset of granulocytes, but CD52 is not expressed on erythrocytes, platelets,
or bone marrow stem cells. CD52 is expressed on all CLL cells and indolent
B-cell NHL cells (Hale et al., 1985; Salisbury et al., 1994). Its physiological
function remains unknown, but cross-linking of CD52 on B-cell and T-cell
lymphoma cell lines resulted in growth inhibition (Rowan et al., 1998).
Despite its small size, antibody binding of the CD52 antigen results in
profound complement activation and ADCC. In addition, CD52 is not
shed, internalized, or modulated. Thus, CD52 is an ideal antigen for tar-
geted immunotherapy. However, the ubiquitous expression of CD52 on
normal lymphocytes and monocytes has resulted in increased hematological
and immune toxicity with Campath-1H, manifested by neutropenia, pro-
longed lymphopenia, and infectious complications.

Campath-1H acts in vivo by inducing programmed cell death. In vivo
blood samples showed 19–92% reduction in expression of the antiapoptotic
protein Bcl-2 in 6 of 8 patients undergoing Campath-1H therapy (J. C. Byrd,
personal communication, 2001). In addition, expression of the antiapop-
totic proteins Mcl-1 and XIAP was downregulated by treatment with Cam-
path-1H. Campath-1H induced activation of caspase 3 and cleavage of the
DNA repair enzyme poly(ADP-ribose) polymerase (PARP), indicating that
apoptosis is an important mechanism of action of this antibody (J. C. Byrd,
personal communication, 2001).
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2. Clinical Trials

Phase I studies established a dose of 30 mg IV thrice weekly for 4–12
weeks. Campath-1H induced significantly more infusion toxicity than did
rituximab, and a stepped-up dosing schedule was necessary to diminish
initial infusion toxicity and make the antibody tolerable. An initial dose of
3 mg was given on Day 1, 10 mg on Day 2, and 30 mg on Day 3; once the
full dose of 30 mg was achieved, patients were given 30 mg thrice weekly.
Several clinical studies established the efficacy of Campath-1H in CLL
(Bowen et al., 1997; Keating et al., 2000a, 2002; Osterborg et al., 1996,
1997). The results of these studies are summarized in Table III. A multicenter
European Phase II study administered Campath-1H 30 mg thrice weekly
for up to 12 weeks to 29 recurrent and refractory CLL patients. The ORR
was 42%, but only one patient (4%) achieved CR (Osterborg et al., 1997).
The antibody cleared CLL cells from the peripheral blood in 97% of
patients, but was substantially less effective at eliminating marrow (36%)
or nodal disease (7%).

The pivotal trial administered the same Campath-1H regimen to 93
heavily pretreated, fludarabine-refractory CLL patients; an intent-to-treat
ORR of 33% was observed, although only 2% of patients achieved CR
(Keating et al., 2002c). Median time to progression for responders was 9.5
months, with a median overall survival of 16 months for all patients and 32
months for responders. The median peripheral blood CLL count decreased
by more than 99.9%, but the antibody was less effective against nodal
disease. Although 74% of all patients with nodal disease responded, with
27% experiencing resolution of their adenopathy, patients with bulky lymph
nodes did significantly poorer. Whereas 90% of patients with lymph nodes
measuring �2 cm responded, with 64% achieving resolution of their
adenopathy, only 59% of patients with lymph nodes >5 cm responded,
with no patients enjoying resolution of their adenopathy. All patients were
placed on prophylactic antibacterial and antiviral agents, and toxicity was

TABLE III Selected phase II trials of thrice weekly Campath-1H in CLL

Reference
(Authors/year) Weeks Route

Prior
therapy

Evaluable
patients

ORR
(CR)

Osterborg et al., 1997 12 IV Yes 29 42% (4%)

Ferrajoli et al., 2003 4 IV Yes 78 35% (12%)

Rai et al., 2001 12 IV Yes 136 40% (7%)

Keating et al., 2002c 12 IV Yes 92 33% (2%)
Lundin et al., 2002 18 SC No 38 87%

Abbreviations: Intravenous (IV), Subcutaneous (SC).
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manageable, in contrast to previous trials of Campath-1H. However,
patients with poor performance status did markedly worse than patients
with no or minimal symptoms from their disease. As a result of this pivotal
CAM211 study, Campath-1H was recently approved for the treatment of
fludarabine-refractory CLL in the United States.

The activity of Campath-1H in CLL was confirmed by a multi-
institutional study in 136 patients with fludarabine-refractory B-CLL who
received Campath-1H 30 mg thrice weekly for up to 12 weeks on a compas-
sionate basis (Rai et al., 2001). The ORR was 40% (CR 7%), and the
median progression-free and overall survivals of responders were 7.3 and
13.4 months, respectively. Similarly, 41 patients with relapsed B-CLL and
one patient with T-CLL were treated with Campath-1H 30 mg IVB thrice
weekly for 4 weeks in a single-institution study (Ferrajoli et al., 2001). Two
patients with B-CLL achieved CR (5%), and nine patients achieved PR
(21%) for an ORR of 26%. Interestingly, 7 of 12 patients with B-cell or T-
cell prolymphocytic leukemia (B- or T-PLL) responded (3 CR, 4 PR, ORR
58%). Although Campath-1H was more effective at eliminating disease in
peripheral blood (CR 36%, PR 36%) and bone marrow (CR 41%, PR 28%)
than in lymph nodes (CR 23%, PR 13%), a greater response in nodal disease
was seen in this study than in previous trials that used Campath-1H. A recent
update of this study showed an ORR of 35% (CR 12%) in 78 patients with
indolent lymphoproliferative disorders (42 CLL), with a median duration of
response of 18 months (Ferrajoli et al., 2003). Although Campath-1H is
effective therapy in previously treated patients with CLL, the antibody is less
effective against bulky lymphadenopathy than it is against peripheral blood
or bone marrow disease.

3. Upfront Therapy in Previously Untreated Patients

A Phase II clinical trial administered subcutaneous (SC) Campath-1H to
41 previously untreated patients with CLL. Patients received a prolonged
course of Campath-1H 30 mg SC three times per week for up to 18 weeks.
Except for transient grade I or II fever, first-dose reactions were minimal.
The ORR was 87% in the 38 patients who received at least 2 weeks of
treatment, and the intent-to-treat ORR was 81% (Lundin, 2002). Campath-
1H was most effective at clearing disease from peripheral blood (CR 95%),
but bone marrow (CR þ nodular PR 66%) and nodal disease (ORR 87%,
CR 29%) also responded to therapy. Interestingly, some patients who
achieved CR in the bone marrow required the full 18 weeks of therapy to
do so, suggesting that prolonged administration of Campath-1H might be
necessary to clear CLL from the bone marrow. Median time to treatment
failure had not been reached at time of study report (18þ months). These
results confirmed that subcutaneous administration of Campath-1H is fea-
sible, as had been initially shown in trials in rheumatoid arthritis, and
indicate that longer courses of Campath-1H might produce ORR and CR
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rates similar to those observed with fludarabine. However, subcutaneous
administration of Campath-1H is currently not FDA-approved for CLL.

4. Immunosuppression and Infectious Complications

Infections constitute the major complication of Campath-1H therapy
(Flynn and Byrd, 2000; Khorana et al., 2001; Tang et al., 1996). All 50
previously treated indolent NHL patients in a multicenter European study
developed profound lymphopenia. Opportunistic infections and bacterial
septicemia occurred in 14% and 18% of patients, respectively, and 6% of
patients died of infectious complications (Lundin et al., 1998). Infections
occurred in 55% of patients (27% grade 3 or 4) in the CAM211 study, and
13% developed septicemia (Keating et al., 2002c). Campath-1H also inhi-
bits B-cells, CD8þ T-cells, natural killer (NK) cells, and monocytes, but the
antibody’s most profound effects are on CD4 þ T-lymphocytes (Bretl et al.,
1996; Condiotli and Nagler, 1996; Fabian et al., 1993). Treatment with 5–
10 daily IV infusions of Campath-1H almost completely depleted lympho-
cytes, and lymphocyte subsets recovered with varying kinetics. NK cells and
monocytes recovered to normal levels within 1–2 months, whereas B-cell
numbers returned to normal within 5 months. However, CD8þ T-cells
returned to 50% of pretreatment levels by 2 months but did not increase
further, and CD4þ T-cells never reached 20% of pretreatment levels despite
a 18-month follow-up (Brett et al., 1996). In a Swedish study of 41 CLL
patients given SC Campath-1H for up to 18 weeks, NK and NK-T cells
remained severely suppressed more than 12 months afterwards; however, no
late infectious complications were observed (Rezvany et al., 2002).

Paroxysmal nocturnal hemoglobinuria (PNH)-like T-cells emerge dur-
ing or immediately after Campath-1H treatment in many patients. These
PNH-like cells cannot synthesize glycosylphosphatidylinositol (GPI) anchor
glycans and therefore lack GPI-linked surface proteins, including CD52. As
a result, these cells are resistant to CD52-mediated killing. Preliminary
studies by one group demonstrated that, despite lacking GPI-linked proteins,
these PNH-like T-cells are functional immune effector cells (Kennedy et al.,
2000). This finding might explain why the great majority of severe opportu-
nistic infections that occur with Campath-1H are observed during active
Campath-1H therapy rather than after treatment. Such escape has not been
observed with normal B-cells or malignant CLL cells.

Lymphocyte recovery might depend on the dosing schedule, as the
absolute CD4þ T-cell count reached a nadir of 2/�l by Week 4 but increased
to 84/�l by Week 12 in the CAM211 trial (Keating et al., 2002c). In 42
refractory CLL patients (median CD3þ T-cell count 1900/�l) treated with
Campath-1H, extreme lymphopenia of less than 30/�l was seen in all
patients after a median of 2 weeks of therapy. At a median follow-up of 14
months, the median CD3þ T-cell count recovered to 930/�l and the median
CD4þ T-cell count to 320/�l (Kennedy et al., 2000). Campath-1H depleted
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CD52þ myeloid peripheral blood dendritic cells, resulting in inhibition of
the stimulatory activity of peripheral blood mononuclear cells (PBMCs) in
allogeneic mixed lymphocyte reactions. Depletion of CD52þ dendritic cells
also inhibited the ability of PBMCs to present antigen to purified CD4þ
T lymphocytes (Buggins et al., 2001). This effect might explain the low rate
of graft-versus-host disease (GVHD) in allogeneic stem cell transplants using
Campath-1H (Hale et al., 1998, 2000).

This prolonged inhibition of T lymphocyte and dendritic cell function
will likely limit the clinical use of Campath-1H, particularly in combination
regimens with other immunosuppressive agents such as fludarabine. Patients
receiving Campath-1H must be placed on appropriate prophylaxis for
Pneumocystis pneumoniae (PCP) and varicella zoster virus (VZV). In addi-
tion, patients should also be monitored for cytomegalovirus (CMV) reacti-
vation during and immediately after therapy (minimum 2 months). With
these prophylactic measures, Campath-1H can be administered safely and
with acceptable toxicity.

5. Infusion Toxicity

Infusion-related toxicity occurred in 93% of patients in the CAM211
study, although the majority of reactions were grade 1 or 2. Rigors (90%
overall, 14% grade 3), fever (85% overall, 17% grade 3, 3% grade 4) and
nausea (53%) were the most infusion-related toxicities (Keating et al.,
2002c). Similar rates of rigors (71%), fevers (65%), and nausea (45%)
were reported in the multicenter study of 136 B-CLL patients, and almost
all infusion toxicities were grade 1 or 2 (Rai et al., 2001). Most toxicity was
observed with the first infusion (Keating et al., 2002c). This first-dose cyto-
kine release syndrome involves TNF-�, interferon (IFN)-�, and IL-6 (Wing
et al., 1996). TNF-� levels increase by more than 1000-fold after Campath-
1H infusion, and TNF-� is most important cytokine in this syndrome (Flynn
et al., 2000; Pruzanski et al., 1995). Ligation of the low-affinity Fc receptor
for IgG, Fc�R, on NK cells results in release of TNF-� and might play a
central role in inducing infusion toxicity to Campath-1H (Wing et al., 1996).

6. Hematological Toxicity

Campath-1H has significant hematological toxicity, given the presence
of CD52 on many hematopoietic cells. The multicenter study of 136 CLL
patients noted 26% neutropenia (22% grade 3 or 4), 35% thrombocytope-
nia (23% grade 3 or 4), and 21% anemia (11% grade 3) (Rai et al., 2001). In
contrast to infusion toxicity, which is predominantly grade 1 or 2, many
patients who develop cytopenias develop grade 3 or 4 toxicity, resulting in
severe infectious complications. Fever, rigors, and nausea might be bother-
some and uncomfortable to patients, but cytopenias and infectious com-
plications constitute the medically serious toxicities of Campath-1H.
However, these toxicities are clinically manageable with proper monitoring
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of peripheral blood counts and appropriate antibiotic prophylaxis. GMCSF
should be avoided, as GMCSF exacerbates infusion-related toxicity by
inducing TNF-�, without significantly improving granulocyte recovery
(Flinn et al., 2000b).

7. Combination Therapy

Laboratory evidence from our institution indicates that Campath-1H
might synergize with fludarabine in vivo (J. C. Byrd, personal communica-
tion, 2001). A small study of six CLL patients, refractory to fludarabine
alone and Campath-1H alone, suggests that such synergy exists. Fludarabine
was given at a dose of 25 mg/m2 IV for 3–5 days, and Campath-1H was
given at 30 mg IV thrice weekly for 8–16 weeks. One patient achieved a CR
(17%), and five patients achieved a PR for an ORR of 83%; flow cytometric
analysis could not detect residual CLL cells in the two patients. Patients
received prophylactic cotrimoxazole and acyclovir, and no serious adverse
events were noted (Kennedy et al., 2002).

Two studies indicate that the combination of Campath-1H and ritux-
imab can be given safely and might have clinical activity in patients
with relapsed CLL. Nine patients received rituximab 375 mg/m2 Weeks
1 and 3–5, in combination with Campath-1H 3, 10, or 30 mg thrice weekly
Weeks 2–5 in a single-institution Phase I dose escalation study (Nabhan
et al., 2001). Toxicity was acceptable, with no opportunistic infections or
treatment-related deaths. Eight (89%) patients experienced significant re-
duction (median 95% decrease) in peripheral lymphocyte count, but no
objective responses by NCI criteria were seen. A second study administered
rituximab 375 mg/m2 weekly for four doses, with Campath-1H 30 mg on
Days 3 and 5 of each week, to 48 patients with relapsed or refractory
lymphoproliferative disorders, including 32 patients with CLL and nine
patients with CLL/PLL (Faderl et al., 2003). The ORR was 52% (CR
8%), with a median time to progression of 6 months. Similar to results
observed with single-agent Campath-1H, nearly all CLL and CLL/PLL
patients had resolution of peripheral blood lymphocytosis, but only 11 of
33 (33%) patients had clearing of marrow disease and 24 of 41 (59%)
patients had >50% reduction of nodal disease. Infections developed in
52% of patients, and CMV reactivation was seen in 27% of patients.

8. Summary

Because of the ubiquitous expression of CD52 on lymphocytes and
monocytes, Campath-1H causes significantly more hematologic and im-
mune toxicity than does rituximab. However, infectious complications are
manageable with adequate antibiotic prophylaxis. The majority of patients
receiving Campath-1H experience infusion toxicity, but toxicity is manage-
able with a stepped-up dosing schedule. In addition, infusion toxicity usually
diminishes as therapy progresses. Campath-1H has clinical activity in CLL,

Monoclonal Antibody Therapy in Lymphoid Leukemias 143



and the antibody demonstrates particular efficacy in T-PLL, a disorder for
which few therapies exist at present. Campath-1H demonstrates greatest
activity against CLL cells in blood, although prolonged therapy might be
able to achieve CR in bone marrow. The antibody is less effective against
nodal disease; responses, while common, are almost exclusively PR. Further
studies of Campath-1H, especially in combination with cytotoxic agents or
other monoclonal antibodies, are warranted.

D. Hu1D10

1. Preclinical Studies

Hu1D10 (apolizumab, Remitogen
TM

) is a humanized murine IgG mono-
clonal antibody whose antigenic epitope is a polymorphic determinant on
the MHC class II HLA-DR beta chain (Kostelny et al., 2001). The 1D10
epitope is a variant of the HLA-DR beta chain and is not shed or down-
regulated by antibody binding (Gingrich et al., 1990). The 1D10 antigen is
present on normal and malignant B lymphocytes, dendritic cells, macro-
phages, and some activated T lymphocytes. The 1D10 antigen is expressed
in 50% of acute lymphocytic leukemia, 50% of diffuse large-cell NHL,
50–70% of follicular center cell NHL, and 80–90% of CLL (J. C. Byrd,
personal communication, 2002). Expression is uniformly strong in tumors
that are ID10 positive. The secondary structure of the beta chain is impor-
tant for recognition of the epitope, but N-linked glycosylation does not
appear to be involved in antigen recognition. The 1D10 antigen is similar,
but not identical, to the Lym-1 epitope on HLA-DR.

Hu1D10 induces both ADCC and CDC, and Hu1D10 is more effective at
mediating ADCC than is murine 1D10 in standard chromium release assays
(Kostelny et al., 2001). Hu1D10 also induces apoptosis, induces changes in
intracellular calcium concentrations, and increases tyrosine phosphorylation
in 1D10-positive cells. Data indicate that apoptosis occurs by a caspase-
independent pathway. Preliminary in vitro data from our laboratory demon-
strated maximal induction of apoptosis after incubation with 10 �g/ml
Hu1D10 and goat antihuman Fc antibody, and apoptosis occurred in the
absence of complement or effector cells (J. C. Byrd, personal communication,
2002). Incubation with Hu1D10 alone did not induce apoptosis, and further
experiments with anti-Fc� and secondary F(ab0)2 fragments provided further
evidence that Fc-specific binding is necessary for apoptosis. Pharmacokinetic
data obtained in rhesus monkeys indicated a significantly shorter half-life in
1D10þ animals (2.6 days) than in ID10� animals (8.4 days), with a 2.6-fold
lower area under the curve (AUC). A rapid decline in serum Hu1D10 concen-
tration was seen in 1D10þ animals, likely because of a large antigen sink
and development of anti-Hu1D10 antibodies. Preliminary pharmacokinetic
data in humans indicate a median serum half-life of approximately 11 days,
although profound interpatient variability was observed.
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2. Clinical Studies

An initial Phase I study in 20 patients with NHL demonstrated that
Hu1D10 can be given safely at doses that show potential clinical efficacy
(Link et al., 2001b). Patients received weekly doses ranging from 0.15 to
5 mg/kg, and a regimen giving the drug on 5 consecutive days was also
examined. As is the case with other monoclonal antibody therapies, infu-
sion-related toxicity was common but manageable. Observed side effects
included fever, chills, nausea, vomiting, rash, flushing, and hypotension, but
most toxicities were grade 1 or 2. Hu1D10 showed exciting clinical promise
in this Phase I trial; 4 of 8 patients with follicular lymphoma achieved
clinical response (1 CR, 3 PR), with a median time to response of 106
days. A recent report summarized preliminary results of a Phase II multicen-
ter study in patients with relapsed or refractory indolent B-cell lymphopro-
liferative disorders. Twenty-one patients have received Hu1D10 0.5 mg/kg
or 1.5 mg/kg weekly for four doses, including five patients with SLL (Link
et al., 2001a). Therapy has been well tolerated, although no response data
have been reported. We are currently conducting a Phase I dose escalation
study of thrice-weekly Hu1D10 in patients with relapsed CLL; initial results
have been promising (Abhyankar et al., 2002).

3. Summary

Hu1D10 is a promising monoclonal antibody that is being evaluated in
ongoing clinical trials. Antigen expression appears to be more uniform than
CD20 expression, and 80–90% of CLL cells express 1D10. Hu1D10 admin-
istration appears to be safe, and preliminary data indicate that 3–6 months
might be necessary to see maximal response to the antibody. Although there
is little information on Hu1D10’s clinical efficacy in CLL, an ongoing Phase
I and subsequently planned Phase II study will address this question.

E. 131I-Lym-1

Whereas monoclonal antibodies such as rituximab and Campath-1H
rely on host immune mechanisms such as CDC and ADCC to kill tumor
cells, radioimmunotherapy uses the antigen specificity of a monoclonal
antibody to deliver targeted radiation therapy to tumor cells. The monoclo-
nal antibody Lym-1 recognizes an antigenic determinant on HLA-DR, near
the 1D10 epitope. However, the epitopes of the two antibodies are distinct.
Initial studies in human tumor cell lines demonstrated that Lym-1 stained
B-cell leukemia and lymphoma cell lines but did not react with cells of T-cell,
myeloid, or erythroid lineage. Approximately 8% of normal circulating
peripheral blood lymphocytes stained for Lym-1 by flow cytometry. Of the
B-CLL samples, 40% were positive for Lym-1, whereas T lymphocytes and
T-cell lymphomas were negative by both immunoperoxidase stains and flow
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cytometry. Thus, Lym-1 specifically recognizes B-cell malignancies but
reacts with fewer than 40% of B-CLL.

Lym-1 has been conjugated to 131I in order to effect targeted delivery of
this radioactive isotope to tumor cells of B-cell origin. 131I-Lym-1 has been
tested primarily in patients with advanced NHL, but the antibody has been
given to several patients with B-CLL. Twenty-five patients with previously
treated, advanced B-NHL and five patients with relapsed B-CLL were trea-
ted with fractionated, low-dose 131I-Lym-1, with a goal of 300 mCi per
patient (DeNardo et al., 1998). Thirty percent of patients developed
HAMA, but only 3 patients had therapy interrupted as a result. Four of
the five CLL patients responded (80%). The same group also reported that
patients who responded to 131I-Lym-1 therapy enjoyed improved survival
(84 vs. 22 weeks) (De Nardo et al., 1997). Radiation dosimetry studies
revealed a lower tumor radiation dose and a higher liver radiation exposure
in CLL patients compared with NHL patients, resulting in a lower thera-
peutic index for patients with CLL (De Nardo et al., 1999a). Toxicity was
acceptable, and the dose-limiting toxicity was thrombocytopenia (DeNardo
et al., 1999b).

F. 90Y-T101 and Other Anti-CD5 Antibodies

CD5 (T1, Leu-1), a mature T-cell marker that is also expressed in CLL,
is the ligand for CD72, which is expressed on all B lymphocytes. Evidence
suggests that CD5 stimulates splenic B-cell activation and proliferation
through its interaction with CD72 on splenic B lymphocytes (Bikah et al.,
1998). Interestingly, in vitro studies showed that crosslinking of CD5 on
resting B lymphocytes, but not on T lymphocytes, led to apoptosis (Cioca
and Kitano, 2002; Pers et al., 1998, 2002). The T101 monoclonal antibody,
which recognizes CD5, has been conjugated to 90Y in order to increase its
activity against tumor cells. Preclinical studies in human leukemia CEM cells
demonstrated that T101 is internalized slowly and undergoes little lysosom-
al degradation. Instead, T101 undergoes recycling to the cell surface, thus
providing a possible explanation for the unmodified antibody’s low anti-
cancer efficacy (Ravel et al., 1992). Thus, conjugation to a radioisotope was
necessary to increase the clinical activity of T101.

In a Phase I study, two patients with CLL and eight patients with
cutaneous T-cell lymphoma (CTCL) were treated with 5 or 10 mCi of 90Y-
T101 (Foss et al., 1998). Therapy was complicated by development of
HAMA after one cycle in 9 of 10 patients. Despite the fact that only one
patient received a second cycle of therapy, both CLL patients and
three CTCL patients achieved PR (50%), with a median response duration
of 23 weeks. However, significant hematologic toxicity was observed, with
T-cell and B-cell suppression lasting 2–3 weeks and more than 5 weeks,
respectively.
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Finally, the anti-CD5 monoclonal antibody OKT1 has been conjugated
to saporin-6 (SAP), a plant ribosome inactivating protein. Fresh CLL cells
from 31 patients were exposed in vitro to OKT1-SAP. OKT1-SAP inhibited
CLL proliferation in 90% of patients; this inhibition was dose dependent,
with a 50% inhibitory concentration (IC50) of 4–7 nM (Siena et al., 1989).

G. LMB-2

An alternative approach to radioimmunotherapy is conjugation of a
monoclonal antibody to a toxin. The antibody delivers the toxin to the
tumor cell, which is killed by action of the toxin. LMB-2 (anti-Tac(Fv)-
PE38) is a recombinant immunotoxin derived by fusion of the variable Fv
portion of the anti-CD25 monoclonal antibody anti-Tac to a truncated form
of Pseudomonas exotoxin A (Kreitman et al., 1999). CD25 (Tac) is the beta
chain of the high-affinity IL-2 receptor and is expressed on the cell surface
of T-cell malignancies, including T-CLL (Uchiyama et al., 1981a,b). LMB-2
induced major responses, including 1 CR, in 4 of 4 patients with refractory
hairy cell leukemia (HCL) in an initial Phase I clinical study, demonstrating
that Fv-based agents can be effective clinically (Kreitman et al., 1999). In a
Phase I dose escalation trial, 35 patients with CD25þ lymphomas and
leukemias received LMB-2 at dose levels ranging from 2 to 63 �g/kg IVB
every other day for three doses; the maximum tolerated dose was 40 �g/kg
(Kreitman et al., 2000b). One patient with CLL achieved PR, and seven other
patients with other diseases also responded (1 CR, 6 PR). Recently, in vitro
studies of DSP30, an immunostimulatory phosphorothioate oligodeoxynu-
cleotide, demonstrated that DSP30 increased CD25 expression in 14 of 15
CLL samples. More importantly, DSP30 increased the cytotoxicity of
LMB-2 in 12 of 13 CLL samples (Decker et al., 2002). These results indicate
that immunomodulatory molecules can increase expression of target anti-
gens on CLL cells and thereby increase activity of monoclonal antibodies
against CLL cells. The use of such molecules to increase the antitumor
activity of monoclonal antibody therapy is an area of active research.

H. hLL2 and BL22

CD22 (Leu-14), the ligand for CD45RO, is expressed on normal
B lymphocytes and B-cell malignancies, including CLL; CD22 is recognized
by the murine IgG2 monoclonal antibody LL2 (Stein et al., 1993). Huma-
nized anti-CD22 (hLL2, epratuzumab) is undergoing Phase I and Phase II
clinical trials in indolent B-cell NHL, and studies in CLL are being planned
(Leung et al., 1994, 1995). Preclinical in vitro studies demonstrated that LL2
was rapidly internalized after binding to Raji lymphoma cells, eventually
undergoing lysosomal degradation (Shih et al., 1994). To take advantage of
this rapid internalization and degradation, LL2 has been conjugated to radio-
isotopes and biological effectors. LL2 has been conjugated to both 131I and 90Y.
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An initial Phase I clinical study with 131I-LL2 revealed no acute toxicities, and
2 of 5 evaluable patients achieved PR. However, grade IV marrow toxicity was
observed in 3 of 7 patients who received total doses of 50 mCi, and 3 of 8
patients who received at least two injections developed HAMA (Goldenberg
et al., 1991). Subsequent clinical trials of 131I-LL2 in relapsed NHL have
demonstrated promising activity, with 3 of seven patients achieving PR in
one study and 7 of 21 patients (5 CR, 2 PR) responding in another trial
(Linden et al., 1999; Vose et al., 2000a). Two recent reports described the
preliminary results of clinical trials of 90Y-hLL2. In one of the reports, 18
patients with indolent B-cell lymphoproliferative disorders received two to
four weekly infusions of 2.5 or 5.0 mCi 90Y-hLL2; seven responses were seen,
although the single CLL patient did not respond (Linden et al., 2001). In the
second study, 20 evaluable patients with recurrent B-cell NHL received 131I-
hLL2 (13 patients) or 90Y-hLL2 (7 patients). Myelosuppression was the
primary toxicity, and 90Y-hLL2 appeared to exhibit more favorable tumor
dosimetry than 131I-hLL2 did (Juweid et al., 1999).

LL2 has also been conjugated to biological effectors. BL22
(RFB4(dsFv)-PE38) is a recombinant immunotoxin generated by fusion of
the variable Fv portion of the anti-CD22 monoclonal antibody RFB4 to a
truncated form of Pseudomonas exotoxin A. In ex vivo experiments with
fresh tumor cells from 28 patients with B-cell malignancies, including CLL
and follicle center NHL, BL22 was cytotoxic to cells of 25 patients (89%),
indicating the potential clinical use of this immunotoxin (Kreitman et al.,
2000). A recent report documented the efficacy of BL22 in 16 patients with
cladribine-resistant HCL (Kreitman et al., 2001). Eleven patients achieved
CR (69%), and two patients attained PR (13%). In addition, LL2 has been
conjugated to onconase, an amphibian ribonuclease. In preclinical studies,
exposure to LL2–onconase was lethal to human Daudi lymphoma cells.
LL2–onconase was tolerable to mice and increased the lifespan of SCID
mice inoculated with Daudi lymphoma cells (Newton et al., 2001). The
results of in vitro and animal studies have been intriguing, but there are no
data on the safety or efficacy of LL2–onconase in humans. Although there
are no data on the use of LL2 or its radioisotope or immunotoxin conjugates
in CLL, studies of hLL2 are warranted, given preclinical evidence of activity
against CLL cells (Kreitman et al., 2000a).

I. Anti-B4

CD19 (B4, Leu-12) is expressed on pre-B and B lymphocytes. In pre-
clinical studies, the anti-CD19 monoclonal antibody HD37 was conjugated
to the ribosome-inactivating protein SAP. HD37–SAP inhibited DNA
synthesis in fresh CLL cells and was able to exert greater than a two log
kill in B-NHL cells (Bregni et al., 1989). HD37 has been conjugated to a
deglycosylated ricin A chain and tested in patients with NHL although no
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CLL patients were enrolled in the Phase I trial (Stone et al., 1996). Anti-B4
was conjugated to blocked ricin to generate an immunotoxin (anti-B4-bR),
which was administered by 7-day CIVI to 34 patients with relapsed or
refractory B-cell neoplasms in a Phase I clinical trial, including 4 patients
with CLL. Five clinical responses (2 CR, 3 PR) were observed, in addition to
11 transient responses (Grossbard et al., 1993). The same authors also
administered anti-B4-bR by five consecutive daily bolus infusions to 25
patients with refractory B-cell neoplasms; three responses (1 CR, 2 PR)
were observed (Grossbard et al., 1992).

J. Anti-CD23

CD23 is another potential target of monoclonal antibody therapy; like
CD20 and CD5, CD23 is expressed on the overwhelming majority of CLL
cells. A chimeric macaque-derived anti-CD23 antibody, p6G5G1, has been
developed (Yabuuchi et al., 2002). Although these antibodies have been
developed as possible therapies for asthma and other allergic disorders, the
ubiquitous expression of CD23 on CLL cells indicates that preclinical stud-
ies of these compounds in CLL should be pursued. Recently, in vitro studies
of a humanized anti-CD23 monoclonal antibody, IDEC-152, demonstrated
that cross-linked IDEC-152 induced apoptosis in fresh CLL cells from 5
patients. In addition, IDEC-152-induced apoptosis was enhanced in the
presence of fludarabine or rituximab (Pathan et al., 2001). These promising
preclinical results formed the basis for a Phase I study of this agent in CLL,
which is at present ongoing.

K. Anticytokine Monoclonal Antibodies

1. Cytokine Modulation

A growing area of interest in monoclonal antibody research is the use of
cytokine modulation to increase the activity of antibody therapies. Cytokine
modulation can induce apoptosis and increase activity of host immune
effector cells, thereby enhancing the antitumor activity of monoclonal anti-
bodies. There are many ongoing clinical trials of combined immunotherapy
with cytokines and monoclonal antibodies in hematologic and solid malig-
nancies. Rituximab has been combined with IL-2 and IL-12 in Phase I and
Phase II clinical trials in B-cell NHL, and initial results have been promising
(Ansell et al., 2002; Friedberg et al., 2000; Keilholz et al., 1999). An
alternative approach to cytokine-based immunotherapy is the development
of anticytokine monoclonal antibodies. Such antibodies might be effective as
single agents or be used as immunomodulators to enhance the efficacy of
tumor-targeted antibodies such as rituximab and Campath-1H. Several such
antibodies are in preclinical development, and the following section focuses
on the scientific rationale for the use of each of these antibodies.
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2. Anti-TNF Alpha

TNF-� stimulates the proliferation of CLL cells (Digel et al., 1989;
Moberts et al., 1989). Serum levels of TNF-� are increased in patients
with CLL, and CLL cells produce TNF-� as an autocrine growth regulator
(Foa et al., 1990; Mainou-Fowler et al., 2001). Two TNF-� antagonists have
been approved by the FDA for clinical use: (1) infliximab, a chimeric anti-
TNF-� monoclonal antibody, and (2) etanercept, a recombinant soluble
TNF-� receptor/Fc fusion protein. Etanercept (Enbrel

�

) has been approved
for use in rheumatoid arthritis (Moreland et al., 1999; Weinblatt et al.,
1999) and there are data supporting its use in the treatment of myelodys-
plastic syndrome (MDS), myelofibrosis with myeloid metaplasia, and
chronic GVHD (Chiang et al., 2002; Deeg et al., 2002; Steensma et al.,
2002). In addition, etanercept is undergoing active clinical study in a
number of other malignancies. Infliximab (cA2), which has been approved
for use in rheumatoid arthritis and Crohn’s disease (Elliott et al., 1994;
Targan et al., 1997; van Dullemen et al., 1995) has shown activity in the
therapy of steroid-refractory GVHD (Kobbe et al., 2001). In addition to
neutralizing soluble TNF-� and depriving CLL cells of a vital growth signal,
infliximab might also act by binding of transmembrane TNF-�, leading to
lysis of TNF-�-expressing cells by ADCC and CDC (Scallon et al., 1995).
Infliximab is undergoing clinical investigation in several malignancies, and
investigation of infliximab and etanercept as potential therapies in CLL,
either as single agents or in combination with antibodies such as rituximab,
is warranted.

3. Anti-Interferon-Gamma

Another cytokine important in maintaining the survival of CLL cells is
IFN-�. In preclinical laboratory studies, IFN-� inhibited apoptosis of CLL
cells in culture and resulted in prolonged survival. Purified CLL cells synthe-
sized high levels of IFN-�, indicating an autocrine pathway of tumor cell
activation (Buschle et al., 1993). In the same report, 7 of 10 CLL patients
demonstrated increased serum levels of IFN-�, compared to none of 10
healthy control individuals. A later report showed overexpression of IFN-�
receptors by CLL cells, as well as increased numbers of IFN-�-producing
T lymphocytes in patients with CLL (Zaki et al., 2000). These studies
provided in vitro and in vivo evidence of the antiapoptotic activity of IFN-
� in CLL. Anti-IFN-� monoclonal antibodies have been administered in
clinical trials of rheumatoid arthritis; initial results indicate that these anti-
bodies are safe and have clinical activity (Sigidin et al., 2001). Similar to the
TNF-� antibodies infliximab and etanercept, the IFN-� antibodies
were developed for treatment of rheumatological disorders, but should be
investigated in Phase I and Phase II clinical trials in CLL.
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4. Anti-IL-4

Several interleukins inhibit apoptosis of CLL cells and are therefore
potential targets of pharmacologic intervention by interleukin antagonists.
IL-4 is one of the best studied of these interleukins. Initial in vitro studies
demonstrated that IL-4 inhibits the TNF-�-induced proliferation of CLL
cells, leading to interest in IL-4 as a cytokine therapy for CLL (van Kooten
et al., 1992, 1993). However, a Phase I dose escalation trial of IL-4 in 14
patients with CLL who were in PR after treatment with chemotherapy
yielded no responses. In fact, 10 patients (71%) had progressive disease,
with a twofold to fourfold increase in the blood lymphocyte count,
providing in vivo evidence of the antiapoptotic effects of IL-4 (Lundin
et al., 2001). Interestingly, the blood lymphocyte count decreased after
cessation of IL-4 therapy in 8 of 12 evaluable patients. These clinical results
concurred with more recent in vitro studies, which showed that IL-4 inhibits
apoptosis and maintains viability of CLL cells (Frankfurt et al., 1997; Pu and
Bezwoda, 1997). In addition, IL-4 conferred greater protection against
apoptosis on CLL cells from previously treated patients than on tumor
cells from untreated patients, suggesting that the antiapoptotic action of
IL-4 might be one mechanism by which CLL becomes resistant to therapy
(Frankfurt et al., 1997). Recent studies revealed that T lymphocytes from
patients with B-CLL secrete IL-4 and protect B-CLL cells from apoptosis
(Kay et al., 2001; Mainou-Fowler et al., 2001). Further indication of the
importance of IL-4 in maintaining CLL viability and growth was shown by
the increased expression of mRNA for IL-4 receptor in fresh CLL cells
(Mainou-Fowler et al., 2001). Thus, preclinical and clinical data support
clinical trials of IL-4 antagonists as potential therapeutic agents in CLL.

5. Anti-IL-8

Another potential cytokine target of monoclonal antibody therapy in
CLL is IL-8. In vitro studies demonstrated constitutive secretion of IL-8 by
CLL cells; in contrast, several B-cell lines and cells from HCL patients did
not express IL-8 (di Celle et al., 1994). The same authors later showed that
although IL-8 did not induce proliferation of CLL cells, IL-8 protected CLL
cells against steroid-induced death. IL-8 increased expression of bcl-
2 mRNA and protein, and exogenous IL-8 induced overexpression of IL-
8 mRNA, suggesting an autocrine role for IL-8 in maintaining CLL cell
survival (di Celle et al., 1996). Fully human anti-IL-8 monoclonal antibodies
have been synthesized, as well as a polyethylene glycol (PEG)-conjugated
form of a humanized anti-IL-8 F(ab0)2 antibody (Koumenis et al., 2000;
Yang et al., 1999). Preclinical evidence suggests that further work should be
undertaken to determine whether clinical studies with these antibodies
should be pursued in CLL.
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IV. T-Cell Prolymphocytic Leukemia ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

A. The Disease

Patients with T-PLL do extremely poorly, with a median survival of
less than 12 months. Patients are typically treated with deoxycoformycin
(pentostatin), but novel therapies are desperately needed in this disease.

B. Campath-1H

Several studies have demonstrated significant clinical activity of the anti-
CD52 monoclonal antibody Campath-1H in T-PLL. Campath-1H was given
to 15 patients with T-PLL, most of whom had failed deoxycoformycin
(Pawson et al., 1997). The ORR was 73%, and nine patients achieved CR
(60%); in addition, retreatment with Campath-1H induced second CR in
three patients who relapsed after initial Campath-1H therapy. In compari-
son, only 3 of 25 (12%) similar T-PLL patients at the same institution
achieved CR to deoxycoformycin. Two patients developed severe bone
marrow aplasia, and one patient died of this complication. In a subsequent
study by the same authors, Campath-1H 30 mg IV was administered thrice
weekly until maximal response to 39 patients with T-PLL, including 30 who
had failed deoxycoformycin (Dearden et al., 2001). The ORR was 76% (CR
60%), with a median disease-free interval of 7 months (range 4–45 months).
Finally, a retrospective report of 76 T-PLL patients given Campath-1H thrice
weekly for 4–12 weeks demonstrated an ORR of 51% (CR 40%), with a
median duration of CR of 9 months (Keating et al., 2002a). Median overall
survival was 7.5 months, although patients who achieved CR had a median
survival of 15 months. Ten patients (13%) developed 15 infections, and
severe cytopenias occurred in six patients (8%). Two patients (3%) died of
treatment-related mortality. Thus, Campath-1H is the most active single
agent in T-PLL, and, in contrast to its results in CLL, is able to produce
CR in up to 60% of patients with relapsed T-PLL.

C. Correlation of CD52 Expression with
Clinical Response

The higher activity of Campath-1H in T-PLL might be due to increased
expression of CD52 on T-PLL cells. Quantitative flow cytometry was used
to measure CD52 expression in 24 B-CLL patients, 21 T-PLL patients, and
12 normal volunteers (Ginaldi et al., 1998). Interestingly, CD52 expression
was significantly higher on normal T lymphocytes than on normal B lym-
phocytes, and T-PLL cells expressed higher levels of CD52 than did B-CLL
cells. In addition, CD52 expression was slightly higher in patients who
responded to Campath-1H. These results suggest that the likelihood of
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clinical response to Campath-1H might be related to the level of CD52
expression.

V. Hairy Cell Leukemia

A. The Disease

HCL is another disease within the family of indolent B-cell lymphopro-
liferative disorders. In contrast to CLL or follicle center lymphoma, in which
standard chemotherapy is strictly palliative, many patients with HCL are
cured with conventional chemotherapeutic agents such as deoxycoformycin
(pentostatin) and 2-chlorodeoxyadenosine (2-CDA, cladribine). However,
HCL that is resistant to therapy with purine analogs has a poor prognosis,
and treatment options are limited for patients who fail pentostatin and
cladribine. Thus, despite the generally favorable prognosis of this disease,
monoclonal antibody therapy is a treatment modality of significant interest
in HCL.

B. Rituximab

The monoclonal antibody that has been best studied in HCL is the anti-
CD20 antibody rituximab. Several case reports and a few series have demon-
strated rituximab’s efficacy in this disease. Ten patients with relapsed or
progressive HCL who had previously received treatment with cladribine or
pentostatin/IFN-� received four weekly doses of rituximab 375 mg/m2. The
ORR was 50%, with one patient achieving CR and four patients attaining
PR. Grade 1 or 2 infusion toxicity occurred during the first dose of rituximab
but was extinguished with subsequent doses. Fifty percent of patients expe-
rienced >50% reduction of bone marrow involvement 1, 3, and 6 months
after completion of rituximab therapy (Lauria et al., 2001). A second study
administered a similar schedule of rituximab to eight patients with relapsed
HCL and three patients with previously untreated HCL. The ORR was
64%, with six patients achieving CR and one patient PR. The median
duration of response was 14 months (range 0–34 months), and infusion-
related toxicity was minimal (Hagberg and Lundholm, 2001). To examine
whether an increased number of doses results in improved clinical response,
a group administered eight weekly doses of rituximab 375 mg/m2 to 15
patients with relapsed or primary refractory HCL. Patients who achieved
PR but not CR received an additional four weekly doses of rituximab. The
ORR was 80%; eight patients (53%) attained CR, two patients (13%)
achieved hematological CR but had residual (1–5%) marrow involvement
by HCL, and two patients (13%) experienced PR. Median duration of
response was not reached after a median follow-up of 32 months; five

Monoclonal Antibody Therapy in Lymphoid Leukemias 153



patients relapsed after 8, 12, 18, 23, and 39 months, and seven remained in
remission. Toxicity was minimal, and no infections were noted (Thomas
et al., in press).

Thus, rituximab has significant activity in HCL. In contrast to CLL,
weekly dosing achieves a significant response rate in HCL, although prelim-
inary data suggest that a longer course of therapy might result in an im-
proved CR rate. Again, in contrast to CLL, rituximab therapy does not
appear to induce greater infusion-related toxicity in HCL than was observed
in follicle center lymphoma. The efficacy of weekly rituximab therapy and
decreased infusion toxicity in HCL, compared with CLL, might be due to
the lower circulating tumor burden in HCL and the absence of soluble CD20
in HCL patients.

C. BL-22

As previously described, CD22 (Leu-14) is the ligand for CD45RO and
is expressed on normal B lymphocytes and B-cell malignancies such as CLL
and HCL. The murine IgG2 monoclonal antibody LL2 recognizes CD22 and
has been conjugated to biological effectors in an attempt to target these
toxins to HCL cells (Stein et al., 1993). RFB4(dsFv)-PE38 (BL22) is a
recombinant immunotoxin generated by fusion of the variable Fv portion
of the anti-CD22 monoclonal antibody RFB4 to a truncated form of Pseu-
domonas exotoxin A. Ex vivo experiments with fresh tumor cells from
patients with B-cell malignancies demonstrated that BL22 was cytotoxic to
cells from 25 of 28 patients (89%), suggesting a potential clinical role for
this immunotoxin (Kreitman et al., 2000a). Sixteen patients with cladribine-
resistant HCL received BL22 every other day for three doses in a Phase I dose
escalation study (Kreitman et al., 2001). Eleven patients achieved CR
(69%), and two patients attained PR (13%). The three patients who failed
to respond received low doses of BL22 or had preexisting antibodies that
neutralized the toxin. Median follow-up was 16 months, and 3 of the 11
complete responders relapsed but then attained second CR after retreatment
with BL22. Common toxicities were transient hypoalbuminemia and trans-
aminitis, but the most serious toxicity was reversible hemolytic uremic
syndrome in two patients.

D. LMB-2

As described previously, LMB-2 (anti-Tac(Fv)-PE38) is a recombinant
immunotoxin derived by fusion of the variable Fv portion of the anti-CD25
monoclonal antibody anti-Tac to a truncated form of Pseudomonas exotox-
in A (Kreitman et al., 1999). CD25 (Tac) is the beta chain of the high-affinity
IL-2 receptor and is expressed on the cell surface of T-cell malignancies,
as well as HCL (Uchiyama et al., 1981a,b). In an initial Phase I study, LMB-2
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induced major responses, including 1 CR, in 4 of 4 patients with refractory
HCL who had failed standard therapy (Kreitman et al., 1999). Minimal
residual disease was detectable by flow cytometry of the bone marrow
aspirate of the patient who achieved hematological CR. This initial study
was expanded to a larger Phase I dose escalation trial, and 31 additional
patients with refractory CD25þ lymphomas and leukemias received LMB-
2 at dose levels ranging from 2 to 63 �g/kg IVB every other day for three
doses (Kreitman et al., 2000b). In contrast to the 100% ORR (25% CR) in
HCL, only 4 of the other 31 patients responded and no other patient
achieved CR. Thus, refractory HCL is particularly amenable to therapy
with LMB-2.

VI. Conclusions

Monoclonal antibody therapy for lymphoid leukemias, particularly
CLL, is a rapidly expanding area of translational and clinical investigation.
Although antibodies such as rituximab and Campath-1H have shown great
promise in CLL, studies have clearly demonstrated that monoclonal anti-
bodies as single agents will not produce long-term survival in patients with
lymphoid leukemias. Thus, ongoing clinical trials are examining the optimal
use of rituximab and Campath-1H in combination regimens in CLL. Results
of initial studies combining monoclonal antibodies with fludarabine and
other cytotoxic agents have been promising, and several trials are currently
studying monoclonal antibody combinations. Although studies to date have
been conducted primarily in CLL, monoclonal antibodies have also shown
significant efficacy and promise in T-PLL and HCL. As new monoclonal
antibodies are brought into clinical trials, critical challenges will be to
(1) identify new antibodies with clinical efficacy, (2) determine the best
way to administer these antibodies, and (3) study combination regimens
incorporating these antibodies.

Although many monoclonal antibodies being studied in CLL and other
lymphoid leukemias are also in clinical trials in lymphomas, each disease
must be considered a separate entity. The results of the weekly rituximab
trials serve as a reminder that agents and dosing schedules that are effective
in lymphoma are not necessarily active in CLL. Similarly, the substantially
higher activity of Campath-1H in T-PLL, compared to results in CLL,
demonstrates that each monoclonal antibody should be evaluated separately
in each disease. Each lymphoid malignancy is different, and investigators
must resist the temptation to ‘‘lump’’ diseases together. Only by careful
study of each monoclonal antibody in individual lymphoid cancers will the
optimal use of each antibody be determined.
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I. Chapter Overview

CD33 is a normal myeloid surface antigen that is expressed by leukemic
blast cells from the vast majority of patients with acute myeloid leukemia
(AML). Early clinical studies performed in New York and Seattle demon-
strated that unconjugated antibodies directed against CD33 specifically
target sites of normal and abnormal hematopoiesis. These findings provided
a rationale for the development of a second generation of antibodies capable
of delivering cytotoxic agents to leukemic blast cells. One such agent,
MylotargTM (gemtuzumab ozogamicin) was approved in 2000 by the U.S.
Food and Drug Administration (FDA) for the treatment of patients with
CD33-positive AML in first relapse who are 60 years of age or older and
who are not considered candidates for other types of cytotoxic chemother-
apy. Among 277 adult patients with CD33-positive AML in first relapse,
26% experienced an overall response after Mylotarg monotherapy. Despite
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myelosuppression, hyperbilirubinemia, and elevated hepatic transminases
being commonly observed, the agent was reasonably well tolerated by
adult patients with advanced AML. Newer treatment regimens combin-
ing Mylotarg and conventional chemotherapy have yielded a surprisingly
high remission induction rate in de novo AML patients. These preliminary
findings have prompted the planning of prospective, randomized studies in
the U.S. and the U.K. that should help us refine our use of this novel
immunoconjugate.

II. Introduction _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Almost 50 years have passed since Pressman and Korngold showed that
antibodies could target tumor cells, and 2 decades have elapsed since Kohler
and Milstein made large-scale production of monoclonal antibodies feasible.
Why is antibody treatment of AML uncommon? Despite numerous attempts
to identify them, leukemia cells rarely express novel antigenic targets that
are not otherwise expressed by normal tissues. For this reason, normal cell
surface antigens with expression restricted to the hematopoietic system have
been selected as targets. With the stunning exception of rituximab in CD20-
positive lymphomas, most antibodies targeting various normal hematopoie-
tic antigens have proven clinically ineffective as therapeutic agents against
hematologic malignancies. In the last few years, however, strategies employ-
ing antibodies for the treatment of patients with AML have begun to bear
fruit.

A. CD33: A Normal Antigen Expressed During
Myeloid Differentiation

Investigators on opposite coasts at the Memorial Sloan-Kettering Can-
cer Center (MSKCC) and the Fred Hutchinson Cancer Research Center
(FHCRC) have both selected the normal myeloid antigen CD33 as an
attractive target for antibody-based therapy. Targeting CD33 makes sense
for a variety of reasons. First, leukemic blast cells from more than 80–90%
of AML patients express the antigen at high levels (Dinndorf et al., 1986;
Griffin et al., 1984). Second, because nonhematopoietic tissues and normal
primitive hematopoietic precursors both lack CD33 expression, relatively
selective targeting of a malignant population of cells can be achieved.
Because primitive precursor cells remain unscathed, hematopoietic recovery
readily occurs over a several-week period. Finally, antibody and any conju-
gated cytotoxic agent are internalized after CD33 cell surface engagement
by antibody. This modulation of the antigen–antibody complex enables the
targeted delivery of a radionucleotide, protein toxin, or other cytotoxic
substance into the cytoplasm of leukemic cells.
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In a tightly regulated manner, CD33 is expressed as pluripotent hema-
topoietic stem cells mature and give rise to progenitors with diminished
self-renewal capacity and a greater degree of differentiation (Andrews
et al., 1983; Dinndorf et al., 1986; Griffin et al., 1984). CD33 is expressed
by maturing normal hematopoietic cells, but stem cells lack surface expres-
sion of CD33 (Andrews et al., 1989). In marrow long-term culture experi-
ments from some patients with AML, selective ablation of CD33-positive
cells from leukemic marrow aspirates resulted in the growth of normal
nonclonal granulocytes and monocytes (Bernstein et al., 1987, 1992). Al-
though these findings suggested that selectively targeting and eliminating
CD33-positive cells might enable patients with AML to achieve clinical
remissions, other investigators have also provided compelling data suggest-
ing that the more rare, clonogenic leukemic cell does not express CD33 and
other lineage-associated antigens. Bonnet and Dick (1997) demonstrated
growth of AML in an immunodeficient mouse model after infusion of
isolated primitive (CD34þ CD38�) precursors from human marrow speci-
mens obtained from AML patients. In reconciling these apparently
conflicting data, it is conceivable that selective ablation of CD33-positive
cells using antibody might rid the body of large numbers of mature leukemic
cells without fully deleting the rare progenitor cells from which the leukemia
arises. This hypothesis is buttressed by the clinical observation that AML
remissions induced by antibody-targeted ablation of CD33-positive cells
(described later) were relatively brief if further definitive therapy was not
subsequently administered.

B. Unconjugated Anti-CD33 Antibody

Cytotoxicity from unconjugated monoclonal antibodies occurs by sev-
eral mechanisms. In antibody-dependent cellular cytotoxicity (ADCC),
granulocytes and tissue macrophages eliminate target cells coated with
antibody through binding of the antibody Fc receptor. In complement-
dependent cellular cytotoxicity (CDC), the Fc portion of immunoglobulin
bound to tumor cells induces cell death by complement fixation. ADCC is
likely the mechanism associated with the impressive non-Hodgkin’s lym-
phoma tumor regressions seen in association with anti-CD20 antibodies
(Buchsbaum et al., 1992). Data also suggest that ligation of CD20 by anti-
body interferes with normal signal transduction, directly leading to apopto-
sis without a significant component of ADCC (Shan et al., 1998). Whereas
rituximab has been shown to be effective therapy in certain types of non-
Hodgkin’s lymphoma, unconjugated antibody approaches targeting CD33
expressed by AML cells have shown limited efficacy for patients with large
tumor burdens. However, some benefit might exist for patients with
acute promyelocytic leukemia (APL) who harbor minimal residual disease
(Jurcic et al., 2000).
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Investigators at MSKCC and FHCRC first employed trace radioiodin-
ated anti-CD33 antibodies in patients with advanced AML. Intravenous
administration of approximately 5 mg/m2 of antibody resulted in selective
targeting and rapid saturation of leukemic blast cells in patients’ periph-
eral blood and marrow (Appelbaum et al., 1992; Scheinberg et al., 1991).
Although no significant clinical efficacy was observed by using these
early strategies, investigators from Protein Design Labs and MSKCC per-
formed several clinical evaluations of HuM195, a humanized monoclonal
antibody created by grafting the CDR regions of the M195 anti-CD33
murine monoclonal antibody onto the Eu human IgG1 antibody (Co et al.,
1992).

In a pilot monotherapy study conducted by MSKCC, patients received
supersaturating doses of HuM195 at doses of 12 or 36 mg/m2/day on Days 1
through 4, with repeat doses provided on Days 15 through 18 (Caron et al.,
1998). Among 10 patients with advanced myeloid leukemias (9 AML and 1
CML) treated, 1 achieved a complete remission. In a larger randomized
study, 50 patients with advanced leukemia (median age of 62 years) received
either 12 or 36 mg/m2 of HuM195 daily for 4 consecutive days weekly for a
total of four courses (Feldman et al., 2003). Two complete remissions and
one partial remission were observed among 49 evaluable patients. Nine
additional patients experienced decreases in blast counts ranging from
30–74%. The antibody treatments were extremely well tolerated. Infu-
sion-related fevers and chills were commonly observed, but serious organ
toxicity was uncommon. No immune responses to HuM195 were detected.
Overall, only patients with minimal tumor burden experienced clinical
benefit from HuM195 monotherapy.

Because HuM195 monotherapy was associated with little toxicity, the
unconjugated antibody was evaluated in combination with conventional
chemotherapy in a prospective randomized study (Feldman et al., 2002).
The primary endpoint of the study was response rate. Treatment consisted of
mitoxantrone, cytarabine, and etoposide plus or minus HuM195 given in
two courses at the completion of the induction chemotherapy regimen. The
study enrolled 191 patients with a median age of 57 years who had AML
that was initially refractory to therapy or had relapsed with remission
duration of less than 1 year. One quarter of enrolled patients had a history
of an antecedent hematologic disorder. Although the two randomized
cohorts were reasonably well matched for demographic features, the anti-
body treatment group included a disproportionately high portion with
active infections, primary refractory AML, or a prior antecedent hemato-
logical disorder. Inclusion of HuM195 was well tolerated by study patients.
Although the overall response rate observed with HuM195 was 36% com-
pared with 28% among those not treated with antibody, this difference was
not statistically significant at p ¼ 0.28. Unfortunately, this suggestion of
improved response rate did not translate into improved clinical outcome as
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no survival difference was observed between the two treated populations
with extended follow-up.

Although results from the antibody chemotherapy combination trial for
advanced AML patients were disappointing, mature data in patients with
APL in complete remission using HuM195 monotherapy as maintenance are
encouraging, particularly among patients harboring minimal residual dis-
ease. Of 27 APL patients induced into first remission with all-trans retinoic
acid (ATRA), followed by idarubicin and cytarabine consolidation therapy,
25 had evidence of residual leukemia by reverse transcription-polymerase
chain reaction (RT-PCR) before HuM195 treatment (Jurcic et al., 2000).
Subsequently, they received an additional 6 months of maintenance therapy
with HuM195 given monthly in two doses separated by 3 or 4 days. Bone
marrow aspirates were evaluated serially for the PML/RAR-� mRNA by
RT-PCR. Among 22 patients evaluable, HuM195 monotherapy appeared to
result in the conversion to RT-PCR negativity in 11 patients. Overall, 25 of
27 (93%) patients with de novo APL remained in clinical complete re-
mission for 7þ to 58þ months, with a median follow-up of 60þ months.
Taken together, these results suggest that HuM195 might have reasonable
efficacy for APL patients who harbor evidence of residual disease after
induction therapy. Because the leukemia progenitor cell in APL is more
likely to express CD33, APL might be uniquely amenable to antibody
strategies targeting CD33.

C. Anti-CD33 Conjugated with Calicheamicin:
Gemtuzumab Ozogamicin

Clinical studies of p67.6, an anti-CD33 antibody developed in the
laboratory of Dr. Irwin Bernstein in Seattle, demonstrated that rapid
and specific targeting of CD33-positive cells could be achieved in vivo
(Appelbaum et al., 1992). Unfortunately, a short marrow residence time
was observed with conventionally radiolabeled anti-CD33, thus limiting
potential clinical efficacy with this approach. Hence, a cytotoxic agent was
sought for conjugation to the p67.6 anti-CD33 antibody. Because the origi-
nal p67.6 murine anti-CD33 antibody was immunogenic, a humanized
monoclonal antibody containing approximately 98% human amino acid
sequences was created. Gemtuzumab was synthesized by grafting the p67
anti-CD33 murine monoclonal CDR sequences onto a human IgG4 isotype
antibody. The IgG4 antibody isotype was selected because it was associated
with fewer Fc-dependent functions and a relatively long half-life in circula-
tion. The humanized antibody gemtuzumab had CD33-binding affinity
similar to that of the precursor murine p67 antibody.

Administration of anti-CD33 antibody results in rapid saturation of
CD33 sites throughout the body. The antigen–antibody complex is then
rapidly internalized into the cell, enabling antibody-targeted delivery of
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a cytotoxic agent into the intracellular space. Calicheamicin, a potent
antitumor antibiotic that cleaves double-stranded DNA, was conjugated
to a humanized anti-CD33 antibody to create gemtuzumab ozogamicin
(Mylotarg). As illustrated in Fig. 1, assays of cell surface binding of gemtu-
zumab suggest that the antigen–antibody complexes are rapidly internalized
(van der Velden et al., 2001). From studies that follow the fate of interna-
lized antibodies, it is suggested that the endocytosed anti-CD33 complexes
translocate to lysosomes, where hydrolytic release of calicheamicin from the
linker occurs. Unlike conventional chemotherapy agents that cause single- or
double-strand lesions through radical intermediates or topoisomerases, the
extremely reactive calicheamicin behaves like ionizing radiation by cleaving
both DNA strands simultaneously. These site-specific double-stranded DNA
breaks result in apoptotic cell death (Ellestad et al., 1995; Sissi et al., 1999;
Zein et al., 1988).

Gemtuzumab was evaluated in three in vitro tests for specific targeting
and killing of leukemia cells: cultured HL-60 leukemia cells, HL-60 human
xenograft tumors, and marrow specimens from AML patients in colony-
forming assays. Uniformly, leukemia cells were ablated with high specificity
compared with that of calicheamicin linked to antibodies directed against
nonspecific antigens or unconjugated anti-CD33 antibody.

D. Clinical Studies of Gemtuzumab Ozogamicin

In collaboration with Wyeth-Ayerst Research, investigators at FHCRC
and the City of Hope National Medical Center conducted a Phase I study of
gemtuzumab in which patients with relapsed or refractory CD33-positive
AML were treated with escalating doses of drug every 2 weeks for three
doses (Sievers et al., 1999). Leukemia was ablated from the blood and
marrow of 8 of 40 (20%) patients and blood counts normalized in three
(8%) patients. Figure 2 shows the relationship between hematologic para-
meters and time for a patient who received gemtuzumab at 4 mg/m2 per
dose. Gemtuzumab doses up to 9 mg/m2 were generally well tolerated, and a
postinfusion syndrome of fever and chills was the most common side effect.
Modest and reversible hepatic transaminase elevations and hyperbilirubin-
emia was observed in several patients who received gemtuzumab at higher
dose levels.

Subsequent prospective international Phase II studies evaluated gemtu-
zumab in 142 patients with CD33-positive AML in first untreated relapse
(Sievers et al., 2001). Three similar concurrent Phase II studies evaluated
safety and efficacy of gemtuzumab in patients with CD33-positive AML
in first relapse, lacking history of an antecedent hematologic disorder. The
initial report described here detailed findings from 142 adults with a median
age of 61 years. Among those in whom cytogenetics were documented, 39%
had abnormalities known to be associated with unfavorable outcomes.
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FIGURE 1 Maximal Mylotarg binding to leukocyte subsets. Maximal Mylotarg binding to

different leukocyte subsets was analyzed prior to start of the first (hatched bars) and second

(open bars) Mylotarg treatment cycle by incubating PB with an excess of Mylotarg in vitro,
followed by detection with biotin-conjugated antihuman IgG4 and streptavidin FITC. (A)

Maximal Mylotarg binding to AML blast cells (cycle 1: n ¼ 86; cycle 2: n ¼ 35), monocytes

(n ¼ 33; n ¼ 45), granulocytes (n ¼ 55; n ¼ 32), and lymphocytes (n ¼ 61; n ¼ 43). Patient

numbers differ between leukocyte subsets and between cycle 1 and cycle 2 because not all
patients received a second treatment cycle, in some patients the PB sample was not available or

of too low quality, or too few events were available for a reliable analysis of all leukocyte

subsets. (B) Maximal Mylotarg binding to AML blast cells from patients showing less than 5%

blast cells in their PB just prior to the start of the second treatment cycle (blast cell reducers;
n ¼ 27) or 5% or more blasts in PB (blast cell nonreducers; n ¼ 31 and n ¼ 26 for cycle 1 and

cycle 2, respectively). Maximal Mylotarg binding data for cycle 2 could not be obtained in the

blast cell reducers because the number of blast cells was too low to perform a reliable analysis.
ND indicates no data. Data are expressed as mean � SD. Significant differences (P < .05;

indicated by the asterisks [unpaired t test]) were observed in maximal Mylotarg binding

to blast cells between cycle 1 and cycle 2 and between cycle 1 data of the blast cell reducers and

blast cell nonreducers.
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Patients received gemtuzumab as a 2-h intravenous infusion at a dose of
9 mg/m2 at 2-week intervals for two doses. Before therapy, patients with
elevated peripheral white blood cell counts were given hydroxyurea to
reduce these counts to <30,000/ml.

Among the 142 patients, 46% had fewer than 5% blasts in the bone
marrow after one dose of gemtuzumab, based on morphologic analysis of
bone marrow aspirates. Thirty percent achieved an overall remission (OR)
characterized by <5% blasts in the bone marrow, >1500 neutrophils/ml,
and RBC and platelet transfusion independence. Twenty-three patients
(16%) achieved CR (complete remission), and 19 (13%) obtained CRp
(complete remission with incomplete platelet recovery to 100,000/ml) to
produce the OR rate of 30%. Surprisingly, poor prognostic features, includ-
ing advanced age and short duration of first CR, did not appear to appre-
ciably influence the likelihood of remission induction using gemtuzumab.
A 26% OR rate was seen in patients aged 60 or more, compared with 34%
in younger patients. Correspondingly, the OR rate was 28% for patients
who had a CR1 of less than 1 year compared with an OR rate of 32% for
patients whose first remissions were longer. In addition, similar remission
induction rates were observed among favorable, intermediate, and unfavor-
able risk cytogenetic groups as well. Based on these data, gemtuzumab

FIGURE 2 Relationship between hematologic parameters and time for a representative
patient (FH-012) who received CMA-676 at 4 mg/m2 per dose. Arrows denote infusions of

CMA-676. All counts refer to peripheral blood counts.
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was approved by the FDA in May 2000 as monotherapy for the treat-
ment of patients with CD33-positive AML in first relapse who are >60
years of age and not considered candidates for cytotoxic chemotherapy
(Bross et al., 2001).

Remission durations after gemtuzumab monotherapy were short lived
unless patients received consolidation with hematopoietic stem cell trans-
plantation (HSCT) or further chemotherapy. Relapse-free survival (RFS)
was measured from the date of first documented OR to relapse, death, or
data cutoff. A considerable number of patients who achieved OR were
sufficiently healthy to tolerate subsequent HSCT. In the published report
of 142 patients with recurrent AML (Fig. 3), the median RFS was at least 8.9
months among OR patients who received allogeneic (n ¼ 10) or autologous
(n ¼ 5) HSCT (Sievers et al., 2001). In contrast, the median RFS was only
2.1 months for the 23 OR patients who received no further therapy. These
data suggest that postremission therapy, particularly in the form of alloge-
neic hematopoietic stem cell transplant, enables the majority of patients
who achieve gemtuzumab monotherapy responses to remain in extended
remissions.

FIGURE 3 Relapse-free survival for OR patients who received HSCT ( ) and for OR patients

who received no further therapy (&) as postremission therapy. Fifteen OR patients received
HSCT (median > 8.9 months), and 23 OR patients received no further therapy (median 2.1

months).
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Most gemtuzumab-treated patients experienced a postinfusion syn-
drome of fevers and chills. Because hypotension rarely developed several
hours after administration of gemtuzumab, close medical monitoring for
several hours following infusion is suggested. Hypotension did not occur in
any patients after the second dose of gemtuzumab. Severe neutropenia and
thrombocytopenia were regularly observed because gemtuzumab ablates
normal myeloid and megakaryocytic precursors. Twenty-eight percent of
patients developed serious infection of grade 3 or 4. Mucositis was rarely
observed in only 4% of patients. No treatment-related cardiotoxicity, cere-
bellar toxicity, or alopecia was seen. No patients in the Phase II studies
developed antiglobulin or anticonjugate immune responses. For reasons
that are not entirely clear, gemtuzumab can induce hepatic dysfunction.
Moderate but typically reversible hepatic transaminase and bilirubin eleva-
tions were commonly seen. Among 142 patients, 1 patient died of liver
failure on Day 22 of study and another died on Day 156 of study with
persistent ascites and hepatic splenomegaly.

A recent report summarized gemtuzumab monotherapy in a population
of 101 patients with first untreated relapse of AML, including 80 treated on
the previous studies, who were 60 years and older (Larson et al., 2002). The
overall remission rate was 28%. CR was observed in 13% of patients and
CRp in 15%. The median survival was 5.4 months for all enrolled patients
and 14.5 months and 11.8 months for patients achieving CR and CRp,
respectively.

III. Lingering Questions Regarding
Immunoconjugate Therapies ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

A. Is Acute Promyelocytic Leukemia Unusually
Sensitive to Gemtuzumab?

Because primitive hematopoietic stem cells as defined by CD34þ/
CD38� antigens do not appear to be involved in the neoplastic process in
APL (Turhan et al., 1995), it has been hypothesized that gemtuzumab might
have a high likelihood of ablating APL progenitor cells. Petti et al. (2001)
reported results from a patient with APL who was unusually refractory to
conventional approaches and achieved prolonged hematological and molec-
ular remission after two doses of gemtuzumab. In a prospective trial of 19
patients with de novo APL, investigators at the M. D. Anderson Cancer
Center evaluated ATRA in combination with gemtuzumab as a possible
replacement for anthracycline that is typically used for this disease (Estey
et al., 2002a). Once patients achieved CR, eight additional courses of
gemtuzumab and ATRA were delivered every 4–5 weeks. Of 19 evaluable
patients, 16 (84%) achieved CR and most remained PCR-negative 2–4
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months from the date of achieving remission. Patients in remission tolerated
maintenance doses of gemtuzumab quite well. A median of five post-CR
courses was given; three patients received eight and four patients received
seven post-CR courses of treatment. These findings demonstrate that
gemtuzumab is safe in repeated doses, and suggest that it has clinical activity
in APL.

B. Is Gemtuzumab Effective in the Treatment of Older
Patients with De Novo AML?

Investigators at the M. D. Anderson Cancer Center also evaluated
gemtuzumab monotherapy in 51 patients aged 65 years or more with
newly diagnosed AML and advanced myelodysplastic syndrome (Estey
et al., 2002b). Gemtuzumab was given in a compressed dose schedule on
Days 1 and 8, or as directed by the product label on Days 1 and 15.
Interleukin 11 (IL-11) was administered by random treatment assignment
to half of enrolled patients. Among patients who received gemtuzumab
monotherapy, only 2 of 26 (8%) entered remission. Among those who also
received IL-11, 9 of 25 (36%) achieved CR. After comparing these data with
historical results obtained at their center with idarubicin plus cytarabine, the
authors concluded that survival with gemtuzumab monotherapy (with or
without IL-11) appeared to be inferior.

C. Why Do Liver Toxicities Occasionally Occur with
Gemtuzumab Ozogamicin?

Moderately severe elevations in hepatic transaminases and bilirubin
occurred at a median of 8 days after treatment in about a quarter of 142
treated patients treated in the Phase II studies (Sievers et al., 2001). Although
laboratory abnormalities were usually transient and reversible, one patient
experienced liver failure and died. A second patient died with persistent
ascites and hepatosplenomegaly. A venoocclusive-like disease (VOD) char-
acterized by ascites, weight gain, and moderate elevations in bilirubin was
observed in 11 of 271 (4%) patients treated in the collective clinical trials
dataset, and in 6 of 120 (5%) patients in the compassionate-use program
(Sievers et al., 2000). These collective clinical features have recently been
termed sinusoidal obstruction syndrome by McDonald et al. (2002). Among
36 patients who received Mylotarg before transplant, 3 patients (8%) died of
VOD (Sievers et al., 2000). Conversely, among 23 consecutive patients who
were treated with Mylotarg after transplant, 8 patients (35%) developed
fatal liver disease (Rajvanshi et al., 2002). In instances in which hepatic tissue
was obtained from patients manifesting signs of sinusoidal occlusion syn-
drome, a consistent pattern of hepatic endothelial cell damage with marked
increase in collagen deposition was observed. Although hepatic Kupffer cells
express CD33 and are thus targeted by gemtuzumab, the pathophysiology of
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hepatic toxicity remains enigmatic. Gemtuzumab should be given with great
caution in patients who have preexisting hepatic injury or a history of
allogeneic HSCT.

D. Why Are Many Patients Resistant to Gemtuzumab?

Although the overall response rate observed with gemtuzumab is com-
parable with that of conventional agents, most relapsed AML patients
treated on the Phase II studies failed to enter remission. Several biological
features of leukemic cells could interfere with Mylotarg-induced cytotoxici-
ty and be manifested as drug resistance. For instance, insufficient levels of
CD33 might be expressed by a subpopulation of leukemic blast cells, ren-
dering the cells resistant to cytotoxicity. However, among patients in the
Phase II trials with 80% CD33-positive leukemic blasts that stained at four
times above background, no correlation between CD33 expression and
clinical response was observed (Sievers et al., 2001). Gemtuzumab treatment
also does not appear to select for antigen-negative subclones. In instances in
which a subsequent relapse occurred after an initial response to gemtuzu-
mab, leukemic cells typically express CD33 at high levels. Several clinical
observations suggest that MDR transporter proteins extrude free calichea-
micin from leukemic cells. Clinical remissions with gemtuzumab were also
associated with low blast cell MDR function (Linenberger et al., 2001).
Because elevated blast cell drug efflux might be blocked by cyclosporine
A (CSA), induction therapy with gemtuzumab and CSA might target the
cytotoxic agent to the leukemic cells and toxicity to normal tissues might be
limited. Clinical trials to explore this hypothesis are being designed.

IV. Summary

Some efficacy has been observed in a small number of AML patients
harboring a low disease burden at the time of relapse and others with APL
using the unconjugated antibody HuM195. In the setting of antibody–drug
conjugates, approximately 25% of patients with AML in first relapse
achieved remission after gemtuzumab monotherapy. Because blast cell ex-
pression of the MDR phenotype is associated with an inferior response with
gemtuzumab, trials exploring MDR inhibition are planned. Without
subsequent consolidation treatment, patients who respond to gemtuzumab
will likely experience remission durations that average only 2 months. In
comparison, gemtuzumab responders who are consolidated with HSCT
sustain remissions that exceeded 18 months. Despite data suggesting that
gemtuzumab is reasonably well tolerated by adults and children, no rand-
omized trials have compared gemtuzumab monotherapy with combination
chemotherapy. Neutropenia and thrombocytopenia were universally
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observed, but mucositis was rarely seen. Gemtuzumab is targeted to CD33-
expressing cells using an antibody, but liver injury appeared with moderate
frequency. New clinical trials should shed light on the etiology of hepatic
injury and possibly elucidate what clinical scenarios demand greater caution
with gemtuzumab. Although emerging data suggest that combinations of
conventional chemotherapy and gemtuzumab result in a relatively high
remission induction rate for newly diagnosed AML patients, these findings
must be regarded as highly preliminary. Nonetheless, a first generation of
antibody-targeted chemotherapy has made its way to the clinics, certainly
to be followed by second-generation strategies that improve antileukemic
efficacy while simultaneously limiting damage to normal tissues.
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I. Chapter Overview

The use of monoclonal antibodies to deliver radioisotopes directly to
tumor cells has become a promising strategy to enhance the antitumor
effects of native antibodies. Because of the easy accessibility of tumor cells
and the well-defined differentiation antigens, leukemias are ideal diseases in
which to study radioimmunotherapy. Since the � and � particles emitted
during the decay of radioisotopes differ in significant ways, proper selection
of particular isotope and antibody combinations is crucial to making radio-
immunotherapy a standard therapeutic modality. Clinical trials have
demonstrated that anti-CD33, anti-CD45, and anti-CD66 antibodies, la-
beled with �-emitting radioisotopes such as iodine-131 (131I), yttrium-90
(90Y), and rhenium-188 (188Re), can deliver significant doses of radiation
to target organs with acceptable toxicity. These �-emitting radioimmuno-
conjugates can be particularly useful as a means to intensify conditioning
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before hematopoietic stem cell transplantation. Radioimmunotherapy using
shorter-ranged �-particle emitters such as bismuth-213 (213Bi), astatine-211
(211At), and actinium-225 (225Ac) has been studied less extensively, but
shows promise in the treatment of small-volume and cytoreduced disease.
Further advances in the radioimmunotherapy of leukemia will require in-
vestigation of more potent isotopes, new methods of isotope delivery, treat-
ment of patients with less advanced disease, and eventually randomized
trials comparing radioimmunotherapy to standard approaches.

II. Introduction

The use of unlabeled monoclonal antibodies in the treatment of leuke-
mias has met with mixed success. The anti-CD52 antibody alemtuzumab
(Keating et al., 2002) and the anti-CD20 antibody rituximab (O’Brien et al.,
2001) have displayed significant activity in chronic lymphocytic leukemia
(CLL). Because of the lack of potency of many unconjugated monoclonal
antibodies, however, investigators have used antibodies to deliver cytotoxic
agents directly to tumor cells. Significant antileukemic effects have been
observed with the anti-CD33-calcheamicin conjugate gemtuzumab ozoga-
micin in acute myeloid leukemia (AML) (Sievers et al., 2001) and the anti-
CD22-Pseudomonas exotoxin construct BL22 in hairy cell leukemia
(Kreitman et al., 2001). In an alternative strategy, antibodies can be used
to target radioisotopes directly to tumor cells. Radioactive isotopes decay by
emitting charged particles that can traverse cells and damage DNA or other
cellular components, resulting in cell death by necrosis or apoptosis
(Jonathan et al., 1999).

The leukemias are ideally suited for radioimmunotherapy for several
reasons. First, because of their location in the blood, bone marrow, spleen,
and lymph nodes, leukemic blasts are easily accessible to circulating anti-
bodies. Second, target antigens on blasts and other hematopoietic cells are
well known and can be characterized for individual patients using flow
cytometry. Finally, leukemias are radiosensitive tumors. This chapter focuses
on issues of target antigen and isotope selection, radiolabeling, antibody
pharmacokinetics, and dosimetry. We also review the results of recent
preclinical and clinical trials in the radioimmunotherapy of leukemia.

III. Antigenic Targets

Immunophenotypic characterization of the lineages and stages of hema-
topoietic differentiation provides the rationale for the selection of antigenic
targets and associated carrier molecules for radioimmunotherapy. Most of
these antigens, however, are neither lineage nor tumor specific. For example,
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CD10, found on pre-B-cell acute lymphoblastic leukemia (ALL), is also found
on follicular lymphomas and T-cell ALL. The only markers generally consid-
ered to be lineage specific are myeloperoxidase for myeloid cells, cytoplasmic
CD3 for T lymphocytes, and cytoplasmic CD22 and cytoplasmic CD79
for B lymphocytes (Todd, 2002).

AML is characterized by the expression of the myeloid-associated anti-
gens myeloperoxidase, CD13, CD15, CD33, and CD117 (Todd, 2002).
HLA-DR is typically found on all subtypes of AML except acute promyelo-
cytic leukemia (APL). Monocytic leukemias express antigens associated with
more mature granulocytes and monocytes, including CD11a/18, CD11c,
CD14, and CD15. Antigen expression in early phase chronic myeloid leuke-
mia (CML) resembles that of mature granulocytes but is heterogeneous in
blast crisis.

ALLs of B-cell origin are derived from the earliest stages of B-cell
differentiation. CD10, CD19, and CD34 are found on most cases, and a
small proportion express CD20. CLL is typically characterized by coexpres-
sion of CD5 and CD19, as well as by expression of CD23 and surface
immunoglobulin. In addition, CLL weakly expresses CD20 (Rozman and
Montserrat, 1995). Hairy cell leukemia generally expresses CD11c, CD19,
CD20, CD22, CD25, CD103, and surface immunoglobulin (Jennings and
Foon, 1997).

T-cell ALL and lymphoblastic lymphoma are the malignant counter-
parts of the earliest T-cells and express CD2, cytoplasmic CD3, CD5, CD7,
and CD10 (Huh and Ibrahim, 2000). Adult T-cell leukemia/lymphoma
(ATL) is characterized by expression of CD3, CD4, CD5, CD25, and
HLA-DR (Jennings and Foon, 1997). Antibodies that target some of these
antigens and have been studied clinically are listed in Table I. The antibodies
investigated most extensively for the radioimmunotherapy of leukemia have
been M195 and HuM195 (anti-CD33), the pan-leukocyte antibody BC8
(anti-CD45), anti-Tac (anti-CD25), and BW250/183 (anti-CD66) directed
against granulocytes.

IV. Radioisotope Selection

The choice of an appropriate isotope for radioimmunotherapy depends
on various factors, including the emission characteristics of the radionuclide,
its physical and biological half-life, the stability of the immunoconjugate
in vivo, the disease burden, and the clinical setting for which the therapy is
intended. The � and � particles emitted by these isotopes have different
physical properties that confer theoretical advantages and disadvantages to
each. Alpha particles are positively charged helium nuclei that have a short
range in tissue (50–80 �m) and a high linear energy transfer (LET;
�100 keV/�m), whereas � particles are electrons that have a longer range
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(1–5 mm) with a lower LET (�0.2 keV/�m) (Zalutsky and Bigner, 1996).
Because the range of � emissions extends for several millimeters, radio-
immunotherapy with � emitters can create a crossfire effect, destroying
tumor cells to which the radioimmunoconjugate is not directly bound.
Because of the large size and high molecular weight of most antibodies,
their diffusion into sites of bulky disease can be limited. Therefore, therapy
with � emitters can potentially overcome resistance of antigen-negative
tumor cells and is likely to be most useful in the setting of bulky disease
and marrow transplantation, in which the preparative regimen should elim-
inate both malignant and nonmalignant hematopoietic cells.

The crossfire effect of � particles, however, might damage normal ‘‘by-
stander’’ cells, producing unwanted toxicity. Because the range of � particles
measures only a few cell diameters, radioimmunotherapy with �-emitters
might result in more specific tumor cell kill and less damage to surrounding
normal tissue. Additionally, because � particles have a high LET, only one to
five traversals through the nucleus are needed to kill a targeted cell, whereas
up to 10,000 traversals by � particles might be required for cell death
(Humm, 1987). These properties make a particles ideal for the treatment
of small-volume or minimal residual disease.

Most studies of radioimmunotherapy trials for leukemia have used
�-emitting isotopes such as iodine-131 (131I), yttrium-90 (90Y), and
rhenium-188 (188Re) (Table II). 131I has a relatively long half-life of 8.1
days and emits a low-energy � particle. The � emissions from 131I travel
several centimeters within tissue and can be detected by gamma imaging,

TABLE I Selected Target Antigens and Antibodies for Immunotherapy of Leukemia

Antigen Disease Antibody

CD5 ALL, CLL T101, Tp67

CD7 ALL Tp41

CD14 AML AML2-23

CD15 AML PM81
CD19 ALL, CLL Anti-B4

CD20 CLL Tositumomab (B1), rituximab, ibritumomab (2B8), 1F5

CD22 HCL, CLL LL2, epratuzumab (hLL2), RFB4
CD23 CLL IDEC-152

CD25 ATL Anti-Tac

CD33 AML, CML MY9, p67, M195, lintuzumab (HuM195)

CD45 AML, MDS, ALL BC8
CD52 CLL Alemtuzumab (Campath-1H)

CD66 AML, ALL BW 250/183

HLA-DR CLL Lym-1, apolizumab (Hu1D10)

Note: ALL, acute lymphoblastic leukemia; CLL, chronic lymphocytic leukemia; AML,
acute myelogenous leukemia; HCL, hairy cell leukemia; ATL, adult T-cell leukemia;

CML, chronic myelogenous leukemia; MDS, myelodysplastic syndrome.
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thereby facilitating biodistribution and dosimetry studies. Despite these
benefits, a number of limitations are associated with the use of 131I. First,
treatment at high doses requires patient isolation and can result in significant
exposure to hospital staff. Second, because approximately one third of the
tyrosine residues, to which 131I binds, are located in the hypervariable region
of most monoclonal antibodies, radioiodination at high specific activities
impairs the ability of these antibodies to bind to their target antigen (Nikula
et al., 1995). Finally, when used in conjunction with hematopoietic stem cell
transplantation, sufficient time must separate 131I treatment from stem
cell infusion in order to prevent injury to the grafted cells from retained
long-lived 131I within the marrow. In transplantation trials with 131I-labeled
M195 and HuM195, these factors added up to 16 days to the preparative
regimen (Burke et al., 2003).

Many of these limitations of 131I can be overcome by the use of radio-
metals such as 90Y and 188Re. Unlike 131I, antibody labeling of most radio-
metals requires bifunctional chelators, thereby permitting labeling at higher
specific activities and ensuring greater quality control. Because 90Y does not
emit � rays, hospitalization and patient isolation are not necessary. Imaging
for biodistribution and dosimetry studies, however, requires administration
of antibody labeled with trace amounts of a second isotope, usually indium-
111 (111In), the biodistribution of which is not identical to that of 90Y
(Carrasquillo et al., 1999). Positron emission tomography (PET) of 86Y-
labeled constructs is one strategy that might improve radiation dosimetry
estimates for radioimmunotherapy with 90Y (Lovqvist et al., 2001).

Like � emitters, the various � emitters have different properties that
must be considered when selecting an isotope for radioimmunotherapy
(Table III; McDevitt et al., 1998). The 7.2-h half-life of astatine-211
(211At) allows time for multistep labeling procedures and theoretically
should enable 211At-labeled constructs to be used even when the targeting
molecule does not gain immediate access to tumor cells. The polonium-211
(211Po) daughter of 211At emits X-rays that permit external imaging for
biodistribution studies. Bismuth-213 (213Bi) has a half-life of only 46 min;
therefore, this isotope is likely to be most useful in systems in which carrier

TABLE II Characteristics of Selected �-Emitting Radioisotopes

Isotope
Particle(s)
emitted Half-life

Particulate
energy (keV)

Mean range
of b emission (mm)

Iodine-131 �, � 8.0 days 970 0.8

Rhenium-188 �, � 17 h 2120 2.4
Yttrium-90 � 64 h 2280 2.7
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molecules can rapidly target disease sites. Preparation for clinical use
requires a generator consisting of its parent isotope actinium-225 (225Ac)
dispersed onto a cation-exchange resin from which 213Bi can be eluted
(Ma et al., 2001; McDevitt et al., 1999a,b). Unlike many � emitters, 225Ac
has a long half-life (10 days) and decays by � emission through three atoms,
each of which also emits an � particle (Fig. 1). As a result of these properties,
225Ac-containing immunoconjugates are approximately 1000 times more
potent than 213Bi-containing conjugates (McDevitt et al., 2001). Although
this increased potency could make 225Ac more effective than other � emit-
ters, the possibility of free daughter radioisotopes in circulation after decay
of 225Ac raises concerns about the potential toxicity of this isotope.

V. Radiolabeling

A variety of methods are used to conjugate radioisotopes to antibodies,
depending primarily on the nature of the radioisotope. Because 131I binds to
tyrosine residues, it can be conjugated directly to antibodies by using
the chloramine-T method. Tumor resistance due to internalization of the
antigen–antibody complex, followed by rapid degradation of the radioim-
munoconjugate and expulsion of isotope metabolites, represents a significant
disadvantage to therapy with some 131I-labeled antibody constructs. This
problem could potentially be overcome by the use of radiometals, which are
better retained after catabolism than is 131I (Scheinberg and Strand, 1983), or
by novel iodination methods, such as tyramine cellobiose, resulting in more
stable radioimmunoconjugates (Ali et al., 1990). 211At is a halogen like
131I and is usually labeled to antibodies by incorporation of an aryl carbon-
astatine bond into the antibody (Zalutsky and Vaidyanathan, 2000).
Methods used to create the aryl carbon-astatine bond usually involve an
astatodemetallation reaction using a tin, silicon, or mercury precursor
(Zalutsky and Narula, 1988; Zalutsky and Vaidyanathan, 2000). 188Re has

TABLE III Characteristics of Selected �-Emitting Radioisotopes

Isotope Particle(s) emitted Half-life Energy of a particle (keV)

Astatine-211 1� 7.2 h 6800

Actinium-225 4�, 2� 10.0 days 5935
Bismuth-212 1�, 1� 60.6 min 7800

Bismuth-213 1�, 2� 46 min 5982

Lead-212 1�, 2� 10.6 h 7800

190 Burke and Jurcic



been directly labeled to the anti-CD66 antibody BW250/183 using tris-(2-
carboxyethyl) phosphine as a reducing agent (Seitz et al., 1999).

Other radioisotopes require bifunctional chelators for linkage to anti-
bodies (Fig. 2). The macrocyclic ligand 1,4,7,10-tetraazacyclododecane tet-
raacetic acid (DOTA) and its derivatives have been used effectively for
labeling antibodies with 90Y (Deshpande et al., 1990), 212Bi (Junghans
et al., 1993), and 225Ac (McDevitt et al., 2002). However, in some experi-
mental systems, DOTA might be immunogenic, and the formation of
bismuth–DOTA complexes is slow. Alternative chelators derived from

FIGURE 1 The 229Th decay scheme. 225Ac is isolated from 229Th sources and decays by �

emission through 221Fr, 217At, and 213Bi, each of which also emits an a particle.
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diethylenetriaminepentaacetic acid (DTPA) have been developed. One
of these is tiuxetan, or 2-(p-isothiocyanatobenzyl)-5(6)-methyl-DTPA
(Mx-DTPA), which is used to label ibritumomab with 90Y and 111In for
use in lymphoma (Roselli et al., 1991). Other derivatives of DTPA include

FIGURE 2 Chemical structures of selected chelators derived from 1,4,7,10-tetraazacyclodo-
decane-1,4,7,10-tetraacetic acid (DOTA) and diethylenetriaminepentaacetic acid (DTPA).
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the cyclic dianhydride derivative (Macklis et al., 1988), 2-(p-isothiocyana-
tobenzyl)-DTPA (SCN-Bz-DTPA) (Ruegg et al., 1990), and the cyclohexyl-
benzyl derivative (CHX-A-DTPA) (Huneke et al., 1992; McDevitt et al.,
1999a). CHX-A-DTPA is effective at chelating yttrium and bismuth to
antibodies (Camera et al., 1994; McDevitt et al., 1999a). The resulting
immunoconjugates are stable (Huneke et al., 1992; Nikula et al., 1999)
and have been used effectively in clinical trials (Burke et al., 2002; Jurcic
et al., 2000b, 2002).

VI. Pharmacokinetics and Dosimetry __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Factors such as variability in tumor burden and number of binding sites
per cell for individual patients, antibody specificity and binding avidity,
immunoreactivity, antigen–antibody internalization after binding, immuno-
genicity, and isotope half-life contribute to the difficult pharmacokinetics of
radioimmunoconjugates. Careful biodistribution and dosimetry studies
have led to greater insights on the pharmacology of antibodies. For example,
the influence of the number of available antigen sites on antibody biodis-
tribution was observed in a dose-escalation trial of trace-labeled 131I-M195,
in which superior targeting to sites of disease as determined by gamma
camera imaging was seen with a comparatively small dose (Scheinberg
et al., 1991). This might be explained in part by the relatively low number
of binding sites (approximately 10,000–20,000) on each leukemia cell.
Furthermore, in a Phase I study of 213Bi-HuM195, decreased activity in
the liver and spleen was noted after multiple injections of small antibody
doses, suggesting first-pass binding to leukemia cells and CD33-positive
monocytes at these sites (Jurcic et al., 2002).

Serial gamma camera imaging and measurements of plasma, urine, bone
marrow, and tissue biopsy radioactivity are used to estimate absorbed radia-
tion doses to different organs and tumor sites based on the Medical Internal
Radiation Dose model (Society of Nuclear Medicine, 1988). Contours
around regions of interest, such as the liver, spleen, and vertebrae, are used
to calculate the activity at these sites. Kinetic curves can then be generated
and converted to percentage injected dose for each region. Cumulated activ-
ity within each region, Ã, is estimated by fitting a sum or difference of two
exponential expressions to time-activity data and integrating these expres-
sions. The estimated absorbed dose over an organ volume, DORG, is given by
the equation DORG ¼ Ã ��/MORG, where � is the mean energy emitted per
nuclear transition and MORG is the mass of the organ.

The validity of these predictions, however, is limited by the accuracy in
measuring activity using gamma camera imaging and by the inability to
visualize all sites of disease in patients. Single-photon emission computed
tomography (SPECT) can increase the accuracy of planar scintigraphy,
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especially when used in conjunction with computed tomography (Koral
et al., 1994; Sgouros et al., 1993a). Nevertheless, the quantitative value of
SPECT remains unknown. Models based on this dosimetric data can provide
information about radiation doses delivered to tissues not directly sampled
and also be used to estimate total tumor burden and tumor burden in
individual organs (Hamacher and Sgouros, 2001; Sgouros et al., 1993b).

Radioimmunotherapy with short-lived �-emitters such as 213Bi results
in markedly different pharmacology than with longer-lived �-emitters. With
longer-lived isotopes, pharmacokinetics are determined predominantly by
the biologic clearance of the antibody. The distribution of the antibody
within the first several minutes to hours after administration yields residence
times that are negligible in proportion to the overall residence times achieved
in target and normal organs. In contrast, for 213Bi, with its 46-min half-life,
20% of the total � emissions occur within the first 15 min of injection, and
after 3 h only 6% of the total emissions remain. Additionally, the higher
LET of � particles compared with that of � particles results in an relative
biological effectiveness (RBE) for cell sterilization of 3–7, which must be
considered in dosimetry estimates for �-particle immunotherapy (Sgouros
et al., 1999).

Given the high energy of � particles delivered over a short range, con-
ventional methodologies that estimate mean absorbed dose over a specific
organ volume might not always yield biologically meaningful information.
Although targeted cells might receive high absorbed radiation doses, adja-
cent cells might receive no radiation at all. Therefore, microdosimetric or
stochastic analyses that account for the spatial distribution of various cell
types and the distribution of � decays within the organ will be necessary to
estimate the absorbed dose to tumor cells and normal tissues more accurate-
ly. Because the geometric relationship between the radionuclide and
the target cell is not uniform, � particle hits cannot be assumed to be a
Poisson distribution. Several distributions have been modeled, and micro-
dosimetric spectra, expressed as specific energy probability densities, have
been calculated. Based on this work, methods have been developed to
perform basic microdosimetric assessments that account for the probability
of the number of hits and the mean specific energy from a single hit (Humm
et al., 1993).

VII. Radioimmunotherapy with
�-Particle Emitters

Most clinical radioimmunotherapy trials to date have used isotopes that
emit � particles; however, �-particle immunotherapy has been studied
in patients with myeloid leukemias more recently. The results of selected
radioimmunotherapy trials for leukemia are summarized in Table IV.
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TABLE IV Selected Clinical Trials of Radiolabeled Antibodies for Leukemia

Radiolabeled
antibody Disease

Isotope
dose

No. of
patients Results Comments Reference

131I-M195 Advanced AML,

MDS, blastic
CML

50–210

mCi/m2
24 CR in 3 of 8 patients

receiving BMT

5 Patients received autologous

BMT; 3 received allogeneic
BMT

Schwartz

et al., 1993

131I-M195,
131I-HuM195

Advanced

AML, MDS,
blastic CML

120–230

mCi/m2
30 24/25 Evaluable patients had

no evidence of leukemia;
long-term DFS in 3 patients

Used with Bu/Cy before

allogeneic BMT

Burke

et al., 2003

90Y-HuM195 Advanced AML 0.1–0.3

mCi/kg

19 13 Patients had reductions in

marrow blasts; 1 CR

Higher doses result in prolonged

myelosuppression

Jurcic

et al., 2000b
213Bi-HuM195 Advanced

AML, CMML
0.28–1

mCi/kg
18 14 Patients had reduction in

marrow blasts; no CRs
First demonstration of safety of

a-particle therapy
Jurcic

et al., 2002
213Bi-HuM195 AML 0.5–1.25

mCi/kg

15 2 CRs, 2 PRs, 2 marrow

remissions

Given after partial cytoreduction

with Ara-C

Burke

et al., 2002
131I-p67 AML 110–330

mCi
9 3 of 4 patients treated with

therapeutic doses relapsed
Given with Cy/TBI before

BMT; many patients had

unfavorable biodistribution

Appelbaum
et al., 1992

131I-BC8 Advanced
AML, ALL

76–612
mCi

44 7 of 25 patients with AML or
MDS and 3 of 9 patients

with ALL had long-term DFS

Given with Cy/TBI before
BMT

Matthews
et al., 1999

131I-BC8 AML in first

remission

101–263

mCi

24 18 Patients with long-term DFS Given with Bu/Cy prior

to allogeneic BMT

Matthews

et al., 1996
188Re-BW

250/183

High-risk AML, MDS 11.1 GBq

(mean)

36 45% DFS at median 18 months Given as part of preparative

regimen prior to BMT

Bunjes

et al., 2001
90Y-anti-Tac ATL 5–15 mCi 18 2 CRs, 7 PRs 6 Patients developed

HAMA

Waldmann

et al., 1995

Note: AML, acute myelogenous leukemia; MDS, myelodysplastic syndrome; CML, chronic myelogenous leukemia; CMML, chronic myelomonocytic

leukemia; ALL, acute lymphoblastic leukemia; ATL, adult T-cell leukemia/lymphoma; CR, complete remission; BMT, bone marrow transplantation;

DFS, disease-free survival; PR, partial remission; Bu, busulfan; Cy, cyclophosphamide; Ara-C, cytarabine; TBI, total body irradiation; HAMA, human

antimouse antibodies.



A. 131I-M195 and 131I-HuM195

The murine antibody M195 and its humanized counterpart HuM195
target CD33, a glycoprotein expressed by most myeloid leukemia cells as
well as committed myelomonocytic and erythroid progenitor cells (Co et al.,
1992; Tanimoto et al., 1989). Although murine M195 rapidly targets leuke-
mia cells in patients with AML, it does not have antileukemic activity in
humans and produces human antimouse antibody (HAMA) responses in
approximately 40% of patients (Scheinberg et al., 1991). Unlike M195,
HuM195 mediates complement-dependent and antibody-dependent cellular
cytotoxicity in vitro (Caron et al., 1992) and is not immunogenic in vivo
(Caron et al., 1994). In patients with APL, HuM195 can eliminate minimal
residual disease detectable by reverse transcription-polymerase chain reac-
tion (RT-PCR) amplification in 50% of patients (Jurcic et al., 2000a). In
patients with other subtypes of AML, however, HuM195 produces only
occasional complete remissions in patients with low leukemic burdens
(Caron et al., 1994, 1998; Feldman et al., 2003).

In a series of early studies, these antibodies were therapeutically la-
beled with 131I to increase their antileukemic activity. In a Phase I trial,
24 patients with relapsed or refractory myeloid leukemias were treated
with escalating doses (50–210 mCi/m2) of 131I-M195 (Schwartz et al.,
1993). Gamma camera images of the whole body demonstrated rapid up-
take of the 131I-M195 into the bone marrow, liver, and spleen. The radioiso-
tope was retained at these sites for at least 3 days. The maximum tolerated
dose was not reached, but profound myelosuppression occurred at 131I
doses more than 135 mCi/m2, necessitating bone marrow transplantation
in eight patients. Twenty-two patients had reductions in the percentage of
bone marrow blasts, and three achieved complete remissions. This study
demonstrated that 131I-M195 can deliver high radiation doses to the mar-
row with limited extramedullary toxicity and significant antileukemic
effects.

Based on these results, 131I-M195 and 131I-HuM195 were investigated
as part of a preparative regimen for bone marrow transplantation (Burke
et al., 2003). Thirty-one patients with overt relapsed or refractory AML,
accelerated or myeloblastic CML, or advanced myelodysplastic syndrome
(MDS) were treated with 131I-M195 or 131I-HuM195 (122-437 mCi) fol-
lowed by busulfan (16 mg/kg), cyclophosphamide (90 or 120 mg/kg), and
infusion of related-donor bone marrow. Estimated absorbed radiation doses
to the marrow ranged between 272 and 1470 cGy. Toxicities beyond
those observed with the busulfan/cyclophosphamide conditioning regimen
alone did not occur. Eight of 13 evaluable patients had decreases in bone
marrow blasts immediately after treatment with 131I-labeled anti-CD33
antibodies, and three patients remain in complete remission for 5þ to
8þ years following transplant.
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B. 90Y-HuM195

90Y offers several potential advantages to overcome the limitations
associated with 131I-labeled anti-CD33 antibodies. The higher energy,
longer-ranged � emissions of 90Y permit a lower effective dose than 131I.
The absence of � emissions allows large doses of 90Y to be given safely in the
outpatient setting. In a Phase I trial, 19 patients with relapsed or refractory
AML were treated with escalating doses of 90Y-HuM195 (0.1–0.3 mCi/kg),
given as a single infusion without marrow support (Jurcic et al., 2000b).
Biodistribution and dosimetry studies were performed by coadministration
of trace-labeled 111In-HuM195. Up to 560, 880, and 750 cGy were delivered
to the marrow, liver, and spleen, respectively. Despite these modest estimated
absorbed doses, myelosuppression was the dose-limiting toxicity. Transient
low-grade liver function test abnormalities were also seen in 11 patients. The
maximum tolerated dose of 90Y-HuM195 without stem cell rescue was
0.275 mCi/kg. Of 19 patients, 13 had reductions in bone marrow blasts.
All patients treated at the highest dose level had markedly hypocellular bone
marrow without evidence of leukemia up to 4 weeks after treatment.
One patient treated at the maximum tolerated dose achieved complete re-
mission lasting 5 months. Currently, 90Y-HuM195 is being investigated as
part of a reduced-intensity preparative regimen before allogeneic stem cell
transplantation in patients with CD33-positive leukemias.

C. 131I-p67

Investigators at the Fred Hutchinson Cancer Research Center studied
another 131I-labeled murine anti-CD33 antibody, p67, in patients with AML.
In a Phase I trial, nine patients were initially treated with trace-labeled doses of
131I-p67 (Appelbaum et al., 1992). While the isotope localized to the marrow
in most patients, residence times were relatively short (9–41 h), likely due to
rapid catabolism of the radioimmunoconjugate following internalization.
Only four patients had favorable biodistribution with greater uptake of 131I
in the marrow and spleen than in nonhematopoietic organs. Those patients
subsequently received therapeutic doses of 131I-p67 (110–330 mCi), cyclo-
phosphamide (120 mg/kg), and total body irradiation (TBI; 12 Gy), fol-
lowed by allogeneic bone marrow transplantation. Although the therapy
was well tolerated, three of the four patients eventually relapsed (Ruffner
and Matthews, 2000). Because of the unfavorable pharmacology and bio-
distribution of this construct, these investigators have since focused on the
anti-CD45 antibody BC8.

D. 131I-BC8

BC8 is a murine IgG1 antibody that targets CD45, a tyrosine phospha-
tase expressed by virtually all leukocytes, including myeloid and lymphoid
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precursors, mature lymphocytes, and myeloid and lymphoid blasts. Unlike
anti-CD33 antibodies, BC8 is not internalized after binding to cells
(Matthews et al., 1995). Radioimmunoconjugates targeting CD45 should
eliminate not only leukemic blasts but also normal leukocytes in the marrow,
limiting applications to the bone marrow transplant setting.

In a Phase I trial, 44 patients with advanced acute leukemia or MDS
initially received BC8 labeled with trace doses of 131I (Matthews et al., 1999).
Favorable biodistribution occurred in 37 patients (84%). Of these patients,
34 then received escalating therapeutic doses of 131I-BC8 (76–612 mCi)
followed by cyclophosphamide (120 mg/kg), TBI (12 Gy), and allogeneic
or autologous transplantation. Therapeutic doses of 131I-BC8 were calculat-
ed to deliver a specific absorbed dose to the normal organ that received the
highest dose in the dosimetry studies performed after the trace-labeled
injection. The maximum tolerated dose was an estimated absorbed dose of
10.5 Gy to the liver. At this dose, an average of 24 Gy and 50 Gy was
delivered to the marrow and spleen, respectively. Of the 25 patients with
AML or MDS, 7 remained alive and disease-free at a median follow-up of
65 months. Of the nine patients with ALL, three remained alive and disease-
free at 19, 54, and 66 months. Based on these results, a Phase I/II trial using
the preparative regimen of 131I-BC8, busulfan, and cyclophosphamide
in patients with AML in first remission is underway. In an encouraging
preliminary report, favorable biodistribution occurred in 90% of patients
(Matthews et al., 1996). Of 24 patients treated with therapeutic doses,
18 were alive and disease-free at a median follow-up of 42 months.

E. 188Re-Anti-CD66

A group at the Ulm University Hospital in Germany has investigated the
use of a murine anti-CD66 antibody labeled with 188Re as part of a prepar-
ative regimen before stem cell transplantation. 188Re (17-h half-life) is a
radiometal that emits both � particles and � rays, which facilitate biodis-
tribution and dosimetry studies. Because the glycoprotein CD66 is expressed
on myeloid cells but not on leukemic blasts, any antileukemic effect of anti-
CD66 must rely on ‘‘crossfire’’ resulting from the long range of the �
particles emitted by the decay of 188Re. In a pilot dosimetry trial, 12 patients
with advanced leukemias received 6.5–12.4 GBq (175–335 mCi) of 188Re-
anti-CD66 followed by a standard preparative regimen and T-cell-depleted
allogeneic transplantation (Seitz et al., 1999). Favorable biodistribution
occurred in most patients, and a median of 14 Gy were delivered to the
bone marrow (Kotzerke et al., 2000).

Subsequently, 36 patients with high-risk AML or MDS were treated with
188Re-anti-CD66 followed by one of three preparative regimens: TBI (12 Gy)
plus cyclophosphamide (120 mg/kg), busulfan (12.8 mg/kg) plus cyclophos-
phamide (120 mg/kg), or TBI plus thiotepa (10 mg/kg) and cyclophosphamide
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(120 mg/kg) (Bunjes et al., 2001). Of the patients, 31 received allogeneic
grafts, 1 received a syngeneic graft, and 4 received autologous grafts. Favor-
able biodistribution occurred in all patients. The mean therapeutic dose of
188Re was 11.1 GBq (300 mCi), and the median dose delivered to the bone
marrow was 14.9 Gy (range 8.1–28 Gy). In contrast to studies with 131I-
anti-CD45, in which the liver was the dose-limiting normal organ, the
normal organ receiving the highest dose of radiation after 188Re-anti-
CD66 was the kidney (median dose 7.2 Gy). Clinically, the administration
of 188Re-anti-CD66 did not result in additional toxicities beyond those
associated with conventional preparative regimens; however, nephrotoxici-
ty, possibly due to the radiation, occurred in six patients (17%) between 6
and 12 months after transplantation. At a median follow-up of 18 months,
disease-free survival was 45%. This study demonstrated that 188Re-anti-
CD66, like 131I- and 90Y-labeled anti-CD33 and 131I-anti-CD45 antibodies,
can deliver significant doses of radiation to the bone marrow with acceptable
toxicity. Whether preparative regimens that incorporate � particle radio-
immunotherapy improve outcomes compared with standard preparative
regimens remains to be determined by randomized clinical trials.

F. 90Y-Anti-CD25

The receptor for interleukin-2 (IL-2) consists of at least three subunits
called � (also known as Tac or CD25), �, and �. Anti-Tac is a murine
antibody that binds CD25, which is expressed on malignant cells in
human T-cell leukemia virus I (HTLV)-associated ATL. Eighteen patients
with ATL were treated with 90Y-anti-Tac (5–15 mCi) in a Phase I/II trial
(Waldmann et al., 1995). Patients who attained remission were eligible to
receive additional courses of therapy. Toxicities of 90Y-anti-Tac included
myelosuppression, transient hepatic toxicity, and transient proteinuria; in
addition, one patient died from unexplained cardiac asystole 23 days after
treatment. HAMA responses developed in six patients. Partial remissions,
lasting a mean of 9 months, occurred in 7 patients, and complete remissions
were seen in 2 of the 16 evaluable patients. One of the two patients in
complete remission died from secondary AML 3 years after treatment with
90Y-anti-Tac. At autopsy, evidence of persistent ATL was found in the skin.

VIII. Radioimmunotherapy with �-Particle Emitters _________________________________________________________________________________________________________________________________________________________

The high energy and short range of � particles offer the possibility of
more efficient and selective killing of tumor cells. Therefore, to increase the
antitumor activity of native monoclonal antibodies but avoid the nonspecific
cytotoxicity of �-emitting radionuclides, �-particle immunotherapy has
been investigated.
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A. Preclinical Studies

In a number of different rodent xenograft models, treatment with
monoclonal antibodies labeled with � particle emitters has prolonged sur-
vival compared with relevant controls (Horak et al., 1997; Macklis et al.,
1988; McDevitt et al., 2000, 2001; Zalutsky et al., 1994). In one of the
first reports suggesting the feasibility of this approach, 212Bi conjugated to
the tumor-specific antibody 103A demonstrated activity against murine
erythroleukemia (Huneke et al., 1992). The results of many of these studies
support the hypothesis that �-particle radioimmunotherapy might be more
effective in the treatment of small-volume disease than in the treatment of
bulky tumors. For example, administration of 212Bi-anti-Tac after inocula-
tion of nude mice with a CD25-expressing lymphoma cell line led to pro-
longed tumor-free survival and prevented development of leukemia in some
animals, whereas treatment of established tumors failed to produce
responses (Hartmann et al., 1994). Similarly, in spheroid models, �-particle
therapy has been more effective in reducing the volume of smaller spheroids
compared with larger ones (Ballangrud et al., 2001; Kennel et al., 1999;
Langmuir et al., 1990). In most of the animal models in which �-emitters
and �-emitters have been directly compared, �-emitters have been more
effective in preventing tumor growth and prolonging survival (Andersson
et al., 2001; Behr et al., 1999).

213Bi-labeled antibodies to CD45 (Sandmaier et al., 2002) and the T-cell
receptor (TCR) �� (Bethge et al., 2003) have been used for immunosuppres-
sion before nonmyeloablative bone marrow transplantation in a canine
model. Both 213Bi-labeled antibodies, when given alone prior to transplanta-
tion and followed by additional immunosuppression with mycophenoloate
mofetil and cyclosporine, allowed for prompt engraftment of transplanted
marrow and resulted in stable mixed chimerism after transplantation. Toxi-
cities included transient myelosuppression and liver function abnormalities.
The high activities of 213Bi (at least 2 mCi/kg) required for engraftment,
however, might limit the use of this treatment in humans.

B. 213Bi-HuM195

In vitro, 213Bi-HuM195 killed cells expressing CD33 in a dose-
dependent and specific-activity-dependent fashion (McDevitt et al.,
1999a). Up to 10 mCi/kg of 213Bi-HuM195 could be injected intravenously
into BALB/c mice without significant toxicity (Nikula et al., 1999). Based on
these preclinical studies, a Phase I clinical trial of 213Bi-labeled HuM195 was
performed in patients with advanced myeloid leukemias (Jurcic et al., 2002).
Eighteen patients with relapsed or refractory AML or chronic myelomono-
cytic leukemia were treated with 0.28–1.0 mCi/kg of 213Bi-HuM195 in
three to seven fractions over 2–4 days. Myelosuppression occurred in all
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patients, and transient minor liver function abnormalities occurred in
six patients. Gamma camera images demonstrated uptake of 213Bi in the
bone marrow, liver, and spleen within 10 min of administration without
significant uptake in any other organs, including the kidneys, which are
known to be avid for free bismuth. Because of low whole-body radiation
doses, absorbed dose ratios between the marrow, liver, and spleen and the
whole body were 1000-fold higher than those seen with �-emitting HuM195
constructs in similar patients. Of 15 evaluable patients, 14 (93%) had
reductions in circulating blasts, and 14 of 18 (78%) evaluable patients
had reductions in the percentage of bone marrow blasts. No complete
remissions occurred, indicating the difficulty of targeting one to two 213Bi
atoms to each leukemic blast at the specific activities used in this trial.

Because � particle immunotherapy is likely to be most useful in the treat-
ment of small-volume disease, a subsequent Phase I/II study was undertaken
in which patients were first treated with chemotherapy to achieve partial
cytoreduction of the leukemic burden followed by 213Bi-HuM195 (Burke
et al., 2002). To date, 15 patients with AML have been treated with sequen-
tial cytarabine (200 mg/m2/day) and 213Bi-HuM195 (0.5–1.25 mCi/kg).
Prolonged myelosuppression was dose limiting, and the maximum tolerated
dose was 1 mCi/kg. Among the nine patients who received doses of 1 mCi/
kg or higher, two patients achieved complete remissions, two had partial
remissions, and two had reductions in bone marrow blasts to less than 5%
with incomplete recovery of peripheral blood counts. Although these results
are preliminary, this study demonstrates that sequential cytarabine and
213Bi-HuM195 can be given safely and can lead to complete remissions in
patients with advanced AML.

C. 225Ac Atomic Nanogenerators

Over its decay, 225Ac emits four � particles and can be conjugated to a
variety of antibodies by using derivates of DOTA. Therefore, 225Ac-DOTA
can act as an atomic nanogenerator, delivering an �-particle cascade to
an individual cancer cell when coupled to an internalizing antibody. In
initial toxicity studies, up to 15 �Ci/kg could safely to given to BALB/c
mice by intraperitoneal injection. In nude mice bearing prostate carcinoma
xenografts, single nanocurie doses of 225Ac-J591 directed against prostate-
specific membrane antigen decreased prostate-specific antigen levels, pro-
longed survival compared with controls, and cured a substantial proportion
of animals. Similarly, in a disseminated lymphoma mouse model, treat-
ment with 225Ac-anti-CD19 improved survival compared with controls
(McDevitt et al., 2001). Based on these preclinical results, a Phase I trial of
225Ac-labeled HuM195 in patients with advanced myeloid leukemias is
planned.
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D. Pretargeted Approaches

To improve tumor-to-normal tissue dose ratios, a novel pretargeting
strategy for radioimmunotherapy has been developed that takes advantage
of the rapid, high-affinity, and specific binding between streptavidin and
biotin (Axworthy et al., 2000). A monoclonal antibody or fusion protein is
first conjugated to the tetravalent streptavidin molecule and infused intrave-
nously. Then, a biotinylated N-acetylgalactosamine-containing clearing
agent is given to remove excess antibody–streptavidin conjugate from the
bloodstream. In this step, the biotin component of the clearing agent binds
to the streptavidin portion of the antibody construct, and galactose receptors
on hepatocytes remove the complexes from the circulation. Finally, thera-
peutically radiolabeled biotin is administered and binds to the pretargeted
antibody–streptavidin conjugate on target cells. Unbound radiolabeled
biotin is rapidly excreted in the urine.

Such a pretargeting approach has been applied to a mouse model of ATL
(Zhang et al., 2002). After treatment with humanized anti-Tac-streptavidin
and the clearing agent, immunodeficient mice with human ATL received
DOTA-biotin labeled with the �-emitter 213Bi or the �-emitter 90Y. Treat-
ment with 213Bi resulted in reductions in the concentrations of surrogate
tumor markers human �2-microglobulin and soluble CD25 and improved
survival compared with controls. Treatment with 90Y, however, did not
improve survival compared with controls. Mice treated with 213Bi by the
pretargeting approach survived longer than those treated with 213Bi labeled
directly to anti-Tac. Despite these promising results, no animals were cured
by a single course of therapy. This approach was also studied using an anti-
Tac single-chain Fv-streptavidin fusion protein followed by radiolabeled
biotin to treat ATL in xenografted mice (Zhang et al., 2003). With 90Y-
DOTA-biotin, all 10 lymphoma-bearing mice were cured. Significant anti-
tumor effects were also seen after administration of 213Bi-DOTA-biotin to
leukemic mice, and when combined with immunotherapy using unconjugat-
ed humanized anti-Tac, 7 of 10 mice were cured.

IX. Summary

Unlabeled monoclonal antibodies have become essential components of
the therapeutic arsenal for cancer. Many unlabeled monoclonal antibodies,
however, lack sufficient antitumor activity to provide meaningful responses.
To increase their efficacy, antibodies can be used to deliver radioisotopes to
target cells. To date, most studies in leukemia have used the �-emitters 131I,
90Y, and 188Re labeled to anti-CD33, anti-CD45, anti-CD66, and anti-CD25
antibodies. These radioimmunoconjugates can eliminate large burdens of
leukemia and can be given safely in conjunction with standard preparative
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regimens prior to marrow or stem cell transplantation. Whether they
can improve outcomes compared with conventional preparative regimens
remains to be determined by randomized trials. � Emitters have promise in
the treatment of small-volume disease. 213Bi-labeled anti-CD33 has antileu-
kemic activity and can produce complete remissions following treatment
with single-agent cytarabine in some patients with advanced AML. Further
advances in radioimmunotherapy will require investigation of more
potent isotopes such as 225Ac, new methods of isotope delivery such as
pretargeting, treatment of patients with less advanced disease, and eventu-
ally randomized trials comparing radioimmunotherapy to more standard
approaches.

References

Ali, S. A., Warren, S. D., Richter, K. Y., Badger, C. C., Eary, J. F., Press, O. W., Krohn, K. A.,
Bernstein, I. D., and Nelp, W. B. (1990). Improving tumor retention of radioiodinated

antibody: Aryl carbohydrate adducts. Cancer Res. 50(Suppl.), 783s–788s.

Andersson, H., Palm, S., Lindegren, S., Back, T., Jacobsson, L., Leser, G., and Horvath, G.
(2001). Comparison of the therapeutic efficacy of 211At- and 131I-labelled monoclonal

antibody MOv18 in nude mice with intraperitoneal growth of human ovarian cancer.

Anticancer Res. 21, 409–412.

Appelbaum, F. R., Matthews, D. C., Eary, J. F., Badger, C. C., Kellogg, M., Press, O. W.,
Martin, P. J., Fisher, D. R., Nelp, W. B., Thomas, E. D., and Bernstein, I. D. (1992). The

use of radiolabeled anti-CD33 antibody to augment marrow irradiation prior to marrow

transplantation for acute myelogenous leukemia. Transplantation 54, 829–833.

Axworthy, D. B., Reno, J. M., Hylarides, M. D., Mallett, R. W., Theodore, L. J., Gustavson,
L. M., Su, F., Hobson, L. J., Beaumier, P. L., and Fritzberg, A. R. (2000). Cure of human

carcinoma xenografts by a single dose of pretargeted yttrium-90 with negligible toxicity.

Proc. Natl. Acad. Sci. USA 97, 1802–1807.
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I. Chapter Overview _______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

In the past few years, clinical trials have demonstrated the therapeutic
benefit of a new generation of agents that use monoclonal antibodies and
growth factors to target tumor cells, providing unprecedented specificity.
The recent approval by the Food and Drug Administration (FDA) of several
targeted therapeutic agents has encouraged preclinical and clinical develop-
ment of novel targeted therapeutic approaches by numerous commercial
and academic groups. This review highlights several of these promising
approaches specifically targeting leukemia and lymphomas.

II. Introduction

Almost 25 years after the discovery of monoclonal antibodies, targeted
therapeutics based on these agents are finally beginning to realize their initial
promise with the approval of numerous agents and with many more agents
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currently under development. Although initially developed to much fanfare
in the early 1980s with the advent of murine monoclonal antibodies and
hybridoma technology, the clinical use of murine antibodies never really
demonstrated clinical significance for imaging and therapy because of pro-
blems associated with their immunogenicity, which limited repeated admin-
istration, and because of technological limitations, which limited the design
of these agents. Nonetheless, the numerous early clinical studies attempting
to use antibodies as cell-targeting carriers for isotopes, drugs, and toxins
were extremely useful in that they provided an insight into and an under-
standing of the problems facing targeted delivery approaches (soluble anti-
gen, immunogenicity, in vivo stability, in vivo delivery characteristics). The
fairly recent application of molecular biology techniques to the antibody
field has resulted in next-generation therapeutic agents such as recombi-
nant, chimeric, human, and humanized antibodies and led to the eventual
development of the current class of therapeutic agents.

Numerous radioisotopic, drug, and toxin payloads have been employed
in the construction of therapeutic agents targeting leukemia-associated or
hematologically restricted antigens. There are at present several agents
approved and under development containing radioisotopes for radioimmu-
notherapeutic applications for leukemic and lymphoma applications
(reviewed in this volume). In addition, groups have used other payloads
containing small molecules such as doxorubicin (Messinger et al., 1996;
Oldham et al., 1988; Trail et al., 2003) calichiemaicin (reviewed later),
and protein toxins such as diptheria toxin (DI) (Alexander et al.,
2000; Feuring-Buske et al., 2000; Frankel et al., 2003a; Nichols
et al., 1997; Sweeney et al., 1998; Thorburn et al., 2003), pokeweed anti-
viral protein (PAP) (Chu et al., 1990; Gunther et al., 1993a; Myers and
Uckun, 1995), saporin (Bregni et al., 1989; Flavell et al., 2001; Siena et al.,
1989; Tazzari et al., 1993; Terenzi et al., 1996) ricin A chain (Amlot et al.,
1993; Conry et al., 1995; Engert et al., 1990, 1995; Ghetie et al., 1992;
Huang et al., 1993; Kreitman, 2001), and gelonin (reviewed later; Harris
et al., 1991; Ishiguro et al., 1992; Shin et al., 2003). In addition to these
approaches, other investigators have used proapoptotic enzymatic
payloads, such as human RNase (Huhn et al., 2001; Psarras et al., 2000),
for developing constructs with reduced potential for immunogenicity.

III. ‘‘Targets of Opportunity’’ in Leukemia
and Lymphoma

A. CD22

The CD22 antigen is expressed on the surface of normal human B cells
and some neoplastic B-cell lines and tumors. Previous cross-blocking studies
using a panel of monoclonal anti-CD22 antibodies have defined four epitope
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groups, termed A–D (Engel et al., 1995; Mason et al., 1990; Toba et al.,
2002; Zola et al., 1987). Several groups initially identified immunotoxins
composed of anti-CD22 antibodies chemically conjugated to ricin A-chain
(RTA) (Ghetie et al., 1988; May et al., 1986; Shen et al., 1988). These agents
demonstrated impressive cytotoxicity against target cells at IC50 concentra-
tions well in the picomolar range. Phase I clinical trials of anti-CD22-RTA
immunotoxins demonstrated evidence of both toxicity and clinically rele-
vant antitumor effects in resistant patients (Amlot et al., 1993; Sausville
et al. 1995; Vitetta et al., 1991). In addition to immunotoxins containing
RTA, other investigators have generated and tested anti-CD22 immunotox-
ins containing the toxins gelonin (French et al., 1995) and saporin
(Bérgamaschi et al., 1996; Bonardi et al., 1993). More recently, Hursey
et al. (2002) demonstrated that conjugation of anti-CD22 antibodies with
human RNase can cause specific and potent cytotoxicity to lymphocytes
in vitro and might represent a novel class of immunotoxin platforms that
potentially avoid problems of toxicity and immunogenicity associated with
some plant or bacterial toxins.

A group under the direction of Dr. Ira Pastan at the National Cancer
Institute (NCI) has generated numerous immunotoxins and fusion con-
structs targeting a variety of cell-surface antigens that contain a recombinant
version of the toxin Pseudomonas exotoxin (PE) (Husain et al., 1999; Joshi
et al., 2002; Lorimer et al., 1995; Pastan, 2003; Rozemuller et al., 2001;
Shinohara et al., 2002). Studies from this group have demonstrated that
fusion toxins targeting CD22 display impressive cytotoxicity in vitro and
in vivo in human tumor models (Kreitman et al., 1999, 2000; Mansfield
et al., 1996, 1997a,b). In addition, clinical trials of CD22 fusion toxins have
demonstrated clinical responses in chemotherapy-refractory patients with
hairy cell leukemia (Kreitman and Pastan, 2003; Kreitman et al., 2001).

B. CD33

The CD33 antigen is expressed on most early myeloid cells (Kristensen
and Hokland, 1991; Liu et al., 1991; Scheinberg et al., 1989; Simmons and
Seed, 1988; Tanimoto et al., 1989) and by more than 90% of cases of acute
myeloid leukemia (AML) and in virtually all cases of chronic myeloid
leukemia (CML). This antigen is found on myeloid leukemia blasts as well
as on myeloid progenitor cells, but it is not expressed in detectable amounts
on the ultimate hematopoietic progenitor stem cell. The CD33 antigen
appears to be expressed at a density of approximately 10,000–100,000
sites per cell (Griffin et al., 1984; Robertson et al., 1992; Scheinberg et al.,
1989; Tanimoto et al., 1989), but does not appear to be expressed by cells
outside the hematopoietic system (Feuring-Buske et al., 2000). Clinical
studies by Scheinberg et al. (1989) with an unmodified recombinant murine
anti-CD33 antibody in patients with AML demonstrated that the antibody
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quickly bound to leukemia cells and that the antigen–antibody complex
rapidly internalized following cell binding. However, when administered
to patients with overt leukemia, unmodified antibody resulted in transient
decreases in peripheral blast counts but not in sustained response (Caron
et al., 1998; Feldman et al., 2003; Jurcic et al., 2000). As reviewed in another
chapter, Scheinberg et al. (1989) are developing radioimmunotherapeutic
agents targeting the CD33 antigen and that have significant clinical promise.
In addition to this approach, several other agents are under development and
approved that target the CD33 antigen, as described next.

1. Gemtuzumab Ozogamicin

Gemtuzumab ozogamicin (Mylotarg1) is a classical conjugate of a
humanized anti-CD33 antibody and the DNA-damaging agent calicheami-
cin. Calicheamicin is a potent cytotoxic agent that causes double-strand
DNA breaks, resulting in cell death (Dedon et al., 1993; Drak et al., 1991;
Zein et al., 1988). When conjugated to monoclonal antibodies specific for
tumor-associated antigens, calicheamicin exerts strong antigen-specific anti-
tumor effects in vitro and against human tumor xenografts in preclinical
models (Bernstein, 2002; Nabhan and Tallman, 2002; Voutsadakis, 2002).
Numerous clinical trials with this agent have demonstrated efficacy in
CD33-positive leukemic patients (Douer, 2002; Roboz et al., 2002;
Stadtmauer, 2002; Viele, 2002; Voutsadakis, 2002).

2. HuM195/rGel

Gelonin toxin, originally isolated from the seeds of Gelonium multi-
florum, is a single polypeptide chain and is in a class of molecules designated
as ribosome-inhibitory proteins (RIPs) that have N-glycosidase activity.
Another molecule in this class of proteins, ricin, is composed of an enzymat-
ically active A chain (RTA) linked to a lectin-binding B chain (RTB), which
serves as an indiscriminate cell-binding and internalization vehicle for the
A-chain component. In contrast, gelonin contains no lectin-binding com-
ponent (Falasca et al., 1982; Stirpe et al., 1980; Thorpe et al., 1981). The
gelonin molecule is, therefore, relatively nontoxic to intact cells, and numer-
ous chemical conjugates of gelonin have been reported to have impressive
antitumor activities both in vitro and in vivo (Atkinson et al., 2001;
Bolognesi et al., 2000; Delprino et al., 1993; Gosselaar et al., 2002; Marcil
et al., 1993; Rosenblum et al., 1996; Yazdi and Murphy, 1994). Several
years ago, our laboratory reported on the cloning, expression, and biologic
activity of recombinant gelonin (rGel) (Rosenblum et al., 1995), which
has cytotoxic activity equivalent to that of natural gelonin (nGel) and
improved pharmacokinetics in vivo probably due to the absence of high-
level carbohydrate structures that can result in mistargeting in vivo
(Rosenblum et al., 1999). In addition, fusion constructs and chemical con-
jugates of rGel have preserved N-glycosidase activity without the necessity
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of release from the cell-targeting protein carrier. This is in contrast to other
toxins such as RTA, which requires intracellular release from its protein
carrier to become enzymatically active (O’Hare et al., 1990). Although both
RTA and rGel both operate as N-glycosidases, there is only �30% sequence
homology between these two molecules and there are other subtle biological
differences in the intracellular behavior of these two proteins (McGrath
et al., 2003).

We constructed a leukemia-selective immunotoxin by linking rGel to the
recombinant humanized anti-CD33 antibody HuM195 (McGrath et al.,
2003; McGraw et al., 1994; Pagliaro et al., 1998; Xu et al., 1996). The
schematic representation for this conjugate is shown in Fig. 1. This is a
covalent, chemical conjugate of the antibody and the toxin enabled using a
disulfide linkage. The resulting conjugate material is a 1:1 molar ratio of
antibody to toxin (�190 kDa). ELISA studies demonstrate that the anti-
body-binding activity of the immunoconjugate was essentially unchanged
compared to that of unmodified antibody. Analysis of the biologic activity of
the rGel component in a cell-free protein synthesis assay demonstrated that
the activity of the toxin component of the immunotoxin was also essentially
unchanged and fully functional (Fig. 2). Confocal imaging that examines the
internalization of the rGel toxin into HL-60 cells (Fig. 3) demonstrated that
by 30 min of exposure, a significant proportion of cells internalized this
agent into the cytoplasm. Within 4 h, internalization of the toxin into the
cellular cytoplasm appeared to be maximal. We then evaluated the ability of
this conjugate to inhibit cellular protein synthesis. Figure 4 demonstrates
that the inhibitory concentration for the HuM195–rGel immunotoxin on

FIGURE 1 Humanized anti-CD33 antibody HuM195. Schematic representation of HuM195–
rGel chemical conjugate. This is a 1:1 molar ratio of antibody to toxin.
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HL60 cells was approximately four logs lower (2 � 10�10 M) than that of
free gelonin toxin (IC50 of 5 � 10�6 M). We next examined the cytotoxicity
of various immunotoxin concentrations on fresh tumor isolates from a
variety of patients. As shown in Figs. 5 and 6, there was a wide variation
in the dose–response curves of tumor cells isolated from different patients.
On further analysis (Fig. 6), the IC50 values appeared to be proportional
to the number of CD33-positive cells in the isolate. Surprisingly, the IC50

values also appeared to be within 20- to 30-fold of that found for the HL60
cell line.

We also evaluated HuM195–rGel in vivo in a nude mouse model of
human myeloid leukemia (HL60). Nude mice were injected intraperitoneal-
ly with 107 log-phase HL60 human leukemia cells (Fig. 7 and Table I)
10 days prior to the start of intraperitoneal HuM195–rGel treatments.
HuM195–rGel demonstrated significant tumor-suppressive activity in this
model. All mice treated with saline, rGel alone, or HuM195 plus uncon-
jugated rGel (at 10 or 14 days after transplantation) had rapid tumor
growth or early deaths, but 50% of mice treated with HuM195–rGel failed
to develop leukemic tumors for 5 months and the 50% had significantly
retarded tumor growth after treatment with HuM195–rGel. Mice trea-
ted at later times (28 days after transplantation of leukemia cells) also
showed delayed leukemia cell growth, but none was cured. These data
show that HuM195–rGel can target leukemia cells in vivo and can result
in pronounced antileukemic effects.

FIGURE 2 Inhibition of cell-free protein synthesis by gelonin and HuM195–rGel. A rabbit

reticulocyte protein synthesis assay, both gelonin toxin and the HuM195–rGel conjugate were
able to inhibit protein synthesis at concentrations of �10�11M. This suggests that the gelonin

component of the HuM195–rGel conjugate has preserved biological activity compared with

that of free gelonin.
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Phase I clinical studies of the HuM195–rGel immunotoxin are currently
ongoing at the M. D. Anderson Cancer Center. The Phase I design for the
intravenous administration study is a 1-h infusion of the drug every 72 h
(twice per week) for 14 days (four doses total) followed by a 14-day obser-
vation period. The total dose levels are 10, 12, 18, 28, 40, and 60 mg/m2.
To date, 22 patients have been treated at doses up to 40 mg/m2. Fever and
chills have been noted with infusion of HuM195–rGel (Talpaz et al., 2003).
Pharmacokinetic studies (Fig. 8) demonstrate that the intact immunotoxin
can reach levels of �1 �g/ml in serum immediately after the end of the
drug infusion (at the 28 mg/m2 dose level). Drug levels for the immunotoxin
appeared to be within or exceed the IC50 value range for the immu-
notoxin against cell lines and patient isolates. Thus far, we have neither
encountered major dose-limiting toxicity nor noted any vascular leak

FIGURE 3 Internalization of HuM195–rGel on HL60 cells. Log-phase HL60 cells were

treated with HuM195–rGel, saline, or gelonin itself. After various time periods, the cells
were washed and then acid treated to remove cell-surface bound immunotoxin. The cells were

fixed, permeabilized, and rabbit antigelonin polyclonal antibodies were employed to visualize

the internalized toxin. Internalized toxin was observed as early as 30 min after exposure to the

HuM195–rGel. Internalization appeared maximal 4 h after cell exposure. There was no
internalization of gelonin observed after incubation for up to 24 h.
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FIGURE 4 Inhibition of cellular protein synthesis by HuM195–rGel and rGel. Incorporation

of 3H-leucine was assessed in HL-60 cells treated with various doses of HuM195–rGel (closed
squares) and recombinant gelonin (open squares). The inhibition of cellular protein synthesis

was approximately 1000-fold more efficient with HuM195–rGel than with equivalent molar

concentrations of the free gelonin toxin.

FIGURE 5 Dose–response curves of HuM195–rGel on patient isolates. Tumor cells were

isolated from six different patients and were treated ex vivo with various doses of HuM195–rGel.
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syndrome, which has been observed with administration of RTA-based
immunotoxins (Baluna and Vitetta, 1999; Lindstrom et al., 1997) and
appears to be the dose-limiting toxicity associated with these agents. Our
Phase I study has demonstrated evidence of biological effects in several
patients, such as reduction in peripheral blast cells and reduction of leukemic
blast cells in the bone marrow. As far as we are aware, this is the first reported
clinical study of a gelonin-based immunotoxin. Although these early findings
are encouraging, this trial is still ongoing, and the results described should be
considered preliminary findings.

C. CD38

One of the central problems in the development of targeted therapeutic
agents is the heterogenous expression of the target antigen within the tumor.
This could potentially lead to ineffectiveness of the immunotoxin after
multiple courses of therapy because of rapid outgrowth of tumor cells that
express reduced antigen density. The CD38 antigen is a cell-surface glyco-
protein (46 kDa) whose expression is generally restricted to lineage-
committed lymphoid, erythroid, and myeloid precursor cells in the bone

FIGURE 6 Cytotoxicity of HuM195–rGel on patient isolates-correlates with CD33

expression. The IC50 values for the HuM195–rGel immunotoxin on various patient isolates

were assessed compared with the relative expression of CD33 on tumor cells. Increasing

cellular CD33 expression appeared to directly correlate with increasing sensitivity to the
cytotoxic effects of the immunotoxin.
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marrow. In the lymphoid cell lineage, CD38 expression continues through
the early stages of T- and B-cell development. Mature resting lymphocytes
express undetectable levels of CD38, but the expression is highly upregulated
during activation and differentiation of B cells into plasma cells. Trans-
formed counterparts of normal hematopoietic cells, such as myeloid leuke-
mia, lymphoma, and myeloma, express high levels of the CD38 antigen.

FIGURE 7 Effect of HuM195–rGel on HL-60 tumor Growth in vivo. Treatment of mice
bearing HL–60 subcutaneous tumors with one dose of HuM195–rGel (IV) was demonstrated

to effectively suppress tumor outgrowth for approximately 6 weeks after administration. In

addition, treatment of mice bearing well-established tumors (Panel B) also produced dramatic

suppression of tumor growth compared with that of controls.
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We have previously reported that retinoids in general and retinoic acid
(RA) in particular induce high levels of CD38 expression in several myeloid
and acute promyelocytic leukemia (APL) cell lines. We reasoned that
RA pretreatment and subsequent upregulation of CD38 could provide aug-
mented sensitivity to immunotoxins and might additionally preclude the
development of cellular resistance to therapeutics targeting CD38.

FIGURE 8 Pharmacokinetics of HuM195–rGel. The plasma clearance of intact HuM195–rGel
was assessed in patients after IV administration. These data represent three patients at each

dose level and triplicate analysis of each sample.

TABLE I Tumor Size 7 Weeks After HuM195–rGel Treatment

HuM195–rGel

Groups Control rGel HuM195 þ
rGelb

At 10
days

At 14
daysa

At 28
daysa

Mouse 1 420 648 342 No tumor No tumor 96

Mouse 2 525 696 400 No tumor No tumor 160
Mouse 3 900 760 550 49 81 180

Mouse 4 1225 803 784 96 117 380

Mouse 5 Death at
6 weeks

N/Ac Death at
6 weeks

N/A N/A N/A

Mean � SD 768 � 398 727 � 68 519 � 197 36 � 46 50 � 59 204 � 123

a These mice received six injections instead of three.
b Injected together, but not conjugated to each other.
c N/A: These groups had four mice only.
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We generated an anti-CD38 immunotoxin composed of the murine
anti-CD38 antibody IB4 chemically conjugated to rGel toxin (Mehta et al.,
2004). The IB4–rGel chemical conjugate alone was capable of killing HL60
cells in culture. Coadministration of as little as 1 nM RA was effective in
inducing substantial cytotoxicity (>90%) of leukemia cell clones. More
importantly, leukemic blast cells isolated from myeloid leukemia patients
also responded to the combination of immunotoxin and RA treatment
ex vivo. Finally, the augmented cytotoxic effects of RA and immunotoxin
were also observed on a multidrug-resistant variant of the HL60 cell line,
suggesting that patients heavily pretreated with chemotherapeutic agents
might be excellent candidates for such a combined therapeutic approach.

D. IL-2 Receptor

Studies by Waldmann (1987a,b) have demonstrated that resting T cells
do not express interleukin-2 (IL-2) receptors, but receptors are rapidly
expressed on T cells following interaction of the antigen-specific T-cell
receptor complex with appropriately processed and presented antigens.
In addition, IL-2 receptors are upregulated on many T-cell leukemias.
DAB486IL-2 is a recombinant fusion toxin in which the native receptor-
binding domain of diphtheria toxin has been replaced with human IL-2. It
selectively binds and intoxicates only cells that bear the high-affinity recep-
tor for IL-2 (Kiyokawa et al., 1989; Strom et al., 1993; Woodworth and
Nichols, 1993). In the first clinical study of a genetically engineered ligand
fusion-toxin, 18 patients with chemotherapy-resistant IL-2 receptor ex-
pressing hematologic malignancies were treated with escalating doses
of DAB486IL-2 (LeMaistre et al., 1993). The maximal tolerated dose of a
daily intravenous bolus of DAB486IL-2 was determined to be 0.1 mg/kg/day
for 10 doses. The dose-limiting toxicities were asymptomatic, reversible
elevations of hepatic transaminases without changes in other tests of liver
function. Other mild reversible side effects noted were rash, nausea, elevated
creatinine, chest tightness, and fever. Pharmacokinetic analysis of this
unique agent showed a monophasic clearance of 5.8 � 0.7 min with
peak levels of 3549 � 1041 mg/ml at the 0.1 mg/kg dose. Approximately
50% of patients were found to develop an antibody response to DT or
DAB486IL-2; however, the presence of such antibodies did not preclude
patients from experiencing an antitumor response, as four of the six patients
with antitumor effect had detectable antibody titers. Although this was a
Phase I trial designed to define the safety of DAB486IL-2, remissions were
observed in three patients lasting from 5 to more than 18 months. The ability
to achieve significant tumor reductions in this group of heavily treated
patients is encouraging and suggests that additional trials are warranted in
hematologic malignancies. Follow-up studies were performed with a fusion
construct containing a more shortened version of the toxin and designated
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DAB(389)IL2 (Ontak) (Frankel et al., 2003b; Kreitman, 2003). These stud-
ies demonstrated that this agent has biologic activity in the absence of
significant toxicity. As a result of these studies, Ontak is approved for
clinical use in advanced-stage cutaneous T-cell lymphoma.

E. GMCSF/DT

The receptor for granulocyte-macrophage colony-stimulating factor
(GMCSF) is upregulated on the majority of AML blast cells and is poorly
expressed on early normal hematopoietic stem cells. This makes GMCSF
and its receptors excellent potential targets for therapy of AML. For this
reason, a variety of growth-factor/toxin constructs composed of GMCSF
and either truncated DT (Bendel et al., 1997; Chan et al., 1995; Frankel
et al., 1997; Hall et al., 1998) or recombinant ricin (Burbage et al., 1997)
have been generated and tested. This agent is extremely potent, with IC50

values in the picomolar range (Hogge et al., 1998). Preclinical studies
demonstrate that serum from patients contain preformed concentrations
of anti-DT antibodies, albeit at levels that should not preclude therapy
with this agent (Hall et al., 2001, 2002). Recently completed Phase I
studies by Frankel et al. (2002) have demonstrated that this agent can be
safely administered at doses up to 4 �g/kg/day, but hepatic toxicity was
observed at higher doses. Complete and partial remissions were observed
in 3 of 31 patients who were all treated at doses above the maximum
tolerated dose. These data suggest that this targeted therapeutic agent has
potential therapeutic utility if the therapeutic index of this protein can be
improved.
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Antibody Therapy of Lymphoma

I. Chapter Overview

Studies in the early 1980s with anti-idiotype monoclonal antibodies
(mAbs) provided the clinical proof of concept that mAbs could be used to
treat lymphoma. It was not until the mid-1990s with the development of the
chimeric anti-CD20 mAb rituximab that clinical therapy of lymphoma with
mAbs became practical. Early studies with rituximab demonstrated signifi-
cant, if transient, clinical responses in approximately half the patients trea-
ted. Modification of the initial weekly four-dose treatment regimen resulted
in modest improvement in response rates and duration of response, although
the clinical significance of these changes remains unclear. Antilymphoma
mAbs that recognize other target antigens have been evaluated clinically.
Although each demonstrates unique and interesting characteristics, the
value added beyond rituximab remains undefined at the present time.
A number of mechanisms of action, including signaling-induced apoptosis,
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antibody-dependent cellular cytotoxicity, and complement-mediated cyto-
toxicity, have been identified that could contribute to the observed antilym-
phoma effects of mAbs. Growing evidence suggests that multiple interacting
mechanisms are likely involved. Radioimmunotherapy with iodine-131
(131I)- and yttrium-90 (90Y)-labeled anti-CD20, and combinations of
mAbs and chemotherapy, might offer advantages over monotherapy with
mAbs alone. The studies comparing mAb monotherapy, radioimmunother-
apy, and combination therapy are still relatively young, and further follow-
up and research are needed before the true clinical value of these approaches
is known. In addition, research that allows for the rational design of the next
generation of mAb-based regimens is needed before we can take full advan-
tage of the revolution in management of lymphoma that has resulted from
mAb-based therapy.

II. History

A. Dawn of Antibody Therapy

It has been over 100 years since Paul Ehrlich coined the term antibody
and suggested that these highly specific proteins could serve as ‘‘magic
bullets’’ that would allow for targeted therapy without toxicity (Ehrlich,
1906). In the first half of the twentieth century, immunotherapy of a number
of infectious diseases led to major breakthroughs that had an immense
impact on public health. However, successful cancer immunotherapy
in general, and antibody-based therapy in particular, was much more
elusive. Attempts to treat cancer with polyclonal antisera from animals
that had been immunized with human cancer cells or tumor extracts were
largely unsuccessful. The first attempts at radioimmunotherapy were also
performed with polyclonal antisera and showed limited success (Order,
1976). Overall, serum sickness was common, clinical responses were un-
common, and production of consistent lots of the therapeutic agent was
impossible. These major obstacles limited the enthusiasm for cancer im-
munotherapy. To many, immunotherapy of cancer was considered a ‘‘failed
hypothesis.’’

B. Introduction of Monoclonal Antibodies

There was a renewed claim of the ‘‘magic bullet’’ for cancer, and a
reawakening of interest in cancer immunotherapy, in the mid-1970s follow-
ing the development of the hybridoma technique by Kohler and Milstein
(1975). Over the next several years, multiple mAbs of defined specificity and
class were made by using this technique and found to react with subsets of
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both normal lymphocytes and lymphoma cells. Although not strictly tumor
specific, these mAbs were lineage specific and, in some cases, capable of
inducing measurable changes in benign and malignant lymphocytes. This
resulted in a revolution in our understanding of immunology and also
demonstrated that lymphocytes were more sensitive than other cell popula-
tions to changes induced by mAbs. Given these findings, lymphomas were
justifiably seen as prime candidates for mAb-based cancer therapy.

C. Clinical Proof of Concept

Early clinical evaluation demonstrated that murine mAbs could be
administered relatively safely to patients and had in vivo immunologic
effects (Nadler et al., 1980, 1981). However, factors such as the presence
of circulating antigen and limited information on how to select the proper
target limited efficacy. The idiotype (Id) expressed by B lymphocytes as part
of the surface immunoglobulin is highly specific and known to play a major
role as the B-cell receptor in the behavior of the B-cell. The Id therefore
seemed to be an attractive—if not necessarily practical—target for mAb-
based therapy. In a series of landmark studies in the 1980s, Levy and
colleagues produced tailormade murine anti-Id mAbs directed toward the
surface immunoglobulin expressed by follicular lymphomas (Meeker et al.,
1985a,b). Remarkably, an overall response rate (ORR) of approximately
50% was noted in patients treated in these early trials. Three major factors
limited more widespread use of this therapy: the need to produce tailormade
mAbs for essentially every individual patient, the emergence of Id-variant
malignant cells that lacked the target antigen, and the murine nature of the
mAbs that resulted in a relatively short half-life and, in some cases, devel-
opment of the human antimouse antibody (HAMA). Nevertheless, the ob-
served clinical responses led those who had claimed that immunotherapy
was a failed hypothesis to reconsider. It also encouraged a new generation of
investigators who viewed these studies as a valid proof of concept to begin
working toward addressing these limitations.

The past 15 years have seen dramatic advances in our understanding of
immunology and molecular biology, and these in turn have led to practical
advances that have allowed us to overcome some of the problems identified
by Levy and colleagues. We can at present produce human-like mAbs by
replacing the murine Fc with human Fc, which results in so-called chimeric
human–mouse mAbs. We can also graft the complementarity-determining
regions (CDRs) that are responsible for the specificity of a murine mAb into
a construct containing both a human Fc and human variable region frame-
work. This results in a so-called CDR-grafted humanized mAb that is
95% human in sequence but maintains the specificity of the parent
murine mAb.
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III. Chimeric Anti-CD20—A Clinical Breakthrough ___________________________________________________________________________________________________________________________________________________________________________

A. Early Studies of Chimeric Rituximab

The first clinically approved approach to mAb-based therapy of
lymphoma involved the anti-CD20 chimeric mAb known as rituximab
(Rituxan1, Mabthera1). In the initial Phase I trial with this mAb, Maloney
and coworkers selected patients with previously treated B-cell lymphomas.
Four weekly infusions of rituximab as monotherapy were administered. The
treatment was well tolerated, with transient and relatively minor infusion-
related toxicity. No maximal tolerated dose was identified. Approximately
half the patients treated on this Phase I trial enjoyed a clinical response, with
the majority being partial responses (PRs). Median duration of observed
response was just more than 8 months. No immune response to the infused
mAb was noted (Maloney et al., 1997a,b).

McLaughlin et al. (1998) confirmed these observations in a Phase II trial
of 166 patients with low-grade or follicular lymphoma. Four weekly infu-
sions of rituximab at a dose of 375 mg/m2 resulted in a 48% ORR and 6%
complete responses (CRs), using strict response evaluation techniques and
definitions. The median duration of response was 11.6 months. The ORR
was only 13% in the 30 subjects with small lymphocytic lymphoma, but
60% in the 132 patients with follicular lymphoma. As in the Phase I trial,
infusions were associated with a constellation of largely grade I and II
symptoms, including fever, chills, rash, bronchospasm, and hypotension,
which were easily managed. There was a low (<5%) rate of grade III/IV
hematologic toxicities. Depletion of B cells from the peripheral blood lasted
6–9 months, but was not associated with significant hypogammaglobuline-
mia or identifiable infections. The chimeric mAb was not immunogenic,
with human antichimeric antibody detected in only one patient. Rituximab
had a serum half-life of 205 h following the fourth infusion, with generally
higher concentrations in responding patients and in patients with lower
tumor burdens. These results were a true breakthrough in the development
of mAbs as clinically useful agents for the treatment of lymphoma.

B. Refining Rituximab Treatment Schedule

These early studies demonstrated that rituximab was clearly of clinical
value, but they were not designed to define an optimal dosing strategy.
Additional studies were designed to assess whether other schedules might
be more effective. Given that rituximab steady-state serum levels are not
achieved with four weekly infusions, and that sustained rituximab serum
levels correlate with response (Berinstein et al., 1998), it was hypothesized
that failure to respond to rituximab might be related in some cases to
inadequate exposure to rituximab. Strategies such as weekly dosing beyond
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4 weeks and repeated series of four weekly doses (either at the time of relapsed
disease or as a maintenance strategy) were developed (Hainsworth, 2002).
Piro et al. (1999) studied eight weekly doses of rituximab (375 mg/m2) in 37
relapsed or refractory low-grade or follicular lymphoma patients. An ORR of
57% was observed in this single-arm Phase II study, with a median duration
of response estimated at 13.4þ months. Although this appears to be a higher
response rate and a longer duration of response than those seen in the
McLaughlin trial, this difference may be due to differing methods of response
determination, potential patient selection, and other hazards that come with
comparing serial Phase II studies. At this point, it is unclear whether longer
therapy is better therapy. Ongoing randomized Phase III studies are exploring
this question.

In a related approach, studies were performed to assess the efficacy of
repeated courses of therapy separated by a number of months as a form
of maintenance therapy. In a Phase II study by Hainsworth (2003), subjects
who had not progressed after an initial 4-week course of rituximab received
additional 4-week courses of rituximab at 6-month intervals for up to
2 years. Actuarial progression-free survival was 67% at 2 years. In a rando-
mized study by the Swiss Group for Clinical Cancer Research, 151 follicular
lymphoma patients were treated with an initial 4-week course of rituximab
and then randomized to observation vs. maintenance with a single 375 mg/m2

rituximab dose every 8 weeks. At 3 years’ follow-up, median event-free
survival in the maintenance arm was 23 months compared to 12 months
in the observation arm (Ghielmini, 2002). This study, although promising,
did not address the question of whether maintenance therapy is a superior
long-term approach compared to rituximab retreatment at relapse. Two
cooperative group studies by the National Cancer Institute (NCI) are addres-
sing the role of maintenance rituximab in large randomized trials. Although
the safety of repeated cycles has been established and the Hainsworth and
Swiss data are intriguing, adoption of maintenance rituximab therapy as a
standard treatment for lymphoma will need to wait until the results of the
randomized trials are available.

C. Treatment of Relapse

Davis and coworkers studied repeated therapy with rituximab in 57 sub-
jects who had previously responded to rituximab but had relapsed. All
subjects continued to express CD20. A second course of rituximab was
not associated with new toxicities and was nonimmunogenic (Davis et al.,
2000). The response rate to this second course was 40%. Although the
response rate was low, both the duration of response and time to progression
(15.7þ and 17.3þ months) were longer when compared with the first course
of rituximab for these patients (9.8 and 12.4 months). Whether this is a
disappointing result because of the low response rate or a promising result
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because of the longer duration of responses can be debated. Nevertheless,
the longer duration of the responses is not commonly seen with other forms
of cancer therapy and raises questions on the mechanism of action of
rituximab (see Section V).

D. Upfront Treatment

The studies outlined previously involved subjects who were refractory
to standard therapy. The timing and choice of initial therapy for low-grade
lymphomas remain highly controversial as becomes apparent quickly at any
gathering of lymphoma experts. Given this uncertainty, it was reasonable in
the eyes of many to explore the activity of this new, effective, largely
nontoxic treatment modality in previously untreated low-grade lymphoma
patients. To date, two studies have evaluated rituximab as a single-agent
frontline therapy in patients with low-grade B-cell lymphomas. Colombat
et al. (2001) found an 80% ORR to rituximab as a single agent following
treatment with the standard 4-week schedule with 41% CR/CRu and 39%
PR. Mature follow-up for this study is not yet available. Hainsworth and
coworkers reported a Phase II trial of previously untreated patients treated
upfront with the same regimen. Patients in this trial with ongoing response
or stable disease at 6-month intervals received subsequent courses of ritux-
imab for up to 2 years as outlined previously. The eventual ORR was 65%
(27% CR). One- and two-year progression-free survival rates for all patients
were 69% and 67%, respectively, with minimum follow-up of 15 months
(Hainsworth, 2002, 2003). The high response rate observed in both of these
studies could be a function of the favorable pretreatment characteristics of
the patients and does not allow for conclusions to be reached regarding
potential increased mAb activity in chemotherapy-naı̈ve patients. However,
these results support evaluation of upfront therapy with rituximab in
randomized trials.

IV. Alternative Molecular Targets ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

CD20 was selected as a target because it is lineage specific and is
expressed in high density by a variety of B-cell malignancies, including
most follicular lymphomas. The functional role of CD20 is still unclear.
Although the clinical results outlined previously suggest that anti-CD20 is
indeed an excellent target for mAb therapy, there is no reason to assume
a priori that CD20 is the best or only target worth evaluating. mAbs
that target other antigens are also of interest and are currently under
development.
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A. CD22

Epratuzumab (AMG-412, hLL2) is a CDR-grafted, humanized mAb
that binds to CD22 (Leung et al., 1995). The CD22 antigen is a B-cell-
restricted molecule expressed in more than 80% of B-cell malignancies.
CD22 is known to play a role in B-cell activation and interaction with
T cells. Although it is not normally shed from the surface of antigen-bearing
cells, CD22 is rapidly internalized when bound by mAb and can be re-
expressed on the cell membrane after modulation. In a Phase I/II dose-
escalation study, epratuzumab was safely administered in four weekly
doses to subjects with CD22-expressing B-cell malignancies (including lym-
phoma, acute lymphocytic leukemia, and Waldenstrom’s macroglobuline-
mia) (Leonard et al., 2003). More than 100 patients with low-grade and
aggressive B-cell lymphoma have been treated in Phase II studies of epratu-
zumab. Aggregate response rates (within select dose ranges) were approxi-
mately 40% in patients with follicular lymphomas and 30% in patients with
relapsed diffuse large cell lymphoma (Leonard et al., 2000). A larger Phase II
study using epratuzumab 360 mg/m2/week in patients with follicular lym-
phoma refractory to rituximab is currently underway. In a Phase II study of
combined therapy with epratuzumab plus rituximab in patients with re-
lapsed lymphoma, early reports describe 8 of 16 objective responses in
patients with indolent histology (Leonard et al., 2002). These data demon-
strate that epratuzumab has clear antilymphoma activity. It is too early to
know whether it will be a clinically valuable agent.

B. CD52

Alemtuzumab (Campath-1H) is a chimeric humanized antibody that
binds to a glycoprotein (CDw52) expressed by benign and malignant
T cells, B cells, and monocytes (Salisbury et al., 1994). Recent clinical trials
with alemtuzumab have largely focused on chronic lymphocytic leukemia
(CLL) because of early observations that the greatest efficacy was observed
in the blood and marrow compartments. In a multicenter Phase II European
trial, 42% of 29 patients with relapsed or refractory CLL responded to
alemtuzumab delivered as thrice-weekly intravenous infusions (Osterborg
et al., 1997). Subsequent trials of alemtuzumab using a similar thrice-weekly
schedule in patients with nodal lymphomas demonstrated low ORR, with
only 6 of 42 patients achieving PR (Khorana et al., 2001; Lundin et al.,
1998). Nine episodes of bacterial septicemia were noted along with three
deaths from infection, thus limiting enthusiasm for further evaluation of
alemtuzumab in lymphomas.
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C. HLA-DR

Class II human leukocyte antigen differs in important ways from other
target antigens. Binding of class II molecules such as HLA-DR by mAbs can
induce rapid apoptosis mediated by a pathway that appears to be different
from that mediated by other anti-B-cell mAbs (Bains et al., 2003). In addi-
tion, mAbs directed against HLA-DR have been shown to be more effective
than anti-CD20 mAbs at mediating antibody-dependent cellular cytotoxici-
ty (ADCC) when effector cells are stimulated with the granulocyte colony-
stimulating factor (G-CSF) to express high levels of Fc� receptor I (CD64)
(Valerius et al., 1997). On the other hand, class II expression is not limited
to B cells. Targeting of HLA-DR or other class II molecules could lead to
unintentional damage to a variety of benign tissues. The humanized mAb
apolizumab (Remitogen1, Hu1D10), directed against a polymorphic deter-
minant of HLA-DR expressed on normal and malignant B cells, is capable of
inducing ADCC, complement-mediated lysis, and direct apoptosis of lym-
phoma cell lines and fresh human B-cell tumors (Kostelny et al., 2001). In a
Phase I dose-escalation study, patients with relapsed B-cell lymphoma were
treated weekly for four doses with apolizumab. In contrast to anti-CD20
and anti-CD22, toxicity was seen at higher dose levels (5 mg/kg). Pharma-
cokinetics demonstrated marked intersubject variability in clearance of
apolizumab, with little evidence for accumulation of the mAb even at higher
doses, suggesting a significant antigen sink. Despite these problems, four PRs
were documented among eight patients with follicular lymphoma treated at
a variety of doses of apolizumab. Three of these patients had previously been
refractory to therapy with rituximab. Interestingly, and distinct from the
pattern of responses typically seen with rituximab, the median time to
response was 106 days. Three of the four responders remained progres-
sion free at 13, 17, and 21 months (Link et al., 2001a). Day 100 serum
from a responding patient contained autologous antilymphoma IgG, sug-
gesting that the patient had developed an active humoral antilymphoma
immune response (Link et al., 2001b). Taken together, these studies suggest
that clinical response that results following the targeting of class II could be
due to a unique antitumor mechanism of action (induction of an active
immune response), whereas nonspecific targeting results in enhanced toxici-
ty. Additional studies are needed to assess whether the observed toxicity is
prohibitive, to confirm a unique mechanism of action, and to determine how
this apparent difference might be clinically useful.

V. Mechanisms of Action

The clinical results outlined previously related to use of mAbs as a single
agent to treat lymphoma have been extremely exciting and have led to major
changes in our current approaches to clinical management. However, both
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scientific and practical questions remain. Although there is strong evi-
dence that multiple mechanisms of action can contribute to the efficacy of
mAb therapy, we are only now beginning to understand the clinical rele-
vance of these mechanisms. Understanding potential mechanisms of action
and how they might interact will be critical to the rational design of the next
generation of mAb-based treatments, including use of radiolabeled mAbs
and combination regimens. We therefore first address what we know—and
do not know—about mechanisms of mAb action and then return to more
practical questions concerning clinical use of mAbs in lymphoma.

A. Challenges in Understanding Mechanisms of Action

A number of factors have complicated our ability to understand mAb
mechanisms of action. In vitro studies have provided valuable hints, but
have significant limitations as well. In vitro assays of transmembrane signal-
ing or cytotoxicity generally are limited to a few hours or, at most, a few
days. In contrast, clinical response of lymphoma to mAb therapy often takes
months. With primary tumor samples, in vitro analysis is particularly diffi-
cult because of rapid death of cells in vitro and other artifacts resulting from
the manipulation of the tissue and placing it in culture. Because of these
problems, most in vitro assays exploring mAb mechanisms of action involve
use of cell lines, not primary tumor samples. This brings in additional
problems. Lymphoma cell lines proliferate rapidly and have been selected
to remain viable in the absence of external signals. This is not the case in
clinical lymphoma, in which proliferation is often slow, and cross-talk
between lymphoma cells and benign cells, and other environmental factors
such as cytokines, chemokines, and vascularity, has a major impact on the
behavior of the lymphoma. Animal models can be quite useful, but also have
their limitations. For practical reasons, animal models are usually based on
rapidly growing tumors that develop from cell lines that can also grow
in vitro. Therefore, many of the limitations outlined previously related to
the differences between cell lines and primary tumors also impact on in vivo
animal models. There are other obvious differences between humans and
rodents. Clinical correlative studies have proven to be particularly helpful
because they clearly address the patient population in question. However,
these results need to be interpreted with caution because correlation and
causation are not the same.

Despite these limitations, the combination of in vitro studies, animal
modeling, and clinical correlation is helping us understand the relative
importance of various mechanisms of action. Key among them are signal-
ing-induced apoptosis, ADCC, and complement-mediated cytotoxicity
(CMC). In reality, a combination of these mechanisms, plus other complex
mechanisms we are only now beginning to understand, is likely responsible
for the observed clinical effects.
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B. Signaling-Induced Apoptosis

In some but not all cell lines, direct signaling can lead to apoptosis. With
anti-CD20, various intermediate changes, including activation of scr-family
tyrosine kinases, have been identified that lead to activation of caspase 3
(Hofmeister et al., 2000; Shan et al., 2000). The epitope targeted by mAbs,
and the ability to cross-link, has a significant impact on signaling. There is
heterogeneity in the ability of anti-CD20 mAbs to cross-link CD20 and to
induce movement of CD20 into membrane lipid rafts. This, in turn, might
contribute to the strength of the signal and the resulting impact on growth or
death (Cragg et al., 2003; Deans et al., 2002). Signaling mediated by other
anti-B-cell mAbs can be mediated by a different pathway than that seen with
anti-CD20. For example, treatment of cells with the anti-HLA-DR mAb
Hu1D10 results in rapid disruption of the inner mitochondrial transmem-
brane potential and selective release of apoptosis-inducing factor (AIF) from
the mitochondria (Bains et al., 2003).

Complex factors, including antigen density, association with membrane
rafts, cross-linking mediated by Fc receptors, cell density, and interaction
with other environmental factors such as other soluble and surface-bound
ligands, also likely impact on the strength and the downstream effects of
mAb-mediated signaling in vivo. This complicates our ability to determine
whether in vitro observations of signaling have clinical relevance. An inter-
esting set of studies by Byrd and coworkers provides the strongest evidence
to date that signaling might indeed play a role in observed clinical responses.
These authors harvested CLL cells from the blood of patients treated
with rituximab and found in vivo activation of caspase-9, caspase-3, and
poly(ADP-ribose) polymerase (PARP). Patients having caspase-3 activation
and PARP cleavage in vivo had a significant lowering of the cell count
as compared with those without caspase activation (Byrd et al., 2002). The
mechanism of rapid clearance of circulating leukemic cells might be
different from the mechanisms responsible for the slower clearance of
malignant nodal masses; nevertheless, these data provide evidence that
signaling, and likely apoptosis, do occur to some degree in patients in
response to mAbs.

C. Antibody-Dependent Cellular Cytotoxicity

ADCC has long been felt to be responsible for much of the antitumor
activity of mAbs. In vitro, mAbs can target lysis by a variety of effector cell
populations, including NK cells, monocytes/macrophages, and activated
granulocytes. In animal models, depletion of select effector cell populations,
including NK cells and granulocytes, decreases the efficacy of mAb therapy
(van Ojik et al., 2003). Clynes et al. (2000) performed an elegant series of
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studies exploring mAb therapy in mice that lacked specific Fc� receptors
(Fc�R). The antitumor effect of mAb was enhanced in mice lacking Fc�
RII2B (the so-called inhibitory Fc�R), whereas the same mAb had essen-
tially no antitumor activity in mice lacking the Fc�R subunit responsible
for sending the activation signal to the immune effector cell. Perhaps
the strongest evidence to date that ADCC is a central mechanism of action
for antitumor mAb therapy comes from clinical correlative analysis of
low-affinity Fc�RIII CD16 genetic polymorphisms in patients treated with
rituximab. Patients homozygous for the higher-affinity allele of CD16
demonstrated significantly higher clinical response rates to rituximab than
did patients heterozygous or homozygous for the lower-affinity allele
(Cartron et al., 2002). This observation has now been confirmed by other
groups and in a different population of patients. The emerging evidence that
Fc�R is important in mediating the antitumor effects of mAbs certainly
points to ADCC as being a major mechanism of action. On the other
hand, Fc�R could contribute to cross-linking of mAbs on the tumor cell
surface or to inducing effector cells to produce cytokines that have antitu-
mor activity. Thus, the convincing evidence that Fc�R is important suggests,
but does not prove, that ADCC is a key mechanism of action.

D. Complement-Mediated Cytotoxicity

Among the first effector functions identified for antibodies in general
was their ability to fix complement. For many years, investigators believed
that this mechanism was active in the mAb lysis of prokaryotes, but not
important for mAbs targeted to autologous eukaryotic cells that express
proteins that inhibit complement activation. There is now growing, but
conflicting, evidence that complement indeed might play an important role
in the antitumor effect of mAbs. In vitro, expression of the inhibitory
proteins CD55, and to a lesser extent CD59, on the surface of the target
cell correlates with anti-CD20-directed complement-mediated lysis of cell
lines and primary samples (Golay et al., 2000; Harjunpaa et al., 2000). This
lysis is mediated not by caspase activation but by reactive oxygen species
(Bellosillo et al., 2001). However, the level of inhibitory molecule expression
on the surface of lymphoma samples does not predict for clinical response to
rituximab (Weng and Levy, 2001). Recent studies suggest that complement
might be important in some animal models. Di Gaetano and colleagues
evaluated the efficacy of anti-CD20 mAbs in a model that used a clone of
the murine EL4 lymphoma cell line that expresses human CD20. In this
model, anti-CD20 mAb had antitumor effects in wild-type mice but not
in syngeneic knockout mice lacking C1q, the first component of the clas-
sical complement pathway (Di Gaetano et al., 2003). This suggests that an
intact complement pathway is necessary for antitumor activity of mAbs.
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Importantly, this does not necessarily imply that complement directly
induces cytotoxicity. The ability of anti-CD20 mAbs to fix comple-
ment has been shown to be associated with the movement of CD20 to
lipid rafts on the cell surface (Cragg et al., 2003), which in turn could impact
cell signaling and mAb-induced apoptosis. Fixation of complement also
results in release of opsinins, which could contribute to ADCC. At present,
the role of complement in the antitumor activity of antilymphoma mAbs,
both in mediating lysis directly and in interaction with other proposed
mechanisms of mAb antitumor activity, remains unclear and deserves
further evaluation.

E. Other Complex Mechanisms

Direct signaling-induced apoptosis, ADCC, and CMC are the potential
mechanisms of action that have received the most attention, in large part
because they can be studied in vitro. Other mechanisms that are more
complex might also be important in the observed clinical responses to
antilymphoma mAbs. Signals that result following binding of mAb to lym-
phoma cells might induce phenotypic change in the lymphoma cell without
inducing apoptosis. This theoretically could result in enhanced immuno-
genicity and development of an enhanced active antilymphoma immune
response. Uptake of tumor antigen by professional antigen-presenting cells
could also be enhanced by mAbs, after the mAbs induce lysis by other
mechanisms. mAbs bound to target cells can induce activation of effector
cells by cross-linking Fc�R. The resulting production of cytokines and
chemokines by the activated effector cells could induce a broad range of
regional changes within the malignant tissue, including changes in chemo-
taxis of other cell populations, vascular permeability, blood flow, or angio-
genesis. These mechanisms will be difficult to assess and measure, but
evaluation of their role in the observed clinical efficacy of mAb therapy
could have a significant impact on the design of the next generation
of mAb-based treatments. Most likely, multiple interactive mechanisms of
action are involved in the observed clinical responses to mAb in lymphoma,
and continued exploration of their relative role in the antilymphoma activity
of mAb will be critical for the rational design of the next generation of
regimens.

Use of radioimmunoconjugates that combine the direct antilymphoma
effects of mAbs with radiation effects, or combining mAbs with chemother-
apy, would be expected to take advantage of the signaling effects of mAbs
and enhance target cell apoptosis, whereas combining mAbs with various
immunologically active molecules would enhance immune-mediated anti-
tumor activity. Clinical evaluation of radioimmunotherapy, mAbs combined
with chemotherapy, and mAbs combined with immunotherapy are ongoing
and are showing promise.
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VI. Radioimmunotherapy

Multiple animal models have demonstrated that mAbs can be used to
deliver toxic moieties to tumors. A variety of immunotoxins have been
evaluated in patients with lymphoma. This work is reviewed elsewhere in
this volume and is not discussed further here. Given the variety of mAbs
available and the relative sensitivity of lymphomas to radiation, develop-
ment of radioimmunoconjugates for the treatment of lymphoma is a logical
approach. The deceptively simple concept of radioimmunotherapy is actu-
ally quite complex and requires contributions from multiple scientific
disciplines to deal with issues such as mAb construct, choice of chelator,
selection of optimal radionuclide, optimization of pharmacokinetics, dosim-
etry, and use of cold mAb predosing. Each of these can have a significant
impact on the efficacy and toxicity of therapy. Despite these multiple
variables, clinical data from the past 5 years have confirmed the promise
of this approach and allowed us to begin to define the role of radiolabeled
mAbs as a treatment for lymphoma (Dillman, 2002; Illidge and Johnson,
2000). Initial clinical studies exploring radioimmunotherapy of lymphoma
involved the use of 131I, which has an extensive history of use in clinical
medicine. Advantages of this isotope include emitting energy with a focused
0.8-mm path length that theoretically minimizes toxicity to surrounding
tissues. Concurrent emissions are useful for dosimetry. A variety of other
isotopes are being used at present. A more detailed discussion of the advan-
tages and disadvantages of such isotopes for the radioimmunotherapy of
hematologic malignancies is presented elsewhere in this volume and is not
discussed in detail here.

A. Tositumomab

Initial pilot studies of the radioimmunotherapy of lymphoma by
Kaminski et al. (1992) involved the use of 131I-labeled anti-CD37.
Subsequent studies demonstrated that 131I-labeled anti-CD20 mAbs, now
known as tositumomab (Bexxar1), was a more promising agent. The initial
Phase I dose-escalation trial by this group with 131I anti-CD20 was designed
to remain below severely myelosuppressive doses. A total of 34–161 mCi
(designed to achieve whole body doses of 25–85 cGy) was administered.
Calculated mean maximal radiation dose to the tumors was 9.25 Gy. After a
single therapeutic dose, 22 patients (79%) had objective responses, with
two-thirds of those responses being complete. All patients with low-grade
lymphomas responded (77% CR), with a median duration of response of
more than 16 months. As expected, myelosuppression was dose limiting at a
whole body radiation dose of 75 cGy. Nonhematologic toxicity was mild,
and 6 of the 34 enrolled patients developed HAMAs (Kaminski et al., 1996).
These observations were confirmed in several multicenter Phase II studies
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such as the one reported by Vose and coworkers in which 46 subjects (37
with low-grade histologies and 9 with transformed lymphoma) were treated.
In this patient population with several adverse prognostic features, ORR
was 65% (81% of those with a low-grade histology), but median duration of
the responses was only 6.5 months (Vose et al., 2000b).

Press and colleagues used the same agents but administered higher doses
of radiation with the expectation that autologous marrow would be admi-
nistered after therapy because of the risk of marrow ablation. In a Phase I/II
experience, 29 patients with relapsed lymphoma (mostly low grade) received
131I coupled to murine anti-CD20 or anti-CD37. An 86% ORR and a 79%
CR rate were observed at doses of 280–785 mCi with calculated radiation
doses of 22–92 Gy to the tumors (median 38 Gy). Stringent selection
criteria were used such that most subjects with larger tumor burdens or
splenomegaly were ineligible for therapy. The therapy was associated with
significant myelosuppression, but was well tolerated otherwise. In a median
follow-up of 42 months, 14 of 29 subjects remained progression free (Liu
et al., 1998).

B. Ibritumomab Tiuxetan

Witzig and coworkers reported a series of trials evaluating ibritumomab
tiuxetan (Zevlin1), a murine anti-CD20 mAb conjugated with the radio-
isotope 90Y. 90Y is a pure �-emitting isotope with a 5-mm mean path length,
theoretically allowing for improved penetrance in bulky tumors. The lack of
� emission complicates the detection of biodistribution, requiring a dosime-
try strategy using an indium-111 labeled surrogate. However, this isotope
allows patients to be treated with theoretically less irradiation to distant
organs and fewer public health concerns. A Phase I/II trial with
90Y ibritumomab tiuxetan included 51 patients with confirmed relapsed or
refractory low-grade or follicular B-cell lymphoma, or relapsed intermedi-
ate-grade and mantle cell lymphoma (Witzig et al., 1999). The maximum
tolerated dose was 0.4 mCi/kg for patients with a platelet count higher than
150,000 and 0.3 mCi/kg for patients with a platelet count of 100,000–
149,000. The ORR was 67%, with 26% CR and 41% PR. The ORR was
82% in patients with low-grade non-Hodgkin’s lymphoma and 43% in
patients with intermediate-grade histologies. Estimated median time to pro-
gression was 12.9þ months, with median duration of response being 11.7þ
months. One patient developed a HAMA and human antichimeric antibody
(HACA) 2 months after treatment. This study demonstrated that 90Y-labeled
anti-CD20 mAbs could safely be administered in the outpatient setting at a
dose demonstrating clinical activity without the need for autologous pro-
genitor cell support (Witzig et al., 2003). A randomized controlled trial
comparing the 90Y ibritumomab tiuxetan regimen to rituximab alone was
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conducted in 143 patients with relapsed or refractory low-grade, follicular,
or CD20þ-transformed lymphoma. The ORR was 80% in the
90Y ibritumomab tiuxetan arm and 56% in the rituximab arm (p ¼
0.002), with 30% and 16% CR rates, respectively (p ¼ 0.04). Estimated
median duration of response for all patients was 14.2 months in the ibritu-
momab tiuxetan arm and 12.1 months in the rituximab arm (Witzig et al.,
2002).

It is not yet possible to directly compare the clinical value of
131I tositumomab to that of 90Y ibritumomab tiuxetan. Administration of
both agents is complex, but not prohibitively so, and both are well tolerated.
Both 131I tositumomab and 90Y ibritumomab tiuxetan appear to result in
response rates higher than those seen with rituximab as a single agent.
On the other hand, evidence to date suggests that duration of response
with the radioimmunoconjugates is similar to that seen with rituximab.
One obvious potential indication for these drugs is in patients refractory to
both standard chemotherapy and rituximab. Studies of radioimmunother-
apy upfront are relatively young and not yet mature enough for us to make
any formal conclusions concerning use of radioimmunotherapy as initial
therapy.

C. Other Radioimmunoconjugates

Radiolabled mAb-targeting molecules other than CD20 are under de-
velopment as well. 131I- and 90Y-labeled epratuzumab have been employed
in both low-dose and high-dose (with stem cell support) regimens, with clear
evidence of antilymphoma activity and acceptable toxicity (Vose et al.,
2000a). Lym-1, a murine IgG2a mAb targeted against HLA-DR, has been
conjugated to 131I, 90Y, and copper-67 (67Cu) and tested in patients with
lymphoma. Toxicity was acceptable, and some antilymphoma activity was
seen with each of these isotopes (DeNardo et al., 1997, 1999). The relative
advantage or disadvantage of these radioimmunoconjugates over CD20-
based therapy remains to be determined.

VII. mAbs Combined with Chemotherapy _____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Many investigators have explored the impact of rituximab plus chemo-
therapy in vitro and found some evidence for synergy (Wilson, 2000). These
results, and the clinical experience of single-agent rituximab that demon-
strated the safety and efficacy of rituximab, have led to further studies
looking at rituximab combined with cytotoxic chemotherapy in both
indolent and aggressive non-Hodgkin’s lymphomas.
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A. CHOP–Rituximab in Low-Grade Lymphoma

An often-cited early experience combining rituximab and chemotherapy
is a Phase II study by Czuczman et al. (1999) evaluating 40 patients with
newly diagnosed or relapsed or refractory low-grade or follicular lymphoma
treated with rituximab and CHOP chemotherapy. ORR in this heteroge-
neous population of patients was 95%, with 55% CR. Median progression-
free survival was not reached after a median observation time of 65 months
(Imrie et al., 2002). This study demonstrated that mAb therapy can be safely
added to an aggressive chemotherapy regimen. The data on durable re-
sponses are intriguing and justify prospective Phase III studies to further
explore the clinical utility of such a combination; however, it is also impor-
tant not to overinterpret these results given the hazards of premature
conclusions from small pilot Phase II studies.

B. CHOP–Rituximab in Aggressive Lymphoma

The combination of CHOP and rituximab has also been examined in a
series of trials involving patients with previously untreated aggressive non-
Hodgkin’s lymphoma. In a Phase II study, 33 patients with previously un-
treated intermediate-grade B-cell lymphoma were treated with six cycles of
the combination of rituximab and standard-dose CHOP (Vose et al., 2001).
The study population was mostly patients with diffuse large B-cell lympho-
ma, but seven patients had follicular large-cell lymphoma. Overall, subjects
in this trial were a good prognosis group; 69% had low or low-intermediate
risk categorization by the International Prognostic Index. In this study, as in
the Czuczman study, there was no appreciable increase in serious toxicity
over that expected for CHOP alone and CHOP normalized dose intensity
was maintained at 94%. The ORR was 94%, with 61% CR and 33% PR.
Twenty-nine of 31 patients who achieved PR or CR were in continued re-
mission, with a median observation time of 26 months from entry into
remission. As with the previous pilot studies, caution needs to be taken in
reaching conclusions from a Phase II trial in good-prognosis patients.
Nevertheless, these intriguing data justify larger Phase III randomized trials.

Two well-designed and well-executed Phase III studies have now com-
pleted accrual, and early data are available. In a French multicenter (GELA)
study of 399 patients between the ages 60 and 80 with untreated diffuse
large-cell lymphoma, subjects were randomized to eight cycles of CHOP vs.
eight cycles of CHOP plus rituximab (Coiffier et al., 2002). In contrast to the
Phase II study outlined previously, the majority of subjects in this Phase III
trial had poor prognosis as per the age-adjusted International Prognostic
Index. No convincing difference in clinical toxicity was identified between
the two regimens. CR or CRu at the end of treatment for CHOP–rituximab
was 75% and for CHOP was 63% (p ¼ 0.005). Progression during treat-
ment was 9% and 22%, and death without progression was 6% and 6%,
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respectively. With median follow-up of 24 months, events (progression,
relapse, or death) were observed in 43% of patients treated with CHOP–
rituximab and 61% of patients treated with CHOP (p < 0.001). The 2-year
overall survival was 70% in the CHOP–rituximab arm and 57% in the
CHOP arm (p ¼ 0.007). An important North American Intergroup study
comparing CHOP–rituximab to CHOP has completed accrual of 631
patients older than age 60 with previously untreated diffuse large-cell lym-
phoma. Preliminary results from this important study were broadly confir-
matory, and rituximab plus CHOP is now accepted as superior to CHOP in
this population of patients (Habermann et al., 2003).

C. Fludarabine and Rituximab

The efficacy of fludarabine alone or in combination with other agents
has been well documented in the treatment of low-grade B-cell non-
Hodgkin’s lymphomas. In vitro studies suggest some synergy between
fludarabine and rituximab (Di Gaetano et al., 2001). There is a concern
regarding the cumulative immunologic deficits that could result from the
depletion of T-cell function by fludarabine and B-cell function by rituximab.
Investigators at the M. D. Anderson Cancer Center randomized 78 patients
to receive either fludarabine, mitoxantrone, and dexamethasone (FND) with
concurrent rituximab followed by interferon maintenance or FND alone
followed by interferon maintenance and delayed rituximab (McLaughlin
et al., 2000). An analysis of toxicity in the two arms demonstrated a slightly
higher incidence of grade 4 granulocytopenia in the arm with concurrent
FND plus rituximab; however, at the initial analysis, no difference in the rate
of infection was seen between the two arms. Nonhematologic toxicity in
both arms was described as modest. Molecular remission (as determined by
the bcl-2 PCR assay) was higher at 6 months when rituximab was given
concurrently with FND. Czuczman et al. (2002) also presented data on the
safety of rituximab combined with fludarabine in a heterogeneous popu-
lation of patients with low-grade lymphomas. Prolonged cytopenias
were observed with the initial dosing regimen chosen, leading to adjust-
ments, including 40% reduction in fludarabine dosing and discontinuation
of prophylactic trimethoprim/sulfmethsoxasole. Transient treatment delays
were still observed in 10 of 30 subsequent patients treated. Of the 40 sub-
jects, 6 developed herpes simplex/zoster infections. Clinical response rates in
both studies were predictably high. It is too early to reach a consensus on the
relative risks and benefits of combining nucleoside analogs and rituximab.

D. Other Combinations

The combinations of rituximab and chemotherapy outlined previously
are only the tip of the iceberg. Multiple chemotherapy regimens are current-
ly being combined with mAbs in Phase I, II, and III trials. We will learn
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more about the potential of these various combinations as treatment for
various lymphomas as these trials mature over the next several years. Given
the potency of radioimmunotherapy and the success of chemoimmu-
notherapy, investigators have begun the exploration of chemotherapy
combined with radioimmunotherapy. The Southwest Oncology Group
reported on 90 patients with previously untreated advanced-stage follicular
lymphoma treated with CHOP followed 4–8 weeks later by 131I tositumo-
mab. Treatment was well tolerated, and the overall response rate to the
regimen was 90%, with 67% CRs and a 2-year progression-free survival
estimate of 81% (Press et al., 2003). These results are promising, but follow-
up is needed before we know the long-term impact of this aggressive,
upfront therapy.

VIII. mAbs Combined with Immunotherapy _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

As outlined previously, ADCC appears to contribute to the antilym-
phoma activity of mAbs. Agents that can activate the effector cells that
mediate ADCC should be able to improve the efficacy of therapy. In vitro
and in animal models, agents such as IFN�, IL2, IL-12, and CpG oligodeoxy-
nucleotides that activate effector cell populations also enhance antitumor
activity of mAbs (Basham et al., 1987; Berinstein et al., 1988; Ozaki et al.,
1999; Wooldridge et al., 1997). Clinical trials exploring the efficacy of
mAbs, plus immunostimulatory agents are not as advanced as those explor-
ing mAbs plus chemotherapy; nevertheless, this approach continues to hold
promise.

A. Interferon

The combination of IFN� and anti-Id mAb was explored by Levy and
colleagues in the early 1980s in patients with follicular lymphoma. Of the 12
subjects in this small trial, 9 responded to the combination (Brown et al.,
1989). This approach was revisited by a number of groups when rituximab
was found to be active as a single agent. Davis and coworkers treated 38
patients with the combination of rituximab and IFN-�2a. The ORR was
45%, with a median response duration and the median time to progression
in responders of 22.3 and 25.2 months, respectively (Davis et al., 1998).
Results from the study of Sacchi et al. (2001) in 64 subjects were similar,
with an ORR of 70% and a median duration of response of 19 months.
Kimby and colleagues performed a study based on a complex schema in
which the addition of IFN-�2a appeared to significantly increase respon-
siveness to a second course of rituximab in patients with a partial response
or minor response to an initial course of rituximab monotherapy (Kimby,
2002). Taken together, these studies hint at increased activity with the
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addition of interferon, although it remains to be determined whether any
increased activity is worth the increased toxicity.

B. IL-2

Ongoing studies are exploring synergy between rituximab and IL-2.
Friedberg and colleagues treated 20 patients with rituximab and IL-2 admi-
nistered subcutaneously at a dose of 1.2 mg/m2 daily for 52 days. The treat-
ment was well tolerated, and consistent increases in CD8(þ) and CD56(þ)
cell numbers were noted. The study was too small to assess efficacy (Friedberg
et al., 2002). This approach is at present being evaluated in larger trials.

C. IL-12

Ansell and coworkers have been exploring the combination of rituxi-
mab and IL-12. At higher doses of IL-12, constitutional symptoms and liver
enzyme elevations were dose limiting. An ORR of 69% was noted, with 8 of
11 CRs seen at IL-12 doses of 300 ng/kg or higher. This therapy also
upregulated � interferon and IP-10 expression and increased NK cell lytic
activity (Ansell et al., 2002).

D. Immunostimulatory CpG ODN

Immunostimulatory CpG ODN can activate monocytes and NK cells
and induce production of both type 1 interferon and IL-12 (Jahrsdorfer and
Weiner, 2003). In animal models, the combination of mAbs plus CpG ODN
is highly effective (Wooldridge et al., 1997). CpG ODN can also induce
upregulation of CD20 by primary malignant B-cells (Jahrsdorfer et al.,
2001). Clinical evaluation of the combination of rituximab and immuno-
stimulatory CpG ODN has recently begun.

IX. Conclusion

We no longer hear clinicians speak of a failed hypothesis when discuss-
ing the clinical value of mAbs in the treatment of lymphoma. Without
question, mAb-based therapy is now an important part of lymphoma man-
agement. However, we are not yet ready to claim that we have found
Ehrlich’s ‘‘magic bullet’’ for lymphoma. There is much about the biology
and clinical utility of mAb-based therapy that we do not yet know. Ongoing
laboratory research and rationally designed clinical trials based on our
growing understanding of the biology and clinical effects of mAb-based
therapy are needed to allow us to expand on this exciting beginning of a
new era in lymphoma management.
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Vaccines in Leukemia

I. Chapter Overview

Immunity to leukemia and leukemia-associated antigens has been
demonstrated in animal models and preclinical in vitro studies. In addition,
data from allogeneic stem cell transplantation have provided direct evidence
that T-lymphocyte immunity is important in inducing and maintaining
remission in patients with myeloid forms of leukemia. Laboratory studies
have more recently focused on the identification of the effector mechanisms
and antigens targeted by T lymphocytes. Clinical trials are currently under-
way with protein-, peptide-, and cellular-based vaccination strategies, and
results of these ongoing studies will facilitate our understanding of leukemia
immunity. Vaccine-based immunotherapy can potentially offer an alterna-
tive treatment strategy for patients with an otherwise poor prognosis. In
this chapter, we review the biologic basis of antileukemia immunity and
highlight potential leukemia-associated target antigens. In addition, we
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describe ongoing treatment strategies and the preliminary results from
recent vaccine trials.

II. Introduction

The most compelling evidence that lymphocytes meditate an antileuke-
mia effect comes from studies in which allogeneic donor lymphocyte infu-
sions (DLIs) have been used to treat relapse of myeloid leukemia after
allogeneic bone marrow transplantation (BMT) (Antin, 1993; Giralt and
Kolb, 1996; Kolb and Holler, 1997; Kolb et al., 1995, 1996). Lymphocyte
infusions from the original donor used for prior BMT can induce both
hematologic and cytogenetic responses in approximately 70–80% of
patients with chronic myeloid leukemia (CML) in chronic phase (CP)
(Kolb et al., 1996). A complete cytogenetic response is usually obtained
between 1 and 4 months after DLIs (van Rhee et al., 1994), and approxi-
mately 80% of responders achieve reverse transcriptase-polymerase chain
reaction (RT-PCR) negativity for the BCR/ABL translocation [the fusion
product of the t(9;22) translocation found in CML] within a mean of 6
months (van Rhee et al., 1994). Acute myeloid leukemia (AML) is also
susceptible to the graft-versus-leukemia (GVL) effect, with 15–40% of
patients obtaining remission with DLIs alone (Collins et al., 1997). Al-
though significant graft-versus-host disease (GVHD) occurs in 50% of
patients treated with DLI and disease response occurs in 90% of CML
patients, 55% of patients who do not experience GVHD also have disease
response (Giralt and Kolb, 1996; Kolb and Holler, 1997). This demonstrates
that GVL is separable from GVHD in some patients, and several potential
antigens that drive the donor’s lymphocyte response preferentially against
the leukemia have been identified. There is also evidence of an autologous
immune response against both CML and AML, which is directed against
some of the same antigens. Interestingly, chronic GVHD is associated with
more GVL activity than acute GVHD, and chronic GVHD resembles auto-
immunity, suggesting that the antigens involved in this reaction might be
self-antigens. Remissions after DLIs for AML are generally not as durable as
those obtained in chronic-phase CML, which may reflect the rapid kinetics
of tumor growth outpacing the kinetics of the developing immune response
as well as a potentially less immunogenic target cell. However, if more
antigens could be determined, and if large numbers of antigen-specific
cytotoxic T lymphocytes (CTLs) could be elicited vis-à-vis vaccination
strategies, it would allow for development of leukemia-specific therapies.

To understand the nature of vaccine-induced T-cell immunity, we first
review some of the principles of antigen recognition and highlight a re-
cent discovery that has aided our ability to study T-cell interactions.
T cells recognize peptide antigens that are presented on the cell surface in
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combination with major histocompatibility complex (MHC) antigens. Pep-
tides derived from cytoplasmic proteins that are 8–11 amino acids in length
bind in the groove of class I MHC molecules and are transported through the
endoplasmic reticulum to the cell surface. Larger peptides, typically 12–18
amino acids in length, derived from the processing of extracellular proteins
bind class II MHC molecules and are presented to T cells on the cell surface.
Both peptide/MHC-I and peptide/MHC-II are recognized by the heterodi-
meric T-cell receptor (TCR) on CD8 or CD4 T lymphocytes, respectively,
with weak affinity and rapid off rates. Points of contact between the TCR
and the peptide/MHC surface include surface amino acids contributed by
the two alpha-helical domains of the MHC molecule that flank the peptide
antigen binding pocket, as well as amino acids from the peptide itself.

Our understanding of the nature of antigen-specific T-cell responses
has been greatly improved by the discovery that antigen-specific TCR
can be reversibly labeled with soluble peptide/MHC tetramers (Altman
et al., 1996). Peptide antigen, �2-microglobulin, and the MHC-I heavy
chain are folded together, and, through a biotinylation signal sequence at
the C-terminus of the MHC-I heavy chain, are linked covalently to strepta-
vidin in a 4:1 molecular ratio. When the streptavidin molecule is linked to a
fluorescent dye such as phycoerythrin, the resulting peptide/MHC tetramers
can be used to identify antigen-specific T cells by FACS analysis because of
their higher binding avidity to the cognate TCR. Using tetramers, it has been
determined that up to 45% of all peripheral circulating T cells might be
specific for a single dominant antigen at the height of an immune response to
Epstein-Barr virus (EBV) infection (Callan et al., 1998) and similar domi-
nance can be seen during other viral infections (Komanduri et al., 1998,
2001). Tetramers have also been used to study immune responses to tumor
antigens (Lee et al., 1999), and they have also aided in their discovery
(Molldrem et al., 2000).

III. Potential Target Antigens ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Various methods have been used to determine the nature of the target
antigens involved in leukemia immunity. For instance, tissue-restricted
minor histocompatibility antigens (mHAs) that are derived from proteins
expressed only in hematopoietic tissue have been shown to be the targets of
alloreactive T cells (den Haan et al., 1995, 1998; Dolstra et al., 1997;
Murata et al., 2003; Warren et al., 1998). These mHAs often result from
polymorphic differences between donor and recipient in the coding regions
of peptide antigens that bind within the groove of MHC molecules and are
recognized by donor T cells. Recently, however, a newly described mHA
was found to result from differential expression in donor and recipient due
to a gene deletion (Murata et al., 2003). Heterologous T-cell clones that
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demonstrate alloreactivity toward mHAs have been established from
patients with severe GVHD following BMT with an HLA-matched donor
(Faber et al., 1995a,b, 1996; van der Harst et al., 1994). Some of these
mHA-specific CTL clones react only with hematopoietic-derived cells, sug-
gesting tissue specificity (Faber et al., 1996) and therefore potentially shared
antigens on leukemia. In one study, GVHD correlated closely with differ-
ences in the minor antigen HA-1 in HLA-identical sibling transplants
(Goulmy et al., 1996). Expression of two human mHAs, identified as HA-
1 and HA-2, is confined to hematopoietic tissues, and HA-2 was identified as
a peptide derived from the non-filament-forming class I myosin family by
using mHA-reactive CTL clones to screen peptide fractions eluted from
MHC class I molecules (den Haan et al., 1995). Although this methodology
has successfully defined the first CTL alloantigens, it is labor intensive and it
is unclear whether CTLs specific for any minor antigens identified thus far
convey only leukemia-specific immunity without concomitant GVHD.
Immunization of leukemia patients after allogeneic stem cell transplant
(vaccination by proxy) with mHA might promote GVL and reduce GVHD
if appropriate hematopoietic-restricted mHA could be targeted (such as
HA-1 or HA-2). In a recent report of three CML patients who received
DLIs after relapse, however, GVHD occurred in each patient concomitant to
a rise in HA-1- or HA-2-specific CTLs and cytogenetic remission, albeit
grade 2 or less (Marijt et al., 2003). Perhaps more importantly, a practical
limit of immunotherapy targeting these mHAs is that only 10% of indivi-
duals would be expected to have the relevant HA-1 alternative allele, and
<1% would have the HA-2 alternative allele, which makes donor availabil-
ity quite limiting.

An alternative immunologic method to determine leukemia-specific
CTL epitopes has been applied to determine whether BCR/ABL fusion
region peptides could be used to elicit CML-specific T-cell responses. Using
this method, peptides are synthesized based on an educated guess strategy
about which proteins are potential target antigens for a selective antileuke-
mia CTL response. The proteins are then examined for short peptides that fit
the binding motif of the most common HLA alleles. These peptides are then
synthesized, HLA binding is confirmed, and peptide-specific CTL responses
are elicited in vitro. Because BCR/ABL is present in nearly all Philadelphia
chromosome-positive (Phþ) CML patients, it is thought to represent a
potentially unique leukemia antigen. The ABL coding sequences upstream
(50) of exon II on chromosome 9 are translocated to chromosome 22 and
fused in-frame with the BCR gene downstream (30) of exon III, resulting in
the most common chimeric mRNA transcript (b3a2), which is translated
into a chimeric protein (p210BCR/ABL). Translation of b3a2 mRNA results in
the coding of a unique amino acid (lysine) within the fusion region. Some
HLA-A2, HLA-A3, HLA-A22, and HLA-B8-restricted overlapping peptides
inclusive of this lysine could bind to their respective HLA alleles and could
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be used to elicit T-cell proliferative responses when the peptide was either
pulsed onto HLA-matched normal antigen presenting cells or onto HLA-B8-
positive CML cells (Bocchia et al., 1995, 1996; Dermime et al., 1995).
However, when the b3a2 peptides were used to elicit b3a2-specific T-lym-
phocyte lines in vitro, the resulting T cells could not specifically lyse fresh
CML cells that had not previously been pulsed with the peptide (Bocchia
et al., 1996). This could be due to a low affinity of the peptide-specific CTLs
or the peptide might not be processed or presented on CML cells. More
recently, however, b3a2-specific CTLs were identified in the peripheral blood
of chronic-phase CML patients, using soluble b3a2 peptide/MHC tetramers
(Clark et al., 2001). Although the tetramer-positive CTLs from the patients
were not examined for their ability to kill autologous CML target cells,
b3a2-specific CTL elicited in vitro from healthy donors were able to kill
CML cells. This suggests that BCR/ABL fusion peptides might also be
targets of CTL immunity.

To adapt what has been learned about immunity against solid tumor
antigens to the study of myeloid leukemia antigens, we studied myeloid-
restricted proteins that are highly expressed in the leukemias relative to
normal hematopoietic progenitors. Myeloid leukemias express a number
of differentiation antigens associated with granule formation. An example
of an aberrantly expressed tumor antigen in human leukemia is proteinase 3
(Pr3), a 26-kDa neutral serine protease that is stored in primary azurophil
granules and is maximally expressed at the promyelocyte stage of myeloid
differentiation (Chen et al., 1994; Muller-Berat, et al., 1994; Sturrock et al.,
1992). Pr3 and two other azurophil granule proteins, neutrophil elastase and
azurocidin, are coordinately regulated and the transcription factors PU.1 and
C/EBP�, which are responsible for normal myeloid differentiation from stem
cells to monocytes or granulocytes, are important in mediating their expres-
sion (Zhang et al., 2002). These transcription factors have been implicated in
leukemogenesis (Behre et al., 1999), and Pr3 itself might also be important in
maintaining a leukemia phenotype because Pr3 antisense oligonucleotides
halt cell division and induce maturation of the HL-60 promyelocytic leuke-
mia cell line (Bories et al., 1989). A more recent study has shown that
neutrophil elastase, a serine protease that shares 54% sequence homology
with Pr3, is required in a murine model of acute promyelocytic leukemia for
PML-RAR�-induced transformation (Lane and Ley, 2003), which supports
the role of these serine proteases in the genesis of leukemia.

We have also studied another myeloid-restricted protein, myeloperox-
idase (MPO), a heme protein synthesized during very early myeloid differ-
entiation that constitutes the major component of neutrophil azurophilic
granules. Produced as a single-chain precursor, MPO is subsequently cleaved
into a light chain and a heavy chain. The mature MPO enzyme is composed
of two light chains and two heavy chains (Borregaard and Cowland, 1997)
that produce hypohalous acids central to the microbicidal activity of
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neutrophils. Importantly, MPO and Pr3 are both overexpressed in a variety
of myeloid leukemia cells, including 75% of CML patients, approximately
50% of AML patients, and approximately 30% of myelodysplastic syn-
drome patients (Dengler et al., 1995).

What might be critical for our ability to identify T-cell antigens in these
proteins is the observation that Pr3 is the target of autoimmune attack in
Wegener’s granulomatosis (Franssen et al., 1996) and MPO is a target
antigen in patients with small-vessel vasculitis (Borregaard and Cowland,
1997; Brouwer et al., 1994; Franssen et al., 2000). There is evidence for both
T-cell and humoral immunity in patients with these diseases. Wegener’s
granulomatosis is associated with production of cytoplasmic antineutrophil
cytoplasmic antibodies (cANCAs) with specificity for Pr3 (Williams et al.,
1994), whereas microscopic polyangiitis and Churg–Strauss syndrome are
associated with the production of perinuclear ANCAs (pANCAs) with
specificity for MPO (Jennette et al., 2001; Savige et al., 1999). T cells
taken from affected individuals proliferate in response to crude extracts
from neutrophil granules and to the purified proteins (Ballieux et al.,
1995; Brouwer et al., 1994). These findings suggest that T-cell responses
against these proteins might be relatively easy to elicit in vitro, using a
deductive strategy to identify HLA-restricted peptide epitopes. Based on
this hypothesis, we identified PR1, an HLA-A2.1-restricted nonamer derived
from Pr3, as a leukemia-associated antigen (Molldrem et al., 1996, 1997,
1999, 2000) by first searching the length of the protein using the HLA-A2.1-
binding motif, the most prevalent HLA allele. Peptides predicted to have
high-affinity binding to HLA-A2.1 were synthesized, confirmed to bind, and
then used to elicit peptide-specific CTLs in vitro from healthy donor lym-
phocytes.

We have found that PR1 can be used to elicit CTL from HLA-A2.1þ
normal donors in vitro and that T-cell immunity to PR1 is present in
healthy donors and in many patients with CML who are in remission.
These PR1-specific CTLs show preferential cytotoxicity toward allogeneic
HLA-A2.1þ myeloid leukemia cells over HLA-identical normal donor mar-
row (Molldrem et al., 1996). In addition, PR1-specific CTLs inhibit colony-
forming unit granulocyte-macrophage (CFU-GM) from the marrow of CML
patients but not CFU-GM from normal HLA-matched donors (Molldrem
et al., 1997), suggesting that leukemia progenitors are also targeted.

Using PR1/HLA-A2 tetramers to detect CTL specific for PR1 (PR1-
CTL), we found a significant correlation with cytogenetic remission after
treatment with interferon-� and the presence of PR1-CTL (Molldrem et al.,
2000). Somewhat surprisingly, PR1-CTL was also identified in the peripher-
al blood of some allogeneic transplant recipients who achieved molecular
remission and who had converted to 100% donor chimerism. PR1/HLA-A2
tetramer-sorted allogeneic CTLs from patients in remission were able to kill
CML cells but not normal bone marrow cells in 4-hr cytotoxicity assays,
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thus demonstrating that the PR1 self-antigen is also recognized by allogeneic
CTLs (Molldrem et al., 2000). These studies have established PR1 as a
human leukemia-associated antigen and that PR1-specific CTLs contribute
to the elimination of CML (Molldrem et al., 2000).

Recently, we found that another peptide, referred to as MY4, a nine-
amino-acid peptide derived from MPO that binds to HLA-A2.1, can be used
to elicit CTLs from HLA-A2.1þ normal donors in vitro (Braunschweig et al.,
2000). MY4-specific CTLs show preferential cytotoxicity toward allogeneic
HLA-A2.1þ myeloid leukemia cells over HLA-identical normal donor
marrow (Braunschweig et al., 2000). MY4-specific CTLs also inhibit CFU-
GM from the marrow of CML patients, but not CFU-GM from normal
HLA-matched donors. Like PR1, MY4 is therefore a peptide antigen that
can elicit leukemia-specific CTLs.

Several other HLA-restricted epitopes have been identified as potentially
relevant leukemia-associated antigens. The Wilms’ tumor antigen-1 (WT-1)
has emerged as a very potent immunogen containing multiple unique HLA-
restricted epitopes (Azuma et al., 2002; Bellantuono et al., 2002; Gao et al.,
2000; Oka et al., 2000; Scheibenbogen et al., 2002), and it might also be
a marker of minimal residual disease, because it is aberrantly expressed
in both myeloid and lymphoid acute leukemia (Bergmann et al., 1997a,b;
Brieger et al., 1995). Various surface molecules on leukemia cells, such as
CD45, present on all hematopoietic cells, and CD33 and CD19 on myeloid
and lymphoid cells, respectively, have also been studied by deductive means
to uncover potentially immunogenic epitopes (Amrolia et al., 2002; Chen
et al., 1995; Raptis et al., 1998). Although some HLA-restricted epitopes
have been identified, it is unclear whether any of these are leukemia-
associated antigens. The method of serologic screening of cDNA expression
libraries with autologous serum (SEREX) has also been used to identify
MAGE-1 and to confirm WT-1 as potential leukemia-associated antigens,
although there might be some controversy on whether the MAGE proteins
are expressed in leukemia blasts (Chambost et al., 2001).

In addition to these tissue-restricted epitopes in myeloid leukemias,
other potential antigens that might be useful as target antigens in vaccine
therapies include the idiotypes associated with lymphoid malignancies, such
as immunoglobulin idiotypes (Hsu et al., 1996, 1997; Kim et al., 2003;
Ruffini et al., 2002) and the CDR3 variable region associated with the
TCR (Berger et al., 1998, 2001). Furthermore, antigens that are aberrantly
expressed in most tumors, such as telomerase (Vonderheide et al., 1999) and
CYP1B1 (Nagai et al., 2002; Xie et al., 2002), contain epitopes that are
recognized by CTLs in vitro, which preferentially kill tumor cells but not
normal cells. Other potential targets include antigens from virus-induced
hematologic malignancies, such as the EBV antigens (Heslop et al., 1994a,b,
1996; Sing et al., 1997), which are highly immunogenic. EBV-specific CTLs
administered as adoptive cellular immunotherapy can induce complete
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remission in patients with EBV-related lymphoproliferative disorders after
transplant, making this system ideal for understanding the nature of highly
effective antigen-specific immune responses.

A cellular-based approach to induce leukemia-specific immunity has been
studied by using leukemia cells or cytokine-modified leukemia as vaccines.
Several groups have shown that cytokines that are used to elicit dendritic cells
(DCs) in vitro, such as GM-CSF and IL-4, and cytokines used to mature the
DCs, such as TFN-� or IL-1, can also be used to alter the phenotype of acute
and chronic myeloid leukemia cells (Choudhury et al., 1997; Smit et al., 1997;
Wang et al., 1998; Westers et al., 2003; Woiciechowsky et al., 2001). These
altered leukemia cells have been used as antigen-presenting cells (APCs) to
elicit leukemia-specific CTL responses in vitro, which has provided a basis
for clinical trials using these leukemia-derived APCs. However, other inves-
tigators have noted important deficits in these leukemia-derived APCs,
which might adversely affect their ability to induce potent immune responses
in vivo (Dong et al., 2003; Lindner et al., 2003; Rezvany et al., 2001).
Preliminary results of a recent clinical trial suggest that this might be impor-
tant because antigen-specific immune responses were noted in the absence of
any clinical responses after leukemia-derived APC vaccination of CML
patients (Takahashi et al., 2003).

An alternative strategy employs the use of gene-modified bystander cells
or leukemia cells that secrete cytokines such as GM-CSF. A murine model
has shown the effectiveness of this approach after autologous BMT is used to
achieve a minimal disease state (Borrello et al., 2000), and clinical trials are
currently underway to use GM-CSF gene-modified leukemia cell lines as a
cellular vaccine to induce leukemia-specific T-cell immunity. This approach
might enhance cross-presentation of antigens derived from the modified
leukemia cell lines (Huang et al., 1996), inducing a broader repertoire
of leukemia-specific T cells.

IV. Clinical Vaccine Trials with
Leukemia-Associated Antigens _______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Besides peptides derived from the idiotypes of lymphoid malignancies,
peptides derived from the BCR/ABL fusion transcript have undergone per-
haps the most extensive clinical testing. The results of a previous Phase I trial
in CML patients showed that although a combination of fusion region-
derived peptides was safe when administered subcutaneously and immune
responses could also be measured by ELISPOTafter vaccination, meaningful
clinical responses were not observed. More recently, the same group at the
Memorial Sloan-Kettering Cancer Center reported on 14 patients in a Phase
II study who were given five injections of six peptides over 10 weeks. A de-
crease in the percentage of Phþ cells was noted in four patients in previous
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hematologic remission; three were also receiving interferon, and one was
receiving imatinib mesylate (Panilla et al., 2003). Transient PCR negativity
was also noted in a few additional patients, although these patients had
received prior allogeneic transplant and donor lymphocyte infusions.

Because the heat shock protein 70 (HSP70) is associated with antigenic
peptides and is involved in chaperoning these peptides in the MHC-1 antigen
processing pathway, autologous cellular extracts containing HSP70–peptide
complexes have been studied as a vaccine in chronic-phase CML patients. At
the University of Connecticut, HSP70–peptide complexes purified from leu-
kapheresis products were administered to CML patients who had not yet
achieved a major cytogenetic response after 6 months of imatinib mesylate
treatment. Of the first five patients who completed all eight weekly subcuta-
neous injections, major cytogenetic responses were noted in all five, and only
mild cutaneous reactions were seen (Li et al., 2003). Importantly, ELISPOT
responses to the vaccine preparation were also noted in some patients.

Although results from both the HSP70 and the BCR/ABL vaccine stud-
ies are important because they demonstrate that the vaccines can induce
immune responses in CML patients and clinical responses are possible, true
cause and effect has not been established because patients in both studies
concomitantly received other therapies. It is therefore not possible to deter-
mine with certainty whether the vaccines contributed to the cytogenetic or
molecular responses. For instance, major cytogenetic remissions after ima-
tinib treatment continue to be observed in more than 30% of patients
beyond 6 months of therapy, and small fluctuations in the percentage of
Phþ cells might be seen throughout treatment.

Clinical studies are also being conducted in Germany and Japan, using
WT-1 peptides specific for the HLA-A2 and-A24 alleles as vaccines. A case re-
port detailing responses in two patients with MDS and secondary AML were
recently reported by investigators in Osaka, Japan (Oka et al., 2003). These
two patients received a single intradermal HLA-A24-restricted WT-1 pep-
tide vaccination, and in one patient WT-1-specific CTL increased within
48 h from 1–6% of all CD8þ T lymphocytes by tetramer analysis. Steroids
were required in both patients to treat severe cytopenia that developed
after vaccination, and sepsis occurred in one patient. Nevertheless, blasts
initially decreased in both the patients, suggesting that WT-1 might induce
antileukemia immunity.

In addition, peptides derived from the hTERT telomerase protein, which
is widely overexpressed in leukemia, hematopoietic progenitors, and most
solid tumors, have also been seen in Phase I/II trials at the University of
Pennsylvania and elsewhere. Preliminary results from many of these studies
might be available by 2005. Interestingly, in a recent study, T cells that
recognized hTERT-derived peptides in vitro showed promiscuous recogni-
tion of the same peptides in the context of different HLA alleles, consistent
with results of experiments using the PR1 peptide (Schroers et al., 2003).
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This suggests that hTERT peptide-based vaccines might be used to induce
immunity across different HLA alleles, opening the possibility to treat more
patients with single peptides.

The PR1 peptide is also undergoing Phase I/II study, and the single
peptide epitope is combined with incomplete Freund’s adjuvant and GM-
CSF and administered every 3 weeks for three vaccinations. Patients with
AML, CML, and MDS are eligible, and the first 15 patients are fully evalu-
able. To judge whether a clinical response was because of the vaccine, eligible
patients were required to have progression, relapse, or second or more than
second CR (AML patients only) prior to vaccination. Immune responses,
measured using PR1/HLA-A2 tetramers, were noted in eight of the patients
and clinical responses in five of those patients. Notably, the TCR avidity of
the vaccine-induced PR1-specific CTLs was higher in the clinical responders
than in the nonresponders, and durable molecular remissions were noted
in two refractory AML patients followed from 11 months to 3 years.

V. Conclusion

We are beginning to learn more about the nature of the antigens targeted
by T cells that mediate autologous antileukemia immunity and those that
are targets of the allogeneic GVL effect. Some self-antigens might also be the
targets of alloreactive CTL, as we have shown for PR1. As more antigens
are identified, logical immunotherapy strategies such as vaccines or adop-
tive cellular therapies can be tested in patients. Obstacles to this approach
remain, however. We must identify which of the hematopoietic tissue-
restricted peptides are recognized by T cells and improve our understan-
ding of the nature of peripheral T-cell tolerance in order to break immune
tolerance to certain peptide determinants without causing potentially de-
structive autoimmunity. In the future, allogeneic stem cell transplantation is
likely to evolve as a platform for delivering antigen-specific adoptive cellular
therapies and for posttransplant vaccination strategies in which donor CTLs
are elicited in the recipient. Both autologous and allogeneic transplant might
reset T-cell homeostasis and allow a more complete T-cell repertoire to
emerge postgrafting that could be further expanded selectively against
tumor antigens by vaccination posttransplant, as in a vaccination by proxy
therapy in the case of allogeneic transplantation.

References

Altman, J. D., Moss, P. A. H., Goulder, P. J. R., Barouch, D. H., McHeyzer-Williams, M. G.,

Bell, J. I., McMichael, A. J., and Davis, M. M. (1996). Phenotypic analysis of antigen-
specific T lymphocytes. Science 274, 94–96.

264 Lu et al.



Amrolia, P. J., Reid, S. D., Gao, L., Schultheis, B., Dotti, G., Brenner, M. K., Melo, J. V.,

Goldman, J. M., and Stauss, H. J. (2003). Allorestricted cytotoxic T cells specific for

human CD45 show potent antileukemic activity. Blood 101, 1007–1014.
Antin, J. H. (1993). Graft-versus-leukemia: No longer an epiphenomenon. Blood 82,

2273–2277.

Azuma, T., Makita, M., Ninomiya, K., Fujita, S., Harada, M., and Yasukawa, M. (2002).

Identification of a novel WT1-derived peptide which induces human leucocyte antigen-
A24-restricted anti-leukaemia cytotoxic T lymphocytes. Br. J. Haematol. 116, 601–603.

Ballieux, B. E., van der Burg, S. H., Hagen, E. C., van der Woude, F. J., Melief, C. J., and Daha,

M. R. (1995). Cell-mediated autoimmunity in patients with Wegener’s granulomatosis

(WG). Clin. Exp. Immunol. 100, 186–193.
Behre, G., Zhang, P., Zhang, D. E., and Tenen, D. G. (1999). Analysis of the modulation of

transcriptional activity in myelopoiesis and leukemogenesis. Methods 17, 231–237.

Bellantuono, I., Gao, L., Parry, S., Marley, S., Dazzi, F., Apperley, J., Goldman, J. M., and
Stauss, H. J. (2002). Two distinct HLA-A0201-presented epitopes of the Wilms tumor

antigen 1 can function as targets for leukemia-reactive CTL. Blood 100, 3835–3837.

Berger, C. L., Longley, B. J., Imaeda, S., Christensen, I., Heald, P., and Edelson, R. L. (1998).

Tumor-specific peptides in cutaneous T-cell lymphoma: association with class I major
histocompatibility complex and possible derivation from the clonotypic T-cell receptor.

Int. J. Cancer 76, 304–311.

Berger, C. L., Longley, J., Hanlon, D., Girardi, M., and Edelson, R. (2001). The clonotypic T

cell receptor is a source of tumor-associated antigens in cutaneous T cell lymphoma. Ann.
N. Y. Acad. Sci. 941, 106–122.

Bergmann, L., Maurer, U., and Weidmann, E. (1997). Wilms tumor gene expression in acute

myeloid leukemias. Leuk Lymphoma 25, 435–443.
Bergmann, L., Miething, C., Maurer, U., Brieger, J., Karakas, T., Weidmann, E., and Hoelzer,

D. (1997). High levels of Wilms’ tumor gene (wt1) mRNA in acute myeloid leukemias are

associated with a worse long-term outcome. Blood 90, 1217–1225.

Bocchia, M., Wentworth, P. A., Southwood, S., Sidney, J., McGraw, K., Scheinberg, D. A., and
Sette, A. (1995). Specific binding of leukemia oncogene fusion protein peptides to HLA

class I molecules. Blood 85, 2680–2684.

Bocchia, M., Korontsvit, T., Xu, Q., Mackinnon, S., Yang, S. Y., Sette, A., and Scheinberg,

D. A. (1996). Specific human cellular immunity to bcr-abl oncogene-derived peptides.
Blood 87, 3587–3592.

Bories, D., Raynal, M. C., Solomon, D. H., Darzynkiewicz, Z., and Cayre, Y. E. (1989). Down-

regulation of a serine protease, myeloblastin, causes gwoth arrest and differentiation of

promyelocytic leukemia cells. Cell 59, 959.
Borregaard, N., and Cowland, J. B. (1997). Granules of the human neutrophilic

polymorphonuclear leukocyte. Blood 89, 3503–3521.

Borrello, I., Sotomayor, E. M., Rattis, F. M., Cooke, S. K., Gu, L., and Levitsky, H. I. (2000).
Sustaining the graft-versus-tumor effect through posttransplant immunization with

granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing tumor vaccines.

Blood 95, 3011–3019.

Braunschweig, I., Wang, C., and Molldrem, J. (2000). Cytotoxic T lymphocytes (CTL) specific
for myeloperoxidase-derived HLA-A2-restricted peptides specifically lyse AML and CML

cells. Blood 96, 3291.

Brieger, J., Weidmann, E., Maurer, U., Hoelzer, D., Mitrou, P. S., and Bergmann, L. (1995). The

Wilms’ tumor gene is frequently expressed in acute myeloblastic leukemias and may
provide a marker for residual blast cells detectable by PCR. Ann. Oncol. 6, 811–816.

Brouwer, E., Stegeman, C. A., Huitema, M. G., Limburg, P. C., and Kallenberg, C. G. (1994). T

cell reactivity to proteinase 3 and myeloperoxidase in patients with Wegener’s
granulomatosis (WG). Clin. Exp. Immunol. 98, 448–453.

Vaccines in Leukemia 265



Callan, M. F., Tan, L., Annels, N., Ogg, G. S., Wilson, J. D., O’Callaghan, C. A., Steven, N.,

McMichael, A. J., and Rickinson, A. B. (1998). Direct visualization of antigen-specific

CD8þ T cells during the primary immune response to Epstein-Barr virus In vivo. J. Exp.
Med. 187, 1395–1402.

Chambost, H., van Baren, N., Brasseur, F., and Olive, D. (2001). MAGE-A genes are not

expressed in human leukemias. Leukemia 15, 1769–1771.

Chen, T., Meier, R., Ziemiecki, A., Fey, M. F., and Tobler, A. (1994). Myeloblastin/proteinase 3
belongs to the set of negatively regulated primary response genes expressed during in vitro

myeloid differentiation. Biochem. Biophys. Res. Commun. 200, 1130–1135.

Chen, W., Chatta, K., Rubin, W., Liggitt, D. H., Kusunoki, Y., Martin, P., and Cheever, M. A.

(1995). Polymporphic segments of CD45 can serve as targets for GVHD and GVL
responses. Blood 86(Suppl. 1), 157a.

Choudhury, A., Gajewski, J. L., Liang, J. C., Popat, U., Claxton, D. F., Kliche, K. O., Andreeff,

M., and Champlin, R. E. (1997). Use of leukemic dendritic cells for the generation of
antileukemic cellular cytotoxicity against Philadelphia chromosome-positive chronic

myelogenous leukemia. Blood 89, 1133–1142.

Clark, R. E., Dodi, I. A., Hill, S. C., Lill, J. R., Aubert, G., Macintyre, A. R., Rojas, J.,

Bourdon, A., Bonner, P. L., Wang, L. et al. (2001). Direct evidence that leukemic cells
present HLA-associated immunogenic peptides derived from the BCR-ABL b3a2 fusion

protein. Blood 98, 2887–2893.

Collins, R. H., Jr., Shpilberg, O., Drobyski, W. R., Porter, D. L., Giralt, S., Champlin, R.,

Goodman, S. A., Wolff, S. N., Hu, W., Verfaillie, C. et al. (1997). Donor leukocyte
infusions in 140 patients with relapsed malignancy after allogeneic bone marrow

transplantation. J. Clin. Oncol. 15, 433–444.

den Haan, J. M. M., Sherman, N. E., Blokland, E., Huczko, E., Koning, F., Drijfhout, J. W.,
Skipper, J., Shabanowitz, J., Hunt, D. F., Engelhard, V. H. et al. (1995). Identification of a

graft versus host disease-associated human minor histocompatibility antigen. Science 268,

1476–1480.

den Haan, J. M. M., Meadows, L. M., Wang, W., Pool, J., Blokland, E., Bishop, T.,
Reinhardus, C., Shabanowitz, J., Offringa, R., Hunt, D. F. et al. (1998). The minor

histocompatibility antigen HA-1: A diallelic gene with a single amino acid polymorphism.

Science 279, 1054–1057.

Dengler, R., Munstermann, U., al-Batran, S., Hausner, I., Faderl, S., Nerl, C., and Emmerich, B.
(1995). Immunocytochemical and flow cytometric detection of proteinase 3 (myelo-

blastin) in normal and leukaemic myeloid cells. Br. J. Haematol. 89, 250–257.

Dermime, S., Molldrem, J., Parker, K. C., Jiang, Y. Z., Mavroudis, D., Hensel, N., Couriel, D.,

Mahoney, M., Coligan, J. E., and Barrett, A. J. (1995). Human CD8þ T lymphocytes
recognize the fusion region of bcr/abl hybrid protein present in chronic myelogenous

leukemia. Blood 86(Suppl. 1), 158a.

Dolstra, H., Fredrix, H., Preijers, F., Goulmy, E., Figdor, C. G., de Witte, T. M., and van de
Wiel-van Kemenade, E. (1997). Recognition of a B cell leukemia-associated minor

histocompatibility antigen by CTL. J. Immunol. 158, 560–565.

Dong, R., Cwynarski, K., Entwistle, A., Marelli-Berg, F., Dazzi, F., Simpson, E., Goldman,

J. M., Melo, J. V., Lechler, R. I., Bellantuono, I. et al. (2003). Dendritic cells from CML
patients have altered actin organization, reduced antigen processing, and impaired

migration. Blood 101, 3560–3567.

Faber, L. M., van der Hoeven, J., Goulmy, E., Hooftman-den Otter, A. L., van Luxemburg-

Heijs, S. A., Willemze, R., and Falkenburg, J. H. (1995). Recognition of clonogenic
leukemic cells, remission bone marrow and HLA-identical donor bone marrow by CD8þ
or CD4þ minor histocompatibility antigen-specific cytotoxic T lymphocytes. J. Clin.
Invest. 96, 877–883.

266 Lu et al.



Faber, L. M., van Luxemburg-Heijs, S. A., Veenhof, W. F., Willemze, R., and Falkenburg, J. H.

(1995). Generation of CD4þ cytotoxic T-lymphocyte clones from a patient with severe

graft-versus-host disease after allogeneic bone marrow transplantation: Implications for
graft-versus-leukemia reactivity. Blood 86, 2821–2828.

Faber, L. M., van Luxemburg-Heijs, S. A., Rijnbeek, M., Willemze, R., and Falkenburg, J. H.

(1996). Minor histocompatibility antigen-specific, leukemia-reactive cytotoxic T cell

clones can be generated in vitro without in vivo priming using chronic myeloid leukemia
cells as stimulators in the presence of alpha-interferon. Biol. Blood Marrow Transplant 2,

31–36.

Franssen, C. F., Cohen Tervaert, J. W., Stegeman, C. A., and Kallenberg, C. G. (1996). c-ANCA

as a marker of Wegener’s disease. Lancet 347, 116; discussion 118.
Franssen, C. F., Stegeman, C. A., Kallenberg, C. G., Gans, R. O., De Jong, P. E., Hoorntje, S. J.,

and Tervaert, J. W. (2000). Antiproteinase 3- and antimyeloperoxidase-associated

vasculitis. Kidney Int. 57, 2195–2206.
Gao, L., Bellantuono, I., Elsasser, A., Marley, S. B., Gordon, M. Y., Goldman, J. M., and

Stauss, H. J. (2000). Selective elimination of leukemic CD34(þ) progenitor cells by

cytotoxic T lymphocytes specific for WT1. Blood 95, 2198–2203.

Giralt, S. A., and Kolb, H. J. (1996). Donor lymphocyte infusions. Curr. Opin. Oncol. 8,

96–102.

Goulmy, E., Schipper, R., Pool, J., Blokland, E., Falkenburg, J. H., Vossen, J., Grathwohl, A.,

Vogelsang, G. B., van Houwelingen, H. C., and van Rood, J. J. (1996). Mismatches of

minor histocompatibility antigens between HLA-identical donors and recipients and the
development of graft-versus-host disease after bone marrow transplantation. N. Engl. J.
Med. 334, 281–285.

Heslop, H. E., Brenner, M. K., and Rooney, C. M. (1994). Donor T cells to treat EBV-
associated lymphoma. N. Engl. J. Med. 331, 679–680.

Heslop, H. E., Brenner, M. K., Rooney, C., Krance, R. A., Roberts, W. M., Rochester, R.,

Smith, C. A., Turner, V., Sixbey, J., Moen, R. et al. (1994). Administration of neomycin-

resistance-gene-marked EBV-specific cytotoxic T lymphocytes to recipients of mis-
matched-related or phenotypically similar unrelated donor marrow grafts. Hum. Gene.
Ther. 5, 381–397.

Heslop, H. E., Ng, C. Y., Li, C., Smith, C. A., Loftin, S. K., Krance, R. A., Brenner, M. K., and

Rooney, C. M. (1996). Long-term restoration of immunity against Epstein-Barr virus
infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat. Med. 2,

551–555.

Hsu, F. J., Benike, C., Fagnoni, F., Liles, T. M., Czerwinski, D., Taidi, B., Engleman, E. G., and

Levy, R. (1996). Vaccination of patients with B-cell lymphoma using autologous antigen-
pulsed dendritic cells. Nat. Med. 2, 52–58.

Hsu, F. J., Caspar, C. B., Czerwinski, D., Kwak, L. W., Liles, T. M., Syrengelas, A., Taidi-

Laskowski, B., and Levy, R. (1997). Tumor-specific idiotype vaccines in the treatment of
patients with B-cell lymphoma–long-term results of a clinical trial. Blood 89, 3129–3135.

Huang, A. Y., Bruce, A. T., Pardoll, D. M., and Levitsky, H. I. (1996). In vivo cross-priming of

MHC class I-restricted antigens requires the TAP transporter. Immunity 4, 349–355.

Jennette, J. C., Thomas, D. B., and Falk, R. J. (2001). Microscopic polyangiitis (microscopic
polyarteritis). Semin. Diagn. Pathol. 18, 3–13.

Kim, S. B., Baskar, S., and Kwak, L. W. (2003). In vitro priming of myeloma antigen-specific

allogeneic donor T cells with idiotype pulsed dendritic cells. Leuk Lymphoma 44,

1201–1208.
Kolb, H. J., Schattenberg, A., Goldman, J. M., Hertenstein, B., Jacobsen, N., Arcese, W.,

Ljungman, P., Ferrant, A., Verdonck, L., Niederwieser, D. et al. (1995). Graft-versus-

leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European

Vaccines in Leukemia 267



Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Blood
86, 2041–2050.

Kolb, H. J., Mittermuller, J., Holler, E., Thalmeier, K., and Bartram, C. R. (1996). Graft-
versus-host reaction spares normal stem cells in chronic myelogenous leukemia. Bone
Marrow Transplant 17, 449–452.

Kolb, H. J., and Holler, E. (1997). Adoptive immunotherapy with donor lymphocyte

transfusions. Curr. Opin. Oncol. 9, 139–145.
Komanduri, K. V., Viswanathan, M. N., Wieder, E. D., Schmidt, D. K., Bredt, B. M., Jacobson,

M. A., and McCune, J. M. (1998). Restoration of cytomegalovirus-specific CD4þ
T-lymphocyte responses after ganciclovir and highly active antiretroviral therapy in

individuals infected with HIV-1. Nat. Med. 4, 953–956.
Komanduri, K. V., Donahoe, S. M., Moretto, W. J., Schmidt, D. K., Gillespie, G., Ogg, G. S.,

Roederer, M., Nixon, D. F., and McCune, J. M. (2001). Direct measurement of

CD4þ and CD8þ T-cell responses to CMV in HIV-1-infected subjects. Virology 279,

459–470.

Lane, A. A., and Ley, T. J. (2003). Neutrophil elastase cleaves PML-RARa and is important for

the development of acute promyelocytic leukemia in mice. Cell 115, 305–318.

Lee, P. P., Yee, C., Savage, P. A., Fong, L., Brockstedt, D., Weber, J. S., Johnson, D., Swetter, S.,
Thompson, J., Greenberg, P. D. et al. (1999). Characterization of circulating T cells

specific for tumor-associated antigens in melanoma patients. Nat. Med. 5, 677–685.

Li, Z., Qiao, Y., Laska, E., Julko, J., Bona, R., Gaffney, J., Hegde, U., Moyo, P., and Srivastava,

P. (2003). ‘‘Combination of imatinib mesylate with autologous leukocyte-derived heat
shock protein 70 vaccine for chronic myelogenous leukemia.’’ American Society of

Clinical Oncology. p. 664. San Francisco, CA.

Lindner, I., Kharfan-Dabaja, M. A., Ayala, E., Kolonias, D., Carlson, L. M., Beazer-Barclay, Y.,
Scherf, U., Hnatyszyn, J. H., and Lee, K. P. (2003). Induced dendritic cell differentiation

of chronic myeloid leukemia blasts is associated with down-regulation of BCR-ABL.

J. Immunol. 171, 1780–1791.

Marijt, W. A., Heemskerk, M. H., Kloosterboer, F. M., Goulmy, E., Kester, M. G., van der
Hoorn, M. A., van Luxemburg-Heys, S. A., Hoogeboom, M., Mutis, T., Drijfhout, J. W.

et al. (2003). Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-

specific T cells can induce complete remissions of relapsed leukemia. Proc. Natl. Acad.
Sci. USA 100, 2742–2747.

Molldrem, J., Dermime, S., Parker, K., Jiang, Y. Z., Mavroudis, D., Hensel, N., Fukushima, P.,

and Barrett, A. J. (1996). Targeted T-cell therapy for human leukemia: Cytotoxic T

lymphocytes specific for a peptide derived from proteinase 3 preferentially lyse human

myeloid leukemia cells. Blood 88, 2450–2457.
Molldrem, J. J., Clave, E., Jiang, Y. Z., Mavroudis, D., Raptis, A., Hensel, N., Agarwala, V.,

and Barrett, A. J. (1997). Cytotoxic T lymphocytes specific for a nonpolymorphic

proteinase 3 peptide preferentially inhibit chronic myeloid leukemia colony-forming
units. Blood 90, 2529–2534.

Molldrem, J. J., Lee, P. P., Wang, C., Champlin, R. E., and Davis, M. M. (1999). A PR1-human

leukocyte antigen-A2 tetramer can be used to isolate low-frequency cytotoxic T

lymphocytes from healthy donors that selectively lyse chronic myelogenous leukemia.
Cancer Res. 59, 2675–2681.

Molldrem, J. J., Lee, P. P., Wang, C., Felio, K., Kantarjian, H. M., Champlin, R. E., and Davis,

M. M. (2000). Evidence that specific T lymphocytes may participate in the elimination of

chronic myelogenous leukemia. Nat. Med. 6, 1018–1023.
Muller-Berat, N., Minowada, J., Tsuji-Takayama, K., Drexler, H., Lanotte, M., Wieslander, J.,

and Wiik, A. (1994). The phylogeny of proteinase 3/myeloblastin, the autoantigen in

Wegener’s granulomatosis, and myeloperoxidase as shown by immunohistochemical
studies on human leukemic cell lines. Clin. Immunol. Immunopathol. 70, 51–59.

268 Lu et al.



Murata, M., Warren, E. H., and Riddell, S. R. (2003). A human minor histocompatibility

antigen resulting from differential expression due to a gene deletion. J. Exp. Med. 197,

1279–1289.
Nagai, F., Hiyoshi, Y., Sugimachi, K., and Tamura, H. O. (2002). Cytochrome P450

(CYP) expression in human myeloblastic and lymphoid cell lines. Biol. Pharm. Bull. 25,

383–385.

Oka, Y., Elisseeva, O. A., Tsuboi, A., Ogawa, H., Tamaki, H., Li, H., Oji, Y., Kim, E. H., Soma, T.,
Asada, M. et al. (2000). Human cytotoxic T-lymphocyte responses specific for peptides of

the wild-type Wilms’ tumor gene (WT1) product. Immunogenetics 51, 99–107.

Oka, Y., Tsuboi, A., Murakami, M., Hirai, M., Tominaga, N., Nakajima, H., Elisseeva, O. A.,

Masuda, T., Nakano, A., Kawakami, M. et al. (2003). Wilms tumor gene peptide-based
immunotherapy for patients with overt leukemia from myelodysplastic syndrome (MDS)

or MDS with myelofibrosis. Int. J. Hematol. 78, 56–61.

Panilla, J., Cathcart, K., Korontsvit, T., Schwartz, J. D., Zakheleva, E., Papadopoulos, E., and
Scheinberg, D. A. (2003). ‘‘A phase II trial of patients with CML using a multivalent

BCR-ABL oncogene product fusion peptide vaccine.’’ American Society of Clinical

Oncology. p. 674. San Francisco, CA.

Raptis, A., Clave, E., Mavroudis, D., Molldrem, J., Van Rhee, F., and Barrett, A. J. (1998).
Polymorphism in CD33 and CD34 genes: A source of minor histocompatibility antigens

on haemopoietic progenitor cells? Br. J. Haematol. 102, 1354–1358.

Rezvany, M. R., Jeddi-Tehrani, M., Biberfeld, P., Soderlund, J., Mellstedt, H., Osterborg, A.,

and Rabbani, H. (2001). Dendritic cells in patients with non-progressive B-chronic
lymphocytic leukaemia have a normal functional capability but abnormal cytokine

pattern. Br. J. Haematol. 115, 263–271.

Ruffini, P. A., Neelapu, S. S., Kwak, L. W., and Biragyn, A. (2002). Idiotypic vaccination for B-
cell malignancies as a model for therapeutic cancer vaccines: From prototype protein to

second generation vaccines. Haematologica 87, 989–1001.

Savige, J., Gillis, D., Benson, E., Davies, D., Esnault, V., Falk, R. J., Hagen, E. C., Jayne, D.,

Jennette, J. C., Paspaliaris, B. et al. (1999). International Consensus Statement on Testing
and Reporting of Antineutrophil Cytoplasmic Antibodies (ANCA). Am. J. Clin. Pathol.
111, 507–513.

Scheibenbogen, C., Letsch, A., Thiel, E., Schmittel, A., Mailaender, V., Baerwolf, S., Nagorsen,

D., and Keilholz, U. (2002). CD8 T-cell responses to Wilms tumor gene product WT1 and
proteinase 3 in patients with acute myeloid leukemia. Blood 100, 2132–2137.

Schroers, R., Shen, L., Rollins, L., Rooney, C. M., Slawin, K., Sonderstrup, G., Huang, X. F.,

and Chen, S. Y. (2003). Human Telomerase Reverse Transcriptase-Specific T-Helper

Responses Induced by Promiscuous Major Histocompatibility Complex Class II-
Restricted Epitopes. Clin. Cancer Res. 9, 4743–4755.

Sing, A. P., Ambinder, R. F., Hong, D. J., Jensen, M., Batten, W., Petersdorf, E., and Greenberg,

P. D. (1997). Isolation of Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes that
lyse Reed-Sternberg cells: implications for immune-mediated therapy of EBVþ Hodgkin’s

disease. Blood 89, 1978–1986.

Smit, W. M., Rijnbeek, M., van Bergen, C. A., de Paus, R. A., Vervenne, H. A., van de Keur,

M., Willemze, R., and Falkenburg, J. H. (1997). Generation of dendritic cells expressing
bcr-abl from CD34-positive chronic myeloid leukemia precursor cells. Hum. Immunol.
53, 216–223.

Sturrock, A. B., Franklin, K. F., Rao, G., Marshall, B. C., Rebentisch, M. B., Lemons, R. S., and

Hoidal, J. R. (1992). Structure, chromosomal assignment, and expression of the gene for
proteinase 3. J. Biol. Chem. 267(29), 21193–21199.

Takahashi, T., Tanaka, Y., Nieda, M., Azuma, T., Chiba, S., Juji, T., Shibata, Y., and Hirai, H.

(2003). Dendritic cell vaccination for patients with chronic myelogenous leukemia. Leuk.
Res. 27, 795–802.

Vaccines in Leukemia 269



van der Harst, D., Goulmy, E., Falkenburg, J. H., Kooij-Winkelaar, Y. M., van Luxemburg-

Heijs, S. A., Goselink, H. M., and Brand, A. (1994). Recognition of minor

histocompatibility antigens on lymphocytic and myeloid leukemic cells by cytotoxic T-
cell clones. Blood 83, 1060–1066.

van Rhee, F., Lin, F., Cullis, J. O., and Goldman, J. (1994). Relapse of chronic myeloid

leukemia after allogeneic bone marrow transplant: The case for giving donor lymphocyte

transfusions before the onset of hematological relapse. Blood 83, 3377–3383.
Vonderheide, R. H., Hahn, W. C., Schultze, J. L., and Nadler, L. M. (1999). The telomerase

catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic

T lymphocytes. Immunity 10, 673–679.

Wang, J., Saffold, S., Cao, X., Krauss, J., and Chen, W. (1998). Eliciting T cell immunity
against poorly immunogenic tumors by immunization with dendritic cell-tumor fusion

vaccines. J. Immunol. 161, 5516–5524.

Warren, E. H., Greenberg, P. D., and Riddell, S. R. (1998). Cytotoxic T-lymphocyte-defined
human minor histocompatibility antigens with a restricted tissue distribution. Blood 91,

2197–2207.

Westers, T. M., Stam, A. G., Scheper, R. J., Regelink, J. C., Nieuwint, A. W., Schuurhuis, G. J.,

van de Loosdrecht, A. A., and Ossenkoppele, G. J. (2003). Rapid generation of antigen-
presenting cells from leukaemic blasts in acute myeloid leukaemia. Cancer Immunol.
Immunother. 52, 17–27.

Williams, R. C., Staud, R., Malone, C. C., Payabyab, J., Byres, L., and Underwood, D. (1994).

Epitopes on proteinase 3 recognized by antibodies from patients with Wegener’s
granulomatosis. J. Immunol. 152, 4722–4732.

Woiciechowsky, A., Regn, S., Kolb, H. J., and Roskrow, M. (2001). Leukemic dendritic cells

generated in the presence of FLT3 ligand have the capacity to stimulate an autologous
leukemia-specific cytotoxic T cell response from patients with acute myeloid leukemia.

Leukemia 15, 246–255.

Xie, H. J., Lundgren, S., Broberg, U., Finnstrom, N., Rane, A., and Hassan, M. (2002). Effect

of cyclophosphamide on gene expression of cytochromes p450 and beta-actin in the HL-
60 cell line. Eur. J. Pharmacol. 449, 197–205.

Zhang, P., Nelson, E., Radomska, H. S., Iwasaki-Arai, J., Akashi, K., Friedman, A. D., and

Tenen, D. G. (2002). Induction of granulocytic differentiation by 2 pathways. Blood 99,

4406–4412.

270 Lu et al.



John M. Timmerman

Division of Hematology/Oncology

University of California, Los Angeles

Center for Health Sciences 42-121

Los Angeles, California 90095-1678

Therapeutic Idiotype Vaccines for

Non-Hodgkin’s Lymphoma

I. Chapter Overview

The immune system of the lymphoma-bearing host can be manipulated
to recognize the tumor-specific immunoglobulin (idiotype) sequences
expressed by the tumor. Observations from Phase I/II clinical studies of
therapeutic idiotype vaccination in patients with follicular lymphoma have
included (1) induction of anti-idiotype antibody and T-cell responses that
correlate with improved survival, (2) clearance of residual tumor cells from
the peripheral blood to achieve molecular remission, and (3) durable objec-
tive tumor regressions, particularly using idiotype-loaded dendritic cells.
These studies have provided rationale for two large randomized, controlled
trials of idiotype vaccination following initial cytoreductive chemotherapy
in follicular lymphoma. As the results of these Phase III trials are eagerly
awaited, a host of new second-generation idiotype vaccines are undergoing
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development, aimed at improving both the potency and practicality of this
individualized approach to lymphoma therapy.

II. Introduction

Although passive monoclonal antibody treatments have proven to be
potent antilymphoma agents, they represent only part of the potential for
immunotherapeutic strategies against lymphoid cancers. Elicitation of an ac-
tive host immune response against tumor can offer several advantages over
passively administered antibodies. An adaptive immune response can display
remarkable specificity for tumor-associated or tumor-specific antigens, which
in theory should spare normal tissues from damage. An active host antitumor
response can also include polyclonal antibody (B-cell) and T-cell responses,
each of which encompasses immunologic memory to carry our ongoing
surveillance against tumor cells. Together, these features should serve to
decrease the chance of tumor escape from recognition and destruction.
Despite their usual resistance to cure with conventional cytotoxic agents,
B-cell lymphomas, particularly those of the follicular subtype, appear to be
among the most immune responsive of all human cancers. This is manifested
in their capacity for spontaneous regression (Horning and Rosenberg, 1984;
Krikorian et al., 1980), their occasional responsiveness to nonspecific im-
mune activators such as bacillus Calmette-Guerin (Anonymous), interleukin-
2 (Snozl, 1995), and IL-12 (Younes et al., 2002), and high rates of response
to monoclonal antibody therapies (Davis et al., 1998; McLaughlin et al.,
1998; Miller et al., 1982) and tumor-specific vaccines (Bendandi et al., 1999;
Hsu et al., 1997; Kwak et al., 1992; Timmerman et al., 2002a). Thus, tumor–
host immune system interactions have the potential to profoundly influence
lymphoma growth, and B-cell lymphoma should be considered an important
testing ground for new immunotherapeutic approaches to cancer treatment.

This chapter focuses on therapeutic vaccines targeting lymphoma
idiotype, since these are the best studied of all lymphoma vaccines. Other
lymphoma immunotherapies such as systemic cytokines, tumor cell-
based vaccines, and monoclonal antibodies have been recently reviewed
(Timmerman, 2003) or are covered elsewhere in this volume.

III. Development of the Idiotype Vaccine Approach _______________________________________________________________________________________________________________________________________________________________

A. Immunologic Basis for Idiotype Vaccines

B-cell lymphomas usually express clonal immunoglobulin whose vari-
able regions comprise a unique set of immunogenic determinants known
as the idiotype (Id) (Timmerman and Levy, 2000a). Each normal B cell
expresses an immunoglobulin with unique variable region sequences that
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are used to bind antigen. These protein sequences are formed by the stochas-
tic recombination of gene segments during B-cell development, yielding one
of many millions of possible combinations. When a B cell undergoes malig-
nant transformation, these unique sequences are maintained by the tumor
cell clone, and can thus serve as a truly tumor-specific antigen. The cost
for this level of specificity when targeting tumor idiotype is high; however,
a custom-made reagent must be created for each patient.

At the present time, idiotype is the best-characterized tumor antigen
available as a target for the active immunotherapy of lymphomas. Human
studies were first made possible by the finding that large quantities of the
patient-specific tumor immunoglobulin (idiotype) could be obtained by
the technique of rescue hybridization, in which a patient’s lymphoma cells
are fused with myeloma cells yielding stable hybrid cell lines secreting the
tumor-specific idiotype protein (Fig. 1) (Levy and Dilley, 1978). Idiotype was
first validated as a susceptible target antigen for human B-cell lymphoma in
studies employing custom-made murine anti-idiotype monoclonal antibo-
dies for the treatment of follicular lymphoma (Miller et al., 1982). Ronald
Levy and colleagues at Stanford University treated 45 patients with 52

FIGURE 1 Schema for production of patient-specific idiotype (Id) vaccines. Idiotype vaccines

are custom-made from each patient’s own tumor cells either by fusing to an immortal myeloma

cell (rescue hybrid method) or by genetic engineering techniques (molecular rescue method). In

each case, an unlimited supply of the vaccine can be made. The Id protein is then chemically
linked to the foreign protein keyhole limpet hemocyanin (KLH), combined with an immune

stimulant (adjuvant), and injected under the skin.
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courses of these patient-specific antibodies, and objective tumor regressions
were seen in 66% of cases (Davis et al., 1998). In eight cases, these regres-
sions were complete, with some patients being apparently cured, having
remained tumor-free for many years without additional treatments. Howev-
er, despite these impressive results, this custom-made antibody approach
ultimately proved too cumbersome for large-scale application and has since
been replaced by an active immunotherapeutic strategy that uses tumor-
derived idiotype protein as a patient-specific tumor antigen (Timmerman
and Levy, 2000a).

Injection of idiotype protein into a host along with an immunologic
adjuvant has the potential to elicit three levels of attack against lymphoma
cells bearing idiotypic determinants. These include the induction of a poly-
clonal anti-idiotype antibody response (Campbell et al., 1987; George et al.,
1987; Kwak et al., 1992), and recruitment of CD4þ (Campbell et al., 1987;
Hsu et al., 1997; Kwak et al., 1992; Lauritzsen et al., 1994; Lundin et al.,
2003) and CD8þ (Abe et al., 1996; Cao et al., 1994; Chakrabarti and
Ghosh, 1992a,b; Osterroth et al., 2000; Trojan et al., 2000; Wen et al.,
2001) T cells that recognize idiotype-derived peptides on the cell surface
bound to class II and class I major histocompatibility complex (MHC)
molecules, respectively. It should be appreciated that an individual patient,
based on his or her MHC haplotype and functional T- and B-cell repertoire,
could mount all three types of responses, or the response could be limited to
two, one, or none of the above. However, as described later, it appears that
at least one of these responses is evoked in most vaccinated subjects.

B. Early Trials of Idiotype Vaccination for
Follicular Lymphoma

Three key clinical trials in patients with follicular lymphoma have served
to establish the proof of principle for therapeutic idiotype vaccination. In the
first study performed at Stanford University, patients were immunized with
their tumor idiotype protein chemically conjugated (using glutaraldehyde)
to the highly immunogenic carrier protein keyhole limpet hemocyanin
(Id-KLH) (Hsu et al., 1997; Kwak et al., 1992). This foreign protein, from
the sea mollusk Megathura crenulata, served to render the weakly immuno-
genic self-derived idiotype more recognizable by the human immune system.
This is because of KLH-specific CD4þT helper cells producing cytokines and
other factors that provide help to idiotype-specific B cells and CD8þ cytolytic
T cells. The Id-KLH complex was emulsified in an oil-in-water type immu-
nologic adjuvant before subcutaneous (SC) injection. In this initial trial,
41 patients were treated, including 32 in their first chemotherapy-induced
remission and 9 in subsequent remissions. Side effects were minimal and
confined largely to local injection site reactions attributable to the adjuvant.
Of the 41 patients, 20 (49%) developed idiotype-specific antibody or T-cell
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proliferative responses following vaccination. Antibody responses were
detected more often than cellular proliferative responses (85% vs. 35%,
respectively). Anti-idiotype immune responses were more frequent in
patients in complete remission at the time of vaccination (75%) than in
those with residual tumor (25%). Of 20 patients (10%) with residual
tumor at the time of vaccination, 2 experienced complete regression follow-
ing vaccination; both had idiotype-specific immune responses. Among the 32
first-remission patients vaccinated, roughly half (14 of 32) mounted anti-
idiotype immune responses (antibody or T-cell proliferation) to the vaccine.
In long-term follow-up, the development of an anti-idiotype immune re-
sponse was highly correlated with improved disease-free (p < 0.0001) and
overall (p ¼ 0.04) survival (Hsu et al., 1997). These results suggested a
therapeutic effect of the vaccine, but cause and effect could not be proven
in this nonrandomized study. Nonetheless, these observations prompted
the search for new methods of improving both the frequency and potency
of anti-idiotype immune responses in lymphoma patients.

C. Idiotype-Pulsed Dendritic Cell Vaccines

Stanford investigators next chose dendritic cells as a means of improving
the potency of idiotype vaccines. The central role played by dendritic cells in
the initiation of immune responses makes them an attractive addition to
cancer vaccines (Banchereau et al., 2000). These cells can be isolated directly
from the peripheral blood in small numbers or generated in vitro from
monocytes or CD34þ hematopoietic progenitors, using cytokines such as
granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-
4, and tumor necrosis factor-�. When briefly cocultured (i.e., pulsed) with
tumor-derived peptides or proteins, or transduced with tumor antigen-
encoding viruses or RNA and administered as a cellular vaccine, dendritic
cells have been shown to promote antitumor immunity in a number of mur-
ine cancer models (Timmerman and Levy, 1999). These studies have pro-
vided a strong rationale for the clinical use of dendritic cells in therapeutic
vaccination strategies against human cancers.

Hsu and colleagues were the first to report that dendritic cells pulsed
with a tumor antigen (idiotype) could have clinically significant antitumor
effects (Hsu et al., 1996; Timmerman et al., 2002a). In this study, autologous
peripheral blood dendritic cells were isolated from patients with follicular
lymphoma by leukapheresis and density gradient centrifugation, pulsed with
idiotype protein, and administered intravenously. Four infusions of relative-
ly small numbers of cells (approximately 5–10 million) were given, with
each infusion followed 2 weeks later by booster injections of soluble idio-
type protein. The only side effects were self-limiting infusion reactions, and
no long-term toxicities were observed. Objective tumor regression responses
were seen in 4 of 10 patients in an initial cohort with measurable, relapsed
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follicular lymphoma, including two complete regressions lasting 44 and 57
months. In a second cohort of 23 patients who completed the vaccination
series while in first partial or complete remission after chemotherapy, two-
thirds developed anti-idiotype T-cell or antibody responses, and reduction in
residual tumor was seen in 4 of 18 (22%) cases (responses seen in pleura,
lymph nodes, and bone marrow). In a subset of patients, serum antibodies
were elicited that could selectively bind to autologous tumor cells and induce
signal transduction. The relapse-free survival of these first-remission patients
appeared favorable, with 70% remaining progression free at a median
follow-up of 43 months.

Six patients who had failed to have tumor regression or who had
relapsed after the initial dendritic cell vaccine were treated with five booster
injections of Id-KLH protein without dendritic cells (Timmerman et al.,
2002). Remarkably, three of these six patients experienced durable tumor
regressions (two complete, lasting 24þ and 48þ months). This demon-
strated for the first time that even patients with relatively large tumor
burdens could have clinically meaningful responses to idiotype vaccines
and that by simply reformulating and administering the same idiotype
protein, one could achieve a clinical response even after resistance to the
original vaccine. One case of vaccine-induced tumor regression is depicted in
Fig. 2. A patient with follicular lymphoma was first vaccinated with idio-
type-pulsed dendritic cells while in first remission following chemotherapy
with cyclophosphamide, vincristine, and prednisone. An idiotype-specific
T-cell proliferative response was measured postvaccination, yet recurrence
was detected 15 months later. Subcutaneous booster injections of Id-KLH
protein were administered at 33 months, by which time extensive lymph-
adenopathy had developed in the cervical, axillary, iliac, and inguinal
regions, along with bone marrow involvement. Within 2 weeks of receiving
the first Id-KLH injection, rapid regression of all palpable lymph nodes was
noted, and a complete response was later documented by CT scans. The
rapid clinical response in this case suggests that a memory immune response
was invoked. At no time did this patient have detectable antiidiotype anti-
bodies in the serum. However, tumor-specific cytolytic T cells were recov-
ered from the peripheral blood, thus suggesting a mechanism for these
striking antitumor effects. Direct observations of lymphoma regressions in
this clinical trial represent some of the most convincing evidence for the
potential efficacy of the idiotype vaccination (Timmerman et al., 2002).

D. Granulocyte-Macrophage Colony-Stimulating Factor
as a Vaccine Adjuvant

Another approach to increasing the potency of idiotype vaccines has
been through the use of GM-CSF as a cytokine adjuvant. Investigators at the
U.S. National Cancer Institute (NCI) found that among a panel of cytokines
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FIGURE 2 Regression of follicular lymphoma following vaccination with idiotype-loaded

dendritic cells and Id-KLH protein. A patient with follicular lymphoma was initially treated

with infusions of idiotype-pulsed autologous dendritic cells while in first remission

postchemotherapy, but relapsed 15 months later. Widespread disease developed 18 months
later, and subcutaneous booster injections of Id-KLH protein plus an immune adjuvant were

administered. (A) CT scan images of the pelvis show that bulky left-sided pelvic lymph nodes

have completely regressed 4 months after booster vaccinations. (B) Regression of axillary (top
panels) and inguinal (bottom panels) lymph nodes following booster vaccinations. Arrows

indicate sites of disease prior to vaccination. From Timmerman, J. et al. (2002b). Idiotype-

pulsed dendritic cell vaccination for B cell lymphoma: clinical and immune responses in 35

patients. Blood 99, 1517–1526, with permission.
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coinjected with Id-KLH in a murine lymphoma model, GM-CSF was
uniquely potent in eliciting T-cell-mediated antitumor immunity (Kwak
et al., 1996). Similar results have been obtained in surveying the ability of
various cytokine gene-transduced tumor cell vaccines to promote antitumor
immunity (Dranoff et al., 1993). The efficacy of GM-CSF as a vaccine
adjuvant is likely related to its stimulation of the growth, maturation,
migration, and antigen-presenting properties of dendritic cells (Banchereau
et al., 2000). Id-KLH plus GM-CSF was first tested in a group of 20 patients
with follicular lymphoma in first clinical complete remission after combina-
tion chemotherapy (PACE; prednisone, doxorubicin, cyclophosphamide,
and etoposide) (Bendandi et al., 1999). Vaccinations consisted of SC injec-
tions of Id-KLH mixed with GM-CSF on Day 1, with continued GM-CSF
injections at the identical site for an additional 3 days to promote infiltration
of antigen-presenting cells and T-cell stimulation. Five total vaccinations
were administered on Months 1, 2, 3, 4, and 6. Once again, side effects were
limited to injection site reactions, principally because of the coinjected GM-
CSF. Following vaccination, peripheral blood lymphocytes from 19 of the 20
patients were found to secrete cytokines when cocultured with autologous
tumor cells, and cytotoxicity by CD8þ T cells toward autologous tumor
cells was demonstrated in 6 patients. Serum anti-idiotype antibodies were
detected by ELISA in 75% of cases. As these patients had no radiographical-
ly measurable tumor at the time of vaccination, residual disease was quanti-
fied in the peripheral blood by the polymerase chain reaction (PCR) for the
t(14;18) translocation characteristic of follicular lymphoma. In 8 of 11 PCR-
evaluable cases, clearance of the bcl-2 PCR signal from the blood was
achieved following vaccination. In addition, 18 of the 20 (90%) patients
remained in continuous first clinical complete remission at a median of 42
months postchemotherapy. This study has served to establish GM-CSF as a
preferred immune adjuvant for Id-KLH vaccines. Based on these results, a
NCI-sponsored Phase III randomized, controlled trial of Id-KLH plus GM-
CSF vaccination has been initiated for follicular lymphoma patients in first
clinical complete remission following chemotherapy (Timmerman, 2002).
(See Section V; this and other new trials of idiotype vaccination are listed in
Table I.)

IV. Recombinant Idiotype Vaccines _____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Although the previous studies provide adequate rationale for formal
efficacy evaluation of Id-KLH vaccines in lymphoma, there remains the need
to simplify delivery of this individualized therapy. Should controlled trials
demonstrate efficacy and lead to regulatory approval, the manufacturing
of custom-made idiotype vaccines for thousands of lymphoma patients
each year would represent an enormous challenge for the pharmaceutical
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industry. Production of idiotype proteins by the rescue hybridoma method,
though time-tested in the previously mentioned three studies, is tedious and
time consuming, often requiring 6 or more months to complete, and fails to
yield a vaccine product in 15–20% of cases. However, idiotype vaccine
production can now be streamlined through the use of PCR techniques
that allow rapid amplification and cloning of idiotype genes from B-cell
tumor specimens (molecular rescue; see Fig. 1) (Hawkins et al., 1994). The
resulting idiotype DNA sequences can be inserted into a variety of vectors
for either in vitro expression of protein or direct injection into the host as
genetic vaccines (Timmerman and Levy, 2000).

Recombinant idiotype proteins are at present being produced in a
colorful assortment of protein expression systems. Genitope, Inc. (Redwood
City, CA) has developed procedures to produce full-length tetrameric idio-
type proteins with a human IgG3 backbone in murine lymphoma cells, with
a success rate of more than 95%. This recombinant Id-KLH (My Vax

TM

/
GTOP-99) plus GM-CSF was found to be safe and to have comparable
immunogenicity to rescue hybrid-derived idiotype protein in a Phase I/II
study in follicular lymphoma (Timmerman et al., 2000). Anti-idiotype anti-
body or T-cell proliferative responses were detected in 60% and 50% of
patients, respectively (40% positive for both response types). A critical
question is whether recombinant idiotype protein vaccines retain the correct
three-dimensional conformation and relevant immunogenicity of native,
rescue hybridoma-derived tumor idiotype proteins. Importantly, antibodies
and T cells reactive toward the recombinant idiotype displayed equivalent
reactivity toward the autologous rescue hybridoma-derived idiotype pro-
teins. In addition, postvaccine serum from patients could specifically stain
autologous tumor cells, indicating that the induced humoral response was
highly relevant to the idiotype as presented in its native conformation by
tumor cells (Timmerman and Levy, unpublished observations). These results
have led to Genitope initiating a randomized Phase III trial of this vaccine in
follicular lymphoma and Phase II testing in aggressive lymphomas (see
Sections V and VII).

Favrille, Inc. (San Diego, CA) has found that recombinant idiotype
proteins can also be rapidly produced in sf9 insect cells, using the baculo-
virus vector system (Jones and Morikawa, 1996). This insect-derived
Id-KLH (FavId

TM

) plus GM-CSF has been found to be safe and immunogenic
in a recent trial in follicular lymphoma. The vaccine was applied in the
stringent setting of relapsed, measurable follicular lymphoma, and partial
(n ¼ 1) or minor (n ¼ 5) tumor regression responses were seen in six of
seven treated patients (Redfern et al., 2002). In an ironic twist, Large Scale
Biology (Vacaville, CA) is pursuing the use of tobacco plants to produce
a cancer therapy. Idiotype genes are inserted into the genome of the tobacco
mosaic virus, which when used to infect tobacco plants directs the synthe-
sis of large amounts of idiotype protein as a single-chain variable region
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TABLE I Current Idiotype Vaccine Trials for Lymphoma

Sponsor and type Disease/Situation Vaccine
Accrual status/
contact info Ref.

NCI Follicular lymphoma

1st remission after PACE
(CR only)

Id-KLH vs. KLH

plus GM-CSF

Open for accrual:

www.clinicaltrials.gov

Bendandi et al. (1999)

Phase III randomized

Genitope

Phase III randomized

Follicular lymphoma

1st remission after CVP
(CR or PR)

Id-KLH vs. KLH

plus GM-CSF

Open for accrual:

www.genitope.com

Timmerman (2003),

Timmerman et al. (2000)

Favrille

Phase II

Follicular lymphoma

previously untreated or
relapsed/measurable

Rituximab, then Id-KLH

plus GM-CSF

Open for accrual:

www.favrille.com

Redfern et al. (2002)

UCSD

Phase II

Indolent or mantle cell

lymphoma after
HDC þ HSCT

Id-KLH plus GM-CSF Open for accrual:

cancercto@ucsd.edu

Holman et al. (2002)

UCLA
Phase II

Follicular lymphoma
relapsed/measurable

Id-loaded dendritic cells,
then boost with Id-KLH

plus GM-CSF

Opening Fall 2004 Timmerman et al. (2002a);
Timmerman and Levy (1999)

Large Scale Biology
Phase I/II

Follicular lymphoma
1st remission after CVP

Id þ/� GM-CSF Accrual complete Reddy et al., (2002)

Genitope (Univ. of

Nebraska)

Follicular lymphoma

after HDC7 þHSCT

Id-KLH plus GM-CSF Open for accrual None

Phase II
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Genitope

Phase II

Aggressive lymphomas

1st remission after CHOP

Id-KLH plus GM-CSF Accrual complete Leonard et al., (2002);

Timmerman et al. (2001)

NCI

Phase I/II

Mantle cell lymphoma

1st remission after EPOCH

plus rituximab

Id-KLH plus GM-CSF Accrual complete Wilson et al. (2002);

Neelapu et al. (2003)

Univ. of Navarra, Spain

Phase II

Follicular lymphoma

1st relapse, measurable

disease

CHOP, then Id-KLH

plus GM-CSF

Open for accrual None

CellGenix

Freiburg, Germany

Phase I

NHL

relapse or progression

after anthracycline

chemotherapy

Recombinant Id Fab

fragment plus MF59

and GM-CSF

Open for accrual Veelken et al. (2002);

Osterroth et al. (1999)

Tenovus Laboratory

Southampton,
England

Phase I/II

Follicular lymphoma

CR after chemotherapy,
radiation, or

HDC þ HSCT

Plasmid DNA vaccine:

scFv-FrC

Accrual complete Zhu et al. (2001)

Note: CHOP, cyclophosphamide, doxorubicin, vincristine, and prednisone; CR, complete remission; CVP, cyclophosphamide, vincristine, and prednisone;

EPOCH, etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin; Fab, antigen-binding fragment; GM-CSF, granulocyte-macrophage colony-
stimulating factor; HDC þ HSCT, high-dose chemotherapy and hematopoietic stem cell transplantation; Id-KLH, idiotype coupled to keyhole limpet

hemocyanin; MF59, adjuvant; NCI, U.S. National Cancer Institute; PACE, prednisone, doxorubicin, cyclophosphamide, etoposide; PR, partial remission;

scFv-FrC, single-chain variable fragment of idiotype linked to fragment C of tetanus toxin; UCLA, University of California, Los Angeles; UCSD, University

of California, San Diego.
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immunoglobulin fragment (scFv). Immunization with this tobacco-derived
idiotype has shown efficacy in a murine lymphoma model (McCormick et al.,
1999). This product has also recently been found to be safe and immuno-
genic in follicular lymphoma patients (Reddy et al., 2002). Recombinant
idiotype proteins produced in bacteria (CellGenix, Germany) have also been
shown to be immunogenic in vitro for the induction of cytotoxic
T lymphocytes (Osterroth et al., 1999), and are now also being studied in
Phase I clinical trials (Veelken et al., 2002).

The simplest of all recombinant idiotype vaccines is the direct immuni-
zation with plasmid DNA encoding idiotype (Restifo et al., 2000). Inocula-
tion with antigen-encoding DNA results in in situ production of protein
within the host, thereby bypassing the need for production and purification
of recombinant idiotype protein. Bacterial plasmid DNA has been found to
be immunogenic in a host of murine models, due in part to its content of
immunostimulatory unmethylated CpG oligonucleotide sequences (Krieg
et al., 1999). Although vaccination with idiotype-encoding plasmid DNA
has displayed efficacy in several murine lymphoma models (Biragyn et al.,
1999; King et al., 1998; Syrengelas et al., 1996), initial clinical experience
with a first-generation idiotype-encoding vector has been disappointing
(Timmerman et al., 2002b). Plasmid DNA encoding tumor idiotype linked
to xenogeneic (murine) constant region sequences induced a detectable anti-
idiotype immune response in only 1 of 12 patients and was devoid of clinical
activity at the relatively low doses tested. Nonetheless, DNA vaccination
remains a potentially attractive platform for the further development of
idiotype vaccines. DNA vaccine technology offers opportunities to easily
manipulate antigen sequences to include additional helper epitopes, cellular
targeting sequences, and immunostimulatory (i.e., cytokine, chemokine, or
CpG) motifs. Preclinical studies have demonstrated the powerful effects of
linking carrier protein (tetanus toxoid) (Zhu et al., 2001) or chemokine
(Biragyn et al., 2001) sequences to the tumor antigen-encoding DNA.
Freda Stevenson and colleagues in England are currently conducting
a study by using idiotype DNA linked to fragment C of tetanus toxoid as a
carrier protein (Zhu et al., 2001), and immunologic and clinical results are
awaited.

V. Phase III Idiotype Vaccine Trials ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Based on the results cited previously, the NCI and Genitope have each
initiated large Phase III, randomized double-blind controlled trials of idio-
type vaccination for follicular lymphoma (see Table II for comparison). Both
trials are aimed at definitive demonstration of idiotype vaccine efficacy and
attainment of FDA approval. Eligible patients are those with previ-
ously untreated grades 1–3 follicular lymphoma (prior local radiotherapy
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permitted). After collection of tumor for vaccine production, patients
are treated with a uniform chemotherapy regimen. Those who achieve
remission and do not progress during a 6-month immunologic recovery
period will be randomized 2:1 to receive Id-KLH plus GM-CSF vs. KLH
plus GM-CSF. The principal endpoint for both studies is prolongation of
progression-free survival (PFS) after chemotherapy.

The NCI-sponsored trial is being carried out at eight medical centers in
the United States, including the NCI Clinical Center. Patients will be treated
with the PACE regimen to their best clinical response, and only those with
complete clinical remissions will be eligible for vaccination (randomization).
The study has a target enrollment of 563 patients and assumes that two-
thirds of patients will achieve clinical complete remission [as in their Phase II
study (Hsu et al., 1997)] to meet an accrual goal of 375 randomized patients.
Idiotype proteins will be produced using the traditional rescue hybridoma
method. Vaccines were manufactured at the NCI for the initial patients on
this trial, but in 2003 Biovest International partnered with the NCI to carry
out the manufacture of vaccines for the remainder of the study. A total of five
vaccinations will be administered as previously described (Hsu et al., 1997).

The Genitope study is ongoing at 34 centers throughout the United
States and Canada, with the goal of accruing 700 patients. Following tissue
collection, patients receive eight cycles of cyclophosphamide, vincristine,
and prednisone, and are then evaluated for clinical response. This study
differs from that of the NCI in that all patients achieving (and maintaining
for 6 months) at least a partial response will be eligible to proceed to
vaccination (randomization). Recombinant idiotype proteins are produced
by the molecular rescue method described previously. Patients will receive
seven monthly vaccinations rather than the traditional five. It will be several
years before efficacy results of these two trials are available. Accrual to the
NCI study has lagged behind that of the Genitope study (as of July 2003, 145
vs. 472 subjects, respectively), in large part due to the greater number of
clinical sites in the Genitope study. Accrual to the Genitope study will likely
be completed in late 2004, with the first efficacy analysis expected in 2005 or
2006. Clinical results for the NCI trial are not expected until well after 2006.

VI. Pharmacologic Considerations and Integration with
Standard Therapies

Despite the advanced stage of clinical development for idiotype vac-
cines, how their differing biochemical composition affects clinical potency
remains unclear. For instance, the influence of the idiotype’s molecular form
(whole immunoglobulins vs. single-chain Fv fragment vs. Fab fragment,
etc.), glycosylation patterns (expected to differ among recombinant pro-
teins), and alternative carrier protein conjugations on the ability to elicit
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humoral and T-cell-mediated immunity have not been subjected to direct
comparative studies in preclinical model systems. Moreover, GM-CSF, now
the favored adjuvant for idiotype vaccines, was initially chosen for clinical
testing based on limited data in a single murine lymphoma model study. This
raises the question of whether other adjuvant formulations, combinations of
adjuvants, or delivery with dendritic cells might provide superior immuno-
logic potency (Timmerman and Levy, 2000b). Detailed studies in clinically
relevant model systems might help optimize some of these many variables
and lead to second-generation idiotype protein vaccines with improved
potency.

Like all immunizations, therapeutic idiotype vaccines depend on an in-
tact host immune system for their activity. Thus, integration of vaccine thera-
pies with standard lymphoma treatments must take into account the latter’s
potential immunosuppressive influences. The antitumor immune effector
mechanisms operative after idiotype vaccination are incompletely under-
stood, but can likely involve antibodies, as well as CD8þ and CD4þ
T cells. Although anti-idiotypic antibodies might not be necessary for clini-
cal antitumor effects in all patients (Bendandi et al., 1999; Timmerman et al.,
2002), available evidence suggests that they should not be ignored as poten-
tial effectors. This evidence includes (1) the remarkable clinical activity
of passive anti-idiotype monoclonal antibodies (Davis et al., 1998; Miller
et al., 1982), (2) the finding that anti-idiotype antibodies alone can provide
protection from lymphoma challenge in several murine models of idiotype
vaccination (Campbell et al., 1987; George et al., 1987; Syrengelas and
Levy, 1999; Timmerman and Levy, 2000), and (3) the positive correlation
between antiidiotype antibody responses and improved long-term clinical
outcome in vaccinated subjects. It is likely that the relative contributions of
antibody vs. T-cell effectors differ from patient to patient, and that for some,
a humoral antiidiotype response might be critical to vaccine efficacy. Ritux-
imab, given its depletion of normal B cells (McLaughlin et al., 1998),
markedly impairs the host’s ability to mount primary and secondary humor-
al immune responses (Gonzales-Stawinski et al., 2001; van der Kolk et al.,
2002). For this reason, prior therapy with rituximab is not permitted in
most idiotype vaccine studies, including the current Phase III trials. Al-
though B cells often begin to recover within 6–9 months of completing
rituximab therapy, B-cell depletion can persist for several years in some
cases (Timmerman and Levy, unpublished observations). To preserve the
patient’s ability to mount humoral responses to idiotype vaccines, it has been
suggested that rituximab be held until after vaccinations are completed
and the anti-idiotype humoral response is well established. However, aug-
mentation of T-cell-mediated antitumor immunity has been described in
B-cell-deficient mice (Qin et al., 1998). This has led to the hypothesis that
cytoreduction with anti-CD20 monoclonal antibodies prior to idiotype
vaccination might augment anti-idiotype T-cell responses, and this approach
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is currently being tested in a study by Favrille (see later). Purine analogs such
as fludarabine severely suppress T-cell immunity McLaughlin et al. (1996)
and are also not advised prior to vaccine therapy.

VII. New and Ongoing Phase I/II Clinical Trials of
Idiotype Vaccination

In addition to the Phase III trials described previously, there are at least
11 new or ongoing (unpublished) Phase I/II trials of idiotype vaccination in
the United States and Europe (Table II). Favrille is investigating the efficacy
of FavId

TM
plus GM-CSF vaccination 3 months after cytoreduction using

rituximab in relapsed or untreated follicular lymphoma. Although rituxi-
mab will abrogate humoral anti-idiotype immune responses, T-cell antitu-
mor responses should remain intact or possibly even be augmented (Qin
et al., 1998). Patients having objective responses or stable disease after the

TABLE II Current Phase III Trials of Idiotype Vaccination for Follicular Lymphoma

Genitope NCI/Biovest

Year opened 2000 1999
Target enrollment n ¼ 700 n ¼ 563

Number of centers 34 8

Eligibility

Histology Grades 1–3 Grades 1–3
Stages III, IV Bulky II, III, IV

Prior therapy Local XRT only Local XRT only

Tumor sample

required

LN, FNA, blood, or BM LN, blood, or other

Method of Id

production

Molecular rescue,

in mammalian cells

Rescue hybridoma (traditional)

Prevaccine
chemotherapy

CVP � 8 PACE to best response

Response

requirement

CR, CRu, or PR

(nonresponders and early

progressors eligible for
phase II trial of rituximab

followed by Id-KLH)

CR or CRu

Randomization 2:1 2:1

Id-KLH vs. KLH
Vaccine Id-KLH þ GM-CSF � 7 Id-KLH þ GM-CSF � 5

Note: NCI, U.S. National Cancer Institute; XRT, radiotherapy; LN, lymph node; FNA, fine

needle aspiration; BM, bone marrow; CVP, cyclophosphamide, vincristine, and prednisone;

PACE, prednisone, doxorubicin, cyclophosphamide, and etoposide; CR, complete response;
CRu, complete response unconfirmed; PR, partial response; Id-KLH, idiotype coupled to

keyhole limpet hemocyanin; GM-CSF, granulocyte-macrophage colony-stimulating factor.
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6-monthly Id-KLH injections will be eligible to continue immunizations
until disease progression. With this prolonged immunization schedule, it
is likely that humoral anti-idiotype responses will eventually develop as
B cells recover. The primary endpoint of the study is PFS. If favorable PFS
is observed in this study (relative to historical controls), a randomized,
controlled study of rituximab followed by FavId

TM
vs. rituximab alone

might be initiated (J. Gutheil, Favrille, personal communication).
At the University of California, Los Angeles, we are testing the ability of

escalated doses of mature monocyte-derived dendritic cells loaded with
idiotype to induce tumor regressions in relapsed follicular lymphoma, and
whether subsequent boosting with Id-KLH can improve the response rate as
observed in a small cohort of similarly treated patients (Timmerman et al.,
2002a). The setting of radiographically measurable tumor is a stringent test
for a lymphoma vaccine, yet one in which clinically meaningful antitumor
activity and its underlying immunologic mechanisms can be studied. There
have been too few patients reported to estimate a response rate for Id-KLH
protein vaccination in the setting of measurable tumor, though it appears to
be less than 20% (Hsu et al., 1997; Kwak et al., 1992; Redfern et al., 2002).
Initial experience with idiotype-pulsed blood dendritic cells suggested a
response rate of approximately 30% (Timmerman et al., 2002a). Among
16 patients harboring untreated, measurable follicular lymphoma in the
asymptomatic watch-and-wait setting, we observed only one partial and
two mixed responses using Id-KLH plus GM-CSF (Timmerman et al.,
2002c). Together, these findings suggest that dendritic cell-based immuniza-
tion might be more clinically potent than Id-KLH. Documentation of a
tumor regression rate �30% in our current dendritic cell trial would suggest
that the dendritic cell formulation is more active than Id-KLH alone, issuing
a challenge for further comparative studies.

Idiotype vaccination is being studied at several centers as a consolidative
immunotherapy following high-dose chemotherapy and hematopoietic stem
cell transplantation (Davis et al., 2001; Holman et al., 2002). Stanford
investigators have previously shown that patients with indolent or aggres-
sive lymphomas who are vaccinated in this setting can successfully mount
humoral and cellular anti-idiotype immune responses (Davis et al., 2001).
Further studies will be required to demonstrate clinical benefits in this
situation.

Several groups of investigators are now studying idiotype vaccination
following initial cytoreductive therapy in aggressive lymphomas. In a study
sponsored by Genitope (Timmerman et al., 2001), 14 patients with ad-
vanced-stage aggressive lymphoma (6 diffuse large B cell, 5 mantle cell, 3
follicular large cell; 11/14 with an international prognostic index score �2)
were first treated with cyclophosphamide, adriamycin, vincristine, and pred-
nisone (CHOP) to best clinical response, then with a series of five Id-KLH
plus GM-CSF vaccinations over 6 months as described previously
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(Timmerman et al., 2000), beginning 14 weeks after chemotherapy. Half the
subjects were found to mount idiotype-specific immune responses. However,
most patients relapsed before completion of the vaccination series, thus
prompting the study to be extended using an accelerated vaccination sched-
ule designed to more rapidly achieve anti-idiotypic immunity (Leonard et al.,
2002). Final results of this study are pending.

Investigators at the NCI are studying Id-KLH vaccination in 26 subjects
with previously untreated mantle cell lymphoma given 12 weeks following
cytoreduction with etoposide, prednisone, vincristine, cyclophosphamide,
adriamycin, and rituximab (EPOCH-R) (Wilson et al., 2002). Id-KLH plus
GM-CSF was administered as in their previous trial in follicular lymphoma
(Bendandi et al., 1999). Not unexpectedly, humoral responses were mark-
edly impaired by the prior rituximab therapy, with anti-KLH antibody
responses being delayed and diminished compared with those measured
previously (Bendandi et al., 1999). (Humoral anti-idiotype responses have
not been reported on yet.) However, tumor-specific T-cell cytokine release
responses remained intact (Neelapu et al., 2003). With a median follow-up
of 18 months, overall survival is 100% and progression-free survival 73%,
which appears favorable compared with historical controls. Further clinical
results in aggressive lymphomas are awaited. Documentation of favorable
survival in these studies could prompt controlled trials in these patient
populations.

VIII. Conclusions and Future Prospects __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

At the present time, all therapeutic lymphoma vaccines remain investi-
gational. However, it is anticipated that clinical efficacy of idiotype vaccines
will eventually be demonstrated in controlled trials, with first-generation
vaccines now undergoing Phase III testing and new advances in tumor
immunology being applied in preclinical and Phase I/II clinical studies to
improve vaccine potency. Idiotype will likely continue as an attractive target
in lymphoma vaccine development, given its high degree of tumor specificity
and established therapeutic potential, yet a greater repertoire of lymphoma-
associated antigens for therapeutic targeting is desired. A second major class
of lymphoma vaccines now moving into clinical testing is based on antigens
derived from whole autologous tumor cells (Timmerman, 2003). These
include tumor cells transduced with the genes encoding GM-CSF (Borrello
and Sotomayor, 2002; Borrello et al., 2000; Levitsky et al., 1996), CD40
ligand (Briones et al., 2002; Wierda et al., 2000), costimulatory molecules
(Briones et al., 2003), heat shock proteins purified from tumor cells (Younes
et al., 2003), or dendritic cells loaded with killed tumor cells (Dhodapkar
et al., 2002; Gatza and Okada, 2002; Selenko et al., 2001). One power-
ful way to facilitate the uptake of killed tumor cells by dendritic cells

Idiotype Vaccines for Lymphoma 287



is opsonization through antitumor monoclonal antibodies such as rituximab
(Dhodapkar et al., 2002; Selenko et al., 2001). We have recently found that
immunization using dendritic cells loaded with irradiated tumor cells in the
presence of an opsonizing antitumor antibody can evoke tumor-protective
immunity in a murine lymphoma model (Frankil and J. Timmerman, un-
published observations). Preliminary evidence from animal studies also
suggests that the B-cell differentiation antigens CD19 (Hooijberg et al.,
1996) and CD20 (Roberts et al., 2002), or the T-cell receptor idiotypes of
T-cell lymphomas (Okada et al., 1997; Wong et al., 1999), might be suscep-
tible vaccine targets. Other appropriate antigenic targets can be identified
using patient-derived T-cell clones (Rosenberg, 1999) or using genomic or
proteomic technologies (Schultze and Vonderheide, 2001). To maximize the
effectiveness of active vaccines directed at these antigens, strategies to over-
come tumor-induced immunosuppression and tolerance will also need to be
devised (Chouaib et al., 1997; Overwijk and Restifo, 2001). One such
strategy, blockade of the T-cell negative regulatory molecule CTLA-4
(Chambers et al., 2001; Hodi et al., 2003; Phan et al., 2003), is soon to be
explored in a new trial in follicular lymphoma being carried out at the
University of California, Los Angeles, and the Mayo Clinic. Given the pro-
mise held by idiotype and other lymphoma vaccine therapies, the time
might be near when these novel immunotherapeutic agents join the existing
armamentarium of effective lymphoma treatments.
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I. Chapter Overview

Therapeutic immunomodulation of leukemia and lymphoma using
cytokines has largely focused on harnessing innate immune effector cells,
including natural killer (NK) cells and monocytes, against autologous tumor
cells. These immune effectors do not require the recognition of tumor-
specific antigens and, therefore, may have wider applications than do
tumor-specific cytotoxic T-cells. This chapter will review the biological
rationale and clinical experience with cytokines in the immune therapy
of leukemia and lymphoma and will focus on novel directions for their
future use.
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II. Introduction

In spite of recent advances in understanding the molecular pathophysi-
ology of leukemia and lymphoma, treatment outcome for the majority of
patients has remained modest. The use of high-dose cytarabine, novel regi-
mens, high-dose chemotherapy with stem cell transplantation, and the de-
velopment of monoclonal antibodies are among the salient advances in
therapy over the past 2 decades, but have improved outcome for only subsets
of patients with these disorders. Resistance to cytotoxic chemotherapy,
including the use of myeloablative doses with stem cell support, remains
the main cause of treatment failure, suggesting the need to explore alterna-
tive strategies that target proapoptotic pathways not influenced by chemo-
therapy resistance. Immune-based therapies that exploit effectors of the
innate and adaptive arms of the immune system represent such strategies
that hold promise for the treatment of leukemia and lymphoma.

The use of cytokines in the immunomodulation of leukemia and lym-
phoma has mostly focused on harnessing innate immune effector cells,
including NK cells and monocytes, against autologous tumor cells. Although
cytotoxic T lymphocytes are able to exert potent antitumor effects, as
evidenced by the graft vs. leukemia/lymphoma effect following allogeneic
stem cell transplantation (Horowitz et al., 1990), and can potentially be
modulated by a number of cytokines to augment their effect, their role in
immune responses against autologous leukemia and lymphoma cells remains
uncertain. Furthermore, the requirement for tumor-specific antigens, which
are poorly defined for the majority of patients, limits this strategy. Innate
immune effector cells, however, do not require tumor-specific antigen recog-
nition and have been shown to lyse tumor cells without prior antigen
recognition. This chapter reviews the biologic rationale and clinical experi-
ence with cytokines in the immune therapy of leukemia and lymphoma and
focuses on novel directions for their future use.

III. Effector Cells of the Innate Immune System:
Relevance to Cytokine Therapy __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

A. Natural Killer Cells

NK cells are critical effector cells of the innate immune system that
are important targets for cytokine therapy in cancer. Comprising approxi-
mately 10–15% of peripheral blood lymphocytes, these large granular
cells are identified by the expression of the CD56 antigen, a neural cell
adhesion molecule of unknown function, and the lack of expression of
CD3 (Robertson and Ritz, 1990). Functionally, NK cells play a critical
role in the first line of defense against invading pathogens and have direct
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cytolytic activity against virus-infected cells, and are an important source of
immunoregulatory cytokines [e.g., interferon-gamma (IFN-�), tumor necro-
sis factor-� (TNF-�), TNF-�, interleukin (IL)-10, granulocyte-macrophage
colony-stimulating factor (GM-CSF)] (Trinchieri, 1989). In addition, NK
cells can also mediate antibody-dependent cellular cytotoxicity (ADCC) of
target cells through receptors that bind to the Fc potion of antibody, Fc�RIII
(CD16), expressed on the majority of these cells (Trinchieri, 1989). Because
of their ability to lyse tumor cells (Allavena et al., 1989; Landay et al., 1987;
Oshimi et al., 1986), there has been significant interest in the use of NK cells
in the treatment of leukemia and lymphoma, as well as other human cancers.

Based on the extent of surface expression of CD56, two functionally
distinct subsets of human NK cells have been identified (Table I). The
majority (�90%) of NK cells express low levels of CD56 (CD56dim) but
high levels of CD16, whereas the remaining cells (�10%) are CD56bright and
CD16dim/neg. CD56bright NK cells appear to have immunoregulatory func-
tion and have less potential for direct cytotoxicity and ADCC than CD56dim

cells do (Cooper et al., 2001; Lanier et al., 1986). In addition, CD56bright

NK cells constitutively express the high-affinity IL-2 receptor (IL-2R���)
and expand in vitro and in vivo in response to low (picomolar) concentra-
tions of IL-2 (Baume et al., 1992; Caligiuri et al., 1990). In contrast, resting
CD56dim NK cells express only the intermediate affinity IL-2 receptor
(IL-2R��) and proliferate weakly in response to high doses of IL-2 (Baume
et al., 1992; Caligiuri et al., 1993). Although resting CD56dim NK cells are
more cytotoxic against NK-sensitive targets than are CD56bright NK cells,
CD56bright cells exhibit similar or enhanced cytotoxicity against NK targets
compared with CD56dim cells after IL-2 activation (Nagler et al., 1990;
Robertson et al., 1992). As discussed later, these differences have important
implications for the development of therapeutic cytokine schedules.

TABLE I Natural Killer Cell Subsets

CD56dim CD56bright

Cytokine receptors

IL-2R��� � þþ
IL-2R�� þþ þþ

Adhesion molecules �/þ þþ
NK cell receptors

Fc�RIII (CD16) þþþ �/þ
KIR þþþ �/þ
CD94/NKG2 �/þ þ

Effector functions

ADCC þþþ �/þ
Natural cytotoxicity þþþ �/þ
Cytokine production �/þ þþþ
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1. Human NK Cell Development

Although NK cells and T lymphocytes might share a common precursor,
it is now established that NK cells originate in the bone marrow from
CD34þ hematopoietic progenitor cells under the influence of a number of
cooperating bone marrow stromal cytokines, including ligands for the re-
ceptor tyrosine kinases, flt-3, and c-kit, and IL-15. NK cell progenitors
respond to the early acting stromal growth factors flt-3 ligand (FL)
and c-kit ligand (KL) to develop into an intermediate precursor (CD34þ

IL-15R�þ CD56�) capable of responding to IL-15 (Mrozek et al., 1996).
IL-15 is then able to induce terminal NK cell differentiation (Mrozek et al.,
1996). The IL-15 receptor shares common signaling receptor subunits
with that of IL-2 (� and � chains), which together form the intermediate
heterodimeric receptor complex, IL-2/15R��, that is upregulated by FL
and KL (Fehniger and Caligiuri, 2001a,b). However, IL-15 and IL-2 also
each use specific alpha chains (IL-15R� and IL-2R�) that confer high-
affinity specific binding to their respective high-affinity receptors IL-
15R��� and IL-2R��� (Fehniger et al., 2002). As discussed later, this
understanding also has important implications for the use of cytokine com-
binations, including IL-2 (or IL-15) with KL (SCF; stem cell factor), for in
vivo expansion of NK cells for the immunotherapy of leukemia and lym-
phoma (Fig. 1).

FIGURE 1 Natural killer (NK) cell development and therapeutic approaches based on
cytokine immunomodulation. In vivo expansion of autologous NK cells used a combination KL

(or FL) and rhuIL-2. Efficient tumor cell killing can then be achieved by either combination with a

tumor-specific monoclonal antibody to induce ADCC or by using F(ab)2 fragment antibodies to

block the interaction of MHC class I molecules on the surface of tumor cells and inhibitory KIR
and/or CD94/NKG2 receptors on NK cells, thereby enhancing natural cytotoxicity. Adapted

from Farag, S. S., VanDeusen, J. B., Fehniger, T. A., and Caligiuri, M. A. (2003). Biology and

clinical impact of human natural killer cells. Int. J. Hematol. 78, 7–17, with permission.
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2. NK Cell Receptors

An understanding of how NK cells recognize target cells provides
important insight into the potential means of optimizing innate immune
therapy for the treatment of leukemia and lymphoma. Unlike T and B cells,
NK cells do not rearrange genes encoding receptors for antigen recognition
in the context of major histocompatibility complex (MHC) class I or II
molecules. However, MHC class I molecules remain important in modulat-
ing NK cell recognition and subsequent killing. Early studies indicated
that self-major MHC class I molecules are critical for inhibiting NK
cell-mediated lysis of normal autologous cells (Shimizu and DeMars,
1989; Storkus et al., 1989). This inhibition is mediated by a number of
inhibitory receptors that specifically recognize groups of classical (e.g.,
HLA-A, -B, or -C) or nonclassical (e.g., HLA-E, -G) class I molecules
(Lanier, 1998; Lopez-Botet et al., 2000a,b). Therefore, NK cells are toler-
ant to autologous cells that express normal levels of MHC class I, but
can selectively lyse autologous cells that have altered or lost self-MHC
class I expression (Ljunggren and Karre, 1990). Note, however, that
MHC class I expression is not always necessary for protection from lysis by
NK cells (Zijlstra et al., 1992) and inhibition by MHC class I is not always
sufficient to prevent NK cytotoxicity (Malnati et al., 1993; Moretta et al.,
1990), suggesting the presence of other functional receptors. It is now
known that each NK cell expresses its own repertoire of activating
and inhibitory receptors, and cytotoxicity is ultimately regulated by a bal-
ance of signals from these receptors (Fig. 2). The NK receptors include two
families of paired inhibitory and activating receptors: (1) the killer immuno-
globulin (Ig)-like receptor (KIR) family, which primarily recognize
HLA-A, -B, and -C, and (2) the heterodimeric CD94/NKG2 C-type lectin
receptor family, which recognizes HLA-E (Braud et al., 1998; Lanier, 1998;
Lazetic et al., 1996; Lopez-Botet et al., 2000a,b; Winter et al., 1998). In
addition, unpaired receptors important in mediating activating signals in-
clude the natural cytotoxicity receptors (NCRs) (Cantoni et al., 1999; Pende
et al., 1999; Pessino et al., 1998), whose ligands are poorly defined, and the
C-type lectin receptor NKG2D, which recognizes a number of MHC class I-
like ligands, including MICA and MICB, and UL-16-like binding pro-
teins (ULBP-1, -2, and -3), which are induced or upregulated on target
cells during stress or neoplastic transformation (Bauer et al., 1999; Pende
et al., 2001; Sutherland et al., 2002). A number of other receptors, includ-
ing Fc�RIII, function primarily as coreceptors, and in some cases their
ligands remain unknown. The reader is referred to several excellent reviews
on NK receptor biology that have recently been published (Farag et al.,
2002a; Lanier, 1998; Middleton et al., 2002; Moretta et al., 2001).
Table II lists the human NK cell activating and inhibitory receptors and
their ligands.
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B. Monocytes

Monocytes are also important cells of the innate immune system that
might have potential for cytokine modulation in the treatment of cancer.
Monocytes comprise 10–15% of circulating leukocytes, circulate transiently

FIGURE 2 Regulation of NK cell response by activating and inhibitory receptors. The

response of NK cells is determined by a balance of signals from activating and inhibitory NK

cell receptors. Inhibitory receptors (e.g., inhibitory KIR, CD94/NKG2A) recognize and engage
MHC class I molecules (HLA) on the target tumor cell and initiate an inhibitory signal.

Activating receptors (e.g., activating KIR, CD94/NKG2C, NKG2D) bind ligands on the target

cell surface and trigger NK cell activation and target cell lysis. (A) When inhibitory receptors

engage HLA in the absence of an activating receptor–ligand interaction, a net negative signal is
generated that results in no target cell lysis. (B) When activating receptors engage their ligands

on target cells in the absence of inhibitory receptor–ligand interactions, a net activation signal

is generated that results in target cell lysis. (C) The activating receptor–ligand interactions
predominate over weaker inhibitory receptor–ligand signals with the net result of NK cell

activation and target cell lysis. This can occur when activation receptors and ligands are

upregulated (e.g., MICA/B and ULBPs on stressed or transformed cells), thereby amplifying the

net activation signal to exceed the inhibitory signal. Alternatively, when expression of self-
MHC class I ligands is decreased in the setting of viral infection or transformation, the net

signal can be positive also, resulting in target cell lysis. (D) Inhibitory receptor–ligand

interactions result in a net negative signal that prevents NK cell lysis of the target cell. This

process can occur constantly as NK cells survey normal host tissues. The scenario of absence of
both inhibitory and activating signals that results in no NK cell activation is not shown. From

Farag S. S., Fehniger, T. A., Ruggeri, L., Velardi, A., and Caligiuri, M. A. (2002a). Natural

killer cell receptors: New biology and insights into the graft-versus-leukemia effect. Blood 100,

1935–1947, with permission.
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TABLE II Inhibitory and Activating NK Cell Receptors

Receptor Ligand

Paired activating and inhibitory NK cell receptors (MHC class I specific)

Killer Ig receptors (KIR)a

Inhibitory Activating

KIR2DL1 KIR2DS1 Group 2 HLA-C (w2, w4,
w5, w6 and related alleles)

KIR2DL2 KIR2DS2 Group 1 HLA-C (w1, w3,

w7, w8 and related alleles)
KIR2DL3 KIR2DL4 HLA-G

KIR2DS4 Unknown

KIR2DS5 Unknown

KIR2DL5 KIR3DS1 Unknown
HLA-Bw4

KIR3DL1 HLA-A3,-A11

KIR3DL2 Unknown

KIR3DL7
C-type lectin receptors
Inhibitory Activating

CD94/NKG2A/Bb CD94/NKG2C HLA-E (loaded with
HLA-A, -B, -C leader

peptides)

CD94/NKG2E/Hb Unknown

Activating NK cell receptors (non-MHC class I specific)
Natural cytotoxicity receptors
NKp46 Unknown

NKp44 Unknown

NKp30 Unknown
C-type lectin receptor
NKG2D MICA, MICB

ULBP-1, -2, -3

Others
Activating coreceptors
CD16 (Fc�RIII) Fc portion of IgG

CD2 CD58 (LFA-3)
LFA-1 ICAM-1

2B4 CD48

NTB-A Unknown

NKp80 Unknown
CD69 Unknown

CD40 ligand CD40

Other inhibitory receptors
ILT-2 (LIR-1) HLA-G and other MHC

class I molecules,

CMV UL-18 protein

(MHC class I-like molecule)
P75/AIRM Unknown

IRp60 Unknown

LAIR-1 Ep-CAM

(continues)
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in blood (8–72 h), and then egress into the tissues to become macrophages,
where they function in defense against infectious agents. Importantly, mono-
cytes/macrophages also recognize antibody-coated targets through Fc recep-
tors, including activating (Fc�RI, Fc�RIIA, and Fc�RIII) and inhibitory
(Fc�RIIB) Fc receptors (Daeron, 1997). Although their potential role in
cancer immunotherapy is less well studied compared to that of NK cells,
monocytes can exert direct antitumor activity and participate in ADCC
against a variety of tumor cells (Chachoua et al., 1994; Charak et al.,
1993). GM-CSF can expand monocyte numbers through differentiation of
precursors and augment their function, including the potential for ADCC
against tumors by upregulating activating Fc receptors (Chachoua et al.,
1994; Charak et al., 1993).

IV. Cytokine Therapy: Exploiting Innate
Immune Effectors

The improved understanding of the cytokines involved in modulating
effector cells of the innate immune system, together with recent understand-
ing of the NK cell recognition and killing of target cells, has provided a basis
for the rational investigation of immunoregulatory cytokine combinations in
the treatment of lymphoma and leukemia.

A. In Vivo Expansion and Activation of NK Cells with
Interleukin-2

Recombinant human IL-2 (rhuIL-2) is the first immunoregulatory cyto-
kine approved by the U.S. Food and Drug Administration (FDA) for the
treatment of human cancer. IL-2 is a growth factor for T lymphocytes that is
produced primarily by activated T-helper cells, but also has activity on
B cells, NK cells, and monocytes. Although rhuIL-2 differs slightly from
native IL-2 in not being glycosylated and in a one-amino-acid substitu-
tion (serine substituted for cysteine at position 125), the two have similar

Note: LAIR, leukocyte-associated immunoglobulin-like receptor; Ep-CAM, epithelial cellular

adhesion molecule; CMV, cytomegalovirus.
Source: Farag, S. S., Fehniger, T. A., Becknell, B., Blaser, B. W., and Caligiuri, M. A. (2003).

New directions in natural killer cell-based immunotherapy of human cancer. Exp. Opin. Biol.
Ther. 3, 237–250, with permission.
a KIR are classified according to the number of extracellular Ig domains (D) and the length of

the intracytoplasmic tail. Those with long (L) cytoplasmic tails have immunotyrosine-

inhibitory motifs (ITIMs) mediating inhibitory signals, whereas those with short

(S) cytoplasmic tails have immunotyrosine-activating motifs (ITAMs) mediating activating

signals. Although KIR2DL4 has ITIM motifs in its long cytoplasmic tail, functionally it is
better classified as an activating KIR (see text).

b NKG2A and NKG2B, and NKG2E and NKG2H are splice variants, respectively.
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immunomodulatory activities. rhuIL-2 has no direct antileukemic activity,
and its therapeutic effect is entirely mediated by its ability to modulate
immune reactions. In spiteof itswide spectrumofactivityondifferent immune
effector cells, for the treatment of leukemia and lymphoma, investigation has
mostly focused on the ability of IL-2 to modulate NK cells in vivo.

1. Treatment of Acute Leukemia with rhulL-2

Numerous clinical trials have been conducted in patients with acute
leukemia, predominantly acute myeloid leukemia (AML), using a variety of
doses and schedules. Unfortunately, the majority of studies have been small
pilot trials, which have only tested tolerability and feasibility of treatment,
making assessment of efficacy difficult to ascertain. As high doses are re-
quired to activate NK cells in vivo, early clinical trials used high-dose IL-2,
alone or in combination with IL-2-activated blood lymphocytes, for treating
patients with relapsed and refractory acute leukemia with modest success
(Lim et al., 1992; Maraninchi et al., 1998; Meloni et al., 1994, 1996; Olive
et al., 1994). In a pilot trial of 24 patients with relapsed or refractory AML
with �30% marrow blasts treated with a high dose (8–18 � 106 IU/m2) of
rhuIL-2 by continuous intravenous infusion, 13 achieved a complete re-
sponse (CR), suggesting promising activity (Meloni et al., 1997). Based on
these results, a randomized trial in AML patients in second CR was initiated
(Meloni et al., 1997). In contrast, however, a multicenter Phase II trial of 39
AML and 19 acute lymphoblastic leukemia (ALL) patients with relapsed or
refractory disease treated with high-dose intravenous bolus infusion (8 � 106

IU/m2 every 8–12 h) of rhuIL-2 showed only modest responses (Maraninchi
et al., 1998). Only two AML patients achieved complete remission, whereas
no patient with ALL responded. Although significant biologic effects, in
terms of an increase in cells with lymphokine activated killer (LAK)
activity, were demonstrated, treatment was associated with severe hemato-
logic, hemodynamic, and metabolic toxicity. Based on the demonstrated
activity in patients with lower disease burden, and the toxicity associated
with the high-dose schedules, lower doses of rhuIL-2 have been used to
prevent disease relapse in AML patients already in complete remission
(Bergmann et al., 1995; Sievers et al., 1998; Wiernik et al., 1994) or follow-
ing autologous hematopoietic progenitor cell transplantation (Benyunes
et al., 1993, 1995; Fefer et al., 1993; Massumoto et al., 1996; Meehan
et al., 1997; Robinson et al., 1997). Generally, although feasibility was
demonstrated in these trials, conclusions regarding efficacy have not been
possible. A major limitation, however, has been the significant toxicity asso-
ciated with high doses of IL-2, necessitating the investigation of lower dose
regimens.

Caligiuri and colleagues demonstrated that low doses of IL-2 can induce
in vivo selective expansion of CD56bright NK cells because of the binding of
IL-2 to its high-affinity receptor (Caligiuri et al., 1990, 1991, 1993). Initial
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Phase I/II trials in patients with human immunodeficiency virus (HIV)
infection and malignancy demonstrated that low-dose rhuIL-2 (1 � 106

IU/m2/day) is well tolerated with and consistently resulted in expansion
of NK cells in vivo (Bernstein et al., 1995, 1998). Significantly, the
expanded CD56bright NK cell population demonstrated significant cytotox-
icity against NK-resistant cells only when incubated in higher concen-
trations of IL-2 that saturate the intermediate-affinity receptors (Caligiuri
et al., 1990, 1991, 1993). Based on these observations, a regimen of extend-
ed low-dose rhuIL-2 with interval intermediate-dose rhuIL-2 pulsing was
developed and found to be well tolerated following intensive chemotherapy
in AML patients (Farag et al., 2002b). Of relevance to therapy, the expan-
sion of NK cells following low-dose IL-2 results from enhanced NK cell
differentiation from bone marrow progenitors, combined with an IL-2-
dependent delay in NK cell death, rather than proliferation of mature NK
cells in the periphery (Fehniger et al., 2000). This suggests that use of rhuIL-
2 with rhuSCF (stem cell factor) might be a more therapeutically effective
combination for in vivo expansion of NK cells. Exogenous SCF would result
in NK progenitor differentiation into NK precursors, which are in turn
responsive to exogenous IL-2. We are currently investigating the safety and
efficacy of low-dose rhuIL-2 with rhuSCF in patients with HIV-related
malignancy.

Low doses of rhuIL-2 appear to be better tolerated (Cortes et al., 1999;
Farag et al., 2002b), but the efficacy of strategies targeting in vivo expansion
and activation of NK cells in acute leukemia patients remains uncertain. The
reported in vivo antitumor activity of IL-2 therapy has generally been
modest or difficult to convincingly demonstrate. A multicenter randomized
trial comparing low-dose with high-dose rhuIL-2 in 110 patients with re-
fractory anemia with excess blasts in transformation and secondary AML
who were in first remission after induction and consolidation therapy
showed no significant difference in relapse-free or overall survival (Ganser
et al., 2000). Results of randomized trials specifically testing the efficacy
of rhuIL-2 compared with observation in AML patients after remission
induction and consolidation are awaited. An interim analysis of a Cancer
and Leukemia Group B (CALGB) study of AML patients �60 years of
age randomized to receive low-dose IL-2 with intermediate-dose pulse
IL-2 as maintenance therapy or observation following intensive induction
and consolidation therapy has shown no benefit to IL-2 (Larson, per-
sonal communication). An additional large randomized trial in younger
AML patients treated with low-dose rhuIL-2 and intermediate-dose pulse
therapy is currently ongoing through CALGB, and the results are awaited. It
is of interest that a randomized trial of intermediate-dose rhuIL-2 (12 � 106

IU/m2/day) in 130 acute leukemia patients in remission following autolo-
gous bone marrow transplantation has shown no benefit (Blaise et al.,
2000).
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2. Treatment of Lymphoma with rhuIL-2

Single-agent rhuIL-2 has also been investigated in patients with non-
Hodgkin’s lymphoma (NHL) and Hodgkin’s disease as a therapy for patients
with refractory disease or to prevent progression following autologous bone
marrow transplantation. Similar to the studies in acute leukemia, higher-
dose regimens have been less well tolerated, but in general the clinical results
have been disappointing (Duggan et al., 1992; Gisselbrecht et al., 1994) or
inconclusive (Gonzalez-Barca et al., 1999; Lauria et al., 1996; Raspadori
et al., 1995; van Besien et al., 1997; Vey et al., 1996), despite consistent
observations of a biologic effect on NK cell expansion and activation. No
results of any randomized trials of rhuIL-2 treatment following conventional
dose therapy or autologous hematopoietic progenitor cell transplantation
in lymphoma patients have yet been reported.

3. Potential Reasons for Failure of IL-2 Immunotherapy

As discussed previously, in spite of the ability of IL-2 to expand and
activate NK cells in vivo, the results have generally been disappointing regard-
less of the dose and schedule used. Furthermore, although addition of other
cytokines, such as rhuSCF, might increase the ability to expand NK cells
in vivo, it is also likely that the efficacy of this approach will remain modest
for patients with leukemia and lymphoma (and likely other malignancies).
Recent understanding of the biology of NK cell receptors in the recognition
and killing of target cells offers a potential explanation for the observed failure
of rhuIL-2 immunotherapy and suggests a novel direction for investigation to
optimize treatment. The interaction of MHC class I molecules on tumor cells
with inhibitory KIR on autologous NK cells is likely to mediate an important
inhibitory signal to rhuIL-2 (with or without other cytokines) expanded NK
cells and limit successful killing. The expression of MHC class I molecules by
different cancer cell types is not well studied, but recent studies suggest that
MHC class I expression might be normal in the vast majority of cases of
tumors, including AML and multiple myeloma (Frohn et al., 2002; Igarashi
et al., 2002; Wetzler et al., 2001). It is possible, however, that within a given
disease type, differences in NK cell receptor ligand expression by the tumor
cells exist, which might in turn affect the susceptibility to NK cell lysis and
therefore cytokine immunomodulation. For example, differences in the ex-
pression of NKG2D ligands by AML blasts has recently been demonstrated
(Farag et al., 2002b). To further test this hypothesis, we are currently correlat-
ing NKG2D ligand expression on AML cells with relapse-free survival of
patients treated with IL-2 in an attempt to identify a potential subset of patients
that might benefit from rhuIL-2 therapy. If a relationship between NKR-
activating ligand expression and outcome following IL-2 therapy is observed,
future studies of IL-2 therapy should prospectively target such patients whose
cancer cells might be most susceptible to autologous NK cell lysis. As discussed
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later, another potential strategy under investigation is the combination of
rhuIL-2 with in vivo blockade of the inhibitory interactions of MHC class
I molecules on tumor cells with KIR on cytokine-expanded NK cells.

V. Novel Approaches for the Immunomodulation of
Leukemia and Lymphoma ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

A. Enhancing Antibody-Dependent Cellular
Cytotoxicity

The recent availability of monoclonal antibodies for therapeutic use in
lymphoma and leukemia provides the opportunity to harness the ADCC
capacity of innate immune effector cells, including NK cells and monocytes.
The combination of monoclonal antibodies that act through ADCC with
rhuIL-2, for example, is potentially capable of enhancing antitumor killing
by better directing immune effector cells to the cancer cells. In patients with
AML, HuM195 (anti-CD33) is an available monoclonal antibody, although
it is not currently approved for clinical use (Caron et al., 1992). In patients
with lymphoproliferative diseases, a number of antibodies are currently
available, including rituximab, alemtuzumab, anti-CD22, and Hu1D10.

1. IL-2 and Monoclonal Antibodies in the Treatment of

Lymphoma and Leukemia

Recent work has provided the rationale for combining of IL-2 and
monoclonal antibodies in the treatment of NHL. Rituximab is a chime-
ric monoclonal antibody directed against the CD20 antigen found on the
vast majority of B-cell lymphomas and is currently FDA-approved for
the treatment of lymphoma. Although multiple mechanisms have been
proposed for the activity of rituximab, including complement-dependent
cytotoxicity (CDC) (Golay et al., 2000; Harjunpaa et al., 2000) and a direct
proapoptotic effect (Hofmeister et al., 2000), other works have recently
established the importance of ADCC as a predominant mechanism of lym-
phoma cell clearance and that Fc� receptors are critical for the in vivo
actions of rituximab in NHL (Clynes et al., 2000). In a xenograft model of
human lymphoma, knocking out the Fc�R loci in mice showed complete
abrogation of response to rituximab (Clynes et al., 2000). In addition, the
recent demonstration in NHL patients that response to rituximab is depen-
dent on specific Fc�RIIIa polymorphisms supports the importance of ADCC
in the in vivo activity of rituximab (Cartron et al., 2002). As discussed
previously, the activating Fc�R on NK cells and monocytes (Fc�RIIIa)
mediates ADCC. However, although NK cells are important effectors of
ADCC, it has been suggested that their ability to function in ADCC might be
reduced with advanced malignancy (Kono et al., 2002), possibly because of
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defective expression of NK cell-triggering receptors (Costello et al., 2002).
Cytokines, including IL-2, IFN-�, GM-CSF, IL-15, and IL-12, have been
shown to enhance ADCC when added to monoclonal antibodies in vitro
(Carson et al., 2001; Hank et al., 1990) and in vivo in murine models
(Berinstein et al., 1988; Carrodeguas et al., 1999).

Based on the previous data, Phase I trials of the combination of IL-2 and
rituximab have been initiated, using a variety of IL-2 doses and schedules, as
recently reviewed by Morgensztern et al. (2002). Phase II trials investigating
the combination in rituximab-resistant indolent and aggressive NHL are
currently in progress and should better define the efficacy of this approach. If
confirmed, studies can be extended to investigation of rhuIL-2 (or other
cytokines that modulate Fc�R-bearing immune cells) with other clini-
cally available monoclonal antibodies, including anti-CD22, Hu1D10, and
alemtuzumab. Note, however, that recent data in patients with chronic
lymphocytic leukemia suggest that ADCC might not be an important
mechanism for the activity of rituximab in this disease compared with that
in NHL (Farag et al., 2004), suggesting that the strategy of combining
cytokine with antibody might not be readily extrapolated to other diseases
in which an antibody shows single-agent activity.

The combination of rhuIL-2 and HuM195 has been investigated in the
treatment of AML (Kossman et al., 1999). HuM195 has been shown to
rapidly target and saturate AML cells after intravenous infusion and has
induced responses in patients with relapsed AML (Aaron et al. 1994). Further-
more, HuM195 is capable of mediating ADCC (Caron et al., 1992). In a Phase
I trial involving 14 patients with relapsed or refractory AML and advanced
myelodysplasia, patients received low-dose rhuIL-2 (0.6–2.0� 106 IU/m2day)
together with a fixed dose of HuM195 (Kossman et al., 1999). Although the
addition of rhuIL-2 caused expansion of NK cells in vivo, the antileukemic
activity of the combination appeared modest, with no patient achieving remis-
sion (Kossman et al., 1999). The modest activity and significant toxicity
observed do not favor further evaluation of this combination.

2. IL-2, GM-CSF, and Monoclonal Antibodies to

Optimize ADCC

As described previously, monocytes are also important Fc�R-bearing
immune effector cells capable of ADCC, which can be enhanced by
GM-CSF. Although IL-2 and GM-CSF can individually expand (and activate)
Fc�R-bearing NK cells and monocytes, respectively, there is evidence that
the combination might be synergistic. GM-CSF might indirectly increase
the number and activity of NK cells in vivo by activating monocytes to
release cytokines such as IL-12, IL-15, and IL-18, which in turn can enhance
the function of NK cells (Carson et al., 1994; Fehniger et al., 1999). Signifi-
cant numbers of immune cells with inducible antitumor activity mediated by
both monocytes and NK cells are present in GM-CSF-mobilized stem cell
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products, compared with those mobilized with G-CSF (Triozzi et al., 1996).
LAK cell-mediated cytotoxicity derived from peripheral blood mononuclear
cell cultures incubated with IL-2 and GM-CSF is significantly higher com-
pared with that generated with IL-2 alone (Baxevanis et al., 1995). Finally,
the combination of IL-2 and GM-CSF was also reported to increase the
in vitro efficacy of ADCC by the monoclonal antibody mAb 17-1A against a
colorectal carcinoma cell line compared with the effect of each cytokine
alone (Masucci et al., 1990). Based on these observations, the ability of the
combination of IL-2 and GM-CSF to act synergistically to enhance mono-
clonal antibody efficacy is currently under investigation in an ongoing Phase
I trial sponsored by the National Cancer Institute of monoclonal antibody
therapy with sargramostim (GM-CSF) and rhuIL-2 in children with neuro-
blastoma. In addition, we are investigating the feasibility of adoptive
infusion of innate immune effector cells previously mobilized by the combi-
nation of rhuIL-2 and GM-CSF following high-dose chemotherapy and
rituximab in patients with chemotherapy-refractory NHL, to maximally
create an environment that promotes ADCC in an early posttransplant
setting.

3. Interleukin-12

IL-12 is a cytokine that regulates the activity of T lymphocytes, dendritic
cells, and NK cells. In particular, it facilitates the development of Th1 helper
T cells, enhances the cytotoxic activity and ADCC potential of NK cells, and
induces the secretion of IFN-� by both T and NK cells (Brunda, 1995;
Brunda et al., 1993). Although IL-12 has shown in vivo antitumor activity
in a number of murine tumor models (Brunda et al., 1993; Nastala et al.,
1994; Wajchman et al., 2002), the mechanism of its antitumor activity
remains poorly defined. Cell depletion studies have suggested that NK
cells, as well as CD4þ and CD8þ T cells, are important for its antitumor
activity (Nastala et al., 1994; Wajchman et al., 2002).

Phase I trials have indicated that rhuIL-12 has modest single-agent
activity against a variety of advanced tumors (Gollob et al., 2000; Ohno
et al., 2000; Rook et al., 1999). Importantly, a correlation between clinical
responses maintenance of induced IFN-� levels, which in many patients drop
with continuing therapy, has been demonstrated (Gollob et al., 2000). This
paradoxical downmodulation of IFN-� induction might limit the efficacy of
rhuIL-12, possibly accounting for the modest response rates observed to
date (Gollob et al., 2000; Ohno et al., 2000; Rook et al., 1999). Therefore, it
has been suggested that the addition of rhuIL-2 might lengthen the duration
of immune stimulation by rhuIL-12 and thereby augment its antitumor
activity (Gollob et al., 2000; Rook et al., 1999). The combination of
rhuIL-2 and rhuIL-12 awaits clinical investigation.

Because of the ability of IL-12 to promote ADCC by NK cells, it has
recently been investigated in combination with rituximab in patients with
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NHL. In a Phase I trial of rhuIL-12 (30–500 ng/kg SC biweekly) and
rituximab (375 mg/m2 weekly) in 43 patients with CD20þ B-cell NHL,
the combination was well tolerated with constitutional symptoms and
dose-limiting elevation of liver enzymes occurring at 500 ng/kg of IL-12
(Ansell et al., 2002). A greater than 20-fold increase in the serum level of
IFN-� was seen at intermediate and higher doses (�100 ng/kg) of rhuIL-12.
Remarkably, objective responses were demonstrated in 29 (69%) patients,
with 8 of 11 complete responses observed at IL-2 doses of �300 ng/kg.
A Phase II dose of IL-12 of 300 ng/kg is recommended for further study
(Ansell et al., 2002). Although the true efficacy of the combination of IL-12
and rituximab in NHL remains to be determined, the responses seen in this
population, which included many patients with poor-risk lymphoma, are
encouraging. Of importance, the mechanism of activity of the combination
remains uncertain because although increases in IFN-� levels were noted, no
significant increase in the numbers of NK cells was observed. In addition,
ADCC activity was not reported. Further studies are required to determine
the mechanism of action of this combination and whether this combination
offers any advantage over that of IL-2 and rituximab.

B. Blockade of NK Cell Receptor–Ligand Interactions
to Enhance Cytokine Activity

As noted previously, a major limitation to the success of cytokine
immunomodulation of leukemia and lymphoma is the inhibition of autolo-
gous NK cells by MHC class I molecules expressed on tumor cells. Although
cytokines, such as rhuIL-2 with or without rhuSCF, might successfully
expand NK cells in vivo, these cells might be actively inhibited by their
target cells (Fig. 3A) (Farag et al., 2003). Furthermore, such inhibition
might also operate in the presence of monoclonal antibodies, since recent
evidence suggests that Fc� receptors expressed by NK cells likely function as
coreceptors, with their activating signal modulated by other primary acti-
vating and inhibitory NK cell receptors (Fig. 3A). Although the ability of
other activating (NKG2D and NCR) and inhibitory (KIR) NK receptors to
modulate ADCC is currently unknown, it is possible that the reported
variability in ADCC, and lack of correlation between the density of CD20
on lymphoma cells and the extent of rituximab-induced ADCC (Weng and
Levy, 2002), might be due to modulation by MHC class I expression on
lymphoma cells interacting with KIR on NK cells. The blockade of NK cell
receptor-inhibitory ligand interaction in vivo might enhance the antitumor
activity of NK cells expanded by cytokines. The feasibility of in vivo block-
ade of MHC class I-KIR interactions using F(ab0)2 anti-Ly49C (mouse
counterpart of human KIR) has been demonstrated in a mouse model with
an enhancement of observed NK cell–mediated antitumor activity (Koh
et al., 2001). Therefore, the addition of antibody, which can block in vivo
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FIGURE 3 Potential significance of NK receptors for cytokine therapy of lymphoma.
(A) Expression of MHC class I molecules on lymphoma cells that interact with inhibitory KIR

on NK cells to mediate an inhibitory signal that might potentially mitigate the therapeutic

effect of cytokines, such as IL-2 and IL-2, dependent on in vivo activation of NK cells. This

effect might also limit the potential antilymphoma effect of cytokines used in combination with
monoclonal antibodies, such as rituximab. (B) The use of F(ab0)2 antibody fragments that block

MHC class I-KIR interactions in combination with cytokine therapy might counteract this

effect and improve therapeutic effect. Adapted from Farag, S. S. (2003). Novel uses of
immunomodulatory cytokines in the treatment of lymphoma. Immune Enhancing Cytokines 5,

11–14, with permission.
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MHC class I interactions with KIR, to rhuIL-2, rhuIL-2 and rhuSCF, or
cytokines and monoclonal antibody, might increase antitumor efficacy and
is a novel approach that should be further investigated (Fig. 3B). It is also
possible that the simultaneous blockade of CD94/NKG2A/B interactions
with HLA-E further enhances antitumor activity.

VI. Conclusion

Although this chapter has focused on the activity of immune-modulat-
ing cytokines on the innate immune system, it is likely that effects on other
effector cells, particularly T lymphocytes, play an important part in the
control of leukemia and lymphoma, although this is less well understood
outside the area of allogeneic hematopoietic stem cell transplantation. Al-
though cytokine therapy for leukemia and lymphoma over the past decade
or more, particularly in the use of rhuIL-2, has yielded generally discour-
aging results, the recent understanding of effector cell biology has shed new
insight into how these cytokines can be optimally used. Further study of the
heterogeneity of expression of activating NK cell receptor ligands on tumor
cells might identify which subsets of patients are best suited for cytokine-
based therapy. In addition, the elucidation of NK cell receptor biology has
suggested novel therapeutic strategies to investigate. Finally, the increasing
availability of novel monoclonal antibodies directed against lineage-restrict-
ed antigens on leukemia and lymphoma cells should facilitate the testing of
cytokine antibody combinations. The challenge over the coming years will
be to translate recent knowledge of the biology of effector cells to properly
harness the antitumor activity of cells of the innate immune system and
determine the place of this treatment in the overall management of patients
with hematologic malignancy.
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Donor Lymphocyte Infusions

I. Chapter Overview

This chapter reviews the clinical applications and outcomes of donor
lymphocyte infusion (DLI). We also discuss future strategies to enhance the
GVL response mediated by DLI, with focus on potential targets of the GVL
effect.

II. Introduction

The success of DLIs in inducing complete and long-lasting remissions in
patients with chronic myeloid leukemia (CML) has provided direct evidence of
the existence of a graft-versus-leukemia (GVL) effect. Since the initial success-
ful reports by Kolb and Slavin, DLIs have emerged as an effective strategy to
treat patients who have relapsed after allogeneic stem cell transplantation. In
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the past decade, diseases responsive to DLI and a GVL effect have been
identified and efforts to enhance the GVL response are being explored (Kolb
et al., 1990; Slavin et al., 1996). Graft-versus-host disease (GVHD) remains
the principle toxicity of DLIs, and strategies aimed at limiting this toxicity are
the focus of intense investigation. Although the GVL effect induced by DLI can
cure some patients who have relapsed after transplant, its greatest potential
might, in fact, lie with its use as a prophylactic infusion early after transplan-
tation, at a time of minimal or undetectable residual disease. The principles
illustrated by successful induction of a GVL effect by DLI have also spurred the
development of nonmyeloablative approaches for allogeneic transplantation,
which primarily depend on the GVL response for success.

Extensive laboratory efforts are underway to identify the effector
mechanisms of response and potential targets of the GVL reaction. Interest-
ingly, despite the dramatic clinical responses that have been observed, the
targets and effector mechanisms of the GVL effect remain unclear. Many
potential targets have been proposed, including alloantigens, such as minor
histocompatibility antigens, as well as tumor-specific antigens. Responses
might be mediated either by cellular-mediated direct cytotoxicity or indirect-
ly via inflammatory cytokines. The role of humoral immunity is also now
receiving attention, and might also play a role in the response to DLI.

III. Graft-Versus-Leukemia:
Experimental Models

Several early preclinical studies of transplantation suggested the presence
of a GVL effect. Barnes and Loutit in 1956 observed that radiation alone was
not sufficient to eliminate 100% of leukemic cells in murine transplant
models and therefore proposed the existence of the GVL effect mediated by
the allogeneic splenocyte graft (Barnes and Loutit, 1956, 1957). This initial
observation was confirmed by other investigators who demonstrated in
murine models that adoptively transferred lymphocytes given either prior
to or following transplant are capable of eliminating residual leukemia cells
(Truitt and Johnson, 1995). The effector cell population and the target of the
GVL reaction in these models varied depending not only on human leukocyte
antigen (HLA) disparity between donor and host cells but also on antigens
expressed by the leukemic cells. Despite the recognition of a GVL effect in
preclinical models, there was no direct evidence of a clinical GVL in human
transplantation until the use of DLI in the late 1980s and early 1990s.

Indirect evidence pointing to the existence of a GVL effect in human
transplantation included the observation of a higher relapse rate in recipi-
ents of syngeneic transplants compared with allogeneic transplants from
sibling donors (Gale et al., 1994; Horowitz et al., 1990). Numerous studies
demonstrated a higher relapse rate in recipients of T-cell-depleted transplants
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compared with patients receiving T-cell-replete transplantation (Apperley
et al., 1988; Goldman et al., 1988; Horowitz et al., 1990; Marmont et al.,
1991). The differences in relapse rates between T-cell-depleted transplantation
and T-cell-replete transplantation were most pronounced in patients with
CML, the disease now recognized as most sensitive to the GVL effect. In
addition, there appears to be a tight link between the GVL effect and the
development of GVHD. Several studies demonstrated a reduced risk of relapse
in patients who developed GVHD after BMT (Weiden et al., 1979, 1981)
More direct evidence of this link has come from observations that abrupt
withdrawal of immune suppression in patients with disease relapse after
allogeneic transplant can induce remissions, often concurrent with the devel-
opment of GVHD (Collins et al., 1992; Higano et al., 1990; Odom et al.,
1978). Direct evidence of the existence of a GVL effect emerged when DLIs
were successfully used to treat patients with CML who had relapsed after
BMT.

IV. Donor Lymphocyte Infusions for Chronic
Myeloid Leukemia

Since the initial report by Kolb in 1990, many groups have reported on
the use of DLIs and confirmed the high remission rates with DLIs in patients
with CML, who relapse early after allogeneic BMT (Drobyski et al., 1993;
Frassoni et al., 1992; Helg et al., 1993; Jiang et al., 1991; Kolb et al., 1990;
Porter et al., 1994). Registry data from Europe and North America on
patients with relapsed CML after HLA-matched sibling donor transplants
demonstrate a complete cytogenetic response rate of >70% when patients
are treated in early phases of relapse (Collins et al., 1997; Kolb et al., 1995;
(Table I). Unfortunately, these studies also consistently demonstrate that
patients with CML in more advanced stages of relapse, such as accelerated

TABLE I Results of Chronic Myeloid Leukemia Treated with Donor Lymphocyte

Infusion (D4)

Stage of
disease

North American
(Collins et al., 1997) %

EBMTR
(Kolb, 1998) %

Early relapse 27/38 71 126/164 78

Cytogenetic 3/3 100 40/50 80

Hematologic 24/35 74 88/114 77
Advanced phase 5/18 28 13/36 36

Accelerated 4/12 33

Blast phase 1/6 17
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phase or blast crisis, have a much lower response rate following DLI (Collins
et al., 1997; Porter et al., 1994). As an example, in a recent analysis of 593
DLIs from Italy, DLI responses in molecular relapse, cytogenetic relapse,
chronic phase, and accelerated/blastic phase relapse were 100%, 90%,
75%, and 35%, respectively (Raiola et al., 2003) (Fig. 1).

The responses observed in patients with CML after DLI appear to be
durable. Two studies have reported long-term follow-up of patients who
achieved complete remission and showed that relapse of CML is uncommon
following DLI. In one study, only 5 (13%) of 39 patients who achieved
complete cytogenetic remission relapsed following DLI with extended
follow-up (Porter et al., 1999). The 3-year overall survival for the 39
patients in this report was excellent (70%). An EBMTR study reported the
outcome of 44 patients with CML who achieved a molecular remission after
treatment with DLI (Dazzi et al., 2000). With extended follow-up, 4 of 44
(9%) patients developed evidence of recurrent disease by PCR. The 3-year
overall survival for this group of patients was also excellent (95%). Al-
though these initial results are encouraging, 5- and 10-year follow-ups will
be needed to fully assess the durability of this treatment modality. Interest-
ingly, when relapse does occur, isolated extramedullary involvement without
evidence of systemic disease can be observed. The mechanism of immune
escape for cells in these myeloblastomas is not clear.

FIGURE 1 Actuarial probability of complete response (CR) to donor lymphocyte infusion

(DLI) according to phase of disease at relapse. A: molecular relapses; B: cytogenetic relapses; C:

CML chronic phase þ CR postreinduction therapy of other diseases; D: CML accelerated
phase þ blastic phase; E: resistant diseases. From Raiola, A. M. (2003). Factors predicting

response and graft-versus-host disease after donor lymphocyte infusions: a study of 593

infusions. Bone Marrow Transplant. 18(5), 975–980.
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DLI is also effective in treating patients with CML relapsing after
unrelated donor transplant (Porter et al., 2000). Eleven (46%) of 24 patients
with CML treated with DLI from unrelated donors achieved a complete
response. Similar to studies of patients with related donors, a high response
rate was noted in those treated in early phases of relapse, in which 7 of 12
(58%) patients achieved cytogenetic remission. Consistent with prior stud-
ies, the response to DLI in advanced-stage CML was poor, with only 4 of 13
(31%) patients achieving remission. All four responders from this study
were in accelerated phase, and no responses were observed in patients who
received DLI in blast crisis. Note that the results of unrelated donor DLI
and related donor DLI are similar despite greater antigenic differences in
unrelated donor–recipient pairs.

Many investigators of DLIs were initially surprised by the significant
delay after DLI before clinical response is evident. The time to complete
cytogenetic response in patients with CML after DLI is often 8–16 weeks
following the initial infusion of donor cells (Alyea et al., 1998). Time to
complete molecular response, as defined by elimination of the BCR/ABL
transcript as detected by PCR, can be 6 months or greater after cell infusion
(Fig. 2). Several studies have demonstrated that interferon-� is not required
to achieve a response in patients with CML treated with DLI. Both the
number of cells infused and the time after transplant when cells are infused
appear to be important factors in limiting GVHD.

Stage of disease at the time of DLI is the most significant predictor of
response in patients with CML. As noted previously, studies consistently
demonstrate that patients receiving DLI in cytogenetic or hematologic re-
lapse have a much higher response rate than patients treated in more
advanced phases of the disease. The dose of T cells infused also appears

FIGURE 2 Impact of the development graft-versus-host disease (GVHD) on response in

patients with CML treated with CD4þ DLI.
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to impact both response rate and risk of development of GVHD. Although
the impact of cell dose on response has been assessed in the large registry
studies and no clear correlation was noted, the doses of cells infused in the
majority of these patients might have been so high that the beneficial effects
of low cell dose infusion were not apparent (Collins et al., 1997; Kolb et al.,
1995). Smaller trials have also suggested a link between cell dose with
response and toxicity.

Two prospective trials of unmanipulated DLIs have analyzed the rela-
tionship between T-cell number with response and GVHD. MacKinnon et al.
(1995) have reported a high response rate and low incidence of GVHD in
patients receiving 1 � 107 CD3þ cells/kg. Of eight patients receiving this
dose, only one developed GVHD. GVL activity appeared to be diminished at
cell doses lower than this threshold, as no responses were seen in patients
receiving less than 1 � 107 CD3þ cells/kg. A subsequent trial from a
European group compared a single intensive dose regimen with infusion of
escalating doses of T cells (Dazzi et al., 2000a). In this study, patients in the
single infusion arm received a median infusion of 1.5 � 108 T cells/kg,
whereas patients in the escalating regimen arm received 1 � 107, 5 � 107,
and 1 � 108 T cells/kg if no response or toxicity was observed after each
infusion. The incidence of GVHD was significantly lower with the escalating
dose regimen (10%) compared with the single high cell dose infusion (44%;
p ¼ 0.011). There was no difference in the remission rate.

The effect of initial cell dose on outcome of DLI for CML has also been
retrospectively evaluated in a recent multicenter study from Europe
(Guglielmi et al., 2002). In 298 patients who received DLI, responses rates
were similar among the cohorts that received initial DLI doses of <0.2 � 108

mononuclear cells/kg, 0.21–2.0 � 108 cells/kg, and >2.0 � 108 cells/kg. The
majority (62%) of patients at the lowest initial dose had additional infu-
sions, compared with 5% in the highest initial dose. Most importantly, there
was significantly less GVHD (26% vs. 53% vs. 62%) and myelosuppression
in the lowest initial cell dose group compared to the mid-dose and high-dose
groups, thus affirming earlier reports that repeated low cell dose infusions
are as effective as a single higher-dose infusion, but with less GVHD and
DLI-associated toxicity. In studies of DLI from unrelated donors, no corre-
lation between cell dose and response rate or incidence of GVHD has been
reported; however, large trials are not available to adequately address this
issue.

V. Multiple Myeloma

Several studies of allogeneic transplantation in patients with myeloma
had suggested the presence of a graft-versus myeloma (GVM) effect
(Bensinger et al., 1996; Bjorkstrand et al., 1996; Le Blanc et al., 2001).
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DLI studies have provided direct evidence of the GVM effect, with DLI
inducing significant responses in patients with multiple myeloma who have
relapsed after transplantation (Table II). The overall response rate to DLI in
patients with myeloma approaches 45%, with complete responses noted
in about 25% of patients. Durable complete responses are noted in half the
patients who obtain a complete remission, with follow-up more than 7 years
in some patients.

Both dose of cells infused and timing of DLI after transplantation might
influence response rates. The optimal dose of cells to be infused and timing of
DLI have yet to be determined. Lokhorst et al. (2001) reported that patients
receiving >1 � 108 CD3þ cells/kg had an improved response; however,
responses were noted in patients with infusion of doses as low as 1 � 107

CD3þ cells/kg. Early administration of DLI after allogeneic transplantation
might improve response rates and improve GVM after transplantation.

Researchers have explored the use of T-cell depletion to reduce GVHD
and transplant toxicity early after allogeneic hematopoietic stem cell trans-
plantation (HSCT), followed by DLI to restore the GVM effect. Investiga-
tors at the Dana-Farber Cancer Institute administered prophylactic DLI to
14 myeloma patients 6–9 months after T-cell-depleted myeloablative alloge-
neic transplantation (Alyea et al., 2001). Of the 14 patients receiving DLI,
11 had evidence of residual disease at the time of DLI. Of these 11 patients,
10 had significant clinical responses, with 6 obtaining complete remission.
Although a significant GVM effect was observed with prophylactic DLI,
only 58% of myeloma patients in this study were able to receive DLI after
transplantation, because many patients had developed complications such
as GVHD or infections, which precluded DLI administration. Investigators
at Johns Hopkins reported on 16 patients who received DLI for relapsed
or persistent myeloma 1 year after T-cell-depleted myeloablative BMT (Huff
et al., 2003). Ten (63%) developed GVHD after DLI, and 8 of 16 (50%) had
disease response (6 CRs, 2 PRs). Investigators from Europe have also admi-
nistered DLI to patients with residual or progressive myeloma after in vivo
T-cell-depleted allogeneic HSCT, using reduced-intensity conditioning

TABLE II Results of Multiple Myeloma Treated with DLI

N
Prior
chemotherapy CR (%) PR (%)

Overall
RR (%)

Salama et al., 2000 25 3 7 (33) 2 (8) 9 (36)
Lokhorst et al., 2000 27 13 6 (22) 8 (29) 14 (52)

DFCI 21 0 9 (43) 6 (29) 15/21 (71)

Huff et al., 2003 16 0 6 (38) 2 (13) 8/15 (50)

Peggs et al., 2003 14 0 1 (7) 6 (43) 7/14 (50)
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(Peggs et al., 2003). Of 20 patients, 14 received escalating-dose DLI for
residual/progressive disease >6 months posttransplant. Seven (50%)
patients had a clinical response. Demonstrating the close link between the
GVM effect and GVHD, five of the seven patients who developed GVHD
after DLI developed either PR or a CR. Unlike CML, these myeloma
responses were less durable, and most in this study had progression of
disease within 1 year despite persistent full donor chimerism.

VI. Myelodysplastic Syndrome and Acute Leukemia ___________________________________________________________________________________________________________________________________________________________

Patients with myelodysplasic syndrome (MDS) and acute leukemia have
also been treated with DLI (Table III). In the North American registry report,
complete responses were noted in two of five patients with MDS treated with
DLI, whereas in the European experience three of nine patients with MDS
achieved a remission (Collins et al., 1997; Kolb, 1998a).Response rates in
acute myeloid leukemia (AML) and acute lymphocytic leukemia (ALL) are
low and are similar to response rates noted in patients with advanced-stage
CML. The complete response rate to DLI in patients with AML is 15–29%
and in ALL 5–18%. The durability of response in patients with acute
leukemia is less that that seen in patients with CML. In a study assessing
the long-term outcome of patients treated with DLI, 36% of patients with
acute leukemia who achieved remission after DLI relapsed, including 4 of 15
with AML and 3 of 4 with ALL (Porter et al., 1999) The median time to
relapse was 10 months (range 1–37 months).

DLI from unrelated donors in patients with acute leukemia is associated
with a higher response rate than that seen with DLI from related donors. In
one analysis, 8 of 19 (42%) patients with relapse acute leukemia achieved
a complete response after unrelated DLI (Porter et al., 2000). Despite
the responses, outcomes for these patients were poor, as 30% died of
treatment-related complications, 30% relapsed, and median survival was
only 11 weeks.

TABLE III Results of MDS and Acute Leukemia Treated with DLI Alone

Disease

North American
experience
(Collins et al., 1997)

European
experience
(Kolb, 1998)

Myelodysplasia 2/5 (40) 3/9 (33)
Acute myeloid leukemia 6/39 (15) 12/42 (29)

Acute lymphocytic leukemia 2/15 (13) 1/22 (5)
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Many patients with relapsed acute leukemia after allogeneic transplanta-
tion have been treated with chemotherapy followed by DLI. In some cases,
chemotherapy was administered because of rapidly progressive disease or in an
attempt to debulk patients prior to DLI. Although the overall response rate to
chemotherapy plus DLI is higher than DLI alone, long-term outcome does not
appear significantly improved. A clinical trial that combined chemotherapy
and DLI demonstrated an overall complete response rate of 47% (Levine et al.,
2002). Unfortunately, the toxicity associated with this approach was high,
with a treatment-related mortality of 23% and a disappointing 2-year overall
survival of 19% for all patients.

VII. Chronic Lymphocytic Leukemia and Lymphoma ____________________________________________________________________________________________________________________________________________

Although there is indirect evidence of the existence of a GVL effect (Jones
et al., 1991), the DLI experience in patients with chronic lymphocytic lympho-
ma (CLL) and low-grade lymphoma is limited. Patients with CLL have
obtained a complete response following DLI. The time to complete response
might be prolonged, with one patient being followed 12 months after a single
infusion of donor lymphocytes before obtaining a remission (Alyea et al.,
1999). There are case reports of patients with follicular lymphoma responding
to DLI (Mandigers et al., 1998). In the report from the North American
registry, no responses were noted in patients with non-Hodgkin’s lymphoma
or in two patients with Hodgkin’s disease (Collins et al., 1997). Future reports
of DLI will no doubt contain additional information about the response rate
in these patients.

VIII. EBV-Associated Lymphoproliferative
Disorders After Bone Marrow Transplantation ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

DLI and the infusion of Epstein-Barr virus (EBV) specific cytotoxic
T cells is a highly effective treatment for posttransplant EBV-associated
lymphoproliferative disorders (EBV-LPD) and represent a paradigm of suc-
cess for the use of adoptive immunotherapy. In the early 1990s,
Papadapoulos et al. (1994) treated five patients with post-BMT EBV-LPD,
using infusions of unirradiated donor leukocytes at a dose of 1.0 � 106

CD3þ T cells body weight (one tenth the usual CD3þ cell dose used for
treating relapsed disease), and observed a 100% pathologic and clinical
response without significant GVHD. The therapeutic effect was attributed
to the high concentration of EBV-specific CTLs normally present in the
circulating lymphocyte pool and their transfer through the DLI, resulting
in the development of EBV-specific immunity. As an extension of this strate-
gy, researchers have now demonstrated that administration of in vitro
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cultivated EBV-specific CTLs alone is sufficient to eradicate EBV-LPD
(Gustafsson et al., 2000; Heslop et al., 1994; Rooney et al., 1995, 1998).
PCR tests are now available that can quantify EBV DNA and offer a method
of diagnosing patients prior to the onset of clinically evident EBV-LPD
(Rooney et al., 1995). With this tool for early detection, prophylactic
administration of EBV-specific CTLs can now be used as preemptive therapy
against EBV-LPD after BMT (Gustafsson et al., 2000; Rooney et al., 1998).

IX. Complications of

A. Graft-Versus-Host Disease

GVHD is the principle complication of DLI. GVHD occurs in 45–100%
of patients with CML who achieve a complete cytogenetic response (Antin,
1993; Collins et al., 1997; Kolb et al., 1995) The GVHD that develops after
DLI often has characteristics of chronic GVHD, involving the liver and skin;
GVHD with characteristics of acute GVHD has also been noted. Avariant of
hepatic GVHD manifesting primarily as elevated serum transaminases and
lobular hepatitis histologically has been described in patients after DLI
(Akpek et al., 2002). Complications related to GVHD and its treatment
are the primary reason for the 10–20% treatment-related mortality asso-
ciated with DLI. The association between response to DLI and the develop-
ment of GVHD suggests that GVL and GVHD might be closely related.
However, clinical responses can be seen in some patients in the absence of
GVHD, suggesting that these processes are distinct (Fig. 2). The separation
of GVL and GVHD, both experimentally and clinically, remains an area of
active investigation. Efforts to diminish GVHD without compromising GVL
have included reducing T-cell doses, adjusting the timing of cell infusion
after BMT, and selectively depleting T cells from the infusion product.

As previously discussed, infusion of low doses of T cells results in high
response rates in patients with CML with minimal GVHD. This has led to a
strategy of using escalating doses of lymphocytes, with infusion of higher
doses of cells being reserved for patients who do not respond to the initial
DLI (Dazzi et al., 2000a). To minimize toxicity associated with the infusion
of larger number of cells, patients must be followed for prolonged periods,
because response to DLI might be delayed. Responses have been noted up to
9 months after a single course of DLI. The relationship among cell dose,
response, and toxicity is not well established in other diseases.

Administration of DLI very early after transplantation is associated with
significant GVHD. In an early study by Sullivan et al. (1989), a high incidence
of GVHD was noted with DLI given within the first weeks after BMT. While
examining DLI at a later time point after transplantation, Barrett noted an
increased risk of GVHD associated with early T-cell infusion at Day 30 after
BMT compared with infusions at Day 45 after T-cell-depleted allogeneic BMT
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(Barrett et al., 1998). Larger registry studies of DLI did not demonstrate an
increased risk GVHD when DLI was administered either within the first year
or beyond 1 year after transplantation (Collins et al., 1997; Kolb et al., 1995).

Two strategies that use selective T-cell infusion have been explored to
limit GVHD while preserving GVL: DLI depleted of CD8þ cells or DLI in
which a suicide gene has been transduced into the infused cells. In clinical
transplantation, evidence suggests that CD8þ cells play a role in the devel-
opment of GVHD in humans. This evidence includes the observation that
patients with a higher number of circulating CD8þ T cells during the period
of early lymphoid reconstitution have an increased risk of developing
GVHD (Soiffer et al., 1993). In a clinical transplant, selective T-cell deple-
tion of donor marrow with an anti-CD8 monoclonal antibody was found to
be capable of reducing the incidence of GVHD without leading to an
increased risk of relapse (Nimer et al., 1994).

Two trials of CD8þ cell depletion prior to DLI have been performed
(Alyea et al., 1998; Giralt et al., 1995). The incidence of GVHD noted in
these trials was low when compared with that in trials using unmanipulated
donor cell infusions. In one study, approximately 50% of patients with CML
who achieved a complete cytogenetic response did not develop evidence of
clinical GVHD. In addition, no patient receiving CD8-depleted donor lym-
phocytes developed GVHD in the absence of a response. GVHD has been
noted to occur in some patients who have not achieved a response when treated
with unmanipulated DLI. These two studies suggest that CD4þ donor cell
infusions are capable of inducing a GVL effect while reducing the risk of
GVHD. The responses to CD4þ DLI also appear durable (Shimoni et al.,
2001). A direct comparison of CD4þ DLI with unmanipulated DLI adminis-
tered 6 months after T-cell-depleted DLI has been performed, and a signifi-
cantly lower incidence of GVHD was noted in patients receiving CD4þ DLI.
Larger comparative trials are necessary to confirm this finding.

As an alternative strategy to separate GVHD from GVL, investigators
have designed donor T cells transduced with a suicide gene, the herpes
simplex virus thymidine kinase (HStk), which could be capitalized on if the
patient develops GVHD after DLI (Bonini et al., 1994; Verzeletti et al.,
1994, 1995). These transduced cells retain their full immunologic potential
(Marktel et al., 2003), but are now amenable to selective destruction by the
administration of ganciclovir in the event that unwanted GVHD occurs
(Glazier et al., 1983). This strategy offers the potential for inducing GVL
response while having an easy mechanism for abolishing GVHD when it
develops. Bordignon, Bonini, and coworkers reported on eight patients with
relapsed leukemia or EBV-LPD after allogeneic BMT who were treated with
HStk-tranduced lymphocyte infusions (Bonini et al., 1997; Bordignon et al.,
1995). No toxicity or complication attributable to the gene transfer proce-
dure was observed, and the transduced T cells remained detectable 12
months after infusion. Three of the eight patients developed GVHD (two
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acute and one chronic GVHD) after the infusion, which was effectively
controlled by eliminating the transgenic cells by ganciclovir. Similar results
were reported by Tiberghien et al. (2001) in 12 patients who were given
prophylactic DLI consisting of 2–20 � 105 HStk-transduced lymphocytes/kg
following T-cell-depleted alloBMT. No acute toxicity related to the gene-
modified cells was observed, and circulating HStk-transduced cells could be
detected beyond 1 year in evaluable patients. Four patients developed clini-
cally significant GVHD and were treated with ganciclovir, two achieved
complete GVHD resolution with ganciclovir alone, and a third patient had
resolution of GVHD after addition of glucocorticoid to ganciclovir.

X. Methods to Enhance the GVL Response after DLI _______________________________________________________________________________________________________________________________________

Strategies to enhance the GVL effect mediated by DLI have included
activation of the infused cells, as well as methods to improve potential target
antigen presentation. Slavin et al. (1996) administered IL-2 to patients fol-
lowing DLI. In addition, some patients received allogeneic cells that had been
activated ex vivo by IL-2. Five of six patients with advanced hematologic
malignancies who did not respond to DLI alone achieved remissions with the
addition of IL-2 to DLI. In a trial at the Dana-Farber Cancer Institute, low-
dose IL-2 was given for 12 weeks following DLI to patients with MDS, acute
leukemia, and advanced-phase CML. Low-dose IL-2 administration was
well tolerated and did not result in increased GVHD or additional toxicity.
Responses were observed in some patients, but were rarely durable.

Several groups have attempted to prime donor cells prior to infusion.
One approach has been to prime donor T cells by immunization of donors
with immunoglobulin idiotype, as in multiple myeloma. This approach has
been used in patients with myeloma undergoing conventional transplanta-
tion (Kwak et al., 1995). A second approach has been to infuse in vitro
generated and T-cell clones that have antileukemic activity. Falkenburg et al.
(1999) reported the successful treatment of a patient with accelerated-phase
CML using this approach. A similar approach by Slavin (2001) employed
in vitro primed donor lymphocytes that had been incubated with irradiated
lymphocytes obtained from the recipient in an attempt to immunize
the donor cells. Future efforts to improve the response to DLI should focus
on methods to augment tumor antigen presentation and identification of
mediators and targets of the GVL effect.

XI. Mediators of the GVL Effect ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

The majority of evidence suggests that donor T cells mediate the GVL
effect in animal models. In murine models, the relative contribution of either
CD8þ or CD4þ T-cell subsets in mediating the GVL effect depends on the
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HLA and minor antigen relationship between donor and host as well as the
target antigens expressed by the malignant cell. CD8þ cells appear to mediate
the GVL effect in the majority of models through direct cytotoxicity of the
target cell. To highlight the importance of CD8þ cells, investigators demon-
strated that mice receiving bone marrow depleted of CD8þ cells had an
increased risk of leukemia relapse compared with mice receiving marrow
depleted of CD4þ cells (Truitt and Atasoylu, 1991). In contrast, infusion of
CD8-depleted marrow with the addition of CD4þ T cells leads to a low
incidence of GVHD while preserving GVL in other models (Korngold and
Sprent, 1987). The mechanism by which CD4þ cells mediate a GVL response
is not clear.

Indirect evidence suggests that T cells mediate GVL in humans. Clinical
trials have demonstrated that T-cell-depleted BMT results in the loss of
significant GVL. This loss of GVL is responsible for the increased relapse
rate seen in CML patients after T-cell-depleted BMT, which approaches
40–60% as compared with 10–20% after non-T-cell-depleted BMT. Both
CD4 þ and CD8 þ T-cell subsets with antileukemic activity have been gen-
erated in vitro (Faber et al., 1995; Jiang et al., 1996a; Oettel et al., 1994;
van Lochem et al., 1992). CD4þ T cells with selective cytotoxicity of
Phþ clones have been identified in vivo; however, with prolonged culture
specificity appears to wane (Oettel et al., 1994).

Serial phenotypic analysis has not revealed the in vivo expansion of
either a population of CD8þ or CD4þ T cells in patients responding to DLI.
T-cell repertoire analysis has also been employed as a more sensitive method
to assess changes in the T-cell compartment following DLI. In some patients
with CML and myeloma who respond to DLI, selective T-cell clonal expan-
sion has been noted at the time of response (Claret et al., 1997; Orsini et al.,
2000), and expansion of tumor-specific CD8þ T-cell clones has been demon-
strated in the peripheral blood of multiple myeloma patients after DLI
response (Orsini et al., 2003).

Natural killer (NK) cells have also been identified as potential mediators of
GVL. NK cells appear during hematopoietic recovery after allogeneic BMT
and are able to recognize differences in the target’s MHC class I (Kurago et al.,
1995; Malnati et al., 1995) and class II molecules (Jiang et al., 1996). Activated
NK cells mediate cytotoxicity through MHC unrestricted killing. A correlation
between high number of circulating NK cells and remission status has been
noted in patients after BMT (Jiang et al., 1997). Murine models do not support
the role of NK cells in the GVL reaction mediated by DLI (Johnson et al.,
2001).

Three pathways by which the GVL effect might eliminate tumor cells
have been suggested (Grogg et al., 1992; Susskind et al., 1996; Ziegler et al.,
1992) Direct killing of leukemia cells by perforin and granzyme attack
mediated by CD4þ or CD8þ cytotoxic lymphocytes or NK cells has been
postulated. T cells might also mediate killing through cytokines such as
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TNF-� and INF-�, which have been shown to inhibit hematopoiesis
(Zoumbos et al., 1984). The involvement of Fas–Fas ligand interactions
and the induction of apoptosis have also been implicated in the GVL effect.
The Fas–Fas ligand appears to be an important pathway for T cells to
mediate antigen-specific killing. Both chronic and acute leukemias have
been shown to express the Fas antigen (Munker et al., 1995). A more
thorough understanding of the mechanisms of the GVL reaction will lead
to targeted strategies that enhance the GVL effect and limit toxicity (Fig. 3).

XII. Potential Targets of the GVL Effect ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Potential targets of the GVL effect can be generally divided into disease-
specific and non-disease-specific antigens (Table IV). Non-disease-specific
targets of the GVL response after HLA-matched allogeneic transplantation
include minor histocompatibility antigens (mHAg) (Dolstra et al., 1997) and
gender-specific H-Y proteins in sex-mismatched donor–recipient pairs (James
et al., 2003; Vogt et al., 2002) Disease-specific antigens include proteins
restricted to malignant cells. For example, in CML, the protein product of
the BCR /ABL gene fusion has been described as a potential GVL target
(Bocchia et al., 1996), as have other leukemia-specific proteins, including the

FIGURE 3 Strategies to improve response and reduce toxicity to DLI.
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proteinase 3-derived peptide PR-1 (Molldrem et al., 2000), CML28 (Yang
et al., 2002), CML66 (Yang et al., 2001), and the antiapoptosis protein
survivin (Andersen et al., 2001; Schmidt et al., 2003).

A. Minor Histocompatibility Antigens

In HLA-identical donor–recipient pairs, GVH and GVL can arise when
alloreactive donor T cells respond to mismatched mHAgs expressed on
recipient cells (Goulmy, 1997; Goulmy et al., 1996). Some of these antigens
are ubiquitous, including HA-3, HA-4, HA-6, and HA-7, whereas other
minor antigens are specific for tissues of hematopoietic origin, including
HA-1 and HA-2. Leukemia cells express a large number of mHAgs on their
surface, and mHAg-specific CTLs have been demonstrated to recognize and
lyse leukemia cells in vitro (Faber et al., 1995; van der Harst et al., 1994).
Ubiquitously expressed mHAgs such as H-Y, HA-3, HA-4, HA-6, HA-7, and
HA-8 might be targets for both GVH and GVL reactions. However, lineage-
specific mHAgs, such as the HLA-A2-restricted HA-1 and HA-2, which
are expressed on hematopoietic-derived tissue only, could theoretically re-
sult in GVL activity without GVHD (Falkenburg et al., 2002). This specific-
ity would also explain the frequent conversion from mixed chimerism
to complete donor hematopoiesis after response to DLI (Porter et al.,
1994, 1996). Despite this restriction, however, HA-1 was the first mHAg
demonstrated to be associated with acute GVHD after HSCT (Goulmy et al.,
1996; Tseng et al., 1999). The discordance between hematopoietic-restricted
expression of HA-1 and the occurrence of GVHD in nonhematopoietic
tissues that do not express HA-1 could potentially be explained by a
cross-priming phenomenon. In this model, recipient HA-1-positive

TABLE IV Antigenic Targets of the Graft-Versus-Leukemia Response

Non-disease-specific
targets Tumor-specific targets

Tissue-specific HLA minor antigens Chronic myelogenous leukemia

HA-1 BCR/ABL

HA-2 PR1 peptide

CML28
CML66

Gender-specific proteins Lymphoma/myeloma

HY antigens: SMCY, DBY Immunoglobulin idiotype

Broad tumor antigens
Survivin

Wilms’ tumor protein (WT-1)
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antigen-presentation cells (e.g., Langerhans cells and dendritic cells in skin
or gut) are lysed by the allospecific donor T-cell clones, and their destruction
leads to release of inflammatory cytokines and tissue antigens, which stimu-
lates influx of T cells with other specificities to the area and triggers GVHD.

Consistent with this hypothesis, Kircher and coworkers recently
reported a patient with relapsed BCR/ABL-positive ALL after SCT who
achieved complete remission and concomitantly developed extensive chron-
ic GVHD 2 months after DLI. They generated seven CD8þ alloreactive
T-cell clones by stimulating the post-DLI remission peripheral blood mono-
nuclear cells (PBMCs) with the patient’s pretransplant mature dendritic
cells, and demonstrated that the target of the alloreactive cells was restricted
to HA-1 (Kircher et al., 2002). In another recent report, Marijt and coworkers
treated three HA-1-and/or HA-2-positive patients with relapsed disease (two
CML, one MM) after alloSCT, using DLI from their HA-1- and/or HA-2-
negative donors. They were able to demonstrate the emergence of HA-1- and
HA-2-specific CD8þT cells in the blood of the recipients 5–7 weeks after DLI,
and emergence of these cells was immediately followed by complete remission
of disease and conversion to full donor chimerism in all three patients. All three
also developed mild GVHD in association with their disease response. These
investigators were able to demonstrate in vitro that HA-1- or HA-2-specific
CTL clones isolated during clinical response strongly inhibited, in a dose-
dependent manner, growth of HA-1- and HA-2-expressing malignant recipient
cells, but not normal donor hematopoietic progenitor cells. These results prove
the direct involvement of HA-1- and HA-2-specific CTLs in the GVL response
and imply that in vitro–generated HA-1- or HA-2-specific CTLs might be used
as adoptive immunotherapy against relapsed hematologic malignancies after
HSCT (Marijt et al., 2003).

In gender-mismatched allogeneic transplantation using female donors,
male-specific minor antigens can be important targets for GVHD and per-
haps for GVL responses as well. CTL clones specific for the H-Y antigen
SMCY have been identified in male patients with acute and chronic GVHD
after sex-mismatched BMT (Mutis et al., 1999; Rufer et al., 1998). Another
H-Y antigen, DBY, which is HLA-DQ5 (class II) restricted, has also been
shown to be the target of a CD4þ CTL clone isolated from a male patient
with acute GVHD after transplantation of stem cells from an HLA genotyp-
ically identical female donor (Vogt et al., 2002). Recent evidence suggests
that B-cell responses against DBY might be important in the pathogenesis of
chronic GVHD as well. In an analysis by Miklos et al. (2002) involving 60
male patients who received stem cell grafts from female donors, 29 (48%)
were found to have anti-DBY antibody at 4–8 months after transplant, as
compared to 2 of 39 (5%) in male patients with male donors. Furthermore,
this antibody response appears to correlate with decreased relapse rates.
This observation is consistent with a recently reported series involving 3238
sibling transplants, in which F!M donor–recipient pairs were found to
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have a significantly lower hazard ratio for leukemia relapse, but higher odds
for GVHD, compared with all other gender combinations (Randolph et al.,
2003).

XIII. Tumor-Specific Targets of the DLI/GVL Response ______________________________________________________________________________________________________________

A. BCR/ABL-Derived Peptides

Junctional p210 peptides derived from the BCR/ABL fusion gene are
immunogenic in vitro and are putative leukemia-specific targets for the
potent GVL effect associated with CML. In support of this, investigators
have generated T-cell clones in vitro that are capable of recognizing proteins
created by the BCR/ABL fusion gene product (Bocchia et al., 1995; Cullis
et al., 1994; Greco et al., 1996). Four peptides specific for the b3a2 fusion in
CML have been identified as having high or intermediate binding efficiency
to HLA A3, A11, and B8 (Bocchia et al., 1996). In addition, a p210-specific
CD4þCD3þ T-cell clone of donor origin has also been generated in vitro by
stimulating PBMCs obtained post DLI with BCR/ABL junctional peptides
(Zorn et al., 2001). BCR /ABL peptide-specific T-cell proliferative responses
and DTH responses have also been observed in vivo through vaccination of
chronic-phase CML patients with b3a2 fusion peptides (Pinilla-Ibarz et al.,
2000). Despite these reports, there has not been any conclusive evidence to
demonstrate that CML cells naturally process and present this epitope or
that any in vivo clinical response in CML patients after DLI is directed
against this antigen.

B. CML66 and CML28

Assessment of humoral responses after DLI has also led to the identifi-
cation of potential targets of GVL. Immunophenotyping often demonstrates
an expansion of B cells after DLI, suggesting a role for humoral immunity in
the GVL reaction. Using SEREX, 13 leukemia-associated target antigens
have been identified by high antibody titers in patients with CML 1 year
after response to DLI (Wu et al., 2000). Each of these antibodies appeared
only after DLI and correlated temporally with the clinical disappearance of
CML. Within this panel of 13 antigens, two represented novel genes, which
have since been identified as CML66 and CML28 (Yang et al., 2001, 2002).
Northern blot analyses of CML66 have revealed that it is a broadly expressed
tumor antigen in hematopoietic malignancies and in solid tumors such as lung
cancer, prostate cancer, and melanoma (Yang et al., 2001). Similarly, CML28
has been identified as a tumor antigen that is widely expressed in highly
proliferative malignancies, including AML and CML blast crisis. Elevated
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titers of IgG specific for CML28 has also been detected in 10–33% of patients
with melanoma, lung, or prostate cancer (Yang et al., 2002).

C. PR1 Peptide

PR1, a peptide from the primary granule enzyme proteinase 3, is
aberrantly overexpressed in myeloid leukemias and might serve as a
specific target for the GVL response. By using this HLA, A2.1-restricted
nine-amino-acid peptide, investigators have successfully generated PR1-spe-
cific CTL clones from healthy donors and demonstrated that these CTLs can
lyse leukemia blasts (Molldrem et al., 1999) and CFU-GM from HLA-A2.1
patients with CML (Molldrem et al., 1997). Tetramer staining techniques
have shown that PR1-specific CTLs are present in the peripheral blood of
patients with CML. In one analysis, PR1-specific CTLs were found in 11 of 12
CML patients who responded to interferon therapy, compared to zero of the
seven who did not respond. Furthermore, six of eight CML patients who
responded to allogeneic BMT had PR1-specific CTLs in their blood, but in
the one patient who relapsed after BMT, no PR-1-specific CTL could be
detected (Molldrem et al., 2000). Finally, it has been shown that PR1-specific
CTLs exist in high TCR avidity and low TCR avidity forms, and that CML
target cell killing correlates with TCR avidity. High-avidity PR1-specific CTLs
could be identified in patients in cytogenetic remission after interferon therapy,
but is undetectable with IFN-resistant or untreated CML patients (Molldrem
et al., 2003). These observations suggest that resistance and outgrowth of
CML might result, in part, from the selective deletion of high-avidity CTLs.
Clinical trials with PR1 peptide and adoptive cellular therapy using PR1-
specific CTLs are planned, and might replace DLI as a method for eradicating
leukemia cells without GVHD after allogeneic transplantation.

With continued advances in laboratory techniques and understanding of
cancer biology, we will undoubtedly find many other tumor antigens that
could be exploited clinically in the future. Pan-cancer antigens such as
survivin and the Wilms’ tumor protein (WT-1), which are overexpressed in
many solid and hematologic malignancies, are increasingly recognized and
could perhaps be exploited through the use of DLI (Oka et al., 2003;
Schmidt et al., 2003). Efforts to stimulate specific immune response against
these and similar tumor antigens might lead to novel vaccine strategies
effective against a broad range of cancers.

XIV. Future Directions

Efforts are focused on methods to make DLI both more effective and less
toxic. Current trials are defining the appropriate timing of DLI as well as the
number of cells to be infused. An improved understanding of both
the effector cells and targets of the GVL response will allow for more
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selected therapies to be developed in the future. Ultimately, for DLI to be a
viable treatment option and available to a large number of patients,
DLI must be separated from conventional stem cell transplantation and its
toxicities. Nonmyeloablative transplant strategies, which markedly reduce
treatment-related toxicity, might provide the appropriate platform for DLI.
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I. Chapter Overview

Most patients with leukemia or lymphoma either die from their disease
or remain incurable. For this reason, novel strategies are needed to treat
these diseases. Tumor cells, including those of hematologic origin, have
developed multiple mechanisms to escape detection by the host immune
system. This lack of immunogenicity has long hampered investigators in
their attempts to harness the immune system to eradicate cancers. In recent
years, advances in the field of tumor immunology have given investigators
insights into these mechanisms of immune escape. With the advent of
efficient gene transfer techniques, these insights are now being translated
into novel treatment strategies. Poorly immunogenic tumor cells can now be
engineered to recruit and activate host immune cells through the transfer of
cytokine genes or directly stimulate effector immune cells through the trans-
fer of genes encoding costimulatory molecules. Immunization with dendritic
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cells modified to express tumor antigens could potentially induce a potent
host tumor-specific immunity as well. Alternatively, the development of
efficient T-cell transduction methodologies has enabled investigators to
alter patient T-cell specificity to recognize antigens present on tumor cells,
thus bypassing the need to prime and expand T cells within the tumor-
bearing host. It is now possible to efficiently expand these T cells ex vivo
to clinically relevant numbers prior to subsequent adoptive transfer back
into the host. To date, a great deal of promising preclinical data has been
published on these immune-based approaches for the treatment of hemato-
logic malignancies. What remains largely unknown at this time is the
efficacy of these strategies in patients.

II. Introduction

Despite current effective therapies for hematologic malignancies, most
patients with leukemia or lymphoma either die of their disease or are
incurable (Laport and Larson, 1997; Mayer et al., 1994; Schultze, 1997).
For this reason, novel strategies to treat these diseases are required. Recent
advances in the understanding of how the immune system functions in
relation to malignant cells have enabled investigators to propose and test
theories of how tumor cells escape detection by the host immune system and
proliferate. Many mechanisms of tumor immune escape have been described
to date. Notably, tumor cells might either fail to express or express at very
low levels tumor-associated antigens (TAs) that could otherwise be targeted
by the host immune system (Dunn et al., 2002; Vasmel et al., 1989). Fur-
thermore, tumor cells might downregulate expression of major histocom-
patibility complex (MHC) molecules necessary for the presentation of TAs
on the cell surface (Garrido et al., 1997). As a result, tumor cells become
invisible to effector cells of the host immune system. Tumor cells further fail
to generate inflammatory environments wherein cytokines that can enhance
the recruitment of host immune cells to the site of the tumor are secreted
(Leroy et al., 1998). More significantly, tumor cells might express cytokines,
including IL-10 (Blay et al., 1993) and TGF� (Letterio and Roberts, 1998),
that are able to suppress the host immune response. Finally, most hemato-
logic tumor cells fail to express costimulatory ligands able to bind costimu-
latory receptors on tumor-specific T cells (Hirano et al., 1996). A lack of
costimulatory signals to the T cell during activation results in T-cell anergy
or apoptosis (Schultze et al., 1996; Sotomayor et al., 1996). Lack of co-
stimulatory ligands on the tumor cell might therefore result in abrogating,
rather than activating, tumor-specific T-cell immunity.

One major goal of cancer immunotherapy is to circumvent the many
mechanisms whereby tumor cells avoid detection in order to generate im-
mune effector cells capable of recognizing and eradicating malignant cells.
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To date, several immune-based therapies have already demonstrated efficacy
against a select group of hematologic malignancies. Specifically, low- and
intermediate-grade B-cell malignancies respond well to therapy with mono-
clonal antibodies targeting CD20 when used as a single agent or in combi-
nation with standard chemotherapies (Czuczman et al., 1999; Grillo-Lopez
et al., 1999; Hainsworth et al., 2000). Alternatively, patients who relapse
with chronic myeloid leukemia (CML) or, to a lesser degree, acute myeloid
leukemia (AML) after allogeneic bone marrow transplantation can be cured
through the infusion of donor T cells that recognize the host tumor cells
(Collins et al., 1997; Kolb et al., 1990). Similarly, patients in the posttrans-
plant setting who develop Epstein-Barr Virus (EBV)-associated lymphopro-
liferative disease can be cured with EBV-specific donor leukocyte
(lymphocyte) infusions (DLIs; see Papadopoulos et al., 1994).

Infusion of both the tumor-targeted antibodies and tumor-specific T cells
(DLIs) are examples of passive immunity, that is, adoptively transferred
tumor immunity generated outside the host. Active tumor immunity, the
generation of tumor-specific immunity within the host itself, is classically
achieved through immunization of the host with tumor-derived protein
extracts, plasmid DNA, or autologous antigen-presenting cells (APCs) con-
sisting of either tumor cells or tumor antigen-loaded specialized APCs. In
principle, this approach is superior to passive immunization strategies in
that it generates a long-lasting antitumor protection capable of containing or
eradicating relapsed disease indefinitely. However, active immunity assumes
that competent tumor-specific effector cells are present within the host. This
approach further presumes that these otherwise impotent immune cells
can be stimulated in such a manner as to allow for the efficient generation
of antitumor activity. To date, successful active immunization for hemato-
logic malignancies in the clinical setting has been primarily limited to anti-
idiotype vaccines in the setting of low-grade follicular lymphomas (Hsu
et al., 1996, 1997; Nelson et al., 1996).

Through the recent advances in gene transfer technology, it is now
possible to apply our knowledge of tumor immunology to generate poten-
tially effective immunotherapies for hematologic malignancies. Specifically,
the ability to genetically modify tumor cells to express either costimulatory
ligands or immunoregulatory cytokines, or both, might result in more effi-
cient tumor cell vaccines capable of inducing a clinically significant active
cellular immune response. Genetically modified professional APCs that
stably express TAs can serve as potential vaccines as well. Alternatively,
the genetic modification of immune effector cells to recognize tumor cells
allows for the rapid ex vivo generation of autologous tumor-specific T cells.
In this review, we highlight some of the more promising approaches to the
treatment of hematologic malignancies that specifically use gene transfer as a
means to generate cell-mediated antitumor immunity.
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III. Immune Effector Cell Activation _____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Cellular immune recognition and killing of tumor cells is generally
mediated by two different effector cell types. T cells are the primary effector
cells of the adaptive immune system, whereas natural killer (NK) cells are
the primary effector cells of the innate immune system.

An efficient antitumor T-cell immune response is dependent on several
factors. First, the host must possess T cells able to recognize antigens pre-
sented on the tumor cell. Second, these resting effector cells require produc-
tive activation to ensure proliferation and differentiation into potent effector
cells. Effective activation is mediated through the interaction of T cells with
either professional APCs, which include dendritic cells, macrophages,
and B cells, or target tumor cells. APCs activate T cells through presentation
of tumor antigen on class I and class II MHC molecules in conjunction with
the expression of costimulatory ligands that bind costimulatory receptor
molecules on the T cell. T cells recognize foreign antigens through the
T-cell receptor (TCR), which binds specific peptides when presented by the
target cell in the context of an MHC molecule. The TCR of CD8þ cytotoxic
T cells recognizes peptides in the context of MHC class I molecules, whereas
CD4þ helper T cells bind peptides in the context of MHC class II molecules.
T-cell recognition of peptide through the TCR in this manner results in an
initial activation termed signal 1. However, T-cell recognition through the
TCR–peptide–MHC complex alone can result in T-cell anergy or apoptosis
(Jenkins et al., 1991; Staveley-O’Carroll et al., 1998). To overcome this fate,
T cells require a second signal, termed signal 2, mediated through the
interaction of a costimulatory ligand on the APC or tumor cell, with a
costimulatory receptor on the T cell. Classically, this second signal is
mediated by the interaction of CD28 on the T cell with B7.1 or B7.2 on
the APC. Stimulation of T cells through the TCR–peptide–MHC complex in
the context of costimulation results in both T-cell activation and T-cell
proliferation. Because tumor cells frequently fail to induce an inflammatory
response to induce the recruitment of APCs to the tumor site and often do
not express sufficient amounts of costimulatory ligands, an efficient T-cell
antitumor response does not develop. In this setting, effective presentation
of TAs would therefore require cross-presentation to T cells by professional
APCs in a favorable context such as the lymph node.

NK cells, the effector cells of the innate immune system, bind MHC
class I molecules through killer inhibitory receptors (KIRs), thereby inhibit-
ing cytotoxic activity (Costello et al., 2003; Smyth et al., 2002). When the
NK cell encounters a cell lacking MHC class I molecules, such as a tumor
cell, this inhibitory signal is lost. Subsequently, cytotoxicity signals mediated
through the binding of NK cell activation receptors, including NKG2D,
natural cytotoxicity receptors, and costimulatory receptors, to ligands on
the tumor cell activate NK cell cytotoxic activity (Costello et al., 2003;
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Smyth et al., 2002). However, the lack of both an appropriate inflammatory
cytokine milieu at the tumor site and MHC class I expression in the setting
of limited or no expression of activating ligands on the tumor cell inhibits
the NK cell antitumor activity (Costello et al., 2003).

IV. Immunization Against Hematologic Malignancies:
Tumor Cell Vaccines

For many years, and with little success, investigators have attempted
to generate a host antitumor immunity through vaccination strategies
that use autologous tumor cells. In light of our current understanding of
tumor immunology, it is now clear that the failure to generate a potent
antitumor immunity in these early studies was largely due to the lack of
tumor cell immunogenicity. With the advent of efficient gene transfer tech-
nology, generation of tumor cells with enhanced immunogenicity is now
possible. Multiple reports have shown that both aggressive and indolent
hematologic tumor cells can be genetically modified. Successful gene transfer
in primary tumor cells, as well as tumor cell lines, has been achieved by using
both viral vectors (retrovirus, lentivirus, herpes virus, adenovirus, and
adeno-associated virus) (Koya et al., 2002; Mascarenhas et al., 1998;
Naldini et al., 1996; Roddie et al., 2000; Stripecke et al., 2000; Tolba
et al., 2001; Wendtner et al., 2002) and nonviral strategies such as plasmid
electroporation (Mascarenhas et al., 1998).

A. Genetic Enhancement of Immunogenicity: Tumor
Cells as Antigen-Presenting Cells

1. Costimulatory Molecules: B7.1

The lack of costimulatory ligands on most hematologic tumor cells sets
the stage for tumor escape from cell-mediated immunity through the induc-
tion of anergy or apoptosis of tumor-specific T cells. Introduction of a gene
encoding a costimulatory ligand into the tumor cell is perhaps the most
direct approach to overcoming this mechanism of immune escape by trans-
forming the malignant cell into an APC. The encounter of tumor-specific
T cells with these modified tumor cells could theoretically result in active
and sustained T-cell-specific antitumor activity. This theory is supported by
several in vitro studies wherein primary AML tumor cells and tumor cell
lines transduced to express B7.1 were able to elicit activation of both
allogeneic (Hirst et al., 1997; Matsumoto and Anasetti, 1999; Mutis et al.,
1998) and autologous (Boyer et al., 1997) tumor-reactive T cells through
coculture with donor T cells. Furthermore, the adoptive transfer of a cyto-
toxic T-cell clone generated in this manner eradicated wild-type leukemic
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tumor when infused in irradiated tumor-bearing mice after syngeneic bone
marrow transplant (Boyer et al., 1997). This T-cell-mediated antitumor
effect was sustained for up to 3 months.

Work by Matulonis et al. (1995) demonstrated the ability of vaccination
with B7.1-modified tumor cells to generate antitumor immunity in vivo. In
this model, vaccination of immune-competent C3H/HeJ mice with the mye-
loid 32Dp210 tumor cell line modified to express B7.1 resulted in eradica-
tion of the modified tumor and subsequent immunity to challenge with the
parental 32Dp210 cell line. Furthermore, repeated immunizations with
the 32Dp210 B7.1þ clone cured mice with preestablished wild-type
tumor. Similar results were not obtained when mice were vaccinated with
32Dp210 tumor cells modified to express the related B7.2 costimulatory
ligand (Matulonis et al., 1996). Consistent with these findings, Dunussi-
Joannopoulos et al. (1996) demonstrated that mice immunized with an
irradiated murine AML cell line transduced to express B7.1 resulted in a
5- to 6-month CD8þ T-cell-mediated immune protection against subsequent
challenge with the wild-type AML tumor. In this model, vaccination with
B7.1þ irradiated tumor cells soon after inoculation with wild-type tumor
cells also resulted in eradication of the wild-type tumor.

The mechanism whereby B7.1-modified tumor cells generate T-cell
tumor immunity remains unclear. These tumor cell vaccines presumably
activate T cells independently, but elegant work by Huang et al. (1996)
challenges this theory. By using a murine model of colon cancer, investiga-
tors found that although some degree of direct T-cell activation could occur
through B7.1-modified tumor cells, the anti-tumor T cell response to B7.1þ

tumor cell vaccines was primarily generated through professional APCs
presenting tumor cell antigens derived from the more readily lysed B7.1þ-
modified tumor cells. In other words, in this model, B7.1 expression by a
tumor does not transform the tumor cell into an efficient APC able to
activate T cells independently. Rather, T-cell costimulation by the tumor
cell might simply enhance the target cell killing by tumor-specific T cells.
These authors contend that it is the uptake of antigen from these lysed
tumors cells by professional APCs and subsequent efficient presentation of
tumor antigen to tumor-specific T cells that result in the long-term tumor
immunity seen in these murine tumor models.

2. Costimulatory Molecules: CD40L

Normal B cells can function as APCs. However, their neoplastic counter-
parts fail to efficiently present antigens to allow for an efficient T-cell
response. This failure, as noted previously, is due in part to the lack of
costimulatory molecules expressed by the tumor. The CD40 receptor,
expressed on APCs, including dendritic cells, macrophages, and B cells,
binds CD40L, transiently expressed on activated CD4þ T cells, resulting
in APC activation, with upregulation of B7.1 and B7.2 allowing for efficient
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activation of both T cells and NK cells (Kuwashima et al., 2001). Most
neoplastic B cells fail to express costimulatory ligands, but many do express
CD40 (Dilloo et al., 1997; Schultze and Johnson, 1999).

The potential role of CD40 activation in immunotherapy of B-cell malig-
nancies was first described by Schultze et al. (1995) in the context of B-cell
follicular lymphoma (FL) cells. In these studies, the investigators activated
patient-derived FL cells by coculture on NIH 3T3 mouse fibroblasts geneti-
cally modified to express the human CD40L gene. Tumor cells activated in
this manner upregulated costimulatory molecules B7.1 and B7.2, MHC class
I and II molecules, and adhesion molecules ICAM I and LFA-3, thereby
mimicking an APC phenotype. Mixed lymphocyte cultures with allogeneic
T cells from healthy donors resulted in T-cell proliferation consistent with an
acquired APC function by the tumor cells. Furthermore, alloreactive T cells
primed in this manner could subsequently proliferate when cocultured with
unstimulated tumor cells from the same donor.

In a subsequent study, Dilloo et al. (1997) demonstrated that coculture
of the CD40þ A20 murine lymphoma cell line with fibroblasts expressing
CD40L enhanced expression of B7.1, as well as MHC class I and II mole-
cules. Furthermore, vaccination of mice bearing established syngeneic A20
lymphoma tumor cells with irradiated A20 cells in conjunction with irra-
diated fibroblasts genetically engineered to express CD40L, IL-2, or both
resulted in a delayed tumor progression. Optimal antitumor response was
noted in mice immunized with A20 tumor cells in conjunction with fibro-
blasts expressing both CD40L and IL-2. As predicted, no antitumor re-
sponse could be generated against a syngeneic CD40� myeloblastic cell
line (WEHI-3) by using this vaccination strategy.

Kato et al. (1998) demonstrated that transduction of patient-derived
chronic lymphocytic leukemia (CLL) tumor cells with murine CD40L
resulted in an upregulation of B7.1, B7.2, ICAM-I, and LFA-3. Significantly,
CD40L-transduced tumor cells were subsequently able to transactivate
untransduced CLL cells in vitro to upregulate expression of B7.1 and
ICAM-I as well. Transduced CLL cells were furthermore able to activate
allogeneic as well as autologous T cells. In the autologous setting, stimulated
T cells derived from mixed lymphocyte reactions subsequently demonstrated
cytotoxic activity against unmodified autologous CLL cells.

In light of these promising preclinical results, investigators subsequently
tested this approach in a clinical trial, treating 11 patients with progressive-
intermediate and high-risk CLL in a standard Phase I dose-escalation trial
(Wierda et al., 2000). Patients were given a single infusion of genetically
modified autologous CLL cells ranging in doses from 3 � 108 to 3� 109

CD40L-modified CLL cells. Percent transduction with CD40L of infused
CLL cells in all but the first two patients enrolled in this study ranged from
34% to 72%. The investigators demonstrated increased in vivo expression
of B7.1, B7.2, ICAM-1, and CD95 on untransduced CLL cells for several
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days after infusion of the modified tumor cells, consistent with transactiva-
tion by the modified cells. Furthermore, treatment resulted in enhanced
serum levels of IL-12 and IFN-� 48 h after tumor cell infusion. Absolute
increases in T cells were noted for 1–4 weeks after treatment. Further
analysis of these T cells by ELISPOT and mixed lymphocyte cultures
found that this increase correlated well with an absolute increase in tumor-
specific T cells. Significantly, these responses correlated to a relatively
sustained (>3 months) decrease in peripheral CLL cell count as well as
lymph node size. Overall, this treatment was well tolerated. Several further
clinical trials are underway to both optimize and confirm the efficacy of this
therapeutic approach.

B. Genetic Enhancement of Immunogenicity: Tumor
Cell Cytokine Secretion

The efficacy of systemic cytokines to stimulate tumor-specific immune
effector cells in solid tumor malignancies has been established in selected
solid tumors such as melanoma and renal cell carcinoma. However, these
therapies are limited by the side effects of systemic cytokine therapy. The
potential to reduce systemic cytokine exposure by the transfer of cytokine
genes ex vivo into the tumor cells themselves allows for therapeutic concen-
trations of cytokines at the tumor site without the high systemic levels of
cytokine associated with dose-limiting toxicities. Enhancing tumor immu-
nogenicity through the transfer of various cytokine genes into tumor cells for
immunization is therefore an area of intense investigation.

1. Interleukin-2

IL-2, a cytokine secreted by activated T cells, stimulates the activation
and proliferation of T cells, NK cells, B cells, and monocytes and macro-
phages. Based on promising data derived from clinical studies demonstrating
an improved outcome in patients with AML after systemic IL-2 treatment
(Meloni et al., 1994; Soiffer et al., 1994), early studies in leukemic tumor cell
gene modification involved retroviral transduction of human leukemic
tumor cell lines with the IL-2 gene. IL-2 secretion by the tumor resulted in
a decreased in vivo tumorigenic potential in nude mice thought to be
mediated by host monocytes and macrophages (Cignetti et al., 1994). Fur-
thermore, in vitro studies using mixed lymphocyte-tumor cell cultures have
shown that in both the autologous and allogeneic setting, IL-2 secretion by
tumor cells elicits an initial MHC-independent NK cell response followed by
an MHC-restricted CD8þ cytotoxic T-cell response (Cignetti et al., 2000).
Alternatively, expression of IL-2 by modified syngeneic bone marrow stem
cells enhanced the antileukemic effect in irradiated mice after stem cell
transplant and subsequent tumor cell challenge (Tam and Klingemann,
1999).

354 Brentjens and Sadelain



Genetic modification with IL-2 of potentially antitumor NK T cells
(cytokine-induced killer cells) has been tested in a Phase I clinical trial
(Schmidt-Wolf et al., 1999). In this study by Schmidt-Wolf and coworkers,
autologous NK T cells were isolated from patients with renal cell carcino-
ma, colorectal cancer, and lymphoma. After ex vivo electroporation of the
IL-2 gene, modified NK T cells were infused back into the patients. Therapy
resulted in an increase in peripheral blood T cells, and, significantly, one
patient with lymphoma achieved a complete response. A clinical vaccine
trial in ALL that uses tumor cells transduced to coexpress an allogeneic HLA
class I antigen and IL-2 is reportedly ongoing (Borgmann et al., 1998).
Results from this trial have not been published to date.

2. Interleukin-12

IL-12, a heterodimeric cytokine produced by APCs, induces cytokine
production, including IFN-�, by immune effector cells. Furthermore, IL-12
enhances the proliferation as well as cytotoxic activity of T and NK cells
(Trinchieri, 1994). Recombinant IL-12 has been used to treat a variety of
malignancies in murine tumor models. Unfortunately, IL-12 is quite toxic to
mice at therapeutic levels (Car et al., 1995; Coughlin et al., 1997). In light of
the immunostimulatory properties of IL-12, investigators have studied
whether its expression by tumor cells could enhance the host cellular im-
mune response while limiting systemic side effects. Again, this approach,
like that of B7.1 and CD40L transduction, attempts to enhance immunoge-
nicity by conferring APC-like properties on the tumor cell. Early studies in
murine tumor models demonstrated the feasibility of this strategy. For
example, Tahara et al. (1995) induced a long-lasting immunity to
MCA207 murine sarcoma cell line by immunization with live MCA207
tumor cells transduced to express IL-12 both before and after inocula-
tion with the wild-type tumor. Immunity was dependent on NK cells,
IFN-� secretion, and CD4þ and CD8þ T cells.

In vitro, coculture of human AML or ALL tumor cells with allogeneic
or autologous peripheral blood mononuclear cells (PBMCs) in the context
of IL-12 results in NK-mediated lytic activity against the tumor cells (Stine
et al., 1998). This IL-12 effect is synergistic with IL-2, even if tumor cells
are resistant to coculture with PBMCs in the context of IL-2 alone. In vivo,
murine AML cells transduced to express IL-12 elicit a potent antitumor
effect both on subsequent rechallenge with wild-type tumor and on prees-
tablished wild-type leukemia (Dunussi-Joannopoulos et al., 1999). This
effect was mediated through the induction of IFN-� secretion, resulting in
tumor cell expression of MHC and costimulatory molecules, and was asso-
ciated with an increase in tumor-specific CD8þ cytotoxic T cells.
More recently, Saudemont et al. (2002) reported similar results in a
DA1-3b murine model of AML. In this model, immunization with irradia-
ted DA1-3b tumor cells modified to express IL-12 was able to eradicate
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preestablished wild-type leukemia. This effect was associated with activa-
tion of NK cells and IFN-� expression by CD4þ and CD8þ T cells. In
contrast to the earlier study, the IL-12 effect was CD4þ, not CD8þ T-cell
dependent. In another study, transplantation of 32Dc13 murine myeloid
progenitor cells transduced to express IL-12 (32DIL-12) was associated
with enhanced IFN-� expression by mouse spleen cells (Xu et al., 2001).
Furthermore, these mice became resistant to challenge with transformed
32Dp210 leukemic cells through NK-cell-mediated tumor lysis.

Genetic modification of murine B-cell lymphoma A20 cells to express
IL-12 resulted in tumor rejection when injected in syngeneic mice
(Pizzoferrato et al., 1997). Vaccinated mice were subsequently protected
against rechallenge with the parental A20 cell line. Furthermore, additional
modification of A20 cells with B7.1 enhanced the ability of naı̈ve mice to
reject unmodified A20 cells coinjected at the same site with the modified
A20/B7.1/IL-12 tumor cells. Tumor cell growth was delayed when the
unmodified A20 cells were injected at other sites. Antitumor immunity in
this model was mediated by both CD4þ and CD8þ T cells.

3. Granulocyte-Macrophage Colony-Stimulating

Factor

In an early landmark study, Dranoff et al. (1993) compared the ability of
various cytokines to induce immunity when secreted by modified tumor cells.
Investigators retrovirally transduced the otherwise nonimmunogenic B16
murine melanoma cell line with a panel of seven different cytokine genes:
IL-2, IL-4, IL-5, IL-6, IFN-�, TNF� and granulocyte-macrophage colony-
stimulating factor (GMCSF). Only immunization with irradiated tumor cells
expressing GMCSF resulted in a potent, long-lasting immunity to subsequent
challenge with the wild-type B16 tumor. The immune response in this setting
was T cell dependent.

GMCSF, a cytokine produced by activated T cells, macrophages, endo-
thelial cells, and fibroblasts, stimulates the bone marrow to produce neu-
trophils and monocytes, but, more significantly, recruits and enhances the
ability of dendritic cells and macrophages to function as APCs (Dranoff,
2002; Morrissey et al., 1987). In theory, secretion of GMCSF by genetically
modified tumor cells therefore enhances the recruitment of professional
APCs to the tumor. APCs subsequently express tumor antigen in the context
of MHC class I and II molecules as well as costimulatory ligands, including
B7.1. Subsequent interaction with tumor-specific T cells results in an opti-
mal activation and proliferation of these effector cells, thereby generating
long-lasting tumor immunity.

The efficacy of GMCSF tumor cell vaccines in a murine model of AML
was described by Dunussi-Joannopoulos et al. (1998). In these studies, mice
immunized with murine AML cells transduced with GMCSF failed to devel-
op leukemia. GMCSF induced immunity in this model was not T cell
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dependent. Furthermore, immunization of mice 2 weeks after wild-type
tumor cell inoculation with irradiated GMCSFþ AML tumor cells resulted
in an 80% cure rate, whereas all mice immunized with irradiated AML
B7.1þ cells developed lethal leukemia. Significantly, wild-type tumor chal-
lenge 4 months after rescue with the irradiated GMCSFþ AML vaccine
resulted in a 67% tumor rejection rate, demonstrating persistent antitumor
immunity. Subsequently, several other murine models of acute leukemia
have shown that the immunogenicity of GMCSFþ tumor vaccines can be
further enhanced by additional genetic modification of tumor cells with B7.1
or CD40L or both (Nakazaki et al., 1998; Stripecke et al., 1999; Vereecque
et al., 2000).

Vaccination with irradiated GMCSF-transduced lymphoma cells results
in the eradication of preestablished murine A20 lymphomas, whereas vacci-
nation with A20 cells expressing either IL-2 or B7.1 has no effect on survival
(Levitsky et al., 1996). Antitumor immunity in this setting is dependent on
both CD4þ and CD8þ T cells. Furthermore, investigators have demon-
strated the generation of idiotype-specific T cells in mice immunized with
the GMCSFþ A20 tumor cell line.

4. Interferon-a

Treatment with systemic interferon (IFN)-� has been used for several
hematologic malignancies, including CML, hairy cell leukemia, and lym-
phoma. Although patients with CML respond variably to IFN-� therapy,
treatment is hampered by side effects when administered systemically. To
address this therapeutic limitation, investigators have engineered CML
tumor cells to express IFN-�. Salesse et al. (1998) successfully transduced
both the K562 CML tumor cell line and primary patient-derived CD34þ

CML tumor cells with the IFN-2 gene. Transduced tumor cells demonstrated
an increased HLA class I expression and decreased in vitro proliferation.
This effect was further enhanced by concomitant transduction with the
IFN-� gene (Salesse et al., 2000). The relevance of these data to the in vivo
setting is currently unknown.

V. Immunization Against Hematologic Malignancies:
Dendritic Cell Vaccines

Many current vaccination strategies for hematologic malignancies in-
volve optimizing efficient TA presentation by the tumor cell to effector
T cells, but an alternative approach is to engineer APCs capable of directly
presenting TAs to the host immune system. It has long been realized that
dendritic cells (DCs) pulsed with tumor-associated peptides when cocultured
with peripheral blood T cells specifically enhance the activation and prolif-
eration of tumor-targeted T cells. Nonetheless, this approach has limitations
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(De Veerman et al., 1999; Szabolcs et al., 1997). First, because of the rapid
turnover of the peptide–MHC complex, T-cell binding is limited to a rela-
tively short period of time and therefore might not allow for efficient T-cell
activation. Second, this approach requires identification of target peptides
capable of binding various MHC haplotypes, both for class I and class II
molecules, if activation of both CD4þ and CD8þ T cells is desired. Third,
the number of TA-specific T-cell clones activated is limited to the peptides
selected. Finally, this approach is exceedingly sensitive to concentration of
the peptide in the DC culture: if it is too low, no T-cell activation occurs; if it
is too high, less efficient, low-binding T-cell clones might be selected (Mutis
et al., 2002). Because DCs can be genetically modified by a variety of
approaches, including retroviral transduction (Szabolcs et al., 1997), these
limitations might be overcome by the introduction and expression of the TA
cDNA. Introduction of a whole TA into the DC allows for the sustained
expression of TA peptides on class I and potentially class II MHC molecules.
This approach bypasses the necessity of identifying appropriate MHC hap-
lotype-specific peptides and likely allows for an increased number of both
class I and class II peptides to be presented, resulting in a more polyclonal
CD4þ and CD8þ antitumor response. Significantly, immunization of mice
with TA-modified DCs results in the generation of TA-specific T-cell immu-
nity to subsequent challenge with tumor cells bearing the TA (De Veerman
et al., 1999).

The potential for genetically modified DCs to generate allogeneic tumor-
specific T cells for adoptive cell therapy in the post-stem cell transplant setting
was demonstrated by Mutis et al. (2002). The graft-versus-leukemia (GVL)
effect seen after allogeneic stem cell transplant for leukemia is mediated, in
part, through donor T cells specific for mismatched minor histocompatibility
antigens (mHAgs). Expression of two such antigens, HA-1 and HA-2, is
restricted to hematopoietic cells. Adoptive transfer of donor T cells targeting
these antigens could therefore induce a GVL effect, avoiding the undesirable
graft-versus-host disease commonly seen in the allotransplant setting. Donor
HA-1-specific T cells can be generated through coculture of donor T cells on
DCs pulsed with HLA class I haplotype-specific HA-1 peptides. This is a long
and cumbersome process. To address this limitation, investigators retrovirally
transduced HA-1� donor DCs with HA-1 cDNA to allow for a sustained
expression of HA-1 peptide–MHC complexes. Stimulation of donor T cells on
genetically modified DCs resulted in the generation of HA-1-specific T cells
within 14–21 days. Significantly, T cells generated in this manner were capa-
ble of lysing HA-1þ leukemia cells in vitro. The generation of T cells specific to
EBVantigens by using DCs genetically modified to express LMP2A or LMP2B
for the potential treatment of EBVþ Hodgkin’s lymphoma has been reported
as well (Gahn et al., 2001).

To date, in hematologic malignancies, TA genetically modified DCs
have not been tested in the clinical setting. Targeting foreign antigens such
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as HA-1, HA-2, LMP2A, and LMP2B is essentially tumor specific and
therefore should prove to be safe. However, the successful application of
genetically modified DCs as vaccines in the autologous setting will require
the careful selection of suitable TA targets in order to avoid inducing
potentially deleterious autoimmune disease.

VI. Adoptive T-Cell Therapy Directed Against
Hematologic Malignancies

The ex vivo generation and subsequent infusion of autologous tumor-
specific T cells into the tumor-bearing host, referred to as adoptive transfer
of immunity, is another potential immunotherapeutic approach to treating
malignancies. Originally, tumor-infiltrating T cells were isolated from
resected tumor tissue. These tumor-specific T-cell populations could subse-
quently be expanded through the ex vivo antibody-mediated cross-linking of
the TCR, resulting in a nonspecific signal 1 to the T cell, in the context of
supraphysiologic concentrations of IL-2. Alternatively, tumor-specific T cells
can be first cloned and subsequently expanded. However, several significant
problems exist with this paradigm. The need to culture and expand tumor-
reactive cells stems from their paucity in the cancer patient. The difficulties
in isolating and subsequently expanding functional tumor-specific T cells are
major obstacles (Melief et al., 2000). Furthermore, generation of T-cell lines
or clones is a cumbersome, time-consuming process. These limitations
could, in theory, be overcome by the ex vivo genetic modification of patient
T cells to recognize antigens present on the tumor. To date, two approaches
have been used to genetically generate tumor-specific T cells: (1) through the
transduction of TCR �/� chain genes specific to tumor cell antigens, and
(2) through the transduction of tumor-specific artificial antigen receptors
(Sadelain et al., 2003).

A. T-Cell Receptor Gene Transfer into Autologous
T Cells

Because the specificity of any given T cell is mediated through the �- and
�-chain heterodimer of the TCR complex, the most obvious approach to
redirecting T-cell specificity would be to insert into patient T cells the TCR
genes cloned from a tumor-specific T cell restricted to the patient’s HLA.
The successful redirecting of T-cell specificity by transfer of the TCR � and �
chains was first demonstrated in transgenic mice (Dembic et al., 1986).
Thereafter, several groups successfully transduced functional �/� chain het-
erodimers into human Jurkat leukemia T cells (Calogero et al., 2000; Cole
et al., 1995). Successful targeting of primary human T cells to a tumor
antigen was first reported in human peripheral blood T cells modified with
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TCR � and � chains to recognize MART-1, an antigen expressed by most
human melanomas (Clay et al., 1999). Other tumor antigens, including
MDM2, the EBV protein LMP2, and the melanoma tumor antigen gp100,
have also been targeted in this manner (Morgan et al., 2003; Orentas et al.,
2001; Stanislawski et al., 2001).

T-cell immunotherapy through �/� chain transduction, as described
here, has several potential limitations imparted by the MHC restriction of
antigen recognition. First, because TCR engagement requires the expression
of a specific MHC–peptide complex by the tumor cell, immune escape might
be readily achieved through downregulation or loss of MHC expression, or
by the lack of processing of the antigen into the targeted peptide, even if the
antigen is still expressed. Second, MHC restriction dictates that a different
receptor be cloned for the same antigen in a multiplicity of genetic back-
grounds. In other words, a wide variety of different HLA-restricted antigen-
specific T-cell clones would need to be isolated—not a trivial matter in
itself—and HLA typing of all prospective patients would need to be
obtained for such therapy to become universally applicable. Third, the
successful generation of tumor-specific T cells through TCR gene transduc-
tion is restricted to either HLA class I or class II peptides. At least two
receptors would have to be transferred if one were to engineer both CD4þ

and CD8þ tumor-reactive T cells. Fourth, genetic modification in this man-
ner can target T cells to protein antigens, but has no applicability to carbo-
hydrate and glycolipid antigens that are often overexpressed on tumor cells.
Finally, although TCR transduction has so far resulted in redirecting T-cell
specificity as anticipated, there is the risk that hybrid TCRs could form
between the endogenous and transduced �/� chains, resulting in generation
of unintended specificity to other self-antigens. This latter concern can be
addressed by designing TCR chains with restricted pairing abilities (Chung
et al., 1994; Willemsen et al., 2000).

B. Chimeric Antigen Receptors

An alternative approach to generating tumor-specific T cells is through
the introduction of artificial T-cell receptors, which we refer to as chimeric
antigen receptors (CARs). CARs are proteins containing a TA-specific bind-
ing region fused to an intracellular domain capable of delivering an activating
(signal 1) signal to the T cell. These engineered receptors are most commonly
constructed by the fusion of a tumor-specific TA-binding domain, usually
a single-chain fragment (scFv) antibody, although physiologic receptors or
their ligands have been used as well (Altenschmidt et al., 1996; Irving and
Weiss, 1991; Muniappan et al., 2000; Romeo and Seed, 1991), to either the
TCR � chain-signaling domain or the Fc�RI � chain-signaling domain.
Tumor-specific scFvs are constructed by cloning the heavy- and light-chain
variable regions of a TA-specific monoclonal antibody, most commonly of
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murine origin, separated by a short peptide linker into a single polypeptide.
The resulting protein maintains antigenic specificity. Once cloned, the gene
encoding an scFv is readily fused to either the TCR � chain or the Fc�RI �
chain, creating a functional CAR. Introduction of the CAR gene into T cells
results in the surface expression of the CAR, thereby altering the specificity of
the transduced T cell to recognize a given TA.

Recognition by CARs of target antigens in an MHC-independent man-
ner offers in principle several significant advantages over physiologic T-cell
antigen recognition. First, receptor specificity is readily generated in CARs,
because murine monoclonal antibodies specific to many cell surface tumor
antigens already exist or are easily produced. Second, once generated, the
same CAR construct can be used to treat patients independent of HLA
phenotype. Third, because these artificial receptors are functional in both
CD4þ and CD8þ T cells, transduction of patient T cells with CARs will
generate both T-helper and T-cytotoxic tumor-specific cells, which might
result in a more potent and sustained antitumor T-cell response. Fourth,
CARs can recognize not only protein antigens but also carbohydrate
(Mezzanzanica et al., 1998) and glycolipid antigens (Krause et al., 1998;
Yun et al., 2000), allowing for the targeting of T cells to an expanded range
of antigens. Finally, the risk of receptor chain reassortment associated with
�/� chain transduction is not present.

Eshhar et al. (1993) were the first to redirect the specificity of a CAR,
using a single-chain variable fragment (scFv) as the antigen recognition
motif. Using a hapten-specific scFv fused to either the extracellular or the
intracellular domain of the CD3 � chain or the Fc"RI � chain, these authors
showed specific signaling by both receptors in a mouse CTL hybridoma cell
line as measured by IL-2 secretion and specific lysis of hapten-conjugated
A20 mouse lymphoma cells. In a similar manner, the same investigators
successfully targeted mouse CTL hybridoma cells to erb-B2, a member of
the epidermal growth factor receptor (EGFR) family of proteins commonly
overexpressed in breast and other cancer cells (Stancovski et al., 1993). Since
these initial reports, the construction of multiple CARs directed against a
wide variety of tumor antigens has been published. Successful redirected
cytolysis has been achieved in T-cell hybridomas, primary murine and
human T cells, and patient-derived primary T cells. Furthermore, in vivo
efficacy of CAR-modified T cells has been demonstrated in mouse
tumor models by using modified T cells targeting erb-B2 (Altenschmidt
et al., 1997; Moritz et al., 1994), the colorectal carcinoma antigen CEA
(Darcy et al., 2000; Haynes et al., 2001), the adenocarcinoma antigen
TAG-72 (McGuinness et al., 1999), and the ovarian carcinoma antigen
FBP (Hwu et al., 1995; Wang et al., 1998).

Several hematologic malignancies have been targeted in this manner as
well. Specifically, construction of CARs targeting CD19 (Brentjens et al.,
2003; Cooper et al., 2003) and CD20 (Jensen et al., 1998) expressed on B-cell
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malignancies, as well as CD30, targeting non-Hodgkin’s lymphomas
(Hombach et al., 1998), have been developed. In our laboratory, we have
constructed a CD19-specific CAR termed 19zl. When expressed in T cells
derived from healthy donors, 19zl mediates CD19-specific lysis of a wide
panel of B-cell cancer cell lines, including Burkitts lymphoma, ALL, and
large-cell lymphomas in vitro. Modified T cells are readily expanded
ex vivo to clinically significant numbers through coculture on mouse NIH
3T3 fibroblasts engineered to express both CD19 and B7.1 in the context of
IL-15. T cells expanded in this manner successfully eradicated established
systemic Raji Burkitt lymphoma cells in 50–75% of SCID-Beige mice.
Tumor eradication was mediated by CD8þ T cells and dependent on in
vivo costimulation with B7.1. Furthermore, T cells derived from patients
with high-risk CLL could be successfully transduced with the 19zl CAR and
readily expanded. Significantly, patient-derived modified T cells were able to
subsequently lyse autologous CLL cells in vitro. In light of this promising
data, we are currently in the process of initiating a clinical trial using
19zl-transduced autologous T cells in the treatment of patients with B-cell
malignancies. Several clinical trials using adoptive transfer of T cells engi-
neered to express either CD19- or CD20-specific CARs have been initiated
elsewhere (Cooper et al., 2003). Results from these trials have not been
published to date.

The lack of costimulatory molecules on most tumor cells is a potential
limitation to the success of CAR-mediated adoptive T-cell therapies. Our
data using 19zl-transduced T cells confirmed the necessity of T-cell costimu-
lation in vivo (Brentjens et al., 2003). Treatment of mice bearing an estab-
lished pre-B cell ALL cell line (NALM6) that does not express either B7.1 or
B7.2 with 19zl-transduced T cells resulted in an overall survival benefit when
compared to controls but no long-term survival. However, when modified to
express B7.1, 40% of mice with established NALM6/B7.1 tumors were cured
after treatment with 19zl-transduced T cells. To overcome the need for
tumor-cell-mediated costimulation, we and others have further modified
the CAR to include the cytoplasmic signaling domain of the CD28 receptor
proximal to the CD3-chain signaling domain (Haynes et al., 2002; Hombach
et al., 2001; Maher et al., 2002). T cells transduced with CARs containing the
CD28 domain exhibit B7.1-independent costimulation in vitro and enhanced
antitumor activity in vivo. Whether these constructs enhance T-cell survival
and proliferation in the clinical setting remains to be established.

VII. Conclusion

The development of efficient techniques for gene transfer has proven to
be an invaluable asset to tumor immunologists in their efforts to harness
the immune system to treat cancer. Because most hematologic malignancies
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remain incurable despite standard chemotherapeutic approaches, the
potential of novel immunotherapeutic strategies holds great promise for
improved survival of these diseases in the future. Genetic approaches to
engineer better tumor cells, dendritic cells, and tumor-specific T cells have
to date generated a great deal of promising preclinical data. However, most
of these approaches have yet to be tested in a clinical setting. Although
further preclinical studies will be essential to the advancement of the field,
only through the establishment of scientifically sound clinical trials will we
ultimately be able to judge their therapeutic benefit.
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