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Preface

This book owes its existence to the lecture ‘‘Statistics for Systems Biology’’, which
I taught in the fall semester 2010 at the Department for Biosystems Science and
Engineering of the Swiss Federal Institute of Technology (ETH Zurich). To a large
part, the audience consisted of students with backgrounds in biological sciences,
which explains the large proportion of biological examples in this text.

Nevertheless, I hope that this text will be helpful for readers with very different
backgrounds who need to quantify and analyze data to answer interesting ques-
tions. This book is not intended to be a manual, nor can it provide the answer to all
questions and problems that one will encounter when analyzing data. Both the
book title and the title of the book series indicate that space is limited and this
book therefore concentrates more on the ideas and concepts rather than on pre-
senting a vast array of different methods and applications. While all the standard
material for an introductory course is covered, this text is very much inspired by
Larry Wasserman’s excellent book All of Statistics [1] and consequently discusses
several topics usually not found in introductory texts, such as the bootstrap, robust
estimators, and multiple testing, which are all found in modern statistics software.
Due to the space constraints, this book does not cover methods from Bayesian
statistics and does not provide any exercises. Frequent reference is made to the
software R (freely available from http://www.r-project.org), but the text itself is
largely independent from a particular software.

Should this book provide the reader with enough understanding of the funda-
mental concepts of statistics and thereby enable her or him to avoid some pitfalls
in the analysis of data and interpretation of the results, such as by providing proper
confidence intervals, not ‘‘accepting‘‘ a null hypothesis, or correcting for multiple
testing where it is due, I shall be contented.

The book is organized in four chapters: Chapter 1 introduces the basics of
probability theory, which allows to describe non-deterministic processes and is
thus essential for statistics. Chapter 2 covers the inference of parameters and
properties from given data, and introduces various types of estimators, their
properties, and the computation of confidence intervals to quantify how good a
given estimate is. Robust alternatives to important estimators are also provided.

vii

http://www.r-project.org
http://dx.doi.org/10.1007/978-3-642-23502-3_1
http://dx.doi.org/10.1007/978-3-642-23502-3_2


Chapter 3 is devoted to hypothesis testing, with a main focus on the fundamental
ideas and the interpretation of results. This chapter also contains sections on robust
methods and correction for multiple testing, which become more and more
important, especially in biology. Finally, Chap. 4 presents linear regression with
one and several covariates and one-way analysis-of-variance. This chapter uses R
more intensively to avoid tedious manual calculations, which the reader hopefully
appreciates.

There surely is no shortage in statistics books. For further reading, I suggest to
have a look at the two books by Wasserman: All of Statistics [1] and All of
Nonparametric Statistics [2], which contain a much broader range of topics. The
two books by Lehmann, Theory of Point Estimation [3] and Testing Statistical
Hypotheses [4] contain almost everything one ever wanted to know about the
material in Chaps. 2 and 3. For statistics using R, Statistics—An Introduction using
R [5] by Crawley and Introductory Statistics with R [6] by Dalgaard are good
choices, and The R Book [7] by Crawley offers a monumental reference. The Tiny
R Handbook [8], published in the same series by Springer, might be a good
companion to this book. For statistics related to bioinformatics, Statistical Methods
in Bioinformatics [9] by Ewens and Grant provides lots of relevant information;
the DNA sequence example is partly adapted from that book. Finally, for the
german-speaking audience, I would recommend the two books by Pruscha Stat-
istisches Methodenbuch [10], focusing on practical methods, and Vorlesungen
über mathematische Statistik [11], its theory counterpart.

This script was typeset in LATEX, with all except the first two figures and all
numerical data directly generated in R and included using Sweave [12].

I am indebted to many people that allowed this book to enter existence: I thank
Jörg Stelling for his constant encouragement and support and for enabling me to
work on this book. Elmar Hulliger, Ellis Whitehead, Markus Beat Dürr, Fabian
Rudolf, and Robert Gnügge helped correcting various errors and provided many
helpful suggestions. I thank my fiancée Elke Schlechter for her love and support.
Financial support by the EU FP7 project UNICELLSYS is gratefully acknowledged.
For all errors and flaws still lurking in the text, the figures, and the examples, I will
nevertheless need to take full responsibility.

Basel, July 2011 Hans-Michael Kaltenbach
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Chapter 1
Basics of Probability Theory

Abstract Statistics deals with the collection and interpretation of data. This chapter
lays a foundation that allows to rigorously describe non-deterministic processes and
to reason about non-deterministic quantities. The mathematical framework is given
by probability theory, whose objects of interest are random quantities, their descrip-
tion and properties.

Keywords Probability · Distribution · Moment · Quantile

The laws of probability. So true in general. So fallacious in
particular

Edward Gibbon

1.1 Probability and Events

In statistics, we are concerned with the collection, analysis, and interpretation of
data, typically given as a random sample from a large set. We therefore need to
lay a foundation in probability theory that allows us to formally represent non-
deterministic processes and study their properties.

A first example. Let us consider the following situation: a dice is rolled leading
to any of the numbers {1, . . . , 6} as a possible outcome. With two dice, the possible
outcomes are described by the set

� = {(i, j)|1 ≤ i, j ≤ 6} ,

of size |�| = 36. The set of outcomes that lead to a sum of at least 10 is then

A = {(4, 6), (6, 4), (5, 5), (5, 6), (6, 5), (6, 6)} ⊂ �,

a set of size 6. A first definition of the probability that we will roll a sum of at least
10 is given by counting the number of outcomes that lead to a sum larger or equal

H.-M. Kaltenbach, A Concise Guide to Statistics, SpringerBriefs in Statistics, 1
DOI: 10.1007/978-3-642-23502-3_1, © Hans-Michael Kaltenbach 2012



2 1 Basics of Probability Theory

10 and divide it by the number of all possible outcomes:

P(A) = |A|
|�| = 6

36
,

with the intuitive interpretation that 6 out of 36 possible outcomes are of the desired
type. This definition implicitly assumes that each of the 36 possible outcomes has
the same chance of occurring.

Any collection of possible outcomes X ⊆ � is called an event; the previous
definition assigns a probability of P(X) = |X |/|�| to such an event. Events are sets
and we can apply the usual operations on them: Let A be as above the event of having
a sum of at least 10. Let us further denote by B the event that both dice show an
even number; thus, B = {(2, 2), (2, 4), (2, 6), (4, 2), (4, 4), (4, 6), (6, 2), (6, 4), (6, 6)}
and |B| = 9. The event C of rolling a sum of at least 10 and both dice even is then
described by the intersection of the two events:

C = A ∩ B = {(4, 6), (6, 4), (6, 6)},
and has probability

P(C) = P(A ∩ B) = 3

36
.

Similarly, we can ask for the event of rolling a total of at least ten or both dice even.
This event corresponds to the union of A and B, since any of the elements of A or B
will do:

D := A ∪ B = {(5, 5), (5, 6), (6, 5), (2, 2), (2, 4), (2, 6),

(4, 2), (4, 4), (4, 6), (6, 2), (6, 4), (6, 6)} .

The complement of an event corresponds to all possible outcomes that are not
covered by the event itself. For example, the event of not rolling an even number
simultaneously on both dice is given by the complement of B, which is

BC = �\B = {(i, j) ∈ �|(i, j) �∈ B},
with probability

P

(
BC

)
= 1 − P(B) = 1 − 9

36
= 27

36
.

The general case. Let � be the set of all possible outcomes of a particular exper-
iment and denote by A, B ⊆ � any pair of events. Then, any function P with the
properties

P(�) = 1, (1.1)
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P(A) ≥ 0, (1.2)

P(A ∪ B) = P(A) + P(B) if A ∩ B = ∅ (1.3)

defines a probability measure or simply a probability that allows to compute the
probability of events. The first requirement (1.1) ensures that � is really the set of all
possible outcomes, so any experiment will lead to an element of �; the probability
that something happens should thus be one. The second requirement (1.2) is that
probabilities are never negative (but the probability of events might be zero). Finally,
the third requirement (1.3) gives us the algebraic rule how the probability of combined
events is computed; importantly, this rule only applies for disjoint sets. Using the
algebra of sets as above, we can immediately derive some additional facts:

P

(
AC

)
= P(�\A) = 1 − P(A),

P(∅) = 1 − P(�) = 0,

A ⊆ B ⇒ P(A) ≤ P(B).

Importantly, there are multiple ways to define a valid probability measure for any
given set �, so these three requirements do not specify a unique such measure. For
assigning a probability to discrete events like the ones discussed so far, it is sufficient
to specify the probability P({ω}) for each possible outcome ω ∈ � of the experiment.
For example, a die is described by its outcomes � = {1, 2, 3, 4, 5, 6}. One possible
probability measure is P({ω}) = 1/6 for each of the six possible outcomes ω; it
describes a fair die. Another probability is P({1}) = P({3}) = P({5}) = 1/18,

P({2}) = P({4}) = P({6}) = 2/18, in which case the probability to roll an even
number is twice the probability to roll an odd one. Both probability measures are
valid, and the particular choice depends on the various assumptions that are made
when modeling the die and its behavior.

Typically, probability measures are either derived from such assumptions or they
are inferred from observed data. Such inference will be covered in Chap. 2. For more
complex examples, it might not be straightforward to construct a probability measure
that correctly captures all assumptions.

If the possible outcomes � become a continuous set, describing a length, for
example, it is no longer possible to simply assign a probability to each element
of this set to define a probability measure. This case requires more sophisticated
mathematical machinery and is not covered here. However, the following results are
essentially the same for discrete and continuous cases.

Union of events. We still need to delve a little deeper into the computation of
event probabilities. Note that the probability for a union of events is only the sum of
the two individual probabilities provided the two events do not overlap and there is no

http://dx.doi.org/10.1007/978-3-642-23502-3_2
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Fig. 1.1 Venn diagram of
the sets A and B. To compute
the size of the union, the
“doubly-counted”
intersection A ∩ B has to be
subtracted once

outcome that belongs to both events. In the above example of events A (sum larger
equal 10) and B (both dice even), this is clearly not the case. Consequently, the size
of their union D is smaller than the sum of the individual sizes of A and B.

For computing the probability of D from A and B, we can use an inclusion-
exclusion argument: The size of D is the size of A plus the size of B, minus the size
of the intersection A ∩ B. This becomes clear if we draw a Venn-diagram of the sets
as in Fig. 1.1. The elements in the intersection are counted twice and we therefore
have to correct by subtracting it once. Indeed,

|D| = |A| + |B| − |A ∩ B|,
and thus

P(D) = |A|
|�| + |B|

|�| − |A ∩ B|
|�| = P(A) + P(B) − P(A ∩ B).

Note that if A ∩ B = ∅, we recover the case (1.3) given in the original definition.
The inclusion–exclusion calculation is also possible for more than two sets, but

does get a little more involved: already for three sets, we now count some subsets
twice and three times.

Independence. One of the most important concepts in probability and statistics is
independence. Two events X and Y are independent if the knowledge that Y already
occurred does not influence the probability that X will occur. In other words, knowing
that Y happened gives us no information on whether X also happened or not, and vice-
versa.

As an example, let us again look at rolling two dice: with some justification, we
may assume that the roll of the first die does not influence the roll of the second. In
particular, it does not matter whether we roll both dice at once or roll the first and
then roll the second. In this example, the independence of the two dice is a modeling
assumption and other modeling assumptions are possible.

Formally, two events X and Y are independent if

P(X ∩ Y ) = P(X)P(Y ),

which means that the probability that both X and Y occur is the probability that X
occurs times the probability that Y occurs.
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In the dice example, the event E = {(i, j)|i ≥ 5} of rolling a 5 or 6 on the first die,
and F = {(i, j)| j ≥ 5} of rolling a 5 or 6 on the second die, are independent. Indeed,
P(E ∩ F) = P({(i, j)|i ≥ 5, j ≥ 5}) = P({(5, 5), (5, 6), (6, 5), (6, 6)}) = 4

36 and
P(E) = P(F) = 2

6 .

If two events are not independent, the probability of X happening provided we
already know that Y happened is captured by the conditional probability of X given
Y, which we denote by P(X |Y ). This probability is given by

P(X |Y ) = P(X ∩ Y )

P(Y )
,

and might be easier to remember in its equivalent form P(X |Y )P(Y ) = P(X ∩ Y ),
which reads “the probability of X and Y happening simultaneously is the probability
that Y happens times the probability that X happens if Y happened”. For example,
what is the probability to roll at least a total of 10, if we already know that both dice
are even? There are |B| = 9 possible outcomes that lead to both dice even. From
these, |A ∩ B| = 3 have a sum of 10 or greater, leading to the probability

P(A|B) = P(A ∩ B)

P(B)
=

3
36
9
36

= 3

9
.

If two events X and Y are independent, we have

P(X |Y ) = P(X),

as we would expect. This also agrees with the above interpretation: The probability
of X happening is the same, irrespective of knowing whether Y happened or not.

The law of total probability states that

P(X) = P(X ∩ Y1) + · · · + P(X ∩ Yn),

where the Yi form a partition of �, i.e., cover all possible outcomes without cover-
ing one outcome twice. We can read this as “the probability that X happens is the
probability that X and Y1 happen simultaneously or X and Y2 happen simultaneously
etc.”. The example in Fig. 1.2 gives an intuitive representation of the theorem.

Together, conditional probabilities and the law of total probability are powerful
tools for computing the probability of particular events.

Example 1 Let us consider an urn containing 2 white and 3 black balls, from which
two balls are drawn, and are not put back in (this is known as drawing without
replacement). Let us denote by C the event that we draw two identical colors, no
matter which one, and by W and B the event of the first ball being white, respectively
black. Provided we know the first ball is white, we can conclude that there are 1
white and 3 black balls left in the urn. The probability to draw another white ball
thus became

P(C |W ) = 1/4.
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Fig. 1.2 Law of total
probability: P(X) =
P(X ∩ Y1) + · · · + P(X ∩ Yn)

if the Yi partition �

Similarly, if we know the first ball is black, we can conclude 2 white and 2 black
balls being left and thus

P(C |B) = 2/4.

By the law of total probability, P(C) is the probability to draw another white ball if
we have a white, times the probability to draw a white in the first place plus the same
for black:

P(C) = P(C ∩ W ) + P(C ∩ B) = P(C |W )P(W ) + P(C |B)P(B).

With P(W ) = 2/5 and P(B) = 3/5 this amounts to P(C) = 2/5.

Bayes’ rule. Bayes’ rule is an important tool for manipulating conditional proba-
bilities. It allows us to “invert” conditional probabilities by

P(Y |X) = P(X |Y )
P(Y )

P(X)
, (1.4)

which becomes evident if we simply multiply by P(X) to arrive at P(Y ∩ X) = P(X ∩
Y ).The two probabilities for X and Y are called the prior probabilities, as they describe
the chance that either event happens without taking into account any information
about the other event. The left-hand side of (1.4) is called the posterior. While
algebraically simple, this rule is very helpful in computing conditional probabilities
in a variety of situations.

Example 2 Let us consider the following situation: a patient is going to see a doctor
for an annual checkup and in the battery of tests that are performed, the test for a
particular disease D comes back positive. The doctor is concerned, as he read in
the brochure that this particular test has a probability of 0.9 to correctly detect the
disease if the patient actually has it, and also a probability of 0.9 to correctly detect
if the patient does not have it. Should the patient be concerned, too?

Let us denote by + and − the events of positive, respectively negative, outcome
of the test. From the brochure information, we know that
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P(+|D) = 0.9,

P(−|DC ) = 0.9.

But what we are really interested in is the probability P(D|+) that the patient actually
has the disease, provided the test says so. We compute this probability via Bayes’
rule as

P(D|+) = P(+|D)
P(D)

P(+)
.

We would therefore need to know the probability P(D) that a patient has the disease
in the first place (regardless of any test results) and the probability P(+) that the
test will be positive (regardless of whether the patient is sick). The latter is easily
computed using the law of total probability

P(+) = P(+|D)P(D) + P(+|DC )P(DC ),

and

P(+|DC ) = 1 − P(−|DC ).

The only thing we need to figure out is P(D), the probability to be sick in the
first place. We might imagine this as the probability that, randomly picking someone
from the street, this person is actually sick. It is important to understand that this
probability has to be provided from the outside, as it cannot be derived from the
information available in the problem specification. In our case, such data might be
available from public health institutions. Let us assume that 1 in 100 people are sick,
so P(D) = 0.01 and consequently

P(+) = 0.9 × 0.01 + (1 − 0.9) × (1 − 0.01) = 0.108,

that is, for about one out of ten people, the test will be positive, irrespective of their
actual health. This is simply because few people have the disease, but in one out
of ten, the test will be incorrect. We assembled all information needed to actually
compute the relevant probability:

P(D|+) = 0.9 × 0.01

0.108
≈ 0.08.

Maybe surprisingly, the probability to have the disease if the test is positive is less
that 10% and getting a second opinion is clearly indicated! This is one reason to
perform a second independent test in such a case.

The key point of this example is to not get confused by the two conditional
probabilities P(X |Y ) and P(Y |X) and mistakenly assume them to be equal or at
least of comparable size. As shown, the two can be very different, depending on the
prior probabilities for X and Y.
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Implications of Bayes’ rule. Bayes’ rule has some more implications along these
lines, which we will briefly describe in a very informal manner: As we will see in
the chapter on statistical hypothesis testing, classical techniques only allow us to
compute the probability of seeing certain data D (e.g., a measurement), provided a
given hypothesis H is true; very informally, P(D|H). Of course, we actually want to
know the probability P(H |D) of the hypothesis being true, given the data. However,
Bayes’ rule shows that this probability can only be computed if we have information
about the hypothesis being true irrespective of any data. Again, this information
about prior probabilities has to come from “outside” and cannot be inferred from the
hypothesis or the data. Typically, this information is provided by either additional
assumptions or by looking into other data. The branch of Bayesian Statistics deals
with the incorporation of such prior data and provides many alternative ways of
inference and hypothesis testing. However, many of these methods are more elaborate
and special care needs to be taken to correctly apply them, which is one reason why
we do not cover them in this text.

1.2 Random Variables

While events and algebraic set operations form the basis for describing random exper-
iments, we gain much more flexibility and widen the applications of probability by
introducing random variables. Technically, these are functions mapping an outcome
ω ∈ � to a number. For example, we can describe the two dice example simply by
defining the number of eyes rolled with die i as the random variable Xi . The event
of having at least a 5 on the first die is then described intuitively by the statement
X1 ≥ 5. Similarly, we can formulate the event that the sum is larger than 10 by
X1 + X2 ≥ 10, instead of listing all corresponding outcomes.

Once probabilities are assigned to events, they transfer to random variables simply
by finding the corresponding event described by a statement on the random variables.
Formally, P(X ∈ X ) = P({ω|X (ω) ∈ X }).

For the two dice example, let us compute the probability of rolling at least a 5
with the first die using the random variable X1:

P(X1 ≥ 5) = P (X1 ∈ {5, 6}) = P ({ω ∈ �|X1(ω) ∈ {5, 6}})
= P({(i, j)|i ≥ 5, 1 ≤ j ≤ 6})
= P({(i, j)|i = 5}) + P({(i, j)|i = 6}) = 12

36
.

The joint probability of two random variables X and Y simultaneously taking
values in their respective sets is given by the intersection of the corresponding events:

P(X ∈ X , Y ∈ Y ) = P ({ω|X (ω) ∈ X } ∩ {ω|Y (ω) ∈ Y }) .
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The advantage of working with random variables instead of events comes from the
fact that random variables have a probability distribution that describes the proba-
bility that the random variable takes a value smaller or equal to a certain number.
The cumulative distribution function (cdf) FX () of a random variable X is defined as
FX (x) = P(X ≤ x). It always starts with a value of 0 at x = −∞ and monotonically
increases to 1 for larger values of x. Often, very different problems lead to the same
distribution for the involved random variables, which is why some distributions get
their own name and their properties can be found in tables.

Similar to events, random variables also come in two distinct flavors: they either
take values in a discrete (but maybe infinite) set of values, as in the dice example, or
they take values from a continuous set, like the set of real numbers RI.

Discrete Random Variables. A discrete random variable A has a probability mass
function (pmf) in addition to its cumulative distribution function. The pmf is given
by pA(a) = P(A = a) and we can easily compute the cdf from it by summation:
FA(k) = ∑k

a=−∞ pA(a).

Example 3 Let us consider the following experiment: a coin is flipped n times. The
probability of any flip to show head is given by our first distribution with its own
name: the Bernoulli distribution, which assigns a probability of p to head and 1− p to
tail. If Xi is the outcome of the ith flip, with Xi = 0 for tail and Xi = 1 for head, this
distribution is completely described by p, as P(Xi = 0) = 1 − p, P(Xi = 1) = p
and P(Xi = k) = 0 for any value k that is neither 0 nor 1. Thus, knowing that
Xi is Bernoulli distributed with parameter p completely specifies all we need to
know. In short, this statement is written as X ∼ Bernoulli(p), where “∼” is read as
“distributed as”.

What is the probability that we have to wait until the wth flip to see head for the
first time? This is the question for the distribution of a waiting time W. Let us see: to
see the first head at flip w, all preceding w − 1 flips are necessarily tails. Assuming
the flips to be independent, this probability is

P(X1 = 0, . . . , Xw−1 = 0) = P(X1 = 0) · · · P(Xw−1 = 0) = (1 − p)w−1.

The probability to actually see head in the wth flip is P(Xw = 1) = p. Thus, P(W =
w) = (1 − p)w−1 p, the pmf of a geometric distribution, denoted W ∼ Geom(p).

The particular value w is called a realization of the random variable W. This is an
example of a discrete random variable that has infinitely many possible values with
positive probability. The probability mass function of a geometric distribution is
given in Fig. 1.3 (left).

What is the probability to see exactly h heads if we flip n times? This question is a
little more tricky: the probability to see h heads in n flips is ph . The probability that
the remaining n−h flips are all tails is (1− p)n−h . But there are a multitude of ways to

arrange the h heads and n−h tails. To be exact, there are
( n

h

)
:= n!

(n−h)!h! (a binomial

coefficient, read “n choose h”) many ways to do so: n! := 1 × 2 × 3 × · · · × n is the
number of ways to arrange n flips in different order. The h heads can be drawn in h!
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Fig. 1.3 Geometric distribution for p = 0.3 (left) and binomial distribution with n = 10 and
p = 0.3 (right)

different orders, which we do not distinguish and treat as equivalent. Similarly, there
are (n − h)! ways to arrange the tails are equivalent, leading to the stated coefficient.
More generally, the binomial coefficient gives the number of different ways to draw
h objects out of n, if we do not care for the order in which they are drawn. For n = 3,

there are

(
3
2

)
= 3 ways to draw exactly two of them: from the set {a, b, c}, the 3

ways are {a, b}, {b, c}, {a, c}. The first set contains two possible ways to draw: first
the a, then the b, or vice-versa, and similarly for the other two sets.

For our problem, let H be the number of heads in n flips. This is a random variable
taking values between 0 and n. It has a binomial distribution with two parameters n
and p and probabilities given by the mass function

P(H = h) =
(

n
h

)
(1 − p)n−h ph;

denoted by H ∼ Binom(n, p). A plot of a binomial probability mass function is
given in Fig. 1.3 (right).

Let us combine these two calculations of the waiting time and the number of heads
by solving the following problem: again, a coin is flipped n times, the probability to
see head is p. Let again H be the number of heads in these n flips and let W be the
waiting time for the first head to appear. For completeness, we set W = n + 1, if no
head appears at all.

What is the probability to simultaneously see h heads with the first head appearing
at the wth flip? This questions asks for the joint probability distribution given by
P(H = h, W = w).

The two random variables H, W are not independent: if they were, we would have
P(H = h|W = w) = P(H = h). But if no head has appeared at all (so W = n + 1),
then the probability to see any more than zero heads, given this information, is zero:
P(H = 1|W = n +1) = 0, but P(H = 1) > 0. For working out the correct answer,
we therefore need to take this dependency into account. It is always a good idea to
check some boundary cases first: as we saw,
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Table 1.1 Joint probability distribution of (H, W )

w = 1 w = 2 w = 3 w = 4

h = 0 0.000 0.000 0.000 0.125
h = 1 0.125 0.125 0.125 0.000
h = 2 0.250 0.125 0.000 0.000
h = 3 0.125 0.000 0.000 0.000

P(H = 0, W = n +1) = P(H = 0|W = n +1)P(W = n +1) = 1×(1− p)n,

the probability to see n tails. Further, P(H = 0, W = w) = 0 for any w ≤ n, as we
cannot have seen the first head somewhere in the sequence if we saw none at all.

What about the non-boundary cases? For (H = h, W = w), we can use the
following argument: to see h heads in total, given the first one in the wth flip, we
know that the first w − 1 flips are all tails and we need to place h − 1 heads in the
remaining n − w positions (the first is already placed in position w):

P(H = h|W = w) =
(

n − w
h − 1

)
(1 − p)(n−w)−(h−1) ph−1,

the binomial probability of having h −1 heads in n −w trials. The probability of first
head at w ≤ n is the geometric distribution P(W = w) = (1− p)w−1 p. Combining:

P(H = h, W = w) =
(

n − w
h − 1

)
(1 − p)n−h ph .

The conditional distribution of waiting w flips, given we have h heads in total, is
easily calculated as

P(W = w|H = h) =

(
n − w
h − 1

)

(
n
h

) ,

the number of ways to place h − 1 heads in n − w positions over the number of
ways to place h heads in n positions. Interestingly, this probability is independent
of the probability p to see head. For n = 3 and p = 0.5, the full joint probability
P(H = h, W = w) is given in Table 1.1.

We might also be interested in computing the waiting time distribution with-
out referring to the number of heads. This marginal distribution can be derived by
applying the law of total probability. For example,

P(W = 2) =
3∑

h=0

P(H = h, W = 2) = (1 − p)p = 1

4

is the marginal probability that we see the first head in the second flip.
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Example 4 To contribute another example, let us consider the following problem,
encountered in molecular biology: DNA molecules carrying the inheritance infor-
mation of an organism can be modeled as a sequence of nucleotides. There are four
different such nucleotides: arginine (abbreviated A), cytosine (C), guanine (G), and
tyrosine (T). A common problem is to determine how closely related two DNA
sequences are. To make things easier, let us assume both sequences have the same
length n, that the nucleotides in any two positions in the sequence are independent,
and that each nucleotide has a probability of 1/4 to occur in any position. Similarity
of the sequences can then be established by counting in how many positions the two
sequences have the same nucleotide. Each such case is called a match, the converse a
mismatch, so the following two sequences have seven matches and three mismatches
(underlined):

A C C G T T G G T A
A C G G T T C G A A

If the two sequences have nothing in common, we would expect to see a match in
about 1/4 of the cases, and the number of matches would follow a Binom(n, p = 1/4)

distribution. Conversely, evolutionarily related DNA sequences would show a much
higher proportion of matches.

In subsequent chapters, we will estimate the nucleotide frequencies p from data
and test the hypothesis that sequences are related by comparing the observed and
expected number of matches

Continuous Random Variables. We also need random variables that take values
in a continuous set to describe, e.g., measured lengths or optical densities. Similar to
events, we cannot cover these in all mathematical rigor. A nontrivial mathematical
argument shows that for such a continuous random variables X, a probability mass
function cannot be defined properly, because P(X = x) = 0 for all x. Instead, most
of these variables have a probability density function (pdf) fX (x) with the properties

fX (x) ≥ 0 ,

∞∫

−∞
fX (y)dy = 1.

The density is a function such that the probability of X to take a value in any interval
[xl , xu] is given by the area under the density function on this interval, that is, P(xl ≤
X ≤ xu) = ∫ xu

xl
fX (y)dy. This probability can also be written in terms of the

cumulative distribution function

FX (x) = P(X ≤ x) =
x∫

−∞
fX (y)dy
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Fig. 1.4 Density of Exp(λ)

distribution for λ = 2. The
gray shaded area gives the
probability of W falling in
the range [0.5, 2]
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as the difference FX (xu) − FX (xl). Important continuous distributions include the
exponential (see Ex. 5 below) and the normal distributions (covered in Sect. 1.3). In
Sect. 1.4, we will discuss several more distributions that frequently arise in statistics,
like the t-, the χ2- and the F-distributions, and also demonstrate various relations
between them.

Example 5 As a first example for a continuous random variable, let us consider the
exponential distribution. This distribution often describes the waiting time W for an
event such as a radioactive decay and has density function

fW (w; λ) = λ exp(−λw),

where the rate λ > 0 is the distribution’s only parameter and 1/λ describes the
average waiting time for the next event. The cumulative distribution function is
easily calculated as

FW (w; λ) = 1 − exp(−λw).

Figure 1.4 shows the density function for λ = 2, the area of the gray region gives
the probability that a random variable W ∼ Exp(2) takes a value between 0.5 and 2,
which we calulate to be

P(0.5 ≤ W ≤ 2) =
2∫

0.5

2 × exp(−2 × w)dw = 0.3496.

Example 6 Another example for a continuous distribution is the uniform distribution,
which has the same density for each point in a certain interval. If U ∼ Unif([a, b]),
the density is given by

fU (u) =
{ 1

b−a , if a ≤ u ≤ b,

0, else.

It is important to understand that the probability density values cannot be inter-
preted as probabilities. In particular

fX (x) �≤ 1.
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Fig. 1.5 Density functions (left) and cumulative distribution functions (right) of Norm(μ, σ 2) dis-
tribution with parameters (0, 1) (solid), (0, 3) (dashed), and (3, 3) (dotted)

As an easy counterexample, let us consider a uniform random variable U on an
interval [a, b]. For the interval [a, b] = [0, 0.5], the density function is fU (u) = 2
for each value u inside the interval. Moreover, by moving the right boundary b of
the interval towards a, we can make fU (u) arbitrarily large. Thus, it clearly cannot
be interpreted as a probability. The integral of the density over any subinterval is of
course still a probability.

1.3 The Normal Distribution

Probably the best known continuous distribution is the normal distribution, some-
times also called the Gaussian distribution, as it was first completely described by
C. F. Gauß. This distribution has two parameters, μ and σ 2. Its probability density
function is

f (x;μ, σ 2) = 1√
2πσ 2

e− (x−μ)2

2σ2 .

The normal density function has the famous bell-shaped curve and is symmetric
around μ; its “width” is determined by σ. Figure 1.5 (left) shows the density of three
normal distributions with parameters (μ, σ 2) = (0, 1), (0, 3), and (3, 3), respectively.
The corresponding cumulative distribution functions are given in Fig. 1.5 (right).

The normal distribution is so important in probability theory and statistics, that its
density and cumulative distribution functions even have their own letters reserved for
them: φ(x;μ, σ 2) for the pdf and 	(x;μ, σ 2) for the cdf. If no parameters are given,
the two functions refer to the standard normal distribution with μ = 0 and σ = 1.

One of the helpful properties of the normal distribution is that whenever we
scale a normal random variable X by multiplying with a fixed a and then shift it
by some fixed value b to the new random variable Y = aX + b, this new random
variable is also normally distributed: with X ∼ Norm(μ, σ 2), we have that Y ∼
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Norm(aμ + b, a2σ 2). In particular, for X ∼ Norm(μX , σ 2
X ),

Z = X − μX

σX
∼ Norm(0, 1)

has a standard normal distribution.
Moreover, the sum of random variables with the same, arbitrary distribution does

in general not have the same distribution as the variables themselves. In contrast,
adding independent normal random variables always leads to a new normal random
variable. Let X1 ∼ Norm(μ1, σ

2
1 ) and X2 ∼ Norm(μ2, σ

2
2 ) be two independent

normal variables, potentially with different parameters. Then,

X1 + X2 ∼ Norm(μ1 + μ2, σ
2
1 + σ 2

2 ).

1.4 Important Distributions and Their Relations

We will later consider many more distributions that occur in various statistical con-
texts. In this section, we briefly review some of these and show how they are related
among each other. This will later allow us to more easily understand how many
distributions of estimators and test statistics are derived.

Arguably the most frequently encountered distributions in statistics are those in
the following list:

• Normal distribution, with parameters μ and σ 2,
• Student’s t-distribution, with parameter d, the degrees of freedom,
• χ2-distribution, with parameter d, the degrees of freedom,
• F-distribution, with parameters m, n, two degrees of freedom.

Instead of listing their density functions and properties here, we refer to the fact that
they are easily available in any statistics package. In R, their distribution functions
are accessible via the functions pnorm, pt, pchisq, and pf, respectively, where
p can be replaced by d,q,r to get the density and quantile functions, or a random
number generator, respectively.

These distributions are related as follows.

• X ∼ Norm(μ, σ 2) ⇒ X−μ
σ

∼ Norm(0, 1).

• Z1, . . . , Zn ∼ Norm(0, 1) ⇒ ∑n
i=1 Z2

i ∼ χ2(n), if the Zi are independent.

• X1 ∼ χ2(n), X2 ∼ χ2(m) ⇒ 1
n X1
1
m X2

∼ F(n, m), if X1, X2 are independent.

• Z ∼ Norm(0, 1), X ∼ χ2(n) ⇒ Z√
1
n X

∼ t (n).

• X ∼ t (m) ⇒ X2 ∼ F(1, m).

• X1 ∼ χ2(n), X2 ∼ χ2(m) ⇒ X1 + X2 ∼ χ2(n +m), if X1, X2 are independent.
• Xn ∼ t (n) ⇒ limn→∞ Xn ∼ Norm(0, 1).
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Fig. 1.6 Standard normal
density (solid) and
t (n)-densities for n = 2
(dashed) and n = 20 (dotted)
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As an example, let us consider normally distributed random variables Xi and Yi with
parameters μX and μY , respectively, and σX = σY = 1. Let us further define the
new random variables VX = ∑n

i=1(Xi − μX )2 and VY = ∑m
i=1(Yi − μY )2. These

will later be called variations, as they measure how “spread out” the values of X
and Y are. Both VX and VY are sums of squares of random variables with standard
normal distribution. Thus, both VX and VY follow χ2-distributions with parameters
n and m, respectively. Further, their quotient VX/VY is used in regression analysis;
we immediately see that it is a quotient of two χ2-variables and therefore has an
F(n, m)-distribution if scaled appropriately.

Of particular importance is Student’s t-distribution, which is the quotient of a
standard normal random variable and a scaled χ2-variable. For n − 1 degrees of
freedom, the t (n − 1)-distribution has density

f (t; n) = 

( n+1

2

)

√
nπ n

2

(
1 + t2

n

) n+1
2

.

The densities of this distribution, with n = 2 and n = 20 degrees of freedom,
are given in Fig. 1.6 together with the standard normal density. With increasing n,
the t-distribution approaches the standard normal as claimed, but has substantially
heavier tails for few degrees of freedom.

1.5 Quantiles

While the cumulative distribution function FX (x) describes the probability of a
random variable X to take a value below a certain value x, the quantiles describe
the converse: the α-quantile is the value x such that FX (x) = α, i.e., the value
for which the random variable has a probability of α to take that or a lower value.
Slight difficulties might arise if there is not an exact value x but a whole interval,
but the interpretation remains the same. The quantile function is then (neglecting
technicalities) given by F−1

X (α), the inverse function of the cdf. Thus, if P(X ≤
q) = α, then q is the α-quantile of X.
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Fig. 1.7 Density of standard normal distribution with 0.05-quantile (left) and 0.8-quantile (right).
The gray areas therefore correspond to probabilities of 0.05 and 0.8, respectively

The 0.05- and the 0.8-quantile of a standard normal distribution are given in
Fig. 1.7 (left and right, respectively) as vertical dashed lines. The α-quantile of the
standard normal distribution is denoted by zα, thus z0.05 = 	−1(0.05) ≈ −1.645 and
z0.8 = 	−1(0.8) ≈ 0.842. Using the symmetry of the standard normal distribution,
z1−α = −zα.

1.6 Moments

While the distribution of a random variable is completely described by the cumulative
distribution function or the density/mass function, it is often helpful to describe its
main properties by just a few key numbers. Of particular interest are the expectation
and the variance.

1.6.1 Expectation

The expectation, expected value, or mean is the number

E(X) :=
∞∫

−∞
x f (x)dx

for a continuous, and

E(X) :=
∞∑

k=−∞
kP(X = k)
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for a discrete random variable X. The expectation describes the location of the dis-
tribution, which informally is the center value around which the possible values of
X disperse; it is often denoted by the letter μ. The expectation behaves nicely when
summing random variables or multiplying them with constants. For random variables
X, Y and a non-random number a we have:

E(X + Y ) = E(X) + E(Y ),

E(aX) = aE(X),

E(XY ) = E(X)E(Y ) if X,Y are independent.

1.6.2 Variance and Standard Deviation

The variance of a random variable X describes how much its values disperse around
the expected value and is a measure for the width of its distribution. It is defined as

Var(X) := E
(
(X − E(X))2),

the mean squared distance of values to the expected value and is often denoted by
σ 2. A short calculation gives the alternative description

Var(X) = E
(
X2) − (E(X))2 .

The variance is not linear and we have the following relations for random variables
X, Y and non-random numbers a, b:

Var(X + Y ) = Var(X) + Var(Y ) if X,Y are independent,

Var(X + b) = Var(X),

Var(aX) = a2Var(X).

The square-root σ is called the standard deviation. While it does not contain any
more information than the variance, it is often more convenient for applications, as
it is easier to interpret and has the same physical units as the random variable itself.
It is a measure for the scale of a distribution, as rescaling X by any factor a changes
the standard deviation by the same factor.

Expectation and variance completely specify a normal distribution, whose two
parameters they are. For X ∼ Norm(μ, σ 2), the following approximations are often
useful: the probability of X taking a value x at most one standard deviation away
from the mean, i.e., x ∈ [μ− σ,μ+ σ ], is roughly 70%. Similarly, the probabilities
of observing a value at most 2, respectively 3 standard deviations from the mean,
are roughly 95% and 99%, respectively. Note that these probabilities can be very
different for non-normal random variables.
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Fig. 1.8 Gamma (solid) and
normal (dashed) densities
both with mean μ = 4 and
variance σ 2 = 8,

corresponding to Gamma
parameters k = 2 and θ = 2
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Example 7 For introducing yet another continuous distribution on the go, let us
consider the Gamma distribution with shape parameter k and scale parameter θ.

It has density function f (x; k, θ) = xk−1 exp(−x/θ)/θk
(k), is only defined for
x > 0, and describes the distribution of the sum of k exponentially distributed
waiting times, each with rate parameter θ (thus the time to wait for the kth event).
This density function is usually not symmetric. For k = 2 and θ = 2, the distribution
has expectation μ = kθ = 4 and variance σ 2 = kθ2 = 8; its density is shown in
Fig. 1.8 (solid line). For comparison, a normal distribution with the same expectation
and variance is plotted by a dashed line. As we can see, the density functions look
very different, although both have the same mean and variance. For additionally
capturing their different shapes, higher moments are needed (see Sect. 1.6.5).

Example 8 Let us consider the following model of a random DNA sequence as intro-
duced earlier: we assume independence among the nucleotides and in each position,
the probabilities of having a particular nucleotide are pA, pC , pG , pT , respectively.
We investigate two sequences of length n by comparing the nucleotides in the same
position. Assume that the sequences are completely random and unrelated. At any
position, the probability of a match is then p := p2

A + p2
C + p2

G + p2
T , as both

nucleotides have to be the same. Let us set Mi = 1 if the sequences match in posi-
tion i and Mi = 0 else.

To decide whether two given sequences are related, we compute the number of
matching nucleotides and compare it to the number of matches we expect just by
chance. If the observed number is much higher than the expected number, we claim
that the sequences are in fact related.1

The total number of matches in two random sequences of length n is given by
M := M1 + · · · + Mn and follows a binomial distribution: M ∼ Binom(n, p).

Applying the linearity of the expectation and some algebra, we compute the expected
number of matches:

1 As a word of caution for the biological audience: this argument does not hold for aligned
sequences, as the alignment maximizes the number of matches, and this maximum has a different
distribution.
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E(M) =
∞∑

k=−∞
kP(M = k)

=
n∑

k=0

k

(
n
k

)
pk(1 − p)n−k

=
n∑

k=1

np
(n − 1)!

(k − 1)!((n − 1) − (k − 1))! pk−1(1 − p)(n−1)−(k−1)

= np
n∑

k=1

(
n − 1
k − 1

)
pk−1(1 − p)(n−1)−(k−1)

= np,

where the last equality holds because we have the pmf of a Binom (n −1, p) variable
in the sum, which sums to one. The result also makes intuitive sense: the expected
number of matches is the proportion p of matches times the number of nucleotides n.
Consequently, for sequences of length n = 100, with nucleotide probabilities all
equal to 0.25, the probability of a match is p = 0.25 and we expect to see 25
matches just by chance if the sequences are unrelated.

How surprised are we if we observe 29 matches? Would this give us reason to
conclude that the sequences might in fact be related? To answer these questions, we
would need to know how likely it is to see a deviation of 4 from the expected value.
This information is captured by the variance, which we can calculate as

Var(M) = Var(M1) + · · · + Var(Mn),

because we assumed that the nucleotides are independent among positions. Using
the definition of the variance,

Var(M1) = E((M1)
2)−(E(M1))

2 = (02 ×(1− p)+12 × p)− p2 = p(1− p),

and we immediately get

Var(M) = nVar(M1) = np(1 − p) = 18.75

and a standard deviation of 4.33 These values indicate that the deviation of the
observed number of matches (=29) from the expected number of matches (=25)
is within the range that we would expect to see in unrelated sequences, giving no
evidence of the sequences being related. We will see in Chap. 3 how these arguments
can be used for a more rigorous analysis.

1.6.3 Z-Scores

Using the expectation and variance of any random variable X, we can also compute
a normalized version Z with expectation zero and variance one by

http://dx.doi.org/10.1007/978-3-642-23502-3_3
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Z = X − E(X)√
Var(X)

.

This random variable is sometimes called the Z-score. For a given realization x of
X, the associated value z of Z tells us how many standard deviations σ the value x
is away from its expected value. In essence, this rescales to units of one standard
deviation.

Importantly, however, the distribution of Z might not belong to the same family
as the distribution of X. An important exception is the normal distribution, where
Z ∼ Norm(0, 1) if X ∼ Norm(μ, σ 2).

1.6.4 Covariance and Independence

For two random variables X and Y, we can compute the covariance

Cov(X, Y ) = E ((X − E(X))(Y − E(Y )) ,

to measure how much the variable X varies together with the variable Y (and vice-
versa). With this information, we can also calculate the variance of dependent vari-
ables by

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y ).

As a special case, Cov(X, X) = Var(X). For independent X and Y, the covariance
is zero. The converse, however, is not true, as the following counterexample demon-
strates.

Example 9 Let us consider possible outcomes � = {1, 2, 3, 4} and a probability
measure given by P({1}) = P({2}) = 2

5 and P({3}) = P({4}) = 1
10 . Let us further

define the two random variables X and Y by

ω 1 2 3 4
X 1 −1 2 −2
Y −1 1 2 −2

These two random variables are completely dependent. A simple calculation gives
the expectations:

E(X) =
4∑

k=1

kP(X = k) = 1 × 2

5
+ (−1) × 2

5
+ 2 × 1

10
+ (−2) × 1

10

= 0,

E(Y ) = 0.
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From this, we calculate the covariance of the two variables as

Cov(X, Y ) = E(XY ) − E(X)E(Y )

= (−1) × 2

5
+ (−1) × 2

5
+ 4 × 1

10
+ 4 × 1

10
− 0 × 0

= 0.

Thus, although the covariance of the two random variables is zero, they are never-
theless completely dependent.

Another derived measure for the dependency is the correlation coefficient of X
and Y, given by

R = Cov(X, Y )√
Var(X)

√
Var(Y )

.

The correlation is also often denoted ρ(X, Y ) and takes values in [−1, 1], where
R = ±1 indicates very strong dependence. Even then, however, this does not mean
that either X or Y cause each other. As an example, the correlation to see a wet
street and people carrying an umbrella is likely to be very strong. But carrying
an umbrella clearly does not cause the street to be wet. In fact, both are likely
caused simultaneously by rainfall, a third variable that was not accounted for. Thus,
correlation is not causation.

1.6.5 General Moments; Skewness and Kurtosis

The kth (central) moments are given by

E

(
(X)k

)
and E

(
(X − E(X))k

)
respectively;

the variance is recovered as the second central moment.
The third central moment, normalized by the standard deviation, is called the

skewness and describes how symmetric the values spread around the mean by

skew(X) = E

((
X − E(X)√

Var(X)

)3
)

.

A negative skewness indicates that the distribution “leans” towards the left and a
perfectly symmetric distribution has skewness zero.

The (normalized) fourth central moment is called the kurtosis and describes how
fast the density function approaches zero in the left and right tail by

kurtosis(X) = E

((
X − E(X)√

Var(X)

)4
)

− 3.
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A negative kurtosis indicates that the variance is mostly caused by many values
moderately far away from the mean, whereas a positive kurtosis indicates that the
variance is determined by few extreme deviations from the mean. The sole reason
for subtracting 3 is to make the kurtosis equal to zero for a normal distribution.

For the above Gamma-distribution with shape parameter k = 2 and scale parame-
ter θ = 2 (cf. Fig. 1.8), we compute a skewness of 1.414 and a kurtosis of 3. Together
with the expectation and the variance, these numbers often already give a reasonable
description of the shape of the density function.

1.7 Important Limit Theorems

The sum of many similar random variables is of particular interest in many applica-
tions. In this section, we will discuss two important limit theorems that allow us to
compute its distribution in a variety of situations and explain the omnipresence of
the normal distribution in applications.

The first theorem gives the Law of Large Numbers (LLN). Consider a random
sample X1, . . . , Xn, described by n random variables. We assume that each random
variable has the same distribution, and all are independent from each other, a property
called independent and identically distributed (iid). In particular, they all have the
same expectation E(X1) = · · · = E(Xn). The theorem then says that if we take their
arithmetic mean X̄ , it approaches the expectation as we increase n:

X̄ = X1 + · · · + Xn

n
→ E(X1) as n → ∞.

This theorem thus gives one reason why expectation and arithmetic mean are so
tightly linked in statistics. Importantly, the theorem does not require the Xi to have
any particular distribution.

The second theorem is the Central Limit Theorem (CLT), which gives the reason
for the omnipresence of the normal distribution. In essence, it tells us that if we sum
up iid random variables, the sum itself will eventually become a random variable with
a normal distribution, no matter what was the distribution of the individual random
variables. Let us again assume iid random variables Xi , having any distribution with
expectation μ and variance σ 2. Then,

∑n
i=1 Xi − nμ√

nσ
→ Norm(0, 1) as n → ∞,

or, equivalently,

√
n

X̄ − μ

σ
→ Norm(0, 1) as n → ∞.
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1.8 Visualizing Distributions

Given a random sample drawn from a distribution, it is often helpful to visualize this
data and some of its properties like the mean and variance. Plotting the sample points
together with a given theoretical distribution often provides enough information to
decide whether the distribution “fits” the data or not, i.e., if the data might have
been drawn from this distribution. Such descriptive statistics are a large topic in
themselves, and we will only present some examples that are helpful in later chapters.

1.8.1 Summaries

A first impression of a given set of data is given by simply stating some of the
key moments and quantiles of the data. In R, these are directly computed using
the summary() function. For 50 sample points from a normal distribution with
parameters μ = 10 and σ 2 = 6, we get the following output:

Min. 1st Qu. Median Mean 3rd Qu. Max.
5.137 8.795 9.953 10.070 11.220 15.030

In this summary, the minimal and maximal values are given together with the expected
value and the 0.25-quantile (1st quartile), the 0.5-quantile (called the median and the
2nd quartile), and the 0.75-quantile (3rd quartile).

Similarly, for 50 samples from an exponential distribution with parameterλ = 0.4:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.06219 0.60800 1.29100 2.54000 3.14100 19.09000

These summaries already reflect the symmetry of the normal data around their
mean and the skewness of the exponential, which has most of its sample points at
small values, but also contains comparably few large values.

1.8.2 Plotting Empirical Distributions

Let us assume that we gathered some data and assume it follows a normal distribution.
Plotting the empirical and the theoretical density or cumulative distribution functions
then gives a first impression whether this might be true. For example, Fig. 1.9 gives
these functions for n = 50 normal samples Xi ∼ Norm(10, 6).

The empirical density function of the data is estimated by summing “smeared
out” versions of the sample points, such as by assuming a Gaussian bell-curve over
each point and summing up the individual values of all these curves. The empirical
cumulative distribution function (ecdf) is computed by the function
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Fig. 1.9 Empirical (solid) and theoretical (dashed) density functions (left) and cumulative distrib-
ution functions (right) of 50 Norm(10, 6) sample points

F̂n(x) = Hn(x)

n
,

where Hn(x) is the number of sample points smaller than x. This leads to a step
function, which in the example quite closely follows the theoretical function.

In practice, the similarity of the empirical and theoretical densities or cumulative
distribution functions is often very difficult to judge by eye.

1.8.3 Quantile–Quantile Plots

Another way of comparing two distributions is by plotting their quantile functions.
This is extremely helpful when plotting the theoretical quantiles of an assumed
distribution against the empirical quantiles of some data. For this, all parameters of
the theoretical distribution have to be specified.

An important exception is the normal distribution, which can be compared to
samples without knowing its parameter values. Here is how this works: we sort the
data x1, . . . , xn such that x(1) ≤ · · · ≤ x(n) and thus x(i) is the ith smallest value of
the dataset, which is the best guess for the i

n -quantile of the distribution. If the data
actually stem from a normal distribution with some unknown parameters μ and σ 2,

the quantiles relate by

x(i) ≈ μ + σ × zi/n,

where zi/n is the theoretical i/n-quantile of the standard normal distribution. Regard-
less of the actual parameter values, this is the equation of a line with slope σ and
intercept μ. If we therefore plot the points

(
x(i), zi/n

)
,

we expect to see a straight line, regardless of the values of μ and σ 2.
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Fig. 1.10 Normal quantile–quantile plot of 50 Norm(10, 6) sample points (left) and 50 Exp(0.4)
points (right). The solid line denotes the theoretical quantile of a normal distribution. While the
normal data fit the line nicely, the exponential data deviate strongly from the expected quantiles of
a normal distribution

A quantile-quantile plot for a normal sample is given in Fig. 1.10 (left) together
with the theoretical quantiles (solid line). For comparison, sample points from an
exponential distribution are plotted together with the normal distribution quantiles
in Fig. 1.10 (right). As we can see, the agreement of the theoretical and the empirical
quantiles is quite good for the normal sample, but it is poor for the exponential
sample, especially in the tails.

Quantile plots can be generated inR using the functionqqplot(). The functions
qqnorm() and qqline() allow comparison to the normal distribution.

1.8.4 Barplots and Boxplots

It is still very popular to give data in terms of a bar with the height corresponding to
the expectation and an additional error bar on top to indicate the standard deviation.
However, this only shows two key numbers of the whole data (expectation and
standard deviation), and does not allow to see how the data actually distribute. A
much more informative alternative to plot data is to use the boxplot. It shows several
parameters simultaneously: a rectangle denotes the positions of the 0.25- and 0.75-
quantiles, with a horizontal line in the box showing the median (0.5-quantile). Thus,
the middle 50% of the data are contained in that rectangle. On the top and bottom of
the rectangle, the “whiskers” show the range of 1.5 times the distance between the
0.25- and 0.75-quantiles. Sample points outside this range are plotted individually.
The previous normal and exponential data are both normalized to mean 2 and standard
deviation 1 and the resulting data are shown as a barplot (left) and boxplot (right)
in Fig. 1.11. In the barplot, no difference between the two samples can be noticed,
while the different distributions of the data, the skewness of the exponential, and the
symmetry of the normal are immediately recognized in the boxplot. Barplots with
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Fig. 1.11 Barplots (left) and boxplots (right) of normal and exponential data, both with mean 2
and standard deviation 1. Left: Barplots show no difference in the data, with both samples having
mean 2 given by the height of the bar and standard deviation 1 indicated by the error bars. Right:
Boxplots show the 0.25- and 0.75-quantiles, as the bottom and top of the box, respectively, and the
median as a horizontal line. Whiskers denote the range of 1.5 times the dispersion of the 0.25- to the
0.75-quantile, sample points further away are given as individual points. The different distributions
of the samples can clearly be seen

out error bars and boxplots can be generated in R using the functions barplot()
and boxplot(), respectively.

1.9 Summary

Probability theory allows us to study the properties of non-deterministic quantities.
By defining a probability measure, we can compute the probability of events and
their combinations.

A random variable’s distribution is given by its cumulative distribution function
and the probability mass function for discrete and the density function for continuous
random variables. Importantly, the density fX (x) is not a probability. For a distribu-
tion of a random variable X, we can compute the α-quantile as the value qα such that
P(X ≤ qα) = α.

Important discrete distributions are the Binomial and geometric distribution,
important continuous distributions are the normal distribution, the exponential, and
various statistical distributions, including the t-, F-, and χ2-distributions, which are
all related.

Several interesting properties of a probability distribution are given by its moments,
some of which are the expectation, describing the location, the variance, describing
the scale and the skewness and kurtosis, describing the asymmetry and heaviness of
the tails, respectively.

We can visualize empirical distributions of given random samples using various
graphs, such as bar- and box-plots and the quantile-quantile plot. The latter also
allows us to easily assess if a given random sample is normally distributed.



Chapter 2
Estimation

Abstract Estimation is the inference of properties of a distribution from an observed
random sample. Estimators can be derived by various approaches. To quantify the
quality of a given estimate, confidence intervals can be computed; the bootstrap
is a general purpose method for this. Vulnerability of some estimators to sample
contaminations leads to robust alternatives.

Keywords Maximum-likelihood · Confidence interval · Bootstrap

“Data! Data! Data!” he cried impatiently. “I can’t make
bricks without clay”

Sherlock Holmes

2.1 Introduction

We assume that n independent and identically distributed random samples X1, . . . , Xn

are drawn, whose realizations form an observation x1, . . . , xn . Our goal is to infer
one or more parameters θ of the distribution of the Xi . For this, we construct an
estimator θ̂n by finding a function g, such that

θ̂n = g(X1, . . . , Xn)

is a “good guess” of the true value θ. Since θ̂n depends on the data, it is a random vari-
able. Finding its distribution allows us to compute confidence intervals that quantify
how likely it is that the true value θ is close to the estimate θ̂n .

Example 10 Let us revisit the problem of sequence matching from Example 8 (p. 19)
we already know that the number of matches in two random sequences is a random
variable M ∼ Binom (n, p), but do not know the probability p, and want to infer it
from given data. For this, let us assume we are given two sequences of length n each,
and record the matches m1, . . . , mn, where again mi = 1 if position i is a match, and
mi = 0 if it is a mismatch, as well as the total number of matches m = m1+· · ·+mn .

H.-M. Kaltenbach, A Concise Guide to Statistics, SpringerBriefs in Statistics, 29
DOI: 10.1007/978-3-642-23502-3_2, © Hans-Michael Kaltenbach 2012

http://dx.doi.org/10.1007/978-3-642-23502-3_1
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For any fixed value of p, we can compute the probability to see exactly the observed
matches m1, . . . , mn . The main new idea is to consider this probability as a function
of the parameter p for given observations. This function is known as the likelihood
function

Ln(p) = P(M1 = m1, . . . , Mn = mn) =
n∏

i=1

P(Mi = mi ) = pm(1 − p)n−m;

note that we can only write the joint probability as a product because we assume
the positions (and therefore the individual matches) to be independent. We then
seek the value p̂n that maximizes this likelihood and gives the highest probability
for the observed outcome. In this sense, it therefore “best” explains the observed
data. Maximizing the likelihood is straightforward in this case: we differentiate the
likelihood function with respect to p and find its roots by solving the equation

∂Ln(p)

∂p
= 0.

Taking the derivative of Ln(p) requires repeated application of the product-rule.
It is therefore more convenient to use the log-likelihood for the maximization, given
by

�n(p) = log Ln(p) =
n∑

i=1

log P(Mi = mi ) = m log(p) + (n − m) log(1 − p).

Maximizing either Ln(p) or �n(p) yields the exact same result, as the logarithm is
a strictly increasing function, but we can conveniently differentiate each summand
individually in the log-likelihood. In our case,

0 = ∂�n(p)

∂p
= m

1

p
+ (n − m)

(
− 1

1 − p

)
,

which gives

m

p
= n − m

1 − p
⇐⇒ p = m

n
.

Thus, the desired estimate of the parameter value p is p̂n = m/n, the proportion of
matches in the sequence.

It is important to understand the fundamental difference between the parameter p
and its estimate p̂n : the parameter p is a fixed number, relating to the model describing
the experiment. It is independent of the particular outcome m of the experiment.
In contrast, its estimate p̂n is a function of the data and takes different values for
different samples. For studying general properties of this estimator, we will therefore
consider p̂n as the random variable M/n rather than its realization m/n. It then has
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Fig. 2.1 Left: values of 1000 repetitions of estimating the matching probability of Binom(100,0.25)
experiments. Right: density of estimate (solid) and Norm(0.25,0.001875) approximation (dashed)

a distribution and if we were to repeat the same experiment over and over, p would
always be the same, but the estimate would yield a different realization of p̂n each
time.

Because an estimator is a random variable, it is helpful to either compute its entire
distribution or some of its moments. For our example, we can easily work out the
expectation and the variance of our estimator:

E( p̂n) = E

(
M

n

)
= 1

n
E(M) = np

n
= p,

which shows that the estimator is unbiased and thus—on average—yields the correct
value for the parameter, and

Var( p̂n) = 1

n2 Var(M) = p(1 − p)

n
.

The variance of the estimator decreases with increasing sample size n, which is
intuitively plausible: by using more data, we are more confident about the correct
value of the parameter p and expect the estimator to get closer to the true value with
high probability. We also get a lower variance of the estimate if the variance of the
data is smaller.

The estimator of a true parameter value p = 0.25 is studied in Fig. 2.1 on 1000
pairs of unrelated sequences of length 100. On the left, the values of p̂n are given for
each such pair. Most estimates lie reasonably close to the true value, but there are also
some larger deviations. On the right, the empirical density function of p̂n is given
(solid line) together with a normal density with the same expectation and variance
(dashed line). The values of the estimate closely follow the normal distribution and
the mean nicely corresponds to the correct parameter value p.
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2.2 Constructing Estimators

To derive an estimator for a parameter θ, we need to construct the function
g(X1, . . . , Xn). There are multiple methods to do this and we will discuss the
maximum-likelihood and the least-squares approach in more depth. Both methods
rely on finding the parameter value that “best” explains the observed data, but there
definition of “best” is different and requires finding the minimum or maximum of
a certain function. A third approach, the minimax principle, will be presented in a
more general framework in Sect. 2.5.

2.2.1 Maximum-Likelihood

To apply maximum-likelihood estimation in the general case, we need to specify a
family of distributions that is parametrized by θ such that each value of θ selects
one particular distribution from this family. In the previous example, this family was
the set of all binomial distributions with fixed n, where each value for p selects one
particular member of this family.

Here, we consider the density function f (x; θ), describing the family of dis-
tributions, and aim at estimating the parameter θ. The likelihood function for this
parameter is

Ln(θ) =
n∏

i=1

f (xi ; θ),

which in the discrete case corresponds to the joint probability that the underlying
distribution generates the observed sample x1, . . . , xn . For a family of continuous
distributions, this product can no longer be directly interpreted as a probability, but
the overall reasoning remains the same. The corresponding log-likelihood function is

�n(θ) = log (Ln(θ)) =
n∑

i=1

log ( f (xi ; θ)) .

The maximum-likelihood estimator (MLE) θ̂n of θ then corresponds to the value
that maximizes the likelihood functions:

θ̂n := argmaxθ Ln(θ) = argmaxθ �n(θ).

Example 11 Let us suppose that we perform n measurements and have good reason
to expect them to be normally distributed such that X1, . . . , Xn ∼ Norm (μ, σ 2).

The normal distribution can often be justified with the Central Limit Theorem. We
want to estimate both parameters from the n observed values x1, . . . , xn using the
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maximum-likelihood approach. Let us denote the parameters as θ = (μ, σ ) and start
with setting up the likelihood function

Ln(θ) = 1

π

n∏
i=1

1

σ
exp

(
− (Xi − μ)2

2σ 2

)
∝ σ−n exp

(
− 1

2σ 2

n∑
i=1

(Xi − μ)2

)
,

where we ignored constant factors in the second equation, as they do not con-
tribute to the maximization (the symbol ∝ means “proportional to”). Abbreviating
X̄ = 1

n

∑
Xi and S2 = 1

n

∑
(Xi − X̄)2, we can eliminate the sum and simplify to

Ln(θ) ∝ σ−n exp

(
−nS2

2σ 2

)
exp

(
−n(X̄ − μ)2

2σ 2

)
,

from which we immediately derive the log-likelihood function

�n(θ) ∝ −n log(σ ) − nS2

2σ 2 − n(X̄ − μ)2

2σ 2 .

We maximize this function by taking the derivatives with respect to μ and σ, respec-
tively. For deriving μ̂n, the equation reads

∂�n(θ)

∂μ
= − n

2σ 2

(−2X̄ + 2μ
)
,

and finding the roots yields the estimator

−2X̄ + 2μ = 0 ⇐⇒ X̄ = μ.

Not surprising, the arithmetic mean is an estimator for the expectation. The maximum-
likelihood estimators for the two parameters are then

μ̂n = X̄ = 1

n

n∑
i=1

Xi and σ̂ 2
n = S2 = 1

n

n∑
i=1

(Xi − X̄)2,

where the derivation of σ̂n follows the same ideas.

Calculating the distribution of an estimator will become crucial for establishing
the bounds of a particular estimate. While this calculation is often difficult for general
estimators, maximum-likelihood estimators have the convenient property of being
asymptotically normal. Formally,

θ̂n − θ√
V ar(θ̂n)

→ Norm(0, 1) as n → ∞,

which simply means that if the sample size gets large enough, any maximum-
likelihood estimator has a normal distribution. In retrospect, this explains the sur-
prisingly good fit of the empirical and normal density in our introductory example
(see Fig. 2.1 (right)).
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2.2.2 Least-Squares

Instead of maximizing the likelihood of the observed outcome, we can also construct
an estimator by looking at the distance of the observed outcome and the outcome
that we would expect with a particular parameter value. The value that minimizes
this distance is then an estimate for the parameter.

Let us denote by h(θ) the expected value of observations for parameter value θ.

With measurements xi , we then minimize the distance

d(θ) =
n∑

i=1

(xi − h(θ))2.

The least-squares estimate (LSE) θ̂n is then the value that minimized this squared
difference between observed and expected data. This is a very common approach in
regression (Chap. 4).

Example 12 Let us consider the sequence matching again, this time from a least-
squares perspective, and compare the matches with their expected value. At each
position i, the expected value of a match is E(Mi ) = p, while the observed match
mi is either zero or one. We minimize the sum of their squared differences:

p̃n = argminp

n∑
i=1

(mi − p)2 .

Minimization is again done by finding the roots of the derivative. A quick calculation
reveals

∂

∂p

n∑
i=1

(mi − p)2 = ∂

∂p

(
n∑

i=1

m2
i − 2p

n∑
i=1

mi +
n∑

i=1

p2

)
= 0 − 2m + 2np,

which yields p̃n = m
n . In this example, the least-squares and the maximum-likelihood

estimator are identical, but this is not always the case.

2.2.3 Properties of Estimators

In principle, there is no reason why we should not define an estimator
θ̂n = g(X1, . . . , Xn)= 0, which completely ignores the data. It is a formally valid
estimator, but quite useless in practice. The question therefore arises, how we can
capture properties of an estimator and conclude that, for example the MLE is more
useful than the proposed “zero-estimator”?

Consistency. The first useful property of an estimator is consistency, which means
that with increasing sample size, the estimate approaches the true parameter value:

http://dx.doi.org/10.1007/978-3-642-23502-3_4
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θ̂n → θ as n → ∞.

While all three estimators ( p̂n, X̄ , S2) in the binomial and normal examples are
consistent, the above estimator θ̂n ≡ 0 is obviously not, because the estimate does
not get any closer to the true value, no matter how many samples we take.

Unbiasedness. Even if an estimator is consistent, it might still be that it system-
atically over- or underestimates the true value and introduces a bias in the estimate.
The bias is given by the difference of expected and true value

E(θ̂n) − θ,

and an estimator is called unbiased if this difference is zero. If we were to repeat the
same sampling procedure multiple times, an unbiased estimator would on average
neither over- nor underestimate the true parameter value.

The following example shows the bias in one of the estimators we constructed
earlier.

Example 13 Consider the estimates for the parameters μ and σ 2 of a normal dis-
tribution as given above. Are they unbiased? Let us start with X̄ ; its unbiasedness is
easily established by exploiting the linearity of the expectation:

E(X̄) = E

(
1

n

n∑
i=1

Xi

)
= 1

n

n∑
i=1

E(Xi ) = 1

n
nμ = μ.

The calculation for S2 is slightly more elaborate and we skip some details:

E(S2) = 1

n

n∑
i=1

E

(
(Xi − X̄)2

)
= 1

n

n∑
i=1

E
(
(Xi − μ)(X̄ − μ)

)

= σ 2 − 2

n
σ 2 + nσ 2

n2 = σ 2
(

1 − 1

n

)
	= σ 2.

The MLE for the variance is therefore biased and systematically underestimates the
true variance. It is nevertheless consistent, as the bias is proportional to 1/n and
decreases rapidly to zero for increasing n.

The reason for this can presumably be best explained with the following argument:
we use n sample points X1, . . . , Xn for estimation and thus divide by n. However,
we also use the estimate x̄ instead of the true expectation μ. The value of any sample
point is completely determined if we know X̄ and the other remaining points. The
degrees of freedom in the estimate are therefore n − 1 rather than n, as we already
“used” one degree for estimating μ. Indeed,

S2 = σ̂ 2
n = 1

n − 1

n∑
i=1

(
Xi − X̄

)2

is an unbiased estimator for the variance, but not a maximum-likelihood estimator.
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Properties of ML-Estimators. Conveniently, maximum-likelihood estimators auto-
matically have many desired properties. They are

• consistent: they approach the true parameter value with increasing sample size,
• equivariant: if r is a function, then r(θ̂n) is also the MLE of r(θ),

• not necessarily unbiased, so we need to take caution here,

• asymptotically normal: θ̂n−θ√
Var(θ̂n)

→ Norm (0, 1) as n → ∞.

2.3 Confidence Intervals

The discussed properties of estimators provide valuable information for comparing
and choosing an estimator, but they say rather little about the quality of a particular
estimate. For example, consistency guarantees that the estimated value will approach
the true value in the limit, but does not give information on how close it is to the true
value, given some data with a certain number of samples.

For quantifying the quality of a particular estimate, we can compute a confidence
interval (CI) around the estimate θ̂n, such that this interval covers the true value θ

with some high probability 1−α. The narrower this interval, the closer we are to the
true value, with high probability.

Let us go through the main ideas first, before we look into two concrete examples.
For an estimator θ̂n, the (1 − α)-confidence interval is the interval

C =
[
θ̂n − l, θ̂n + u

]
,

for a lower value l and an upper value u such that

P(θ ∈ C) = 1 − α. (2.1)

This interval C is random, because the value of θ̂n depends on the data. The location
of the interval is determined by θ̂n, and its width depends on the distribution of the
estimator and in particular on the estimator’s variance Var(θ̂n). If the estimator’s
variance decreases, the confidence interval gets narrower. This allows us to conclude
that the difference of true value and estimate gets smaller with decreasing variance,
with high probability. We usually need to work with the square-root of the estimator’s
variance, which we call the standard error:

se(θ̂n) =
√

Var(θ̂n).

For computing the confidence interval, we start by normalizing the estimator by
shifting it by (the unknown) true parameter θ and scaling by 1/se(θ̂n). Provided the
estimator is unbiased, this normalization simply shifts the estimator’s distribution by
its mean and scales by the standard error, which results in a new random variable
with mean zero and standard error one. Equation 2.1 then becomes
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P

(
θ̂n − θ

se(θ̂n)
∈

[ −l

se(θ̂n)
,

u

se(θ̂n)

])
= 1 − α. (2.2)

Solving (2.2) requires that we find the two quantiles qα/2, q1−α/2 of the distribution of
the normalized estimator, with 1−α/2−α/2 = 1−α. From these quantiles, we work
out the upper value u = q1−α/2se(θ̂n) and thus the interval bound θ̂n +q1−α/2se(θ̂n),

and similar for the lower value l. For an unbiased estimator, the (1 − α)-confidence
interval therefore takes the general form

C =
[
θ̂n + qα/2se(θ̂n), θ̂n + q1−α/2se(θ̂n)

]
,

which simplifies by qα/2 = −q1−α/2 if the estimator additionally has a symmetric
distribution around its mean. The two main remaining problems are then to establish
the distribution of θ̂n to calculate the quantiles and to estimate its variance.

If θ̂n is an unbiased maximum-likelihood estimator, we already know that the
estimator has a normal distribution and the correct quantiles are zα/2 and z1−α/2.

The shifted and scaled interval is then symmetric around zero and the confidence
interval is immediately given by

C =
[
θ̂n − z1−α/2se(θ̂n), θ̂n + z1−α/2se(θ̂n)

]
.

Before we deal with the more general case of estimators that are not ML, let
us first look into two concrete examples and work out confidence intervals for the
sequence matching problem and the estimates for the normal parameters.

Example 14 We would like to compute an interval [ p̂n − l, p̂n + u] around the
estimate p̂n of the matching probability, such that the interval contains the true value
p with given probability 1 − α:

P(p ∈ [ p̂n − l, p̂n + u]) = P( p̂n − l ≤ p ≤ p̂n + u) = 1 − α.

Because p̂n is the maximum-likelihood estimator of p, its distribution approaches
a normal distribution for large n. Its normalized form has a standard normal
distribution:

p − p̂n

se( p̂n)
∼ Norm (0, 1).

We can therefore immediately solve the following equation by using the correspond-
ing quantiles zα for u and l

P

( −l

se( p̂n)
≤ p − p̂n

se( p̂n)
≤ u

se( p̂n)

)
= 1 − α.



38 2 Estimation

By exploiting the symmetry of the normal distribution, we derive

u

se( p̂n)
= z1−α/2 ⇐⇒ u = z1−α/2se( p̂n) and l = zα/2se( p̂n),

The standard error of p̂n is se( p̂n) = √
p(1 − p)/n, leading to the requested

confidence interval

C =
[

p̂n + zα/2

√
p̂n(1 − p̂n)

n
, p̂n + z1−α/2

√
p̂n(1 − p̂n)

n

]
,

where we replaced the unknown true parameter value p by its estimate p̂n .

An immediate caveat of the approximation of the true distribution of the estimator
p̂n by its asymptotic normal distribution is that this confidence interval is only valid
for large sample sizes n and parameter values not too close to zero or one. For small
p, for example, the confidence interval would also consider the case that p̂n takes on a
negative value, which is not possible. Hence, the approximations for this confidence
interval are not always valid and more sophisticated intervals exist.

Example 15 Let us consider the estimator for the expectation of normally distributed
data, i.e., X̄ = 1

n

∑n
i=1 Xi with Xi ∼ Norm (μ, σ 2). Being the ML-estimator, this

random variable has a normal distribution. We already checked that it is unbiased,
and we easily compute its variance Var(X̄) as

Var(X̄) = Var

(
1

n

n∑
i=1

Xi

)
= 1

n2

n∑
i=1

Var(Xi ) = 1

n2 nσ 2 = σ 2

n
,

where we could take the sum outside the variance because we assumed the Xi to be
independent. Thus, the normalized distribution of the difference in true and estimated
mean is

X̄ − μ

σ/
√

n
∼ Norm (0, 1).

Again, we do not know the true variance and need to estimate is using the unbiased
estimator S2 = 1

n−1

∑n
i=1(Xi − X̄)2, which leads to the normalized random variable

X̄ − μ

S/
√

n
,

which does not have a standard normal distribution. We can derive its correct distrib-
ution by looking at the estimated variance in more detail. In particular, let us consider
the quotient of the true and estimated variance:

(n − 1)
S2

σ 2 = (n − 1)

1
n−1

∑n
i=1(Xi − X̄)2

σ 2 =
n∑

i=1

(
Xi − X̄

σ

)2

.
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Each summand is the square of a standard normal variable and there are (n − 1)

independent such variables. Thus, from Sect. 1.4, we know that the sum has a
χ2-distribution with (n − 1) degrees of freedom. Replacing the true variance by
its estimate, we derive the distribution

X̄ − μ

S/
√

n
= X̄ − μ

σ/
√

n
× σ/

√
n

S/
√

n
∼ Norm(0, 1)√

1
n−1χ2(n − 1)

,

which from Sect. 1.4 we recognize as a t-distribution with (n−1) degrees of freedom.
We therefore derive the correct (1 − α)-confidence interval

C =
[

X̄ − t1−α/2(n − 1
S√
n
, X̄ + t1−α/2(n − 1)

S√
n

]

for the estimator X̄ of the expected value. Again, this interval gets narrower if we
increase the sample size n or decrease the variance σ 2 of the data.

As an example, let us repeatedly take 10 samples from a Norm(5,16) distribution
and compute the corresponding 0.9-confidence interval for the estimated mean X̄ .

For each such computation, we derive a slightly different interval, both in terms of
the center of the interval (due to the estimated mean X̄ ) and the length of the interval
(due to the estimated variance of X̄ ). For 25 repetitions, the confidence intervals are
plotted next to each other in Fig. 2.2. Some intervals, such as the 5th and the 24th,
do not cover the true value. To demonstrate the effect of estimating the variance,
we compute the correct t-based and the incorrect normal confidence intervals, both
using the estimated variance, for the 5th sample (which is too far away from the true
mean) as

Ct = [1.396, 4.717] and Cnorm = [0.631, 5.482].

The normal quantiles overestimate the width of the interval, such that the normal
interval contains the true value, while the t-based does not.

2.3.1 The Bootstrap

For computing the confidence interval for a given estimate, we frequently encounter
two problems: finding the variance of an estimator, and working out the distribu-
tion of an estimator that is not an MLE. In addition, the theory leading to normal
(or t-based) confidence intervals is based on the asymptotic distribution of the esti-
mator, which might be quite different than the distribution for small sample sizes.
A very popular way for solving these problems is by using the bootstrap method,
which aims at estimating all necessary quantities directly from the data themselves.
While mainly used for computing the estimator’s variance, the bootstrap method

http://dx.doi.org/10.1007/978-3-642-23502-3_1
http://dx.doi.org/10.1007/978-3-642-23502-3_1
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Fig. 2.2 Result of 25 repetitions of estimating the mean of a Norm(5,16) distribution, each with
10 samples. Dashed line: True value of mean µ = 5, solid lines: 0.9-confidence intervals for
estimators, points: estimated value of mean in ith repetition

also allows to compute higher moments, and even allows computation of confidence
intervals for estimators with non-normal distribution.

Let us suppose we take b independent samples Y1, . . . , Yb from a distribution.
Then, by the laws of large numbers, the sample mean approaches the true expectation
for increasing b. The same argument still holds if we apply a function h on mean and
expectation:

1

b

b∑
i=1

h(Yi ) → E(h(Y1)).

For example, we recover the variance estimator by choosing h = (Yi − Ȳ )2.
The key idea on how this helps is the following: let us consider any estimator θ̂n and

denote by F(x) = P(θ̂n ≤ x) its cumulative distribution function. For the beginning,
we are interested in calculating Var(θ̂n). This is comparatively easy if we know the
distribution F of the estimator. If we do not, we can try to estimate this distribution
by F̂, and subsequently estimate the variance using this estimated distribution as an
approximation. Let us assume we are given a set of data x1, . . . , xn . For estimating
F̂, we re-sample new data from this given set, uniformly and with replacement, such
that each xi has the same probability to be re-sampled, and can also be re-sampled
several times. We repeat this re-sampling b times, where x	

j,1, . . . , x	
j,n is the jth new

sample. From each such sample, we compute the estimator θ̂ 	
n, j , leading to a total

of b estimates. Each sample is prone to be different from the others, and so are the
estimated values.

If the data are a representative sample, this re-sampling gets us all the information
needed: there are only few sample points with extreme values. These therefore get
re-sampled rarely and are only present in a few bootstrap samples. On the other hand,
“typical” values are sampled often, possibly even multiple times, into one bootstrap
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sample. The estimation is then performed more often on sets of “typical” data values
than on more extreme, more unlikely combinations of values. This in turn gives a
correct impression of how the estimator varies with varying data.

Overall, there are nn different ways draw new samples of size n; this number is
very large even for moderate n which ensures that we do get a different sample each
time. The name “bootstrap” refers to the seemingly impossible task to lift ourselves
out of the unknown variance problem by using the straps of our own boots, namely
the data we have.

The algorithm. We can write the general bootstrap procedure for estimating the
variance in a more algorithmic form as

• Draw X	
1, . . . , X	

n uniformly with replacement from {x1, . . . , xn}.
• Compute θ̂ 	

n,i = g(X	
1, . . . , X	

n) from this bootstrap sample.

• Repeat the two steps b times to get the estimates θ̂ 	
n,1, . . . , θ̂

	
n,b.

• Compute the estimator’s bootstrap variance estimate

Var(θ̂n) ≈ vboot = 1

b

b∑
i=1

⎛
⎝θ̂ 	

n,i − 1

b

b∑
j=1

θ̂ 	
n, j

⎞
⎠

2

.

In R, the package boot offers a function boot() that simplifies the compu-
tation of statistics by the bootstrap method. Once the b bootstrapped values for θ̂n

are computed, there are several ways to form a confidence interval.
The normal CI. If the estimator has a normal distribution, we may simply replace

the variance Var(θ̂n) by its bootstrap estimate vboot and form the usual normal
(or t-based) confidence interval

Cnorm = θ̂n ± z1−α/2
√

vboot.

The percentile CI. The second method relies on using the bootstrap samples of
estimator values to compute the empirical quantile of its distribution and works
for all unbiased estimators. For this, we sort the bootstrap estimates such that
θ̂ 	

n,(1) ≤ · · · ≤ θ̂ 	
n,(b); again, the estimate with index (i) is the ith smallest one.

Then for k = bα (suitably rounded to the next integer), θ̂ 	
α := θ̂ 	

n,(k) is the empirical

α-quantile of the distribution of θ̂n and we form the empirical percentile confidence
interval

Cpercentile =
[
θ̂ 	
α/2, θ̂

	
1−α/2

]
.

Example 16 Sometimes, the data are not normally distributed, but their logarithms
are. The log-normal distribution with parameters μ and σ 2 is the distribution of
X = exp(Y ), with Y ∼ Norm (μ, σ 2). These parameters are the mean and variance
of Y, but not of X. The distribution of X is asymmetric and we want to quantify this
asymmetry using the skewness measure from Sect. 1.6.5. An unbiased estimator for
the skewness θ of a sample is

http://dx.doi.org/10.1007/978-3-642-23502-3_1
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Fig. 2.3 Density of
skewness estimates for
log-normal sample of size
500. Normal (solid) and pivot
(dashed) 0.95-confidence
intervals are given, computed
from b = 100 bootstrap
samples. The circle is the
original estimate of skewness
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Instead of working out the distribution of this estimator, we apply the bootstrap
method to derive the percentile and normal confidence interval for a given estimate.

For illustration, we generate n = 500 samples X1, . . . , Xn of log-normal random
variables with parameters μ = 0, σ = 1. We then compute the skewness estimate
θ̂n, followed by b = 100 bootstrap samples from the Xi . Normal and pivot confidence
intervals are finally computed for α = 0.05.

The results are given in Fig. 2.3, where the estimate θ̂n is indicated by the small
circle, and the normal and percentile 0.95-CIs are given by the solid and dashed
lines, respectively. The solid black line gives the empirical density function of
the estimator θ̂n estimated from the bootstrap samples. Interestingly, the percentile
confidence interval is not symmetric around the estimate, because of a skewed esti-
mator distribution.

2.4 Robust Estimation

There is one major problem with the estimators that we discussed so far: they all
assume that each sample point is taken from the same underlying distribution, and
there are thus no contaminations in the sample. A contamination can be an “outlier”
that, by eye, can clearly be identified as an incorrect measurement, for example.
Many estimators are very sensitive to such contaminations.

Example 17 A sample of n = 20 points from a Norm(5,4) is taken. In addition, the
sample data is contaminated by only n′ = 2 outliers, leading to the empirical density
given in Fig. 2.4. Estimating the mean of the sample distribution gives the location
indicated by the solid vertical line; it is substantially shifted to the right from the
correct expected value which would be somewhere near the maximum of the density
in this case.
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To quantify how sensitive an estimator is to contaminations in the sample, the
robustness of an estimator is measured by its breakdown point. It refers to the pro-
portion of contaminations an estimator can handle before it gives arbitrarily large
values. For the arithmetic mean, even one contamination has the capacity to make
the estimate arbitrarily large, as even a single outlier very far away from the rest of
the sample “pulls” the whole estimate away from the correct mean of the uncontam-
inated sample. Its breakdown point is therefore zero. The same argument holds for
the two estimators for the variance, which both also have a breakdown point of zero.

While this might in practice not be as dramatic as theory suggests, simply because
contaminations far away from the sample are often unlikely, it is nevertheless a reason
to be uncomfortable, as it means that even a small amount of contamination can
potentially yield very misleading results. For a small number of sample points, we
might try a visual inspection to see if there are any unusual values in the sample,
but this is clearly not a good strategy if we want to investigate large amounts of
data. We will therefore investigate robust estimators with high breakdown points
as alternatives for common estimators. Here, we will discuss robust alternatives for
estimating the location and scale. They all rely on order statistics of the sorted sample,
again denoted x(1) ≤ · · · ≤ x(n), and typically estimate empirical quantiles.

2.4.1 Location: Median and k-Trimmed Mean

Median. In addition to the expectation, the median is another measure for the location
of a distribution. It corresponds to the 0.5-quantile q0.5 of a distribution such that
P(X ≤ q0.5) = 0.5. We can estimate any α-quantile from the sorted sample simply
by finding the correct index from k = nα. If k is an integer, we simply select the kth
smallest value, i.e., q̂(α) = x(k). If k is not an integer, we compute the two nearest
integer k′, k′′ and interpolate the corresponding values x(k′) and x(k′′). Various ways
for interpolation exist, many of which are implemented in thequantile () function
in R. The estimate q̂(0.5) for the median is therefore simply the sample point in the
middle (or the average of the two surrounding ones). As such, it does not use any
information about the actual values of the sample points, but only uses information
about the rank, i.e., their indices in the sorted sample.

Example 18 For n = 8 given sample points
6.39, 0.887, 1.521, 8.635, 7.742, 7.462, 6.631, 5.511,

the sorted values are
0.887, 1.521, 5.511, 6.39, 6.631, 7.462, 7.742, 8.635.

The median is estimated as q̂(0.5) = 1
2 × (6.39 + 6.631) = 6.5105 by interpolating

between the two sample points with ranks 4 and 5.
Changing the largest value from 8.635 to 108.635 changes the mean substan-

tially from μ̂ = 5.5974 to μ̂′ = 18.0974, but leaves the median unchanged at
q̂ ′(0.5) = 6.5105. In R, the median is computed by median().
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Fig. 2.4 Estimation of the location of a sample of 20 normally distributed points contaminated with
2 “outliers” with values 50 and 100. The true mean is µ = 5. The two outliers “pull” the estimation
of the mean to the right, leading to x̄ = 10.72 (solid line). The robust estimate of the median is
m̂n+n′ = 3.82 (dashed line), with a true median of 5

For the contaminated normal sample of Example 17, the estimated median
q̂0.5 = 3.821 is given by the dashed vertical line in Fig. 2.4. It is reasonably close to
the true median q0.5 = 5 and largely unaffected by the two contaminations.

Let us look at the robustness of the median. We note that because it only considers
ranks and not values, we can increase all points larger than the median arbitrarily
without changing it. The same holds for decreasing smaller values and we conclude
that the median has breakdown point 50%.

Both the mean and the median are measures for the location of the distribution,
trying to give a single number to describe where “most” of the values are. The mean
gives the expectation or average of a sample, wheres the median indicates the point
such that half of the data is smaller (resp. larger). If the distribution is symmetric, the
two values are identical, but they differ for skewed distributions. Because of its large
breakdown point, the median is often the better choice for estimating the location.
However, it cannot always be interpreted as the expected value of the distribution.

Trimmed means. If we still want to specifically estimate the expectation robustly,
the k-trimmed mean is a good alternative to the median. It also uses the sorted values
of the sample, but drops the k lowest and highest sample points of the data. The
rationale is that contaminations are likely to be much smaller or much larger than
the uncontaminated sample points. Formally,

μ̂(k) = 1

n − 2k

n−k∑
i=k+1

x(i).

For k = 0, we recover the ordinary arithmetic mean again, for k = n/2 (taken
to the next suitable integer), we recover the median. The k-trimmed mean is thus
a generalization of both estimators. The choice for k is somewhat arbitrary of
course, and should always be stated if this estimator is used; common choices are
k = 0.05 × n and k = 0.25 × n.
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Example 19 For the 8 sample points of the previous example and k = 1, the
k-trimmed mean reads

μ̂(1) = 1

8
(x(2) + · · · + x(7)) = 5.876,

so the smallest and largest value are ignored and the ordinary arithmetic mean is com-
puted from the remaining data. Again, changing the largest sample value from 8.635
to 108.635 does not change the estimate, as this point is ignored in the computation.
In R, the k-trimmed mean can be accessed by mean(. . . , trim=. . . ).

2.4.2 Scale: MAD and IQR

Similar considerations lead to two robust alternatives for measuring the scale of
a distribution: the median absolute deviation (MAD) and the inter-quartile-range
(IQR).

Median absolute deviation. The MAD follows the same ideas as the variance, but
measures the median of the absolute distance to the median:

MAD = mediani (|xi − median j (x j )|).
Inter-quartile range. The IQR computes the difference between the 0.25- and

0.75-quantile, and is given by the rectangle in a boxplot (see Sect. 1.8.4) that contains
the medium 50% of the data:

IQR = q 3
4

− q 1
4
.

Comparison to the variance. Both the MAD and the IQR give different measures
for the scale compared to the variance. Similar to the median, they both are more
based on the ranks and not the absolute values of the particular data, and have high
breakdown points. For the normal distribution, σ ≈ 1.48 × MAD, so variance and
MAD are scaled versions of each other. InR, both MAD and IQR are easily accessible
via the functions mad() and IQR().

Example 20 For n = 20 samples contaminated with n′ = 2 “outliers” of Example
17, the various estimators are summarized in the following table. The second column
gives the values estimated on the contaminated sample, the third column gives the
values computed on the uncontaminated subset of the sample.

Estimator Value True value
x̄ = μ̂ 11.19 4.81

m̂ = q(0.5) 4.39 4.28

μ̂(α = 0.1) 5.11 4.62
s = σ̂ 22.12 1.95

IQR 2.46 1.52

MAD 1.23 1.07

http://dx.doi.org/10.1007/978-3-642-23502-3_1
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As we would expect, the mean and the standard deviation give very different
values on the contaminated and uncontaminated sample. In contrast, their robust
counterparts all give estimates on the contaminated sample that are reasonably close
to the uncontaminated values.

2.5 Minimax Estimation and Missing Observations

In addition to maximum-likelihood and least-squares, minimax estimation is a third
principle to construct estimators.

2.5.1 Loss and Risk

Before introducing minimax estimation, let us briefly look into a theoretical frame-
work that allows us to compare the performance of various estimators and derive
new principles for their construction.

The loss-function L (θ, θ̂ ) measures the distance from the true parameter value
and its estimate. Two popular choices for loss functions are the squared loss
L (θ, θ̂ ) = (θ − θ̂ )2 and the absolute loss L (θ, θ̂ ) = |θ − θ̂ |.

The loss depends on the actual value of the estimator, and thus on the specific
sample. To get a more general measure, we therefore look at the expected loss, known
as the risk of the estimator

R(θ, θ̂ ) = E
(
L (θ, θ̂ )

)
.

For example, the risk of an unbiased estimator θ̂ with respect to the squared loss
function is simply its variance:

R(θ, θ̂ ) = E
(
L (θ, θ̂ )

) = E
(
(θ − θ̂ )2) = E

(
(θ̂ − E(θ̂))2).

A small risk indicates that on average, for all possible true parameter values, the
estimator is not too far off.

Example 21 Let us calculate the risk for the maximum-likelihood estimator p̂n of
the matching probability p in the sequence matching example with respect to squared
loss of the MLE p̂n = M/n:

R(p, p̂) = E
(
( p̂n − p)2) = Var( p̂n) = p(1 − p)

n
.

As shown in Fig. 2.5 (solid line), the risk is highest for p ≈ 1/2 and lowest for
values near the boundary. Intuitively, for p = 0, we will not observe any matches,
and always estimate correctly.
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Fig. 2.5 Risk function for MLE p̂ (solid line) and minimax estimator p̃ (dashed line) of the matching
probability p

2.5.2 Minimax Estimators

For some applications, we might be interested in having a guarantee that the risk is
not too high for any possible true value of the parameter. For this, we construct a
minimax estimator θ̃ such that the maximal risk

max
θ

R(θ, θ̃ )

is minimal. This means that while we allow the loss of this estimator to be larger for
some values of θ, it will stay lower on average than any other estimator.

Example 22 Let us consider a different estimator for the matching example:

p̃n = M + 1
2

√
n

n + √
n

has squared loss risk

R(p, p̃n) = n

4(n + √
n)2

,

which is constant for all parameter values p and is smaller than the maximal risk of
the MLE p̂n . Indeed, maxp R(p, p̂n) = 1/4n but R(p, p̃n) < 1/4n for all p, as one
easily verifies. As we see in Fig. 2.5, however, the risk is not always lower than the
MLE-risk, but is lower for mid-range parameter values and higher in the extremes.

Minimax estimators are also useful if some potential outcomes of an experiment
have small probabilities and may not be observed due to a small sample size.

Example 23 Let us consider the following problem: the possible outcome of an
experiment is one of s different types, such as A/C/G/T in the former random



48 2 Estimation

sequence examples, with each sequence position being one of the four possible
nucleotides.

Such experiments are described by a multinomial distribution, which is a gener-
alization of the binomial distribution to more than two outcomes. The probability for
an observation of category i is pi , and

∑s
i=1 pi = 1. A result of such an experiment

is a vector (X1, . . . , Xs) containing the number of samples of category i in Xi , so
that

∑s
i=1 Xi = n is the total number of sample points.1

The probability mass function of (X1, . . . , Xs) is given by

P(X1 = k1, . . . , Xs = ks) = n!
k1! · · · ks ! pk1

1 · · · pks
s ,

and the binomial distribution is recovered by setting s = 2, in which case p2 =
1− p1 and k2 = n −k1, leading to the binomial coefficient. The expected number of
observations in the ith category is E(Xi ) = npi . In the sequence example, we would
thus expect to see npA A and npG G in a sequence of length n. The probability of
category i can be estimated by the maximum-likelihood estimator

p̂n,i = ki

n
.

A common rule-of-thumb suggests choosing a sample size n such that at least five
observations are expected in each category for estimating the various probabilities
with some confidence:

n min
i

(pn,i ) ≥ 5 ⇒ n ≥ 5

mini (pn,i )
.

For the possible nucleotides with probabilities

(pA, pC , pG , pT ) = (1/2, 1/4, 1/8, 1/8),

we would thus need at least 5/0.125 = 40 samples to reliably estimate all probabil-
ities.

In practice, we usually do not know these probabilities, of course, and sometimes
have no control over the possible sample size n. Imagine that we only have a sequence
of 20 nucleotides. If it happens not to have any G, we consequently estimate p̂G = 0.

This will have undesired consequences if we use these values for a model to describe
the sequence matching probabilities, because the model would assume that G can
never occur and will thus incorrectly predict the possible number of matchings.

One way of dealing with this problem is to introduce pseudo-counts by pretending
that there is a certain number of observations in each category to begin with. For
example, let us put a observations in each category before conducting the actual

1 Note that in contrast to the previous notation, all Xi together describe one experiment (or sample
point).



2.5 Minimax Estimation and Missing Observations 49

experiment, and therefore see xi + a observations in category i after the experiment.
Then, we can use the estimate

p̃n,i = xi + a

sa + n

for the categories’ probabilities, which is simply the MLE for the modified data.
With a > 0, each estimate is strictly larger than (but potentially very close to) zero.

Let us assume we observed (xA, xC , xG , xT ) = (13, 6, 0, 1). How large should
we choose a? If we choose it too large, it would spoil the whole estimation and assign
almost identical probabilities everywhere, independent of the data. For example, with
a = 1000 the estimates are

( p̃A, p̃C , p̃G , p̃T ) = (0.252, 0.25, 0.249, 0.249).

If we choose a too small, it might not have an effect and we end up with non-zero,
but extremely low probabilities. Indeed, for a = 0.1,

( p̃A, p̃C , p̃G , p̃T ) = (0.642, 0.299, 0.005, 0.054).

We can calculate a reasonable compromise by selecting a such that we minimize
the maximal risk of the corresponding estimator. For parameters of the multinomial
distribution, this minimax estimator is achieved by choosing

a =
√

n

s
.

For the example, a = 1.118 and we estimate

( p̃A, p̃C , p̃G , p̃T ) = (0.577, 0.291, 0.046, 0.087),

which is fairly close to the correct values, taking into account that we do not have
many data available.

The seemingly ad-hoc estimator in Sect. 2.5.2 for the binomial case was derived
in this way.

2.6 Fisher-Information and Cramér-Rao Bound

We conclude the chapter by a brief discussion of the idea of Fisher-information, from
which we can derive a theoretical lower bound for the variance of an estimator. This
bound tells us how precise we can actually estimate a given parameter with a fixed
number of samples.

Recall the definition �n(θ) = ∑
i log( f (xi ; θ))of the log-likelihood function. The

Fisher-score is simply the derivative of this function with respect to the parameter(s),
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Fisher-score = ∂�n(θ)

∂θ
,

and we calculate a maximum-likelihood estimator by finding its roots. In addition,
the Fisher-information describes the curvature of the likelihood function around a
parameter value θ. It is given by

In(θ) =
n∑

i=1

Var

(
∂�n(θ)

∂θ

)
= −nE

(
∂2�n(θ)

∂θ2

)
= nI (θ).

Loosely speaking, a large information indicates that the likelihood function will
change noticeably when moving from θ to a nearby value θ ′; the parameter value can
then be estimated more reliably. A small information indicates a shallow “valley” in
the likelihood function, where substantially different parameter values lead to almost
identical values of �n(θ).

Example 24 Let us again consider the matching example with log-likelihood
function �n(p) = M log(p) + (n − M) log(1 − p) and

∂�n(p)

∂p
= M

p
− n − M

1 − p
.

The Fisher-information is

In(p) = −nE

(
∂2�n(p)

∂p2

)
= −nE

(
− M

p2 − n − M

(1 − p)2

)

= n

p2 E(M) + n

(1 − p)2 E(n − M) = n

p(1 − p)
.

For sequences of length n = 20 nucleotides and m = 12 observed matches, the
log-likelihood function and its Fisher-information are given in Fig. 2.6. As expected,
the log-likelihood is highest at p = m/n. The Fisher-information does not take
into consideration the actual observed matches and shows that for parameters p in
the mid-range, the information carried by a sample is much lower than for more
extreme parameter values near zero or one. This tells us that true values near the
boundaries are much easier to estimate, as they lead to more dramatic expected
changes in the likelihood function. These properties of the likelihood and information
functions become more pronounced if we increase the number of samples from
n = 20 to n = 60.

Cramér-Rao bound. The main importance of the Fisher-information is that it
allows us to calculate the smallest possible variance that can be achieved with a
given estimator and a given sample size. This Cramér-Rao bound states that

Var(θ̂n) ≥ 1

In(θ)
,

and we cannot decrease the variance of an estimator θ̂n below the reciprocal of
its information. For getting estimates with lower variance and thus, for example,
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Fig. 2.6 Log-likelihood function �n(p) (left) and Fisher information In(p) (right) for the sequence
matching example with n = 20 and m = 12 observed matches (solid lines) and n = 60, m = 36
(dashed lines)

narrower confidence intervals, we either need to increase the sample size (because
In(θ) ≈ nI (θ)) or choose another estimator. Indeed, some estimators can be shown
to have lowest variance among all other estimators for the same parameters.

2.7 Summary

Estimation allows us to infer the value of various properties of a distribution, such as
its location, from data. We can construct corresponding estimators by the maximum-
likelihood, the least-squares, and the minimax approach. Estimators are random vari-
ables because their realization depends on a given random sample. Their properties
such as consistency and unbiasedness allow us to compare different estimators.

For a concrete estimation, we can compute confidence intervals around the esti-
mated value to quantify how good the estimate is. These intervals contain the true
value with high probability. For their computation, we need to know the distribution
of the estimator to find the corresponding quantiles, and its standard error to scale
correctly. The bootstrap offers a practical method to establish confidence intervals
by resampling the data and computing empirical quantiles from the corresponding
estimated values.

The breakdown point describes the sensitivity of an estimator to contaminations
in the data. Because many classical estimators have a very low breakdown point,
we should usually try to use robust alternatives, such as the median. Many robust
estimators are based on the ranks of sample points rather than their values.

Missing observations and small sample sizes can cause major problems when
estimating multinomial probabilities. Using minimax estimation to calculate pseudo-
counts enables us to partly circumvent these problems.



Chapter 3
Hypothesis Testing

Abstract Testing provides the formal framework to reject or not reject a hypothesis
on parameters, depending on whether it is supported by given data. Test levels and
p-values allow to quantify the chances of false rejections due to the randomness of
the data. Correct interpretation of test results is discussed in more detail and methods
to adjust the probability of false rejections for multiple testing are presented.

Keywords Hypotheses · p-value · Multiple testing · FDR

Are the effects of A and B different? They are always
different—for some decimal place

John Tukey

3.1 Introduction

A typical testing problem is the following: to decide if and which new treatment works
better than a standard treatment, a group of patients is given the new treatment, while
a control group is given the standard treatment. The time until recovery is recorded
for each patient and a new treatment is considered better if the average recovery time
is considerably shorter than that of the control group. The problem is to quantify what
we mean by “considerably shorter”, as the average times are computed from a random
sample and although the new treatment might be better, the controls patient might—
just by chance—nevertheless recover in comparable time: by visual inspection of
the results shown in Fig. 3.1, it seems that treatments A and B work better than the
control, but just by visual inspection, no clear decision can be made.

In this chapter, we investigate statistical hypothesis testing to formally describe
the hypothesis to be tested (e.g., new treatment works better) and compare it with
an alternative (e.g., new treatment works not better). Hypothesis testing will allow
us to capture that one of the hypotheses is correct but just by chance, the data sug-
gests otherwise. Quantifying these probabilities leads to the concept of statistical
significance.

H.-M. Kaltenbach, A Concise Guide to Statistics, SpringerBriefs in Statistics, 53
DOI: 10.1007/978-3-642-23502-3_3, © Hans-Michael Kaltenbach 2012
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Fig. 3.1 Recovery times of patients for three different treatments Control, A, B. While both treat-
ments A and B seems to be superior to the control, a potential difference between A and B is much
less pronounced

Example 25 Let us first come back to the sequence matching example, where
M ∼ Binom(n, p0) is the number of matches of two random, unrelated sequences of
fixed length n, and p0 = p2

A + p2
C + p2

G + p2
T is the probability of seeing a match

in any given position.
Assume we observe m matches in a pair of such sequences and want to conclude

whether or not these sequences are related. In Example 8, we argued that if m is
substantially larger than E(M) for unrelated sequences (thus using p0 as matching
probability), we have good reason to claim that the sequences are related and the
number of matches then follows a Binom(n, p) distribution with a higher matching
probability p > p0, leading also to a higher expected number of matches. Another
way of deciding whether the sequences are related is therefore to ask whether the true
matching probability p and the theoretical probability p0 for the case of unrelated
sequences are different. Of course, we do not know the correct probability p, so we
have to work with its estimate p̂n . To test our hypothesis, we therefore need to decide
whether the observed matching probability deviates substantially from the predicted
probability p0. Because p̂n = M/n is a random variable, we can use its distribution
to figure out how likely it is to observe a certain estimate p̂n = m/n under the
assumption that the true parameter value is p0.

For simplicity, let us assume that pA = pC = pG = pT = 1/4 and consequently
p0 = 1/4 for unrelated sequences. Let us further denote by H0 the hypothesis that
the sequences are unrelated, so the true parameter p is the same as in the model for
unrelated sequences:

H0 : p = p0 = 1

4
.

We would like to calculate whether the observed data give evidence against this
null hypothesis and in favor of an alternative hypothesis H1. Several alternative
hypotheses are possible, for example
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• the simple alternative H1 : p = 0.35,
• the composite and one-sided alternative H1 : p > 1

4 ,
• the composite and two-sided alternative H1 : p �= 1

4 .

Each of these alternatives claims that the probability for a match in the two sequences
is a certain parameter p, and gives valid ranges for this parameter. While the simple
alternative claims a specific value, the composite alternatives give whole ranges of
feasible values. More general, we can also define two (disjoint) sets �0 and �1
such that the null- and alternative hypotheses are H0 : p ∈ �0 and H1 : p ∈ �1,
respectively.

Intuitively, consider sequences of length n = 1000 with m = 100 observed
matches. With p̂n = 1/10, this indicates that the matching probability is actually
much smaller than p0 = 1/4. However, with the alternative H1 : p > 1/4, this data
would not give evidence against H0. This does not mean that H0 is true (which clearly
isn’t the case here), but that the alternative H1 cannot explain the data any better than
H0. On the contrary, if we test H0 against the two-sided alternative H1 : p �= 1/4,
there is sufficient evidence that this alternative provides a better explanation for the
data, so we would reject the null hypothesis.

To make these considerations more quantitative and rigorous, let us use the one-
sided alternative H1 : p > 1/4, so we only need to check if we observe unusually
many (and not perhaps unusually few) matches. Consider the following argument:
if H1 is true, we expect to see more matches than if H0 were true. However, the
number of matches is random, and there is the possibility that even if H0 is true,
the observed counts are high just by chance. Knowing the distribution of M under
H0 (i.e., with p = p0 = 1/4), we can compute the probability that M exceeds an
observed number m of matches under H0; this is the probability that the distribution
stated in H0 gives rise to data at least as extreme as observed. If this probability is
very low, this indicates that the null hypothesis is unlikely to be true, as it is unlikely
that the data have been generated with the stated parameters.

We know that the number of matches has a Binomial distribution. If the null
hypothesis is true, we also know that the matching parameter p is equal to p0 = 1/4.

With this information, we compute the probability to see at least the observed number
of m matches, provided the null hypothesis is indeed correct, to be

P(M ≥ m|H0) = 1 − P(M < m|H0) = 1 −
m−1∑
i=0

(
n

i

)
pi

0(1 − p0)
n−i ,

where we slightly abuse the notation for conditional probabilities for brevity.
For Example 8, we considered sequences of length n = 100 and m = 29 observed

matches. The probability to see at least this number of matches in unrelated sequences
is P(M ≥ 29|H0) = 0.1495, which gives no evidence against H0 in favor of H1.

On the contrary, the probability to observe at least m = 50 matches in unrelated
sequences is P(M ≥ 50|H0) = 2.13e − 08, providing substantial evidence that H0
is actually false.
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The calculated probabilities P(M ≥ m|H0) are called p-values. To reject or not
reject a given null hypothesis, we fix a probability α and compute a threshold c such
that P(M ≥ c|H0) = α. We then reject H0 in favor of H1, if m > c and do not
reject if m ≤ c, leading to the rejection region Rα = (c,∞). The probability α

describes the false positive errors, as it is the probability that we reject H0, although
it is actually correct. For the example with sequence length n = 100 and a probability
of α = 0.05, we calculate

P(M ≥ c|H0) =
{

0.0693, for c = 32,

0.0446, for c = 33.

We would therefore use the more conservative c = 33 as our threshold, reject H0 :
p = 1/4 in favor of H1 : p > 1/4 in the case m = 50 > c, and not reject in the case
m = 29 < c.

Importantly, not rejecting is not the same as accepting H0 because if we do not
have evidence against H0, we cannot conclude that it is actually true. We should
therefore never speak of “accepting” the null hypothesis, but only of “not rejecting”.

3.2 The General Procedure

The considerations taken in the introductory example can be divided in the following
steps, providing the general setup for testing statistical hypotheses.

1. Clarify assumptions on independence, sample sizes etc. This will guide the choices
in the next steps and is usually only done implicitly.

2. Formulate the null hypothesis H0 and the alternative hypothesis H1.

Choose H0 such that we retain it unless there is strong evidence against it. Choose
H1 to be simple or composite and one- or two-sided depending on the problem.

3. Choose a test statistic T = g(X1, . . . , Xn) as a function of the data Xi .
4. Derive the null-distribution of T, i.e., its distribution P(T ≤ t |H0) under the

assumption that H0 holds.
This is usually the difficult part. Of course, the choice of T above is already
partially guided by the necessity to determine its null-distribution. For many
practical purposes, steps 3 and 4 are done simply by looking up the appropriate
test.

5. Compute the test statistic’s value t = g(x1, . . . , xn) from the data x1, . . . , xn .
6. Compute the p-value P(T ≥ t |H0).

The smaller the p-value, the less likely it is that the observed value t was generated
from the null-distribution.

Ultimately, the p-value gives us the information to either reject or don’t reject the
null hypothesis in favor of the alternative hypothesis. To arrive at such a decision from
a given p-value, we decide on a level α for the test. This level gives the probability
of getting a false positive, i.e., of falsely rejecting H0 although it is true, due to
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uncommonly large deviations of the observed test statistic t from the expected value
under H0. Using this level, we then compute the rejection region Rα of T such that
we reject the null hypothesis if the observed value t is inside the rejection region
Rα , and do not reject if it is outside. This rejection region is computed from the
distribution of T under H0 and the two hypotheses. If the null hypothesis is rejected
at a level α, we say that the test is significant at level α.

The p-value corresponds to the smallest level α such that the test would not yet
reject. For example, if we observe a p-value of 0.034, the test would reject at the
α = 0.05 level, but not at the α = 0.01 level. Indeed, no R-implementation of a
statistical test requires a test level; they all report the p-value, so we can decide what
to do.

Absence of evidence is not evidence of absence. Rejecting the null hypothesis
hinges on the distribution of the test statistic assuming H0 is true. The p-value gives
the probability that we see a value at least as extreme as the observed one under this
distribution. It is not the probability that H0 is true. A very low p-value indicates
that the test statistic is unlikely to take the observed value under H0 and therefore
provides good reason to reject it. On the contrary, a high p-value does not give proof
that H0 is actually true. In fact, it could be that the alternative just provides an even
worse explanation, or the test has very low power to distinguish the two alternatives.

As a consequence, a statistical test should always be stated such that the null
hypothesis defines the “status quo” and gets rejected if the desired result shows in
the data. Thus, testing for a difference between a default and non-default assumption,
we would set H0 to state that there is no difference and reject this hypothesis in favor
of the alternative that there is a difference. This way, we can quantify our level of
confidence in the rejection by a low p-value. Would we set the no difference scenario
as alternative, we would aim at “proving” H0 with the data, which we can’t.

Very informally, let T be our test statistic with value t for some specific data. Then,
we compute P(T ≥ t |H0), the probability to see this data if H0 is true, which is not
P(H0|T ≥ t), the probability of H0 being true, given the data.

Stating the hypotheses. Stating a null hypothesis H0 to reflect the default assump-
tions can become quite intricate for more involved problems. In particular, it might
not be straightforward to formulate the hypothesis in terms of parameter regions or
even to find the formal statistical hypothesis that correctly reflects our verbal hypoth-
esis on the data. This lead some researchers to introduce a type-III error (see Sect. 3.5
for type-I/II errors), which is often stated as “asking the wrong question and using
the wrong H0”, or “correctly rejecting H0, but for the wrong reasons”.

Additionally, we have also to take some care in stating a useful alternative hypoth-
esis. As we already saw, the choice of the alternative partly determines the rejection
region. For the case of one mean μ, the decision for a two- or a one-sided alternative
can usually be decided from the problem itself. However, imagine we were to test two
means at the same time with null hypothesis H0 : μA > 0, μB > 0. A reasonable
alternative is H1 : μA < 0, μB < 0, but it is very strict and we may want to relax it
to H1 : (μA < 0 or μB < 0). Depending on which alternative we select, this leads
to different rejection regions.
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3.3 Testing the Mean of Normally Distributed Data

One of the most frequent applications of statistical testing involves questions about
the location of a distribution. In particular, we are often interested whether the mean
of a given sample deviates significantly from an assumed value or whether two
samples have the same mean. A typical example is the comparison of the result of
an experiment to a control. This control can either be an assumed model, predicting
the mean, or another experiment. In this section, we will discuss statistical tests to
answer these questions with decreasing amount of additional assumptions. We start
with a pedagogical example where we assume the distribution to be normal and the
variance to be known, before introducing the family of t-tests which allow us to use
estimates for the variance.

These tests are not applicable for non-normal data and we should always check
the data for normality before performing any of them. We can do this visually using
a normal quantile-quantile plot as introduced in Sect. 1.8.3. If the empirical quantiles
do not deviate too much from the straight line expected from a normal distribution,
it is usually safe to use a t-test. Of course, “too much” deviation is pretty subjective
and one should always provide the Q-Q-plot in addition to the test results. For a more
quantitative check, we might use the Kolmogorov-Smirnov test for testing normality
in the data (Sect. 3.4.1) or the more specialized Shapiro-Wilks test (Sect. 3.4.2).

While not directly testing the mean, the Wilcoxon-test is often used for similar
purposes on non-normally distributed data; it will be introduced in Sect. 3.4.3. We
also only consider the two-sample case with independent data. If the two samples
happen to be paired, for example, by measuring the weight of the same set of people
before and after a treatment and comparing the two values for each patient, a paired
t-test needs to be used.

3.3.1 Known Variance

Let us assume that we measure the weights x1, . . . , xn of n people from a particular
region. We claim that people are substantially heavier in this region than a particular
weight μ0. Thus, our two hypotheses are informally “H0 : weights are pretty much
μ0” versus “H1 : weights are larger than μ0”. Note that the case of weights lower
than μ0 is not covered.

Clarifying assumptions. We assume that we have reason to believe (or actually
checked) that the measured weights follow a normal distribution, so Xi ∼ Norm
(μ, σ 2). For simplicity, we further assume that we know the variance σ 2 and do not
need to estimate it from the data. Clearly, this is often an unrealistic assumption, and
we will discard it in Sect. 3.3.2.

Formulating the hypotheses. The two hypotheses can be formally written as

H0 : μ = μ0
H1 : μ > μ0,

http://dx.doi.org/10.1007/978-3-642-23502-3_1
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Fig. 3.2 Distribution of test statistic X̄ under H0 : μ = μ0 = 10 (solid) and two values for the
alternative: μ = 14 (dashed) and μ = 25 (dotted). Shaded areas correspond to a false positive
probability of α = 0.05 (solid gray) and to a false negative probability of 0.118 for a true value
μ = 14 (dashed gray)

or equivalently

H0 : μ − μ0 = 0

H1 : μ − μ0 > 0.

The alternative is composite, as it encompasses a set of possible values, and one-
sided, as it ignores the possibility that the data is actually smaller than the claimed
value.

Choosing the test statistic. Since we do not know the true mean μ, we estimate it
by x̄ = μ̂n , and thus compare a random number with the claimed mean μ0. This is
an example where we use an estimator as the test statistic.

Deriving the distribution under H0. As an MLE, the arithmetic mean X̄ itself has
a normal distribution with parameters E(X̄) = μ and Var(X̄) = σ 2/n (this is where
the known variance comes into play: the normal distribution is only correct if we do
not need to estimate the variance).

Fixing a test level α, and thus the allowed probability for a false positive, only
requires the distribution of X̄ under H0, which in this case is X̄ ∼ Norm(μ0, σ

2/n).
The composite alternative describes a whole family of distributions, namely all nor-
mal distributions with variance σ 2/n and any mean μ > μ0.

In Fig. 3.2, the distributions of X̄ for n = 20 sample points and a variance of
σ 2 = 40 are shown for a true mean of μ = 10 (solid line), of μ = 14 (dashed line),
and of μ = 25 (dotted line). Testing μ = μ0 = 10 thus leads to the null distribution
depicted by a solid line, while the dashed and dotted lines describe two distributions
out of infinitely many given in the alternative hypothesis.

Computing the rejection region. For an observed arithmetic mean x̄ , the p-value
for the test is P(μ̂n ≥ x̄ |H0) = 1 − �(x̄;μ0, σ

2/n). Let us fix a test level of
α = 0.05. The rejection region is easily calculated as (c,∞), where c is the value
such that P(X̄ ≥ c|H0) = 0.05, which computes to

c = μ0 + z1−α

σ√
n
.
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For the proposed α, we have z0.95 = 1.645, which for μ0 = 10 leads to the rejection
region

R0.95 = (12.326,∞),

and we reject H0 : μ = μ0 = 10 if x̄ > 12.326. For smaller differences, we do not
reject.

The probability of a false positive for the level α = 0.05 is given in Fig. 3.2 by the
solid gray area. For a true value of μ = 14, this level leads to probability of 0.118
for a false negative (H0 not rejected although false), given by the dashed gray area,
and a false positive probability of 0 for a true value of μ = 25. We will come back
to these two error probabilities in Sect. 3.5.

Equivalently, we can conclude that the normalized difference of observed and
claimed mean has a standard normal distribution,

T := X̄ − μ0√
1
n σ

∼ Norm(0, 1), (3.1)

and we reject if its realization t exceeds the corresponding quantile, i.e., if

t > z1−α.

The two-sided alternative. If we test against the two-sided alternative H1 : μ �= μ0,
the rejection region consists of two intervals, which contain values that are considered
too low and too high, respectively. Very similar to before, the rejection region Rα =
(−∞, c1) ∪ (c2,+∞) is computed such that

P(X̄ ∈ Rα|H0) = α

holds, which immediately leads to

Rα =
(

−∞, μ0 + zα/2
σ√
n

)
∪

(
μ0 + z1−α/2

σ√
n
,+∞

)
.

We thus reject H0 if x̄ ∈ Rα , or, equivalently, if |T | > z1−α/2, with T the normalized
difference defined by (3.1). For the level α = 0.05 and parameters as before, the two
critical thresholds are c1 = 7.228 and c2 = 12.772.

Rejection regions and confidence intervals. There is a striking similarity between
the rejection region Rα of the test statistic T and the (1 − α)-confidence interval of
the estimator X̄ for the mean. Indeed, if we use any estimator θ̂n directly as the test
statistic, we reject the null hypothesis H0 : θ = θ0 at the level α if θ is not contained
in the (1 − α)-confidence interval of θ̂n .
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3.3.2 Unknown Variance: t-Tests

Clearly, the assumption that we do not know the mean of a sample—but exactly know
the variance—is an oversimplification in most practical cases. We will therefore drop
this assumption and additionally estimate the variance from the data, which leads to
the t-distribution under the null hypothesis. The corresponding family of tests is then
known as t-test. We describe these tests for three cases: (i) we test one sample mean
for a specific value, but need to estimate the variance, (ii) we test if the means of
two samples are equal, with both samples having the same, but unknown variance,
(iii) we test if the means of two samples are equal, each sample having unknown
variance.

We will again assume that the data X1, . . . , Xn (and Y1, . . . , Ym for the two-
sample cases) are normally distributed with means μX and μY , and variances
σ 2

X and σ 2
Y , respectively.

One sample with unknown variance. Let us consider n sample points from a
Norm(μX , σ 2

X ) distribution, where both the mean μX and the variance σ 2
X are

unknown and need to be estimated. We estimate σ 2
X as before by

S2
X = σ̂ 2

X = 1

n − 1

n∑
i=1

(Xi − X̄)2.

To test the hypothesis H0 : μX = μ0, we can again use the normalized difference

T = X̄ − μ0√
1
n SX

between observed and expected mean as test statistic, this time replacing the vari-
ance by its estimate. The test statistic T does not have a normal distribution, but a
t-distribution with n − 1 degrees of freedom. The reason for this is exactly the same
as for computing the confidence interval for the mean’s estimator X̄ with estimated
variance: the estimate of the mean from the data became more uncertain, leading to
slightly heavier tails of the distribution. We consequently reject in favor of the two-
sided alternative H1 : μX �= μ0 if the normalized difference of claimed and observed
mean is too large and the absolute value of the test statistic therefore exceeds the
corresponding t-quantile:

Reject H0 ⇐⇒ |T | > t1−α/2(n − 1),

and similarly for the one-sided alternatives.

Example 26 With 10 random samples from a Norm(15, 40) distribution, the test
H0 : μX = 10 against the two-sided alternative H1 : μX �= 10 gives a p-value
of 0.02262 for the t-test, but a too low p-value of 0.00302 when using the normal
distribution with estimated variance.
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Two samples with unknown and unequal variances. In practice, one is often inter-
ested in testing whether two samples differ significantly in their mean rather than
testing one sample mean against a given value. As an example, we might have some
data Xi from an experiment and some data Yi from a control, and ask whether there
is any difference in the samples’ means. This is known as a two-sample test problem.
Formally, we like to test H0 : μX = μY against the alternative, e.g., H1 : μX �= μY .
Moreover, the samples are allowed to be of different size. As before, our test sta-
tistic will be the difference of the two estimated means. Because both estimators
are maximum-likelihood and therefore have a normal distribution, their difference
is also normally distributed. The only thing we need to figure out is the variance of
this difference, so we can normalize correctly to get a standard normal distribution
for the estimator. Recalling the elementary properties of the variance, the variance
of the difference is quickly established:

Var(X̄ − Ȳ ) = Var(X̄) + Var(−Ȳ ) + 2Cov(X̄ , Ȳ ) = Var(X̄) + Var(Ȳ ),

because the X and Y samples are independent and thus Cov(X̄ , Ȳ ) = 0. Thus,

V̂ar(X̄ − Ȳ ) = S2
X

n
+ S2

Y

m

is an estimator for the variance of the difference, which immediately leads to the test
statistic

T = X̄ − Ȳ√
1
n S2

X + 1
m S2

Y

.

However, computing the correct distribution of this test statistic is quite tedious and
yields a formula that contains the true parameter values, which are of course not
available. In practice, this distribution is therefore approximated by a t-distribution
with ν (or less) degrees of freedom, where ν is computed as

ν =

(
S2

X
n + S2

Y
m

)2

S4
X

n2

n−1 +
S4
Y

n2

m−1

,

and we reject H0 : μX = μY if |T | > t1−α/2(ν) in favor of H1 : μX �= μY . Most
implemented versions of this test, such as the functiont.test() inR, automatically
decide on the correct test statistic and the relevant parameters.

Two samples with unknown but equal variances. If the two variances are expected
to be equal or at least very similar, we can replace the two individual estimates
S2

X and S2
Y by the pooled variance

S2
XY = (n − 1)S2

X + (m − 1)S2
Y

n + m − 2
.
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This estimate looks quite similar to the usual estimate of a variance: we “lost” two
degrees of freedom, one for each arithmetic mean and consequently divide by the
total degrees of freedom from the overall sample, m +n−2. The test statistic is again
the difference of the two observed means, normalized by the standard deviation of
this difference:

T = X̄ − Ȳ√
1
n + 1

m SXY

.

This test statistic has a t-distribution with m + n − 2 degrees of freedom and we
reject H0 : μX = μY if |T | > t1−α/2(m + n − 2) in favor of H1 : μX �= μY .

Example 27 As a very brief example, let us look at a t-test performed on two sets
of samples with n = 10 samples from a Norm(10, 40) distribution and m = 13
samples from a Norm(12, 30) distribution. In practice, we would not know the correct
distributions and want to test whether the two sample means differ significantly. For
this, we perform a two-sided t-test with null hypothesis H0 : μX − μY = 0 versus
the alternative H1 : μX − μY �= 0. Using the R implementation of this test, we get
the following report:

Welch Two Sample t-test

data: x and y
t = -2.0876, df = 15.988, p-value = 0.0532
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:
-9.96370876 0.07680932
sample estimates:
mean of x mean of y
7.705368 12.648818

In the first line, R informs us that it uses a variant of the t-test, known as the
Welch-test, here in its two-sample form. It then reports the data used, the values for
the test statistic, the estimated degrees of freedom, and the p-value. We note that
the degrees of freedom are not integer, but were calculated using an interpolation
formula due to the different sample sizes and variances. After giving the alternative
used, it reports the 95% confidence interval for the test statistic and finally the two
estimated means. Note that the confidence interval is for the difference in means and
should contain 0, if the means are the same. The test gives a p-value of 0.0532, which
is significant at the α = 0.1, but not the α = 0.05 level.
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3.4 Other Tests

Apart from testing the mean of one or two samples, there are many more hypotheses
that can be tested using suitable test statistics. In this section, we will introduce a
small variety of such tests and briefly explain their major ideas.

3.4.1 Testing Equality of Distributions: Kolmogorov-Smirnov

The Kolmogorov-Smirnov (KS) test checks whether a sample follows a given distri-
bution (one-sample version) or if two samples are equally distributed (two-sample
version). The test statistic is the maximal difference (technically: the supremum
of the difference) of the empirical cumulative distribution function and the given
distribution function:

D := sup
x

∣∣∣F̂n(x) − F(x)

∣∣∣ .

This difference takes values between zero and one and is larger, the more the sample
distribution deviates from the given one.

The KS-test works for any distribution. However, the distribution function F has
to be completely specified by explicitly stating all parameter values.

The two-sample version tests the two empirical cdfs F̂ and Ĝ:

D := sup
x

∣∣∣F̂n(x) − Ĝn(x)

∣∣∣ .

An example is given in Fig. 3.3, where 20 exponentially distributed sample points
are generated for λ = 3 and their ecdf compared to the cdf of a normal distribution
with parameters μ = 0.5 and σ 2 = 0.1. The largest difference is D = 0.3983 found
at x = 0.4213, leading to a p-value of p = 0.002248. This indicates strong evidence
against the null hypothesis and we would conclude that the distributions are indeed
different.

3.4.2 Testing for Normality: Shapiro-Wilks

Normality of the data is a very common assumption for statistical tests and
procedures. The Shapiro-Wilks test provides a more specialized alternative to the
Kolmogorov-Smirnov test for testing if the data is indeed normally distributed. This
test compares the variance of the data, estimated as s2 = 1/(n − 1)

∑
i (xi − x̄)2,

with the variance expected by a normal distribution. For computing this expected
variance b2, the test uses the same method as a normal Q-Q-plot and estimates the
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Fig. 3.3 Kolmogorov-Smirnov test. The empirical cdf of 20 Exp(3) samples (black dots and lines)
is compared to the theoretical Norm(0.5, 0.1) cdf (dashed line). The test statistic measures the
largest absolute difference D = 0.3983, found here at 0.4213 and denoted by a dotted vertical line

slope of the normal Q-Q-line (see Sect. 1.8.3). The test statistic is then the quotient
of the two variances

W = b2

(n − 1)s2 ,

and we test H0 : W = 1, expected if the data is normal, against H1 : W �= 1. This test
generally performs better than the corresponding KS-test and should be preferred,
especially for small sample sizes. A sample size of n ≥ 3 is necessary for the test to
work, and an upper limit is given with n ≈ 3000.

3.4.3 Testing Location: Wilcoxon

For testing whether two distributions are equal, we can also rely on another
non-parametric test known as the Wilcoxon or Mann-Whitney-U test. While not test-
ing the location itself but rather the whole distributions, this test can nevertheless
often be used as a non-parametric alternative to the t-test family if the data is not
normally distributed, provided the variances in the samples are of comparable size
and the sample distributions are similar enough such that the differences are mainly
caused by different locations.

The main idea of the Wilcoxon test is the following: let us again assume that
X1, . . . , Xn and Y1, . . . , Ym are two samples of size n and m, respectively, and let us
again denote by X(i) the ith smallest sample point, which we say to have rank i. We
now join the samples into a new sample Z and denote by Z(i) the ith smallest sample
point in the joint sample, so i runs from 1 to n + m. Provided the two samples have
similar distributions, the ranks of the two individual samples within the joint sample
should distribute equally and we expect to see a good “mixing” of the two samples
in Z.

http://dx.doi.org/10.1007/978-3-642-23502-3_1
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The Wilcoxon test now compares the sum of the ranks of X and Y in Z to decide
whether this is indeed the case. For this, let us denote by RX the sum of all ranks
of elements of the X sample in the ordered joint sample Z. In practice, we check
whether Z(i) originally belonged to the X and if so, we add i to the sum, until we
reach the (m + n)th element of Z. Similary, let us denote by RY the sum of ranks of
the Y samples in Z, established by the same procedure.

The sum of all ranks is then

RX + RY =
n+m∑
i=1

i = (n + m)(n + m + 1)

2
,

and the first sample of size n provides the fraction n
n+m of the joint sample. Further,

RX is bounded by

n∑
i=1

i = n(n + 1)

2
≤ RX ≤ nm + n(n + 1)

2
,

as one easily verifies: the lower bound gives the case that the Xi form the first n
elements of the joint sample, i.e., are all lower than the Y j , whereas the upper bound
gives the case that the Xi are all greater than the Y j .

We then form the respective difference of the actual rank-sum from the upper
bound:

UX = nm + n(n + 1)

2
− RX and UY = nm + m(m + 1)

2
− RY ,

and use the minimum of these two differences as our test statistic

U := min(UX , UY ).

For small n and m, the null-distribution P(U = u|H0) can be tabulated by exhaus-
tively computing all cases and counting. For large n and m, the null-distribution is
very close to a normal distribution and it suffices to compute its mean and variance.
Provided the null hypothesis H0 of equal location is true, we expect the ordered X
sample to be uniformly dispersed in the ordered Z sample and thus

E(RX ) = n

n + m
(RX + RY ) = n(n + m + 1)

2
,

in which case the variance of the rank-sum is

Var(RX ) = nm(n + m + 1)

12
,

and similarly for RY . The desired expectation and variance for U are then easily
computed.
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t-or Wilcoxon test? The t-test is slightly more sensitive to false positives than
the Wilcoxon-test for normally distributed data, but this advantage decreases rapidly
as the data deviates from normality. The Wilcoxon-test performs much better on
non-normal data and is available in as many variants (one- and two-sided, multidi-
mensional, paired observations, etc.). The Wilcoxon-test is also more conservative: if
we reject using this test, we would also always reject using a t-test. We can therefore
almost always use the Wilcoxon-test, unless we are very sure that the data is normally
distributed, the variances of the two samples are very different, or we explicitly want
to test the mean(s).

3.4.4 Testing Multinomial Probabilities: Pearson’s χ2

For multinomial data, like the nucleotide counts in a sequence of length n, we might
want to test whether the probabilities for each category follow a particular distrib-
ution, given by the probabilities (p0

1, . . . , p0
s ). For example, one might want to test

the hypothesis that the nucleotide frequencies in the sequence are all equal by testing
the null hypothesis

H0 : (pA, pC , pG , pT ) = (p0
A, p0

C , p0
G , p0

T ) = (1/4, 1/4, 1/4, 1/4)

against the alternative

H1 : (pA, pC , pG , pT ) �= (1/4, 1/4, 1/4, 1/4).

In contrast to previous examples, we test all probabilities simultaneously. Pearson’s
χ2-test compares the expected number of counts in each category to the observed
count xi . The expected count under the null hypothesis is E(Xi ) = np0

i . The χ2-test
statistic is then given by the sum of normalized differences

T =
s∑

i=1

(
Xi − np0

i

)2

np0
i

and has a χ2(s − 1) distribution under the null hypothesis.

Example 28 Recall that Gregor Mendel studied peas in order to find the laws of
inheritance. More specifically, he cross-bred peas and observed counts for two fea-
tures, namely round/wrinkled and yellow/green, leading to four categories which
we abbreviate as ry,rg,wy,wg, respectively. The theory of inheritance leads to the
prediction that the frequencies for these categories should be

(p0
r y, p0

wy, p0
rg, p0

wg) = (9/16, 3/16, 3/16, 1/16) .

In his original publication [1], Mendel studied n = 556 peas and observed the counts
x = (315, 101, 108, 32). This leads to a value of t = 0.47 for the test statistic. Using
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the χ2-distribution with 3 degrees of freedom, the critical value for a test level of
α = 0.05 is given by the 0.95-quantile χ2(3, 0.95) = 7.815, and we do not reject the
null hypothesis. Indeed, the p-value for this data is 0.95. As we discussed in Sect. 3.2,
however, this does not necessarily mean that we have evidence in favor of H0.

3.4.5 Testing Goodness-of-Fit

The χ2-test can also be used as a goodness-of-fit test. This type of test is used for
example to check whether some data is in agreement with given predicted values
from a model. In the above example of Mendel’s peas, the model of inheritance
suggests a certain number of observations in each category, and the test compares
this predicted numbers with the observed ones.

Let us assume that a model predicts that the results follow a certain distribution
with density function f (x; θ). The l parameter(s) θ are not known. As an example,
we might predict that the data is normally distributed, in which case θ = (μ, σ 2) are
the l = 2 unknown parameters.

For sample data x1, . . . , xn , the probability to see each particular sample point xi

is zero for a continuous distribution. The main idea is thus to discretize the result by
splitting the range of possible values into s non-overlapping intervals and count the
number of observations in each interval. With I j the jth such interval and some fixed
parameters θ ,

p j (θ) =
∫

I j

f (x; θ)dx

is the predicted probability to see an observation in this interval and we would
therefore expect to see np j (θ) observations using this parameter value.

We can now compare this expected number of observations with the observed
number using the test statistics

T =
s∑

i=1

(
N j − np j (θ)

)2

np j (θ)
,

which has a χ2-distribution with s − 1 − l degrees of freedom.
We are left with finding a general way to estimate the parameters θ . For reasons

that cannot be properly explained here, the MLE is not a good choice, as it does not
necessarily lead to a known (let alone χ2) distribution of T under the null hypothesis.
Instead, we estimate the parameters such that they maximize the objective function

Q(θ) =
s∏

j=1

p j (θ)N j ,

which then leads to the desired χ2-distribution of the test statistics.
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Again, absence of evidence is not evidence of absence, and if the data does not
give evidence to reject H0, we cannot conclude that the hypothesis is actually correct.
This is a major drawback of goodness-of-fit testing: We can only use it to check if
the model could potentially explain the data, but we cannot rule out that there are
other models that might fit as good. As the alternative is two-sided and composite,
we also cannot flip the hypothesis, as we would need to know the distribution of T
under this two-sided composite hypothesis.

3.5 Sensitivity and Specificity

In any hypothesis testing procedure, there are two types of errors that occur due to the
fact that the test statistic is a random variable. There is the possibility that although
H0 is true, we observe many unusual values in the data just by chance, leading to
an incorrect rejection of H0. This is called a false positive or a type-I error. On the
other hand, there is also the possibility that H0 is false, but again the sample values
suggest that it is correct, so we would incorrectly not reject H0, which is called a
false negative or type-II error. Correctly rejecting or not rejecting H0 is called a true
positive and true negative, respectively. An example for type-I and type-II errors is
already given in Fig. 3.2, where we tested the mean of a normal random sample with
known variance. The four possible outcomes of a hypothesis test are given in the
following table:

H0 true H0 false
dont’t reject H0 true negative (TN), false negative (FN),

specificity 1 − α type-II error (β)
reject H0 false positive (FP), true positive (TP),

type-I error (α) sensitivity 1 − β

The probability 1 − β to not make a type-II error is often referred to as the power
of the test; it is a function of the true value θ of the tested parameter. Formally,
the power function η(θ) is the probability that the test statistic takes a value in the
rejection region, provided that H1 is true:

η(θ) := 1 − β(θ) = P(θ̂n ∈ Rα|H1).

The power of a test is also called its sensitivity, as it gives the probability to correctly
reject the null hypothesis if the alternative is true and therefore describes how sensitive
the test is to the alternative. In addition, the probability 1 − α of not making a type-I
error, and therefore correctly not rejecting H0 when it is true, is called the specificity
of the test, as it describes how good the test can identify H0 among the alternatives.
Choosing a test level α therefore prescribes a fixed specificity for the test.

Specificity and sensitivity are adversaries: making one of them very high usually
reduces the other. Take the following test as an example: the null hypothesis is always
accepted, no matter how the data look like. Clearly, this test is very specific: it always
correctly detects the null hypothesis if it is true. On the other hand, it never correctly
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Fig. 3.4 Power functions η(μ) for true mean μ0 = 10 and variance σ 2 = 40. Left: One-sided H1 :
μ > μ0 (solid line) and two-sided H1 : μ �= μ0 alternatives (dashed line) for n = 20 and α = 0.05.
Right: two-sided alternative for n = 20 and α = 0.05 (dashed black line), n = 100 and α = 0.05
(dashed line), and n = 20 and α = 0.001 (dotted line)

detects the alternative and thus has very low sensitivity. Indeed the specificity is one,
the maximal possible value, while the sensitivity is zero, the minimal possible value.
Always rejecting the null hypothesis gives the inverse picture.

Example 29 In Sect. 3.3.1, we tested whether the mean of a normal sample was equal
to a given value. The power of this test is η(μ) = 0.882 for μ = 15 and η(μ) = 1
for μ = 25 (Fig. 3.2). The power function is

η(μ) := 1 − β(μ) = P(X̄ > c|H1),

where μ is the correct parameter value under H1. The power is lowest if the true
parameter of the alternative is close to the assumed value of the null hypothesis and
it is difficult to distinguish data produced under either hypothesis. The larger the
difference, the higher the power. For a difference of true and estimated parameter
values μ − μ0 > 5, the two-sided test reliably detects the alternative. The one-sided
test has very low power for true values smaller than μ0, as it does not test against these
values. Almost none of these values would lead to a test statistic inside the rejection
region, so the test will not reject H0. This is correct: the one-sided alternative does
not provide a better explanation of the data than the null hypothesis in this case.

We compute the power function of the one-sided test as η(μ) = 1 −�(c;μ, σ 2),
where again c = μ + z1−ασ/

√
n is the critical value at the given test level.

The power function for the two-sided alternative is η(μ) = 1 − (�(ch;μ, σ 2) −
�(cl;μ, σ 2)), where cl = μ + zα/2σ/

√
n and ch = μ + z1−α/2σ/

√
n are the

low and high critical value, respectively. The resulting functions are given in Fig. 3.4
(left) for the one-sided alternative H1 : μ > μ0 (solid line) and for the two-sided
alternative H1 : μ �= μ0 (dashed line).

For a larger sample size of n = 100, the power of the test improves, as shown by
the dashed line in Fig. 3.4 (right). The power function gets narrower, meaning that
the test has better sensitivity closer to the value of H0, and can thus better distinguish
H0 and H1 in this range. Decreasing the test level to α = 0.001 (at sample size
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n = 20) makes the alternative more difficult to distinguish for values near μ0, but
much better further away (dotted line). Note that for μ = μ0, the power function
always takes value η(μ0) = α.

3.6 Multiple Testing

So far, we always assumed that we are given one or two samples and perform one
test on these samples. Many measurement techniques, however, generate massive
amounts of data on which thousands of tests are performed simultaneously. In biol-
ogy, the microarray allows to measure thousands of genes from the same biological
sample, and differences in gene expression are tested for each individual gene. The
genome of the fruit-fly, for example, has around 14,000 genes, which are all measured
on one array. Assuming we test for differences in gene expression using Wilcoxon
tests at a level of α = 0.05, we would already expect to see 14,000 × 0.05 = 700
false positives, i.e., tests which claim that there is a significant difference between
control and experiment, when in fact the difference is just by chance more extreme
than expected. Because each of these 700 test results would lead to time-consuming
and expensive follow-up experiments, we need to think about techniques that would
allow us to deal with multiple tests in a useful way.

General Setting. Let us assume that we perform k tests simultaneously. Let V be
the number of false positives, U the number of true positives, and S, T the number
of true and false negatives, respectively, with k0 correct and k − k0 incorrect null-
hypotheses. Importantly, we do not know k0, but can of course observe the constant
k and the realization r of R, the number of rejected hypotheses.

H0 true H0 false

don’t reject H0 U (TN) T (FN) k − R
reject H0 V (FP) S (TP) R

k0 k − k0 k

There are two general strategies to cope with the problems posed by multiple
testing: the family-wise error rate (FWER) tries to correct the individual test levels
α such that an overall test level of α∗ is achieved. Basically, these approaches try to
calculate new test levels such that the chance of even one false positive is smaller
than α∗ and thus

FWE = P(V > 0) ≤ 1 − (1 − α)k = α∗.

One such approach is the Bonferroni-correction, discussed below in Sect. 3.6.1. This
approach works well if the number of tests is comparatively small.

More recently, Benjamini and Hochberg introduced the concept of a false-
discovery-rate (FDR), which works remarkably well even for a large number of
tests. We will discuss the details in Sect. 3.6.2. In essence, the FDR is the expected
false discovery ratio of false and all positives:
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FDR = E

(
V

R

)
= E

(
V

S + V

)
.

This method explicitly allows a certain number of false positives to occur and aims
at controlling the fraction of false over all positives by recalibrating the individual
p-values.

3.6.1 Bonferroni-Correction

Provided we are only interested in performing a small number of tests on the data,
we can use the conservative Bonferroni-correction. This correction implements a
strategy to control the family-wise error rate. Here is the idea: let Fi be the event
that hypothesis i is a false positive (it is rejected although it is actually true). The
probability to have at least one such false positive in k tests is then

P(V > 0) = P

(
k⋃

i=1

Fi

)
≤

k∑
i=1

P(Fi ) =
k∑

i=1

α = kα = α∗.

To guarantee an overall prescribed test level of α∗, we therefore perform each indi-
vidual test at level α∗/k and reject the ith null hypothesis if its p-value pi is smaller,
i.e., if

pi <
α∗

k
.

The Bonferroni-correction is very conservative as it tries to bring the overall
probability of even one false positive down to α∗. Additionally, the inequality com-
pares the true probability of the Fi to the case that the Fi are all independent, and
does not try to capture the dependencies. This yields the new individual test level
of α∗/k, which in many cases is much lower than would be required. For the intro-
ductory microarray example, we have k = 14,000 individual tests. For an overall
false positive probability of α∗ = 0.05, we thus need an individual test level of
α∗/k = 0.05/14,000 ≈ 4e − 06, which is unrealistic to yield any meaningful
results.

3.6.2 False-Discovery-Rate (FDR)

Instead of correcting the test levels such that the overall false positive probability
is kept below a given threshold α∗, we can try to explicitly allow false positives to
occur, but to control their expected fraction among all positives. This false discovery
rate (FDR) is given by FDR = E (V/R). Again, the number of tests k is known,
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and the number of rejected hypotheses R is a random variable whose realization r
can be observed. On the other hand, the number of false positives V is also a random
variable, but its realization can not be observed. Intuitively, if we would pick one
of the rejected hypotheses at random, the FDR can be interpreted as the expected
chance that this hypothesis was falsely rejected. For 100 rejected hypotheses, an
FDR of 0.05 would also mean that we expect that 100 × 0.05 = 5 of these are false
positives. To achieve a certain FDR in a concrete situation, we need to choose the
number of rejections such that the prescribed FDR is reached; we can do this by
appropriately adjusting the p-value for which to reject.

Benjamini-Hochberg procedure. We would like to have strategy that guarantees a
proportion of false positives of at most q∗ among all rejected hypotheses. For this, we
calculate at which p-value to reject a hypothesis such that the FDR stays below this
desired threshold q∗ as follows: we expect E(V ) = αk false positives in k tests for a
given test level α. For a given set of data, the number of null hypotheses rejected at
this level is r(α), a realization of R. The Benjamini-Hochberg procedure computes
this number r(α) such that the maximal number of hypotheses are rejected while
still keeping the expected proportion of false positives below the given threshold q∗,
thus

E

(
V

R

)
= αk

r(α)
≤ q∗.

Let again pi be the p-value of the ith hypothesis test and consider the ordered p-values
p(1) ≤ · · · ≤ p(k). We then compute the largest index l such that

p(i) ≤ i

k
q∗

for all (i) < l. The values qi = i
k q∗ are sometimes called the q-values. One can

show that if we reject those null hypotheses for which pi ≤ ql = l
k q∗,

FDR ≤ k0

k
q∗ ≤ q∗,

which guarantees the desired proportion of false positives.
Comparing p-values and q-values. Despite some similarities, p-values and

q-values have some fundamental differences. The p-value gives the smallest test
level at which not to reject and thus needs to be correct and exact to assess the data.
On the other hand, q∗ is a threshold for an expected ratio, so the actual ratio might be
higher. It serves more as a “calling” tool that filters out uninteresting test results from
a large number of performed tests. A proper analysis would then further investigate
the remaining candidates, so it is usually not problematic if the desired q∗ is not
exactly achieved in the actual study.

Example 30 Let us consider the scenario that k = 10 individual tests were performed
on data and that their ordered p-values p(i) are
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0.00017, 0.003, 0.0071, 0.0107, 0.014, 0.32, 0.4, 0.54, 0.58, 0.98.

For an overall test level of α∗ = 0.05, the Bonferroni correction then requires
individual test levels of α = α∗/k = 0.005 and we would reject the first 2 null
hypotheses. On the other hand, we could decide to allow an expected fraction of
q∗ = 0.05 false positives among all rejected hypotheses. Using the Benjamini-
Hochberg method, we compute the corresponding q-values to be

0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05,

and p(5) = 0.014 < 0.025 = q5 whereas p(6) = 0.32 > 0.03 = q6; we would
consequently be able to reject the first 5 null hypotheses.

3.7 Combining Results of Multiple Experiments

Let us imagine that three groups independently did a particular experiment and each
group performed the same test on their data. The reported p-values are 0.08, 0.06,
and 0.07, respectively, none of them significant at the α = 0.05 level. However, we
might argue that it seems unlikely that all three tests are so close to the 0.05-level
just by chance and that combined, the three tests actually give significant evidence
to reject the null hypothesis.

We can invoke the following argument to justify this idea: let ti be the value of
the test statistic Ti of test i, leading to a p-value of pi , and let us again assume k
independent tests. If the null hypothesis were true in all cases, we can ask for the
joint probability of simultaneously observing the given values of the test statistics:

P(T1 > t1, . . . , Tk > tk |H0) =
k∏

i=1

P(Ti > ti |H0),

which corresponds to asking for the probability that the observed p-values occur
under H0.

Let Pi be the p-value of the ith test, treated as a random variable. It can be shown
that the Pi are uniformly distributed on [0,1] under H0 and thus each p-value is
equally likely if the null hypothesis is correct. However, the product of uniform
random variables is itself not uniform, so we need to calculate the corresponding
distribution. A simple trick comes to the rescue: the logarithm of a uniform random
variable U, scaled by (−2), has a χ2-distribution with two degrees of freedom:

−2 log(U ) ∼ χ2(2),

and we know from Sect. 1.4 that the sum of χ2-variables still has a χ2-distribution,
with corresponding degrees of freedom:

http://dx.doi.org/10.1007/978-3-642-23502-3_1
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Q = −2
k∑

i=1

log(Pi ) ∼ χ2(2k).

This allows us to combine p-values from different experiments, provided the same test
was used in each experiment. We compute the realization q of Q from the observed
p-values and reject the null hypothesis if q > χ2

1−α(2k).

Example 31 For the p-values 0.08, 0.06, and 0.07, we compute the value

q = −2 × (log(0.08) + log(0.06) + log(0.07)) = 15.9968

for the test statistic Q. With k = 3, this statistic has a χ2(6)-distribution, and the
overall P-value is thus p = P(Q > q|H0) ≈ 0.0138. While each individual result
does not give evidence against the null hypothesis, the combination of the three
experiments shows significant evidence that the null hypothesis is false.

3.8 Summary

To test a property of a distribution, we formulate two hypotheses—the null hypothesis
H0 and the alternative hypothesis H1—,such that the null hypothesis represents the
“status quo”. We then compute the value for a test statistic T from a random sample;
the distribution of T under the null hypothesis allows us to compute the p-value—the
probability of a false rejection. The smaller the p-value, the less likely H0 is true and
we reject it if the p-value is below a prescribed test level α. However, we can not
prove the correctness of a null hypothesis and the p-value is not the probability that
H0 is correct.

Before choosing a test statistic, it is often worthwhile to check whether robust
alternatives are available, such as the Wilcoxon-test to replace a classic t-test.

The sensitivity and specificity of a test describe the probabilities to correctly reject
or not reject the null hypothesis. They depend on the test statistic, the two hypotheses,
but also on the sample size.

When preforming several tests simultaneously, we need to recalibrate the p-values
to correct for multiple testing, which we can do either by the Bonferroni-method,
which controls the probability to get even one false positive, or using the false dis-
covery rate approach, which allows a prescribed fraction of false positives among all
rejected hypotheses.
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Chapter 4
Regression

Abstract Regression analysis describes the influence of covariates on a response
variable. Two regression models are discussed: linear regression on one or several
covariates and analysis-of-variance. Methods for estimating the respective model
parameters and hypothesis tests for eliminating non-significant covariates are
presented.

Keywords Linear regression · Model reduction · ANOVA

All models are wrong but some are useful
George E. P. Box

4.1 Introduction

Regression analysis aims at studying the influence of one or more covariates X on a
response Y. We only discuss parametric regression, where we know the functional
relation between covariates and response, and try to identify the correct parameter(s)
of this function. The regression function is then defined as the expected value condi-
tioned on the values of the covariates:

r(x; θ) = E (Y |X = x) =
∫

y f (y|x; θ)dy,

where f (y|x; θ) is the conditional probability density of Y |X with parameters θ.

Once we know the parameters, we can predict the average value for the response
for any given values of the covariates by the regression function. For estimating the
parameters from given data, we assume that we have n samples

(y1, x1,1, x1,2, . . . , x1,m), . . . , (yn, xn,1, xn,2, . . . , xn,m),

H.-M. Kaltenbach, A Concise Guide to Statistics, SpringerBriefs in Statistics, 77
DOI: 10.1007/978-3-642-23502-3_4, © Hans-Michael Kaltenbach 2012
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where yi is the value of the response variable in the ith measurement and xi, j is the
value of the jth covariate for that measurement. Regression analysis assumes that
the values of the covariates xi, j are known exactly. In contrast, the observed values
of the response yi are subject to error and an error model is used to described their
distribution around the true value. The assumed relation of covariates and response
is then

Y = r(x; θ) + ε,

where ε is a random error term.

Example 32 Let us consider the problem of finding the relation between the dry
weight and height of a plant. We may claim that the dry weight increases linearly
with the height of the plant. Using the height as a covariate x and the dry weight
as the response y, we can use the following linear regression model to describe this
relation:

Y = β0 + β1x + ε.

Here, the parameter β0 is the dry weight of a plant with height zero, and β1 describes
how much more dry weight we get per increase in height. We implicitly assume that
the height can be measured without error, but the measured weight spreads around
the true value by an error ε. The first task is then to measure the weight and height of
n plants, yielding the data (y1, x1) to (yn, xn). From this data, we would then try to
find the correct parameter values for β0 and β1. Once these are established, we can
predict the dry weight from the height of any new plant.

4.2 Classes of Regression Problems

Depending on the type of covariates and response, we can distinguish several classes
of regression problems. The two main types are metric variables, which are any kind
of (continuous) numbers, and categorial variables, which describe membership in
distinct classes. Examples for the first type are measurements of length, (discrete)
counts, and waiting times, for the second type categories such as male/female. Cate-
gories can sometimes additionally have an order such as high > middle > low, and
variables are then called ordinal.

If both response and covariates are metric, we are in the setting usually called
regression, and we can further distinguish linear from nonlinear regression, depending
on the claimed functional relation r(). Linear regression is the typical first example of
regression methods and will be covered in detail in Sect. 4.3 for a single covariate. If
several covariates are involved, powerful methods can be applied to reduce the model
and identify those covariates which have a significant influence on the response. The
required methods for estimation and hypothesis testing are covered in Sect. 4.4.
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Regression of a metric response on categorial covariates requires Analysis-
of-Variance (ANOVA). The impact of treatment (no drug / drug A / drug B) on the
recovery time of a patient is an example. ANOVA can be seen as an extension of
t-tests to more than two means; we discuss ANOVA in Sect. 4.5. After presenting
the estimators for the ANOVA model parameters, we also develop hypothesis tests
to investigate the influence of combinations of groups on the response variable.

4.3 Linear Regression: One Covariate

We start by discussing linear regression with one covariate. This is the workhorse in
regression analysis; it is widely applicable in practice and many other methods can
be derived as variants and extensions.

4.3.1 Problem Statement

Linear regression with one covariate assumes a regression function of the form

Y = β0 + β1 X + ε,

where Y is the metric response to the metric covariate X. The parameters (in linear
regression traditionally called β) of this family of regression functions are the
intercept β0 and the slope β1 of the (x, y)-line.

It is the error term ε that prevents us from observing the correct response directly,
and makes Y a random variable. We assume the error to have zero mean, so it does not
introduce a bias in the analysis. We further assume that it has constant (but unknown)
variance σ 2, independent of the value x of the covariate; this is called homoscedacity:

E(ε|X = x) = 0

Var(ε|X = x) = σ 2.

If the variance of the error does depend on the value x, we call this heteroscedacity.
For some of the analyses, we do not need to assume a particular distribution of ε,

but for more sophisticated analyses, we often assume that the error has a normal
distribution. Section 4.3.3 is devoted to methods for checking these assumptions on
the error structure.
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4.3.2 Parameter Estimation

Without assuming any particular error distribution, we cannot apply the maximum-
likelihood principle and therefore rely on a least-squares method for estimating the
two parameters β0 and β1. Given the parameter values, the value

ŷi = r(xi ) = β0 + β1xi

is the predicted response to the value xi of the covariate. We can apply least-squares
estimation to find those parameter values β̂0 and β̂1 that minimize the squared differ-
ence ε̂2

i = (yi − ŷi )
2 between the measured and the predicted value:

(β̂0, β̂1) = argminβ0,β1

n∑
i=1

ε̂2
i = argminβ0,β1

n∑
i=1

(yi − (β0 + β1xi ))
2 .

The differences ε̂2
i are called the residuals and are themselves estimates of the error

ε in each sample point.
This least-squares problem always has a unique solution and we even find explicit

formulas for the estimates:

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2

β̂0 = ȳ − β̂1 x̄,

from which we can also estimate the variance of the error by

σ̂ 2 = 1

n − 2

n∑
i=1

ε̂2
i ,

using n − 2 degrees of freedom (one less per estimated β̂i ).

Example 33 A typical example is shown in Fig. 4.1, where 10 responses were
measured from a linear function y = β0 + β1x + ε with true parameters β0 = 2
and β1 = 4 and normally distributed error with variance σ 2 = 40. Using the least-
squares method, the parameters are estimated as β̂0 = −0.085 and β̂1 = 4.377. The
estimated standard deviation is σ̂ 2 = 118.926. The solid line gives the predicted
responses ŷi for any value x of the covariate. The residuals ε̂i are then the vertical
differences between this line and the actual response value yi for a measurement,
indicated by vertical dashed lines.

MLE under normality. If in addition to homoscedacity and unbiasedness, the error
is normally distributed, we can also apply the maximum-likelihood approach to find
the parameters β0, β1. Interestingly this yields the exact same estimators and thus
maximum-likelihood and least-squares estimates coincide under normality of errors.
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Fig. 4.1 Linear regression of 10 measurements: Fitted regression y = β̂0 + β̂1x (solid line), resid-
uals ε̂i (dashed lines) and data (yi , xi ) (black points). True parameters are β0 = 2 and β1 = 4 with
an error variance of σ 2 = 40 with estimates β̂0 = −0.085, β̂1 = 4.377, and σ̂ 2 = 118.926

The MLEs for the two parameters are consistent and unbiased. As MLEs, they
also have an asymptotic normal distribution, so confidence intervals for the estimated
parameters are given by

β̂i ± zα/2ŝe(β̂i ),

where the estimators’ standard errors ŝe(β̂i ) =
√

V̂ar(β̂i ) are

ŝe(β̂0) = σ̂

σ̂X
√

n

√√√√1

n

n∑
i=1

x2
i ,

ŝe(β̂1) = σ̂

σ̂X
√

n
,

and σ̂ 2
X = 1

n−1

∑n
i=1(xi − x̄)2 is the dispersion of values taken for the covariate.

We can even give the full covariance matrix, which contains the variance of the two
estimators in the diagonal, and the covariance of them in the off-diagonals:

V̂ar

(
β̂0

β̂1

)
= σ̂ 2

σ̂X
2n

( 1
n

∑n
i=1 x2

i −x̄
−x̄ 1

)
.

Prediction intervals. Once the parameters are estimated from the data, we can
apply this “fitted” regression model to predict the value Y∗ of the response for other
values x∗ of the covariate by

Ŷ∗ = β̂0 + β̂1x∗.

Although for given parameters this gives a particular prediction, this prediction still
depends on the estimated values β̂i . Since these in turn depend on the original data
used for the estimation, the prediction Ŷ∗ is still a random variable and we should
compute a confidence interval for Ŷ∗ to quantify the confidence in the prediction.
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This interval depends on the error ε, but also on the error in the estimates β̂i and is
given by

Ŷ∗ ± zα/2ζ̂ ,

where the standard deviation ζ̂ is not the estimated standard deviation of the
estimator, but is given by

ζ̂ 2 = σ̂ 2
( ∑n

i=1(xi − x∗)2

n
∑n

i=1(xi − x̄)2
+ 1

)
.

This confidence interval depends on the variance of the data, but additionally gets
wider, the further away the new covariate value x∗ is from the original values used in
the estimation of the parameters. For example, if values of the covariate in the original
sample are all between x1 = 1 and xn = 10, an extrapolation by predicting the
outcome for x∗ = 100 gives a much wider confidence interval than an interpolation
at a value x∗ = 5.

4.3.3 Checking Assumptions

Application of standard linear regression techniques relies on two assumptions:
homoscedacity of the data, i.e., constant variance independent of the covariate, and,
for many conclusions, normally distributed errors. To check these assumptions, we
can perform an a posteriori analysis of the resulting residuals yi − ŷi after estimating
the parameters.

Checking homoscedacity. Homoscedacity can be assessed by plotting the resid-
uals ε̂i of the fitted model against the covariate values xi . We then expect to see
no particular pattern and points should scatter uniformly around zero. If the vari-
ance increases with the value of the covariate—one of the most common causes
of heteroscedacity—a tilted ‘V’ pattern appears as the residuals get bigger with
increasing xi .

For 50 sample points using the same linear regression function as before, the
residuals are shown in Fig. 4.2 (left). Changing the error model such that the variance
increase linearly with the covariate yields the tilted ‘V’ pattern in Fig. 4.2 (right).

Checking normality. Assessing whether the error distribution is normal is straight-
forward once the model parameters are estimated. If the error distribution is normal,
the resulting residuals should follow a normal distribution with mean μ = 0 and the
estimated variance σ̂ 2. We can use a normal Q–Q-plot for visual inspection. For the
example above with n = 50 sample points, the normal Q–Q-plots of the residuals
are shown in Fig. 4.3 for both homoscedacity (left) and heteroscedacity (right). In
both plots, the residuals scatter around a mean of zero, and do not introduce a bias
in the estimation, as expected.
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Fig. 4.2 Left Residuals ε̂i of fitted model (points) spread around zero (dashed line) and show no
particular pattern. Right Residuals show heteroscedacity and form a titled ‘V’ pattern as the variance
increases with increasing covariate
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Fig. 4.3 Normal Q–Q-plot of residuals in the case of homo- (left) and hetero-scedacity (right)

4.3.4 Linear Regression Using R

R already provides all necessary functions for easily fitting linear models. For given
data vectors x and y, a linear regression is fitted using the function lm(), which
requires an R formula as input. R formulas are a very convenient way of representing
complex regression problems. An example is

y ∼ x+ z,

which states that we want a fit of the response y on the two covariates x and z. Thus,
R fits the model Y = β0 + β1 X + β2 Z by estimating the three parameters βi . In
R formulas, the arithmetic operators +,−, ∗, / as well as exponents have special
interpretations, and should not be confused with their usual meaning.

Parameter estimation. Let us consider a linear regression problem with one
covariate. The covariate vectorx contains the values of the covariate and the response
vector y the corresponding values of the response. Then, the R command
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model <- lm(y ˜ x)

estimates the various parameters and yields a data-structure model containing all
the information about the resulting linear model.

Inspection plots. The model can then be plotted using the commandplot(model)
to successively generate four plots: the residuals, the normal Q–Q-plot, the residuals
on another scale, and an influence plot (see Sect. 4.4.4 for a discussion of different
influence measures).

Model plot. We can also easily plot the model together with the data by first
plotting the data by plot(y ˜ x), and then adding the estimated regression line
with abline(model). This was done to generate Fig. 4.1.

Prediction. Predicting new values from a model is done using the predict()
function, which expects a model data-structure and a data-frame with the new values
of the covariates. For example

predict(object=model, newdata=new.x, interval=’prediction’)

for two new values x = 2.4 and x = 90 yields the result

fit lwr upr
1 12.78273 −2.671691 28.23715
2 349.02757 217.846374 480.20877

with the predicted values in the first column and the lower and upper value of the
0.95-prediction intervals in the second and third column.

4.3.5 On the “Linear” in Linear Regression

An important point to understand when using linear regression models is that we
only need the regression function to be linear in the parameters. For example, the
model

Y = β0 + β1 X2

is a perfectly valid linear regression model, because we may simply replace the
covariate X with a new covariate Z = X2 to get the familiar equation. Other models
can be made linear by transformation. For example, the model

Y = β0 exp(β1 X)

is easily brought into a form suitable for linear regression by taking the logarithm.
However, there is a caveat: if the original model has additive, normally distributed
error, this error structure is also transformed by the logarithm and is no longer normal.
This can cause major problems, as many of the statistics rely on normally distributed
residuals.
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4.4 Linear Regression: Multiple Covariates

For more than one covariate, linear regression aims at fitting a hyperplane through
a cloud of points. Again, all values of covariates are assumed to be fixed and non-
random, and only the value of the response is subject to error.

Example 34 Let us reconsider our small introductory example of studying dry weight
as a function of height in plants. Instead of using only the height, we may also want to
consider more variables that might have an influence on the dry weight. For example,
we could study the influence of the amount of fertilizer on the weight. The model
would then informally read

dry weight = β0 + β1 height + β2 fertilizer amount + error.

This allows us to ask more questions on the model, for example if the fertilizer has
any influence at all. If not, we could delete it from the model, which would result in
a new and more simple model that is still able to sufficiently describe the dry weight.
Regression analysis also allows us to explicitly take the influence of the covariates
on each other into account. Here, we might consider that more fertilizer also yields
higher plants, which we need to take into consideration when trying to find the most
simple model that sufficiently explains the data.

4.4.1 Problem Statement

We are studying a regression problem with m covariates X1, . . . , Xm and one
response variable Y. The data are again n tuples of sample points, each with one
value for each covariate and one value for the noisy measured response. The regres-
sion model is then of the form

Y = β0 + β1 X1 + β2 X2 + · · · + βm Xm + ε

and might additionally contain interaction terms to capture the dependency of covari-
ates on each other. The resulting estimation problem of n equations in m covariates
can then be written as

⎛
⎜⎝

y1
...

yn

⎞
⎟⎠ =

⎛
⎜⎝

1 x1,1 · · · x1,m
...

...
...

1 xn,1 · · · xn,m

⎞
⎟⎠ ·

⎛
⎜⎝

β0
...

βm

⎞
⎟⎠ +

⎛
⎜⎝

ε1
...

εn

⎞
⎟⎠ ,

using matrix-vector notation. The matrix X containing the xi, j is called the design
matrix, where the first column is the “covariate” for the constant term β0. We again
assume that each εi has mean zero and constant variance and that the errors are inde-
pendent. For most of the statistics, we additionally require the errors to be normally
distributed.
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4.4.2 Parameter Estimation

We can again estimate the parameters as β̂ = (β̂0, . . . , β̂m) by minimizing the sum
of squared differences

β̂ = argminβ

n∑
i=1

(
yi − (

β0 + β1xi,1 + · · · + βm xi,m
))2

.

Again, the estimates can be given in explicit form by

β̂ = (
Xt X

)−1 Xt Y,

where X is the above design matrix containing the covariate values and a 1 entry in
the first column and Y is the vector containing the n values of the response.

4.4.3 Hypothesis Testing and Model Reduction

A natural question to ask is whether we really need all the covariates to explain
the measured responses, or if a smaller subset of covariates will already explain the
data. This is the question for a minimal adequate model, which is the model with the
smallest number of covariates that still explains the data reasonably well. In general,
the data can always be better explained with more covariates, simply because we
get more parameters to work with. However, reducing the model by eliminating one
covariate and its associated parameter might lead to a new model that is almost as
good as the larger model. For doing this properly, we need a way of quantifying what
we mean by “almost as good”. We start with a central result on decomposing the
overall variation that will then naturally lead to the required statistics.

Decomposing the variation. Without considering any regression, the total
variation in the response is

SStot =
n∑

i=1

(yi − ȳ)2.

It is proportional to Var(Y) with a factor of (n − 1) and is a measure of the overall
dispersion of the response around its mean.

After fitting a regression model, this total variation can be decomposed into two
components: the explained variation or regression sum-of-squares

SSreg =
n∑

i=1

(
ŷi − ȳ

)2
,

which measures how much of the total variation can be explained by the fact that
the measured response is actually spread around the regression line and not simply
around its mean, and the error sum-of-squares
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Fig. 4.4 (Adapted from [1])
Total variation as sum of
explained and unexplained
variation. Each difference
yi − ȳ of a measured to the
mean response can be
decomposed into the
difference ŷi − ȳ of the mean
and the predicted regression
value and the difference
yi − ŷi between predicted
and measured value
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SSerr =
n∑

i=1

(
yi − ŷi

)2
,

which gives the unexplained variation still left, i.e., the dispersion of the measured
response values around their predicted values. Note that SSerr is exactly the residual
sum-of-squares

∑
i ε̂2

i that is minimized for estimation.
Using the regression model, the total variation can always be written as the sum

of the explained and the unexplained variation:

SStot = SSreg + SSerr,

which is also demonstrated in Fig. 4.4.
The variance can be recovered by dividing a variation by its corresponding degrees

of freedom, which are SStot : n − 1, SSreg : m, and SSerr : n − m − 1.

Varying the parameters βi of the regression function does not change the measured
response values, so the total variation SStot remains the same. However, we will alter
the predicted response values and thus the contributions of the explained and unex-
plained variations to the total variation. A “good” set of parameters will have a large
SSreg, so a lot of the total variation is explained by the fact that the response spreads
around the regression function rather than its mean. The remaining unexplained
variation caused by this spread around the regression function is minimized in this
case.

We can exploit this decomposition of the total variation in two ways: First, it
gives the coefficient of determination R2 = SSreg/SStot, which is the proportion
of explained to total variation. Consider using the model Y = β0 + ε with no
covariates, leading to the fit β̂0 = ȳ with constant predicted response. The coefficient
of determination is zero in this case and the model cannot explain any of the deviation
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of measured yi from their mean. For a perfect linear fit with no measurement error,
the coefficient is one, as the data is completely explained by the model. For a linear
regression using a single covariate, the coefficient of determination is identical to the
Pearson’s correlation coefficient (see Sect. 1.6.4), given by

R2 = Cov(X, Y )

σXσY
.

In addition to the coefficient of determination, we can also use the decomposition
to compare models with a different number of covariates. For normally distributed
errors, the various sum-of-squares all have χ2-distributions with appropriate degrees
of freedom. Thus, the quotient

F = SSreg/m

SSerr/(n − m − 1)

of the explained versus the unexplained variation has an F(m, n−m−1)-distribution
(see Sect. 1.4). The larger this value becomes, the better the regression explains
the data.

Do we need any covariate? Now that we have worked out a way to quantify how
good a regression explains the data, we can start asking statistical questions on the
relevance of the various covariates for this explanation. The boldest question is to
ask whether the regression actually explains the data at all. For this, we define the
null model Y = β0 + ε which in essence states that the data can be explained by
the spread around its mean alone. We then compare this null model to the full model
Y = β0 + ∑

j β j X j + ε including all covariates. This comparison requires to test
the hypothesis

H0 : β1 = · · · = βm = 0

that it suffices to only consider β0 (i.e., the null model) estimated as β̂0 = ȳ to
describe the data and the covariates thus have no relation to the response. With

F = SSreg/m

SSerr/(n − m − 1)

as our test statistic, we reject this null hypothesis if F exceeds the corresponding
quantile of the F-distribution: F > F1−α(m, n − m − 1).

This hypothesis test can serve as a sanity check: if we do not find evidence to
reject this hypothesis, the proposed model is not able to explain the data and none of
the covariates has a significant (linear) relation to the response.

Testing subsets of covariates. The same ideas allow us to check if a reduced model,
using only a subset of the covariates, already provides a sufficient fit to the data. More
specifically, we want to test the hypothesis

H0 : βk+1 = · · · = βm = 0

http://dx.doi.org/10.1007/978-3-642-23502-3_1
http://dx.doi.org/10.1007/978-3-642-23502-3_1
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that only the first k covariates are needed and the remaining m − k covariates do
not provide any more explanation of the observed data. We only consider the first
covariates simply to avoid clumsy notation; clearly, the exact same method works
for any subset of covariates by simply re-ordering them.

Let us denote by SSreg(k) the explained variation of the reduced model, with
only the first k covariates present, and similar notation for the remaining variables.
The special case SSreg(m) ≡ SSreg then denotes the previously explained variation
of the full model.

The test statistic

Fk =
(
SSreg(m) − SSreg(k)

)
/(m − k)

SSerr/(n − m − 1)

has a F(m − k, n − m − 1) distribution and we can reject the null hypothesis at
the level α if Fk > F1−α(m − k, n − m − 1). If we can reject H0, we conclude
that the m − k covariates not contained in the reduced model do not significantly
contribute to the explanation of the data. Importantly, the term “significantly” is
well-defined in this context. By setting k = 0, we re-derive the previous hypothesis
that we do not need any covariate.

Model reduction. By exhaustively testing all possible reduced models, we can
compute a minimal adequate model; it has the smallest number of covariates such
that adding any of the other covariates does not significantly increase the model’s fit.
For m covariates, there are 2m different models from subsets of the covariates. For
larger models, one therefore retreats to iterative procedures for finding a minimal
adequate model. The two simplest procedures either start with the full model and
iteratively discard one covariate at a time, or start with the empty model and iteratively
add one covariate. The order in which this is done may however impact the result,
especially if the covariates influence each other.

Example 35 Consider the following experiment: we want to investigate the influence
of the concentration x1, x2, x3 of three different chemicals on the production rate y
of a particular other chemical. We use a regression model that takes y as the response
to various combinations of the three concentrations, each taken as a covariate. The
linear regression model assumes that the response is the results of adding the three
covariates with different scaling factors. We aim at finding the minimal adequate
linear model to describe the response. We first try to get a visual impression of the
data by investigating all pairwise scatter plots in Fig. 4.5. In this plot, we observe
a number of relations: first, the three covariates do not seem to interact with each
other, i.e., they appear to be independent. Second, the most pronounced influence on
y seems to be from x3, and it appears to be slightly curved. Moreover, there appears
to be a correlation between response and x1, and only a weak response to x2. We
therefore start with a full model that contains the three individual covariates together
with their squares (to capture the potential curvature), and no interaction terms. The
following R command will compute the parameter estimation for this model:

m <- lm(y ˜ x1+ x2+ x3+ I(x1ˆ2) + I(x2ˆ2) + I(x3ˆ2),data = d)
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Fig. 4.5 All pairwise scatter plots of response y and covariates x1 to x3

The function I() tells R to interpret its content as an arithmetic expression, rather
than an R formula. This command will fit the model

Y = β0 + β1 X1 + β2 X2 + β3 X3 + β4 X2
1 + β5 X2

2 + β6 X2
3 .

The resulting estimates are shown using summary(m).

Call:
lm(formula = y ˜ x1+ x2+ x3+ I(x1ˆ2) + I(x2ˆ2) + I(x3ˆ2),data = d)

Residuals:
Min 1Q Median 3Q Max
−2.05561 −0.58005 −0.08151 0.77322 1.66987
Coefficients:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 0.791207 1.827610 0.433 0.667
x1 0.984675 0.224661 4.383 4.52e− 05 ∗ ∗∗
x2 0.517541 1.117399 0.463 0.645
x3 −0.169954 0.570742 −0.298 0.767
I(x1ˆ2) 0.003262 0.020030 0.163 0.871
I(x2ˆ2) −0.080277 0.210408 −0.382 0.704
I(x3ˆ2) 1.014840 0.093811 10.818 5.33e− 16 ∗ ∗∗
- - -
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9389 on 63 degrees of freedom

Multiple R-squared: 0.9844, Adjusted R-squared: 0.9829

F-statistic: 663 on 6 and 63 DF, p-value: < 2.2e-16
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In this summary, R states the fitted model and a summary of the distribution of
the residuals, and then returns the estimated value and the standard deviation for
each parameter, as well as a test statistic and corresponding p-value on the signifi-
cance of this parameter. These statistics are t-distributed, and test the null hypothesis
H0 : βi = 0 that the corresponding covariate is not needed; recall from Sect. 1.4 that
F(1, m) = t2(m). In this full model, x3 is not significant and has a high p-value,
making it a good candidate for model reduction, but its square is highly significant.
Overall, a very good fit was found, indicated by an R2-value of 0.9844.

From this first result, we start reducing the model by deleting x3 (but not its square)
using the update() function, which takes the fitted model and an update to the
original formula to compute a new model. The command

m2 <- update(m, ˜. − x3)

fits this new model, where the dot denotes the old formula, from which parts are
discarded, resulting in

Call:
lm(formula = y ˜ x1+ x2+ I(x1ˆ2) + I(x2ˆ2) + I(x3ˆ2),data = d)

Residuals:
Min 1Q Median 3Q Max
−2.0659 −0.6043 −0.1029 0.7711 1.6468

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 0.583431 1.677100 0.348 0.729
x1 0.986668 0.222957 4.425 3.83e− 05 ∗ ∗∗
x2 0.501293 1.108091 0.452 0.653
I(x1ˆ2) 0.003054 0.019874 0.154 0.878
I(x2ˆ2) −0.077590 0.208712 −0.372 0.711
I(x3ˆ2) 0.987357 0.016691 59.155 ≤ 2e− 16 ∗ ∗∗
- - -
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9322 on 64 degrees of freedom

Multiple R-squared: 0.9844, Adjusted R-squared: 0.9832

F-statistic: 807.1 on 5 and 64 DF, p-value: < 2.2e-16

Using the anova() function, we can compare the first and reduced model. This
function will compute exactly the F-test described above and test the hypothesis
H0 : β3 = 0 that x3 is not significant and can be discarded without significantly
changing the ability of the model to explain the data. The call

anova(m, m2)

yields the following result:

http://dx.doi.org/10.1007/978-3-642-23502-3_1
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Analysis of Variance Table

Model 1 : y ˜ x1+ x2+ x3+ I(x1ˆ2) + I(x2ˆ2) + I(x3ˆ2)

Model 2 : y ˜ x1+ x2+ I(x1ˆ2) + I(x2ˆ2) + I(x3ˆ2)

Res.Df RSS Df Sum of Sq F Pr(> F)

1 63 55.541
2 64 55.620 −1 −0.078173 0.0887 0.7669

Unsurprisingly, the covariate x3 can be discarded, with the same high p-value as
before, and the reduced model explains the data as good as the full model. The
next candidates for reduction are x2 and x2

2 , so we delete these two covariates using
m3 <- update(m2, ˜ . − x2− I(x2 ˆ2)), which yields

Call:
lm(formula = y ˜ x1+ I(x1ˆ2) + I(x3ˆ2),data = d)

Residuals:
Min 1Q Median 3Q Max
−1.97562 −0.59584 −0.09701 0.70987 1.67002

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 1.464151 0.565332 2.590 0.0118 *
x1 0.943416 0.207696 4.542 2.43e− 05 ***
I(x1ˆ2) 0.006575 0.018555 0.354 0.7242
I(x3ˆ2) 0.985192 0.016233 60.689 < 2e− 16 ***
- - -
Signif. codes:0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9218 on 66 degrees of freedom

Multiple R-squared: 0.9843, Adjusted R-squared: 0.9835

F-statistic: 1376 on 3 and 66 DF, p-value: < 2.2e-16

Continuing in the same fashion until all remaining covariates become significant, we
find the minimal adequate model, which in this case claims that the resulting response
can be explained by x1 and x2

3 plus the intercept. The covariate x2 was found to have
no influence on the response. The minimal adequate model is therefore

Y = β0 + β1 X1 + β6 X2
3 + ε,

with estimated parameters β̂0 = 1.3, β̂1 = 1.02, and β̂6 = 0.99, which are very close
to their true values β0 = β1 =β6 = 1. To check the assumptions of homoscedacity
and normal errors, we again give the residuals and the normal Q–Q-plot in Fig. 4.6;
both look fairly good, there is no sign of any structure in the residuals and the normal
quantiles fit the residuals’ quantiles nicely, even in the tails.

Practical procedure for finding minimal models. The procedure taken in the above
example already uses the main ideas for more general cases. Typically, we start with
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Fig. 4.6 Residuals (left) and normal Q–Q-plot (right) of fitted minimal adequate model, indicating
homoscedacity and normal residuals, as assumed by the linear regression model

some plots like the demonstrated pairwise scatter plots to see which covariates have
an influence, discover structure in the data, and find “curvature” in the relationships.
We continue with a first full model containing all relevant covariates that showed
other than fully random influence on the response. We also additionally include
all covariates showing curvature by taking their square, square-root, logarithm, or
similar. Looking at the summary, we iteratively delete the covariate with highest
p-value until all parameters become significant. Using the anova() function, we
check whether the reduced model is significantly worse than the non-reduced model.
The last steps are repeated until we find the minimal adequate model.

It is important to note that this procedure, while quite successful in practice,
does not necessarily finds the best minimal adequate model, as the p-values of all
covariates are changed when one of it is discarded, and the final model often depends
on the order in which variables are discarded. This becomes more pronounced if the
covariates are dependent among each other, in which case the initial model should
contain appropriate interaction terms.

4.4.4 Outliers

Least-squares based linear regression methods are not very robust towards outliers,
which are points that are far from where they are expected to be. To measure the
extend to which a particular data point influences the overall regression, we can
remove each point successively, then fit the regression model without this point, and
compute the overall standard deviation of this model. Points that change the overall
standard deviation to a large extend then deserve special attention. Another measure
to quantify the influence of a particular point on the overall regression is the Cook’s
distance, computed for the jth point by
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Fig. 4.7 Linear regression in
presence of an outlier (point
marked x). The outlier has a
very high leverage and the
regression line is “pulled”
towards it. The dashed line
denotes the regression when
ignoring the outlier −5 0 5 10
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Fig. 4.8 Overall standard deviation (left) and Cook’s distance (right) when fitting the linear regres-
sion without the corresponding sample point. The 14th sample point clearly stands out, requiring
further attention when fitting the model

D j = 1

m

∑n
i=1

(
ŷi − ŷi\ j

)2

σ̂ 2 ,

where again n is the number of sample points, m is the number of covariates, and σ̂ 2

is the mean-squared error of the model. The two sets of predicted values are ŷi for
the model with all sample points and ŷi\ j for the model without the jth sample point.
This distance is given in one of the plots when using the plot() function on a fitted
linear model and can also be computed using the function cooks.distance().

Points that have a considerable influence on the parameter estimation are often
called influence points or leverage points. They usually require special attention and
one should always check how much the parameter values of the model change when
ignoring such point.

Example 36 Consider the situation in Fig. 4.7, where a linear regression line is fitted
to 16 data points, one of which is a clear outlier. The fitted line (solid) is “pulled”
towards this outlier and both the intercept and the slope are considerably disturbed.
In this case, the outlier is easily detected even by eye. Removing it from the data
yields the dashed regression line, which shows an excellent fit. This is also reflected
in the standard deviation, which is around 15.7 for all points but the outlier, and
drops to 1.22 if the outlier is removed before estimating the parameters. The Cook’s
distances give a similar picture. Both measures are given for the 16 data points in
Fig. 4.8.
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While quite intuitive, the term outlier already implies that the proposed under-
lying model is correct in the sense that all its assumptions, such as the linearity and
homoscedacity, hold. If these assumptions are indeed correct, then leverage points
can often be interpreted as incorrect measurement values. When values are recorded
manually, a simple typo or a misplaced decimal point may already explain an unusual
leverage point. In other cases, the measurement device might be incorrectly calibrated
or failed to record a particular value, setting it to zero instead.

On the other hand, the underlying model may already be incorrect. For example,
we may be using a linear regression model on data generated by a nonlinear rela-
tion between covariate and response. Then, leverage points with, e.g., large Cook’s
distances, might simply be caused by wrong model assumptions and are not outliers
in the sense of an incorrect measurement.

Example 37 Let us consider the following situation: we are given response data to
a covariate x. The true response is a cubic function of the covariate, and the correct
model is

Y = β0 + β1 X3.

We now instead try to estimate the parameters of the regression model

Y = β0 + β1 X

using the data. This model neglects all the curvature, and we fit a straight line to the
data. The resulting parameter estimates seem to look good; the slope parameter is
significant and a good overall p-value for the model is achieved.

Call:
lm(formula = y ˜ x)

Residuals:
Min 1Q Median 3Q Max
−590.255 −238.004 1.025 295.897 721.400

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 48.63 104.91 0.464 0.65
x 126.83 20.00 6.340 1.83e− 05 ∗ ∗∗
- - -
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 368.9 on 14 degrees of freedom

Multiple R-squared: 0.7417, Adjusted R-squared: 0.7232

F-statistic: 40.19 on 1 and 14 DF, p-value: 1.829e-05

The overall fit is given by the solid line in Fig. 4.9 (left), with an analysis of
its leverage points in Fig. 4.9 (right). However, the points with high leverage are
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Fig. 4.9 Left Fit of linear model Y = β0 + β1 X to function y = 2 + 2x3 + ε (solid line). The
dashed line shows the fit of a cubic polynomial. Right Cook’s distances as influence measures of
straight-line model on the data

clearly not “outliers” in the sense of incorrect measurements, but are artifacts from
our attempt to fit a straight line to a curved dataset. A more detailed inspection of
the residuals and the fit is indicated and higher powers of the covariate such as x2

and x3 need to be added to the model. Fitting the correct model y ˜ I(xˆ3) yields
the dashed line in Fig. 4.9 (left), which shows an excellent fit.

4.4.5 Robust Regression

Least-squares estimation of regression parameters can be very sensitive to the pres-
ence of even a small number of outliers in the data. Therefore, the question for
more robust methods naturally arises and we will very briefly present two alterna-
tives to least-squares estimation that are less sensitive to outliers and have high
breakdown points: the RLM approach tries to robustly fit a linear model using
so-called M-estimators, while the LQS approach relies on resistant regression by
picking only “good” points for the estimation. We can not present the details of these
two approaches in this book, but both are conveniently implemented in the MASS
package of R and can be called by rlm() and lqs(); these implementations can
again be used using formulas, just like the lm() function for least-squares regres-
sion: rlm(y ˜ x) and lqs(y ˜ x) will do all the heavy lifting for us. They both
encompass several different methods each, and work mainly by using order statistics
for estimation and weighting schemes to detect and down-weight points with high
leverage. For the two above examples of a true linear function and a cubic function,
the fitted regression lines are shown in Fig. 4.10. For the linear data, the outlier clearly
does not influence the regression line anymore and a very good fit is achieved with
both methods, basically by ignoring the outlier or giving it a very low weight in the
estimation. The estimated models are almost identical for both estimations. Using
an incorrect model like the straight line for the cubic data, both methods will fail to
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Fig. 4.10 Robust linear regression models of the linear (left) and cubic (right) dataset using the R
function rlm() (solid) and lqs() (dashed). For the linear case, the two regressions are almost
identical, but they differ substantially in the cubic case. The dotted lines indicate the non-robust fit
using lm()

give a good explanation of the data, as shown in Fig. 4.10 (right). The two estimated
models are very different, however, due to the different way the methods ignore and
down-weight what seem to be outliers. For comparison, the non-robust least-squares
estimates are also given in both cases.

4.5 Analysis-of-Variance

Using ideas very similar to linear regression of a metric response on metric covariates,
we can also analyze the influence of categorial covariates on a metric response by
ANOVA. There is a very rich theory on ANOVA, but we will only be concerned with
the basic ideas and methods. In particular, we only discuss the case of one covariate.

4.5.1 Problem Statement

We consider one categorial covariate X and a metric response Y. In the context of
ANOVA, the covariate X is called a factor and its different possible categories are
called factor levels. We are interested in the question whether the different factor
levels have an influence on the response or not, and whether these influences are
substantially different for the different factor levels. Each factor level is claimed to
give a particular response. Again, the response is subject to noise, so the same factor
level may lead to different response values, spread around a certain value. Let us
look into an example to make these considerations more concrete.

Example 38 We want to test the effect of different growth media (that is, mixtures of
different nutrients) on the growth of cells. There are three different media: A, B, and
a control medium, and A, B are both tested in a low and a high concentration. Thus,
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Fig. 4.11 Boxplot of cell growth response values for the control and two different media (A/B)
with two concentrations (high/low) each

the covariate X is a factor with 5 levels, one for each possible medium. For each
factor level (each medium), several experiments are conducted and the cell growth
is recorded, which yields a metric response to the categorial covariate. A convenient
way to visualize the influence of the factor levels on the response is the boxplot,
which can easily be generated using boxplot(growth ˜ medium,data = d)

and is shown in Fig. 4.11. The first impression of this plot is that both A and B seem
to have a considerable effect on the growth, but that there is no difference between
them. The concentration of each medium also seems to have little to no effect. The
main part of our discussion of ANOVA will revolve around making these impressions
quantitative.

Formally, let us consider a factor X with k factor levels and assume that we have
ni observations for the ith level. Then, the ANOVA model is

Yi j = μi + εi j , i = 1 . . . k, j = 1 . . . ni ,

where Yi j is the jth measured response for factor level i, μi is the true mean value
for this level and εi j is the associated measurement error, which is again assumed to
have mean zero and constant but unknown variance for all levels. Often, we again
assume the error to have a normal distribution as well.

We can derive an equivalent model by replacing the factor level means μi by an
overall mean μ0 and the difference αi = μi − μ0 of each level mean to the overall
mean, yielding

Yi j = μ0 + αi + εi j .

In essence, the ANOVA model claims that the undisturbed response at factor level
i would take the value μi . Due to the error perturbing the measurement, measured
values Yi j spread around the value μi . The ANOVA is then performed to answer the
question whether or not the factor level has an influence on the outcome and if so,
which factor levels yield different outcomes. This in mainly a question whether the
mean values of k levels differ significantly or not and in this sense, ANOVA can be
seen as an extension of t-test procedures to more than two groups.
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4.5.2 Parameter Estimation

In close resemblance to the linear regression, our first task is to estimate the various
parameters of the ANOVA model. Let n = ∑

i ni be the total number of sample
points from all levels. The estimators for the overall and the individual factor level
means are then the arithmetic means taken over the corresponding sample points.
The differences in means are estimated as the difference of the estimators, and we
can also estimate the variance in the data in the straightforward way.

We therefore derive the estimators

μ̂0 = ȳ = 1

n

k∑
i=1

ni∑
j=1

yi j ,

μ̂i = ȳi = 1

ni

ni∑
j=1

yi j ,

α̂i = μ̂0 − μ̂i ,

σ̂ 2 = 1

n − k

k∑
i=1

ni∑
j=1

(
yi j − ȳi

)2
.

Because we estimate the variance from k different factor levels, the correct degrees
of freedom are n − k.

4.5.3 Hypothesis Testing

For testing the various hypotheses on the influence of the factors, we can apply
the same general ideas as for the linear regression analysis. In particular, we can
decompose the total variation SStot in the data, given by

SStot =
k∑

i=1

ni∑
j=1

(
yi j − ȳ

)2

into the variation explained by the ANOVA model, and the remaining unexplained
variation. In ANOVA, the explained variation is the between-groups-variation,
caused by the different means for each factor level. It is calculated as the sum of
squared differences of group (i.e., factor level) means to the overall mean, scaled by
the appropriate number of samples in each group.

SSbetween =
k∑

i=1

ni (ȳi − ȳ)2.
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The remaining unexplained variation is the within-group-variation that measures
how much the data from the same group disperses around the corresponding group
mean.

SSwithin =
k∑

i=1

ni∑
j=1

(
yi j − ȳi

)2
.

The total variation is then again composed of the sum of between- and within-
group-variation:

SStot = SSbetween + SSwithin.

As for the linear regression, the total variation is constant and independent of an
ANOVA model, but the contributions of the within- and the between-group-variations
to the total variation depend on the estimated parameters of the ANOVA model,
allowing us to compare different models.

The global hypothesis. Again, the boldest hypothesis we might want to test is the
global null hypothesis that none of the factor levels has an influence on the response.
If this hypothesis is not rejected, the model does not explain any of the variation in
the data. The hypothesis is

H0 : μ1 = · · · = μk,

which is also equivalent to H0 : α1 = · · · = αk = 0, i.e., no difference in the expected
response to the factor levels. Although we want to test the equality of group means,
the test statistic is in fact based on comparing the between-group-variation SSbetween
to the within-group-variation SSwithin. Dividing each by their corresponding degrees
of freedom, this ratio has an F-distribution, provided that the errors εi j are normally
distributed. The test statistic is thus

F = SSbetween/(k − 1)

SSwithin/(n − k)
,

and with F ∼ F(k − 1, n − k), we reject H0 at level α, if F > F1−α(k − 1, n − k).

Here is how this works: if the variation of response values in one group is similar
to the overall variation, this indicates that these values can not be separated from the
other groups. If, however, the variation in the group is much smaller than the overall
variation, this means these values are more compact and have a distinct location
within the overall data, making it easy to spot response values of this group. The two
situations are depicted in Fig. 4.12: if the response values are comparatively compact
for each group, and the groups are different, the within-group-variations are small
compared to the between-group-variations (left panel). Conversely, similar within-
and between-group-variations lead to many similar response values of different
groups, making it difficult to distinguish them (right panel).
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Fig. 4.12 Left Small within-group-variation (SSwithin = 54.93) and large between-group-variation
(SSbetween = 637.2) indicate good separation of the groups. Shown are three factor levels with group
means μ1 = 4 (square), μ2 = 8 (triangle), μ1 = 12 (cross), and an error variance of σ 2 = 1, where
group membership is indicated by different symbols. Right High within-group variation indicates
bad separation and/or very high error variance (SSwithin = 1602.35 and SSbetween = 556.24). The
same factor levels as before are used, but the error variance is now σ 2 = 30 and estimated as
σ̂ 2 = 28.11

Example 39 Let us test the global hypothesis for the example of cell growth in five
different media. The global null hypothesis states that the medium does not cause any
difference and thus the average cell growth is the same for all five conditions. We get
the data as a table with two columns, the first containing the measured growth value
(a number), the second the factor level (here, a simple name). To get an impression
of how this data looks like, a selected subset of the rows are given below:

growth medium
1 11.364981 Control
7 9.179241 Control
17 11.093238 Med.A-
41 15.848123 Med.A+
52 15.137522 Med.B-
59 9.982484 Med.B+

Once the data is established, we can formalize the model using the same R formulas
as for the linear regression and simply apply the function aov() instead of lm().
Here, we compute the ANOVA of the response growth with respect to the factor
medium on the data d:

model <- aov(growth ˜ medium,data = d)

The summary() function is used to give the ANOVA table

Df Sum Sq Mean Sq F value Pr(> F)

medium 4 456.70 114.17 34.920 1.495e− 15 ***
Residuals 65 212.52 3.27
- - -
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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The column Df contains the degrees of freedom of the factor and the residuals, the
columns Sum Sq and Mean Sq contain the sum of squares and the mean sum of
squares (variation). The value Mean Sq of the Residuals is the pooled variance
of the data, and the first row gives us the result of the global null hypothesis test. As
indicated by the very low p-value, at least one of levels of the factor medium does
significantly influence the response growth.

Contrasts While the global hypothesis is a first check to decide whether the factor
has any influence at all, we are often interested in a more detailed analysis to see
which factor levels have influence and whether the influences of the different levels
are significantly different. For this, we need to be able to test subsets of factor levels
against each other and formally state hypotheses like “the first and second level of
the factor differ from each other” and “the first and second level might not differ, but
both differ from the third”. An elegant and powerful way to do this is by means of
linear contrasts. A linear contrast is a weighted sum of the expected response to the
factor levels

	C =
k∑

i=1

ciμi ,

where C = (c1, . . . , ck) are any numbers that sum to zero: c1 + · · · + ck = 0. Let
us assume that we want to test the hypothesis that the factor levels i and j yield the
same response, which we can write as H0 : μi − μ j = 0. This hypothesis can be
recast in terms of a linear contrast by setting the contrast values ci = +1, c j = −1
and cl = 0 for all other levels. The contrast then reads

	C = μi − μ j ,

and we test the equivalent hypothesis H0 : 	C = 0. The problem is thus transformed
from testing combinations of factor levels against each other to testing whether a
function of the group means (the contrast) is zero. For performing this test, we need
to find an estimate for the contrast 	C and to establish its distribution under the null
hypothesis.

Estimating the contrast is again straightforward: with the ci given, we can simply
plug in the estimators for the group means to get the estimator for the contrast as

	̂C =
k∑

i=1

ci ȳi .
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We already saw that if we use an estimator as a test statistic, we can use the (1−α)-
confidence interval of the estimator to get the corresponding rejection region of the
test at level α: testing whether the contrast is zero at the test level α is equivalent
to checking if the value zero is contained in the corresponding (1 − α)-confidence
interval of the estimate. This CI is given by the usual form

CIα = 	̂C ± Sα ŝe(	̂C ),

where the standard error of the estimator is given by

ŝe(	̂C ) = σ̂

√√√√ k∑
i=1

c2
i

ni
,

as Var(	̂C ) = ∑
i c2

i Var(ȳi ) and Var(ȳi ) = σ̂ 2/ni . Testing the difference of two
levels i, j is equivalent to a t-test, which would give us the quantile Sα = tα(ν)

with corresponding degrees of freedom ν. However, using contrasts often means
that we simultaneously perform several such pair-wise tests and thus need to correct
for multiple testing. While the Bonferroni-correction works for a small number of
contrast, another option is to use Scheffé’s-quantile

Sα = √
(k − 1)F1−α(k − 1, n − k).

The test at level α for a contrast 	C is then:

Reject H0 : 	C = 0 if 0 �∈ CIα.

Setting up a contrast in the general case is very easy with the following rules:

• Setting the contrast value ci to zero excludes the corresponding factor level.
• Factor levels with same sign for ci are lumped into one group.
• Factor levels with different signs are contrasted, i.e., their means are compared.
• Overall, the contrast values ci must sum to zero.

Let us look at a longer example, where we analyze the impact of the various media
on the cell growth and try to figure out whether medium A and medium B differ from
each other and from the control, and whether high versus low concentrations have
an effect.

Example 40 From the last example, we know that the ANOVA model can explain
the data with good p-value. In order to see the contribution of each factor level to
this explanation, we can use the summary.lm() function.
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Call:
aov(formula = growth ˜ medium, data = d)

Residuals:
Min 1Q Median 3Q Max
−5.5530 −1.2744 0.2174 1.2053 3.6179

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 9.1693 0.4669 19.640 < 2e− 16 ***
mediumMed.A+ 6.7843 0.6405 10.591 8.62e− 16 ***
mediumMed.A- 5.1105 0.6852 7.459 2.67e− 10 ***
mediumMed.B+ 6.3662 0.6719 9.474 7.30e− 14 ***
mediumMed.B- 5.6872 0.7178 7.923 3.99e− 11 ***
- - -
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.808 on 65 degrees of freedom

Multiple R-squared: 0.6824, Adjusted R-squared: 0.6629

F-statistic: 34.92 on 4 and 65 DF, p-value: 1.495e-15

The reported p-values of the four factor levels correspond to the difference of the
factor level to the first factor level, i.e., the control. As expected from the first visual
inspection of the data, all four differences of high A to the control, low A to the
control and so forth are highly significant, indicating that using any medium yields
better growth than using the control medium. However, the values do not allow us
to see whether the concentrations have different effects, for example. We therefore
want to test the following hypotheses:

1. control vs. other media. The claim is that the effect of the other media differs
from the control. We formulate this by giving a contrast of +4 to the control, and
−1 to each of the four other levels, thus C = (4,−1,−1,−1,−1).

2. Medium A and medium B differ. We can ignore the control here, and group the
two concentrations by choosing C = (0, 1, 1,−1,−1).

3. High and low concentrations of A have different effect: C = (0,−1, 1, 0, 0).

4. High and low concentrations of B have different effect: C = (0, 0, 0,−1, 1).

These contrasts are simultaneously set up in R using the command

contrasts(d$medium) <-cbind(c(4,−1,−1,−1,−1),c(0,1,1,

+ − 1,−1),c(0,−1,1,0,0),c(0,0,0,−1,1))

which yields the contrast matrix
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> contrasts(d$medium)

[,1] [,2] [,3] [,4]
Control 4 0 0 0
Med.A+ −1 1 −1 0
Med.A- −1 1 1 0
Med.B+ −1 −1 0 −1
Med.B- −1 −1 0 1

This matrix is attached to the factor medium in the data frame d, and we can apply
it by simply creating a new model with aov

model2 <- aov(growth ˜ medium,data = d)

which yields the summary
Call:
aov(formula = growth ˜ medium, data = d)

Residuals:
Min 1Q Median 3Q Max
−5.5530 −1.2744 0.2174 1.2053 3.6179

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 13.95894 0.21841 63.912 < 2e− 16 ∗ ∗∗
medium1 −1.19741 0.10562 −11.337 < 2e− 16 ∗ ∗∗
medium2 −0.03967 0.24681 −0.161 0.8728
medium3 −0.83691 0.33310 −2.512 0.0145 ∗
medium4 −0.33948 0.36427 −0.932 0.3548
- - -
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.808 on 65 degrees of freedom

Multiple R-squared: 0.6824, Adjusted R-squared: 0.6629

F-statistic: 34.92 on 4 and 65 DF, p-value: 1.495e-15

The first row gives again the global hypothesis that the factor levels give different
response values. The second to fifth row give the results of the four contrasts attached
to the data frame; only the difference of the control to the two other media is signif-
icant, whereas none of the comparisons between the non-control media shows a
significant difference for α = 0.01. To simplify the model, we can therefore continue
our analysis by lumping the four non-control factor levels into a single new factor
level by

medlumped <- d$medium
levels(medlumped)[2 : 5] <- "medium"
d$medium <-medlumped

We again estimate the parameters for this new ANOVA model with only two factor
levels and compare it to the original full model using the anova() function. The
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two models do not have significantly different explanatory power (at level α = 0.1)
and we found the minimal model explaining the data.

Analysis of Variance Table

Model 1 : growth ˜ medium
Model 2 : growth ˜ medium

Res.Df RSS Df Sum of Sq F Pr(> F)

1 65 212.52
2 68 236.00 −3 −23.480 2.3938 0.07639.

- - -
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’0.05 ‘.’ 0.1 ‘ ’ 1

The most simple explanation of the observed responses to the various factor levels
is thus only the difference between the control and any medium and we found that
there is no difference between the two media, nor between a medium in low or high
concentration.

4.6 Interpreting Error Bars

We conclude our investigation with a brief discussion of a common technique to find
differences in the influences of factor levels on a response from plots of the data. In
practice, the effect of a factor on a response is often not reported by giving the results
of an ANOVA, but rather by plotting bar-graphs of the response, with one bar per
factor level. The height of each bar then corresponds to the estimated mean value of
the group and an error bar is provided. Sometimes, it is then argued that whenever
two error bars overlap, the difference of the two groups is not significant, whereas
if the bars do not overlap, the difference is significant. This, however, is only true
for very particular choices of error bars under the strong additional assumption of
normally distributed data in each group.

Standard deviations. The most common choice for error bars is to plot intervals
of length corresponding to one standard deviation in each direction. Apart from
the problem that very different data can give the same bar-plot (recall Sect. 1.8.4),
knowing the mean and standard deviation does not allow inference of differences in
the means. This is because the standard deviation represents the dispersion of values
in the data, but not the uncertainty in the estimated means. This error bar is thus
descriptive, but not inferential.

Confidence intervals. An option to derive inferential error bars is to compute the
95%-confidence intervals for each group mean and use their lengths as the lengths
of the error bars. We know that the true value of a group mean is contained in the
confidence interval of its estimate with probability 1 − α. If the confidence intervals
of two estimated group means do not overlap, we can therefore safely infer that the
two means are significantly different because the probability of them having the same

http://dx.doi.org/10.1007/978-3-642-23502-3_1
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value is lower than α. However, nothing can be said if two bars do overlap; thus, we
can only infer different, but not equal group means using this method.

Standard errors. Alternatively, we can use the standard errors of the estimated
group means. If we again denote by σ̂ the standard deviation of the response, taken
over all factor levels, we already know that the estimated standard error for the
mean ȳi of group i is ŝe(ȳi ) = σ̂ /

√
ni (the confidence interval then has length

2t1−α/2(ni )ŝe(ȳi )). Let us recall that the difference μi − μ j of two group means is
significant at the level α if

∣∣∣∣
ȳi − ȳ j

ŝe(ȳi − ȳ j )

∣∣∣∣ > t1−α/2(ni + n j − 2).

If the sample sizes ni and n j for the two groups are large enough, we know that
t0.975(ni + n j − 2) ≈ 2 is a good approximation of the t-quantiles for α = 0.05.

Thus, the means are significantly different if they are more than twice the standard
error of the estimated difference apart. The problem is that the standard error of
the difference depends on the two groups that we compare and we can only give
error bars that are valid for a particular pair of groups. However, this standard error
is always smaller than the sum of the two standard errors of the individual means,
because the variance of the difference is the sum of the variances:

ŝe(ȳi − ȳ j ) =
√

σ̂ 2

ni
+ σ̂ 2

n j

≤
√

σ̂ 2

ni
+ σ̂ 2

n j
+ 2

σ̂√
ni

σ̂√
ni

=
√(

σ̂√
ni

+ σ̂√
n j

)2

= ŝe(ȳi ) + ŝe(ȳ j ).

Therefore, we can use the individual standard errors for the means (one per group),
but by doing so overestimate the standard error of the difference. This still allows
us to infer that there is no significant difference (at the 5%-level) of any two group
means if their corresponding error bars overlap. However, non-overlapping bars do
not allow to infer a significant difference.

Least-significant difference (LSD). In the special case that each group has the
same sample size, so n1 = · · · = nk, the standard error of the differences

ŝe(ȳi − ȳ j ) =
√

σ̂ 2

ni
+ σ̂ 2

n j
=

√
2
σ̂ 2

ni
= √

2
σ̂√
ni

,

is the same for all pairs i,j of groups. From this, we derive the LSD as LSD =
t1−α/2

√
2 σ̂√

ni
. Using a length of LSD/2 for each arm of the error bar, this allows us

to infer that there is no significant difference between the means of any two groups if
the corresponding bars overlap and also that there is a significant difference between
them if their corresponding bars do not overlap.
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4.7 Summary

Regression analysis allows us to study the influence of one or several covariates on a
response. If all variables are metric, we can perform a linear regression and estimate
parameters either by a least-squares or by a robust RLM or LQS approach.

Confidence intervals for predicted values also depend on the distance of the new
covariate value to those used for estimation.

Decomposing the total variation of the model into explained and unexplained
variation allows us to use F-tests to discard covariates.

ANOVA lets us simultaneously compare several means by regressing a response
on a factor with several levels. We test combinations of levels using F-tests on linear
contrasts.

For normally distributed samples, we can visually infer differences in factor levels
from overlaps in appropriate error bars.
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