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1Introduction

A research design that collects information of the same units repeatedly over time
is called a panel. Traditionally, panel studies use surveys and focus on individuals.
But increasingly, this design is also applied to the analysis of firms, nations, and
other social entities using all kinds of source (official statistics, process-produced
data, etc.).

The collection of panel data in academic research dates back to the 1940s when
Paul F. Lazarsfeld (Lazarsfeld and Fiske, 1938; Lazarsfeld, 1940) started to intro-
duce this methodology from market research into the analysis of public opinion. The
first classical panel study (also known as the Erie County study) was an analysis of
voting behavior during the 1940 presidential campaign and was conducted by the
Bureau of Applied Social Research of Columbia University under the direction of
Lazarsfeld himself (Lazarsfeld et al., 1944). Ten years later, the ELMIRA study was
published that analyzed some of the open questions of the Erie County study using
panel data collected during the 1948 presidential campaign (Berelson et al., 1954).

In the present day, numerous panels are available. They can be found in all social
and life sciences. Chapter 6 lists some of the most prominent social science exam-
ples (see Table 6.1). The classical examples are the US American National Longitu-
dinal Surveys of Labor Market Experience (NLS) and the University of Michigan’s
Panel Study of Income Dynamics (PSID) that were started in the 1960s. In many
respects, both studies have been prototypes for many other household panels. In
Europe, various countries have their own national household panel studies, among
them the German Socioeconomic Panel Study (SOEP), the British Household Panel
Survey (BHPS), and the Swiss Household Panel (SHP). In response to the increasing
demand in the European Union for comparable information across Member States,
Eurostat has coordinated in the 1990s a European Community Household Panel
(ECHP), which later has been replaced by the European Union Statistics of Income
and Living Conditions (EU-SILC). Many countries outside the US and Europe have
initiated similar panel studies (e.g., Korea Labor Income Panel Study; Household,
Income and Labor Dynamics in Australia Survey). A research project at the Depart-
ment of Policy Analysis and Management at Cornell University has integrated some
of these data in a large comparative panel data set, the Cross National Equivalent

H.-J. Andreß et al., Applied Panel Data Analysis for Economic and Social Surveys,
DOI 10.1007/978-3-642-32914-2_1, © Springer-Verlag Berlin Heidelberg 2013

1

http://dx.doi.org/10.1007/978-3-642-32914-2_1


2 1 Introduction

File (CNEF), which includes data from Australia, Canada, Germany, Great Britain,
Korea, Switzerland, and the US.

All of the previous panel studies focus on individuals (in households), but Ta-
ble 6.1 mentions also some other examples. For instance, the Organization for Eco-
nomic Development (OECD) provides a Social Expenditure Database (SOCX) that
includes yearly social policy indicators for 34 OECD countries since 1980. In this
case the unit of analysis is the country. Another example is the IAB Establishment
Panel (IAB-EP) of the Institute for Employment Research (IAB) of the German Fed-
eral Employment Agency. It is a yearly repeated survey of German establishments,
which began 1993 in West Germany and 1996 in East Germany. Here the unit of
analysis is the single establishment.

As in the aforementioned household panels, the IAB-EP is a survey, while
OECD’s Social Expenditure Database uses official government statistics. However,
the establishments in IAB-EP can be matched with data on employees generated in
labor administration and social security data processing. Obviously, the method of
data collection varies between different panel studies. Therefore, by using the term
“panel” we refer to a specific research design (repeated measurements of identical
units) and not to a particular method of data collection.

1.1 Benefits and Challenges of the Panel Design

As the increasing number of panel studies in the recent years shows, the panel design
has become increasingly attractive in social research. It can answer more research
questions in a much more convincing manner than other research designs. How-
ever, a panel is a complex research design and presents many new challenges for
social science methodology. We start by summarizing some of its benefits, before
we briefly mention the most important challenges.

1.1.1 Benefits

1.1.1.1 Measuring Change at the Individual Level
The main motivation for collecting panel data is an interest in the analysis of change;
more specifically, an interest in the analysis of change at the (individual) level of
units. What is meant by this can be illustrated with a classical example from poverty
research.

How to measure poverty and whether it is a social problem public policy should
take care of, is a constant controversy in public discourse. The conventional poverty
indicator measures the number of individuals having less economic resources than
40, 50 or 60 % of the median income in their home country. For instance, the Eu-
ropean Union defines individuals falling below 60 % of the median income at risk
of poverty (Atkinson et al., 2002). Of course, the details of this indicator are much
more involved (Which incomes to look at? How to compare single persons and indi-
viduals living in families?) but for our present purpose it is enough to say that such
a measure exists.
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According to the data in Duncan et al. (1993, 231) the average at-risk-of-poverty
rate in the US between 1980 and 1985 amounted to 27.9 %. In the following six-
year-period from 1981 to 1986, the rate was slightly higher (on average 28.6 %). If
more than one-quarter of US citizens according to this definition are poor, it looks
like the US had a dramatic poverty problem in the early 1980s. Yet, some scholars
argue that the 60 % threshold is much too generous; it measures individuals at the
risk of poverty, they argue, but not those in poverty. For that purpose, the 40 %
threshold should be used and according to that measure fewer US citizens were
estimated as being poor in the early 1980s (on average 13.6 %) (see Duncan et al.,
1993, 231). Whether this percentage is a less dramatic number, is a difficult question
because a benchmark is missing. However, if it would be significantly larger than
the corresponding poverty rate in other countries or if it would increase over time in
the US, it would certainly be a matter of concern.

All of these questions can be answered by using cross-sectional (income) surveys
in the corresponding countries and years. Likewise, the aforementioned poverty
rates could have been computed from cross-sectional surveys in the years 1980–
1986. In other words: For estimates of the level and trend of poverty rates we do
not need panel data. However, if someone asks how many of these poor people are
also poor in the following year, cross-sectional data would not provide the answer,
because more information is needed than the (aggregate) poverty rate in the fol-
lowing year. One must know the poverty status for each individual in the following
year, which presupposes a second (repeated) measurement of the same individual’s
income. This kind of information measures change (and stability) at the individual
level and is only available from panel data. Clearly, a situation in which a signifi-
cant proportion of this year’s poor individuals escapes poverty would be less of a
concern than a situation in which the poor remain in poverty for a longer time. Fur-
thermore, transient poverty may have other causes and needs other policy measures
than permanent poverty.

Note that similar questions about stability and change at the individual level are
asked in other fields of social inquiry, among them voting and consumer behavior
where, as we have seen, panel designs were used for the first time. For example,
party preferences at the aggregate level may be quite stable, but at the individual
level only some voters may have stable preferences, while the majority of voters
is not committed to a certain party and may change their party vote quite quickly.
Obviously, political parties have an interest in strengthening the bonds to their stable
electorate and to convince as many of the undecided voters, and it may be necessary
to design different campaigns for both groups of voters. Similarly, producers of
consumer goods are confronted with the problem of brand loyalty. On the one hand,
they are interested in knowing who the loyal clients are and how to strengthen their
preferences for the product. On the other hand, they want to increase their market
share and for that reason they need to know how to gain new consumers.

But let us turn back to the poverty example and see what can be done with panel
data. Table 1.1 shows the results for the US during the early 1980s. According to
these data, 71.3 % (=9.7/13.6) of the severely poor (those below the 40 % thresh-
old) remain in poverty in the following year. Note that this is an average of all yearly
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Table 1.1 Family size-adjusted income transition tables for US American families with children
(using 40, 50 and 60 percent of median income)

<40 40–50 50–60 ≥60 All

Percent

<40 9.7 1.8 0.8 1.3 13.6

40–50 2.1 2.0 1.1 1.5 6.7

50–60 1.1 1.4 2.1 3.0 7.5

≥60 1.6 1.5 3.4 65.6 72.2

All 14.5 6.6 7.4 71.4 100.0

Source: Duncan et al. (1993, 231) using PSID data (n = 17,427)

transitions between 1980 and 1986, but it would be easy to compute the correspond-
ing percentage for a specific year, say 1984. A slightly larger (average) stability rate
of 79.2 % is observed for the group of US citizens at the risk of poverty (those be-
low the 60 % threshold). All the statistics in Table 1.1 have been estimated using
data from the US American Panel Study of Income Dynamics (PSID). However, as
the margins of the table demonstrate, panel data can also be used to estimate (cross-
sectional) poverty rates for specific years. The right column (labeled “all”) shows
that in the period from t = 1980 to t = 1985 on average 13.6 % have been severely
poor and that poverty increased slightly to 14.5 % in the following years t + 1 (see
the last row labeled “all”).

Hence, besides answering questions on individual change, panel data can also
be used to answer typical cross-sectional questions about level and trend. In other
words: panel data allow us to address all the research questions that we are used to
analyze with cross-sectional data and some additional questions that cross-sectional
data cannot deal with; among them the question of individual change.1 Neverthe-
less, some purists argue that panel data should be used for the analysis of change
only, especially so because panel data have their problems too when it comes to the
analysis of long-term trends (see the problem of panel attrition below). We agree,
however, with the majority of researchers who think that this would be a waste of
resources. If this rich data are available, they should also be used for the analysis of
levels and trends, especially so if no other longitudinal information is available. Re-
peated cross-section surveys are not abundant and often do not include the variables
of interest.

The distinction between level and change is one of the guiding principles that
structures the material presented in this textbook. Furthermore, we differentiate with
respect to the type of the dependent variable that is of interest. Poverty status, party
preference, and consumption pattern are called categorical variables, while income,
political interest, and consumption expenditures are continuous variables. This text-

1Of course, it is true that a cross-sectional survey can also ask retrospective questions and in doing
so measure what has changed since some former point in time. However, the amount of retrospec-
tive information is usually quite limited and always prone to recall bias.
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book will show how to analyze the level and change of continuous and categorical
panel data.

1.1.1.2 Separating Age and Cohort Effects
When analyzing change, researchers often want to separate generational from mat-
uration effects. While the former relate to the time when the units of interest started
to exist (e.g., year of birth in case of individuals or year of foundation in case of
business companies), the latter relate to the time that has passed since the starting
date (i.e., the age of individuals or business companies). With a cross-sectional de-
sign it is impossible to disentangle both effects, because if one knows the age of
an individual (company) at the time of measurement (t), one can easily compute its
year of birth (foundation). By definition, with only one measurement both variables
are perfectly related to each other: birth = t −age. With a panel design, on the other
hand, each unit is observed repeatedly over time and hence, units belonging to the
same generation are measured at different ages. Now it becomes possible to analyze
how maturation (age) affects the characteristics of different generations (sometimes
also called cohorts).

In principle, this analysis can also be done by combining several cross-sections
over time (the pooled cross-sectional design), given we are not interested in change
at the individual level. For example, a cross-sectional survey conducted in the year
2000 will include individuals from different birth cohorts, among them individu-
als born in 1950. Another cross-sectional survey sampling the same population in
2005 will again include individuals from the 1950 generation, however at a later age
(55 instead of 50). Combining (pooling) both surveys provides us with two mea-
sures of age for the 1950 and all other birth cohorts, which also allow us to separate
maturation (age) from generation (cohort) effects. However, compared to the panel
design, individuals from the 1950 generation sampled in 2005 will not be the same
individuals that have been sampled in 2000 (except some rare cases that incidentally
have been sampled in both years). Therefore, the pooled cross-sectional design pro-
vides us only with so-called synthetic cohorts. Analyzing differences with respect to
age with synthetic cohorts always has to control for possible chance fluctuations in
these differences that are due to sampling repeatedly from the corresponding birth
cohorts as is done when using several cross-sections. In case of a panel design, on
the other hand, we measure the same members of a birth cohort repeatedly over
time and hence, with these “true” cohort data we can make a much stronger case for
maturation effects.

1.1.1.3 Controlling for Omitted Variable Bias
Another problem that ails all empirical research is the fact that we often do not
know all the determinants of our dependent variables and even if we know them
theoretically, we often do not have measures of them. Therefore, we always have
to be aware that our models may be incomplete and our estimates possibly biased,
because we have omitted important explanatory variables from our models. With
cross-sectional data, there is not much we can do about omitted variable bias ex-
cept make simplifying assumptions about the effects of these omitted variables. The
situation is less hopeless with panel data.
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As we will show in the following chapters, panel data allow us to control for at
least part of this unobserved heterogeneity. The fact that we have access to repeated
measurements of the same units allows us to control at least for their unknown
characteristics that are constant over time. Units are used as their own controls, a
technique known from experimental research as the pre-test post-test design. The
underlying idea is the following: if a variable X influences the variable of interest
Y , then a change of X at some time point t should result in a different value of
Y at t + 1 than the value of Y at t − 1. Since this design compares identical units
measured at t − 1 and t + 1, it also controls for all their characteristics that do not
change in between.

1.1.1.4 Assessing Causality
Talking about influences and effects instantly leads to the question of causality. This
introductory chapter is not a good place to discuss criteria of causality and causality
assessment. Nevertheless, to understand the potential of panel data compared to
other research designs, an informal definition of causality is sufficient. According to
this definition, (i) two variables X and Y should correlate with each other, when they
are causally related. (ii) This correlation should not be spurious in the sense that the
correlation between X and Y is due to the correlation of both variables with some
other (third) variables. (iii) Finally, whether X has a causal effect on Y (and not Y

a causal effect on X) should be demonstrated by manipulating X and analyzing the
changes of Y . At least, changes of X should precede changes of Y .

These criteria are most easily assessed with an experiment. One can manipulate
X under controlled conditions and analyze whether that results in changes of Y .
Other determinants of Y are controlled for by the experimental setup and by select-
ing units randomly into the treatment and control group (randomization).

A cross-section is the most inappropriate design to assess causality. First, it does
not allow one to disentangle the time order of X and Y because all variables are
measured at the same point in time. Second, in a real-life situation X is possibly
correlated with other variables that cannot be controlled for because they are un-
known or have not been measured.

As the discussion in the previous section showed, with panel data it is at least
possible to control for those unknown or unmeasured determinants of Y that are
constant over time. Moreover, since panel data include repeated measures of X

and Y it is much easier to assess whether changes of X precede changes of Y or
vice versa. This does not mean that all problems of causality assessment are solved
with panel data, but the panel design has much more power than many other de-
signs.

1.1.1.5 Obtaining Larger Sample Sizes
In most cases, small sample sizes are not a problem for survey researchers. Given
enough financial resources, it is just a matter of time to collect data on a sample of
several thousand individuals. However, social scientists interested in the quantitative
analysis of macro phenomena (political systems, national economies, and so on)
often have to deal with small sample sizes.



1.1 Benefits and Challenges of the Panel Design 7

For example, scholars interested in social expenditures in modern capitalist wel-
fare states often decide to analyze OECD countries, simply because the OECD
provides so many statistics about them. At present, this population includes only
34 units (countries) and given this low number, it does not make sense to draw a
sample. Such small data sets are typical for many analyses at the country level,
as you find them in political science, macroeconomics and macro sociology. The
limited sample size severely limits possible statistical analyses. In this case, many
scholars recommend to extend the data in the time dimension and measure each
(macro) unit at several points in time (a panel design). However, it is important to
keep in mind that a sample of 30 units observed more than 20 times (see, e.g., the
SOCX data base in Table 6.1) is not equivalent to a sample of 600 units, because
repeated measurements of identical units do not provide totally independent infor-
mation. Nevertheless, a panel of this size certainly provides more information than
a cross-section of only 30 units.

1.1.1.6 Measurement Error
As we all know, social science data are prone to measurement error, which contam-
inates the statistical associations that we observe in our data to a greater or lesser
extent. Therefore, we would like to have measures of the reliability of our data in
order to correct our estimates of the statistical associations. One method to assess
the reliability of a variable is to compare several measurements of this variable over
time (test–retest reliability). This is easily done with panel data, while reliability
analyses with cross-section data require that we have parallel measurements of the
same underlying construct, which may be hard to defend in some cases.

Hence, panel data are a perfect tool to examine measurement error. On the other
hand, measurement error is also a challenge for panel data. If we want to analyze
change, we have to deal with the problem that part of the observed change is due to
measurement error. In order to achieve both a measure of reliability and a measure
of “true” error-free change, we need more than just two measurements over time.
Therefore, extending statistical models to cope with measurement problems is easily
done with panel data, but may raise additional questions of identification.

1.1.2 Challenges

As the discussion in the previous sections has shown, a panel allows answering
many more research questions than other kinds of research designs. However, it is
no panacea! Naturally, a panel is also a much more complex design that leads to
many new challenges when putting it into practice.

1.1.2.1 How to Represent the Population over Time?
The most prominent challenge is the issue of sampling and representing the pop-
ulation over time. Of course, if one studies a census of the population (like the
SOCX that includes all OECD member states), sampling and representation are not
an issue. However, most of the aforementioned panel studies use a sample of a well-
defined population.
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Fig. 1.1 Successful interviews with persons and households (SOEP: Samples A and B)

For example, when the SOEP was started in 1984, the survey institute selected
a stratified random sample of all German private households and interviewed all
household members aged 16 and older. The initial sample included 5,921 house-
holds and 12,245 individuals. According to the panel design, these 12,245 individ-
uals should have been re-interviewed every year starting from 1985. This is not an
easy task. Some of them may have moved away, others may not be available in a par-
ticular year, some may refuse to continue participating and finally, a few may have
died. All of these events result in missing information for some of the original sam-
ple members: either temporarily (no interview in a specific year) or permanently
(dropout out of the panel). Temporarily missing information is less of a problem,
because it can be imputed from the available information in the other years. The
main problem arises when sample members permanently drop out of the panel. This
process is called panel attrition or panel mortality and as Fig. 1.1 shows (Kroh,
2012), the number of dropouts is quite significant, especially when re-interviewing
respondents for the first time (in the second wave).

What is so problematic about panel attrition? Since the SOEP is supposed to rep-
resent the 16+ population living 1984 in (West) Germany, all dropout events that
cannot also happen to a member of the population are potentially harmful to the
representativeness of the sample. For example, if a sample member dies and for that
reason drops out of the panel, this is a personal tragedy, but from a statistical point of
view it is unproblematic because it represents an event that also happens in the pop-
ulation. The same applies to a birth of a child, as long as it is included in the sample
(as it is in the population). At age 16, the child will be interviewed for the first time.
However, if a sample member cannot be contacted or refuses to participate, this is
potentially harmful because in principle every member of the living population can
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be contacted and no one can refuse to be member of the population. If these and
other kinds of non-response are selective, then the available (non-missing) informa-
tion provides a biased picture of the population.

For example, the former Table 1.1 is based on all PSID members that provided
information for both years t and t + 1. Hence, it does not include individuals that
refused to participate or could not be contacted in t + 1 (or in t). If these are the in-
dividuals in permanent poverty, the former stability measures will underestimate the
true percentage of permanently poor. Furthermore, the level of poverty in both years
t and t + 1 will be underestimated too. Since an unbiased estimate of these poverty
rates (not the stability measures) can be obtained from cross-sectional surveys, panel
attrition is a clear disadvantage of the panel design and a strong argument in support
of the cross-sectional design. Although the cross-sectional design cannot answer
all research questions (e.g., with respect to individual change), it is not negatively
affected by selective non-response that is due to repeated measurements.

Quite generally, representing a population over time is a much more complex
issue than representing a population at a given point in time. This is due to the
fact that the population itself changes over time. Demographers distinguish between
natural changes of the population (births, marriages, divorces, and deaths) on the one
side and processes of immigration and emigration on the other.

From the very beginning, SOEP tried to represent natural changes of the pop-
ulation by including all “new” SOEP household members into the survey and by
following all “existing” SOEP members founding a (new) household of their own.
The first group includes SOEP children that are “born into” the interview age (16)
and individuals moving into existing SOEP households (e.g., by marriage). The sec-
ond group includes, e.g., SOEP youngsters leaving their parent households or SOEP
adults that have to found a new household due to divorce. However, these inclusion
rules fail if significant changes of the population happen outside existing SOEP
households, as is the case if there is heavy migration into or out of the country.

Hence, besides the problem of panel attrition the panel design also suffers from
significant changes of the population itself. To put it differently: Even if SOEP
would not suffer from panel attrition and therefore, represent correctly the German
population from 1984, the 1984 population is no more representative of Germany
today, which now includes also the population of the former Democratic Republic
of Germany and which has experienced a massive immigration of native Germans
and other nationals after the fall of the Iron Curtain. A recent cross-sectional survey
would not have these problems, because it would sample the present population.

In sum, a panel has the ability to answer research questions that the cross-
sectional design cannot address. However, it has selectivity problems due to panel
attrition and population change. Hence, to exploit the unique features of the panel
design, much effort must be invested to minimize these problems of representa-
tion.

Counter measures include intensified field work (a tracking concept) to contact
as many of the previously selected households as possible and to motivate as many
of the former respondents to continue participating in the panel. The remaining non-
response has to be either imputed (in case of temporarily missing information) or



10 1 Introduction

compensated for by re-weighting the remaining units (in case of panel attrition).
However, at a certain point the loss due to panel attrition will be so large that weight-
ing the few remaining units does not make sense anymore. At that point, a refresh-
ment sample is necessary. Changing populations, on the other hand, can be dealt
with by drawing new samples either at regular points in time (called rotating pan-
els) or when necessary (e.g., after a period of massive immigration). The EU-SILC
is an example of the first sort, the SOEP immigration sample begun in 1995 is an
example of the second sort (Schupp and Wagner, 1995).

1.1.2.2 How to Obtain Valid and Reliable Measurements over Time?
If repeated measurements are the main purpose of the panel design, then every effort
has to be undertaken to ensure they are valid and reliable. Some scholars argue that
the repetition itself may be harmful to the validity of the measures. However, a closer
look at the scholarly literature on the so-called panel effect (panel conditioning)
provides positive and negative views.

On the one side, it is correct that posing identical survey questions over and over
again elicits stereotypical and streamlined answers. Respondents and interviewers
also “learn” how to avoid difficult and time-consuming questions, e.g., by answer-
ing filter questions strategically (Van der Zouwen and Van Tilburg, 2001). On the
other side, answering repeatedly the same questions over time induces also positive
learning effects and attentiveness. Respondents may become more “knowledge-
able”, when asked repeatedly over time the same knowledge questions (Das et al.,
2011). Complicated questions referring, for example, to the various income sources
of the household may be difficult in the first panel wave, but become easier after
having answered them several times (Frick et al., 2006; with respect to attitudes
see Sturgis et al., 2009). Hence, the panel effect may bias the measures, but also
decrease non-response and increase validity. Whether and how it works has to be
found out by comparing data from a panel with measurements from independent
cross-sections.

Another challenge is to keep the survey instruments equivalent across time. For
example, survey questions may need to be changed because their repeated appli-
cation shows that they have low quality, because they become obsolete during the
course of time, because they have to be adapted to the actual historical context,
or because survey methods change over time (e.g., changing from face-to-face to
telephone interviews). Equally, new questions have to be developed if new aspects
attract the attention of researchers. Finally, even if questions are identical across
time, their meaning may change over time. Overall, the practice of many panel sur-
veys shows that longitudinal analyses are often hampered by non-equivalent survey
instruments over time. All the more reason it is necessary to restrict instrument
changes to the absolute minimum and to assess their equivalence at regular inter-
vals.

Traditionally, panel measurements provide information for each unit of analysis
at t = 1, . . . , T discrete points in time. For example, Lazarsfeld’s Erie county study
measured political attitudes at T = 7 monthly measurements (May–November) dur-
ing the 1940 presidential campaign. There was no attempt to measure political atti-
tudes between the seven survey dates, assuming that attitude change can be approx-
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imated by monthly measurements. Similarly, the large household panels mentioned
in Table 6.1 are conducted mostly on a yearly basis. However, researchers have
become increasingly interested in what happens in between, also because a yearly
interval between the measurements is quite large. For example, measuring income
at only one point in time during the course of the year is not very useful, when in-
comes change rapidly due to changes in employment. In that case, panel researchers
try to collect continuous employment and income histories either by retrospective
questioning or by merging the panel information with process-produced data from
other sources. Of course, retrospective questioning is not without risks due to recall
bias and seam effects.

For example, the SOEP uses a monthly job calendar, in which respondents can
report their employment status for each month in the year before the interview date.
If they frequently change their status, they may have problems recalling all transi-
tions with their exact dates. Furthermore, an analysis of the job calendars shows that
many job changes happen at the end of the year. This is, however, often a method-
ological artifact at the seams of the yearly job calendars. Some respondents have
forgotten what job they specified for December in the previous job calendar and
report a seemingly “new” job for January in the present job calendar.

In sum, although this textbook focuses on managing and analyzing panel data,
it should be stressed that the collection of panel data is a methodology of its own.
Obviously, the collection of panel data includes many pitfalls that may hamper later
statistical analyses. However, it should also be stressed that at the same time re-
peated measurements are a perfect tool to assess all kinds of measurement errors
(see Sect. 1.1.1.6).

1.1.2.3 How Much Does It Cost?
Finally, the question comes up: How much does it cost in terms of money, time,
and manpower? And does it not cost too much to make the effort worthwhile? Cer-
tainly, a panel is much more costly than a single cross-section. But is it really more
costly than a pooled cross-section design that could also answer some of the lon-
gitudinal research questions and at various places performed better than the panel
design? Both designs need resources for (i) sampling, (ii) data collection, (iii) data
management, (iv) weighting, and (v) documentation. Most of these cost factors are
more-or-less identical for both designs. In both cases, data have to be put into a data
analysis system, weighted and documented. Perhaps data management, weighting,
and documenting are a little bit more complicated for panel data, but the differences
will not be significant in terms of resources needed.

What is different between both designs is sampling and data collection. While a
panel, in the ideal case, only needs a fresh sample at the beginning, the pooled cross-
section design needs a new sample for each additional cross-section. Furthermore,
resources are needed for collecting data for each panel wave and each cross-section.
This is certainly more expensive for the panel design, because a specialized tracking
concept is needed to minimize panel attrition. Nevertheless, these additional field
work expenses are less costly than selecting new samples for each cross-section.
Hence, considering the main cost factors, the panel design does not perform as badly
as one might think from the beginning.
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1.2 Outline of the Book

As already mentioned, this textbook focuses on methods of managing and analyz-
ing panel data. Hence, most of the chapters will be devoted to statistical methods of
panel analysis. The only exception is the following Chap. 2 that shows how to pre-
pare panel data for statistical analysis. In the previous sections, we have shown that
panel data are used both for the analysis of level and change. Moreover, statistical
models are often differentiated with respect to characteristics of the variables they
focus on. Like many other statistical textbooks, we distinguish between continuous
and categorical dependent variables and discuss the corresponding panel models in
different chapters (Chaps. 4 and 5). Within each chapter we start with models focus-
ing on the level of the dependent variable and then continue with models focusing
on change of the dependent variable. All in all, the presented material is quite com-
prehensive, covering two different types of dependent variable and two modes of
analyzing them. Chapter 3 shows how to describe panel data and how to decide be-
tween the different models presented in Chaps. 4 and 5. Finally, Chap. 6 concludes
with some suggestions on how to do your own panel analysis. It shows you what
panel data are available for secondary analysis, but gives you also some references
on how to design and collect your own panel data. Moreover, it discusses typical ap-
plications in different social science disciplines and mentions other sources that you
can read to know more about the specific methods that we only alluded to without
discussing them in detail.

1.3 Audience and Prerequisites

There are several excellent textbooks available on panel data analysis (among oth-
ers Baltagi, 2008; Cameron and Trivedi, 2005; Hsiao, 2003; Wooldridge, 2010),
but all of them require a fairly good understanding of matrix algebra and advanced
econometric methods (e.g., instrumental variable estimation). At an introductory
level, several software and econometric textbooks also treat methods for panel
data analysis (e.g., Cameron and Trivedi, 2008; Rabe-Hesketh and Skrondal, 2008;
Wooldridge, 2009). However, when things get complicated these sources usually
refer to the more advanced literature. Moreover, methods for categorical data are
hardly treated in these introductory texts (the textbooks by Cameron and Trivedi
(2008) and Hsiao (2003) are exceptions).

This textbook provides an introduction into panel data analysis that does not use
matrix algebra and instrumental variables estimation. It does not only focus on linear
models and least squares estimation; it also provides an introduction into maximum
likelihood estimation, which is a necessary tool when modeling categorical data
with non-linear models. The focus is on applications of panel models and less so
on the underlying statistical theory. We illustrate all methods with real research ex-
amples from scholarly journals from different social science disciplines (sociology,
political science, economics).

Readers should be familiar with linear regression and have a good understanding
of ordinary least squares estimation. It is also helpful to have some experiences
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with logistic regression and perhaps maximum likelihood estimation, but as already
mentioned these techniques will be introduced in greater detail in this book (see
Chap. 5). Naturally, restricting ourselves to such a limited set of mathematical and
statistical tools implies that we cannot go into more advanced methods of panel data
analysis. We hope, however, that the basic panel regression models are introduced
in a way that few questions remain open and readers can go on to the more advanced
literature.

The text is written without any specific software in mind to estimate these mod-
els, but certainly statistical software is needed to do this job. Stata is a perfect choice,
when it comes to regression models for panel data, but other statistical software like
SPSS or SAS is equally well suited, at least for the models discussed in this text-
book. On the web site of this textbook you find all the data sets used in our examples
accompanied by Stata syntax files that replicate our results (see Sect. 7.3).

Leaving matrix algebra and instrumental variables aside does not mean that we
can refrain from mathematics. Indeed, rather than simple introductions, we want to
make sure that readers understand the mathematics behind the basic panel regression
models. Nevertheless, we tried to keep a simple and unified mathematical notation
across all chapters. Most of it will be explained in the methodological overview (see
Chap. 3) and if necessary in the method-specific chapters (Chaps. 4 and 5).

At this point you only need to know that we distinguish between variables and
the values (realizations) that these variables obtain for each unit of analysis. Vari-
ables are symbolized with capital letters (Y,X,Z,T ,U,E), their realizations (val-
ues) with small letters (y, x, z, t, u, e). We distinguish between dependent (Y ) and
independent (explanatory) variables (X,Z), process time (T ), and independent (ex-
planatory) variables that are unobserved (U,E). Realizations of these variables refer
to measurements for a specific unit at a given point in time. To denote them as pre-
cisely as possible we use the indices i and t (for example, yit). Estimation results
are presented in tables and interpreted in the text. Estimates in the text are usually
rounded and hence, slight differences between text and tables may happen because
of rounding errors.
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2Managing Panel Data

In this chapter we will discuss some practical problems and challenges we usually
face when we analyze data, in particular, panel data. Our main concern is to show
how to generate and manage panel data sets. As panel data are more complex than
simple cross-sectional data, the data management tasks can be quite complex as
well.

Many of the publicly available panel surveys provide their raw data in a number
of single data sets which have to be combined in order to obtain a working data set
for the analysis with statistical software. A working data set is built by extracting
certain information from a number of raw data sets and combining them into a new
data set. This process requires a definition of the target population, the time period
under investigation and the variables of interest.

We will show how to prepare such a working data set by using data from the Ger-
man Socioeconomic Panel Study (SOEP) as an example. Necessarily, this demon-
stration is somehow technical and we will use Stata syntax for this purpose. How-
ever, as you will see in the examples below, you will be able to easily translate the
Stata commands into the statistical language of your choice.

We will also address some other issues we usually face when doing empirical
research. Most statistical methods, like those presented in this book, are based on
the assumption that the observations are a simple random sample of the popula-
tion. In practice this assumption is often violated. Very often surveys employ multi-
stage sampling techniques using stratification and clustering. Such complex survey
designs result in different selection probabilities for the units of analysis. The com-
plexities of estimation and testing in such cases are beyond the limits of this textbook
and we refer the reader to the specialized literature (see the references in Sect. 2.5).
However, even when the sampling design is a simple random sample, data collec-
tion may still be selective. Usually, some of the sampled units refuse to participate
or cannot be contacted at all (unit non-response).

In the case of panel data, we distinguish between balanced and unbalanced
panels. With balanced panel data, each unit is observed in each wave. In unbal-
anced panels, the number of observations per unit can differ. Unbalanced panels
occur when some respondents do not participate in each wave (temporary unit non-

H.-J. Andreß et al., Applied Panel Data Analysis for Economic and Social Surveys,
DOI 10.1007/978-3-642-32914-2_2, © Springer-Verlag Berlin Heidelberg 2013

15

http://dx.doi.org/10.1007/978-3-642-32914-2_2


16 2 Managing Panel Data

response), when respondents drop out of the panel (panel attrition), or when respon-
dents enter the panel at a later point in time (late entry).

Generally speaking, social science data often have missing values. There are dif-
ferent ways of dealing with these data problems. As a countermeasure we can either
use statistical weighting to compensate for the selectivity of participation or we can
use imputation techniques to fill in the missing values. In any case, we have to de-
cide how we treat the missing data when we build a working data set. Shall we
include weights in our data set? Shall we generate a balanced or an unbalanced data
set? How do we have to weight balanced and unbalanced data sets? These decisions
might seem to be of practical nature only, but they have significant methodological
consequences and it is important to be aware of these consequences. In this chap-
ter we will briefly discuss different ways of dealing with these issues and, where
possible, give recommendations on which methods to choose.

In Sect. 2.1 we will discuss some general characteristics of panel data. In Sect. 2.2
we will present the basic operations of data management and show how to apply
these operations within Stata. In Sect. 2.3 we will show how to apply the pre-
sented data management tools to real survey data. We present three case studies
from poverty research, using data from the SOEP. Section 2.3 will also discuss how
to define a target population for cross-sectional and for longitudinal analyses. Fi-
nally, in Sect. 2.4, we will demonstrate how to use statistical weights and we will
discuss how to generate and weight balanced and unbalanced panels. The chapter
concludes with some suggestions for further reading (Sect. 2.5).

2.1 The Nature of Panel Data

Panel data contain repeated observations of the same units. In principle, panel data
can be seen as a data cube with three dimensions: units i = 1, . . . , n, time points t =
1, . . . , T and variables v = 1, . . . , V . In order to analyze panel data with a statistical
computer software we need to rearrange the three-dimensional data cube into a two-
dimensional working data set. In general, there are two ways of organizing panel
data in a working data set:
• In wide format each unit occupies one row of the data matrix. All measurements

over time are included in each row. The matrix has n rows and T · V columns.
The wide format is the traditional way of organizing panel data.

• The long format, which originates from time-series analysis, is the “modern”
form of organizing panel data. In long format each single measurement occupies
one row. Thus, we have T rows per unit and N = n · T rows in total. The number
of columns equals the number of variables V .

Which format you use for data input is not of importance since all statistical software
packages include commands for transforming data in wide format to data in long
format and vice versa. Usually, the format you use for data input will be defined by
the raw data as they are provided by the institution collecting the data. Table 2.1
exemplifies the two forms of organizing panel data with an excerpt from the data
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Table 2.1 Organizing panel
data in a data set

Source: SOEP data (see
Example 2.2)

(a) Wide format

Persnr income2004 income2005 income2006

21 1,245 1,245 814

41 480 502 524

(b) Long format

Persnr Year income

21 2004 1,245

21 2005 1,245

21 2006 814

41 2004 480

41 2005 502

41 2006 524

we will use in the example below. The table shows two individuals (Persnr =
21 and Persnr = 41) from the SOEP data (an explanation of these data follows
below in Example 2.2).

Organizing data in wide format means to integrate the time dimension of the data
cube into the columns of the two-dimensional working data set. Therefore, variable
names have to include characters indicating the time point at which the information
was recorded. In long format the time dimension is included in the rows of the
working data set. Both tables include exactly the same information but a striking
difference is that data in long format need to include key variables indicating the
structure of the data. In wide format each cell is uniquely identified with regard
to the unit and the time point to which it pertains. This is because each column
represents a variable measured at a certain point in time and each row represents
one unit. In long format, we need one key variable indicating to which unit a row
in the data pertains (here Persnr) and a second key variable indicating the time
point t to which a row in the data set pertains (here Year). Both key variables
together identify each observation uniquely.

For the methods presented in this book you will have to use data in long format
because, for regression-type analyses, statistical software packages prefer data in
long format. Furthermore, the long format is the more efficient way of organizing
data. If the number of variables and time points increases, a data matrix in wide
format becomes excessively large.

Imagine a data set with 1000 units (n = 1,000) and 100 variables (V = 100),
which have been measured yearly for a period of ten years (T = 10). Now think
about the distinction between balanced and unbalanced panels. Assume that we
find a response rate of r = 90 % (=900 units) for each wave (10 % temporary
unit non-response). In long format, the data set will have nine thousand rows
(n · r · T = 1,000 · 0.9 · 10 = 9,000) and 100 columns (V ). This makes a total
of 900,000 cells. In wide format, the data set will have V · T = 1,000 columns and
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n = 1,000 rows. In total, this data set includes one million cells. The difference in
the number of cells between wide and long format occurs because of temporary unit
non-response.

In long format, a temporary unit non-response decreases the size of the table by
one row. In wide format, the size of the data set is unaffected by temporary unit
non-response. In our example, each temporary unit non-response will produce 100
empty cells if the data is in wide format.

The wide format, on the other hand, has its advantages, too. From a technical
point of view, it is much easier to analyze statistical associations between the re-
peated measurements because, in wide format, each new measurement is a variable
on its own. From a didactic point of view, it also makes clear that you have only n in-
dependent units of analysis. Panel data provide information about the same units at
different points in time. As already indicated in Sect. 1.1.1.5, this does not increase
the sample size. In wide format, each repeated measurement adds a new column to
the data matrix.

For instance, in Table 2.1(a) the income of 2007 would add an additional column
to the table (income2007). Obviously, this information pertains to individuals
we have already observed before. In long format, each new measurement adds an
additional row to the data matrix. Some scholars argue that the number of cases and,
thus, the statistical power increases with these repeated observations. This pitfall
occurs because in a simple cross-sectional data set the number of rows equals the
number of units, i.e., the data matrix has n rows.

Compared to this, a panel data set in long format with a data matrix of N = n · T
rows looks like a huge amount of information. However, the repeated observations
are not independent of each other and do not provide as much information as their
sheer number indicates. Therefore, when we analyze panel data we need to use
statistical tools which take into account that the number of units n is smaller than
the number of rows N and that the observations within one unit are not statisti-
cally independent. In Sect. 3.2, we use data in long format to demonstrate these
statistical dependencies and to discuss how they influence our statistical analy-
ses.

Panel data share the feature of dependent observations with other nested or hier-
archical data. In the case of panel data, each unit is observed T times, which means
that the single measurements at the lower level (level 1) are nested within units i

at the higher level (level 2). In contrast to other hierarchical data, such as pupils in
schools or individuals in countries, panel data have an inherent order at the lowest
level (time points). The chronological order of these time points should be visible
in the data, i.e., we have to sort the single observations for each unit according to
the time points at which they were recorded. In cross-sectional hierarchical data a
similar natural order is often absent. Individuals might be nested within countries,
households, or schools, but the order of these individuals within each higher-level
unit is of no importance.

The key variables in panel data fulfill three different functions. First, we need the
key variables in order to organize the data in a way that reflects the nested structure
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and the chronological order of the measurements. Second, if we analyze panel data
with software, the information included in the key variables is used to account for
the statistical dependencies in the data. Therefore, you will usually have to tell the
computer which variables it should use as key variables. Finally, the key variables
allow us to generate a working data set from the raw data sets, because the key
variables are included in each raw data set in order to identify the data that belong
together.

2.2 The Basics of Panel Data Management

Raw data from large economic and social surveys are mostly provided in a form
that requires some data management before we can start a statistical analysis. In the
previous section we saw that panel data need to be organized in hierarchical form
with time points nested in units. Unfortunately, the data structure that results from
the process of data collection usually is organized the other way around. Panel data
is collected in regular intervals. Each additional wave adds a new data set to the
panel. Hence, the data structure resulting from the data collection is units nested
in time points. In order to achieve a working data set, with time points nested
in units, we have to extract the required information from the single waves and
combine it into a panel data set.1 Furthermore, the wave-specific data may be dis-
tributed across different data files, because each survey wave may consist of differ-
ent parts.

For example, information is gathered about individuals and households or about
adults and children. If different survey instruments are used (e.g., different question-
naires for adults and children), the survey institute will often provide the raw data
in separate data files. We will have a closer look at real survey data from the SOEP
when we present some real life examples in Sect. 2.3.

In this section, we will discuss the general principles of data management. There-
fore, we will use a set of very small example data sets. The purpose of these exam-
ples is to visualize the basic operations that we use to manage data, in general, and
panel data, in particular.

Example 2.1 (mypanel data) Imagine you are doing a small panel survey,
in which you collect information on adults, children, and their households.
The survey institute provides you with some sample files so that your data
administrator can test the implementation of the data at your institute. The
test data include data from three panel waves. The information on households,
adults, and children is stored in different files:

1Most panel studies mentioned in Table 6.1 provide their raw data in wave-specific files. EU-SILC,
NLS, and SOEP additionally provide their raw data also in long format.
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adult08

ID HHNR Year Sex

1 10 2008 0

2 11 2008 1

child08

ID HHNR Year Sex

3 10 2008 1

4 11 2008 0

house08

HHNR Year Income

10 2008 3,000

11 2008 4,000

adult09

ID HHNR Year Sex

1 10 2009 0

2 11 2009 1

child09

ID HHNR Year Sex

3 10 2009 1

4 11 2009 0

house09

HHNR Year Income

10 2009 3,500

1 2009 4,500

adult10

ID HHNR Year Sex

1 10 2010 0

2 11 2010 1

child10

ID HHNR Year Sex

3 10 2010 1

4 11 2010 0

house10

HHNR Year Income

10 2010 4,000

11 2010 5,000

The test data include two households (HHNR= 10,11) and four individuals
(ID= 1, . . . ,4) living in these households. The two households and the four
individuals have been observed for three years from 2008 to 2010. Besides the
key variables ID, HHNR, and Year, each data set includes only one variable
of interest: the household income (Income) in the household-level files and
gender (Sex) in the individual-level files (0 = woman, 1 = man).

In total, the example consists of three cross-sections that have to be pooled to-
gether to obtain a panel data set. Each of these cross-sections consists of three sin-
gle data sets. In Sect. 2.2.1 we present the basic operations to combine these data.
Then, we are going to show how we use statistical software to perform these basic
operations (Sect. 2.2.2). Finally, in Sect. 2.2.3 we demonstrate how we can actually
combine the nine data sets into a complete panel data set.

2.2.1 Merging and Appending Data

There are two basic operations which bring together information from different data
sets. To imagine what is going on here, we can think of them as either putting the
data sets next to each other (adding columns) or putting one below the other (adding
rows). In both cases, the data sets that ought to be combined have to have partly
identical characteristics. Only data sets that are related to each other, either through
their columns (variables) or their rows (observations), can be combined.

When we add rows to the data set, we often speak of appending data. A data
set can be appended to another data set if both data sets include identical variables
but different observations. For example, the data sets adult08 and child08 (see
Example 2.1) could be appended, because both of them include the variables ID,
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adult08 child08

ID HHNR Year Sex ID HHNR Year Sex

1 10 2008 0 append 3 10 2008 1

2 11 2008 1 4 11 2008 0

⇓

ID HHNR Year Sex

1 10 2008 0

2 11 2008 1

3 10 2008 1

4 11 2008 0

Source: mypanel data (see Example 2.1)

Fig. 2.1 Appending data

adult08 house08

ID HHNR Year Sex HHNR Year Income

1 10 2008 0 merge 10 2008 3,000

2 11 2008 1 11 2008 4,000

⇓

ID HHNR Year Sex Income

1 10 2008 0 3,000

2 11 2008 1 4,000

Source: mypanel data (see Example 2.1)

Fig. 2.2 Merging data with one key variable

HHNR, Year, and Sex. Figure 2.1 shows the new data set including the units ID=
1,2, . . . ,4.

When we put tables next to each other, we usually use the term merging data.
Two data sets can be merged if the observations are identical but the variables are
different. For merging it is necessary that both data sets include one or more key
variables identifying the observations that have to be put together. For instance, the
data sets adult08 and house08 (see Example 2.1) could be merged using the
key variable HHNR. The new data set contains units 1 and 2 and the variables Sex
and (household) Income (see Fig. 2.2). It is important to notice that the units in
the data set house08 are households, while the units in the data set adult08 are
individuals. However, we can merge the two data sets because the individual-level
data set adult08 includes the household identification number HHNR.

Merging data can require using more than one key variable. Consider the two
data sets shown in Fig. 2.3. The data set on the left hand side results from appending
adult08 and adult09; the data set on the right hand side results from appending
house08 and house09. Both data sets have been sorted by the key variables ID,
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adult08+adult09 house08+house09

ID HHNR Year Sex HHNR Year Income

1 10 2008 0 10 2008 3,000

1 10 2009 0 merge 10 2009 3,500

2 11 2008 1 11 2008 4,000

2 11 2009 1 11 2009 4,500

⇓

ID HHNR Year Sex Income

1 10 2008 0 3,000

1 10 2009 0 3,500

2 11 2008 1 4,000

2 11 2009 1 4,500

Source: mypanel data (see Example 2.1)

Fig. 2.3 Merging data with two key variables

adult08+child08

ID HHNR Year Sex house08

1 10 2008 0 HHNR Year Income

3 10 2008 1 merge 10 2008 3,000

2 11 2008 1 11 2008 4,000

4 11 2008 0

⇓

ID HHNR Year Sex Income

1 10 2008 0 3,000

3 10 2008 1 3,000

2 11 2008 1 4,000

4 11 2008 0 4,000

Source: mypanel data (see Example 2.1)

Fig. 2.4 Many-to-one merge

HHNR, and Year to transform them into the usual long format of panel data. To
merge the two data sets we need to specify two key variables: HHNR and Year.
This is because the variable HHNR no longer uniquely identifies the observations
within both data sets.

Finally, data can also be merged if the observations within one of the data sets are
not uniquely identified. This kind of merging is often referred to as a one-to-many
or many-to-one merge, because the observations in one data set have to be assigned
to more than one observation in the other data set. Figure 2.4 exemplifies a many-
to-one merge. The data set on the left hand side results from appending adult08
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and child08 (and sorting the data by HHNR and ID). Each household income has
to be assigned to two observations in the individual-level file, if we want to include
the information from the data set house08 into the data on the left hand side. This
merge can be done using the key variable HHNR. Quite generally, a many-to-one
merge occurs when the units of analysis are nested within some higher-level units.
In the example, we merge data observed on the household-level to all individuals
within these households. Similar situations occur when we have a panel data set
with repeated observations of the same units and merge time-constant information
about these units to the data, or when we assign country-level data to individual- or
household-level data, and so on.

2.2.2 Basic Append and Merge Commands

To generate a panel data set including all the information from Example (2.1), we
have to use a series of append and merge commands. In Sect. 2.2.3 we demonstrate
how to do this efficiently. In this section we present the very basic syntax for ap-
pending and merging data. For the purpose of this demonstration we will use Stata.
However, the general principles demonstrated here work the same way in all statis-
tical program packages.

From the data sets of Example 2.1 we constructed nine Stata data sets named
adult08, child08, . . . , house10. The syntax for appending two tables is quite
simple. It consists of three basic elements. First, the command (in Stata append
using) and, second, the two data sets which ought to be combined. In Stata we
have to name only one of the data sets, while the other one has to be loaded into
memory before (this data set is called the master data set).2 In the following example
we append the two data sets adult08 and child08:

. use adult08

. list
+------------------------+
| ID HHNR Year Sex |
|------------------------|

1. | 1 10 2008 0 |
2. | 2 11 2008 1 |

+------------------------+
. append using child08
. list

+------------------------+
| ID HHNR Year Sex |
|------------------------|

1. | 1 10 2008 0 |
2. | 2 11 2008 1 |
3. | 3 10 2008 1 |
4. | 4 11 2008 0 |

+------------------------+

2In many statistical program packages we can directly name all data sets we want to combine.
From Version 11.0 onwards this is also possible in Stata.
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The code above is taken from Stata’s output. In this output, a line beginning with
a dot is a command line. Lines without a dot are output in response to these com-
mands. After we loaded the data set adult08 (use adult08), we have a look
at the data using the list command. Then, we state that the data set child08
should be appended to the data in memory (append using child08). Finally,
the list command shows the combined dataset. As in Fig. 2.1, it includes the in-
formation from the data sets adult08 and child08. From a technical point of
view, it is crucial that the variables in both data sets have exactly identical names.
Otherwise, the computer will not be able to match the columns of both data sets
correctly. The following Stata output demonstrates this:

. use child08a

. list
+------------------------+
| ID HHNR Year Sxe |
|------------------------|

1. | 3 10 2008 1 |
2. | 4 11 2008 0 |

+------------------------+
. use adult08
. append using child08a
. list

+------------------------------+
| ID HHNR Year Sex Sxe |
|------------------------------|

1. | 1 10 2008 0 . |
2. | 2 11 2008 1 . |
3. | 3 10 2008 . 1 |
4. | 4 11 2008 . 0 |

+------------------------------+

The data set child08a is identical to the data set child08, but there is a typo in
the variable names (Sxe instead of Sex). Obviously, the resulting data set does not
have the form we want it to have. In Sect. 2.2.5 we will present a systematic list of
all potential pitfalls that can occur when combining data.

The syntax for merging data is a little more complicated. It consists of four basic
elements: the command, the two data sets which ought to be combined and the key
variable(s). Furthermore, it is important to sort both data sets by the key variable(s)
before merging the data:3

. use house08

. sort HHNR

. save house08, replace

. use adult08

. sort HHNR

3In this book we use Stata’s old merge syntax. Since Stata 11.0 there is a new version of this
command. We present the old version because its structure is similar to the structure of merge
commands in other statistical packages. However, if you work with Stata you should use the new
version of the merge command.
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. merge HHNR using house08

. list
+---------------------------------+
| ID HHNR Year Sex Income |
|---------------------------------|

1. | 1 10 2008 0 3000 |
2. | 2 11 2008 1 4000 |

+---------------------------------+

In the first three lines of the syntax above we load the data set house08, sort it
by the variable HHNR and save it in this form. The next two commands load the
data set adult08 and sort it by the variable HHNR as well. The merge command,
then, merges the information from the data set house08 (using house08) and
the data in memory (adult08) and uses the specified variable HHNR as the key
variable. From a technical point of view, it is important that the key variable(s) have
exactly the same names in both data sets.

Moreover, it is important to sort the observations by the key variable(s) to cor-
rectly merge the information of both data sets. However, in some statistical program
packages this step is (or can be) integrated in the merge procedure and it is not nec-
essary to do this in a separate step. Knowing the two basic modes of combining
different data sets we can now start to think about ways to build a panel data set.

2.2.3 Building a Working Data Set with Append and Merge
Commands

Combining the information from all nine data sets into one panel data set can be
done in various ways. For instance, we could start to combine the various data sets
within each cross-section and go on with pooling the three cross-sections. Logically,
the number of solutions increases with the number of raw data sets. When working
with real survey data, we will usually have to extract certain units, variables, and
time points from the raw data.

In this example, we simply want to combine all information included in the nine
data sets. We can find an efficient solution by identifying all data sets which in-
clude the same variables. In our example, six data sets include the variable Sex
and three include the variable Income. As merging is more complex than append-
ing, it is reasonable to combine as many data sets as possible using the append
command. Some statistical software packages can even append several data sets si-
multaneously. With the corresponding commands we can easily generate a data set
on individuals (adults and children) and a data set on households. In Stata the syntax
looks like this:

. use adult08

. append using child08 adult09 child09 adult10 child10

. sort ID Year

. list, sepby(ID)
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+------------------------+
| ID HHNR Year Sex |
|------------------------|

1. | 1 10 2008 0 |
2. | 1 10 2009 0 |
3. | 1 10 2010 0 |

|------------------------|
4. | 2 11 2008 1 |
5. | 2 11 2009 1 |
6. | 2 11 2010 1 |

|------------------------|
7. | 3 10 2008 1 |
8. | 3 10 2009 1 |
9. | 3 10 2010 1 |

|------------------------|
10. | 4 11 2008 0 |
11. | 4 11 2009 0 |
12. | 4 11 2010 0 |

+------------------------+
. save myfirstpanel
. use house08
. append using house09 house10
. sort HHNR Year
. list, sepby(HHNR)

+----------------------+
| HHNR Year Income |
|----------------------|

1. | 10 2008 3000 |
2. | 10 2009 3500 |
3. | 10 2010 4000 |

|----------------------|
4. | 11 2008 4000 |
5. | 11 2009 4500 |
6. | 11 2010 5000 |

+----------------------+
. save mysecondpanel

The first two commands append all data sets including the variable Sex. Sorting
the resulting data set by the variables ID and Year results in a panel data set in
long format. After saving this first panel data set (save myfirstpanel), we
also append the data sets that include the variable Income. Sorting the resulting
data set by the variables HHNR and Year provides us again with a (second) panel
data set in long format.

Now, in a final step we need one merge command to combine the two panel
data sets. Before we do so, we have to take a closer look at the structure of both
data sets. The first data set we generated (myfirstpanel) includes information
on individuals (ID = 1, . . . ,4). The second data set (mysecondpanel) includes
information on households. As in Fig. 2.4 we have to perform a many-to-one merge,
which looks like this in Stata:
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. use myfirstpanel

. sort HHNR Year

. merge HHNR Year using mysecondpanel, uniqusing
variables HHNR Year do not uniquely identify observations in
the master data
. sort HHNR ID Year
. list HHNR ID Year Sex Income, sepby(ID)

+---------------------------------+
| HHNR ID Year Sex Income |
|---------------------------------|

1. | 10 1 2008 0 3000 |
2. | 10 1 2009 0 3500 |
3. | 10 1 2010 0 4000 |

|---------------------------------|
4. | 10 3 2008 1 3000 |
5. | 10 3 2009 1 3500 |
6. | 10 3 2010 1 4000 |

|---------------------------------|
7. | 11 2 2008 1 4000 |
8. | 11 2 2009 1 4500 |
9. | 11 2 2010 1 5000 |

|---------------------------------|
10. | 11 4 2008 0 4000 |
11. | 11 4 2009 0 4500 |
12. | 11 4 2010 0 5000 |

+---------------------------------+

In order to force Stata to merge the two data sets we have to specify the option
uniqusing, indicating that the observations are only uniquely identified within
the using data set. Without this option Stata would refuse to perform the merging and
return an error. It depends on the statistical software that you are using how to deal
with this kind of merging.4 You should notice that we need to specify two key vari-
ables in order to merge the two data sets myfirstpanel and mysecondpanel.
The simple key variable HHNR no longer uniquely identifies the observations, nei-
ther in the data set myfirstpanel nor in the data set mysecondpanel. Using
HHNR and Year as key variables, in contrast, identifies each observation in the data
set mysecondpanel uniquely.

2.2.4 Wide and Long Format

Before we apply the presented techniques to real survey data we will have a very
short look at panel data formats again. In the example above we generated a data set
in long format. To that end, we basically appended the data from three waves and
sorted them by HHNR, ID and Year. Alternatively, we could have generated data

4Stata by default does not allow the user to merge data sets if the observations are not uniquely
identified in one of the data sets. If we want to do so, we have to specify an option. In SPSS we
need to declare the file with uniquely identified observations as a table. In SAS we can directly
match the files without any additional step.
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in wide format. To that end, we would have to use the merge instead of the append
command. Here we give you two small examples in which the data sets house08
and house09 are combined into a (household) panel, first using the long and then
the wide format:

Long format

. use house08

. append using house09

. sort HHNR Year

. list, sepby(HHNR)

+----------------------+
| HHNR Year Income |
|----------------------|

1. | 10 2008 3000 |
2. | 10 2009 3500 |

|----------------------|
3. | 11 2008 4000 |
4. | 11 2009 4500 |

+----------------------+
. save housepanL

Wide format

. use house09

. rename Income Income09

. sort HHNR

. save house09_, replace

. use house08, clear

. rename Income Income08

. sort HHNR

. merge HHNR using house09_

. order HHNR Income08 Income09

. list HHNR Income08 Income09
+----------------------------+
| HHNR Income08 Income09 |
|----------------------------|

1. | 10 3000 3500 |
2. | 11 4000 4500 |

+----------------------------+
. save housepanW

You should be familiar with the example on the left hand side. On the right hand
side we generate a panel data set in wide format. Therefore, we have to rename
all variables except the identification variables (HHNR and Year). As already men-
tioned, in wide format the time dimension is included in the columns (variables)
of the data set. Therefore, it is necessary to include the information from the time
identifying key variable (Year) into the variable names. In the example above we
do so by adding the year to each variable name (rename Income Income09
and rename Income Income08). After renaming the variables in each data set
and sorting them by the variable HHNR we can merge the household data from 2008
and 2009.

Ordering the variables according to their content and temporal order produces a
data set in wide format. Earlier we mentioned that the format you use for data input
will often be defined by the raw data. However, as the example shows, it is always
possible to obtain both formats with the same raw data. Nevertheless, as you can
easily see, the data are much easier to combine into a data set in long format than
into a data set in wide format.

We already said that all statistical program packages provide specialized com-
mands for transforming data from long into wide format and vice versa. To com-
plete this general introduction, we show how panel data can be transformed from
long into wide and from wide into long format using the two basic commands ap-
pend and merge. To that end, we use the data sets housepanL and housepanW
from the example above. These data sets contain the units HHNR= 10,11, the years
2008 and 2009 and the variable Income (compare output above). We can transform
these data sets using the following syntax:
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Long to wide

. use housepanL

. keep if Year == 2008
(2 observations deleted)
. rename Income Income08
. sort HHNR
. save house08_
. use housepanL
. keep if Year == 2009
(2 observations deleted)
. rename Income Income09
. sort HHNR
. merge HHNR using house08_
. order HHNR Income08 Income09
. list HHNR Income08 Income09

+----------------------------+
| HHNR Income08 Income09 |
|----------------------------|

1. | 10 3000 3500 |
2. | 11 4000 4500 |

+----------------------------+

Wide to long

. use housepanW

. drop Income09

. generate Year = 2008

. rename Income08 Income

. save house08a

. use housepanW

. drop Income08

. generate Year = 2009

. rename Income09 Income

. append using house08a

. order HHNR Year Income

. sort HHNR Year

. list HHNR Year Income
+----------------------+
| HHNR Year Income |
|----------------------|

1. | 10 2008 3000 |
2. | 10 2009 3500 |
3. | 11 2008 4000 |
4. | 11 2009 4500 |

+----------------------+

To transform data from long to wide format (left hand side), we have to split up
the data set by time points and then merge the data from each time point. In other
words, we are taking all rows representing one time point and making them new
columns in the wide data set. Here we use the keep if command to delete all
observations which are not from 2008 (keep if Year == 2008). Again, we
have to rename all variables except the key variables to include the time dimension
in the variable names. Then, we save the data set (as house08_) and build a sec-
ond data set which includes only observations from 2009. Again, we rename the
variables to include the time dimension in the variable names. After merging both
data sets and ordering the variables, we come up with a data set in wide format.

To obtain a data set in long format starting from a data set in wide format (right
hand side), we have to do exactly the opposite. We split up the data set by deleting
single variables. The resulting data sets have to include only the variables for one
time point. In each data set we generate a new variable (Year) indicating to which
time point the information pertains. Finally, after renaming the variables (from
Income08 to Income, from Income09 to Income etc.), we can append the
single data sets to come up with a data set in long format.

The purpose of this demonstration was to provide a basic understanding of how
to transform data from long to wide format and vice versa. Therefore, we used the
two basic commands merge and append. As already mentioned, all statistical pro-
grams provide specialized commands that allow us to specify both transformations
with a few terms (in Stata this is the reshape command). However, these special-
ized commands are based on the two basic operations merge and append. Basically,
they start programs like those we have just discussed.
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2.2.5 Some General Remarks

Both of the basic operations, merging and appending, share an important feature.
In both cases, the combination of data from two data sets into one is based on their
qualitative similarity. If data is merged together, the data sets have to include obser-
vations that fit together. If one data set is appended to another, the data sets have to
have the same variables. Abstractly speaking, data sets can be combined if there is
an identifying element either in the columns (appending) or in the rows (merging)
of the data matrices. From a technical point of view, the variables (observations)
have to have the same names (identification numbers) if they are equal and different
names (identification numbers) if they are not. This might sound like a trivial tech-
nical matter but it is very important to be aware that our computer will do exactly
what we tell it and not what we want it to do. In the example above we combined
tables that were prepared for a perfect fit. When working with real data, we have
to make sure that we understand the structure of all data sets we want to combine.
There are four potential pitfalls when combining data:
1. Appending

(a) Two variables measure the same substantive variable, but do not have the
same name.

(b) Two variables have the same name, but do not measure the same substantive
variable.

2. Merging
(a) Two observations belong to each other, but do not have the same identifica-

tion number(s).
(b) Two observations have the same identification number(s), but do not belong

to each other.
More problematic are those cases in which two variables (observations) have the
same name (identification number) but do not correspond to each other. In these
cases the computer will simply put the information together and it can be quite
difficult to detect the error. When the same substantive variable has a different name
in both data sets, we will certainly find the mistake because the resulting data set
will include two variables where we expect only one and, as shown in the example
in Sect. 2.2.2, both of these resulting variables will have a lot of missing values.
The same is true for merged data sets: If two connected observations have different
identification variables, the data set will include two observations where we expect
only one.

However, ensuring that all variable names and identification numbers are correct
is only the first point on our checklist. Having correct variable names and identifi-
cation numbers does not guarantee that the combination of two data sets works the
way we want it. The second point is to make sure the variables we want to com-
bine are identically coded (scaled). The introduction of the Euro currency in 2002,
for instance, resulted in a new scale for all monetary measures. Combining data on
incomes from before 2002 with data from 2002 and after requires us to harmonize
the two variables (e.g., to measure the incomes from before 2002 in Euros). For
various reasons, categorical variables are at high risk of nonidentical codings. This
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is because the coding of (most) categorical variables is somewhat arbitrary and can
change between different waves.5 Therefore, it is of outstanding importance to have
a look at the coding (and scaling) of all variables before you combine two data sets.

Most statistical software packages try to control the process of appending and
merging data by providing detailed information about each step and its outcome.
Nevertheless, if an operation is logically possible, the computer will never be able
to tell us which operation makes sense and which does not.

2.3 Three Case Studies on Poverty in Germany

In the last section we presented the basic operations we may use to build a working
data set from raw panel data. In this section we will present some examples with
real survey data and address a series of practical challenges we usually face when
we generate and analyze panel data. As already stated in the introductory Chap. 1,
panel data can be used for different types of analysis. We present three examples
showing how panel data can be prepared for cross-sectional analyses, the analysis
of trends (pooled cross-sections), and the analysis of change (panel analysis). All
examples are based on raw data from the SOEP (see Example 2.2).

In the first case study (Sect. 2.3.1) we generate a data set allowing us to estimate
the poverty rate of the German resident population in 2004. In the second case study
(Sect. 2.3.2) we use data for the years 2004 to 2006 to estimate the trend in German
poverty rates. Finally, in the third case study (Sect. 2.3.3) we will make use of the
full potential of panel data and analyze the dynamics of poverty. To that end, we
generate working data sets in wide and in long format. In Sect. 2.4, we will discuss
issues of balanced and unbalanced panels as well as questions of cross-sectional and
longitudinal weighting. To that end, we will reconsider the results of the following
analyses and reestimate poverty rates with weighted data.

Example 2.2 (SOEP data) For the following examples we will use three
waves from the German Socioeconomic Panel (2004–2006). We combine data
from individual-level files with data from household-level files to investigate
income poverty.

The SOEP survey started in 1984 and is based on a representative sample
of the German resident population. The survey consists of the initial two sam-
ples (a sample of West Germany’s resident population in 1984 and a sample
of selected foreigner groups in West Germany in 1984) and several additional

5Data providers, of course, intend to use identical codings in all waves. However, there are always
instances where single variables are coded differently.
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samples that have been selected since 1984 (for instance, a sample of the East
German resident population after reunification, a sample of immigrants in
1994/1995, a sample of high income households and some refreshment sam-
ples drawn from the overall population to compensate for panel attrition; see
also the discussion in Sect. 1.1.2.1). The SOEP provides information about
the sampled households and about all individuals living in these households.
Presently, about 20,000 individuals from more than 11,000 households are
interviewed each year.

The SOEP is one of the few studies that provides detailed information
about adults and children (defined as individuals 16 years of age and younger).
These children do not answer a questionnaire on their own. Instead, informa-
tion on children is collected through a children questionnaire answered by the
head of the household.

Note also that some population groups are overrepresented by design
(among them the foreigner groups from the initial sample in 1984) and the
selection probabilities are not the same between all subsamples of the SOEP.
Since the following case studies focus on incomes, it is also important to re-
member that one subsample focuses on high income households and hence,
the overall distribution of incomes in the SOEP overrepresents higher in-
comes, if this subsample is not excluded.

SOEP data are provided in a form that reflects the process of data collec-
tion. Since the data is collected on a yearly basis, the general structure of the
raw data is cross-sectional. Therefore, SOEP data files are, first, differenti-
ated by waves: The first letter of a data set’s name indicates to which wave
the data set belongs (a = 1984, b = 1985, . . . ). Second, within each wave,
the data are differentiated with regard to the unit of analysis. The letters fol-
lowing the first letter indicate to which unit of analysis a data set pertains
(h = household, p = person). Within each wave we find a file ?pbrutto
for individuals (adults and children) and for households (?hbrutto). These
files contain the gross sample population, i.e., all sampled units irrespective
of whether they have participated or not. The data from the actually answered
questionnaires (net population) is provided in three main files: one data set for
households (?h), one data set for the directly interviewed household members
(?p) and, as children are not directly interviewed, a separate file for the data
from the children questionnaire (?kind). Thus, within each wave we find
three files that make up the net population of the survey: the household file
(?h) and the two person files on adults (?p) and children (?kind).

Moreover, within each wave, the SOEP provides additional data sets in-
cluding specialized information. For instance, within each wave we find the
data files ?pgen (for persons) and ?hgen (for households), which include
variables that have been generated by the SOEP group. Finally, we can find
two files containing the weights for cross-sectional and longitudinal analy-
ses (phrf for individuals and hhrf for households). These files include the
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weighting factors for all years and, thus, are not wave-specific. For the anal-
ysis of income poverty in the examples below, we will have to combine data
from most of these SOEP files.

The data files used in the examples are not the original SOEP files. For
reasons of data privacy protection we altered some variables and use only a
part of the full SOEP sample. We generated random identification variables
and added a random error to the sensitive information on income. In total, we
use 25 % of the full SOEP sample. Nevertheless, all the important features of
real survey data are still in the data. The results produced with the example
data are quite close to the results one produces with the full data.

Generally, you should take a serious amount of time to think about the process
of generating your working data from the raw panel data before you actually begin
with your computer work. Usually, you will have to carefully read the data docu-
mentation before you can start to build your working data set. At the beginning of
this chapter, we introduced panel data as having three dimensions: time (t), units (i),
and variables (v). When we build data sets using the raw data from a panel survey,
we have to become clear about each of these three dimensions. What is the popula-
tion we want to analyze, i.e., which units have to be included in the data set? Which
period of time should be analyzed? Which variables do we need for the analysis? If
we have decided which information (time points, units, and variables) we need, we
can start to search for the right data.

Often, it is useful to first generate a data set including the population of interest.
As in the examples below, this data set can be used as a master data set for all
subsequent data management. The term master data set refers to a data set which
is used to determine the basic structure (usually the unit and sometimes the time
dimension) of the final working data set. It includes at least the key variables that
we need in order to include the variables of interest into the master data set. The
term master data set has already been used before, when we introduced Stata’s
append and merge commands. In Stata, the data set which is loaded into memory
is also called the master data set. When data is appended or merged it is included
into the master data set. The term master data set that we introduced now is related
to this idea but has a theoretical component as well: the master data set includes
one row for each relevant observation, i.e., it represents the target population. When
including data from other files into our master data, we have to make sure that the
basic structure (the target population) remains unaffected.

2.3.1 Case Study 1: How Many German Citizens Were Poor in 2004?
A Cross-Sectional Analysis

In this case study we compute the poverty rate of the German resident population
in 2004 using data from the SOEP (see Example 2.2). We estimate the at-risk-of-
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poverty threshold (60 % of median income) and create an indicator for the poverty
status of each respondent. We define individual incomes on the basis of equivalized
disposable household incomes. The complete working data set includes information
from five raw data sets of the SOEP: up, ukind, uhgen, uhbrutto and phrf,
all of them from 2004 (as indicated by the first letter u in the data set names).

At first sight, our example seems to be quite simple. We want to estimate the
poverty rate of the German resident population in 2004. In principle, our final
working data set consists of only one categorical variable indicating the individ-
ual poverty status. However, as you will see, we will have to do considerable data
management before we can actually compute the poverty rate.

Let us start with the three dimensions mentioned above. The population we want
to analyze is the German resident population in 2004. The individual-level file from
2004 (up) includes only adults. Children are a part of the target population and
are included in a separate data file (ukind). We have to combine both data sets
(up+ukind) to obtain a sample of the German resident population in 2004. This
combined data set will serve as the master data set for further data management,
i.e., we will include the variables we need for our analysis into the master data set
and keep its basic structure.

So, which are the variables we need? Ultimately, we want to measure the indi-
viduals’ poverty status. Individuals are defined as poor if their income lies below a
certain poverty threshold. Following a standard definition in poverty research, we
will define incomes on the basis of equivalized disposable household incomes and
the poverty threshold as 60 % of median equivalized disposable income. Hence, we
need to calculate (i) each respondent’s equivalized disposable income, (ii) estimate
the median income, and (iii) compare each respondent’s income to the respective
poverty threshold (60 % of the median income).

What is an equivalized disposable household income? In many cases, a person’s
economic well-being not only results from the individual’s income but also from the
household in which the person lives. In fact, only a part of the population actually
earns an income from employment. Therefore, individual incomes from employ-
ment, as well as other incomes like social transfers, are reallocated within house-
holds. Thus, we have to refer to the household context if we want to measure an
individual’s actual standard of living.

As an example, think of a family with two children and one employed parent
who earns a net income of 4,000e. If you want to describe the economic situation
of these four people, you will certainly not assume that the working person has an
income of 4,000e while the other three persons have no income. Perhaps you will
assume that each person has an income of 1,000e. In other words, in order to de-
scribe the economic situation of the individuals, you will use a per capita measure
of total household net income. The idea behind the concept of disposable equival-
ized incomes is to adjust per capita incomes within a household for scale effects due
to its size and for different needs of adults and children. In doing so, the actual stan-
dard of living is comparable across households with different size and composition
(in terms of adults and children).

For our examples we use the modified equivalence scale of the OECD. This scale
gives a weight of 1 to the first household member, a weight of 0.5 to each additional
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household member 14 years of age or older and a weight of 0.3 to each household
member younger than 14 years of age. Let us think about some household constel-
lations to exemplify this. A woman living in a single-person household with a net
income of 3,000e has an equivalized disposable income of 3,000e (=3,000/1).
Suppose a partner moves into the household. This partner has no own income. Thus,
the total household net income remains at 3,000e. A simple per capita measure of
the household income would be 1,500e and suggests that the woman’s standard
of living is half as good as it was before. Obviously, this assumption is unrealistic.
Many items within the household (and also the living space itself) can be used by
several persons without additional monetary expenses. The equivalized disposable
income would be 2,000e (=3,000/(1 · 1 + 1 · 0.5)) and accounts for these scale
effects: the standard of living of the two persons in one household should equal that
of a single person with an income of 2,000e.

Suppose nine months after the partner moved into the household a child is born.
Luckily, the woman’s partner found work. Let us say the total household net income,
now, is 4,000e. The equivalized income, then, would be about 2,222e (=4,000/

(1 ·1+1 ·0.5+1 ·0.3)), while a simple per capita measure would be about 1,333e.
The equivalized disposable income suggests that the three persons living in one
household have a standard of living that is equal to that of a single person with a net
income of 2,222e.

To summarize, the disposable equivalized household income is a measure of the
total net household income which has been divided by the weighted number of indi-
viduals living in the household. The weights, first, account for the different levels of
need between children and adults; the modified OECD scale gives a weight of 0.3
to children under 14 years of age. Second, the weights account for scale effects; in
the modified OECD scale only the first person in a household is weighted by 1. All
other persons have a weight smaller than one.

To calculate the disposable equivalized income with the SOEP data we need
(i) the total disposable income of each household, (ii) the number of household
members younger than 14 years of age, and (iii) the number of household mem-
bers 14 years of age or older. In the SOEP, disposable (net) household incomes
(ahinc04) can be found in the file uhgen. The total household size (uhhgr) and
the number of household members younger than 14 years of age (unhmu146) are
included in the data set uhbrutto. The number of household members 14 years
of age and older can be calculated by subtracting the number of household members
younger than 14 years of age from the total number of household members. Finally,
we will also include the cross-sectional weights for 2004 (uphrf) from the data file
phrf.

Now, we have identified all data sets we need to combine: up, ukind, uh-
brutto, uhgen and phrf. The files up and ukind have to be appended to each
other. Together they include the (realized) sample of the population of interest and

6The variable unhmu14 (number of household members under 14 years of age) is not included in
the original SOEP files, but can be generated from the information included in the data. For reasons
of simplicity, we generated this variable in advance and stored it in the file uhbrutto.
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make up the master file. The other three files include variables we need. These data
sets have to be merged with the master file.

Before we can start to combine the data we need to think about the key variables
that are necessary to merge the data. The final working data set will contain individu-
als as units. However, in the data sets uhbrutto and uhgen units are households.
The units in a household data set are uniquely identified by their household identifi-
cation number (uhhnr= household number for 2004). Hence, our master data set
(up+ukind) needs to include two key variables: a household identifier (uhhnr)
to merge data from household-level files and an individual identifier (persnr) to
merge data from individual-level files. Now, we have planned the complete process
of data management and can start work.

Our first step is to generate a master data set by appending up and ukind. In
theory, we can drop all variables except the required key variables (uhhnr and
persnr). However, as an explanatory variable for additional analyses we keep the
variable gender. The Stata syntax is quite simple and should be known to you from
the previous sections:

. use ukind

. keep uhhnr persnr uksex

. rename uksex sex

. save children04

. use up

. keep uhhnr persnr up13901

. rename up13901 sex

. append using children04

. * some lines omitted *

. list in 1/5
+------------------------+
| uhhnr persnr sex |
|------------------------|

1. | 2 21 woman |
2. | 4 41 man |
3. | 11 111 man |
4. | 12 121 woman |
5. | 29 291 woman |

+------------------------+

First, we load the data set including children (use ukind). Then, we reduce the
number of variables to those we actually need (keep uhhnr persnr uksex).
Before appending the two data sets we have to make sure that the variables in both
data sets have the same names. Otherwise, the variables cannot be matched correctly.
For the key variables (persnr and uhhnr) this is the case. The variable gender,
in contrast, has a different name in the file up than it has in the file ukind. Hence,
we have to rename it (rename uksex sex).

After saving the children file in its current form we can start to prepare the adult
data set. Again, we drop all variables except the two key variables and gender (here
named up13901). Before we finally combine the data, we rename the variable
up13901 and give it the same name as in the children file (sex). Now, both data
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sets include exactly the same variables (uhhnr, persnr, and sex) and can be
combined using the append command. After labeling, ordering and sorting the
data (we do not present this syntax here), we look at the first five rows of the master
data (list in 1/5).

Now that we have the master data, we can start to include the variables we need
to compute equivalized disposable incomes. The total household size (uhhgr) and
the number of children younger than 14 years of age (unhmu14) can be found in
the household-level file uhbrutto. First, we merge the two variables uhhgr and
unhmu14 into our master data. In a second step, we merge the total net household
income (ahinc04) into the master data. It can be found in the household-level file
uhgen. As in Sect. 2.2.3, we have to perform a one-to-many merge and use the
required option uniqusing because we merge individual-level with household-
level data. We also use some other options which reduce the necessary steps for
merging the data sets:

. merge uhhnr using uhbrutto, sort uniqusing keep(uhhgr unhmu14)
variable uhhnr does not uniquely identify observations
in the master data
. tab _merge

_merge | Freq. Percent Cum.
------------+-----------------------------------

2 | 297 4.33 4.33
3 | 6,568 95.67 100.00

------------+-----------------------------------
Total | 6,865 100.00

. drop if _merge == 2
(297 observations deleted)
. drop _merge

. merge uhhnr using uhgen, sort uniqusing nokeep keep(ahinc04)
variable uhhnr does not uniquely identify obs. in the master data
. drop _merge

In Sect. 2.2.2 we said that two data sets which should be merged have to be sorted
by their key variable(s). In the output above we use the sort option of the merge
command. This option automatically sorts both data sets by the key variable(s).
Hence, we do not need to sort both data sets in advance of the data merging. The
option keep(uhhgr nhmu14) specifies which variables from the using data set
ought to be included in the new data set. Without this option, Stata would include
all variables from the data set uhgen into the master data set.

After each merge, Stata generates a variable _merge. This variable provides
information about the fit of the two data sets. The variable can take three dif-
ferent values indicating whether an observation appeared only in the master data
set (_merge=1), whether an observation appeared only in the using data set
(_merge=2), or whether an observation appeared in both data sets (_merge=3).
Fortunately, a frequency table of the variable (tab _merge) indicates that
95.67 % of the observations in the combined data set were included in both data
sets (_merge=3), i.e., the household income could be merged successfully with
the individual-level data.
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There are also 297 cases in which the household-level data set includes an ob-
servation that is not included in the master data set (_merge=2). The number
of observations which appeared in the household-level file but not in the individual-
level file is that high because the file uhbrutto includes a record for each sampled
household even if the household did not participate in the respective year. However,
using the command drop if _merge == 2, we delete all observations which
have not been included in the master data set. We do so because the master data
includes, by definition, the sample of our target population. We also delete the vari-
able _merge because Stata would not execute the following merge commands if
a variable _merge already exists.

In the second part of the syntax, we include the total net household income
(ahinc04) into the master data set. We use the same options as before but add the
option nokeep. This option forces Stata to keep only observations which are al-
ready included in the master data set. Using this option is equivalent to the separate
command drop if _merge == 2 that we used in the first merge procedure.
Again, we do so because we want the master data set to remain unaffected with
regard to the included units (its rows). The resulting data set includes the variables
uhhnr, persnr, sex, ahinc04, uhhgr, and unhmu14.

For later use in the section on weighting (Sect. 2.4), we finally include the cross-
sectional weight for 2004 (uphrf from the file phrf):

. merge persnr using phrf, sort nokeep keep(uphrf)

. drop _merge

The using data set is an individual-level data set and therefore the observations in
both data sets are uniquely identified (one-to-one merge). Again, we include only
the required variable by using the option keep. After generating a variable that
measures the number of household members 14 years of age or older (nahm), our
data set includes all the variables we need to compute equivalized disposable in-
comes and we can start to prepare our data set for the final analysis. The complete
data set, now, looks like this:

. list in 381/390
+--------------------------------------------------------------+
| uhhnr persnr sex uhhgr unhmu14 nahm ahinc04 uphrf |
|--------------------------------------------------------------|

381. | 895 8951 man 4 1 3 2414 4140.28 |
382. | 895 8952 woman 4 1 3 2414 3931.68 |
383. | 895 8953 man 4 1 3 2414 3798.59 |
384. | 895 8954 woman 4 1 3 2414 3874.96 |
385. | 897 8971 woman 2 0 2 4780 1669.89 |

|--------------------------------------------------------------|
386. | 897 8972 man 2 0 2 4780 1664.87 |
387. | 905 9051 man 1 0 1 2942 4794.66 |
388. | 907 9071 woman 4 0 4 5562 2068.16 |
389. | 907 9072 man 4 0 4 5562 2074.76 |
390. | 907 9074 man 4 0 4 5562 2087.41 |

+--------------------------------------------------------------+
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A simple per capita measure of household income would be obtained by di-
viding the total disposable household income (ahinc04) by the total number
of household members (uhhgr). For example, for the members of household
uhhnr=895 we would get a per capita income of 2,414/4 = 603.5e. However,
for the reasons explained above, we calculate an equivalized disposable income
to get a better measure of an individual’s standard of living. The equivalized dis-
posable income of each member of household uhhnr=895 amounts to 2,414/

(1 · 1 + 2 · 0.5 + 1 · 0.3) ≈ 1,050e. We generate the equivalized disposable income
as a new variable (edincome) using the command generate edincome =
ahinc04/(1+.5*(nahm-1)+.3*unhmu14). This command divides the vari-
able ahinc04 by the weighted number of household members.

The last task, now, is to generate a variable which measures individual poverty
status. To that end, we need to estimate the poverty threshold. The median of
the variable edincome is 1,422.22e. The poverty threshold, then, equals 0.6 ·
1,422.22 = 853.33e. We can generate the poverty indicator using a simple syntax
which sets the new variable to 1 if the variable edincome is lower than 853.33 and
to 0 if it is larger or equal to 853.33:7

. generate poverty = 1 if edincome < 853.332

. replace poverty = 0 if edincome >= 853.332 & edincome < .

. list uhhnr persnr edincome poverty in 180/184
+-------------------------------------+
| uhhnr persnr edincome poverty |
|-------------------------------------|

180. | 517 5171 583.3333 1 |
181. | 517 5172 583.3333 1 |
182. | 521 5211 2378.333 0 |
183. | 521 5212 2378.333 0 |
184. | 521 5213 2378.333 0 |

+-------------------------------------+
. tab poverty

poverty |
ind. [0,1] | Freq. Percent Cum.
------------+-----------------------------------

0 | 5,649 89.04 89.04
1 | 695 10.96 100.00

------------+-----------------------------------
Total | 6,344 100.00

The resulting poverty rate for 2004 is 10.96 % (using unweighted data). In Sect. 2.4
we will compare this poverty rate to the poverty rate that we get if we use cross-
sectional weights. For now, we will assume that the German poverty rate in 2004
was about 11 %.

7In Stata, missing values are treated as infinitely large numbers. A logical operation which uses
the operator “>” includes missing values. Therefore, we have to add “& edincome < .” in the
replace command.
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2.3.2 Case Study 2: Did Poverty Increase in Germany After 2004?
An Analysis of Pooled Cross-Sections

In this second case study, we calculate the trend in German poverty rates from 2004
to 2006 using data from the SOEP (see Example 2.2). We use a poverty thresh-
old of 60 % of median equivalized disposable incomes and create an indicator for
the poverty status on the individual level. The analysis is based on 13 raw data
sets from the SOEP: up, ukind, uhgen, uhbrutto, vp, vkind, vhgen, vh-
brutto, wp, wkind, whgen, whbrutto and phrf, all of them from 2004–2006
(as indicated by the first letters u, v, and w in the data set names).

In the last section we estimated the poverty rate for 2004. Now, we extend the
scope of the analysis to the time period 2004 to 2006. The aim of this analysis is to
obtain an estimate of the trend in poverty rates, which from a methodological point
of view resembles an analysis of pooled cross-sections. As in the previous example,
we do not necessarily need panel data for this purpose. We do not need to pool the
cross-sections to obtain an estimate of the time trend. Alternatively, we could use
three single cross-sections and estimate the poverty rates with each of these data
sets separately. However, once we have built a trend data file this task is much easier
and therefore, we will actually pool the cross-sections. Nevertheless, it is important
to notice that the resulting data will still be a panel data set and not a pooled file
including independent cross-sections. This is because the data we combine include
repeated observations of the same units over time no matter how we combine these
data.

Again, we should take some time to think through how we will manage the com-
plete data before we begin to work with the data. We start by defining the three
dimensions of our data cube: The units (German resident population) and variables
(individual poverty status) are, in general, identical to those used in the previous case
study. However, the time dimension differs from the last example. We aim to esti-
mate the poverty rates of the German resident population from 2004 to 2006. For this
trend analysis we need a sample of the German resident population for each year.

We can think of two general approaches to generate the working data set. First,
we can repeat the steps from the previous case study for the data sets from 2005
and 2006 and pool the three resulting cross-sections. Second, we could start by ap-
pending the adult and children files for all years (up, ukind, vp, vkind, wp, and
wkind) to come up with a master file representing the target population (the Ger-
man resident population 2004–2006). In the next step we would merge all required
variables into this master data set. Both ways result in exactly the same working data
set. The second approach would require us to use the time points t as an additional
key variable, because the master file would include three observations per individual
and at least three observations per household. In this case the observations are only
uniquely identified by the combination of identification number and time point.

Both ways are reasonable. Since we already wrote the syntax for constructing
the cross-section 2004, we can easily adjust it to the data from 2005 and 2006. This
is done by changing the first letter of all data sets (remember that the first letter
indicates the wave) and substituting the variable names from the 2004 data by the
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Table 2.2 Pooled
cross-sections

Source: Unweighted SOEP
data (see Example 2.2)

Persnr Wave Edincome Poverty Sex

41 2004 480 1 man

· · · · · · · · · · · · · · ·
18,723 2005 2,159.2 0 man

· · · · · · · · · · · · · · ·
15,342 2006 801.33 1 woman

corresponding names in the following waves. We do not present the syntax here but
we come up with three data sets named upoverty, vpoverty and wpoverty
(we stay with the SOEP naming system and use the first letter of a data set’s name
as an indicator for the time point). The data set upoverty results from the last
example; the other two data sets have been generated with the adjusted syntax. All
three data sets include the variables gender (sex), income (edincome), poverty
(poverty), a cross-sectional weight (?phrf), and the key variables (persnr,
?hhnr).

However, the three cross-sections cannot be pooled together right away. Again,
we have to make sure that all variables have exactly the same names. In the current
form each data set includes two variables with wave-specific names (uhhnr and
uphrf in the file upoverty, vhhnr and vphrf in the file vpoverty, and so
on). Moreover, as we want to differentiate between years, we need an additional
variable indicating to which wave an observation belongs. We have to create this
variable before appending the data sets because we would not be able to identify the
observations of one time point after pooling the data. In the Stata output below we
present only the syntax for preparing the 2006 and 2004 data. We have to do exactly
the same with the data sets from 2005 (vpoverty). Then, we can append the data
sets to finally obtain our pooled cross-section data set:

. use wpoverty

. generate wave = 2006

. rename whhnr hhnr

. rename wphrf phrf

. save wpoverty, replace

* syntax for 2005 omitted

. use upoverty

. generate wave = 2004

. rename uhhnr hhnr

. rename uphrf phrf

. append using vpoverty wpoverty

. save pcspoverty

An excerpt of the resulting data set is presented in Table 2.2. Since the poverty
indicator is coded as a dummy variable (0,1), we can calculate the poverty trend
by computing the mean of the poverty indicator for each year. The results are pre-
sented in Fig. 2.5. The estimated poverty rate increased between 2004 (10.96 %)
and 2006 (11.66 %).
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Fig. 2.5 Unweighted
German poverty rates
(2004–2006)

As already indicated above, the data set used for this analysis is a panel data set.
Currently it is organized in the form of pooled cross-section data, with the first 6,568
observations being from 2004, the next 6,248 observations from 2005 and so forth,
but sorting the data by the key variables persnr and wave would put it in the
typical form of panel data in long format. So, what is the difference between panel
data analysis and the analysis of pooled cross-sections? In pooled cross-sectional
analyses like the present trend analysis, we ignore the fact that units are repeatedly
observed over time. In a panel analysis we make use of the information provided by
the key variables, i.e., we want to know which observations belong to the same units.
This is the topic of the next section which analyzes individual change in poverty
states. This analysis starts again with the pooled cross-section data that we have just
generated.

2.3.3 Case Study 3: How Large Is the Risk of Becoming Poor
in Germany? A Panel Analysis

In this case study we calculate the percentage of individuals moving between
poverty and non-poverty in the period from 2004 to 2006. The target population
is the German resident population. Again we use SOEP data and a poverty thresh-
old of 60 % of median equivalized disposable incomes. The case study illustrates
how to create panel data in long and in wide formats. The panel data set in long
format will be generated using the data set that we constructed in the last example
(pcspoverty). The working data set in wide format will be generated from 13
raw data sets from the SOEP: up, ukind, uhgen, uhbrutto, vp, vkind, vh-
gen, vhbrutto, wp, wkind, whgen, whbrutto, and phrf, all of them from
2004 to 2006 (as indicated by the first letters u, v, and w in the data set names).

In this case study we want to make use of the full potential of panel data and
analyze the dynamics of poverty between 2004 and 2006. In Sect. 2.3.2 we almost
generated a panel data set in long format. We used three single cross-sections and
pooled them together. Sorting these data by the unit identifier (persnr) and the
years (wave) transforms them into the usual long format of panel data:
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. use pcspoverty

. sort persnr wave

. list persnr wave edincome poverty sex in 1/7, sepby(persnr)
+--------------------------------------------+
| persnr wave edincome poverty sex |
|--------------------------------------------|

1. | 21 2004 1245 0 woman |
2. | 21 2005 1275 0 woman |
3. | 21 2006 814 1 woman |

|--------------------------------------------|
4. | 41 2004 480 1 man |
5. | 41 2005 502 1 man |
6. | 41 2006 524 1 man |

|--------------------------------------------|
7. | 51 2006 1246 0 woman |

+--------------------------------------------+

Is this data set a panel data set? In principle yes, but the target population is not
completely identical to the population we want to have in a genuine panel data set.
In the last example, we pooled three cross-sections without considering the data to
be panel data. The target population of the last analysis was the German resident
population 2004 to 2006. As you can see in the data excerpt above, the data set
includes units which have not been observed in 2004 (see individual persnr=51
which enters the panel in 2006). In our panel analysis we want to follow an initial
panel population over time. Individuals that entered the panel in 2005 or after are
not part of the longitudinal population from 2004. A panel population, of course,
can be also defined in a different way. Many studies use unbalanced designs and
define late entries as members of the population. However, in this example we will
use the longitudinal population from 2004 as our target population.

Table 2.3(a) shows the observed response patterns in the data.8 In the current
form, only 70.7 % of the units were observed in all three years. About 14.4 % of
the units enter the panel in 2005 or later. We will discuss some general issues of
balanced and unbalanced panels in Sect. 2.4.2. For now, you should simply notice
that the population represented in the data is not the longitudinal population from
2004. We obtain a panel data set with the longitudinal population if we delete all
units which have not been observed in 2004. The syntax needed for this task is Stata-
specific and not presented here. However, Table 2.3(b) presents the response patterns
in the data after deleting the units which are not part of the target population. The
data set is still unbalanced because it includes units which have not been observed
in all the years following 2004.

As mentioned at the beginning of this chapter, it is more difficult to analyze the
relationships between measurements at different points in time if the data is in long
format. This is because we need to combine values from different rows of the data

8Each row in these tables represents an observed response pattern and gives the number of units
which show the respective pattern. For instance, the row with the pattern 111 shows the number of
units which have been observed in all three waves; the row ..1 shows the number of units which
have been observed only in the last wave (2006) but not in 2004 and 2005, etc.
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Table 2.3 Response patterns
in unbalanced panel data

Source: SOEP data (see
Example 2.2)

(a) Cross-sectional population

Pattern Freq. Percent

111 5,419 70.67

..1 877 11.44

11. 606 7.90

1.. 445 5.80

.11 188 2.45

1.1 98 1.28

.1. 35 0.46

xxxx 7,668 100.00

(b) Longitudinal population

Pattern Freq. Percent

111 5,419 82.51

11. 606 9.23

1.. 445 6.78

1.1 98 1.49

xxxx 6,568 100.00

matrix to calculate statistics. If we want to compute the percentage of individuals
that moved between poverty and non-poverty, we have to create the so-called lag
of poverty. The lag of poverty is a variable that takes, at time point t , the value of
poverty at t − 1 (Lyt = yt−1). Therefore, the software needs to know which rows
belong to the same units. In Stata we can create the lag of poverty like this:

. tsset persnr wave
panel variable: persnr (unbalanced)
time variable: wave, 2004 to 2006, but with gaps

delta: 1 unit
. generate lpoverty = L.poverty
. list persnr wave poverty lpoverty in 192/197, sepby(persnr)

+------------------------------------+
| persnr wave poverty lpoverty |
|------------------------------------|

192. | 2351 2004 0 . |
193. | 2351 2005 0 0 |
194. | 2351 2006 0 0 |

|------------------------------------|
195. | 2382 2004 0 . |
196. | 2382 2005 1 0 |
197. | 2382 2006 0 1 |

+------------------------------------+

The command tsset persnr wave declares the data as panel data, with
persnr being the unit identifier and wave being the time identifier. Stata responds
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with a summary of the characteristics of the panel (unbalanced, including observa-
tions from 2004 to 2006). The lag operator L. then is used to generate the lag of
poverty. This lag operator does work only after the data set has been declared as a
panel data set. The value of the lag variable (lpoverty) is, of course, missing for
all observations from 2004. This is because in the data set there is no data available
for 2003 that could have been used to fill these cells of the data matrix. In all other
cells, the lag of poverty at time point t equals the poverty status at t − 1. Now, the
data is prepared for an analysis of individual poverty dynamics. We only present the
syntax for analyzing change in poverty status between 2004 and 2005:

. tab lpoverty poverty if wave == 2005, nofreq row

| poverty ind. [0,1]
lpoverty | 0 1 | Total

-----------+----------------------+----------
0 | 95.95 4.05 | 100.00
1 | 33.71 66.29 | 100.00

-----------+----------------------+----------
Total | 89.30 10.70 | 100.00

The table is a simple cross-tabulation that shows individual poverty status 2004 in
the rows and poverty status 2005 in the columns.9 Of those individuals that were not
poor in 2004, 95.95 % are also not poor in 2005, while 4.05 % became poor in 2005.
Of those individuals that were poor in 2004, 33.71 % are not poor in 2005, while
66.29 % stayed in poverty. However, the lesson to learn here is that we need special
time-series operators if we use data in long format. Statistical software packages that
can deal with time-series data provide a number of different time-series operators.
All of these operators have in common that they interrelate different rows of the data
matrix.

The data set from the analysis above was in long format because it was built
from data which has been prepared for an analysis of pooled cross-sections (case
study 2 in Sect. 2.3.2). However, to come up with a panel data set we had to adjust
the sample population to the target population of our panel analysis. Therefore we
had to delete the units which are not part of the longitudinal population from 2004.
This is an intricate way of generating a panel data set. How would you construct
a panel data set that directly includes only those units that actually belong to this
target population?

Well, we would use the cross-section of 2004 (up+ukind) as the master data
set and merge each year’s variables into this master data. The resulting data set
would be in wide format. In the following paragraphs we will demonstrate how to
construct such a data set in wide format. We will also include longitudinal weights.
These weights can be found in the same file as the cross-sectional weights (phrf).
We will use these weights in Sect. 2.4. At this stage we simply have to notice that we

9The options nofreq and row are used to suppress absolute frequencies and show row percent-
ages only.
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need three variables to create longitudinal weights, i.e., the cross-sectional weight
for 2004 (uphrf) and the inverse of the dropout probability for 2005 (vpbleib)
and 2006 (wpbleib).

Now, there is one point left to be mentioned. When we generate panel data sets in
wide format, it makes sense to distinguish between time-constant and time-varying
variables. In our example, gender is a time-constant variable while all other vari-
ables are theoretically time-varying. In this case, our final data set does not need
to include three variables measuring gender (sex2004, sex2005, sex2006). In
wide format, only time-varying characteristics have to be stored as separate vari-
ables for each time point t . Creating three variables that measure gender would not
be harmful but highly inefficient. By including only one variable for each time-
constant characteristic we can reduce the number of variables. Now, we have a plan
of what we need and can start to work.

We generate the master data set by appending up and ukind. We do not present
the syntax here because the resulting data set is completely identical to the master
data set of the first case study. The master data include a key variable identifying the
household a person lived in 2004 (uhhnr), a key variable identifying individuals
(persnr) and the variable gender (sex). An excerpt of the data is presented after
the list command in the following output. Then, we merge household identifica-
tion numbers for 2005 and 2006 into the master data:

list in 1/5
+------------------------+
| uhhnr persnr sex |
|------------------------|

1. | 2 21 woman |
2. | 4 41 man |
3. | 11 111 man |
4. | 12 121 woman |
5. | 29 291 woman |

|------------------------|
. merge persnr using vp, sort nokeep keep(vhhnr)
. drop _merge
. merge persnr using vkind, sort nokeep keep(vhhnr) update
. drop _merge
. merge persnr using wp, sort nokeep keep(whhnr)
. drop _merge
. merge persnr using wkind, sort nokeep keep(whhnr) update
. drop _merge
. order persnr ?hhnr
. sort persnr
. list in 140/144

+----------------------------------------+
| persnr uhhnr vhhnr whhnr sex |
|----------------------------------------|

140. | 4171 417 417 417 man |
141. | 4172 417 10740 10740 woman |
142. | 4201 420 420 420 man |
143. | 4202 420 420 420 woman |
144. | 4221 422 422 422 man |

+----------------------------------------+
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The resulting data set includes the household identification numbers for each wave.
We need these variables because the household identification number is not a time-
constant characteristic (see individual persnr=4172). A respondent may move
into another household (e.g., due to a marriage) or may found a new household
(e.g., after finishing school and getting a job). Thus, we need the household identi-
fication number for each year in order to merge the corresponding household-level
data into the master data. The second and the fourth merge command in the out-
put above differ slightly from those used in the previous examples. After including
the household numbers from the adult file vp (first merge command), we have
to specify the option update in order to include the household numbers from the
children file (vkind). This is necessary because Stata, by default, does not allow
us to overwrite the values of a variable that already exists in the master data (in
this case vhhnr). An alternative to this approach would be to append the adult and
children files in advance. Using these pooled data we could include household num-
bers with a single merge command. In the next step we can now merge the required
variables into the master data set. We present only the syntax for merging the vari-
ables from 2004 (ahinc04, uhhgr, and unhmu14) and from 2006 (ahinc06,
whhgr, and wnhmu14). We also include the variables needed to construct longitu-
dinal weights:

. merge uhhnr using uhgen, uniqusing nokeep keep(ahinc04) sort

. drop _merge

. merge uhhnr using uhbrutto, uniqusing nokeep keep(uhhgr unhmu14)
sort
. drop _merge

* syntax for 2005 omitted

. merge whhnr using whgen, uniqusing nokeep keep(ahinc06) sort

. drop _merge

. merge whhnr using whbrutto, uniqusing nokeep keep(whhgr wnhmu14)
sort
. drop _merge

. merge persnr using phrf, sort nokeep
keep(tphrf upbleib vpbleib wpbleib)

The first block is known to you from the first case study. It includes the three vari-
ables required to compute equivalized disposable incomes for 2004. After adjust-
ing all wave-specific variable names (including the household identification num-
ber), we can use exactly the same syntax to merge the variables from 2005 and
2006 to our master data. The last merge procedure includes the weights we need.
We do not present the syntax for computing equivalized disposable household in-
comes, but you should notice that we need to calculate three equivalized household
incomes. After generating the income measure, deleting some variables, and reor-
ganizing the data we obtain a file with the typical structure of panel data in wide
format:
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. list persnr sex income* in 1/5
+-------------------------------------------------------+
| persnr sex income2004 income2005 income2006 |
|-------------------------------------------------------|

1. | 21 woman 1245 1275 814 |
2. | 41 man 480 502 524 |
3. | 111 man 2734 2434 . |
4. | 121 woman 1195 1795 1595 |
5. | 291 woman 1047 . . |

+-------------------------------------------------------+

Although not shown in the former listing, the file also includes the cross-sectional
weight for 2004 (now named phrf2004) and the estimated inverse drop out rates
for 2005 and 2006 (now named pbleib2005 and pbleib2006). We will come
back to these weights in the section on weighting (Sect. 2.4.2). As in the pre-
vious example we create an indicator which is 1 for individuals with an equiv-
alized disposable income below the poverty threshold and 0 otherwise. We did
not calculate the poverty threshold from the data at hand. Instead we used the
poverty thresholds that we have estimated with the pooled cross-section data. We
do so because we want to relate the income of our longitudinal population (the
German resident population of 2004) to the incomes of the population in each
of the years 2004–2006. Since the data set is in wide format, we come up with
three poverty indicators (poverty2004, poverty2005, and poverty2006),
each based on the respective income variable. In the wide format we can easily
analyze the statistical associations between the measurements at different points
in time because each measurement is a variable on its own. We do not need
lagged variables. A simple cross-tabulation, for instance between poverty2004
and poverty2005, shows the percentage of people that moved into or out of
poverty.

Table 2.4 summarizes the results of our analysis. In the column “0 ⇒ 1” the table
shows the percentage of non-poor people (in t) who moved into poverty in t + 1.
The column “1 ⇒ 0” shows the percentage of poor people (in t) who moved out
of poverty in t + 1. In both waves about one third of the people living in poverty
at t moved out of poverty in t + 1. Thus, the chance to move out of poverty was
quite high. The risk of becoming poor was, in contrast, relatively low (about 4–5 %).
Similar to the trend analysis (Sect. 2.3.2), the problem of poverty seems to get worse
in the observation period. The trend analysis suggested an increasing poverty rate.
The panel analysis, now, shows that the percentage of people moving into poverty
rose between 2004 and 2006.

Table 2.4 Poverty dynamics
in Germany (2004–2006,
unweighted data)

Source: Unweighted SOEP
data (see Example 2.2)

t t + 1

0 ⇒ 1 1 ⇒ 0

2004 4.05 33.71

2005 4.80 34.51
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2.4 How to Represent a Population with Panel Data?

In the previous three examples we used unweighted data. Are the results good esti-
mates of the true population parameters? In theory, one can infer population param-
eters from a simple random sample (SRS) of the population. A SRS has to meet the
following assumptions:
• random selection of units,
• identical selection probability for all units,
• selection of one unit does not affect the selection probabilities of other units.
For different reasons social surveys seldom meet these assumptions. For example,
some of the sampled units may refuse to participate in the survey or cannot be
contacted (unit non-response). Some of the respondents may also refuse to answer
certain questions (item non-response). Furthermore, social science surveys often use
complex sampling designs. As a result, selection probabilities differ between units.

Many social science surveys, for example, apply some kind of multi-stage sam-
pling selecting regional units in the first stage, then households within these re-
gions in the second stage, and finally individuals within the selected households in
the third stage. If one individual is selected randomly from each randomly selected
household, selection probabilities of individuals living in single-person households
equal 1, while selection probabilities of individuals living in multi-person house-
holds equal the inverse of the household size. Hence, selection probabilities differ at
the last stage of this sampling design. Some surveys also draw samples, which inten-
tionally overrepresent certain groups in order to provide enough cases to study these
groups. For example, the SOEP includes a sample of immigrants and a sample of
high income households. Both groups are overrepresented in the total SOEP sam-
ple and hence, have higher selection probabilities than the other sample members
(compare Example 2.2).

Statistical weights can be used to compensate for different selection probabil-
ities. Weights modify the relative importance of single units in the sample. In an
unweighted analysis all units have the same influence, i.e., all units have an equal
weight of 1. In weighted analyses, underrepresented units (i.e., units with below
average selection probabilities) get a weight larger than 1 and, thus, count more
than they do in an unweighted analysis, while overrepresented units (i.e., units with
above average selection probabilities) get a weight smaller than 1 and, thus, count
less than they do in an unweighted analysis. Design weights account for different
selection probabilities due to the sampling design. Design weights are obtained as
the inverse of the (known) sample selection probability. For example, if only one
individual is sampled within each selected household, an individual coming from
a two-person household would get a weight of 2 (1/0.5 = 2), while an individual
coming from a one-person household would get a weight of 1 (1/1 = 1). These
weights would account for the selection probabilities at the last stage of the sam-
pling design and would be multiplied with the selection probabilities from the other
stages. In addition to design weights, population weights (also called redressment
weights) can be used to adjust the profile of the sample to the marginal distribution
from official data and in doing so, account for unit non-response bias and sampling
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errors. In that case, the total weighting factor is obtained as the product of design
and population weights.

When should we use weights? This depends on what we want to do with the
sampled data. Do we want to estimate statistical models that test our theoretical
propositions (e.g., whether poverty is related to family background as assumed by
some poverty researchers; e.g., Bowles et al., 2008) or do we want to make repre-
sentative statements about the population from which the sample has been drawn
(e.g., about the percentage of citizens at risk of poverty in a given year)? In the lat-
ter case of descriptive inference, one should use weights if the sample does not have
the same characteristics as a SRS. In the former case of analytical inference, one
should specify the model in such a way that it controls for different selection and
response probabilities. We will address this particular issue at the end of this section
(Sect. 2.4.3).

However, before we give some general recommendations, we will show how to
use cross-sectional and longitudinal weights in balanced and unbalanced panels. In
Sect. 2.4.1 we will demonstrate how to use cross-sectional weights. We will recon-
sider the results of our trend analysis of German poverty rates in the second case
study and compare weighted and unweighted results. In Sect. 2.4.2 we will address
particular issues that arise if we use weights for longitudinal analyses. We will re-
consider the analysis of individual change in poverty status from the third case study
and again, compare weighted and unweighted results. We will also address the issue
of balanced and unbalanced panel designs because both designs require different
weighting procedures. In Sect. 2.4.3 we will give some general recommendations
on weighting, in particular, on weighting in regression-type analyses.

2.4.1 Weighted and Unweighted Analysis of Cross-Sections

In the first and second case study we aimed at estimating the poverty rates of the Ger-
man resident population from 2004 to 2006. The analysis was based on the available
sample for each of the years from 2004 to 2006. The crucial question is whether the
available sample of, say 2005, can be treated as a simple random sample of the Ger-
man resident population from 2005. In this case we would get unbiased estimates
from the unweighted analysis. But is that true?

In general, one can assume that the deviation between sample and (cross-
sectional) target population increases from wave to wave. This is, first, because the
composition of the sample might change due to panel attrition and, second, because
the target population might change as well (see the discussion in Sect. 1.1.2.1). Re-
freshment samples counterbalance this process, but as they are not drawn yearly
they are not able to completely compensate for the lack of coverage between sam-
ple and population. Moreover, each new refreshment sample, of course, suffers from
the same problems as the initial sample, i.e., not all sampled units will participate.

The cross-sectional weights provided by the SOEP group account for different
selection probabilities due to unit non-response and sampling design (including the
fact that some groups—foreigners, high income households—are intentionally over-
represented in the SOEP). They adjust the profile of each years’ total sample to
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the respective population marginals using data from official statistics (i.e., the Mi-
crocensus, a 1 % sample of the German resident population where participation is
mandatory by law).

When we built the data set for the trend analysis of poverty rates, we already
included cross-sectional weights. Thus, we can easily repeat the analysis with
weighted data. However, it is not sufficient to estimate the percentage of poor in-
dividuals by computing a weighted mean of our poverty indicator. We also have to
reestimate the poverty threshold and create a new poverty indicator based on this
threshold.

Using unweighted data from 2004, we computed a median equivalized dispos-
able income of about 1,422e and a respective poverty threshold of about 853e.
Using statistical weights for 2004 (uphrf), the estimated median income equals
1,348.33e and the respective poverty threshold is 0.6 ·1,348.33 ≈ 809e. Thus, the
estimated poverty threshold is lower if we use statistical weights. While an individ-
ual with an income of 830e was considered poor using the unweighted poverty
threshold, we would consider this individual non-poor if we use the weighted
poverty threshold.

Why is the weighted poverty threshold smaller? Well, it is smaller because the es-
timated median income is smaller. One important reason for this outcome is that all
respondents which are members of the high income sample have a weight of zero.10

In other words, in the unweighted analysis we included the oversampled group from
high income households, while we now exclude this group in the weighted analysis.
Having computed the new poverty threshold for each year from 2004 to 2006, we
can generate a new poverty indicator and use this variable to calculate the percent-
age of individuals that were poor. Figure 2.6 presents the results of the weighted and
the unweighted analysis of the trend in poverty rates.

The first observation is that, in all years, the weighted poverty rate was higher
than the unweighted poverty rate. This is surprising because the unweighted poverty
threshold is larger than the weighted poverty threshold. Thus, we define less cases as
poor if we use the weighted poverty threshold. So, why is the weighted poverty rate
higher than the unweighted? This is because the group of poor people, on average,
has a higher weight than the group of non-poor people. In our example the average
weight of the group of poor people is 1.31, while the average weight of the group
of non-poor people is 0.97. Hence, those individuals who are defined as poor gain
importance through weighting while the non-poor lose importance through weight-
ing. In other words, people near the bottom of the income distribution seem to be
underrepresented in the sample, a result well known from survey research.

10Since the size of population of high income households (defined as having a monthly income of
at least 3,835e) was unknown, it is not possible to quantify the selection probability for the high
income sample. Hence, it is impossible to correct the oversampling with design weights and the
safest way to get unbiased income statistics is to exclude the high income sample with a “weight”
of zero. Income statistics are then estimated with the remaining SOEP respondents whose selection
probabilities are known.



52 2 Managing Panel Data

Fig. 2.6 Weighted and
unweighted German poverty
rates (2004–2006)

The second observation is that weighted and unweighted estimates lead to sub-
stantially different conclusions. Between 2004 and 2005, weighted and unweighted
estimates showed an increasing poverty rate. However, between 2005 and 2006
weighted poverty rates decreased while unweighted poverty rates increased. Ob-
viously, weighting can have a substantial effect on the results and we should put
some thought in the question of whether we should weight our data or whether we
should use unweighted data. In this example, the weighted estimates are much more
trustworthy, because the unweighted estimates are biased due to the overrepresen-
tation of high incomes. From a technical point of view, weighting cross-sections
is easy if the weighting factors are provided with the data. We did not present the
syntax here because weighting commands are somewhat software-specific, but you
will be able to weight your data with cross-sectional weights.

2.4.2 Weighting in Balanced and Unbalanced Panels

Statistical weighting in panel analyses is much more complex than it is in cross-
sectional analyses. In the third case study we performed a panel analysis of indi-
vidual poverty dynamics. Can we use weights to improve the estimates from this
analysis? What will these weights look like?—We have to use longitudinal weights.
What is a longitudinal weight and how does it differ from cross-sectional weights?
As explained in the last section, cross-sectional weights adjust the profile of the
sample to the profile of the target population. Longitudinal weights do exactly the
same. Remember that our target population in the third case study was the German
resident population of 2004.

Consequently, we should use weights which account for differences between the
sample and the German resident population of 2004. For observations from 2004
this weight is the cross-sectional weight for 2004 (phrf2004). What about using
the 2004 cross-section weight for all waves? In principle, this is a good idea. As
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long as all individuals who participated in 2004 stay in the panel we could use the
cross-sectional weights from 2004 for each wave.

However, we face the problem of panel attrition. Some of the units that partic-
ipated in 2004 drop out of the sample. Table 2.3(b) shows the observed response
patterns in the longitudinal sample. Only 82.5 % of the sample members are ob-
served over the complete period under investigation. Nearly one-fifth of the sample
drops out between 2005 and 2006. If these dropouts are not distributed randomly, we
get biased estimates from unweighted analyses. Longitudinal weights compensate
for these dropouts. They are obtained by multiplying the cross-sectional weights
with the inverse of the dropout probability.

As an example, assume that the members of a particular group, say men between
20 and 30 years of age, tend to drop out of the sample while all other groups stay in
the panel. Thus, in each wave the percentage of men aged 20 to 30 years decreases
while the percentage of all other individuals increases. Longitudinal weights com-
pensate for these dropouts by giving higher weights to the remaining men between
20 and 30 years of age and lower weights to all the other cases.

To obtain the longitudinal weighting factor for time point t +x, we have to multi-
ply the cross-sectional weight for time point t with all inverse dropout probabilities
from t + 1 to t + x. Drop out probabilities can be estimated using logistic regres-
sion models. The SOEP group provides estimates of the inverse dropout probability
for each unit and each time point. Researchers who want to weight their panel data
have to construct the respective longitudinal weights manually. As we included these
variables in our data set, we can create the longitudinal weights using syntax like
this:

gen lweight2004 = phrf2004
gen lweight2005 = lweight2004*pbleib2005
gen lweight2006 = lweight2005*pbleib2006

The three resulting longitudinal weights now can be used to analyze the transitions
between poverty and non-poverty. However, before we repeat the analysis from the
third case study with weighted cases, we have to consider the structure of our data
set.

Table 2.3(b) shows the response patterns in the data set. Obviously, the panel
is unbalanced. A balanced panel would consist of the 5,419 cases with the pattern
111. Longitudinal weights are easily applied to these cases.

The same is true for units that drop permanently out of the panel (patterns 11.
and 1..). Temporary dropouts (pattern 1.1), however, create a problem because
longitudinal weights equal the product of the cross-sectional weight for the starting
wave t and all inverse dropout probabilities between the start of the panel t and the
current time point t + x. By definition, a unit’s inverse dropout probability is zero
for the year the unit drops out temporarily. Consequently, the weight remains zero
after the unit reenters the panel. The same is true for late entries, but in our current
example these are excluded anyway. Thus, we cannot make use of the reentries (and
late entries) if we use the weights from above. The data excerpt below exemplifies
this:
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+--------------------------------------------------------------------+
| persnr po~w2004 lwe~2004 po~w2005 lwe~2005 po~w2006 lwe~2006 |
|--------------------------------------------------------------------|
| 9991 0 8246.89 0 8659.233 0 8919.01 |
| 9992 0 8023.71 0 8424.896 0 8677.643 |
| 10032 0 3605.76 . 0 . 0 |
| 57555 0 1772.03 . 0 1 0 |
+--------------------------------------------------------------------+

The table shows the individual identification number (pernsr), the poverty indica-
tor for 2004 (here abbreviated as po~w2004) followed by the respective weight for
2004 (here abbreviated as lwe~2004), followed by the poverty indicator for 2005,
and so on. The individuals persnr=9991 and persnr=9992 participated in
all three waves. Individual persnr=10032 dropped permanently out of the panel
in 2005. The problematic case is individual persnr=57555. This unit dropped
out in 2005 but reentered the panel in 2006. As the inverse dropout probability for
the unit is 0 in 2005, we get a longitudinal weight of zero for all waves after the
temporary dropout.

There are different solutions to this problem. First, we can run an unweighted
analysis as we did in Sect. 2.3.3. This would, however, lead to biased estimates if
the sample does not have the characteristics of a SRS. Second, we can estimate lon-
gitudinal weights for each temporary non-response pattern. This is a complex and
time-consuming task. Third, we can ignore the problem and disregard the observa-
tions of the temporary dropouts after they reentered the panel. In other words, we
can treat the temporary unit non-responders as if they were permanent dropouts.
In this case we assume that temporary non-responders do not differ from the other
units in the sample.

In our example we will disregard all observations after and including a tempo-
rary dropout, because the number of units with such a response pattern is rather
small (n = 98; see Table 2.3(b)). To exclude these observations, we simply perform
the analysis with the weights that we have generated. As the weights are zero for
all observations after and including the time point when a unit dropped out of the
panel, all observations after and including a temporary dropout are excluded from
the analysis.

The poverty thresholds we use for this analysis are based on weighted cross-
sectional estimates of median equivalized disposable incomes. This is necessary
because the poverty threshold should be related to the current income distribution.
In other words, we used the thresholds from the weighted analysis of pooled cross-
sections (Sect. 2.4.1). Table 2.5 presents the results of the weighted analysis of in-
dividual poverty dynamics.

As a final point in this section, we briefly consider some general issues of bal-
anced and unbalanced panels which are independent of the weighting problem. In
the ideal case, raw panel data are already balanced. In this case one does not have
to decide how to treat attritors, late entries, and temporary dropouts. Nevertheless,
all real panel data from social and economic panel surveys are unbalanced. Usually,
we cannot afford to delete all cases which have not been observed over the complete
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Table 2.5 Poverty dynamics
in Germany (2004–2006,
weighted data)

Source: Weighted SOEP data
(see Example 2.2)

t t + 1

0 ⇒ 1 1 ⇒ 0

2004 4.91 26.17

2005 4.56 32.44

period of investigation. In the third case study we would have to delete 1,149 cases
(compare Table 2.3(b)). This is nearly one-fifth of the complete three-year sample.
One can easily imagine how many cases one loses if the panel has 10 or 20 waves.
Thus, in most cases we will have to use unbalanced panel data.

When doing regression-type analyses, we have to use statistical software which
is capable of dealing with unbalanced panel data. Fortunately, regression models
for unbalanced panel data are a simple extension of regression models for balanced
panel data and all statistical software packages that can estimate panel models can
also deal with unbalanced data. Generally, we recommend using unbalanced panel
designs. In most instances, the loss of cases is simply too large if we delete all units
which have not been observed in all waves. As a consequence, the efficiency of
our estimates will be significantly lower with balanced panel data, i.e., the standard
errors of the estimates will increase if we reduce the sample to those cases which
make up a balanced panel.

A more serious problem arises if those units which are not observed over the
complete panel study (attritors, late entries, and temporary dropouts) differ system-
atically from the rest of the sample. In this case balanced and unbalanced panels will
lead to biased estimates, but the strength of this bias would be much larger if we use
balanced instead of unbalanced data. As we discussed in this section, weighting
offers a solution to the problem of biased estimates due to unit non-response.

2.4.3 When to Use Weights?

In general, we recommend using statistical weights to counterbalance different se-
lection probabilities due to non-response and sampling design. This is particularly
true for representative statements about the population like those in our three case
studies. However, when using weights in statistical models (e.g., panel regression
models) one has to be aware of one drawback. The formulas for standard errors
used by most statistical software packages assume a simple random sample. If we
use statistical weights, the standard errors of the estimated coefficients will be bi-
ased and the statistical inference drawn from the sample might be invalid. However,
before we discuss the particular issue of weighting in statistical modeling (analytical
inference), we will briefly consider the use of weighted data to make representative
statements about the population (descriptive inference).

Assume we want to do a simple descriptive analysis of one variable: income.
Different selection probabilities due to sampling design are one reason for biased
estimates. As an example, think about the overrepresentation of high income house-
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holds in the SOEP. In the example above, the median income estimated with un-
weighted data was higher than the median income estimated with weighted data
(see Sect. 2.4.1). If selection probabilities are related to the variable of interest, de-
sign weights must be used to account for different selection probabilities. Hence, if
we are interested in the variable income and certain income groups are overrepre-
sented by design, we must use design weights to get unbiased estimates of median
incomes (and the respective poverty thresholds).

With regard to non-response, things are a little bit more complicated. In the best
case, a smaller sample size due to non-response leads to less efficient but unbiased
estimates, i.e., we will get the correct mean income but with a larger standard error.
However, this ideal case is only true if non-response is distributed randomly (missing
completely at random, MCAR). If non-response is selective, we will get not only
less efficient but also biased estimates using unweighted data. In this case, missing
data can be either missing at random (MAR) or not missing at random (NMAR).

Missing data is MAR if the probability of non-response depends on variables
that are related to the variable of interest but not on the variable of interest itself. If
the data is MAR and the distribution of the “related” variables in the population is
known, we can use weights to obtain unbiased estimates. As an example, imagine
that women are less likely to participate in a survey because they are not as willing
as men to let strangers (interviewers) into their homes. Furthermore, assume that
this reason is the only determinant of unit non-response. As a consequence, the
gender ratio in the sample will deviate from the gender ratio in the population. Now
assume that we want to estimate average body height in the population. As men are
taller than women we would overestimate average body height in an unweighted
analysis. The population weight obtained from a comparison of the gender ratio in
our sample with the true gender ratio in the population would allow us to estimate
the true population parameter by giving higher weights to women and lower weights
to men in our sample.

However, weights cannot correct for unit non-response bias if the response prob-
ability depends on the variable we are interested in (NMAR). For example, if the
non-response probability depends on income (poor people may be less inclined to
participate in a survey) and not on other variables like age or gender, we cannot get
an unbiased estimate of median income using population weights based on gender
and age. Note that this example is different from the former example on high income
households overrepresented in the SOEP.

Overrepresenting by survey design also results in different selection probabili-
ties, but these selection probabilities are known (“designed”) a priori. Hence, they
can be controlled for by design weights.11 Yet, if (“non-designed”) non-response
is related to the variable of interest (say, income), one cannot compute a selection
probability because, by definition, information about the distribution of this variable
in the population is not available (if that distribution would be known, there is no

11The fact that such selection probabilities could not be computed for the SOEP sample of high
income households is no contradiction. The fact that they are overrepresented is known a priori and
hence, they can at least be excluded with a design weight of zero so as not to bias the estimates.
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need to do a statistical analysis). In this case other techniques are called for that are
not considered in this textbook.

Let us now consider the case of statistical modeling, e.g., regression analysis. In
an ideal case, we would prefer to get unbiased coefficients and unbiased standard er-
rors. As indicated above, standard errors in regression analysis are biased if weights
are used. On the other hand, coefficients might be biased if the data is not weighted.
So, what do to? If the missing data process is MAR (respectively, if the selection
probability is not directly determined by the variable of interest), a common strategy
is to perform unweighted analysis but to control for the background variables that
are related to the response probabilities. In other words, unweighted regression co-
efficients are unbiased if responders and non-responders do not differ systematically
after controlling for the variables that determine the selectivity of participation.

As an example, think of the foreigner sample in the SOEP and assume that the
rest of the SOEP sample satisfies the conditions of a SRS. A model including a
dummy variable indicating whether the respondent is a member of the foreigner
sample or not would control for the higher selection probability (overrepresentation)
of foreigners and yield unbiased results. Of course, this statement is only true under
the assumption that the rest of the model is correctly specified.

As background variables, like gender, age, education or immigrant status, should
be controlled in social science applications in any case, one can argue that un-
weighted regression analyses should be preferred because the estimates of un-
weighted analyses are more efficient. Again, this is only true if the missing data
process is determined solely by the background variables (MAR) and is not related
to the variable of interest, i.e., if weights are solely a function of the X variables and
not of the dependent variable Y .

Therefore, we recommend that you, first, try to specify models that control for
the selectivity of participation. Once you find a model satisfying this condition,
unweighted analysis should be preferred because it yields more efficient estimates.
A formal procedure to test whether the X variables in your model can control for the
selectivity of participation was proposed by DuMouchel and Duncan (1983). This
recommendation is particularly important for panel data analysis, because weighting
in panel data is quite complex and time-consuming if the panel includes late entries
and temporary dropouts. It is also a good strategy to compare the results of weighted
and unweighted regressions. If the unweighted regression coefficients are (almost)
identical to the weighted coefficients you can assume that coefficients will not be
biased and apply an unweighted analysis. Finally, you can also try to control for
sample selection bias with a Heckman selection model (Heckman, 1979).

Nevertheless, if you have to use statistical weights in regression analyses, you
should use the heteroscedasticity consistent estimator for the standard errors (White,
1980). Heteroscedasticity consistent standard errors (called robust standard errors)
are not at risk of providing downwardly biased standard errors. Using robust stan-
dard errors, you can avoid drawing invalid inferences from weighted regression co-
efficients and their standard errors. The drawback of this strategy is that your esti-
mates of the regression coefficients will be less efficient.
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2.5 Conclusion and Further Reading

This chapter provided an overview of the work that has to be done before one can
start analyzing panel data. The main purpose of this chapter was to show how work-
ing data sets are constructed from raw panel data. The emphasis was put on tech-
nical matters, in particular, the combination of single data files into a working data
set and on different forms of organizing panel data (long and wide formats). We
showed how to transform data from long to wide and from wide to long format. For
the purpose of this demonstration, we used Stata, but the general principles of data
management discussed in this chapter work the same way in all statistical program
packages. You will find descriptions of the necessary data management tools in the
documentation of the statistical software that you are using. For Stata we can recom-
mend a book by Mitchell (2010) that gives a broad overview of all data management
tools available in Stata. Kohler and Kreuter (2005) give a general beginner-level in-
troduction to Stata.

We also addressed some other issues that one should think of when analyzing
(panel) data. We discussed how to define populations for cross-sectional and longi-
tudinal analyses. We showed how to include cross-sectional weights in a working
data set. We also demonstrated how longitudinal weights are constructed from the
information in the raw data.

However, we discussed the issue of weighting from a technical rather than from
a theoretical statistical perspective; except in Sect. 2.4.3, where we gave some gen-
eral recommendations on weighting based on statistical considerations. We recom-
mended using weights when making representative statements about the population,
but you should avoid, if possible, using weights in statistical modeling. Before using
weights in regression analyses, you should try to control the possible selectivity of
your sample by the model specification.

Readers who are unsure whether they should weight their data or not should
start with an article by Winship and Radbill (1994). In this article you will find
an easy introduction into the issue of weighting in regression analysis. You will
also find a description of a formal test that you can use to investigate whether you
need to weight your data or not. This test was originally proposed by DuMouchel
and Duncan (1983). A more advanced article dealing with the issue of weighting
in regression analysis is Pfeffermann (1993). If you are using weights, you should
use heteroscedasticity consistent standard errors (White, 1980) in order to avoid
drawing invalid inferences. Heckman selection models are an alternative method
to correct for sample selection bias (Heckman, 1979). An easy introduction into
sample selection bias can be found in Berk (1983), while more advanced readers
might want to read Puhani (2000).

Readers who are interested in missing data (non-response) might want to have a
look at the textbooks by Allison (2002) or Groves et al. (2002). Advanced readers
who are interested in missing data might also want to read Little and Rubin (1987)
and Rubin (1976). An overview of the particular issue of panel attrition, its conse-
quences and some strategies to counterbalance the process of panel attrition can be
found in Hirano et al. (2001).
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A general introduction into the statistical intricacies that arise with complex sur-
vey designs can be found in Kish’s classical textbook on survey sampling (Kish,
1965) or in Kalton (1987). Some more recent and general textbooks which do not
go into details but give a broad overview of survey methodology (sampling, non-
response, weighting) are Groves et al. (2004) and Bethlehem (2009).

Questions of item non-response and imputation have not been discussed at all.
However, particularly with panel data, imputation is a common strategy to deal with
missing values. Interested readers might want to start with Kalton (1986) or Pfeffer-
mann and Nathan (2002) who describe how to deal with unit and item non-response
in panel data. Readers interested in a general introduction into imputation should
read De Leeuw (2001). Schafer and Olsen (1998) give an overview of multiple im-
putation techniques from the perspective of applied researchers. Originally, multiple
imputation was proposed by Rubin (1987).

In the following chapters of this book we ignore the possible complex survey
designs underlying the example data sets. Furthermore, we assume that missing in-
formation is missing at random and is controlled for by the variables in the statistical
models. Hence, all following panel regression models will use unweighted data.
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Statistical models for panel data are a rapidly growing field of methodological in-
quiry. Given the myriad techniques now available in statistical programs, it is dif-
ficult for novice users of panel data to make an informed choice about the meth-
ods that best suit their research questions. This chapter is intended to offer a basic
orientation, before we introduce more specific methods in the following chapters.
Another point of confusion concerns the different names under which these meth-
ods are discussed in the literature. In this chapter, we introduce the terminology
for the statistical models presented in the next two chapters, and discuss the virtues
and pitfalls of panel analysis in an informal way. Depending on the discipline and
the application, various labels have been used for the specific statistical techniques
involved in panel data analysis. Despite this terminological heterogeneity, most of
them are special cases of a very general statistical model, and this overview clarifies
their interconnections.

As a general guideline for this and the following chapters, we distinguish among
the statistical models for panel data according to the type of dependent variable on
which they focus. More specifically, we differentiate between models for categor-
ical and models for continuous dependent variables, i.e., between variables having
few discrete values and variables having values that—at least in principle—could
be measured on a continuous scale. Employment status (employed, unemployed,
out of the labor force), political attitudes (measured, e.g., on a 7-point scale of po-
litical liberalism), or number of children (0, 1, 2, . . . , 5 and more) are examples of
categorical variables. Income (in Dollars), firm size (e.g., number of employees),
gross domestic product (in Dollars), or the amount of social expenditure (in Dol-
lars) are examples of continuous variables. Variables having many discrete values
cannot be efficiently treated as categorical variables. They must either be simplified
(i.e., recoded into fewer categories) or be treated as continuous variables, if the un-
derlying concept is continuous. Admittedly, this distinction between categorical and
continuous variables is a simplification, but as a first orientation for choosing dif-
ferent statistical models, it is very helpful. Later on, Chap. 5 will introduce a more
differentiated classification of categorical data.
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Statistical methods for categorical variables typically focus on the probability
of observing a certain value (category) of the variable of interest. “Does the prob-
ability of being unemployed change with labor force experience?” is a typical re-
search question. This is not a feasible strategy for continuous variables, because of
the many different values these variables can take on. Therefore, statistical meth-
ods for continuous variables focus on certain distributional characteristics of these
variables, e.g., their expected values. “Does income—on average—increase with
educational attainment?” would be a typical research question for such variables.

Since this chapter includes quite a lot of material, we have organized it alongside
the typical questions a researcher will ask when beginning a statistical analysis of
panel data.
1. What is the basic terminology that is used when analyzing panel data (Sect. 3.1)?
2. What is so specific about panel data that traditional statistical models for cross-

section data are not suitable for their analysis (Sect. 3.2)?
3. What simple statistical tools are available to provide an initial and descriptive

overview of the dependent variable (Sect. 3.3)?
4. Which typical explanatory variables can be used to explain the time path of the

dependent variable (Sect. 3.4)?
5. What does a formal model that tests their effects actually look like (Sect. 3.5)?
6. How can the parameters of this model be estimated with panel data (Sect. 3.6)?
At the end of this chapter, you will have an idea of the specifics of panel data and
how statistical models can be adapted in this regard. Section 3.7 concludes with
an overview of the following chapters, in which these models will be explained in
greater detail.

3.1 Some Basic Terminology

As described in the previous chapter (Chap. 2), panel data can be organized in a
data cube having three dimensions: units i = 1, . . . , n, measurements (panel waves)
t = 1, . . . , T , and variables v = 1, . . . , V (some time-constant, some time-varying).
Units could be individuals, firms, nations, or other objects of analysis. In this chap-
ter, we use the generic term unit, although in some instances, it may sound a little
technical. If each unit is observed T times, the data are called a balanced panel. If
there are missing data, the number of measurements, Ti , varies between individuals,
and we are analyzing an unbalanced panel. Unbalanced panel data occur when some
respondents do not participate at all points in time (temporary unit non-response),
when some respondents drop out of the panel at some point in time (panel attri-
tion), or when some respondents enter the panel at a later point in time (late entry).
For simplicity, in this and many other chapters, we assume that we are dealing with
balanced data. However, all methods presented in this book can easily be extended
to unbalanced data. For example, focusing on balanced panel data simplifies many
formulas, because the number of measurements, T , is the same for all units and we
do not have to differentiate between the various Ti .
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Throughout this text, we make the distinction between two types of panel data.
The first type comprises panel data, where the number of units is much larger than
the number of measurements (n � T ), as is usually the case with large panel surveys
of the resident population. A typical example would be the National Longitudinal
Surveys (NLS), sponsored by the U.S. Bureau of Labor Statistics (BLS), which
encompass a set of surveys designed to gather information at multiple points in time
on the labor market experiences of groups of men and women. Vella and Verbeek
(1998) use a subsample of these surveys to analyze the effect of union membership
on wages. We will reanalyze these data in Example 3.1. The second type of panel
data is characterized by data where the number of units is much smaller, sometimes
even smaller than the number of measurements (n < T ). However, compared to type
I panels, the number of measurements over time is quite sizeable. A typical example
is a time-series data set collected for a sample of countries (a panel of countries),
such as in the study by Garrett and Mitchell (2001), in which the amount of public
spending in 18 OECD countries over a period of 33 years (1961–1993) is analyzed.
We will use these data in Example 4.1.

Obviously, type II panels include much more information in order to analyze the
time dimension of the data and to test sophisticated models of the underlying pro-
cess. This is often unfeasible with type I panels, because of their limited number of
measurements over time. These kinds of panels have their strengths when it comes
to the analysis of unit heterogeneity. From a statistical point of view, type I panels
are data where T is usually assumed to be fixed so that distributional assumptions
are derived as n → ∞. Type II panels, on the other hand, are data where n is usually
assumed to be fixed and the asymptotic theory depends on T → ∞. Since the terms
“type I” and “type II” are not self-explanatory, we tried to find some more evident
terms, and came up with the distinction between micro (type I) and macro (type II)
panels. The terms “micro” and “macro” refer to the fact that the former are mostly
based on micro units (e.g., individuals), while the latter mostly include macro units
(e.g., countries). The following chapters will focus primarily on statistical models
for micro panels, because for macro panels, much more knowledge of time-series
analysis is needed; also, in the case of countries, one may also need to control for the
dependencies among those units (due to international trade and geographical prox-
imity). Nevertheless, the methods presented in this textbook are a necessary starting
point for these more refined methods. Note also that the distinction between micro
and macro panels is not exactly the same as the distinction between type I and II
panels, because there may be panels of macro units where the number of units is
larger than the number of measurements (n > T ).

Before we start our statistical analysis, we have to rearrange the three-dimensional
data into a two-dimensional data matrix in order to put them into a computer pro-
gram. Chapter 2 showed that this can be done in wide format, with one record for
each unit that includes all measurements for all variables over time. This matrix has
n rows and T · V columns. The number of records, N , in the corresponding data
file equals the number of units (N = n). Alternatively, the data can be organized
in long format, with one record for each measurement per unit that includes the
values for all variables at that particular point in time. This particular matrix has
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n · T rows and V columns. The number of records in the corresponding data file
equals N = n · T . This is exemplified in Table 2.1 in the previous chapter. The wide
format has been the traditional way of organizing panel data, especially when the
number of measurements has been small (e.g., T < 4). In the wide format, it is easy
to correlate variables that have been measured at different points in time. The long
format has now become the “modern” way of organizing panel data, although one
needs additional data management tools, e.g., to correlate measurements over time
(see the case study in Sect. 2.3.3). It is also easy to show that the long format often
stores data more efficiently and facilitates the specification of statistical models.
However, for data input, you can choose the format that is most convenient for you.
As Chap. 2 showed, the specific format is not important, because all statistical pro-
gram packages provide commands to convert data from wide to long format, and
vice versa.

Because records (measurements) are nested within units, the long format is also a
typical example of a hierarchical data set. Obviously, measuring each variable over
time results in a small time series for each unit. Because all values from each time
series belong to the same unit, they will probably have more in common with each
other than with values from time series that belong to other units. In other words,
the hierarchical nature of panel data organized in long format implies a grouping
structure, with each group consisting of data from one unit, and possibly higher
statistical associations within each group than between groups.

Panel data share this hierarchical feature with other data, such as cross-sectional
surveys of pupils within classes, children within families, or respondents within
countries. The only difference is the ordering of units within “groups”. While panel
data have a natural ordering with respect to time, pupils can be ordered in different
ways within the class. As a consequence, adjacent panel measurements will have
more in common than panel measurements several years apart, while measurements
for one pupil can be correlated with measurements for any other pupil within the
class. However, for any kind of hierarchical data, be it the aforementioned “grouped”
cross-section data or the panel data in which we are interested in this textbook, the
assumption of independent observations that is so often made for randomly selected
cross-section data does not hold. This is one of the most important statistical prob-
lems that has to be dealt with in the following chapters (see also Sect. 3.2).

Data organized in long format are also called pooled data. The motivation for this
term comes from the observation that panel data can be conceived of as consisting
of many individual (unit-specific) time series that are put (pooled) together in one
big data file. Alternatively, one could think of each panel wave as one cross-section,
and of these different cross-sections as being put (pooled) together in one big file.
Viewing panel data as a collection of n unit-specific time series or, alternatively, as a
collection of T cross-sections, explains why economists and political scientists also
call panel data pooled time-series cross-section (TSCS) data.

Some researchers argue that pooling increases the number of cases and hence the
statistical power of the statistical analyses. Instead of n units, they say, the data now
include N = n · T “cases”. As mentioned in Sect. 1.1.1.5, this argument is often
advanced in macro-economic, macro-sociological, or political science research that
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is interested in the characteristics of macro units, such as countries. Typically, in this
context, the number of cases is limited. For example, much statistical information
on countries is available from the OECD and the number of member states currently
amounts to 34 countries. A statistical analysis of only 34 cases does not have much
statistical power. Hence, methodologists recommend increasing the number of cases
by using information from different points in time for each country. However, these
over-time data are not independent observations, as they do not represent additional
countries. This is obvious in the wide format. It explicitly shows that measurements
over time belong to one and the same unit by putting them all into one record for
each unit (in this case N = n).

TSCS data (panel data) should not be confused with data sets that pool indepen-
dent cross-sections. For example, the European Social Survey (ESS, a harmonized
survey in different European countries), the International Social Survey Programme
(ISSP, a similar survey that includes countries all over the world), and the Gen-
eral Social Survey (GSS, a harmonized biennial survey in the USA) include pooled
cross-sections, either from different countries (ESS, ISSP) or from different years
(GSS). The cross-sections are sampled independently from another and, thus, do not
include identical individuals. In these cases, the argument for increasing the sample
size by pooling is much easier to justify, because the units are sampled indepen-
dently of one another. Nevertheless, even in those cases, one could argue that indi-
viduals from one country (year) are more alike than individuals from other countries
(years) and indeed, in cross-national research, it is quite common that within a coun-
try, homogeneity is controlled for using specific statistical techniques (multi-level
analysis) that are also applicable to panel data (see Sect. 3.5.3.3).

3.2 Measurements over Time Are Not Independent

In this section, we want to illustrate the statistical dependencies inherent to panel
data with an example that includes both a continuous and a categorical variable.

Example 3.1 (wagepan data) The data are taken from the National Longi-
tudinal Survey (NLS Youth Sample) and contain observations on 545 males
who have been observed continuously from 1980 to 1987 (i.e., n = 545,
T = 8). The sample is a balanced panel, since it includes only those individ-
uals that have provided information for each of the eight panel waves. Vella
and Verbeek (1998) use these data to estimate the wage premium of union
membership. The assumption is that the bargaining power of unions increases
wages for workers, especially so for low wage earners. There are also indica-
tions that specific workers unionize, while others do not. Among other things,
the data include information on hourly wages (in Dollars) and union member-
ship status (a dummy variable). In this chapter, we will use hourly wages as
an example of a continuous dependent variable, and membership status as an
example of a categorical dependent variable.
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Table 3.1 Log hourly wages 1980–1987

Year 1980 1981 1982 1983 1984 1985 1986 1987

Arithmetic mean

Wage 4.59 5.12 5.41 5.64 6.10 6.47 6.82 7.20

ln(wage) 1.393 1.513 1.572 1.619 1.690 1.739 1.800 1.866

No member 1.331 1.455 1.519 1.573 1.652 1.689 1.772 1.844

Member 1.580 1.686 1.724 1.760 1.805 1.915 1.904 1.931

Standard deviation

ln(wage) 0.558 0.531 0.497 0.481 0.524 0.523 0.515 0.467

Pearson correlation coefficient

1980 1.000

1981 0.454 1.000

1982 0.432 0.611 1.000

1983 0.408 0.582 0.690 1.000

1984 0.316 0.506 0.626 0.675 1.000

1985 0.356 0.469 0.588 0.625 0.664 1.000

1986 0.297 0.407 0.523 0.549 0.565 0.632 1.000

1987 0.310 0.480 0.498 0.563 0.588 0.672 0.693 1.000

Mean r̄y = 0.5277

Source: wagepan data (see Example 3.1)

In the following, yit denotes a single measurement of the dependent variable Y

for unit i at time point t . That measurements over time are not independent can
easily be shown for both variables by correlating the yearly measurements. This is
a simple command in the wide data format, where each (yearly) measurement is a
variable of its own. For data in long format, the software must be able to correlate
data from different records, and it must also know which records belong to the same
unit. Thus, data organized in long format need software that is able to identify single
measurements within the unit-specific time series and to retrieve data from adjacent
(preceding and following) measurements of the same unit (technically: lags and
leads of the corresponding variable; see the case study in Sect. 2.3.3).

Table 3.1 shows the results of our analysis. Overall, mean hourly wages increase
in the observation period from $4.59 in 1980 to $7.20 in 1987. The distribution of
wages is positively skewed and we analyze the natural logarithm of hourly wages to
obtain a more symmetrically distributed dependent variable. This is also in line with
human capital theory, which, for theoretical reasons, models the logarithm of wages.
To keep our notation simple, we still use yit (and not lnyit) to denote our dependent
variable log hourly wages. Not surprisingly, log hourly wages show a similar posi-
tive trend, roughly indicating that hourly wages increase by about 5–7 % each year
(and 13 % between 1980 and 1981). For example, the 13 % increase is calculated as
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exp(1.513 − 1.393) = 1.127.1 The variation of log hourly wages, on the other hand,
remains more or less the same (see the standard deviation of ln(wage)). Finally, if
we distinguish respondents with respect to membership status, we see that union
members receive slightly higher wages on average than non-members. Thus, there
is descriptive evidence for a wage premium of union membership.

Table 3.1 also shows the Pearson correlation coefficients between all yearly in-
come measurements. To analyze the statistical dependencies over time, we focus
on two types of these correlation coefficients. The first one, Corr(yit, yi,t−1), corre-
lates (log) hourly wages from each year t with (log) hourly wages from the previous
year t − 1. These are the correlation coefficients directly below the main diagonal
of the correlation matrix. For example, the correlation between (log) hourly wages
observed in 1981 and (log) hourly wages observed in 1980 amounts to 0.45, a fairly
high figure that increases to values of between 0.61 and 0.69 in the subsequent
years. This is a clear indication of the statistical dependencies between the panel
measurements. The second type of Pearson correlation coefficient, Corr(yit, yi1),
correlates (log) hourly wages from each year t with (log) hourly wages from the first
year t = 1 (see the correlation coefficients in the first column of the correlation ma-
trix). According to this measure, statistical dependencies decrease—as expected—
the greater the time interval between t = 1 and T . Similar decreasing trends can be
found in the other columns of the correlation matrix. Obviously, adjacent panel mea-
surements correlate between 0.5 and 0.7 (with the exception of 1980–1981, where
the correlation equals 0.45), while measurements seven or eight years apart show a
much lower association of about 0.3.

In the following, we will call Corr(yit, yi,t−1) and Corr(yit, yi1) serial correla-
tion coefficients (of order 1 or k = t). Some people refer to them as autocorrela-
tions, but autocorrelations have a very specific meaning in the context of time-series
(and panel) analysis.2 The term “serial correlation”, on the other hand, makes clear
what is at stake here: Corr(yit, yi,t−1) and Corr(yit, yi1) are measures of the tempo-
ral (serial) dependencies in the data, which are apparently quite high in the wage

1Note that the arithmetic mean of log hourly wages equals the geometric mean of hourly wages
and hence, exp(1.393) 	= 4.59 and exp(1.513) 	= 5.12. Therefore, the increase from (the geometric
mean) 1.393 to 1.513 measured in log Dollars (+13 %) is different from the increase from (the
arithmetic mean) 4.59 to 5.12 measured in Dollars (+12 %).
2An autocorrelation coefficient, as the name suggests, is a correlation of a series of data values with
itself. More specifically, if you have a series of T observations on the same variable, y1, y2, . . . , yT ,
you compute the first-order autocorrelation coefficient by dropping the first observation and corre-
lating the remaining observations with the original series shifted by one period, i.e., you correlate
(y2, y3, . . . , yT ) and (y1, y2, . . . , yT −1). In the wage example, this would mean that you take the
time series of (log) hourly wages for one individual and compute the autocorrelation by comparing
it with the same time series lagged one period. This is also a measure of serial dependence, but
obviously based on very few (7) values and computed for only one unit in the data. Of course, it
could be extended to all units by pooling all unit-specific time series, but that (overall) first-order
autocorrelation—let us call it Acorr(yit, yi,t−1)—is still not identical to the correlation coefficient
Corr(yit, yi,t−1) in Table 3.1. Corr(yit, yi,t−1) in 1981, for example, is based on all observations
from 1981 (yi,1981; i = 1, . . . , n) correlated with all observations from 1980 (yi,1980; i = 1, . . . , n).
In other words, Corr(yit, yi,t−1) focuses on one specific transition (e.g., the transition from 1980 to
1981), while Acorr(yit, yi,t−1) uses all transitions.
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Table 3.2 Union membership 1980–1987 (frequencies and percentages)

Year t Union
membership

n State prob-
ability

First-order
transition matrix
(t, t + 1)

Higher-order
transition matrix
(t = 1980, t)

No member Member No member Member

1980 No member 408 74.86 88.97 11.03

Member 137 25.14 33.58 66.42

1981 No member 409 75.05 88.02 11.98 88.97 11.03

Member 136 24.95 33.09 66.91 33.58 66.42

1982 No member 405 74.31 92.10 7.90 85.29 14.71

Member 140 25.69 27.14 72.86 41.61 58.39

1983 No member 411 75.41 92.21 7.79 86.52 13.48

Member 134 24.59 21.64 78.36 42.34 57.66

1984 No member 408 74.86 94.61 5.39 84.80 15.20

Member 137 25.14 27.01 72.99 45.26 54.74

1985 No member 423 77.61 94.56 5.44 86.76 13.24

Member 122 22.39 24.59 75.41 50.36 49.64

1986 No member 430 78.90 87.44 12.56 86.27 13.73

Member 115 21.10 22.61 77.39 56.93 43.07

1987 No member 402 73.76 82.11 17.89

Member 143 26.24 48.91 51.09

Total No member 3,296 75.60 91.12 8.88

Member 1,064 24.40 27.25 72.75

High wage No member 1,793 82.40 91.64 8.36

Member 383 17.60 39.69 60.31

Low wage No member 1,503 68.82 90.49 9.51

Member 681 31.18 20.47 79.53

Source: wagepan data (see Example 3.1)

data (though decreasing with temporal distance between measurements). Later on,
we will discuss more concretely possible reasons for these high serial correlations
(Sect. 3.4.2).

A similar exercise can be performed for our categorical variable “union mem-
bership” (see Table 3.2). As a measure of trend, we have computed the percentage
of union members for each year, which, in the observation period, is almost con-
stantly at a value of about 25–26 % (except for the years 1985 and 1986, where it is
about 21–22 %; see the fourth column in Table 3.2). From the totals in the bottom
lines of Table 3.2 we also see that low wage earners are more often (31 %) union
members than high wage earners (18 %).3 Similar to the former arithmetic mean

3For this dichotomy, we took the average (log) hourly wage of each individual across all years and
dichotomized these averages at their median.
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of log hourly wages, which is an estimate of the expected value of the (continuous)
dependent variable, E(y), this percentage is an estimate of the probability of being
a union member. More generally, the numbers in the fourth column of Table 3.2 rep-
resent the probabilities, Pr(yit = q), of observing at time point t the corresponding
category q of the (categorical) dependent variable Y for unit i. This is also called a
state probability.

To get an idea of the statistical dependencies in the union membership data, we
compute conditional percentages, measuring how many of the union members at a
given point in time are still members the following year and how many leave the
union. According to the statistics in the fifth column of Table 3.2, about a third
(33.58 %) of the 1980 members quit their union in the subsequent year. Similar
questions can be posed regarding non-members: How many enter a union and how
many prefer not to join a union? By 1981, a little more than one tenth (11.03 %)
became union members, while the rest (88.97 %) remained out of the union (see the
sixth column of Table 3.2). For each year, the four percentages constitute a matrix of
transition probabilities. Each entry in this matrix estimates a (conditional) probabil-
ity, Pr(yi,t+1 = q|yit = p), of being in the following year t + 1 in a certain category
q of the dependent variable Y (the destination state), given that unit i has been
in category p of Y in the current year t (the origin state). This matrix of transition
probabilities is the equivalent of the former first-order serial correlation coefficient.4

Its diagonal elements give an indication of the persistence of union membership and
non-membership. According to the statistics in Table 3.2, the probability of remain-
ing in the same status is quite high (about 66–78 % for members and 87–95 % for
non-members).

We have also computed an equivalent for Corr(yit, yi1). These are the higher-
order transition probabilities, Pr(yit = q|yi1 = p), in the seventh and eighth column
of Table 3.2. They are conditional on membership status in the first year (yi1). We
observe a similar result as in the continuous case. The greater the time interval
between both measurements yit and yi1, the smaller the percentages in the diago-
nal cells of the transition matrix and hence the probability of constant membership
status. For example, while two-thirds (66.42 %) of the union members are still or-
ganized in 1981, five years later, in 1986, only two-fifths (43.07 %) remained in
their unions. In 1987, this number rises slightly to 51.09 %, but it is still lower than
66.42 %.

Both examples (wages and union membership) tell the same story. Irrespective
of the nature of our dependent variable, be it continuous or categorical, repeated ob-
servations over time will almost always correlate with one another.5 In other words,

4Some readers may wonder why, in the continuous case, one correlates yit (from the present year)
with yi,t−1 (from the previous year), while in the categorical case, yit (from the present year)
is tabulated with yi,t+1 (from the next year). This is mainly for historical reasons, and is of no
practical relevance. For example, we could just as well compute Corr(yit, yi,t+1).
5In all practical situations, this correlation would be positive, because above (below) average units
tend to remain above (below) the average in the continuous case or to remain in the same state in the
categorical case. A negative correlation would imply that change is more frequent than stability.
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panel data usually do not include independent information. We have certainly more
information than in a cross-section of n units, but not as much as in a cross-section
of N = n · T units. Ignoring these statistical dependencies is potentially dangerous
when applying regression models, because traditional estimation procedures assume
independent observations. Thus, they will estimate standard errors that tend to be too
low. As a consequence, test statistics will be too high and correspondingly, p-values
too low, such that significance tests will lead to erroneous conclusions. Furthermore,
although parameter estimates may be unbiased, they could be estimated more effi-
ciently, if the statistical dependencies were explicitly modeled. Section 3.4.2 will
show why panel measurements are serially correlated. Section 3.6 will discuss how
to cope with these serial dependencies.

3.3 Describing the Dependent Variable

Before proceeding with a deeper understanding of these statistical dependencies,
it is always a good idea to have a descriptive overview of the data at hand. This
is already a difficult task with cross-section data, but what to do with panel data
that are much more complex? Simple techniques are the ones used in the previous
section. Means and standard deviations describe the overall trend and the spread of
continuous variables. Proportions do the same job for categorical data. Correlating
a continuous variable (cross-tabulating a categorical variable) over time informs
us about short- and long-term serial dependencies. However, the longer the time
interval τ between yit and yi,t+τ , the more difficult it is to trace the trajectory of
how the unit got from yit to yi,t+τ . Consider, for example, the transition from 1980
to 1983 in the union data: 13.48 % of the non-members from 1980 were members of
a union in 1983 (see the higher-order transition matrix for 1983 in the last columns
of Table 3.2). Not all of them joined their union in 1983. Some may have done so
in the preceding years, and some may have even joined and then temporarily left
their union. A similar argument applies to the continuous variable “(log) hourly
wages”. Even though we know that (log) hourly wages—on average—increase over
time (see the means in Table 3.1), individual income trajectories may not be trending
positively all the time. At the individual level, there may be periods of wage decrease
followed by periods of increasing wages. Thus, besides measures of trend, spread,
and serial dependence, we would want to have more information about the unit-
specific trajectories of the corresponding variables.

For categorical data, it is easy to make tabular summaries, because the number
of combinations is limited (at least for short panels). Consider again the union ex-
ample: If union membership is coded with a dummy variable (member coded 1, 0
otherwise), a series of zeros and ones summarizes the membership career of each

A union member would have a high probability of being a non-member next year and again a
member in the year to follow, etc. Individuals with high wages this year would have low wages
next year and again high wages in the following year, and so on. For many applications, like this
one, such alternating processes do not make sense.
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Table 3.3 Sequences of
union membership status
1980–1983

Source: wagepan data (see
Example 3.1)

Starting state Sequence n % Total

No union member in 1980 0000 308 56.5 408

0001 16 2.9

0010 23 4.2

0011 16 2.9

0100 17 3.1

0101 7 1.3

0110 5 0.9

0111 16 2.9

Union member in 1980 1000 33 6.1 137

1001 3 0.6

1010 3 0.6

1011 7 1.3

1100 15 2.8

1101 6 1.1

1110 7 1.3

1111 63 11.6

individual. For example, the series 0001 indicates that an individual has been out
of the union in years 1980 to 1982 and member of a union in year 1983. Such
a series is also called a sequence. With four measurements over time and a di-
chotomous dependent variable, there are 24 = 16 different sequences. Table 3.3
shows the frequency of different sequences of union membership as they appear
in the wagepan data. Only two sequences—constant membership (1111) and non-
membership (0000)—are observed more often (n = 63 and n = 308). The rest of
the sample is scattered across other sequences and it is difficult to detect additional
patterns of interest. In other words: While the former measures of trend, spread,
and serial dependence may be too coarse, this technique provides information that
is too detailed. Furthermore, the amount of information will increase exponentially
with the number of measurements. For example, if we analyze the sequences of
union membership over the whole observation period from 1980 to 1987, the com-
puter finds 95 different patterns, many of which are observed for only one individ-
ual.

Therefore, it is a much more promising strategy to decompose the heterogene-
ity of individual sequences into simpler processes of change. If you go back to
the first-order transition matrices in Table 3.2, a starting hypothesis could be that
the pattern of stability and change that is summarized in these figures is more or
less constant for the whole observation period. This implies the assumption that the
differences between single transition matrices are simple random noise, and that
an average of all eight matrices from 1980 to 1987 describes the process equally
well. Finding the correct transition matrix that describes the observed process is at
the heart of Markov modeling. Another approach is to look at a single transition
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Table 3.4 Survival
probability of union members
from 1980

Source: wagepan data (see
Example 3.1)

Year Members Exits S1(t) h1(t)

1980 137 46 0.6642 0.3358

1981 91 21 0.5109 0.2308

1982 70 7 0.4599 0.1000

1983 63 7 0.4088 0.1111

1984 56 10 0.3358 0.1786

1985 46 6 0.2920 0.1304

1986 40 6 0.2482 0.1500

1987 34 0 0.2482 0.0000

(e.g., the exit from a union) to model the process of leaving the origin state (in this
case: union membership) and then perform a similar analysis for all the other origin
states (in this case, involving a dichotomous categorical variable, there is only one
left: non-membership). Finally, the information about the different transitions can
be put together into one overall model of the whole process. This technique has be-
come known as transition analysis. Alternative labels are survival or event history
analysis.

As an example, let us focus on those 137 respondents that start as union mem-
bers from the very beginning in 1980 (a similar example could be made for the 408
non-members in 1980). Table 3.4 shows how long these individuals remain union
members. Of the original 137, 46 leave their union in the first year, 21 in the sec-
ond year, and so on. In terms of the former sequences, we are now focusing on
sequences that start with 1, and we follow these sequences up to the point at which
the dependent variable changes from 1 to 0. These changes are also called events,
and the sequences of 1s before the event are called spells. From the number of
events, we can estimate the probability of remaining a union member for each year.
Technically, this probability is called the probability of survival Sp(t) (p being the
origin state), and the whole time series of survival probabilities is called the survivor
function. The survivor function S1(t) = Pr(yit = · · · = yi2 = 1|yi1 = 1) is computed
conditional on the union members in 1980 (i.e., yi1 = 1) and looks at those individ-
uals that remain members until time point t . S0(t) = Pr(yit = · · · = yi2 = 0|yi1 = 0)

would be the survivor function for the non-members. According to the statistics in
Table 3.4, about one quarter (24.82 %) of the original members remain in their union
until 1987. Note that the probability of survival Sp(t) is different from the transition
probabilities Pr(yit = p|yi1 = p), because the former refers only to those units that
constantly remain in category p, while the latter also include those units between
t = 1 and t that have been temporarily in another category (compare the numbers in
the last column of Table 3.2 with those in the fourth column of Table 3.4).

The survivor function is always a monotonically decreasing function, and there-
fore, it is often hard to see from inspecting Sp(t) whether the process changes
over time. However, we often have hypotheses assuming that the probability of
change varies over time. For example, in our case, one could hypothesize that union
dropout decreases over time, because the agreement with union policies increases
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Fig. 3.1 Survival probability by income level

with membership duration. If this assumption is true, we expect the survivor func-
tion to decrease at a decelerating rate and this is indeed difficult to decipher from a
plot of the survivor function. Hence, we need a statistic that captures the temporal
variation of change. To this end, we estimate a conditional transition probability,
hp(t) = Pr(yit 	= p|yi1 = · · · = yi,t−1 = p), which measures the probability of ex-
periencing a change to any of the other categories (states) yit 	= p of the dependent
variable Y in year t given no change in the former years (i.e., yi1 up to yi,t−1 have
the value p). Since Pr(yit 	= p|yi1 = · · · = yi,t−1 = p) is a rather lengthy term, it is
often abbreviated to hp(t), which is also termed a (discrete-time) hazard rate. Ta-
ble 3.4 shows these conditional transition probabilities for the origin state of union
membership (p = 1). For example, of the individuals that are still union members in
1982 (n = 70), 10 % leave the union up to 1983, and 90 % remain union members
for another year. Nota bene, these conditional probabilities focus only on those indi-
viduals that have remained union members up to year t and hence, the denominator
of the corresponding frequency ratio changes with each year.

As Fig. 3.1 shows, the survivor function is easily plotted on a two-dimensional
graph, and by differentiating group-specific survivor functions, important informa-
tion about possible explanatory factors can be obtained. For instance, if we differen-
tiate between low and high wage earners, it appears that union membership is less
stable among the higher income group than among the lower income group, because
the probability of surviving declines more quickly for the high wage earners. The
graph assumes a discrete-time process of change, in which events only happen at
the end of the year and hence, the survivor function is a step function that decreases
at the end of each year. Alternatively, we could assume a continuous-time process,
in which change can happen at any point in time. However, if the concrete event
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dates are unknown, as is often the case with discrete panel measurements, we would
have to make additional assumptions about the distribution of changes during the
year.

Instead of plotting the survivor function, we could have plotted the hazard func-
tion (the time series of conditional transition probabilities resp. hazard rates). In
most cases, however, it will show a much more irregular pattern, because its base—
the number of units remaining in the origin state—is declining over time. Thus, at
each time point, the conditional transition probability is based on an increasingly
smaller number of cases, and, without controlling for sample size, it is hard to dif-
ferentiate random from substantive changes over time. It can be shown, however,
that the conditional transition probability should be the main variable of interest, if
one models the change in categorical dependent variables. First of all, as we said,
patterns of change may vary over time and this is best measured by a time-point
specific statistic like hp(t). Furthermore, it can be shown that the hazard rate is
the fundamental parameter, from which the survivor function can be computed as
follows:

Sp(t) =
t∏

τ=1

(
1 − hp(τ)

)
(3.1)

For example, the probability of “survival” in a union at the end of 1982 equals the
following product:

S1(1982) =
3∏

τ=1

(
1 − h1(τ )

) = (1 − 0.3358) · (1 − 0.2308) · (1 − 0.1000) = 0.4599

For continuous data, simple presentations of unit-specific trajectories are more
difficult. In most cases, tabular presentations are more or less data listings without
any kind of data summary, because continuous variables assume many different val-
ues. Table 3.5 demonstrates that each income trajectory in the wagepan data is
more or less unique unless one classifies wages. In principle, graphical displays are
much more suitable for presenting this differentiated information, but for large sam-
ple sizes, graphical techniques usually fail because of heavy overprinting. Therefore,
the left panel of Fig. 3.2 uses only a subsample of the original wage data to provide
a graphical impression of individual differences in level and change of wages. We
have selected the ten individuals with the highest and the nine individuals with the
lowest average (log) hourly wages whose individual time series are also shown in
wide format in Table 3.5.6

Figure 3.2 provides some interesting insights into panel data in general and the
wagepan data in particular. Imagine, first, two different groups behind these ten re-
spectively nine income trajectories. The two thick black lines in the left panel illus-
trate the linear wage growth observed in both groups. Obviously, the first group—on

6The unequal group sizes are due to the fact that one individual (nr=813) with extremely low
wages was dropped from the analysis.
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Table 3.5 Log hourly wages for selected individuals 1980–1987

Id number 1980 1981 1982 1983 1984 1985 1986 1987 Mean

7,784 1.794 2.937 3.473 2.971 3.777 4.052 3.293 3.096 3.174

6,987 2.466 2.541 3.086 3.229 2.620 2.691 2.606 2.236 2.685

9,752 2.245 1.972 2.232 2.554 2.905 2.966 2.990 3.132 2.625

1,843 2.364 2.338 2.416 2.514 2.648 2.636 2.719 2.769 2.550

4,091 2.564 2.510 2.593 2.564 2.465 2.613 2.645 2.282 2.530

3,307 1.974 2.391 2.356 2.562 2.636 2.643 2.807 2.813 2.523

4,088 2.204 2.412 2.315 2.508 2.599 2.700 2.741 2.663 2.518

218 2.013 1.962 2.276 2.195 2.428 2.723 2.966 3.065 2.454

8,090 1.736 1.574 1.442 2.547 2.991 3.011 3.099 3.097 2.437

9,154 2.564 2.531 2.171 2.197 2.455 2.069 2.429 2.602 2.377

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
3,127 0.484 0.030 0.688 0.676 0.647 0.955 1.564 1.301 0.793

8,587 0.992 0.898 0.970 0.804 1.306 1.477 −0.981 0.791 0.782

6,020 0.676 0.541 0.195 0.383 1.104 1.066 1.202 1.046 0.777

6,025 0.774 0.289 0.906 0.339 1.213 1.502 1.277 −0.191 0.764

569 0.684 1.079 0.840 1.508 1.021 0.543 0.115 0.313 0.763

3,607 0.907 0.075 0.172 0.948 1.227 0.435 0.639 1.678 0.760

823 −0.373 0.606 0.865 0.512 0.684 1.000 1.435 1.177 0.738

10,570 1.056 −1.417 −0.670 0.703 0.713 0.820 1.069 1.039 0.414

2,147 −0.021 −0.149 0.181 −0.036 0.397 0.973 0.563 0.759 0.333

Source: wagepan data (see Example 3.1)

average—earns much higher wages than the second group, and it seems as if their
wages grow a little more quickly during the observation period (the slope of the
black line for the high wage group is slightly steeper). Thus, if the sample size is
not too large and if the data are as clearly structured as the ones in Fig. 3.2, line
plots provide important information regarding possible explanatory factors (similar
to survivor plots in the categorical case). However, you can easily imagine what this
line plot would look like, if we had used the data for all n = 545 individuals. Very
likely, the entire plot area would have been hatched. In principle, such line plots
could also be used for categorical data. But then we are faced with the opposite
problem. The dependent variable includes only few distinct values, resulting in lots
of lines plotted on top of one another.

Now imagine having estimated a linear growth model for each individual. This is
shown in the right panel of Fig. 3.2. Similar to the two (thick black) group-specific
lines, these unit-specific lines differ with respect to level and amount of growth. In
principle, each unit has its own intercept and slope. At the moment, this plot simply
illustrates the internal heterogeneity within each group. Later on, we will explore
how to model variance of slopes and intercepts across units.
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Fig. 3.2 Income trajectories of 19 individuals with very high and very low wages

Finally, Fig. 3.2 shows that the overall variation of wages derives from two
sources: one is the heterogeneity of average wages between individuals (between-
unit variance), the other is the heterogeneity of wages over time for each individ-
ual (within-unit variance). Let ¯̄y.. = ∑n

i=1
∑T

t=1 yit/(n · T ) be the overall arith-
metic mean of all (log) hourly wages across individuals and time.7 Using the
545·8 = 4,360 observations in the wagepan data, the overall average (log) hourly
wage amounts to 1.649 (see the following Table 3.6 on p. 81). ȳi. = ∑T

i=1 yit/T is
the corresponding mean for all wages measured over time for one specific individ-
ual i. For the 19 individuals shown in Fig. 3.2 mean (log) hourly wages can be found
in the last column of Table 3.5. With this notation, estimates of both variance terms
can be computed as follows:

between-unit variance σ̂ 2
b =

∑n
i=1 (ȳi. − ¯̄y..)

2

n − 1
(3.2)

within-unit variance σ̂ 2
w =

∑n
i=1

∑T
t=1 (yit − ȳi.)

2

n · (T − 1)
(3.3)

The overall variance of the dependent variable is computed in the usual way:

σ̂ 2
o =

∑n
i=1

∑T
t=1 (yit − ¯̄y..)

2

n · T − 1
(3.4)

7A period in the index indicates the dimension over which summation takes place. y.., for instance,
indicates that summation takes place for all individuals i and time points t .
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For the total sample of all n = 545 individuals, we estimate σ̂ 2
b = 0.39072 and σ̂ 2

w =
0.38722 (see also the following Table 3.6 on p. 81), indicating that in this sample,
the variance between units is nearly as large as the variance within units. In other
words, wage heterogeneity across different individuals does not differ very much
from wage heterogeneity across different years (taking into account the average
level of wages for each individual).

Furthermore, both variance estimates can be used to compute an overall estimate
of serial dependence, which is known as the intra-class correlation (ICC) coeffi-
cient ρ:

ρ̂ = T σ̂ 2
b − σ̂ 2

w

T σ̂ 2
b + (T − 1) · σ̂ 2

w

(3.5)

Given certain assumptions about the underlying process (see the following
Textbox 3.1), it can be shown that it measures the correlation between any two
measurements yit and yis (t 	= s) within the unit-specific (thus “intra-class”) time
series. Note that the time lag (t − s) between both measurements does not matter.
The ICC coefficient assumes that the correlation between all time points is the same.
One could also say, it measures the “closeness” of measurements on the same unit
relative to the closeness of measurements between different units. That is why we
call it an overall measure of serial dependence. For the wage data, it is estimated
as ρ̂ = 0.4718, indicating again a fairly high degree of overall serial dependence.
It is slightly lower than the arithmetic mean (r̄y = 0.5277) of all the pairwise serial
correlation coefficients in Table 3.1.

Textbox 3.1 (Intra-class correlation coefficient) The intra-class correlation
(ICC) coefficient is based on the idea that each data point, yit , is the result of
three different effects: the overall level α0 of Y , a unit-specific effect ui , and
finally for each unit, a measurement-specific effect eit:

yit = α0 + ui + eit (3.6)

If the two effects ui and eit (i) are independent of each other, (ii) have variance
σ 2

u and σ 2
e , and if (iii) eit is not serially correlated over time, it is easy to

derive variances, covariances, and correlations of the measurements yit (see
Sect. 7.1):
1. If unit- and measurement-specific effects are independent of each other,

the variance of the measurements yit equals the sum of both variances:
Var(yit) = σ 2

u + σ 2
e .

2. If both effects are independent of each other and not serially correlated,
measurements from different time points, yit and yis (t 	= s), will covary,
because ui is constant over time and hence part of each yit. The covariance
equals the variance of ui : Cov(yit, yis) = σ 2

u (t 	= s).
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3. Finally, a correlation coefficient is a “standardized” covariance, i.e., a co-
variance that is standardized by both variables’ standard deviation:

Corr(yit, yis) = Cov(yit, yis)√
Var(yit) · √Var(yis)

= σ 2
u

σ 2
u + σ 2

e

, t 	= s (3.7)

Equation (3.7) is a very general formula that describes the correlation be-
tween any two measurements yit and yis (t 	= s), if the assumptions (i) to (iii)
are true. In that case, indeed, serial correlations will be identical irrespective
of the time lag (t − s) between measurements yit and yis . In other words,
assumptions (i) to (iii) imply an equal correlation structure among the mea-
surements.

In order to estimate (3.7), we need estimates of both variance terms σ 2
u and

σ 2
e . This is easy for the measurement-specific effects eit, whose variance is

estimated by (3.3):

σ̂ 2
e = σ̂ 2

w =
∑n

i=1
∑T

t=1 (yit − ȳi.)
2

n · (T − 1)
(3.8)

For the unit-specific effects ui , the answer depends on how we consider the
ui . Do we assume that they are realizations of a random variable (i.e., random
effects)? Or do we assume that they are specific to the units in the data set
and, therefore, that they should be treated as fixed effects? In the latter case,
the measurement-specific effects eit are the only source of randomness, but
within each unit they sum to zero by definition. Therefore, we can simply use
the observed between-unit variance (3.2) as an estimate of σ 2

u :

ui fixed effects σ̂ 2
u = σ̂ 2

b =
∑n

i=1 (ȳi. − ¯̄y..)
2

n − 1
(3.9)

In case of random effects, however, we have two sources of randomness, and
the measurement-specific effects eit do not necessarily sum to zero within
units. Therefore, an estimate of σ 2

u is a function of both the observed between-
unit variance (3.2) and the observed within-unit variance (3.3):

ui random effects σ̂ 2
u = σ̂ 2

b − σ̂ 2
w

T

=
∑n

i=1 (ȳi. − ¯̄y..)
2

n − 1
−

∑n
i=1

∑T
t=1 (yit − ȳi.)

2

n · (T − 1) · T
(3.10)

The ICC coefficient assumes random effects, and if you insert (3.10) and (3.8)
into the formula (3.7) for the correlation coefficient, you arrive at the former
formula (3.5) for the ICC coefficient. This and other types of ICC coefficients
are discussed in Shrout and Fleiss (1979).
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3.4 Explaining the Dependent Variable over Time: Typical
Explanatory Variables

Now that we have an idea of what our dependent variable looks like, we can turn
to the question of how to explain its distribution over time and between units. Why
do some individuals earn higher wages or have higher probabilities of union mem-
bership? Why do wages increase more steeply for some individuals? Why is union
membership rather stable for some individuals, but a more transient phenomenon
for others? These questions relate to the level and change of the dependent variable.
In the following, our primary interest is not in substantive arguments concerning the
two examples (which would imply an excursus into human capital theory or rational
choice models of political action). Instead, we will provide a synopsis of the typical
explanatory variables that are used to answer these kinds of questions (Sect. 3.4.1).
Once we have a better understanding of the factors that may explain why the depen-
dent variable shows a certain pattern over time, we will then return to the question
of serially correlated observations (Sect. 3.4.2).

3.4.1 Time-Constant and Time-Varying Variables

Figure 3.3 includes a random sample of wage trajectories from the wagepan data
(similarly, we could plot the membership sequence of these individuals). The ques-
tion is now: Why do the time trajectories of the dependent variable (wages, union
membership or any other Y ) behave the way they do? A very general answer to this
question is that not all units are alike, and that units and context change over time.
By context we mean the environment in which a unit is observed. In a micro panel of
employees, this could be the economy of the country (or region) in which they live
or the economic situation of the companies at which these individuals work. Note,
in passing, that if we view panel data as hierarchical data, contexts introduce another
(third) level to the data: it includes measurements within units within contexts.

More formally, this suggests three types of explanatory variable that are either
located at the level of units or the level of contexts:
1. Time-constant variables Z characterizing the unit or the context: Typical time-

constant variables are ethnicity or gender, if the unit is the individual, and geo-
graphical location or type of government, if the context is the country. It is easy
to think of examples in which these variables function as explanatory factors
in social and political research. For instance, it is well known that immigrants
and women—because of segregation and discrimination—earn lower wages than
native-born and male employees.

2. Time-varying variables X characterizing the unit or the context: Examples in-
clude variables like labor force experience and on-the-job training, if the unit is
the individual, and economic growth and amount of public spending, if the con-
text is the country. Again, it is quite obvious why these variables can be used
as explanatory factors in different settings. For example, human capital theorists
assume that wages increase with labor force experience and on-the-job training.
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Fig. 3.3 Explaining panel
data

3. Time T : Finally, many researchers also mention “time” as an explanatory vari-
able. However, it is questionable whether time itself is a real explanatory vari-
able. In many cases, time is only an indicator for other characteristics that change
over time (such as labor force experience or economic growth). Sometimes, how-
ever, it is not clear what these time-varying characteristics might be or the nec-
essary data to control for them are absent. In these cases, it is a good idea to
control for possible time trends in the data by including a variable “time” in the
statistical model, although time is no causal factor on its own.

Depending on the research interest, it is also advisable to think about a good defini-
tion of time. In an analysis of job histories and earnings, there are several options:
it could be chronological time (e.g., as an indicator of the business cycle), the time
point of a certain event (e.g., first entry into the labor market as an indicator of the
starting conditions of a career), or time elapsed since an event (e.g., time since entry
into the labor force as an indicator of labor force experience). In the methodological
literature of cohort analysis, these different definitions of time are referred to as pe-
riod, cohort, and age effects. With panel data it is possible simultaneously to include
different time variables into the same model (e.g., year of labor market entry, and la-
bor force experience) as long as these time variables are not linearly dependent (see
also the discussion in Sect. 1.1.1.2). This would be the case, for instance, if one also
included chronological time into the model, because (period: chronological time) =
(cohort: year of entry) + (age: time since entry).8

A necessary condition for all kinds of explanatory variables is that they show
some variation. Put differently, constants are useless when it comes to explain-
ing variation in the dependent variable. Technically, time-varying variables X vary
across units and measurements, time-constant variables Z vary only across units,
and chronological time T varies only across measurements.9 There may be a prob-
lem with time-constant variables describing the context, because usually we have

8For an application of cohort analysis with panel data illustrating these identification problems, see
Sect. 4.2.3.
9More specifically, chronological time (the period effect) does not vary across units. Other defini-
tions of time, like age and cohort, pertain to the unit and, hence, show variation across units.
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Table 3.6 Descriptive statistics of selected variables

Variable Source Mean Std. Dev. Min Max Observations

Log hourly wages (Log Dollars) overall 1.6491 0.5326 −3.5791 4.0519 N = 4,360

between 0.3907 n = 545

within 0.3872 T = 8

Union membership (yes =1) overall 0.2440 0.4296 0 1 N = 4,360

between 0.3294 n = 545

within 0.2950 T = 8

Afro-American (yes = 1) overall 0.1156 0.3198 0 1 N = 4,360

between 0.3200 n = 545

within 0.0000 T = 8

Hispanic (yes = 1) overall 0.1560 0.3629 0 1 N = 4,360

between 0.3632 n = 545

within 0.0000 T = 8

Education (years) overall 11.7670 1.7462 3 16 N = 4,360

between 1.7476 n = 545

within 0.0000 T = 8

Experience (years) overall 6.5147 2.8259 0 18 N = 4,360

between 1.6549 n = 545

within 2.4495 T = 8

From year 1981 (yes = 1) overall 0.1250 0.3308 0 1 N = 4,360

between 0.0000 n = 545

within 0.3536 T = 8

Source: wagepan data (see Example 3.1)

fewer contexts than units (in the extreme case, there is only one context for all units,
e.g., a sample of individuals from one country). Thus, if a context variable is time-
constant, several contexts must be available in the data in order for us to observe
some variation. Time-varying variables characterizing the context usually pose no
problems. In the extreme case (only one context), there is at least some variation
over time (but not over units).

To illustrate the distinction between different kinds of explanatory variables, we
refer again to the wagepan data. The data set includes the typical variables from
human capital theory: years of schooling and labor force experience. Additionally,
it includes controls for ethnicity, health and family status, place of residence, and
characteristics of the current job (occupation, industry). Most of these variables are
time-varying, except ethnicity and years of schooling.

This can easily be verified with the descriptive methods discussed in the previous
section. Table 3.6 shows the results for the variables (log) hourly wages (lwage),
union membership (union), ethnicity (represented by two dummies: black and
hisp), schooling (educ), and experience (exper). union, black and hisp
are dummy variables, as can be seen from the overall minimum and maximum val-
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ues (0 and 1). The time-constant variables black, hispanic and educ show
no within variance (σ̂w = 0). That means that all eight observations for each indi-
vidual are the same. However, all three variables vary between individuals, as can
be seen from the between standard deviations (black: σ̂b = 0.3200, hispanic:
σ̂b = 0.3632, educ: σ̂b = 1.7476).10 The same is true for the time-varying vari-
able exper (σ̂b = 1.6549), but additionally, this variable shows a fair amount of
within variance (σ̂w = 2.4495) indicating that labor force experience varies (in-
creases) for each individual during the observation period. Finally, instead of a con-
tinuous variable T , the dataset includes seven year dummies (d81, . . . , d87) to
model a discontinuous-time trend. As an example, Table 3.6 shows the results for
1981 dummy d81, and we see that time-varying variables characterizing the context
(like indicators of chronological time) show only within variance (σ̂w = 0.3536),
but no between variance (σ̂b = 0).

Before we conclude this section, there are two final points worth mentioning in
order to avoid any misunderstanding of Fig. 3.3. First of all, text and figure (espe-
cially the horizontal arrows) may suggest that time-constant Z only affect the level
of the dependent variable Y (Z → Y), while time-varying X only affect the change
of Y (�X → �Y).11 Indeed, it is hard to conceive that the change (�Y ) of a depen-
dent variable Y is causally related to something constant in time like Z (Z → �Y).
However, possible relationships between X, Z, and Y are much more general and,
therefore, this discussion is deferred to Sect. 3.5. At the moment, the horizontal ar-
rows should simply indicate that Z remains constant over time, while the vertical
arrows should indicate that X can change from one point in time to the next.

Second, few explanatory variables are time-constant by nature. Remember the
aforementioned example “type of government”, which was supposed to be time-
constant. In the long run, it may very well change. Germany, changing from a total-
itarian regime to a parliamentary democracy after World War II, is a good example.
Seemingly, in the wagepan data, education is also a time-constant variable (see
Table 3.6), although the qualifications of the respondents may change as a result
of secondary and tertiary education. Obviously, this over-time information is miss-
ing in the data. Hence, some variables are treated as time-constant, either because
changes are so rare that the corresponding variable is more or less a stable charac-
teristic, or because we lack the necessary longitudinal information to measure the
changes over time.

10Standard deviations (see Table 3.6, column 4) have been computed according to (3.2)–(3.4).
Overall and between standard deviations are based on different observations (overall: n · T , be-
tween: n) and hence, in case of time-constant variables (when yit = ȳi.), have slightly different
values. Note also that computer programs may use similar formulas, however with slightly differ-
ent denominators.
11We use “(· · · → · · · )” as a shorthand for the statistical relationship that is of interest. The inde-
pendent (explanatory) variable is indicated on the left side of the arrow and the dependent variable
on the right side. At this point it is not necessary to specify the functional form of this relationship.
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3.4.2 Serially Correlated Observations

Having discussed the possible explanatory factors for our dependent variable, we
can now return to the question of why measurements over time show high degrees
of serial correlation. The answer is now quite obvious:
1. First of all, having certain characteristics Z that do not change over time causes

the dependent variable to have similar values during the next period. A migrant
having a low income this year will not have a very different income next year (all
other factors held constant). If migrants are more often members of a union in a
given year, then they will probably still be members in the following year. The
situation closely resembles the spurious causal correlation problem of which we
are aware from the analysis of cross-sectional data. Two variables A and B may
be correlated, because both of them are associated with a third variable C. With
panel data, measurements yi1, yi2, . . . , yit will be correlated, because all of them
are correlated with a “third” variable Z that characterizes the unit.

2. A second source of serial dependence are the time-varying variables X. This may
be a bit surprising, because we have just argued that the fact that these variables
change over time explains why our dependent variable changes as well (and is not
the same next year). However, this does not mean that the time-varying X change
every year and/or to a large amount. Although they may not be identical next
year, they may nevertheless correlate over time (similar to how the dependent
variable does). If the X now influence Y , the serial correlation among the time-
varying variables X leads to statistical dependencies among the measurements
of the dependent variable Y .

3. Finally, having a certain value for the dependent variable this year may have
a direct impact on the dependent variable’s value next year. Consider, e.g., the
case of union membership: Being member of a union implies having contact
with other people of similar opinions and being exposed to political ideas of the
organization, which may increase positive sentiments about the union movement
and thus increase membership stability.

With these arguments in mind, it becomes obvious why measurements of the de-
pendent variable over time must correlate. While the first two arguments are purely
statistical (often termed spurious state dependence), the latter argument provides a
substantive cause of serial correlation (often termed true state dependence). To the
extent that we are able to control for all relevant time-constant and time-varying ex-
planatory variables (Z, X and lagged values of Y ), measurements of the dependent
variable should be independent over time. Thus, if we regress the dependent vari-
able Y on all necessary Z, X and lagged Y , the residuals of this regression will no
longer be serially correlated.

This can be shown with the wagepan data. Having made the distinction be-
tween time-constant and time-varying explanatory variables (including time itself),
we observe that the serial correlations of Y , computed earlier, have two components:
one is due to the time-constant between-unit variation (on average, some individu-
als have, for various reasons, higher wages than other individuals), and the other
is due to variation in the time dimension. Time-constant between-unit variation is
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Table 3.7 Log hourly wages
1980–1987 (demeaned data)

Source: wagepan data (see
Example 3.1)

Year n Arithmetic mean Standard
deviation

First-order
serial correlationy ln(y)

1980 545 0.77 −0.256 0.452

1981 545 0.87 −0.136 0.357 0.0251

1982 545 0.93 −0.077 0.292 0.0315

1983 545 0.97 −0.030 0.270 0.0620

1984 545 1.04 0.041 0.312 0.0275

1985 545 1.09 0.090 0.304 0.0335

1986 545 1.16 0.151 0.336 0.0346

1987 545 1.24 0.217 0.295 0.2514

easily controlled for by subtracting from each data value yit the unit-specific mean
ȳi. = ∑T

i=1 yit/T . Let us call the transformation ÿit = yit − ȳi. demeaning.12 Ta-
ble 3.7 shows the first-order serial correlations computed on the demeaned wage
data, which are all much smaller than those computed on the original data (see Ta-
ble 3.1).13 Hence, most of the serial correlation in the wagepan data is due to
different levels of wages between individuals, which in principle can be controlled
by time-constant explanatory variables Z.

As a final point in this section, let us analyze why serial correlations get smaller
with increasing time lags between measurements. The answer is quite easy. Let us
begin with an extreme case: If only time-constant explanatory variables Z deter-
mine the process, and if they only affect the level of the dependent variable (effects
being constant over time), the dependent variable will have the same values at each
point in time, and nothing changes at all (resulting in serial correlations that are all
equal to 1). If the world would look like this, we would not need panel data at all.
A single cross-section would provide us with the same information as a panel data
set. However, if the effects of the time-constant explanatory variables change over
time, if time-varying explanatory variables X come into play, or if a random error
exists, then the values of Y are not the same next year, and these “noise factors”
might accumulate over time. All of this results in decreasing higher-order serial
correlations.

Table 3.8 illustrates these ideas with three different prototypical correlation struc-
tures. The upper part of the table shows what the serial correlations would look like,
if the measurements over time were independent of one another. Certainly, this as-
sumption is not very realistic for panel data. The middle part of the table shows
what the serial correlations would look like, if all the serial dependencies were due
to time-constant characteristics of the units. This assumption is the basis of our over-

12Some scholars also use the term “centering”. But you should note that this transformation is
a specific form of centering. It subtracts the unit-specific means and not the overall mean of a
variable, which is the transformation one usually thinks of when talking about centered variables.
13Only Corr(ÿi,1987, ÿi,1986) = 0.251 is surprisingly large, but still much smaller than the serial
correlation of the original data: Corr(yi,1987, yi,1986) = 0.693 (see Table 3.1).
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Table 3.8 Three different prototypical correlation structures

Year 1980 1981 1982 1983 1984 1985 1986 1987

a) Serially independent observations

1980 1.0000

1981 0.0000 1.0000

1982 0.0000 0.0000 1.0000

1983 0.0000 0.0000 0.0000 1.0000

1984 0.0000 0.0000 0.0000 0.0000 1.0000

1985 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

1986 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

1987 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

b) All serial correlations due to time-constant variables

1980 1.0000

1981 0.4713 1.0000

1982 0.4713 0.4713 1.0000

1983 0.4713 0.4713 0.4713 1.0000

1984 0.4713 0.4713 0.4713 0.4713 1.0000

1985 0.4713 0.4713 0.4713 0.4713 0.4713 1.0000

1986 0.4713 0.4713 0.4713 0.4713 0.4713 0.4713 1.0000

1987 0.4713 0.4713 0.4713 0.4713 0.4713 0.4713 0.4713 1.0000

c) All serial correlations due to time-constant and time-varying variables

1980 1.0000

1981 0.6265 1.0000

1982 0.3925 0.6265 1.0000

1983 0.2459 0.3925 0.6265 1.0000

1984 0.1541 0.2459 0.3925 0.6265 1.0000

1985 0.0965 0.1541 0.2459 0.3925 0.6265 1.0000

1986 0.0605 0.0965 0.1541 0.2459 0.3925 0.6265 1.0000

1987 0.0379 0.0605 0.0965 0.1541 0.2459 0.3925 0.6265 1.0000

Source: wagepan data (see Example 3.1)

all measure of serial correlation, the ICC coefficient (3.5). Textbox 3.1 explains the
statistical reasoning behind this equal correlation structure: according to (3.6), each
observation yit is conceived of a time-constant unit-specific part and a measurement-
specific part that is pure random noise (i.e., is independent between observations).
Finally, the lower part of the table shows what the serial correlations would look
like, if the serial dependencies were due to time-constant and time-varying char-
acteristics of the units. More specifically and contrary to the ICC coefficient, it is
assumed that part of the measurement-specific influences carry over from one point
in time to the next.
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The correlation structure (a) implying totally independent measurements is typi-
cal for linear regression models applied to cross-sectional data. Generalized estimat-
ing equations (GEE) provide a very flexible approach, both to generalize this linear
model to different kinds of (continuous and categorical) variables, and to model
all kinds of covariance structures among clustered data such as panel data, where
measurements over time are clustered within units (Hardin and Hilbe, 2012). The
correlations in Table 3.8 have been estimated with a program for GEE assuming
independent (upper part), exchangeable (middle part), and first-order autoregres-
sive correlations (lower part). Because of the GEE methodology, the (exchangeable)
correlations in the middle part differ slightly from our former estimate of the ICC
coefficient (ρ̂ = 0.4718).

3.5 Modeling Panel Data
In this section, we discuss how the independent variables may influence the depen-
dent variable and how we can formalize this. When we say “formalize”, we mean
a mathematical model (a regression function) that tells us numerically how our ex-
pectations about the values of the dependent variable are related to the values of the
independent variables. As discussed in the Introduction (Chap. 1), panel data have
been used for the analysis of trends (models in levels) and for the analysis of indi-
vidual change (models of change). Therefore, we discuss models either for the level
(Y ) or the change (�Y) of the dependent variable. In these models, we can use—
besides time T —either the level (X,Z) or the change (�X; �Z = 0 by definition)
of our independent variables as explanatory factors. A few examples will illustrate
this:
• X,Z → Y : For example, human capital theory asserts that higher levels of la-

bor force experience are associated with higher earned incomes, suggesting a
(positive) association between the level of income (Y ) and the level of a time-
varying variable measuring employment duration (X). Rational choice models
assume that the benefits of union membership are higher for low-status employ-
ees, suggesting a (negative) association between the level of school education
(Z, assumed to be time-constant after labor market entry) and the level of union
membership (Y ). As you may have noticed, these are also the kinds of relation-
ships we normally use in the analysis of cross-sectional data. We could survey
a random sample of employees and collect information on hourly wages, union
membership, labor force experience and schooling at the date of the survey. Us-
ing the between-unit variation of experience and schooling in this cross-section,
we could test the hypotheses of human capital theory and rational choice models
of political action. Obviously, these relationships can also be analyzed with panel
data. However, one may question why we should use these more complicated,
and possibly more costly, data to answer simple cross-sectional questions. As we
shall see later on (Sect. 3.6), panel data provide additional information that allows
us to avoid some of the specification errors that are typical of cross-sectional data.

• �X → �Y : When we think about processes of change, this kind of relation-
ship always comes to mind. The dependent variable changes, because something
changes for the unit or the context. For example, as an employee gains more
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and more labor force experience during his career, his or her wage should grad-
ually increase. Or if, during a business cycle, private enterprises increase their
profits, this should also increase employees’ wages. Contrary to the model in
levels (X,Z → Y), one now needs longitudinal data. One uses the over-time
(within-unit) variation to test the two hypotheses. But you should note the con-
nections with relationships of the first type (X,Z → Y). For example, if we in-
terpret regression coefficients (β) from cross-sectional models, we say that a one
unit change of the independent variable causes a change of β units of the de-
pendent variable. Thus, if models of type (X,Z → Y) are true, models of type
(�X → �Y) are true as well. Later on, we will see more formally that it is easy to
transform models of type (X,Z → Y) into models of type (�X → �Y). In other
words, they are conceptually equivalent. Nevertheless, it is important to make a
distinction between them, because estimates based on data in levels generally will
not be identical to estimates based on changes.

In the following, we discuss models for levels (Sect. 3.5.1) and change (Sect. 3.5.2)
of the dependent variable. We conclude with a brief discussion of some more com-
plex models, including lagged variables, interaction effects among the independent
variables, and random coefficients (Sect. 3.5.3). Throughout the whole discussion,
we will make a distinction between continuous and categorical variables. As already
mentioned, models for continuous variables focus on the expected value, E(y), of
the dependent variable, while models for categorical variables focus on the proba-
bility, Pr(yit = q), of observing a certain category, say q , of the dependent variable.

3.5.1 Modeling the Level of the Dependent Variable

3.5.1.1 Continuous Dependent Variables
For continuous dependent variables, a typical panel regression model in levels is a
simple extension of the well-known linear regression model for cross-section data.
The following linear model regresses the expected value of a continuous dependent
variable Y on time T and a set of independent variables, which—according to the
discussion in the previous section—may be either time-constant (Z) or time-varying
(X). By using the appropriate subscripts, we take care of the time dimension in the
data:

E(yit) = β0(t) + β1x1it + · · · + βkxkit︸ ︷︷ ︸
time-dependent part

+γ1z1i + · · · + γj zji︸ ︷︷ ︸
time-constant part

(3.11)

Subscript i refers to the i = 1, . . . , n units, which have been observed at t = 1, . . . , T

equidistant points in time. yit denotes the value of the dependent variable Y for in-
dividual i at time point t . Its expected value is modeled as a linear function of the
values of j time-constant (z1i , . . . , zji) and k time-varying independent variables
(x1it , . . . , xkit). γ1, . . . , γj and β1, . . . , βk denote the corresponding regression coef-
ficients.
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The term β0(t) determines the overall level of the dependent variable. Since its
level may change over time, β0(t) can be any function of time to control for possible
time trends. In other words: β0(t) specifies the growth of the dependent variable and
as we will later see (Sect. 3.5.3.3), the growth can be a function of other explana-
tory variables. If there is no time trend, β0(t) reduces to the familiar regression
constant β0(t) = β0. Possible functions of time include linear (β0(t) = β0 + β1t),
quadratic (β0(t) = β0 + β1t + β2t

2), exponential (if we model lnyit) and discontin-
uous functions of time (e.g., β0(t) = β0 +β1d1 +· · ·+βldl with l dummy variables,
d1, . . . , dl , measuring different time periods). Naturally, if the term β0(t) includes—
besides β0—l parameters (and time variables), the time-varying X and their effects
β are indexed from (l + 1) to k. For example, a model including a quadratic time
trend looks like this:

E(yit) = β0 + β1t + β2t
2 + β3x3it + · · · + βkxkit + γ1z1i + · · · + γj zji

Readers familiar with the linear regression model might miss an error term in the
equation. They should remember, however, that at this point of our discussion, we
are only looking at the expected value of the dependent variable and, thus, the sys-
tematic part of the regression model. Later, when we discuss the estimation of the
parameters β0, β1, . . . , βk and γ1, . . . , γj , it will be necessary to consider an error
term (see Sect. 3.6).

3.5.1.2 Categorical Dependent Variables
The approach in Sect. 3.5.1.1 is easily transferred to categorical dependent variables.
If q denotes the category of Y we are interested in (e.g., being member of a union),
then the probability, Pr(yit = q), of observing category q for unit i at time point t

equals the following expression:

Pr(yit = q) = G
(
β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji

)
(3.12)

This is also known as a discrete response model.
G(·) is a suitable distribution function (e.g., the normal or the logistic). By using

a distribution function (instead of the linear-additive function (3.11)), we make sure
that the right-hand side of the equation provides values that are within the proper
limits of probabilities (i.e., 0 ≤ Pr(yit = q) ≤ 1). Depending on the choice of the dis-
tribution function G(·), we arrive at either the logistic (3.13) or the probit regression
model (3.14):

Pr(yit = q) = exp(β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji)

1 + exp(β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji)
(3.13)

Pr(yit = q) = Φ
(
β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji

)
(3.14)

In (3.14), Φ(·) represents the standard normal distribution function.
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3.5.2 Modeling Change of the Dependent Variable

3.5.2.1 Continuous Dependent Variables
Both regression functions (3.11) and (3.12) model the level of the dependent vari-
able over time. In this section, we focus on the change of the dependent variable
and how it can be explained by various characteristics of the unit and the context.
Change in a continuous dependent variable can be operationalized in different ways:
as absolute change (yit − yi,t−1) or as relative change (yit/yi,t−1). In the latter case,
one often models the logarithm of relative change, which is also a simple difference:
ln(yit/yi,t−1) = ln(yit) − ln(yi,t−1). Whatever the concrete operationalization, a
model of change has basically the same structure as a model in levels. The expected
value of change is assumed to be some function of the explanatory variables X, Z

and T . First, we will discuss a model that focuses on the change between two adja-
cent measurements of Y over time. As we will see, it is closely connected to a model
in levels. Then we will discuss models of change that are due to certain events.

Consider the model in levels as it is specified in (3.11). For two arbitrary time
points, t and t − 1, it looks like this:

t : E(yit) = β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji (3.15)

t − 1 : E(yi,t−1) = β0(t − 1) + β1x1i,t−1 + · · · + βkxki,t−1 + γ1z1i + · · · + γj zji

(3.16)

If we compute the difference of both equations, we arrive at a model of absolute
change:

E(yit − yi,t−1) = E(�yit) = β0(t) − β0(t − 1) + β1�x1it + · · · + βk�xkit (3.17)

Thus, our model in levels is easily transformed into a model of absolute change.
�yit is also called a change score and the transformation is known as computing
first differences (FD for short). Hence, as already mentioned, if models in levels
(X,Z → Y ) are true, models of change (�X → �Y ) are true as well. This also cor-
responds to the usual interpretation of regression coefficients in (3.11). We usually
say that a one unit change of a given independent variable X causes a change of β

units of the dependent variable Y . But you should also note that when it comes to
the estimation of both types of model, estimates of models in first differences may
yield different estimates than models in levels. The most important reason for this
difference is that, in order to estimate FD models, one exploits the over-time (within-
unit) variation, which may provide other conclusions than the overall variation that
consists of between- and within-unit variation.

Two other things are noteworthy, when computing first differences. (i) If the time
trend is assumed to be linear, i.e. β0(t) = β0 + β1t , it will be eliminated as well be-
cause (β0 +β1t)− (β0 +β1(t − 1)) = β1. (ii) The effects of time-constant variables
Z drop out, because their differences are zero by definition. Hence, if model (3.11) is
true, it implies that time-constant characteristics do not have an effect on the change
of the dependent variable. Section 3.5.3.2, however, will discuss whether and how
it is possible to include time-constant independent variables Z into models of �Y .
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Fig. 3.4 Impact functions

Besides looking at continuous change using change scores, researchers are of-
ten interested in assessing the effect of events on the dependent variable Y . By an
event, we mean a discontinuous change in some (mostly categorical) explanatory
variable. Divorce (change in marital status), unemployment (change in employment
status), or an economic crisis (change in the level of economic activity) are ex-
amples of such events. The assumption is that these events affect the level of the
dependent variable Y . Figure 3.4 shows three possibilities for how an event happen-
ing, e.g., at t = 5 can have an impact on Y . (i) Y may have a significantly larger (or
smaller) level after the event. (ii) The event may have an immediate increasing (or
decreasing) impact on Y , and it may increase (decrease) with the passage of time.
(iii) Y may increase (decrease) continuously up to the event and decrease (increase)
continuously thereafter. In the first case, the time trajectory of Y is a simple step
function, in the second case a step function with an increasing (decreasing) tail, and
in the third case a linear function with a structural break. These and other kinds
of impact functions can be modeled with the β0(t) term in a model of Y in levels
(see (3.11)). For example, the simple step function in the first case is applied with
a dummy variable deventit, which equals 1 once the event has occurred (i.e., when
t ≥ tevent ) and 0 otherwise:

E(yit) = β0 + β1deventit + β2x2it + · · · + βkxkit + γ1z1i + · · · + γj zji

The effect of the event on the level of Y is estimated by the parameter β1.
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Note in passing that the dummy variable is not only a function of time T . It is
also assumed to be different for each unit i. This is necessary whenever the timing
of events is different for each unit (like, e.g., in the case of divorce). If the event in
question affects each unit at the same point in time (e.g., an economic crisis in a
specific year), this differentiation is not necessary and the impact function is only a
function of T (like β0(t)).

3.5.2.2 Categorical Dependent Variables
Models of change for categorical variables are less obvious, because it does not
make sense to compute differences of a categorical variable. There are different
options discussed in the literature. One of them uses the previous value of Y (yi,t−1)

as an independent variable in a model in levels. Thus, effects of X, Z and T are
estimated, controlling for the former status of the unit. These kinds of methods have
a close connection to Markov modeling, which tries to find a simple structure for
the various transition matrices observed over time (see Table 3.2). For example, a
simple assumption would be the hypothesis that—apart from random fluctuations—
all yearly transition matrices are the same. The transition matrix at the bottom of
Table 3.2 (see the row labeled “Total”) would be an estimate of this simple process.
This assumption is easily modeled with the following logistic model:

Pr(yit = q) = exp(β0 + β1yi,t−1)

1 + exp(β0 + β1yi,t−1)
(3.18)

Naturally, this model could also include independent variables X, Z, and a time
trend β0(t), but to keep things simple, we have chosen not to do so. The model
states that the probability of being observed in state yit = q depends only on the
state being observed in the previous year t − 1, irrespective of whether q is ob-
served in t = 1981, t = 1982, . . . or t = 1987. A slightly more complicated as-
sumption posits that transition matrices are different for each year. This assumption
could be modeled by interacting yi,t−1 with a dummy for each year. In a similar
way, other assumptions about the underlying process could be tested. For example,
by using an impact function for β0(t), we could model the effect of certain events
on the dependent categorical variable. Markov modeling is very popular in the con-
text of categorical data analysis when all (dependent and independent) variables are
categorical.

Another approach that aligns perfectly with our thinking consists of choosing
one category of the dependent variable and modeling its change. More specifically,
it models the conditional transition probability of making a change from category
p to any other category of the dependent variable, given that the unit has been ob-
served in category p at all previous points in time. In Sect. 3.3, we have defined this
conditional transition probability as Pr(yit 	= p|yi1 = · · · = yi,t−1 = p). As a short-
cut, we introduced hp(t) = Pr(yit 	= p|yi1 = · · · = yi,t−1 = p), which is also termed
the (discrete-time) hazard rate (of leaving state p). A model for the conditional
transition probability resp. hazard rate would look like this (now with variables X

and Z):

hip(t) = G
(
β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji

)
(3.19)
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Again, G(·) is a suitable distribution function to make sure that the right-hand side
of the equation provides values that are within the appropriate limits of probabilities
(i.e., 0 ≤ hip(t) ≤ 1). As will be discussed in Chap. 5, G(·) is either the logistic or the
extreme value distribution function. Note also that the hazard rate now has an index
i, because it is assumed to be different for each unit i = 1, . . . , n. Equation (3.19) is a
so-called (discrete-time) hazard rate model. Other terms for these kinds of analyses
are survival analysis, because there is a close connection between the hazard rate
and the survival probability, or event history analysis, because the (sudden) change
from p to another category is also called an event. Survival analysis is the traditional
term in biometrics and technometrics, where these methods originate from, while
event history analysis is the more common name in the social sciences.

As (3.19) shows, one would usually prefer to model change (i.e., the conditional
transition probability or hazard rate) and not the opposite (survival). For descriptive
purposes, the survivor function is perfect (and sometimes easier to analyze than
the conditional transition probability; see our discussion in Sect. 3.3). However,
for explanatory purposes, one uses the conditional transition probability, because it
measures the current rate of change for those who are still at risk, while the survival
probability incorporates the history of all previous transitions and non-transitions.
Thus, the conditional transition probability is a recent measure of change, which
you need when you assume that the process itself changes over time (e.g., when
you assume that the probability of union membership increases with membership
duration, which implies a decreasing hazard rate). Moreover, it can be shown that
the conditional transition probability is the fundamental parameter of the process,
from which all the other parameters (survival probability, unconditional transition
probabilities, etc.) derive (for the survival probability see (3.1)).

Although event history analysis is a convenient method to analyze the change
in categorical variables, it should be stressed that it makes the strong assumption
that the process of interest (in our case: union membership) has been observed from
the very beginning. In our case, this assumption would imply that all employees
had initiated their union membership in 1980, which may not be true, and, more
importantly, which we often do not know, because the necessary information is not
available from the panel data; this situation is also called (left) censoring. Markov
modeling, on the other hand, often does not make such strong assumptions. Rather,
it treats the yearly transition matrices as snapshots of the process and uses them to
project the current distribution of the categorical dependent variable into the future.

3.5.3 Additional Models

In the preceding sections, we have discussed models for levels and change of
the dependent variable, mostly focusing on relationships of type (X,Z → Y ) and
(�X → �Y ), where all (independent and dependent) variables have either been in-
cluded in levels or in changes (of course, excluding time-constant Z in the latter
case, because they do not change by definition). Furthermore, we have assumed that
the effects of the independent variables (β , γ ) are fixed and do not change with
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some characteristic of either the units or the context. In this section, we want to
generalize these assumptions and discuss other relationships that might be feasi-
ble (Sect. 3.5.3.1), as well as how to include time-constant Z in models of change
(Sect. 3.5.3.2), and how to relax the assumption of fixed coefficients (Sect. 3.5.3.3).

3.5.3.1 Other Types of Relationship
Let us first discuss some variations of the types of relationship discussed so far.
What about including X and Z in levels in a model of change (�Y )? Or what about
including the change of X (�X) in a model of Y in levels? Mathematically, these
kinds of relations are possible, but from a substantive point of view, they do not
always make sense. This is easily illustrated with some examples.

Relationships of the type (X,Z → �Y) are typical of many change processes in
the natural sciences. For example, radioactive decay (�Y) is assumed to be related
to the (time-varying) quantity of radioactive nuclei (X) that have not yet decayed.
In our wage data, the amount of wage increases (�Y) could be related to (time-
constant) ethnicity (Z), because discrimination theories suggest that ethnic minori-
ties are less often promoted than members of the majority population. Another ex-
ample is the greater life expectancy of women compared to men. In this case, mor-
tality (�Y ; changing from being alive to being dead) is related to the time-constant
variable of gender (Z). From a purely computational point of view, no regression
program will prevent you from adding a time-constant Z to the right-hand side of
(3.17) that models �Y . But from a substantive point of view, does that really make
sense? How can something constant in time result in a change in something else?

When you rethink the two social science examples, you will probably realize that
it is not ethnicity or gender as such that causes the change; rather, it is the fewer pro-
motions or the more risky behavior that causes lower wage increases for minorities
or higher mortality rates for males. In other words, it is the change �X of an inde-
pendent variable X (job promotion, health-related behavior) that ultimately causes
the change �Y of the dependent variable Y . Thus, models of type (�X → �Y)

would be much more useful, if we had information about the true causal factors.
But very often we do not have access to these data and must use time-constant vari-
ables Z as indicators for them instead. Section 3.5.3.2 demonstrates how this is
feasible, even if FD eliminates time-constant Z, as we have seen in Sect. 3.5.2.1. In
the change model for categorical variables (3.19), they are included from the very
beginning, because the model has not been derived by a linear transformation of the
corresponding model in levels (3.12).

Relationships of the type (�X → Y), where the level of the dependent variable
is the result of changes in the independent variables, pose fewer problems. A good
example is adaptive behavior. For example, subjective well-being (Y ) is much less
closely related to absolute income (X) than to changes in income (�X). This can
be illustrated with research on the effects of unemployment. Becoming unemployed
and experiencing an income loss is usually associated with significantly less sub-
jective well-being. In the long run, however, even with lower incomes, people often
return to their former levels of subjective well-being, because they adapt to the new
financial situation. Hence, it is not the absolute level of income (X) that is effective,
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it is rather the change of income at the start of the unemployment spell that affects
well-being. Hence, if you think that the change of some time-varying variable X af-
fects the level of your dependent variable Y , include �X as an independent variable
in (3.11) resp. (3.12).

Even more complex relationships result, if we extend the time dimension of the
model. All models discussed up to now are, in a way, static models, because the
current level (or change) of Y is a function of current levels (or change) of the inde-
pendent variables X and Z. For this introductory textbook, this is perfectly alright,
but you should know that even more complicated specifications are possible. The
right-hand side of the equation may include past values of time-varying explanatory
variables (e.g., xi1,t−1, xi1,t−2, . . .). This would be called a distributed lag model,
because the explanatory variables X affect the dependent variable Y with a time
lag. Furthermore, the right-hand side may include lagged values of the dependent
variable: yi1,t−1, yi1,t−2, . . . . These specifications are called dynamic models and
the Markov model (3.18) is an example of this kind.

Besides modeling the statistical properties of a change process (e.g., the Markov
assumption), there are also substantive reasons for analyzing relationships of the
type (Yt−τ → Yt ). As already noted in Sect. 3.4.2, there are instances of true state
dependence, in which previous levels (τ years earlier) influence the present level of
the dependent variable Y . Consider, for example, government spending: The present
federal government’s budget is fixed, in large part, by decisions that have been made
in previous years. Thus, only a minor portion of the budget is available for new poli-
cies and large parts of present government spending can be explained by last year’s
budget. Or remember the union example: Being a member of a union may increase
one’s positive sentiments toward the union movement and, thus, may increase mem-
bership stability. Models of partial adjustment and adaptive expectations that have
been popularized in economics also result in relationships, in which previous levels
influence the present level of the dependent variable.

Finally, all the models discussed up to now posit that there is no feedback be-
tween X and Y , which may be an unrealistic assumption in some applications.
Consider, for example, the relation between union membership and wages. Some
economists ask whether there is a wage premium for union members. On the other
hand, it is not unrealistic to assume that some employees become union members be-
cause they expect higher wages from being a union member. These kinds of recipro-
cal relationships (X ↔ Y) are called (somewhat irritatingly) non-recursive models,
while the former unidirectional relationships are termed recursive. Non-recursive
and dynamic models are more difficult to handle and will not be covered in this
introductory textbook.

3.5.3.2 How to Include Time-Constant Variables in Models of Change
When discussing models of change for continuous dependent variables in
Sect. 3.5.2.1, we have seen that computing first differences eliminates time-constant
variables Z from the model. However, as argued earlier, we may want to include
these variables into our model, because we lack information about the true causal
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factors that change over time. We also argued that, mathematically, you can com-
pute first differences of your dependent variable and then regress �Y on some time-
constant variables Z. But how do the effects of the latter kinds of models relate to
the effects of our former model in levels?

As an example, consider the assumption that wage growth differs with respect
to ethnicity. We use a simple dummy variable for ethnicity (black=1: Afro-
American, black=0: other) and if wage growth is assumed to be different among
Afro-American and other employees, we have to create an interaction between eth-
nicity and the time trend. With a linear time trend and a main effect of ethnicity to
control for different wage levels, a model in levels looks like this:

E
(
ln(wageit)

) = β0 + β1 · t + β2 · blacki · t + γ1 · blacki (3.20)

If we compute first differences of (3.20), we arrive at the following model of change:

E
(
� ln(wageit)

) = β1 + β2 · blacki .

As expected, the main effect (γ1) of ethnicity, a time-constant variable, cancels out.
Thus, we get no numerical estimate of the wage gap for minorities (to this end, we
should have estimated the model in levels (3.20)). But the interaction effect (β2) is
still part of the model on change. More generally speaking, whenever we interact
a time-constant with a time-varying variable in a model on levels of Y , this time-
constant variable is also part of a model on change of Y . In our simple model of
change, both parameters have an interesting interpretation. β̂1 estimates the overall
linear trend of (log) hourly wages for the non-black employees and β̂2 estimates
how much this trend is different for Afro-American employees.

3.5.3.3 How to Relax the Assumption of Fixed Coefficients
A common feature of all models discussed so far is the assumption of fixed parame-
ters. Fixed, in this context, means that each regression coefficient has a fixed value in
the population and does not vary across the units of analysis.14 This may be an un-
realistic assumption. As Fig. 3.2 suggests, each unit seems to have its own intercept
and slope in the wagepan data. Thus, each regression coefficient can be thought of
as a random variable (with its own distribution function) and the specific values we
observe for unit i can be interpreted as realizations of this random variable.

We illustrate this extension with a very simple example. Consider the data on
hourly wages. A simple model posits an exponential growth of hourly wages (or
equivalently, a linear growth of log hourly wages):

E
(
ln(wageit)

) = β0 + β1t (3.21)

This model is easily extended to include other independent variables (X,Z), but
for our present purposes, it is sufficient to include time as the only “explanatory”
variable. This model assumes an intercept β0 and a slope β1 that are the same for
each unit. However, if we attach an index i to each parameter,

14In principle, the values of the regression coefficients can also change over time.
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E
(
ln(wageit)

) = β0i + β1i t (3.22)

we obtain a much more general model with unit-specific intercepts and slopes. The
unit-specific parameters β0i and β1i can now be modeled in separate regression
functions. For example, the intercept could be partly random and partly a function
of certain explanatory variables (e.g., years of schooling to control for different
levels of human capital):

β0i = γ00 + γ01 · schoolingi + u0i (3.23)

A random variable U0 is included in the equation to control for the randomness of
the intercepts. A common assumption is that u0i is normally distributed with mean
zero and variance σ 2

u0
. A similar model could be specified for the slope parameter:

β1i = γ10 + γ11 · ethnicityi + u1i (3.24)

Here we use another normally distributed random variable U1 with mean zero and
variance σ 2

u1
to model the randomness of the slopes. Besides that, we use ethnicity

as an explanatory variable, because we assume wage growth to differ with respect
to ethnicity.

If we reinsert both equations into (3.22) and rearrange, we arrive at the following
expression:

E
(
ln(wageit)

) = γ00 + γ01 · schoolingi + γ10 · t + γ11 · ethnicityi · t︸ ︷︷ ︸
fixed

+u0i + u1i · t︸ ︷︷ ︸
random

(3.25)
Compared to (3.21), this extended model includes fixed and random parameters.
Therefore, these kinds of models are also known as linear mixed models. Note, also,
that (3.22) operates at a different level than (3.23) and (3.24). To understand this
statement, you have to remember the hierarchical nature of panel data including
measurements within units (and sometimes within contexts). Equation (3.22) oper-
ates at the first (lowest) level: the level of measurements. β’s denote parameters at
this first level and have an index i attached to them. In contrast, (3.23) and (3.24)
operate at the second level: the level of units. γ ’s denote parameters at this second
level and their first index refers to the parameter at the first level to which they apply.
This way of specifying the model is also known as hierarchical linear or multi-level
modeling. But as (3.25) shows, it is quite easy to integrate these extended spec-
ifications into our modeling approach by using appropriate independent variables
and interaction effects. Textbox 3.2 explains in greater detail how a panel regres-
sion model can be framed as a hierarchical linear model and how this motivated our
extended notation.

Textbox 3.2 (Hierarchical linear models: Extended notation) As mentioned
in Sect. 3.1, a panel data set has a hierarchical structure. This is obvious when
data are organized in long format, i.e. measurements t = 1, . . . , T within units
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i = 1, . . . , n (see Table 2.1). At the lowest level of this hierarchy (level 1), i.e.,
the level that changes the most quickly, we have the measurements over time,
and at the higher level (level 2), i.e., the level changing less quickly, we have
the units. If the data would also differentiate among different contexts (e.g.,
countries), we would even observe a third level. The dependent variable Y

and the time-varying explanatory variables X are located at the lowest level,
because they also change over time. The time-constant explanatory variables
Z, on the other hand, are located at the second level, because they only vary
between units.

Now, think about the parameters β and γ in our former regression models
(e.g., model (3.11)): While the former measure effects of first level explana-
tory variables, the latter measure the effects of second level explanatory vari-
ables. When we talk about fixed and random effects in the context of panel
models, we mean parameters that are either identical for all units or that may
differ between units. In the latter case, the corresponding parameter is con-
sidered a random variable and the specific value of that parameter for one
particular unit is thought of as a realization of that random variable. Since
we are only assuming variation between units, only the β’s can be random
variables. Of course, part of the variation will be systematic and can be re-
lated to the characteristics of the units (Z). Hence, it is natural to model each
parameter βk as a function of some observed characteristics Z and a random
component U . In line with our present notation, we indicate the effects of the
Z with the Greek letter γ , and, to avoid confusion, we add another index to
the γ that indicates the specific β-parameter to which they refer:

βki = γk0 + γk1z1i + · · · + γkj zji + uki

Similarly, the random component U also has an index k attached to it.
Now let us think about our former regression. Take as an example model

(3.11), assume no time trend, and reorder the equation like this:

E(yit) = (β0 + γ1z1i + · · · + γj zji) + β1x1it + · · · + βkxkit

If you think about the term in brackets as an “intercept” that is modified de-
pending on the (time-constant) characteristics of the unit

E(yit) = β0i + β1x1it + · · · + βkxkit

then you are not too far away from a model with random coefficients. If you
change β0 and the γ s to our new notation and add a random error term u0i ,
you have specified a regression model with a random intercept:

E(yit) = (γ00 + γ01z1i + · · · + γ0j zji + u0i ) + β1x1it + · · · + βkxkit
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This model is easily extended to a model that also includes random slopes
by specifying similar regression models for β1i , . . . , βki, while all the models
in the previous sections focused on regression functions with fixed intercepts
and fixed slopes.

What is new here, is obviously the fact that the model now consists of fixed and
random parts. In order to understand this fully, let us look ahead to the next section,
where we discuss how to estimate our models. In that case, we have to replace the
expected with the observed values of the dependent variable and acknowledge the
fact that observed values may deviate randomly from our expectations. We include
an error term eit that measures how each measurement yit for unit i deviates from
its expected value:

ln(wageit) = γ00 + γ01 · schoolingi + γ10 · t + γ11 · ethnicityi · t︸ ︷︷ ︸
fixed

+u0i + u1i · t + eit︸ ︷︷ ︸
random

(3.26)
Usually one assumes that these deviations are due to a random measurement error,
which is zero on average. Hence, eit is assumed to be a realization of a normally dis-
tributed random variable E with zero mean and variance σ 2

e . Equation (3.26) is sim-
ilar to a linear regression model as is well known from the analysis of cross-sectional
data. It includes, however, a slightly more complicated error term. Basically, we try
to decompose the error variance into different components, i.e., into random varia-
tion of (i) the measurements (σ 2

e ), (ii) of the intercepts (σ 2
u0

), and (iii) of the slopes
(σ 2

u1
). Therefore, another name for this approach is error or variance components

models. Note, also, that if we specify a separate model for the slopes, the random
part of (3.26) is, by definition, heteroscedastic. In other words, it varies with the ex-
planatory variables of the model (in this case t). We will come back to the problem
of heteroscedastic error terms in Sect. 3.6.2.

3.6 Estimating Models for Panel Data

Having discussed how we can put our hypotheses into a formal model, we can now
turn to the question of how to find “good” estimates of the model parameters. When
estimating a model with empirical data, our first goal is to reveal the “true” parame-
ters in the population that were “really” operating when the values of the dependent
variable were observed. The problem is that we make inferences about the world
(the “population”) with limited data (the “sample”) that are more or less reliable
(they are only “indicators”), without really knowing the process (the “model”) that
generated our data. Hence, there are many possibilities to misspecify our models:
selective samples, measurement errors, omitted variables, wrong functional form,
and more besides.
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If we misspecify the model, our estimation procedures will provide us with
wrong (technically: biased) estimates of the model parameters that systematically
deviate from the “true” parameters in the population. Sometimes, estimation proce-
dures can be fortified against certain kinds of specification errors, but it is certainly
better to specify the model correctly. Our estimation procedures shall also provide
us with measures of the precision of the parameter estimates. A measure of each pa-
rameter’s precision is its standard error, and, in some cases, parameter estimates are
unbiased, but their standard errors are not. In that case, we can make point estimates
about the “true” model parameters, but confidence intervals and all test statistics
will be wrong.

Unbiasedness means that our estimates on average (across all possible samples
from the population) are equal to the “true” population parameters. Focusing on
the average can only be one goal of our estimations, since each single sample es-
timate may deviate from the “true” parameter due to sampling error (and in social
sciences, collecting just one sample is difficult enough). Therefore, we prefer esti-
mation methods that provide us with estimates that are as close as possible to the
“true” parameters, i.e., that have smaller standard errors than other (less efficient)
estimation methods. Hence, we want our estimation methods to be both unbiased
and efficient. When the estimates of the standard errors are biased due to specifi-
cation errors, we obtain an incorrect measurement of how the parameter estimates
vary around their “true” population values. As it turns out, we can often also in-
crease the efficiency of our parameter estimates by improving the estimates of our
standard errors. Sections 7.2.1 and 7.2.2 explain these criteria in greater detail for
the two estimation methods (ordinary least squares and maximum likelihood) that
are used in this textbook. Both sections also provide a review of standard errors and
test procedures that are available with both methods.

This overview of methods for panel data analysis is not the right place to dis-
cuss specification problems at length, but we want to offer at least a flavor of the
most important ones and describe briefly how panel data can be used to deal with
them. We start with a discussion of omitted variable bias. It is closely connected
to assumptions about the stochastic part of the model, which we have not yet dealt
with. Section 3.6.1 introduces a simple specification for the error term that allows
us to control for certain kinds of omitted variables. Section 3.6.2 extends these ideas
to more general types of error structure. Section 3.6.3 discusses problems resulting
from measurement error. Finally, Sect. 3.6.4 provides a formal summary of the basic
assumptions typical for panel data analysis. Overall, our discussion focuses mostly
on models for continuous variables, but, of course, similar considerations also apply
to models for categorical variables, as we will show with some examples.

3.6.1 Omitted Variable Bias (Unobserved Heterogeneity)

3.6.1.1 What Is the Problem?
Students of multivariate statistics know that neglecting important explanatory fac-
tors can seriously bias the estimates of the effects of the independent variables in a
regression model. This is easily demonstrated in the context of cross-sectional data.
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Example 3.2 (hetbias and nohetbias data) Human capital theory as-
sumes that worker productivity increases with education and labor force ex-
perience. Usually education and labor market experience are positively cor-
related, e.g., because less educated individuals have less job stability due to
unemployment. To simulate these assumptions, we have generated a data set
named hetbias, which includes n = 200 employees with four different lev-
els of education and varying degrees of labor force experience. The depen-
dent variable is the (log) hourly wage, and wages have been generated in
such a way that they correlate positively with experience (r = 0.87) and ed-
ucation (r = 0.91). Education and experience are also positively correlated
(r = 0.75). We will use this data set to see what happens to the estimate of the
experience effect, if we do not control for education. Since the possible bias
of the experience effect depends on the correlation between experience and
education, we have generated a second data set named nohetbias, which
is identical to hetbias except for the fact that experience and education are
not correlated.

The left panel of Fig. 3.5 shows the relationship between labor force experience
and log hourly wages in the hetbias data. The solid regression line running from
the lower-left to the upper-right corner of the plot area measures the effect of labor
force experience in a bivariate regression model of (log) hourly wages on experi-
ence. As human capital theory assumes, wages are higher for employees with more
experience in the labor market. But this simple bivariate regression model neglects
the effect of education on labor income, and hence raises the question of whether
the estimated positive effect of labor force experience is the true one.

In Fig. 3.5, the educational level of each employee is indicated by a number
between 1 (low education) and 4 (high education). As explained, the hetbias
data have been generated in such a way that education and experience are posi-
tively correlated. For example, employees with a great deal of labor force expe-
rience mostly have advanced educational degrees (the marker “4” prevails in the
upper-right corner of the figure), while employees with little labor force experience
mostly have low-level educational degrees (the marker “1” prevails in the lower-left
corner).

Now what happens if we control for different levels of school education? This
necessitates a multiple regression model with “labor force experience” as the in-
dependent variable and three dummies for the educational levels of the employees
(low education is used as the reference category). Graphically, this is identical to
computing four parallel regression lines, one for each educational level. As can be
seen from the dashed level-specific regression lines in the left panel, the association
between labor force experience and hourly wages is still positive for each educa-
tional level, but much smaller than in the bivariate regression model (compare the
solid regression line). Obviously, the former bivariate effect overestimates the “true”
effect of labor force experience, because without controlling for educational level,
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Fig. 3.5 Log hourly wages by labor force experience and education

labor force experience will also transport the effect of education, since education is
positively correlated with labor force experience.

You should also remember that the problem of omitted variable bias does not
exist when the omitted variables are statistically independent of the explanatory
variables in the model. This is shown with the nohetbias data in the right panel
of Fig. 3.5. If education and experience were independent of each other, the four
scatter clouds corresponding to the four educational levels would be totally parallel
(their centers would be on the some vertical line) and there would be no difference
between the slope of the overall and the level-specific regression lines (compare
the solid overall and the dashed level-specific regression lines in the right panel of
Fig. 3.5). Hence, the effect of labor force experience on hourly wages would be the
same, irrespective of whether we control for education or not.

3.6.1.2 How to Extend Panel Regression Models for Unobservables
Controlling for such “third” factors is an easy task, if we have information about
them (as in the case of education, which is available in many surveys). We sim-
ply put them as another independent variable into our regression model. But what
about those factors that are hard to measure (“ability” is a prominent example in the
context of income analysis) or those which we have not yet considered? Should we
not make provisions for having forgotten important determinants of our dependent
variable?

As it turns out, panel data are an excellent tool to deal with these “third” fac-
tors that are not included in the model. Before showing that, we respecify our panel
model to make explicit that we may have neglected certain important explanatory
variables. This applies to both our time-constant and our time-varying explanatory
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variables. Instead of writing them all down (we do not know what they are any-
way), we add two error terms to our model measuring the overall impact of all the
unknown time-constant and time-varying factors, which influence Y :

yit = β0(t) + β1x1it + · · · + βkxkit + eit + γ1z1i + · · · + γj zji + ui (3.27)

ui = γj+1zj+1,i + · · · + γj+lzj+l,i summarizes the effect of the l unknown time-
constant explanatory variables. eit = βk+1xk+1,it + · · · + βk+mxk+m,it + vit stands
for the m unknown time-varying explanatory variables plus all random error (vit)

that affects the dependent variable (including measurement error). ui , the error per-
taining to the unit i, is termed unobserved heterogeneity, because it captures all the
variation at the unit level that is not controlled for by the independent variables in
the model. eit, the error pertaining to each single measurement, is termed idiosyn-
cratic error, because it captures all peculiarities that affect the dependent variable
at each point in time for each unit besides the effects that are already controlled for
in the model.

Note that we have dropped the expected value function on the left-hand side of
the equation, because (3.27) specifies not only the systematic part of the dependent
variable but also the stochastic part (ui + eit), which we have ignored in Sect. 3.5.
Note also that models for categorical data are easily extended in a similar fashion
(simply insert the right-hand side of (3.27) into G(·) in (3.12)). However, contrary
to the discussion in Sect. 3.5.3.3 where we used a similar notation, here we make
no distributional assumptions about the two error terms ui and eit. We think about
them as some unknown parameters that differ between units and measurements.

Some people may view the inclusion of ui and eit only as a notational amend-
ment, since it does not really let us off the hook with regard to the missing infor-
mation. But it allows us to define more concretely the conditions that are necessary
to achieve unbiased estimates of the parameters in the model. Since all effects are
biased if the variables in the model are correlated with the neglected factors (com-
pare the example in Fig. 3.5), we must assume—at least at the present state—that
both X and Z are independent of U and E to ensure unbiasedness of the parameter
estimates. Variables X and Z that meet these criteria are called exogenous in the
econometric literature. We will come back to the issue of exogeneity in Sect. 3.6.4,
when we know a little bit more about the other specification problems.

3.6.1.3 Why Are Panel Data Useful to Control for Unobserved
Heterogeneity?

Obviously, it is difficult to prove whether this assumption is true, because unob-
served heterogeneity and idiosyncratic errors by definition are unknown. But as we
will shortly see, panel data allow us to control for unobserved heterogeneity at the
unit level, even when this source of error (the ui term) is correlated with the explana-
tory variables in the model. More specifically, panel data include repeated observa-
tions of the same units, which gives us the opportunity to control for all (observed
and unobserved) characteristics of each unit that are constant over time. The neces-
sary statistical tools are not entirely new. In fact, you will have already encountered
the fundamental techniques during your basic training in statistics.
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Let us start with the example on (log) hourly wages. How do we test whether
these wages increased significantly from 1981 to 1982? The increase from 1.513 in
1981 to 1.572 in 1982 (see Table 3.1) could be due to random error. As you will
probably remember, the significance of this increase can be checked with a T test
for dependent observations. The corresponding test statistic uses the difference of
both numbers and the standard error of the difference:

t = ȳ.,82 − ȳ.,81

σ̂(ȳ.,82−ȳ.,81)

(3.28)

For the wage data, the standard error is estimated to be 0.019. With an increase
in log hourly wages by 0.059 points, the result is a highly significant test statistic:
t = 3.105 and (one-sided) p < 0.01. We conclude that the geometric mean of hourly
wages increased significantly from 1981 to 1982 by a factor of exp(0.059) = 1.061
or roughly 6 %.

Now, consider a simple panel regression model for both years, with one time-
constant Z and one time-varying explanatory variable X and a linear time trend T .
We drop all observations from the other years (i.e., make the data a two-wave panel
study) and write down the regression equation for each of the two remaining years:

t = 1981 yi,81 = β0 + β1 · 1981 + β2x2i,81 + ei,81 + γ1z1i + ui (3.29)

t = 1982 yi,82 = β0 + β1 · 1982 + β2x2i,82 + ei,82 + γ1z1i + ui (3.30)

and then compute their difference

yi,82 − yi,81 = �yi,82 = β1 + β2�x2i,82 + �ei,82 (3.31)

Due to the differencing, the error term ui and the time-constant variable z1i drop
out of the equation. Thus, by computing a regression on the differenced data, we
eliminate time-constant heterogeneity, whether it is observed (z1i ) or unobserved
(ui). Consequently, we do not need to bother about potential correlations between
unobserved heterogeneity (ui) and any explanatory variables. The transformation is
known as computing first differences (see Sect. 3.5.2.1) and estimating a model with
differenced data is termed first differences (FD) estimation. It controls for possible
omitted variable bias caused by ui , and the estimated regression coefficients (β̂) are
unbiased estimates of the “true” effects of the time-varying explanatory variables
in the model. Of course, some other assumptions also need to be true to ensure
unbiasedness (see Sect. 3.6.4), but at the moment, these details are not important
in order to understand the main idea behind FD estimation. Some people see it as
a disadvantage that FD estimation excludes observed time-constant variables Z.
But this objection is not a real problem in many applications. It is true that FD
estimation provides no numerical estimates of the effects of time-constant variables.
Nevertheless, like the effects of unobserved heterogeneity ui , their effects on the
dependent variable are controlled for (see also the discussion in Sect. 4.1.2.3).

If the model includes only a linear time trend and no explanatory variables, (3.31)
reduces to �yi,82 = β1 + �ei,82 and β̂1 = 0.0588 will equal the former difference
in log hourly wages (with a standard error of σ̂β1 = 0.0195). The corresponding t
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statistic is identical to the test statistic of the former T test. In other words, the T test
for dependent observations, which you know from elementary statistics, is a special
case of one important estimation method (FD estimation) for panel data.

Note also that the nominator of the test statistic (3.28) is nothing other than the
arithmetic mean of all unit-specific differences: (

∑n
i=1 �yi,82)/n = [∑n

i=1(yi,82 −
yi,81)]/n. Instead of looking at the differences between (log) hourly wages 1982
and (log) hourly wages 1981, we can also compute an average log hourly wage for
each unit, ȳi., and then test whether the individual wage in 1982 differs significantly
from this average. Let us call ÿi,82 = yi,82 − ȳi. the demeaned log hourly wage of
unit i in 1982. Instead of using (3.28), we would perform a T test for the demeaned
data. This is simply a test of whether the mean (log) hourly wage in 1982 differs
significantly from the overall mean, ȳ.., of all 1981 and 1982 wages:

t = ȳ.,82 − ȳ..

σ̂(ȳ.,82−ȳ..)

. (3.32)

This T test will have the same result as the former T test for dependent observa-
tions. This is no surprise, because in the case of two measurements (a two-wave
panel), the demeaned data are a simple transformation of the former differences:
ÿi,82 = �yi,82/2. Computing a regression on the demeaned data is identical to an-
other estimation method for panel data, called fixed effects (FE) estimation, which
controls for unobserved heterogeneity in a similar way to FD estimation. In case of
two-wave panels, FD and FE estimation yield identical results and, as shown, both
can be traced back to familiar T tests. In the case of more than two waves, both
estimation methods can have different results, but this will be discussed in greater
detail in Chap. 4.

Both panel estimation methods can also be motivated from the viewpoint of ex-
perimental designs. The minimal design of an experiment is characterized by a sam-
ple of individuals that are randomly assigned to a treatment and a control group. Sig-
nificant differences in the outcome variable between both groups indicate whether
the treatment has been effective or not. Because of random assignment, this finding
is easily defended against the objection that some other variable may have caused
the difference. Even if other determinants of the outcome variable exist, with ran-
domization, they should be randomly distributed across both groups. However, in
many social science applications, randomization is not feasible. For example, if a
job training program by law is open to everybody, we cannot randomly assign indi-
viduals to this program just because we want to assess its effects, e.g., on earnings.
In this case, researchers often choose a much simpler design, the so-called one group
pre-test post-test design. It focuses only on the treatment group and takes measures
of the outcome variable before and after the treatment. The reasoning behind this
design is the following: Even if the members of the treatment group have specific
characteristics, if the treatment is effective there should be a significant difference
between the post-test and the pre-test measurement. In other words, by looking at
differences within the treatment group, the (time-constant) selective characteristics
of their members are controlled for. This is essentially the same as what our former
FD estimation does.
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Table 3.9 Union
membership status 1985 by
membership status 1984

Source: wagepan data (see
Example 3.1)

1984 1985 Total

Member No member

Member 100 37 137

73.0 % 27.0 % 25.1 %

No member 22 386 408

5.4 % 94.6 % 74.9 %

Total 122 423 545

22.4 % 77.6 % 100.0 %

Now, let us turn to our categorical variable “union membership,” and see how we
can control for unobserved heterogeneity in that case. Much like we did in the wage
example, we could ask: Is there a significant drop in union membership between
1984 and 1985? According to the data in Table 3.2, there has been a slight decrease
in union membership of 2.7 percentage points, from 25.1 % in 1984 to 22.4 % in
1985. But this difference could also have resulted from random error.

Although it is not often discussed in elementary statistics courses, there is a test
procedure, called McNemar’s test, to check the difference of two proportions which
are computed from dependent observations. Basically, it is a chi-square test of the
off-diagonal cells in the transition matrix, i.e., on those individuals that change sta-
tus. Table 3.9 shows the frequencies of the particular transition from 1984 to 1985.
According to these data, 27.0 % or 37 of the n = 137 members left the union
in 1985 and 5.4 % or 22 of the n = 408 non-members joined the union. If the
overall percentage of union members is the same in 1985 as it was in 1984, these
two frequencies should also be the same except for random error. Hence, under
the null hypothesis of no change in the marginal percentages, the (estimated) ex-
pected frequencies in the two off-diagonal cells of the transition matrix should be
F̂12 = F̂21 = (37 + 22)/2 = 29.5. The fact that the number of exits (f12 = 37) is
a little larger and that the number of entries (f21 = 22) is a little smaller indicates
that the overall percentage of union members has decreased slightly between 1984
and 1985. Whether these differences are significant or not can be tested with a chi-
square test by comparing the observed and the expected number of individuals in
both groups. Estimated expected frequencies are denoted by F̂ , and observed fre-
quencies by f . The indices i and j denote the corresponding row and column of the
transition matrix:

X2 =
2∑

i=1

2∑

j=1

(fij − F̂ij )
2

F̂ij

= (37 − 29.5)2

29.5
+ (22 − 29.5)2

29.5
= 3.8136 with i 	= j

(3.33)

This test has one degree of freedom, and, compared to a χ2-distribution with
df = 1, the test statistic is not significant at the 5 % level (p = 0.0508). We con-
clude that the change in the overall percentage of union members (2.7 percentage
points) could also result from random error.
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If we reformulate the test problem within the context of panel models, we simply
specify a logistic regression model for the probability of union membership that
includes a linear time trend and the familiar unit-specific error term, ui , controlling
for the dependent observations in the two-wave panel including 1984 and 1985.15

If yit is a dummy for membership status (1 = member, 0 = no member), the model
resembles the following equation:

Pr(yit = 1) = exp(β0 + β1t + ui)

1 + exp(β0 + β1t + ui)
(3.34)

For logistic regression models of this kind, there are similar estimation methods to
those for continuous variables, which also control for unobserved heterogeneity ui .
They are called conditional maximum likelihood estimation (CML), and we will dis-
cuss these methods in greater detail in Chap. 5. In the case of two-wave panels, they
are similar to first differences. In our example, CML estimation uses only data from
those individuals who change their membership status (i.e., individuals in the off-
diagonal cells of the transition matrix).16 It provides an estimate of the trend parame-
ter which is negative (β̂1 = −0.5199), indicating that the probability of union mem-
bership has slightly decreased. However, if we take its estimated standard error into
account (σ̂β1 = 0.2692) and perform a Z test, we see again that it is not statistically
different from zero (p = 0.053). In Chap. 5, we will also show how to interpret the
parameters of logistic regression models. Usually, one computes the anti-logarithm
of the regression coefficient, in our case exp(β̂1) = exp(−0.5199) = 0.5946, and
interprets it as the multiplicative change in the odds of union membership. In our
case, this means that—controlling for unobserved heterogeneity—the odds of union
membership have decreased by a factor of 0.5946 or roughly 41.5 %. This sounds
like a lot, but taking into account the standard error of this odds ratio, the 95 %
confidence interval (0.3508,1.0078) includes the factor 1 (no change) indicating
that there is no significant change. Interestingly, this odds ratio equals the ratio of
entries into and exits from a union between 1984 and 1985 (22/37 = 0.5946). We
see, again, that there is a close connection between simple techniques for dependent
observations (McNemar’s test) and more advanced methods of panel data analysis.

Before we proceed with a discussion of the two error terms, let us summarize the
main conclusions of this section. At the beginning, we asked “Why are panel data
useful to control for unobserved heterogeneity?” The answer is: Because panel data
include repeated observations for each unit of analysis, and this allows us to base
our estimations on the within-unit variation, which is unaffected by time-constant

15You may wonder why this model does not include an idiosyncratic error term. We want to keep
the model as simple as possible and, thus, ignore eit , because the dependent variable (a probability)
is stochastic by definition (for more details see Sect. 5.1.2).
16Notice the similarities to first differencing. If membership status is indicated by a dummy vari-
able (1 = member, 0 = no member), differencing this variable will yield change scores of 1 (change
from non-member to member), −1 (change from member to non-member), or 0 (no change).
McNemar’s test will use only those units with change scores �yi,85 	= 0.
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characteristics of the units (both the known and the unknown ones). Each unit, so to
speak, is used as its own control.17

We showed this for both continuous and categorical dependent variables Y with a
model specified in levels, although the estimation was done using only change over
time. Therefore, some purists think that panel regression models should be specified
as change models from the very beginning. But it is important to separate problems
of model specification from problems of parameter estimation. It is one question,
whether a model should be specified in levels or in changes; and it is quite another,
how to achieve unbiased estimates of its parameters and what kind of information
to use for it.

3.6.2 Serially Correlated and Heteroscedastic Errors

The preceding discussion showed that unobserved heterogeneity, ui , can be dealt
with when we have access to panel data. But what about the idiosyncratic error eit? A
simple starting point is to treat eit like the error term in regression models for cross-
sectional data. In these kinds of models, it is usually assumed that the error eit for
each unit i is independent of the variables in the model (exogeneity assumption), has
constant variance (homoscedasticity assumption), and is independent of the error
influencing Y for any other unit j 	= i (no autocorrelation assumption). If all these
assumptions are met, ordinary least squares (OLS) estimation will provide unbiased
standard errors and will be the most efficient estimation method (for more details
see Textbox 4.1).

There is no easy way to eliminate eit, as in the case of unobserved heterogeneity
ui (e.g., by using FD or FE estimation). Hence, the exogeneity assumption is crucial
to ensure unbiasedness of the parameter estimates. If the other two assumptions are
not met, parameter estimates are still unbiased, but standard errors are not, because
their formulas are based on the assumption of homoscedasticity and no autocorre-
lation. That is why they are sometimes called theoretical standard errors. In this
section, we want to discuss the latter two assumptions. Obviously, they are vital for
unbiased standard errors and efficient estimation. We discuss, first, why they often
make sense for cross-section data, and then consider why they present a problem for
panel data.

Consider, for example, a cross-sectional survey on household incomes and the
possibility of measurement error, which is part of the error term. Does the fact
that Mr. Schulz underreports his income influence the probability that Mrs. Mayer,
whom he does not know, underreports her income as well? No! Thus, it is a plausi-
ble starting point for cross-sectional data to assume that errors across units (respon-
dents) are independent of one another (i.e., not autocorrelated). You may object,
however, that underreporting income is typical for certain social groups (e.g., self-
employed individuals), and that if Schulz and Mayer belong to the same group, it

17However, it is important to keep in mind that not all unknown determinants of Y are controlled
for. Unknown determinants, eit , that vary over time are still effective (see Sect. 3.6.2).
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is nevertheless possible that the measurement error is similar for both respondents
(and for all the other individuals in the same social group). But this only appears to
be a problem of autocorrelation. When incomes for a certain group are systemati-
cally underestimated, it is rather a problem of bias (in this case, due to an omitted
variable). You should control for the group characteristic by including a suitable in-
dicator into your regression model (e.g., occupational status). Moreover, if you are
not controlling for this variable (let us call it O), you have additional specification
problems, if the variables in the model (X) correlate with variable O that predicts
underreporting incomes. Necessarily, the variables in the model (X) will correlate
with the error term (via the omitted variable O), and this violates the exogeneity
assumption of independent error terms. All estimated effects of X will be biased
due to an omitted variable.

All in all, the assumption of uncorrelated error terms is often a reasonable one
for cross-sectional data, because the units of analysis are sampled independently
of one another and rarely share any characteristics that cannot be controlled for.18

However, the example about incomes from self-employment may be used to high-
light the problems of heteroscedasticity. As you know, it is much more difficult for
self-employed individuals to report exact monthly incomes, because they do not re-
ceive a regular monthly payment similar to, e.g., white collar workers. Hence, it is
a plausible assumption that the incomes of the self-employed include more mea-
surement error (i.e., have greater error variance) than incomes of other occupational
groups with regular monthly payments. This would invalidate the homoscedasticity
assumption of constant error variance across all units of analysis. Generally speak-
ing, heteroscedasticity is more of a problem for cross-sectional data than autocor-
relation, because—even when units in a cross-section are sampled independently
of one another—the risk of observing greater error with respect to certain units re-
mains.

The situation is less straightforward when analyzing panel data, because one ob-
serves the same units repeatedly over time. Generally speaking, sources of error
(i.e., omitted variables and measurement error) that are constant over time are less
of a problem than errors that change over time. For example, if it is true that self-
employed individuals underreport their incomes, then it is likely that they do it to
the same extent, more or less, in each consecutive panel wave. Because of these
time-constant impacts on the dependent variable Y , measurements over time will be
serially correlated.19 This kind of (measurement) error is easily controlled for by the
error term ui , which measures all unobserved characteristics that are time-constant
for the units. The estimation procedures that we discussed in the previous section
(FD and FE estimation) will take care of all serial correlations in the data that are

18The no autocorrelation assumption may be at stake, however, when the cross-sectional data result
from a cluster sample with units from the same cluster sharing similar and often hard-to-control
characteristics.
19This is the basis of the intra-class correlation coefficient (3.5) that attributes all serial correlations
in the data to time-constant characteristics of the higher-level units (see Textbox 3.1).
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generated by such time-constant unobserved variables at the unit level (and, in doing
so, will also take care of the omitted variable bias due to these variables).

Yet, if the source of the error changes over time, then it should be modeled with
the error term eit. Idiosyncratic errors, eit, may be serially correlated as well. As
an example, consider the economic situation of the companies that have employed
the respondents included in the wagepan data (see Example 3.1). Certainly, the
economic situation of these companies will have influenced what they were able to
pay their employees. Information about the economic situation at the enterprise level
is not easy to obtain for the social scientist and—since it often changes over time—is
a possible candidate for an unknown time-varying variable that should be included
in eit. If the economic situation of some employers has been extraordinarily positive
in one year, say t , then it will have resulted in above average incomes for some
wagepan respondents, and this positive income effect—though at a falling rate—
will have carried over to some of the following years t +1, t +2, . . . . Hence, eit and
ei,t+1, ei,t+2, . . . will be correlated. Therefore, with panel data, it is the assumption
of uncorrelated idiosyncratic error terms eit that is at greater risk.

As mentioned in the beginning, OLS estimation is not efficient in the case of
correlated error terms. This is also the case for FD and FE estimation, when the id-
iosyncratic errors eit are correlated. Estimated standard errors will be wrong (mostly
underestimated), resulting in wrong decisions in tests of significance (mostly in fa-
vor of the alternative hypothesis). In brief, correlated error terms increase the risk
of reporting significant results when they do not exist. There are several solutions
to the problem. One solution is to extend the model to account for correlated error
terms. Another is to estimate so-called robust standard errors instead of theoretical
standard errors (see Sect. 7.2.1 for a discussion of robust standard errors). Finally,
generalized estimating equations (GEE) provide a flexible environment to deal with
all kinds of correlation structures among the unobservables.

A similar problem arises if the variance of the error term, σ 2
e , is not constant.

If the assumption of homoscedastic error terms is violated, OLS, FD, and FE es-
timation are inefficient too. Again, estimated standard errors are biased (but the
direction of the bias is less clear than in the case of correlated error terms), and
significance tests may produce incorrect conclusions. However, compared to cor-
related error terms, heteroscedasticity is not a specific problem for panel data. As
already mentioned, it is also quite frequent in cross-sectional data. Heteroscedas-
tic error terms are easily dealt with by using robust standard errors that control for
heteroscedasticity. Of course, if you know the source of the misspecification that
caused the heteroscedasticity, it is always a better strategy to revise the model itself.
For example, the assumption of random slopes results in a model, where the error
term is also a function of the variables in the model (see (3.26)). In this case, the
source of the heteroscedasticity is known and can be explicitly modeled.

3.6.3 Measurement Error Bias

In the previous section, we discussed measurement error as a source of heteroscedas-
ticity and correlated error terms. But measurement error can have additional neg-
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ative effects to which you should pay attention, especially in the case of panel
data. Unfortunately, measurement error is treated very poorly in many introductory
econometrics textbooks. Many economists think that economic data include only
few measurement errors. Furthermore, they argue that measurement error in the de-
pendent variable (vit) is already captured in the error term eit. To learn more about
the treatment of unreliable measurements, of both the dependent and the indepen-
dent variables, you should have a look at more advanced econometrics textbooks or
consult the methodological literature from psychology and sociology, where models
controlling for measurement error have a long history.

An important distinction in this context is that between latent and manifest vari-
ables. Our theories focus on the “true” error-free relationships between variables
that represent our theoretical constructs (e.g., human capital, productivity, union
commitment). These are called latent variables. The possibly unreliable indicators
of these theoretical constructs that are provided by social science data (e.g., years of
education, earned income, union membership) are called manifest variables. A sim-
ple measurement model assumes that the values of a manifest variable, say Y , are
a linear function of the underlying latent variable, Y ∗, plus some random measure-
ment error:

yit = λy∗
it + vit (3.35)

Equation (3.35) assumes that all variables have been standardized, and thus includes
no regression constant. The standardized regression coefficient λ is also called the
reliability of the manifest variable. In this bivariate regression model, it equals the
correlation between the indicator (the manifest variable) and its underlying construct
(the latent variable). In the case of categorical variables, measurement error can be
modeled as a process of misclassification, in which only a certain percentage of each
category of the latent variable is assigned correctly to the corresponding category of
the manifest variable, while the rest is erroneously assigned to other categories. The
categories of the latent variable are also called latent classes.

In the following, we want to illustrate some of the problems when analyzing unre-
liable panel data. We start with the seemingly simple case of an unreliable dependent
variable, and then proceed to the more difficult case of an unreliable independent
variable. Since we do not have the space in this textbook to treat measurement mod-
els for panel data more thoroughly, our examples should alert you to those situations
in which the basic panel regression models of this textbook have to be extended.

3.6.3.1 Measurement Error in the Dependent Variable
Measurement error in the dependent variable is no problem for cross-sectional data,
if it is independent of the variables in the model. In that case, it is indeed sufficiently
treated in the error term of the model. But for panel data, it remains a problem. It
can be shown that in dynamic models, estimates of true state dependence will be
attenuated, i.e., biased towards zero. Instead of providing a formal proof, we will
present a simple example with a categorical dependent variable.

Consider, again, the process of becoming a union member. Let us assume that the
“true” change in membership status between two years, say 1980 and 1981, is mea-
sured correctly in the wagepan data. The corresponding transition probabilities
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Table 3.10 Union
membership status 1981 by
membership status 1980

Source: wagepan data (see
Example 3.1 observed
with 5 % misclassification)

True transition matrix

1980 1981

No member Member

No member 88.97 % 11.03 %

Member 33.58 % 66.42 %

Transition with error

1980 1981

No member Member

No member 84.21 % 15.79 %

Member 41.98 % 58.02 %

from Table 3.2 are reproduced in the upper part of Table 3.10. Hence, in the popu-
lation, the probability of becoming a union member is assumed to be about 11 %,
while the probability of leaving the union amounts to 33.6 %. Assume, furthermore,
that we observe this process with a two-year panel survey, which, unfortunately,
is less reliable than the survey from which we obtained the wagepan data. As a
consequence, 5 % of the union members were classified erroneously as not belong-
ing to a union and, similarly, 5 % of the non-members were recorded erroneously as
union members (this is just an example; errors of classification could be different for
members and non-members). With these assumptions, union membership reveals a
much higher rate of membership turn-over between 1980 and 1981 than is the case
in reality, simply because of the many misclassified members and non-members.
More specifically, if the upper part of Table 3.10 describes the “true” turn-over pro-
cess, and the probability of misclassification is 5 % (irrespective of origin status),
we expect 15.8 % (and not 11.0 %) of the non-members to join a union in 1981,
while 42.0 % (and not 33.6 %) of the members should leave their union in 1981 (see
the lower part of Table 3.10).20 In other words, the stability of union membership
and non-membership is much lower than in reality, and corresponding regression
models will underestimate an effect of true state dependence.

20The observed (erroneous) transition probabilities were computed by multiplying and adding the
corresponding probabilities. For example, the respondents observed as union members in both
years have one of the following characteristics (in brackets: probability of observing that char-
acteristic): (i) being correctly classified as a member in both years (p22 · 0.95 · 0.95), (ii) being a
member in 1980 and a non-member in 1981 who is misclassified in 1981 (p21 ·0.95 ·0.05), (iii) be-
ing a non-member in 1980 and a member in 1981 who is misclassified in 1980 (p12 · 0.05 · 0.95),
or (iv) being a non-member in both years who is misclassified in both years (p11 · 0.05 · 0.05). The
pjk are the “true” (unconditional) probabilities (not the transition probabilities) of belonging to the
respective group. By adding the four probabilities (i) to (iv), we arrive at the observed transition
probability of 58.02 %.
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Fig. 3.6 Path diagram of
hourly wages

A similar example can be constructed for our (continuous) wage data. Assume
that the first-order serial correlation for 1981 describes the “true” process at the level
of the latent variable, i.e., Corr(y∗

i,81, y
∗
i,80) = 0.454 (see Table 3.1). Now, imagine

again the less reliable panel survey. Let us assume that “true” wage can only be
measured with reliability λ = 0.6. Figure 3.6 illustrates this example with a path di-
agram (a similar diagram could have been drawn for the union example). We adopt
the convention that latent variables should be symbolized by circles, while manifest
variables should be represented with rectangles. Additionally, the path diagram in-
cludes symbols for the error terms. In our case, the arrows indicate the true effect
of last year’s wage on the current wage and the dependence of the yearly measure-
ments on the underlying latent variables (all other effects on current “true” wages
and on the yearly measurements are captured by the error terms). Path analysis uses
standardized regression coefficients to indicate the strength of the corresponding
relationship. In a bivariate regression model, as in the case of regressing Y ∗

81 on
Y ∗

80, the standardized regression coefficient is identical to the correlation coefficient
(thus, we have used Corr(y∗

i,81, y
∗
i,80)). Both regression models for the observed vari-

ables Y81 and Y80 are already in standard form (see (3.35)). With these assumptions,
it can be shown that the serial correlation of the unreliable income measurements
equals Corr(yi,81, yi,80) = 0.6 · 0.454 · 0.6 = 0.163 (see Sect. 7.1). Hence, while the
relationship is quite strong (0.454) in reality, it appears rather weak (0.163) with the
(unreliable) observed data. Again, corresponding regression models will underesti-
mate the effect of “true” state dependence and, similar to the union example, the
cause of this bias is random noise introduced by the measurement process.

However, measurement error in the dependent variable is not only a problem for
our substantive models. When you remember that specialized estimation procedures
for panel data focus on changes over time (FD estimation) or on deviations from
unit-specific means (FE estimation), you can imagine that it also affects the quality
of various estimation methods for panel data. In the following chapters, we present
the assumptions and features of these methods in greater detail. At that point, we
will also discuss how FD and FE estimation are negatively affected by unreliable
change scores and unreliable demeaned data.
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3.6.3.2 Measurement Error in the Explanatory Variables
Measurement error in the explanatory variables is already a problem for cross-
sectional data. Its effect is that regression coefficients of unreliably measured in-
dependent variables are biased towards zero (called measurement attenuation bias
in the literature). The situation is identical to the one depicted in Fig. 3.6. Simply re-
place Y ∗

80 and Y80 by any explanatory variable from 1981, say X∗
81 and X81, and the

diagram shows a bivariate cross-sectional regression model that is estimated with
a cross-section from 1981. Naturally, if measurement error in the explanatory vari-
ables is a problem for cross-sectional data, it is just as much of a problem for panel
data. Again, you can use Fig. 3.6 as an illustration. Replace Y ∗

81 and Y81 by Y ∗
t and

Yt and also Y ∗
80 and Y80 by X∗

t and Xt . Now the path diagram represents a bivariate
panel regression model that is estimated from t = 1, . . . , T waves of a panel survey.

3.6.3.3 Structural Equation Models
In sum, models for panel data are equally plagued by measurement error, and the
distinction between latent and manifest variables provides a methodology for deal-
ing with this problem. Instead of specifying a single regression equation, one would
specify a system of regression equations representing both the process of measure-
ment and the structural relations of the underlying theory (i.e., the relations between
the latent variables). This methodology is known as structural equation modeling
(SEM). If the underlying latent variables are assumed to be continuous, factor anal-
ysis is used for the measurement model. If both the latent and the manifest variables
are assumed to be categorical, latent class analysis is used for the measurement
model.

As already mentioned in Sect. 1.1.1.6, panel data provide valuable information
to assess the reliability of the measurements (the manifest variables). With cross-
sectional data, we are forced to use different indicators of the same construct in
order to estimate each indicator’s reliability (a typical example is an attitude mea-
sured by several items on a Likert scale). With panel data, on the other hand, we
have repeated measurements of the same construct over time that allow us to assess
its reliability. This is identical to test-retest reliability, one of the classical methods
of reliability estimation. However, if we need some of the repeated observations to
assess the reliability of the measurements, we have fewer opportunities to estimate
the parameters of the underlying process. Hence, questions of identification are al-
ways prevalent with these kinds of measurement models.

To understand this statement, have a look again at Fig. 3.6. We made assump-
tions about the reliabilities and the effect Y ∗

80 on Y ∗
81 (the stability of the latent

variable). Using these assumptions, we predicted the correlation (a standardized
covariance) of the observed (manifest) variables Y80 on Y81. Since we assumed
standardized data, we implicitly made an assumption about their variances too
(Var(y80) = Var(y81) = 1). In other words: Given the assumptions specified in the
path diagram, we can derive a model-implied variance-covariance matrix of the ob-
served variables, which in this simple example includes three numbers (one covari-
ance and two variances).
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Now let us think about the more realistic case in which we have an observed
variance-covariance matrix and from these “data” want to estimate the parameters
of the path diagram (i.e., the model that describes the population). How many pa-
rameters are there?—One stability coefficient, two reliabilities, and two variances
of the latent variables, altogether five parameters. Trying to estimate five unknowns
from only three data is not feasible. Even when we assume both reliabilities to be the
same and hence, have only four different parameters to estimate, this is not possible
either. In other words, the path model is not identified given the few data. However,
if we would have three measurements and altogether six data (three covariances and
three variances), the corresponding three-wave path diagram would be identified, at
least when we assume that the (now) two stability coefficients are the same, as are
the three reliabilities (resulting—together with the three variances—in five parame-
ters to be estimated).

Although we do not have the space to explain how this estimation is actually
done, the former reasoning already shows the principle. Given the assumptions
specified in the path diagram, one can derive the variances and covariances of the
manifest variables implied by the model. By minimizing the deviations between the
model-implied and the observed variance-covariance matrix, one can estimate the
regression coefficients that most likely have generated the statistical relationships
between the observed variables. As the term “likely” suggests, estimation is done
using maximum likelihood (ML).

3.6.4 A Formal Summary of the Main Estimation Assumptions

At the end of this discussion of specification errors, it is helpful to summarize the
main conclusions. We have discussed various assumptions that are essential to ob-
taining “good” estimates of our model parameters and their standard errors, and we
have illustrated—mostly by examples from elementary statistics—how panel data
can be used to relax some of these assumptions. In order to obtain unbiased and
efficient parameter estimates, we have to assume the following.
1. Exogeneity. This means that our explanatory variables are independent of all the

factors that we cannot control, either because they are unknown to us or because
we have no data concerning them. This includes unknown factors at the unit level
(ui), as well as unknown factors at the level of measurements (eit). Furthermore,
unobserved heterogeneity (ui) and idiosyncratic errors (eit) should be indepen-
dent of one another. More specifically, we assume:

E(ui |x1i1, . . . , x1iT , . . . , xki1, . . . , xkiT , z1i , . . . , zji, eit) = 0

E(eit|x1i1, . . . , x1iT , . . . , xki1, . . . , xkiT , z1i , . . . , zji, ui) = 0
(A.1)

2. Homoscedasticity. This means that both error terms, ui and eit, have constant
variance. In formal terms:

Var(ui |x1i1, . . . , x1iT , . . . , xki1, . . . , xkiT , z1i , . . . , zji) = σ 2
u

Var(eit|x1i1, . . . , x1iT , . . . , xki1, . . . , xkiT , z1i , . . . , zji) = σ 2
e

(A.2)
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3. No serial correlation. This means that the (time-varying) idiosyncratic errors are
independent of one another. In formal terms:

Corr(eit, eis |x1i1, . . . , x1iT , . . . , xki1, . . . , xkiT , z1i , . . . , zji) = 0, t 	= s (A.3)

4. No measurement error. This means that the observed values are identical to the
true values of Y , X and Z:

yit = y∗
it, x1it = x∗

1it , . . . , xkit = x∗
kit, z1i = z∗

1i , . . . , zji = z∗
ji
(A.4)

Furthermore, there are some other, more technical assumptions, which will be dis-
cussed in the following chapters.

Among the four assumptions, the most important one concerns the exogeneity,
because it ensures unbiasedness of the parameter estimates (besides the fourth as-
sumption of perfectly reliable measurements). What (A.1) says is that each error
term is zero on average, once we control for all the other variables in the model.21

Homoscedastic and uncorrelated error terms (assumptions (A.2) and (A.3)) guaran-
tee efficient estimates and unbiased standard errors.

Why does it make sense to specify all the assumptions in terms of conditional ex-
pected values, variances, and correlations? As you may remember from our former
discussion, biased estimates, heteroscedastic error terms, and serially correlated er-
rors may result from misspecifications of the model. The effect of labor force expe-
rience was overestimated, when we did not control for education. Serially correlated
errors in an analysis of labor income may have resulted from temporary changes in
the employers’ business situation. These problems disappear if we specify our mod-
els correctly (i.e., if we include an education variable or an indicator of the business
cycle at the firm level). Hence, our assumptions are conditional on the model we are
estimating.

You may also wonder, why these conditions mention all the T measurements
of each time-varying explanatory variable (e.g., x1it , . . . , x1iT ). This is because we
are dealing with panel data. With one cross-section of data, it is not necessary to
consider what happens in other time periods. However, with panel data, past and
future values of the explanatory variables can affect the dependent variable and,
thus, the error terms. This more comprehensive definition of (A.1) is also known
as the assumption of strict exogeneity (as opposed to contemporaneous exogeneity
in case of cross-section data). Strict exogeneity is at stake when we are analyz-
ing models with lagged dependent variables and feedback processes (non-recursive
models).

Finally, as we have seen in Sect. 3.6.1, the assumption concerning ui in (A.1) is
not a real problem with panel data, because repeated observations of the same units
over time allow us to control for unobserved heterogeneity, ui , even if it is correlated

21Using the expected value function is a more general form of saying that the error terms and the
variables in the model are not related. Corr(x,u) = 0, for example, would only imply that they are
not linearly related.
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with the variables in the model. This is one of the great advantages of panel data over
cross-sectional data. We have learned that there are special estimation methods for
this problem (FD, FE) and in the following chapters we will study these methods
in greater detail. Furthermore, if both parts of assumption (A.1) hold, panel data
give us the opportunity to estimate the effects of the explanatory variables much
more efficiently than with cross-sectional data. However, it is interesting to con-
sider what happens with first differences, fixed effects, and other panel estimation
methods, when assumptions (A.2)–(A.4) do not hold. This discussion is deferred to
subsequent chapters.

3.7 Overview of Subsequent Chapters

In this chapter, we showed how to describe and model panel data. Throughout the
text, we draw the distinction between continuous and categorical dependent vari-
ables and indicated different strategies for analyzing these kinds of data. We also
introduced possible estimation methods for the panel regression models. All of them
make use of repeated observations for each unit of analysis due to the panel design.
We motivated these techniques by referring to simple statistical tests for dependent
observations you hopefully remember from your undergraduate courses in statistics.
Finally, we discussed possible specification errors, among them biased estimates due
to omitted variables, which can be nicely controlled with panel data. The following
two chapters discuss panel regression models in greater detail. Chapter 4 focuses
on the analysis of continuous dependent variables, and Chap. 5 on the analysis of
categorical dependent variables.

Both chapters can be read independently of each other. They start with simple
cross-sectional regression models applied to panel data, which are then fortified
against the hierarchical clustering of data by computing robust standard errors. After
that, we will introduce models analyzing the level of the dependent variable. These
models account for the specific nature of panel data, and, in doing so, they try to
improve both the estimates and the standard errors. Finally, both chapters end with
models analyzing the change in the dependent variable. For continuous variables
this discussion will be rather short, while for categorical variables it is necessary to
introduce a whole new methodology (event history analysis).

Because this is an introductory textbook, we will not focus on systems of regres-
sion equations (which are used to model non-recursive relationships X ↔ Y ), and
we will not discuss models that distinguish between latent and manifest variables
(which are used to model measurement error). However, the following chapters will
give you references to the more advanced literature that discusses these kinds of
models. Throughout this text, we will also ignore the fact that panel data provide
only an incomplete picture of what is happening in reality. First of all, the units of
analysis are observed at discrete points in time, although change happens contin-
uously. Second, they enter the panel at a certain point in time, but the process of
interest may have already begun before the start of the panel. Only in Chap. 5, when
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we discuss (event history) models for the change of categorical dependent variables,
we will take up the issue of censored observations and models in discrete and con-
tinuous time. But it should be stressed that problems of incomplete observations
and discrete- versus continuous-time modeling are challenges for all types of model
discussed in this textbook.



4Panel Analysis of Continuous Variables

This chapter deals with linear models for continuous dependent variables Y . In the
first part of this chapter, we will discuss models focusing on the level of Y . As
discussed in Chap. 3, models for the level of continuous variables focus on the
expected value of Y . More specifically, in Sect. 3.5.1.1, we introduced the following
regression function, in which E(yit) is regressed on a set of independent variables,
which may be either time-constant (Z) or time-varying (X):

E(yit) = β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji (4.1)

Subscript i refers to the i = 1, . . . , n units, which have been observed at t = 1, . . . , T

equidistant points in time. Typical continuous variables would be measures of indi-
vidual earnings and attitudes, capital investments of industrial enterprises, or data
concerning government spending. As mentioned in Chap. 3, the units can be indi-
viduals, firms, nations, or other objects of analysis. Most of the following examples
will focus on individuals, and in various places we will use the terms “units” and
“individuals” interchangeably. In (4.1), yit denotes the value of the continuous de-
pendent variable for unit i at time point t . It is modeled as a linear-additive function
of the values of j time-constant z1i , . . . , zji and k time-varying independent vari-
ables x1it , . . . , xkit. γ1, . . . , γj and β1, . . . , βk denote the corresponding regression
coefficients. The term β0(t) determines the overall level of the dependent variable.
Since its level may change over time, β0(t) can be any function of time to control
for possible time trends. If there is no time trend, it reduces to the familiar regres-
sion constant β0(t) = β0. In the more general case, β0(t) can be a linear, quadratic,
exponential or non-parametric function of time t (see Sect. 3.5.1.1). This model
is the classical linear regression model and is extensively discussed in Sect. 4.1.
Returning to the examples above, typical research questions would be: Do certain
employees earn higher wages than others? How does the amount of capital invest-
ment vary with the characteristics of firms? Does globalization influence the amount
of government spending?

In the second part of this chapter, we will focus on linear models for the
change of Y . In Chap. 3, we discussed different ways in which to model �Y (see
Sect. 3.5.2.1). We will begin our discussion with models that focus on the change
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in Y between t − 1 and t as a function of changing time-varying explanatory vari-
ables X during the same period:

E(yit − yi,t−1) = E(�yit) = β0(t) − β0(t − 1) + β1�x1it + · · · + βk�xkit (4.2)

This specification of change is termed first differences (FD) regression, because it
can be derived by looking at the differences at the level of Y at time points t and
t −1 (see Sect. 3.5.2.1). The FD regression model and other specifications of change
are extensively discussed in Sect. 4.2. Typical research questions would be: How do
household incomes change after certain life events (e.g., divorce)? How do capital
investments at the firm level increase with overall economic growth? Does govern-
ment spending decrease with increasing globalization? The chapter concludes with
some suggestions for further reading (Sect. 4.3).

4.1 Modeling the Level of Y

This section illustrates how to estimate linear regression models that focus on the
level of the dependent variable. As an illustrative example, we use the wagepan
data introduced in Sect. 3.2 (see Example 3.1). In their analysis of these data, Vella
and Verbeek (1998) use the natural logarithm of hourly wages as the dependent vari-
able. The authors try to estimate the wage premium that union members may gain,
controlling for the fact that union membership itself may be a purposive decision.
This is a much more complicated research question than we are able to solve at
the moment. But if we ignore for the moment the potential endogeneity1 of union
membership, we can use Vella and Verbeek’s wage equation to illustrate panel mod-
els for continuous dependent variables. The question of whether union members
earn higher wages than non-members on average is a typical analysis of the levels
of Y . Vella and Verbeek’s wage equation includes the usual variables from human
capital theory; namely, years of schooling and labor force experience (a linear and
a quadratic term). Additionally, it controls for ethnicity, health and family status,
place of residence, and characteristics of current job (occupation, industry). The
main variable of interest is a dummy for union membership. Most of these vari-
ables are time-varying, except ethnicity and years of schooling (see the descriptive
analysis in Sect. 3.4.1).

We begin our analysis with classical cross-sectional models, and ask whether
they can easily be applied to panel data (Sect. 4.1.1). An obvious choice is to pool
the observations from all panel waves and analyze them with ordinary least squares
(OLS), as if they came from one large cross-section (Sect. 4.1.1.1). However, as
mentioned in the previous chapter (Sect. 3.6.2), standard errors are underestimated
if the data do not include independent observations. As a remedy, we will introduce

1An independent variable is called endogenous, when it is not only an explanatory variable of Y ,
but at the same time causally determined by Y itself. For the wagepan data, one could hypothesize
that the explanatory variable union is also determined by the dependent variable lwage, because
higher income groups may be less inclined to become union members.
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robust standard errors that control for the hierarchical (observations within units)
nature of the data (Sect. 4.1.1.2). In doing so, we arrive at more conservative test
results of our parameter estimates, reflecting the fact that we do not have as many
independent data as the N = n · T panel observations suggest.

Nevertheless, parameter estimates can also be improved upon, if we are willing
to model the panel structure of the data. This is the task of Sect. 4.1.2 and it is based
on the assumption that the OLS error term consists of two independent components:
one operating at the level of units, and the other operating at the level of individual
measurements over time. This assumption has two advantages. Firstly, by using
estimation methods that take advantage of the specific features of panel data, we
are able to control for omitted variable bias at the unit level, something which is not
possible with cross-section data (see Sect. 3.6.1). Secondly, such models allow us to
compute more efficient estimates of the parameters and their standard errors than in
pooled OLS regression models, even with robust standard errors.

4.1.1 Ignoring the Panel Structure

4.1.1.1 Pooled Ordinary Least Squares
A first step in the analysis of the wagepan data could be to pool the information
from all t = 1, . . . ,8 panel waves for all i = 1, . . . ,545 individuals and treat them
as though they represented independent information for n = 8 ·545 = 4,360 individ-
uals. To make the following explanation as simple as possible, we ignore possible
time trends in the data and specify only a regression constant β0(t) = β0.2 In order
to estimate the parameters of the model, we have to make an assumption regarding
how each observed value yit relates to its expected value E(yit):

yit = E(yit) + εit = β0 + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji + εit (4.3)

Assuming that the residual εit behaves like the OLS error term (see the following
Textbox 4.1), we can apply OLS to the pooled data and arrive at the same esti-
mates that Vella and Verbeek (1998) present in their Table III. Table 4.1 shows
these estimates in the column named “pooled OLS”. According to these data,
union membership—ceteris paribus—increases hourly wages by a factor of 1.1566
(= exp(0.1455)) or roughly 16 %. The effect is highly significant (t = 8.63,
p < 0.01).

OLS is easily applied to cross-section data. If certain assumptions are met, sta-
tistical theory shows that, in this case, OLS estimates are unbiased and efficient.
But what happens if we apply this technique to data that are, in fact, panel data?
In order to understand the potential problems, it is helpful to review the main OLS
assumptions (see Textbox 4.1).

2It should be stressed, however, that the assumption of β0(t) = β0 is only made for ease of expo-
sition. Since most y trend over time, it is usually necessary to model the time trend. Otherwise,
the estimates of the other explanatory variables are biased. The analysis of trends is deferred to
Sect. 4.2.
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Table 4.1 Determinants of log hourly wages: Pooled OLS (1980–1987)

Variable Pooled OLS Robust pooled OLS

Estimate Std. Err. Estimate Std. Err.

Union membership (yes = 1) 0.1455 0.0169 0.1455 0.0263

Education (years) 0.0905 0.0046 0.0905 0.0086

Experience (years) 0.0759 0.0097 0.0759 0.0114

Experience squared −0.0022 0.0007 −0.0022 0.0008

Hispanic (yes = 1) −0.0585 0.0219 −0.0585 0.0404

Afro-American (yes = 1) −0.1545 0.0230 −0.1545 0.0465

Lives in rural area (yes = 1) −0.1314 0.0185 −0.1314 0.0316

Married (yes = 1) 0.1100 0.0153 0.1100 0.0241

Poor health (yes = 1) −0.0580 0.0539 −0.0580 0.0670

Lives in North-East (yes = 1) 0.0197 0.0233 0.0197 0.0412

Lives in South (yes = 1) −0.0784 0.0210 −0.0784 0.0389

Lives in North-Center (yes = 1) −0.1057 0.0226 −0.1057 0.0400

Constant 0.2237 0.0780 0.2237 0.1345

R2 0.2636 0.2636

F (X) 67.49 34.34

df 1, df 2 23 4,336 23 544

N 4,360 4,360

n 545

T 8

Note: Models control for industry (11 dummies, regression coefficients not shown)
Source: wagepan data (see Example 3.1)

Textbox 4.1 (OLS assumptions) Consider the following linear model for a
cross-section of i = 1, . . . , n units: yi = β0 + β1x1i + · · · + βkxki + εi . yi is
a continuous dependent variable and x1i , . . . , xki can be either continuous or
categorical explanatory variables. εi captures measurement error in the depen-
dent variable and all unknown explanatory variables of Y that have not been
controlled for in the model. OLS estimates of the parameters β0, β1, . . . , βk

are found by minimizing the sum of squared residuals
∑

i (yi − ŷi )
2. The

residual is defined as the difference between observed (yi) and predicted val-
ues (ŷi = β̂0 + β̂1x1i + · · · + β̂kxki) of the dependent variable. The statistical
properties of OLS estimation rest on the following assumptions:
1. The data are a simple random sample of a well-defined population.
2. The model is linear in its parameters β0, β1, . . . , βk .
3. Each explanatory variable is neither a constant nor a linear function of the

other explanatory variables.
4. The error term is independent of the variables in the model: E(εi |x1i ,

x2i , . . . , xki) = 0.
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5. The error has constant variance given any value of the explanatory vari-
ables: Var(εi |x1i , x2i , . . . , xki) = σ 2.

6. The error is uncorrelated between any two units i and j (i 	= j ), given any
value of the explanatory variables: Corr(εi, εj |x1i , x2i , . . . , xki) = 0.

7. The error is normally distributed with mean 0 and variance σ 2: εi ∼
Normal(0, σ 2).

The first assumption is necessary for making statistical inferences about the
population using the sampled data. The second assumption allows us to use
least squares estimation. If the model were not linear in its parameters, we
would have to use other estimation techniques. The third assumption guaran-
tees that a numerical value exists for each regression coefficient (technically,
the model is identified). The fourth assumption is the most important one, be-
cause it makes sure that our regression estimates β̂0, β̂1, . . . , β̂k are unbiased:
E(β̂0) = β0, E(β̂1) = β1, . . . , E(β̂k) = βk . Literally speaking, unbiasedness
means that our estimates are correct; not necessarily in a single sample, but
on average; i.e., they are identical, across a multitude of samples, to the “true”
population parameters β0, β1, . . . , βk . If either measurement error, or the un-
known explanatory variables of Y , correlates with the explanatory variables
x1i , x2i , . . . , xki in the model, assumption 4 does not hold and OLS estimates
will be biased. If assumptions 5 and 6 are true, OLS estimates are not only
identical on average to the true population parameters, but the variance of the
estimates across different samples is also smaller than for any other estima-
tion method. This characteristic is known as efficiency. In sum, if assumptions
4 to 6 are true, OLS estimates are the best linear unbiased estimates (BLUE)
of β0, β1, . . . , βk . Finally, assumption 7 guarantees that even in small sam-
ples, we can use standard test procedures and confidence intervals based on
the normal distribution. If we have a large sample, this assumption is not nec-
essary. In this case, normality can be assumed by referring to the central limit
theorem. Discussions of these OLS assumptions and proofs of the statistical
properties of OLS can be found in any modern textbook on regression analy-
sis.

With panel data, at least one of these assumptions (assumption 6: no serial cor-
relation) is at stake. This can be illustrated by estimating the residuals ε̂it from the
former (pooled OLS) regression model:

ε̂it = ln(wageit) − (0.2237 + 0.1455 · unionit

+ 0.0905 · educi + · · · − 0.1617 · industry11it) (4.4)

If we now correlate the residuals from the first time point (t = 1) with the residuals
from the second time point (t = 2) for all i = 1, . . . ,545 individuals, we obtain
a significant positive correlation: Corr(ε̂i1, ε̂i2) = 0.3374. The same is true for all
other pairs of time points (see the upper part of Table 4.2).
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Table 4.2 Serial correlations in pooled OLS model and in raw data

Year 1980 1981 1982 1983 1984 1985 1986 1987

Correlation of residuals from the pooled OLS model in Table 4.1

1980 1.0000

1981 0.3374 1.0000

1982 0.3198 0.4689 1.0000

1983 0.2714 0.4469 0.5701 1.0000

1984 0.1643 0.3751 0.4939 0.5413 1.0000

1985 0.2187 0.3573 0.4526 0.4925 0.5268 1.0000

1986 0.1839 0.2597 0.3815 0.3853 0.4224 0.5083 1.0000

1987 0.1882 0.3586 0.3429 0.4100 0.4549 0.5475 0.5573 1.0000

Mean r̄OLS = 0.3942

Year 1980 1981 1982 1983 1984 1985 1986 1987

Correlation of residuals from an empty pooled OLS model

1980 1.000

1981 0.454 1.000

1982 0.432 0.611 1.000

1983 0.408 0.582 0.690 1.000

1984 0.316 0.506 0.626 0.675 1.000

1985 0.356 0.469 0.588 0.625 0.664 1.000

1986 0.297 0.407 0.523 0.549 0.565 0.632 1.000

1987 0.310 0.480 0.498 0.563 0.588 0.672 0.693 1.000

Mean r̄y = 0.5277

Source: wagepan data (see Example 3.1)

What can explain this pattern? We have already discussed the problem of de-
pendent observations in the preceding chapter. In Sect. 3.4.2, we mentioned three
causes of serial correlation of the dependent variable: (i) time-constant explanatory
variables that cause Y to be persistently above (or below) the average, (ii) serially
correlated time-varying explanatory variables, and (iii) true state dependence of the
dependent variable itself. In Sect. 3.2, we showed that the amount of serial correla-
tion in the raw wagepan data is quite high (on average, r̄y = 0.5277, see Table 3.1).
In order to understand how our pooled OLS model controls for this serial depen-
dence in the data, let us replicate the serial correlation coefficients of the raw data
with a simple regression model. This is easily done by specifying only a regression
constant and no explanatory variables in our pooled OLS model (the so-called empty
model). The regression constant is estimated as β̂0 = 1.6491 and equals the over-
all average of (log) hourly wages across units and time (see Table 3.6). Computing
and correlating the residuals of this simple model reproduces the former correlation
matrix (see the lower part of Table 4.2, and compare Table 3.1).

Now, if we compare the lower and upper part of Table 4.2, we see that the pooled
OLS estimates from Vella and Verbeek control for some of the causes of serial cor-
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Fig. 4.1 Residuals
(connected by lines) for each
of ten individuals

relation. More specifically, they control for two time-constant explanatory variables;
namely, ethnicity and years of schooling, and for several time-varying explanatory
variables. Consequently, the remaining serial correlation in this more refined model
is much lower (on average, r̄OLS = 0.3942; see Table 4.2). But still, it is not zero as
the OLS assumptions require.

The remaining serial correlation is due to explanatory variables that are not in-
cluded in Vella and Verbeek’s model, either because there are no data about them
or because they are theoretically unknown. Worker productivity is a typical exam-
ple of a theoretically important but hard-to-measure explanatory factor. Economic
theory postulates that more productive employees receive higher wages on average
than less productive employees. Of course, productivity should be correlated with
schooling, but perhaps not perfectly. In other words, there are individual character-
istics (such as productivity) that are not controlled for by the independent variables
in the model. If they are constant over time, this unobserved heterogeneity causes
some individuals to have disproportionately higher (or lower) wages in all years than
could be expected from the independent variables in the model. This situation is il-
lustrated in Fig. 4.1 for ten individuals from the wagepan dataset. The lines connect
the residuals from the pooled OLS model for each individual across the eight time
points. In most cases, each line runs either consistently above or consistently below
zero, indicating that there is something specific (and time-constant) about each in-
dividual that has not been accounted for by the independent variables in the model.
Hence, if we correlate these residuals, they will show positive association.3

4.1.1.2 Robust Standard Errors
Pooled OLS is only unbiased, if we are ready to assume that this unobserved het-
erogeneity (e.g., differences with respect to productivity) is independent of the ex-

3It should be noted that, in most cases, serial correlation is positive (see also footnote 5 on p. 69).
Negative serial correlation would imply that negative residuals, at one point in time, are associated
with mostly positive residuals at the next point in time (and vice versa). Such an oscillatory pattern
of residuals is hardly observed with panel data.
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planatory variables in the model (see assumption 4 in Textbox 4.1). However, even if
assumption 4 is true, estimated standard errors are biased. This is because assump-
tion 6 (no serial correlation) is most likely violated. Error terms at different time
points will certainly correlate with one another, if there is unobserved unit-specific
heterogeneity that is constant over time, even when it is uncorrelated with the vari-
ables in the model (see Sect. 3.6.2). A simple remedy for correlated error terms is to
compute robust standard errors. They are called empirical standard errors, because
they use the distribution of estimated residuals instead of the theoretical formulas
derived from the classical OLS assumptions (for a detailed discussion of empirical
and theoretical standard errors, see Sect. 7.2.1). In our case, we need standard errors
that are robust against the fact that each unit i is represented with T observations in
the data set, which therefore have something in common. Each of these T measure-
ments constitutes a cluster of observations and the corresponding standard errors
have to be robust against this clustering in the data. More precisely, cluster-robust
standard errors assume that observations are independent across clusters (i.e., units),
but not necessarily within clusters.

Table 4.1 shows the pooled OLS estimates using cluster-robust standard errors.
Estimated regression coefficients remain the same, but standard errors are larger
than in the former pooled OLS model, indicating that neglecting the serial depen-
dence in panel data provides seemingly precise estimates and often seemingly sig-
nificant test statistics.4 The effect of union membership remains significant nonethe-
less (t = 5.53, p < 0.01). But, for example, the effect of Hispanic ethnicity is no
more significant (pooled OLS: t = −2.67, p < 0.01; robust pooled OLS: t = −1.45,
p = 0.147).

It should be stressed that computing robust standard errors does not change
the estimates of the regression coefficients. Hence, unbiasedness of robust pooled
OLS estimates hinges on the same assumptions as “simple” pooled OLS estimates,
among them the assumption of independent unobserved heterogeneity. Moreover,
cluster-robust standard errors control for any kind of serial dependence within clus-
ters. They are, so to speak, a kind of broad-spectrum antibiotic. But if we have a
specific model of the source of serial correlation, we can develop more refined es-
timation techniques (a focused antibiotic) that provide more efficient estimates of
both the regression coefficients and the standard errors. This is the topic of the fol-
lowing section.

4.1.2 Modeling the Panel Structure

Apparently, pooled OLS makes unrealistic assumptions about panel data. However,
as shown in the previous chapter (see Sect. 3.6.1.2), the model is easily extended to
account for unobserved heterogeneity at the unit level:

4Since we are using cluster-robust standard errors, the degrees of freedom, df 2 = n−1, of the over-
all F test depend on the number of clusters (n = 545 units), and not on the number of observations
(N = 4,360) in the data set.
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yit = β0 + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji + ui + eit (4.5)

The stochastic part of the model, εit = ui +eit, now distinguishes between two com-
ponents: (i) ui : unobserved predictors of Y that are specific to the unit and therefore
time-constant, (ii) eit: unobserved predictors of Y that are specific to the time point
and the unit (including measurement errors). Unmeasured productivity would be an
example of the first type, while unmeasured economic performance of the individ-
ual’s employer would be an example of the second type. Given a sample of adults
and a comparatively short observation period of eight years, productivity can safely
be assumed to be time-constant in the wagepan data and, as already discussed,
productivity is positively associated with wages. Depending on their economic per-
formance, some employers may be able to increase the wages of their employees
above the average level in certain years, while other employers would be unable to
pay even the average wage. Possibly, economic performance changes each year in
the observation period, which may explain why certain individuals show particu-
larly high (or low) wages and correspondingly extraordinary high residuals in some
years but not in all. In many applications, these time-varying errors, eit, will show a
very unsystematic pattern.

Depending on our assumptions about these two error terms, different estima-
tion procedures are available. A simple starting point is the assumption that the
time-varying error, eit, has the same properties as the error term in OLS estima-
tion (for more details, see the following sections). In other words, eit is assumed to
be purely random “white noise”. Therefore, some authors call it idiosyncratic error.
Yet, the main discussion revolves around the unit-specific error, ui . As already men-
tioned, ui is a measure of unobserved heterogeneity at the unit level, and different
estimation strategies exist depending on our assumptions about this heterogeneity.
Again, a simple starting point is the assumption that unobserved heterogeneity is
uncorrelated with the variables in the model. In other words, ui is a sort of random
disturbance at the individual level. This is called a random effect in the literature,
and random effects (RE) estimation is used to assess the effects of the explana-
tory variables in the model. For many applications, however, assuming uncorrelated
heterogeneity is not a very realistic assumption. Remember our example, where
the unobserved variable productivity can be positively correlated both with time-
constant and time-varying explanatory variables (schooling increases productivity
and more productive employees need not be unionized to achieve higher wages).
With correlated heterogeneity, we have to use other techniques that have become
known as fixed effects (FE) estimation. In that context, the unit-specific error, ui , is
termed a fixed effect, stressing the fact that it is typical for unit i and is fixed over
time.

The distinction between random and fixed effects also has to do with the fact
that in the first case, ui is assumed to be a random draw from the universe of all
possible values of a random variable having a certain distribution (e.g., the normal
distribution), while in the second case, ui is assumed to be a parameter that is to
be estimated from the data of the sampled unit i (and hence, may be different in
another sample). Therefore, some scholars argue that statistical inference about the
population is only possible with random effects, while fixed effects would always
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be sample-specific and thus ill-suited to statistical inference. As we will see later,
the practical relevance of this argument is rather limited.

In the following, we start with the more realistic assumption of correlated het-
erogeneity and introduce FE estimation first (Sect. 4.1.2.1). We then proceed with
explaining RE estimation, also because it is more cumbersome to compute and be-
cause it partly builds on results from FE estimation (Sect. 4.1.2.2). After the reader
has developed a solid understanding of both estimation techniques, we will then dis-
cuss their connections and present testing procedures for deciding which of them fits
the data better (Sect. 4.1.2.3). At the end of this rather long introduction to modeling
the panel structure of continuous panel data, we conclude by summarizing what the
different models actually mean in applied research (Sect. 4.1.2.4).

4.1.2.1 Correlated Heterogeneity: Fixed Effects Estimation
This is a rather lengthy section on FE estimation. The technique is most easily un-
derstood within the familiar OLS context when using a dummy for each unit (the
following section on p. 128). However, with large data sets, the dummy variable
approach is not a very practical technique. Therefore, FE estimates are usually ob-
tained from demeaned data (section on p. 133). Once we know how to compute FE
estimates, we can discuss when and how they deviate from pooled OLS estimates
(section on p. 140) and how FE estimation controls for the serial dependence in the
data (section on p. 144).

FE Estimation Using Dummy Variables If we think about ui as something typ-
ical of unit i that is unfortunately unknown to us, we simply could estimate this
unit-specific heterogeneity by including a dummy for each unit. This approach has
become known as least squares dummy variables (LSDV) regression. Certainly, this
is hard to realize with Example 3.1, because in that case we would have to estimate
the effects of n = 545 different dummies (except one, the reference category). But
in other applications with few units of analysis, this is a very practical approach.
LSDV is also interesting from a didactic point of view, because it shows what is
going on with FE estimation. So, let us switch to an example from political science,
in which the units of analysis are 18 OECD countries. If we now speak about unob-
served unit-specific heterogeneity, we mean unobserved heterogeneity with respect
to countries.

Example 4.1 (garmit data) Garrett and Mitchell (2001) assess the im-
pact of globalization on welfare state effort in the OECD countries. Public
spending (as a percentage of gross domestic product—GDP) is one of their
dependent variables. Globalization is defined in terms of total trade, imports
from low wage countries, and foreign direct investments. Two conflicting hy-
potheses can be found in the literature about the effect of globalization on
public spending. The efficiency hypothesis states that globalization induces a
downward pressure on public spending, while the compensation hypothesis
claims that globalization is associated with higher demand for social security,
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which in turn increases public spending. To test these hypotheses, the authors
collect data from OECD statistics for 18 countries over a period of 33 years
(1961–1993). Thus, the full data matrix consists of n = 18 units observed over
T = 33 time points.

All in all, the dataset includes N = n · T = 594 data records, but due to
missing data, the number of valid cases depends on which variables we are
using in our regression model. The data are a typical example of an unbal-
anced panel data set, where the number of available measurements, Ti , varies
between units i = 1, . . . , n. The analysis of unbalanced panels is a rather
straightforward extension of the following methods (see Sect. 4.1.3.3), but
for the following discussion, it is easier to have a balanced panel. Therefore,
we exclude New Zealand, Norway, and Switzerland from the analysis and
test only two globalization indicators (lowwage: imports from low wage
countries as a percentage of total imports, trade: total trade as percentage
of GDP). All other variables have non-missing values for the remaining 15
countries, resulting in a reduced dataset of N = n · T = 15 · 33 = 495 data
records. For simplicity, we call it the garmit data, although it includes only
a subsample of Garrett and Mitchell’s analysis.

The time dimension in this example (T = 33) is much larger than in the previous
example (with T = 8) and even exceeds the number of units in the data set (n = 15).
Thus, as described in Sect. 3.1, the data is a typical example of what we have called
a macro panel (where n < T ). Certainly, for a full analysis of the time dimension
of this macro panel, we need more refined methods that cannot be covered in this
textbook, but see Kittel and Winner (2005) for an extensive analysis of the garmit
data. We are focusing on micro panels, hence this example is only used to illustrate
the LSDV approach, which is very practical when the number of units is small.

One of the key variables in Garrett and Mitchell’s analysis is imports from low
wage countries. If the compensation hypothesis were true in the observation pe-
riod, we would expect a positive sign of this variable, because cheap imports from
low wage countries put pressure on local labor markets and thus increase pub-
lic spending, because of increased payments to the unemployed. Applying pooled
OLS to the garmit data, however, results in a highly significant negative effect
(β̂lowwage = −0.2868, t = −6.37, p < 0.01; see Table 4.3), which would support the
opposite efficiency hypothesis, assuming a downward pressure on public spending.

But as we know from the previous section, pooled OLS is not a very useful es-
timation procedure, because it ignores the panel structure of the data. Observations
belonging to the same country are not independent of one another and have some-
thing in common that has to be controlled for in the model. Garrett and Mitchell’s
model controls for each country’s policy orientation (left: proportion of cabinet
portfolios held by social democratic/labor parties, cdem: same for Christian demo-
cratic parties), business cycle (growthpc: growth of per capita GDP) and wel-
fare dependency (unemp: unemployment rate, depratio: dependency ratio). But
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Table 4.3 Determinants of
public spending: Pooled OLS
(1961–1993, 15 OECD
countries)

Source: garmit data (see
Example 4.1)

Variable Estimate Std. Err.

Low wage imports −0.2868 0.0450

Trade 0.1430 0.0132

Unemployment 0.5016 0.0958

GDP/capita growth −1.1495 0.1209

Dependency ratio −0.8997 0.1156

Left cabinet portfolios 0.0415 0.0084

Christian Democrat portfolios 0.0161 0.0119

Constant 70.6190 4.7626

R2 0.6654

F (X) 138.37

df 1, df 2 7 487

N 495

these five controls probably do not capture all country-specific heterogeneity. There-
fore, a more realistic model should include ui to control for unmeasured country-
specific heterogeneity. This is equivalent to including a dummy for each of the coun-
tries. However, including a dummy for each country results in a model that is not
identified. Either one excludes one country dummy (for the reference country) or
one has to specify a model without a constant. Two options are available for cod-
ing: Dummy coding (i.e., dummy variables coded 1 and 0) is the most popular one
and results in effects that measure differences from the reference country. They are
sometimes called cornered effects. Effect coding (i.e., dummy variables coded +1
and −1) is not always applicable,5 but results in effects measured as differences
from the overall mean, which are easy to interpret. This is why they are also called
centered effects.

Choosing the United States (country No. 15) as the reference category, and using
dummy coding, the LSDV model looks like this (again ignoring a time trend and
specifying β0(t) = β0):

spendit = β0 +
14∑

j=1

γj · countryji +
2∑

k=1

βk · globalkit +
5∑

l=1

βl · controlslit + eit (4.6)

All in all, the model includes two globalization indicators, five controls and 14 1/0-
coded country dummies. Except the dummies, all variables change over time. It is
easy to see that this model is equivalent to (4.5), if we write down the equation for

5The effects of effect coded dummy variables will measure differences from the overall mean, if
(and only if) the different categories of the corresponding categorical variable (in this case: country)
have identical frequencies. In our case, we have reduced the data to a balanced panel, hence each
country is observed the same number of times.
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each country separately (taking into account that the corresponding country-specific
dummy equals one, while all other country dummies are zero):

i = 1 (Australia): spend1,t = β0 + γ1 · 1 +
2∑

k=1
βk · globalk,1,t

+
5∑

l=1
βl · controlsl,1,t + e1,t

i = 2 (Austria): spend2,t = β0 + γ2 · 1 +
2∑

k=1
βk · globalk,2,t

+
5∑

l=1
βl · controlsl,2,t + e2,t

...
...

i = 15 (USA): spend15,t = β0 + 0 +
2∑

k=1
βk · globalk,15,t

+
5∑

l=1
βl · controlsl,15,t + e15,t

Setting β0 + γi equal to ui and β0 equal to u15 results in (4.5) including country-
specific heterogeneity.

i = 1 (Australia): spend1,t =
2∑

k=1
βk · globalk,1,t +

5∑
l=1

βl · controlsl,1,t

+ u1 + e1,t

i = 2 (Austria): spend2,t =
2∑

k=1
βk · globalk,2,t +

5∑
l=1

βl · controlsl,2,t

+ u2 + e2,t

...
...

i = 15 (USA): spend15,t =
2∑

k=1
βk · globalk,15,t +

5∑
l=1

βl · controlsl,15,t

+ u15 + e15,t

We also see that it is not possible to estimate a separate constant β0, as suggested
by (4.5). Within the LSDV approach and dummy coding, this constant equals the
country-specific heterogeneity for the reference country (in our case: USA).

Table 4.4 shows the results of the LSDV model. In this more refined model,
imports from low wage countries have only a small negative—and insignificant—
effect on government spending (β̂lowwage = −0.0909, t = −1.95, p = 0.052), and
hence support neither the compensation nor the efficiency hypothesis. Why is this
the case? Apparently, the variable “low wage imports” conveys some of the un-
measured country-specific heterogeneity, and once this is controlled for, its effect is
much smaller. In the section on p. 140 we will discuss this so-called omitted variable
bias in greater detail. For the moment, it is enough to see that effects may change
dramatically, once we control for the longitudinal structure of our data.
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Table 4.4 Determinants of public spending: LSDV (1961–1993, 15 OECD countries)

Variable Dummy coding Effect coding No constant

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

Low wage imports −0.0909 0.0466 −0.0909 0.0466 −0.0909 0.0466

Trade 0.1999 0.0274 0.1999 0.0274 0.1999 0.0274

Unemployment 1.1575 0.1076 1.1575 0.1076 1.1575 0.1076

GDP/capita growth −0.8543 0.0878 −0.8543 0.0878 −0.8543 0.0878

Dependency ratio −0.2203 0.1386 −0.2203 0.1386 −0.2203 0.1386

Left cabinet portfolios −0.0162 0.0075 −0.0162 0.0075 −0.0162 0.0075

Christian Democrat portfolios −0.0531 0.0161 −0.0531 0.0161 −0.0531 0.0161

Australia −3.8218 1.3209 −7.0117 1.0091 31.3287 5.8706

Austria 8.9904 2.1694 5.8005 0.9883 44.1409 6.1833

Belgium −0.7248 3.1779 −3.9147 1.9397 34.4257 7.0038

Canada −2.7451 1.4908 −5.9349 0.9760 32.4055 5.8921

Denmark 5.8155 1.8110 2.6256 0.8050 40.9660 5.9435

Finland 1.2328 1.5458 −1.9571 0.8637 36.3833 5.8593

France 8.2138 1.2929 5.0239 0.9160 43.3643 6.0354

Germany 9.9746 1.7765 6.7847 0.9183 45.1251 5.8133

Ireland −9.4742 2.4700 −12.6641 1.5849 25.6763 7.2893

Italy 6.7647 1.7176 3.5748 1.1471 41.9152 5.9426

Japan −0.2513 1.3936 −3.4412 1.4326 34.8992 5.4223

Netherlands 5.2266 2.6759 2.0367 1.4331 40.3771 6.5668

Sweden 15.8134 1.8709 12.6235 0.8835 50.9639 5.8519

United Kingdom 2.8337 1.4183 −0.3562 0.8486 37.9842 6.1813

Constant 35.1505 6.0612 38.3404 6.0287 35.1505 6.0612

R2 0.8456 0.8456 0.9908

F (X) 171.92 171.92 171.92

df 1, df 2 7 473 7 473 7 473

F (dummies) 39.42 39.42 67.63

df 1, df 2 14 473 14 473 15 473

N 495 495 495

n 15 15 15

T 33 33 33

Source: garmit data (see Example 4.1)

We do not comment on the other explanatory variables in the model, but it is
important to remember that none of them is constant over time (such as, for example,
schooling and ethnicity in Example 3.1). If they were, it would not be possible to
estimate their effects, because they are linearly related to the dummies. Each dummy
captures all the characteristics of the corresponding unit, hence it is impossible to
estimate on top of that the effect of a variable that is constant for the unit.
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Finally, it is interesting to take a look at the estimates of the country dummies.
Not all of them are significant, but Sweden, for instance, directs a significantly
greater proportion of its GDP toward public expenditure. Government spending is
on average 15.8 percentage points higher than in the US, which channels 35.2 % of
its GDP (see the constant) toward public expenditure.6 On the other side of the con-
tinuum, we find Ireland, where public spending is 9.5 percentage points lower than
in the US, on average. However, as long as we do not know what the driving forces
are behind these differences, we are unable to draw any theoretical conclusions. In
other words, LSDV only controls for unobserved heterogeneity without providing
information about the unobserved explanatory variables.

Table 4.4 also shows the effects of the two other LSDV specifications. With a
balanced panel, it is possible to use dummy variables coded +1 and −1 and to
measure centered effects (see footnote 5 on p. 130). The corresponding estimates
in the column “effect coding” show that the overall average of all country effects
amounts to 38.3 % (see the constant) and that the amount of government spending
in Ireland lies about 12.7 percentage points below that average. Finally, specify-
ing no regression constant and including all country dummies shows the absolute
amount of government spending in each country, when all other explanatory vari-
ables are zero (see the column “no constant”). For example, the US directs 35.2 %
of its GDP toward public expenditure (see the row labeled “constant”), while Ire-
land spends only 25.7 %. Subtracting these two percentages results in the estimate
(9.5) for the Irish dummy in the LSDV model with dummy coding. Calculating the
average of all country dummies (31.3,44.1, . . . ,35.2) results in the constant (38.3)
of the LSDV model with effect coding. In other words, all three LSDV specifica-
tions are reparametrizations of the same country structure in the data. It should also
be noted that if we had used other countries in our analysis, all effects would be dif-
ferent, irrespective of the type of coding. More generally speaking, FE estimation
of country-specific (or more generally: unit-specific) effects always depends on the
specific sample of countries (units) used in the analysis. No one would think about
these effects as being realizations of a larger population of countries. This differs
notably from the random effects that we will discuss in Sect. 4.1.2.2.

FE Estimation Using Time-Demeaned Data Now, let us consider what these
dummy variables add to the picture. Take, as an example, the effects from the LSDV
model with dummy coding. They measure how the observations in the respective
country deviate on average from the reference country while controlling for the
other variables in the model. Intuitively, the country effect ui is nothing other than
the difference of the adjusted mean government spending in country i minus the
adjusted mean government spending in the reference country (the term “adjusted”

6More specifically, government spending in the US amounts to 35.2 %, if all independent variables
are zero (i.e., lowwage = trade = unemp = growthpc = depratio = left =
cdem = 0). This is not a very realistic situation, and it is perhaps a better strategy to center
these variables around their US mean before putting them into the regression model. A similar
caveat applies to all the other LSDV specifications.
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should indicate that all other variables in the model have been controlled for). Put
differently, all country dummies would be exactly zero if we were to center all mea-
surements of public spending on their country-specific means. This observation sug-
gests another way to control for country-specific (or more generally: unit-specific)
heterogeneity. Some simple mathematical transformations will show why this is the
case.

As an example, we use (4.5) with one time-constant and one time-varying inde-
pendent variable:

yit = β0 + β1x1it + γ1z1i + ui + eit (4.7)

Let us further assume that the data include only three measurements per unit of
analysis. Thus, the data for an arbitrary unit i look like this:

t = 1 : yi1 = β0 + β1x1i1 + γ1z1i + ui + ei1

t = 2 : yi2 = β0 + β1x1i2 + γ1z1i + ui + ei2

t = 3 : yi3 = β0 + β1x1i3 + γ1z1i + ui + ei3

Now, what do we mean by “demeaning” variables? It sounds complicated, but math-
ematically, this transformation is very easy. First of all, we add the equations of unit
i for all three time points and then divide the sum by three. This results in the aver-
age of all equations for unit i:

ȳi. = β0 + β1x̄1i. + γ1z1i + ui + ēi. (4.8)

ȳi., for example, is the average of all values of the dependent variable for unit i:
ȳi. = (yi1 +yi2 +yi3)/3. x̄1i. and ēi. are the averages of the time-varying explanatory
variable X and the idiosyncratic error E. Since both z1i and ui are time-constant,
taking the average of each of them results once more in their original values, z1i

and ui . Finally, we subtract (4.8) from each of the time-point-specific equations for
unit i:

t = 1 : (yi1 − ȳi.) = (β0 + β1x1i1 + γ1z1i + ui + ei1)

− (β0 + β1x̄1i. + γ1z1i + ui + ēi.)

= β1(x1i1 − x̄1i.) + (ei1 − ēi.)

t = 2 : (yi2 − ȳi.) = (β0 + β1x1i2 + γ1z1i + ui + ei2)

− (β0 + β1x̄1i. + γ1z1i + ui + ēi.)

= β1(x1i2 − x̄1i.) + (ei2 − ēi.)

t = 3 : (yi3 − ȳi.) = (β0 + β1x1i3 + γ1z1i + ui + ei3)

− (β0 + β1x̄1i. + γ1z1i + ui + ēi.)

= β1(x1i3 − x̄1i.) + (ei3 − ēi.)

ÿi3 = (yi3 − ȳi.), ẍ1i3 = (x1i3 − x̄1i.), and ëi3 = (ei3 − ēi.) are the “demeaned” values
of Y , X, and the idiosyncratic error E for unit i at time point t = 3. More specifi-
cally, we talk about time-demeaning, because for each variable, this transformation
implies that we subtract from each original value the average of that variable for the
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corresponding unit over time. Or to put it differently: We center all measurements
on their unit-specific means.

If we now consider the general case with t time points and several time-constant
and time-varying independent variables, time-demeaning equation (4.5) results in
the following general model:

(yit − ȳi.) = β1(x1it − x̄1i.) + · · · + βk(xkit − x̄ki) + (eit − ēi.)
(4.9)

ÿit = β1ẍ1it + · · · + βkẍkit + ëit

The important thing about this transformation is that unobserved unit-specific het-
erogeneity, ui , has disappeared. It should be noted that all time-constant indepen-
dent variables Z have disappeared as well. Apparently, time-demeaning eliminates
all—observed and unobserved—time-constant unit-specific heterogeneity.7 How-
ever, without ui in the equation for the transformed data, and given that the idiosyn-
cratic errors eit still have nice properties, we can safely apply OLS to the pooled and
time-demeaned data and obtain estimates of the effects of the X that are unaffected
by omitted variable bias at the unit level. A pooled OLS estimator that is based on
the time-demeaned variables is called the fixed effects estimator. Textbox 4.2 sum-
marizes the main features and assumptions of FE estimation.

Textbox 4.2 (FE assumptions) FE estimation controls for unit-specific het-
erogeneity by eliminating (demeaning) all time-constant information for each
unit i from the data. As a side effect, it is not possible to estimate the ef-
fects of the time-constant explanatory variables. In other words, FE estima-
tion builds on a linear model for panel data that puts all observed and un-
observed time-constant explanatory variables into the error term ui : yit =
β0 + β1x1it + · · · + βkxkit + ui + eit. The statistical properties of FE esti-
mation rest on assumptions that are very similar to those of OLS estimation:
1. The units i = 1, . . . , n in the panel data set are a simple random sample

from a cross-section of a well-defined population.
2. The model is linear in its parameters β0, β1, . . . , βk .
3. Each independent variable x1it , . . . , xkit changes over time and is not a

linear function of the other independent variables.
4. Idiosyncratic error is independent of the variables in the model and

independent of unit-specific unobserved heterogeneity: E(eit|x1i1, . . . ,

x1iT , . . . , xki1, . . . , xkit, ui) = 0. It should be noted that the assumption ex-
pects independence from all measurements of each variable over time, a
characteristic that has become known as strict exogeneity.

7We did not observe this in our LSDV analysis of the garmit data, because the model did not
include any time-constant variables. As mentioned, if there had been any time-constant explana-
tory variables, it would have been impossible to estimate their effects when specifying country
dummies.



136 4 Panel Analysis of Continuous Variables

5. Idiosyncratic error has constant variance, given any value of the in-
dependent variables and unit-specific effects: Var(eit|x1i1, . . . , x1iT , . . . ,

xki1, . . . , xkit, ui) = σ 2
e .

6. Idiosyncratic error is uncorrelated between any two observations t and
s(t 	= s) of unit i, given any value of the independent variables and unit-
specific effects: Corr(eit, eis|x1i1, . . . , x1iT , . . . , xki1, . . . , xkit, ui) = 0.

7. Idiosyncratic error is normally distributed with mean 0 and variance σ 2
e :

eit ∼ Normal(0, σ 2
e ), given any value of the independent variables and

unit-specific effects.
The first assumption is necessary for making statistical inferences regarding
the population using the sampled data. The second assumption ensures that
we can use least squares estimation to estimate the parameters of the model.
If the model were not linear in its parameters, we would have to use other es-
timation techniques. The third assumption guarantees that a numerical value
exists for each regression coefficient. The fourth assumption is the most im-
portant one, because it makes sure that FE estimates β̂0, β̂1, . . . , β̂k are unbi-
ased: E(β̂0) = β0, E(β̂1) = β1, . . . , E(β̂k) = βk . Assumption 4, however, is
far more demanding than assumption 4 for OLS with cross-section data (see
Textbox 4.1). Strict exogeneity (as opposed to contemporaneous exogeneity)
assumes that there are no feedback mechanisms caused by unobserved effects
over time. Furthermore, if assumptions 5 and 6 are true, FE estimates are the
best linear unbiased estimates (BLUE) of β0, β1, . . . , βk . Finally, assumption
7 guarantees that we can use standard test procedures and confidence intervals
based on the normal distribution. Otherwise, we have to rely on asymptotic
approximations, which are only true in large samples. Discussions of these
FE assumptions and proofs of the statistical properties of FE can be found in
Wooldridge (2010, 265).

FE estimates parameters using only variation around the unit-specific means.
This is why FE is also called the within estimator. This is illustrated in Fig. 4.2 for
a subset of data (Sweden and Ireland) from our Example 4.1. The left panel shows
the original data on government spending for both countries plotted along the time
axis. A simple LSDV model would include a dummy for Sweden, measuring unit-
specific heterogeneity, and perhaps a non-linear time trend. The effect of the dummy
captures all between-country variance, and the time trend is estimated controlling
for observed and unobserved country heterogeneity. The right panel shows the time-
demeaned data, in which the differences between Sweden and Ireland are hardly
visible, because all between variance has been eliminated. In this case, it is no longer
necessary to include a country dummy in the model.8 However, estimates for the

8Of course, we would get exactly the same picture, if we would graph the residuals from a regres-
sion including only a dummy for Sweden.
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Fig. 4.2 Government spending in Ireland and Sweden (1961–1993)

non-linear time trend will be the same as in the LSDV model and hence will be
computed net of country heterogeneity.

Having introduced FE estimation, we can now return to Example 4.1 and reesti-
mate the government spending equation with time-demeaned data. We get exactly
the same estimates as the ones from the LDSV model (see Table 4.5, column “FE”).
Instead of demeaning the data by hand, we have used a readily programmed FE
estimation routine, which is available in many statistical software packages. The
advantage of using a programmed algorithm for FE estimation is the correct com-
putation of degrees of freedom. A simple OLS algorithm would not know that we
demeaned the data beforehand. This can be seen in the last column of Table 4.5 la-
beled “pooled OLS, time-demeaned data”. Parameter estimates are the same, while
standard errors and F statistics differ from the corresponding FE test statistics. The
following Textbox 4.3 describes how to correct the pooled OLS test statistics.

Textbox 4.3 (Degrees of freedom for time-demeaned data) If we are trans-
forming the data manually and using a simple OLS routine to compute FE
estimates, it is important to tell the program to estimate a model without a
constant, because (4.9) does not include an intercept (time-demeaning does
eliminate the constant β0 as well). Without a constant term, OLS computes
n · T − k degrees of freedom (and not df = n · T − k − 1) based on k in-
dependent variables and a total of N = n · T pooled observations. However,
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since we subtracted i = 1, . . . , n unit-specific means from the original obser-
vations, we have lost another n degrees of freedom. Thus, if no programmed
algorithm for FE estimation is available, standard errors and test statistics
have to be recomputed with the correct degrees of freedom, which equal
df = n · T − k − n = n · (T − 1) − k. More specifically, OLS standard errors
have to be multiplied with the square root of (n · T − k)/(n · (T − 1) − k),
while the F statistic has to be multiplied with (n · (T − 1) − k)/(n · T − k)

(readers should check this with the data in Table 4.5).

There is, however, a peculiarity with many programmed FE routines that we need
to understand. Surprisingly, they provide an estimate of a regression constant (see
column “FE” of Table 4.5), although time-demeaning eliminates the original inter-
cept of the model (see (4.9)). The estimate of this constant (38.3404) is equal to the
average of all country effects (compare the constant in the LSDV model with effect
coding). This happens because some FE routines use a slightly different transfor-
mation than (4.9). They do not subtract the unit-specific means from all variables;
rather, they subtract how much those unit-specific means deviate from the corre-
sponding overall mean (across i and t). In that case, the regression model should
include a constant term β0:

(
yit − (ȳi. − ¯̄y..)

) = β0 + β1
(
x1it − (x̄1i. − ¯̄x1..)

) + · · · + βk

(
xkit − (x̄ki. − ¯̄xk..)

)

+ (
eit − (ēi. − ¯̄e..)

)
(4.10)

¯̄y.., ¯̄x1.., . . . , ¯̄xk.. are the overall averages (across i and t) of the variables in the model
and ¯̄e.. is the overall average of the idiosyncratic errors. Using this slightly more
complicated transformation, one estimates the regression constant as the average of
all estimated unit-specific effects: β̂0 = ∑n

i=1 ûi/n = ū..
Finally, it is interesting to have a look at the overall fit measures and test statis-

tics. The results for the LSDV model without a constant are a little peculiar, so we
ignore them for a moment.9 The other LSDV models show R2 values of 0.8456 (see
Table 4.4), while the FE model has an R2 of 0.7179 (see Table 4.5). Why are these
R2 statistics different? FE estimation uses time-demeaned data and the correspond-
ing R2 measures the explained portion of the within variance. This is why it is also
called the “within” R2. LSDV estimation, on the other hand, uses the original data;
therefore, the corresponding R2 measures the explained proportion of the overall

9Its R2 and the F statistic for the country effects are not comparable to the other models and have
no substantive meaning. Basically, the F statistic tests whether country effects and the constant
are zero. Correspondingly, the computation of R2 assumes that the average of Y is zero and uses∑

(yit − 0)2 and not
∑

(yit − ¯̄y..)
2 in its denominator.
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Table 4.5 Determinants of public spending: FE (1961–1993, 15 OECD countries)

Variable FE Pooled OLS, time-demeaned data

Estimate Std. Err. Estimate Std. Err.

Low wage imports −0.0909 0.0466 −0.0909 0.0459

Trade 0.1999 0.0274 0.1999 0.0269

Unemployment 1.1575 0.1076 1.1575 0.1059

GDP/capita growth −0.8543 0.0878 −0.8543 0.0865

Dependency ratio −0.2203 0.1386 −0.2203 0.1364

Left cabinet portfolios −0.0162 0.0075 −0.0162 0.0073

Christian Democrat portfolios −0.0531 0.0161 −0.0531 0.0158

Constant 38.3404 6.0287

R2 0.7179 0.7179

F (X) 171.92 177.37

df 1, df 2 7 473 7 488

F (dummies) 39.42

df 1, df 2 14 473

N 495 495

n 15

T 33

Source: garmit data (see Example 4.1)

variance.10 Unless the within variance is very large compared to the between vari-
ance, LSDV R2 values are usually very high, because including a dummy for each
unit explains the between variance perfectly.

One can also test for the joint significance of either all independent variables or
all unit-specific effects by using appropriate linear restrictions on the model param-
eters (see Sect. 7.2.1). The corresponding F statistic is computed from the residual
sum of squares of the restricted (SSRr ) and the unrestricted model (SSRur):

f = (SSRr − SSRur)/q

SSRur/(n · (T − 1) − k)
, f ∼ F

(
q,n · (T − 1) − k

)
(4.11)

q equals the number of restrictions and k the number of independent variables in
the unrestricted model. For example, in our case, testing for the joint significance of
lowwage, trade, unemp, growthpc, depratio, left, and cdem implies
comparing two models: the unrestricted model in Table 4.4 (e.g., the LSDV model
with dummy coding), and a restricted model, where the q = 7 parameters of these
variables have been set to zero (i.e., a LSDV model, in which these variables have

10Some FE routines also report an “overall” R2, measuring the proportion of the overall variance
explained by all independent variables except the unit-specific effects. Therefore, its value is not
identical to the R2 from LSDV estimation.
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been excluded). With SSRr = 30,485.27 and SSRur = 8,601.41 we compute the F

statistic as follows:

f = (30,485.27 − 8,601.41)/7

8,601.41/(15 · (33 − 1) − 7)
= 171.92

The resulting value f = 171.92 has to be compared to a table of the F distribution
with df 1 = q = 7 and df 2 = n · (T − 1) − k = 473 degrees of freedom. It will show
that 171.92 is highly significant (p < 0.01). Hence, the hypothesis that both the two
globalization indicators and the five control variables have no effect on government
spending has to be rejected.

Similarly, we can test for the joint significance of all country-specific effects
by comparing the same unrestricted model with a LSDV model, in which all q =
n − 1 = 14 country dummies have been excluded:11

f = (18,636.46 − 8,601.41)/14

8,601.41/(15 · (33 − 1) − 7)
= 39.42

Again, the resulting f value is highly significant (p < 0.01) telling us that there are
significant country differences after lowwage, trade, unemp, growthpc, de-
pratio, left, and cdem have been controlled for. Usually, it is not necessary to
specify the corresponding restricted model, because most FE programs have internal
algorithms to compute the F statistic for the hypothesis that all unit-specific effects
are zero (see Table 4.5). However, for didactic reasons, testing the joint significance
of all unit-specific effects is most easily understood with the LSDV model, because
it simply means dropping the unit dummies from the regression equation.

When and How Do FE Estimates Deviate from Pooled OLS Estimates? Hav-
ing introduced FE estimation with time-demeaned data, we can now return to Exam-
ple 3.1 about the union effect on wages. As already mentioned, the LSDV approach
is not very useful for the wagepan data, because these data include a large number
of units (545 individuals).12 Therefore, FE estimation using time-demeaned data is
a practical alternative to control for unobserved heterogeneity at the unit level. Ta-
ble 4.6 shows the results in the column labeled “FE”. According to the F -Test,
unobserved heterogeneity is highly significant, i.e., all individual-specific effects,
ui , are jointly significantly different from zero (f = 6.73,p < 0.01). Now let us
take a look at the FE estimates for the variables in the wage equation. We are un-
able to estimate the effects of the time-constant variables schooling and ethnicity,
because the FE estimator uses only the within variation, which is zero by definition
for time-constant variables. With respect to Vella and Verbeek’s research question,
the most interesting effect is that of union membership. Compared to the pooled
OLS estimate from Sect. 4.1.1.1, the union effect is now only half as large, but still

11Remember: There are only n−1 country dummies in the unrestricted model, because one dummy
had to be excluded for model identification.
12Nevertheless, a model including these many dummies is feasible on today’s computers.
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Table 4.6 Determinants of log hourly wages: Pooled OLS and FE (1980–1987)

Variable Logarithm of hourly wage Unit-specific
heterogeneity

Pooled OLS FE Pooled OLS

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

Union membership (yes = 1) 0.1455 0.0169 0.0793 0.0194 0.0662 0.0118

Education (years) 0.0905 0.0046 (dropped) 0.0905 0.0033

Experience (years) 0.0759 0.0097 0.1125 0.0085 −0.0365 0.0068

Experience squared −0.0022 0.0007 −0.0041 0.0006 0.0020 0.0005

Hispanic (yes = 1) −0.0585 0.0219 (dropped) −0.0585 0.0154

Afro-American (yes = 1) −0.1545 0.0230 (dropped) −0.1545 0.0161

Lives in rural area (yes = 1) −0.1314 0.0185 0.0501 0.0290 −0.1815 0.0130

Married (yes = 1) 0.1100 0.0153 0.0398 0.0183 0.0703 0.0107

Poor health (yes = 1) −0.0580 0.0539 −0.0167 0.0471 −0.0413 0.0378

Lives in North-East (yes = 1) 0.0197 0.0233 0.0775 0.0802 −0.0579 0.0163

Lives in South (yes = 1) −0.0784 0.0210 0.1079 0.0623 −0.1863 0.0147

Lives in North-Center (yes = 1) −0.1057 0.0226 −0.0222 0.0584 −0.0835 0.0158

Constant 0.2237 0.0780 1.0645 0.0659 −0.8408 0.0546

R2 0.2636 0.1898 0.3535

F (X) 67.49 44.46 103.06

df 1, df 2 23 4,336 20 3,795 23 4,336

F (U,Z) 6.73

df 1, df 2 544 3,795

rν −0.1277

σ̂ν 0.3986

σ̂e 0.3495

ρ̂FE 0.5654

N 4,360 4,360 4,360

n 545

T 8

Note: Models control for industry (regression coefficients not shown)
Source: wagepan data (see Example 3.1)

significant (t = 4.08, p < 0.01). The wage premium of union membership amounts
to roughly 8 % (exp(0.0793) = 1.0825). Evidently, controlling for unobserved in-
dividual heterogeneity via FE estimation decreases the union effect. Why is this
the case? Generally speaking, this happens when we have omitted an important Z

that correlates with the X variables in the model. In the following, we will use the
wagepan data to learn a little bit more about possible omitted variable bias.

Remember our discussion from Sect. 4.1.1.1, when we used the unobserved vari-
able “productivity” to explain why panel data are serially correlated. If productivity
or other unobserved characteristics are correlated with union membership, the es-
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timated union effect will be biased, if this unobserved individual heterogeneity is
not controlled for. If, for example, more productive employees are less often union
members than less productive employees (e.g., because they prefer individual over
collective action), then union membership will carry some of the productivity ef-
fects on wages, if productivity is omitted from the regression equation. Therefore,
the pooled OLS estimate of union membership is higher than the FE estimate.

This can be shown more formally. Consider, again, the pooled OLS estimation
that ignores unit-specific heterogeneity ui . ui is sort of an omitted variable. Let us
call the estimate of the union effect in this misspecified model β̂OLS

union, while the
estimate in the FE model is denoted β̂FE

union. It is easy to show that the bias (i.e., the
difference between both estimates) equals the following product:

β̂OLS
union − β̂FE

union = γ̂ν · δ̂union = 1 · δ̂union (4.12)

It states that the bias is related (i) to the effect of all time-constant unit characteristics
on the dependent variable and (ii) to how the variable in question (union) is related
to these time-constant unit characteristics and to all other variables in the model. The
first aspect is measured by γ̂ν , the second by δ̂union.

To understand this formula, we define νi as the sum of the effects of all ob-
served and unobserved characteristics of unit i that are constant over time: νi =
γ1z1i + · · ·+ γj zji + ui . Since νi includes both observed and unobserved character-
istics, we call it unit-specific heterogeneity (as opposed to unobserved heterogene-
ity ui ). By definition, this sum has an effect of γ̂ν = 1 on Y ((4.5) can be written
as yit = β0 + β1x1it + · · · + βkxkit + 1 · (γ1z1i + · · · + γj zji + ui) + eit). δ̂union,
on the other hand, is a measure of the association between union membership and
unit-specific heterogeneity νi , while controlling for all other variables in the model.
More specifically, it is the estimate of the union effect in an auxiliary model, in
which νi is regressed on all independent variables of the misspecified pooled OLS
model (including union membership):

νi = δ0 + δunion · unionit + δeduc · educi + · · · + δind11 · industry11it + εit (4.13)

In order to compute this regression model, we need an estimate of unit-specific
heterogeneity νi . A straightforward estimate is derived from the averaged equation
(4.8) that we used for time-demeaning. We extend it to more than one X and Z

variable:

ȳi. = β0 +
k∑

l=1

βlx̄li. +
j∑

m=1

γmzmi + ui + ēi.

Given that idiosyncratic error is zero on average (ēi. = 0), an estimate of all observed
(
∑

j γj zji) and unobserved (ui) unit-specific heterogeneity is as follows:

ν̂i =
j∑

m=1

γ̂mzmi + ûi = ȳi. − β̂0 −
k∑

l=1

β̂l x̄li. (4.14)
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Using the FE estimates of β0
13 and β1, . . . , βk and the corresponding unit-specific

means x̄li. of all l = 1, . . . , k time-varying explanatory variables, we arrive at esti-
mates ν̂i which can be regressed on all independent variables of the misspecified
pooled OLS model (see (4.13)).14

The coefficients of this auxiliary regression model are shown in the last column,
labeled “unit-specific heterogeneity,” in Table 4.6. If we now apply (4.12), we see
that the pooled OLS estimate of union membership is γ̂ν · δ̂union = 1 · 0.0662 units
larger than the corresponding FE estimate (a positive bias), while the pooled OLS
estimate of experience is 0.0365 units smaller (a negative bias).15 The general les-
son from (4.12) is that there is always bias in the pooled OLS estimates, once the
observed and unobserved time-constant characteristics are correlated with the ex-
planatory variables in the model (i.e., when δ 	= 0). As we can also see from the
effect of experience, omitted variable bias is not always positive. In some cases, FE
estimates will be larger than pooled OLS estimates, and it is a fallacy to believe that
FE estimation always attenuates pooled OLS estimates (as might be expected from
the union effect or the effect of low wage imports in Example 4.1).

As an overall measure of association, some FE programs compute the correla-
tion between the estimates ν̂i and all (time-varying) variables in the model. The
aggregate effect of all k time-varying explanatory variables is estimated as

k∑

l=1

β̂l x̄li. = 0.0793 · unioni. + 0.1125 · experi. + · · · − 0.1617 · industry11i.

and in case of the wagepan data, the aggregate correlates negatively with unit-
specific heterogeneity (rν = −0.1277, see Table 4.6). It should be noted, however,
that we are using estimates, ν̂i , of unit-specific heterogeneity, and that these esti-
mates are only as good as the FE model from which they are derived. If this model
is misspecified (even though it controls for unobserved heterogeneity, there may be
other reasons for misspecification), then these estimates ν̂i will be worthless. Some
people think that the estimates ν̂i can be used to detect which variable has been
omitted from the model. According to the auxiliary regression model in Table 4.6,
unit-specific heterogeneity is positively related to union membership and schooling,
negatively related to labor force experience, negatively related to Afro-American
and Hispanic ethnicity, and so forth. Does this tell us something about the omitted

13At this point, it becomes obvious why some FE programs estimate a regression constant. Oth-
erwise, estimates of the unobserved individual-specific effect, ui , would have to control for the
overall level of the dependent variable.
14Many programs provide estimates of νi . Thus, it is not necessary to perform the computations
manually. Unfortunately, some programs label ν̂i with the letter u, giving the wrong impression
that ν̂i is identical to an estimate of unobserved heterogeneity ui . But, as already mentioned, ν̂i

includes unobserved and observed heterogeneity.
15The effects of the time-constant independent variables (e.g., schooling) have exactly the same
estimates as those in the pooled OLS regression model, because the estimates ν̂i include the effects
of z1i , . . . , zji (see (4.14)).
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variable(s)? No! This information is pretty useless, since ν̂i not only includes un-
observed heterogeneity but also the effects of all the time-constant Z in the model.
Hence, it is no surprise that it correlates, for example, positively with schooling
(one of the Z variables). Even the fact that it correlates in a certain way with the
time-varying X in the model (e.g., positively with union membership) is not very
informative, because it is unknown how much of this correlation is due to ui in ν̂i

and how much is due to the effects of the Z.

How Does FE Estimation Control for Serial Dependence? Finally, we can ask
how FE estimation controls for serial dependence in the data. We will answer this
question in two steps. Since FE estimation uses demeaned data to control for unob-
served heterogeneity, we will first discuss serial dependencies in the demeaned data.
In the second step, we will discuss which assumptions FE estimation makes about
the serial dependencies in the original data.

For the first step, we need estimates of the FE residuals (i.e., the idiosyncratic
errors). To this end we use the estimates of unit-specific heterogeneity, ν̂i , and the
aggregate effect of all k time-varying explanatory variables,

∑k
l β̂lxlit:

êit = yit − ν̂i −
k∑

l=1

β̂lxlit (4.15)

These are the residuals of a linear regression model of the demeaned data controlling
for all time-varying explanatory variables in the model. The upper half of Table 4.7
shows how these residuals correlate over time. The first-order serial correlations of
the FE model (the correlations below the main diagonal) are lower than the first-
order serial correlations of the raw demeaned data, which we already discussed in
the previous chapter (see Sect. 3.4.2 and Table 3.7). The latter correlations can be
replicated with a simple FE model that includes no independent variables. Using
this trick, the lower half of Table 4.7 shows the first- and higher-order serial corre-
lations of the raw demeaned data.16 Most of them are larger than the corresponding
correlations from the FE model, including all the independent variables. However,
the differences are not very large. On average, the correlations of the raw demeaned
data amount to r̄ÿ = 0.1776, while the correlations of the residuals of the FE model
amount to r̄FE = 0.1634.17 While demeaning already controls for all (observed and
unobserved) heterogeneity at the unit level, FE estimation additionally controls for
the effects of time-varying explanatory variables and, obviously, their serial depen-
dence also adds to the serial correlation of log hourly wages. Otherwise, r̄FE would
not be smaller than r̄ÿ .

16You should check that the first-order serial correlations from Table 3.7 are identical to the num-
bers below the main diagonal in the lower part of Table 4.7.
17Since, in both cases, some of the correlations are positive and some are negative, we computed
the average of their absolute values.
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Table 4.7 Correlation of the residuals from the FE model

FE model

1980 1981 1982 1983 1984 1985 1986 1987

1980 1.0000

1981 0.0030 1.0000

1982 −0.1231 0.0067 1.0000

1983 −0.2032 −0.0866 0.0478 1.0000

1984 −0.3529 −0.2159 −0.0736 0.0216 1.0000

1985 −0.2801 −0.3115 −0.1865 −0.1338 0.0127 1.0000

1986 −0.2541 −0.3392 −0.2166 −0.2167 −0.1257 0.0123 1.0000

1987 −0.2421 −0.2033 −0.3412 −0.2135 −0.1056 0.0559 0.1913 1.0000

Mean r̄FE = 0.1634

Raw demeaned data

1980 1981 1982 1983 1984 1985 1986 1987

1980 1.0000

1981 0.0251 1.0000

1982 −0.1086 0.0315 1.0000

1983 −0.1874 −0.0781 0.0620 1.0000

1984 −0.3496 −0.2223 −0.0717 0.0275 1.0000

1985 −0.2890 −0.3406 −0.2081 −0.1502 0.0335 1.0000

1986 −0.2909 −0.3509 −0.2373 −0.2132 −0.1175 0.0346 1.0000

1987 −0.2840 −0.2228 −0.3576 −0.2268 −0.1090 0.0921 0.2514 1.0000

Mean r̄ÿ = 0.1776

Source: wagepan data (see Example 3.1)

Surprisingly, higher-order serial correlations in the upper half of Table 4.7 are
still quite high. For example, the residuals of the FE model for t = 1980 and
t = 1982 correlate with r = −0.1231. Most of them are negative and increase with
the time lag between measurements. This increasing pattern of negative serial corre-
lations should not bother you, because it is a necessary consequence of demeaning.
If all observations within each unit are centered around their mean (see the example
in Fig. 4.2), then residuals within each unit cannot be all positive or all negative.
A positive residual must be outweighed by a negative one, and vice versa. This pat-
tern produces the negative serial correlations, and if there is a trend in the data, these
serial correlations will increase with the time lag between the observations.

Now, let us focus on the second step, and discuss the serial dependencies in the
original data. Apart from the dependencies due to serially correlated X, FE estima-
tion assumes that all remaining dependencies in the original data are due to time-
constant characteristics of the units (i.e., observed time-constant Z and unobserved
heterogeneity U ). Let us assume for a moment that all heterogeneity at the unit
level is unobserved and that, as a result, Z does not exist (or can be thought of as
part of U ). FE distinguishes between unobserved heterogeneity at the unit level (ui )
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and idiosyncratic errors at the level of single measurements (eit). Furthermore, it as-
sumes that idiosyncratic errors are independent of all X, Z, and unobserved hetero-
geneity U , have constant variance, and are not serially correlated (see Textbox 4.2).
Given these assumptions, it is easy to derive variances and covariances of the com-
posite error εit = ui + eit and finally derive a formula for the expected degree of
serial correlation if these assumptions are true (for a derivation of this formula see
Textbox 3.1) :

Corr(εit, εis) = Cov(εit, εis)√
Var(εit) · √Var(εis)

= σ 2
u

σ 2
u + σ 2

e

, t 	= s (4.16)

According to this formula, the expected degree of serial correlation is a function of
the variances of both error components. σ 2

u is the variance of unobserved hetero-
geneity and σ 2

e is the variance of the idiosyncratic errors. Since FE estimation is
unable to distinguish between observed and unobserved heterogeneity, we can re-
place σ 2

u with σ̂ 2
ν . Based on (4.14) and (4.15), both variances can be estimated as

follows:

σ̂ 2
ν =

∑n
i=1 ν̂2

i

n − 1
(4.17)

σ̂ 2
e =

∑n
i=1

∑T
t=1 ê2

it

n · (T − 1) − k
(4.18)

k equals the number of time-varying explanatory variables X in the model. σ̂ν and
σ̂e are listed in Table 4.6 in the column labeled “FE”. Based on these values, the
correlation (4.16) is estimated as ρ̂FE = 0.5654. It is similar, however not identical,
to the intra-class correlation coefficient (ICC) that we introduced in Sect. 3.3. More
specifically, the ICC assumes that unobserved heterogeneity U is a random variable
(see Textbox 3.1), while FE estimation treats the ui as fixed constants. But the FE
correlation ρFE has the same underlying concept: It measures the “closeness” of
measurements of the same unit relative to the “closeness” of measurements between
different units.

If we compute ρFE for an empty model (i.e., a model without any explanatory
variables), we arrive at an estimate of ρ̂FE = 0.5045,18 which is a bit smaller than
the former estimate for the full model (ρ̂FE = 0.5654). This happens because the full
model controls for the effects of the time-varying explanatory variables X, which the
empty model does not. Hence, σ 2

e is smaller in the full model (as discussed above,
part of the within variance is attributed to the X) and correspondingly, ρFE in the
full model is larger. In other words: Once we control for the extra variation that is
brought about by time-varying determinants of Y , the “closeness” of measurements

18This estimate is easily derived from the between-unit variance (σ̂ 2
b = 0.39072) and within-unit

(σ̂ 2
w = 0.38722) variance of (log) hourly wages (see Table 3.6). In the FE model, σ̂ 2

ν = σ̂ 2
b and

σ̂ 2
e = σ̂ 2

w (see Textbox 3.1), hence ρ̂FE = 0.39072/(0.39072 + 0.38722) = 0.5045. In other words:
in the case of an empty FE model (k = 0) (4.17) and (4.18) reduce to (3.2) and (3.3).
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within units is even larger. But the more important point is that the “closeness” is the
same, irrespective of the time lag between t and s. This equal correlation assump-
tion of the FE model may not be plausible for some applications (see Sect. 4.1.3.2).

4.1.2.2 Uncorrelated Heterogeneity: Random Effects Estimation
As we have seen in the last section, FE estimation is unable to estimate the effect of
time-constant independent variables. In our last example, this has not been a major
problem, because we have not been interested in achieving a numerical estimate of
the effect of schooling on wages. Our main interest concerned the wage premium of
union membership, and we only wanted to make sure that all time-constant charac-
teristics of the sample members were controlled for (i.e., observed ones like school-
ing, and unobserved ones like productivity). This is essentially what FE estimation
does; it provides no numerical estimates of their effects, but it controls for them.
However, there may be applications where the effect of time-constant variables Z

on the dependent variable Y is one of the main research questions. A study on the
effects of marital disruption on psychological distress is an example.

Example 4.2 (johnson-wu data) Johnson and Wu (2002) analyze a sample
of 2,033 individuals over a 13-year period from 1980 to 1992. During this
period, survey respondents have been interviewed four times (1980, 1983,
1988, 1992). Obviously, the four panels are not equally spaced, which should
be controlled for when modeling possible time trends in the data. However,
for didactic purposes, we have deferred the analysis of trends to a later section.
Panel attrition has been quite substantial over the course of the study, and the
authors confine their analysis to those individuals that answered the survey in
two or more of the waves. 269 participated in two waves, 158 in three waves,
and the majority (1,166) in all four waves. In other words, their data represent
a typical unbalanced panel.

Many studies had already found that divorced individuals show higher lev-
els of psychological distress than married individuals. But it is unclear, as
Johnson and Wu argue, whether distress can be attributed causally to the pre-
ceding marital disruption, because most studies do not rule out the possibility
that individuals with poor mental health have a higher probability of getting
divorced. Even if this second explanation turns out to be untrue, it is still an
open question whether higher levels of psychological distress are only a tem-
porary or a permanent consequence. Hence, their analysis tries to test three
theoretical explanations: (a) social role theory maintaining that the role of be-
ing divorced is inherently more stressful than that of being married, (b) crisis
theory attributing higher stress to role transitions and transient stressors of
the disruption process, and (c) social selection theory claiming that higher
stress levels among the divorced result from the selection of those with poor
mental health into divorce. Social role theory assumes that distress is causally
related to divorce and is a permanent phenomenon as long as the person re-
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mains divorced. Crisis theory also attributes distress causally to divorce, but
sees it as a temporary phenomenon. Finally, social selection theory denies the
causal effect of divorce and explains higher distress with antecedent factors
that increase the probability of divorce itself.

For each explanation, Johnson and Wu use specific indicators. Current
family status (three dummies for being divorced (divorce), widowed
(widow1), or cohabiting (cohab1) with married as the reference category)
is used as an indicator of the social role of the respondent. Whether divorce
results in a temporary or permanent crisis is measured by two time variables
(time from the current interview to the divorce: todiv, time since last di-
vorce: frmdiv). Finally, social selection is measured by a dummy (socsel)
that equals 1 if the respondent already experienced marital disruption before
the beginning of the study. Furthermore, the authors control for schooling
(educr), age (ager), and gender of their respondents (sexr).

Unfortunately, the authors had no independent measure of mental health
before the start of the study, which would have allowed them to identify much
more precisely those individuals with poor mental health. Instead, they use
former divorce experiences as an indicator of poor mental health. This oper-
ationalization is far from optimal, because it assumes that all former divorces
are only an effect of poor mental health, while divorces observed during the
course of the study are assumed to have a negative effect on psychological
distress. Since we are using the johnson-wu data only for illustrative pur-
poses, we are ignoring these measurement problems.

Their dependent variable psydis is a summary index derived from five
survey items measuring mental distress, subjective health status, global hap-
piness, and life satisfaction (two items). All five items have been standardized
and the index psydis is defined as the average of the five z-scores. For ex-
ample, an individual having a value of 1 on the index is one standard deviation
more distressed than the average respondent in the sample.

In order to make our following methodological discussion as simple as
possible, we use a slightly different model than Johnson and Wu and include
only those n = 1,166 individuals in our analysis that participated in all T = 4
panel waves. This constitutes a balanced panel with N = n · T = 4,664 data
records. However, because of this selection, the following estimates do not
exactly replicate Johnson and Wu’s results, but the substantive findings remain
the same.

To make things simple, the following analysis ignores the question of whether
the consequences of divorce are temporary or permanent (but see Sect. 4.2.2). We
will only focus on the question of whether the social role of being divorced creates
distress when taking into account that individuals with poor mental health are more
likely to get divorced (i.e., have a higher probability of being selected into divorce).
The social selection indicator socsel is a key variable in this comparison, because
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it is hypothesized to measure all pre-divorce disposition to psychological distress,
which, when significant, would challenge the causal explanation of the divorce ef-
fect. Hence, we want to know whether there is still a negative effect of the respon-
dent’s current social role of being divorced (divorce) on psychological distress,
even if socsel is controlled for.

If the comparison between social role and social selection explanations is the
research question, we have to decide how to model the dependent variable and how
to estimate the parameters of the model.
1. First, it is not quite clear whether this research question implies an analysis of the

level of, or the change in, psychological distress. If one only wishes to show that
divorce (a change in marital status)—net of social selection—has a positive ef-
fect on distress (i.e., changes distress levels in the positive direction), an analysis
of change in a sample of individuals at risk for divorce (i.e., a sample of married
individuals) would be the preferred research design. Within this research design,
all the relevant information comes from those individuals who change their mar-
ital status. However, if one wishes to show that—net of social selection—the
average distress levels of divorced individuals are higher than the average dis-
tress levels of married individuals, an analysis of distress levels in a sample of
divorced and married individuals would be the preferred research design. In this
section, we will use this second research design and analyze the level of psycho-
logical distress. However, in Sect. 4.2.1 on change models, we will also apply the
first research design. Having seen both research designs, we can then understand
that the differences between both research designs are not that significant, and
that the essential question is how to control for social selection. As it will turn
out, this is most convincingly done in both research designs by comparing both
marital statuses within the partnership biographies of individuals over time. Nat-
urally, this is only feasible for those individuals who have been married at least
once and divorced at least once during the observation period.

2. Having decided on an analysis of levels, the next question is how to estimate
the parameters of the model. If the task is to estimate the divorce effect net of
selection, this problem is easily tackled with FE estimation, because it controls
for all time-constant characteristics of the sample members and hence also for
any pre-divorce disposition to psychological distress. However, if we want to
compare the importance of the two theoretical explanations (social selection,
social role), we need an estimate of their respective size. This is not feasible with
FE, because it does not provide estimates for the time-constant variables in the
regression equation (among them socsel). Therefore, we would be looking for
other panel estimation techniques.
As a reference point, we start again with pooled OLS. Table 4.8 (column “pooled

OLS”) shows a significant positive effect of social selection on psychological dis-
tress (t = 5.86, p < 0.01). Individuals with higher divorce probabilities, as indicated
by their divorce experiences in the past (socsel=1), show distress levels that
are 0.1925 standard deviations higher than the distress level of the average respon-
dent in the sample. However, as we already know, pooled OLS is not very useful
for panel data. If we look at the correlations of the OLS residuals from different
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Table 4.8 Determinants of psychological distress: Pooled OLS, FE, and RE (1980–1992)

Variable Pooled OLS FE RE

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

Social selection (yes = 1) 0.1925 0.0329 (dropped) 0.2221 0.0455

Divorced (yes = 1) 0.3020 0.0575 0.1696 0.0492 0.2215 0.0472

Widowed (yes = 1) 0.1918 0.0837 0.1021 0.0877 0.1462 0.0790

Cohabiting (yes = 1) −0.4935 0.1202 −0.3475 0.1040 −0.3912 0.0998

Age (years) 0.0012 0.0010 0.0087 0.0017 0.0042 0.0012

Female (yes = 1) −0.0300 0.0196 (dropped) −0.0227 0.0302

Education (years) −0.0365 0.0036 −0.0234 0.0096 −0.0329 0.0049

Constant 0.3613 0.0676 −0.1195 0.1415 0.1825 0.0882

R2 0.0466 0.0162 0.0441

F (U ) or X2
1 4.43 1,464.19

df 1, df 2 1,165 3,493 1

F (X,Z) or X2
2 32.49 11.51 127.10

df 1, df 2 7 4,656 5 3,493 7

ru −0.0623 0.0000

σ̂u 0.5062 0.4325

σ̂e 0.4678 0.4678

ρ̂FE, ρ̂RE 0.5394 0.4609

N 4,664 4,664 4,664

n 1,166 1,166

T 4 4

Source: johnson-wu data (see Example 4.2)

panel waves, we observe a fair degree of serial correlation in the data. According
to the figures in Table 4.9, the average of these serial correlation coefficients equals
r̄OLS = 0.4662.

Given our discussion in Sect. 4.1.1.1, this large degree of serial correlation comes
as no surprise. Because we analyze a panel, i.e., repeated measurements of the same
units over time, observations for each unit are not independent of one another. Un-
observed individual heterogeneity, as we have said, is one of the causes for OLS
residuals to be correlated over time and for OLS estimates to be inefficient and
possibly biased. A safer approach would be to use FE estimation. The estimates in
Table 4.8 (column “FE”) show us that there is a significant causal effect of divorce,
net of social selection and all the other controls in the model (t = 3.45, p < 0.01).
Individuals getting divorced during the course of the study show distress levels that
are 0.1696 standard deviations higher than the distress level of the average respon-
dent in the sample. Unfortunately, FE estimation conceals the effects of the time-
constant variables (among them socsel), which Johnson and Wu would like to
compare with the divorce effect.
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Table 4.9 Correlation of the
residuals from the pooled
OLS model

Source: johnson-wu data
(see Example 4.2)

Wave 1 Wave 2 Wave 3 Wave 4

Wave 1 1.0000

Wave 2 0.4985 1.0000

Wave 3 0.4201 0.4918 1.0000

Wave 4 0.3936 0.4505 0.5425 1.0000

Mean r̄OLS = 0.4662

Now, let us assume for a moment that unobserved heterogeneity at the unit level
is uncorrelated with all explanatory variables in the model. In this case, we have
no problem with omitted variable bias, and it seems like we could use the pooled
OLS estimate that would provide us with an unbiased estimate of the divorce effect.
This is easily seen from (4.12): If social selection is independent of the variables
in the model, the association between divorce and unit-specific heterogeneity ν̂i

will be essentially zero (δ̂divorce = 0), when controlling for all the other variables in
the model. In that case, no bias will be observed: β̂OLS

divorce − β̂FE
divorce = 1 · δ̂divorce =

0. However, even if unobserved heterogeneity is uncorrelated with the variables
in the model, it still exists, because not all relevant unit characteristics are likely
to be included in the model. As a consequence, measurements over time will be
correlated for each unit (see Sect. 3.6.2) and the no-autocorrelation assumption of
OLS estimation is at stake (see Textbox 4.1).

This can be tested more formally with a Lagrange multiplier (LM) test, pro-
posed by Breusch and Pagan (1980). It tests the hypothesis H0: σ 2

u = 0 (or
Corr(εit, εis) = 0, t 	= s) versus H1 : σ 2

u 	= 0. If the null hypothesis is true, pooled
OLS can be used to estimate the regression coefficients. Lagrange multiplier tests
play a role within the context of maximum likelihood estimation, which is not a topic
that we will address in this chapter. Therefore, we will not discuss the Breusch–
Pagan test in greater detail. The popularity of the test comes from the fact that the
test statistic itself is easily computed from the residuals (ε̂it = yit − ŷOLS

it ) of the
pooled OLS model:19

X2
1 = n · T

2 · (T − 1)

(∑n
i=1(

∑T
t=1 ε̂it)

2

∑n
i=1

∑T
t=1 ε̂2

it

− 1

)2

X2
1 ∼ χ2(1) (4.19)

It is also readily available in many statistical program packages. The LM statistic
X2

1 is distributed as χ2 with df = 1 degree of freedom, and, in our case, it amounts
to X2

1 = 1,464.19, which is highly significant (p < 0.01) (see Table 4.8, column
“RE”). We conclude that the OLS assumption of uncorrelated error terms is not
valid for Johnson and Wu’s data, as could be expected from the serial correlations
in Table 4.9. The test suggests giving up pooled OLS estimation.

19We use X2 to symbolize test statistics that are distributed as χ2. However, since there are several
of them, we distinguish them by indices (X2

1 , X2
2 , etc.).
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In this situation, one option is to use robust standard errors (see Sect. 4.1.1.2). The
other is to use our knowledge of the nature of the serial correlations and generalize
OLS estimation in such a way that it can deal with them. If our model of the serial
correlations and the assumption of independent unobserved heterogeneity are true,
this generalized ordinary least squares (GLS) estimation will provide us with more
efficient estimates of both the regression coefficients and the standard errors. This
technique is also known as random effects (RE) estimation.

We start with the pooled OLS model (4.3) including an error term, εit, which is
now assumed to be independent of the systematic part of the model. We generalize
this model by assuming that the error term consists of two components ui and eit

measuring unobserved heterogeneity at the unit level and idiosyncratic errors at the
level of measurements. We have

yit = β0 +β1x1it +· · ·+βkxkit +γ1z1i +· · ·+γj zji +εit with εit = ui +eit (4.20)

Unobserved heterogeneity (ui ) is assumed to be one of the causes of serially cor-
related measurements, but contrary to the fixed effects approach in the previous
section, the uis are now seen as one component of the stochastic part of the model.
Similar to the traditional OLS error term, they are treated as realizations of a random
variable, which gives the whole procedure its name (random effects estimation). Be-
cause the error term εit is split into two components ui and eit, another name is the
error or variance components model. Textbox 4.4 summarizes the main features of
RE estimation.

Textbox 4.4 (RE assumptions) RE estimation builds on the linear model
(4.20) for panel data that includes both time-dependent and time-constant in-
dependent variables and an error term consisting of two components: unob-
served heterogeneity at the unit level, ui , and idiosyncratic errors, eit, at the
level of measurements over time. The assumptions for RE estimation are very
similar to the FE assumptions, except that ui is now assumed to be a random
variable with specific characteristics:
1. The units i = 1, . . . , n in the panel data set are a simple random sample

from a cross-section of a well-defined population.
2. The model is linear in its parameters β0, β1, . . . , βk and γ1, . . . , γj .
3. The independent variables must not necessarily change over time. Time-

constant variables z1i , . . . , zji are allowed in model (4.20). But no inde-
pendent variable, whether time-constant or time-varying, is allowed to be
a constant or a linear function of the other independent variables.

4. Idiosyncratic error is independent of the variables in the model and
independent of unit-specific unobserved heterogeneity: E(eit|x1i1, . . . ,

x1iT , . . . , xki1, . . . , xkit, z1i , . . . , zji, ui) = 0. Additionally, unit-specific un-
observed heterogeneity on average may be different from zero. The aver-
age level of U is captured by the constant β0 in RE models. But unit-
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specific heterogeneity must be independent of the variables in the model:
E(ui |x1i1, . . . , x1iT , . . . , xki1, . . . , xkit, z1i , . . . , zji) = β0.

5. Idiosyncratic error has constant variance, given any value of the in-
dependent variables and unit-specific effects: Var(eit|x1i1, . . . , x1iT , . . . ,

xki1, . . . , xkit, z1i , . . . , zji, ui) = σ 2
e . The same is true for unit-specific er-

ror: Var(ui |x1i1, . . . , x1iT , . . . , xki1, . . . , xkit, z1i , . . . , zji) = σ 2
u .

6. Idiosyncratic error is uncorrelated between any two observations t and
s(t 	= s) of unit i, given any value of the independent variables and unit-
specific effects: Corr(eit, eis|x1i1, . . . , x1iT , . . . , xki1, . . . , xkit, z1i , . . . ,

zji, ui) = 0.
7. Unobserved heterogeneity is normally distributed, ui ∼ Normal(0, σ 2

u ),
given any value of the independent variables. The same is assumed for
idiosyncratic errors: eit ∼ Normal(0, σ 2

e ).
The first assumption is necessary for making statistical inferences about the
population using the sampled data. The second assumption ensures that we
can use least squares estimation to estimate the parameters of the model. If
the model were not linear in its parameters, we would have to use other es-
timation techniques. The third assumption guarantees that a numerical value
exists for each regression coefficient. The fourth assumption ensures unbi-
asedness of the RE estimates: E(β̂0) = β0, E(β̂1) = β1, . . . , E(β̂k) = βk and
E(γ̂1) = γ1, . . . , E(γ̂j ) = γj . It should be noted that strict exogeneity is also
necessary with RE estimation. Assumptions 5 and 6 guarantee the efficiency
of RE estimation. If assumptions 4 to 6 are true, RE estimates are consistent
and asymptotically normally distributed. Assumption 7 is not really neces-
sary, but if we make that assumption, we can also apply maximum likelihood
estimation, which is another estimation technique for RE models. When as-
sumptions 4 to 6 hold, it can also be shown that RE estimation is more efficient
than pooled OLS or FE estimation. Discussions of these RE assumptions and
proofs of the statistical properties of RE can be found in Wooldridge (2010,
257).

Basically, RE estimation assumes that the two error components ui and eit (i) are
uncorrelated with the explanatory variables in the model, (ii) have constant variance
σ 2

u and σ 2
e , and (iii) are independent of each other and across different units. Finally,

(iv) eit is assumed not to be serially correlated over time. Given these assumptions, it
is easy to derive variances and covariances of the composite error εit = ui + eit and
finally a formula for the expected amount of serial correlation, if these assumptions
are true (for a derivation of this formula see Textbox 3.1):

Corr(εit, εis) = Cov(εit, εis)√
Var(εit) · √Var(εis)

= σ 2
u

σ 2
u + σ 2

e

, t 	= s (4.21)
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The expected degree of serial correlation is a function of the variances of both error
components.

As discussed in Sect. 3.4.2, this model of serial dependence assumes an equal
correlation structure, where the amount of serial correlation is the same irrespective
of the time lag (t − s) between observations. Of course, it is easy to imagine more
complicated correlation structures than the ones implied by the RE assumptions. For
example, instead of the equal correlation structure, it may be more useful to assume
either correlations that are different for each specific combination of t and s, or that
decline with the time lag between both measurements (for the latter see Table 3.8).
On the other hand, it is also easy to think of even simpler processes. Pooled OLS, for
example, assumes that observations are not serially correlated at all and that the error
term has constant variance (see Textbox 4.1). In a way, the usual OLS assumptions
are only a special case of the other, more complicated, correlation structures. With
this idea in mind, we can now consider how to generalize OLS in order to deal
with these complexities. Unfortunately, these derivations need a basic understanding
of matrix algebra, which we did not presuppose for this textbook. Basically, these
matrix operations transform the data (Y , X, Z) in a way to get rid of the more
complicated correlation structures. After this transformation, the data are supposed
to behave according to the OLS assumptions, and pooled OLS can be applied to the
transformed data. The necessary mathematical derivations for this claim are a little
involved (see Greene (2008, 202) for more details), but estimating the following
model with pooled OLS provides us with the RE estimates that control for the equal
correlation structure of the error term:

yit − θȳi. = β0(1 − θ) + β1(x1it − θx̄1i.) + · · · + βj (xkit − θx̄ki.) + γ1(z1i − θz1i )

+ · · · + γk(zji − θzji) + (ui − θui) + (eit − θ ēi.) (4.22)

Obviously, before applying pooled OLS, we have to transform the data by subtract-
ing from each variable Y , X, and Z a fraction θ of its mean.20 The fraction θ de-
pends on the variance of both error components and on the number of measurements
over time:

θ = 1 −
√

σ 2
e

σ 2
e + T σ 2

u

(4.23)

Since we subtract only part of each variable’s mean, this operation is also called
quasi-demeaning (as opposed to demeaning in FE estimation when θ = 1). We call
θ the demeaning parameter. Compared to FE estimation, time-constant variables
remain in the model, because we are subtracting only a fraction of each variable’s
mean.

20Note that the mean of a time-constant explanatory variable Z equals the variable itself (e.g.,
z̄1i = z1i ). Note, also, that you have to generate a new “variable” constant that equals (1− θ) to
obtain an estimate of the regression constant. Include constant in your model as an additional
variable and force your regression program not to estimate a regression constant. The RE constant
is estimated by the regression coefficient of the variable constant.
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But how are quasi-demeaning and RE estimation feasible, if we do not know
the population variances σ 2

u and σ 2
e ? In order to apply (4.22), we need estimates

for both variances. The estimated standard deviations of both error components are
shown in the lower part of Table 4.8 (column “RE”). As you can see, the estimate
of σe (σ̂e = 0.4678) is identical to the corresponding estimate of the FE model (see
column “FE” and (4.18)). The estimate of σu (σ̂u = 0.4325) is a function of the sum
of squared residuals of the corresponding between effects model and the estimate
of σe:

σ̂ 2
u = max

(
0,

∑n
i=1(ȳi. − ŷBE

i. )2

n − k − j − 1
− σ̂ 2

e

T

)
(4.24)

k equals the number of time-varying and j the number of time-constant explanatory
variables in the model. ŷBE

i. are the predicted values of a between effects model that
we discuss later (see Textbox 4.5 on p. 158).

Using (4.21) and the two estimates of σ 2
u and σ 2

e , the serial correlation of the
composite error is estimated as ρ̂RE = 0.4609 (see Table 4.8, column “RE”), which
comes pretty close to the mean of all serial correlations of the residuals in the pooled
OLS model (r̄OLS = 0.4662, see Table 4.9). In case of an empty RE model including
no explanatory variables, (4.18) and (4.24) reduce to (3.8) and (3.10) and ρ̂RE equals
the ICC coefficient (see Textbox 3.1). For the johnson-wu data, it is estimated as
ρ̂ = 0.4788, indicating that the (k + j = 7) explanatory variables of the full RE
model explain only very few of the serial dependencies in the data.

Having estimates of both variance components, we can now proceed and
find estimates of the RE regression coefficients. Applying (4.22) with θ̂ = 1 −√

σ̂ 2
e /(σ̂ 2

e + T σ̂ 2
u ) based on estimates of σ 2

u and σ 2
e has become known as feasi-

ble generalized least squares (FGLS) estimation. Of course, we can perform all
these transformations by hand, but there is no need to, because readily programmed
algorithms for RE estimation exist in many statistical software packages. Reesti-
mating Johnson and Wu’s model with pooled OLS and the transformed data results
in estimates that are shown in column “RE” of Table 4.8. Using the estimates of
both variance components we can compute

θ̂ = 1 −
√

σ̂ 2
e

σ̂ 2
e + T σ̂ 2

u

= 1 −
√

0.46782

0.46782 + 4 · 0.43252
= 0.5243

In other words, about 52.4 % of each variable’s mean has been subtracted from the
original values. We can also illustrate that this transformation controls for the de-
pendencies over time in the johnson-wu data. According to the statistical theory,
residuals from a RE model should be statistically independent. The serial correla-
tions of the residuals from our RE model are shown in Table 4.10. On average, they
are much smaller (r̄RE = 0.0075) than the serial correlations for the pooled OLS
residuals (r̄OLS = 0.4662, see Table 4.9). Of course, they are not exactly zero, be-
cause we are dealing with one specific sample, while the statistical argument applies
to the expected value (the “average”) of all samples that could be selected from the
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Table 4.10 Correlation of
the residuals from the RE
model

Source: johnson-wu data
(see Example 4.2)

Wave 1 Wave 2 Wave 3 Wave 4

Wave 1 1.0000

Wave 2 0.0741 1.0000

Wave 3 −0.0683 0.0207 1.0000

Wave 4 −0.0909 −0.0312 0.1406 1.0000

Mean r̄RE = 0.0075

population. Note, however, that two of the six serial correlations are not significantly
different from zero.

After controlling for the panel structure of our data with RE estimation, we
can now assess the effect of social selection on psychological distress more effi-
ciently than with pooled OLS. The effect of the variable socsel remains signif-
icant (z = 4.88, p < 0.01) and increases slightly to a value of 0.2221. Compared
to the pooled OLS parameter (0.1925), this is a more efficient estimate of Johnson
and Wu’s hypothesis that part of the greater distress among divorced individuals is
caused by social selection (i.e., individuals with poor mental health being selected
into divorce). A similar strong effect is found for current family status, as indi-
cated by the significant regression coefficient of the variable divorce (z = 4.70,
p < 0.01). Currently divorced individuals (divorce = 1) show distress levels that
are 0.2215 standard deviations higher than the distress level of the average respon-
dent in the sample. Obviously, the social role of being divorced increases distress
levels significantly and to a similar degree as social selection does. However, we
shall refrain from making a decision about the relative importance of the three the-
oretical explanations offered by Johnson and Wu (2002), because we have not yet
controlled for possible time trends in the data, and thus cannot distinguish between
the temporary and permanent effects of divorce. This will be done in Sect. 4.2.2 (see
Table 4.15).

Before comparing RE and FE estimations, we will take a final look at the test
statistics and fit measures of the RE model. First of all, it is not obvious how to
compute R2. The quasi-demeaned data are only a technical instrument to arrive
at the GLS estimates without using complicated matrix algebra. Therefore, we are
only interested in the estimates (including their variances and covariances), but not
in the proportion of explained variance of the transformed dependent variable. To
compute R2, we use the RE estimates and the original (untransformed) data to esti-
mate a predicted value of the dependent variable ŷRE

it = 0.1825 + 0.2221 · socselit +
0.2215 · divorceit + · · · − 0.0329 · educit. The square of the correlation of predicted
and observed psychological distress, R2 = (Corr(y, ŷRE))2, is the correct measure
of explained variance we are looking for. In our case, it is distressingly low: Only
4.4 % of the variance in distress levels is explained by selection and role indicators,
plus three additional controls (see Table 4.8, column: “RE”).

With respect to test statistics, we have to keep in mind that the statistical proper-
ties of GLS estimators (consistency, efficiency) are only valid where large samples
are used. Therefore, instead of T and F tests, we have to use the normal and the chi-
square distribution. Testing single parameters is possible using the Z statistic, which
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is normally distributed. Linear restrictions on a set of parameters can be tested with
a so-called Wald statisticX2

2 , which is χ2 distributed. The Z statistic is computed
exactly like the T statistic, only the test distribution is the normal instead of the
T distribution. To compute the Wald statistic manually, you need matrix algebra.
Basically, the Wald statistic is a weighted sum of all the differences between the
tested parameters and the corresponding parameters assumed in the null hypothesis.
These differences are weighted with the estimated variances and covariances of the
estimated parameters (see Sect. 7.2.1). Statistical programs for RE estimation will
automatically compute this statistic for you.

But you can also use a relation between the Wald and the F statistic that holds for
linear models and OLS estimation. In that case, the Wald statistic equals q times the
F statistic (q measuring the number of restrictions tested). For instance, if we want
to test the joint hypothesis that all our q = 7 independent variables in the RE model
(except the constant) have zero effects, we quasi-demean the data and use pooled
OLS to compute the RE estimates manually with the transformed data (see (4.22)).
The combined test of all q = 7 restrictions is based on comparing the residual sum of
squares of the restricted (SSRr ) and the unrestricted model (SSRur , see Sect. 7.2.1).
The corresponding F statistic is computed as follows:

f = (SSRr − SSRur)/q

SSRur/(n · T − k − 1)
, f ∼ F(q,n · T − k − 1) (4.25)

For Johnson and Wu’s data, we arrive at

f = (1,050.64 − 1,022.72)/7

1,022.72/(1,166 · 4 − 7 − 1)
= 18.16

multiplied by q = 7 results in the Wald statistic (X2
2 = 127.10) shown in Table 4.8.

Compared to a chi-square distribution with df = q = 7 degrees of freedom, this
value is highly significant (p < 0.01).

4.1.2.3 Combining Fixed and Random Effects Estimation:
A Hybrid Model

Having introduced three different estimation procedures for panel data—pooled
OLS, FE, and RE estimation—we can now discuss two further questions. How do
these methods relate to one another, and can we combine their virtues? We start
with the relationships between the methods (the following section on p. 157) and
then briefly summarize their virtues (first section on p. 163). As it turns out, there is
sort of a hybrid model that combines both the FE and the RE model (second section
on p. 164). We conclude with a discussion of tests showing whether using FE or RE
estimation makes a difference (section on p. 166).

Relationship Between Pooled OLS, FE, and RE As an introduction to the first
question, let us consider the effect of current marital status in the former RE model.
The estimate of the divorce effect (0.2215) represents a comparison between the
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distress levels of currently divorced and currently married individuals, while con-
trolling for the values of the other independent variables. This is neither a pure
between-respondent comparison (because current family status changes between
panel waves for 138 individuals) nor a pure within-respondent comparison (because
1,028 respondents never divorce during the observation period). A within estimator
like FE (β̂FE) would only use the variance within the time dimension, while a be-
tween estimator (β̂BE) would use only the variance between individuals. As we will
shortly see, RE is estimating something “in between”. This sounds like an optimal
compromise, but as we will also see, both sources of variance may produce very
different answers. There are situations in which it is necessary not to mix them up.
To understand this discussion, we have to know a bit more about between effects
(BE) estimation.

Textbox 4.5 (BE estimation) We do not want to discuss between effects (BE)
estimation in greater detail, because BE estimates are seldom published. But,
as we will see, it is interesting to compare BE estimates with other panel es-
timators. The main idea of BE estimation is easily explained. It is simply a
regression with data that include only the unit-specific means of all variables
in the model. Starting again from the basic panel regression model, we aver-
age (4.5) across time points for each individual. The result is the following
BE model:

ȳi. = β0 + β1x̄1i. + · · · + βkx̄ki. + γ1z1i + · · · + γj zji + ui

In deriving this result, we make use of the fact that idiosyncratic error is zero
on average and that averaging time-constant variables across time, by defini-
tion, results in the original values z1i , . . . , zji (the same applies to unobserved
heterogeneity ui ). It should be noted, however, that the number of cases and,
correspondingly, the degrees of freedom change. Compared to FE and RE,
BE estimation is based on n and not on n · T cases.

For illustrative purposes, Table 4.11 (column “BE”) also includes the BE es-
timates for our model of psychological distress. As you can see, all the RE esti-
mates lie between the corresponding FE and BE estimates. Quite generally, pooled
OLS and RE estimates will always lie between the corresponding FE and BE es-
timates, with the pooled OLS estimates being more close to the BE estimates.
This is due to the fact that both the pooled OLS and the RE estimates are matrix-
weighted averages of the BE and FE estimates, with OLS placing greater weight
on the between effects (Baltagi, 2008, 17; Greene, 2008, 295). Let us switch to
a simpler example in order to understand the intermediary position of RE estima-
tion.
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Example 4.3 (efficiency data) The example has been borrowed from
the former analysis of government spending, but it is a thought experiment
that may not be true in reality. Nevertheless, it illustrates a situation in which
different panel estimation methods yield different answers. The example has
several features:
• We want to show that our panel estimation methods (FE, RE, BE, pooled

OLS) make different use of the between and within variance of Y . There-
fore, we need a manageable number of units that have been observed over
time, such that there is variance both between units and over time. That is
why we return to Example 4.1 and use a sample of only n = 4 fictitious
countries that have been observed over a period of T = 10 years.

• We assume that the efficiency hypothesis is true, which asserts that global-
ization forces governments to downsize their expenditure. According to this
hypothesis, we will construct two data sets, including a measure of govern-
ment spending (Y ) and imports from low wage countries, as an indicator of
globalization (X):
1. The first data set is named efficiency1 and is constructed in such a

way that between and within country variance provide identical conclu-
sions. In this situation, all panel estimators are more or less the same.

2. The second data set is named efficiency2 and is constructed in such
a way that between and within country variance provide different con-
clusions. As we will see, unobserved heterogeneity that correlates with
X is an explanation for this difference. FE, RE, BE, and pooled OLS
will provide different estimates. This raises the question as to which
estimate is the correct one. As it turns out, the best estimate is the FE
estimate that uses only the within country variance.

Figure 4.3 shows the first simulated data set efficiency1. Each measure-
ment is indicated by a hollow circle. The four solid black points indicate average
government spending at average imports from low wage countries for each of the
four countries. For example, if we number the countries from the left to the right,
country No. 1 in the upper-left corner—on average—has far fewer low wage imports
and more public spending than country No. 4 in the lower-right corner. The data are
perfectly in line with the efficiency hypothesis: (i) Countries importing more on av-
erage from low wage countries (like countries 3 and 4) have much less government
spending on average than countries with far fewer imports from low wage coun-
tries (like countries 1 and 2). (ii) Also within each country, government spending
decreases with increasing low wage imports. In this situation, all panel estimators
are more or less the same. In decreasing order, they amount to β̂FE

lowwage = −0.81

(see the dashed lines running through the hollow circles), β̂RE
lowwage = −0.81 (solid

line), β̂OLS
lowwage = −1.00 (line with long dashes), and β̂BE

lowwage = −1.02 (dashed line
that is nearly identical to the OLS line). Note, in passing, that the order of the four
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Fig. 4.3 Explaining between
and within variance
(uncorrelated ui )

Fig. 4.4 Explaining between
and within variance
(correlated ui )

estimates is in line with our former statement about the “intermediary” position of
RE estimates. The pooled OLS and the RE estimate lie between the FE and the BE
estimate, with the pooled OLS estimate being closer to the BE estimate.

Now, let us turn to the second data set efficiency2, which is shown in
Fig. 4.4. Things are pretty much the same as in efficiency1. Still, government
spending decreases with increasing low wage imports within each country. However,
at the country level, the situation is different. Contrary to the efficiency hypothesis,
countries with—on average—a great deal of imports from low wage countries (like
countries 3 and 4)—on average—also have a great deal of government spending.
Obviously, there are some other factors operating at the country level that distort
the relationship between government spending and low wage imports at the level of
countries. This is a typical example of unobserved heterogeneity ui at the unit level.
Moreover, this unobserved heterogeneity correlates with the time-varying indepen-
dent variable X (lowwage): E(ui |x1i1, . . . , x1iT ) 	= β0.
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Very often, we will not know the source of this unobserved heterogeneity, or we
have no measures of it. But let us speculate what these other factors could be in our
example. Consider, for example, countries with capital-intensive and technology-
oriented economies. Like other countries, they trade internationally, but may buy
part of the necessary goods and services for their economy from low wage coun-
tries in particular, while earning their income by selling their high-tech products
world-wide. For such a high-tech economy, these countries need a highly developed
educational system and an infrastructure that supports technological change. If the
governments of these countries pay large sums of money for their educational sys-
tem and the high-tech sector of their economy, this would explain why government
spending in these countries is above average for all countries. In other words: at the
country level government spending increases with the technological development of
the economy, which simultaneously implies more imports from low wage countries.

If we now apply different panel estimation methods to the efficiency2 data,
we see that the technology effect is measured by the BE estimator which uses only
the between-country variance, i.e., the country-specific averages (see the dashed
line running close to the solid black points from the lower left to the upper right
in Fig. 4.4: β̂BE

lowwage = 4.53). Within each country, however, government spending
decreases with low wage imports, as expected by the efficiency hypothesis. This
effect is measured by the FE estimator, which uses only the within-country variance,
i.e., the time-demeaned data (see the dashed lines running through the data points
for each country: β̂FE

lowwage = −0.19). The effect is rather small (the negative slope
of the dashed lines is hardly visible), but it is the “true” effect of low wage imports
on government spending that controls for the fact that certain countries trade with
low wage countries more than others.

The data set efficiency2 has been constructed in such a way that unob-
served country-specific heterogeneity ui is correlated with the independent variable
lowwage in the model. What happens to our pooled OLS and RE estimates now?
Given our former discussion, pooled OLS estimates should be biased. This can be
seen from the line with long dashes running from the lower-left to the upper-right
corner in Fig. 4.4. Its slope equals the pooled OLS estimate (β̂OLS

lowwage = 4.14), which
is nearly as large as the BE estimate. OLS is biased because it picks up most of
the between-country variance and ignores a major part of the within-country vari-
ance. Concerning RE estimation, we must remember that this method also assumes
independent unobserved heterogeneity (see Textbox 4.4). Therefore, its low wage
estimate is biased as well (see the solid line in Fig. 4.4: β̂RE

lowwage = 1.74), but not as
much as the OLS estimate. The RE estimate lies somewhere between the FE and the
BE estimate: β̂FE

lowwage < β̂RE
lowwage < β̂BE

lowwage.21 In other words: RE estimation is a
mixture of between and within-unit variance of the dependent variable, and assumes
that between (BE) and within effects (FE) are the same.

21The same is true for the OLS estimate, but it is far more similar to the BE estimate than the RE
estimate.
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This conclusion also suggests a remedy to control for RE bias: If one uses the
average amount of low wage imports in each country (lowwagei.) as an indicator
for the technological development of its economy, and one includes this as an addi-
tional explanatory variable in the model, then one controls for the between country
variance, and the RE estimate of lowwage should measure only the within ef-
fect. Indeed, such an extended model, estimated with RE, replicates the FE estimate
(β̂FE

lowwage = −0.19):

spendit = 24.66 + 4.72 · lowwagei. − 0.19 · lowwageit

Another solution would be a model specification that allows between and within
effects to be different. This is easily done by specifying a RE model with the aver-
ages as an indicator of between-unit variance and demeaned values of lowwage
as an indicator of within-unit variance. This RE model replicates both the BE
(β̂BE

lowwage = 4.53) and FE estimate (β̂FE
lowwage = −0.19):

spendit = 24.66 + 4.53 · lowwagei. − 0.19 · (lowwageit − lowwagei.)

In the second section on p. 164, we will discuss these kinds of hybrid model that
somehow combine the virtues of FE and RE estimation.

When to Apply Pooled OLS, FE, and RE? Although computationally the sim-
plest technique, pooled OLS is also the most demanding estimation procedure
among the three in terms of assumptions. It assumes that all unit-specific hetero-
geneity can be controlled for by the independent variables in the model, so that the
remaining unexplained variance is simply “white noise”. Social science theories and
data hardly fulfill this assumption. Therefore, pooled OLS estimates are often biased
because of correlated unobserved heterogeneity. Even if unobserved heterogeneity
is independent of the variables in the model, it causes the error term to be serially
correlated and, therefore, OLS standard errors will underestimate the true standard
errors. Pooled OLS estimation can be a starting point, but it will seldom provide the
final estimates.

Hence, in most panel applications, a choice has to be made between RE and
FE estimation. It seemed as though from a substantive point of view, RE estima-
tion would provide the most comprehensive conclusions from the data, because it
allows us to estimate the effects of both time-constant and time-varying variables.
But RE estimation—like pooled OLS—makes restrictive assumptions too. It admits
unobserved unit-specific heterogeneity, but assumes it to be independent of the ex-
planatory variables X and Z. From our last Example 4.3, we have learned that the
failure of this assumption results likewise in biased estimates. This casts a negative
light on our seemingly practical RE estimator.

But how can we decide whether RE estimates are biased? Our last example hints
at an answer: If FE and RE estimates differ substantially, RE estimation might be
biased. At this point, some people give up using RE estimation and stick with FE es-
timation only. Nevertheless, for two reasons, RE estimation is quite popular in panel
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research. Firstly, in some applications, the effects of time-constant independent vari-
ables are a central research question. The analysis of Johnson and Wu (2002) is an
example. The effects of time-constant independent variables cannot be estimated
with FE estimation. Secondly, we have to “demean” our data to arrive at FE esti-
mates, and this results in a loss of degrees of freedom and produces correspondingly
less precise estimates, especially if there is not much over time variation in the data.

Fortunately, according to Mundlak, the distinction between random and fixed ef-
fects models is “arbitrary and unnecessary” (Mundlak, 1978, 70). When the model
is properly specified, he argues, the RE estimator is identical to the FE estimator.
“Thus there is only one estimator” (Mundlak, 1978, 70). As we have seen in the
previous section, it is easy to derive the FE estimate within a RE model, once we
give up the restriction that between and within-unit effects should be the same. This
is basically Mundlak’s reconciliation of the FE and RE model. In the following sec-
tion, we will apply this so-called hybrid model to Example 4.2. Furthermore, several
overall test procedures have been proposed to test whether RE and FE estimates are
significantly different. In the section on p. 166, we will explain one popular exam-
ple, the so-called Hausman test. But it turns out that the hybrid model provides a
much more comprehensive and flexible environment for these kinds of test.

A Hybrid Model At the end of the section on p. 157, we saw that it is possible to
obtain an unbiased estimate of the effect of time-varying explanatory variables X in
RE models, even if unobserved heterogeneity is correlated with X. The trick was to
include the unit-specific means of X as additional explanatory variables. This can
also be shown more formally. Let us assume that our dependent variable depends on
two variables, one time-varying (X) and another time-constant (Z):

yit = β0 + β1x1it + γ1z1i + ui + eit (4.26)

Erroneously, a researcher has neglected the time-constant variable Z and specified
the following RE model:

yit = β ′
0 + β ′

1x1it + u′
i + e′

it (4.27)

Parameter estimates will now be different from (4.26) and thus, are symbolized as
β ′

0 and β ′
1 instead of β0 and β1. If the unit-specific effect u′

i represents the effect
of unobserved heterogeneity, it should have the expectation E(u′

i ) = γ1z1i + ui . As
we know, omission of Z is problematic, if Z and X are correlated. This statistical
dependence can be expressed with the following regression model:

z1i = δ0 + δ1x̄1i. + εi (4.28)

in which x̄1i. is the mean of all values of the time-varying variable X for unit i.
εi is the usual OLS error term. In this model we use the unit-specific mean x̄1i.

instead of x1it as the regressor variable, because x1it = (x1it − x̄1i.) + x̄1i. and the
regression coefficient in a regression of z1i on (x1it − x̄1i.) is zero. Substituting
(4.28) into E(u′

i ) = γ1z1i +ui , computing the expectation and substituting the result
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into the misspecified equation (4.27) demonstrates that the unit-specific effect u′
i of

the misspecified RE model depends on the mean x̄1i. of the time-varying explanatory
variable X:

yit = β ′
0 + β ′

1x1it + (
γ1 · (δ0 + δ1x̄1i. + εi) + ui

) + e′
it (4.29)

After rearranging terms and renaming some parameters we arrive at an extended re-
gression model including—besides the original time-varying variable x1it —its unit-
specific mean x̄1i.:

yit = β ′
0 + β ′

1x1it + γ1δ0 + γ1δ1x̄1i. + γ1εi + ui + e′
it

= (β ′
0 + γ1δ0) + (β ′

1) · x1it + (γ1δ1) · x̄1i. + (ui + γ1εi) + e′
it

= β ′′
0 + β ′′

1 · x1it + ϕ′′
1 · x̄1i. + u′′

i + e′′
it (4.30)

The regression coefficient β ′′
1 will now equal the true regression coefficient β1 in the

population model (4.26). It is identical to the FE estimate that automatically controls
for all unobserved heterogeneity that is correlated with X (including, for example,
the neglected time-constant variable Z). Intuitively, this result can be explained as
follows: although the extended regression model (4.30) does not include the “forgot-
ten” variable Z, it controls for this unobserved heterogeneity by including another
characteristic of each individual, i.e., the unit-specific mean of X.

We have done the same for all time-varying explanatory variables in our model
of psychological distress (Example 4.2), and have reestimated the model with RE.
The estimates are shown in column “Model 1” of Table 4.12. If we include the
means of all time-varying explanatory variables, RE estimates of the effects of the
time-varying explanatory variables in this hybrid model (HY1) are identical to the
corresponding FE estimates (compare Table 4.11, column “FE”).22 Additionally, the
model includes the effects of the time-constant variables that were of special inter-
est to the researchers (e.g., socsel). The social selection effect (γ̂ HY1

socsel = 0.1179)
is still positive, but smaller and no more significant (z = 1.59, p > 0.10). Hence,
Johnson and Wu’s hypothesis that higher stress levels among the divorced partially
result from selection of people with poor mental health into divorce is at stake in
this more comprehensive model.

This raises the question of what the effects of time-constant explanatory variables
Z actually measure in these kinds of hybrid model. It turns out that they replicate the
BE estimates of the Z effects exactly (compare Table 4.11, column “BE”). From a
substantive point of view, they are the effects of the Z on the dependent variable Y in
a randomly chosen cross-section of the panel, controlling for the effects of the time-
varying independent variables X. Instead of randomly choosing one cross-section,
we can also use the mean of Y as the dependent variable, and the means of the X and

22It is essential to include the means of all X into the model. Otherwise, the FE estimates will not
be replicated. Moreover, you must have a balanced panel. Otherwise, the effects of the time-varying
explanatory variables in the hybrid model will only approximate the FE estimates. Depending on
the amount of missing panel data, the differences may become quite large.
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Table 4.12 Determinants of psychological distress: Hybrid models (1980–1992)

Variable Model 1 Model 2

RE RE

Estimate Std. Err. Estimate Std. Err.

Original variables Demeaned variables

Social selection (yes = 1) 0.1179 0.0740 0.1179 0.0740

Divorced (yes = 1) 0.1696 0.0492 0.1696 0.0492

Widowed (yes = 1) 0.1021 0.0877 0.1021 0.0877

Cohabiting (yes = 1) −0.3475 0.1040 −0.3475 0.1040

Age (years) 0.0087 0.0017 0.0087 0.0017

Female (yes = 1) −0.0351 0.0303 −0.0351 0.0303

Education (years) −0.0234 0.0096 −0.0234 0.0096

Mean variables Mean variables

Divorced (yes = 1) 0.4030 0.1948 0.5726 0.1885

Widowed (yes = 1) 0.1410 0.2014 0.2431 0.1813

Cohabiting (yes = 1) −0.4129 0.3744 −0.7604 0.3597

Age (years) −0.0094 0.0023 −0.0007 0.0016

Education (years) −0.0152 0.0112 −0.0386 0.0058

Constant 0.4702 0.1120 0.4702 0.1120

R2 0.0514 0.0514

X2
2 (X,Z) 150.21 150.21

df 1, df 2 12 12

X2
2 (mean variables) 22.62 22.62

df 5 5

ru 0.0000 0.0000

σ̂u 0.4325 0.4325

σ̂e 0.4678 0.4678

ρ̂FE, ρ̂RE 0.4609 0.4609

N 4,664 4,664

n 1,166 1,166

T 4 4

Source: johnson-wu data (see Example 4.2)

the values of Z as the independent variables, in this cross-sectional OLS regression.
That is basically what BE estimation is doing (see Textbox 4.5). But are these BE
estimates of the effects of Z better estimates than the former RE estimates? We
think they are, because effect estimates of time-constant Z, by definition, can only
exploit the between variation. But in a panel context they should at least control for
the time-varying independent variables, which they do by including the means of
the X.



4.1 Modeling the Level of Y 167

Testing Differences Between RE and FE Estimates It is also interesting to take
a look at the estimates and standard errors of the unit-specific means (mdivorce,
mwidow1, etc.) in the hybrid model HY1. Significant effects indicate those effects
that are possibly biased in the simple RE model from Table 4.11, because the ef-
fects of the unit-specific means measure how much the BE and FE estimates devi-
ate from each other, while the simple RE model assumes that both effects are the
same. For example, the effect of mdivorce is significant (z = 2.07, p < 0.05)
and estimated as γ̂ HY1

mdivorce = 0.4030 (see Table 4.12, column “Model 1”). The esti-
mate equals the difference between the BE (β̂BE

divorce = 0.5726) and the FE estimate
(β̂FE

divorce = 0.1696) of the divorce effect. Similarly, the effect of the variable mager
is significant (z = −4.04, p < 0.05), indicating significant differences between BE
and FE estimates also for the age effect. As an overall test of all BE–FE differences,
and hence of biased RE estimates, one can also test the joint hypothesis that all
unit-specific means have zero effects by using appropriate linear restrictions on the
parameters. The corresponding Wald test results in a test statistic of X2

2 = 22.62,
which is highly significant (p < 0.01) with df = q = 5 degrees of freedom (q being
the number of restrictions). We conclude that RE estimates differ significantly from
FE estimates, because the RE assumption of equal between and within effects does
not hold.

Some may also ask whether the estimated effects of the unit-specific means are of
substantive interest. There is no general answer to this question, except to say that in
some instances, they may provide important information. For example, in Fig. 4.4,
the average level of low wage imports could be an indicator of each country’s degree
of economic development. A variable that includes the country-specific mean of
low wage imports would then test the hypothesis regarding whether economically
developed countries invest a higher proportion of their GDP on public spending.
But in many other applications, the unit-specific means will simply function as a
statistical tool to control for correlated unobserved heterogeneity.

Before we conclude this discussion, it should be noted that there are different
ways in which one can specify a hybrid model. Some researchers prefer a slightly
different parametrization than (4.30), which directly provides between- and within-
unit effects. Let us call this alternative parametrization hybrid model 2 (HY2). It
uses unit-specific means x̄1i. and time-demeaned variables (x1it − x̄1i.), because x̄1i.

and (x1it − x̄1i.) are uncorrelated. This is easily achieved by adding and subtracting
β ′′

1 x̄1i. on the right hand side of (4.30):

yit = β ′′
0 + β ′′

1 · (x1it − x̄1i.) + (β ′′
1 + ϕ′′

1 ) · x̄1i. + u′′
i + e′′

it (4.31)

With this parametrization, β ′′
1 measures the within-unit effect of X, while the regres-

sion coefficient of the mean variable, (β ′′
1 + ϕ′′

1 ), measures the between-unit effect.
If we want to test whether FE and BE estimates differ within this parametrization,
we have to test whether within-unit (β ′′

1 ) and between-unit (β ′′
1 + ϕ′′

1 ) effects differ
significantly, i.e., whether ϕ′′

1 = 0. With Johnson and Wu’s data, the correspond-
ing linear restrictions yield exactly the same results as the former test for the unit-
specific means (X2

2 = 22.62,df = 5,p < 0.01; see Table 4.12 column “Model 2”).
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For example, in this second version of the hybrid model, the effect of mdivorce
is estimated as γ̂ HY2

mdivorce = 0.5726 and equals the BE estimate of the divorce ef-
fect, while the effect of the time-demeaned variable ddivorce is estimated as
γ̂ HY2

ddivorce = 0.1696 and equals the FE estimate of the divorce effect (compare Ta-
ble 4.11 columns “BE” and “FE”). Testing the difference between these two esti-
mates (0.5726 − 0.1696 = 0.4030) is identical to testing whether the mdivorce
effect in the former hybrid model 1 (γ̂ HY1

mdivorce = 0.4030) is significantly different
from zero.

While the two versions of the hybrid model allow us to test whether BE and FE
estimates are significantly different and thus, whether the RE assumption of identi-
cal between and within effects is contested, we can also directly test the differences
between the RE and the FE model. This is essentially what Hausman’s test does,
which is a very general specification test that is applicable to various contexts, in-
cluding our case of different panel estimators (Hausman, 1978). The general idea of
the Hausman test is the following: If two estimators are consistent under a given set
of assumptions, their estimates should not differ significantly. Let us call this set of
assumptions A. Under a different set of assumptions, say B , this may not be true. If,
in this case, only one of the two estimators provides consistent estimates, then the
estimates from both estimators should differ significantly. Hausman showed that the
standard error of these differences is a simple function of the variance-covariance
matrices of each estimator. In our case, A equals a panel model, in which unob-
served heterogeneity is uncorrelated with the independent variables in the model.
In this situation, both RE and FE estimates are consistent, with RE estimates be-
ing more efficient than FE estimates. B pertains to a model with correlated un-
observed heterogeneity, in which RE estimation provides biased results, while FE
estimation is still consistent. For example, our analysis of psychological distress
shows that more highly educated individuals show lower levels of distress, but the
exact effect of education differs somewhat between FE (β̂FE

educr = −0.0234) and RE
(β̂RE

educr = −0.0329) estimation (see Table 4.8). According to Hausman, the standard
error of the difference between FE and RE estimates, σ̂

(β̂FE−β̂RE)
, can be calculated

from the standard errors of both estimates, σ̂
β̂FE and σ̂

β̂RE , as follows:

σ̂
(β̂FE−β̂RE)

=
√

σ̂ 2
β̂FE − σ̂ 2

β̂RE

This result could be used to compute a simple T test. However, since we are using
results concerning the behavior of our estimates in large samples (consistency, etc.),
it is better to use the Wald criterion. The square of the test statistic t ,

X2
3 =

(
(β̂FE − β̂RE) − 0

σ̂
(β̂FE−β̂RE)

)2

is distributed as χ2 with df = 1 degree of freedom. Using the estimated standard
errors of both education effects, σ̂

β̂FE
educ

= 0.0096 and σ̂
β̂RE

educ
= 0.0049, we arrive at

a value of X2
3 = 1.14362 = 1.3078, which is not significant when compared to an
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χ2 distribution with df = 1 degree of freedom (p > 0.10). However, if we apply
the same test to the estimated effects of the respondent’s age, β̂FE

age = 0.0087 and

β̂RE
age = 0.0042, a significant test statistic of X2

3 = 14.5197 appears (df = 1, p <

0.01). This is in line with our former hybrid model 1, in which we found significant
differences between the BE and FE estimates of the age effect (see the significance
of the corresponding mean variable mager in Table 4.12, column “Model 1”).

In the general case, when testing the joint significance of the differences between
all RE and FE estimates, one uses the following Wald test:

X2
4 = (

β̂FE − β̂RE)′ · (Ψ̂ FE − Ψ̂ RE)−1 · (β̂FE − β̂RE)
(4.32)

which is a generalization of the former test procedure using matrix algebra. The
vectors β̂FE and β̂RE include all the parameter estimates from FE and RE estimation,
while the matrices Ψ̂ FE and Ψ̂ RE include the corresponding estimated variances
and covariances of the estimates. X2

4 is distributed as χ2 with df = l degrees of
freedom (l being the number of coefficients tested). Applying this formula to the
five comparable23 estimates from our FE and RE model 1 (excluding the constant)
results in a test statistic of X2

4 = 22.89, which is highly significant, with df = 5
degrees of freedom (p < 0.01).

Although the Hausman test requires matrix algebra, it is easily applied, because
many software packages include pre-programmed versions of (4.32). As already
mentioned, the hybrid model tests the BE–FE differences, while the Hausman test
focuses on the RE–FE differences. Hausman (1978, 1263) argued that a test of BE–
FE differences has less power than a test of RE–FE differences. But Hausman and
Taylor (1981) showed that both the former Wald tests (within the hybrid model) and
the Hausman test yield asymptotically equivalent results. However, from a practical
point of view, the hybrid model—by specifying linear restrictions—provides a much
more flexible framework to test single parameters or groups of parameters.24

4.1.2.4 Wrapping Up: How to Choose Between the Different Models
in Applied Panel Research?

Obviously, using our knowledge of the panel design of the data, and hence modeling
the panel structure, is a far more convincing approach theoretically and statistically
than simply treating the serial dependencies as a nuisance by using cluster-robust

23Naturally, this test focuses only on the effects of those variables that are estimated in both models,
i.e., the time-varying explanatory variables X.
24It should also be noted that the inversion of (Ψ̂ FE − Ψ̂ RE) in (4.32) is sometimes problematic.
One such situation is, when the model includes variables that show no between-unit variance, such
as functions of time that are the same for all units. If the model would include only such vari-
ables, RE and FE estimates would be identical (see also the discussion surrounding the following
Fig. 4.5). The other has to do with the two variance-covariance matrices Ψ̂ FE and Ψ̂ RE . To estimate
both of them, an estimate of σu is needed. As Table 4.11 shows, σ̂RE

u and σ̂FE
u can be different and

this may cause the problem. Some software implementations of the Hausman test allow the user to
specify which one of the two to use in the computation of (4.32). These practical problems do not
exist, if one uses the hybrid model to test RE–FE differences.
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standard errors. If the model of the data-generating process is correct, you will
achieve less biased and more efficient parameter estimates. In addition, standard
errors will take into account that the data do not include completely independent
observations, and that they will, therefore, not provide you with overly optimistic
test statistics that lead you to accept your (alternative) hypotheses too readily. That
leads us to the first conclusion: that pooled OLS is not a useful estimation method in
almost all cases. It supplies you with estimates that are a combination of differences
that have been observed between units and over time. As we have learned, between-
and within-unit variance may tell a different story about the effects of your variables
of interest, especially if differences between units are affected by other factors for
which you have not controlled in your model. If you think that your model controls
for this unobserved heterogeneity, you should, at least, use cluster-robust standard
errors to control for the remaining serial dependencies that are due to time-constant
(unit-specific) random errors. If you would stick with the theoretical OLS standard
errors, you would have to assume that your explanatory variables explain all of the
between-unit variance (such that σ 2

u = 0), which is, of course, a very unrealistic
assumption.

Having said this, FE models seem to be the method of choice, because—by
definition—they control for time-constant (unit-specific) unobserved heterogeneity,
even if this heterogeneity is correlated with the variables in the model. Hence, if you
are criticized for omitting an important determinant of your dependent variable, and
if this omitted variable can safely be assumed to be time-constant (at least during
the course of the panel), you can always argue that the effects of your time-varying
explanatory variables X are unbiased with respect to any of those unobserved time-
constant causes of Y . Of course, this advantage comes at a price:
1. Both your dependent and your independent variables have to vary over time,

and if this within-variance is small, you may need a large sample to prove the
significance of your explanatory variables.

2. Fixed effects are estimated either with unit-specific dummies or with time-
demeaned data. Both procedures result in less degrees of freedom. In large house-
hold panels with several measurements over time this is usually no problem. But
if you have only two measurements per unit, the number of observations N = n ·2
is halved from the very beginning, because you have to estimate n coefficients
for the dummies or, alternatively, you have to deduct n unit-specific means from
the data. If on top of that the sample size n is small, your data may not have
enough power to show significant effects.

3. Some scholars also think that FE estimation has the disadvantage of not provid-
ing any model forecasts. At first sight, this argument seems to be correct, because
the estimated fixed effects ûi are specific to the units of the estimation sample.
These scholars argue, if you would like to apply your FE estimates to units out-
side the estimation sample, you would not know their ûi . This would only be
feasible with RE estimation, in which one estimates parameters of the distribu-
tion of U and hence, can use random draws from this distribution for forecasting.
These scholars, however, neglect the specific data FE estimation is using. It fo-
cuses on demeaned data and certainly, it can make forecasts for demeaned data. If
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you would like to make forecasts for the original data, you would need a second
(BE) model that would allow you to forecast the unit-specific means.

4. Finally, FE regression—by definition—is not the technique to estimate the ef-
fects of time-constant explanatory variables Z. It should be stressed, however,
that FE regression controls for all (observed and unobserved) time-constant de-
terminants of Y , even if it does not provide you with numerical estimates of
their effects! Moreover, you can estimate how time-constant explanatory vari-
ables modify (interact with) the effects of your time-varying explanatory vari-
ables X (see Sect. 3.5.3.2; and in this case, you will get a numerical estimate of
the interaction effect).

Nevertheless, sometimes, we lack the right time-varying explanatory variables X,
and we have to use time-constant variables Z as indicators of their effects. Men,
for example, show higher mortality rates, which are supposedly due to their riskier
health behavior over the course of their lifetimes. Unfortunately, this (time-varying)
information is not available in many surveys; hence (time-constant) gender must be
used as its indicator (see the discussion in Sect. 3.5.3.1).

At this point, RE models may be a solution, because they allow us to estimate the
effects of both time-constant and time-varying explanatory variables. Unfortunately,
the simple RE model assumes that all unobserved heterogeneity at the unit level
has been controlled with the time-constant variables Z in the model, such that all
remaining errors at the unit level are simple random noise that is independent of the
variables in the model. As we have seen, this assumption can be tested by comparing
FE and RE estimates using a Hausman test.

In the former analysis of the johnson-wu data, this assumption did not hold.
The Hausman test was highly significant (see the section on p. 166). This does not
mean that the RE model completely fails to control for unobserved heterogeneity
at the unit level. In fact, if one were to neglect the two time-constant variables in
the model (social selection socsel and gender sexr), the Hausman test statistic
becomes even larger: X2

4 = 44.16, df = 5, p < 0.01. Of course, one could also de-
bate whether the difference between the RE estimate (β̂RE

divorce = 0.2215) and the FE
estimate (β̂FE

divorce = 0.1696) is of practical significance. But if you think that your
data contain correlated unobserved heterogeneity, the RE model should be given up
in favor of the FE model in your application.

When comparing pooled OLS, FE, and RE estimates, you should keep in mind
that there are situations in applied research when the differences between the three
estimators are hardly of any practical significance. Remember that RE and pooled
OLS estimates are matrix-weighted averages of FE and BE estimates, with the
pooled OLS estimates being closer to the BE estimates (see the section on p. 157).
Hence, the RE estimates will always lie between the FE and the pooled OLS esti-
mates: βFE < βRE < βOLS or βFE > βRE > βOLS. This can also be seen by having a
look at quasi-demeaning, yit − θȳi., the computational basis of RE estimation. If the
demeaning parameter θ would be one, this would result in FE estimation which uses
demeaned data: yit − 1 · ȳi.. If the demeaning parameter θ would be zero, this would
result in pooled OLS estimation which does not demean the data at all: yit − 0 · ȳi..
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Fig. 4.5 Demeaning parameter θ with respect to number of measurements T

In practice, the demeaning parameter θ will never be exactly one or zero,
but it may get very close to either value. Rearranging (4.23) into θ = 1 −√

1/(1 + T · (σ 2
u /σ 2

e )) shows that the demeaning parameter θ depends on two char-
acteristics of the data: (i) the number of measurements T (the “length” of the panel)
and (ii) the ratio of between-unit to within-unit variance σ 2

u /σ 2
e . Since our models

will always include some explanatory variables, these two error variances indicate
the remaining unobserved time-constant and time-varying determinants of the de-
pendent variable (including measurement errors) after controlling for the observed
X and Z. In other words, σ 2

u and σ 2
e measure the unexplained variance at the unit

and the measurement level. The effect of all three characteristics (T , σ 2
u , and σ 2

e ) is
illustrated in Fig. 4.5.

Obviously, with increasing number of measurements the RE estimator gets closer
to the FE estimator. Take as an example the garmit data (Example 4.1) with
T = 33: A RE model estimates θ̂ = 0.8481 and RE and FE estimates are very sim-
ilar (the Hausman test is weakly significant at the 5 % level: X2

4 = 14.69, df = 7,
p = 0.04). The longer the unit-specific time-series, the more the RE estimates are
dominated by the time dimension of the data and the less dominant is the unit dimen-
sion; especially so, if between- and within-unit variance are of equal size (garmit
data: σ̂ 2

u = 4.83072, σ̂ 2
e = 4.26442). Obviously, this happens independent of the

correlation of unobserved heterogeneity with the variables in the model (i.e., inde-
pendent of whether FE or RE should be applied from a statistical point of view).

Also, if the unexplained variance of our regression model is dominated by the
between-unit variance (i.e., σ 2

u > σ 2
e ; see the long dashed curve in Fig. 4.5), the RE

estimator gets closer to the FE estimator. To put it the other way round: If there is rel-
atively little within-unit variance to explain, the FE estimator cannot perform much
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better. Finally, if the unexplained variance of our regression model is dominated by
the within-unit variance (i.e., σ 2

u < σ 2
e ; see the short dashed curve in Fig. 4.5), then

unobserved heterogeneity at the unit level hardly exists and one could even use the
pooled OLS estimator. In the extreme case of u2

u = 0, pooled OLS, RE, and FE es-
timates will be identical. Pooled OLS, however, will provide wrong standard errors,
because it ignores the serial correlations due to the panel design of the data.

Figure 4.5 also shows three prototypical data sets that you may encounter in your
applied research. The first is a quite lengthy panel with T = 20 measurements. The
second is a panel of moderate length (T = 4), which includes “sluggish” data in
the sense that there is not much overtime (within-unit) variance to explain. Finally,
the third data set, again with T = 4, illustrates a research in which you can luckily
explain most of the between-unit variance and hence, unobserved heterogeneity is
not of a problem. All remaining errors in the third data set are idiosyncratic and
simply “white” noise. Even if you believe that FE estimation is always the preferred
method for panel data, in these three situations alternative estimators obviously pro-
duce similar results and you may want to choose them, e.g., because they allow you
to estimate the effects of time-constant explanatory variables.

Finally, there is an often neglected problem with respect to the statistical quali-
ties of both the RE and FE estimator. In case of correlated unobserved heterogene-
ity, it is true that the FE estimator is unbiased, while the RE estimator is not. But
if unobserved heterogeneity is independent of the variables in the model, the RE
estimator is more efficient than the FE estimator. Now let us assume that in the
first case the RE estimator is just a little bit biased, but since it is more efficient
than the FE estimator, in a single sample, RE estimates may be much closer to the
true population parameters, simply because they vary less across samples than the
FE estimates (see the discussion in Sect. 7.2.1 and especially Fig. 7.3 on how to
choose between different estimators). Inefficiency of the FE estimator is a particular
problem, if within-unit variance is low and variables hardly change over time. Since
you are never in the lucky situation of statistical theory, which assumes repeated
sampling, your single sample may provide you with estimates quite different from
the true population parameters. In that case, the fact that fixed effects are unbiased
(i.e., correct on average) is no comfort for you. Hence, more research is needed that
provides a more balanced view of both estimators that takes into account both unbi-
asedness and efficiency. This research should study the behavior of both estimators
under different settings as they are typical in applied research.25

Fortunately, the RE model is much more general than traditional textbook in-
troductions suggest. In fact, proper specification of the independent variables in a
so-called hybrid model allows us to “combine” the virtues of FE and RE estimates.
The basic idea of this hybrid model is to differentiate the effects of time-varying ex-
planatory variables into their between- and within-unit components. In doing so, hy-
brid models replicate the FE estimates of the effects of the time-varying explanatory

25As an example, see the simulation study by Clark and Linzer (2012). The study also analyzes the
power of the Hausman test. Unfortunately, it focuses on data sets with limited sample sizes as they
are typical in political science research.
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variables X. In addition, the effects of the time-constant explanatory variables Z

are estimated in the same way as one would in a normal cross-sectional regression,
while also controlling for the effects of the time-varying independent variables X

(see the second section on p. 164). Moreover, the hybrid model provides a nice en-
vironment in which to test all kinds of difference between RE and FE estimates, in a
much more flexible way than the Hausman test permits. All in all, the hybrid model
should be the panel regression model to start with, and from which more restricted
regression models can be derived.

4.1.3 Extensions

After having learned how to apply RE and FE, we already know the basic techniques
for estimating panel regression models for continuous dependent variables. In this
section, we briefly discuss two extensions to the former models that will easily come
to your mind when you use RE and FE with respect to your data. For example, if the
constant (intercept) can be a random variable that varies between units, as in RE,
you may ask whether regression (slope) coefficients can also be random variables
in order to model the variance of certain explanatory variables’ effects between
units (e.g., wages may increase quite differently for each individual with time t ;
see Fig. 3.2). Furthermore, you may be concerned about the previous treatment of
the idiosyncratic error term, because you suspect that the unknown effects at the
level of single measurements (summarized in eit) somehow correlate over time due
to the longer-lasting (although gradually diminishing) effects of time-point-specific
shocks. Random slopes are discussed in Sect. 4.1.3.1, and autoregressive errors in
Sect. 4.1.3.2. Since, up to now, all the examples have been based on balanced panel
data, we also include a short discussion of unbalanced panel data (Sect. 4.1.3.3).
Finally, we conclude this section by showing how panel regression models can be
applied to panel data in wide format.

4.1.3.1 Models with Random Intercepts and Random Slopes
If ui is conceptualized as a random variable in RE estimation, it can be interpreted
as a randomly varying intercept in the regression model (4.20) that captures un-
modeled unit-specific heterogeneity of Y ’s level (e.g., the heterogeneity of wage
levels). A natural extension of this alternative conceptualization is the assumption
that the effects of certain independent variables may as well vary randomly between
units. In other words: a more general model assumes random intercepts as well as
random slopes. In Sect. 3.5.3.3, we showed how regression coefficients (including
the constant) can be specified as functions of random disturbances (to capture their
unit-specific heterogeneity) and other independent variables (to capture their sys-
tematic behavior). We demonstrated that the assumption of random slopes automat-
ically leads to regression models with heteroscedastic error terms, which challenges
the OLS assumptions (see Textbox 4.1) and calls for more general estimation pro-
cedures. Such a general procedure (Maximum Likelihood) will be introduced in
Sect. 4.2.3; therefore, we defer this discussion to a later example concerning value
change (see Example 4.5).
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However, if we are not interested in numerical estimates of these random slopes
and only want to control for them, there are some simple techniques available that
we can apply using our present methodological expertise. As an example, think
again of our analysis of hourly wages. We extend model (4.3) to allow for a lin-
ear time trend in wages (β0(t) = β0i + β1i t), using the extended notation that we
introduced in Textbox 3.2:

yit = β0i + β1i t + β2x2it + · · · + βkxkit + γ1z1i + · · · + γj zji + eit (4.33)

Moreover, both the overall level (β0i ) as well as the growth rate (β1i ) are assumed
to differ among individuals, and hence have an index i. In separate equations, we
can specify how both coefficients depend on characteristics of the unit and on other
(unknown) factors (see Sect. 3.5.3.3). This time we only specify a random factor:

β0i = γ00 + u0i
(4.34)

β1i = γ10 + u1i

Inserting both equations into (4.33) and rearranging (4.33) results in the well-known
model with a heteroscedastic error term:

yit = γ00 + γ10t + β2x2it + · · · + βkxkit + γ1z1i + · · · + γj zji + (u0i + u1i t + eit)

However, if we compute first differences,

yit = γ00 + γ10t + β2x2it + · · · + βkxkit + γ1z1i + · · · + γj zji

+ (u0i + u1i t + eit)

yi,t−1 = γ00 + γ10 · (t − 1) + β2x2i,t−1 + · · · + βkxki,t−1

+ γ1z1i + · · · + γj zji +
(
u0i + u1i · (t − 1) + ei,t−1

)

the model reduces to the familiar random effects model (without the time-constant
explanatory variables Z):

�yit = γ10 + β2�x2it + · · · + βk�xkit + (u1i + �eit) (4.35)

In other words, if we estimate a RE model with differenced data, we are control-
ling for all time-constant characteristics of the units, plus possibly heterogeneous
growth rates among the units. Of course, this technique rests on all the RE assump-
tions; in particular on the assumption of uncorrelated unobserved heterogeneity (see
Textbox 4.4). Moreover, this technique is only feasible for slope coefficients of
variables that can be eliminated by computing first differences (like, e.g., process
time t).

4.1.3.2 More Complicated Error Processes
Up to now, we have assumed that time-varying unobserved variables and mea-
surement errors, which were captured in the idiosyncratic error term eit, are only
time-point-specific “white noise” and do not have any longer lasting effects. Hence,
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Corr(eit, eis) = 0 for any two time points t and s. This assumption may not be realis-
tic in every case. For instance, a particular economic success in year t , which allows
a company to pay its employees above-average wages in that year, may also have
positive, though diminishing, effects in the following years, such that this company
is able to pay a premium in the following years too. If we are unable to measure
these success factors at the company level, these effects are part of the idiosyncratic
error and the assumption Corr(eit, eis) = 0 no longer holds (see also the discussion
in Sect. 3.6.2).

A simple model that captures these over time effects of time-varying unobserved
variables and measurement errors is the following first-order autoregressive model
for the idiosyncratic errors:

eit = ρei,t−1 + νit, |ρ| < 1 (4.36)

According to this model, part of the idiosyncratic error of the last time point t − 1
carries over to the present time point t . How much is carried over depends on the
parameter ρ, which is a number between 0 and 1. In most cases, ρ is positive (see
footnote 5 in Chap. 3). In addition to this carry-over effect, the idiosyncratic error is
influenced by a random disturbance νit that measures all the other unknown factors
that are effective at time point t . νit is assumed to behave like the idiosyncratic
error in the former sections, i.e., having constant variance and being uncorrelated
over time. Given these assumptions, it can be shown that idiosyncratic errors are
correlated over time and that their correlation is a function of the autoregressive
parameter ρ:

Corr(eit, ei,t+s) = ρs (4.37)

As (4.37) shows, it is an exponential function of the time lag s between both time
points. Since ρ is a number between 0 and 1, this correlation will decrease the longer
the time lag. This conforms nicely to the former idea that time-point-specific shocks
(like, e.g., economic success) have longer-lasting effects, which, however, diminish
over time.

Such a model with autoregressive idiosyncratic errors eit can be estimated as-
suming either random or fixed effects ui for unobserved heterogeneity at the unit
level. The methodology needed at this point borrows much from time-series analy-
sis and is beyond the scope of this textbook. The general idea is to find an estimate
of the autoregressive parameter ρ and then to “quasi-difference” the data, i.e., sub-
tract not the full value of the previous Y , X, and Z values but only a fraction equal
to ρ. This quasi-differencing gets rid of the autoregressive part of the idiosyncratic
errors and leaves us with a traditional RE or FE model. Programmed versions of
these autoregressive RE and FE models exist in many software packages so that
they are easy to apply.

Earlier, we showed that the traditional FE and RE models imply an equal cor-
relation structure (see (4.16) and (4.21)), which is sometimes also called an ex-
changeable correlation structure, because the expected amount of serial correlation
of the error terms is assumed to be the same, irrespective of the time lag between
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the measurements. This rather restrictive implication of the traditional models is
relaxed when assuming autoregressive idiosyncratic errors. If the composite error
term consists of a unit-specific and an autoregressive idiosyncratic error component,
εit = ui + ρei,t−1 + νit, then it can be shown that the correlation of the composite
error amounts to

Corr(εit, εi,t+s) = σ 2
u + ρs

σ 2
u + σ 2

e

(4.38)

assuming, of course, that unobserved heterogeneity and idiosyncratic errors are in-
dependent of one another. Since ρ is a number between 0 and 1, this correlation is
also a decreasing function of the time lag s between the measurements.

4.1.3.3 Unbalanced Panel Data
Since we have always used balanced panel data in our examples, you may ask what
changes if the data are unbalanced. First of all, all panel regression models need at
least two observations per unit. Units with only one observation will cancel out of
the computations. Aside from that, all panel regression models can easily be adapted
to unbalanced data (assuming, of course, that missing observations are missing com-
pletely at random). Concerning FE estimation, it makes no difference whether you
demean the data with unit-specific means computed on (balanced) T observations
per unit, or with unit-specific means computed on (unbalanced) Ti observations per
unit. In the case of RE estimation, quasi-demeaning needs estimates of both error
components, and formula (4.24) for estimating the variance of the unit-specific error
term has to be adapted to the unbalanced data (see Greene, 2008, 203). First differ-
ence (FD) estimation, which will be discussed in the next section (see Textbox 4.6),
is perhaps most affected by unbalanced data. FD estimation uses differences of all
time-varying variables X and Y , which are computed by subtracting the values for
observation t − 1 from the values for observation t . If one of the two observations
is missing, the difference scores �X and �Y are missing too. Hence, in case of FD
estimation, not only does one need at least two observations per unit, but they also
have to come from two consecutive time points. Finally, as already mentioned in
footnote 22 on p. 165, the hybrid model will only replicate the FE estimates, when
it is estimated from balanced data.

4.1.3.4 Models for Data in Wide Format
Finally, we want to show how panel regression models look like and can be esti-
mated when panel data are organized in wide format. As an example, we use again
the johnson-wu data (see Example 4.2). Stored in wide format, the data set in-
cludes N = 1,166 records (one for each individual) but many more variables than in
long format. This is so because the t = 1, . . . ,4 measurements of the time-varying
X and Y have to be stored in different variables: e.g., psydis1, psydis2, psy-
dis3, and psydis4 for the dependent variable “psychological distress” and di-
vorce1, divorce2, divorce3, and divorce4 for the explanatory variable
“current family status: divorced”. Time-constant Z, of course, have to be stored
only once.
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If each measurement of Y is a different variable in the data set, we cannot easily
specify an (overall) regression model as we did with data in long format (see (4.5)).
We rather have to specify the functional relationship between Y and X resp. Z for
each measurement separately. In case of the former regression model for psycho-
logical distress, this results in four different equations:26

yi1 = β1
0 + β1

1x1i1 + · · · + β1
k xki1 + γ 1

1 z1i + · · · + γ 1
j zji + 1 · ui + ei1

yi2 = β2
0 + β2

1x1i2 + · · · + β2
k xki2 + γ 2

1 z1i + · · · + γ 2
j zji + 1 · ui + ei2

(4.39)
yi3 = β3

0 + β3
1x1i3 + · · · + β3

k xki3 + γ 3
1 z1i + · · · + γ 3

j zji + 1 · ui + ei3

yi4 = β4
0 + β4

1x1i4 + · · · + β4
k xki4 + γ 4

1 z1i + · · · + γ 4
j zji + 1 · ui + ei4

Using all time-varying variables Y and X measured at t = 1 (psydis1, di-
vorce1, etc.) and the time-constant variables Z (socsel, female), one can es-
timate the parameters of the first equation. To estimate the parameters of the second
equation, one needs the time-constant variables Z and all time-varying variables
Y and X measured at t = 2; and so forth. However, the estimates of the regres-
sion coefficients will not be the same across equations, because each equation is
estimated with different data that is specific to the corresponding time point. We
have indicated this with an superscript attached to each regression coefficient: e.g.,
β1

1 	= β2
1 	= β3

1 	= β4
1 . Moreover, it is unclear how to estimate or control for time-

constant unobserved heterogeneity U , if each estimation (t = 1, . . . ,4) is based on
only one cross-section. With panel data in long format, this was easy because each
unit was represented T times in the data and we estimated an overall regression
model. In sum, it is not only more cumbersome to specify a panel regression model
in wide format, it is also not obvious how to replicate the estimates that have been
found with the same data in long format.

We need a methodology to estimate the time-point-specific equations simultane-
ously. Moreover, this methodology must be able to place certain restrictions on the
model parameters. For example, if we want to replicate the former RE model, re-
gression coefficients should be the same across equations, unobserved heterogeneity
U has to be uncorrelated with the explanatory variables in the model, both time-
constant and time-varying explanatory variables should be allowed in the model,
and the dependent variable should be a function of X, Z, U , and idiosyncratic er-
rors E. These assumptions are shown graphically in the path diagram in the left
panel of Fig. 4.6.

To keep the path diagram as simple as possible, it shows only one time-constant
(Z1) and one time-varying (X1) explanatory variable. However, in accordance with
our assumptions, the effects of X1 and Z1 on each measurement yit of the dependent
variable (t = 1, . . . ,4) are identical and equal to β1 resp. γ1. Similarly, unobserved
heterogeneity U has an identical effect on each measurement that—as specified in

26Why U is multiplied with a 1 will become clear later.
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Fig. 4.6 Path diagram of a RE (left) and a FE model (right panel)

(4.39)—equals 1. Similar to an ordinary regression model that controls for the sta-
tistical associations among the explanatory variables, we also have to control for
the covariances between the various measures of X1 and Z1. Following the prac-
tice of path diagrams, this is indicated by double-sided arrows between the various
measurements of X1 and between the measurements of X1 and Z1. Such double-
sided arrows are absent between all measurements of E and between U and the
explanatory variables. This is due to the RE assumptions, which posit (i) that un-
observed heterogeneity is uncorrelated with the variables in the model and (ii) that
idiosyncratic errors are not autocorrelated. The right path diagram in Fig. 4.6 shows
the corresponding FE model. Now, unobserved heterogeneity U is correlated with
the explanatory variables in the model (as indicated by the double-sided arrows)
and time-constant explanatory variables are missing. More specifically, the effect
of (known) time-constant explanatory variables are controlled together with unob-
served heterogeneity U (which therefore and in line with our former notation should
better be labelled V ).

The two path diagrams provide a nice graphical summary of the RE and FE as-
sumptions and as such, are instructive by themselves. However, the question remains
how the regression coefficients can be estimated. In Sect. 3.6.3, we mentioned the
methodology that is used to estimate such systems of regression equations: struc-
tural equation modeling (SEM). In this context, unobserved heterogeneity U is an
(unobserved) latent variable, while X, Z, and Y are (observed) manifest variables.
According to the conventions in SEM, the latent variable U is symbolized by a circle
in the path diagram, while the manifest variables are represented with rectangles.

Within this textbook we do not have the space to explain how structural equation
models are estimated. But we have indicated the underlying idea in Sect. 3.6.3.3:
Given the assumptions specified in the path diagram, one can derive the variances
and covariances of the manifest variables implied by the model. By minimizing the
deviations between the model-implied and the observed variance-covariance ma-
trix, one can estimate the regression coefficients that most likely have generated
the statistical relationships between the observed variables.27 As the term “likely”
suggests, estimation is done using maximum likelihood (ML).

27Technically, it is easy to replicate the RE and FE estimates of Table 4.8 with SEM. See the web
site (Sect. 7.3) for the corresponding syntax file.
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The nice thing about SEM is the fact that all kinds of generalizations of the tradi-
tional RE and FE specifications can be estimated and tested against each other using
the same kind of methodology. For example, in case of the johnson-wu data, one
could go back to the five items that were used to generate the dependent variable
“psychological distress” (see Example 4.2) and instead of using an additive index,
one could specify a measurement model that accounts for the different reliabilities
of the five items. One could also test whether the regression coefficients β and γ are
indeed identical across measurements and in doing so, test the assumption whether
the effects of particular explanatory variables change over time. Furthermore, mod-
els with lagged dependent variables or autocorrelated idiosyncratic errors are easily
specified within this methodology (see Bollen and Brand (2010) for these and other
possibilities within SEM). Annacker and Hildebrandt (2004) use this methodology
to study the economic success of a sample of strategic business units over a period
of six years.

4.2 Modeling the Change of Y

In this section, we will focus on linear models for the change of a continuous de-
pendent variable Y that have been introduced in Sect. 3.5.2.1. We will start with an
example that focuses on the change of Y between two consecutive panel waves, and
apply a technique called first difference (FD) estimation (Sect. 4.2.1). This tech-
nique is very useful when analyzing the instantaneous change of Y . However, if
change is gradual and follows a longer time path, FD estimation is not very practi-
cal. In that case, it is better to revert to a model at the levels of Y and analyze the
change of the dependent variable with an impact function. This will be explained
in Sect. 4.2.2. This leads to the more general question of how to analyze trends in
the dependent variable over time. Section 4.2.3 will describe how to incorporate the
different definitions of time (e.g., age, cohort, and period) into the regression model.
Very often, these time trends differ between the units of analysis. Therefore, we will
also show how to model random regression coefficients (intercepts and slopes) in a
more general framework than in Sect. 4.1.3.1.

4.2.1 Analysis of Change Using Change Scores

In this section, we focus on models that explain change �Y of the dependent con-
tinuous variable Y as a result of change �X of the explanatory variables X. �Y

and �X are also called change scores. In a model focusing on �Y , it does not
make sense to use any time-constant explanatory variables Z, because it is difficult
to justify that change (�Y ) depends on something constant in time (Z). However,
it is possible that the effects of the time-varying explanatory variables vary with re-
spect to other characteristics of the units (including the time-constant variables Z).
This would necessitate interaction effects between Z and �X (see the discussion in
Sect. 3.5.3.2). As an example, we again use an analysis of the effects of partnership
dissolution on subjective well-being, this time focusing on gender differences.
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Example 4.4 (genderdiff data) It is well-known that divorce has neg-
ative consequences for the economic status of both marriage partners, espe-
cially so for women. Nevertheless, divorce is often instigated by the wife.
Andreß and Bröckel (2007) argue that both observations are not necessarily a
contradiction. Women may gain something that makes up for their economic
loss, they say, and therefore, they analyze different aspects of subjective well-
being. Given the higher economic losses of women, they hypothesize that
measures of economic well-being decrease much more for women than for
men after separation, while measures of overall life satisfaction should de-
velop just the other way round, given that women gain in other aspects of
life as indicated by their higher propensity to end an unhappy marriage. They
use data from 16 waves of the German Socio-Economic Panel Study (SOEP)
covering the period from 1984 to 1999. They focus on separation and not on
divorce, because earlier analyses have shown that separation is connected with
more economic changes than legal divorce, which follows separation, some-
times several years later, when the economic situation has already stabilized.

More specifically, their analysis includes all married couples separating
between 1984 and 1999. The analysis focuses on the first separation within
that period and uses information from all available panel waves before, after,
and including the first separation. All in all, the sample consists of 418 sepa-
rated men and 450 separated women contributing information to the analysis
from between 1 and 16 panel waves. Obviously, panel attrition was higher for
men than for women. Since the research question refers to men and women
in general, it was not necessary to restrict the sample to complete couple data,
which would have implied an even smaller sample size, if only those indi-
viduals were used for which the partner was also represented in the data. All
analyses were restricted to individuals younger than 55 years of age, making
sure that all events being studied were experienced during the (economically)
active life of the sample members. This age restriction reduced the sample
size to 837 separating individuals.

The SOEP collects information on subjective well-being by asking every
panel member about satisfaction in different life domains (housing, job, in-
come, health, life, etc.). Answers can be provided on an 11-point scale rang-
ing from 0 (completely dissatisfied) to 10 (completely satisfied). The authors
used data on income satisfaction as a measure of economic well-being, and
satisfaction with life as an overall measure of subjective well-being. The main
explanatory variable is the event of separation, and a variable T measures the
time point of each measurement relative to the individual’s year of separation
(with t = 0 indicating the year of separation). Control variables include the
individual’s gender, age, education (in years of education), employment sta-
tus (a dummy for being gainfully employed), parental status (a dummy for
having a child below 18 years of age in the household), income (equivalized
household income), residential mobility (a dummy for having changed the
address), and a dummy for whether a new partner is present.
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Compared to the other examples, this data set represents an unbalanced
panel, because each individual contributes a different number of measure-
ments depending on how long he or she has been observed before and af-
ter the separation. Moreover, some individuals may have missing data in be-
tween, because they did not participate in the survey in all years. Hence, some
individual time series may include gaps.

In the following, we will not try to replicate all of Andreß and Bröckel’s findings
completely. We will focus only on the change in overall life satisfaction. Similar to
the authors, we want to show that overall life satisfaction does not change as nega-
tively for women as it does for men. For didactic purposes, we restrict the sample to
those observations that have valid values for all explanatory variables and for both
satisfaction measures. We also exclude the (few) individuals that have gaps in their
time series and whose time series consist of only one measurement. Both restric-
tions are necessary for computing first differences. The second one is obvious: In
order to compute first differences one needs at least two measurements over time.
The first one is due to the fact that FD estimation cannot easily deal with unbalanced
data (see Sect. 4.1.3.3). After applying all these restrictions, our sample consists of
7,619 observations altogether for 705 individuals. Hence, we will not replicate An-
dreß and Bröckel’s estimates exactly, which were based on 9,066 observations for
837 individuals. But the main substantive conclusions remain the same.

In order to estimate the effect of separation, we generate a dummy variable
named separated that indicates whether the individual is separated at the given
time point. Within each individual’s time series, it is 0 up to the year before separa-
tion and 1 from the year of separation onwards (i.e., separated=1 if t ≥ 0). In
addition, we generate a variable named sepsex that measures the interaction be-
tween gender and separation. It has the value 1 from the year of separation onwards,
if the individual is female. Hence, it measures the differential separation effect for
women. If we difference both variables, they will have values of 1 in the year of sep-
aration (0 otherwise) and thus indicate the change in marital status for both genders
and for women only. If we regress the change of life satisfaction (the differenced
satisfaction score �yit) on both differenced explanatory variables (excluding a re-
gression constant):

�yit = β1�separatedit + β2�sepsexit + �eit (4.40)

β1 estimates the change in life satisfaction due to separation for men, while β2
estimates how much more (or less) change is expected for women. According to
the estimates in Table 4.13, life satisfaction decreases significantly by about 0.4
scale points for men (t = −3.55, p < 0.01), while it hardly changes for women
(β̂1 + β̂2 = −0.4033 + 0.3626 = −0.0407). The differential effect for women
(β̂2 = 0.3626) is highly significant (t = 2.32, p = 0.02; but the sum of both effects
(−0.0407) is not significantly different from zero). These estimates are based on
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Table 4.13 Change in
overall life satisfaction due to
separation (FD estimation)

Source: genderdiff data
(see Example 4.4)

Variable Estimate Std. Err. Estimate Std. Err.

Separated −0.4033 0.1138 −0.5240 0.1259

Separated*Female 0.3626 0.1562 0.4527 0.1615

Age (years) −0.0574 0.0253

Education (years) −0.1065 0.0697

Employed 0.4166 0.0697

Parenting −0.1339 0.0912

Income 0.0024 0.0015

Changed home 0.1501 0.0470

New partner 0.6693 0.1075

R2 0.0018 0.0161

N 6,914 6,914

n 705 705

Tmin, Tmax 2 16 2 16

6,914 (and not 7,619) observations, because differencing results in missing values
for the first measurement in each individual’s time series. There is no observation
before the first measurement; hence it is impossible to compute a change score. In
other words: When using FD estimation, one loses as many degrees of freedom as
there are units in the data set (in our case: 705 and 7,619−705 = 6,914). And: if we
had allowed gaps in the individual time-series, the number of missing values would
have increased even further.

As shown in Sect. 3.5.2.1, there is a close connection between a model in levels
and a model in first differences. This is also the case for the model we have just
estimated. Model (4.40) can be derived by differencing the following model in levels

yit = β0 + β1separatedit + β2sepsexit + ui + eit (4.41)

This connection shows us that focusing on change (both in the dependent and the
explanatory variables) also controls for unobserved heterogeneity at the unit level.
First differencing not only eliminates the constant β0, but also the error term ui .
Hence, the former estimates β̂1 and β̂2 measure separation effects controlling for all
(known and unknown) time-constant characteristics of the individuals.

However, they do not control for time-varying characteristics, whose change over
time may also affect the change in the dependent variable. For example, in our case,
one could argue that a new job that provides additional income and social contacts
may also increase the individual’s life satisfaction, and that women may seek out
a new job more often than men. Therefore, before differencing equation (4.41), we
should augment the model with the time-varying control variables that have been
supplied with the data (see Example 4.4).

Before discussing the results of this augmented FD model, let us think about a po-
tential problem of model identification. Besides the dummy variable separated,
the augmented model includes the variable age. Both variables are functions of
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time and whenever one includes several of such “time variables” into a panel re-
gression model that only exploits the overtime (within-unit) variance of the data, as
FD does, one should check whether they are linearly dependent. Fortunately, this is
not the case, because separated is a step function of time having identical values
at several points in time (separated=1 if t ≥ 0 and separated=0 if t < 0).

Table 4.13 shows the estimates of this augmented model. The effects of the con-
trol variables are not of interest here, but their effects are in line with Andreß and
Bröckel’s hypotheses. We are interested in the separation effect on life satisfaction
for men and women, and the corresponding estimates are even slightly larger than
in the simple model, which does not include the control variables. The hypothesis
that life satisfaction develops less negatively for women than for men thus finds
even greater support when controlling for all the other life changes that accompany
a separation. The following Textbox 4.6 summarizes the main assumptions of FD
estimation.

Textbox 4.6 (FD assumptions) FD estimation controls for unit-specific het-
erogeneity by computing change scores for all variables (Y,X,Z,U,E) in the
model (e.g., �yit = yit − yi,t−1). As a side effect, time-constant explanatory
variables cancel out of the model, because �Z = 0 (similar to �U = 0). In
other words, FD estimation is based on the following linear model for panel
data: �yit = β1�x1it + · · · + βk�xkit + �eit. It includes no regression con-
stant, if the original (undifferenced) model included no time trend and as-
sumed β0(t) = β0. It should be noted that computing change scores (first dif-
ferences) eliminates the first observation for each unit. Hence, the data set
includes i = 1, . . . , n units with t = 2, . . . , T observations each.

The statistical properties of FD estimation rest on assumptions that are
very similar to those of OLS estimation:
1. The units i = 1, . . . , n in the panel data set are a simple random sample

from a cross-section of a well-defined population.
2. The model is linear in its parameters β0, β1, . . . , βk .
3. Each independent variable x1it , . . . , xkit changes over time and is not a

linear function of the other independent variables.
4. Idiosyncratic error is independent of the variables in the model and

independent of unit-specific unobserved heterogeneity: E(eit|x1i2, . . . ,

x1iT , . . . , xki2, . . . , xkit, ui) = 0. It should be noted that the assumption ex-
pects independence from all measurements of each variable over time, a
characteristic that has become known as strict exogeneity.

5. The differenced idiosyncratic error has constant variance, given any value
of the independent variables: Var(�eit|x1i2, . . . , x1iT , . . . , xki2, . . . , xkit) =
σ 2

�e.
6. The differenced idiosyncratic error is uncorrelated between any two ob-

servations t and s (t 	= s) of unit i, given any value of the independent
variables: Corr(�eit,�eis|x1i2, . . . , x1iT , . . . , xki2, . . . , xkit, ui) = 0.
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7. The differenced idiosyncratic error is normally distributed with mean 0 and
variance σ 2

�e: �eit ∼ Normal(0, σ 2
�e), given any value of the independent

variables.
The first assumption is necessary for making statistical inferences about the
population using the sampled data. The second assumption ensures that we
can use least squares estimation to estimate the parameters of the model. If the
model were not linear in its parameters, we would have to use other estimation
techniques. The third assumption guarantees that a numerical value exists for
each regression coefficient. The fourth assumption is the most important one,
because it ensures that FD estimates β̂0, β̂1, . . . , β̂k are unbiased: E(β̂0) = β0,
E(β̂1) = β1, . . . , E(β̂k) = βk . Assumption 4, however, is far more demanding
than assumption 4 for OLS with cross-section data (see Textbox 4.1). Strict
exogeneity (as opposed to contemporaneous exogeneity) assumes that there
are no feedback mechanisms caused by unobserved effects over time. Fur-
thermore, if assumptions 5 and 6 are true, FD estimates are the best linear un-
biased estimates (BLUE) of β0, β1, . . . , βk . Finally, assumption 7 guarantees
that we can use standard test procedures and confidence intervals based on
the normal distribution. Otherwise, we have to rely on asymptotic approxima-
tions, which are only true in large samples. Discussions of these FD assump-
tions and proofs of the statistical properties of FD can be found in Wooldridge
(2010, 279).

4.2.2 Analysis of Change Using Impact Functions

Although the last section provided convincing proof that women in the year of sepa-
ration suffer less than men with respect to their overall life satisfaction, the analysis
is contested by the argument that life satisfaction may develop differently for both
genders. If, for instance, women as initiators of the separation process cope with
the concomitants earlier than men, we have simply measured the gender difference
at the wrong point in time. Figure 4.7 shows that this is actually the case for the
genderdiff data. Life satisfaction decreases in parallel for both genders before
separation, but only until one year before the separation date. After that time point,
life satisfaction continues to decrease for men, while it remains constant for women.
After the separation date, life satisfaction increases again for both genders, but does
not reach its original level during marriage, at least for men.28 Given this observa-
tion, it is not surprising that the former FD model, which focuses on change between

28The figure shows a slightly different trend for men than the corresponding figure in Andreß and
Bröckel (2007), in which men—from the third year after separation—have about the same degree
of life satisfaction as women. This is due to the larger sample they used, and to the fact that they
weighted the data for this descriptive plot.
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Fig. 4.7 Mean life satisfaction before and after separation

t = −1 and t = 0 (when �separatedit = 1), does not show a significant change for
women. Therefore, it is a much more convincing strategy to model the development
of life satisfaction over the whole separation process and not only in the year of
separation.

Obviously, FD models are not very useful to perform these kinds of analyses,
because they focus on yearly change and not the long-term trend. Therefore, we
follow Andreß and Bröckel who use a model at levels like (4.5) and who, instead of
specifying a regression constant β0, analyze the change in satisfaction by a suitable
impact function β0(t). As defined in Sect. 3.5.2.1, an impact function β0(t) is a
function of t that measures the trend of the dependent variable Y before and after
an event of interest (in our case: separation). Hence, t is defined relative to the
event of interest with t = 0 when the event occurs. The most general way to do
this, is to use dummies for all the measurements before, after, and including the
event. This is the approach of Andreß and Bröckel (2007), who use seven dummies
altogether (Dit, with t = −3, . . . ,+3) and their interactions with gender (Iit, again
with t = −3, . . . ,+3) in the following regression model:

yit = β0 + α−2Di,−2 + α−1Di,−1 + α0Di,0 + α1Di,1 + α2Di,2 + α3Di,3

+ δ−3Ii,−3 + δ−2Ii,−2 + δ−1Ii,−1 + δ0Ii,0 + δ1Ii,1 + δ2Ii,2 + δ3Ii,3

+
7∑

k=1

βkxkit + ui + eit (4.42)

Dit equals 1 if the measurement pertains to the year t , with two exceptions:
Di,−3 = 1 if t ≤ −3 and Di3 = 1 if t ≥ 3. Correspondingly, Iit equals 1 if Dit = 1
and the individual is female. To ease the notation, we have used α’s and δ’s to sym-
bolize the effects of the dummies and their interactions with gender.

∑7
k=1 βkxkit

captures the influence of the seven control variables (age, employment, parent-
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ing, etc.). By implication, the regression constant β0 measures the level of life
satisfaction for men three or more years before separation, when all control vari-
ables are zero. Hence, the effects α−2, α−1, . . . of the time dummies measure the
extent to which life satisfaction is lower for men in the years from t = −2 onwards,
and the interaction effects δ−3, δ−2, . . . measure how much women deviate from
this trend. All unknown time-constant characteristics (unobserved heterogeneity)
are controlled by the error term ui . And finally, the model includes an idiosyncratic
error term for measurement errors and all unknown time-varying characteristics.
Depending on our assumptions regarding unobserved heterogeneity (correlated or
uncorrelated with the X), this model can be estimated with FE or RE.

Again, because the set of control variables includes the age of the respondent,
we should first discuss whether the model is identified. Compared to the simple FD
model in the previous section, we now model the effect of separation with a non-
parametric function of time that is different for each point in time during the obser-
vation period.29 Therefore, in a model that only exploits the overtime (within-unit)
variance of Y , as FE and FD do, we cannot estimate the effect of a second variable
like age that is also a function of time. It is important that the user of statistical soft-
ware does these identification checks before specifying the corresponding FD or FE
estimation command. Otherwise, the software will arbitrarily exclude one variable
from the model.

The identification problem does not exist for RE estimation, which—as we
know—exploits both the between- and the within-unit variance. In other words, it
does not only recognize that all respondents get older each year, it also takes into
consideration that respondents have different ages. To make a fair comparison be-
tween FE and FD estimates on the one side and RE estimates on the other, one
should differentiate the variable age into her between- and within-unit components
by measuring the respondent’s age at a certain point in time (e.g., the year of sep-
aration) and how he or she ages over time. The effect of the first (time-constant)
component—by definition—cannot be estimated with FE or FD, while the effect
of the respondent’s aging is included in the time dummies, whose effects can be
estimated both with RE, FE, and FD estimation.

Table 4.14 shows the estimates of the correctly specified RE (with age at sepa-
ration) and FE model (without age). Before going into the methodological details,
we will briefly comment on the overall substantive results, which are not very dif-
ferent between the various estimation methods and are also in line with the con-
clusions drawn by Andreß and Bröckel (2007), despite the slightly more restricted
sample. The effects of the control variables show the expected signs with which

29This is not exactly true for how we defined the time dummies. Since we measured all observations
three and more years before separation with the same dummy (Di,−3 = 1 if t ≤ −3), the impact
function does not change for the more distant observations before separation. The same is true
for the more distant observations after separation (t ≥ 3) for which Di3 = 1. Hence, the following
linear dependence is not perfect and in principle, we could estimate a FE or FD model that also
includes the variable age. We have not done this, because this age effect would be estimated from
the observations that are at least three years away from the event of separation.
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Table 4.14 Life satisfaction before and after separation (RE, FE, and FD estimation)

Variable RE FE FD

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

Di,−2 −0.4035 0.1057 −0.3707 0.1067 −0.1881 0.1282

Di,−1 −0.7789 0.1025 −0.7501 0.1040 −0.5801 0.1736

Di,0 −1.2665 0.1078 −1.2524 0.1099 −1.1617 0.2123

Di,1 −0.9747 0.1166 −0.9442 0.1190 −0.8638 0.2459

Di,2 −0.8626 0.1270 −0.8227 0.1297 −0.7260 0.2806

Di,3 −0.8060 0.0985 −0.7529 0.1036 −0.6463 0.3177

Ii,−3 0.1381 0.1140

Ii,−2 0.1359 0.1550 0.0302 0.1453 −0.0042 0.1746

Ii,−1 0.0704 0.1498 −0.0214 0.1418 −0.0680 0.2370

Ii,0 0.5352 0.1530 0.4329 0.1465 0.3883 0.2872

Ii,1 0.4525 0.1619 0.3456 0.1569 0.3955 0.3313

Ii,2 0.5260 0.1727 0.4163 0.1694 0.4424 0.3779

Ii,3 0.3347 0.1256 0.2118 0.1253 0.3258 0.4281

Age at separation (years) −0.0192 0.0058

Education (years) 0.0075 0.0179 −0.0301 0.0459 −0.1131 0.0694

Employed 0.4515 0.0581 0.4007 0.0612 0.3995 0.0655

Parenting 0.0214 0.0537 0.0064 0.0579 −0.1381 0.0911

Income 0.0072 0.0013 0.0057 0.0014 0.0024 0.0015

Changed home 0.1410 0.0532 0.1464 0.0539 0.1801 0.0475

New partner 0.5415 0.0734 0.5065 0.0771 0.5415 0.1094

Constant 6.8554 0.2991 6.7972 0.5171

R2 0.0223

R2
overall 0.0844 0.0722

R2
within 0.0513 0.0516

R2
between 0.1454 0.123

σ̂u 1.143 1.306

σ̂e 1.555 1.555

ρ̂RE, ρ̂FE 0.3508 0.4137

N 7,619 7,619 6,914

n 705 705 705

Tmin, Tmax 2 16 2 16 2 16

Source: genderdiff data (see Example 4.4)

we are already familiar from the former FD analysis (see Table 4.13). Gainful em-
ployment, income, residential mobility, and a new partner significantly increase life
satisfaction, while education and parenting do not have a significant effect. Age
has a significant negative effect. The time dummies nicely show how life satisfac-
tion decreases for men up to the year of separation. After that year, life satisfaction
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slightly improves for men, but never returns to the starting level it reached during
the partnership (all estimates are negative and significant). The interaction effects
are all positive and significant starting from the year of separation, which indicates
that women are not as dissatisfied as men, especially after the separation from their
partner.

The differences between the RE and FE estimates are rather small, so we do not
discuss them in greater detail (the significance of the differences could be tested with
the methods discussed in the section on p. 166). However, you should note that FE
does not estimate the effect of the interaction Ii,−3 between gender and the first time
dummy. It has to do with the fact that FE estimates a regression constant indirectly
by demeaning the data in a very specific way (see the discussion of (4.10)). In doing
so, it controls for the overall mean of all variables; hence, it cannot distinguish
whether that overall mean is different for men and women. Again, it is important
that you do not specify this interaction in your FE program. Otherwise, the program
will arbitrarily omit some other variable from the model.

Since FD estimation also controls for unobserved heterogeneity at the level of
units, as we have just seen in Sect. 4.2.1, we have estimated model (4.42) also with
FD to learn a little bit more about the differences between the various panel re-
gression models. Similar to FE estimation, FD does not assume that unobserved
heterogeneity is independent of the variables in the model (see Textbox 4.6). For
similar reasons, which we have just discussed, it also does not estimate an effect
of age and the interaction variable Ii,−3. As Table 4.14 shows, the FD estimates
point in the same direction as the FE (and RE) estimates, but the most striking dif-
ference is that most of them are not significant. Most T statistics are smaller in the
FD than in the FE model.30 This is a quite common experience, and is why FD
estimation is less often used, at least when analyzing micro panels where the time
dimension is rather short. Textbox 4.7 compares the characteristics of FE and FD
estimation.

Textbox 4.7 (FE versus FD estimation) Before discussing the pros and cons
of FE and FD estimation from a statistical point of view, you should note that
both estimation procedures yield identical results when applied to a two-wave
panel (i.e., when T = 2). However, when T ≥ 3, FE and FD estimators are
not the same. Nevertheless, in large samples, both estimators should be the
same, because both estimation methods provide consistent estimates if the

30As already noted in footnote 9 on p. 138, estimating regression models without a constant results
in not very useful R2 and F statistics. Hence, the R2 of the FD model (0.0223) should not be
compared with the overall R2 values of the FE and RE model. If one is only interested in the
effects of the time-dependent explanatory variables X, Wooldridge (2009, 466) suggests to stick
with the undifferenced time dummies and to specify a model that includes a constant and (T − 2)

(original) time dummies. The estimated effects of the explanatory variables X will be the same as
in the “completely” differenced model.
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first four (identical) assumptions in Textboxes 4.2 and 4.6 are true. Hence, the
choice between both methods depends on the efficiency of each estimator, and
efficiency in both cases depends (aside from heteroscedasticity) on the serial
correlation of the idiosyncratic errors (eit in case of FE, �eit in case of FD). If
eit is uncorrelated, FE is more efficient than FD; if �eit is uncorrelated, FD is
more efficient than FE. While it is easy within the FD framework to test for the
latter assumption, a simple test for uncorrelated eit within FE estimation is not
available. Other potential problems result from the strict exogeneity assump-
tion and measurement errors. If the strict exogeneity assumption is violated,
the FE estimator is less biased than the FD estimator. On the other hand, the
FD estimator performs better when T is large and n is small (e.g., in macro
panels). But both estimators are equally negatively affected by measurement
error (see Sect. 3.6.3). In sum, it is difficult to choose between both estimators
on statistical grounds. Even more so, it is important to recognize the substan-
tive differences between both estimation procedures. FD estimation focuses
on the change between only two (adjacent) panel measurements (t and t − 1),
while FE estimation takes all the measurements (t = 1, . . . , T ) into account.
For research questions related to (instantaneous) change of Y , FD seems to be
the most adequate method, while for research questions related to the level of
Y , FE seems to be more useful.

Although a (discontinuous) impact function with dummies is the least restrictive
with respect to the trend of Y (it assumes any kind of trend), it is also the most
demanding in terms of the number of parameters to be estimated. Furthermore,
in many applications, a more parsimonious impact function may also fit the data.
By using appropriate linear restrictions for the effects α−2, α−1, . . . , we can test
whether life satisfaction follows a linear downward trend before separation and a
linear upward trend after separation (the latter being different from the trend before
separation). In our case, the four linear restrictions look like this:

α−2 = α−1 − α−2

α−1 − α−2 = α0 − α−1

α1 − α0 = α2 − α1

α2 − α1 = α3 − α2

and the corresponding F statistic for the FE model is not significant (f = 0.51,
df 1 = 4, df 2 = 6896, p = 0.730), indicating that a linear model with a trend break
in the year of separation would also fit the data (the same applies to the correspond-
ing Wald statistic in the RE model: X2

2 = 1.84, df = 4, p = 0.765). Similarly, we
could test whether men and women are equally (dis)satisfied before separation and
whether they differ by a constant degree after separation, using the following six
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restrictions for the interaction effects (in case of the FE model, we drop the first one
because the effect of the first interaction variable is not estimated):

(δ−3 = 0)

δ−2 = 0

δ−1 = 0

δ0 = δ1

δ0 = δ2

δ0 = δ3

Again, the test statistics indicate that this simplification fits the data (FE: f = 0.60,
df 1 = 5, df 2 = 6896, p = 0.703; RE: X2

2 = 4.00, df = 6, p = 0.677). However, if
we want to generate estimates of those linear trends and the gender difference after
separation, we have to respecify the model.

Johnson and Wu (2002) specify such a linear impact function in their analysis
of psychological distress and divorce. Starting from model (4.20) with all the vari-
ables that are shown in Table 4.8, they specify an impact function using the two
variables that measure the time from the current interview to the marital disrup-
tion (todiv), and the time from the current interview since the marital disruption
(frmdiv). Hence, instead of β0(t) = β0, model (4.20) now includes

β0(t) = β0 + β1 · todivit + β2 · frmdivit

β1 measures the linear trend in psychological distress before marital disruption and
β2 a similar trend after marital disruption. Table 4.15 shows the results. Similar to
the analyses in Sect. 4.1.2.2, the differences between FE and RE estimates are rather
small.31 All previously discussed effects have similar estimates. The two trend vari-
ables show the expected sign: Before divorce (todiv), there is an upward trend
in psychological distress, and after divorce (frmdiv), there is a downward trend,
which is, however, not significant from zero. Note also that by using these two time
trends, which measure the exact temporal distance of each interview (panel wave)
from the date of the respondent’s divorce, the analysis controls for the different spac-
ing of the panel waves (see Example 4.2). Given our former discussion of model
identification with different time variables, you may also wonder how it is possible
to estimate the effect of age and time (relative to the date of marital disruption) in
the same model. The explanation is very simple: While age is measured in years,
time to and from divorce are measured in months and hence, are no perfect linear
function of age.

31Again, the largest differences are observed for the variable age (ager) and being divorced
(divorce).
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Table 4.15 Psychological distress before and after divorce

Variable FE RE

Estimate Std. Err. Estimate Std. Err.

Social selection (yes = 1) (dropped) 0.1469 0.0482

Divorced (yes = 1) 0.2583 0.0661 0.3013 0.0623

Widowed (yes = 1) 0.1110 0.0874 0.1528 0.0788

Cohabiting (yes = 1) −0.3207 0.1038 −0.3683 0.0997

Age (years) 0.0089 0.0017 0.0043 0.0012

Female (yes = 1) (dropped) −0.0230 0.0301

Education (years) −0.0239 0.0096 −0.0331 0.0049

Time from disruption −0.0064 0.0182 −0.0065 0.0178

Time to disruption 0.0844 0.0162 0.0770 0.0161

Constant −0.1312 0.1410 0.1822 0.0881

R2
overall 0.0253 0.0454

R2
within 0.0240 0.0211

R2
between 0.0268 0.0610

σ̂u 0.5033 0.4325

σ̂e 0.4661 0.4678

ρ̂FE, ρ̂RE 0.5383 0.4609

N 4,664 4,664

n 1,166 1,166

T 4 4

Source: johnson-wu data (see Example 4.2)

4.2.3 Analysis of Trends

Instead of analyzing the effect of events with change scores and impact functions,
scholars are often interested in the long-term change in their dependent variables
and how this relates to different definitions of time. A typical example is the analysis
of value change and how values and norms of individuals change among different
generations, age groups, and points in time. More generally speaking, the interest
is in showing how the level of Y relates to the (starting) date when the unit came
into existence (the cohort effect), to the time elapsed between the time point of
the current measurement and the former starting date (the age effect), and finally
to the time point of the measurement itself (the period effect). When analyzing
value change in a sample of individuals, the three effects would be measured by
the year of birth, the age, and the time point of the current panel wave. If one were
interested in the economic success of a sample of start-up firms, one would analyze
with a panel of such firms how economic success Y relates to calendar time (the
time point of the panel wave), the founding year, and the age of each firm. This type
of analysis is called cohort analysis. It can be applied both to pooled cross-sectional
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and panel data. In this section, we want to illustrate its application to panel data with
an example related to value change.

Example 4.5 (postmat data) Klein and Pötschke (2004) analyze the
change of post-materialistic value orientations using data from the German
Socio-Economic Panel Study (SOEP) spanning a period of 12 years. Accord-
ing to Inglehart (1971), Western industrialized societies, depending on their
degree of modernization, experience a transformation of individual values,
switching from materialist values, emphasizing economic and physical secu-
rity, to a new set of post-materialist values, which instead emphasize auton-
omy and self-expression. These kinds of value orientations are measured with
a survey question, in which the respondent is asked to rank the following four
political aims: (i) maintaining order in the nation, (ii) giving people more say
in important political decisions, (iii) fighting rising prices, and (iv) protecting
freedom of speech. Items (i) and (iii) are used as indicators of materialism,
items (ii) and (iv) as indicators of post-materialism. From these items Klein
and Pötschke generate an index of post-materialism ranging from 1 (material-
ism) to 4 (post-materialism), with the values 2 and 3 indicating intermediate
levels of materialism and post-materialism. Although the number of values
that this index can take on is (very) limited, they analyze it as a continuous
variable, and we follow their practice. Basically, there are three different ex-
planations for why value orientations should change:
• The first one assumes that values and norms are formed during socializa-

tion in one’s early years of life, and then remain rather stable over one’s
life course. Hence, if there are different value orientations among individ-
uals, this occurs because individuals belong to different generations with
different socialization experiences.

• The second one assumes that value change is also at work once the pro-
cess of (primary) socialization has ended. More specifically, this position
assumes that changes during the life course are the major driving forces be-
hind value change. For example, the fact that individuals—after finishing
their education—start a career and establish a family is supposed to make
them more materialistic.

• Finally, the third explanation attributes value change to the socio-economic
context in which individuals currently live. Hence, all individuals—
irrespective of their year of birth or their age—are equally affected by the
current options and constraints of their wider social context, and, therefore,
will adapt their values and norms accordingly.

In reality, Klein and Pötschke argue, all three explanations may be at work at
the same time. At least it is useful to start with this more general assumption
and then test whether simpler (monocausal) explanations fit the data.

Obviously, the three explanations refer to three variables as possible expla-
nations for the degree of post-materialistic value orientations Y : year of birth,
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age, and survey year. Hence, their analysis tries to disentangle the effects of
generation, maturation, and time period. Moreover, they use education and
gender as control variables, because cohorts and age groups differ in their
composition with respect to their education and gender. They also assume
that (intra-individual) value change (hence, the maturation effect) varies with
respect to gender and education. Highly educated or male individuals are as-
sumed to show more pronounced maturation effects, because they experience
important life course changes within a shorter period of time, while starting
from a higher level of post-materialism. Finally, they control for the national
inflation rate, because the post-materialism index includes an item on rising
prices, and large price increases in certain years may show up as period effects
in the model.

Klein and Pötschke analyze SOEP data for the years 1984, 1985, 1986, and
1996. Their sample for analysis includes 5,418 survey respondents that have
participated in all four panel waves. Hence, in principle, it is a balanced panel,
with 4 · 5,418 = 21,672 observations; however, due to item non-response,
several observations and a few individuals could not be used in the analysis.
Therefore, the following models will be based on an unbalanced panel of
n = 5,415 individuals and N = 21,204 observations. The variables of post-
materialism, age, survey year, and inflation are time-varying (with inflation
showing no between-unit variation), while the variables year of birth (cohort),
education, and gender are time-constant.

In the following, we first want to show the identification problems that result
if we test several definitions of time within the same model. These identification
problems exist independently of the kind of panel regression model (pooled OLS,
FE, RE, FD); hence, you can check them within the computationally simplest sta-
tistical model (e.g., pooled OLS). In a second step, we want to replicate Klein and
Pötschke’s findings, and since they assume that maturation effects differ among in-
dividuals, we make heavy use of variance components models that allow for these
kinds of random slopes. More specifically, we use maximum likelihood (ML) to
estimate these variance components models, and, in order to apply this estimation
method, we have to assume that all unobserved heterogeneity is independent of the
variables in the model (hence, the classical RE assumption; see Textbox 4.4).

Starting with the identification problems, you can easily verify with any kind
of regression program that the following model testing for cohort (generation), age
(maturation), and period effects is not identified:

yit = β0 + β1t + β2 · ageit + γ1 · year_birthi + ui + eit (4.43)

because age is a linear function of the survey date and the year of birth: age =
t − year_birth. Hence, the regression program will omit one of the three variables
from the model. In other words: it is easy to estimate two of the three effects, but



4.2 Modeling the Change of Y 195

without additional countermeasures it is impossible to estimate all three of them.
This identification problems exists irrespective of whether we treat age, cohort, and
period as continuous explanatory variables (as is done in (4.43)) or as categorical
ones (i.e., using dummies for different years of age, birth, and survey measurement).

There are different solutions to this identification problem. From a technical point
of view, their common feature is that they all destroy the exact linear dependency
between age, year of birth, and t . From a substantive point of view, all of them argue
that year of birth, age, or survey measurement as such are not of interest. What is
of interest is the fact that a person belongs to a certain generation (or cohort), is in
a certain period of his or her life course, or experiences certain challenges in the
wider socio-economic context.
• Hence, one solution is to distinguish among different cohorts of individuals born

in certain historical periods and to replace year of birth with dummies for the dif-
ferent cohorts. Alternatively, one could distinguish among different age groups.
In both cases, it is impossible to compute the exact age of a person from the sur-
vey year t and cohort membership (or alternatively, to compute the year of birth
from t and the age group), because now cohort, as well as age group, include each
several years of birth (age).

• Another solution would be to compute the age variable in months by using the
exact (monthly) survey date. If year of birth and t are measured in years, the linear
relationship age = t − year_birth also no longer holds.

• Finally, instead of age, year of birth, or t , one can use other variables that rep-
resent the assumed generation, maturation, or period effects much more directly.
For instance, if one assumes that period effects are basically a result of inflation
(due to the price item), then one should include the inflation rate instead of t into
the model.

Nevertheless, in many cases, the “new” explanatory variables will be highly
collinear with the other variables in the model, because even when exact linear
dependencies are avoided, variables may still be almost dependent. Consider, for
example, a cohort defined as all individuals born between 1920 and 1922. It is true
that you do not know their exact age in the survey year 1996, but the range of possi-
ble values (74–76) is very limited; hence the degree of independent variation is very
low. Based on German history, Klein and Pötschke (2004, 449) define six different
cohorts, which comprise between 7 and 12 years of birth (e.g., the World War I and
post-war generation is defined by all individuals born between 1922 and 1934). Us-
ing dummies d2i , d3i , . . . for the different cohorts (except the first one) instead of
year of birth

yit = β0 +β1t +β2 ·ageit +γ2d2i +γ3d3i +γ4d4i +γ5d5i +γ6d6i +ui +eit (4.44)

results in an identified model, but the cohort dummies do not have any significant
effects. The reason for this result is the fact that the set of dummies and the variable
age are highly collinear, which means that the estimation procedure has difficulties
in allocating the effects to one of them and is thus unable to provide precise esti-
mates (with small standard errors). Note, in passing, that similar to year of birth, the
cohort dummies are time-constant variables and only have an index i as a result.
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Because of these multicollinearity problems, the authors argue that the individ-
ual’s (absolute) age is already controlled for by cohort membership (d2i , d3i , . . .)
and year of measurement (t), which are already in the model. To measure the matu-
ration effect, they propose to generate a new variable, which they call process time
(p = t −1984) that measures how much older each individual gets between the four
survey years. However, with the values pi,1984 = 0, pi,1985 = 1, pi,1986 = 2, and
pi,1996 = 12 the model is not identified, because now t and p are linearly depen-
dent, as you can see when you insert the definition of p into the equation:

yit = β0 + β1t + β2 · pit +
6∑

j=2

γjdji + ui + eit

= β0 + β1t + β2 · (t − 1984) +
6∑

j=2

γjdji + ui + eit (4.45)

You cannot estimate two times the effect of t . Therefore, the authors replace the
period effect t with the corresponding national inflation rate (i_rate):

yit = β0 + β1 · i_ratet + β2 · (t − 1984) +
6∑

j=2

γjdji + ui + eit (4.46)

Note that, similar to the period variable t , the variable i_rate does not need an
index i, because it varies over time, but not between individuals.

Basically, Klein and Pötschke’s analysis rests on the specification of generation,
maturation, and period effects that are shown in (4.46). As controls, they add the
time-constant variables of education (a dummy for the German university-entrance
diploma “Abitur”) and gender (a dummy for men), and estimate the model with a
non-linear (quadratic) maturation effect:

yit = β0 + β1 · i_ratet + β2 · (t − 1984) + β3 · (t − 1984)2 +
6∑

j=2

γjdji

+ γ7 · abituri + γ8 · malei + ui + eit (4.47)

In principle, this model can be estimated with FE, which would have the advan-
tage that all unknown variables at the individual level could be correlated with the
variables in the model. However, FE would not provide us with any numerical ef-
fects of the cohorts, education, and gender, it only controls for these observed and
all the unobserved (ui ) characteristics of the individuals. Moreover, if we assume
that some of the slope coefficients vary between the units, as the authors do when
they hypothesize that maturation is different for men and highly educated individ-
uals, then we have to use a more general estimation procedure, such as maximum
likelihood (ML).
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Unfortunately, ML estimation of models with random intercepts and random
slopes for continuous Y is much too involved to be demonstrated here in its math-
ematical details. But its main idea is easily understood. ML uses those parameter
values as estimates of the true population parameters that maximize the probabil-
ity (more precisely, the likelihood) of observing the given sample with its values
of Y , X, and Z. In order to do that, it needs an assumption about the probability
distribution of the dependent variable Y . In the case of a continuous Y , as in our
example, it uses the density function instead of the probability function, and that
is why the general term for the method is maximum likelihood (and not maximum
probability). Only in the case of categorical Y , a probability function is used (see
Sect. 5.1.1.2 for an application). For the kinds of model that are relevant here, the
following Textbox 4.8 summarizes the main assumptions.

Textbox 4.8 (ML estimation of random effects models) Similar to the as-
sumptions of the other estimation procedures, the following ML assumptions
specify the conditions under which estimates can be computed, are unbiased,
and can be generalized to the population. ML is a very general estimation pro-
cedure that can be applied to all kinds of statistical models. As mentioned be-
fore, it finds estimates by maximizing the density of Y , X, and Z. Therefore,
an essential ingredient of this estimation technique is the correct specification
of the density function. In case of random effects models for continuous Y ,
one usually assumes that the error terms U and E are normally distributed and
independent of the variables X and Z in the model, whose values are assumed
to be given. Given this assumption, Y is also a normally distributed random
variable, since Y is a function of the variables X and Z assumed to be fixed
and the variables U and E assumed to be random (hence, the distribution of
U and E determines the distribution of Y ). More specifically, the statistical
properties of ML estimation rest on the following assumptions:
1. The data are a simple random sample of a well-defined population.
2. Each explanatory variable is neither a constant nor a linear function of the

other explanatory variables.
3. The observations in the sample are independent of one another and are

identically distributed.
4. The parameters of the density function are correctly specified.
Similar to the other estimation procedures using least squares, the first as-
sumption is necessary for making statistical inferences about the population
using the sampled data. The second assumption guarantees that a numerical
value exists for each regression coefficient (technically, the model is identi-
fied). The third assumption ensures that we can use the same density function
for each observation (because they are identically distributed) and obtain the
overall likelihood of the whole sample by using formulas that combine the
densities of independent observations. Obviously, panel data do not include
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independent observations. But the independence assumption is not at stake, if
we are willing to assume that all serial correlations are controlled by X,Z and
U . Once it is clear which density function can be applied to all observations
and how to combine the single densities, we can deal with the question of how
to include the explanatory variables. We are not able to show this here, but it
turns out that the parameters of the normal distribution can be modeled as a
function of X and Z as specified in the regression model (e.g., (4.47)). Here,
the aforementioned fourth assumption comes in. If this function is misspec-
ified, e.g., if an important explanatory variable is left out, then the estimates
will be biased. Hence, the fourth assumption is the most important one, be-
cause it makes sure that our ML estimates are unbiased. As in the case of the
other estimation methods, unbiasedness means that our estimates are correct;
not necessarily in a single sample, but on average, i.e., across a multitude
of samples, they are identical to the “true” population parameters. Whether
these estimates are then efficient and how to compute their standard errors
are even more difficult questions that cannot be dealt with in this textbook
(but see Sect. 7.2.2). Statistical theory shows, however, that ML estimates
are normally distributed in large samples and similarly efficient as estimates
from other estimation procedures. Therefore, tests of significance can use the
normal and related distributions as the testing distributions (see Sect. 7.2.2).

A difficult question is how the ML estimates can be computed, be-
cause there is no analytical solution to the maximization problem (see also
Sect. 5.1.1.2). One needs methods of numerical optimization, and there are
two different ways of specifying the likelihood to be maximized. One is called
full maximum likelihood (FML), the other restricted maximum likelihood
(REML). In the first case, both the regression coefficients and the variance
components (σ 2

0i , σ
2
1i , etc.) are included in the likelihood function. In the sec-

ond case, the likelihood includes only the (co)variance components, while the
regression coefficients are estimated in a second step. According to statistical
theory, REML should provide better estimates (FML is supposed to provide
biased estimates of the (co)variance components), but from a practical point
of view, the differences between REML and FML estimates are often negligi-
ble. In the following, we use FML, because it allows to compare models with
the likelihood ratio test.

Model (4.47) includes only a random intercept (due to ui ) and hence, could be es-
timated with the methodology we already know (FGLS, see Sect. 4.1.2.2). However,
we use ML from the beginning, because we also want to include random slopes,
and here, ML is the more general estimation technique with better statistical qual-
ities. Table 4.16 shows our estimation results; as you can see, the ML estimates
(model 2) do not differ to the forth digit from the FGLS estimates (model 1). Statis-
tical theory tells us that both estimates are asymptotically equivalent. The estimates
show that (in line with the hypotheses) post-materialism increases significantly in
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the younger cohorts. Men and individuals having an “Abitur” are significantly more
post-materialistic than women and individuals with lower educational degrees than
“Abitur”. Post-materialism is non-linearly related to maturation, but the effect is
not significant. Finally, as expected, post-materialism decreases with rising inflation
rates.

In the next step of our analysis, we test whether both maturation effects vary sig-
nificantly among individuals and hence necessitate the inclusion of random slopes.
In order to test for this possibility, we assume that both regression coefficients are
unit-specific (have an index i) and consist of fixed and random parts. Using the ex-
tended notation that we introduced in Textbox 3.2, these assumptions can be speci-
fied as follows:

β2i = γ20 + u2i

(4.48)
β3i = γ30 + u3i

γ20 and γ30 represent the fixed part, while u2i and u3i represent the random part.
Similar to ui in (4.47), u2i and u3i are assumed to be normally distributed ran-
dom variables with constant variance. Reinserting (4.48) into (4.47) and rearranging
shows that the model is now heteroscedastic (in line with the extended notation we
have renamed ui into u0i and γj into γ0j , j = 2, . . . ,8):

yit = β0 + β1 · i_ratet + γ20 · (t − 1984) + γ30 · (t − 1984)2 +
6∑

j=2

γ0j dji

+ γ07 · abituri + γ08 · malei + u0i + u2i · (t − 1984) + u3i · (t − 1984)2 + eit

(4.49)

and calls for a general estimation procedure such as ML. Model 3 in Table 4.16
shows that the variance of both maturation effects (estimated as σ̂ 2

2 = 0.0444 and
σ̂ 2

3 = 0.0003) is significantly different from zero32 and therefore, both slope coeffi-
cients should be modeled by characteristics of the individuals. Klein and Pötschke
use the following models:

β2i = γ20 + γ21d5i + γ22d6i + γ23 · abituri + u2i
(4.50)

β3i = γ30 + γ31 · malei + u3i

which assume that the linear part of the maturation effect is different for younger
(belonging to cohort 5 and 6) and highly educated individuals, while the quadratic
part of the maturation effect is different for males. Model 4 in Table 4.16 shows
the regression estimates of this extended model. Since most effects hardly change,

32We do not interpret the substantive effects of model 3, because they are similar to those of the
former model 2.
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we focus on the interpretation of the interaction effects. The linear and the quadratic
maturation effect are still not significant. However, for the two youngest cohorts and
individuals with “Abitur”, post-materialism decreases significantly with maturation;
and for men, the quadratic term is negative and significant, indicating that men grow
increasingly materialistic as they mature. Some of the estimates are rather small.
You should consult Klein and Pötschke (2004) for a graphical illustration of the
practical relevance of the estimated parameters.

At the end of this discussion of variance components models, we would like to
mention a specification problem that is always prevalent, when one assumes more
than one variance component (besides the variance of the idiosyncratic error term).
Model 4, for example, estimated three different variance components: σ 2

0 , σ 2
2 , and

σ 2
3 . In that case we also have to think about the covariance of the random coeffi-

cients. Remember our wagepan data and Fig. 3.2, where we said that every indi-
vidual has its own income trajectory with a unit-specific intercept and a unit-specific
slope. These individual regression coefficients are not independent of each other: If
the slope is very flat, the corresponding intercept is rather large (and vice versa).
Hence, we also have to estimate the covariances between the three random variables
U0, U2, and U3. The most complex assumption is that each covariance is different
from the other, and this assumption (an unstructured covariance matrix) was used
when estimating models 3 and 4. Furthermore, with panel data, we may have to
deal with serially correlated idiosyncratic errors (see Sect. 3.6.2) and hence, may
also want to assume a certain covariance structure for the eit (e.g., an autoregressive
one).

4.3 Conclusion and Further Reading

In this chapter we have discussed how to analyze the level and the change of a
continuous dependent variable with panel data. We showed that traditional OLS re-
gression does not account for the fact that panel data include serially dependent
information due to the repeated measurements for each unit of analysis. A simple
alternative was to use empirical standard errors that are robust against the cluster-
ing of observations within units. A theoretically more convincing alternative is, of
course, to model the panel design of the data. This is feasible by introducing a unit-
specific error term U that captures all (unknown) time-constant characteristics of the
units that influence each measurement and hence, is one source of the serial correla-
tions in the data. Different techniques—FE, FD, and RE estimation—are available
to deal with this unit-specific error term, depending on our assumptions about U

(e.g., whether it is assumed to be independent or correlated with the variables in
the model). The nice thing about this unit-specific error term is also that it allows
us to control for unobserved heterogeneity at the unit level. Therefore, compared to
cross-sectional models, which are plagued by omitted variable bias, panel regres-
sion models are able to deal with unobserved determinants of Y that are specific
to the unit and hence, time-constant. The basics of FE, FD, and RE models can be
found in any introductory econometrics textbook (e.g., Wooldridge, 2009). Baltagi
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(2008), Cameron and Trivedi (2005), Hsiao (2003), Greene (2008) and Wooldridge
(2010) include more advanced treatments. FE models and especially the combina-
tion between FE and RE models, which we called hybrid models, are discussed at
length in Allison (2009).

We also mentioned various extensions of these panel regression models, includ-
ing autocorrelated error terms, random coefficients, impact functions, and panel re-
gression models for data in wide format or with missing data (unbalanced panels).
Models with random coefficients are discussed extensively in the literature on hi-
erarchical linear or multi level models. For example, Hox (2010) and Snijders and
Bosker (2011) both include a chapter on longitudinal data. Bollen and Brand (2010)
show how RE and FE models can be applied to data in wide format using structural
equation models (SEM). SEM also provide a nice environment, in which it is easy to
implement all kinds of extensions of the simple panel regression models (see Bollen
and Brand, 2010) and to study the change of Y using growth curves (see Bollen and
Curran, 2006; Duncan et al., 2006).



5Panel Analysis of Categorical Variables

In this chapter, the focus shifts to panel models for categorical dependent variables.
Categorical variables—as opposed to continuous variables—have only a few dis-
crete values. They can be measured on nominal, ordinal, or metric scale. To illus-
trate the rationale behind panel data models for categorical variables, we focus first
on categorical variables having only two distinct values (i.e., binary or dichoto-
mous variables). Models for categorical variables having more than two values will
be treated later on in specific sections of this chapter. As examples for binary de-
pendent variables, think of an analysis of women’s labor force participation, party
membership, or a company’s pension plan. In the first example, the dependent vari-
able indicates whether or not women take a position in the primary labor market. In
the example of party membership, the dependent variable measures whether or not
individuals are aligned with any party or independent, and the final example exem-
plifies a model in which the dependent variable indicates whether or not a company
offers an occupational pension scheme.

The first part of the chapter is concerned with models focusing on the level of Y .
As discussed in Chap. 3, models for the level of categorical variables focus on
the probability of observing a certain value (category) of Y . More specifically, in
Sect. 3.5.1.2, we introduced a model in which the probability, Pr(yit = q), of ob-
serving category q for unit i at time point t is a function of a set of independent
variables, which may be either time-constant (Z) or time-varying (X):

Pr(yit = q) = G
(
β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji

)
(5.1)

G(·) is a suitable transformation function that ensures that the right-hand side of
the equation provides values that are within the proper limits of probabilities (i.e.,
0 ≤ Pr(yit = q) ≤ 1). Like in the previous chapters, the right-hand side of the model
includes k time-varying independent variables x1it , . . . , xkit and j time-constant
variables z1i , . . . , zji. β1, . . . , βk and γ1, . . . , γj denote the corresponding regression
coefficients. The term β0(t) determines the overall level of the probability. Since its
level may change over time, β0(t) can be any function of time to control for possible
time trends. If there is no time trend, it reduces to the familiar regression constant

H.-J. Andreß et al., Applied Panel Data Analysis for Economic and Social Surveys,
DOI 10.1007/978-3-642-32914-2_5, © Springer-Verlag Berlin Heidelberg 2013

203

http://dx.doi.org/10.1007/978-3-642-32914-2_5


204 5 Panel Analysis of Categorical Variables

β0(t) = α0. In the more general case, β0(t) can be a linear, quadratic, exponential
or non-parametric function of time t (see Sect. 3.5.1.1). This model is called a dis-
crete response model and is extensively discussed in Sect. 5.1. Going back to the
examples from above, typical research questions would be: Who is more likely to
participate in the labor market? Who is more likely to be a party member? What are
the characteristics of companies that offer pension plans?

In the second part of the chapter, we will discuss models for the change of Y .
In Chap. 3, we proposed to model the change of categorical variables by focusing
on the conditional transition probability of making a change from category p to
category q of the dependent variable, given the unit has been observed in category p

at all former measurements. As a shortcut, we introduced hp(t) = Pr(yit = q|yi1 =
· · · = yi,t−1 = p), which is also termed the (discrete-time) hazard rate (of leaving
state p). A model for the conditional transition probability resp. hazard rate would
look like this (see Sect. 3.5.2.2):

hip(t) = G
(
β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji

)
(5.2)

Again, G(·) is a suitable transformation function to make sure that the right-hand
side of the equation provides values that are within the proper limits of probabilities
(i.e., 0 ≤ hip(t) ≤ 1). Note also the index i for the hazard rate, which is necessary
because model (5.2) assumes that the hazard varies depending on the characteristics
X and Z of each unit i. This model is called a discrete-time event history model and
is extensively discussed in Sect. 5.2. Typical research questions would be: Who is
more likely to re-enter the labor market after maternity leave? Under which condi-
tions are party members more prone to resign? Do people employed in companies
with private pension plans retire earlier than those in companies without such plans?
Here, we study decisions about whether and, if so, when to do something.

Obviously, categorical variables include much more than dichotomous variables.
Categorical variables can have more than two categories and the categories can be
measured on a nominal, ordinal, or metric scale (or a mixture of them). Discussing
all the specialized models that have been developed for these different types of cat-
egorical variable would certainly go beyond the scope of this introductory textbook.
But both parts of this chapter include a section on extensions (Sects. 5.1.3 and 5.2.4)
that will mention some of these models and make references to the corresponding lit-
erature. The chapter concludes with some suggestions for further reading (Sect. 5.3).

5.1 Modeling the Level of Y : Discrete Response Models
for Panel Data

This section illustrates how to estimate discrete response models with panel data
(i.e., models that focus on the probability of observing a certain value [category]
of the dependent variable). Like in the previous chapter on continuous variables, we
start in Sect. 5.1.1 with traditional cross-sectional models for the analysis of categor-
ical data, including the linear probability (Sect. 5.1.1.1), the logistic (Sect. 5.1.1.2),
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and the probit regression model (Sect. 5.1.1.3). As already mentioned in Chap. 3,
the efficiency of traditional models is at stake if the data include dependent obser-
vations. As a remedy, we will introduce robust standard errors that control for the
hierarchical nature of the data (observations within units). In doing so, we arrive at
more conservative test results of our parameter estimates reflecting the fact that we
do not have as many independent data points as the mass of panel data suggests.

However, robust standard errors only try to improve the estimates of the standard
errors and leave the parameter estimates unchanged. Moreover, they control for any
kind of serial dependence in the data, while you may have a specific idea about
what causes this serial correlation. Hence, a more appropriate method adopts the
traditional models to the panel structure of the data. This is the task of Sect. 5.1.2
and it is based on the assumption that the stochastic part of the model consists of two
independent components: one operating at the level of units and the other operating
at the level of measurements. This assumption has two advantages:
1. It allows us to compute more efficient estimates of the parameters and their stan-

dard errors than in traditional models even with robust standard errors. This
method is called random effects (RE) estimation (see Sect. 5.1.2.2). However,
it still hinges on the exogeneity assumption (A.1) (see Sect. 3.6.4), which is at
stake if we have omitted important explanatory variables of Pr(yit = q) that cor-
relate with the variables in the model.

2. It allows us to control for omitted variables bias at the unit level, when the unob-
served variables at the unit level correlate with the variables in the model, which
is not possible with cross-section data. This method is called fixed effects (FE)
estimation (see Sect. 5.1.2.1) and it is to be preferred over RE if the exogeneity
assumption does not hold. However, if the exogeneity assumption is true (the
omitted variable bias does not exist), it is less efficient than RE estimation.

Having explained these basic estimation techniques for binary categorical variables,
we then turn to some extensions to other types of (polytomous) categorical vari-
able (Sect. 5.1.3). To illustrate how to estimate a discrete choice model with panel
data, we refer to a study by Heineck and Schwarze (2004) on the determinants of
secondary job holding, also called moonlighting.

Example 5.1 (heineck-schwarze data) Secondary employment is a
rather common phenomenon in most of the Western industrialized countries
and the driving forces behind it are particularly relevant in the analysis of
atypical forms of employment. The focus of the analysis by Heineck and
Schwarze (2004) is on the propensity of men and women in Germany and
Great Britain to have a second job.

Moonlighting is an inherently complex issue in labor supply. Heineck and
Schwarze (2004) develop two motives: the hours-constraints motive and the
heterogeneous-jobs motive. Key indicators for the hours-constraints motive
are working time preferences and actual working hours. The idea is that some
workers face labor supply constraints in their first job and hence, have an in-
centive to hold a second job, in particular to overcome economic hardship.
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At the same time, there are also instances in which workers earn a sufficient
income but nevertheless opt for moonlighting since they are not satisfied with
the quality of their first job. To capture this heterogeneous-jobs motive, sev-
eral indicators are used: satisfaction with job security, total pay, and work
itself as well as employment prospects in the first job.

To simplify matters in this textbook, we do not use the full sample ana-
lyzed by Heineck and Schwarze (2004), but concentrate on British men only.
Our subset focuses only on those original sample members with full inter-
views and a permanent full-time job. This decision can also be justified on
theoretical grounds, since temporary and part-time employment does not play
a prominent role for men in Great Britain. The data set includes 2,338 men
with altogether 13,328 observations describing their job histories in the years
1991–2000. Contrary to the examples in Chap. 4, this data set is an unbal-
anced panel since the sampled men contribute differing numbers of panel
waves to our data.

We do not replicate the full model presented by Heineck and Schwarze
(2004). In our illustrative example, one of the variables of interest is the ques-
tion of whether the respondent would like to change the number of working
hours in the first job. From the answers, the authors generate two dummy vari-
ables that capture both the desire to work more hours and less hours (with no
desire for any change being the reference category). Hence, both dummies—
including a continuous variable measuring the actual weekly working hours in
the first job—are indicators for the hours-constraints motive. Furthermore, the
model includes two dummies measuring whether a person is not satisfied with
the pay of the first job and the work itself. These latter two dummies are meant
to reflect the heterogeneous-jobs motive. Besides that, the model includes var-
ious control measures (for details, see Table 5.1). All of the explanatory vari-
ables vary over time and the coded data reflect their current values at the time
of the interview. Thus, contrary to the data sets used in the previous chapter,
there are no time-constant explanatory variables in our example data set. How-
ever, if we would use the full data set of Heineck and Schwarze, we would
include information on gender and nationality for each sample member—
two typical time-constant variables. Note also that due to missing values for
some of the variables, in the multivariate analyses, the analyzed data reduce to
n = 2,127 men with altogether 10,687 observations in the observation period.

5.1.1 Ignoring the Panel Structure

The data set is arranged in such a way that we observe the job histories of British
men between 1991 and 2000. In each of the panel waves, we know whether these
individuals were double jobholders or not. The dependent variable in this illustrative
example is equal to 1 if a man holds a second job and 0 otherwise. Our intention
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Table 5.1 Measures used in the analysis of the heineck-schwarze data

Variable Description

Variables of interest

Hours-constraints motive two dummies for the desire to work more hours and the
desire to work fewer hours

Working hours weekly working hours in the first job

Heterogeneous-jobs motive two dummies for being not satisfied with pay and being not
satisfied with work itself

Control variables

Labor income logarithm of first job income

Non-labor income logarithm of non-labor income

Sector of employment dummy for having a public employer

Job tenure logarithm of job tenure (in years)

Age and age squared age in years

Children dummy for having a child under 15 in the household

Occupational class dummy for being a service class worker

is now to analyze the probability to observe the response yit = 1 at a given point in
time: Which conditions captured by our explanatory variables make it more likely
to be in secondary employment at a given point in time?

Like in the previous chapter on continuous dependent variables, a first step in
the analysis could be to pool all available information from the t = 1, . . . ,10 panel
waves for all i = 1, . . . ,2,127 individuals without missing information and treat
them as if they represent independent information for n = 10,687 individuals.1

We could then apply all the techniques that are available for the analysis of cross-
sectional data. In that case, we have to deal with two problems. One of them is the
well-known fact that repeated measurements of the same units over time are not in-
dependent of each other. The other pertains to the specific nature of the dependent
variable that now has only two distinct values. The latter problem is easily illustrated
by way of comparison with our former analysis of continuous dependent variables;
for example, the analysis of psychological distress in the johnson-wu data (Ex-
ample 4.2). Examination of the scatter plots in Fig. 5.1 for psychological distress
against age and moonlighting against first job wage reveals the specific nature of
our categorical dependent variable. While it is possible to observe different levels of
psychological distress in the johnson-wu data, the heineck-schwarze data
do not show the probability of moonlighting; they rather show who is moonlighting
(Y = 1) and who is not (Y = 0). Thus, the first problem is how to estimate a model
for (unobserved) probabilities from an observed binary variable.

1Note that it is an unbalanced panel and hence, the number of observations does not equal n =
10 · 2,127 = 21,270.
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Fig. 5.1 Scatter plots of a continuous and dichotomous Y

The other problem is related to the fact that our analysis is based on pooled
data. In other words, there are multiple observations for each individual. In contrast
to a single cross-section, the observations in this panel data set are not indepen-
dent of each other. In our case, a plausible assumption is that individuals holding
a second job this year, will do the same in the following year. Table 5.2 reports
the observed transitions between each pair of panel waves.2 We can quite clearly
see statistical dependencies between the observations in our example data. Of those
men who moonlight at time t − 1, about 62 % also hold a secondary job at time t .
On the other hand, about 97 % of the men without a second job at time t − 1 do
not moonlight at time t . In other words, moonlighters and non-moonlighters are a
rather constant group over time, at least over a two-year period. Part of this stabil-
ity may be explained by the explanatory variables in Table 5.1. But possibly, some
unobserved heterogeneity remains that renders the residuals of our traditional cross-
sectional models to be serially correlated. This raises the question of whether the
model still provides unbiased and efficient estimates. Before dealing with this panel
data problem, let us first understand how to solve the first problem of analyzing bi-
nary dependent variables. We do that by ignoring the panel structure of the data and
treating the data as statistically independent observations.

2Note that Table 5.2 shows year-to-year transitions of the moonlighting variable. At the end of each
unit’s observation period Ti , we lose one observation, because we do not observe Ti +1, and hence,
cannot compute the transition from Ti to Ti + 1. Therefore, the table includes 13,328 − 2,338 =
10,990 observations. Note also that this table focusses only on the dependent variable and does not
suffer from missing values for the explanatory variables. It also ignores gaps in the sequences of
the dependent variable. In other words: The table uses all available information for Y .
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Table 5.2 Transitions between panel waves

No sideline job at time t Moonlighting at time t Total

No sideline job at time t − 1 97.19 (9,884) 2.81 (286) 100.00 (10,170)

Moonlighting at time t − 1 37.68 (309) 62.32 (511) 100.00 (820)

Total 92.75 (10,193) 7.25 (797) 100.00 (10,990)

Source: heineck-schwarze data (see Example 5.1)

5.1.1.1 The Pooled Linear Probability Model
As a starting point, let us assume that the transformation function G(·) in our proba-
bility model (5.1) is the identity function G(a) = a. In that case, model (5.1) is very
similar to the traditional linear regression model, except the fact that the left-hand
side includes a probability (since we have a binary dependent variable, we use the
probability of observing q = 1):

Pr(yit = 1) = β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji (5.3)

Why is it possible to interpret this linear regression model as a linear probability
model (LPM)? The answer is quite easy. Without an error term, the right-hand side
of the equation predicts the expected value, E(y), of the dependent variable (see
(3.11) in Chap. 3). Furthermore, the expected value of a binary variable with two
categories coded 0 and 1 equals the probability of observing its value 1. For ex-
ample, the mean of the moonlighting dummy in the heineck-schwarze data
equals 0.0759, which means that the overall probability of observing a person in
a secondary job is about 7.6 % (1,012 out of the 13,328 observations are moon-
lighters). Thus, we can use the familiar linear regression model to make statements
about the effects of our explanatory variables on the probability of moonlighting.
The regression coefficients β and γ measure the change of that probability for a
given change in our explanatory variables X and Z. In case these are dummy vari-
ables, the corresponding regression coefficient shows us how much that probability
differs in the group of individuals identified by that dummy (e.g., those who are
unsatisfied with their first job’s pay) from the probability of moonlighting in the
reference group (those who are satisfied with their pay).

Table 5.3 shows the OLS estimates of the full model based on the N = 10,867
observations with non-missing information on the explanatory variables. For ease of
exposition, the model assumes β0(t) = β0 (but see footnote 2 on p. 121). In line with
the expectation of Heineck and Schwarze (2004), we find evidence for the hours-
constraints motive: Compared to those who are satisfied with their working hours,
those who would like to work more hours are 3.2 percentage points more likely
to moonlight and this effect is highly significant (p < 0.01). Turning to the actual
working hours, we get, as one would expect, a significant negative effect (p < 0.01).
However, from a practical point of view, this effect does not seem to be very large.
An increase of weekly working time by ten hours would decrease the probability to
hold a secondary job by one percentage point.
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Table 5.3 Determinants of
secondary job holding
(pooled LPM)

Source:
heineck-schwarze data
(see Example 5.1)

Variable Estimate Std. Err.

Desire to work more hours 0.0323 0.0113

Desire to work fewer hours −0.0013 0.0055

Weekly working hours in first job −0.0010 0.0003

Is not satisfied with pay 0.0138 0.0056

Is not satisfied with work itself 0.0030 0.0066

Logarithm of first job wage −0.0236 0.0078

Logarithm of non-labor income 0.0023 0.0019

Has public employer 0.0271 0.0073

Logarithm of job tenure 0.0111 0.0029

Age 0.0022 0.0020

Age squared −0.0000 0.0000

Has children under 15 0.0159 0.0058

Being a service class worker 0.0192 0.0060

Constant 0.1005 0.0395

F 9.30

df 1, df 2 13 10,673

R2 0.011

N 10,687

To visualize this result, it is possible to draw a plot of the observed responses
and the predicted probabilities. Predicted probabilities are calculated using (5.3)
for different hours of weekly working time in the first job and for two different
groups (those who desire more hours to work and those who desire less hours to
work), while the other independent variables are fixed at their respective means in
the estimation sample or set to zero in the case of dummy variables. The solid line
in Fig. 5.2 represents men who would like to work more hours, while the dashed
line stands for the comparison group (i.e., men who would like to work less hours).

The question that arises from a statistical point of view is now: Is the linear prob-
ability model a good model to predict such response probabilities? The estimators
of the linear probability model are consistent and unbiased, if the usual OLS as-
sumptions are met (see Textbox 4.1 in Chap. 4). Yet, it is important that, when using
OLS regression for a categorical dependent variable, Pr(yit = 1) is not constrained
to lie in the unit interval. For example, for men of age 60 who work quite a lot,
say 50 hours during the week, and, hence, desire to work less hours, we predict a
probability of moonlighting that is below 0 %, if they earn a sufficient income in the
upper quartile of the income distribution (all other variables fixed at their mean resp.
dummies set to zero). Obviously, this is not a meaningful value for a probability.

Another problem is the linearity assumption. Mean weekly working time
amounts to 45.9 hours and is located at the upper end of the abscissa in Fig. 5.2.
At that point, the probability of moonlighting is already quite low (below 6 %).
Now increase working hours unit by unit. What happens to the predicted response
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Fig. 5.2 Observed responses
and predicted probability of
secondary job holding
(pooled LPM)

probability Pr(yit = 1)? Regardless of the initial working hours, Pr(yit = 1) always
decreases by the same amount. This is hardly a realistic assumption, especially when
the probability of moonlighting is already quite low. In that case, you always have to
anticipate bottom effects, because a probability cannot exceed the unit interval (and
ceiling effects if the probability is already quite high and you move in the opposite
direction). In other words, the change in the probability of moonlighting should
become increasingly smaller with each unit change of the independent variables.

Furthermore, the linear probability model violates the homoscedasticity assump-
tion of OLS (see Textbox 4.1 in Chap. 4). This is due to the fact that our dependent
variable is a dummy variable and as such can take on only the values zero and
one. It is easy to show that the OLS error term εit does not have constant variance
but rather varies systematically with the values of the independent variables. More
specifically, it can be shown that Var(εit) = Pr(yit = 1)[1 − Pr(yit = 1)] and since
Pr(yit = 1) is a function of the independent variables (see (5.3)), Var(εit) is also a
function of X and Z and thus not homoscedastic. Hence, even when the linear prob-
ability model provides consistent and unbiased estimators, it comes at the expense
of biased standard errors.

Finally, we can use Example 5.1 to illustrate the problems of applying the lin-
ear probability model to panel data. It is not only that the OLS error term εit is
not homoscedastic. The observations in our data set are also not independent. Thus,
if we compute the residuals of our former OLS regression model (which are esti-
mates of the OLS error term) and correlate these residuals for any two panel waves
for all men in our estimation sample, we still find a strong positive correlation of
rLPM = 0.6762, although we control for quite a lot of explanatory variables that
characterize moonlighters and non-moonlighters. The same is true for all pairs of
time points, which can be seen from the yearly serial correlations shown in Ta-
ble 5.4. We therefore conclude that our linear probability model also suffers from
serially correlated errors, since it does not recognize the panel structure of the data.
This violates the no autocorrelation assumption of OLS estimation (see Textbox 4.1
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Table 5.4 Correlation of residuals from the pooled LPM

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

1991 1.0000

1992 0.6138 1.0000

1993 0.5472 0.6514 1.0000

1994 0.5571 0.6157 0.6852 1.0000

1995 0.4631 0.5572 0.5776 0.7482 1.0000

1996 0.3594 0.3877 0.3833 0.5836 0.7206 1.0000

1997 0.3771 0.3966 0.3423 0.5089 0.6374 0.6539 1.0000

1998 0.3042 0.3506 0.3276 0.4663 0.6220 0.5843 0.7060 1.0000

1999 0.2345 0.3529 0.3226 0.4857 0.5212 0.5541 0.6047 0.6769 1.0000

2000 0.2670 0.2801 0.3717 0.4116 0.4354 0.5733 0.5633 0.6550 0.6316 1.0000

Source: heineck-schwarze data (see Example 5.1)

in Chap. 4) and therefore, it is no longer ensured that the estimated standard errors
are unbiased.

All in all, there are strong reasons to believe that firstly the linear probability
model is not very well suited to binary dependent variables where the probability
of observing one or the other category is either very low or very high, because in
those regions of the probability space, statistical relationships are often non-linear.
Secondly, when the linearity assumption is not at stake, OLS parameter estimates
are unbiased, but standard errors are definitely biased because of heteroscedastic
and serially correlated error terms.

Like in the case of continuous dependent variables (see Sect. 4.1.1.2), there is
an overall remedy against the latter inefficiencies: robust standard errors. Estimates
of OLS standard errors can be made robust both against heteroscedasticity and
serial correlation (see Sect. 7.2.1). Table 5.5 compares the point estimates and stan-
dard errors of the linear probability model and two regression models using robust
standard errors. One model uses heteroscedasticity robust standard errors and the
other takes into account (in addition to heteroscedasticity) the statistical dependen-
cies among observations in the heineck-schwarze data (observations clustered
within units). The regression coefficients are exactly the same in all models; how-
ever, the standard errors differ. The robust standard errors are higher and become
even larger once adjusted for serial correlation.3 As a consequence, the number
of working hours loses its statistical significance.4 It is also easy to see that our
indicators for the hours-constraints and heterogeneous-jobs motive are no longer
statistically significant since standard errors are more than twice as large as the

3When we are using cluster-robust standard errors, the degrees of freedom, df 2 = n − 1, of the
overall F test depend on the number of clusters (i.e., n = 2,127 units) and not on the number of
observations (N = 10,687) in the data set.
4Using the exact parameter estimate (−0.0010171) and its estimated standard error (0.0005391),
we arrive at a t value of t = −1.89, which is not significant (p = 0.059).
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Table 5.5 Determinants of secondary job holding (pooled LPM with robust standard errors)

Variable Theoretical
standard errors

Robust standard
errors

Cluster robust
standard errors

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

Desire to work more hours 0.0323 0.0113 0.0323 0.0134 0.0323 0.0167

Desire to work fewer hours −0.0013 0.0055 −0.0013 0.0055 −0.0013 0.0077

Weekly working hours in first job −0.0010 0.0003 −0.0010 0.0003 −0.0010 0.0005

Is not satisfied with pay 0.0138 0.0056 0.0138 0.0059 0.0138 0.0076

Is not satisfied with work itself 0.0030 0.0066 0.0030 0.0069 0.0030 0.0094

Logarithm of first job wage −0.0236 0.0078 −0.0236 0.0083 −0.0236 0.0149

Logarithm of non-labor income 0.0023 0.0019 0.0023 0.0019 0.0023 0.0028

Has public employer 0.0271 0.0073 0.0271 0.0082 0.0271 0.0149

Logarithm of job tenure 0.0111 0.0029 0.0111 0.0030 0.0111 0.0049

Age 0.0022 0.0020 0.0022 0.0021 0.0022 0.0034

Age squared 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Has children under 15 0.0159 0.0058 0.0159 0.0059 0.0159 0.0092

Being a service class worker 0.0192 0.0060 0.0192 0.0062 0.0192 0.0108

Constant 0.1005 0.0395 0.1005 0.0412 0.1005 0.0643

F 9.30 8.80 3.36

df 1, df 2 13 10,673 13 10,673 13 2,127

R2 0.011 0.011 0.011

N 10,687 10,687 0,687

n 2,127

Tmin, Tmax 1 10

Source: heineck-schwarze data (see Example 5.1)

corresponding regression coefficients. Heteroscedasticity (which is a necessary im-
plication of using a linear probability model) is less of a problem than serial cor-
relation, which is somewhat expected, since we are using panel data. This simple
example already gives us an indication of how statistical dependencies in panel data
can yield invalid statistical inferences.

5.1.1.2 Pooled Logistic Regression
Before we go on with models that explicitly take into account the panel structure,
we first try to cope with the principal limitations of the linear model when it comes
to the analysis of probabilities. We still assume that we have a pooled data set
of n = 10,687 independent observations, but we need a non-linear function G(·),
which ensures that the predicted response probabilities Pr(yit = 1) are between zero
and one. In principle, any statistical distribution function does this job, because—
by definition—distribution functions return a probability using as input an often
continuous random variable ranging between minus and plus infinity. Because of
its mathematical simplicity, one popular option is the logistic distribution function
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G(a) = exp(a)/(1+ exp(a)). This results in the following logistic regression model
for the pooled heineck-schwarze data:

Pr(yit = 1) = exp(β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji)

1 + exp(β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji)
(5.4)

This model is essentially non-linear, which makes it difficult to interpret the
effects of the independent variables. Thus, to obtain an understanding of how
Pr(yit = 1) changes with different values of X and Z, let us assume a very sim-
ple model including only one time-constant explanatory variable and no time trend:
Pr(yit = 1) = exp(β0 + γ1z1i )/(1 + exp(β0 + γ1z1i )). To illustrate how Pr (yit = 1)

varies, we draw a plot with Z1 varying between −5 and +5, assuming that β0 = 0
and γ1 = 1. In the left panel of Fig. 5.3, it is easy to see that a logistic curve with
these parameters is s-shaped (see the solid curve). Two aspects of the logistic model
are important to note here. First, with rising Z1 we can see that Pr(yit = 1) gets close
to 1 but will never approach 1. If Z1 declines, Pr(yit = 1) gets close to 0 without ap-
proaching zero. Hence, predictions of this logistic regression model lie between the
proper limits of the unit interval. Second, from the solid curve, we also see that the
change in Pr(yit = 1) for a given increase in Z1 depends on the level of Z1. In the
lower and upper range of Z1, a unit increase of Z1 results in rather small changes
of Pr(yit = 1), while in the middle range, a unit increase of Z1 results in rather
large changes of Pr(yit = 1). This can be seen more formally by computing the first
derivative with respect to Z1, which is not only a function of γ1 but also of Z1:

∂Pr(yit = 1)

∂z1i

= γ1 · exp(β0 + γ1z1i )

1 + exp(β0 + γ1z1i )
·
(

1 − exp(β0 + γ1z1i )

1 + exp(β0 + γ1z1i )

)
(5.5)

In other words, the size of the effect of Z1 depends on the level of Z1 itself. This
is essentially what non-linearity means, while in the linear probability model, the
derivative would simply equal γ1, indicating that in the linear case, the effect of
Z1 is always the same, irrespective of the level of Z1. The other curves in Fig. 5.3
show how the relationship varies with different values of β0 and γ1. A negative
regression coefficient γ1 implies a negative relationship between Pr(yit = 1) and Z1
(see left panel of Fig. 5.3), while the regression constant β0 affects the overall level
of Pr(yit = 1) (see right panel). Larger regression coefficients (e.g., γ1 = 2 instead
of γ1 = 1) lead to steeper curves, indicating that the explanatory variable Z1 has a
stronger effect on the response probability (see left panel).

The first conclusion from this discussion is that it is easy to make statements
about the direction of the relationship between an explanatory variable and the re-
sponse probability (by simply using the sign of the regression coefficient), but when
you want to quantify the effect, things become complicated. In general, in multivari-
ate logistic regression models the effect of a unit change of one explanatory vari-
able on the response probability is contingent upon the level of the variable itself
and on the level of all other variables in the model.5 Hence, the model is not only

5In that case, the two multiplicands in (5.5) would include the full logistic regression model with
all independent variables X and Z.
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Fig. 5.3 The logistic regression function

non-linear, it is also multiplicative, meaning that the effect of a certain explanatory
variable depends on the values (and the effects) of all other variables in the model.
If you want to know how the predicted response probability varies with a particular
explanatory variable, you can use graphical techniques like conditional effect plots
to illustrate this non-linear and multiplicative relationship. A conditional effect plot
simply draws predicted response probabilities for different values of this variable
while holding all other independent variables in the model at fixed values (e.g., at
their mean values). An example of such a plot is given below (Fig. 5.4 on p. 223).

There are also two summary measures that are useful for understanding whether
and to what extent we expect a change in the response probability as variables
change. One is the so-called marginal effect, which is identical to the former first
derivative (5.5). In the multivariate case, the marginal effect of a specific explanatory
variable (say, Xj ) looks like this:

Marginal effect = ∂Pr(yit = 1)

∂xjit

= βj · Pr(yit = 1) · (1 − Pr(yit = 1)
)

(5.6)

with Pr(yit = 1) defined as in (5.4). Since Pr(yit = 1) is a function of all X and Z,
the marginal effect also depends on all variables in the model. To compute the
marginal effect, all explanatory variables are often held at their mean values. A sec-
ond summary measure is the discrete change. Assume that we are particularly
interested in the effect of a variable X1. We can then compute two probabili-
ties Pr(yit = 1|x1it , . . . , xkit, z1i , . . . , zji) and, after increasing X1 by some quan-
tity �x1it , Pr(yit = 1|x1it +�x1it , . . . , xkit, z1i , . . . , zji). The discrete change is then
given by the difference of those two probabilities. The concept of marginal effects
captures the instantaneous rate of change; the concept of discrete change indicates



216 5 Panel Analysis of Categorical Variables

the expected amount of change in the response probability for a given change in an
explanatory variable.

While the logistic regression model is non-linear in the response probability,
some simple algebraic transformations of (5.4) show that it is linear in a quantity
called the logit:

ln

(
Pr(yit = 1)

1 − Pr(yit = 1)

)
=β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji (5.7)

The ratio Pr(yit = 1)/(1 − Pr(yit = 1)) is termed the odds of observing category
yit = 1 rather than category yit = 0. It relates the two response probabilities of
observing either the one or the other category of the dependent binary variable.
The log-odds, or for short the logit, is defined as the natural logarithm of the odds
Pr(yit = 1)/(1 − Pr(yit = 1)).6

Logits and odds open up new possibilities for motivating and interpreting the
logistic regression model. For example, the linear probability model (5.3) had the
disadvantage that the right-hand side of the equation could provide values outside
the unit interval (in principle, the LPM provides values between minus and plus
infinity). With logits rather than probabilities now on the left-hand side of the equa-
tion, this is no longer a restriction, since logits are continuous and at least in prin-
ciple vary between minus and plus infinity. Thus, the logistic regression model is
sometimes also called the logit model, but it should be stressed that both terms refer
to the same model and that (5.4) is easily transformed into (5.7) and vice versa. In
principle, we can use the logistic regression coefficients to make statements about
how change in a particular explanatory variable affects the logit of moonlighting.
Since the model is linear in the logits, interpretation would be as simple as in the
linear probability model. But the problem is that the concept of logits is complicated
and therefore, hard to communicate in the general public.

This is different for the concept of odds, which are well known from betting and
biometric research. In the heineck-schwarze data, we find 1,012 observations
in which someone is moonlighting, while there are 12,316 observations in which no
one holds a second job. Thus, the overall odds of observing a moonlighter rather than
an employee with only one job amount to 0.082 (=1,012/12,316). More generally,
odds can obtain values between zero and plus infinity. When the odds are lower
than 1, the probability to hold a second job is below 50 %. Quite the opposite is
true when the odds are greater than 1. In that case, the probability to hold a second
job would be greater than 50 %. If the odds would equal 1, there would be as many
moonlighters as non-moonlighters. Applying the exponential function to both sides
of (5.7) shows how the logistic regression model looks like in terms of odds:

6Equation (5.7) shows that the logistic regression model is linear-additive with respect to the logits.
In the context of generalized linear models, the right-hand side of (5.7) is also called the linear
predictor of the model. Obviously, the logit transformation links the response probabilities to the
linear predictor. This is why the logit transformation is also called a link function.
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Pr(yit = 1)

1 − Pr(yit = 1)

= exp
(
β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji

)

= exp
(
β0(t)

) · exp(β1)
x1it · . . . · exp(βk)

xkit · exp(γ1)
z1i · . . . · exp(γj )

zji (5.8)

While the model has been linear-additive in logits, it now becomes non-linear and
multiplicative. Nevertheless, interpretation is quite straightforward. We use the an-
tilogarithms of the logistic regression coefficients, exp(β1), . . . , exp(βk), exp(γ1),

. . . , exp(γj ), to make statements on how the odds change given a unit change of a
particular explanatory variable. For example, the odds of observing a moonlighter
change by a (multiplicative) factor of exp(β1), if X1 is increased by one unit:

Pr(yit = 1|x1it + 1)

1 − Pr(yit = 1|x1it + 1)

= exp
(
β0(t)

) · exp(β1)
(x1it+1) · . . . · exp(βk)

xkit · exp(γ1)
z1i · . . . · exp(γj )

zji

= exp(β1) · (exp
(
β0(t)

) · exp(β1)
x1it · . . . · exp(γ1)

z1i · . . . · exp(γj )
zji

)

= exp(β1) ·
(

Pr(yit = 1|x1it )

1 − Pr(yit = 1|x1it )

)
(5.9)

Instead of arguing with multiplicative factors, we can also compute the percentage
change of the odds, which amounts to (exp(β1)−1) ·100. The antilogarithm exp(β1)

is also called an odds ratio because it measures the ratio of two odds: one when X1 is
increased by one unit and the other when X1 has its original value. In the following,
we will mostly use odds ratios to interpret the results of logistic regression models.

But how can we estimate logistic regression coefficients? Using OLS to estimate
the linear-additive model (5.7) is not feasible, since the logit (like the probability)
is not directly observable and it is not possible to transform the binary dependent
variable in a way that makes it similar to a logit.7 Hence, estimates of a logis-
tic regression model have to be found using the method of maximum likelihood
(ML).

In the case of a categorical dependent variable, the underlying idea of ML is easy
to understand, but the mathematical computations are quite complicated and require
numerical optimization. ML estimates of the regression coefficients are defined as
those estimates that—given the independent variables X—maximize the joint prob-
ability of observing the values of the dependent variable Y . Section 7.2.2 explains
this approach in greater detail. It builds on a mathematical function, called the like-
lihood function, that measures the overall probability of the observed data given
certain values for the regression coefficients (see (7.17)). For our panel data set with

7OLS (or more precisely, weighted least squares) can only be applied if all (independent and
dependent) variables in the model are categorical. These kinds of model have been proposed by
Grizzle et al. (1969) and extensively treated in the textbook by Forthofer and Lehnen (1981).
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time-constant and time-varying independent variables the likelihood function looks
like this:8

L(β,γ ) =
n∏

i=1

T∏

t=1

[
Pr(yit = 1)

]yit · [1 − Pr(yit = 1)
](1−yit)

=
n∏

i=1

T∏

t=1

[
exp(β0(t) + β1x1it + · · · + γ1z1i + · · · )

1 + exp(β0(t) + β1x1it + · · · + γ1z1i + · · · )
]yit

·
[

1 − exp(β0(t) + β1x1it + · · · + γ1z1i + · · · )
1 + exp(β0(t) + β1x1it + · · · + γ1z1i + · · · )

](1−yit)

(5.10)

Practically, one maximizes the natural logarithm of the likelihood function (see (7.18)
in Sect. 7.2.2):

lnL(β,γ )

=
n∑

i=1

T∑

t=1

yit · ln

(
exp(β0(t) + β1x1it + · · · + γ1z1i + · · · )

1 + exp(β0(t) + β1x1it + · · · + γ1z1i + · · · )
)

+
n∑

i=1

T∑

t=1

(1 − yit) · ln

(
1 − exp(β0(t) + β1x1it + · · · + γ1z1i + · · · )

1 + exp(β0(t) + β1x1it + · · · + γ1z1i + · · · )
)

(5.11)

If we use plausible starting values for the regression coefficients, the values of the
independent variables X and Z 9 and the values of the dependent binary variable Y

for each observation, (5.11) provides the natural logarithm of the overall probability
of the observed sample given the starting values β0 and γ 0. For example, a good
starting point is the assumption that none of the independent variables has an effect
(hence, all regression coefficients except the constant are zero). Consequently, the
starting value for the regression constant has to be chosen in such a way that the
model replicates the overall proportion of moonlighters (the proportion of observa-
tions with yit = 1). For the heineck-schwarze data, with these starting values,
we arrive at a value of L(β0, γ 0) = −2,868.0943. Obviously, the result depends
on the chosen starting values, which rely on the unrealistic assumption of no ex-
planatory variable having an effect. You may try other values and in doing so, try
to maximize L(β,γ ). Logistic regression programs solve this task easily by using
numerical optimization algorithms.

8In case of an unbalanced panel data set the upper limit T of the second multiplication index
t varies between units and therefore should be written as Ti . This, however, does not alter the
general principle.
9We provide the formula with the complete panel regression model, although the heineck-
schwarze data do not include any time-constant Z (see Example 5.1).
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The parameters β and γ that maximize the log likelihood are called ML esti-
mates. ML assumes that all observations are independent of each other and iden-
tically distributed. The probability distribution for each observation is specified in
the likelihood function. Given that this probability distribution is correctly specified,
ML estimates are consistent and asymptotically normally distributed. Variances and
covariances of the estimates (and hence, their standard errors) are derived from the
second derivatives of the maximized log likelihood function. The behavior of ML
estimates in small samples, however, is not always known, and hence, testing rests
on large sample theory. Section 7.2.2 summarizes the main testing procedures and fit
measures that we will use in the case of ML estimation. The following Textbox 5.1
discusses the ML assumptions in greater detail.

Textbox 5.1 (ML assumptions) Although the assumptions for ML estima-
tion may look different from the OLS assumptions in Textbox 4.1, they have
similar functions. They specify the conditions under which estimates can be
computed, are unbiased and can be generalized to the population. ML is a
very general estimation procedure that can be applied to all kinds of statisti-
cal model. It finds estimates by maximizing the probability of the observed
sample values of Y , X, and Z. In the general case of continuous Y , it max-
imizes the density and not the probability of the observations. Therefore,
an essential ingredient of this estimation technique is the correct specifica-
tion of the probability distribution function (density function). More specifi-
cally, the statistical properties of ML estimation rest on the following assump-
tions:
1. The data are a simple random sample of a well-defined population.
2. Each explanatory variable is neither a constant nor a linear function of the

other explanatory variables. Furthermore, in the case of categorical depen-
dent variables, Y must vary for each linear combination of the independent
variables in the model.

3. The observations in the sample are independent of each other and identi-
cally distributed.

4. The parameters of the probability distribution resp. density function and
the function itself are correctly specified.

Similar to OLS, the first assumption is necessary for making statistical infer-
ences about the population using the sampled data. The second assumption
guarantees that a numerical value exists for each regression coefficient (tech-
nically, the model is identified). In the case of a dependent variable Y that
has only few distinct values (a categorical variable), we also have to make
sure that Y has enough independent variation. If there is a linear combina-
tion of the independent variables that predicts one value of the categorical Y

perfectly, then there is no unique ML solution (a situation that has become
known as the problem of separability).
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The third assumption makes sure that we can use the same probabil-
ity model for each observation (because they are identically distributed)
and obtain the overall likelihood of the whole sample by using formulas
combining the probabilities of independent observations. The product rule
for the probability of two independent observations A and B states that
you can simply multiply the single probabilities of observing A and B:
Pr(A ∩ B) = Pr(A)·Pr(B). To obtain the overall probability of all observa-
tions, you simply multiply all single probabilities. However, the independence
assumption is not a serious limitation. Alternatively, if observations would be
dependent, as they often are with panel data, one can use the product rule
for dependent observations: Pr(A ∩ B) = Pr(A)·Pr(B|A). One only needs a
specification of the conditional probability of observing B , given that A has
occurred: Pr(B|A). Later, when we model the panel structure of the data, we
will show how that can be done (see Sect. 5.1.2).

Once it is clear which probability model can be applied to all observations
and how to combine the single probabilities, we can deal with the question of
how to include the explanatory variables. To be a little bit more concrete, the
former likelihood function (5.10) for the logistic model applied the Bernoulli
distribution10 to each observation and included the explanatory variables by
specifying the main parameter of the Bernoulli distribution (i.e., the probabil-
ity of observing the first category of the dichotomous variable Y , as a function
of X and Z). Here, the aforementioned fourth assumption comes in. If this
function is misspecified (e.g., if an important explanatory variable is left out),
then the estimates will be biased. Hence, the fourth assumption is the most
important, because it makes sure that our ML estimates are unbiased. Similar
to OLS estimation, unbiasedness means that our estimates are correct; not
necessarily in a single sample, but on average (i.e., across a multitude of sam-
ples), they are identical with the “true” population parameters. Whether these
estimates are then efficient and how to test their significance are more difficult
questions that cannot be dealt with in this textbook. Statistical theory shows,
however, that ML estimates are normally distributed in large samples and are
similarly efficient as estimates from other estimation procedures. Therefore,
tests of significance can use the normal and related distributions as the testing
distributions.

Table 5.6 shows the ML estimates of a logistic regression model applied to the
heineck-schwarze data. Again, the desire to work more hours has a significant
positive effect on moonlighting (p < 0.01), while the number of weekly working
hours has a significant negative effect (p < 0.01). But this model erroneously as-

10The Bernoulli distribution is used to model the probabilities of observing each of the two cate-
gories of a dichotomous random variable.
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Table 5.6 Determinants of secondary job holding (pooled logistic model)

Variable Theoretical
standard errors

Cluster robust
standard errors

Estimate Std. Err. Estimate Std. Err.

Desire to work more hours 0.3678 0.1375 0.3678 0.1738

Desire to work fewer hours −0.0156 0.0819 −0.0156 0.1160

Weekly working hours in first job −0.0158 0.0047 −0.0158 0.0091

Is not satisfied with pay 0.1865 0.0799 0.1865 0.1049

Is not satisfied with work itself 0.0395 0.0924 0.0395 0.1277

Logarithm of first job wage −0.3553 0.1165 −0.3553 0.2307

Logarithm of non-labor income 0.0334 0.0277 0.0334 0.0427

Has public employer 0.3513 0.0960 0.3513 0.1751

Logarithm of job tenure 0.1625 0.0427 0.1625 0.0710

Age 0.0474 0.0305 0.0474 0.0516

Age squared −0.0009 0.0004 −0.0009 0.0007

Has children under 15 0.2250 0.0828 0.2250 0.1258

Being a service class worker 0.2786 0.0853 0.2786 0.1522

Constant −2.3621 0.5770 −2.3621 0.9472

Pseudo R2 0.0211 0.0211

LR or X2
1 121.23 49.44

df 13 13

lnL −2,807.4795 −2,807.4795

N 10,687 10,687

n 2,127

Tmin, Tmax 1 10

Source: heineck-schwarze data (see Example 5.1)

sumes that we have 10,687 independent observations. In fact, we analyze 2,127
men who are observed several times during the observation period rendering the
independence assumption to be false. Hence, the consistency of the estimates is at
stake and standard errors are underestimated. Fortunately, like with OLS estimation,
it is possible to compute robust standard errors that are adjusted to the serial corre-
lations in the panel data. Table 5.6 also shows these estimation results and compares
them with those obtained from pooled logistic regression. Not surprisingly, both
methods produce identical coefficients, but standard errors differ. More precisely,
the satisfaction with pay and the number of weekly working hours lose their statisti-
cal significance once the panel data structure is taken into account (p > 0.05). Only
the desire to work more hours retains its significant positive effect on moonlighting
(p < 0.05).

As already mentioned, the difficulty with the coefficients obtained from logistic
regression is that it is hard to grasp what a change in the logit means. However, we
discussed some alternatives that make things much easier. For instance, rather than
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Table 5.7 Determinants of secondary job holding (odds ratios for pooled logistic model)

Variable β̂ exp(β̂) % exp(β̂ · σ̂x ) %

Desire to work more hours 0.3678∗ 1.4446 44.5 1.0893 8.9

Desire to work fewer hours −0.0156 0.9845 −1.5 0.9924 −0.8

Weekly working hours in first job −0.0158 0.9843 −1.6 0.8638 −13.6

Is not satisfied with pay 0.1865 1.2051 20.5 1.095 9.5

Is not satisfied with work itself 0.0395 1.0403 4.0 1.0161 1.6

Logarithm of first job wage −0.3553 0.7009 −29.9 0.8618 −13.8

Logarithm of non-labor income 0.0334 1.0339 3.4 1.049 4.9

Has public employer 0.3513∗ 1.4209 42.1 1.1319 13.2

Logarithm of job tenure 0.1625∗ 1.1764 17.6 1.1659 16.6

Age 0.0474 1.0486 4.9 1.6237 62.4

Age squared −0.0009 0.9991 −0.1 0.4822 −51.8

Has children under 15 0.2250 1.2524 25.2 1.1185 11.9

Being a service class worker 0.2786 1.3213 32.1 1.1482 14.8

Constant −2.3621∗
Note: ∗ p < 0.05; ∗∗ p < 0.01; ∗ ∗ ∗ p < 0.001
Source: heineck-schwarze data (see Example 5.1)

looking at the coefficients, you may want to interpret the predicted change in odds,
given a unit change in your explanatory variable. Since the explanatory variables
in our model are measured differently, the coefficients are not directly comparable.
To facilitate a within-model comparison, you can calculate the expected change in
odds for a standard deviation increase in your explanatory variable. The output in
Table 5.7 presents these transformations.

To illustrate how to interpret the results of the pooled logistic regression model,
we restrict ourselves to two indicators for the hours-constraints motive, namely the
dummy for “would like to work more hours” and weekly working hours in the first
job. As already mentioned, the logistic regression coefficient of the dummy indi-
cates that compared to those who are completely satisfied with their working hours,
men who want to work more hours are significantly more prone to hold a second
job. Technically speaking, the logit changes by 0.368, holding all other explanatory
variables in our estimation model constant. Alternatively, we can use the odds ra-
tio interpretation and state that—keeping all other variables constant—the odds of
moonlighting increase by a factor of exp(0.368) = 1.445. Yet another way of inter-
preting the finding is to look at the percentage change in odds: Compared to those
who are completely satisfied with their working hours, the odds of secondary job
holding are (1.445−1) ·100 = 44.5 % higher for men who want to work more hours.

This interpretation is easily conveyed to continuous explanatory variables such as
working hours in the first job. Here, we could simply infer that with each additional
hour of work in the first job, the odds of being a double job holder decrease by a fac-
tor of 0.984 or (0.984−1) ·100 = −1.6 %. Among the continuous explanatory vari-
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Fig. 5.4 Conditional effects
plot using the estimates of the
pooled logistic model

ables, age seems to have the strongest effect, when looking at the (comparable) stan-
dard deviation increases. However, the effect of age is not statistically significant.

We can also draw a plot to illustrate whether and to what extent the predicted
probabilities for moonlighting vary over working hours in the first job for people
with and without the hours-constraints motive. To this end, we fix all continuous
variables in our model at their mean and set all dummies equal to zero except for
“would like to work more hours”. The conditional probability is then derived from
(5.4) using all the parameter estimates and the selected values of the explanatory
variables. Figure 5.4 shows the resulting conditional effect plot. The figure gives
support to the assumption of Heineck and Schwarze (2004) that workers who face
labor supply constraints in their first job are more likely to moonlight. At the same
time, we see that the more working hours in the first job, the less likely secondary
job holding.

5.1.1.3 Pooled Probit Regression
An alternative way to specify the transformation function G(·) in our probability
model (5.1) is to use the standard normal distribution function, which is expressed
as an integral and abbreviated with the Greek symbol Φ(·) (capital “Phi”):

G(a) =
∫ a

−∞
1√
2π

exp

(−u2

2

)
du ≡ Φ(a) (5.12)

This results in the following probit regression model for the pooled heineck-
schwarze data:

Pr(yit = 1) = Φ
(
β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji

)
(5.13)

Again the model is non-linear, and we need the first partial derivatives to see how
Pr(yit = 1) changes with different values of X and Z. For a very simple model
including only one time-constant explanatory variable and no time trend, the first
derivative with respect to Z1 looks like this:
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∂Pr(yit = 1)

∂z1i

= γ1 · φ(β0 + γ1z1i ) = γ1 ·
(

1√
2π

exp

(
− (β0 + γ1z1i )

2

2

))
(5.14)

in which the Greek symbol φ(·) (“phi”) stands for the standard normal density func-
tion. Again, the change of the response probability is not only a function of the effect
of the explanatory variable, γ1, but also of the level of the explanatory variable Z1,
which enters through the normal density. Like in the case of logistic regression,
the effect of a unit change in an explanatory variable on the response probability
is contingent upon the level of the variable itself and—in the case of multivariate
models—on the level of all other variables in the model. In the multivariate case,
the marginal effect of a specific explanatory variable (say, Xj ) equals

∂Pr(yit = 1)

∂xjit

= βj · φ(
β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji

)
(5.15)

Hence, all the basic rules of interpretation that we have learned about logistic re-
gression also apply to probit regression.

A distribution function like the logistic or the standard normal return a probabil-
ity and use as input a continuous variable that ranges from minus to plus infinity.
The inverse of a distribution function does the same just the other way round: It re-
turns a continuous variable given a probability. The inverse of the standard normal
distribution is called the probit function, which gave probit regression its name:

probit
(
Pr(yit = 1)

) = β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji (5.16)

Hence, a probit regression model is linear-additive in the probits.11 Unfortunately,
there is no transformation of probits that is easily communicated to the general
public (as it is possible for odds in the case of logits). But you may think of an un-
derlying latent variable that determines whether you observe yit = 1 or yit = 0.12 In
the heineck-schwarze data, this could be the utility of moonlighting and the
higher its value, the higher the probability that a person has a second job. If this
utility is normally distributed, the predicted values of (5.16) measure these utilities.
More specifically, the predicted values tell you, for a given combination of X and
Z, how many standard deviations the predicted utility is above or below the aver-
age utility. This concept of a latent variable is very popular in econometrics (see
Textbox 5.2 below for more details).

We have estimated a probit regression model for the heineck-schwarze data
using robust standard errors that control for the serial correlation in the panel data.
Table 5.8 shows the results and compares them with the former results of the linear
probability and logistic regression model (again with cluster robust standard errors).

11In other words, the probit transformation links the response probabilities to the linear predictor
(the right-hand side of (5.16)). In the language of generalized linear models, the probit transforma-
tion is another link function for discrete response models.
12A similar argument can be made for the logistic regression model. In that case, the underlying
latent variable would be logistically distributed.
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Table 5.8 Determinants of secondary job holding (pooled linear probability, logistic, and probit
model with cluster robust standard errors)

Variable LPM Logistic model Probit model

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

Desire to work more hours 0.0323 0.0167 0.3678 0.1738 0.1903 0.0903

Desire to work fewer hours −0.0013 0.0077 −0.0156 0.1160 −0.0134 0.0560

Weekly working hours in first job −0.0010 0.0005 −0.0158 0.0091 −0.0074 0.0043

Is not satisfied with pay 0.0138 0.0076 0.1865 0.1049 0.0915 0.0514

Is not satisfied with work itself 0.0030 0.0094 0.0395 0.1277 0.0210 0.0626

Logarithm of first job wage −0.0236 0.0149 −0.3553 0.2307 −0.1627 0.1101

Logarithm of non-labor income 0.0023 0.0028 0.0334 0.0427 0.0158 0.0204

Has public employer 0.0271 0.0149 0.3513 0.1751 0.1782 0.0889

Logarithm of job tenure 0.0111 0.0049 0.1625 0.0710 0.0804 0.0341

Age 0.0022 0.0034 0.0474 0.0516 0.0204 0.0249

Age squared 0.0000 0.0000 −0.0009 0.0007 −0.0004 0.0003

Has children under 15 0.0159 0.0092 0.2250 0.1258 0.1111 0.0624

Being a service class worker 0.0192 0.0108 0.2786 0.1522 0.1359 0.0742

Constant 0.1005 0.0643 −2.3621 0.9472 −1.3437 0.4550

R2 or Pseudo R2 0.0112 0.0211 0.0210

F or X2
1 3.36 49.44 48.98

df 1, df 2 13 2,127 13 13

lnL −2,807.4795 −2,807.9019

N 10,687 10,687 10,687

n 2,127 2,127 2,127

Tmin, Tmax 1 10 1 10 1 10

Source: heineck-schwarze data (see Example 5.1)

In terms of direction and significance of the effects, the conclusions from all three
models are virtually the same. The only exception is the desire to work more hours,
which is only significant in the logistic and the probit regression model.

However, the size of the coefficients differs quite substantially. Before drawing
any conclusions from these differences, you should remember that both the logistic
and the probit regression model are multiplicative non-linear models and conse-
quently, the estimated effect of an explanatory variable depends both on the level of
that specific variable and the level and effects of all the other explanatory variables
in the model (see (5.6) and (5.15)). The linear probability model, on the other hand,
is linear and additive and hence, the effect of an explanatory variable equals the esti-
mated regression coefficient irrespective of the variable’s level and the level of all the
other variables in the model. Therefore, effects of the three types of model should
be compared using marginal effects and not using simple regression coefficients.
Moreover, since marginal effects depend on the level and the estimated regression
coefficients of all the explanatory variables in the model, they should be evaluated at
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Fig. 5.5 Linear probability,
logistic and probit regression
model

a common point of comparison (e.g., when all explanatory variables equal zero and
hence, the linear predictor η = β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji

is zero too). For η = 0, (5.6) equals βj · 0.5 · 0.5 and (5.15) equals βj · 0.4 (the
marginal effect of a linear probability model will always equal βj = βj · 1). Hence,
if the marginal effects of the logistic and the probit model should be equal, the es-
timated regression coefficient of a logistic regression model should be roughly 1.6
times larger than the corresponding estimate of the probit model. Furthermore, lo-
gistic and probit estimates should be multiplied with 0.25 and 0.4, respectively, to
make them comparable with the linear probability model:

β̂Logit ≈ 1.6 · β̂Probit = 0.4

0.25
· β̂Probit

β̂LPM ≈ 0.25 · β̂Logit = 0.25

1
· β̂Logit

β̂LPM ≈ 0.4 · β̂Probit = 0.4

1
· β̂Probit

(5.17)

Take the estimate for the desire to work more hours as an example. From probit
regression, we obtain 0.1903. Multiplied by 1.6, we get 0.3045, which comes much
closer to the estimate 0.3678 in the logistic model. If the distribution of the depen-
dent variable would be less skewed (remember, the overall probability of having
a second job was only 7.6 %), the difference between the logistic and the probit
regression coefficients would be even much smaller.

To sum up, from a theoretical point of view, logistic and probit regression should
be preferred to the linear probability model. Whether you use a logistic or a pro-
bit regression model is often merely a matter of taste. If the distribution of the
dependent variable is not too skewed, the practical differences between all three
approaches are usually quite small. To illustrate this, suppose we estimate a probit
model in which Pr(yit) varies with one time-constant explanatory variable Z1 and
assume that β0 = 0 and γ1 = 1. Figure 5.5 compares this probit regression function
with the regression functions resulting from the corresponding linear and logistic re-



5.1 Modeling the Level of Y : Discrete Response Models for Panel Data 227

gression model.13 As visualized in Fig. 5.5, both the logistic and the probit function
are almost linear in the middle range of probabilities (0.3 < Pr(yit) < 0.7). There-
fore, within this mid-range of probabilities, logistic and probit regression models
return very similar results and, moreover, in this range the linear probability model
also gives a good approximation of both non-linear models. Therefore, in case of
symmetrically distributed dichotomous dependent variables, the linear probability
model is an attractive alternative, because it is much easier to interpret than logistic
or probit regression.

5.1.2 Modeling the Panel Structure

Obviously, it is a wrong assumption to treat the 10,687 observations in the
heineck-schwarze data as representing 10,687 independent units. We called
this mode of analysis pooled linear, pooled logistic, or pooled probit regression, de-
pending on the specific model used. Treating the serial correlations of the repeated
observations as a nuisance factor by using robust standard errors is not very con-
vincing because it only treats the symptoms and not the causes of these statistical
dependencies (see the discussion for continuous variables in Sect. 4.1.1.2). A much
more valid approach would be to extend the model in a way that it recognizes the
panel structure of the data. In Chap. 3, we mentioned three reasons for the serial
correlations: (i) characteristics of the units that are constant over time (Z), (ii) char-
acteristics of the units that change over time (X), which are, however, serially corre-
lated, and (iii) lagged effects of the dependent variable Y (see Sect. 3.4.2). Hence, in
principle, serial correlation can be controlled by including these variables X, Z, and
lagged Y into the model. But quite probably, not all of these variables are known
to the researcher and there will always be some unobserved heterogeneity both at
the unit level and at the level of measurements. As shown in Chap. 3, pooled mod-
els for continuous variables can easily be extended to account for this unobserved
heterogeneity (see Sect. 3.6.1.2):

yit = β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji + ui + eit (5.18)

The stochastic part of this continuous model, εit = ui + eit, distinguishes between
two components: (i) ui : unobserved predictors of Y that are specific to the unit and
therefore time-constant, (ii) eit: unobserved predictors of Y (including measurement
error) that are specific to the time point and the unit. Since we are dealing with
categorical dependent variables in this chapter, we have to discuss whether a simi-
lar extension is meaningful for our discrete response model (5.1). Of course, there
should be a unit-specific error term ui . But one may ask whether a time-varying
(idiosyncratic) error term eit is necessary if the model focuses on probabilities and
hence, is inherently stochastic (see Textbox 5.2). As it turns out, discrete response

13To make the regression functions comparable, we have applied the simple rule of thumb shown
in (5.17) to the corresponding coefficients β0 and γ1 of the linear and the logistic regression model.
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models for panel data seldom include time-varying error terms. Therefore, the basic
panel data model for categorical variables looks like this:

Pr(yit = q) = G
(
β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji + ui

)
(5.19)

and includes only the unit-specific error term ui .

Textbox 5.2 (Latent variable specification for discrete response model) The
fact that discrete response models do not need an idiosyncratic error term can
also be motivated with a slightly different specification. Assume that there is a
latent variable Y ∗ underlying the observed categorical dependent variable Y .
As already mentioned, in the heineck-schwarze data, this could be the
utility of moonlighting and the larger its value, the larger the probability that
a person has a second job. Let this latent variable be a linear-additive function
of our explanatory variables X and Z, unobserved heterogeneity ui at the unit
level and a time-dependent (idiosyncratic) error term eit:

y∗
it = β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji + ui + eit (5.20)

This is exactly the same specification that we used for continuous depen-
dent variables (see (5.18)). If this latent variable exceeds a certain value, say
y∗

it > 0, we observe yit = 1 (the person holds a second job); otherwise, we
observe yit = 0 (the person has no second job). This definition is often written
as follows:

yit = 1
(
β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji + ui + eit > 0

)

(5.21)
1(·) is an indicator function returning a value of 1, if the logical expression
in brackets is true; otherwise, it returns a value of 0. Now let us assume that
the idiosyncratic error is independent of the variables in the model and has a
certain distribution that allows us to compute the probability that eit exceeds
a certain value. For example, we could choose a value that makes the logical
expression in (5.21) true and thus, returns the probability of observing yit = 1:

Pr(yit =1)= Pr
(
eit >−(

β0(t)+β1x1it +· · ·+βkxkit +γ1z1i +· · ·+γj zji +ui

))

(5.22)
If this distribution is symmetric, (5.22) can also be written as

Pr(yit =1) = Pr
(
eit <β0(t)+β1x1it + · · ·+βkxkit +γ1z1i + · · ·+γj zji +ui

)

= F
(
β0(t)+β1x1it + · · · +βkxkit +γ1z1i + · · · +γj zji +ui

)

which equals the cumulative distribution function F(·) of the idiosyncratic
error term. The standard normal or the logistic distribution function are two
possible options for such symmetric distribution functions. This shows us that
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the discrete response model (5.19) can be traced back to a linear-additive
model for an underlying latent variable that, among other things, is a func-
tion of an error term that includes unit-specific ui and idiosyncratic errors eit.
If this idiosyncratic error is normally distributed with mean 0 and variance 1,
the probit regression model results; if it is logistically distributed, the logistic
regression model results. The logistic distribution also has a mean of 0, but a
variance of π2/3.

As already mentioned, ui is a measure of time-constant unobserved heterogene-
ity at the unit level and different estimation strategies exist depending on our as-
sumptions about this heterogeneity. A simple starting point is the assumption that
unobserved heterogeneity is uncorrelated with the variables in the model. In other
words, ui is a sort of random disturbance at the individual level. This is called a
random effect in the literature, and random effects (RE) estimation is used to as-
sess the effects of the explanatory variables in the model. For many applications,
assuming uncorrelated heterogeneity, however, is not a very realistic assumption.
In our example of moonlighting, a possible unobserved variable is health status,
which is also positively correlated with the time-varying explanatory variables in
the model (e.g., with the desire to work fewer hours). If one assumes health status to
be time-constant, this unobserved variable is a possible candidate for ui . With such
correlated heterogeneity, we have to use other techniques that have become known
as fixed effects (FE) estimation. In that context, the unit-specific error, ui , is termed
a fixed effect, stressing the fact that it is typical for unit i and fixed over time.

The distinction between random and fixed effects also has to do with the fact that
in the first case, ui is assumed to be a realization of a random variable with a given
distribution, while in the second case, ui is assumed to be a parameter that is specific
to the sampled unit i (and hence, may be different in another sample). Therefore,
some scholars argue that statistical inference for the population is only possible
with random effects, while fixed effects would always be sample-specific and thus
unsuitable for statistical inferences. As we will see later, the practical relevance of
this argument is rather limited.

In the following sections, we start with the more realistic assumption of corre-
lated heterogeneity and introduce FE estimation (Sect. 5.1.2.1). We then proceed
with RE estimation, which is more cumbersome to compute and partly builds on
results from FE estimation (Sect. 5.1.2.2). After having a firm knowledge of both
estimation techniques, we will present test procedures on how to decide which of
them fits the data better (Sect. 5.1.2.3).

5.1.2.1 Correlated Heterogeneity: Fixed Effects Estimation
Estimating the discrete response probability model (5.19) with fixed effects is not as
easy as in the linear case. G(·) could be either the normal or the logistic distribution
function. Since both functions are non-linear, there is no simple data transformation
that would eliminate the ui from the model (like “time-demeaning” does in the case
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of the linear regression model for continuous dependent variables; see Sect. 4.1.2.1).
Alternatively, one can use dummy variables in the linear case (see Sect. 4.1.2.1). Is
this also a feasible option for categorical variables? Technically, it is no problem
with nowadays computers, although maximizing a likelihood function with respect
to several thousand parameters is a quite demanding task. Besides the regression
coefficients, (n−1) fixed effects have to be estimated (one for each unit i = 1, . . . , n

except the reference unit). But do these estimates have nice statistical properties? In
other words, are they unbiased and efficient?

At this point, things become complicated. As already mentioned, ML estimates
are “only” consistent under the assumptions specified in Textbox 5.1, and in order to
prove this assertion, statisticians study the behavior of the estimators with increasing
sample size (n → ∞), while holding the number of parameters constant. The latter
condition is not feasible when estimating fixed effects with dummy variables. When
n → ∞, by definition, the number of parameters increases as the number of fixed
effects and hence, the number of dummy variables increases. In the statistics liter-
ature, this problem is referred to as the incidental parameters problem. Early work
on binary response models including fixed effects showed that parameter estimates
are heavily biased away from zero when applying the dummy variable approach to
short panels (see Greene (2004a) and the literature cited therein). But it has been de-
bated whether the bias decreases with increasing panel length and whether it exists
for all kinds of panel regression model that can be applied to categorical data. More
recent work by Greene (2004a,b) showed that “the fixed effects estimator shows a
large positive finite sample bias in discrete choice models when T is very small.
[. . .] (T)his general result for the probit model is mimicked by the binomial logit
and the ordered probit models. The bias is persistent, but it does drop off rapidly as
T increases to 3 and more” (Greene, 2004b, 144). Moreover, Greene also showed
that standard errors are underestimated and hence, statistical tests will often show
significant effects when in fact there are none. Certainly, more work needs to be
done to understand the behavior of FE estimates found by using dummy variables,
but the available evidence is not very optimistic and hence, we do not recommend
this approach without taking specific precautions that are beyond the scope of this
textbook.

Fortunately, one can apply a slightly different estimation method within the lo-
gistic regression framework that—similar to the linear case and time-demeaning—
controls for the overall probability of observing the category of interest within each
unit’s panel history.14 The FE logistic regression model is defined as follows:

Pr(yit = 1) = exp(β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji + ui)

1 + exp(β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji + ui)
(5.23)

14This is not possible within the probit regression framework. Surely, there are other approaches to
estimate fixed effects with probit regression models, which, however, go beyond the scope of this
introductory textbook. See the section on p. 245 for a simple method.
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Instead of using the full likelihood, one maximizes a conditional likelihood that
conditions for each unit i on the overall probability of observing yit = 1 within the
observation period. As we will shortly see, by using such a conditional likelihood,
one gets rid of the ui .

The overall probability of observing yit = 1 within the observation period for
unit i is measured by the number of ones observed over time.15 The larger the prob-
ability of being in state yit = 1 for a given unit, the more ones we will observe in its
sequence of ones and zeros in the observation period. By conditioning on the num-
ber of ones, we are controlling for the “average” level of the dependent categorical
variable. This is very similar to the continuous case, where we “time-demeaned” the
data to control for the between-unit variance. In a way, time-demeaning in the con-
tinuous case is also a conditional estimation technique: FE regression coefficients β

are estimated given the unit-specific arithmetic means (see the section on p. 133).
The basic idea of conditional maximum likelihood (CML) is most easily ex-

plained with a simple example. We start with a two-wave panel and use the
wagepan data on union membership (see Example 3.1). Table 3.2 in Sect. 3.2
cross-tabulates membership status 1985 with membership status 1984. The binary
dependent variable indicates whether a person is member of a union (yit = 1) or not
(yit = 0). With only T = 2 measurements over time, there are only four different
sequences of zeros and ones possible: 00 (no member in both years, f22 = 386),
01 (became a member in 1985, f21 = 22), 10 (left the union in 1985, f12 = 37),
11 (member in both years, f11 = 100).16 The four sequences include zero, one, and
two ones, respectively. Instead of maximizing the full likelihood:

L =
386∏

i=1

[
Pr(yi1 = 0) · Pr(yi2 = 0)

]

︸ ︷︷ ︸
386 units with sequence 00

(characteristic: �2
t=1yit=0)

·
408∏

i=387

[
Pr(yi1 = 0) · Pr(yi2 = 1)

]

︸ ︷︷ ︸
22 units with sequence 01

(characteristic: �2
t=1yit=1)

·
445∏

i=409

[
Pr(yi1= 1) · Pr(yi2 = 0)

]

︸ ︷︷ ︸
37 units with sequence 10

(characteristic: �2
t=1yit=1)

·
545∏

i=446

[
Pr(yi1 = 1) · Pr(yi2 = 1)

]

︸ ︷︷ ︸
100 units with sequence 11

(characteristic: �2
t=1yit=2)

we are now using a conditional likelihood, which focuses on the conditional proba-
bility of observing the respective sequence for a unit given that the unit belongs to
the group of units sharing the characteristic of having the same number of ones over
time:

15In statistical terms, the sum of the positive outcomes (yit = 1) over time for unit i is a minimal
sufficient statistic for the unit-specific effect ui .
16The frequencies fij (i = 1,2; j = 1,2) can be computed from Table 3.2 using the absolute
numbers of members and non-members in 1984 and the transition probabilities for the transition
between 1984 and 1985.
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CL =
386∏

i=1

Pr(yi1 = 0) · Pr(yi2 = 0)

Pr(�2
t=1yit = 0)

·
408∏

i=387

Pr(yi1 = 0) · Pr(yi2 = 1)

Pr(�2
t=1yit = 1)

·
445∏

i=409

Pr(yi1= 1) · Pr(yi2 = 0)

Pr(�2
t=1yit = 1)

·
545∏

i=446

Pr(yi1 = 1) · Pr(yi2 = 1)

Pr(�2
t=1yit = 2)

The corresponding probabilities of observing zero, one, or two ones over time are
computed as follows:

Pr
(
�2

t=1yit = 0
) = Pr(yi1 = 0) · Pr(yi2 = 0)

Pr
(
�2

t=1yit = 1
) = Pr(yi1 = 0) · Pr(yi2 = 1) + Pr(yi1= 1) · Pr(yi2 = 0)

Pr
(
�2

t=1yit = 2
) = Pr(yi1 = 1) · Pr(yi2 = 1)

If we plug these probabilities into the conditional likelihood function, we see that
the first and the last multiplicand pertaining to sequences of either all zeros or all
ones are practically irrelevant, since the corresponding ratios equal 1. Obviously,
units without change of the dependent variable do not contribute to the conditional
likelihood. The conditional likelihood uses only those units with a change in Y :

CL =
408∏

i=387

Pr(yi1 = 0) · Pr(yi2 = 1)

Pr(yi1 = 0) · Pr(yi2 = 1) + Pr(yi1= 1) · Pr(yi2 = 0)

·
445∏

i=409

Pr(yi1= 1) · Pr(yi2 = 0)

Pr(yi1 = 0) · Pr(yi2 = 1) + Pr(yi1= 1) · Pr(yi2 = 0)

In other words: Similar to the continuous case, CML uses only the within variation
of Y .

Now let us assume a simple regression model including an error term ui for
unobserved heterogeneity at the unit level. For ease of exposition, we use the same
linear trend model for the probability of union membership that we already used in
Sect. 3.6.1.3:

Pr(yit = 1) = exp(α0 + α1tit + ui)

1 + exp(α0 + α1tit + ui)
⇔ ln

Pr(yit = 1)

1 − Pr(yit = 1)
= α0 + α1tit + ui

Using this model in the conditional likelihood function, we arrive at the following
equation:

CL =
408∏

i=387

(1 − exp(α0+α1ti1+ui)
1+exp(α0+α1ti1+ui)

)·( exp(α0+α1ti2+ui)
1+exp(α0+α1ti2+ui)

)

A

·
445∏

i=409

(
exp(α0+α1ti1+ui)

1+exp(α0+α1ti1+ui)
)·(1 − exp(α0+α1ti2+ui)

1+exp(α0+α1ti2+ui)
)

A
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with A =
(

1 − exp(α0 + α1ti1 + ui)

1 + exp(α0 + α1ti1 + ui)

)
·
(

exp(α0 + α1ti2 + ui)

1 + exp(α0 + α1ti2 + ui)

)

+
(

exp(α0 + α1ti1 + ui)

1 + exp(α0 + α1ti1 + ui)

)
·
(

1 − exp(α0 + α1ti2 + ui)

1 + exp(α0 + α1ti2 + ui)

)

After some algebraic transformations, it can be simplified as follows:

CL =
408∏

i=387

exp(α0 + α1ti2 + ui)

exp(α0 + α1ti1 + ui) + exp(α0 + α1ti2 + ui)

·
445∏

i=409

exp(α0 + α1ti1 + ui)

exp(α0 + α1ti1 + ui) + exp(α0 + α1ti2 + ui)

and the unit-specific error term ui can be eliminated:

CL =
408∏

i=387

exp(α1ti2)

exp(α1ti1) + exp(α1ti2)
·

445∏

i=409

exp(α1ti1)

exp(α1ti1) + exp(α1ti2)
(5.24)

Note also that the regression constant α0 drops out of the equation.
The explanatory variable T measures calendar time and has the values ti1 = 1984

and ti2 = 1985. If we maximize this function with respect to the trend parameter α1,
we arrive at the estimate α̂1 = −0.5199 that was already mentioned in Sect. 3.6.1.3.
It tells us that the logit of union membership decreases by about 0.52 units within
one year; or even better, that the odds of being a union member decrease by a factor
of 0.5946 (= exp(−0.5199)) or by roughly 41 % within one year. Several points are
noteworthy with this CML approach:
1. The derivation of the likelihood is pretty straightforward. We only had to apply

the well-known formulas for probabilities of combined events (a product when
combined by an “and”, a sum when combined by an “or”). Moreover, when us-
ing a regression model for the probabilities, we are implicitly applying the prod-
uct rule for dependent events.17 The regression model specifies the probabilities
conditional on the values of the explanatory variables T , X, Z and U (in the
aforementioned simple model, we only used T and U ). We assume that all ob-
servations are independent of each other once we have controlled for all these
variables.

2. By using a conditional likelihood, we are able to control for unobserved het-
erogeneity without having to estimate it. Conditioning is the equivalent to time-
demeaning in the case of continuous dependent variables.

3. This virtue, however, comes at a price. Estimates are based only on the units with
a change of Y , which is always a smaller sample and thus results in less precise
estimates having larger standard errors.

17The product rule for independent events, Pr(A ∩ B) = Pr(A)·Pr(B), states that you can sim-
ply multiply the single probabilities, while the product rule for dependent events, Pr(A ∩ B) =
Pr(A)·Pr(B|A), states that you should use the conditional probability Pr(B|A).
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4. Conditioning not only eliminates the unit-specific error term ui from the like-
lihood function, but also the effects of all time-constant explanatory variables
Z (and the regression constant). In other words, CML controls for observed and
unobserved heterogeneity at the unit level, but does not provide estimates of their
effects.

5. CML estimates only the effects of the time-varying explanatory variables X.
CML estimates of these effects are consistent and asymptotically normal dis-
tributed under similar conditions like the usual ML estimates.

6. Finally, there is an interesting connection to pooled logistic regression in the case
of two-wave panels: Similar to FD estimates with continuous dependent vari-
ables, which are equivalent to FE estimates in two-wave panels (see Textbox 4.7),
CML estimates based on two-wave panels are equivalent to logistic regression
estimates based on “differenced” data.

In order to show this, we divide the numerator and denominator of both ratios in
(5.24) by exp(α1ti1), which does not change the result on the right-hand side of the
equation. This transforms the conditional likelihood into the (unconditional) likeli-
hood of a pooled logistic regression model:

CL =
408∏

i=387

exp(α1ti2 − α1ti1)

1 + exp(α1ti2 − α1ti1)
·

445∏

i=409

1

1 + exp(α1ti2 − α1ti1)

=
408∏

i=387

exp(α1ti2 − α1ti1)

1 + exp(α1ti2 − α1ti1)
·

445∏

i=409

(
1 − exp(α1ti2 − α1ti1)

1 + exp(α1ti2 − α1ti1)

)

=
445∏

i=387

(
exp(α1 · (ti2 − ti1))

1 + exp(α1 · (ti2 − ti1))

)sit

·
(

1 − exp(α1 · (ti2 − ti1))

1 + exp(α1 · (ti2 − ti1))

)(1−sit)

(5.25)

sit is a dummy variable indicating whether the corresponding unit belongs the group
of units with the sequence 01 (sit = 1) or the group of units with the sequence 10
(sit = 0). Equation (5.25) is structurally equivalent to the logistic likelihood func-
tion (5.10), which tells us that in the case of two-wave panels, CML estimates can
be found by using a logistic regression model with the binary dependent variable S

(observing sequence 01 rather than sequence 10) regressed on the differenced ex-
planatory variables.18 However, with T > 2, this identity does not hold anymore.
Thus, in the case of longer running panels (T ≥ 3), we need specialized software to
find CML estimates.

18Note that S is also a differenced variable. Define �yi2 = yi2 − yi1. S = 1 when �yi2 = +1 (due
to sequence 01) and S = 0 when �yi2 = −1 (due to sequence 10). Observations with �yi2 = 0
(due to sequences 00 and 11) are excluded from the analysis. Differencing the data results (i) in
a loss of observations and (ii) eliminates time-constant explanatory variables Z from the model.
More specifically, for each unit, we lose the first observation because we cannot compute the
difference (yi1 −yi0). Time-constant variables Z, when differenced, will be 0 for all units and thus
show no variation and drop out of the model.
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Table 5.9 Determinants of secondary job holding (pooled and FE logistic model)

Variable Logit model Logit model FE logit model

Estimate Std. Err. Estimate Robust S. E. Estimate Std. Err.

Desire to work more hours 0.3678 0.1375 0.3678 0.1738 0.8493 0.2580

Desire to work fewer hours −0.0156 0.0819 −0.0156 0.1160 −0.0253 0.1663

Weekly working hours in first job −0.0158 0.0047 −0.0158 0.0091 −0.0318 0.0119

Is not satisfied with pay 0.1865 0.0799 0.1865 0.1049 0.0477 0.1557

Is not satisfied with work itself 0.0395 0.0924 0.0395 0.1277 0.2939 0.1818

Logarithm of first job wage −0.3553 0.1165 −0.3553 0.2307 −1.6483 0.4001

Logarithm of non-labor income 0.0334 0.0277 0.0334 0.0427 −0.0605 0.0583

Has public employer 0.3513 0.0960 0.3513 0.1751 −0.1908 0.3324

Logarithm of job tenure 0.1625 0.0427 0.1625 0.0710 0.1008 0.1034

Age 0.0474 0.0305 0.0474 0.0516 0.2951 0.1095

Age squared −0.0009 0.0004 −0.0009 0.0007 −0.0025 0.0013

Has children under 15 0.2250 0.0828 0.2250 0.1258 0.3532 0.2207

Being a service class worker 0.2786 0.0853 0.2786 0.1522 −0.5928 0.2540

Constant −2.3621 0.5770 −2.3621 0.9472

Pseudo R2 0.0211 0.0211

LR/X2
1 121.23 49.44 52.83

df 13 13 13

lnL −2,807.4795 −2,807.4795 −566.4602

N 10,687 10,687 1,607

n 2,127 275

Tmin, Tmax 1 10 2 10

Source: heineck-schwarze data (see Example 5.1)

To conclude the discussion of FE estimation, we apply this technique to our
moonlighting example. Table 5.9 shows the estimates of a FE logistic regression
model with the heineck-schwarze data. The results are again in line with the
assumption that men who desire to work more hours are more likely to be dual job
holders. Also, for a one hour increase of the first job’s weekly working hours, we
anticipate a decline in the odds of moonlighting by a factor of exp(−0.032) = 0.969
or (exp(−0.032) − 1)·100 = −3.1 %. Thus, the interpretation of the estimated co-
efficients is identical to the interpretation of the familiar pooled logistic regression
model.

Now compare the estimates with those obtained from the pooled logistic regres-
sion models using either theoretical or robust standard errors. If you look at the
standard errors, you will discover substantial differences between the FE model and
the two pooled logistic regression models. The FE estimates have larger standard
errors than the pooled logistic regression model with robust standard errors and the
latter model has larger standard errors than those obtained from simple pooled lo-
gistic regression using theoretical standard errors. This is due to the fact that—when
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estimating FE—many pieces of information are lost. As the derivation of the con-
ditional likelihood showed, units without change of the dependent variable do not
contribute to the likelihood. In other words, whenever a man holds a side job at all
interview dates and hence, there is no variation over time to explain, observations
are ignored. The same holds true for those persons who never moonlight during the
observation period. In the moonlighting example, serial correlation is quite substan-
tial and thus, the number of units available for analysis is much smaller than in the
pooled analysis. 1,852 men (contributing altogether 9,080 observations) had to be
dropped from the analysis because of all positive or all negative outcomes on the
dependent variable. Consequently, the FE estimates are based on “only” 275 men
and 1,607 observations. However, by focusing on the changing units, FE controls
for unobserved heterogeneity at the unit level and the possible omitted variable bias
when important time-constant variables are ignored that correlate with the variables
in the model. Therefore, from a theoretical point of view, an important finding is the
significant positive effect of the desire to work more hours in all three regression
models, providing support for the hours-constraints motive. At the same time, as
the number of weekly working hours increases, the odds of moonlighting decrease.
The findings for the heterogeneous-jobs motive are mixed, however. Once the panel
structure is taken into account, there is no significant difference between those being
satisfied and those being dissatisfied with their pay in the first job (dissatisfaction
with the work itself had no significant effect at all).

Before concluding this section, a brief mention of another consequence of FE
logistic regression is necessary. Like in the case of continuous dependent variables,
the effects of time-constant explanatory variables cannot be quantified. This limi-
tation did not show up in our analysis of the heineck-schwarze data because
all explanatory variables used in our analysis are time-varying (see Example 5.1).
But if, for instance, we had used the full data set of Heineck and Schwarze (2004)
and had included variables for gender and nationality, it would not be possible to
quantify the differences between men and women or between German and British
employees using FE logistic regression. Some people think that this is a clear disad-
vantage of FE, but it should be stressed that time-constant explanatory variables are
controlled for in the term ui , although the procedure does not provide a numerical
estimate of their effects.

5.1.2.2 Uncorrelated Heterogeneity: Random Effects Estimation
If you are interested in numerical estimates of the effects of time-constant explana-
tory variables Z on the response probability, you can use RE estimation, which
is feasible both with the logistic and probit regression model. However, this ad-
vantage comes at a price: We have to assume that unobserved heterogeneity ui at
the unit level is independent of the variables in the model. So for instance, if the
neglected time-constant variable in our moonlighting example is health status, we
have to assume that it is independent of all the variables used in our former regres-
sion models. As already discussed, this may not be a realistic assumption for health
status, because health status quite probably also influences preferences for working
time. In the case that you suspect unobserved heterogeneity to be correlated with
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the variables in your model, it is better to stick with FE estimation. If, however, the
independence assumption is true, RE effects will be more efficient than FE because
RE uses both the longitudinal and the cross-sectional information in the data (i.e.,
its estimates are based on a much larger sample than FE estimates).

Some people also question why one should use RE estimation at all if the as-
sumption is that unobserved heterogeneity is uncorrelated with the variables in the
model. They propose to use pooled probit or logistic regression, which also assume
independent error terms and which are computationally much more easy to han-
dle. However, all pooled models erroneously assume independent observations and
ignore the fact that the data include several measurements for each unit. As a con-
sequence, pooled models will provide us with standard errors that are too small.
Hence, from a statistical point of view, it is always better to use an estimation tech-
nique that accounts for the panel character of the data (like FE and RE). Never-
theless, one could ask whether the serial correlation in the data is large enough to
justify the use of these panel techniques. We will come back to this question later in
this section.

In order to understand RE estimation, we switch to a more general notation that
is less tedious and can be applied to any kind of discrete response model (including
probit and logistic regression). Let Pr(yit|β,xit,γ , zi , ui) be the probability of ob-
serving a certain value, say Yit = 1, of the binary dependent variable at time point t

for unit i. The vertical line “|” indicates that this probability is supposed to depend
on time-varying (X) and time-constant (Z) explanatory variables, on their respective
effects β and γ , and on unobserved heterogeneity U . To shorten the notation, we
use vectors (indicated by bold letters). So instead of naming all time-varying vari-
ables x1it , x2it , . . . , xkit, we talk about the vector xit of all time-varying variables
at time point t for unit i. The same applies for all time-constant variables, which
are collected in the vector zi , and the regression coefficients that are collected in
the vectors β and γ . At the moment, Pr(yit|β,xit,γ , zi , ui) simply states that the
response probability is a function of these effects and variables, but it does not spec-
ify the functional form of how they are related. As we will see, knowledge of its
functional form is not necessary to understand the basic idea of RE estimation. But
obviously, both the logistic and the probit regression model are special cases of this
more general specification.

Now let us consider the full likelihood of all observations in our sample. Again,
to make things simple, we focus on the individual likelihood that each unit i con-
tributes to the overall likelihood. It is a product of the probabilities for all the
t = 1, . . . , T observations of unit i over time:

Li = Pr(yi1|β,xi1,γ , zi , ui) · Pr(yi2|β,xi2,γ , zi , ui) · . . . · Pr(yiT |β,xiT ,γ , zi , ui)

= Li1 · Li2 · . . . · LiT

The full likelihood is then the product over the likelihood contributions Li of all
i = 1, . . . , n units. Note also that the formula applies to balanced and unbalanced
panels. In the latter case, the number of observations varies between units and hence,
the upper limit T of the product has to be individualized (T = Ti ).
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The problem with maximizing this likelihood is the term ui , which we do not
know. In the previous section, we showed that it is impossible to obtain consistent
estimates of both the regression coefficients and the fixed effects ui (the so-called
incidental parameters problem). But what if we think of ui as a random variable Ui

and make a distributional assumption about it? For example, if we assume that
l = 1, . . . ,L different realizations of Ui are possible: ui1, ui2, . . . , uiL, each being
observed with a different probability Pr(uil), then we could plug the assumed uil

into the regression equation for Pr(yit|β,xit,γ , zi , ui) and compute a weighted sum
of the resulting probabilities (using the probability of observing each uil as a weight
for Pr(yit|β,xit, γ, zi , uil)).19 For example, if we assume that three different real-
izations ui1 = −1, ui2 = 0, and ui3 = +1 are possible at t = 1, which are observed
with probability 0.25, 0.5, and 0.25, respectively, then the likelihood contribution
of the first measurement t = 1 of unit i equals

Li1 = Pr(yi1|β,xi1,γ , zi ,−1) · 0.25

+ Pr(yi1|β,xi1,γ , zi ,0) · 0.5 + Pr(yi1|β,xi1,γ , zi ,+1) · 0.25

For any number L larger than three, this formula looks like this:

Li1 =
L∑

l=1

Pr(yi1|β,xi1,γ , zi , uil) · Pr(uil |xi1, zi )

In this formula, we have used Pr(uil |xi1, zi ) instead of Pr(uil) because in the most
general case, the probability of observing a certain uil will depend on the character-
istics X and Z of the unit. If we now think about the whole likelihood contribution
of unit i, this results in a quite complicated expression:

Li =
(

L∑

l=1

Pr(yi1|β,xi1,γ , zi , uil) · Pr(uil |xi1, zi )

)

·
(

L∑

l=1

Pr(yi2|β,xi2,γ , zi , uil) · Pr(uil |xi2, zi )

)

· . . . ·
(

L∑

l=1

Pr(yiT |β,xiT ,γ , zi , uil) · Pr(uil |xiT , zi )

)

However, using the assumption of independent unobserved heterogeneity, in which
case Pr(uil |xi1, zi ) reduces again to Pr(uil), we can factor Pr(uil) out and simplify
the expression to

19Remember that the probability of a combined event that results from an or-combination of the
single events equals the sum of the corresponding probabilities.
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Li =
L∑

l=1

{[
Pr(yi1|β,xi1,γ , zi , uil) · . . . ·Pr(yiT |β,xiT ,γ , zi , uil)

] ·Pr(uil)
}

(5.26)

In square brackets, you find a product term that is already known to you from pooled
logistic (or probit) regression (compare (5.10)). First, this product is evaluated for
one of the possible realizations of Ui , say ui1. The result equals the probability of
observing the sequence of observations yi1, yi2, . . . , yiT for unit i, given that unob-
served heterogeneity equals ui1. Then, similar calculations are done for all the other
possible realizations of Ui . Finally, a weighted sum of all these probabilities is com-
puted because unobserved heterogeneity may be equal to either ui1 or ui2 . . . or uiL.
The weights measure the (assumed) probability that the corresponding realization
of Ui is the true one.

Naturally, the assumption that unobserved heterogeneity can take on only a few
(l = 1, . . . ,L) discrete values is not very realistic. If it were, one would always ask:
Why these ones (e.g., why −1, 0 and +1)? Hence, it is much more meaningful to
assume that unobserved heterogeneity is measured by a continuous random variable
U that ranges from minus to plus infinity. In that case, we have to define a density
function that describes the distribution of U and we need a more general mathe-
matical tool to “add” the now infinite number of possibilities in (5.26). If f (u) is
the density function of unobserved heterogeneity, then integrating over the range
of possible realizations of U is the continuous equivalent to summation over a fi-
nite number of discrete values. Correspondingly, the summation in (5.26) has to be
exchanged by an integral:

Li =
+∞∫

−∞

{[
Pr(yi1|β,xi1,γ , zi , uil) · . . . · Pr(yiT |β,xiT ,γ , zi , uil)

] · f (u) · du
}

Finally, the full likelihood is computed by multiplying the likelihood contributions
Li of all i = 1, . . . , n units in the sample:

Li =
n∏

i=1

( +∞∫

−∞

{[
Pr(yi1|β,xi1,γ , zi , uil) · . . . ·Pr(yiT |β,xiT ,γ , zi , uil)

] ·f (u) ·du
}
)

(5.27)
Equation (5.27) is the general format of an RE response probability model. It

includes several special cases depending on the distributional assumptions about
unobserved heterogeneity and on the choice of the regression function that links the
response probabilities to the explanatory variables X and Z. A common assumption
is that unobserved heterogeneity is normally distributed with mean 0 and variance
σ 2

u : ui ∼ N(0, σ 2
u ). The RE probit regression model then assumes the response prob-

abilities in (5.27) to be equal to

Pr(yit|β,xit,γ , zi , ui)

= Φ
(
β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji + ui

)
(5.28)
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while the RE logistic regression model assumes them to be equal to

Pr(yit|β,xit,γ , zi , ui)

= exp(β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji + ui)

1 + exp(β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji + ui)
(5.29)

If we plug either (5.28) or (5.29) into (5.27) and specify f (u) as a normal density
with mean 0 and variance σ 2

u ,

f (u) = 1√
2πσ 2

u

exp

(
− u2

2σ 2
u

)

then the likelihood function is completely specified and can be maximized with
respect to the unknown regression coefficients β and γ .

The likelihood of either the probit or the logistic RE regression model is far more
complicated than the logistic FE model. Maximization is difficult because of the in-
tegral in (5.27). There is neither an analytical solution for the integral nor for the
overall maximization problem. Hence, we need numerical optimization and numer-
ical integration techniques to find the ML estimates of β and γ .20 This explains why
ML estimation of RE models for categorical dependent variables is usually much
more costly in terms of computing time than GLS estimation of RE models for con-
tinuous dependent variables (see Sect. 4.1.2.2) or ML estimation of pooled regres-
sion models for categorical dependent variables (see Sects. 5.1.1.2 and 5.1.1.3).21

To exemplify how to estimate an RE model with categorical dependent vari-
ables, we consider once more the determinants of secondary job holding. Table 5.10
summarizes the results of this exercise both for the RE probit and the RE logistic
regression model. Let us first address the question of whether unobserved hetero-
geneity plays a significant role in this data set. This can be decided on the basis of
the estimated variance σ̂ 2

u of unobserved heterogeneity U , which is shown at the
bottom of Table 5.10. A descriptive measure of the importance of unobserved het-
erogeneity is the proportion of total error variance that is contributed by unobserved
heterogeneity. If unobserved heterogeneity is independent of the variables in the
model and the idiosyncratic error implied by the discrete response model, the vari-
ance of the composite error εit equals the sum of both variances: Var(εit) = σ 2

u +σ 2
e

20A popular numerical integration technique is Gauss–Hermite quadrature. As a rule, numerical
integration approximates the integral by a polynomial function. The polynomial function is chosen
in the way that it is identical to the function to be integrated at least for a discrete number of points
on the abscissa. These points are termed quadrature points and obviously, the precision of the
approximation depends on how many points we choose and where they lie on the abscissa. Many
statistical programs for RE estimation provide routines to check the sensitivity of the quadrature
approximation. Note also that computing time for RE estimation is inversely related to the number
of quadrature points.
21Note in passing that RE models for continuous dependent variables could also be estimated with
ML. In that case, you will encounter similar problems with respect to computing time.
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Table 5.10 Determinants of secondary job holding (RE logistic and RE probit model)

Variable RE logit model RE probit model

Estimate Std. Err. Estimate Std. Err.

Desire to work more hours 0.8616 0.2341 0.4664 0.1316

Desire to work fewer hours 0.0085 0.1451 −0.0074 0.0798

Weekly working hours in first job −0.0267 0.0094 −0.0140 0.0051

Is not satisfied with pay 0.1184 0.1378 0.0634 0.0762

Is not satisfied with work itself 0.2200 0.1608 0.1228 0.0892

Logarithm of first job wage −0.7900 0.2461 −0.4399 0.1342

Logarithm of non-labor income −0.0263 0.0505 −0.0191 0.0277

Has public employer 0.4378 0.2332 0.2459 0.1289

Logarithm of job tenure 0.0799 0.0828 0.0384 0.0454

Age 0.1379 0.0691 0.0757 0.0377

Age squared −0.0020 0.0009 −0.0011 0.0005

Has children under 15 0.2564 0.1719 0.1391 0.0947

Being a service class worker −0.0272 0.1860 −0.0191 0.1009

Constant −5.2796 1.2605 −3.0708 0.6913

X2
1 59.17 60.13

df 13 13

lnL −1,963.9930 −1,961.1574

σu 3.4466 0.1504 2.0167 0.0818

ρ 0.7831 0.0148 0.8027 0.0129

N 10,687 10,687

n 2,127 2,127

Tmin, Tmax 1 10 1 10

Source: heineck-schwarze data (see Example 5.1)

(see Textbox 3.1). The proportion ρ of total error variance that is due to unobserved
heterogeneity is then defined as

ρ = σ 2
u

σ 2
u + σ 2

e

(5.30)

Note that the idiosyncratic error variance equals σ 2
e = 1 when using a probit

regression model and σ 2
e = π2/3 when using a logistic regression model (see

Textbox 5.2). Furthermore, (5.30) is also a measure of the serial correlation in the
dependent categorical variable that is left over after controlling for the explanatory
variables X and Z in the model (see the discussion in Sect. 4.1.2.2 and (4.21)). The
reason for this (remaining) serial correlation is unobserved heterogeneity ui , which
causes different observations for one unit to have something in common and hence
to be correlated.
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For the probit regression model, ρ is estimated as ρ̂ = 0.803 (= 2.0172/

(2.0172 + 1)). The logistic regression model estimates ρ̂ = 0.783 (= 3.4472/

(3.4472 + π2/3)). Thus, a fair amount of the total error (78–80 %) is due to un-
observed heterogeneity at the unit level. Therefore, in this example, there are good
reasons to prefer RE models over pooled logistic or pooled probit regression. This
conclusion can be tested more formally with a likelihood ratio test, because the cor-
responding pooled and RE models are hierarchically nested (in the pooled models
U is restricted to be 0). If we compute twice the difference of the log likelihoods
of both the pooled and the RE model, we arrive at highly significant test statistics
for both the logistic (LR = 1,686.97, df = 1, p < 0.000) and the probit regression
model (LR = 1,693.49, df = 1, p < 0.000). We therefore conclude that unobserved
heterogeneity is important and panel estimation methods are needed. You should
note, however, that this test operates under the additional assumption that unob-
served heterogeneity is uncorrelated with the independent variables in the model.
Therefore, it does not tell us whether RE is the appropriate panel estimation method.
We still need to test whether the assumption of uncorrelated unobserved heterogene-
ity is true, because in the opposite case, RE estimation is not the appropriate method
either. This point will be discussed in greater detail in the next section.

Let us now turn to the other estimates in Table 5.10. The results, in terms of the
direction of the coefficients, are similar to what we have obtained above in FE es-
timation. More particularly, a striking finding of the FE logit model, the RE logit
model and RE probit model is support for the hours-constraints motive. At the same
time, the results of these models suggest that the heterogeneous-jobs motive does
not seem to interfere with moonlighting. Hence, the findings for our variables of in-
terest are quite robust with regard to different estimation procedures. The same does
not hold true for our control variables, however. Such deviations in size of effects
and standard errors raise the question of whether the assumption of uncorrelated
heterogeneity is violated. The next section touches upon this issue.

5.1.2.3 Choosing Between Pooled, Fixed, and Random Effects
Estimation

Having introduced three different estimation procedures for categorical dependent
variables—pooled, FE, and RE estimation—we can now discuss the question: When
do we apply which method?

When Do We Apply Pooled, FE, and RE Estimation? Although the simplest
technique, pooled (probit or logistic) estimation is also the most demanding pro-
cedure among the three. It assumes that all unit-specific heterogeneity can be con-
trolled by the independent variables in the model so that the remaining unexplained
variance is simply “white noise”. Social science theories and data hardly fulfill this
assumption. Therefore, pooled estimates are often biased or at least inefficient. Con-
sider our indicator for the heterogeneous-jobs motive in the heineck-schwarze
data as an example. While the simple pooled logistic model shows some support for
the heterogeneous-jobs motive, satisfaction with pay loses its significance once the
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specific nature of panel data is taken into account. Pooled estimation can be a start-
ing point, but seldom will it provide the final estimates. Hence, in most panel appli-
cations, a choice has to be made between RE and FE estimation. It seems as if from
a substantive point of view, RE estimation provides the most comprehensive conclu-
sions from the data because it allows one to estimate effects of both time-constant
and time-varying variables. But RE estimation—like pooled analysis—makes re-
strictive assumptions, too. It admits unobserved unit-specific heterogeneity, but as-
sumes it to be independent of the explanatory variables X and Z. From the examples
discussed for the continuous case, you should be aware that failure of this assump-
tion results in biased estimates (see Fig. 4.4 in Sect. 4.1.2.3).

So how can we decide whether RE estimates are biased? Similar to the contin-
uous case, the overall rule is that RE estimation is possibly biased, if FE and RE
estimates differ substantially. If that is the case, some people give up using RE esti-
mation and stick with FE estimation only. Nevertheless, there are two reasons why
RE estimation is quite popular in panel research: (i) The effects of time-constant
explanatory variables Z can be estimated, and (ii) FE estimates focus only on units
where Y changes over time, which results in a loss of degrees of freedom and cor-
respondingly less precise estimates, especially if there is also not much over time
variation in the explanatory variables. In Sect. 4.1.2.3, we argued that both argu-
ments are not very convincing. Since the number of units, n, is usually very large in
micro panels, it is often no practical problem to find a sufficient number of units with
changing Y . If there is insufficient within variation both of the dependent and the
independent variables, then it does not make much sense to conduct an expensive
panel survey anyway. With respect to the first argument, one could at least argue that
although there are no estimates of the Z effects, these time-constant characteristics
are controlled for—both the observed (Z) and the unobserved ones (U )—and this
is done under much more general conditions than RE assumes. Only if we want to
have an estimate of their effect size are we lost with FE estimation.

Nevertheless, it would be helpful to have a formal test procedure that tells us
whether FE and RE effects differ significantly. Fortunately, Hausman’s (Hausman,
1978) specification test can also be applied to discrete response models for panel
data. As already mentioned in Sect. 4.1.2.3, the general test idea is the following:
If two estimators are consistent under a given set of assumptions, their estimates
should not differ significantly. Let us call this set of assumptions A. Under a dif-
ferent set of assumptions, say B , this may not be true. If, in this case, only one of
the two estimators provides consistent estimates, the estimates from both estimators
should differ significantly. Hausman showed that the standard error of these differ-
ences is a simple function of the variance-covariance matrices of both estimators. In
our case, A equals a model in which unobserved heterogeneity is uncorrelated with
the independent variables in the model. In this situation, both RE and FE estimates
are consistent, with RE estimates being more efficient than FE estimates. B per-
tains to a model with correlated unobserved heterogeneity, in which RE estimation
provides biased results, while FE estimation is still consistent.

We illustrate the Hausman test with results from the FE and RE logistic regres-
sion models applied to the heineck-schwarze data (see Tables 5.9 and 5.10).
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For example, there seems to be no large difference between the FE estimate of
the desire to work more hours effect (β̂FE = 0.8493) and the RE estimate (β̂RE =
0.8616). According to Hausman, the standard error of the difference between both
estimates, σ̂

(β̂FE−β̂RE)
, can be calculated from the standard errors of both estimates,

σ̂
β̂FE and σ̂

β̂RE , as follows:

σ̂
(β̂FE−β̂RE)

=
√

σ̂ 2
β̂FE − σ̂ 2

β̂RE

This result can be used to compute a simple T test. However, statisticians usually
compute a Wald test, because ML estimates are (only) consistent and tests are pre-
ferred that rely on large sample theory. The square of the test statistic t ,

X2
1 =

[
(β̂FE − β̂RE) − 0

σ̂
(β̂FE−β̂RE)

]2

(5.31)

equals the Wald statistic22 and is distributed as χ2 with df = 1 degree of free-
dom. Using the estimated standard errors of both desire to work effects, σ̂

β̂FE =
0.2580 and σ̂

β̂RE = 0.2341, we arrive at a value of X2
1 = 0.013, which is not

significant when compared to a χ2 distribution with df = 1 degree of freedom
(p = 0.910). However, if we apply the same test to the estimated effects of the re-
spondent’s wage in the first job, β̂FE = −1.6483 and β̂RE = −0.7900, a significant
test statistic of X2

1 = 7.403 appears (p = 0.007).
In the general case, when testing the joint significance of the differences between

all RE and FE estimates, one uses the following Wald test:

X2
2 = (

β̂
FE − β̂

RE)′ · (Ψ̂ FE − Ψ̂
RE)−1 · (β̂FE − β̂

RE)
(5.32)

which is a generalization of the former test procedure using matrix algebra. The

vectors β̂
FE

and β̂
RE

represent the parameter estimates from FE and RE estima-
tion, while the matrices Ψ̂

FE
and Ψ̂

RE
include the corresponding estimated vari-

ances and covariances of the estimates. X2
2 is distributed as χ2 with df = l de-

grees of freedom ( l being the number of coefficients tested). As already men-
tioned in Sect. 4.1.2.3, you do not need matrix algebra to apply the overall Haus-
man test, because many software packages include pre-programmed versions of
(5.32). Applying this formula to the thirteen (comparable) estimates from our FE
and RE models (excluding the constant) results in a test statistic of X2

2 = 38.33,
which is highly significant with df = 13 degrees of freedom (p = 0.0003). Hence,
according to the Hausman test, FE estimates should be preferred over RE esti-
mates.

22Like in Chap. 4, we use X2 to symbolize the test statistic of a Wald test. Again, since we discuss
different Wald tests, we distinguish the various test statistics by indices (X2

1 , X2
2 , etc.). Note, how-

ever, that numbering starts again in this chapter and X2
1 from this and the former chapter are not

identical.
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A Hybrid Model In Sect. 4.1.2.3, we also introduced a hybrid model for the con-
tinuous case that somehow was a compromise between RE and FE models. Since
FE estimation uses only the within variation of Y and X (Z, by definition, has
none), the basic idea of this hybrid model was to estimate an RE model and include
time-varying explanatory variables X in such a way that their within- and between-
unit effects are separated. Therefore, besides time-constant explanatory variables
Z, the hybrid model uses unit-specific means (x̄1i., . . . , x̄ki.) and time-demeaned
values (x1it − x̄1i., . . . , xkit − x̄ki.) instead of the original time-varying explanatory
variables X. In the continuous case, or more specifically, with linear models, this
hybrid model replicates the FE estimates and in addition also estimates effects for
time-constant explanatory variables Z. Such a hybrid model can also be specified
for categorical dependent variables. However, because of its non-linearity, the hy-
brid response probability model does not exactly replicate the FE estimates, but the
estimates come very close to them. Again, the attraction of this hybrid model is that
it allows us to test differences between FE and RE estimates in a very general way.
Furthermore, it allows us to find FE estimates for other link functions besides the
logit (e.g., for probit regression models).

To illustrate how to specify this hybrid model, we use the logistic regression
model: Pr(yit = 1) = exp(η)/(1 + exp(η)). The linear predictor η of this model is
now defined as

η = β0 + β1 · (x1it − x̄1i.) + ϕ1x̄1i. + · · · + βk · (xkit − x̄ki.) + ϕkx̄ki.

+ γ1z1i + · · · + γj zji + ui (5.33)

For ease of exposition, we have not assumed a time trend (i.e., β0(t) = β0). Other-
wise, we would also have to decompose the time trend into its within- and between-
unit components. In this hybrid model, the regression coefficients β1, . . . , βk mea-
sure within-unit effects of the time-varying explanatory variables X. They should
be nearly identical to the regression coefficients of the corresponding FE model.
The regression coefficients ϕ1, . . . , ϕk measure the between-unit effect of the time-
varying explanatory variables X. As discussed in Sect. 4.1.2.3, they are hardly of
interest. Including mean values of the time-varying explanatory variables X into the
model simply controls unobserved heterogeneity to that extent that we can replicate
the FE estimates with β1, . . . , βk . Furthermore, β1, . . . , βk and ϕ1, . . . , ϕk should
be identical, if unobserved heterogeneity is uncorrelated with the variables in the
model, and hence, RE and FE estimates should only differ randomly. By using sin-
gle parameter tests or by using linear restrictions on several parameters, we can test
whether this assumption is true. Finally, the regression coefficients γ1, . . . , γk mea-
sure the effects of the time-constant explanatory variables Z, which—compared to
the simple logistic RE model—now control for correlated unobserved heterogeneity
as far as it is measured by the means x̄1i., . . . , x̄ki..

Table 5.11 displays the results of the hybrid model for the heineck-schwarze
data and reveals that the coefficients for the deviations from unit-specific means are
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Table 5.11 Determinants of
secondary job holding (RE
logistic hybrid model)

Source:
heineck-schwarze data
(see Example 5.1)

Variable Estimate Std. Err.

Unit-specific means

Desire to work more hours 1.0879 0.6838

Desire to work fewer hours 0.2249 0.3699

Weekly working hours in first job −0.0283 0.0164

Is not satisfied with pay 0.6637 0.3780

Is not satisfied with work itself 0.0005 0.4346

Logarithm of first job wage −0.9665 0.4255

Logarithm of non-labor income 0.0538 0.1046

Has public employer 1.0535 0.3445

Logarithm of job tenure 0.1960 0.1601

Age 0.0777 0.0945

Age squared −0.0016 0.0012

Has children under 15 0.3631 0.3067

Being a service class worker 0.7887 0.3155

Deviations from unit-specific means

Desire to work more hours 0.8873 0.2582

Desire to work fewer hours −0.0486 0.1586

Weekly working hours in first job −0.0367 0.0118

Is not satisfied with pay 0.0637 0.1503

Is not satisfied with work itself 0.2351 0.1771

Logarithm of first job wage −1.7637 0.3749

Logarithm of non-labor income −0.0623 0.0580

Has public employer −0.1763 0.3156

Logarithm of job tenure 0.1020 0.0995

Age 0.2863 0.1068

Age squared −0.0024 0.0013

Has children under 15 0.2733 0.2115

Being a service class worker −0.5395 0.2425

Constant −4.6131 1.8088

X2
1 92.2

df 26

lnL −1,942.3418

σu 3.4929 0.1486

ρ 0.7876 0.0142

N 10,687

n 2,127

T 10
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quite close to the corresponding coefficients in the FE model. By applying a Wald
test, we can test whether the coefficients for deviations from unit-specific means are
the same as coefficients for unit-specific means. For example, for the desire to work
more hours and the respondent’s wage, the Wald test gives you values of X2

3 = 0.07
and X2

3 = 1.98, respectively, which are not significant when compared to a χ2 dis-
tribution with df = 1 degree of freedom (p = 0.788 resp. p = 0.159). However,
performing an overall test returns a test statistic of X2

3 = 38.69, which is highly
significant (df = 13, p = 0.0002) and again suggests that FE estimates should be
preferred over RE estimates.

5.1.3 Extensions

As discussed in Sect. 3.4.2, serial correlation may result from spurious and true
state dependence. While we have controlled for spurious state dependence due to
unobserved heterogeneity in the FE (and RE) regression model, we have not yet
dealt with the second source of serial correlation. The estimation models that we
have considered to this point rest upon the assumption that there is no state, or what
is also called structural dependence: the probability of moonlighting at time t is
not determined by the propensity to hold a side job at time t − 1. If there is true
state dependence, then you would use a dynamic model rather than a static model.
This is achieved by plugging a new variable yi,t−1 into the model, which allows
you to capture the degree to which the lagged dependent variable yi,t−1 determines
the discrete response yit at time t .23 There may not only be feedback effects from
your lagged dependent variable on the response probability at time t . There are
also instances in which your lagged dependent variable determines the explana-
tory variables at time t . Readers interested in such extensions of our general ap-
proach presented above are referred to Honoré (2002), Maddala (1987), Heckman
(1981b) and Heckman (1981a). More advanced treatments can be found in Hon-
oré and Kyriazidou (2000), Arellano and Carrasco (2003) and Honoré and Lewbel
(2002).

The above discussion of discrete response models is restricted to dichotomous
variables. However, in several applications, the dependent variable has more than
two distinct values. The monograph by Long (1997) as well as the more recent
textbooks by Long and Freese (2006), Agresti (2002) and Hosmer and Lemeshow
(2000) deal with regression models for such ordinal, nominal, and count outcomes.
These books include various practical examples with cross-section data and are writ-
ten at an introductory level.

At a more advanced level, various articles and textbooks detail specific methods
and review their refinements for the analysis of panel data. An example for multino-
mial, unordered, dependent variables is the analysis of different labor market states,

23Notice that this is a special case of the Markov model discussed in Sect. 3.5.2.2.
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such as high-wage, low-wage, unemployed, and economically inactive. An introduc-
tion to regression models specifically designed for the analysis of such unordered
variables is given in Borooah (2001). Multinomial regression models are also cov-
ered in greater detail in some standard textbooks such as Hosmer and Lemeshow
(2000). Chamberlain (1980) shows how to extend the CML approach to the multi-
nomial logit model. Sophisticated treatment of omitted variable bias in multinomial
logit models can be found in Lee (1982).

For variables that show an inherent ordering, such as satisfaction with pay or
job security, specific techniques have been developed, namely ordinal logit or probit
analysis. Readers interested in introductions to ordinal logit or probit analysis are
referred to the classical article by McKelvey and Zavoina (1975). A gentle intro-
duction to the analysis of ordered responses is given in Daykin and Moffatt (2002).
The textbook by Agresti (2010) covers the specific techniques for ordinal variables
in greater detail. Various two-step approaches have been proposed to allow for fixed
effects in ordered response models (Winkelmann and Winkelmann, 1998; Ferrer-i-
Carbonell and Frijters, 2004). First, the ordinal logit model is simplified to a binary
logit model (e.g., by collapsing the categorical responses or dichotomizing the de-
pendent variable at the individual mean). In the second step, fixed effects estimation
can be applied, as demonstrated in Sect. 5.1.2.1. Ferrer-i-Carbonell (2005) gives an
example of how to estimate a RE ordered probit model.

Count variables can take on only a limited number of values greater or equal to
zero. For instance, count variables arise in demographic analysis (e.g., the number
of children ever born to a women), but we can also think of application examples
in econometric analysis (e.g., number of job changes in a given time interval). If
you look at the distribution of such variables, you will see that these discrete vari-
ables are often highly skewed. We therefore need a method appropriate for such
dependent variables: the Poisson model. An insightful review on estimation models
for count variables can be found in Winkelmann and Zimmermann (1986), Winkel-
mann (2003), and Cameron and Trivedi (1986, 1998). Hausman et al. (1984) illus-
trate how to estimate RE and FE Poisson models. The issue of individual effects and
dynamics in count data models is raised in a more recent paper by Blundell et al.
(2002).

5.2 Modeling the Change of Y : Discrete-Time Event History
Models for Panel Data

In this section, we use discrete-time event history models to analyze the change of a
categorical dependent variable Y . Event history modeling is a very comprehensive
tool to analyze time-to-event data. In this textbook, we will use only part of this
methodology; more specifically, procedures that apply to research designs when the
state of a unit i over time is only known at discrete points in time (t1, t2, . . . , tT ), as
is usually the case with panel data. Nevertheless, to make full use of these discrete-
time methods, it is necessary to be familiar with the basic terminology of event
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history modeling, which we introduce in Sect. 5.2.1. A nice side effect of focusing
on discrete-time methods is that we can use statistical tools (logistic regression)
that are already familiar to us to estimate the parameters of the corresponding event
history models.

However, these techniques have to be adopted to a missing data problem that
is specific to event history data and which is called censoring. Units that do not
experience a change of Y during the observation period are called censored obser-
vations. It is not quite obvious how to treat them—whether they should be ignored
or whether they should be included in the model and if so, how this could be done.
In Sect. 5.2.2, we will show that simple techniques using traditional models for
continuous or categorical variables lead to seriously biased estimates. Only maxi-
mum likelihood estimation is able to treat the specific information of censored (no
event until end of observation) and uncensored observations (event at ti ) correctly.
As we show in Sect. 5.2.2.3, the likelihood function of a discrete-time event history
model is identical to the likelihood of a logistic regression model and hence, logistic
regression can be used to estimate the parameters of model (5.2).

In Sect. 5.2.3, we will exemplify how to apply a discrete-time logistic model
to panel data using an analysis of women’s retirement decisions. This example ad-
dresses the change of a dependent categorical variable. It looks at women’s labor
market status and analyzes the change from being active to being retired.

Example 5.2 (hank data) The example focuses on the effects of early
life family events on women’s late life labor market behavior. Prior research
on married women’s labor force participation has intensively focused on the
interplay between a woman’s reproductive history and their spouses’ em-
ployment decisions. In recent years, multifaceted transformations have had
large scale consequences for the work and family life of women. Aspects of
change embrace declining birth rates, extended educational enrollment and la-
bor force participation, and transformation of the gender division of work. So
far, little is known about the relationship between childbearing and retirement.
Using panel data from the first 18 waves of the German Socio-Economic
Panel Study (SOEP) covering 1984–2001, Hank (2004) concentrates atten-
tion on ever-married West German women aged 50–69 and addresses the re-
search question of whether mothers will withdraw from the workforce earlier
than childless women. Or, will they prolong their working life to make up for
employment interruptions during their reproductive years?

One supposition is that having children goes along with an earlier retreat
from the labor market since mothers not only have a weaker labor market
orientation over the life course, but they are also more likely to have a male
breadwinner in the household who is expected to provide economic security
throughout, rendering the mothers’ employment career less important. At the
same time, and relative to men, women experience more fragmentation, more
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part-time employment, more employment in the lower segments of the labor
market, and lower returns to work. These factors affect pension rights and
incomes and hence women’s retirement behavior. Therefore, mothers might
decide to work longer than childless women in order to make up for losses in
their own personal income and retirement benefits.

Table 5.12 gives a short description of the variables included in this data
set. The variables were measured annually. Most explanatory variables are
time-varying except number of children, education, years of labor force ex-
perience, and number of employment spells. All in all, the sample consists
of n = 837 women that have been observed between Tmin = 1 and Tmax = 18
years (altogether N = 5,765 observations).

Unfortunately, some of the variables include quite a lot of missing data. For
education and the partner’s employment status, Hank created indicator vari-
ables with the value 1 indicating that the information for the corresponding
variable is missing (0 otherwise). There are also cases for which the informa-
tion on income is lacking. Hank used a simple imputation technique, which
appears adequate for his specific research purpose since income is only a con-
trol variable. He used the median income in this sample (3,700 DM) to fill
gaps. Note that this is not explained in the journal article; the results for the
indicator variables are not shown.

Table 5.12 Measures used in the analysis of the hank data

Variable Description

Variable of interest

Number of children number of children at age 50 time-constant

Control variables

Age group six dummies for: 50–53 years = reference, 54–57
years, 58–59 years, 60–61 years, 62–63 years, 64–
69 years

time-varying

Educational attainment four dummies for: no degree = reference, voca-
tional degree, university degree, imputation flag

time-constant

Labor force career number of years in the labor force at age 50 time-constant

number of employment spells at age 50

Partner four dummies for: no partner = reference, partner
retired, partner not retired, imputation flag

time-varying

Income monthly household income (in DM)/100 time-varying

monthly household income squared

Home owner dummy for home owner time-varying

Health status dummy for poor health time-varying

Person needing care dummy for person needing care in the household time-varying
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Throughout most parts of this section, we assume—like in the case of the hank
data—that the dependent variable is dichotomous. But the concluding Sect. 5.2.4
discusses some extensions to more complicated change processes, including cate-
gorical variables having more than two values or variables that change several times
during the observation period.

5.2.1 Basic Terminology

A lifetime is characterized by a sequence of events. Event is a byword for an indi-
vidual’s transition from one discrete state to one (of several) other discrete state(s)
within a well-defined interval of time. Examples are entry into unemployment in la-
bor market analysis, partnership formation in demographic studies, and mortality in
medical research. We can also observe sequences of events for other research units,
such as warfare of nations in political science research or formation of companies
in economics. An event history documents whether, and if so, when, such events
occur. With techniques of event history modeling, one can deal with time-to-event
data and analyze the hazard rate of experiencing a particular event at time t .

In the technical language of event history modeling, the time span a unit of anal-
ysis spends in a specific state is called an episode or a spell. Individuals in a specific
discrete state who have a chance to switch to a specific outcome state during this
period of time belong to the risk set. In turn, the time period that a person is at risk
for event occurrence is defined as the risk period.

In simple event history models, one considers only two states: one origin and
one destination state. As an illustration, in the analysis of mortality, the underlying
process starts with birth and ends with death. This is also called a single event.
In other cases, there are multiple destinations. For instance, a job can end with a
change of employer, unemployment, economic inactivity, or further education. This
is called a multiple event.

Sometimes we are not interested in one single spell but in multiple episodes. For
instance, individuals may hold various jobs during their economically active life.
Event history modeling allows the analysis of such repeatable events with models
for multiple episodes. Our Example 5.2 analyzes a single event that does not repeat
over time.

Often we do not observe the whole sequence of events. Depending on the data
collection design, time is observed with varying precision, and time units may be
too large to represent the underlying processes that generate event sequences. Ac-
cordingly, in the literature on event history analysis, one distinguishes between tech-
niques for continuous-time and discrete-time data. Both terms refer to the mode of
data collection and the resulting dependent variable T measuring spell duration (t =
end date − start date). Here, continuous time means that time can take on any non-
negative value (t ≥ 0). By contrast, in discrete-time methods, time can take on only
positive integer values (t = 1,2,3, . . .). Panel data often yield only discrete-time
data (see the annual data in Example 5.2). Given the special focus of this textbook,
we will concentrate on methods for discrete-time event history data.
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Fig. 5.6 Different types of censoring

Besides the discrete or continuous-time nature of the data, there is another more
fundamental data collection problem typical for event histories: The period of obser-
vation is always limited and hence, we observe episodes for which we do not know
the start date, and for others, there is no end date. There are also episodes that are
completely unobserved. This problem is called censoring. Figure 5.6 illustrates the
censoring problem with an example from labor market analysis. It shows a selection
of employment spells for a sample of six individuals (time T is measured continu-
ously since each individual’s entry into the labor market). The episodes of person 1
and person 4 are examples for observations that continue until time ti , at which
point an event occurs (marked by a *). Since all of this happens during the obser-
vation period (indicated by the observation window), start and end dates (including
origin and destination states) are known for both episodes. The other episodes in
Fig. 5.6 are censored, however. They are distinguished as completely right censored
(person 6), right censored (person 3), left censored (person 2), and completely left
censored (person 5). Censoring means that the information that describes an episode
(start date, origin state, end date, destination state) is either partially or completely
missing. A central assumption that is usually made in event history analysis is that
the driving force behind censoring mechanisms is independent of the change pro-
cess being analyzed. This assumption is often true, if one chooses the observation
period independent of the process under study (as is the case in Example 5.2).

Obviously, completely censored episodes cannot be used in the analysis. But
what about partially censored episodes? Quite generally speaking, left censoring
poses more problems than right censoring. Event history analysis has developed spe-
cific statistical techniques to deal with the latter problem and we will discuss them
in Sect. 5.2.2. Statistical techniques for left censored data are much more compli-
cated (if they exist at all), but sometimes the missing information can be collected
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by retrospective interviewing.24 Therefore, one should ignore left censored episodes
and focus the analysis on the uncensored and right censored episodes.

Left censored episodes are also prevalent in the hank data: Since the study
focuses on ever-married West German women aged 50–69, the majority of them
(n = 507) have been gainfully employed for a long time when the observation pe-
riod starts at age 50. Ignoring all of these episodes would drastically decrease the
sample size. Alternatively, Hank (2004) controls for the previous employment his-
tory by using years of labor force experience and number of employment spells as
explanatory variables in the model.

Having introduced the concepts of discrete time and censoring, we come now to
the fundamental statistical concepts of event history analysis. In discrete-time anal-
ysis, we observe the event history of n independent units (i = 1, . . . , n), beginning
at some natural starting point t = 0. In Sect. 3.3, we introduced the concept of the
discrete-time hazard rate hp(t). It is defined as the conditional probability that an
individual will experience an event (a transition from state p to another state) at a
particular time t , given that this event did not occur before time t and the individual
still was a member of the risk set.25 The discrete-time hazard rate is given as

hp(t) = Pr(yit 	= p|yi1 = · · · = yi,t−1 = p) (5.34)

One can also study the survival probability (i.e., the probability that an individ-
ual will not experience an event at or before time t and thus, remain in the origin
state p):

Sp(t) = Pr(T ≥ t) (5.35)

To derive this probability, one simply accumulates the period-by-period risks of
event non-occurrence (see the example in Sect. 3.3, especially Table 3.4). The
discrete-time survival probability is given as the product of probabilities of not ex-
periencing an event in each of the t intervals up to and including the current one:

Sp(t) = (
1 − hp(1)

) · (1 − hp(2)
) · . . . · (1 − hp(t)

) =
t∏

l=1

(
1 − hp(l)

)
(5.36)

Naturally enough, changes in the hazard rate bring about changes in the survivor
function. The survival probability declines swiftly with higher hazard rates and,
vice versa, it declines slowly when the discrete-time hazard rate is low.

24Obviously, no similar data collection strategy exists for right censored data (up until now, social
science research is not able to look in the future).
25Note here that originally the hazard rate is not defined as a probability but as a rate that summa-
rizes the instantaneous transition intensity. As such, the hazard rate is a continuous-time quantity,
a case that is left unconsidered in this textbook. Therefore, from a statistical point of view, it would
be more accurate only to talk about conditional transition probabilities in case of discrete-time
event histories. In this text, we are a bit more liberal and use the term discrete-time hazard as a
synonym for conditional transition probability.
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By focusing on the conditional transition probability resp. the discrete-time haz-
ard rate, we have made the implicit assumption that the underlying process allows
change to happen only at discrete points in time. This may be acceptable as an ap-
proximation, but in reality, nearly all change processes operate in continuous time.
For example, working people can retire each month of the year and not only in yearly
intervals. Therefore, from a theoretical point of view, it is much more realistic to as-
sume a process operating in continuous time that—due to the panel design—has
been observed imprecisely. In that case, you should model the continuous-time haz-
ard rate and adapt the statistical model to the imprecise measurements of T . We will
come back to this alternative when discussing several extensions of our basic event
history model (see Sect. 5.2.3.5).

Nevertheless, the assumption of an underlying process operating in discrete time
with discretely measured spell durations makes statistical modeling very easy. You
only need to define how the discrete-time hazard rate hip(t) depends on T and your
explanatory variables X and Z (see (5.2); in that case we also need an index i

because the hazard rate now depends on individual characteristics X and Z):

hip(t) = G
(
β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji

)

G(·) is a suitable transformation function to ensure that the right-hand side of the
equation provides values that are within the proper limits of probabilities (i.e., 0 ≤
hip(t) ≤ 1). A common choice in discrete-time event history modeling is the logistic
distribution function, which models the discrete-time hazard as follows:

hip(t) = exp(β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji)

1 + exp(β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji)
(5.37)

You may want to start with the simplest model, where the hazard rate varies between
each pair of panel waves (modeled with a series of dummies for the β0(t) term), but
does not depend on explanatory variables. You can then introduce more complexity
by allowing the hazard rate to depend on time-constant (Z) and time-varying (X)
explanatory variables. As we will see in Sect. 5.2.3.5, the more realistic assumption
of an imprecisely measured continuous-time process provides very similar estimates
of the effects of the explanatory variables.

5.2.2 How to Estimate a Discrete-Time Hazard Model

How, then, can we derive an estimate of the hazard rate, when it is not directly
observable? With survey data, we can only observe whether, and if so, when, tran-
sitions from a given origin state to a specific destination state occur. Looking back
to the statistical methods discussed so far, at least two possible analytical strategies
come to mind. First, one could measure the time until event occurrence, ti , for each
individual i and consider this duration variable as a dependent variable in a lin-
ear model. Second, thinking of the methods used to analyze categorical dependent
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variables, one could also generate an indicator variable for event occurrence and es-
timate a discrete response model. However, as we will shortly see, there are several
problems with both techniques when working with discrete-time event history data.

5.2.2.1 OLS Regression
Let us first consider the case of a linear regression model. Statistically, in linear re-
gression, the dependent variable is assumed to be continuous and varying between
negative and positive infinity. Often, it is also assumed to be normally distributed.
With time-to-event data, however, the dependent variable T is restricted to be greater
than zero and in most cases has a right skewed distribution. This deficiency can eas-
ily be solved by taking the natural logarithm of T . This transformation will make
the distribution more symmetric and spell durations lower than 1 will result in neg-
ative values since ln(a) < 0 if 0 < a < 1. Therefore, a simple regression model for
duration data would be (see (4.3)):

ln(ti) = α0 + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji + εit (5.38)

If one is analyzing non-repeatable events (like in Example 5.2), then there is only
one observation for each unit i (including the dependent variable T and the explana-
tory variables X and Z) and one can use OLS to estimate the parameters. Note that
this is a model on spell durations, which are inversely related to the hazard rate: The
longer the spell duration, the lower the hazard rate and vice versa. Hence, explana-
tory variables having a positive (negative) effect on the hazard rate should have
a negative (positive) effect in (5.38). This model is easily applied and parameter
estimates have a well-known interpretation. There are, however, important insuffi-
ciencies of this simple linear model.

First, OLS is not able to deal with censored observations that are typical of event
history data. The study by Hank (2004) is an example of a situation where time-to-
event data is incomplete for some units. Not all women retire during the observation
period: 451 out of n = 837 women contribute a right censored spell to the data set.
How can these spells, for which we do not observe the total spell duration, enter our
analysis?

A simple approach could be to construct the dependent variable in such a way
that it measures the maximum duration the observations were under observation
and hence, consider these spells as if they had ended at the last point of observation.
Obviously, this is not a very meaningful procedure. The assumption that the true
survival time t∗i is equal to the length of the observation period τ is not met for right
censored observations: t∗i > τ .26 Depending on the number of censored cases, sum-
mary statistics, such as the median survival time (in the origin state) and estimated
parameters, will be heavily biased.27 Median survival time will be underestimated,

26If time of observation were different for each unit, τ should have an index i, too. But this is not
the case in Example 5.2.
27The estimated median lifetime equals that value of T , at which 50 % of the units at risk have
already experienced the transition under study (i.e., that time point when the estimated survivor
function is 0.5).
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if ti is set equal to τ , albeit the true survival time t∗i is larger than τ . Using this ap-
proach, women in the hank data will appear to retire earlier than they actually do.
Moreover, if mothers work longer, as hypothesized by some authors, then mothers
have a higher probability of being censored during a limited observation period. The
simple approach for censored observations would make their spell durations shorter
than they actually are and hence, would decrease the differences between mothers
and other women. The corresponding parameter estimate would underestimate the
true effect of motherhood.

Another approach would be to simply ignore censored observations and exclude
the corresponding records from the analysis. This would result in a very selective
sample since longer spell durations with a correspondingly high probability of cen-
soring are systematically excluded from the analysis. Again, this would result in
biased parameter estimates and summary statistics.

Second, OLS estimation assumes that the dependent variable (or equivalently,
the error term in the regression model) is normally distributed (see Textbox 4.1).
As already mentioned, using ln(ti) instead of ti itself often solves the distributional
problems. But from a theoretical point of view, using data transformations such
as the natural logarithm is not very convincing, because it always looks like data
fitting. Moreover, if space would allow us to learn more about continuous-time event
history analysis, we would know that spell durations by definition are often not
normally distributed. Depending on the trend of the hazard rate over time, whether it
is constant over time, monotonically increasing, or u-shaped, we could even specify
the theoretical distribution of the spell durations.28 These distributions would not be
identical with the normal (or log-normal) distribution.

Finally, it turns out that the simple model (5.38) is not as flexible as it looks at
first glance. For example, you may have noticed that it includes only a regression
constant α0 and not the general term β0(t) that has been used in earlier models to
operationalize changes over time. But with time T as the dependent variable, it is not
possible to include a term on the right-hand side that is itself a function of process
time t .29 This is a clear limitation because, as already mentioned, we might have a
clear hypothesis that the process itself changes over time. As we will see later, this
problem does not arise if we model the hazard rate (and not the spell duration).30

Another limitation of (5.38) appears with the time-varying explanatory variables X.
How can one incorporate such variables in the simple model (5.38)? Each unit is
represented only once in the data set, with one single dependent variable (duration)
and you can provide only one value for each explanatory variable. For women who
retire, you would have to decide which value of a time-varying explanatory variable
is associated with a change in the hazard rate—the one at the beginning of the spell

28Therefore, continuous-time event history models are often called duration models.
29This does not preclude that the model includes variables that use other definitions of time (e.g.,
in the hank data, year of birth for each women, i.e., cohort membership).
30Continuous-time event history models (duration models) solve this problem by deriving a distri-
butional assumption for spell durations from hypotheses concerning the trend of the hazard (see
previous paragraph).
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or the value at the end or some value in between? Ideally, we would like to use all
of the values of X that are observed during spell duration, but that is not possible
with only one data record for each unit. Hence, the simple model (5.38) does not
allow a proper incorporation of time-varying explanatory variables.

5.2.2.2 Logistic Regression
Consider now a binary response model where the dependent variable is equal to 1
if we observe an event and equal to 0 if the observation is censored. The discrete
response model (5.7) can be used to analyze the explanatory variables on which
these events depend:

ln

(
Pr(yit = 1)

1 − Pr(yit = 1)

)
=β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji (5.39)

Two cautionary notes are in order here. One obvious consequence of this analyti-
cal strategy is a large loss of important information. All units are lumped together
even though they experience the target event at many different points in time; event
occurrence data do not yield information on the timing of event occurrence. As a
remedy, some people include time (to event or censoring) as an explanatory vari-
able on the right-hand side of the equation (by a suitable specification of β0(t)).
Although this looks like a good solution, it is not what we are looking for. We want
to know the probability of an event at each point in time, given that the unit is still
at risk of experiencing the event (i.e., the conditional transition probability). While
the number of units still at risk (the risk set) diminishes over time as more and more
units have experienced the event, (5.39) focuses on the unconditional probability of
experiencing the event, even if we differentiate this probability for different points
in time by specifying β0(t). In other words, (5.39) relates event occurrences always
to the whole sample size and not to the number of units that are left over at each
point in time. Therefore, also from a theoretical point of view, the discrete response
models are not a good choice since they do no rest on the analytical strategy we
have in mind when working with time-to-event data.

5.2.2.3 Logistic Discrete-Time Hazard Model
Although the former two approaches have their limitations, they show us what a
more suitable estimation method should look at. First, it should use all the available
information in the data. Besides analyzing events, it should make proper use of the
censored observations, which tell us that up to the end of the observation window
no event occurred, although the corresponding unit has been at risk of experiencing
the event of interest. Second, the estimation method should recognize the timing of
events and censoring. While OLS regression can cope with the timing, it obviously
has problems with censored observations. Logistic regression, on the other hand, can
distinguish between events and censored observations, but has problems in modeling
how the process changes over time. What we are now looking for, is an estimation
method that combines the virtues of both techniques and additionally, provides a
sensible model of the underlying change process.
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As discussed in Sect. 3.5.2.2, the conditional transition probability, or for short,
the discrete-time hazard rate, is a meaningful measure of this change process and
thus, hip(t) should be the dependent variable of our regression models. If unit i

is observed ti (discrete) time units and has not experienced an event (i.e., if it is
a censored observation), (5.36) shows us how we can use hip(t) to compute the
probability of surviving up to time point ti :

Lcensored
i =

ti∏

t=1

(
1 − hip(t)

)
(5.40)

Similarly, we can compute the probability that unit i experiences an event at time
point ti , given that i is still member of the risk set. This necessitates that unit i has
survived ti − 1 time units:

Levent
i =

(
ti−1∏

t=1

(
1 − hip(t)

)
)

hip(ti) (5.41)

Now, if we make up a new data set that includes N = ∑n
i=1 ti records (i.e., each

unit is represented as often in this data set as it is observed at discrete points in
time), then it is very easy to specify the likelihood of the whole sample. We only
have to record in a dummy variable for each of the ti records of unit i, whether the
record ended with an event (eventit = 1) or did not end with an event (eventit = 0).
Using this dummy variable, we can combine the former two (5.40) and (5.41) and
by multiplying over all i = 1, . . . , n units, derive the full likelihood:

L =
n∏

i=1

ti∏

t=1

(
1 − hip(t)

)(1−eventit) · hip(t)
eventit (5.42)

As an example, consider the following hypothetical data set including n = 3 individ-
uals (see Table 5.13). Person 1 experiences an event after one year (t1 = 1), person 2
after four years (t2 = 4), and person 3 is observed four years without experiencing
an event (a censored observation at t3 = 4).

Altogether, the data set includes N = ∑n
i=1 ti = 9 records. The dummy variable

event indicates whether the corresponding record ends with an event (event= 1)
or not (event= 0). In the likelihood function (5.42), you can think about this
dummy variable as a switch that turns on the right terms depending on whether the
record indicates an event or a survival. For example, for person 2, who experiences
an event at t2 = 4, the following likelihood contribution that equals the general for-
mat of likelihood contributions for events (5.41) results:

L2 = [(
1 − h2p(1)

)(1−0) · h2p(1)0] · [(1 − h2p(2)
)(1−0) · h2p(2)0]

· [(1 − h2p(3)
)(1−0) · h2p(3)0] · [(1 − h2p(4)

)(1−1) · h2p(4)1]

= (
1 − h2p(1)

) · (1 − h2p(2)
) · (1 − h2p(3)

) · h2p(4)
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Table 5.13 Hypothetical data set for estimating discrete-time event history data

ID Wave Duration Event Number of
children

Labor force
experience

Age group Poor health

1 1 1 1 0 30 60–61 no

2 1 4 0 2 15 58–59 no

2 2 4 0 2 15 60–61 yes

2 3 4 0 2 15 60–61 yes

2 4 4 1 2 15 62–63 yes

3 1 4 0 1 27 54–57 no

3 2 4 0 1 27 58–59 yes

3 3 4 0 1 27 58–59 no

3 4 4 0 1 27 60–61 no

For person 3, a unit without an event, the likelihood contribution equals the general
format of likelihood contributions for censored observations (5.40):

L3 = [(
1 − h3p(1)

)(1−0) · h3p(1)0] · [(1 − h3p(2)
)(1−0) · h3p(2)0]

· [(1 − h3p(3)
)(1−0) · h3p(3)0] · [(1 − h3p(4)

)(1−0) · h3p(4)0]

= (
1 − h3p(1)

) · (1 − h3p(2)
) · (1 − h3p(3)

) · (1 − h3p(4)
)

Hence, the basic idea of organizing discrete-time event histories is to split each spell
into as many data records as there are discrete observations over time. With panel
data that are organized in long format (see Sect. 2.1), this is an easy task. You only
have to delete all measurements after the event of interest has occurred. So, for
example, let us assume that the hypothetical data from Table 5.13 come from a four-
year panel. Person 1 retired after one year and hence, all measurements following
the first measurement are dropped from the discrete-time event history data set. Note
also that this format allows us to use all the different values that are observed for
time-varying explanatory variables during the observation period (see the variables
“age group” and “poor health” in Table 5.13).

By inserting the regression model (5.37) for the hazard rates into the likelihood
function

L=
n∏

i=1

ti∏

t=1

(
1− exp(β0(t)+β1x1it +· · ·+βkxkit +γ1z1i +· · ·+γj zji)

1+ exp(β0(t)+β1x1it +· · ·+ βkxkit +γ1z1i +· · ·+ γj zji)

)(1−eventit)

·
(

exp(β0(t)+β1x1it +· · ·+βkxkit +γ1z1i +· · ·+γj zji)

1+ exp(β0(t)+β1x1it +· · ·+βkxkit +γ1z1i +· · ·+γj zji)

)eventit
(5.43)

we can use explanatory variables X and Z and functions of time β0(t) to model
how the hazard varies between units with different characteristics X and Z and over
time T . Depending on the hypotheses about time dependence, one may either in-
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troduce duration as a continuous variable (e.g., a linear duration effect) or include
a set of dummy variables (discontinuous duration effect). For instance, you could
use β0(t) = α0 ln(t) if you assume that the hazard rate is linearly falling or linearly
increasing with process time T .31 Alternatively, you could use dummy variables for
different time periods during the observation period: β0(t) = α0 +α1d1 +· · ·+αldl .
Within these time periods, the hazard does not change, while it can be different be-
tween time periods. Do not forget that for model identification, you have to exclude
one time period (the reference period, during which the hazard rate equals α0). It is
also important that each time period includes at least one event, otherwise you will
not be able to estimate the effect of the corresponding dummy. Quite generally, the
decision of the functional form is up to the analyst who has to find good theoreti-
cal arguments as to why he or she expects a certain functional form, describing the
process under study.

Estimates of the model parameters are found by maximizing the likelihood func-
tion (5.43) (or its natural logarithm, which is easier) with respect to the parameters
α,β , and γ . This can be done by any kind of statistical program that offers routines
for maximizing user-defined likelihood functions. This usually implies a little bit of
programming for the user. However, a closer look at (5.43) shows that this cumber-
some solution is not necessary. If we compare it with the likelihood (5.10) for the
logistic regression model, we see that both functions are structurally equivalent, ex-
cept that the latter one includes the unconditional probability of observing a certain
category of the dependent variable, while the former one includes the conditional
transition probability.32 While the likelihood for the logistic regression model uses
the (categorical) dependent variable itself to switch on and off the correct terms in
the likelihood function, we now need an additional indicator variable event to do
this job for us. But obviously, we can use any logistic regression program to esti-
mate the parameters of our discrete-time hazard model, if we organize the data like
in our small hypothetical data set (see Table 5.13) and use an indicator variable that
measures events as the dependent variable.

But beware! We are using a program that has been made for other purposes. We
are taking advantage of its numerical capabilities, but we should not uncritically
accept all terms in its output. For example, if it names parameter estimates “odds
ratios”, this is fine for the logistic regression model, but we are focusing on hazard
rates and hazard ratios (see the discussion below). You should note that parameter
estimates now tell us the effect of the corresponding explanatory variable on the con-
ditional transition probability (resp. hazard rate) and not on the overall probability
of observing an event.

31Because the regression model is non-linear, use ln(t) and not t as the independent variable to
estimate a linear effect of process time.
32The fact that (5.10) includes a fixed number of observations over time, T , which is identical for
all units, while (5.42) includes a varying number of observations, ti , which is different for each
unit i is no real difference. In the case of an unbalanced panel, T in (5.10) would have to be
individualized as well (see footnote 8).
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More specifically, let us define hip(t)/(1−hip(t)) as the odds of experiencing the
event at time point t versus “surviving” time point t without an event (for short, the
odds of experiencing an event at t). Estimates resulting from a logistic discrete-time
hazard model:

ln

(
hip(t)

1 − hip(t)

)
=β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji (5.44)

provide the change in the log-odds of experiencing an event at time point t . This
is a quantity, which is even more difficult to communicate than the logit in logistic
regression. If you want to make statements about the hazard rate, you have to in-
sert your estimates into (5.37) and make forecasts using values of the independent
variables X, Z, and T . These forecasts can be nicely illustrated in conditional effect
plots (see Fig. 5.7 on p. 266). More specifically, the marginal effect of a time-varying
variable Xk on the hazard rate at time point t equals

∂hip(t)

∂xki

= βk · hip(t) · (1 − hip(t)
)

(5.45)

It is a function of the corresponding parameter estimate βk and the values of all
variables in the model at time point t , which enter into the equation through hip(t)

(the marginal effects of Z and T are computed similarly). From (5.45), we conclude
that a negative sign of a coefficient implies that the hazard rate decreases with rising
values of the corresponding explanatory variable. In turn, a positive sign indicates
that the hazard increases. If the coefficient is equal to zero, the explanatory variable
has no effect on the hazard.

Alternatively, you can focus on the odds of experiencing an event:

hip(t)

1 − hip(t)
= exp(β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji)

= exp(β0(t)) · exp(β1)
x1it · . . . · exp(βk)

xkit · exp(γ1)
z1i · . . . · exp(γj )

zji

(5.46)

by computing the antilogarithms exp(β0(t)), exp(β1), . . . , exp(γj ) of the model pa-
rameters. Similar to odds ratios (see Sect. 5.1.1.2), they are interpreted as hazard
ratios. They measure how much the hazard changes if the corresponding explana-
tory variable increases by one unit. Note again that it is a multiplicative model and
hence, change is measured as multiplicative change (the multiplicant equals the an-
tilogarithm, say exp(β1)) or, equivalently, percentage change: (exp(β1) − 1) · 100.
An antilogarithm equal to 1 means that the corresponding explanatory variable has
no effect.

Finally, there is one last subtle but important difference to the logistic panel re-
gression model. The unit of analysis in event history analysis is the spell and not the
repeated measurements over time. From this point of view, the hypothetical data in
Table 5.13 include only three cases. The fact that we split them up into small pieces
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of one year does not matter here. This has been done to model changes of the haz-
ard during the duration of the spell (with the side effect of being able to include all
values of time-varying explanatory variables that have been measured during the du-
ration of the spell). The likelihood is still based on all (censored and non-censored)
spells and when their contribution to the likelihood is computed the small pieces of
information are again put together (see (5.40) and (5.41)).

This has important implications about how we think about the single records
in the data set. While they represented possibly serially correlated, but separate
measurements in the case of logistic panel regression models, they now represent
consecutive information about an underlying unit of analysis (i.e., the spell). Nec-
essarily, they belong together and hence, we do not have to control for their serial
correlation. This would be different if we were to analyze repeatable events. Let us
assume that each individual contributes s = 1, . . . , Si spells to the analysis (e.g., in
an analysis of job durations). The likelihood would then have to be evaluated over
all individuals and all spells:

L =
n∏

i=1

Si∏

s=1

tsi∏

t=1

(
1 − hip(t)

)(1−eventist) · hip(t)
eventist (5.47)

Possibly, spells belonging to one individual are not independent of each other. For
example, if a person is unqualified, he faces more labor market risks than other in-
dividuals and hence, spell durations will be comparatively short for that person. The
qualification of a person is easily controlled for in the corresponding discrete-time
hazard model, but probably other unknown factors exist at the level of individuals
that contribute to the serial correlation of the spells within each individual’s event
history. In this case, we need more specialized models that control for the serial cor-
relation due to unknown variables at the level of individuals (see also Sect. 5.2.3.4).
We repeat, however, that it is a serial correlation between spells and not between
yearly measurements.

5.2.3 Applying the Discrete-Time Event History Model

In this section, we apply the discrete-time event history model to real data. It is a
model developed for the analysis of singular events like the change from employ-
ment to retirement in the hank data (see Example 5.2). We start our discussion
in Sect. 5.2.3.1 with the simple case of non-repeatable singular events. Retirement
is obviously such a non-repeatable event (usually, you retire once and not several
times). Then we take up again the question of unobserved heterogeneity, which—
as it turns out—in event history models, results in biased estimates, even if unob-
served heterogeneity is uncorrelated with the variables in the model (Sect. 5.2.3.2).
Following this discussion, we introduce random and fixed effects into our discrete-
time event history model (Sects. 5.2.3.3 and 5.2.3.4). We discuss whether and how
both extensions deal with the adverse effects of unobserved heterogeneity. Finally,
since the assumption of a discrete change process makes sense for discrete (panel)
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measurements, but not for the underlying process itself, we ask how we can adapt
continuous-time event history models to data that—due to the panel design—have
been measured only very imprecisely (Sect. 5.2.3.5).

5.2.3.1 Non-repeatable Singular Events
Consider again the research example by Hank (2004) and suppose we wish to use
the data from Example 5.2 to derive his reported estimation results. For this illus-
tration, we begin by requesting the estimates for a parsimonious specification that
controls for individual characteristics (education and employment history), house-
hold characteristics, and the reproductive history of the women. The conditional
probability for the transition into retirement in year t , hip(t), is assumed to take the
form

ln

(
hip(t)

1 − hip(t)

)
=α0 +α1di1 +· · ·+α6di6 +β1x1it +· · ·+βkxkit +γ1z1i +· · ·+γj zji

(5.48)
where the set of α’s captures the underlying process time (age). We use a set of age
dummies and assume that the transition rates are constant in each of the age intervals
but can change between them. The results of this discrete-time event history model
are summarized in Table 5.14. Columns 2 and 4 show the coefficients and hazard
ratios, while standard errors are given in Columns 3 and 5.

There is evidence for the impact of a woman’s reproductive history, with women
having children retiring later. The parameter estimate for the variable number of
children is −0.098. You can take the antilogarithm of this estimate, exp(−0.098) =
0.907, and interpret the resulting hazard ratio. As discussed in Sect. 5.2.2.3, it is
then possible to look at the percentage change in the ratio. For our example, we get
(exp(−0.098) − 1) · 100 = −9.335. This tells you that with each additional child,
the hazard of retiring decreases by a factor of 0.907 or about 9.3 %. In addition,
the transition into retirement is also influenced by age, health status, marital status,
and labor force experience. The other explanatory variables, however, do not play a
significant role in the retirement decision.

Let us now look at the result of some other specifications and see how different
models can be tested against each other. Our goal is to replace the explanatory vari-
able number of children with other measures that grasp different aspects of women’s
reproductive history. All other control variables are left unchanged. In Hank (2004),
the results for four additional specifications are reported. Specification 1 controls for
the number of children (see Table 5.14). Specification 2 includes instead a binary
indicator of whether a woman ever had a child. Specification 3 captures the effect of
age at first birth, while specification 4 focuses on mother’s labor force participation.
Finally, the last specification differs from specifications 1 to 4 in that it controls for
various interaction effects.

Which one of the alternative models fits the data better? When models are nested,
you can use likelihood ratio tests that compare the likelihood of a current model,
which controls for explanatory variables whose effects you would like to evaluate,
and the likelihood of a restricted model, which does not control for these variables
(see Sect. 7.2.2).
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Table 5.14 Determinants of female retirement (discrete-time logistic hazard model)

Variable Estimate Std. Err. Hazard Ratio Std. Err.

No. of children −0.0976 0.0481 0.9070 0.0436

Age group

54–57 years 1.1275 0.2698 3.0880 0.8332

58–59 years 1.5948 0.2871 4.9276 1.4146

60–61 years 3.9589 0.2570 52.4005 13.4680

62–63 years 2.7524 0.3075 15.6795 4.8222

64–69 years 3.2638 0.2905 26.1478 7.5948

Educational attainment

Vocational degree −0.1280 0.1267 0.8799 0.1115

University degree −0.4709 0.2924 0.6244 0.1826

Imputation flag: Education 0.1729 0.4931 1.1888 0.5862

Labor force career

Years in labor force at age 50 0.0192 0.0067 1.0194 0.0068

No. of employment spells 0.0494 0.0551 1.0507 0.0579

Partner

Partner, not retired −1.1598 0.1890 0.3136 0.0592

Partner, retired −0.3349 0.1691 0.7154 0.1210

Imputation flag: Partner 0.8165 0.2447 2.2625 0.5537

Income

Household income 0.0032 0.0098 1.0032 0.0098

Squared household income 0.0000 0.0000 1.0000 0.0000

Imputation flag: Income 0.1951 0.2519 1.2154 0.3061

Other personal characteristics

Home owner −0.0850 0.1278 0.9185 0.1174

Poor health 0.3699 0.1681 1.4476 0.2433

Person needing care 0.1284 0.2505 1.1370 0.2849

Constant −4.3016 0.4008

LR 755.65

df 20

lnL −1,038.5887

N 5,765

n 837

T 18

Events 386

Source: hank data (see Example 5.2)
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Table 5.15 Determinants of female retirement (results of competing model specifications)

Variable Model 1 Model 2 Model 3 Model 4 Model 5

Number of children −0.098∗
Ever had a child −0.457∗
Early first birth −0.339

Late first birth −0.533∗
Child young, mother
employed

−0.558∗

Child young, mother
not employed

−0.411

Early 1st birth/employed −0.484

Early 1st birth/not employed −0.260

Late 1st birth/employed −0.618∗
Late 1st birth/not employed −0.495∗
N 5,765 5,765 5,765 5,765 5,765

n 837 837 837 837 837

lnL −1,038.589 −1,038.361 −1,037.287 −1,037.915 −1,036.640

AIC 2,119.177 2,118.723 2,118.575 2,119.831 2,121.279

BIC 2,259.028 2,258.574 2,265.085 2,266.341 2,281.109

Notes: ∗ p < 0.05; ∗∗ p < 0.01; ∗ ∗ ∗ p < 0.001
Each model controls for age, educational attainment, labor force career, partner, income and other
personal characteristics
Source: hank data (see Example 5.2)

In this example, the models are not nested, however, and so the likelihood ra-
tio test cannot be used. A common approach to this problem is to use either
Akaike’s information criterion (AIC) or the Bayesian Information Criterion (BIC)
(see Sect. 7.2.2). In order to demonstrate the application of these statistics, we cal-
culate both information criteria. The results of this procedure are summarized in
Table 5.15. Based on these findings, we conclude that model 2 should be preferred
over the other specifications because it has the smallest BIC and the second smallest
AIC value. Differences between the measures of fit are small, however.

Sometimes researchers are also interested in making predictions. For instance, it
is possible to predict the conditional transition probability for each person by using
(5.48). As an illustration, consider the case of a woman who is 60 years of age, with
a university degree, 27 years of labor force experience (at age 50), two employment
spells, a monthly net household income of 720 DM, and a child. She is a single
person, has no health problems, and lives in a rented apartment without persons
needing care (i.e., all dummies are assumed to be zero). Substituting variables and
parameter estimates in (5.48), the predicted conditional transition probability (resp.
hazard rate) for this woman is 0.432. Now imagine that this woman was younger,
say 55 years old, and predict the hazard rate using the same explanatory variables as
were used before. In what way do the results change? The fitted hazard rate is now
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Fig. 5.7 Predicted hazard
rate of female retirement
(using estimates of model 1)

much smaller: 0.043. Repeat this exercise, but this time, assume that the 60-year-old
woman has three children. The predicted hazard rate for this constellation is 0.385.
The latter result is in line with the hypothesis that mothers decide to work longer,
while the former result indicates that the conditional probability to retire increases
with age.

We can also use this simple example to show how to plot the hazard rate in order
to characterize the shape of the hazard function. Reconsider the case of a single
woman with a university degree, 27 years of labor force experience (at age 50), two
employment spells, a monthly net household income of 720 DM, and one child,
without health problems and living in a rented apartment without persons needing
care. Figure 5.7 shows how the predicted hazard rate varies with respect to age
and the process time. According to our specification of a semi-parametric model
with age dummies, hazard rates are constant in each of the six age intervals, but
can change between them. It can be easily seen that hazard rates increase slowly
between age 50 and 60, peak at the ages of 60–61 due to early retirement pathways,
decline thereafter, and increase again at about the official retirement age.

5.2.3.2 Unobserved Heterogeneity in Event History Models
Until now, the discussion of the discrete-time logistic hazard model has assumed
that all relevant explanatory variables are included in the regression equation and
measurement error is not present. In practice, however, this assumption is rarely
met. As an example, the regression model presented by Hank (2004) leaves out
some variables of interest, such as occupational status, branch of industry, gender
roles, or intergenerational financial transfers. Similar to the panel methods focusing
on the level of the dependent variable, neglecting relevant explanatory variables in
change models such as event history models will result in unobserved heterogeneity.
Omitted variable bias is a special case of unobserved heterogeneity when there is
correlation between the explanatory variables included in the regression model and
the neglected explanatory variables. Section 4.1.2 has elaborated the consequences
of omitted variable bias in the analysis of continuous panel data. In event history
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analysis, the problem of unobserved heterogeneity is even more serious: Neglect-
ing relevant explanatory variables may distort the results of your estimation model
irrespective of whether there is correlation between the observed and unobserved
explanatory variables or not. More precisely, ignoring unobserved heterogeneity in
event history modeling may have different ramifications, such as downward bias in
duration dependence, distorted effects of the explanatory variables, dependent cen-
soring, dependent multiple events, and dependent repeatable events. This section
focuses on the consequences of unobserved heterogeneity on the hazard rate and the
effects of the explanatory variables. More detailed discussion on the topics can be
found at the end of this chapter in Sect. 5.2.4. In order to exemplify the consequences
of unobserved heterogeneity, consider the following simple illustrative example.

Example 5.3 (cancer data) Assume a data set resulting from the following
simple experiment in medicine. Cancer patients are randomly assigned to a
control group and a treatment group. The two groups of individuals suffering
from cancer can be distinguished by a variable Z1, with z1 = 0 for patients
receiving a conventional cancer treatment and z1 = 1 for cancer patients re-
ceiving a new cancer-directed therapy. At the beginning of the experiment
(t = 0), the proportions of these two groups in the total sample are 0.5 and
the experiment runs over a period of T = 60 months. Our interest lies in the
analysis of the mortality hazard and, more particularly, the effectivity of the
new cancer treatment.

Suppose now that the true hazard rates for these two groups are constant
over time, but patients with z1 = 0 show a two times larger hazard of dying
than individuals with z1 = 1:

hip(t |z1 = 0)

hip(t |z1 = 1)
= 2

Furthermore, let us as assume that there is also variation within the control
group and the treatment group since the sample includes patients with recur-
rent cancer. Consider a second variable Z2, which captures this information
and assume that the proportions of patients with and without recurrent cancer
are 0.5 within the control group and the treatment group, respectively. The
hazard rate of dying is still constant over time. Yet, regardless of whether pa-
tients receive a conventional cancer therapy or the new therapy, the hazard
rate of dying is two times higher for patients with recurrent cancer (z2 = 1):

hip(t |z1, z2 = 1)

hip(t |z1, z2 = 0)
= 2

All in all, the cancer data consist of four equally sized subpopulations and
Table 5.16 shows the true hazard rates in each group. We now want to show how
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Table 5.16 True hazard rates

Control group (z1 = 0) Treatment group (z1 = 1)

First-time cancer
(z2 = 0)

Recurrent cancer
(z2 = 1)

First-time cancer
(z2 = 0)

Recurrent cancer
(z2 = 1)

hip(t) 0.02 0.04 0.01 0.02

Fig. 5.8 True and observed hazard rate of dying for the control and treatment group

unobserved heterogeneity may bias the observed hazard rate. To this end, suppose
that we only know Z1 (i.e., whether patients receive a conventional cancer therapy or
rather a new treatment). But we do not know that the mortality risk of these patients
also depends on recurrence of cancer.

Figure 5.8 gives you a picture of the resulting hazard rates for patients belonging
to the control group and treatment group, respectively. The observed hazard rates in
these two groups differ from the true hazard rates in the subpopulations: The hazard
rates decline even though the hazard of dying is constant within each group.33 This
shape of the hazard rates is simply due to unobserved heterogeneity. The reason for
this is that the proportion of patients at risk of dying of cancer changes over time,
since patients with recurrent cancer die earlier than patients who suffer from cancer
for the first time. For example, one year after the start of the experiment at t = 12,
the survival probability for a patient who receives a conventional cancer treatment
and suffers from cancer for the first time is

33Since we are assuming a discrete-time process, the observed hazard functions in Figs. 5.8 and 5.9
should be decreasing step functions. To simplify both figures, we have used continuously falling
functions that approximate the respective step functions.
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S(t = 12|z1 = 0, z2 = 0) = (
1 − hip(1)

) · (1 − hip(2)
)
. . .

(
1 − hip(12)

) = 0.7847

Similarly, for patients with recurrent cancer, we get

S(t = 12|z1 = 0, z2 = 1) = (
1 − hip(1)

) · (1 − hip(2)
)
. . .

(
1 − hip(12)

) = 0.6127

To put it into words, (1 − 0.6127) · 100 = 38.73 % of the patients with recurrent
cancer have already died within the first 12 months of the experiment, whereas only
(1 − 0.7866) · 100 = 21.34 % of the patients who suffer from cancer for the first
time died during this period. But this means that the risk set at time t = 12 includes
significantly more patients who suffer from cancer for the first time and hence, have
a lower hazard of dying. To put it in figures, suppose there are 50 patients with recur-
rent cancer and 50 patients with first-time cancer in the control group at the begin-
ning of the experiment. Then, 19 and 11 patients already died within the first year,
respectively. So 70 patients are still at risk of dying, but the proportion of patients
with and without recurrent cancer has changed and the risk set consists of 44 %
patients with recurrent cancer and 56 % who felt ill with cancer for the first time.
Hence, as time passes, the sample increasingly consists of first-time cancer patients,
who have a half as large hazard rate compared to the recurrent cancer patients. As a
consequence of this selection effect, an event history model results in a decreasing
hazard rate even if the true individual hazards in both groups are constant. The same
downward bias of the hazard rate can also be observed in the treatment group (see
right panel of Fig. 5.8).

In our example, it is assumed that the true hazard rates in the control and treat-
ment group are constant. In other applications, the true hazard rates in the subpop-
ulations might also be monotonically increasing, falling, or at first rising and then
falling, etc. Neglecting unobserved heterogeneity leads the hazard rate that is es-
timated for the total population to be a mixture of different (unobserved) hazard
rates in subpopulations. From what we have just learned, we know that the poten-
tial bias from unobserved heterogeneity depends on the selection effect in the risk
population. The composition of the risk set changes continuously over time and sub-
populations with a higher risk of event occurrence leave the risk set earlier than sub-
populations with a lower hazard rate. If our model fails to control for these different
hazard rates in subpopulations, the risk set will be more and more composed of the
low-risk populations. As a consequence, models suffering from unobserved hetero-
geneity will overestimate negative duration dependence and underestimate positive
duration dependence.

A second lesson from the example just cited above is that the effects of the
explanatory variables will also be biased. Recall from above that the true haz-
ard ratio for patients in the control and treatment group is constant and equal to
hip(t |z1 = 0)/hip(t |z1 = 1) = 2. Figure 5.9 illustrates that the ratio of the observed
(estimated) hazard rates for patients in these two groups is not constant, but de-
creases over time. At the beginning of the experiment, when the population pro-
portions in the four subgroups are of equal size, the ratio of the estimated hazards
amounts to ĥip(t = 0|z1 = 0)/ĥip(t = 0|z1 = 1) = 2. But due to selective mortal-
ity, one year after we obtain ĥip(t = 12|z1 = 0)/ĥip(t = 12|z1 = 1) = 1.96, and at
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Fig. 5.9 Observed hazard
rate of dying for the treatment
and control group

the end of the experiment, we obtain ĥip(t = 60|z1 = 0)/ĥip(t = 60|z1 = 1) = 1.81.
Thus, if the regression model fails to control for unobserved heterogeneity, we will
underestimate the true effect of Z1.

There are more issues involved here which merit mention before concluding this
section. As illustrated above, if our model fails to control for the fact that there
are different hazard rates in subpopulations, time dependence can be considered
an expression of unobserved heterogeneity. But this means that changing the set
of explanatory variables in the event history model will also lead to a change in
duration dependence. At the same time, including additional explanatory variables
is also likely to result in a change of the parameter estimates of the variables al-
ready in the regression model, even if the new variables are uncorrelated with these
variables (a phenomenon that is different from traditional regression models). Fur-
thermore, if the values of a time-dependent explanatory variable and the dependent
process itself are influenced by the same unobserved individual factors, the anal-
ysis will yield spurious effects. A final consequence of unobserved heterogeneity
is dependent censoring. Section 5.2.1 introduced different types of censoring and
emphasized that the driving mechanisms behind censoring need to be independent
of the process of interest. It may well be that some unobserved variables affect the
process under study and the censoring process. In such cases, censoring is non-
ignorable and consequently, the likelihood function presented in Sect. 5.2.2.3 is in-
valid.

An important guideline to remedy the problem of unobserved heterogeneity is
using reliable and comprehensive panel data for model building. However, in vari-
ous applications, we are not able to control for all relevant factors. In other appli-
cations, our theoretical model does not include all important factors. Section 5.1.2
showed how RE and FE estimation help to sort out unobserved heterogeneity when
modeling the level of Y . The following two sections elaborate upon the question of
whether similar approaches can be used in event history modeling.
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5.2.3.3 Uncorrelated Heterogeneity: Random Effects Event History
Models

Let us start with the more simple case in which unobserved heterogeneity is assumed
to be uncorrelated with the variables in the regression model. Reconsider the logistic
discrete-time hazard model and re-formulate (5.44), now allowing for unobserved
heterogeneity in such a way that ui captures unobserved unit-specific risk factors.
The model would then be:

ln

(
hip(t)

1 − hip(t)

)
=β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji + ui (5.49)

Again, the unit-specific effects ui are assumed to be random and independent of X

and Z. You have to assume a certain distribution for the ui . One way to do this is
to make the assumption that the ui are normally distributed. This is the RE logistic
regression model developed in Sect. 5.1.2.2.

Let us return to our Example 5.2. Again, we fit the basic regression model shown
above, but this time we control for unobserved heterogeneity, assuming normally
distributed random effects (i.e., instead of a standard logistic regression, apply an
RE logistic regression to the event history data set). Table 5.17 presents the results.
To check whether the model controlling for unobserved heterogeneity should be
preferred to the reference model, we look at the estimate of the standard devia-
tion of unobserved heterogeneity, σ̂u, and the estimated proportion of total variance
contributed by unobserved heterogeneity ρ̂ (compare (5.30)). When ρ̂ is zero, unob-
served heterogeneity is unimportant. The logistic hazard model and the RE logistic
hazard model are hierarchically nested since U is restricted to be 0 in the former
model (and hence, ρ = 0). This allows us to use the likelihood ratio test to test the
null hypothesis that ρ is zero. For the hank data, we can calculate the test statistic
as two times the difference of the log likelihoods (LR = 8.74 with df = 1). Given a
significance level of 0.01, we conclude that the null hypothesis should be rejected.
In other words, there is evidence for unobserved heterogeneity in the hank data.

What are the implications for our parameter estimates? First, let us start with
the estimates of duration dependence. Theoretically, one would expect retirement
to increase as employees gradually approach the official retirement age. Hence, one
would expect some kind of positive duration dependence. In the last section, we
concluded that models suffering from unobserved heterogeneity will overestimate
negative duration dependence and underestimate positive duration dependence. In
other words, if the expectation is positive duration dependence, the positive effect
should be larger in models controlling for unobserved heterogeneity than in models
that ignore unobserved heterogeneity. As the estimates of the age intervals in Ta-
ble 5.17 show, in both specifications, the predicted hazard rate increases with age
(the process time), but the positive duration dependence is somewhat larger in the
RE model than in the reference model. Reconsider our example used to generate
the conditional effects plot presented in Fig. 5.7. We now repeat this exercise with
the results obtained from the RE model. Figure 5.10 compares the predicted hazard
from our reference model and the RE model and visualizes that differences between
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Table 5.17 Determinants of female retirement (logistic and RE logistic hazard model)

Variable Logistic model RE logistic model

Estimate Std. Err. Estimate Std. Err.

Number of children −0.0976 0.0481 −0.1531 0.0694

Age group

54–57 years 1.1275 0.2698 1.2922 0.3033

58–59 years 1.5948 0.2871 1.9267 0.3666

60–61 years 3.9589 0.2570 4.8289 0.5345

62–63 years 2.7524 0.3075 3.8055 0.6446

64–69 years 3.2638 0.2905 4.6743 0.7782

Educational attainment

Vocational degree −0.1280 0.1267 −0.1659 0.1750

University degree −0.4709 0.2924 −0.7077 0.4090

Imputation flag: Education 0.1729 0.4931 0.2983 0.6781

Labor force career

Years in labor force at age 50 0.0192 0.0067 0.0223 0.0094

Number of employment spells 0.0494 0.0551 0.0564 0.0754

Partner

Partner, not retired −1.1598 0.1890 −1.5950 0.3112

Partner, retired −0.3349 0.1691 −0.5702 0.2445

Imputation flag: Partner 0.8165 0.2447 1.1733 0.3542

Income

Household income 0.0032 0.0098 0.0020 0.0112

Squared household income 0.0000 0.0000 0.0000 0.0000

Imputation flag: Income 0.1951 0.2519 0.1861 0.3021

Other personal characteristics

Home owner −0.0850 0.1278 −0.1374 0.1727

Poor health 0.3699 0.1681 0.4559 0.1969

Person needing care 0.1284 0.2505 0.2941 0.3148

Constant −4.3016 0.4008 −4.6477 0.5571

LR or X2
1 755.65 177.08

df 20 20

lnL −1,038.5887 −1,034.2207

σu 1.1741 0.3491

ρ 0.2953 0.1238

N 5,765 5,765

n 837

T 18 18

Events 386 386

Source: hank data (see Example 5.2)
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Fig. 5.10 Predicted hazard of retiring

the logistic hazard model and the RE logistic hazard model appear to be particularly
large at older ages.

Second, the estimated coefficient of the explanatory variable number of children
is larger in magnitude than the corresponding coefficient in the reference model. In
the RE logistic hazard model, we obtain (exp(−0.1531) − 1) · 100 = −14.196 as
compared to (exp(−0.098) − 1) · 100 = −9.335 in the logistic model that does not
control for unobserved heterogeneity.34 This is also in line with the discussion in
the former section, in which we concluded that unobserved heterogeneity possibly
leads to downward biased estimates of the effects of X and Z. Similarly, we observe
the same downward bias for all other explanatory variables, with the only exception
being the variables controlling for income. All in all, the RE estimates give you a
clear example of how unobserved heterogeneity may bias duration dependence and
result in underestimated regression coefficients.

The problem of RE event history models is the assumption that unobserved het-
erogeneity is independent of the variables included in the regression model. Hence,

34Notice, however, that the rules of interpretation differ somewhat for RE models. To exemplify
this, consider once more our variable of interest, namely, number of children. In the logistic hazard
model, the parameter estimate for this variable can be interpreted as the population averaged effect.
It shows you to what extent the hazard of retiring differs for two randomly selected women, with
one woman having one more child than the other woman, holding constant all other explanatory
variables in the model. In the RE model, we control for unobserved unit-specific risk factors. When
interpreting the results of the RE logistic hazard model, it is therefore important to keep in mind
that the parameter estimates are now unit-specific. In other words, we would then conclude that for
two women with the same random effect, the hazard of retiring decreases by a factor of 14 % with
an additional child.
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if it is reasonable to assume that your model suffers from correlated unobserved
heterogeneity, RE event history models are not the appropriate strategy to tackle
this problem. The next section raises the question of whether there are FE models
available for event history analysis.

5.2.3.4 Correlated Heterogeneity: Fixed Effects Event History Models
As the previous chapter has demonstrated, an attractive feature of the FE model
is that it allows to control for all time-constant, unit-specific effects. Hence, omit-
ting time-constant variables cannot distort the results from FE regression. Quite the
opposite is true in the random effects model, which presumes that all unit-specific
effects are uncorrelated with the explanatory variables and thus cannot control for
unmeasured, stable, unit-specific characteristics that are correlated with the vari-
ables in the model. The precondition for FE regression is, however, variation within
observations, necessitating at least two measurements per unit of analysis, which,
in the case of event histories, means at least two spells.35 This is the case when
analyzing multi-episode data from individuals who experience repeatedly events
over the observation period (see Sect. 5.2.4). FE regression is not feasible when
analyzing non-repeatable events (e.g., retirement or death) or when confining the
analysis to first events only (e.g., the duration of the first job). Since each unit expe-
riences only one single event, within-individual comparisons are rendered impossi-
ble. Hence, if only one spell is available, special techniques are necessary, such as
the case-crossover and the case-time-control design. Both designs have been used
in epidemiological research to control for unobserved characteristics in case-control
studies (Maclure, 1991; Suissa, 1995). Allison and Christakis (2006) have applied
these techniques to non-repeatable events. As the following discussion will show,
both designs are applicable, but they have important pitfalls.

Let us exemplify the case-crossover design by once again turning to the hank
data (see Example 5.2). Select all women who retire during the observation period
(the “cases”) and compare each woman with herself at different points in time (i.e.,
each woman acts as her own “control”). We then ask: Why did a woman retire in one
particular year and not in any of the other years? In case of the hank data, women
can retire in one of the 18 years under study. Think of a woman who reports in the
fourth panel wave that she is retired. Technically, the former research question can
also be posed in terms of sequences: What is the conditional probability of observing
for this woman the sequence 0001 rather than any of the sequences observed in the
data (1, 01, 001, 00001, etc.)? This is basically what the CML approach does. It
conditions on all sequences that include the same number of ones as the sequence
in question (see Sect. 5.1.2.1). However, compared to the analysis on levels, with
event history data, these sequences are very specific: The ones appear only at the
end of the sequence (and not somewhere in the middle). This has pros and cons.

35Up until now, we have used the term “measurement” to denote the repeated measurements (panel
waves) over time. Here, the term “measurement” refers to the different spells that are part of an
event history. For example, in an analysis of employment spells, an employee may have participated
(and been observed) in three consecutive waves of a panel, but may have not quit his job and hence,
is observed still in his first job.
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On the one hand, each sequence indicates that a change occurred at some point in
time (indicated by the one) after nothing has changed for several (panel) measure-
ments over time (as indicated by the preceding zeros). Hence, to describe this and
other sequences, we need the conditional transition probability hip(t) and obviously,
CML is the best approach to answer our research question. We specify again a lo-
gistic regression model for the conditional transition probability and add a term ui :

ln

(
hip(t)

1 − hip(t)

)
= β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji + ui (5.50)

ui captures all unmeasured unit-specific effects that are stable over time. This im-
plies that the conditional transition probability hip(t) is a logistic function of the
explanatory variables X and Z and unobserved heterogeneity U :

hip(t) = exp(β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji + ui)

1 + exp(β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji + ui)
(5.51)

This probability is used to construct the various sequences included in the condi-
tional likelihood. As the discussion in Sect. 5.1.2.1 showed, the unit-specific error
term ui and the effects of all time-constant explanatory variables Z cancel out of the
likelihood function. In other words, CML estimates the effects of the time-varying
explanatory variables X while controlling for all (observed and unobserved) time-
constant characteristics, even if they are correlated with X.

In sum, we can use a normal FE regression program and apply it to our discrete-
time event histories, although we focus on only one spell per unit of analysis. Similar
to all the other FE models, the analysis focuses only on units that change over time
(i.e., experience an event) and numerical estimates of the effects of time-constant
explanatory variables Z are not available (these variables are only controlled for).
In the hank data, this results in a loss of 451 out of 837 women and there are no nu-
merical estimates of the effects of the key explanatory variables describing women’s
reproductive history (e.g., the number of children). The time-constant effects of ed-
ucational attainment and labor force career will also be absorbed into the error term.
Similarly, a lack of variation in time-varying variables over time implies that ob-
servations also do not add information to the conditional likelihood function. Take
home ownership in the hank data as an example for a time-varying variable with
very low within-unit variation during the observation period.

On the other hand, the fact that the one always occurs at the end of the sequence
severely limits the kinds of time-varying explanatory variable X that can be in-
cluded in the model. If the ones appear only at the end, then the probability of
observing a specific sequence is a function of spell duration and all other charac-
teristics associated with spell duration. Including any monotonic function of time in
the regression model will result in convergence failure when maximizing the like-
lihood, since event occurrence in a woman’s sequence is then predicted perfectly
(a phenomenon known from traditional logistic regression models as complete sep-
aration). Yet, dropping the variable time from the model and assuming no duration
dependence is also no alternative. For example, the hank data builds upon data from
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Table 5.18 Women’s
retirement by home
ownership (in percent)

Source: hank data (see
Example 5.2)

Retired Homeowner

No (X = 0) Yes (X = 1)

No (Y = 0) 92.79 93.60

Yes (Y = 1) 7.21 6.40

Total 100 100

18 panel waves and in this and many other applications with long observation peri-
ods, we have good reason to assume that the discrete-time hazard changes over time
(e.g., the hazard of retiring should increase). In a similar vein, if explanatory vari-
ables can only change in one direction over time (i.e., only increase or decrease), the
discrete-time hazard will also be completely determined. An example for a variable
in the hank data that is likely to only increase over time is the indicator for retire-
ment of a woman’s partner. Of course, neglecting time dependence and explanatory
variables that are correlated with time is not a solution, since this will likely result
in biased estimates (see also Sect. 5.2.3.2). Taken together with the major limitation
that the key time-invariant explanatory variables describing a woman’s reproductive
history are absorbed into the error term, the case-crossover design cannot be recom-
mended for the analysis of the hank data. We therefore abstain from presenting any
results derived from the case-crossover design.

Obviously, the limitations of the case-crossover design are due to the very spe-
cific sequences that result from event history data. If it would be possible to model
sequences that include ones not necessarily at the end of the sequence, this would
make FE models for non-repeatable events much easier. This idea is the starting
point of the case-time-control design. It builds upon the fact that odds ratios are
symmetric measures of statistical association. Hence, it does not make a difference
whether you regress a dichotomous variable Y on a dichotomous variable X in a
logistic regression model or whether you do it the other way around; in both cases,
you will arrive at the same parameter estimates of the explanatory variable X (or Y ).

To verify this specific feature of logistic regression, consider two binary variables
in the hank data: women’s retirement (Y ) and home ownership (X). Table 5.18
displays the relative frequencies in a two-way table. Knowing this, we can calculate
the odds ratio for retirement given X:

(92.79/7.21)

(93.60/6.40)
= (92.79 · 6.40)

(93.60 · 7.21)
= 0.88

You will obtain the same odds ratio when using the conditional probabilities of being
a homeowner given Y , as shown in Table 5.19:

(36.38/63.62)

(39.38/60.62)
= (36.38 · 60.62)

(39.38 · 63.62)
= 0.88

Notice, however, that this nice feature of symmetry only approximately holds in
multivariate logistic regression (unless you are specifying a completely saturated
model without continuous variables).
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Table 5.19 Home
ownership by women’s
retirement (in percent)

Source: hank data (see
Example 5.2)

Homeowner Retirement

No (Y = 0) Yes (Y = 1)

No (X = 0) 36.38 39.38

Yes (X = 1) 63.62 60.62

Total 100 100

The idea of the case-time-control design is now to exchange the (dichotomous)
dependent variable (measuring event occurrence) with one of the dichotomous ex-
planatory variables X so that the resulting sequence of the X values is not a simple
function of spell duration (including a one only at the end). Assume, for example,
that we want to establish whether women’s transition to retirement depends on their
partner’s retirement. We use censored as well as uncensored observations in the
hank data. In setting up a case-time-control design, the (unconditional) probability
Pr(yit = 1) that the partner is retired at year t becomes the dependent variable and
X1 is a dummy variable for women’s retirement:

ln

(
Pr(yit = 1)

1 − Pr(yit = 1)

)
= β0(t) + β1x1it + ui (5.52)

Again, CML is used to derive estimates while controlling for all stable characteris-
tics. There needs to be within-unit variation on the dependent variable and hence,
unpartnered women and women whose partner did not retire during the observation
period do not contribute to the conditional likelihood. Even though the dependent
and independent variables have been exchanged, the resulting odds ratio is inter-
preted the other way around, given the symmetry of the odds ratio. Hence, β1 is
interpreted as the effect of partner’s retirement on the woman’s conditional transi-
tion probability into retirement.

One great advantage of this design is that time dependence can be included as
an explanatory variable. This is because the sequences of zeros and ones indicat-
ing whether a woman’s partner retires in a specific year differ from the woman’s
own sequence, since the partner’s transition into retirement may occur before the
woman’s retirement and hence, may include a one in the middle of the sequence.
Recall from above that when specifying a case-crossover design, all sequences end
with event occurrence and hence, monotonic functions of time cannot be included
in the regression model.

An obvious constraint is, however, that the case-time-control design cannot be
used for continuous explanatory variables. This is especially unfavorable for the
analysis of our example since the key indicator in the hank data is the num-
ber of children. Over and above, this variable is time-constant and hence lacks
within-group variance. Even if the symmetry argument would also apply to con-
tinuous variables, FE estimation is not able to estimate effects of time-constant
variables. Another disadvantage of this approach lies in the fact that the symme-
try feature applies only approximately in multivariate logistic regression models.
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In our application example, however, we want to add additional explanatory vari-
ables to obtain unbiased estimates of our key variables. Estimates of the effects of
these additional explanatory variables will remain biased in a case-time-control de-
sign.

In sum, there is no convincing FE approach to analyze non-repeatable events
(single episode data). Both the case-crossover and the case-time-control design are
still rather unusual approaches and suffer from various limitations. Both techniques
may be of help in some applications, but are not appropriate FE methods for the
analysis of data similar to our Example 5.2. It seems as if for a serious applica-
tion of FE models, you need multi-episode data, in which the event of interest oc-
curs repeatedly and hence, each unit of analysis contributes several spells to the
data.

5.2.3.5 Applying Continuous-Time Event History Models Within a Panel
Design

Discrete-time event history analysis is very popular in panel research. The advan-
tages of this model are all too obvious: It is the most popular and convenient model
and many empirical researchers have a familiar ring with the terminology, estima-
tion procedure, and interpretation of coefficients. Nevertheless, the discrete-time
logistic hazard model is based on the assumption that events can only occur at dis-
crete points in time. Such discrete-time data result from intrinsically discrete tran-
sition processes, such as changes in voter turnout from one election to the next. In
many applications, however, it is more realistic to assume that the process under
study is continuous, but the time variable is measured imprecisely. Event history
data are considered to be interval-censored when the precise dates of transitions are
unknown and event occurrences are observed only within given time intervals. For
instance, in our Example 5.2, women may retire at any month during the observation
period, but we only know whether a transition into retirement has occurred between
two consecutive panel waves. An alternative for discrete-time analysis, which is
better suited when the data used are generated by a continuous-time process, is the
complementary log–log hazard model.

To understand the reason behind this, it is necessary to identify the relationship
between the conditional transition probability hip(t) in discrete time and the instan-
taneous hazard rate of event occurrence rip(t) in continuous time. In discrete time,
we assume that change can happen only at t = 1, . . . , T discrete points in time. In
an imprecisely measured continuous-time process, T is a real-valued random vari-
able that can take on every value between 0 and +∞. However, the exact value of
T is not observed. We only know whether T falls into a particular interval (tl−1, tl],
say, the interval from shortly after the previous panel wave l − 1 to and including
the time point of the present panel wave l: tl−1 < T ≤ tl . Recall from Sect. 5.2.1
that the discrete-time hazard rate hip(t) is defined as the conditional probability that
an individual will experience a transition from state p to another state at the end
of interval l, given that the individual still belongs to the risk set. There is a simple
relationship between the survival probability in continuous time and the conditional
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transition probability. The conditional transition probability at the lth panel wave (at
the end of the lth interval) equals

hip(tl) = Pr(tl−1 < T ≤ tl |T > tl−1) = Sip(tl−1) − Sip(tl)

Sip(tl−1)
= 1 − Sip(tl)

Sip(tl−1)
(5.53)

Obviously, the conditional transition probability in discrete time can be derived by
comparing the probability of surviving between tl and tl−1 in continuous time.36

The difference of these two survival probabilities equals the probability of an event
within interval l, which has to be related to the probability of surviving the previous
interval l − 1 to finally get the conditional transition probability.

In continuous-time event history analysis, the instantaneous hazard rate rip(t) is
defined as a conditional transition probability within an infinitesimal small inter-
val:37

rip(t) = lim
�t→0

Pr(t ≤ T < t + �t |T ≥ t)

�t
(5.54)

It is a continuous function of time allowing for increasing, decreasing, and even
changing trends of event occurrence. Moreover, the hazard rate may depend on time-
varying and time-constant variables X and Z. A basic hazard rate model assumes
that the hazard rate can be written as

rip(t) = exp
(
β0(t) + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji

)
(5.55)

In this equation, time dependence is independent of the explanatory variables X

and Z (i.e., there are no interactions between T and X resp. Z) so that the effects
of these variables are constant over time. Hence, the estimated hazard rates of two
units i and i′ with different values of X and Z are proportional at any point in time:

rip(t)

ri′p(t)
= exp

[
(x1it − x1i′t )β1 + · · · + (xkit − xki′t )βk

+ (z1i − z1i′)γ1 + · · · + (zji − zji′)γj

]
(5.56)

Therefore, this model is also called a proportional hazard rate model (PHM). For
this type of hazard models, the regression function can be split into two parts:

rip(t) = exp
(
β0(t)

) ·exp(β1x1it +· · ·+βkxkit +γ1z1i +· · ·+γj zji) = λ0(t) ·f (x, z)

(5.57)

36The survival probability in continuous time is defined similar to (5.35). But now it is a continuous
function of time that monotonically decreases as units experience an event and drop out of the risk
set.
37In continuous time, intervals are usually defined as [lower,upper) (i.e., including the lower, but
excluding the upper bound): lower ≤ T < upper. This seems to be different from our present dis-
cussion of discrete-time processes, in which we defined change to happen at the end of the interval
and correspondingly intervals as (lower,upper]: lower < T ≤ upper. However, the probability
that a continuous random variable T equals a particular value t is zero: Pr(T = t) = 0. Hence, in
continuous time: Pr(t ≤ T < t + �t |T ≥ t) = Pr(t < T ≤ t + �t |T ≥ t).
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with the first part λ0(t) describing the time dependence (the so-called baseline haz-
ard) and the second part f (x, z) describing the dependence on the explanatory vari-
ables.

Assuming �t → 0 in (5.54), turns the conditional probability into an instanta-
neous hazard rate (also called a transition intensity). Yet, by integrating over some
time interval, we can again derive probability statements:38

Pr(t ≤ T < t + �t |T ≥ t) = Sip(t) − Sip(t + �t)

Sip(t)
= 1 − Sip(t + �t)

Sip(t)

= 1 − exp

[
−

∫ t+�t

t

rip(u) d(u)

]
(5.58)

Applying this general formula to our former equation (5.53) for the discrete-time
case shows how the discrete-time transition probability hip(tl) at the end of the lth
interval is related to the continuous-time hazard rate rip(t). Define t = tl−1 and
t + �t = tl and you have

hip(tl) = 1 − exp

[
−

∫ tl

tl−1

rip(u) d(u)

]
(5.59)

If both quantities are made functions of time and explanatory variables and if we
assume a PHM, we can use (5.57) in the integral. Let us ignore the dependence on X

and Z for a moment (i.e., f (x, z) = 1) and focus only on the time dependence λ0(t):

hip(tl) = 1 − exp

[
−

∫ tl

tl−1

λ0(u) d(u)

]
(5.60)

If we have no information about the time dependence, a simple assumption would
be that the baseline hazard varies between intervals, but is constant within intervals:
λ0(t) = λl for l = 1, . . . ,L intervals. In that case, the integral can be solved as
follows:

hip(tl) = 1 − exp
[−λl · (tl − tl−1)

] = 1 − exp[−λl · el] (5.61)

Furthermore, as you can easily check with a hand calculator, λl and hip(l) are almost
identical, when both the interval length el = (tl − tl−1) and the instantaneous hazard
rate λl are small. This implies that the discrete-time event history model approx-
imates the continuous-time event history model quite well, when the (continuous-
time) hazard of event occurrence is low (say, 0.1 or lower) and constant within
intervals, which themselves are rather short. In that case, we will find very similar
parameter estimates in both types of model.

If we would have used a PHM with explanatory variables, the expression would
be as follows:

38You can think of the integral as some kind of summation over the many time points within the
interval.
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hip(tl) = 1 − [
exp(−λl · el)

]exp(β1x1it+···+βkxkit+γ1z1i+···+γj zji) (5.62)

Taking logs, we arrive at the following linear-additive model, the so-called comple-
mentary log–log model:

ln
[− ln(1 − hip(l)

] = βl + β1x1it + · · · + βkxkit + γ1z1i + · · · + γj zji

with βl = lnλl + ln el (5.63)

This model should include a constant βl for each interval (panel wave) that controls
for the interval-specific hazard rate λl and the interval length el . Such constants are
easily modeled by dummy variables for the intervals.

Equation (5.63) shares the useful properties of the logit transformation, because it
also transforms the conditional transition probability into a quantity between minus
and plus infinity. However, there are also important differences. As shown above,
the discrete-time estimates derived from the complementary log–log hazard model
are at the same time estimates of the underlying continuous-time PHM. This is a
major advantage over the discrete-time logistic hazard model, since the parameters
of the complementary log–log model control for the time dependence of the under-
lying continuous-time process and hence, are also independent of the length el of
each interval l = 1, . . . ,L. Moreover, each interval may be of different length and
estimates of the interval-specific hazard rates can be derived from the estimated re-
gression constants by the following formula: λ̂l = exp(β̂l − ln el).39 By contrast, the
discrete-time logistic hazard model is sensitive to the length of the intervals and also
must assume that all intervals have the same length.

Returning to our research example, we can now estimate a complementary log–
log model for the hank data by inserting the complementary log–log hazard model
(5.63) into the likelihood function (5.42). Table 5.20 summarizes the estimates of
the base model. If you compare the estimates of this model with the ones shown
in Table 5.17, you will largely arrive at similar conclusions about the effects of
the explanatory variables. Given the former conclusion that the discrete-time model
approximates the continuous-time model when the hazard of event occurrence is
low, this comes as no surprise. Since hip(t) is particularly small for all combinations
of Xand T in the hank data, the results of the complementary log–log hazard model
do not significantly differ from the logistic hazard model.

5.2.4 Extensions

One extension of the discrete-time hazard model takes into account alternative des-
tination states. In various social processes, destination states are competing and the
occurrence of one event removes the individual from risk of the other events. To

39Although the complementary log–log model can handle unequal interval lengths, unequal time
intervals are problematic when the continuous-time transition rate is not constant within intervals
or when the model is not a proportional hazard model.
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Table 5.20 Determinants of
female retirement
(complementary log–log
hazard model)

Source: hank data (see
Example 5.2)

Variable Estimate Std. Err.

Number of children −0.0914 0.0428

Age group

54–57 years 1.1228 0.2668

58–59 years 1.5821 0.2821

60–61 years 3.6984 0.2482

62–63 years 2.6668 0.2947

64–69 years 3.1303 0.2767

Educational attainment

Vocational degree −0.1063 0.1111

University degree −0.4321 0.2621

Imputation flag: Education 0.0610 0.4287

Labor force career

Years in labor force at age 50 0.0179 0.0059

Number of employment spells 0.0481 0.0476

Partner

Partner, not retired −0.9727 0.1700

Partner, retired −0.2360 0.1459

Imputation flag: Partner 0.7061 0.2188

Income

Household income 0.0040 0.0090

Squared household income 0.0000 0.0000

Imputation flag: Income 0.1506 0.2182

Other personal characteristics

Home owner −0.0762 0.1121

Poor health 0.2251 0.1435

Person needing care 0.0898 0.2167

Constant −4.4006 0.3715

LR 749.90

df 20

lnL −1,041.4641

N 5,765

n 837

T 18

Events 386

simplify matters, reconsider our Example 5.3 of cancer-related death of patients.
Some patients may also have died due to another health problem, such as cardio-
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vascular disease. To measure the effectivity of the new cancer-directed therapy, we
need to control for deaths due to other causes as competing risks of the death due
to cancer. By contrast, in the analysis of retirement decisions in our Example 5.2,
there are no competing risks.

Unlike in continuous-time event history models, the discrete-time likelihood
function cannot be factored into a set of different hazard rates, each one for a
different transition (Allison, 1982; Vermunt, 1997). Rather, to control for alterna-
tive outcomes in the multiple-risk model, multinomial logistic regressions must
be estimated, in which the dependent variable is coded zero for non-occurrence
and 1, . . . ,Q for event occurrence of the Q competing risks. There may be time-
constant, unit-specific unobserved factors that affect each type of transition. For
instance, in the analysis of first partnership formation, physical attractiveness and
the desire to partner are examples of such unmeasured factors. This will result in
dependence among risks and affect the observed hazard of an event for each of the
alternative destination states. The problem with ignoring unobserved heterogeneity
is therefore bias in the results obtained from multinomial discrete-time hazard mod-
els. A practical solution to allowing for shared unobserved risk factors is to include
random effects.

It is also feasible to pursue an analysis for each destination state separately (Alli-
son, 1995; see also Begg and Gray, 1984) to evidence the risk of a particular event in
the absence of all other competing risks. In practice, researchers focus on one spe-
cific event type and treat all spells ending with an alternative event as if they were
censored at that date. However, in contrast to the multinomial logistic estimator, this
estimator is not fully efficient. Nonetheless, in practice, this approach leads to very
similar results compared to those generated by multinomial logistic regression.

A more extensive survey on competing risks models is given by Hachen (1988).
More sophisticated discussion of techniques for competing risks can be found in
Hill et al. (1993), Goldstein et al. (2004), and Steele et al. (2004).

Another issue in event history analysis is repeated events. Examples for repeat-
able events include marriages or changes of employer. Multi-episode data provide
two more pieces of information, namely, information on the sequence of events for
each individual and information on event occurrence and non-occurrence in each
of these episodes. A simple approach to analyze these data is to pursue a separate
analysis for each event, eliminating from the pooled data set all records that pertain
to the other events. This approach has the advantage that we can simply specify
the likelihood function for single episode data, as established in Sect. 5.2.2.3. Re-
member that in the logistic discrete-time hazard model, the trick was to split each
episode into as many records as there are discrete observations over time and to
generate a dummy variable signaling whether these observations end with an event
or not. However, it was only a technical tool that allows us to model possible time
dependencies of the discrete-time hazard and to include the full time trajectory of
the time-dependent explanatory variables X. The basic unit of analysis is still the
single episode (spell) contributed by each individual (see the discussion at the end
of Sect. 5.2.2.3).
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When handling repeated events, the most important difference is that we may
now observe more than one episode (spell) for each individual. So the question of
whether each individual’s sequence of events in multiple episode data can be treated
as independent is crucial. Violation of the assumption of statistical independence
may result from:
1. Unobserved heterogeneity: An important objection is the presence of unobserved

unit-specific factors that are constant across all episodes and relevant to recur-
rent event occurrence in all episodes. As already highlighted in Sect. 5.2.3.2, the
central question is then whether all common risk factors are observed and mea-
sured without error. If not, correlation between the durations of episodes from
the same unit will result. In turn, this violation of the assumption of statistical in-
dependence will severely bias estimation results. You are therefore well advised
to control for unobserved heterogeneity in the analysis of repeatable events. You
may want to start with an RE model in which the random effects capture unob-
served unit-specific factors that are common to all episodes, but independent of
the variables X and Z in the model.

2. Event dependence: A simple model for repeated events may assume that the time
at which a particular event occurs is independent of the previous event history. In
practice, there is good reason to suspect that this assumption is violated. Event
occurrence in one spell is likely to be influenced by event occurrence in previous
spells. In other words, current change of the dependent variable Y is dependent
on previous change of the dependent variable. When treating observations in
multi-episode data as independent, the problem with correlated events is biased
estimates of standard errors, comparable to the problem of autocorrelation in
traditional regression models. One remedy is to include explanatory variables
that capture the previous history of each event. The regression model should at
least include a set of dummy variables representing the different events in the
sequence.

3. Episode-changing effects of X and Z: A related issue is episode-constant and
episode-changing effects of the independent variables. In various applications,
there are some reasons to believe that the influence of explanatory variables is
not constant across episodes, but rather is episode-specific. The problem, then, is
once again the non-independence of observations in multi-episode data.

Different estimation models for recurrent events are discussed in more detail by
Allison (1996), Yamaguchi (1986), Box-Steffensmeier et al. (2007), and Box-
Steffensmeier and Zorn (2002).

5.3 Conclusion and Further Reading

This chapter aimed to give a brief introduction into panel models for categorical de-
pendent variables. The first part of the chapter was devoted to the analysis of discrete
responses with panel data. Our review was focused on models for binary dependent
variables. Yet, references were made to the specific techniques required for other
types of discrete variable, namely, polytomous nominal variables, ordinal variables,



5.3 Conclusion and Further Reading 285

and count variables. Before we end this discussion, we would like to recommend
further reading.

More detailed introductory texts include Amemiya (1981) and Aldrich and Nel-
son (1984). The introductory level textbooks by Allison (2001), Agresti (2002),
Hosmer and Lemeshow (2000), and Long and Freese (2006) show you how to im-
plement the regression techniques discussed above in SAS and Stata. In Liang and
Zeger (1986) and Pendergast et al. (1996), attention is given to methods for analyz-
ing clustered binary response data. In order to gain a deeper understanding of the
CML approach, consult the seminal article by Chamberlain (1980). To go into more
details of FE and RE models, you are invited to look at the pathbreaking articles
by Heckman (1981b) and Heckman and Willis (1976), as well as the reviews in
Maddala (1987) and Hsiao (2003).

The second part of this chapter described how techniques of discrete-time event
history analysis can be used to analyze the change of categorical dependent variables
in panel data. We did not attempt an exhaustive review of all statistical roots here.
For more in-depth reading, you may want to consult one of the following books
and articles. The book by Singer and Willett (2003) includes chapters on discrete-
time event history analysis that are valuable for understanding the approach just de-
scribed. A gentle introduction and a set of guidelines on how to apply discrete-time
event history analysis can be found in Allison (1982), Allison (1984) and Yamaguchi
(1991). The chapter also raised the issue of omitted variable bias and unobserved
heterogeneity. To what extent this pitfall affects the results of event history mod-
els is shown more extensively in Lancaster (1990). More discussion on correlated
heterogeneity and FE event history models can be found in Allison (2009).

We often have the opportunity to analyze continuous-time data through the use of
retrospective data included in most panel surveys. A sophisticated treatment of tech-
niques for continuous-time data can be found in the pioneering early monographs
by Kalbfleisch and Prentice (1980) and Cox and Oakes (1984). Other popular but
sophisticated monographs are Lancaster (1990) and Blossfeld et al. (1989). Bloss-
feld and Rohwer (2002), Blossfeld et al. (2007), Cleves et al. (2002), and Allison
(1995) take on different aspects in event history analysis using the software TDA,
Stata and SAS, respectively.



6How to Do Your Own Panel Analysis

We hope that our textbook has motivated you to do your own panel analysis. Many
panel data are available for secondary analysis. Table 6.1 shows a selection of
them and their characteristics. Ruspini (2002) gives more detailed information on
these and other panel surveys and compares them with other longitudinal data such
as pooled cross-sections and (retrospective) event histories. Textbooks on specific
panel studies are rare (for an exception see Hill, 1997), because data collection and
dissemination may change quite quickly during the course of the study. Hence, you
should search for the most recent information on the corresponding web sites of the
panel studies.

The chapters in Rose (2000) discuss the pros and cons of panel surveys and how
to maintain the quality of panel data. The edited volume also includes some typical
examples of panel analyses. A gentle introduction into the most common problems
of panel analysis for social scientists can be found in Taris (2000). The edited vol-
umes by Kasprzyk et al. (1989), Lynn (2009) and Menard (2008) provide more
comprehensive methodological discussions on designing, collecting, and analyzing
panel data. Finally, a recent research report from the Institute for Social and Eco-
nomic Research in Essex (Lynn et al., 2005) provides a nice summary of our current
knowledge about the design and implementation of longitudinal surveys and about
the use of such data.

As already mentioned in the introductory chapters, it is difficult for the novice
user to have a basic orientation to the various statistical methods of panel data analy-
sis. This also has to do with the different disciplines using panel data, each of which
has its own methodological tradition. This diversity has its pros and cons. An ad-
vantage is certainly that you find many good textbooks on panel data analysis in
your discipline that tie in with your methodological training. But, at a certain point,
you will come across (seemingly) different panel data methods and will have to ask
yourself whether it is a new methodology or something that you already know. Of-
ten, you will have the feeling that it is only different people talking about the same
problem, but using different terminology. This lack of interdisciplinary communi-
cation and generality is certainly a disadvantage.

H.-J. Andreß et al., Applied Panel Data Analysis for Economic and Social Surveys,
DOI 10.1007/978-3-642-32914-2_6, © Springer-Verlag Berlin Heidelberg 2013
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Nevertheless, it is useful to have a look at the different methodological tradi-
tions and their associated literature. While it cannot claim to be comprehensive the
following list names some of the most prominent traditions and mentions some in-
troductory textbooks for each of them:
• Economics: Economics research traditionally focuses on continuous variables

(often on the aggregate level of countries). Econometrics has a strong tradition in
regression and time-series analysis for longitudinal data. First differences, fixed
effects, and other estimation methods for the linear model can be found in ev-
ery econometrics textbook (e.g., Cameron and Trivedi, 2005; Greene, 2008) or
in specialized textbooks on panel data analysis (e.g., Baltagi, 2008; Hsiao, 2003;
Wooldridge, 2010). However, with the advent of large socioeconomic household
panels, economic research is increasingly focusing on categorical variables too
(Cameron and Trivedi, 2005; Hsiao, 2003; Diggle et al., 2002). Frees (2004),
Singer and Willett (2003), and Taris (2000) are textbooks that specifically focus
on the social sciences.

• Psychology: Psychological research often uses experimental data, where the de-
pendent variable is continuous and the independent variables are mostly categori-
cal (e.g., the treatment) and sometimes continuous (e.g., the controls). Analysis of
variance is perfectly suited to this type of data. Within this tradition, psychomet-
rics has developed specific methods to analyze experimental data with repeated
measurements using analysis of variance and variance components models (Fitz-
maurice et al., 2011; Kirk, 1995). Furthermore, psychology, but also other social
science disciplines, are interested in the development of individual characteristics
over time. Growth models provide a perfect tool for these kinds of developmental
research question and structural equation model (SEM) are a nice environment, in
which one can test all kinds of hypothesis about inter- and intra-individual change
(Bollen and Curran, 2006; Duncan et al., 2006). Furthermore, SEM also allow to
model change that happens continuously in time (Oud and Delsing, 2010).

• Educational science, psychology, and increasingly internationally comparative
survey researchers: These researchers often have to deal with grouped data, e.g.,
students within classes within schools, or respondents within regions within coun-
tries. For this kind of hierarchical data, they have developed multi-level modeling,
which, as we have seen, can also be applied to panel data (Goldstein, 2011; Hox,
2010; Singer and Willett, 2003; Snijders and Bosker, 2011).

• Political science: Quantitative research in political science, especially in com-
parative politics, often uses continuous data at the aggregate level of countries.
Since the number of countries, for which the necessary information is available,
is often limited (e.g., to the OECD countries), there is a strong interest to in-
crease the number of observations by using data from different years. Hence,
political scientists have made important contributions to the analysis of pooled
time-series cross-section data (macro panels) (Beck and Katz, 1995, 1996, 2011;
Beck, 2001).

• Sociology and life sciences: Demography, epidemiology, and even engineering
are the traditional users of survival analysis and duration data. Surveys of life
histories have made these techniques interesting for social scientists too, among
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whom they have become known as event history analysis (Blossfeld et al., 2007;
Singer and Willett, 2003; Yamaguchi, 1991). Somewhat related to these methods
is a technique called sequence analysis (Abbott and Tsay, 2000; Brzinsky-Fay
and Kohler, 2010; MacIndoe and Abbott, 2004). While survival and event history
analysis focus on single events, sequence analysis uses the whole sequence of
spells and events that is observed for a unit in the observation period. It tries to
find different types of sequence in the data by using optimal matching procedures.

• Sociology, political science, and marketing: The first social science panel studies
were rather short, consisting of only 2–3 measurements over time (e.g., before,
during, and after an election). The same has been true for research on consumer
behavior (e.g., evaluating marketing campaigns). Within these analyses of short
panels, processes of change (e.g., voter turnover, brand loyalty) have traditionally
focused on transition matrices using Markov models. Applications of these kinds
of model can be found in the context of categorical data analysis (e.g., van de Pol
and Langeheine, 1990; Vermunt et al., 2008).

• Sociology and psychology: Finally, sociologists and psychologists with their in-
terest in often unreliable attitude data have developed methods to account for ran-
dom and systematic measurement error. The classical work by Blalock (1970),
Heise (1969), and Wiley and Wiley (1970) discusses reliability assessment with
panel data and how to separate true change from artificial change due to mea-
surement error. All of these analyses can be undertaken in a much more general
framework by using structural equation models (SEM). Gentle introductions into
SEM are provided, among others, by Bollen (1989), Kline (2010), and Schu-
macker and Lomax (2004). The traditional SEM literature focuses on continuous
latent variables. If you think that latent variables are categorical, you have to re-
fer to latent class analysis (LCA). LCA is the methodological basis of structural
equation models for categorical data. Bergsma et al. (2010) and Hagenaars (1990)
show how to assess stability and change of possibly unreliable categorical depen-
dent variables. Recent developments in panel analyses with latent variables are
discussed by Little et al. (2007).

So, how to do your own panel analysis? Simply by following the steps that we have
set for you in this book, and by building on the methodological strategies specific
to your own discipline. If you still think that it is not simple at all, remember that
the appetite comes with eating! It is only once you start doing your own analysis
that you better understand how the various pieces of the puzzle fit together. What
is more important, it is only by doing your own analysis that you get a taste of the
statistical methods. You are now equipped with the concepts and the understanding
of the mechanisms behind them. Just do it!



7Useful Background Information

7.1 Functions of Random Variables

A random variable can take on a set of possible different values, each with an asso-
ciated probability. Statisticians distinguish between continuous and discrete random
variables. In the following, we focus on continuous random variables. A continuous
random variable can be described by a statistical distribution (e.g., the normal distri-
bution). Expected values, variances, and other statistics are used to measure certain
characteristics of the distribution, e.g. its center and its spread (Greene, 2008, Ap-
pendix B). In this section, we discuss functions of random variables that are used at
various places in the text. For example, if you have two normally distributed random
variables X and Y , then their sum Z = X + Y is also a random variable which is
normally distributed. Table 7.1 shows how we can compute the expected value and
the variance of Z as a function of X or Y or both of them. The formulas apply for
any kind of distribution. Hence, X and Y do not need to be normally distributed.

According to the last line of Table 7.1, if we compute a function of two random
variables that covary with each other, as we do when we look at the difference of
two regressions coefficients (see (7.14)), then their respective variances (σ 2

β̂1
, σ 2

β̂2
)

and their covariance (σ
β̂1,β̂2

) has to be accounted for when computing the variance
of the difference:

σ 2
(β̂1−β̂2)

= σ 2
β̂1

+ σ 2
β̂2

− 2 · σ
β̂1,β̂2

(7.1)

Another example is the error term of our panel regression models. It consists of two
random variables: unobserved heterogeneity at the unit level (U ) and idiosyncratic
errors at the measurement level (E). However, we assumed the two error compo-
nents to be independent of each other (σu,e = 0). If the covariance of U and E is
zero, the variance of the composite error εit = ui + eit equals the sum of both error
variances:

σ 2
ε = σ 2

u + σ 2
e − 2 · 0 = σ 2

u + σ 2
e (7.2)
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Table 7.1 Expected values and variances for functions of random variables

Z = f (X,Y ) E(Z) Var(Z)

a a 0

b · X b · E(X) b2 · Var(X)

a + b · X a + b · E(X) b2 · Var(X)

a · X + b · Y a · E(X) + b · E(Y ) a2 · Var(X) + b2 · Var(Y ) + 2ab · Cov(X,Y )

X + Y E(X) + E(Y ) Var(X) + Var(X) + 2 · Cov(X,Y )

X − Y E(X) − E(Y ) Var(X) + Var(X) − 2 · Cov(X,Y )

Note: a and b are arbitrary constants

Similar formulas apply for covariances of random variables that are functions of
other random variables. One of them is particularly important for us:

Cov(X + Y,Z) = Cov(X,Z) + Cov(Y,Z) (7.3)

For example, when analyzing the serial correlations among the repeated obser-
vations yit (t = 1, . . . , T ), we assumed that the serial correlations are due to the
time-constant unit-specific effects ui in the error term: εit = ui + eit. We also
assumed that both error components U and E are independent of each other
(Cov(ui, eit) = σu,e = 0; t = 1, . . . , T ) and that idiosyncratic errors are not serially
correlated (Cov(eit, eis) = σet ,es = 0; t 	= s). Using these assumptions and (7.3), we
can determine the covariance between the error terms at two different time points t

and s (t 	= s):

Cov(εit, εis) = Cov(ui + eit, εis)

= Cov(ui, εis) + Cov(eit, εis)

= Cov(ui, ui + eis) + Cov(eit, ui + eis)

= Cov(ui, ui) + Cov(ui, eis) + Cov(eit, ui) + Cov(eit, eis)

= Cov(ui, ui) + 0 + 0 + 0 (7.4)

Note that the covariance of a variable with itself equals its variance and hence,
Cov(εit, εis) = Cov(ui, ui) = Var(ui) = σ 2

u (t 	= s).
Repeated application of (7.3) will also show that the correlation between the

two observed variables Y80 and Y81 in path diagram (3.6) can be obtained by mul-
tiplying the two reliabilities and the stability of the latent variables Y ∗

80 and Y ∗
81:

Corr(yi,81, yi,80) = 0.6 · 0.454 · 0.6 = 0.163. When trying to do this proof yourself,
you should remember that all variables in the path diagram are in standard form and
hence, have variances (and standard deviations) equal to one. Since the Pearson cor-
relation coefficient is defined as the covariance divided by the standard deviations
of both variables that are correlated with each other (see (3.7)), the correlation of
two standardized variables equals their covariance.
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7.2 Estimation and Testing

7.2.1 Ordinary Least Squares

7.2.1.1 How to Compute a Regression Model Fitting the Data?
Figure 7.1 shows the statistical association between two continuous variables X

and Y . The data come from a data set that we designed for this section.

Example 7.1 (sixcases data) We call these data the sixcases data, be-
cause they include only n = 6 cases. With these few data, all computations
can be done manually, which makes all formulas easy to follow. Table 7.2
shows the values of both variables X and Y for each case i = 1, . . . ,6.

Furthermore, Table 7.2 shows some additional variables that have been
derived from X and Y , among them ŷi = 3 + 0.5 · xi .

According to Fig. 7.1, the relationship is positive and approximately linear. We
have indicated this with a straight line running from the lower left to the upper
right corner of the graph. The line ŷi = β0 + β1xi seems to fit the data quite well,
although we have drawn it more or less freehand using some plausible values for

Table 7.2 Example with two
continuous variables X and Y

i xi yi ŷi (yi − ŷi ) (yi − ŷi )
2 |yi − ŷi |

1 0.5 3 3.25 −0.25 0.0625 0.25

2 1 2 3.5 −1.5 2.25 1.5

3 2 5 4 1 1 1

4 4 7 5 2 4 2

5 5 4 5.5 −1.5 2.25 1.5

6 5.5 5 5.75 −0.75 0.5625 0.75

Fig. 7.1 Example with two
continuous variables X and Y
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the intercept (β̈0 = 3) and the slope (β̈1 = 0.5). The points on the line, the predicted
values ŷi , indicate our expectations about the level of Y given a particular level of X.
How well the line actually fits the data cannot be answered until we have defined
what we mean by “data fit”. Broadly speaking, a “fitting” line should minimize the
vertical distances (indicated by perpendicular lines) between the data points and the
predicted values.

Unfortunately, minimizing the sum of the residuals (yi − ŷi ) does not provide a
unique solution (there are different solutions, all providing �i(yi − ŷi ) = 0 because
positive and negative residuals cancel each other out). But minimizing either the
squared (yi − ŷi )

2 or the absolute residuals |yi − ŷi | is feasible. With the freehand
parameters above, the sum of squared residuals amounts to SSR = �i(yi − ŷi )

2 =
10.125 and the sum of absolute residuals amounts to SAR = �i |yi − ŷi | = 7. By
“playing” a little bit with the parameters both sums can be made even smaller:
SSR = 9.956 for β̂0 = 2.867 and β̂1 = 0.489; SAR = 6 for β̃0 = 2.8 and β̃1 = 0.4.
Modern spreadsheet programs can do this search for the “best” parameters by using
some kind of numerical optimization algorithm (see the Excel file on the web site).
Hence, you do not need to do it manually. Minimizing SSR = �i(yi − ŷi )

2 is the
computational basis of ordinary least squares estimation (OLS), while minimizing
SAR = �i |yi − ŷi | is the equivalent for least absolute difference estimation (LAD).
Both computational procedures are easily extended to multiple regression models
including several X variables. Again, parameter values can be found by some nu-
merical optimization procedure. For OLS, there is also an analytical solution which
significantly simplifies the “search” for the right parameters. Regression programs
routinely apply these formulas for the OLS estimates β̂ . However, as the examples
of LAD and ML show (for ML see Sec. 7.2.2), analytical formulas are not always
available and numerical optimization has to be used instead.

In case of OLS estimation, a descriptive measure of model fit can be derived by
splitting the total variation SST = �i(yi − ȳ.)

2 of the dependent variable Y into two
components: one being explained by the statistical model (SSE = �i(ŷi − ȳ.)

2) and
the other being not explained by the model (SSR = �i(yi − ŷi )

2). The coefficient of
determination is defined as

R2 = SSE

SST
= �i(ŷi − ȳ.)

2

�i(yi − ȳ.)2
= 1 − SSR

SST
= 1 − �i(yi − ŷi )

2

�i(yi − ȳ.)2
(7.5)

Hence, knowing the variance σ 2
y of the dependent variable and the sum of squared

residuals SSR of the regression model, one can easily compute the coefficient of
determination as

R2 = 1 − SSR

(n − 1) · σ 2
y

(7.6)

With 0 ≤ R2 ≤ 1, it is usually interpreted as the share of the total variance that is
explained by the model. One can think of SSR as an absolute measure of fit that
increases with the sample size and the variance of the dependent variable. The co-
efficient of determination turns it into a measure of relative fit. There is also an
adjusted coefficient of determination
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R2 = 1 − SSR/(n − k − 1)

SST/(n − 1)
= 1 − SSR/(n − k − 1)

σ 2
y

(7.7)

that accounts for the complexity of the model relative to the sample size n, by con-
trolling for the number of estimated regressions coefficients k and one estimated
regression constant.

7.2.1.2 Sampling and Sampling Errors
Having reviewed the computational basis of both OLS and LAD, we can now dis-
cuss the issue of estimation and testing. Estimation is about drawing valid inferences
from a sample about a larger population from which the units of the sample have
been randomly selected. More precisely, one wants to compute estimates of pop-
ulation parameters (e.g., parameters of a regression model) that deviate as little as
possible from the “true” population parameters. On average, i.e., across different
samples, the estimates should be identical with the population parameters (criterion
of unbiasedness) and their deviations from the “true” parameters, i.e., the sampling
errors or more specifically, the variance of the sampling errors, should be as small
as possible (criterion of efficiency). Given certain assumptions about the regression
model (see Textbox 4.1), statisticians can prove that OLS estimates of the regres-
sion parameters are unbiased and vary less (i.e., are more efficient) than all other
linear estimators (i.e., they are the best linear unbiased estimators and therefore, are
called BLUE). Instead of repeating this proof (it can be found in every textbook on
regression analysis), we want to motivate the general idea with some real data. In
order to check the unbiasedness and efficiency of the estimates, one needs to know
the “true” population parameters, which is usually not the case. Therefore, the fol-
lowing example analyzes the unrealistic case of a known population. Although there
is no need to draw a sample in that case (everything is known about the population),
selecting random samples and estimating population parameters with these known
data shows what can happen when making inferences from random samples.

Example 7.2 (wpgen data) The example uses SOEP data (see also Exam-
ple 2.2). The file wpgen includes data on education and monthly gross labor
income for all employees interviewed in 2006. Let us assume that log earn-
ings (Y , measured in Euro) is only a function of schooling (X, measured in
years of education). All other determinants of earnings are assumed to be ran-
dom, zero on average and independent of schooling.1 An OLS regression of

1This is not a very realistic assumption, as we discuss in Example 3.2. The return to education in
this simple schooling model is possibly overestimating the real effect of schooling. But this is not
our problem here. We want to see whether it is possible to replicate the regression coefficient that
is found for employees with this simple model in the wpgen data (the population) with a random
sample from that population.



298 7 Useful Background Information

the simple schooling model shows that one year of schooling increases earn-
ings by about 11 %: yi = 6.1187 + 0.1108 ·xi + ei , with ei including all other
determinants of earnings as well as errors of measurement of earnings. Let us
assume that the n = 6,026 employees in the wpgen data represent our pop-
ulation. In the following, we want to analyze whether we can replicate this
finding also in random samples of this population.

Drawing random samples from a data set is a routine task with statistical soft-
ware programs. We selected randomly n = 300 employees. Regressing earnings on
schooling provided the OLS estimates β̂0 = 6.2111 and β̂1 = 0.1042, which ob-
viously are not identical with the population parameters β0 = 6.1187 and β1 =
0.1108, although the deviations (the sampling errors) are rather small. We wanted
to see whether that is due to the one specific random sample and therefore, selected
additional random samples (altogether thousand random samples), each time esti-
mating the same schooling model with OLS. The upper panel of Fig. 7.2 shows
the distribution of the k = 1,000 OLS estimates of the schooling effect β1. This
distribution is also called the empirical sampling distribution of β1. The true pop-
ulation parameter β1 = 0.1108 is indicated by a vertical line and we see that the
thousand estimates vary symmetrically around this value with most estimates in
the vicinity of β1 = 0.1108. More specifically, the average of all the estimates
(�kβ̂1k/1000 = 0.1113) is almost identical to the true population parameter. This
indicates that OLS provides unbiased estimates. However, each single estimate
is affected by a more or less strong sampling error. In fact, estimates vary from
β̂1 = 0.0288 to β̂1 = 0.1936 with an overall standard deviation of s

β̂1
= 0.0229.

This sampling experiment (also called a simulation study with thousand repli-
cates) illustrates the statistical proof of unbiased OLS estimates (the issue of effi-
ciency will be discussed later). Using the assumptions in Textbox 4.1, statisticians
derive the theoretical sampling distribution of β1 mathematically. According to this
proof, OLS estimates of β1 are normally distributed with a normal distribution cen-
tered at the population value of β1. Empirical sampling distributions derived from
simulation experiments like ours approximate this theoretical distribution. Further-
more, statisticians derive a formula for the standard deviation of the regression es-
timates (i.e., for the spread of the normal distribution) and show that this standard
deviation σ

β̂
is smaller than the standard deviation of the estimates of any other kind

of linear estimator. More specifically, they show that the variance of the estimates
of a particular regression coefficient βj is a function of (i) the variance σ 2 of the
error terms ei , (ii) the variation SSTj of the corresponding independent variable Xj

in the sample and (iii) how Xj (in the multivariate case) is related to the other inde-
pendent variables in the model (as measured by the coefficient of determination R2

j

when regressing Xj on all other independent variables in the model):

σ
β̂j

=
√

σ 2

SSTj · (1 − R2
j )

with SSTj =
n∑

i=1

(xij − x̄.j )
2 (7.8)
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Fig. 7.2 Empirical sampling distribution of β1

The standard deviation of a sample statistic (in our example, the estimated regres-
sion coefficient β̂j ) across different samples is also called a standard error. There-
fore, (7.8) shows the standard error of the regression coefficient βj .

If we interpret σ
β̂j

as a measure of imprecision of the estimate, the components
of the formula make intuitively sense: (i) The more determinants of Y that are not
controlled for by the regression model and the less reliable Y is measured (hence, the
larger σ 2), the less precise the estimates. (ii) Imprecision is lower, the more different
conditions one observes for the effect in the sample, i.e., the more Xj varies (and
hence, SSTj increases). For example, if earnings are assumed to be a function of
schooling, testing this assumption with individuals with hardly differing levels of
education (say, 10 and 12 years) provides less reliable estimates than performing
this test with individuals having many different levels of education (say, 10, 12,
16 and 18 years). (iii) Finally, the lower is the imprecision, the less variable Xj

correlates with the other independent variables in the model (and hence, the lower
R2

j ) and consequentially, the easier it is to distinguish its effect from the effects of
the other independent variables.

7.2.1.3 How to Choose Between Different Estimation Methods?
Very often different estimators are available to estimate the parameters of a statis-
tical model. For example, instead of using OLS, the parameters of the linear re-
gression model could be estimated with LAD. This raises the question, which esti-
mation procedure is better and should be preferred in empirical work. To illustrate
this decision, we have done a similar simulation experiment with LAD, the results
of which are shown in the lower panel of Fig. 7.2. Without knowing what LAD is
doing, one would clearly give up LAD in favor of OLS estimation, because the es-
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Fig. 7.3 How to choose
between different estimators

timates seem to be biased downward. As Fig. 7.2 shows, LAD estimates are again
approximately normally distributed with about the same standard deviation as the
OLS estimates, but on average they are smaller than the true population parameter
(�kβ̃1k/1,000 = 0.0993).

However, this seemingly unpleasant result comes as no surprise, if one takes into
account what LAD estimation is doing. While OLS is estimating the expected arith-
metic mean of Y for a given level of the independent variables, LAD is estimating
the expected median of Y . Earnings distributions are known to be skewed (even
after a logarithmic transformation). Obviously, in the wpgen data this skewness in-
creases with rising levels of schooling resulting in a less steep increase in median
compared to mean earnings. This explains the on average lower estimates of the
schooling effect when using LAD.2 Therefore, if we would have used an example
with a symmetrically distributed dependent variable (where median and mean are
identical), we would have achieved similar unbiased estimates as in the case of OLS
estimation. However, the variance of the LAD estimates would be slightly larger
than the variance of the OLS estimates (technically, LAD estimates are less efficient
than OLS estimates). This is a reason to prefer OLS over LAD estimates. Although
both of them are unbiased (i.e., correct on average), OLS estimates in single samples
are expected to deviate less from the true population parameter than LAD estimates.
This is clearly an advantage, if replicated sampling is not possible, as it is typical
for the social sciences. Moreover, the fact that OLS estimates can be derived analyt-
ically makes them computationally easier than LAD estimates.

Figure 7.3 illustrates the choice between different estimators in a more general
perspective. It shows the theoretical sampling distribution of the estimates β̂1, if
one uses either method A, B or C to estimate the regression coefficient β1. For

2Therefore, defining the LAD estimates in Fig. 7.2 as “biased” is not quite correct. Indeed, they

measure the relationship between median earnings Ỹ and schooling X quite correctly. In the pop-
ulation this relationship is estimated as ỹi = 6.4135 + 0.1000 · xi + ẽi and �kβ̃1k/1000 = 0.0993
comes very close to the regression coefficient 0.1000 of schooling.
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simplicity we have assumed that each sampling distribution has the shape of a nor-
mal distribution. β1 equals zero in the population (see the vertical line at β1 = 0
in Fig. 7.3). Obviously, estimation methods A and B provide unbiased estimates,
because the center of both sampling distributions is located at β1 = 1. However,
method B is less efficient than method A, because the spread of its sampling dis-
tribution is larger. When comparing OLS and LAD estimation, we have exactly the
same situation: Both methods are unbiased, but OLS is more efficient than LAD.
Finally, method C shows an example of a biased estimator. Usually, methods A and
B would be preferred over C, because one would like to have estimators that provide
the true population parameter, at least on average. But there are situations, where the
choice is not that obvious and the focus on unbiasedness may be misleading.

As an example compare methods B and C. Although the average of the estimates
provided by C does not equal β1 = 0, the majority of the estimates (e.g., the 50 %
of the estimates around the center of the distribution) is closer to the true population
parameter than the middle 50 % of the estimates provided by B, simply because the
sampling distribution of C is much more widespread than the sampling distribution
of B (or, equivalently, because method B is less efficient than C). Hence, in a single
sample, method C may provide an estimate that is much closer to the true population
parameter than method B. This shows that the sole focus on unbiasedness may be
misleading in some applications, in which unbiasedness and efficiency should be
evaluated together.3

This was the case when comparing FE and RE estimation (see Sect. 4.1.2.4). FE
estimates are unbiased under more general conditions than RE estimates, which as-
sume that unobserved heterogeneity is uncorrelated with the variables in the model.
But RE estimation provides less widespread (more efficient) estimates than FE re-
gression and therefore, in a single sample and under certain conditions, may provide
estimates closer to the true population parameter than FE estimation. As noted in
Sect. 4.1.2.4, these conditions should be researched in greater detail by simulation
studies.

7.2.1.4 How to Estimate the Parameters of an Unknown Population
with a Sample of Data?

Our simulation study started from a known population and illustrated the statistical
proof of unbiased and efficient OLS estimates. But what is the utility of this proof for
the more relevant problem of estimating parameters from a sample for an unknown
population? The statistical reasoning starts again from a known population and the
results of the former simulation experiment. Knowing that the sample estimates
are normally distributed around the true population parameter, one can predict an
interval in which one expects with a given probability the parameter estimates. This
is illustrated in the upper panel of Fig. 7.4. For example, in our case, we expect
95 % of the estimates in the interval ranging from ll = (0.1108 − z(1−0.975) · σ

β̂j
) to

3One way to do that quantitatively is to compute the mean square error, which is a function of
both the bias and the variance of the estimates.



302 7 Useful Background Information

Fig. 7.4 Drawing inferences from a sample about an unknown population

ul = (0.1108 + z(1−0.975) · σ
β̂j

) (see the shaded area under the normal distribution
in the upper panel of Fig. 7.4). z(1−0.975) = 1.96 is the 97.5th percentile value of the
normal distribution.4 This result can then be used for the reverse (and more realistic)
case with a given sample and an unknown population. This is illustrated in the lower
panel of Fig. 7.4. Instead of using the population parameter β1 = 0.1108, one would
insert the sample estimate β̂1 in the formulas and derive a confidence interval based
on the sample estimate. However, depending on how much the sample estimate β̂1

itself is different from the true parameter β1, this confidence interval does or does
not include the population parameter (see the confidence intervals for sample 5 and
7 in the lower panel of Fig. 7.4. Only if the sample estimate β̂1 is one of the many
estimates in the aforementioned interval [ll,ul] (indicated by the vertical lines in the
lower panel of Fig. 7.4, then the confidence interval based on the sample estimate
will include the true population parameter and hence, will make a correct prediction.
Since the interval [ll, ul] includes 95 % of all possible sample estimates, this kind
of reasoning will be correct in 95 % of the cases. Therefore, it is interpreted as
a confidence interval that includes the true parameter with a probability of 95 %
(for short, the 95 % confidence interval). However, social science applications never
apply repeated sampling and with only one single sample at hand, one can never be
sure whether its estimate of β1 is within or without the interval [ll, ul]. Therefore,

4If one would be interested in 80 % of the estimates, one would have to use the 90th percentile
value of the normal distribution. Generally speaking, one has to use z(1−α/2) with α measuring the
share of extreme z values either far below or far above the true population parameter (i.e., the z

values in the white areas under the normal distribution in the upper panel of Fig. 7.4).
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it would be more honest to say: “The true population parameter falls within the
confidence interval with a probability of 95 % or not.”

7.2.1.5 How to Test Parameters of an Unknown Population
with a Sample of Data?

Similarly, one can test hypotheses about population parameters, say the hypothesis
that an independent variable Xj has no effect and the corresponding regression co-
efficient equals zero (H0 : β0

j = 0). The reasoning is pretty much the same as in the

case of estimation. Since β0
j = 0 is a statement about the population, one computes

first of all an interval [ll, ul], in which one would expect with a certain probability
sample estimates if the hypothesis would be true. One uses the same formulas as be-
fore, except that the true population parameter is exchanged for the value assumed
in the null hypothesis: ll = (β0

j − z(1−α/2) · σ
β̂j

) and ul = (β0
j + z(1−α/2) · σ

β̂j
). If

the sample estimate β̂j falls outside the corresponding interval, the null hypothesis
is rejected. α is now the significance level of the test. In case of a two-sided alterna-
tive hypothesis (H1 : β1

j 	= 0), one has to use the (1 − α/2) quantile value z(1−α/2)

of the normal distribution to compute the interval. In case of a one-sided alternative
hypothesis, one has to use the (1 − α) quantile value z(1−α) of the normal distribu-
tion and the interval is either [ll,+∞] in case of H1 : β1

j < 0 or [−∞, ul] in case of

H1 : β1
j > 0. Alternatively, one can ask how far—relative to the spread of the normal

distribution (as measured by σ
β̂j

)—the sample estimate β̂j is away from the value

β0
j assumed in the null hypothesis:

z = β̂j − β0
j

σ
β̂j

(7.9)

If this so-called Z statistic falls outside the interval [−z(1−α/2),+z(1−α/2)] in case of
a two-sided alternative hypothesis, the null hypothesis is rejected. In case of a one-
sided alternative hypothesis, the corresponding interval is either [−z(1−α),+∞] in
case of H1 : β1

j < 0 or [−∞,+z(1−α)] in case of H1 : β1
j > 0.

In practice, estimation and testing is a little bit more complicated, because in
order to compute the standard error of the estimated regression coefficient one needs
the variance σ 2 of the error terms ei , which are unknown by definition. Hence, they
have to be estimated from the residuals (yi − ŷi ) of the model and the formula for
the standard error turns into:

σ̂
β̂j

=
√

σ̂ 2

SSTj · (1 − R2
j )

with SSTj =
n∑

i=1

(xij − x̄j )
2 and σ̂ 2 =

∑n
i=1(yi − ŷi )

n − k − 1

(7.10)
σ̂ 2 is called standard error of the regression or root mean squared error. It is some-
thing like an average squared residual, where the sample size n has been corrected
for the lost degrees of freedom due to k estimated regression coefficients and one
estimated regression constant. The larger the sample size and the less complicated
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the model in terms of the number of parameters (i.e., the more degrees of freedom
available), the smaller the root mean squared error and consequently, the standard
error of the estimated regression coefficient β̂j .

Since one of the three components of the standard error has been estimated,
(7.10) shows the estimated standard error of the regression coefficient (as opposed
to the theoretical standard error in (7.8)). Similar to estimates of regression co-
efficients, the sample estimate of the error variance σ̂ 2 can be different from its
“true” value σ 2 in the population and accordingly, estimation and testing have to be
adapted to this additional imprecision. This is done by using Student’s T distribu-
tion instead of the normal distribution. There is a statistical reason why exactly the T

distribution is preferred over the normal distribution, but this is not of interest here.
From a practical point of view, not much changes. In the former formulas, one only
has to exchange the z values by the quantile values t(1−α/2, n−k−1) resp. t(1−α, n−k−1)

of the T distribution. Hence, the confidence interval is defined as follows

ll = β̂j − t(1−α/2, n−k−1) · σ̂
β̂j

≤ βj ≤ β̂j + t(1−α/2, n−k−1) · σ̂
β̂j

= ul (7.11)

and (7.9) is turned into a so-called T statistic,

t = β̂j − β0
j

σ̂
β̂j

(7.12)

which has to be compared to a T distribution to decide the test. The T distribution
looks like the bell-shaped normal distribution, but in smaller samples it provides
larger confidence intervals (i.e., less precise estimates) and more conservative test
statistics. This is exactly what we would like to do to control for the additional
imprecision due to estimating σ 2.

Besides testing single regression coefficients, there are different methods for test-
ing several regression coefficients and/or for testing (linear) relationships between
regression coefficients. A standard test for the overall fit of a regression model is
for example the hypothesis that none of the independent variables has an effect
significantly different from zero. For a trivariate regression model with two inde-
pendent variables this includes essentially two null hypotheses a and b: Ha

0 : β1 = 0
and Hb

0 : β2 = 0. Or think about an extended earnings model that includes besides
schooling X1 a measure of labor market experience X2 (both variables measured in
years). One may want to test the hypothesis that the return to experience is as large as
the return to schooling. In this example the null hypothesis assumes Ha

0 : β1 = β2
or equivalently β1 − β2 = 0, which implies again one null hypothesis a, but now
including a relationship between two parameters of the model. As a final exam-
ple, let us assume that a researcher uses in his regression model instead years of
education three different levels of education. Medium and high educational level
are measured by two dummy variables, while low educational level is used as the
reference category. In a model that includes only the two dummies, the regression
constant estimates average earnings for employees with low educational level, while
the regression coefficients of the two dummies estimate how average earnings for
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employees with medium (β1) and high (β2) educational level differ from average
earnings in the reference group. Now the researcher wants to test whether the in-
crease in earnings over different educational levels is linear, which implies that the
regression coefficient of the “high” dummy is twice as large as the coefficient of the
“medium” dummy: Ha

0 : β2 = 2β1 or equivalently, β2 − 2β1 = 0.
Before showing how to perform these tests, let us first see how to formalize these

slightly more complicated null hypotheses. This is easily done by using a table that
includes as many rows as there are hypotheses and as many columns as there are
parameters in the model. For the three examples these tables look like the following:

Example 1 β0 β1 β2

Ha
0 0 1 0

Hb
0 0 0 1

⇒ 0 · β0 + 1 · β1 + 0 · β2 = 0
⇒ 0 · β0 + 0 · β1 + 1 · β2 = 0

Example 2 β0 β1 β2

Ha
0 0 1 −1 ⇒ 0 · β0 + 1 · β1 − 1 · β2 = 0

Example 3 β0 β1 β2

Ha
0 0 −2 1 ⇒ 0 · β0 − 2 · β1 + 1 · β2 = 0

As the arrows indicate, these tables should be read row-wise. In each cell, the num-
ber has to be multiplied with the corresponding (column) parameter and all products
within a row have to be added. If one constrains each row sum to be equal to zero,
one replicates the aforementioned hypotheses. Obviously, the numbers in the tables
define a matrix of linear constraints (or restrictions) on the parameters of the model.
Therefore, it is called a constraint matrix C and the multiplication, addition and set-
ting equal to zero is easily specified with matrix algebra: Cβ = 0. In this matrix
equation, β is a column vector including all parameters of the model.

You do not need knowledge of matrix algebra to understand the following test
procedures, but the concept of constraints resp. restrictions is useful as a general
way of testing parameters including many classical test procedures as special cases
(e.g., the former T test is based on a contrast matrix, which has only one row in-
cluding only one 1). There are basically two approaches for testing the restrictions
implied in C. One is based on comparing the fit of two hierarchically nested mod-
els Mu and Mr , in which the restricted model Mr includes only a subset of the
parameters of the unrestricted model Mu. Or to put it differently: While in Mu all
parameters have to be estimated, in model Mr only a subset of the parameters has
to be estimated, because some of the parameters in Mr have to have specific values
defined in the constraint matrix C. A good example for this kind of reasoning is
the classical F test of the overall model fit. Its null hypothesis assumes that none
of the independent variables has an effect (see the constraint matrix for the afore-
mentioned example 1). It is equivalent to comparing a model Mu including all the
independent variables with a model Mr that only estimates a regression constant and
hence, implicitly assumes that all regression coefficients are restricted to be zero ex-
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cept the constant.5 If SSRu is the sum of squared residuals of the unrestricted model
and SSRr the corresponding sum for the restricted model, then the test statistic is
defined as follows:

f = (SSRr − SSRu)/q

SSRu/(n − k − 1)
(7.13)

It is F distributed with df 1 = q and df 2 = n−k−1 degrees of freedom. q equals the
number of restrictions tested (i.e., the number of rows in C) and k equals the number
of independent variables in the unrestricted model. If the f statistic is significant, at
least one hypothesis specified in the constraint matrix has to be rejected. In case of
example 1 that would mean that at least one independent variable has a significant
effect.6

The second approach for testing linear restrictions is less intuitive. It is based on
the estimation results for one single model and uses both the estimated parameters
and their estimated variances and covariances. For instance, if you want to test the
difference between two regression coefficients, say (β̂1 − β̂2), you would need the
standard error of the difference σ̂

(β̂1−β̂2)
. As shown above, both regression coeffi-

cients are normally distributed random variables with variances σ̂ 2
β̂1

and σ̂ 2
β̂2

. Since

the difference is a linear function of both random variables, it is also a normally
distributed random variable. Using the algebra of variances and covariances (see
Sect. 7.1), its variance can be computed as follows: σ̂ 2

(β̂1−β̂2)
= σ̂ 2

β̂1
+ σ̂ 2

β̂2
−2 · σ̂

β̂1,β̂2
.

The term σ̂
β̂1,β̂2

is the estimated covariance of both parameter estimates.7 Knowing
the estimated parameter difference and its estimated standard error, one can easily
test whether it is different from zero by using a standard T test,

t = (β̂1 − β̂2) − 0

σ̂ 2
(β̂1−β̂2)

(7.14)

It can also be shown that the square of the test statistic, t2, is distributed as χ2

with df = 1 degree of freedom. The same result can be achieved with the constraint
matrix C = [0+1−1] from the aforementioned example 2 by solving the following
matrix equation:

5How a restricted model can be specified in case of example 2 or 3 is not that obvious, but it can be
done. We do not discuss this topic, because most statistical software supplies commands for testing
linear restrictions and the user has not to bother about specifying a restricted model.
6The sum of squared residuals in the constant only model equals the total variation of Y and hence,
SSRr = SST in the constant only model. Moreover, with the constant only as the restricted model,
SSRr − SSRu in (7.13) equals SST − SSRu = SSE and the number of restrictions (compared to
the full model) equals the number of independent variables: q = k. Inserting all of this into (7.13)
results in the well-known f statistic for the overall test of model fit: f = (SSE/k)/[SSR/(n −
k − 1)].
7Parameter estimates do not only vary between different samples, but also show some kind of
covariation across samples. This is immediately evident from the former simulation study. For
example, if the regression coefficient β1 is slightly overestimated, the regression constant most
probably is slightly underestimated (and vice versa).
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W 2
r/u = (Cβ̂ − 0)′

(
CV̂

β̂
C′)−1

(Cβ̂ − 0) = (Cβ̂)′
(
CV̂

β̂
C′)−1Cβ̂ (7.15)

This so-called Wald statistic compares again an unrestricted and a restricted model;
now by using a constraint matrix C, the vector of estimated parameters β̂ and a
matrix V̂

β̂
including all estimated variances and covariances of the parameter es-

timates. Again, you do not need to understand this matrix equation, because many
statistical software packages have already implemented this test. W 2

r/u is distributed

as χ2 with df = q degrees of freedom, q being the number of restrictions tested
(i.e., the number of rows of the constraint matrix C). In the simple example 1, q = 1
and W 2

r/u will equal t2 as computed from (7.14). But obviously, the advantage of
the Wald statistic is that it can test much more general hypotheses.

In sum, there are different choices when testing model fit and parameter re-
strictions: T tests for testing single restrictions with the possibility of using one-
sided alternative hypotheses, F tests based on fit measures of two different (re-
stricted and unrestricted) models, and Wald tests that use the information of the
estimated variances and covariances of the estimates in the current model. In the
case of linear models, all three alternatives will provide identical results. This is
different for non-linear models and ML estimation, as we will see in Sect. 7.2.2.
Moreover, testing can be made robust against violations of the OLS assumptions
of homoscedasticity and absence of autocorrelation by using so-called empirical
standard errors (or more generally, empirical variances and covariances). While
the former theoretical standard error (7.10) is derived analytically from these as-
sumptions, robust standard errors are computed empirically from the distribution
of residuals of the model. How this is done in detail, is beyond the scope of this
section.

7.2.2 Maximum Likelihood

Now let us return to the sixcases data (see Example 7.1) to explain maximum
likelihood (ML) estimation. Let us assume that instead of the original continuous
values we observe two different categories yi = 1 and yi = 0. The first category is
observed for units i = 3,4 and 6 (i.e., when the original Y was larger or equal to 5)
and the second category is observed for units i = 1,2 and 5 (i.e., when the original
Y was smaller than 5). In case of a categorical dependent variable, the idea of ML is
easy to understand. ML estimates of the regression coefficients are defined as those
estimates that—given the independent variables X—maximize the joint probability
of observing the values of the dependent variable Y . Hence, if we want to know the
probability of observing all the ones and zeros in the sample, we have to multiply
all the probabilities of observing either yi = 1 or yi = 0 for each unit i = 1, . . . , n.
If the six observations in the sixcases data are coded 0,0,1,1,0, and 1, their
overall likelihood would look like this:8

8Remember that the probability of a combined event that results from an and-combination of the
single events equals the product of the corresponding probabilities.
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L = (
1 − Pr(y1 = 1)

) · (1 − Pr(y2 = 1)
) · Pr(y3 = 1)

· Pr(y4 = 1) · (1 − Pr(y5 = 1)
) · Pr(y6 = 1)

According to the logistic regression model, the probability of observing 1—given
the value of X—equals the following expression:

Pr(yi = 1) = exp(β0 + β1xi)

1 + exp(β0 + β1xi)
(7.16)

For the whole sample of n units, the likelihood function equals the following ex-
pression:

L(β0, β1) =
n∏

i=1

[
Pr(yi = 1)

]yi · [1 − Pr(yi = 1)
](1−yi )

=
n∏

i=1

[
exp(β0 + β1xi)

1 + exp(β0 + β1xi)

]yi

·
[

1 − (β0 + β1xi)

1 + exp(β0 + β1xi)

](1−yi )

(7.17)

This likelihood function looks quite formidable, but think of the two exponents yi

and (1 − yi) like switches that switch on either Pr(yi = 1) or (1 − Pr(yi = 1)) de-
pending on whether the dependent variable for the corresponding observation equals
yi = 1 or yi = 0 (and hence, 1−yi = 1). If you now insert into (7.17) some arbitrary
starting values β0

0 and β0
1 for the ML estimates, the values of the independent vari-

able X and the values of the dependent binary variable Y for each unit i = 1, . . . , n,
(7.17) will provide the overall likelihood of the observed sample given the param-
eters β0

0 and β0
1 : L(β0

0 , β0
1 ). Since the likelihood equals the product of many small

numbers (probabilities are numbers in the unit interval [0,1]), L(β0, β1) itself is a
very small number and not very practical to search for the estimates that maximize
it. It is also much easier to maximize an additive function and therefore, one uses the
natural logarithm of the likelihood, which—since it is a monotone transformation—
provides exactly the same parameters that also maximize L(β0, β1):

lnL(β0, β1) =
n∑

i=1

yi · ln

(
exp(β0 + β1xi)

1 + exp(β0 + β1xi)

)

+
n∑

i=1

(1 − yi) · ln

(
1 − exp(β0 + β1xi)

1 + exp(β0 + β1xi)

)
(7.18)

Since the likelihood function of the logistic regression model is “well-behaved”
(i.e., has a maximum that is easy to find), one can choose any starting values for
the regression coefficients that look plausible. For example, a good starting point is
the assumption that the independent variable has no effect (β0

1 = 0) and the prob-
ability of observing a 1 equals the proportion of ones, π̂ , in the sample. This as-
sumption results in β0

0 = ln(π̂/(1 − π̂ )). If you now use the starting values β0
1 = 0
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Fig. 7.5 Log likelihood function (β1 varied, β0 fixed at β0 = −1.4606)

and β0
0 = 0 (π̂ = 0.5 for the sixcases data), the values of the independent vari-

able X and the values of the dependent binary variable Y for each observation,
(7.18) provides the logarithm of the overall probability of the observed sample given
the two chosen starting values. For the sixcases data, we arrive at a value of
lnL(β0

0 , β0
1 ) = −4.1589.9 Obviously, the result depends on the chosen starting val-

ues. You may try other values and in doing so, try to maximize lnL(β0, β1) (see
the Excel file on the web site). This is a cumbersome task, especially in a multivari-
ate model with many independent variables. Contrary to OLS estimation, there is
also no analytical solution to find the parameters that maximize lnL(β0, β1). There-
fore, you need numerical optimization algorithms that solve this problem efficiently
for you. The parameters β0 and β1 that maximize the log likelihood are called
ML estimates. In case of the sixcases data they amount to β̂0 = −1.4606 and
β̂1 = 0.4869 and the maximum of the likelihood equals L(β̂0, β̂1) = −3.5782. The
left panel of Fig. 7.5 shows the log likelihood function for different values of β1, as-
suming that the ML estimate β̂0 = −1.4606 for the regression constant has already
been found by the numerical optimization algorithm. The vertical line at 0.4869
shows that at this point the log likelihood is maximal and hence, β̂1 = 0.4869 is the
ML estimate of the regression coefficient of X.

A more difficult question is how variances and covariances of the ML estimates
can be estimated. Again, and contrary to the case of OLS estimation, there are no

9As already mentioned, the likelihood (7.17) is a number smaller than 1 and hence, the log likeli-
hood (7.18) is a negative number. At this point you have to be very attentive to what your statistical
software prints out. Since dealing with negative numbers may be confusing, some programs print
the negative log likelihood, which is defined as L = − lnL.



310 7 Useful Background Information

analytical formulas for the (co)variances. However, they depend on similar quanti-
ties as in the case of OLS estimation, such as sample size (negatively), variance of
the independent variable (negatively), and multicollinearity among the independent
variables (positively). This is illustrated in the right panel of Fig. 7.5, where we have
again used the sixcases data, however duplicating each observation ten times. In
other words, the analysis is now based on a much larger sample, but still on the same
non-linear (logistic) relationship between X and the categorized Y (because no new
x and y values have been introduced). The likelihood function is now much steeper
and consequently, it is much more easy to identify precisely the maximum, i.e., the
ML estimates of β0 and β1. This result is exactly what we would expect in larger
samples: They provide us with more precise estimates of the model parameters,
because they include more information.

Obviously, the precision of the estimate (and hence, its standard error) is related
to the curvature of the likelihood function. The smaller the sample size, the flatter
the likelihood function and the larger the imprecision resp. the standard error. Math-
ematically, the maximum of a function is found by computing its first derivative with
respect to the parameter in question, while the curvature at the maximum is found
by computing the second derivative (note that in a multivariate model one computes
partial derivatives). Therefore, variances and covariances of ML estimates are com-
puted from the second partial derivatives of the log likelihood function with respect
to the regression parameters. More specifically, the variance-covariance matrix of
the ML estimates equals the inverse of the negative expected value of the matrix of
second derivatives of the log likelihood function. The formulas for this computation
are more difficult than in the linear case with OLS estimation, but as already men-
tioned, their main determinants are similar. Standard errors decrease with sample
size, variation of the corresponding independent variable and its independence from
the other explanatory variables in the model. Furthermore, a robust version of the
variance-covariance matrix is also available.

As noted in Sect. 5.1.1.2, ML estimates are asymptotically normally distributed
given the assumptions specified in Textbox 5.1. The fact they are only asymptoti-
cally normal implies that we need a sufficiently large sample (n > 100) for estima-
tion and testing. The behavior of ML estimates in small samples is often unclear.
Therefore, we have to use the normal (and not the T ) distribution and z statistics to
test the significance of single parameters

z = β̂j − β0
j

σ̂
β̂j

(7.19)

and to compute confidence intervals

ll = β̂j − z(1−α/2) · σ̂
β̂j

≤ βj ≤ β̂j + z(1−α/2) · σ̂
β̂j

= ul (7.20)

For testing model fit and more general parameter restrictions the same kind of rea-
soning applies like in the linear case with OLS estimation. Either one compares the
fit of an appropriately restricted model with the unrestricted model or one specifies
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a constraint matrix C and computes a Wald test. In the latter case, the Wald statistic
is computed using (7.15). In the former case, an equivalent to the (linear) fit mea-
sure SSR is needed. This is again the maximum of the fit function, which in case of
ML estimation is the value lnL of the maximized log likelihood function. Whether
restricted and unrestricted model differ significantly is tested with the following
likelihood ratio test:

L2 = −2 · ln
Lr

Lu

= 2 · (lnLu − lnLr) (7.21)

It is distributed as χ2 with df = q degrees of freedom, q being again the number
of restrictions tested. For example, one can test whether the inclusion of X in case
of the former sixcases data (n = 6) provides a significant improvement over
a model that includes only the regression constant. The test statistic amounts to
L2 = 2 ·(−3.5782−−4.1589) = 1.1614, which is not significant with df = 1 degree
of freedom (p = 0.2812). Contrary to the linear case and OLS estimation, Z tests,
Wald tests and likelihood ratio tests are only asymptotically equivalent in case of
ML estimation and hence, may lead to different conclusions the smaller the sample
size.

Apart from estimation and testing, there is also the question of how to describe
the fit of a model estimated with ML. Unfortunately, there is no good equivalent to
the coefficient of determination that can be interpreted as the amount of explained
variance. There are various attempts to define similar measures for ML estimation,
all of which only have similar mathematical properties (i.e., are numbers between 0
and 1), but should not be interpreted as measures of explained variance. The most
prominent one is McFadden’s Pseudo R2, which is also used in this textbook:

Pseudo R2 = lnL0 − lnLu

lnL0
(7.22)

u refers to the model of interest, while 0 refers to a model that only includes
a constant (the so-called null model). For example, in case of the sixcases
data (n = 6), the Pseudo R2 for the model including X amounts to Pseudo R2 =
(−4.1589 − −3.5782)/(−4.1589) = 0.1396. Note that Pseudo R2 values are usu-
ally much smaller than R2 values in linear regression (Pseudo R2 < 0.05 indicates
low fit, Pseudo R2 > 0.20 indicates a very good fit, and Pseudo R2 > 0.40 is hardly
observed).10

Alternatively, one can compute Akaike’s information criterion AIC or its modifi-
cation BIC. Both fit measures are computed using the value lnL of the maximized
log likelihood function:

AIC = −2 lnL + 2 · (k + 1)

BIC = −2 lnL + lnn · (k + 1)
(7.23)

10Note also that the maximum value (Pseudo R2 = 1) is only a theoretical value. It would imply
that all predicted probabilities would be either 1 or 0; a distribution, which is impossible to fit with
a logistic curve.
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(k +1) measures the number of estimated parameters (k regression coefficients plus
one regression constant) and n the sample size. The smaller AIC or BIC, the better
the fit of the model. AIC and BIC are often used when comparing models that are
not hierarchically nested. In principle, AIC and BIC can also be computed for linear
models, because the parameters of a linear model can be estimated with ML and the
ML estimates are identical with the OLS estimates.

7.3 Web Site of the Textbook

All computations, estimations, and most of the figures for this textbook have
been made with the statistical software package Stata. The book’s web site
(eswf.uni-koeln.de/panel) provides all necessary data sets and Stata syntax files
to replicate our findings. For readers not being familiar with this software we also
include the printed output, so that they can follow the computations without hav-
ing to apply the software itself. In the future, the web site may also provide syntax
files for other statistical software packages. We are also interested in your feedback
and therefore, would like to encourage you to send comments to the email address
mentioned on the web site. We have made every endeavor to keep this textbook as
error-free as possible. However, if you think that you have encountered an error,
please send us an email and we will include it in a list of errors that is also provided
on the web site.

http://eswf.uni-koeln.de/panel
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multiple, 283
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FE, see Fixed effects
Feasible generalized least squares (FGLS),
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FD versus FE, 189
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regression constant, 138
residuals, 144
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Generalized estimating equations (GEE), 86,
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Generalized ordinary least squares (GLS), 152,
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German Socio-economic Panel (SOEP), 8, 31,
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GLS, see Generalized ordinary least squares
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Hausman test, 168, 243
Hazard rate, see also Event history analysis

discrete-time, 73, 91, 253
hazard function, 74
hazard rate model, 92
instantaneous, 280
interval-specific, 281
logistic discrete-time hazard model, 257
proportional hazard rate model, 279

Heterogeneity
correlated, 128, 229, 274
estimate of unit-specific, 142
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correlation of, 143
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Household, Income and Labor Dynamics

in Australia (HILDA), 288
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Impact functions, 90, 185

linear, 191
Imputation, 16
Incidental parameters problem, 230
Independent correlation structure, see
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Independent observations, 108
Individual change, 2
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Intra-class correlation coefficient, 77, 146, 153

K
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L
LAD, see Least absolute difference estimation
Lagrange multiplier (LM) test, 151
Late entry, 16
Latent class, 110
Latent class analysis, 113
LCA, see Latent class analysis (LCA)
Least absolute difference estimation (LAD),
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Least absolute difference (LAD), 300
Least squares dummy variables (LSDV), 128
Level, 3
Likelihood ratio test, 263, 311
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Linear regression model, 119
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Logistic discrete-time hazard rate model, see
Hazard rate

Logistic distribution function, 254
Logistic regression, 88, 257, 308

logistic regression function, 214
multinomial, 248, 283
ordinal, 248
pooled, 213
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Long format, see Panel data
Longitudinal population, 9, 43, 52
LSDV, see Least squares dummy variables

M
Macro panels, 63, 129, 291
Marginal effect, 215
Markov modeling, 71, 91, 92, 292
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Maximum likelihood (ML), 197, 217, 307
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estimates, 310
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likelihood function, 217, 307
restricted, 198
variance-covariance matrix of ML

estimates, 310
McNemar’s test, 105
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Measurement error, 7, 107, 115
Measurement models, 110
Merging data, 21, 30
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one-to-many merge, 22, 37
one-to-one merge, 38
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missing at random, 56, 57
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not missing at random, 56

Mixed models, 96
Multilevel modeling, 65, 96, 291
Multiple-risk model, 283

N
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O
Odds, 216
Odds ratios, 217
OLS, see Ordinary least squares
Omitted variable bias, see Bias
Ordinary least squares (OLS), 122, 295, 296

pooled, 121, 170
matrix weighted average of BE and FE,
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serial correlation, 123

Origin state, 69

P
Panel attrition, 8, 16, 53
Panel conditioning, 10
Panel data, 1
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long format, 16, 27, 42, 63
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raw data, 33
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Panel effect, 10
Panel mortality, see Panel attrition
Panel Study of Income Dynamics (PSID), 4,

288
Period effects, 80, 192
Poisson model, 248
Pooled time-series cross-section data (TSCS),

64, 291
Population parameters, 49, 98, 123, 198
Pre-test post-test design, 6, 104
Probit regression, 88

ordinal, 248
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probit function, 224

Proportional hazard rate model, see Hazard
rate

PSID, see Panel Study of Income Dynamics
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Quasi-demeaning, 154

R
R2, see Explained variance
Random coefficients, 95, 174, 199
Random effects event history model, 271
Random effects (RE), 127, 147, 152, 236

matrix weighted average of BE and FE,
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ML estimation of, 197
RE versus FE, 163, 171
serial correlation, 153
testing differences to FE, 166

Random parameters, 95
Random slopes, see Random coefficients
Randomization, 6, 104
RE, see Random effects
Recursive models, 94
Replicates, 298
Research examples

Andress and Bröckel 2007 (genderdiff
data), 181

cancer data, 267
data management (mypanel data), 19
efficiency data, 160
Garrett and Mitchell 2001 (garmit data),
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Hank 2004 (hank data), 249
Heineck and Schwarze 2004
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Johnson and Wu 2002 (johnson-wu
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Klein and Potschke 2004 (postmat data),
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SOEP data management (SOEP data), 31
SOEP wage panel (wpgen data), 297
Vella and Verbeek 1998 (wagepan data),
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Restricted maximum likelihood, see Maximum

likelihood
Restricted model, 305
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Risk set, 251
Robust standard errors, see Standard errors
Root mean squared error, 303
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Sample
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Sampling distribution
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Seam effects, 11
Selection effect, 269
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