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  Pref ace   

 Researchers who design and conduct experiments or sample surveys, perform sta-
tistical inference, and write scientifi c reports need adequate knowledge of applied 
statistics. To build adequate and sturdy knowledge of applied statistical methods, 
fi rm foundation is essential. I have come across many researchers who had studied 
statistics in the past but are still far from being ready to apply the learned knowledge 
to their problem solving, and else who have forgotten what they had learned. This 
could be partly because the mathematical technicality dealt with the study material 
was above their mathematics profi ciency, or otherwise the studied worked examples 
often lacked addressing essential fundamentals of the applied methods. This book is 
written to fi ll gaps between the traditional textbooks involving ample amount of 
technically challenging complex mathematical expressions and the worked exam-
ple-oriented data analysis guide books that often underemphasize fundamentals. 
The chapters of this book are dedicated to spell out and demonstrate, not to merely 
explain, necessary foundational ideas so that the motivated readers can learn to fully 
appreciate the fundamentals of the commonly applied methods and revivify the 
forgotten knowledge of the methods without having to deal with complex mathe-
matical derivations or attempt to generalize oversimplifi ed worked examples of 
plug-and-play techniques. Detailed mathematical expressions are exhibited only if 
they are defi nitional or intuitively comprehensible. Data-oriented examples are 
illustrated only to aid the demonstration of fundamental ideas. This book can be 
used as a self-review guidebook for applied researchers or as an introductory statis-
tical methods course textbook for the students not majoring in statistics.  

    Boston ,  MA ,  USA       Hang     Lee      
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This chapter portrays how to make sense of gathered data before performing the 
formal statistical inference. The covered topics are types of data, how to visualize 
data, how to summarize data into few descriptive statistics (i.e., condensed numeri-
cal indices), and introduction to some useful probability models.

1.1  �Types of Data

Typical types of data arising from clinical studies mostly fall into one of the follow-
ing categories.

Nominal categorical data contain qualitative information and appear to discrete 
values that are codified into numbers or characters (e.g., 1=case with a disease diag-
nosis, 0 = control; M = male, F = female).

Ordinal categorical data are semi-quantitative and discrete, and the numeric cod-
ing scheme is to order the values such as 1 = mild, 2 = moderate, and 3 = severe. 
Note that the value of 3 (severe) does not necessarily be three times more severe 
than 1 (mild).

Count (number of events) data are quantitative and discrete (i.e., 0, 1, 2 …).
Interval scale data are quantitative and continuous. There is no absolute 0 and the 

reference value is arbitrary. Particular examples of such data are temperature values 
in °C and °F.

Ratio scale data are quantitative and continuous, and there is the absolute 0. 
Particular examples of such data are body weight and height.

In most cases the types of data usually fall into the above classification scheme 
shown in Table 1.1 in that the types of data can be classified into either quantitative 
or qualitative, and discrete or continuous. Nonetheless, some definition of the data 
type may not be clear and among which the similarity and dissimilarity between the 
ratio scale and interval scale may be such ones that need further clarification.

Chapter 1
Warming Up: Descriptive Statistics 
and Essential Probability Models
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Ratio scale: Two distinct values of the ratio scale are ratio-able. For example, the 
ratio of two distinct values of a ratio scale x, x1/x2 = 2 for x1 = 200 and x2 = 100, can 
be interpreted as “twice as large.” Blood cholesterol level, measured as the total 
volume of cholesterol molecule in a certain unit, is such an example in that if person 
A's cholesterol level to person B's cholesterol level ratio is 2, then we will be able to 
say that person A's cholesterol level is doubly higher than that of person B. Other 
such examples are lung volume, age, and disease duration.

Interval scale: If two distinct values of quantitative data were not ratio-able, then 
such data are interval scale data. Temperature is a good example in that there are 
three temperature systems, i.e., Fahrenheit, Celsius, and Kelvin. Kelvin system even 
has its absolute 0 (there is no negative temperature in Kelvin system). For example, 
200 °F is not a temperature that is twice higher than 100 °F. We can only say that 
200° is higher by 100° (i.e., the displacement between 200° and 100° is 100° in the 
Fahrenheit measurement scale).

1.2  �Description of Data Pattern

1.2.1  �Distribution

A distribution is a complete description of how large the occurring chance (i.e., 
probability) of a unique datum or certain range of data is. The following two expla-
nations will help you grasp the concept. If you keep on rolling a die, you expect to 
observe 1, 2, 3, 4, 5, or 6 equally likely, i.e., a probability for each unique outcome 
value is 1/6. We say “a probability of 1/6 is distributed to the value of 1, 1/6 is dis-
tributed to 2, 1/6 to 3, 1/6 to 4, 1/6 to 5, and 1/6 to 6, respectively.” Another example 
is that if you keep on rolling a die many times, and each time you say “a success” if 
the observed outcome is 5 or 6 and say “a failure” otherwise, then your expected 
chance to observe a success is 1/3 and that of a failure is 2/3. We say “a probability 
of 1/3 is distributed to the success and 2/3 is distributed to the failure”. In real life, 
there are many distributions that cannot be verbalized as simply as these two exam-
ples, which require descriptions using sophisticated mathematical expressions.

Table 1.1  Classifications of data types

Qualitative Quantitative

Discrete Nominal categorical  
(e.g., M=male, F=female)

Ordinal categorical (e.g., 1=mild, 2=moderate, 
3=severe)

Count (e.g., number of incidences 0, 1, 2, 3, …)
Continuous N/A Interval scale (e.g., temperature)

Ratio scale (e.g., weight)

1  Warming Up: Descriptive Statistics and Essential Probability Models
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Let’s discuss how to describe the distributions arising from various types of data. 
One way to describe a set of collected data is to make description about the distribu-
tion of relative frequency for the observed individual values (e.g., what values are 
how much common and what values are how much less common). Graphs, simple 
tables, or a few summary numbers are commonly used.

1.2.2  �Description of Categorical Data Distribution

A simple tabulation, aka frequency table, is to list the observed count (and propor-
tion in percentage value) for each category. A bar chart (see Figs. 1.1 and 1.2) is a 
good visual description of where the horizontal axis defines the categories of the 
outcome and the vertical axis shows the frequency of each observed category. The 
size of each bar in the Figures is the actual count. It is also common to present the 
relative frequency (i.e., proportion of each category in percentage value).

1.2.3  �Description of Continuous Data Distribution

Figure 1.3 is a listing of white blood cell (WBC) counts of 31 patients diagnosed with 
a certain illness listed by the patient identification number. Does this listing itself tell 
us the group characteristics such as the average and the variability among patients?

Fig. 1.1  Frequency table  
and bar chart for describing 
nominal categorical data

1.2 � Description of Data Pattern



Fig. 1.2  Frequency table  
and bar chart for describing 
ordinal data

Fig. 1.3  List of WBC raw 
data of 31 subjects
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How can we describe the distribution of these data, i.e., how much of the occur-
ring chance is distributed to WBC=5,200, how much to WBC=3,100 …, and etc.? 
Such a description may be very cumbersome. As depicted in Fig. 1.4, the listed full 
data in ascending order can be a primitive way to describe the distribution, but it 
does not still describe the distribution. An option is to visualize the relative frequen-
cies for grouped intervals of the observed data. Such a presentation is called histo-
gram. To create a histogram, one will first need to create equally spaced WBC 
categories and count how many observations fall into each category. Then the bar 
graph can be drawn where each bar size indicates the relative frequency of that par-
ticular WBC interval category. This may be a daunting task. Rather than covering 
the techniques to create the histogram, next section introduces an alternative option.

1.2.4  �Stem-and-Leaf

The Stem-and-Leaf plot requires much less work than creating the conventional 
histogram while providing the same information as what the histogram does. This is 
a quick and easy option to sketch a continuous data distribution.

Let’s use a small data set for illustration, and then revisit our WBC data example 
for more discussion (Fig. 1.10) after we become familiar to this method. The fol-
lowing nine data points: 12, 32, 22, 28, 26, 45, 32, 21, and 85, are ages (ratio scale) 
of a small group. Figures 1.5, 1.6, 1.7, 1.8, and 1.9 demonstrate how to create the 
Stem-and-Leaf plot of these data.

Minimum Value

Median Value

Maximum Value

Fig. 1.4  List of 31 individual 
WBC values in ascending 
order

1.2 � Description of Data Pattern
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Fig. 1.5  Step-by-step illustration of creating a Stem-and-Leaf plot

Fig. 1.6  Illustration of 
creating a Stem-and-Leaf plot

Fig. 1.7  Two Stem-and-Leaf 
plots describing the same 
data

1  Warming Up: Descriptive Statistics and Essential Probability Models
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Fig. 1.8  Common mistakes 
in Stem-and-Leaf

Fig. 1.9  Two Stem-and-Leaf 
plots describing the same 
distribution by ascending and 
descending orders

The main idea of this technique is a quick sketch of the distribution of an observed 
data set without computational burden. Let’s just take each datum in the order that 
it is recorded (i.e., the data are not preprocessed by other techniques such as sorting 
by ascending/descending order) and plot one value at a time (see Fig. 1.5). Note that 
the oldest observed age is 85 years which is much greater than the next oldest age 
45 years, and the unobserved stem interval values (i.e., 50s, 60s, and 70s) are placed. 
The determination of the number of equally spaced major intervals (i.e., number of 
stems) can be subjective and data range-dependent.

As presented in Fig. 1.10, the distribution of our WBC data set is described by 
the Stem-and-Leaf plot. Noted observations are: most values lie between 3,000 and 
4,000 (i.e., mode); the contour of the frequency distribution is skewed to the right 
and the mean value did not describe the central location well; and the smallest and 
the largest observations were 1,800 and 11,200, respectively.

1.2 � Description of Data Pattern
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1.3  �Descriptive Statistics

In addition to the visual description such as Stem-and-Leaf plot, further description 
of the distribution by means of a few statistical metrics is useful. Such metrics are 
called descriptive statistics which indicate where most of the data values are con-
centrated and how much the occurring chance distribution is scattered around that 
concentrated location.

1.3.1  �Statistic

A statistic is a function of data, wherein a function usually appears as a mathematical 
expression that takes the observed data and reduces to a single summary metric, e.g., 
mean = sum over all data divided by the number of sample size. Note that the word 
mathematical expression is interchangeable with formula. As the word formula is usu-
ally referred in a plug-and-play setting, this monograph names it mathematical expres-
sion, and the least amount of the expression is introduced only when necessary.

1.3.2  �Central Tendency Descriptive Statistics  
for Quantitative Outcomes

In practice, there are two kinds of descriptive statistics used for quantitative out-
comes of which the one kind is the metric indices for characterizing the central 
tendency and the second is for the dispersion. The mean (i.e., sum of all observa-
tions divided by the sample size), the median (i.e., the midpoint value), and the 
mode (i.e., the most frequent value) are the central tendency descriptive statistics.

Stem-Leaf* Frequency**

11-2 1
10-
9-3 1
8-19 2
7-5 1
6-115 3
5-289 3
4-011358 6
3-01344577889 11
2-68 2
1-8 1

*Multiply Stem-Leaf by 1000 Multiply Stem-Leaf by 1000

** Frequency counts annotation is not a part of the Stem-and-Leaf and
unnecessary but presented to aid the reading.

Fig. 1.10  Presentation of WBC data of 31 subjects using Stem-and-Leaf

1  Warming Up: Descriptive Statistics and Essential Probability Models
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1.3.3  �Dispersion Descriptive Statistics for Quantitative 
Outcomes

The range (i.e., maximum value–minimum value) and interquartile range (i.e., 
75th–25th percentile) are very simple to generate by which the dispersion of a data 
set is described. Other commonly used dispersion descriptive statistics are variance, 
standard deviation, and coefficient of variation, and these describe the dispersion of 
data (particularly when the data are symmetrically scattered around the mean), and 
the variance and standard deviation are important statistics that play a pivotal role in 
the formal statistical inferences which will be discussed in Chap. 2.

1.3.4  �Variance

The variance of a distribution, denoted by σ2, can be conceptualized an average 
squared deviation (explained in detail below) of the data values from their mean. 
The more dispersed the data are, the more the variance increases. It is common that 
standard textbooks present the definitional and computational mathematical expres-
sions. Until the modern computer was not widely available, finding a shortcut for 
manual calculations and choosing a right tool for a quick and easy calculation had 
been a major issue of statistical education and practice. Today’s data analysis utiliz-
ing computer software and knowledge about the shortcut for manual calculations is 
not important. Nonetheless, understanding the genesis of definitional expression, at 
least, is important. The following is the demonstration of the definitional expression 
of the variance.

	
s 2 1

2

1
=

( )
=
å
i

n

x x

n

i -

-
,
	

where xi’s, for i=1, 2, …n (i.e., the sample size) are the individual data values, x  is 

their mean. The 
i

n

=
å

1

 notation on the numerator is to sum over all individual terms, 

x xi -( )2 , for i = 1 to n (e.g., n = 31 for the WBC data). The term x xi -( )2  for i is 
the squared deviation of an individual data value from its mean and is depicted by 
d2 in the following visual demonstration.

 

1.3 � Descriptive Statistics
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After this summation is carried out, the resulting numerator is then divided by 
the divisor n – 1 (note that the divisor will be 30 for the WBC data example).

As depicted in Fig. 1.11, positive deviations (i.e., x xi - > 0 ) are presented by 
horizontal dashed line segments, and negative deviations (i.e., x xi - < 0 ) by dashed 
ones. The length of each line segment represents how far each datum is displaced 
above or below the mean. How do we cumulate and preserve the deviations of the 
entire group? If straight summation is considered, the positive and negative indi-
vidual deviations may get cancelled out each other and the resulting sum may not 
retain the information. Thus the straight summation is not a great idea. The indi-
vidual deviations are squared first then summed up so that the resulting sum can 
retain the information (i.e., positive and negative deviations) although the retained 
quantity is not in the original scale. Then, the sum of squared deviations is divided 
by n – 1. If it had been divided by n, it could have been literally the average squared 
deviation. Instead, the used divisor is n-1. Normally an average is obtained by divid-
ing the sum of all values by the sample size n. However, when computing the vari-
ance using sample data, we divide by n-1, not by n. The idea behind is the following. 
If the numerator (i.e., sum of squared deviations from the mean) is divided by the 
sample size, n, then such a calculation will slightly downsize the true standard devi-
ation. The reason is that when the deviation of each individual data point from the 
mean was obtained, the mean is usually not externally given to us but is generated 
within the given data set and thus the actually observed deviations could become 
slightly smaller than what it should be (i.e., referencing to an internally obtained 
mean value). So, in order to make an appropriate adjustment for the final averaging 

Fig. 1.11  Definitional formula of variance

1  Warming Up: Descriptive Statistics and Essential Probability Models
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step, we divide it by n -1. You may be curious why it has to be 1 less than the sample 
size, not 2 less than, or something else. We can at least show that 2 less cannot 
handle when the sample size is 2, and 3 less cannot handle the sample size of 3. 
Unlike other choices, n-1 (i.e., 1 less than the sample size) can handle any sample 
size because the smallest sample size that will have a variance is 2 (obviously there 
is no variance for a single observation)? There is a formal proof that the divisor of 
n-1 is the best for any sample size but it is not necessary to cover it in full detail 
within this introductory course setting.

The computed variance of the WBC data set is [(5200 - 4900)2 + (3100 - 4900)2 
+ … + (6500 - 4900)2]/(31-1) = 4778596. Note that variance’s unit is not the same 
as the raw data unit (because of the squaring the summed deviations).

1.3.5  �Standard Deviation

The standard deviation of a distribution, denoted by σ, is the square root of variance 
(i.e., variance), and the scale of the standard deviation is the same as that of the 
raw data. The greater the data are dispersed the standard deviation increases. If the 
dispersed data form a particular shape (e.g., bell curve), then one standard deviation 
unit symmetrically around (i.e., above and below) the mean will cover about middle 
two-thirds of the data range value (see standard normal distribution in Sect. 1.4.3).

 

1.3.6  �Property of Standard Deviation After Data 
Transformations

The observed data often require transformations for analysis purposes. One exam-
ple is to shift the whole data set to a new reference point by simply adding a positive 
constant to or subtracting it from the raw data values. Such a simple transformation 
does not alter the distances between the individual data values thus the standard 
deviation remains unchanged (Fig. 1.12).

1.3 � Descriptive Statistics
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Another example is to change scale of the data without- or with changing 
the reference point. In general, if data x (a collection of x1, x2, …, xn) of which the 
mean = μ and standard deviation = σx is transformed to y = a·x+b, where a is the 
scaling constant and b is the reference point, then the mean of y remains the same 
of y = a·(mean of x) + b = a·μ + b and the standard deviation y, σy = a·σx. Note that 
adding a constant does not alter the original standard deviation, and only the scal-
ing factor does.

The following example is to demonstrate how the means and standard deviations 
are changed after transformation. The first column lists a set of body temperature of 
eight individuals recorded in °C, the second column lists their deviations from the 
normal body temperature 36.5 °C (i.e., d = C – 36.5), and the third column lists their 
values in °F (i.e., F = 1.8C + 32). The mean of the deviations from the normal tem-
perature is 0.33 (i.e., 0.33° higher than the normal temperature on average), which 
can be reproduced by the simple calculation of the difference between the two mean 
values 36.83 and 36.5 without having to recalculate the transformed individual data. 
The standard deviation remains the same because this transformation was just a 
shifting of the distribution to the reference point 32. The mean of the transformed 
values to °F scale is 98.29, which can be obtained by the simple calculation of 1.8 
times the mean of 36.83 then add 32 without having to recalculate using the trans-
formed individual observations. This transformation involves not only the distribu-
tion shifting but also the rescaling where the rescaling was to multiply the original 
observations by 1.8 prior to shifting the entire distribution to the reference point of 
32. The standard deviation of the data transformed to °F scale is 1.12, which can be 
directly obtained by multiplying 1.8 to the standard deviation of the raw data in °C 
scale, i.e., 1.12 = 0.62 ×1.8 (Fig. 1.13).

Fig. 1.12  Shifted data without changing dispersion
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1.3.7  �Other Descriptive Statistics for Dispersion

Figure 1.14 illustrates the asymmetrical distribution of the WBC that was illustrated 
in Fig. 1.10. The mean, median, and mode are not very close to each other.

What would be the best description of the dispersion? The standard deviation = 
2,186 which can be interpreted that a little less than thirds of the data are within 

Body Temperature °C
(Raw Data)

Body Temperature
Deviation from 36.5 °C

Reference Point
(Transformation:

d = C - 36.5)

Body Temperature
°F

(Transformation:
F = 1.8C + 32)

36.40 -0.10 97.52
36.50 0.00 97.70
36.50 0.00 97.70
36.50 0.00 97.70
36.60 0.10 97.88
37.20 0.70 98.96
38.10 1.60 100.58

Stem
and Leaf

38.(0~4) 1
237.(5~9)

37.(0~4)
36.(5~9) 5556
36.(0~4) 4

1.(5~9)
1.(0~4)
0.(5~9) 7

6

0.(0~4) 0001
1-0.(0~4)

100.
99. 0*

6

0005
98.
97.

* 98.96 was rounded to
99.0

Mean 36.83 0.33 (subtract 36.5
from the original
mean)
0.62 (recalculation is
unnecessary)

98.29

Std. Dev. 0.62 1.12 (0.62 was
multiplied by .8)

Fig. 1.13  Scale invariant and scale variant transformations

Stem-Leaf* Frequency**

11-2 1
10-
9-3 1
8-19 2
7-5 1
6-115 3
5-289 3
4-011358 6
3-01344577889 11
2-68 2
1-8 1

*Multiply Stem-Leaf by 1000 Multiply Stem-Leaf by 1000

Mean: 4910
Median: 4100 
Mode: 3500~3999 

Fig. 1.14  Asymmetrical distribution depicted by a Stem-and-leaf plot
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2,714 ~ 7,086 (i.e., within the interval of mean ± standard deviation) if the contour 
of the distribution had appeared to a bell-like shape. Because the distribution was 
not symmetrical, the interquartile range may describe the dispersion better than the 
standard deviation. The 25th and 75th quartiles are 3,400 and 6,100, respectively, 
and this tells literally that the half of the group is within this range and the width of 
the range is 2,700 (i.e., Inter-Quartile Range = 6,100 - 3,400 = 2,700).

1.3.8  �Dispersions Among Multiple Data Sets

Figure 1.15 presents two data sets of the same measurement variable in two sepa-
rate groups of individuals. The two group means are the same but the dispersion 
of the first group is twice as the dispersion of the second group. The difference in 
the dispersions is not only visible but is also observed in the standard deviations 
of 10 and 5.

The comparison of the dispersions may become less straightforward in certain 
situations. What if the two distributions are from either the same characteristics 
(e.g., body temperatures) from two distinct groups or different characteristics mea-
sured in the same unit but of the same individuals (e.g., fat mass and lean mass in 
the body measured in grams, or systolic blood pressure (SBP) and diastolic blood 
pressure measured in mmHg). In Fig. 1.16, can we say the SBP values are more 
dispersed than DBP solely by reading the two standard deviations? Although the 
standard deviation of SBP distribution is greater than that of DBP, the mean SBP is 
obviously also greater and the interpretation of the standard deviations needs to take 
into account the magnitudes of the two means. Coefficient of Variation (CV) is a 
descriptive statistic that is applicable for such a circumstance by converting the 
standard deviation to a universally comparable descriptive statistic.

CV is defined as a standard deviation to mean ratio expressed in percent scale 
(i.e., CV = 100 × standard deviation/mean). This is useful for comparing the disper-
sions of two or more distributions of the same variable in two or more different data 
sets of the means are not identical, or those of two or more different variables mea-
sured in the same unit in the same data set. As demonstrated in Table  1.2 

Fig. 1.15  Two data sets with unequal dispersions and equal means
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demonstrates the situation of comparing the dispersions of two different character-
istics measured from the same individuals in the same unit. The standard deviation 
of the Fat Mass in grams is smaller than that of the Lean Mass in grams of the same 
150 individuals, but the CV of the Fat Mass is greater describing that the Fat Mass 
distribution is more dispersed (CV 43.0 % compared to 14.4 %).

Table 1.3 demonstrates the situation of comparing the dispersions of the same 
characteristic measured from the same individuals. The standard deviations appeared 
greater within Group 1 but the CV was greater within Group 2 describing that the 
dispersion of fat Mass was greater within Group 2.

1.3.9  �Caution to CV Interpretation

CV is a useful descriptive statistic to compare dispersions of two or more data sets 
when the means are different across the data sets. However, the CV should be 

Fig. 1.16  Two data sets with unequal dispersions and unequal means

Table 1.2  Application of CV to compare the dispersions of two different characteristics, measured 
in the same unit, of the same individuals

N Mean Standard deviation CV (%)

Body fat mass (g) 160 19,783.28 8,095.68 40.9
Body lean mass (g) 160 57,798.63 8,163.56 14.1

Table 1.3  Application of CV to compare the dispersions of the same characteristics, measured in 
the same unit, of two distinct groups

N Mean Standard deviation CV (%)

Body fat mass (g) Group 1 80 21,118.04 8,025.78 38.0
Group 2 80 18,448.53 7,993.01 43.3

1.3 � Descriptive Statistics
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applied carefully. When the dispersions of two distributions are compared, we need 
to ensure that the comparison is appropriate. A comparison of the dispersions of the 
same or compatible kinds is appropriate (e.g., CVs of body weights obtained from 
two separate groups, or CVs of SBP and DBP obtained from the same group of 
persons). However, a comparison of two dispersions of which one of the two is a 
result of a certain transformation of the original data is not appropriate. For exam-
ple, in the case of the body temperature example in 1.3.6 the CV of the original °C 
is 100×(0.62/36.82) = 1.68 % and the CV of the transformed data via °C – 36.5 is 
100×(0.62/0.33) = 187.88 %. Did the dispersion increase this large after the whole 
distribution simple shift? No, the dispersion did not differ and the standard devia-
tions remained the same. However, the CV of °F scale data distribution is different 
from the original °C scale.

1.3.10  �Box and Whisker Plot

Unlike the Stem-and-Leaf plot, this plot does not show the individual data values 
explicitly. If the Stem-and-Leaf plot is seen from a bird’s eye view (Fig. 1.17), then 
the resulting description can be made as shown in the right hand side panel of 
Fig. 1.18 which is  depicted separately in Fig. 1.19.

Stem-Leaf

11-2
10-
9-3
8-19
7-5
6-115
5-289
4-011358
3-01344577889
2-68
1-8

Point of view

Fig. 1.17  View of Stem-and-
Leaf from above

11-2
10-
9-3
8-19
7-5
6-115
5-289
4-011358
3-01344577889
2-68
1-8

Fig. 1.18  Relationship 
between Stem-and-Leaf and 
Box-and-Whisker plots
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Among the several advantages of this technique, the unique feature is to visualize 
the interval where the middle half of the data exist (i.e., the interquartile range) by a 
box, and the interval where the rest of the data by the whiskers (Fig. 1.19).

If there are two or more modes, the Box-and-Whisker plot cannot fully 
characterize such a phenomenon, but the Stem-and-Leaf does (see Fig. 1.20).

Fig. 1.19  Box-and-Whisker 
plot of a skewed data set

12500

10000

7500

5000

ub
c

2500

0

Fig. 1.20  Stem-and-Leaf and Box-and-Whisker plots of a skewed data set
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24
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Upper quartile is around 90

There are two modes and
the modes can be depicted
by the stem-and-leaf plot,
but such a phenomenon is
not describable the box-
and-whisker plot
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1.4  �Descriptive Statistics for Describing Relationships 
Between Two Outcomes

1.4.1  �Linear Correlation Between Two Continuous Outcomes

Previous sections discussed how to summarize the data observed from a single vari-
able (aka univariate). This section discusses how to describe a relationship between 
a set of pairs of continuous outcomes (e.g., a collection of heights measured from 
biological mother and her daughter pairs). The easiest way to describe such a pat-
tern is to create a scatter plot of the paired data (Fig. 1.21). Correlation coefficient, 
ρ, is a descriptive statistic that summarizes the direction and strength of a linear 
association. The correlation coefficient exists between -1 and 1 (geometry of the 
correlation coefficient is demonstrated by Fig. 1.22). Negative ρ values indicate a 
reverse linear association between the paired variables and positive ρ values 

Fig. 1.21  Linear 
relationships between two 
continuous outcomes

Fig. 1.22  Geometry of correlation coefficient
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indicate the same directional linear association. For example, ρ between x and y, ρxy 
= -0.9 indicates a strong negative linear association between x and y, and ρxy = 0.2 
indicates a weak positive linear association. Note that the correlation coefficient 
measures only a linear association. Figure 1.23 illustrates a situation that the corre-
lation coefficient is 0 but there is a clear relationship between the paired variables. 
The computation may be a burden if done manually. Computer software is widely 
available, and even Excel can be used (see Chap. 7 for details).

1.4.2  �Contingency Table to Describe an Association  
Between Two Categorical Outcomes

Qualitative categorical outcomes cannot be summarized by the mean and standard 
deviation value of the observed categories even if the categories were numerically 
coded (i.e., mean value of such a codified data is meaningless). It is also true that an 
association of a pair of the numerically categorized outcomes cannot be assessed by 
the correlation coefficient because the calculation of the correlation coefficient 
involves the mean value and deviations from the means (see Fig. 1.12). A scatter 
plot is not well applicable for a visual description between a pair of categorical 
outcomes. In order to describe the pattern of a set of pairs obtained from two cate-
gorical outcomes, the contingency table is used (Fig. 1.24, where each cell number 

Fig. 1.23  Nonlinear 
relationship between two 
continuous outcomes

Fig. 1.24  Patterns of association between two binary outcomes
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is the observed frequencies of the study subjects). The number appeared in each cell 
(i.e., cell frequency) provides you the information about the association between 
two categorical variables. Figure 1.24 illustrates the perfect, moderate, and com-
plete absence of the association between a disease status and a deleterious risk fac-
tor. Figure  1.25 illustrates what data pattern is to be recognized for a summary 
interpretation. There are 20 % (i.e., 10 out of 50) of mothers who are ≤20 years old 
delivered low weight babies, whereas only 10 % (i.e., 15 out of 150) of the > 20 
years old mothers did so. It is also noted that the 20 % is greater than the marginal 
proportion of the ≤2,500 g (i.e., 12.5 %) and 10 % is lower than the marginal. This 
observed pattern is interpreted as a twofold difference in proportion of ≥2,500 g 
between the two mother groups.

1.4.3  �Odds Ratio

Odds ratio (OR) is a descriptive statistic that measures the direction and strength of 
an association between two binary outcomes. It is defined as a ratio of two odds. 
The odds is the ratio between the probability of observing an event of interest, π, 
and the probability of not observing that event, 1- π (i.e., odds = π/(1- π)). In practi-
cal application, the odds can be calculated simply by taking the ratio between the 
number of events of interest and the number of events not of interest (e.g., number 
of successes divided by number of failures). Thus the odds ratio associated with a 
presented risk factor versus the absence of the risk factor for the outcome of interest 
is defined as [π 1/(1- π 1)]/[π 2/(1- π 2)]. The odds ratio ranges from 0 to infinity of 
which the value between 0 and 1 is a protective effect of the factor (i.e., the outcome 
is less likely to happen within the risk group), 1 being neutral, and greater than 1 is 
a deleterious effect of the risk factor (i.e., the outcome is less likely to happen within 
the risk group). According to the definition, the odds ratio associated with the moth-
er’s age ≤ 20 years versus > 20 years for the offspring’s birth weight ≤ 2,500 g is 
[0.2/(1-0.2)]/[0.1/(1-0.1)] = 2.25. The same result is obtained simply by the cross 
product ratio, i.e., [(10/40)]/[(15/135)] = (10 × 135)/(40 × 15) = 2.25. The interpre-
tation of this is that the odds to deliver the offspring with ≤ 2,500 g of birth weight 
among the mothers age ≤ 20 years is 2.25 times of that of the mothers >20 years. It 

Fig. 1.25  Exploratory data summary by a contingency table
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is a common mistake to make the following erroneous interpretation that the risk of 
having low birth weight delivery is 2.25 times greater. By definition, the risk is the 
probability whereas the odds ratio is a ratio of two odds.

1.5  �Two Useful Probability Distributions

Two important probability distributions are introduced here, which are very instru-
mental for the inference (see Chap. 2 for inference). A distribution is a complete 
description of a set of data that species the domain of data occurrences and the cor-
responding relative frequency over the domain of occurrence. Note that the object 
being distributed is the relative frequency. A probability model (e.g., Gaussian, 
binomial model) is the underlying mathematical rule (i.e., mechanism) that gener-
ates the data being observed. If you had thought that a distribution is just a curve, or 
histogram (i.e., visually described data scatter), you would need to revise it.

Two widely applied and very useful models in statistical inference are the 
Gaussian distribution, a continuous data generation mechanism, and binomial dis-
tribution, a count of binary event data generation mechanism (i.e., number of pres-
ence or absence of a certain characteristic).

1.5.1  �Gaussian Distribution

The Gaussian distribution describes the continuous data generation mechanism, and 
it has important mathematical properties on which the applications of event proba-
bility computations and the inference (see Chap. 2) rely. The name Gaussian is 
originated by the mathematician Gauss who derived its mathematical properties. Its 
common name is Normal Distribution because the model describes well the proba-
bility distributions of typical normal behaviors of continuous outcomes (aka bell 
curve). This distribution has a unique characteristic that the mean, median, and 
mode are identical, and the data are largely aggregated around the central location 
and gradually spread symmetrically. A particular Gaussian distribution is com-
pletely characterized by the mean and standard deviation, and its notation is N (μ, 
σ2), where μ and σ denote the values of mean and standard deviation (thus σ2 denotes 
the variance), respectively.

1.5.2  �Density Function of Gaussian Distribution

Density is a concentrated quantity on a particular value of the possible data range of 
a continuous outcome, and this quantity is proportional to the probability of occur-
rence within a neighborhood of that particular value. Figure  1.26 describes the 
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density of a Gaussian distribution with mean μ and standard deviation σ. The height 
of the symmetric bell curve is the size of density (not the actual probability) concen-
trated over the values of the continuous outcome x. The value where the density 
peaks and the degree of dispersion are completely determined by the mean and 
standard deviation of the distribution, respectively. The area under the entire density 
curve becomes 1. As depicted in the figure the shaded area is the probability that the 
x values exist between the mean and k times the standard deviation above the mean. 
The area under the density curve from one standard deviation below to above the 
mean is approximately 68.3 % (exactly 68.2689 %) meaning that a little bit over 
middle two-thirds of the group is aggregated symmetrically within one standard 
deviation around the mean of any Gaussian distribution.

1.5.3  �Application of Gaussian Distribution

The Gaussian distribution model is very useful tool to approximately calculate a 
probability of observing certain numerical range of events. The example shown in 
Fig. 1.27 is to find out the proportion of a large group of pediatric subjects whose 
serum cholesterol level above 250 mg/mL if the group’s cholesterol distribution fol-
lows a Gaussian distribution with mean of 175 and standard deviation of 30. Because 
the standard deviation is 30, the value of 250 is 2.5 times the standard deviation 
above the mean (i.e., 250 = 175 + 2.5×30). The area under the curve that covers the 

Fig. 1.26  Gaussian density function curve

Fig. 1.27  Density curve and tail probability
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cholesterol range > 250 is 0.625 %, which indicates the subjects with cholesterol 
level >250 are within top 0.625 % portion. The calculation requires integration of 
the Gaussian density function equation. However, we can obtain the result using 
Excel or standard probability tables of Gaussian distribution. Next section will dis-
cuss how to calculate the probability using the tables by transforming any Gaussian 
distribution to the Standard Normal Distribution.

1.5.4  �Standard Normal Distribution

The Standard Normal Distribution is the Gaussian distribution of which the mean is 
0 and the standard deviation is 1, i.e., N (0, 1). Any Gaussian distribution can be 
standardized by the following transformation. In the following equation, x is the 
variable that represents a value of the original Gaussian distribution with mean μ 
and standard deviation σ, and z represents the value of the following 
transformation:

	
z

x
=

- m
s 	

This transformation shifts the entire data set uniformly by subtracting μ from all 
individual values, and rescale the already shifted data values by dividing them by 
the standard deviation, thus the transformed data will have mean 0 and standard 
deviation 1.

The Standard Normal Distribution has several useful characteristics on which 
data analysis and statistical inference rely (we discuss inference well in Chap. 2). 
First, as seen above, the density is symmetrically distributed over the data range 
resembling bell-like shape. Moreover, one standard deviation below and above the 
mean, i.e., the interval from -1 to 1 on z, covers approximately 68.3 % of the distri-
bution symmetrically. The interval of z from -2 to 2 (i.e., within two standard devia-
tion symmetrically around the mean) covers approximately 95.5  % of the 
distribution. The normal range, -1.96 to 1.96 on z which covers 95 % of distribution 
around mean, is frequently sought (Fig. 1.28).

Figure  1.29, excerpted from Chap. 10, presents the areas under the standard 
normal density curve covering from negative infinity to various values of the stan-
dard normal random variable, z. This table can be used to compute the probability 
evaluated within a certain interval without using a computer program. For example, 
Pr {-1.96 < x ≤ 1.96} can be computed Pr {z ≤1.96} – Pr {z ≤ -1.96} = 0.975 – 
0.025 = 0.95.

As shown in Fig. 1.30, the probability to observe a value above 250 if the data 
follow a Gaussian probability model with mean of 175 and standard deviation of 30, 
then the probability is evaluated by first transforming the value 250 to z value (i.e., 
standardize to mean 0 and standard deviation 1). The transformed z value is 2.5 (i.e., 
250 – 175 = 70, then divide 75 by 30 to find 2.5). Finally, the area under the Standard 
Normal density curve above 2.5 is the probability of interest. The evaluation of this 
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area can be done by using either of the tables in Fig. 1.29 or any other published 
tables. To use the first table, we locate the row of the table associated with z value 
of -2.5 then narrow down to the first column that lists the calculated area above 2.50 
(i.e., 0.9938). If z was 2.53, then the fourth column element of the same row would 
be read (i.e., 0.9943).

Fig. 1.28  Covered proportions of 1 (and 1.96) unit of standard deviation above and below means 
in standard normal distribution

Cumulative
Probability

Evaluated
from

negative
infinity to

Cumulative
Probability

Evaluated
from

negative
infinity to

0.010 -2.3263 0.810 0.8779

0.015 -2.1701 0.815 0.8965

0.020 -2.0537 0.820 0.9154

0.025 -1.9600 0.825 0.9346

0.030 -1.8808 0.830 0.9542

0.170 -0.9542 0.970 1.8808

0.175 -0.9346 0.975 1.9600

0.180 -0.9154 0.980 2.0537

0.185 -0.8965 0.985 2.1701

0.190 -0.8779 0.990 2.3263

0.195 -0.8596 0.995 2.5758

Fig. 1.29  List of selected normal random variates and cumulative probabilities up to those 
values
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1.5.5  �Binomial Distribution

The probability values that are distributed to the possible numbers of events counted 
from a set of finite number of dichotomous outcomes (e.g., success and failure) are 
typically modeled by Binomial Distribution. For a demonstration purpose, let us 
discuss the following situation. Suppose that it is known that a new investigative 
therapy can reduce the volume of a certain type of tumor significantly, and the aver-
age success rate is 60 %. What will be the probability of observing 4 or more suc-
cessful outcomes (i.e., significant tumor volume reduction) from a small experiment 
treating five animals with such a tumor if the 60 % average success rate is true? 
First, let us calculate the probabilities of all possible outcomes under this assump-
tion, i.e., no success, 1 success, 2, 3, 4, or all 5 successes if the true average success 
rate is 60 %. Note that a particular subject’s single result should not alter the next 
subject’s result, i.e., the resulting outcomes are independent among experimental 
animals. In this circumstance, the probabilities distributed to the single dichoto-
mous outcome (shrunken tumor as the success or no response as the failure) of each 
animal are characterized by Bernoulli distribution with its parameter π which is the 
probability of success in a single animal treatment (i.e., the two probabilities are π, 
the success rate and 1-π, the failure rate). The single trial, in this case each trial is a 
treatment given to each animal, is called Bernoulli trial. The resulting probability 
distribution of the total number of successes out of those five independent treatment 
series (i.e., five independent Bernoulli trials) is then described by Binomial 
Distribution which is characterized by two parameters of which the first is the total 
number of Bernoulli trials, n, and the second is the Bernoulli distribution’s param-
eter of the success rate, π. In this example, the total number of independent trials, n, 
is 5 and the parameter of the success rate, p, on each single trial Bernoulli distribu-
tion is 0.6. Table 1.4 lists all possible results and their probabilities (0 = failure with 
its single occurring chance of 0.4, 1=success with its single occurring chance of 
0.6). As shown in the last column of the table, these computed probabilities are 
0.0102 for 0 successes (i.e., all failures and its probability is 0.4 × 0.4 × 0.4 × 0.4 × 
0.4 = 0.0102), 0.0768 for 1 success, 0.2304 for 2 successes, 0.3456 for 3 successes, 

Fig. 1.30  Standardization of an observed value x = 250 from N (Mean = 175, SD=30) to z=2.5 of 
the standardized normal distribution, i.e., N (0, 1)
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0.2592 for 4 successes, and 0.0778 for all 5 successes, respectively. General nota-
tion of a Binomial Distribution is Bi (n, π), thus in this example it is Bi (5, 0.6). Let 
us also note that the aforementioned Bernoulli distribution is a special case of 
Binomial Distribution, and its general notation is Bi (1, π). Figure 1.31 displays Bi 
(5, 0.6). Thus the probability of observing 4 or more successes out of the treatments 
given to five independent animals is 0.2592 + 0.0778 = 0.3370. Although this book 
does not exhibit the closed form equation that completely describes the Binomial 
Distribution, the following expression can help understand the concept: Bi (n, π) 
can be expressed by Probability of {no. of events, X = x out of n independent 
Bernoulli trials} = K πx(1-π)n-x, where K is an integer value multiplier that reflects 
the number all possible assortments of the number of success events x (x = 0, 1, …, 
n). Readers who are familiar with combinatorics can easily figure out K = n!/[x!(n-
x)!]. In Table 1.4, K =1 for x = 0, K = 5 for x = 1, K = 10 for x= 2, …, and K = 1 for 

Table 1.4  Bi (5, 0.6), binomial distribution with n=5 and π=0.6

Number of successes Result of subjects Probability

1st 2nd 3rd 4th 5th
0 (1 assortment) 0 0 0 0 0 0.4 × 0.4 × 0.4 × 0.4 × 0.4 = 0.45

(Subtotal = 0.0102)
1 (5 assortments) 1 0 0 0 0 0.6 × 0.4 × 0.4 × 0.4 × 0.4 = 0.6 × 0.44

0 1 0 0 0 0.4 × 0.6 × 0.4 × 0.4 × 0.4 = 0.6 × 0.44

0 0 1 0 0 0.4 × 0.4 × 0.6 × 0.4 × 0.4 = 0.6 × 0.44

0 0 0 1 0 0.4 × 0.4 × 0.4 × 0.6 × 0.4 = 0.6 × 0.44

0 0 0 0 1 0.4 × 0.4 × 0.4 × 0.4 × 0.6 = 0.6 × 0.44

(Subtotal = 0.0768)
2 (10 assortments) 1 1 0 0 0 0.6 × 0.6 × 0.4 × 0.4 × 0.4 = 0.62 × 0.43

1 0 1 0 0 0.6 × 0.4 × 0.6 × 0.4 × 0.4 = 0.62 × 0.43

(Subtotal = 0.2304)
3 (10 assortments) 1 1 1 0 0 0.6 × 0.6 × 0.6 × 0.4 × 0.4 = 0.63 × 0.42

1 1 0 1 0 0.6 × 0.6 × 0.4 × 0.6 × 0.4 = 0.63 × 0.42

(Subtotal = 0.3456)
4 (5 assortments) 1 1 1 1 0 0.6 × 0.6 × 0.6 × 0.6 × 0.4 = 0.64 × 0.4

1 0 1 1 1 0.6 × 0.4 × 0.6 × 0.6 × 0.6 = 0.64 × 0.4
(Subtotal = 0.2592)

5 (1 assortment) 1 1 1 1 1 0.6 × 0.6 × 0.6 × 0.6 × 0.6 = 0.65

(Subtotal = 0.0778)

Fig. 1.31  Distribution (aka probability mass function) of Bi (n=5, π=0.6)
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x = 5. It is straightforward that the expression of Bi (1, π) is Probability of {no. of 
events, X = x out of 1 Bernoulli trials} = πx(1-π)1-x, where x = either 1 (for success) 
or 0 (failure).

While the Binomial Distribution fits to the probability of success counts arising 
from a fixed number of independent trials, if the event of interest is not rare (i.e., 
π is not very small) and the size of the trial, n, becomes large, then the probability 
calculation for a range of number of success events can be conveniently approxi-
mated by using the Gaussian distribution even if, the number of success is not 
continuous. Figure  1.32 demonstrates the rationale for such an application. In 
general, for n×π ≥ 5 (i.e., the number of expected successes is at least 5), if n 
becomes large for a given a π, or π becomes large for a given n, then the distributed 
probability pattern of Binomial Distribution becomes closer to N (μ = n × π, σ2 = 
n × π × (1- π)).

Suppose that we now increased the number of animal experiment to 100, and we 
want to compute the probability of observing 50–75 successes arising from 100 
independent trials. Because n × π = 100 × 0.6 = 60, and n × π × (1- π) =100 × 0.6 
× 0.4 = 24, this task can be resorted to the normal approximation for which the used 
distribution is N (μ = 60, σ2 = 24). Then as depicted by Fig. 1.33, the first step is to 
transform the interval 50 ~ 75 on N (μ = 60, σ2 = 24) to a new interval on N (0, 1), 
i.e., 50 → (50 – μ)/σ = (50-60)/ 24  = -2.05 and 75 → (70 – μ)/σ = (75-60)/ 24  
=2.05. So, the probability to observe 50–75 successes is the area under the density 
curve of N (0, 1) covering from -2.05 and 2.05 on z, which is 0.98.

Fig. 1.32  Large sample behavior of binomial distributions illustrated by histograms of binomial 
distributions with various trial sizes and success rates

1.5 � Two Useful Probability Distributions
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On the other hand, when the event of interest is rare and the size of the trial 
becomes very large then the computation can be approximated by Poisson model in 
which the number of trials is no longer an important constant (i.e., parameter) that 
characterizes the Poisson distribution. The notation is Poi (λ), where λ denotes the 
number of average successes of the rare event out of a large number of independent 
trials. A particular exemplary outcome that is well characterized by the Poisson 
model is the number of auto accidents on a particular day in a large metropolitan 
city. The rare events can be the ones of which the Binomial characteristic constants 
are n × π < 5 (i.e., expected number of successes). The next example is a Binomial 
Distribution for which the probability calculation can be approximated by a Poisson 
distribution. Figure  1.34 displays the probabilities of observing 0, 1, 2, …, 30 
adverse events among 30 independent clinical trials of a new drug if the true adverse 
event rate = 0.01 (i.e., 1 %). The typical pattern of Poisson distribution is that the 
probability value decreases exponentially after certain number of successes, and as 
the expected number of successes, n × π, becomes smaller the value decreases 
faster. If we let a computer calculate the probability to observe 3 or more adverse 
events from 30 trials, then the result will be 0.0033. If we approximate this distribu-
tion to Poi (λ =30 × 0.01 = 0.3) and let a computer calculate such an event, the 
result will be 0.0035, which is not much different from the Binomial model-based 
calculation.

Fig. 1.33  Normal approximation to calculate a probability range of number of binary events

Fig. 1.34  Distribution (aka probability mass function) of Bi (n=30, π =0.01)
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1.6  �Study Questions

	 1.	 What are the similarity and dissimilarity between the interval scale and ratio 
scale?

	 2.	 What is the definition of a distribution? What is being distributed?
	 3.	 In a Box-and-Whisker plot, what proportion of the population is contained in 

the “box” interval? Is such a plot useful to describe a bimodal (i.e., two modes) 
distribution?

	 4.	 Please explain the definition of standard deviation.
	 5.	 What proportion of the data values are within one standard deviation above and 

below the mean if the data are normally distributed?
	 6.	 Can a correlation coefficient measure the strength of any relationship between 

two continuous observations?
	 7.	 What are the definitions of odds and odds ratio?
	 8.	 What are the two parameters that completely determine a Gaussian distribution?
	 9.	 What are the two parameters that completely determine a Binomial Distribution?
	10.	 Under what condition can a Gaussian model approximate the proportion of a 

population lies within a certain range of number of events describable by a 
Binomial model?
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                    Statistical inference is to infer whether or not the observed sample data are 
 evidencing the population characteristics of interest. If the whole population data 
were gathered collectively then there is no room for uncertainty about the popula-
tion due to a sampling and the statistical inference is unnecessary. It is ideal but 
unrealistic to collect the whole population data and complete the investigation 
solely by descriptive data analysis. For this reason, a smaller size of sample data set 
than that of the whole population is gathered for an investigation. Since the sample 
data set does not populate the entire population, it is not identical to the population. 
This chapter will discuss the relationship between the population and sample by 
addressing (1) the uncertainty and errors in the sample, (2) underpinnings that are 
necessary for a sound understanding of the applied methods of statistical inference, 
(3) forms and paradigms of drawing inference, and (4) good study design as a solu-
tion to minimize the unavoidable errors contained in the sampling. 

2.1     Population and Sample 

2.1.1      Sampling and Non-sampling Errors 

 Let us fi rst discuss several important phenomena and statistical concepts arising 
from using sample data before addressing the statistical inference. Suppose that our 
objective is to discover the average (i.e., mean) body weight of a large population 
( N  > 1 million) of men and women. It is impractical to measure every individual of 
the population. Nonetheless, one can probably investigate by using a suffi ciently 
large yet manageable size,  n , of well represented random sample. Let’s assume that 
a statistician helped you determine the study sample size,  n  = 1000 individuals of 
which the sample mean is to serve as a good estimate of the population’s mean 
body weight. 

    Chapter 2   
 Statistical Inference Focusing 
on a Single Mean 
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 The followings are two major sources of uncertainty involved in the sample. The 
fi rst is sampling error. These 1000 sampled subjects were randomly drawn one at a 
time and returned to the population (i.e., the chance that each individual was sam-
pled was the same). If another separate random sample of 1000 subjects is taken, 
then these new 1000 randomly drawn subjects will not be the exactly the same 
individuals as those initial 1000 subjects. The mean values of those two sets will 
differ from each other, thus both means will differ from the population mean. A 
discrepancy between the sample means and the true population mean explained 
solely by this supposition is understood as the sampling error. This sampling error 
will eventually disappear as the sample size becomes very large. One extreme 
example is that if the sample consisted of the entire population, then there is no such 
an error. The next is non-sampling error. No matter how well the randomly drawn 
sample subjects represent the whole subjects in the population, it is still possible 
that there could be another type of discrepancy between the sample mean and true 
population mean. For instance, if a scale that was used to measure weight systemati-
cally underestimated the true value (by accident) because of a mechanical problem, 
then the discrepancy between the observed sample mean and the true population 
mean due to such machine error is understood as the non-sampling error. This kind 
of error will never disappear even if the sample size becomes very large (Fig.  2.1 ).

2.1.2             Sample- and Sampling Distributions 

 The concepts of sample distribution and sampling distribution are the important 
bases of statistical inference. The following example demonstrates the sample and 
sampling distributions. 

     Fig. 2.1       Overview of inference using sample data       
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 The following example demonstrates the sample- and sampling distributions. We 
are interested in the average neutrophil counts per 100 white blood cells of healthy 
adults in a large population. Assume that the healthy adults’ neutrophil counts per 
100 white blood cells are normally distributed with mean of 60 and standard devia-
tion of 5 in this population. Let’s also assume that there is no non-sampling error in 
this sampling. 

 A random sample of 30 individuals was taken, and the sample mean was calcu-
lated. Would this sample mean be exactly 60? Furthermore, if other 19 research 
groups also had taken their random samples with the same sample size (i.e., n=30) 
independently, then those sample means of yours and your colleagues will differ. 
Figure  2.2A .1 illustrates how the histograms of these 20 individual sample sets 
would appear and Fig.  2.2A .2 illustrates how the 20 respective sample means would 
vary. A result from the same kind of experiment except for choosing a larger sample 
size (n=300) is also demonstrated (Fig.  2.2B .1, B.2).

   In Fig.  2.2A .1, the 20 sample distributions are described by histograms demon-
strating the observed distribution of each random sample set with a sample size of 
30 (so-called sample distribution). Each of the other 20 histograms in Fig.  2.2B .1 
summarizes each random sample’s observed distribution with increased sample size 
of 300. It is observed that the sample distributions with the tenfold larger increased 
sample size are more refl ective of the population’s distribution. 

 Figure  2.2A .2 depicts the sampling distribution of the 20 sample means in 
Fig.  2.2A .1, B.2 those of 20 sample means in Fig.  2.2B .1. Note that the observed 
sampling distribution of the sample means drawn from the 20 repeated samples of 
size 300 (Fig.  2.2B .2) is much less dispersed than that from the 20 repeated samples 
of size 30 (Fig.  2.2A .2). The standard deviations of these two sampling distributions 
provide very good sense of how the sample means vary over the repeated random 
samplings.  

2.1.3      Standard Error 

 The standard deviation of a sampling distribution measures the variability of the 
sample means that vary over the independently repeated random samplings. This 
particular standard deviation is called standard error of the sample mean,  s  x   . Note 
that in real life research, it is unrealistic to draw multiple samples in order to describe 
the sampling distribution as demonstrated in Sect.  2.1.2 . The above example was to 
facilitate conceptualization of the sample- and sampling distributions. The investi-
gators draw only a single sample, and they are not only uncertain about how far/
close the obtained sample mean is from/to the unknown population mean but also 
cannot produce such a presentation depicted by Fig.  2.2 . There is a mathematical 
equation that allows the investigators to be able to utilize to estimate the standard 
error of mean based solely on the observed sample data set, which is to simply 
divide the sample standard deviation,  s   x  , by the square root of its sample size,  n , i.e., 
 s   x    /√n . In the above illustrative example, a standard error of the sample mean can be 

2.1  Population and Sample
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estimated by directly applying  s   x    /√ 30 to any of the 20 sample distributions with 
sample size of 30, which would be very close to 0.67 (or 0.3112 for  n =300) with a 
small sample to sample variation. Such an estimated standard error is very close to 
the standard deviation of the 20 observed sample means from the experiment (such 

  Fig. 2.2    Sample distribution of random-sampled data sets from a normal distribution, and the 
sampling distributions of their sample means       
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an experiment is called a Monte Carlo Simulation). Table  2.1  summarizes the dis-
tinction between the sample- and sampling distributions as well as the relationship 
between the sample standard deviation and standard error.

2.2         Statistical Inference 

2.2.1       Data Reduction and Related Nomenclature 

 The procedure of the statistical inference can be viewed as an itinerant avenue that 
connects the sample to population. With a given sample data set, the very fi rst step 
to walk through that avenue is to reduce the sample data set into several descriptive 
summary statistics (i.e., extract the summary statistics out of the data set). Such an 
intervening step of operation is called data reduction. A descriptive data analysis 
being applied in the sample data for the purpose of making a statistical inference is 
a good example of the data reduction. 

 The followings are important statistical vocabularies. A  parameter  is a measured 
characteristic of a population (e.g., mean age, mean blood pressure, proportion of 
women). A  statistic  is a measured characteristic as a function of sample data (e.g., 
sample mean age, sample mean of blood pressure, sample proportion of women). 
 Estimation  is the procedure to know the value of population parameter of interest using 
the sample data. An  estimator  is a mathematical function of sample data that is used to 
estimate a parameter (e.g.,  x     = [x   1    + x   2    + … + x   n   ]/n,  where  [x   1    + x   2    + … + x   n    ]  are sum 
of all observed values of variable  x  and  n  is the sample size). Note that an estimator is 
also a statistic. An  estimate  is a particular observed value of the estimator (e.g., mean 
year age estimate = 23, etc., i.e., a resulting value from the data reduction process).  

2.2.2     Central Limit Theorem 

 Central Limit Theorem (CLT) is one of the important theoretical bases for the infer-
ence. It describes the typical phenomenon of sample means (the most commonly 
used central tendency statistic) arising from random sampling. 

   Table 2.1    Sample- and sampling distributions   

 Sample distribution  Sampling distribution 

 Distribution of  a single sample data set  sample means being obtained over 
multiple sets of random samples 

 As the sample size increases 
the shape of distribution 

 becomes closer to the 
population distribution 

 becomes symmetrical and narrower 

 Name (and notation) of the 
dispersion statistic is 

 Sample standard deviation 
( s ) 

 Standard error (SE) of mean ( s  x   ) 

 Relationship between  s  
and  s  x    

  s = √n × s  x      s  x     = s/ √n  

2.2  Statistical Inference
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 The demonstrated sampling experiments below will help the readers understand 
the meaning and usefulness of the CLT. The next two experiments are slightly dif-
ferent from the ones illustrated in Sect.  2.1.2  in that the population distribution of 
these sampling experiments is a continuous non-Gaussian distribution. The popula-
tion distribution from which the samples are drawn is bimodal (i.e., two modes) 
distribution which often characterizes a distribution as a mixture of two subgroup 
distributions resulting in two subgroups clustered around two different central loca-
tions (Fig.  2.3 ).

   Experiment 1: Draw 30 distinct random sample sets from the given population set 
with sample size = 25 and make 30 separate histograms for these individual sample 
distributions. Then make a histogram of the 30 sample means that are obtained from 
individual sample distributions. 

 Experiment 2: Repeat the same kind of experiment by increasing the sample size to 
100 and create the histograms the same way as the previous experiment. 

 In Fig.  2.4 , as expected, each sample distribution appeared similar to the popula-
tion distribution, and those from the sample size of 100 resembled the original pop-
ulation distribution more closely. Notably, the sampling distribution of the sample 
means drawn from the sample size of 100 appeared unimodal (i.e., one mode) and 
symmetrical (i.e., bell-like) although the population distribution was bi-modal. The 
dispersion of the sampling distribution of n=100 decreased (standard error decreased 
from 3.3 to 1.9) which is the same phenomenon that was already observed in the 
previous experiment in Sect.  2.1.2  (i.e., decreased sampling error for the increased 
sample size).

    Central Limit Theorem (CLT) 

 For a random variable that follows any* continuous distribution in a population with 
its mean =  μ  and standard deviation =  σ , if random samples are repeatedly taken 
over many ( m ) times independently where each sample size  n   k    (k =1, 2, …, m) = n , 
then the sampling distribution of the  m  sample means  x     k    (k=1, 2, …, m)  will 
approach to a normal distribution with its population mean=  μ,  the population mean ,  
and standard deviation =  σ/√n  as each sample size  n  increases infi nitely. 

  *The sampling distribution of the means arising from a population distribution 
which does not have a fi nite standard deviation. One example for such an exception 

  Fig. 2.3    Histogram of a bimodal distribution       
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is the sampling distribution of the means arising from Cauchy Distribution of which 
the tails of the density curve become much greater, thus the sample means will 
diverge even if the sample size increases.    

2.2.3       The  t -Distribution 

 When the sample size,  n , is not large and the population standard deviation is 
unknown (in many real life studies, the sample sizes are not large and the popula-
tion standard deviations of the clinical outcomes are usually unknown) the sam-
pling distribution of sample means  x    arising from random sampling from a 
normally distributed population may not be well approximated by the normal dis-
tribution (more spread out than the normal distribution, and the CLT may not be 
fully applicable), but  √n(  x     - μ)/s , a simplifi ed form of  (  x     - μ)/(s/√n),  where  s  is 
the sample standard deviation, is very well described by a  t -distribution with 
 df = n – 1  (Fig.  2.5 ) . 

   The  t -distributions become very close to the standard normal distribution when 
the sample sizes are very large (see Fig.  2.6 ).

  Fig. 2.4    Sample distribution of random-sampled data sets from a non-normal distribution, and the 
sampling distributions of their sample means       
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   Comment on degrees of freedom ( df ) and beyond: In-depth understanding of 
degrees of freedom requires ample knowledge of mathematical statistics and linear 
algebra, and the following is a simple explanation for the applied users. The degrees 
of freedom,  df , whenever appears, is understood as a parameter that characterizes a 
particular probability distribution (e.g.,  t ,  F ,  or χ2—will be discussed later ). In prac-
tice, fi nding out the value of  df  is necessary for the inference. The upcoming chap-
ters and sections will focus only onto the minimally necessary knowledge about it 
while leaving out the details from this book for the statistical analysis package pro-
grams calculate the  df . Besides the degrees of freedom, there is an additional param-
eter to characterize a  t -distribution but was not dealt with yet and will be introduced 

  Fig. 2.6     t -Distributions of small and large degrees of freedom versus standard normal distribution       

  Fig. 2.5    Relationship between standard normal distribution and a  t -distribution       
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in Chap.   8     because the involvement of non-centrality parameter is unnecessary until 
the power and sample size topic appears in Chap.   8    . Until then, all  t -distributions 
being dealt with are assumed to have their non-centrality parameter of 0 (aka, 
 central  t -distribution).  

2.2.4      Testing Hypotheses 

2.2.4.1     Statistical Hypotheses and Logical Framework of Testing 
Hypotheses 

 The main objective of a scientifi c investigation is to convince that a new discovery 
is different (improved) from what has been discovered in the past. Scientifi c inves-
tigations usually involve formal procedures consisting of articulating a research 
hypothesis about the anticipated new fi nding, design of a study, conducting the 
study (i.e., experiment or observation) and gather data, and performing data analysis 
(i.e., make statistical inference) to reveal the data evidence that is beyond the rea-
sonable doubt. The primary reason for performing data analysis is to carry out infer-
ence. There are two forms to carry out the inference and they are the hypothesis test 
and estimation (especially, interval estimation). We will discuss the hypothesis fi rst 
and then discus the estimation (focusing on the interval estimation). 

 The hypothesis test requires stated hypotheses (facts) and a test rule, and it can 
be viewed as a two-player game like framework based on a certain test rule in that 
the researcher states a pair of mutually contradictory hypotheses of which the fi rst 
is to be ruled out if data evidence is not strong and the second is to be favorably 
admitted if data evidence is strong. For example, “a new intervention A is as effi ca-
cious as the currently available intervention B” can be such a form of the fi rst 
hypothesis of the pair and “a new intervention A is more effi cacious than the cur-
rently available intervention B” can be the second of the pair. Traditionally, the fi rst 
hypothesis is denoted by H 0  and the second by H 1 . 

 Having stated H 0  and H 1 , the next step is to test if the data evidence favors H 0  or 
H 1  based on a rigorous and objective statistical rule. The test result can either rule 
out H 0  so that the study can fi nally pronounce that H 1  wins H 0 , or  vice versa . The 
logical framework of claiming H 1  given the data evidence is not to let the data evi-
dence prove the proposition H 1  directly, but it is rather to rule out H 0  if the observed 
data showed a signifi cant counter evidence against H 0 . On the other hand, if the 
counter evidence against H 0  was not signifi cantly strong then this logical framework 
lets the researcher return to H 0  (i.e., “the past scientifi c fi nding remains valid, so go 
back to the drawing board”). By this procedure a researcher can set H 1  as a new 
milestone if the data evidence was signifi cant to rule out H 0  (i.e., “record is now 
broken”). Thus H 0  is called null hypothesis (i.e., back to null) and H 1  is called alter-
native hypothesis. 

 In this procedure, the test rule-based fi nal decision is to reject the null hypothe-
sis, H 0 , or to fail to reject it. Here, “fail to reject” H 0  is not synonymous with “accept” 
H 1  in that the observed data cannot be absolutely certain and perfect because the 
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observed sample data always involve uncertainty (i.e., sampling and non-sampling 
errors), and the sample data can never be able to prove either hypothesis. One may 
argue why we do not carry out an inference involving only H 1  as the solo player and 
let the study data directly prove it? Justifi cations can be made by from purely math-
ematical to very pragmatic manners. One pragmatic justifi cation can be that H 0  
versus H 1  approach always directs the researchers to the next study plan because the 
approach offers two options of either returning to H 0  or proceeding to with H 1 . The 
analogy is the logical framework of the court room trial. A defendant remains inno-
cent (H 0 ) if there are insuffi cient factual evidences, otherwise she/he becomes guilty 
(H 1 ) if there were suffi cient factual evidences.  

2.2.4.2     Step by Step Overview of Hypothesis Test Procedure 

 This is a  formula-less  overview of the hypothesis test procedure. The fl ow can be 
broken down into fi ve steps. Note that such a breakdown is quite arbitrary and made 
for convenience. 

 Step 1: Stating null (H 0 ) and alternative (H 1 ) hypotheses. This step usually takes 
place at the beginning of the study (i.e., protocol development stage). The study 
investigator translates the research hypotheses into the statistical hypotheses and 
writes them in the statistical analysis plan section of the protocol. 

 Step 2: Establishing the test rule (decision rule to determine the signifi cance of the 
observed data evidence to reject the null hypothesis). This step also usually takes 
place at the protocol development stage. The study investigator articulates the deci-
sion rule (i.e., method of a test) in the statistical analysis plan section of the protocol. 

 Step 3: Collecting data (i.e., conduct clinical study according to the written proto-
col) and data reduction (i.e., perform data analysis to obtain sample statistics). 

 Step 4: Applying the rule specifi ed in Step 2 to the results of the data reduction and 
make decision (i.e., perform data analysis). 

 Step 5: Making interpretation and report writing.  

2.2.4.3     Stating Null and Alternative Hypotheses 

 The following four sets of null and alternative hypotheses are typical formats of the 
hypotheses that are written for one mean inference (Table  2.2 ).

2.2.4.4         How to Phrase the Statistical Hypotheses? 

 A hypothesis is a statement about a deterministic fact of the population (i.e., not a 
statement of data being sampled), and the standard format of a written statistical 
hypothesis is that its tense is present and the words statistically signifi cant should 
not be in the sentence. Table  2.3  exhibits some examples of improper phrases.

2 Statistical Inference Focusing on a Single Mean
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2.2.4.5         Signifi cance of the Test 

 Having  stated  the null and alternative hypotheses, the researcher collects data that 
would or would not disprove the null hypothesis. While there are many important 
constituents of the process, introducing all at once may create confusion. The fol-
lowing discussion focuses onto the signifi cance testing.

  Nomenclature 

  A  level of signifi cance  (or signifi cance level in short),  α , is chosen by the researcher 
before the data analysis (i.e., this is not a resulted value from the observed data), 
and it determines the resilience of the test rule to reject the null hypothesis. This 
level is the maximally allowed error probability size that the test would reject the 
null hypothesis erroneously even though it should not be rejected. Such a deci-
sion error is called Type-I error. The level of signifi cance is also called test size. 
A common choice is 5 %.  

   Table 2.2    Null and alternative hypotheses   

 Null hypothesis  Alternative hypothesis  Simple or composite 
 Directionality of 
composite hypothesis 

 H 0 : μ = μ 0   H 1 : μ = μ 1   Simple null  N/A 
 Mean is equal to μ 0   Mean is equal to μ 1   Simple alternative 
 H 0 : μ = μ 0   H 1 : μ ≠ μ 0   Simple null  Nondirectional 

(two-sided)  Mean is equal to μ 0   Mean is not equal μ 0   Composite alternative 
 H 0 : μ = μ 0   H 1 : μ > μ 0   Simple null  Directional 
 Mean is equal to μ 0   Mean is greater than μ 0   Composite alternative 
 H 0 : μ = μ 0   H 1 : μ < μ 0   Simple null  Directional 
 Mean is equal to μ 0   Mean is smaller than μ 0   Composite alternative 

   Note : In some tests, the null hypothesis can be directional and composite. For example, H 0 : μ ≤ μ 0  
vs. H1: μ > μ 0  is such a case. For certain tests, H 0 : μ = μ 0  vs. H 1 : μ > μ 0  is used interchangeably 
without loss of generality. Please consult with an intermediate or advanced theory literature for 
more exceptions  

   Table 2.3    Examples of improper phrases for statistical hypotheses   

 Improper phrases  Reason 

 H 0 : The sample mean is not different 
from 150 

 Hypotheses are statements about the population, 
not the about the sample 

 H 1 : The sample mean is different from 150 
 H 0 : The mean is not statistically signifi cantly 

different from 150 
 The sentence must not include the wording 

“statistically signifi cantly” 
 H 1 : The mean is statistically signifi cantly 

different from 150 
 H 0 : The mean will not be different from 150  The sentence should be written in present tense 

because it is a statement about the fact of the 
population of interest 

 H 1 : The mean will be different from 150 
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  A  test statistic  is a sample statistic (see Sects.   1.3.1     and  2.2.1  for its defi nition) to 
gauge the strength of an evidence opposing to H 0 . Its value is calculated from the 
observed sample data and it varies from sample to sample (i.e., study to study). 
The phenomenon of this sample to sample variation of the test statistic is mea-
sured by the standard error of the test statistic (i.e., standard deviation of the 
sampling distribution of the test statistic). The strength of this evidence opposing 
to H 0  is assessed by the relative extremity (i.e., how unlikely that the calculated 
test statistic value is observed) of the test statistic according to its sampling dis-
tribution (see Sect.  2.1.2  for its defi nition). The typical (with few exceptions) 
formulation of the test statistic is constructed by  Observed Estimate ~ Null Value 
~ Standard Error (SE)  triplet shown below.  

    
TestStatistic

Observed Estimate NullValue

SEof Observed Estima
=

−
tte NullValue

Signal

Noise−( ) =
   

    The numerator,  Observed Estimate—Null Value,  is a gauged metric of the departure 
of the sample estimate from the hypothesized parameter value specifi ed in the 
null hypothesis. In this expression, for instance, for a test of which H 0 : mean μ = 
μ 0  versus H 1 : mean μ ≠ μ 0 ,  Observed Estimate  is the sample mean  x    and  Null 
Value  is the parameter value μ 0  specifi ed in the null hypothesis. The  SE  is the 
standard error of the numerator, which is the sampling error of the observed dif-
ference of  (Observed Estimate —N ull Value) . The test statistic is the ratio of the 
former and the latter. A test statistic with its value of 0 indicates the observed 
mean estimate is equal to the null value, 1 indicates the observed mean esti-
mate’s departure from the null value is as large as its average random sampling 
error size (such a value does not indicate a signifi cant departure from H 0 ), -1 
indicates the same degree of departure from the null but to the opposite direction 
of the value 1 (such a value does not indicate a signifi cant departure from H 0  
either), and three indicates the departure is threefold larger than the average 
sampling error size (such a large value may indicate a signifi cant departure from 
H 0 ) (Fig.  2.7 ).

     Note that this formulation unifi es most of the common test statistics for a very 
simple situation to many complex comparisons situation. This formulation can 
easily be extended to comparing a difference in two means to a specifi ed null 
value of 0 (see Sect.   3.1    ).  

  Usually the  name of a test  comes from the name of the sampling distribution of the 
test statistic. For example,  t -test is the test of which the test statistic follows the 
 t -distribution with a particular degrees of freedom (it will be explained later that 
the degrees of freedom of the  t -distribution is uniquely determined by the sample 
size, see Sect.  2.2.4.5 ).  

  A  p - value  is the probability of observing the test statistic values that are as or more 
extreme than the currently calculated test statistic value if the null hypothesis H 0  
was true. This probability is calculated by evaluating the tail area under the 
density curve of the sampling distribution of the test statistic (see Sects.   1.5.2    –
  1.5.4     for area under a density curve). If the  p -value is less than the signifi cance 
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level,  α , then it is interpreted that the observed data evidence is signifi cant to 
suggest that data have not been gathered from the population that is specifi ed by 
the null hypothesis H 0  (and the probability that such a departure could have been 
solely due to a chance alone is less than the adopted signifi cance level  α ). 
Technically, the evaluation of the tail part area under the density curve will be a 
daunting numerical integration if a computer is not utilized. However, the idea 
of resorting to the critical region can replace such a daunting numerical integra-
tion. This idea had been applied widely when the modern computer was not 
popularly utilized.  

  A  critical region  of a test statistic is a collection of all possible test statistic values 
(i.e., an interval or multiple intervals of the test statistic values on the sampling 
distribution) of which the total probability for encountering all such values is less 
than the signifi cance level when the null hypothesis H 0  is true. The critical region 
of a particular test is primarily determined by the adopted signifi cance level (i.e., 
the critical region becomes narrower as the adopted signifi cance level becomes 
more stringent). H 0  is then rejected at the adopted signifi cance level if the 
observed test statistic value falls into this region. Note that the critical region is 
also called rejection region. Checking if the test statistic resides in- or outside of 
the rejection region can be done using a statistical table of the sampling distribu-
tion of the test statistic. The statistical table is a collection of the intervals on the 
possible range of the test statistic and their corresponding probability of occur-
rence. Note that if the test statistic value is equal to the critical value, then the 
 p -value is equal to the adopted signifi cance level; if it fell into (outside) the criti-
cal region, then  p -value is less (greater) than the signifi cance level.     

2.2.4.6     One-Sample  t -Test 

 This section introduces one-sample  t -test for the inference about a single mean of a 
population. The following example is used for introducing the procedure, particu-
larly why this test is called  t -test, and how the aforementioned constituents covered 
in Sect.  2.2.4.4  are put into operation in the previously mentioned fi ve steps.  

  Fig. 2.7    Illustration of 
concept of test statistic       
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 Step 1—Statistical hypotheses are stated 
 The fi rst step for the hypothesis test inference is to state the null- and alternative 
hypothesis. The investigational objective can be translated into as below. Null 
hypothesis: the mean is 15 (i.e., H 0 : μ = 15). Alternative hypothesis: the mean is less 
than 15 (i.e., H 1 : μ < 15). 

 Step 2—Test rule is outlined 
 A 5 % signifi cance level, i.e.,  α  = 0.05, is adopted. The lab scientists would reject 
the null hypothesis if  p  < 0.05, or equivalently if the observed test statistic falls into 
the critical region of the test static’s sampling distribution (i.e., the test statistic falls 
outside the interval determined by the 5 % alpha level). The test statistic will gauge 
the ratio of  (observed mean—null mean) / (standard error of the numerator 
difference) . 

 Step 3—Observe the data 
 The investigator randomly selected ten mice with the same body weight, and then 
applied exactly the same dose of the gel to each experimental animal. The following 
data are the circulating volumes measured in percentage value of the delivered gel 
volume: 

 14.45, 14.40, 14.25, 14.27, 14.57, 14.99, 12.97, 15.29, 15.07, 14.67. 

 Step 4—Data analysis 
 The objective of data analysis of the hypothesis test is to calculate the test statistic 
(i.e., data reduction) and make a decision to reject or not to reject H 0  based on the 
rule. The rule had been outlined briefl y at step 2. With the observed data the rule can 
be completed now. The fi rst task is to formulate the test statistic and calculate its 
value. The second task is to evaluate the signifi cance of it either by directly calculat-
ing the  p -value or determine if it falls into/outside (of) the critical region of the test 
statistic. The third task is to make decision. The test statistic is constructed as (the 
observed mean—null value) /  SE  (of the numerator). The observed mean of the ten 
observations is 14.493 and its null value is 15. Note that the null value is the 

 Example 2.1 

 A laboratory investigator is conducting an animal study to test if a synthetic 
 hormone that is delivered via dermal gel cream applied directly to the thigh 
muscle of mouse. The investigator hypothesized that the hormone level circu-
lating in mouse blood measured at 1 h after the proper application is about 
15 % of the total volume contained in the prescribed gel dose. Furthermore, 
the circulating hormonal volumes are known to follow a normal distribution. 
The investigator plans that if the current experiment shows the mean circulat-
ing volume is at least 15 % then the gel’s hormone concentration will not be 
increased, otherwise a new experiment with an increased concentration rate 
will be conducted. 
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parameter value that is expected if the null hypothesis is true. The numerator part, 
which is to measure the signal of observed data departure from the null value, is 
14.493 – 15 = − 0.507 (approximately half minutes faster than 15 min). The denom-
inator, which is the random sampling noise (i.e., the standard error of the signal), 
should be sought. Note that the null value is a fi xed constant and it does not add 
additional sampling variation to the signal  Observed Estimate—Null Value . 
Therefore, the standard error of the whole numerator remains the same as that of 
only the observed sample mean. The standard error of the observed sample mean 
can be calculated by dividing the sample standard deviation by the square root of the 
sample size (see Sect.  2.1.3 ). The sample standard deviation is 0.640, thus the stan-
dard error is 0.640/√10 = 0.203. Finally the test statistic value is obtained, i.e., 
-0.507/0.203 = −2.503. Let’s take a close look of the test statistic. The mathematical 
expression of this test statistics is congruent to the quantity  (  x     - μ)/(s/√n)  that fol-
lows a  t- distribution  introduced in Sect.  2.2.3 , where  x     - μ  is the notational expres-
sion of numerator of the test statistic and  (s/√n)  is that of its denominator. The test 
statistic will follow a  t- distribution with  df = n-1,  where  n  is the sample size, and if 
the raw data were from a normally distributed population. Thus the test statistic 
calculated from these data will follow the  t -distribution with  df  = 10 – 1 = 9. The 
naming convention of a test is to give the name of the sampling distribution of the 
test statistic. Having known the sampling distribution of this test statistic is  t -distri-
bution, we call this a  t -test. It is worth mentioning here at least briefl y that test sta-
tistics can be derived from many situations that are not exactly the same as the 
above inference (i.e., testing if a single mean is equal to a particular value). For 
example, a test can be devised in order to compare two means. As we will mention 
such a situation and other variants in the later chapters (e.g., independent samples 
 t- test, paired samples  t -test), the there are test statistics derived from various situa-
tions that will also follow  t- distribution. In order to uniquely identify the  t -test being 
applied to this single mean inference illustrative example, we specifi cally identify 
the  t -test applied to a single mean inference as one-sample  t -test. 

 Lastly, we can calculate the  p -value determined by the test statistic value  t  = 
−2.503 based on the  t -distribution with its  df  = 9 (see Fig.  2.8 ). This calculation can 
be carried out by using Excel’s TDIST function, which delivers a calculated value 
of an area under  t -distribution’s density curve’s upper tail or both tails specifi ed by 
the user. The user specifi cation, TDIST(| t |,  df , 1 or 2), includes the absolute value of 
the  t -statistic value,  df , and the choice of 1- or 2-tail in this order. For this exercise, 

  Fig. 2.8    Determination of 
 p -value of a test statistic in a 
one-sample directional  t- test       
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TDIST(| – 2.503|, 9, 1) is necessary. Note that the fi rst input value of | – 2.503| 
should be either 2.503 (i.e., without notation) or ABS(− 2.503) because the com-
puter program utilizes the symmetrical feature of  t -distributions. The actual code is 
TDIST(2.503, 9, 1). Figure  2.9  illustrates how the raw data are organized, the sam-
ple mean and its standard error as well as the  t -statistic are calculated, and how the 
 p -value is obtained. The calculated  p- value =0.017 is much less than the signifi -
cance level 0.05. Therefore, H 0  is rejected.

    We can also take an approach to check if the  t  = −3.33 falls into or outside of the 
critical region. Figure  2.10  visualize the critical region for this directional one- 
sample  t -test on the density curve of the sampling distribution of the test statistic  t  
at 5 % signifi cance level. This critical region is where the test statistic is less than 
the fi fth percentile of the  t  ( df =9) distribution. This fi fth percentile is called the criti-
cal value and can be found from the  t -distribution table with  df =9 and it is −1.833. 

  Fig. 2.9    Numerical illustration of calculating test statistic in a one-sample  t- test       
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The observed  t  = − 2.503 is less than −1.833, i.e., it is more extreme than the critical 
value so fell into the critical region. H 0  is rejected.

   Step 5—Interpretation of the result and its summarization 
 From the above steps this test can be summarized as “These data showed that the 
volume of the circulating hormone is less than 15 % of the prescribed total volume 
at a 5 % signifi cance level.”  

2.2.4.7     Comments on Statistically Signifi cant Test Results 

 In a clinical study, statistically signifi cant evidence with a tiny size of the signal may 
not necessarily comprise a clinical signifi cance. Such a result can be observed in a 
study with a very large sample size (i.e., unnecessarily larger than the adequate 
sample size). On the other hand, clinically signifi cant evidence can be statistically 
insignifi cant due to an inadequately small sample size or very large data variability. 
Such a result could have been signifi cant if a larger sample size or better error con-
trols (e.g., better study design) had been considered. Chapter   6     is devoted for an 
in-depth discussion of such a problem. 

 Reporting format in the results section of clinical research journals is also important. 
Table  2.4  shows a few examples of recommended and not-recommended formats.

2.2.4.8        Types of Errors in Hypotheses Tests 

 Hypothesis tests cannot be completely free of decision errors. The fi rst type of such 
errors is an error that H 0  was rejected although it is true, and the second type is the 
one that H 0  was not rejected although it was not true. The fi rst kind is called Type-1 
error and the second kind is called Type-2 error. 

 The adopted signifi cance level of a particular test,  α , predetermined by the inves-
tigator is the maximum allowed probability size of Type-1 error. The maximum 
allowed probability of Type-2 error size is called  β  and  1- β  is called power of the 
test. Figure  2.11  illustrates the probabilities of Type-1 and Type-2 errors of a test of 
which the null and alternative hypotheses are both simple hypotheses (i.e., a single- 
valued hypothesis and the test is directional). As depicted, Type-1 error is the area 
under the density curve of the sampling distribution of the test statistic within the 
rejection region under the assumption that H 0  is true. Type-2 error is the area under 

  Fig. 2.10    Determination of 
the critical region of a 
one-sample directional  t- test       
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the density curve of the sampling distribution of the test statistic within the non- 
rejection region under the assumption that H 0  is not true (i.e., H 1  is true). Chapter   6     
is devoted to relate the sizes of these two errors and the sample size, and discuss 
how to determine adequate study sample size to attain small Type-1 and Type-2 
errors (Table  2.5 ).

    Note that the following fi re alarm system metaphor helps the understanding of 
Type-1 and Type-2 errors, level of signifi cance, and power (Table  2.6 ).

2.2.5         Accuracy and Precision 

 The concepts of accuracy and precision are illustrated in Fig.  2.12 . Player 1 per-
formed more accurately and less precisely than Player 2. Player 3 performed more 
accurately and precisely than the other two players. This illustration can be 

   Table 2.4    Examples of recommended and not-recommended formats of summary sentences to 
appear in the results sections of clinical research journal articles   

  Recommended summary sentences  
 “These data showed that the mean is signifi -

cantly different from 15 min ( p  = 0.031)” 
 Show the actual  p -value 

 “These data showed that the mean is signifi -
cantly different from 15 min (p<0.05)” 

 Simply report that the  p -value was smaller 
than the signifi cance level 

 “These data showed that the mean is not 
signifi cantly different from 15 min at a 5 % 
signifi cance level” 

 A nonsignifi cant test result at the level of 
signifi cance = 0.05 

 “These data showed that the mean is not 
signifi cantly different from 15 min (NS a at 
5 % signifi cance level)” 

 A nonsignifi cant test result at the level of 
signifi cance = 0.05 

  Not-recommended summary sentences  
 “The null hypothesis is rejected because the 

p<0.05. These data showed that the mean is 
signifi cantly different from 15 min 
( p  = 0.031)” 

 Do not say in the report “ … the null 
hypothesis was rejected because p<0.05 
…” Story telling of technical details of 
the procedure is unnecessary 

 “These data showed that the mean is not 
signifi cantly different from 15 min (p>0.05)” 

 Do not report the meaningless  p -values in the 
concluding sentences when the  p -value is 
greater than your signifi cance level. 
However, in tables summarizing multiple 
results together such format is allowed 

 “These data showed that the mean is not 
signifi cantly different from 15 min 
( p  = 0.278)” 

 Do not report the meaningless  p -values in the 
concluding sentences when the  p -value is 
greater than your signifi cance level. 
However, in tables summarizing multiple 
results together such format is allowed 

 “The null hypothesis is rejected because the 
p<0.05. These data showed that the 
mean is signifi cantly different from 15 min 
( p  = 0.031)” 

 Do not say in the report “ … the null 
hypothesis was rejected because p<0.05 
…” Story telling of technical details of 
the procedure is unnecessary 
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considered as three researchers (Researchers 1, 2, and 3 corresponds to Players 1, 2, 
and 3, respectively) having repeated ten random samplings with a choice of fi xed 
sample size (i.e.,  n   1   by Player 1,  n   2   by Player 2, and  n   3   by Player 3) to obtain each 
point estimate (represented by each “x” mark) using each sample data set and the 

  Fig. 2.11    Determination of sizes of Type-1 and II errors in one-sample  t- test       

   Table 2.5    Errors in decisions and their probabilities in a hypothesis test   

 H 0  is true  H 1  is true 

 Accept H 0   Correct decision probability of this correct 
decision is called operating characteristic 

  Type  -  II error  
 Probability to commit 

Type-II error = β 
 Reject H 0    Type  -  I error   Correct decision 

 Maximum allowed probability to commit 
Type-I error in a test = α level (e.g., 5 %) 

 Probability of 
this = 1 − β = Power 

   Table 2.6    Alarm system metaphor of testing hypotheses   

 Hypothesis test  Alarm system metaphor 

 Type-1 error  Alarm turns on even if there was no fi re breakout 
 Type-2 error  Alarm does not turn on even if there was a fi re breakout 
 Level of signifi cance,  α   The level of false alarm system sensitivity 
 Power, 1-  β   Performance level of the alarm system (i.e., turns on whenever it 

should be) after the sensitivity level is set 
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same computational method. Intuitively, Researcher 1 might have chosen a smaller 
sample size than that of Player 2, but might have chosen a better sampling method 
that prevented the bias that was presented in the estimates of Player 2. How 
Researchers 1 and 2 could improve their results to expect a result similar to that of 
Researcher 3? Researcher 1 would increase the sample size without having to 
reconsider the sampling technique, and Research 2 would examine possible source 
of systematic non-sampling error and eliminate such cause in the future sampling 
procedure without having to increase the sample size. Connection of study design 
and sample size to the accuracy and precision is discussed in Sect.  2.2.8 .

2.2.6        Interval Estimation and Confi dence Interval 

2.2.6.1     Overview 

 In Sect.  2.2.4  the hypothesis test was applied to a single mean inference. Having 
rejected H 0  and pronounced that the population mean is signifi cantly different 
from the null value at the adopted signifi cance level ( α ) ,  it may be of further inter-
est to fi nd out a set of possible range of the point estimates that would not exclude 

  Fig. 2.12    Illustration of accuracy and precision       
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the unknown population mean so that the interval can be considered as a  collection 
of the possible mean values that are different from the unknown population mean 
with a certain level of confi dence. On the other hand if a test had not been able to 
reject H 0 , could a range be found to include the unknown parameter value? The 
interval estimation is an avenue to make such an inference, which is linked to the 
precision. 

 A popular approach is to construct a confi dence interval (CI), which relies on 
the theory of sampling distribution of the estimator (e.g., sample mean). For 
instance, the sample mean is a point estimate of the unknown population mean of 
interest (see Sect.  2.2.1  for the defi nition of an estimate), and the sample standard 
error measures the sampling variability of the estimated sample mean. An interval 
around the point estimate (i.e., the sample mean in the case of mean inference) can 
be constructed based on the sampling distribution of the sample mean. 
Section  2.2.6.2  demonstrates a rendering idea of the 95 % confi dence interval of 
the mean while the derivation is illustrated when the sampling distribution is 
Gaussian with known–unknown standard deviation of the distribution of the popu-
lation characteristic of interest. The derived lower and upper limits of the interval 
are indeed the 2.5th and 97.5th percentiles of the sampling distribution of the sam-
ple mean and the standard deviation is the standard error of the sample mean. Such 
a derived interval is one particular case of many intervals obtainable from many 
repeated random sampling experiments with the same sample size (see Sect.  2.1.2 ). 
Of those a large number of experiments about 95 % of the times the individual 
intervals may contain the unknown population mean. Such an interval is called 
95 % confi dence interval of the mean.  

2.2.6.2       Gaussian Distribution-Based Confi dence Interval for a Single 
Population Mean Inference 

 If a random of sample of size  n  ( x   1   , x   2   , …, x   n  ) is taken from a population in which 
the probability distribution of the population characteristic of interest is a Gaussian 
distribution with its mean  μ  and standard deviation  σ , then the sampling distribution 
of the sample mean  x    will follow a normal distribution with mean μ and standard 
deviation  σ/√n  when  n  is large (i.e., CLT). Or equivalently, the sampling distribu-
tion of ( x    –  μ )/  σ/√n  will follow the standard normal distribution (i.e., the Gaussian 
distribution with mean 0 and standard deviation 1). 

 One can fi nd out an interval that covers middle 95 % of the observable sample 
means basing on the standard normal distribution: 

 Probability  {2.5th percentile ≤ (  x     – μ)/(σ/√n) ≤ 97.5th percentile}= {−1.96 ≤ 
(  x     – μ)/(σ/√n) ≤ 1.96} = 0.95.  Then solving − 1.96 ≤ (  x     – μ)/(σ/√n) ≤ 1.96  for 
 μ  will offer the expression to obtain the 95 % confi dence interval of the population 
mean:  x     -1.96×σ/√n ≤ μ ≤   x     + 1.96× σ/√n.  If  σ  is unknown (it’s usually 
unknown in clinical studies), then use  s  (i.e., sample standard deviation), i.e.,  x    
 -1.96× s/√n ≤ μ ≤   x     + 1.96×s/√n.   
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 Results summary: These data showed that the estimated mean systolic blood 
 pressure was 115 mmHg (95 % CI: 108.61~121.39). Note that the format of this 
sentence is mostly recommended in applied research articles. 

 Note that 115 ± 6.39 is not a confi dence interval, but is just an arithmetic 
expression. 

 It may be skeptical if the sample size of 10 may not be suffi ciently large to 
assume the sampling distribution of the sample mean with unknown population 
standard deviation (i.e., to resort to the CLT). Alternatively a  t- distribution can be 
applied in that the 2.5th and 95th percentiles of the  t- distribution with  df = n – 1  = 
10 – 1 = 9 are −2.685 and 2.685, respectively (see Sect.  2.2.3  for  df ). Thus the result-
ing distribution 95 % confi dence interval is slightly wider. 

 Let us discuss how to report the result of interval estimation and why a certain 
phrasing is recommended. Once a confi dence interval (CI) has been constructed, the 
true parameter (e.g., the mean) is either within or outside this interval (i.e., the 
parameter is not a moving target but a fi xed constant, and the constructed interval is 
a varying interval depending on the sampled data). The probabilistic argument 
makes sense only prior to the construction of the CI. If many equal-sized random 
samplings are conducted independently from a normally distributed population, 
then the sample means of these random sample sets will form a normal distribution 
(i.e., the sampling distribution). If we obtain sample mean −1.96 × SE ~ sample 
mean + 1.96 × SE from each sample (i.e., a 95 % CI based on the normal approxi-
mation), then each interval can either include or exclude the true population mean 
(Fig.  2.13 ). What’s being probabilistic is that about 95 % of these anticipated inter-
vals will include the true mean. And this argument will not make sense once a 
researcher’s sample data already produced a confi dence interval. What has already 
happened is this interval either did or did not include the unknown population value. 
So, it is not said that “We are 95 % confi dent …” but said to focus onto the point 
estimate accompanied with the numerical interval: “These data showed that the 
estimated mean SBP was 115 (95 % CI: 108.61~121.39)”.

 Example 2.2 

 A small pilot study of healthy women’s systolic blood pressure was con-
ducted. The sample mean and standard deviation estimated from a random 
sample of ten women are 115 and 10.31, respectively. What is the 95 % con-
fi dence interval of the mean systolic blood pressure of this healthy women 
population? 

  x    = 115, and the population standard deviation is unknown, thus the sam-
ple standard deviation will be used for calculating the standard error, i.e., 
 s/√n  = 10.31/√10 = 3.26. 

 95 % CI = (115 – 1.96 × 3.26, 115 + 1.96 × 3.26) 
 = (115 – 6.39, 115 + 6.39) 
 = (108.61, 121.39) 
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2.2.6.3        Inference About a Single Population Proportion 

 It is often of interest to make inference about a single population proportion. If we 
are interested in knowing the proportion of the men and women in a large metro-
politan population who were vaccinated with infl uenza vaccine in the past 6 months, 
we may possibly take a certain size of random sample of men and women and 
obtain the information about the vaccination by a survey. The question can be trans-
lated into “What is the probability that a man or woman in this population received 
an infl uenza vaccination in the past 6 months?” As explored earlier (see Sect.   1.5.5    ) 
this question can be well articulated by the Bernoulli distribution in that a single 
person’s survey answer (i.e., coded with 1 if Yes, or 0 if No) being the event out-
come and  p  being the population vaccination rate. We can assume that the answers 
of the sample of the men and women are independent. The actual inference happens 
as below. With the sample of  n  men and women, we fi rst count number of “Yes” 
answers, which is simply the sum of all 1’s and 0’s (i.e., 1 + 0 + 1 + 1 + 0 + 1 + 0 + 
0 + …), then fi gure out what is the sampling distribution of that sum value (let’s say 
it is  x ). It is obvious that this sampling distribution is  Bi (n, π)  and the inference is 
all about  p  given  n  and  x.  

 The inference about  p  is to fi nd its point estimate, perform a one-sample test if the 
 p  is equal to a certain proportion (e.g., H 0 :  π  = 0.3 versus H 1 :  π  ≠ 0.3), and/or fi nd its 
95 % confi dence interval. Straightforwardly, the point estimate of  π  can be obtained 
by  x/n . The one-sample test and the interval estimation can be resorted to the normal 
approximation (see Sect.   1.2.2    ) if  n  is large, or directly to the sampling distribution, 

  Fig. 2.13    Illustration of the concept of 95 % confi dence interval of a mean       
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i.e., Binomial distribution. For example, if the survey sample size was 1000 and 
there were 270 persons who answered “Yes” then  

�
p     = 2705/1000 = 0.27,  the test 

statistic for a one-sample normal approximation test (i.e.,  z -test) with H 0 :  π  = 0.3 
versus H 1 :  π  < 0.3 is (0.27 – 0.3)/ √ [0.27 × (1–0.27) /1000] = −0.03 / 0.014 = 
−2.137 of which the two-sided test’s  p -value is 0.0163 (NORMSDIST(−2.137) by 
Excel), and the lower and upper 95 % confi dence limits are 0.27 – 1.96 × 0.014 = 
0.242 and 0.275 + 1.96 × 0.014 = 0.298 (i.e., 95 % CI of the vaccination rate: 24.2 % 
- 29.8 %). What if the sample size is small and a normal approximation cannot be 
resorted to the inference? The use of Binomial distribution will offer exact inference. 
Suppose the sample size was only 20 there were six “Yes” answers. Then the one-
sample Binomial test H 0 :  π  = 0.3 versus H 1 :  π  < 0.3 is reduced into a calculation to 
determine the probability that the number of “Yes” answers could have been 0, 1, 2, 
3, 4, or 5 out of 20 Bernoulli trials if the null hypothesis is true, which is the  p- value 
of the one-sided one-sample Binomial test. This computation can be carried out the 
same way as what was illustrated in Table   1.4     except for a larger number of assort-
ments of each number of “Yes” answers. Computer program is available for such a 
calculation. Likewise the 95 % confi dence intervals can be determined by fi nding the 
2.5th and 97.5th percentiles of the observed sampling distribution, i.e.,  Bi (20, 0.27) , 
for which the computation is usually done by computer programs as well.   

2.2.7     Bayesian Inference 

 The aforementioned inference in this chapter, which is called Frequentist’s infer-
ence, lets the parameter be a fi xed constant (not a random variable) and performs 
either the hypothesis testing (i.e., reject or do not reject the fi xed null hypothesis by 
the chosen rule) or performs the point and interval estimations without the prior 
probabilistic description about the parameter. Bayesian inference is a method of 
statistical inference which views the parameter of interest is a random variable (i.e., 
moving target) and lets the observed data determine the probability that a hypothe-
sis is true. The hypothesis testing in this setting is informal, and the typical format 
of Bayesian inference is estimation. The word “Bayesian” comes from Bayes, the 
statistician who popularized the rule (i.e., Bayes’ Rule) of conditional probability as 
described below. 

 As illustrated in Fig.  2.14 , event A can also be conceived as the collection of A 
overlapping B and A non-overlapping B. The following intuitive algebra is useful 
for calculating the conditional probability of occurrence event B conditional on A 
(i.e., event A is already occurred):

   P{B|A} = P{A and B} / P{A} – (1) 
 P{A|B} = P{A and B} / P{B} – (2) 

 From (2), P{A|B} × P{B} = P{A and B} – (3) 

 Plug (3) into (1), then 
 P{B|A} = [P{B} × P{A|B}] / P{A} – (4) 

2 Statistical Inference Focusing on a Single Mean
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 Furthermore, if event B is partitioned into  k  disjoint sub-events, then P{A} can be 
reexpressed as P{B 1 } × P{A|B 1 } + P{B 2 } × P{A|B 2 } + … + P{B k } × P{A|B  k  }. So, 
(4) can be expressed as P{B  i  |A} = [P{B  i  } × P{A|B  i  }] / [ P{B 1 } × P{A|B 1 } + P{B 2 } 
× P{A|B 2 } + … + P{B  k  } × P{A|B  k  }], for  i  ( i =1, 2, …,  k ). Typical application to the 
Bayesian inference is to consider B 1 , B 2 , …, B  k   as the hypothesized parameter values 
and event A as the observed data. Invoking the above facts, we can fi nd out P{B  i  |A}, 
i.e., the posterior probability distribution of Bi given observed data, after given the 
prior distribution (i.e., P{B 1 }, P{B 2 }, …, P{B  k  }) and the conditional probabilities 
for observing data set A given B 1 , B 2 , …, B  k   (i.e., P{A|B 1 }, P{A|B 2 }, …, P{A|B  k  }). 

 Technically, the Bayesian inference picks a prior probability distribution (before 
observing the data) over hypothesized parameter values that vary with chance (i.e., 
the parameter is viewed as a random variable) depending on the observed data. We 
then determine the so-called likelihoods of those hypothesized parameter values 
using the information contained in the observed data. Finally we determine the like-
lihoods that are expected over the prior distribution, which is called “posterior” 
probabilities of the hypotheses. The ultimate decision is to pick the hypothesized 
parameter value that gained the greatest posterior probability and identify the nar-
rowest interval the covers 95 % of the posterior distribution (i.e., Bayesian 95 % 
confi dence interval). 

 Following example demonstrates how the Bayesian estimation is different from 
the Frequentist’s estimation.  

Event A

Event B
Events

A and B

B1

B2

B3.

Bk

  Fig. 2.14    Two overlapping 
event sets A and B       

 Example 2.3 

 A cross-sectional study of estimating the prevalence rate of osteoporosis in an 
elderly women (age 65+ years) population. The sample size was 500 and the 
observed number of subjects with osteoporosis diagnosis was 159. 

 The Frequentist’s inference approach to this problem is to fi nd out the 
point estimate and its 95 % confi dence interval based on the normal approxi-
mation of the sampling distribution of the estimated proportion. The point 
estimate is 0.32 (i.e., 159/500). The upper and lower limits of its 95 % CI are 
(1596/5000) ± 1.96 × √[(159/500)(1 – 159/500) / 500 ], thereby the 95 % CI: 
0.28 ~ 0.36. 
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 Bayesian approach to construct a 95 % confi dence interval is different as 
described in a few steps below. Step 1. The investigator views the population preva-
lence rate is a random variable (i.e., the prevalence rate can vary with chance) that 
varies within [0.01, 1.00) interval. This is articulated as the “prior” (i.e., prior to data 
collection) distribution of the population prevalence rate is uniform distribution 
(i.e., the prior probability for each prevalence rate is equally likely within this inter-
val). Step 2. Invoking Bayes’ rule, i.e., the [posterior probability of population prev-
alence =  π ] = [prior probability of population prevalence =  π ] × [probability of 
observing 159 cases out of 500 random-sampled subjects if  π  is the true value of 
population prevalence]. According to the theory the posterior probability is propor-
tional to (not always equal to because the actual likelihood evaluation may take 
place only within a selective subset of all possible parameter values) the product of 
these two quantities. Note that there are infi nitely many values within [0.01, 1.00) 
and the researcher may get to evaluate only 99 equally spaced discrete values, e.g., 
0.01, 0.02, …, 0.99, and such a computed probability at each discrete value  π  is 
called “likelihood.” Step 3. The ultimate goal is to fi nd the prevalence rate that gives 
the greatest posterior probability and to construct the narrowest interval that covers 
95 % of the posterior distribution. 

 The estimated  π  of 0.32 is the Bayesian estimate that had greatest posterior proba-
bility. In order to construct a Bayesian confi dence interval, let’s note that the sum of 
column 5 in Table  2.7  is not 1 but 0.002 because the likelihood value was obtained only 
within 99 values of all possible values, and that according to the theory the posterior 
distribution is proportional to the calculated value of the last column. Note that the 
posterior distribution standardizes the last column so that the sum of those 99 posterior 
probability values can be a probability distribution (i.e., to make the sum = 1). Because 
the sum of column 5 is 0.002, we can divide every posterior probability value by 0.002.

   The interval that is close to 95 % around the Bayesian point estimate 0.32 (i.e., 
fi nd where the 95 % of the posterior probabilities are distributed around the point 
estimate) can now be found out. The values of [posterior probability]/0.002 for 
hypothesized prevalence value for the following values which cover about 95 % of 
the posterior distribution are listed in Table  2.8 .

   The meaning of the Frequentist’s confi dence interval might not have been very 
clear (see Sect.  2.2.6.2 ). However, having appreciated the meaning of the Bayesian 
confi dence interval can be helpful to dissolve such a diffi culty. The Bayesian 95 % 
CI is the interval where the 95 % of the actual posterior probability is distributed, 
thus this CI is interpreted as “based on the observed data we are 95 % confi dent that 
the unknown true and varying population parameter exists in this interval” whereas 
the Frequentist’s confi dence interval is not such an interval as we discussed in the 
earlier part of this chapter.  

2.2.8      Study Design and Its Impact to Accuracy and Precision 

 Good study designs will minimize sampling errors (i.e., increase precision) and 
non-sampling errors (i.e., increase accuracy and decrease bias) (Fig.  2.15 ).
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2.2.8.1      Sampling- and Non-sampling Error Control 

 Sampling error is the random error involved in the sample statistics (i.e., estimates 
of the population parameters of interest) arising from the sampling (i.e., sample to 
sample random fl uctuation), and it becomes very small when the sample size 
becomes very large. An extreme example is that if the observed sample is the whole 

  Fig. 2.15    Population, sample, sampling, and non-sampling errors       

      Table 2.8    Rescaled posterior probabilities of the prevalence near the 95 % Bayesian confi dence 
interval       

 

2 Statistical Inference Focusing on a Single Mean



59

population, then there is no sampling error (see Sect.  2.1.1 ). How can a study design 
control (i.e., reduce) the sampling error? An effort to increase the sample size as 
much as it can be will reduce the sampling error. Determination of the sample size 
is a very important part of study design and the ultimate goal is to allow the mini-
mally tolerable sampling error size of the sample estimate to the extent that the 
investigator can fi nd signifi cant data evidence to answer the study question. 
However, it is unrealistic to make the sample size very close to that of the popula-
tion size. Chapter   8     is devoted to discuss the statistical sample size determination 
based on the statistical power for the hypothesis test. 

 Non-sampling error is the systematic error that causes the bias involved in the 
sample statistics due to a poor study design. Unlike the sampling error, it is not 
sample size-dependent. How can the non-sampling error be controlled? It is nec-
essary to identify the source of it and prevent the bias causing non-sampling error 
before data collection by making a good study design. There is no simple solution, 
and developed study design methods are applied for particular situations. The 
next section will briefl y introduce general categories of study types and popular 
design techniques.  

2.2.8.2    Study Types and Related Study Design Techniques 

 In clinical research setting, studies can be categorized into either observational or 
experimental study. In the observational study, the outcome causing factors are not 
controlled by the study investigator. For example, in a study of gender difference in 
health seeking behavior the researchers cannot assign sex to the study subject 
because the sex is not a condition that can be created by the researcher. On the other 
hand, in the experimental studies the study investigator controls the outcome caus-
ing factor. For example, the dose levels of a dose response experimental study of a 
certain medication are determined by the researcher.  

2.2.8.3    Observational Study Designs 

 Case series design is applied in a small scale medical investigation to describe 
patient information seen over a relatively short period of time. This is a purely 
descriptive study design, and it does not involve group comparisons and there are no 
control subjects. Because of such a descriptive nature, this design does not propose 
hypotheses. The result of a study by this design cannot be generalized. 

 Cross-sectional design is a technique to examine a selected sample of subjects 
from a defi ned population at one point in time. The examples are disease diagnostic 
test performance study, opinion survey in an election year, etc. Such a design cannot 
serve as a good design to investigate a causal determinant of the outcome because it 
takes time for a resulting outcome is manifested by its causal factor. 

2.2  Statistical Inference
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 Cohort design is employed to monitor the cohorts of exposed (to a causal factor) 
and unexposed subjects over a period of time and to examine the effect of the expo-
sure on the long-term outcome by comparing the two cohorts. This is useful for 
studies for relatively common disease outcomes. However, it requires extremely 
large cohort sizes to study rare disease outcomes and generally requires a long study 
period. The potential bias can be prevented relatively easily by this design because 
the inclusion/exclusion criteria to the cohorts can be defi ned. 

 Case–control design is employed to overcome the limitation of the cohort design, 
particularly the long study period and large cohort sizes problem for the rare out-
comes. Unlike the cohort design the case–control design looks back sampled cases 
and controls retrospectively to verify the risk factor exposure status in the past. The 
collection of sampled rare cases takes place fi rst through large registry, etc. For 
example, if a cohort design is considered to study whether or not men with BRCA 
1/2 mutation has an increased lifetime risk of breast cancer would require large 
cohorts of cancer-free men with- and without the mutation and must wait until the 
study observes enough number of cancer incidence cases in both groups for reliable 
comparison. However, if the case–control design can reduce the study burden by 
collecting enough number of male breast cancer patients from already accessible 
large cancer registry that has been established over many decades and the same 
number of healthy control men then collect their DNA and perform the comparative 
analysis. Although the case–control design is less burdensome than the cohort 
design, the chance for bringing in non-sampling errors is much greater than the 
cohort design. For example, if the exposure is not measurable by an objective bio-
logical material such as DNA, then the collection of the past exposure history may 
induce recall bias (see Table  2.9 ). Long-term radiation exposure, smoking history, 
etc., can be the examples of such exposures.

      Table 2.9    Comparison of advantages (+) and disadvantages (−) between cohort and case–control 
designs   

 Cohort design  Case–control design 

 -  Long study period  +  Short study period 
 -  Very costly  +  Relatively inexpensive 
 -  Suitable for relatively common disease  +  Suitable for rare disease 
 +  Less selection bias in control group  -  Selection bias in control group 
 +  No recall bias  -  Recall bias in both case and control 

groups 
 -  Direct monitoring of study volunteers is needed  +  Medical chart review (only paper 

documents or computer records) 
is possible 

 -  Attrition problem  +  No attrition problems 
 +  Incidence rates (i.e., probability of an outcome 

within a certain period of time, e.g., annual 
cancer incidence rate) can be determined 

 -  Cannot determine incidence rate 

 +  Relative risk is accurate  -  Relative risk is approximate 

2 Statistical Inference Focusing on a Single Mean
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2.2.8.4       Experimental Study Designs 

 Experimental designs are often employed in order to rule out potential source of 
non-sampling errors. In clinical research setting, the clinical trial designs are 
such kinds. Clinical trials are usually applied to evaluate effi cacy of new therapy 
by comparing the average results of the subject who received the treatment and 
those of untreated subjects whose demographic characteristics and medical his-
tory are similar to those of the treated subjects. The comparison can be made by 
gathering two groups of randomized subjects who received the treatment and did 
not receive the treatment (or did receive a placebo treatment), aka randomized 
study.    Randomized study rules out potentially the bias causing non-sampling 
errors. However, the randomized clinical design can be infeasible in some situa-
tions when the placebo use is not acceptable (e.g., urgent medical problems that 
worsen the subject if remain untreated). The single group cross-over design is to 
examine whether or not the mean of the before- and after within subject differ-
ence is zero. 

 The key elements of determining the quality of clinical trial designs are random-
ization, blinding (i.e., let the investigator and/or the study subjects not know that the 
subjects receive until the end of the study), safety monitoring, and the attrition.    

2.3     Study Questions 

     1.    What are the mean and standard deviations of the sampling distribution (i.e., 
standard error) created from the sample means of three numbers randomly 
drawn from 1, 2, 3, 4, and 5? Note that there will be ten sample means.   

   2.    What are the two forms in the Frequentist’s inference?   
   3.    In CLT, what becomes to form a Gaussian distribution when the sample size 

becomes large?   
   4.    Under what circumstance a  t -distribution is resorted (instead of the standard 

Gaussian distribution) to the inference of a mean?   
   5.    Explain the idea of “ Observed~Expected~Standard Error ” formulation of the 

test statistic  t  of the one-sample  t -test for a single mean inference.   
   6.    What is the parameter being tested in a one-sample  t -test?   
   7.    What is the quantity of the numerator of the test statistic in a one-sample  t -test?   
   8.    What is the quantity of the denominator of the test statistic in a one-sample 

 t -test measure?      
   9.    Why the  t -test is named as such?   
   10.    Letting alone the statistical signifi cance, how should these three values be inter-

preted:  t  = 1.5 ( df  = 10);  t  = 2.5 ( df  = 10);  t  = −3.5 ( df  = 10)?   
   11.    Please distinguish between the 95 % confi dence interval around the mean and 

the 2.5th to 97.5th percentile range of a sample distribution.   

2.3  Study Questions
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   12.    Please criticize the following awkward sentences: 
 “These data showed that the outcome was signifi cantly different from 50 

(p<0.05).” Is the word “outcome” specifi c enough? 
 “These data showed that the mean age was signifi cantly different from 50 

years.” Does this sentence present a  p -value? 
 “These data showed that the sample mean age was signifi cantly different 

from 50 years (p<0.05).” Was the inference made about the sample mean? No, 
the inference is about the population mean.         
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                  In Chap.   2    , the one-sample  t -test was introduced to test whether or not a single mean 
of a population is equal to a certain value. Chapter   3     will introduce the extension of 
the  t -test to examine whether or not the difference between the two population 
means is equal to a certain value. Two situations will be discussed of which the fi rst 
is when the two means are from independent (i.e., unrelated) populations, and the 
second is when the two means are from related populations. 

3.1     Independent Samples  t -Test for Comparing 
Two Independent Means  

 A prospective two-arm randomized controlled clinical trial (Arm1: Medication X and 
Arm2: Placebo control) was conducted. Because the study design was a randomized 
clinical trial, the two study groups are independent. 

 Shown below is the raw data and summary result of a descriptive analysis. 
Birth weights (lb) of 15 newborns from mothers with Medication X (denoted by Tx) 
and 15 from mothers with placebo are listed. Let’s assume that the data are normally 
distributed and the dispersions of the two distributions are not much different 
(   Fig.  3.1 ).

   Tx (n=15): 6.9 7.6 7.3 7.6 6.8 7.2 8.0 5.5 5.8 7.3 8.2 6.9 6.8 5.7 8.6 
 Placebo (n=15): 6.4 6.7 5.4 8.2 5.3 6.6 5.8 5.7 6.2 7.1 7.0 6.9 5.6 4.2 6.8
  How can we tackle this problem? The approach to use an extension of the t-test 

will be introduced fi rst, and then the applied result will be illustrated. 

    Chapter 3   
  t -Tests for Two Means Comparisons 

 Example 3.1 

 Does Medication X prevent the low birth weight delivery? 

http://dx.doi.org/10.1007/978-3-319-02402-8_2
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 Below is the framework of testing equality of two population means using two 
independently drawn random samples, both from normally distributed populations. 
The null hypothesis is that the two population means are equal (i.e., H 0 :  μ   1   =  μ   2  ). 
Note that “two population means are equal” can be translated into “difference of the 
two population means = 0 (i.e., H 0 :  μ   2    – μ   1   = 0)” by which the dimension of the argu-
ment is reduced to one (i.e., by letting  δ  denote the single translated parameter, see 
Fig.  3.2 , where  δ = μ   2    – μ   1  ) so that the corresponding sample statistic to work with 
is the observed difference between the two sample means (i.e., by letting  d  denote 
 x     2    –  x     1  ). Finally, the null and alternative hypotheses are expressed as H 0 : δ = 0 and 
H 1 :  δ  ≠ 0 for a nondirectional test (or H 1 :  δ  > 0 for a directional test examining  μ   2    > 
μ   1  ) (   Table  3.1 ).

    The idea of “ Observed Estimate ~ Null Value ~ SE  triplet (see Sect.   2.2.4.2    )” is 
applied to derive the test statistic 

  t  =  (Observed Estimate – Null Value)/SE(Observed Estimate – Null Value)  
  = (d –  0 )/SE(d)  (see Sect.   2.2.4.5    ). 

 The numerator is the deviation of the observed difference between the two sample 
means,  d =   x     2    –  x     1,   from the null value of the difference between the two popula-
tion means,  δ = μ   2    – μ   1   = 0. Note that  δ  is set to 0 for the equality test. The denomi-
nator,  SE(d ), is the estimated standard error of the numerator. The simplifi ed form 
of this test statistic is  t  =  d / SE(d ). Note that a large value of this ratio (positive, 
negative, or either direction depending on the alternative hypothesis) indicates that 
the observed deviation of  d  from the null value of  δ = 0  may not be due to the 
chance alone. According to the sampling theory, under the null hypothesis and if the 
two population variances are equal, this test statistic will follow the  t- distribution 
with  df =( n   1   -1) + (n   2   -1) , where  n   1   and  n   2   are the sample sizes of the two groups, 
respectively. We can then fi nd out how extreme (i.e., unlikely to observe) the 

  Fig. 3.1       Listed and visualized data from a two-arm randomized clinical trial       

  Fig. 3.2    Illustration of two means of normally distributed paired continuous outcomes and differ-
ence of the two means       
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observed test statistic  t  was, had it been resulted from the sample data gathered from 
the two population distributions under the null hypothesis. 

 The derivation of the standard error,  SE(d) , may seem complex for the beginners. 
As this book intends not to let the readers plug-and-play formulae, the conceptual 
steps of its derivations is shown below. The defi nition of the standard error is the 
standard deviation of the sampling distribution of a sample statistic (see Sect.   2.1.3     
for its defi nition). The sample statistic of this case is  d , which is the difference 
between the two observed sample means, i.e.,  x     2    –  x     1   .  So, the  SE(d) , the standard 
deviation of the sampling distribution of  x     2    –  x     1  , is to be derived. Because the 
standard deviation is the square root of the variance, the main derivation is to derive its 
variance. Note that the sample variances of  x     1   and  x     2   are  s   2    1   /n   1   and  s   2    2   /n   2  , respec-
tively, where s 2  1  and s 2  2  are notations for the variance of the sample distributions 
(see Sect.   2.1.2    for the defi nition of the sample distribution). The sample variance of 
the difference  x     2    -   x     1   would increase (see illustrative Example 2). Note that  x     1   
and  x     2   vary from sample to sample with its variance  s   2    1   /n   1   and  s   2   2  /n   2  , so the differ-
ence  x     2    –  x     1   would vary greater and the resulting variance of difference is the 
addition of the individual variances  s   2    1   /n   1   +  s   2   2  /n   2  . 

 Finally, the denominator of the test statistic is derived, which is the square root 
of the weighted sum of the two sample variances, i.e.,  √(s   2    1   /n   1   +  s   2   2  /n   2   ).  

 Having derived the test statistic, the inference of Example 3.1 continues as below. 
 The test statistic  t = (6.26 – 7.08) / √(0.232   2    + 0.248   2   ) = 0.82/0.34 = 2.41  will 

follow the  t -distribution with  df  =  28 . The critical value of this nondirectional test 
for a 5 % signifi cance level is 1.701 and the critical region is {t>1.701}. The 
observed test statistic from the data,  t =2.41,  fell into the critical region (Fig.  3.3 ).

   The  p -value can also be calculated using Excel function TDIST(2.41,28,1), 
which resulted in 0.0113. 

 Summary: These data showed that there was a signifi cant effect of medication X 
to prevent the low birth weight delivery ( p= 0.0113). 

   Table 3.1    Null and alternative hypotheses for comparing two means   

 Null hypothesis  Alternative hypothesis  Simple or composite a  
 Directionality of 
composite hypothesis 

 H 0 :  μ   2    - μ   1   = 0  H 1 :  μ   2    - μ   1    = δ   Simple null  N/A 
 (i.e., μ 1  = μ 2  )  Mean difference is equal to  δ   Simple alternative 
 Means are equal 
 H 0 :  μ   2    - μ   1   = 0  H 1 :  μ   2    - μ   1   ≠ 0  Simple null  Nondirectional 

(two-sided)  (i.e., μ 1  = μ 2  )  Means are not equal  Composite alternative 
 Means are equal 
 H 0 :  μ   2    - μ   1   = 0  H 1 :  μ   2    - μ   1   > 0  Simple null  Directional 
 (i.e.,  μ   1    = μ   2   )  Mean 2 is greater than mean 1  Composite alternative 
 Means are equal 
 H 0 :  μ   2    - μ   1   = 0  H 1 :  μ   2    - μ   1   < 0  Simple null  Directional 
 (i.e.,  μ   1    = μ   2   )  Mean 2 is smaller than mean 1  Composite alternative 
 Means are equal 

   a Simple hypothesis involves a single value of parameter, and composite hypothesis involves more 
than one value (e.g., an interval) of the parameter  
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3.1.1     Independent Samples  t- Test When Variances 
Are Unequal 

 When the two population variances are not equal, the sampling distribution of the 
aforementioned test statistic will not perfectly follow the  t -distribution with  df = 
n   1   +n   2  . This book does not describe computational details but rather devote a 
conceptual discussion by addressing how we can diagnose such a phenomenon and 
how we can make inference and interpret the results, provided that the intermediate 
computational results for the diagnosis and the calculated SE are provided by com-
puter programs or expert statisticians. If the heteroskedasticity was detected, then 
we resort to a theoretical  t- distribution with a slightly modifi ed  df . In this case, a 
modifi ed  df  will be little bit smaller than  n   1    + n   2    - 2  than what is obtained under the 
same variance assumption. 

 How can we diagnose whether or not the variances are equal before carrying out 
the independent samples  t- test? There is a test that evaluates it. The null and alterna-
tive hypotheses of this test are H 0 :  σ   2    1    = σ   2    2   and H 1 :  σ   2    1    ≠ σ   2    2   (note that the nondi-
rectional alternative hypothesis is its obvious choice). Compute the two sample 
variances and take the ratio of the two. This ratio will follow an  F- distribution under 
the null hypothesis. The  F- distribution has two  df s where  df   1   =  n   1    -1  and  df   2    = n   2    -1 . 
Then we resort to this  F- distribution to determine the  p -value (detailed explanation 
for computing a  p -value from an  F- distribution will be shown in a later chapter). 
A  p -value < 0.05 indicates unequal variances and you would need to take into 
account this condition during the  t- test. 

  Fig. 3.3    Illustration of the critical region of the directional  t- test (applied to Example 3.1)       
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 If the data showed that the variances are unequal, then a modifi ed version of the 
independent samples  t -test is recommended. The main work is to make adjustment 
of the  df  as well as to estimate the  SE  of the mean difference, which could become 
biased if not well taken care of. This course material does not introduce the mathe-
matical/computational details. The idea of downward adjustment is that, as the  df  
becomes smaller, the tail of the  t -distribution becomes thicker, meaning that if 
the  df  is downward adjusted for heteroskedasticity then the observed  t -statistic will 
produce a larger  p -value than that would have resulted from  t- distribution with the 
unadjusted  df  because the modifi ed distribution has heavier tail; therefore, the test 
becomes conservative.  

3.1.2      Denominator Formulae of the Test Statistic 
for Independent Samples  t -Test 

 Other books offer you plug-and-play formulae for calculating the denominator of 
the test statistic, which prompt you to plug in the sample sizes and the sample 
 variances of the two groups being compared. The readers do not need to drill the 
computational details as long as they understand the rationale for the above standard 
error derivation. However, the details are provided in Table  3.2 .

3.1.3        Connection to the Confi dence Interval 

 Having concluded a testing hypothesis to merely claim whether or not the two inde-
pendent means are equal, the researchers may further be interested in estimating the 
size of the mean difference and its confi dence interval. The following numerical 
illustration is to construct a 95 % confi dence interval for the mean difference using 
Example 3.1 data. 

 The observed mean difference (i.e., the point estimate of the mean difference 
between the groups with treatment and placebo) = 7.08 - 6.26 = 0.82 and the 

    Table 3.2    Derivation of the denominator of the test statistic for independent samples  t- test   

 Sample 
size 

 Population 
variances  Derived standard error (i.e., denominator of the test statistic  t ) 

 Equal  Equal a   Substitute n for  n   1    and n   2    and s   2   for  s   2   1   and s   2   2 , so  √(s   2   1  /n  +  s   2   2  /n) = √(2 s   2   p  /n)  
 Equal  Unequal  Substitute n for  n   1    and n   2   , so √(s   2    1   /n  +  s   2   2  /n) = √[(s   2    1   +  s   2   2  )(1/n)]  
 Unequal  Equal a   Substitute  s   2   for  s   2   1   and s   2   2  , so √(s   2   /n  +  s   2   /n) = √[s   2    (1/n   1    + 1/n   2   ))  
 Unequal  Unequal   √(s   2    1   /n   1   +  s   2   2  /n   2   )  

   a If the population variances of the raw data are equal, it makes more sense to utilize that fact so that 
we estimate the “pooled” sample variance to derive the denominator of the test statistic. Letting  s   2    p   
denote the pooled sample variance, the weighted average where each weight is one less than the 
sample size, the result is  s   2    p    = [s   2    1   /(n   1   -1) + s   2    2   /(n   2   -1) / (n   1    -1 + n   2   -1 )]   

3.1  Independent Samples  t -Test for Comparing Two Independent Means
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standard error of that observed mean difference = 0.339. The 2.5th and 97.5th per-
centiles of  t  with  df  = 28 can be found by using Excel, i.e., TINV(0.05, 28) = 2.048 
(or using a table for the percentiles if  t -distribution). The lower limit of the 95 % CI 
based on  t- distribution with  df  = 28 is 0.82 - 2.048 × 0.339 = 0.126, and its upper 
limit is 0.82 + 2.048 × 0.339 = 1.514, thus 95 % confi dence interval is 0.126 ~ 
1.514. Note that although the test was directional, it is a tradition to construct the 
95 % nondirectionally disregarding the directionality of the testing hypotheses. 
Summary: These data showed that the mean of the treated group was greater by 0.82 
(95 % CI: 0.126 – 1.514).   

3.2     Paired Sample  t -Test for Comparing Paired Means 

 Pairing helps a study design control the subject-to-subject outcomes variation in 
that the responses to a study medication being studied may vary among different 
subjects, and testing whether or not the average of the within-subject longitudinal 
changes in response would eliminate the source of between-subject variation. 
The following example illustrates the paired sample  t- test that is applied to such a 
clinical investigation (Fig.  3.4 ).   

  Fig. 3.4    Illustration of distributions of paired normally distributed continuous outcomes and their 
paired differences       

 Example 3.2 

 Does the use of oral contraceptives (OC) affect systolic blood pressure (SBP)? 
A self-control (pre- and post-paired measurements) design is applied, and the 
following test for H 0 :  μ   2    – μ   1   = 0 and H 1 :  μ   2    – μ   1    ≠  0 is considered. 

 Following data are the systolic blood pressure measurements in mmHg from ten 
study volunteers before using OC (i.e., baseline) and those taken from the same ten 
women after the use of OC for a certain period (i.e., follow-up). Let’s assume that 
the distribution of the SBP values in the population is the Gaussian distribution.
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 Subject  Baseline SBP  Follow-up 

 1  115  128 
 2  112  115 
 3  107  106 
 4  119  128 
 5  115  122 
 6  138  145 
 7  126  132 
 8  105  109 
 9  104  102 

 10  115  117 

   The following preliminary data analysis (i.e., data reduction) was performed and 
summarized in Table  3.3 . Do these summary statistics describe the phenomenon 
clearly?

   While the summary statistics in Table  3.3  and the graphical display of the data 
depicted by Fig.  3.5  described that the mean SBP at follow-up was slightly elevated 
and the variability was also slightly increased, the paired nature of the design was not 
refl ected. Whereas Fig.  3.6  illustrates a typical graphical description of the paired 
data in that most subjects showed increase in the follow-up SBP and the second panel 
described that the blood pressure range of the subjects was larger than the average 
within-subject change.

    A signifi cance level of 5 % is adopted. The test is derived based on the “ Observed 
~ Null Value ~ SE ” triplet. In order to complete this task, let’s revisit the articulated 

   Table 3.3    Sample statistics 
of the SBP at baseline and 
follow-up  

 Baseline SBP  Follow-up SBP 

 n  10  10 
 Mean  115.00  120.40 
 Median  115.00  119.50 
 Standard deviation  10.31  13.22 
 Standard error of the mean  3.26  4.18 

  Fig. 3.5    Illustration of inappropriate box-and-whisker plot for paired continuous outcomes data 
visual display       
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hypotheses. By letting  δ  denote  μ   2    – μ   1  , the null and alternative hypotheses are 
rewritten as H 0 :  δ  = 0 and H 1 :  δ   ≠  0. The observed estimate of  δ  is the sample mean 
of ten changes in SBP between the baseline and follow-up  d  is 4.80, and the null 
value is  0 . The  SE(d  –  δ) = SE(d)  is directly estimated from the ten within-subject 
longitudinal changes. The resulting test statistic is the same as that of the one- 
sample t-test as the within-subject change is treated as the unit of analysis, which 
is depicted by Figs.  3.7  and  3.8 . The test statistic  t  =  (d  –  δ)/ SE(d  –  δ) = d/SE(d)  
follows the  t -distribution with  df = n of pairs – 1 = 10–1 = 9 .

  Fig. 3.7    Illustration of calculated paired differences can be analyzed by a one-sample  t- test       

  Fig. 3.6    Illustration of paired continuous outcomes data visual display       
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    The resulting t = (4.8 - 0) / 1.44 = 3.324 and  p -value is 0.0089, which indicates 
that the mean change of 4.8 was signifi cant at 5 % signifi cance level. 

 The paired samples  t -test, as the raw data are reduced into the pair-wise within- 
subject differences, is the same as the one-sample  t- test,  df  is the number of unique 
individuals – 1. 

 A common misapplication of the  t- test to the paired data is to apply the indepen-
dent samples  t -test. As illustrated below, such an erroneous application would mis-
lead the study investigation. If the equal population variance independent samples 
 t- test (see Table  3.2  in Sect.  3.1.2 ) had been applied to the above example, then the 
test statistic’s denominator,  SE( x      2    –  x     1  ), where  x     1   and  x     2   are the baseline and 
follow-up mean SBPs, is to apply  √(s   2   1  /n  +  s   2   2  /n) = √(2s   2   2  /n),  where  s   2    p    =   [s   2    1   /(n      1     - 1 ) 
+ s   2    2   /(n   1   -1) / (n   1    -1 + n   1   -1)], n   1   =n   2   =10, s   2    1    = 10.31   2    ,   and  s   2    2    = 13.22   2   .  The calculated 
value of this standard error is  5.3028 . Then the test statistic  t = (4.8 – 0) / 5.3028 = 
0.91  with  df = 18 . The  p -value is 0.3773, which is contradictory to the result from 
the paired sample  t -test.  

3.3     Use of Excel for  t- Tests 

 The one-sample, independent samples, and paired samples  t -tests can easily be 
carried out using Excel (Figs.  3.9 ,  3.10 , and  3.11 ).

3.4          Study Questions 

     1.    Explain the idea of “ Observed~Expected~Standard Error ” formulation of the 
test statistic  t  of the independent samples  t -test.   

   2.    Can the paired samples  t -test be conceived as a one-sample  t -test? Why?   

  Fig. 3.8    Box-and-whisker plot applied to describe the distribution of differences calculated from 
pairs of continuous outcomes       
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   3.    What is the idea behind to decrease the degrees of freedom for the independent 
samples  t- test when the variances of the two populations are not equal?   

   4.    Please criticize the following awkward sentences: 

 “These data showed that the two groups were signifi cantly different (p<0.05).” 
 “These data showed that the two group means were signifi cantly different.” 
  “The calculated  p -value was less than 0.05 thus we rejected the null 
hypothesis.”         

  Fig. 3.9    Use of excel function FTEST for testing equality of two variances       
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  Fig. 3.10    Use of excel function for independent samples  t -tests       
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  Fig. 3.11    Use of excel function for paired samples  t- test       
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                    This chapter discusses single-factor analysis of variance (ANOVA) which is mainly 
applied to compare three or more independent means. The words “single factor” 
refer to that the means are compared across levels of a “single” classifi cation vari-
able (i.e., classifi cation of means by a single categorical variable). The classifi cation 
variable is called independent variable or factor (thus, the method is also called 
single-factor ANOVA) and the outcome variable of which the means are compared 
is called dependent variable. This method requires certain assumptions: (1) the 
dependent variable values are the observations sampled from a normal distribution 
and (2) the population variances are equal (homoscedasticity) across the levels of 
the independent variable (Fig.  4.1 ). 

 Having mentioned that ANOVA is mainly applied to compare three or more means, 
is it obvious why the variance is analyzed in order to compare the means? The ANOVA 
is a two-step procedure. The fi rst step is to measure two partitioned pieces of outcome 
data variations due to two sources of variations, of which the fi rst piece is the varia-
tion of the outcome variable explained by the groups being compared and the second 
is the unexplained residual (error) variation. The next step is to utilize these two data 
variations to carry out the hypothesis testing for comparing the means. These data 
variations are measured by means of sums of squares (see Sect.   1.3.4    ). 

4.1      Sums of Squares and Variances 

 In Fig.  4.2 , three groups of sample data that are clearly separated (for illustrative 
purpose) by the underlying group effects are illustrated, and the symmetrically 
scattered outcomes around their group means reveal the random sampling error. 
ANOVA is to examine whether or not the group effect depicted by the distances 
among the three group means can separate the group-wise data cluster in the pres-
ence of the ransom sampling error. The group effect (i.e., signal) and the random 
sampling error (i.e., noise) are measured by two kinds of sums of squares fi rst and 
then transformed into kinds of average sum of squares (so-called mean squares).

    Chapter 4   
 Inference Using Analysis of Variance 
for Comparing Multiple Means 
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    Figure  4.3  demonstrates the concepts of derivations and these sums of squares 
( SS ) that are the underpinnings of ANOVA. For instance, the fi rst observed outcome 
value 5 (Sample Number 1 in Group 1) is conceived as a value deviated by −15 from 
the single grand mean of 20; this outcome is also conceived as a value deviated by 
−5 from its group mean 10 wherein this group mean is deviated by −10 from the 
grand mean 20. It is obvious that the three corresponding squared deviations are 
(−15) 2  = 225, (−5) 2  = 25, and (−10) 2  = 100. Repeating the same calculation over every 
observation within each group and cumulating the resulted individual squared devi-
ations into the group sum totals, and then summing the group sum totals over the all 
three groups fi nally produces three kinds of sums of squares. These three sums of 
squares are called total-, between-, and within-sum of squares and the resulting 
values are 950, 800, and 150, respectively. Intuitively, the total sum of squares of 
950 is partitioned into between-group sum of squares of 800 and within-group sum 
of squares of 150.

   Dividing a sum of squares by a divisor (i.e., degrees of freedom, see Sect.   2.2.3    ) is a 
kind of variance. In ANOVA, two such variances are compared, and these are the vari-
ance due to the group difference and the variance due to the sampling error (i.e., unex-
plained residual variance by the systematic group difference). In order to distinguish the 
meaning of the ordinary variance, these variances being obtained in ANOVA are termed 

  Fig. 4.2    Illustration of three kinds of deviations arising from comparing three independent means       

  Fig. 4.1    Illustration of 
density curves of three 
continuous outcomes with 
unequal means and equal 
variances       
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mean squares (denoted by  MS ). The two major mean squares in the single-factor 
ANOVA are the between-group mean square ( MS   between  ) and the within-group mean 
square ( MS   within  ).  MS   between   is the sum of squared deviations from the grand mean for all 
data values divided by its divisor for which the divisor is one less than the number of 
unique deviations of the group means from the referenced overall grand mean. Note that 
as demonstrated in Fig.  4.3 , there are only three unique deviations of the group means 
from the grand mean, and the  MS   between   becomes (400 + 0 + 400)/(3–1) = 800/2 = 400. 
 MS   within   is (50 + 50 + 50/[(number of unique deviations of the individual data points 
from the Group 1 mean −1) + (number of unique deviations of the individual data 
points from the Group 2 mean −1) + (number of unique deviations of the individual data 
points from the Group 3 mean −1)] = 150/[(4–1) + (4–1) + (4–1)] = 150/9 = 16.67).  

4.2      F -Test 

 After the between- and within-group mean squares are obtained, the inference to 
compare means is performed. The null and alternative hypotheses are H 0 :  μ   1    = μ   2    = μ   3   , 
…, μ   k   (all means are equal) and H 1 : at least one mean is different (not all means are 
equal), respectively. The test statistic is derived under the assumption that the data 
are drawn from normally distributed populations and the population variances are 

  Fig. 4.3    Formulae-less numerical illustration of sum of squares in single-factor ANOVA       
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equal across the groups. Unlike the  t -tests, the test statistic of this test is not derived 
from the “triplet” idea (see Sects.   2.2.4.5     and   3.1    ). Instead, the ratio of the two mean 
squares (see Sect.  4.1 ) is used as the test statistic. By letting  F  denote this ratio, 
 F = MS   between   /MS   within   is the signal (of the between-group difference)-to-noise (random 
sampling error) ratio test statistic. Under the null hypothesis, this test statistic follows 
an  F -distribution which is characterized by two degrees of freedom,  df   between   and  df   within  . 
Each  df  is the divisor that is used for calculating the mean squares and each divisor 
is one less than the number of unique squared deviations from the referenced mean 
that are summed into the  SS  calculations. 

 In the case of Fig.  4.4  example,  F  = 400/16.67 = 23.99 is a particular value of the 
 F -distribution with  df   between   =2 and  df   within   = 9. The rejection region for this test statistic is 
depicted in Fig.  4.5  wherein the presented curve represents the density function of the 
sampling distribution  F  with the two required degrees of freedom 2 and 9, respectively. 
Evidently, such a large value 23.99 fell into the rejection region (i.e.,  F  > 4.275); 
thus these data showed the evidence to reject H 0  at a 5 % signifi cance level.

     Area above 4,257 is 0.05, thus  F  > 4.257 is the rejection region of  F  value for the 
single-factor ANOVA  F- test at 5 % signifi cance level to compare three means with 
four observations in each group.  

  Fig. 4.4    Partitioning sum of squares for single-factor ANOVA       

 Example 4.1 

 A cross-sectional study design is applied in order to examine if mother’s 
smoking affected offspring’s birth weight. The null and alternative hypothe-
ses for the inference are H 0 : μ 1  = μ 2  = μ 3  = μ 4  (all four means are equal) and H 1 : 
at least one mean is different (not all means are equal), respectively. 
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 The following data are birth weights (lb) of 27 newborns classifi ed by their maternal 
smoking status (i.e., one-way classifi cation). The data normality is assumed.

   Group 1—Mother is a nonsmoker (n=7): 7.5 6.2 6.9 7.4 9.2 8.3 7.6  
  Group 2—Mother is an ex-smoker (n=5): 5.8 7.3 8.2 7.1 7.8  
  Group 3—Mother smokes <1 pack/day (n=7): 5.9 6.2 5.8 4.7 8.3 7.2 6.2  
  Group 4—Mother smokes ≥ 1 pack/day (n=8): 6.2 6.8 5.7 4.9 6.2 7.1 5.8 5.4    

 The means and standard deviations are obtained as the descriptive summary sta-
tistics. Besides these descriptive statistics, a summary table (so-called ANOVA 
table) is traditionally to present the sum of square and mean square for each source 
of variation as well as the test statistic  F  and its  p -value (see Table  4.1 ).

    Computation of the sums of squares and mean squares can be done either by a 
computer package program or manually. As this chapter does not offer the directly 
usable computational formulae, this illustration is made in order solely to walk you 
through the essential computations of the variance partitioning and the derivation of 
the test statistic. 

 The fi rst quantity to calculate is how much the group means are deviated from the 
grand mean, where the grand mean,  x     G   ,  is the weighted average of the four means 
where the weights are the group sample sizes, i.e.,  x     G    = (7 × 7.59 + 5 × 7.24 + 7 × 6.3
3 + 8 × 6.01)/27 = 6.73. SS   between   is the summation of sum of seven of squared unique 
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  Fig. 4.5    Determination of the rejection region of the  F- distribution for an ANOVA  F- test for 
comparing three means using data set illustrated in Fig.  4.4        

 Source of variation  SS   df   MS   F    p -Value 

 Between group  11.74  3  3.91  4.20  0.017 
 Within group  21.28  23  0.93 
 Total  33.02  26 

   Table 4.1    ANOVA source 
table   
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Group 1 sample mean’s deviation from the grand mean, i.e., 7 ×  ( x     1    -   x     G   )   2   ,  summa-
tion of sum of fi ve of such squared value from Group 2, i.e.,  5×  ( x     2    -   x     G   )   2   , 7×  ( x     3   
 -   x     G   )   2   from Group 3, and  8×  ( x     4    -   x     G   )   2   from Group 4, which is  7 × (7.59 - 6.73)  
  2    + 5 × (7.24 - 6.73)    2    + 7 × (6.33 - 6.73)    2    + 8 × (6.01 - 6.73)    2    = 11.74. SS   within   is the 
summation of 4 within-group sum of squares, of which each within-group sum of 
square is obtainable from the already calculated within-group standard deviation. 
Because s k  2  is   /   (n   k    -1)   /   (n   k    -1) , where  k = 1, 2, 3,  and  4  indicating the group, SS within  for 
group k = s k  2  × / (n k  -1). Therefore, SS within /   (n   k    -1)  from all four groups  = (7 – 1)× 0.962 
+ (5 – 1) × 0.912 + (7 – 1) × 1.142 + (8 – 1) × 0.722 = 21.28.  Finally,  F = MS   between   
 / MS   within    = [11.74 / (4 – 1)]/[21.28/(7-1)+(5-1)+(7-1)+(8-1)] = (11.74/3) / (21.28/23) 
= 3.91 / 0.93 = 4.20.  Finally, the  p- value was directly evaluated by using Excel (not 
by determining the critical region and seeing if the observed  F  value fell into the criti-
cal region), i.e.,  p =  FDIST  (4.20, df   between    = 3, df   within    = 23) = 0.017 . Figure  4.7  is the 
graphical demonstration for this calculation wherein the density function of an 
 F- distribution is characterized by the two required degrees of freedom, and 3 and 23 
appeared differently from the one with degrees of freedom 2 and 9 (Fig.  4.5 ). Note 
that the shape of density curve of an  F- distribution is characterized by the degrees of 
freedom (i.e., not all  F -distributions look similar).
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  Fig. 4.6    Box-and-whisker plot of four distributions of which their means are compared by single- 
factor ANOVA  F- test       
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   Although the  p -value was directly calculated in this example, the signifi cance 
can also be determined by checking if the test statistic fell into the critical region. 
The critical region of this test is  F > 3.03 , which is found from the critical value 
table of  F -distribution at 5 % signifi cance level with the between- and within-group 
degrees of freedom of 3 and 23. 

 The suggestive format of the summary sentence is either “These data showed 
that at least one age group’s mean birth weight is signifi cantly different from the 
means of the other age groups ( p  = 0.017).” or “These data showed that at least one 
age group’s mean birth weight is signifi cantly different from the means of the other 
age groups at 5 % signifi cance level.”  

4.3     Multiple Comparisons and Increased Type-1 Error 

 Suppose H 0 : μ 1  = μ 2  = μ 3  = μ 4  in favor of H 1 : at least one mean differs from the others 
was rejected by a one-way ANOVA  F -test. It remains ambiguous which specifi c 
means differed until all possible pair-wise tests (6 independent samples  t- test can be 
performed in this case) comparing two groups at a time. In doing so, the increased 
number of tests increases the potential Type-1 error. In order to protect from such an 
increased chance of committing Type-1 error, a stringent criterion (i.e., modifi ed 
signifi cance level) for these tests need to be adopted. One of such options is to lower 
the signifi cance level of each test by dividing it by the number of comparisons 
(Bonferroni’s correction, i.e., adjusted  α  = 0.05/6 = 0.0083, or to infl ate the com-
puted  p -value by multiplying it by the number of comparisons, i.e., infl ated 
 p -value = 6 × observed  p -value). However, this tends to be too conservative as the 
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  Fig. 4.7     p -Value calculation of the  F- statistic obtained from an ANOVA  F- test comparing three 
means using data set illustrated in Fig.  4.6        
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number of tests increases. Many “ not-too-conservative but powerful”  tests have 
been invented. Least Signifi cance Difference (LSD), Highly Signifi cant Difference 
(HSD), Student–Newman–Keuls (SNK), and Duncan’s Multiple Range Test proce-
dures are popularized procedures applying pair-wise multiple tests for comparing 
means, and Dunnett’s procedure is a procedure to compare ordered groups with a 
baseline group using modifi ed critical values of the test statistic.  

4.4     Beyond Single-Factor ANOVA 

4.4.1     Multi-factor ANOVA 

 As the number of categorical independent variables increase and the outcomes 
are classifi ed by these independent variables, the ANOVA  F -tests will involve the 
partitioning of the total variance into the between-group variances due to the effects 
of these individual independent variables, the between-group variances due to the 
interactions of two or more independent variables, and the remaining variance that 
is not explained by those sources of variations that are already taken into account. 
The testing procedure for comparing subgroup means (e.g., difference of the means 
among the levels of the fi rst independent variable, that among the levels of second 
independent variable, and that among the levels arising from the interaction of the 
fi rst and second independent variables) is  F- test, of which the test statistic’s numerator 
is the mean square due to the between-group effect of interest and the denominator 
is the unexplained error mean square. With a fi rm understanding of the single-factor 
ANOVA, it becomes a trial technique to extend the method to the multi-factor 
ANOVA. However, it would be worth addressing the defi nition and interpretation 
of the interaction, and the repeated measures ANOVA as a special case of two-factor 
ANOVA to which the following two sections are devoted.  

4.4.2     Interaction 

 The following example focuses onto illustrating the defi nition of interaction as well as 
the marginal means, main effects, and simple means arising in the two-factor ANOVA. 
The example is self-explanatory that does not necessitate the verbal defi nitions.  

 Example 4.2 

 A study of abdominal fat reduction (measured in % reduction) after 8-week 
programs of exercise alone or diet + exercise conducted involving two age 
groups of age <50 years and age ≥50 years. Sample size of each subgroup was 
2,000. Let’s assume that every observed difference was statistically signifi cant. 

4 Inference Using Analysis of Variance for Comparing Multiple Means
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 Q1. Please show: (a) marginal means; (b) main effects; and (c) simple effects.

    (a)    Marginal means: Marginal mean of Program 1 = (5 + 3)/2 → 4 %; marginal mean 
of Program 2 = (8 + 4)/2 → 6 % regardless of the age; marginal mean of Age < 50 
is (5 + 8)/2 → 6.5 %, and marginal mean of age > =50 is (3 + 4)/2 → 3.5 % regard-
less of the program type.   

   (b)    Main effects (effects towards the healthier outcome): Program main effect 
(Marginal mean of Program 2 – Marginal mean of Program 1 = (8 + 4)/2 - 
(5 + 3)/2 = 6 –4 → 2 %, meaning that Program 1 reduced a 2 % greater fat reduc-
tion in all ages; Age main effect (Mean of Age < 50 - Mean of Age > =50) = (5 + 8)/2 
– (3 + 4)/2 = 6.5 – 3.5 → 3 %, meaning the younger age group showed a greater 
reduction on average regardless of the program.   

   (c)    Simple effects: The four specifi c means by themselves simply exhibit the age- 
and program-specifi c subgroup mean outcomes and do not directly describe the 
“effects (i.e., mean differences).” Simple effect is the size of mean difference 
within each group. Program 2 vs. 1 simple effect within Age <50 is 3 % (i.e., 8 
– 5 → 3 %); Program 2 vs. 1 simple effect within Age ≥50 is 1 % (i.e., 4 – 
3 → 1 %); also Age <50 vs. ≥50 simple effect within Program 1 is 2 %, and that 
of Program 2 is 4 %.     

 Q2. Was there an interaction? If so, please describe the observed phenomenon. 

 There was an interaction in that the younger age group’s Program 2 vs. Program 
1 effect in mean reduction was greater than that of the older age group. The 
younger age group showed three times better performance (i.e., 8 – 5 → 3 % 
reduction in the younger age group by adding diet to the exercise vs. 4–3 → 1 % 
reduction in the older age group by adding diet to the exercise). Yes, there was 
an interaction (i.e., age interacted with the programs). Note that the word “inter-
action” is a phenomenon, and its quantitative is the difference in simple effects of 
the two age groups (i.e., [8–5 → 3 % in age < 50] – [4–3 → 1 % in Age ≥50] = 2 %). 
If both age groups had shown the same mean fat reduction differences between 
the two programs we would have pronounced that there was no interaction 
(Table  4.2 ).  

   Table 4.2    Means of % fat reduction by age group and program   

 Program 1: exercise alone  Program 2: exercise and diet 

 Age <50  n = 2,000  n = 2,000 
 Mean reduction = 5 %  Mean reduction = 8 % 

 Age ≥50  n = 2,000  n = 2,000 
 Mean reduction = 3 %  Mean reduction = 4 % 

4.4  Beyond Single-Factor ANOVA
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4.4.3     Repeated Measures ANOVA 

 The importance of choosing the appropriate method to take into account the source of 
variation arising from the study design and experiment cannot be overemphasized. 
The paired samples  t -test is applied    to compare two related means (e.g., pre- to post-
mean difference) because the independent samples  t -test does not take into account 
the related individual paired measures. Many approaches as a means to the compan-
ion to the paired samples  t -test are available for comparing more than two related 
means. Depending on the particular patterns of the within-subject correlation among 
more than two repeated measures, there are various technical options to deal with 
the situations. The repeated measures ANOVA is one of such options and its idea is 
illustrated in Fig.  4.8 . This illustrated data analysis was to study whether or not the 
means of the repeatedly measured outcomes changed over time, i.e., H 0 : 
 μ   1   =  μ   2   =  μ   3   =  μ   4   =  μ   5   vs. H 1 : not all fi ve means are equal (i.e., at least one mean at a 
particular time is different from the rest), by measuring the longitudinal (i.e., those 
fi ve serial outcomes are related within a subject) outcomes from six (n=6) individual 
subjects. The fi rst part of the illustration is a result from applying the single- factor 
ANOVA  F -test, which was not appropriate because it did not take into account the 
repeated measurements. Let us discuss which explainable source of variation could 
have been taken into account if the analysis had been done by an appropriate 
method. The box-and-whisker plot showed a gradually increasing pattern of the 
means over time, but the single-factor ANOVA  F -test’s  p -value was 0.6699 (i.e., not 
signifi cant at 5 % alpha level). Keeping in mind that these data are repeated mea-
sures, the individual subject-specifi c unique patterns (i.e., trajectory over time) and 

  Fig. 4.8    Illustration of improved result by repeated measures ANOVA compared to single-factor 
ANOVA       
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their difference between the subjects could be a new explainable source of outcome 
variation. As depicted by the second plot (so-called spaghetti plot) the visualized six 
individual trajectories describe the data variation differently than what was possible 
solely by the box-and-whisker plot. What can be pointed out by this spaghetti plot 
is that there was a common trend of increasing pattern among the subjects and a 
non-ignorable portion of the overall outcome spread-out (i.e., total variance) was 
clearly due to the initial baseline variation among the subjects (i.e., the trajectories 
did not cross over very much). For this reason, it is reasonable to add the between- 
subjects variation as a newly explainable source of data variation. As shown in the 
two ANOVA tables,  SS between subjects  in the repeated measures ANOVA sum-
mary was partitioned out from the previous  SS error  (between- and within-subjects 
had been combined) of the single-factor ANOVA (i.e., 1104.88 → 1092.61 + 12.27). 
Finally, the smaller portion that has not been still unexplained by time and between-
subject variability sources remained as  SS error  (only within-subjects), thus the 
 p- value of the repeated measures ANOVA  F -test for the time effect resulted much 
smaller than that of the single-factor ANOVA  F -test. Note that this approach is 
indeed the same as to apply a two-factor ANOVA in which the between-subject 
effect is considered the second factor. This illustration skipped the detailed calcula-
tion involved in the analysis because it is unnecessarily laborious without using 
computers. The objective of this illustration was to focus mainly onto the rationale 
of taking into account the repeated measures and its impact to improve the result 
and interpretation.

4.4.4        Use of Excel for ANOVA 

    Excel offers the ANOVA procedure for single-factor, two-factor, and repeated 
measures ANOVA. The features allow only the data sets of which the group 
sample sizes are equal. However, such data sets can still be handled by Excel via 
regression analysis with dummy variable (see Chap.   5    ).   

4.5     Study Questions 

     1.    Using Excel sheet, please carry out the computation of sums of squares for the 
one-way ANOVA and  F -test (H 0 : H 0 :  μ   1    = μ   2    = μ   3  ) of these data (similar demon-
stration is available in Fig.  4.3 ): 

 Sample data from Group 1: 1, 2, 3, 4, 5 
 Sample data from Group 2: 4, 5, 6 
 Sample data from Group 3: 6, 7, 8   

4.5 Study Questions
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   2.    Give these descriptive statistics, please fi gure out what are the  SS   between   and SS within  
for the one-way ANOVA 

 Group 1: n = 9, mean = 10, variance = 36 
 Group 2: n = 10, mean = 15, variance = 36 
 Group 3: n = 11, mean = 20, variance = 36   

   3.    If the independent samples  t -test is applied to compare two means and the popu-
lation variances are equal, can the one-way ANOVA be applied to this inference? 
If so, will the  p -value from the applied one-way ANOVA be the same as that 
resulted from the independent samples  t -test?         
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In Chap. 1, Pearson’s correlation coefficient as a means to describe a linear association 
between two continuous measures was introduced. In this chapter, the inference of 
the correlation coefficient using sample data will be discussed first, and then the 
discussion will extend to a related method and its inference to examine a linear 
association of the continuous and binary outcomes with one or more variables using 
sample data.

5.1  �Inference of a Single Pearson’s Correlation Coefficient

A linear association measured by the Pearson’s correlation coefficient between two 
continuous measures obtained from a sample, r, requires an inference. The two 
forms of inferences are hypothesis testing and interval estimation (i.e., construction 
of the confidence interval). Testing hypothesis is to state the null and alternative 
hypotheses, compute the test statistic, and determine if it is significant. Let us 
discuss the hypothesis testing first. The null hypothesis is that there is no linear 
association between two continuous outcomes (i.e., H0: ρ = 0), and the alternative 
hypothesis is either a nondirectional alternative hypothesis (i.e., H1: ρ ≠ 0) or a 
directional alternative hypothesis (i.e., H1: ρ > 0, or H1: ρ < 0), depending on the 
researcher’s objective. For such an inference we need a test statistic. A typical test 
statistic involves an arithmetic transformation of the sample correlation coefficient 
r because the sampling distribution of r is not approximately normal even when the 
sample size becomes large (i.e., the CLT is not applicable for the sample correlation 
coefficient). Nonetheless, it is noted that the sampling distribution of the transfor-
mation z = ½[ln(1+r) - ln(1-r)] will follow N(0, 1/√(n-3)) under the null hypothesis 
as the number of observed data pairs, n, becomes sufficiently large. The idea of 
“Observed Estimate ~ Null Value ~ SE triplet (see Sect. 2.2.4.2)” is then applied 
to derive the test statistic. Instead of directly plugging in the observed sample cor-
relation r, the above z transformation is substituted for the observed estimate, 

Chapter 5
Linear Correlation and Regression
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i.e., z = {0.5·[ln(1+r) - ln(1-r)] - 0}/√(n-3), so that the sampling distribution of this 
resulting test statistic z can follow the standard normal distribution.

For small sample size, this test statistic can be resorted to t-distribution (i.e., one-
sample t-test). The following table lists the minimum values of the sample correla-
tion coefficients that would become statistically significant by a nondirectional 
t-test of which H0: ρ = 0 and H1: ρ ≠ 0 for various sample sizes (Table 5.1).

The interval estimation can also be made by using this z-statistic. The lower and 
upper 95  % confidence limits of the population correlation coefficient can be 
obtained in two steps, of which the first step is to find the lower and upper 95 % 
confidence limits (i.e., 2.5th and 97.5th percentiles of the sampling distribution) of z, 
then equating these two limits to the expression {0.5 [ln(1+ ρ) - ln(1- ρ)] - 0}/√(n-3), 
then finally solving them for ρ.

5.1.1  �Q & A Discussion

Question: In correlation analyses, to what extent should we look at the r-value and the 
p-value? For instance, is r = 0.7 (p < 0.05), “stronger” than r = 0.5 (p < 0.001)? Is r = 0.1 
a poor correlation even if p < 0.001? Is r = 0.8 a good correlation even if p > 0.1?

Answer: The magnitude of r and its p-value cannot be interpreted universally. 
The cross comparison of the magnitudes of r’s is only meaningful within one data 
set where all the r’s are obtained from the same sample size. Don’t compare apples 
with oranges.

5.2  �Linear Regression Model with One Independent 
Variable: Simple Regression Model

A statistical model usually appears as a mathematical description (often involves 
mathematical expression, i.e., equations, etc.) of how individual datum is deter-
mined with uncertainty (i.e., random sampling error). Linear regression model with 

Table 5.1  Smallest absolute values of sample correlations that are significantly 
different from 0 by nondirectional t-test

Level of significance of a one-sample 
nondirectional t-test (H0: ρ = 0 versus H1: ρ ≠ 0)

df = n of pairs–2 10 % 5 % 1 %

3 0.805 0.878 0.959
10 0.497 0.576 0.708
15 0.412 0.482 0.606
20 0.360 0.423 0.537
25 0.323 0.381 0.487
30 0.296 0.381 0.449

5  Linear Correlation and Regression
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one independent variable describes how a numeric (normally distributed) outcome 
(i.e., dependent) variable is determined by one independent nonrandom variable and 
a random error. More specifically, it appears as an equation where the left-hand side 
is the outcome variable and the right-hand side consists of two parts of which the 
first part articulates the nonrandom common rule and the second does the random 
error (i.e., individuals’ deviations from the nonrandom common rule).

The following is a typical expression of the ith observed outcome yi described by 
the linear regression model with one independent variable:

	

yi
0 1 i i=

↑ ↑
+β β ε+ X ,

Common rule Randomphenomenon 	

where εi, for individual i, is a random error term that follows a normal distribution 
with mean = 0 and variance = σ2. The ith observed outcome yi is expressed by the 
common value that is the same as the value for all other observations as long as the 
value of the independent variable is given to a certain value plus the random devia-
tion from the common value. The regression refers to the rule, how this common 
value of the dependent variable is determined given a certain value of the indepen-
dent variable. This model is called a simple linear regression model. It is called 
simple because there is only one independent variable and called linear because the 
common rule is expressed by a linear function of the independent variable. As dis-
cussed later in this chapter, a multiple (as opposed to simple) linear regression 
model is a linear model that includes more than one independent variable, e.g., 
yi = β0 + β1x1 + β2x2 + … + εi.

The simple regression model can have its variants, and the following is such an 
example:

	 y X ,i 1
2

i i= +b b e0 + 	

where εi, for individual i, is a random error term that follows a normal distribution 
with mean = 0 and variance = σ2. First, how many independent variables are there? 
Only one, so the simple part makes sense. Having x2 in the model as the independent 
variable does not mean this is a nonlinear model. Let’s note that the word linear 
means that the nonrandom common rule, β0 + β1x2

i, is linearly determined by a given 
value of the independent variable (i.e., the rate of linear change is β1 for a unit 
change of x2, and the amount β1x2

i determined by a particular value of x2 is additive 
to β0). To make it clearer, one can rename x2 to a new name z, i.e., yi = β0 + β1zi + εi.

5.3  �Simple Linear Regression Analysis

Regression analysis is to seek the best common rule equation that determines the 
mean value of the outcome variable given a certain value of the independent variable. 
The widely used computational procedure is the least squares method.

5.3  Simple Linear Regression Analysis
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In Fig. 5.1, the drawn line is the estimated regression line determined by the least 
squares method. Residual ei is the difference between the observed yi and the pre-
dicted value 

�
yi  via the estimated sample regression line. Note that the residual ei is 

not the same random error term εi introduced in the model specification in that the 
term εi specified is the difference between the observed and the true population 
regression line. The least squares method is to estimate the intercept and slope of the 
regression line that minimize sum of squared residuals, ei

2. The resulting estimated 
line is indeed the whole collection of the predicted means of the outcome variable y 
given the values of the independent variable x when the normality assumption of the 
εi error term’s distribution is true. Computer programs (even Excel software has 
the feature) are widely available for estimating each regression equation parameter 
(i.e., intercept β0, and slope β1) and the standard error of each estimated regression 
parameter, and for providing the test statistic of the hypothesis testing whether or 
not each of the population coefficient is different from zero, as well as the 95 % 
confidence interval of each regression parameter.

A goodness of fit for the estimated simple linear regression equation is measured 
by r2. This metric is the same as the squared value of the sample linear correlation 
coefficient computed from the observed y and x pairs. It is also the same as the 
proportion of the explained variation of the dependent variable by the estimated 
regression equation. The possible range is from 0 (0 % is explained) to 1 (100 % is 
explained). The r2 is 1 – (sum of squares of the residuals/sum of squares deviations 
of the observed outcome values from the overall mean of the outcome values). 
Figure 5.2 illustrates the concept of r2 and demonstrates the computational details. 
The first plot depicts the r2 in the absence of a fitted regression equation for which 
the horizontal line represents the mean of y irrespective of the values of independent 
variable. The second plot depicts the r2 of the fitted regression equation. It is also 
noted that r2 is the squared value of the correlation coefficient between y and ŷ , and 
it is also the same as the squared value of the correlation coefficient between y and 
x. This can be shown algebraically and numerically.

Let’s use an example of a simple linear regression equation estimated from an 
analysis, y = 64.30 + 1.39·x, where y denotes systolic blood pressure (SBP) and x 

Fig. 5.1  Illustration of the 
least squares method to 
estimate linear regression 
equation

5  Linear Correlation and Regression
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denotes age. The interpretation is that mean SBP increases linearly by 1.39 as a 
person’s age increases by 1 year. For instance, a mean SBP of 30-year-old persons 
is predicted as 64.30 + 1.39·30 = 106. This value 106 is the common systematic rule 
to everyone whose age = 30. Note that this regression equation should be applied for 
a meaningful interval of the predictor variable x (e.g., age = 200 or age = −10 is non-
sense). y = 64.30 when x = 0 is indeed the y-intercept and this may not be a value of 
interest (i.e., for age = 0).

It is important to know that what is being predicted by this linear regression 
equation is the mean value of the dependent variable given a particular value of the 
independent variable (aka conditional mean). In the above blood pressure predic-
tion example, the predicted SBP value = 106 for a given age = 30 is indeed the esti-
mated mean SBP of all subjects with age = 30. In Fig. 5.3, the estimated regression 

Fig. 5.2  Numerical illustration of r2

5.3 � Simple Linear Regression Analysis
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line represents the collection of predicted means (i.e., conditional means) of the 
dependent variable y given particular values of independent variable x.

All values on the predicted regression line are the means over the range of the 
given independent variable values, and a single point on that line is the estimated 
mean value given a particular value of the independent variable.

Many computer software programs offer to find the best (unbiased minimum 
variance estimates) regression coefficients of the specified model. Such programs 
also provide the estimated standard errors (SE) of the estimated regression coef-
ficients for drawing inference. The hypothesis tests and interval estimations for 
the regression coefficients can be either directly available or easily completed by 
utilizing the computer-generated estimates.

The hypothesis test for the slope, β1, is usually performed by a z- or t-test depending 
on the sample size. The practical choice of z-test is when the sample size is large 
enough (e.g., 30 or greater), otherwise a t-test is usually applied. The null hypothe-
sis usually states that the regression slope is 0, i.e., H0: β1 = 0 (i.e., independent vari-
able is not predictive of the outcome). The alternative hypothesis can either be 
nondirectional or directional depending on the research question, i.e., H1: β1 ≠ 0 for 
a nondirectional test and H1: β1 > 0 for a directional test to claim a positive slope, etc. 
For both the z- and t-tests the test statistic is derived by the aforementioned “triplet,” 
i.e., ˆ 0 / ˆ

1 1b b−



 ( )SE  (see Sect. 2.2.4.5). The degrees of freedom for a t-test is 

n – 2.
The interval estimation for each regression coefficient, i.e., the slope, can be 

constructed using z- or t-distribution depending on the sample size. For example, 
the 95 % confidence interval for the regression slope β1 with a sample size of 20 is 

derived as ˆ 2.101 ˆ , ˆ 2.101 ˆ
1 1 1 1b b b b− × ( ) + × ( )



SE SE , where 2.101 is the t-value, 

of which the tail area below −2.101 is 0.025 (i.e., 2.5th percentile) and the area 
above 2.101 is 0.025 (i.e., 97.5th percentile) with df = 18. The 95  % confidence 
interval using z-distribution when the sample size is large enough is derived as 

ˆ 1.96 ˆ , ˆ 1.96 ˆ
1 1 1 1b b b b− × ( ) + × ( )



SE SE .

The confidence interval (band) for the entire regression mean response line 
(i.e., whole collection of individual regression means given the individual values of 
independent variable) can also be constructed. The algebraic expression becomes 
more complex than that of the slope because the interval estimation for the 

Fig. 5.3  Illustration of 
regression mean
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regression line involves issues of the underlying correlation between the intercept 
and slope estimates that are not independent with each other. The technical details 
may be beyond the level of knowledge of most of the readers. Letting alone the 
details, Fig. 5.4 demonstrates how the confidence band appears in that the band-
width around the mean of independent variable is the narrowest and becomes wider 
as the values of the independent variable departs from its mean. Figure 5.4a demon-
strates a special situation that only the intercept is estimated while the slope is not 
being estimated (assumed to be known and fixed during the estimation). Intuitively, 
the confidence band is parallel to the estimated regression line because the slope is 
always fixed to one value. Figure  5.4b demonstrates the variability of estimated 
regression line of which both the intercept and slope are being estimated (the shown 
lines are only several of infinitely large number of regression lines that are estimated 
and fluctuating due to the sampling variability of the raw data). Then, Fig.  5.4c 
illustrates the actual band of a regression line. Actual calculation of this is usually 
done by computer software.

Another interval estimation problem is to construct a confidence interval for pre-
dicted individual outcomes. When the regression equation is applied, the point esti-
mate of an individual outcome value at a particular value of independent variable is 
indeed the estimated regression mean itself which is determined at that particular 
value of the independent variable. However, the confidence band of the predicted 
individual outcome values turn out to be a little bit wider than that of the regression 
line (i.e., the regression mean response line) because for a point on the regression line 
there are many individual values surrounded randomly above and below that single 
mean value on a particular point of the regression line. Such a band is called predic-
tion band (e.g., 95 % prediction band), and its computational details take into account 
the additional random variability of these surrounded individual observations. Actual 
calculation of this is usually done by computer software.

Fig. 5.4  Illustration for aiding to understand confidence interval of the estimated linear regression 
equation
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Before we proceed to the next topic, a very important issue needs to be discussed. 
In many applications the data are observed at multiple time points within one sub-
ject and the observations are correlated within a subject (i.e., autocorrelation). 
Clinical studies may include a long-time series data of only a single subject (e.g., a 
long-time series of weekly incidence of an infectious disease in a particular place 
over many years, where the particular place can be viewed as a single study subject 
and the dependent variable is the number of new cases and the independent variable 
is the number of weeks since week 0) or multiple subjects with relatively short-time 
series data (monthly height growth pattern of a group infants over first 6 months 
after life, i.e., dependent variable is height and the independent variable is month after 
birth). The method of least squares estimation assumes that all data are uncorrelated 
(i.e., there is no autocorrelation). If this assumption is violated then the standard error 
of the regression coefficient estimate becomes inaccurate. Advanced techniques are 
available, but this material will not discuss. However, it is important to ensure that 
whether or not the study design (or data collection mechanism) would have induced 
such a problem and seek statistician’s guidance to resolve the problem.

5.4  �Linear Regression Models with Multiple Independent 
Variables

The outcome (dependent) variable of a regression models may need to be explained 
by more than one explanatory (independent) variable. For example, gray-haired 
people may show higher blood pressure than the rest, but the association between 
age and blood pressure is probably confounded with gray hair and age association 
and such a phenomenon needs to be taken into account. If multiple independent 
variables are additionally entered into the model, the model will decrease the residual 
variation of dependent variable that had not been explained solely by the primary 
independent variable of interest. Such a model with multiple independent variables 
is expressed as the following linear combination (i.e., a particular value of the 
dependent variable given a set of values of all independent variables in the model is 
expressed as a weighted sum of the independent variables where the regression 
coefficients β’s being the weights).

	 y x x x xi k k i= + + + + + +b b b b b e0 1 1 2 2 3 3 ,… 	

where the assumption about εi is the same as what is specified in Sect. 5.2. The pre-
dicted value of the estimated regression equation for the ith individual, i.e., 
ˆ ˆ ˆ ˆ ˆ ˆ x0 1 1i 2 2 i 3 3 i ky x x x kii = + + + + +b b b b b… , is the mean value of dependent variable 

y given the observed values of x1i, x2i, x3i, …, and xki. The model fitting usually requires 
computer software. Below is a brief overview of how to perform such an analysis for 
model fitting (i.e., estimation of regression coefficients) and related inference.

The goodness of fit for a linear regression with multiple independent variables is 
measures by R2 that is interpreted as the proportion of the explained variation of the 
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dependent variable by the estimated regression equation. The least squares estima-
tion seeks the regression coefficients that maximize and the least squares estimation 
seeks the regression coefficient estimates that maximize R2. This R2 is the squared 
value of the correlation coefficient between y and ŷ . In order to distinguish it from 
the case of simple linear regression’s case (i.e., r2), the notation uses capitalized R.

Multi-colinearity is a phenomenon due to a set of correlated independent vari-
ables in a multiple regression setting. It affects the estimated regression equation 
adversely. For an estimated multiple regression, ˆ ˆ ˆ x ˆ x ˆ x … ˆ x0 1 1 2 2 3 3 k ky = + + + +b b b b b , 
if two independent variables (for instance x1 and x2) are highly correlated, then the 
uncertainty about b̂ 1 and b̂ 2 increases and the standard errors of these two esti-
mated regression coefficients are inflated. A high overall R2 value (i.e., the indepen-
dent variables, as a whole set, predict the mean outcomes pretty well) but the test 
results for some individual coefficients may not be significant (due to the inflated 
standard error of the regression coefficient estimate) and the interpretation of such 
regression coefficients in conjunction with other regression coefficient(s) becomes 
dubious (Fig. 5.5).

Exclusion of the independent variables that are highly correlated (i.e., redundant 
to certain variables) will prevent such an adverse consequence. A formal diagnosis 
can be made by using Tolerance, which is the proportion of unexplained variance 
of the independent variable being diagnosed by all other remaining independent 
variables (i.e., 1- R2 of the estimated regression of the independent variable being 
diagnosed on all other variables). The inverse of Tolerance is called Variance 
Inflation Factor (VIF). A common criterion is to exclude the independent variable if 
the tolerance is less than 0.1 (or VIF greater than 10).

5.5  �Logistic Regression Model with One Independent 
Variable: Simple Logistic Regression Model

Modeling a binary outcome variable by a regression is different from that of 
continuous outcome that was introduced in the previous sections. Let’s discuss the 
following example.

Figure 5.6 illustrates a set of raw data of a set of binary outcome y (e.g., certain 
disease; illness if y = 1 and y = 0 if illness free) versus a continuous measure of x 

Fig. 5.5  Illustration of multi-colinearity in a multiple regression with two independent variables

5.5  Logistic Regression Model with One Independent Variable: Simple Logistic…
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(e.g., x = age in years) in the same way that was adopted to demonstrate the single 
independent variable linear regression model. The linear regression line stretches 
out above 1 and below 0, which is unrealistic. So, the idea of forcing the feasible 
range lies between 0 and 1, the logistic function is adopted and Fig. 5.7 illustrates 
this idea.

It is noted that the observations take values of either 0 or 1 but the regression 
curve does not exceed either 0 or 1, and it is also noted that the vertical axis is the 
probability of observing y = 1 given a particular value of x. This is called logistic 
regression model because the shape of the response curve is characterized by the 
cumulative distribution function of the logistic distribution (simply called logistic 
function). The mathematical expression of this function, where e is the base of natural 
logarithm, is

Probability {y = 1 given x} = 
e

1 e
,

0 1

0 1

x

x

b b

b b

+

++

and Probability {y = 0 given x} = 1 - 
e

1 e
,

0 1

0 1

x

x

b b

b b

+

++

Unlike the linear regression model, the logistic regression model does not need 
the random error term because the transformed outcome variable of this logistic 
regression model specifies the probability of the event (y = 1) and this completely 
characterizes the probability distribution of the original outcomes of y = 1 and y = 0 
(i.e., no other random error terns are necessary). A special emphasis is made here to 
the regression coefficient associated with the independent variable which measures 
the direction (positive or negative) and strength of association. Let’s consider an 

Fig. 5.6  illustration of 
inappropriate linear function 
to predict event probability of 
binary outcome given 
independent variable X

Fig. 5.7  Illustration of 
logistic function to predict 
event probability of binary 
outcome given independent 
variable X
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example of which the outcome variable y is binary (1 = had an event, 0 = did not have 
an event) and independent variable x is a risk scale (1 = low risk, 2 = moderate risk, 
and 3 = high risk), the following probabilities of interests can be expressed via logistic 
equations:

Probability (y = 1 for moderate risk) = [exp (β0 + β1·2)]/[1+ exp (β0 + β1·2)],
Probability (y = 0 for moderate risk) = 1- [exp (β0 + β1·2)]/[1+ exp (β0 + β1·2)],
Probability (y = 1 for high risk) = [exp (β0 + β1·3)]/[1+ exp (β0 + β1·3)], and
Probability (y = 0 for high risk) = 1- [exp (β0 + β1·3)]/[1+ exp (β0 + β1·3)].

These probabilities are less of interest than the following odds ratio (OR see 
Sect. 1.4.3) in applied setting. If we are interested in the odds ratio of the event with 
high risk versus moderate risk then this odds ratio can be derived by a simple 
algebra as below.
	

OR
Probability y for highrisk Probability y for highrisk

=
=( ) ( )1 / = 0 

( )Probability y for moderaterisk Probability y for mode= 1 / = 0 rraterisk

=

( ) 
+( )  + +( )  −exp 3 / 1 exp 3 / 1 exp0 1 0 1b b b b b⋅ ⋅ 00 1 0 1

0 1 0

3 / 1 exp 3

exp / 1 exp

+( )  + +( ) { }
+( )  +

b b b

b b b

⋅ ⋅

⋅ 2 ++( )  − +( ) +( ) { }
(

b b b b b

b
1 0 1 0 1

1

/ 1 exp / 1+ exp

exp 3

⋅ ⋅ ⋅

⋅

2 2 2
.

= )) − exp( ) = exp( ).1 1b b⋅2 	

Likewise, the OR of moderate- versus low risk is exp (β1·2) - exp (β1·1), and the 
OR of high- versus low risk is exp (β1·3) - exp (β1·1) = exp(β1·2) = 2·exp (β1).

While the OR is the measure of association of our ultimate interest, its inference 
is made on the regression coefficient, β1, because the OR is merely the transformed 
value of the regression coefficient (i.e., OR = eβ

1). The standard method for estimating 
the regression coefficients (i.e., fitting the logistic regression function) is the maxi-
mum likelihood (ML) method. This is a calculus approach to find the solution for 
the following likelihood function which is constructed by β0 and β1 and the observed 
data. The likelihood function, denoted by L, will be proportional to the joint prob-
ability of all observed events, i.e., the product of all probabilities of y = 1 given x for 
all observations with the outcome value 1 and all probabilities of y = 0 given x for all 
observations with the outcome value 0. The following is the spelled out expression 
of the illustrative observation set listed below.

Observation No. Outcome y (0 or 1) Predictor x (0 or 1)
1 1 1
2 1 0
3 1 1
. . .
. . .
. . .
. . .
n-1 0 1
n 0 o

5.5 � Logistic Regression Model with One Independent Variable: Simple Logistic…
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Each term in the above product is the logistic model-based probability of either 
y = 1 or 0 given x. The maximum likelihood estimation procedure is a calculus 
problem to find the solutions for β0 and β1 that maximize this function. The actual 
computation uses its natural logarithm, ln(L), instead of L by which the computation 
becomes much less burdensome. Letting alone the further detail of mathematical 
statistics aspect not addressed here, it is important and practically useful to note the 
property of the regression coefficients that are obtained from the ML method (aka, 
ML estimators). The property is that the sampling distribution of such an estimator 
follows Gaussian (i.e., normal) distribution as long as the sample size is sufficiently 
large. Relying on this property, similar to the simple linear regression case 
(see Sect. 5.2), a one-sample z-test (aka Wald’s z-test) or t-test, if sample size is not 
large, is a common method for a regression coefficient β1 to be tested for H0: β1 = 0 
versus H1: β1 ≠ 0. For interval estimation, the lower and upper limits of 95 % confi-
dence interval for the regression coefficient (see Sect. 5.2) are obtained first, then 
these limits are transformed to OR limits, i.e., the limits are eLower limit of the regression 

coefficient and eUpper limit of the regression coefficient.
Because the maximum likelihood method does not resort to the least squares 

method, there is no goodness of fit such as the r2 (for one independent variable) or R2 
(for multiple independent variables). Goodness of fit for an estimated logistic regres-
sion equation can be examined by several options. The most common option is to use 
Hosmer–Lameshow statistic, which measures the disagreement between observed 
versus expected events of interest in partitioned deciles (or three to nine if fewer than 
ten observed patterns of the independent variable(s) existed) of the predicted probabil-
ities, and transform it to a Chi-square statistic with g-2 degrees of freedom where g is 
number of ordered partitions of the predicted probabilities (see Sect. 6.1).

5.6  �Consolidation of Regression Models

5.6.1  �General and Generalized Linear Models

Linear regression models that have more than one independent variable are called 
general linear models. If the regression models with more than one independent 
variable with its model equation is not linear (e.g., logistic) but is transformed into 
a linear form, then such transformed models are called generalized linear models. 
The meaning of “linear” is that the predicted mean value given the independent 
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variables is expressed as a linear combination of the regression coefficients (i.e., simple 
addition of more than one term of which each individual term is the product of a 
regression coefficient and the corresponding independent variable) (see Sect. 5.2). 
For example, a + bx is a linear combination of the two terms a and bx, and c + dx2 is 
also a linear combination of c and dx2. In the case of c + dx2 the linearity is held 
between c and d. What is often confusing is that the resulting value of c + dx2 turns 
out as a quadratic function with respect to x. However, by definition, such a regres-
sion equation is a linear model rather than a nonlinear model because the linearity 
between c and d is held as long as the observed x2 value is viewed as the weight of 
the linear combination.

Unlike the linear models, nonlinear models are the ones that the model equation 
cannot be expressed by linear sum of the products created by the regression coefficients 
and their corresponding independent variables. For example, the logistic regression 
equation is a nonlinear function called logistic function (see Sect. 5.5). Nevertheless, 
the nonlinear function often can be converted to a linear function via algebra (i.e., 
linearization), and such transformed models are called generalized linear models. 
In the case of logistic regression, the logistic function to predict the probability of 
event can be transformed into a linear function to predict the log of the odds.

For the logistic regression equation Probability {y = 1 given x} = 
e

e
,

0 1

0 1

x

x

b b

b b

+

++1

By letting logit [p] denote the transformation loge [odds] = loge [p/(1-p)] = loge 
[Probability of y = 1 given x / (1- Probability of y = 1 given x)], the resulting 
equation becomes Logit [p] = β0 + β1x, which is now a linear function to predict 
the logit (i.e., natural logarithm of the odds) while preserving the interpretation of 
both β0 and β1, the same as that were made in the original form, i.e., OR (x = 1 
versus 0) = eβ

1. Such a linearization makes the computation of the estimation less 
burdensome. The computational detail is beyond the objective of this monograph 
and is not described.

5.6.2  �Multivariate Analyses and Multivariate Model

The terminologies Multivariate Analyses and Multivariate Model are very often 
misused by the applied researchers, and such errors appear frequently even in 
published articles.

A Multivariate Analysis is the simultaneous analysis of two or more related 
numeric outcome variables (i.e., dependent variables). Such methods are commonly 
applied in the social science research, and some popular methods are T2-test for 
simultaneous comparison of two or more related means between two groups (e.g., 
comparison of mean weight and mean height between men and women), Multivariate 
Analysis of Variance (MANOVA) for simultaneous comparison of two or more 
related means among three or more groups (e.g., comparison of mean weight and 
mean height among three ethnic groups), Multivariate Regression Analysis to fit 
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more than one correlated dependent variables by means of more than one related 
regression equations, Factor Analysis and Principal Component analysis to reduce 
a large dimension of linearly correlated variables into a small dimension, Canonical 
Correlation Analysis to examine a set of correlated variables with another set of 
correlated variables, and Linear Discriminant Analysis to build a linear equation by 
a set of linearly correlated random variables to differentiate the individuals into two 
or more groups, etc.

A Multivariate Model refers exclusively to a regression model of a single outcome 
variable with two or more independent variables (e.g., multiple linear regression 
models, ANCOVA models, etc.), and the analysis method is univariate because 
there is only one dependent variable. Note that the multiplicity of the independent 
variables in a model does not mean that the method is multivariate.

5.7  �Application of Linear Models with Multiple  
Independent Variables

Figures 5.8 and 5.9 demonstrate a particular type of applications of general linear 
models to predict the mean of dependent variable using multiple independent 
variables. In the first case, the predicted mean given independent variables 

Fig. 5.8  illustration of dummy variable technique without modeling an effect of interaction

Fig. 5.9  Illustration of dummy variable technique applied to model a main effect and an effect of 
interaction
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(i.e., regression equation) is determined by two independent variables, of which the 
first is a continuous variable x and the second, z, is to take either 1 or 0. Such a 
dichotomized independent variable to take either 0 or 1 is called dummy variable.

In Fig. 5.8 the dummy variable was used to fit the two regression lines with the 
same slopes but different intercepts.

In Fig. 5.9, the dummy variable was used to fit the two regression lines with two 
different slopes and intercepts. The last term of the regression equation is 0.2·x·z, of 
which the variable that takes data values is the product of x and z. Such a term is 
called interaction term. The corresponding regression coefficient is the size of the 
difference in slopes between the two subgroups of having z = 1 and having z = 0. 
Note that the product term variable, x·z, is considered as a single variable (e.g., it can 
be renamed as any one letter variable name such as “w,” etc.).

5.8  �Worked Examples of General and Generalized Linear 
Modes

5.8.1  �Worked Example of a General Linear Model

Four hundred (n = 400) over-weighted adults with age between 35 and 45 years 
participated in a 1:1 randomized 1-year study of a weight loss intervention program 
(i.e., 200 on the invention arm and 200 on control arm). The study collected the 
baseline weight and the weight change after the completion of the study.

The baseline mean (± standard deviation) weight (in lb) among all participants 
was 201.6 (±32.9) and their mean values of the 1-year weight changes were −3.74 
(±9.34) and 4.82 (±7.12) in the intervention and control group, respectively. A gen-
eral linear model analysis was applied to determine the intervention effects on the 
mean weight change without and with adjusting for the individual participant’s age 
(Table 5.2 and Fig. 5.10). The dependent variable was the 1-year weight change 
(WC: post 1 year weight – baseline weight), and the independent variables were 
intervention (I: 1 = yes, 0 = no) and age (AGE: continuous. Note that intervention (I) 
is a dummy variable.

Table 5.2  Summary of general linear model analysis: weight loss intervention study

Model Independent variables b̂ SE ( b̂ ) p-Value

Model 1 Intercept     4.82 0.59 <0.0001
Intervention (I) −  8.56 0.83 <0.0001

Model 2, R2 = 0.76 Intercept −78.55 4.77 <0.0001
Intervention (I) −49.32 6.92 <0.0001
Age (AGE)     2.09 0.12 <0.0001
Interaction of intervention and age (I × AGE)     0.98 0.17 <0.0001

5.8 � Worked Examples of General and Generalized Linear Modes
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In Model 1, the estimated intercept value of 4.82 lb is the mean weight change 
among the control participants, and the estimated parameter value of the interven-
tion variable (I), -8.56 (p < 0.0001), directly offers the significant estimated differ-
ence (i.e., effect) in the mean weight changes between the two groups. With these 
two regression coefficients, the mean change in the intervention group can be esti-
mated by 4.82 – 8.56 = −3.74, which is the same as the group-specific descriptive 
summary statistics presented above (before performing the general linear model 
analysis). Model 2 was constructed in order to predict the mean weight change not 
only by the given intervention status but also by the age. The main effect of age as 
well as its interaction with the intervention (i.e., whether or not the age effects were 
different between the intervention and control subjects) were added to this model. 
Note that the estimated parameter value of the intervention (I) does not directly 
offer the difference in the mean weight changes between the intervention and con-
trol groups because the additional variables are included now and those effects must 
be taken into account simultaneously. The estimated parameter value of −49.32 
(p < 0.0001) is the group difference of the mean weight changes only for the persons 
with age 0. The age of 0 is unrealistic. So, if we chose a particular age of 40 for a 
meaningful interpretation, then the intervention group’s mean weight change is pre-
dicted by −78.55 – 49.32 × 1 + 2.09 × 40 + 0.98 × 1 × 40 = −5.07, and that of the con-
trol group is −78.55 – 49.32 × 0 + 2.09 × 40 + 0.98 × 0 × 40 = 5.05, thus the estimated 
effect (i.e., the mean difference) at age 40 is −5.07 – (−5.05) = −10.12, which is the 
conditional effect of the intervention for 40-year-old participants. As shown in 
Fig. 5.10, the conditional effect decreased as the age increased.

5.8.2  �Worked Example of a Generalized Linear Model 
(Logistic Model) Where All Multiple Independent 
Variables Are Dummy Variables

A large survey study investigated if the college students in California are less 
involved in binge drinking (Wechsler et al. 1997). The survey sample comprised 

Fig. 5.10  Illustration of 
effect of interaction between 
intervention and age
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1864 college students from California and 17,592 from elsewhere in the USA. 
The logistic regression analysis was performed as below.

Dependent variable – Binge drinking (1 vs. 0).
Independent variables – California student (1 vs. 0); Age < 24 (1 vs. 0); Male 

gender (1 vs. 0); Never married (1 vs. 0); White ethnicity (1 vs. 0); Non-commuter 
(1 vs. 0); Smoker (1 vs. 0) (Table 5.3).

Unlike the result summary of the general linear model (Table 5.2), the result sum-
mary of this generalized linear model analysis did not show the estimated parameter 
values of the intercepts (Table 5.3) because the intercept is the nuisance parameter 
for the odds ratio (see Sect. 5.5). The simple logistic regression model of binge drink-
ing solely on the California residency indicator variable (1 = live in California, 
0 = elsewhere) showed that there was significant decrease in binge drinking among 
the California college students ( OR

�
 = 0.52, p < 0.0001). However, after simultane-

ously adjusting for other demographic variables and other risk factors (every variable 
was dichotomized as 1 = yes and 0 = no), this effect was no longer significant 
(Adjusted OR

�
 = 1.20, not significantly different from 1 at a 5 % significance level) 

while all the other covariates were significantly associated with the binge drinking in 
that students under 24 years old (Adjusted OR

�
 =2.24, p < 0.0001), male students 

(Adjusted OR
�

 =1.56, p < 0.0001), never married students (Adjusted OR
�

 =3.58, 
p < 0.0001), students with white ethnic background (Adjusted OR

�
 =2.95, p < 0.0001), 

non-commuter students (Adjusted OR
�

 =1.97, p < 0.0001), and smoker students 
(Adjusted OR

�
 =4.38, p < 0.0001) were involved more in binge drinking.

5.9  �Study Questions

	1.	 The estimated least square linear regression equation (simple or multiple regres-
sion) does not predict an individual’s specific outcome value given the subject’s 
value(s) of the independent variable(s)? What value does the regression equation 
predict?

	2.	 What is the quantitative interpretation of the regression coefficient (i.e., the slope) 
of a least square linear regression equation?

Table 5.3  Summary of generalized linear model analysis: California college 
students binge drinking study

Model Independent variables b̂ SE ( b̂ ) OR
�

 = exp( b̂ ) p-Value

Model 1 California −0.66 0.053 0.52 <0.0001
Model 2 California 0.18 0.19 1.20   0.353

Age < 24 0.81 0.05 2.24 <0.0001
Male 0.44 0.03 1.56 <0.0001
Never married 1.27 0.06 3.58 <0.0001
White 1.08 0.05 2.95 <0.0001
Non-commuter 0.68 0.04 1.97 <0.0001
Smoker 1.54 0.04 4.38 <0.0001

5.9  Study Questions
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	3.	 What value does a logistic regression equation predict given an individual’s 
value(s) of the independent variable(s)?

	4.	 What is the quantitative interpretation of the regression coefficient of a logistic 
regression equation?

	5.	 What are the definitions of the following?

Odds ratio
General linear model
Generalized linear model

	6.	 Explain why the multiple linear regression and multiple logistic regression are 
not multivariate analyses.
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Methods for categorical data analysis and rank-based nonparametric methods for 
continuous data are discussed.

6.1  �Comparing Two Proportions Using 2×2 Contingency 
Table

If a researcher needs to compare the binary outcome frequencies (e.g., disease rates) 
between two groups (e.g., risk group versus risk free group), then s/he will count 
the numbers and calculate the proportions (%) of observed outcomes of interest 
(i.e., 100 × [number of responses]/[number of subjects in each group]) and compare 
them. The first step is to tabulate the observed data in a 2×2 contingency table in 
which the four cells represent the observed number of subjects.

Figure 6.1 illustrates 2×2 contingency tables that provide information about the 
association between two categorical variables. The number in each cell is the 
observed number of subjects (i.e., cell frequency).

Chapter 6
Normal Distribution Assumption-Free 
Nonparametric Inference

Example 6.1

Is there an association between mother’s age and offspring’s low birth weight?
Observed data (2×2 contingency table): 200 new-born infants are classified 

into one of the four categories (Fig. 6.2):

What should be pointed out first? Twenty percent (20 %, i.e., 10 out of 50) of the 
mothers who are ≤20 years old delivered low weight babies, whereas only 10 % 
(i.e., 15 out of 150) of the >20 years old mothers did so. A twofold difference in the 
risks is observed by the descriptive data summary.
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6.1.1  �Chi-Square Test for Comparing Two Independent 
Proportions

The statistical inference to make comparison of the two independent proportions 
can be performed by the Chi-square test. The null and alternative hypothesis, in 
general, are H0: There is no association and H1: There is an association, respec-
tively; or more formally,

	
H :0 1 2p p= There is noassociation between the two categorical variablles( ) 	

	
H :1 1 2p p¹ There isanassociation between the twocategorical variablles( ), 	

where p1 and p2 denote the two population proportions. Note that the Chi-square test 
is always nondirectional (this will be demonstrated in the later part of this section). 

Fig. 6.1  Patterns of association between two binary outcomes

Fig. 6.2  Illustration of exploratory data analysis by contingency table

6  Normal Distribution Assumption-Free Nonparametric Inference
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The idea is to measure discrepancy between the observed frequencies and the 
frequencies that are expected under the null hypothesis (i.e., there is no association) 
and transform the discrepancy measure to the test statistic.

As presented in Fig. 6.3, the expected frequencies of the four cells under H0 are 
obtained as below. The expected frequency for the cell with y=1 and x=1 is obtained 
by multiplying the proportion of y=1, i.e., (a+c)/(a+b+c+d), to the observed total 
frequency with x=1, i.e., (a+b). Thus the expected frequency of that cell under H0 is 
(a+b) × [(a+c)/(a+b+c+d)]. Likewise, the expected frequencies of all four cells 
under H0 are expressed as the lower entries of the cells.

Next step is to derive a test statistic that reflects the discrepancy between the 
observed and expected frequencies, by which we find out how likely (or unlikely) this 
value can happen under the null hypothesis. The value of the following expression 
tells you about that likelihood (or unlikelihood).

Sum of all four cell-specific values of {(Observed cell counts - Expected cell 
counts)2/(Expected cell counts)} will have the sampling distribution (see Sect. 
2.1.2), which is close to χ2

(1) distribution (Chi-square distribution with df =1). This 
test statistic is always nonnegative because it’s resulted from summing squared 
numbers, and it does not reflect the directionality (i.e., which observed cell fre-
quency is more or less than the corresponding expected frequency). So, Chi-square 
test cannot handle directional hypotheses (i.e., always nondirectional).

In the case of Example 6.1,
Chi-square test statistic =
Sum over all four cells of {(Observed cell counts - Expected cell counts)2/(Expected 

cell counts)}

= (10–6.25)2/6.25 + (40–43.75)2/43.75 +
(15–18.75)2/18.75 + (135–131.25)2/131.25

= 3.42, and p-value = 0.06 is calculated based on χ 2
(1), i.e., p-value = 0.06 (Check 

with Excel, CHIDIST(1, 3.42) = 0.06).

Fig. 6.3  Calculation of observed and expected counts under the null hypothesis in 2 × 2 contin-
gency table setting

6.1 � Comparing Two Proportions Using 2×2 Contingency Table
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Please note that in the above calculation the expected cell counts are non-
integers (those were not avoidable) whereas the observed counts are obviously 
integers. This phenomenon lets the sampling distribution of this test statistic 
to only approximate (close to but not exactly the same as) χ2

(1). To reduce such 
an approximation error, it is suggested to subtract 0.5 from the difference 
between each observed frequency counts and its expected frequency counts in 
a 2 × 2 contingency table (proposed by F. Yates). Such a correction prevents 
the researchers from overstating (i.e., reduce the chance to commit Type 1 
error). In the case of Example 6.1, the continuity corrected Chi-square test 
statistic = Sum over all cells of {[(Observed cell counts - Expected cell 
counts)-0.5] 2/(Expected cell counts)}

= [(10–6.25) - 0.5]2/6.25 + [(40–43.75) - 0.5]2/43.75 +
[(15–18.75) - 0.5]2/18.75 + [(135–131.25) - 0.5]2/131.25

= 2.5752 (df=1), p-value = 0.1085 by resorting to χ2
(1) distribution.

Application of the continuity correction to Example 6.1 data analysis provided 
us a conservative result. Nonetheless, both the continuity corrected and uncorrected 
Chi-square statistics turned out not significant at a 5 % significance level. Thus the 
conclusion can be summarized as “These data showed that there was no association 
between mother’s age and offspring’s low birth weight at a 5 % significance level.”

In Chap. 1, the odds ratio, OR, was introduced. The OR is also applicable in the 
2 × 2 contingency table analysis. Note that if π 1 = π 2 then OR = 1 because [(π 1/(1- π1))/
[π2/(1- π2)] = 1, if π 1 ≠ π 2 then OR ≠ 1. Thus the following four pairs of null and 
alternative hypotheses are exchangeable.

H0: Two proportions are equal

H1: Two proportions are unequal

H0: π 1 = π 2

H1: π 1 ≠ π 2

6  Normal Distribution Assumption-Free Nonparametric Inference
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In the case of Example 6.1, the estimated odds ratio is [0.2/(1–0.2)]/[0.1/(1–0.1)] 
= 2.25, describing that the odds for an underage mother having a low birth weight 
baby is two-and-a-quarter times greater than that of an of-age mother. However, this 
was not statistically significant at a 5 % significance level.

When a directional test in a 2 × 2 contingency table analysis setting (e.g., H0: π 1 
= π 2 and H1: π 1 < π 2) is necessary, the test can be carried out by means of a z-test. 
This test can be conceived as to apply independent samples z-test to compare two 
means where data are binary (i.e., 0 or 1). If π 1 and π 2 are not too close to 0 or 1 and 
the sample size is not small, this method is valid for similar reason that the probabil-
ity distribution, a binominal distribution, can be approximated by the normal distribu-
tion (see Sects. 1.5.5 and 2.2.6.3).

6.1.2  �Fisher’s Exact Test

If there are any cells in a contingency table of which the expected frequency counts 
under H0 is less than 5 (Fig. 6.4), then the sampling distribution of Sum over all cells 
of {(Observed - Expected) 2/(Expected)} does not follow χ2

(1) distribution, and the 
Chi-square test is no longer a valid test.

A special method to deal with such a situation is to directly calculate the exact prob-
ability of observing as or more extreme (i.e., departing from the null hypothesis) 
outcomes than the observed outcome, and then reject H0 if the calculated exact 

H0: There is no association (between the two categorical variables y and x)

H1: There is an association

H0: OR = 1

H1: OR ≠ 1

6.1 � Comparing Two Proportions Using 2×2 Contingency Table
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probability is smaller than the adopted significance level (e.g., 0.05). The calculation 
of the exact probability (this is indeed the p-value of this exact test method) is a 
daunting task if carried out manually. Figure 6.5 illustrates the exact p-value calcu-
lation for the data set presented in Fig. 6.4.

Of the eight contingency tables, the third is the observed and the other seven are 
complete enumeration of all possible more extreme possible outcomes to both direc-
tions departing from the null hypothesis (i.e., towards deleterious and protective 
effects). The individual probability values that were attached to the corresponding 
tables are the probability of observing that particular outcomes conditional on both 
margins (i.e., row and column totals being fixed by the observed data). This probability 
is called table probability. For example, the calculation for the third table (i.e., table 
probability of the observed data by this study) can be spelled out as finding the chance 
to observe, simultaneously, 5 events out of 9 subjects with the risk factor and 2 events 
out of 16 subjects without the risk factor given 7 total events out of 25 study subjects, 
i.e., 9C5 × 16C2/25C7 = 126 × 120/480700 = 0.0315, where mCn for m ≥ n > 1 is the notation 
for the number of combinations of observing n events out of m, i.e., m!/[n! (m-n)!]. 
The remaining seven table probabilities can be calculated in the same manner.

With the calculated table probabilities of all possible enumerated tables, the 
p-values of the tests are calculated as below. For the directional test with its alternative 
hypothesis H1: Effect is deleterious, it is intuitive (as illustrated in the Fig. 6.5) to 
cumulate three table probabilities that are as or more extreme to the direction of this 
alternative hypothesis, i.e., 0.00007489 + 0.0028 + 0.0315 = 0.0343, indicating 
that there was a statistically significant deleterious effect of the risk factor at a 5 % 
significance level. The p-value for the other directional test, i.e., H1: Effect is delete-
rious, was 0.9971, indicating that the risk factor was not protective.

For the nondirectional test, i.e., H1: Effect is either deleterious or protective, it is 
also intuitive that finding the p-value is to cumulate all table probabilities that were 
less than or equal to that of the observed table probability in both directions, 
i.e., 0.00007489 + 0.0028 + 0.0315 + 0.0238 = 0.0581.

6.1.3  �Comparing Two Proportions in Paired Samples

As we apply the paired samples t-test to compare two paired means (see Sect. 3.2), 
when the binary outcomes are resulted from the paired samples, the application of 
the method introduced in Sect. 6.1.1 would no longer be valid, and McNemar’s test 
is a valid method.

Event

Yes No Total

Risk
Factor

Observed Counts
(Expected Counts)

Yes
5 4 9

(2.52) (6.48)

No
2 14 16

(12.50) (87.50)

Total 7 18 25

Fig. 6.4  Observed and 
expected counts in 2 × 2 
contingency table

6  Normal Distribution Assumption-Free Nonparametric Inference

http://dx.doi.org/10.1007/978-3-319-02402-8_3#Sec5_3


111

Fig. 6.5  Illustration of obtaining p-values of Fisher’s exact test

6.1 � Comparing Two Proportions Using 2×2 Contingency Table
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Let us discuss a study situation to investigate the agreement between two antibody 
status testing laboratory techniques, Test-1 and Test-2, which will result in either 
positive or negative. The summary table in Fig. 6.5 is the result of 100 pairs. Let n00, 
n10, n01, n11 denote the number of pairs with both negative results, only Test-1 posi-
tive, only Test-2 positive, and both positive results, respectively. The ratio n01/n10 
(if n01 ≥ 1 and n10 ≥ 1) will depart from 1 as evidence to the discrepancy between the 
two test. These data showed that the ratio was 3 (i.e., n01/n10 = 30/10 = 3) meaning 
that the discrepant outcome of Test-1 negative and Test-2 positive results occurred 
three times more frequently than those of Test-1 positive and Test-2 negative. Note 
that the number of concordant pairs is not involved in this calculation.

Let us deal with the hypothesis testing. The null hypothesis that the two tests 
perform the same can be written as H0: population proportion n01/(n00 + n01 + n10 + n11) 
= population proportion n10/(n00 + n01 + n10 + n11). Under the null hypothesis, the sta-
tistic (n01 - n10)2/(n01 + n10), if n01 + n10>0, follows the Chi-square distribution with 
df =1, χ 2

(1). This test is called McNemar’s Chi-square Test.
These data (Fig. 6.6) showed that there was a statistically significant discrepancy 

between the performances of the two related test methods (p=0.0098).

6.2  �Normal Distribution Assumption-Free Rank-Based 
Methods for Comparing Distributions of Continuous 
Outcomes

It is true that by the Central Limit Theorem (see Sect. 2.2.2), the sample means 
will follow normal distributions when the sample size is large even if the sample 
data are drawn from a non-normally distributed population. Thus an inference 

Test-2
Negative
Pairs

Test-2
Positive
Pairs

Total
Pairs

Test-1
Negative
Pairs

n00 = 30 n01 = 30

n10 = 10 n11 = 30

60

Test-1
Positive
Pairs

40

Total 40 60 100

H0: n01 / (n00 + n01 + n10 + n11) = n10 / (n00 + n01 + n10 + n11)

McNemar’s Chi-square statistic = (30-10)2 / (30+30) = 6.67, thus
p-value based on X2

(1) is 0.009805 which can be calculated by
PROBCHI(6.67, 1) using Excel function.

Fig. 6.6  McNemar’s chi-square statistic for comparing two proportions in paired samples

6  Normal Distribution Assumption-Free Nonparametric Inference
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about the mean using a large sample can resort to the z-test if the population standard 
deviation is known. Otherwise, if the population variance is unknown, then a prac-
tical choice is to substitute with the sample standard deviation and apply the t-test 
regardless of the sample size as we note that a t-test can be applied as long as its 
degree of freedom is 1 or greater (i.e., minimum sample size is 2 for a one-sample 
t-test for a single mean inference). Unfortunately, such an application of the t-test 
is valid only if it is known that the sample data were drawn from a normally 
distributed population. If the sample data are not drawn from a normally distrib-
uted population, then the sampling distribution of the t-statistic calculated from 
such data will not follow a t-distribution and the t-test is invalid. Figure 6.7 describes 
the distribution of a population whose distribution is not a Gaussian distribution 
(this is indeed an Exponential Distribution with its mean = 0.5 and standard 
deviation =0.5).

Figure 6.8 demonstrates the two sampling distributions of the t-statistic calculated 
under H0: mean = 0.5, which are not close enough to t-distributions. The upper his-
togram is the result out of 100 distinct random samples, with each sample size of 5, 
drawn from the above population described in Fig. 6.7, and the other is that with 
sample size of 10. Both sampling distributions of the t-statistics calculated from 
small sample sizes turned out to be severely skewed to the left (i.e., not symmetric 
around 0 which is the expected mean of t-statistic under H0). Note that the samples 
were drawn from the population with its mean = 0.5, thus the sampling distribution 
of those t-statistics should be symmetrical around 0 under H0 (i.e., expected value of 
t under H0 is 0).

The rest of this section will introduce alternative methods that do not require the 
normality assumption about the population distribution.

Fig. 6.7  Distribution of a population with exponential mean=0.5 and standard deviation = 0.5

6.2 � Normal Distribution Assumption-Free Rank-Based Methods for Comparing…
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6.2.1  �Permutation Test

The following example, using four observations in each group, demonstrates one of 
the normal distribution free assumption methods to examine whether or not the two 
independent samples are drawn from the same population.

Observed Data
Group A sample: 96, 102, 108, 126 (mean = 108)
Group B sample: 120, 128, 138, 156 (mean = 135.5)

Without knowing the probability distribution of the data, we can calculate the 
probability that we would observe as or more extreme (i.e., showing greater discrep-
ancy in the two means) sample data with other permutations (see Fig. 6.9). There is 
only one permutation that would have made the two groups more discrepant than 
the observed data in the direction of Group A < Group B, and the corresponding 
probability is 0.029 (i.e., 2 out of 70 total permutations). This probability is indeed 
the p-value of the directional permutation test.

Fig. 6.8  Sampling distributions of t-statistics with n=5 and n=10 based on 100 random sample data 
sets drawn from exponentially distributed population with mean=0.5 and standard deviation = 0.5

6  Normal Distribution Assumption-Free Nonparametric Inference
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6.2.2  �Wilcoxon’s Rank Sum Test

If data contain extreme values and the means won’t be meaningful and the t-test 
may not perform well for comparing two independent means, what can be an alter-
native solution other than the permutation test of which the computational burden 
increases and the sample size increases? Application of t-test after data transforma-
tion (e.g., geometric mean titer analysis, etc.) can be an option, but it cannot be a 
universal solution. Instead, we rank the pooled (two groups are combined) data, and 
then apply independent samples t-test to use the rank values as the new data values. 
The ranking de-skews and de-extremize the extreme values so that the indepen-
dent samples t-test can be applied. Such a rank-based independent samples t-test 
is known the same as the Wilcoxon’s Rank Sum test. Wilcoxon discovered this 
and Mann and Whitney added mathematical work; it is also called Mann–Whitney 
U-test.

Figures 6.10 and 6.11 illustrate a data set for which the independent samples 
t-test was applied as an inappropriate method. The independent samples t-test 
showed that there was no significant difference in means at a 5 % significance level. 
Note that the observed mean difference (Mean1 – Mean2) was - 7.9, but the differ-
ence in the medians was 11.4, which may still suggest that the two sample sets were 
drawn from two different populations.

Figures 6.12 and 6.13 illustrate that the rank-based analysis (i.e., Wilcoxon’s 
Rank Sum Test) would be more appropriate. The Wilcoxon’s Rank Sum test 
showed that there was a significant difference in the two distributions at a 5 % 
significance level, whereas the independent samples t-test could not detect such a 
difference.

Fig. 6.9  Illustration of permutation test

6.2 � Normal Distribution Assumption-Free Rank-Based Methods for Comparing…
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6.2.3  �Kruskal–Wallis Test

If data are not normally distributed, the single-factor ANOVA F-test using the raw 
data will not work well. In such a case, we can rank the pooled data, then perform the 
single-factor ANOVA F-test. The rank-based single-factor ANOVA is known the same 
as Kruskal–Wallis Test

Fig. 6.11  Illustration of data not suitable for an independent sample t-test

Fig. 6.10  Illustration of skewed data with unequal variations that are not suitable for an independent 
sample t-test

6  Normal Distribution Assumption-Free Nonparametric Inference
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6.2.4  �Wilcoxon’s Signed Rank Test

If the distribution of the paired difference (di = Bi – Ai) is heavily skewed or contains 
extreme values, the mean of the paired difference won’t be meaningful, and the 
paired samples t-test may be an inappropriate method. In such cases, we generate 
signed ranks of each pair-wise differences (di = Bi – Ai, for all i), i.e., (sign of di) × 
(rank of |di|), and then compute the sum of the ranks with positive sigh and that of 
the ranks with negative sigh, and then check discrepancy between the positively and 
negatively signed rank sums. A large positive (or negative) sum suggests a nonzero 

Fig. 6.12  Illustration of distributions of ranked data to apply Wilcoxon’s rank sum test

Fig. 6.13  Illustration of Wlcoxon’s rank sum test

6.2 � Normal Distribution Assumption-Free Rank-Based Methods for Comparing…
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average difference (i.e., existence of a difference). The result of this method will be 
the same as that of the paired samples t-test that is applied to the generated “signed 
ranks.” Such a signed rank-based paired samples t-test is known as Wilcoxon’s 
Signed Rank test.

6.3  �Linear Correlation Based on Ranks

We can also handle the correlation analysis between two continuous measures, say 
x and y, based on ranks if the data had extreme values. We assign the ranks to of x 
and y individual observations first, and then feed these ranks into the mathematical 
expression or computer program for the Pearson’s Product Moment Correlation 
(see Sect. 5.1), aka Spearman’s Rank Correlation.

6.4  �About Nonparametric Methods

Parametric forms of inference are to estimate and test directly the parameters, and the 
“parameters” in this context imply the underlying probability models that generates 
the outcomes (i.e., beyond the constants of a particular distribution, e.g., mean and 
standard deviation for a Gaussian Distribution) such as Gaussian Distribution, 
Binomial Distribution, etc., (see Chap. 2). For continuous outcomes data, all methods 
of inference that were introduced in the previous chapters (e.g., t-test, ANOVA, 
Pearson’s correlation, least square regression) require the assumption that the raw 
data are gathered from a Gaussian distribution (i.e., data are drawn from a normally 
distributed population). The word nonparametric means that the inference does not 
require the normality assumption. The rationale behind the nonparametric methods 
for continuous outcomes is to make extreme values non-extreme so that the trans-
formed rank data appear in a “bell-like” shape, and these data can be handled by the 
normal distribution assumption requiring parametric methods.

What are we testing by nonparametric tests? Did this chapter mention how the 
null and alternative hypothesis should be articulated? Since we do not resort to the 
parametric distribution (i.e., the normal distribution which is completely determined 
by the two parameters, i.e., mean, the location parameter, and standard deviation, 
the dispersion parameter that tells about the spread of the distribution), the nonpara-
metric inference does not involve an articulated hypothesis involving the parameters 
such as means. Now, what would be the null hypothesis of nonparametric counter-
part of the independent samples t-test (i.e., Mann–Whitney’s U-test or Wilcoxon’s 
Rank Sum test)? The null hypothesis is “H0: The two population distributions 
are identical,” which means the two samples were drawn from the same population. 
The alternative hypothesis is “H1: The two population distributions are not identical.” 
The testing is always performed nondirectionally. Some textbooks may introduce 
you a null hypothesis like “the medians are the same” in that it is thought that the 
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Mann–Whitney’s U-test or Wilcoxon’s Rank Sum test compares the medians. 
This is mathematically true for some situations but there are many other situations 
where this is not exactly true depending on the particularity of the data distribution. 
For full apprehension of this issue, advanced knowledge of mathematical statistics 
is necessary, which is beyond the level and expectation of this book.

How about the Chi-square test in 2×2 contingency table setting? Does this 
method require data normality? No, it does not. But the probability model that gen-
erates the outcome data is a Binomial model that involves parameters (i.e., p, and n) 
and moreover the test statistic is Chi-square with df=1, which is a parametric distri-
bution. Then is Chi-square a parametric or nonparametric method? Chi-square test 
is classified as a nonparametric method even if the data distribution is parameterized 
by the Binomial model and the test statistic is Chi-square with df=1. Generally 
speaking, “nonparametric methods” are the ones that do not require the normality of 
the mechanism by which the raw data were realized. More appealing name can be 
“raw data normality free methods.”

6.5  �Study Questions

	1.	 What circumstances of the parametric inference become problematic?
	2.	 Chi-square test for an association between two categorical variables is a non-

parametric inference even if this is not a rank-based test. Why is this considered 
as a nonparametric inference?

	3.	 The Chi-square test result applied to a 2 × 2 contingency table analysis will be 
consistent with that of the one independent variable logistic regression analysis 
by which the test for a nonzero odds ratio is performed. Why? What would be the 
dependent and independent variables of the logistic regression?
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7.1  �Censored Observations

The following ten values are the observed survival times since diagnosis (in years) 
of a group of subjects with a particular cancer.

2, 4, 4+, 5, 5, 6, 6, 7+, 8+, 10
The symbol “+” indicates that the value is a censored observation meaning that 

the subject remained alive until that recorded time but we do not know whether or 
not s/he deceased thereafter. The truth is that s/he remained alive longer than the 
censored observation time, but there is no way to ascertain the time of death. In such 
a situation, what is the best way to estimate the median survival time? The next 
sections will guide the readers how the censored survival time data are analyzed and 
interpreted by the methods that take into account the censoring.

7.2  �Probability of Survival Longer Than Certain Duration

Statistical descriptions and interpretations of the distribution of censored survival 
time are carried out by estimating the probability of survival exceeding a certain 
time T which is denoted by Ŝ (T). The estimate of the probability that an individual 
survives longer than 1 year, Ŝ (1), is obviously Ŝ (1) = 1 (i.e., 100 % because all ten 
individuals survives longer than 1 year). The censoring did not affect this calcula-
tion. It is straightforward that the Ŝ (2) = 9/10 because one subject died at time = 2.

Complicated calculations happen when the time of interest is 4 years or later. The 
idea is to calculate the probability of surviving longer than 4 years out of the individu-
als remaining at risk of death (i.e., have survived until then) at T = 4. This is conceived 
as the product of the two probabilities, of which the first piece is the already calculated 
probability of survival up to right before the time of evaluation and the second piece 
is the probability of survival longer than the evaluation time, i.e., Ŝ (4) = (The propor-
tion of the subjects remaining alive longer than 2 years among all subjects) × (The 
proportion of the subjects remaining alive longer than 4 years among whom lived 
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up to 4 years) = Ŝ (2) × (8/9) = (9/10) × (8/10). In this calculation Ŝ (2) was used as the 
first piece (the already calculated probability of survival up to right before the time of 
evaluation) because there were no deaths between 2 and 4 years. Likewise, Ŝ (5) is 
estimated as Ŝ(4) × (Number of subjects remaining alive longer than 5 years 
among who survived after the most recent observed time of death), i.e., Ŝ(5) = 
Ŝ (4) × (5/7) = 0.5714. Such a method is devised by Kaplan and Meier (Kaplan–
Meier method) and is also called Product Limit method for estimating survival func-
tion. What is then the Kaplan–Meier estimate of Ŝ (5.5)? Since the Kaplan–Meier 
survival distribution function is a step function (i.e., the values change only when the 
events occur), Ŝ (5.5) is still 0.5714 and it remains the same until Ŝ (6) gets updated. 
Applying the same idea, Ŝ (6) = 0.5714 × (3/5) = 0.3428.

The following is the completed result of Kaplan–Meier estimates:

Observed  
Event Times Calculation of Kaplan-Meier Estimates 

0 Ŝ(0) = (10/10) = 1.0000 1.0000
2 Ŝ(2) = Ŝ(0) × (9/10) = 0.9000 0.9000
4 Ŝ(4) = Ŝ(2) × (8/9) = 0.8000 0.8000
4+ Ŝ(4) remains as 0.8000 (not updated for the censored observation) (0.8000)
5, 5 Ŝ(5) = Ŝ(4) × (5/7) = 0.5714 0.5714
6, 6 Ŝ(6) = Ŝ(5) × (3/5) = 0.3429 0.3429
7+ Ŝ(7) remains as 0.3429 (not updated for the censored observation) (0.3429)
8+ Ŝ(8) remains as 0.3429 (not updated for the censored observation) (0.3429)
10 Ŝ(10) = Ŝ(6) × (0/1) = 0.0000 0.0000

The following is the algebraic form of the computation:

	
Ŝ at t n d / n n d / n n d / nj 1 1 1 2 2 2 j j j( ) = ( ) ( ) ( )− × − × −…

	

nj—When there is no censoring, ni is the number of survivors just prior to time ti. 
With censoring, ni should exclude the censored cases.

dj—dj is the number of deaths at tj.
Figure 7.1 describes the estimated survival distribution, which is called Kaplan–

Meier Survival Curve. The graph is stepwise in that the probability of survival 
remains constant until the next death event is observed. The circles indicate the 
censored events.

7.3  �Statistical Comparison of Two Survival Distributions 
with Censoring

The statistical inference to compare a difference between two mean survival times 
cannot be performed by the independent samples t-test because of the censoring 
even if the population survival time was normally distributed. The next example 
describes a very commonly used nonparametric method.
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Fig. 7.1  Illustration of Kaplan–Meier survival curve and estimated median survival time

Fig. 7.2  Kaplan–Meier survival curves of two study subgroups

Example 7.1

Which group survived longer (survival times are recorded in years)? (Fig. 7.2)
Group A: 2, 4, 4+, 5, 5, 6, 6, 7+, 8+, 10
Group B: 4, 4+, 6, 6+, 6+, 9, 10, 11, 12+, 13
Observed data summary:

Group Total subjects
Deceased 
subjects

Censored 
subjects (%)

Median survival  
time (years)

A 10 7 3 (30) 6
B 10 6 4 (40) 10

7.3 � Statistical Comparison of Two Survival Distributions with Censoring
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The inference begins with stating the null and alternative hypotheses, H0: 
Two survival time distributions are not different and H1: Two survival time distribu-
tions are different (i.e., nondirectional two-sided alternative). Note that the hypoth-
eses did not make any statement about the means but simply stated about the 
distribution (i.e., the inference does not involve the location parameters of 
the distributions). Two statisticians, Cox and Mantel, devised a nonparametric test. 
The idea is to create 2 × 2 contingency table at every observed event time of the 
combined sample set that offers the evidence that the event occurrence rates between 
the two groups are different (e.g., for the above example, eight 2 × 2 tables at 
time = 2, 4, 5, 6, 9, 10, 11, and 13 will be created based on the number of each 
group’s deceased subjects and the number of subjects remaining at risk right before the 
each observed event time). The test statistic cumulates the individual 2 × 2 table’s 
Chi-square values calculated from those 2 × 2 tables under H0. The sampling distri-
bution of this test statistic approaches to the Chi-square distribution with df = 1 as the 
sample size becomes sufficiently large. This test was called Log-Rank Test later 
by two statisticians, Peto and Peto. The name Log-Rank Test reveals the technical 
aspect of how the test statistic is devised (interested readers should read Peto and 
Peto 1972; also see References of Chap. 7).

The result of the test obtained from a computer software was that the Log-rank 
Chi-square (df = 1) was 3.9016 with a p-value of 0.0482, which can be summarized as 
“These data showed that the survival times of the two populations were significantly 
different (p = 0.0482).”

7.4  �Study Question

	1.	 Explain the product limit calculation for estimating a survival time distribution. 
What are the individual probabilities being multiplied?
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8.1  �Sample Size for Interval Estimation of a Single Mean

For single mean interval estimation of a 100 × (1- α) % confidence interval, e.g., for 
α = 0.05, 100 × (1- 0.05) % = 95 %, the width of the interval is a function of several 
elements, among which the pivotal one is the sample size.

As discussed in Sect. 2.2.6.2, the following steps derive the sample size for a 
95 % confidence interval using Gaussian approximation (i.e., resort to the C.L.T. for 
approximating the sample distribution of the sample mean to a Gaussian distribu-
tion, see Sect. 2.2.2); in that the first step is to set up an equation by letting one-half 
of the width (an error margin of w/2) be equal to the distance of the 97.5th percentile 
from the mean of the standard normal distribution × the standard error of the sample 
mean, i.e., w/2 = 1.96 × s/√n, where s denotes the sample standard deviation, then 
solve this equation for n. The final equation will be n = (3.92 × s/w)2. As depicted in 
Fig. 8.1, the interval becomes narrower as the sample size increases (i.e., inversely 
proportional to √n).

The following example aids to understand how the required sample size is deter-
mined for constructing a 95 % confidence interval for one mean inference.

Chapter 8
Sample Size and Power

Example 8.1

Standard dosage level of medication “A” will lower the heart rate over 48 h. 
A new study for a higher dose is being proposed, and the investigator wants to 
determine how many study subjects do enroll into this study; of which result-
ing data would provide a 95 % CI of the mean heart rate that is not wider than 
5 bpm if the anticipated sample standard deviation is s = 10 bpm?

Given w = 5 and s = 10;
Solve w/2 = 1.96 × 1/√n for n;

http://dx.doi.org/10.1007/978-3-319-02402-8_2#Sec21_2
http://dx.doi.org/10.1007/978-3-319-02402-8_2#Sec7_2
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8.2  �Sample Size for Hypothesis Tests

8.2.1  �Sample Size for Comparing Two Means Using 
Independent Samples z- and t-Tests

As discussed in Sect. 2.2.4, the sample size required for a hypothesis testing to 
compare two independent means depends on:

	1.	 Level of significance (α)
	2.	 Power (1-β), where β is the probability of committing type-2 error
	3.	 Alternative hypothesis (1- or 2-sided)
	4.	 Size of detectable difference in means (δ)
	5.	 Standard deviation of the outcome distribution under the null hypothesis (σ)

The idea of determination of required sample size  for comparing two means 
using independent samples z-test is illustrated in Fig. 8.2, which depicts the rela-
tionship between the sample size and the five determinants. The two density curves 
describe the sampling distributions of test statistic z under H0 (left curve) and H1 
(right curve). Note that the right-hand side curve is a snap shot of the horizontally 

Fig. 8.1  Sample size determination for interval estimation of a single mean

n = (3.92 · s/w)2 = (3.92 · 10/5)2 = 61.5;
Sample size = 62
If the study subject recruitment is not difficult then 62 patients can be a gener-

ously determined sample size. It is also possible to curtail the sample size to 
the integral part of the solution (i.e., do not need to round up to save the 
resource), i.e., n = 61 which would not have a large impact.

How many more subjects do we need if we want to shrink the length of the 
95 % CI down to no more than 4 bpm?

n = (3.92 · s/w)2 = (3.92 · 10/4)2 = 96.04
Sample size = 96, thus 34 more patients are required.
Note that in order to decrease the error margin by 20 %, 34 more patients 

are required which is an increase of 55 %, not the same increase of 20 %.
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sliding curve that stopped (for illustration) where the alternative hypothesis’ mean 
difference is a certain non-zero value δ.

Within the rejection region, the null- and alternative distributions overlapped. 
The shaded area under the null distribution is the size of type-1 error and the area 
under the alternative distribution is the power.

Left-hand side of the equation is the standardized (standard deviation unit of the 
sampling distribution of the mean difference) effect size. Right-hand side of the 
equation spells out the left-hand side into a sum of the following two parts: (1) the 
distance between the null mean and the critical value of the test on the z-scale and 
(2) the distance between the critical value and the alternative mean value of the test 
on the z-scale. Finally this equation is solved for the sample size per group.

	

n 2
z z1 /2 1

per group
Detectable difference in means

=
´ +( )ì

í
ï s

d
-a - b

,îîï

ü
ý
ï

þï

2

	

Note that σ is the common standard deviation of the two population distributions 
which are assumed to have the same standard deviation, and that β is specified 
(instead of β/2) although this is a nondirectional test because of the fixed δ the left 
tail area of the alternative distribution covered by the other side of the rejection 
region is nearly zero, and also note that n is the sample size per group, not the study 
sample size.

Fig. 8.2  Sample size for a nondirectional hypothesis test for comparing two means using normal 
approximation, i.e., independent samples z-test. Note: σ σ2

1
2

2/ /n n SDgroup group MeanDifference+( ) =  
(i.e., standard error of the mean difference) and σ2 denotes the population variance of each group—
we assume that the variances are equal (i.e., σ2 is a common variance); ngroup1 = ngroup2 = nper group 
because we consider a balanced design
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As illustrated in Fig. 8.3, the required sample size increases geometrically as the 
targeted power increases and the targeted effect size decreases.

As illustrated in Fig. 8.4, the power is proportional to the square root of the given 
sample size and inversely proportional to the square root of the effect size.

Fig. 8.3  Sample size given power and effect size for independent samples z-test for comparing 
two means

Fig. 8.4  Power given sample size and effect size for independent samples z-test for comparing 
two means

Example 8.2

A sample size determination is needed for a nondirectional z-test, with its 
power = 80 % at an adopted significance level, α, of 5 %, to compare the mean 
systolic blood pressures between the two independent groups, Group A and 
Group B. A pilot data suggested that the means are approximately 132.86 and 
127.44 in Group A and Group B, respectively (i.e., difference size = 132.86 - 
127.44 = 5.42) and the known common population σ = 16.8. What should be 
an adequate sample size to detect a mean difference of 5.42?

For a nondirectional test with its adopted significance level, α = 0.05, power 
to attain, 1 – β = 0.8, and the common population standard deviation, σ = 16.8, 
the sample size per group for a balanced design (i.e., equal group size) is 
determined by the aforementioned equation
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Let us now consider the independent samples t-test to compare two means when 
the population standard deviation is not known under the assumption that the data 
are drawn from normally distributed populations. The principle of sample size 
determination is almost the same as that of the z-test except that the sampling distri-
bution of the test statistic is t-distribution which is a little bit more difficult to deal 
with. The difficult part is that the sampling distribution of the test statistic, t, under 
the alternative hypothesis must be characterized by not only the two means and 
standard error of the mean difference but also by two more parameters. These two 
parameters cannot be known until the sample size is known, so, unlike the z-test 
case, the sample size determination cannot be achieved by solving a single closed 
form equation of which the sample size being sought is not the one and only 
unknown variable. The first of these two parameters is the degree of freedom, df. 
As we already learned in the previous chapters that the degree of freedom is dependent 
on the sample size being sought. The other is the non-centrality parameter. The non-
centrality parameter corresponds to the standardized effect size of the test
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In the t-test setting, the population standard deviations, σgroup1 and σgroup2, are 
unknown but can be replaced with the sample standard deviations sgroup1 and sgroup2 
for approximation. In any event, without this parameter being known, the sampling 
distribution of the test statistic t under the alternative hypothesis cannot be com-
pletely characterized. Obviously, the sampling distribution under the null hypothe-
sis of equal means explicitly determines its non-centrality parameter to be zero, thus 
the sampling distribution of t under the null hypothesis is also called a central t-dis-
tribution. As illustrated in Fig. 8.5, unlike the z-test, the sampling distribution of the 
t-statistic under the alternative hypothesis has larger variation (degree of freedom of 
18, i.e., sample size = 20, non-centrality parameter = 3.5, reject H0: μ 1 = μ 2 if t < -2.1 or 
t > 2.1 in favor of the nondirectional alternative hypothesis H1: μ 1 ≠ μ 2) than that 
under the null hypothesis. Of course, the degree of increase in the variation for a fixed 
non-centrality parameter is also dependent on the degree of freedom (i.e., the sample 
size being sought). Such an interconnection makes the sample size determination 
more complicated than that of the z-test.

where z 1 – β = z 0.8 = 0.84 (i.e., z-value of the area under the standard Gaussian 
density curve covering from negative infinity to 0.8, and this can be found by 
using the Excel function NORMSINV(0.8) = 0.84).

Similarly z 1 – α/2 = z 1 – 0.025 = z 0.975 = 1.96 (using the Excel function 
NORMSINV(0.975) = 1.96), and the difference in means to detect is 5.42 
(about one-third of σ). The solution of the equation is 151, i.e., n per group = 2 
{16.8 × (0.84 + 1.96)/5.42}2 = 151.

8.2 � Sample Size for Hypothesis Tests



130

For this reason, the sample size can be determined iteratively, in that a rough 
estimate of the sample size is fixed temporarily to calculate the resulting power 
based on the non-central t-distribution characterized by the alternative hypothesis 
and continue to update the sample size until the resulting power is close enough to 
the targeted power. Computer programs as well as the calculated power tables for 
t-tests given a wide range of predetermined sample size, non-centrality parameter 
(or difference in means), sample standard deviations of the two groups, and level of 
significance, α, are widely available.

Comment on non-centrality parameter and beyond: We had not introduced the 
non-centrality parameter to the t-distribution until we encounter the situation for cal-
culating the power of a test using a specified sampling distribution of the test statistic, 
t, under an alternative hypothesis. This parameter does not influence the sampling 
distribution under the null hypothesis, and so is the practical aspect of carrying out a 
t-test, i.e., calculation of the p-value and/or determining the critical region as long as 
the directionality (one- or two sided) of the alternative hypothesis is only specified. 
The non-centrality parameter was necessary in the calculating the power given the 
significance level, α, and the known sample size. The power calculations for the 
Chi-square- and F-test also require the non-centrality parameters of these sampling 
distributions under the alternative hypotheses. Involvement of the non-centrality 
parameter in Chi-square- and F-distributions is due to the fact that both distributions 
are derived in relation with t-distribution. Interested readers may learn the mathe-
matical genesis of Chi-square- and F-distributions and the power calculation problem 
for estimating a sample size given the significance level, α, the alternative hypothesis, 
and the known sample size from further readings such as Winer (1971).

8.2.2  �Sample Size for Comparing Two Proportions

The Chi-square test is commonly used to compare two independent proportions in 
2 × 2 contingency table analysis setting. However, because of the complexity to deal 

Fig. 8.5  Power of a nondirectional hypothesis test for comparing two means using independent 
samples t-test
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with the non-centrality discussed in § 8.2.1, and also because the sampling distribu-
tion of the square root of the Chi-square statistics under the null hypothesis for the 
2 × 2 contingency table analysis is the same as that of the z-distribution (see § 6.1.1), 
the sample size can be determined by a method very similar to that of the indepen-
dent samples z-test for comparing two means. The following equation determines 
the sample size per group in a balanced design (i.e., equal group size) which is 
derived based on the z-distribution (i.e., normal approximation of Binomial 
Distribution) (see Sect. 1.5.5) wherein πA and πB indicate the two independent pro-
portions under alternative hypothesis, α is the adopted significance level, and β is 
the size of the power to attain.
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Figures 8.6 and 8.7 present the relationship among sample size, power, and effect 
size at an adopted 5 % significance.

Fig. 8.6  Sample size given power and effect size for independent samples z-test for comparing 
two proportions

Fig. 8.7  Power given sample size and effect size for independent samples z-test for comparing 
two proportions
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8.3  �Study Questions

	1.	 Explain why the graphs of Figs. 8.3 and 8.4 do not appear as straight lines.
	2.	 An investigator determined a sample size for a new study to detect a certain 

effect size (difference in two means) with 80 % power at a 5 % significance level 
using an independent samples t-test. If this investigator chooses a smaller effect 
size, then the sample size will have to increase. If a newly chosen effect size 
became its half size of the previously determined sample size without altering 
the power and significance level of the test, then should the new sample size be 
doubled or quadrupled?
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9.1                       Review Exercise 1 

     1.    A measure of body temperature (°F) is ______. Which answer is correct (5 points)?

    (1)    An interval datum   
   (2)    A ratio datum   
   (3)    A discrete datum   
   (4)    A continuous datum   

   (a)    None of these   
   (b)    Only (1)   
   (c)    Only (2)   
   (d)    Only (3)   
   (e)    Only (4)   
   (f)    (1) & (2)   
   (g)    (1) & (3)   
   (h)    (1) & (4)   
   (i)    (2) & (3)   
   (j)    (2) & (4)   
   (k)    (3) & (4)   
   (l)    (1) & (2) & (3)   
   (m)    (1) & (2) & (4)   
   (n)    (1) & (3) & (4)   
   (o)    (2) & (3) & (4)   
   (p)    (1) & (2) & (3) & (4)        

    2.    In a normal distribution ________. Which answer is correct (5 points)?

    (1)    The mean, median, and mode are the same.   
   (2)    The interval from half standard deviation below the mean to half standard 

deviation above the mean (i.e., mean - 0.5 × SD ~ mean + 0.5 × SD interval) 
covers approximately 38.3 % of the distribution.   

    Chapter 9   
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   (3)    The interval from 1.96 standard deviation units below the mean to 1.96 standard 
deviation units above the mean (i.e., mean - 1.96 × SD ~ mean + 1.96 × SD 
interval) covers 97.5 % of the distribution.   

   (a)    None of these   
   (b)    Only (1)   
   (c)    Only (2)   
   (d)    Only (3)   
   (e)    (1) & (2)   
   (f)    (2) & (3)   
   (g)    (1) & (3)   
   (h)    (1) & (2) & (3)        

    3.    In the  t -distribution with  df  = 20 and non-centrality parameter = 0, _____________. 
Which answer is correct (5 points)?

    (1)    The mean, median, and mode are the same.   
   (2)    The interval from −1.725 to 1.725 covers 95 % of  t -values.   
   (3)    The interval from −2.528 to 2.528 covers 95 % of  t -values.   
   (4)    The interval from −2.086 to 0.000 covers 47.5 % of  t -values.    

    (a)    None of these   
   (b)    Only (1)   
   (c)    Only (2)   
   (d)    Only (3)   
   (e)    Only (4)   
   (f)    (1) & (2)   
   (g)    (1) & (3)   
   (h)    (1) & (4)   
   (i)    (2) & (3)   
   (j)    (2) & (4)   
   (k)    (3) & (4)   
   (l)    (1) & (2) & (3)   
   (m)    (1) & (2) & (4)   
   (n)    (1) & (3) & (4)   
   (o)    (2) & (3) & (4)   
   (p)    (1) & (2) & (3) & (4)    

        4.    In the  F -distribution (under the null hypothesis for an ANOVA  F -test) with 
 df  numerator  = 3 and  df  denominator  = 5 ______. Which answer is correct (5 points).

    (1)    The mean, median, and mode are the same.   
   (2)    The probability of observing a value of F > 5.41 is 0.025.   
   (3)    The smallest possible value is 0.   
   (4)    The square root of F ( df  numerator  = 3,  df  denominator  = 5) = t ( df  = 5).    

    (a)    None of these   
   (b)    Only (1)   
   (c)    Only (2)   
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   (d)    Only (3)   
   (e)    Only (4)   
   (f)    (1) & (2)   
   (g)    (1) & (3)   
   (h)    (1) & (4)   
   (i)    (2) & (3)   
   (j)    (2) & (4)   
   (k)    (3) & (4)   
   (l)    (1) & (2) & (3)   
   (m)    (1) & (2) & (4)   
   (n)    (1) & (3) & (4)   
   (o)    (2) & (3) & (4)   
   (p)    (1) & (2) & (3) & (4)    

        5.    The power refers to _____________. Which is answer is correct (5 points)?

    (1)    Probability of rejecting the null hypothesis when it is false.   
   (2)    1 minus the probability of type-1 error.   
   (3)    The size of the difference between the values stated in the null hypothesis 

and the alternative hypothesis.   
   (4)    1 minus  p -value.    

    (a)    None of these   
   (b)    Only (1)   
   (c)    Only (2)   
   (d)    Only (3)   
   (e)    Only (4)   
   (f)    (1) & (2)   
   (g)    (1) & (3)   
   (h)    (1) & (4)   
   (i)    (2) & (3)   
   (j)    (2) & (4)   
   (k)    (3) & (4)   
   (l)    (1) & (2) & (3)   
   (m)    (1) & (2) & (4)   
   (n)    (1) & (3) & (4)   
   (o)    (2) & (3) & (4)   
   (p)    (1) & (2) & (3) & (4)    

        6.    Please make the stem-and-leaf plot of the following 11 observations (5 points): 
41 48 51 52 55 56 58 63 65 67 83    

    7.    Dr. Z studied 28 patients with a certain chronic illness. From the patients’ history 
review, the means and the variances of the ages at the occurrence of fi rst episode 
for the severe, moderate, and mild groups are summarized in the following table. 
Please note that these data are not real, but they were made up for an easy 
calculation.
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 Descriptive statistics for problems 7.1–7.16 

 Mean age  Variance of age distribution 

 Severe (group 1) ( n  =  10 )  30.00  25 
 Moderate (group2) ( n  =  10 )  35.00  25 
 Mild (group 3) ( n  =  8 )  41.25  25 

   7.1–7.4 Based on the past experience, Dr. Z suspected that the mean age of 
fi rst episode occurrence within the severe group would be 33 or less (i.e., 
younger). Please perform a  t -test at a 5 % signifi cance level.

    7.1.    Stating null and alternative hypotheses

    (A)    Write up a proper null hypothesis that should have been written prior to 
the data collection (please do not use mathematical notations but do 
verbalize) (1 point).   

   (B)    Write up the alternative hypothesis that negates your stated null hypoth-
esis that should have been written prior to the data collection (please do 
not use mathematical notations but do verbalize) (1 point).        

    7.2.    Test statistic

    (A)    Calculate the numerator of your  t -statistic under the null hypothesis 
which is (observed severe group’s mean age at occurrence of the fi rst 
episode for the severe – the mean under the null hypothesis) (1 point).   

   (B)    Calculate the denominator of the  t -statistic which is the standard error 
of the numerator, i.e., SE of (observed severe group’s mean age at 
occurrence of the fi rst episode for the severe – the mean under the null 
hypothesis) (4 points).   

   (C)    What is the value of your observed  t -statistic (2 points)?        

    7.3.    Determination of the signifi cance 
 You can either calculate the  p -value directly or determine the critical region 
fi rst then determine if the observed test statistic is within the critical region 
of the sampling distribution under the null hypothesis. The degree of free-
dom of your test statistic’s distribution is 9.

    (A)    If you decided to calculate the  p -value using Excel, which Excel func-
tion would you use? _____ (1 point)   

   (B)    Please determine the  critical region  of this test (note: a critical region 
is not simply the critical cutoff value/values of the test statistic  t ). 
___________ (2 points)   

   (C)     p -value of the observed test statistic  t : ______    

        7.4.    Write a single sentence that can go into the results section of a research 
paper. Please  do not  write a sentence like “The null hypothesis was rejected 
because …..” (2 points).    

  7.5–7.8 Please perform a  t -test at a 5 % signifi cance level to examine if 
the mean ages of the fi rst episode occurrence are the same in both severe 
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patients and moderate patients or otherwise the severe patients encounter 
their fi rst episode  sooner  in life than the moderate patients.

    7.5.    Stating null and alternative hypotheses

    (A)    Write up a null hypothesis that should have been written prior to the 
data collection (please do not use mathematical notations but do ver-
balize) (1 point).   

   (B)    Write up the alternative hypothesis that negates the null hypothesis that 
should have been written prior to the data collection (please do not use 
mathematical notations but do verbalize) (1 point).        

    7.6.    Test statistic

    (A)    Calculate the numerator of the  t -statistic, i.e., observed mean difference 
– expected mean difference under the null hypothesis. Mean difference 
set up: [severe group’s mean – moderate group’s mean] (1 point).   

   (B)    Calculate the denominator of the  t -statistic which is the standard error 
of the numerator, i.e., SE of (observed mean difference – expected 
mean difference under the null hypothesis) (5 points).   

   (C)    If you carried out (A) and (B) correctly, then the  t -statistic is −2.236. 
Please show your derivation (simply follow “ triplet ” set up found in 
Sect.   3.1    ) (4 points)?        

    7.7.    Determination of the signifi cance using 
 You can either calculate the  p -value directly or determine the critical 
region fi rst then examine whether or not the observed test statistic is 
within the critical region. The degree of freedom of your test statistic’s 
distribution is 18.

    (A)    If you decided to calculate the  p -value using Excel, which Excel func-
tion would you use? _____ (1 point).   

   (B)    Please determine the  critical  region  of this test (note: a critical region 
is not simply the critical cutoff value/values of the test statistic  t ). 
___________ (1 point).   

   (C)     p -value: ______ (2 points).   
   (D)    In order for the difference becomes signifi cant at the chosen signifi -

cance level, what should be the smallest value of the difference? (4 
points).    

        7.8.    Confi dence interval of the mean difference

    (A)    Using a  t -distribution, please construct a 90 % confi dence interval on 
the difference between the two means (i.e., severe mean age – moderate 
mean age).    Please carry out this calculation as instructed (i.e., do not  
calculate either moderate mean age - severe mean age or take an abso-
lute value of the result).   

   (B)    Write a single sentence that can go into the results section of a clinical 
journal paper (2 points).        
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  7.9–7.14 The following ANOVA table is constructed to compare the 
mean ages of fi rst episode onset among the three groups (i.e., H 0 : All three 
means are equal vs. H 1 : At least one mean is different from the rest). 

 Please complete the table. Note that you need to calculate the grand mean 
age, and please be careful with that calculation.

 Source   df   Sum of squares  Mean squares   F  value 

 Between severities  2  7.9 ____(3 pts)  7.12 _____(1 pt)  7.14 _____(1 pt) 
 Error (within severity)  25  7.10 ____(3 pts)  7.13 _____(1 pt) 
 Total  27  7.11 ____(1 pt) 

     7.15.    Calculate the  p -value using Excel (2 points).   
   7.16.    Write a single sentence that can go into the results section of a clinical 

journal paper (2 points).   
   7.17.    Dr. Z plans on constructing a new study (Z-10 study) that will enroll only 

the severe and moderate patients. The plan is to enroll 200 patients in each 
group in order to detect a smaller difference than what was observed in the 
above small Z-09 study (note that Z-09 study showed a difference of 5 
years in mean ages). The inference will be a directi   onal independent sam-
ples  z -test at a 5 % signifi cance level with a 90 % power. It is known that 
the population variances of the three groups are known and equal to 25. 
Please provide a reasonable approximation of the minimum detectable 
statistically signifi cant difference between the two mean ages (your answer 
should include the wording “a difference in mean ages of at least ____ 
years”) for Z-10 study. Please show fully annotated work including the 
justifi cation for some assumptions or subjective decision that you might 
have made (5 points).    

        8.    Dr. A at a major university affi liated teaching hospital conducted a pilot effi cacy 
study to investigate whether or not a new post-surgery rehabilitation intervention 
can improve patient quality of life during a 4-week period after a hip surgery 
(A-01 study). The study was a two-arm (conventional versus new intervention 
groups) randomized study. The sample size of this A-01 study was determined to 
detect at least  m % greater improvement in the mean score among the patients 
receiving the new intervention at a 10 % signifi cance level with a power of 80 % 
by a directional  t -test. Dr. A assumed equal variance and the common standard 
deviation value that Dr. A used for the sample size determination was  s %. The 
study enrolled 15 patients receiving the intervention and 15 patients receiving 
traditional intervention (total sample size of 30). The result of A-01 study was 
quite promising in that the directional statistical test (i.e., independent samples 
 t -test) was signifi cant at the predetermined signifi cance level of 10 % (it is not 
uncommon that a pilot study chooses a lenient signifi cance level than 5 %); and 
the patients who received the new intervention showed that the mean percentage 
improvement of the physical strength subscale of SF-36 quality of life scale was 
greater by about  m % after 4 weeks. 
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 Based on the A-01 study, Dr. A suspected that a new study could detect 
even a smaller difference; and he proposed a new study (A-02 study) that 
will enroll 60 patients per group (i.e., total study sample size of 120). In the 
sample size determination section of the A-02 study proposal, Dr. A justi-
fi ed that the proposed sample size is adequate to show a statistically signifi -
cant mean percentage improvement in the subscale by at least  m/2  % by 
using a directional independent sample  t -test at a 5 % signifi cance level with 
a power of 80 %. The common standard deviation of the mean percentage 
improvement remains the same as that of study A-01. 

  Question : Was Dr. A’s sample size justifi cation reasonable? Why/why 
not? (5 points)    

    9.    Which of the following is true? (5 points).

    (1)    The distribution of a random sample data set drawn from a non-normal con-
tinuous population distribution will approach to a normal distribution as the 
sample size becomes very large.   

   (2)    The distribution of sample means obtained from a non-normal continuous 
population distribution will approach to a normal distribution as the sample 
size becomes very large.   

   (3)    The distribution of the sample means obtained from a normal population 
distribution will approach to a normal distribution as the sample size 
becomes very large.   

   (a)    None of these   
   (b)    Only (1)   
   (c)    Only (2)   
   (d)    Only (3)   
   (e)    (1) & (2)   
   (f)    (2) & (3)   
   (g)    (1) & (3)   
   (h)    (1) & (2) & (3)        

9.2      Review Exercise 2 

9.2.1     Part A (30 Points): Questions 1–15 “True/False” 
Questions, Please  Explain/Criticize Why  If You Chose 
to Answer  False  (2 Points Each) 

     1.    Coeffi cient of variation (CV) can measure the variability of data measured on the 
interval or ratio scale and is useful to compare the variations of two different 
characteristics of the same patient group measures in the same unit or those of 
the same characteristics from two or more different patient groups. (True/False).   
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   2.    A large size statistics course class’ fi nal test scores are normally distributed. CV 
of the test score distribution is 10 % and the average score is 80. It can be inter-
preted that approximately 31.7 % of the students received their scores either 
above 88 or below 72 (i.e., outside of these two high and low scores). ( True/
False).   

   3.    Mean (± standard deviation) of pulse rate of a large group of people is known as 
65 beats/min (±10). It is also known that the pulse rate of this group is normally 
distributed. The proportion of the people with pulse rate over 85 beats/min is 
approximately less than 5 % but greater than 2 % (i.e., 2 % < pulse rate < 5 %). 
(True/False).   

   4.    A researcher conducted a small study (n = 15) and estimated a sample mean and 
its standard error of a continuous measurement, then constructed a normal 
approximation based 95 % confi dence interval around the population mean. The 
result was presented to a department’s seminar. Another researcher made a com-
ment that the confi dence interval would be slightly wider if it had been con-
structed based on the  t -distribution with  df =  14. (True/False).   

   5.    Dr. Z proposed a comparative study involving a total of 60 study subjects of 
whom 30 subjects will receive medication A and the other 30 will receive pla-
cebo. He wants to detect a 10-point reduction in mean pain scale score among the 
subjects on medication A compared to the mean of the placebo subjects by using 
the directional independent samples  t -test at a 5 % signifi cance level with 80 % 
power. A reviewer agreed with the choice of the  t -test. However, it is criticized 
that the detectable difference is too large and    a 5-point reduction is needed to be 
detected. Then the researcher decided to double the study sample size (i.e., a 
total of 120 subjects) to detect at least 5 points reduction in mean pain score by 
the same test (i.e., directional independent samples  t -test, the same power, the 
same signifi cance level, and the same assumption about the standard deviation). 
Dr. Z’s decision was correct. (True/False).   

   6.    If a hypothesis test did not show a statistically signifi cant difference in two means 
but the observed difference in the two sample means was large enough, we 
should not exclude a possibility that the study had been underpowered. (True/
False).   

   7.    An investigator wants to perform a hypothesis test of which H 0 : Mean = 100 and 
H 1 : Mean > 100. It is observed that the sample mean = 100 and its standard 
error = 50 from a random sample set of size 10 drawn from a normally distributed 
population. A  t -test is not applicable because the  t -test is only applicable in a 
two-group comparison or a paired mean comparison. (True/False).   

   8.    If a  t -distribution based 95 % confi dence interval on a difference in two means 
excluded 0 and the signs of the upper and lower confi dence limits were the same 
and they were in the desirable direction, we can say that the nondirectional inde-
pendent samples  t -test for the comparison would also reject H 0 : mean 1  = mean 2  at 
a 5 % signifi cance level, the null hypothesis. (True/False).   

   9.    The following fi gure reveals that there was no  Group  x  Method  interaction 
(please assume that every observed difference in the fi gures was statistically sig-
nifi cant at 5 % signifi cance level). (True/False). 
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    10.    An estimated multiple linear regression equation predicts the means of the 
dependent variable at particular values of the model’s independent variables. 
(True or/False).   

   11.    OR (odds ratio) is defi ned as the ratio of the two event probabilities of which the 
numerator is one group’s event probability and the denominator is another 
group’s (i.e., comparison group’s) event probability. (True or/False).   

   12.    In a 2 × 2 contingency table analysis setting, the alternative hypothesis of the 
Chi-square test can be directional. (True or/False).   

   13.    Please explain “a statistic”.   
   14.    Please explain “a sampling distribution”.   
   15.    Please explain “a standard error”.    

9.2.2      Part B (15 Points): Questions 16.1–16.3 

 While interested in studying the performance on a mathematics profi ciency test of a 
very large cohort of college freshmen in a developing country, a team of investiga-
tors had no knowledge about the population distribution of the performance scores. 
So, they gathered a pilot random sample of 100 individual scores and created the 
following stem-and-leaf plot and computed the mean and standard deviation 
(observed sample mean = 57 and the observed sample standard deviation = 17). 

        9 57 
        9 0 
        8 55666789 
        8 0012234 
        7 889 
        7 004 

  Mean responses of the outcomes for two different methods among the three study subgroups  

9.2 Review Exercise 2



142

        6 556689 
        6 0011344 
        5 566666778 
        5 012223334444 
        4 555555566668889999 
        4 0012222244 
        3 566789999 
        3 2234 
        2 6 

 Then they came to a statistics professor and asked if the distribution of the scores 
in the population from which the sample set was drawn could be a normal distribu-
tion. The professor examined it and answered “well … there is enough evidence that 
the population scores are not normally distributed because the sample data are clus-
tered at two locations, i.e., bi-modal (having two modes)”.

    16.1.    The sample median can be obtained from the information given to you: (True/
False). If you answered “True”, please fi nd out the median score. Otherwise 
please explain why you cannot obtain the sample median (5 points).   

   16.2.    If a very large new random sample set is drawn (e.g., n = 3,000), the distribu-
tion of that new sample will approach to a normal (Gaussian) distribution: 
(True—Please explain why/False—Please explain why). (5 points).   

   16.3.    If a very large number,  m , of random sample sets with each individual sample 
size of 1,000 are independently drawn, then the distribution of those  m  inde-
pendent sample means will probably form a symmetrical bell shape distribu-
tion: (True Please explain why/False—Please explain why) (5 points).      

9.2.3    Part C (15 Points): Questions 17–19 

 The following descriptive statistics summarize the result of a small study of an 
effectiveness of a new intervention to improve elbow ROM (Range of Motion in 
degrees) among elderly men and women with previous elbow fracture.

 Control  Intervention A  Combined samples 

 Men  N = 10  N = 10   N  =  20  
 Mean = 30.10  Mean = 30.00   Mean  =  30 . 05  
 SD = 1.91  SD = 2.11   SD  =  2 . 01  

 Women  N = 30  N = 30   N  =  60  
 Mean = 30.90  Mean = 36.40   Mean  =  33 . 65  
 SD = 1.91  SD = 2.27   SD  =  2 . 10  

 Combined samples   N  =  40    N  =  40    N  =  80  
  Mean  =  30 . 70    Mean  =  34 . 80    Mean  =  32 . 75  
  SD  =  1 . 91    SD  =  2 . 23    SD  =  2 . 08  
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     17.    Write an estimated regression equation that you would have obtained if a regres-
sion modeling (under the equal variance assumption) had been applied to 
women. Please let M_ROM (mean ROM) denote the dependent variable and let 
I_A denote the independent variable (a dummy variable  indicating intervention 
A if its value = 1 and Control if 0), i.e., M_ROM = (  ) + (  ) ·  I_A (5 points).   

   18.    The intervention was not effi cacious within men (statistical analysis test was 
performed, and the result was not signifi cant). Please perform a directional 
 t -test ( df  = 58) to examine whether or not the intervention was effi cacious within 
women (please use a 5 % signifi cance level and assume that the population vari-
ances are equal between the two groups) and make a statement that can appear 
in a clinical journal (5 points).   

   19.    Was there an interaction? If so, please describe it; otherwise explain why the 
above information did not show an interaction (5 points).    

9.2.4      Part D (10 Points): Questions 20–21 

 In a certain population, for a subject  i  ( i  =  1 ,  2 ,  3 , …, etc.), the measurement of  Y  is 
determined by the following linear model  Y   i   =  β   0   +  β   1    X   i   +  ε   i  , where  ε   i   is a random 
error with mean 0.  Y  and  X  are both continuous variables and  Y  follows a normal 
distribution. The following equation is an estimated regression equation (using a 
sample data  n  = 122). The number in parentheses underneath the estimated regres-
sion slope coeffi cient is its standard error. 

  
�
Y   =100 + 2.25 ·  X  

 (0.90) 

 Note: it was confi rmed that the intercept  β   0   was signifi cantly greater than 0 
( p  < 0.00001), and the current estimate of 100 is clinically very meaningful.

    20.    Perform a  z -test of which H 0 :  β   1   = 0 versus H 1 :  β   1   > 0, and write up a sentence 
that can go into a clinical journal results section. Please use a 5 % signifi cance 
level (5 points).   

   21.    Please construct a  z -based 90 % CI around the  β   1  , and write up a sentence that 
can go into a clinical journal results section (5 points).    

9.2.5      Part E (5 Points): Question 22 

 A small study showed that an estimated Pearson’s product moment correlation coef-
fi cient between two continuous outcome variables using 12 pairs was 0.365, which 
was not signifi cantly different from 0 at a 5 % signifi cance level by the directional 
 t -test (H 0 : Population correlation coeffi cient  ρ  = 0 versus H 1 : Population correlation 
coeffi cient  ρ  > 0). 
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 There was another similar study result involving 22 pairs that showed  r  = 0.375 
without presenting a statistical test result.

    22.    Please perform a  t -test of which the null and alternative hypotheses are H 0 : 
Population correlation coeffi cient  ρ  = 0 versus H 1 : Population correlation 
 coeffi cient  ρ  > 0. Please use a 5 % signifi cance level ( df  for the related statistical 
test = 20). Please describe how you determined the signifi cance of the result, and 
write up a sentence that can go into a clinical journal results section. Please do 
not include the explanation how you made your conclusion (i.e., do not make 
your answer like “… since  p  was less than ##, I rejected the null …”) (5 points).    

9.2.6      Part F (20 Points): Questions 23–26 

 Please choose a  proper nonparametric method  for each analysis from the listed 
methods below.

    23.    Comparison of BMI (body mass index, i.e., [weight in pounds × 703]/[height in 
inches 2 ]) distributions among three groups (5 points).   

   24.    Test for examining whether or not there was a change in body weight between 
baseline and post 6 months life style modifi cation intervention program offered 
to a group of obese subjects (5 points).   

   25.    Test for an association between sex (male versus female) and smoking status 
(non-smokers versus smokers) (5 points).   

   26.    Test for an association between age and heart rate (5 points).

    (a)    Wilcoxon’s signed-rank test   
   (b)    Mann–Whitney  U -test (or Wilcoxon’s rank sum test)   
   (c)    Kruskal–Wallis test   
   (d)    Friedman’s test   
   (e)    Chi-square test for independence   
   (f)    McNemar’s test for matched pairs   
   (g)    Spearman’s rank correlation             
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    Chapter 11   
 Percentiles of  t -Distributions                         

  Table 11.1    Absolute value of t statistic (i.e., |t|) given  df  and tail (both upper and lower tails) 
probability   

  df    p  = 0.0005   p  = 0.001   p  = 0.025   p  = 0.05   p  = 0.075   p  = 0.1 

 2  44.7046  31.5991  6.2053  4.3027  3.4428  2.9200 
 3  16.3263  12.9240  4.1765  3.1824  2.6808  2.3534 
 4  10.3063  8.6103  3.4954  2.7764  2.3921  2.1318 
 5  7.9757  6.8688  3.1634  2.5706  2.2423  2.0150 
 6  6.7883  5.9588  2.9687  2.4469  2.1510  1.9432 
 7  6.0818  5.4079  2.8412  2.3646  2.0897  1.8946 
 8  5.6174  5.0413  2.7515  2.3060  2.0458  1.8595 
 9  5.2907  4.7809  2.6850  2.2622  2.0127  1.8331 
 10  5.0490  4.5869  2.6338  2.2281  1.9870  1.8125 
 11  4.8633  4.4370  2.5931  2.2010  1.9663  1.7959 
 12  4.7165  4.3178  2.5600  2.1788  1.9494  1.7823 
 13  4.5975  4.2208  2.5326  2.1604  1.9354  1.7709 
 14  4.4992  4.1405  2.5096  2.1448  1.9235  1.7613 
 15  4.4166  4.0728  2.4899  2.1314  1.9132  1.7531 
 16  4.3463  4.0150  2.4729  2.1199  1.9044  1.7459 
 17  4.2858  3.9651  2.4581  2.1098  1.8966  1.7396 
 18  4.2332  3.9216  2.4450  2.1009  1.8898  1.7341 
 19  4.1869  3.8834  2.4334  2.0930  1.8837  1.7291 
 20  4.1460  3.8495  2.4231  2.0860  1.8783  1.7247 
 21  4.1096  3.8193  2.4138  2.0796  1.8734  1.7207 
 22  4.0769  3.7921  2.4055  2.0739  1.8690  1.7171 
 23  4.0474  3.7676  2.3979  2.0687  1.8649  1.7139 
 24  4.0207  3.7454  2.3909  2.0639  1.8613  1.7109 
 25  3.9964  3.7251  2.3846  2.0595  1.8579  1.7081 
 26  3.9742  3.7066  2.3788  2.0555  1.8548  1.7056 
 27  3.9538  3.6896  2.3734  2.0518  1.8519  1.7033 
 28  3.9351  3.6739  2.3685  2.0484  1.8493  1.7011 
 29  3.9177  3.6594  2.3638  2.0452  1.8468  1.6991 

(continued)
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  df    p  = 0.0005   p  = 0.001   p  = 0.025   p  = 0.05   p  = 0.075   p  = 0.1 

 30  3.9016  3.6460  2.3596  2.0423  1.8445  1.6973 
 31  3.8867  3.6335  2.3556  2.0395  1.8424  1.6955 
 32  3.8728  3.6218  2.3518  2.0369  1.8404  1.6939 
 33  3.8598  3.6109  2.3483  2.0345  1.8385  1.6924 
 34  3.8476  3.6007  2.3451  2.0322  1.8368  1.6909 
 35  3.8362  3.5911  2.3420  2.0301  1.8351  1.6896 
 50  3.7231  3.4960  2.3109  2.0086  1.8184  1.6759 
 75  3.6391  3.4250  2.2873  1.9921  1.8056  1.6654 
 100  3.5983  3.3905  2.2757  1.9840  1.7992  1.6602 

Table 11.1 (continued)

11 Percentiles of  t -Distributions 
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    Chapter 12   
 Upper 95th and 99th Percentiles 
of Chi-Square Distributions                         
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 Table 12.1    Upper 95th (5 % 
upper tail) and 99th (1 % 
upper tail) percentiles of 
chi-square distributions  

  df   95th (5 % upper tail)  99th (1 % upper tail) 

 1  3.84  6.63 
 2  5.99  9.21 
 3  7.81  11.34 
 4  9.49  13.28 
 5  11.07  15.09 
 6  12.59  16.81 
 7  14.07  18.48 
 8  15.51  20.09 
 9  16.92  21.67 
 10  18.31  23.21 
 11  19.68  24.72 
 12  21.03  26.22 
 13  22.36  27.69 
 14  23.68  29.14 
 15  25.00  30.58 
 16  26.30  32.00 
 17  27.59  33.41 
 18  28.87  34.81 
 19  30.14  36.19 
 20  31.41  37.57 
 21  32.67  38.93 
 22  33.92  40.29 
 23  35.17  41.64 
 24  36.42  42.98 
 25  37.65  44.31 
 26  38.89  45.64 
 27  40.11  46.96 
 28  41.34  48.28 
 29  42.56  49.59 
 30  43.77  50.89 
 35  49.80  57.34 
 40  55.76  63.69 
 45  61.66  69.96 
 50  67.50  76.15 
 75  96.22  106.39 
 100  124.34  135.81 

12 Upper 95th and 99th Percentiles of Chi-Square Distributions
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    Chapter 13   
 Upper 95th Percentiles of  F -Distributions                         

  Table 13.1    Upper 95th percentiles of  F -distributions      

  df  2  

  df  1  

 1  2  3  4  5  6  7  8  9  10 

 2  18.51  19.00  19.16  19.25  19.30  19.33  19.35  19.37  19.38  19.40 
 3  10.13  9.55  9.28  9.12  9.01  8.94  8.89  8.85  8.81  8.79 
 4  7.71  6.94  6.59  6.39  6.26  6.16  6.09  6.04  6.00  5.96 
 5  6.61  5.79  5.41  5.19  5.05  4.95  4.88  4.82  4.77  4.74 
 6  5.99  5.14  4.76  4.53  4.39  4.28  4.21  4.15  4.10  4.06 
 7  5.59  4.74  4.35  4.12  3.97  3.87  3.79  3.73  3.68  3.64 
 8  5.32  4.46  4.07  3.84  3.69  3.58  3.50  3.44  3.39  3.35 
 9  5.12  4.26  3.86  3.63  3.48  3.37  3.29  3.23  3.18  3.14 
 10  4.96  4.10  3.71  3.48  3.33  3.22  3.14  3.07  3.02  2.98 
 11  4.84  3.98  3.59  3.36  3.20  3.09  3.01  2.95  2.90  2.85 
 12  4.75  3.89  3.49  3.26  3.11  3.00  2.91  2.85  2.80  2.75 
 13  4.67  3.81  3.41  3.18  3.03  2.92  2.83  2.77  2.71  2.67 
 14  4.60  3.74  3.34  3.11  2.96  2.85  2.76  2.70  2.65  2.60 
 15  4.54  3.68  3.29  3.06  2.90  2.79  2.71  2.64  2.59  2.54 
 16  4.49  3.63  3.24  3.01  2.85  2.74  2.66  2.59  2.54  2.49 
 17  4.45  3.59  3.20  2.96  2.81  2.70  2.61  2.55  2.49  2.45 
 18  4.41  3.55  3.16  2.93  2.77  2.66  2.58  2.51  2.46  2.41 
 19  4.38  3.52  3.13  2.90  2.74  2.63  2.54  2.48  2.42  2.38 
 20  4.35  3.49  3.10  2.87  2.71  2.60  2.51  2.45  2.39  2.35 
 21  4.32  3.47  3.07  2.84  2.68  2.57  2.49  2.42  2.37  2.32 
 22  4.30  3.44  3.05  2.82  2.66  2.55  2.46  2.40  2.34  2.30 
 23  4.28  3.42  3.03  2.80  2.64  2.53  2.44  2.37  2.32  2.27 
 24  4.26  3.40  3.01  2.78  2.62  2.51  2.42  2.36  2.30  2.25 
 25  4.24  3.39  2.99  2.76  2.60  2.49  2.40  2.34  2.28  2.24 
 26  4.23  3.37  2.98  2.74  2.59  2.47  2.39  2.32  2.27  2.22 
 27  4.21  3.35  2.96  2.73  2.57  2.46  2.37  2.31  2.25  2.20 
 28  4.20  3.34  2.95  2.71  2.56  2.45  2.36  2.29  2.24  2.19 
 29  4.18  3.33  2.93  2.70  2.55  2.43  2.35  2.28  2.22  2.18 
 30  4.17  3.32  2.92  2.69  2.53  2.42  2.33  2.27  2.21  2.16 
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  df  2  

  df  1  

 1  2  3  4  5  6  7  8  9  10 

 35  4.12  3.27  2.87  2.64  2.49  2.37  2.29  2.22  2.16  2.11 
 40  4.08  3.23  2.84  2.61  2.45  2.34  2.25  2.18  2.12  2.08 
 45  4.06  3.20  2.81  2.58  2.42  2.31  2.22  2.15  2.10  2.05 
 50  4.03  3.18  2.79  2.56  2.40  2.29  2.20  2.13  2.07  2.03 
 55  4.02  3.16  2.77  2.54  2.38  2.27  2.18  2.11  2.06  2.01 
 60  4.00  3.15  2.76  2.53  2.37  2.25  2.17  2.10  2.04  1.99 
 75  3.97  3.12  2.73  2.49  2.34  2.22  2.13  2.06  2.01  1.96 
 100  3.94  3.09  2.70  2.46  2.31  2.19  2.10  2.03  1.97  1.93 

   df  1 —numerator  df  
  df  2 —denominator  df   

Table 13.1 (continued)

13 Upper 95th Percentiles of  F -Distributions
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    Chapter 14   
 Upper 99th Percentiles of  F -Distributions                         

  Table 14.1       Upper 99th percentiles of  F -distributions   

  df  2  

  df  1  

 1  2  3  4  5  6  7  8  9  10 

 2  98.50  99.00  99.17  99.25  99.30  99.33  99.36  99.37  99.39  99.40 
 3  34.12  30.82  29.46  28.71  28.24  27.91  27.67  27.49  27.35  27.23 
 4  21.20  18.00  16.69  15.98  15.52  15.21  14.98  14.80  14.66  14.55 
 5  16.26  13.27  12.06  11.39  10.97  10.67  10.46  10.29  10.16  10.05 
 6  13.75  10.92  9.78  9.15  8.75  8.47  8.26  8.10  7.98  7.87 
 7  12.25  9.55  8.45  7.85  7.46  7.19  6.99  6.84  6.72  6.62 
 8  11.26  8.65  7.59  7.01  6.63  6.37  6.18  6.03  5.91  5.81 
 9  10.56  8.02  6.99  6.42  6.06  5.80  5.61  5.47  5.35  5.26 
 10  10.04  7.56  6.55  5.99  5.64  5.39  5.20  5.06  4.94  4.85 
 11  9.65  7.21  6.22  5.67  5.32  5.07  4.89  4.74  4.63  4.54 
 12  9.33  6.93  5.95  5.41  5.06  4.82  4.64  4.50  4.39  4.30 
 13  9.07  6.70  5.74  5.21  4.86  4.62  4.44  4.30  4.19  4.10 
 14  8.86  6.51  5.56  5.04  4.69  4.46  4.28  4.14  4.03  3.94 
 15  8.68  6.36  5.42  4.89  4.56  4.32  4.14  4.00  3.89  3.80 
 16  8.53  6.23  5.29  4.77  4.44  4.20  4.03  3.89  3.78  3.69 
 17  8.40  6.11  5.18  4.67  4.34  4.10  3.93  3.79  3.68  3.59 
 18  8.29  6.01  5.09  4.58  4.25  4.01  3.84  3.71  3.60  3.51 
 19  8.18  5.93  5.01  4.50  4.17  3.94  3.77  3.63  3.52  3.43 
 20  8.10  5.85  4.94  4.43  4.10  3.87  3.70  3.56  3.46  3.37 
 21  8.02  5.78  4.87  4.37  4.04  3.81  3.64  3.51  3.40  3.31 
 22  7.95  5.72  4.82  4.31  3.99  3.76  3.59  3.45  3.35  3.26 
 23  7.88  5.66  4.76  4.26  3.94  3.71  3.54  3.41  3.30  3.21 
 24  7.82  5.61  4.72  4.22  3.90  3.67  3.50  3.36  3.26  3.17 
 25  7.77  5.57  4.68  4.18  3.85  3.63  3.46  3.32  3.22  3.13 
 26  7.72  5.53  4.64  4.14  3.82  3.59  3.42  3.29  3.18  3.09 
 27  7.68  5.49  4.60  4.11  3.78  3.56  3.39  3.26  3.15  3.06 
 28  7.64  5.45  4.57  4.07  3.75  3.53  3.36  3.23  3.12  3.03 
 29  7.60  5.42  4.54  4.04  3.73  3.50  3.33  3.20  3.09  3.00 
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  df  2  

  df  1  

 1  2  3  4  5  6  7  8  9  10 

 30  7.56  5.39  4.51  4.02  3.70  3.47  3.30  3.17  3.07  2.98 
 35  7.42  5.27  4.40  3.91  3.59  3.37  3.20  3.07  2.96  2.88 
 40  7.31  5.18  4.31  3.83  3.51  3.29  3.12  2.99  2.89  2.80 
 45  7.23  5.11  4.25  3.77  3.45  3.23  3.07  2.94  2.83  2.74 
 50  7.17  5.06  4.20  3.72  3.41  3.19  3.02  2.89  2.78  2.70 
 55  7.12  5.01  4.16  3.68  3.37  3.15  2.98  2.85  2.75  2.66 
 60  7.08  4.98  4.13  3.65  3.34  3.12  2.95  2.82  2.72  2.63 
 75  6.99  4.90  4.05  3.58  3.27  3.05  2.89  2.76  2.65  2.57 
 100  6.90  4.82  3.98  3.51  3.21  2.99  2.82  2.69  2.59  2.50 

   df  1 —numerator  df  
  df  2 —denominator  df   

Table 14.1 (continued)
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    Chapter 15   
 Sample Sizes for Independent Samples  t -Tests                         

  Table 15.1    Sample size per group for two-group independent samples  t -test (normal approximation)   

 Effect size = (mean difference/
common SD) 

 Alpha = 0.01 (two-sided)  Alpha = 0.05 (two-sided) 

 Power = 0.8  Power = 0.9  Power = 0.8  Power = 0.9 

 0.25  373  476  251  336 
 0.30  259  330  174  233 
 0.35  190  242  128  171 
 0.40  145  185  98  131 
 0.45  115  146  77  103 
 0.50  93  119  62  84 
 0.55  77  98  51  69 
 0.60  64  82  43  58 
 0.65  55  70  37  49 
 0.70  47  60  32  42 
 0.75  41  52  27  37 
 0.80  36  46  24  32 
 0.85  32  41  21  29 
 0.90  28  36  19  25 
 0.95  25  32  17  23 
 1.00  23  29  15  21 
 1.05  21  26  14  19 
 1.10  19  24  12  17 
 1.15  17  22  11  15 
 1.20  16  20  10  14 
 1.25  14  19  10  13 
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