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Preface

Introduction

In summer of 2010, the first author (HL) visited the second author
(XL) at Lanzhou University, China, and chaired the dissertation de-
fense for XL’s two graduating doctoral students. During the visit, we
discussed that a large reliability meeting (MMR2011) was scheduled
to be held in Beijing in the summer of 2011 and that the meeting
would attract some stochastic inequality people, including Professor
Moshe Shaked, to visit Beijing. XL then initiated the idea of orga-
nizing a small academic gathering for these people at Xiamen Univer-
sity, China, focusing specifically on stochastic inequalities in honor of
Moshe Shaked—our common academic mentor, our coauthor, and our
good friend. A stochastic order workshop was immediately planned
to promote close collaboration in honor of Moshe. The people whom
we have contacted with were overwhelmingly enthusiastic about the
idea. Some people couldn’t come but sent us their suggestions about
the workshop. The funding for this workshop was provided by XL’s
NNSF research funds with support from the School of Mathematical
Sciences and Center for Actuarial Studies at Xiamen University.

Xiamen is situated on the southeast coast of China, to the west
of Taiwan Strait. Known as a “Garden on the Sea,” Xiamen is sur-
rounded by ocean on three sides. The International Workshop on
Stochastic Orders in Reliability and Risk Management, or SORR2011,
was held in Xiamen City Hotel from June 27 to June 29, 2011.
SORR2011 featured 11 invited speeches and nine contributed talks,
covering a wide range of topics from theory of stochastic orders to ap-
plications in reliability and risk/ruin analysis. Professor Moshe Shaked

v



vi Preface

delivered the opening keynote speech. A social highlight of SORR2011
was a surprise banquet party for Professor Moshe Shaked and Ms Edith
Shaked.

This volume is based on the talks presented at the workshop and
the invited contributions to this special occasion to honor Professor
Moshe Shaked, who has made fundamental and widespread contribu-
tions to theory of stochastic orders and its applications in reliability,
queueing modeling, operations research, economics, and risk analy-
sis. All the papers submitted were subjected to reviewing, and all the
accepted papers have been edited to standardize notations and termi-
nologies. The volume consists of 19 contributions that are organized
along the following five categories:

Part I: Theory of Stochastic Orders

• “A Global Dependence Stochastic Order Based on the Presence of
Noise” by Moshe Shaked, Miguel A. Sordo, and Alfonso Suárez-
Llorens

• “Duality Theory and Transfers for Stochastic Order Relations” by
Alfred Müller

• “Reversing Conditional Orderings” by Rachele Foschi and Fabio
Spizzichino

Part II: Stochastic Comparison of Order Statistics

• “Multivariate Comparisons of Ordered Data” by Félix Belzunce

• “On Stochastic Properties of Spacings with Applications in
Multiple-Outlier Models” by Nuria Torrado and Rosa E. Lillo

• “On Sample Range from Two Heterogeneous Exponential Vari-
ables” by Peng Zhao and Xiaohu Li

Part III: Stochastic Orders in Reliability

• “On Bivariate Signatures for Systems with Independent Modules”
by Gaofeng Da and Taizhong Hu

• “Stochastic Comparisons of Cumulative Entropies” by Antonio Di
Crescenzo and Maria Longobardi

• “Decreasing Percentile Residual Life Aging Notion: Properties and
Estimation” by Alba M. Franco-Pereira, Jacobo de Uña, Rosa E.
Lillo, and Moshe Shaked
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• “A Review on Convolutions of Gamma Random Variables” by
Baha-Eldin Khaledi and Subhash Kochar

• “Allocation of Active Redundancies to Coherent Systems: A Brief
Review” by Xiaohu Li and Weiyong Ding

• “On Used Systems and Systems with Used Components” by Xiaohu
Li, Franco Pellerey, and Yinping You

Part IV: Stochastic Orders in Risk Analysis

• “Dynamic Risk Measures Within Discrete-Time Risk Models” by
Hélène Cossette and Etienne Marceau

• “Excess Wealth Transform with Applications” by Subhash Kochar
and Maochao Xu

Part V: Applications

• “Intermediate Tail Dependence: A Review and Some New Results”
by Lei Hua and Harry Joe

• “Second-Order Conditions of Regular Variation and Drees Type
Inequalities” by Tiantian Mao

• “Individual and Moving Ratio Charts for Weibull Processes” by
Francis Pascual

• “On a Slow Server Problem” by Vladimir Rykov

• “Dependence Comparison of Multivariate Extremes via Stochastic
Tail Orders” by Haijun Li

We thank all the authors and workshop participants for their con-
tributions. This volume is dedicated to Professor Moshe Shaked to
celebrate his academic achievements and also intended to stimulate
further research on stochastic orders and their applications.

Professor Moshe Shaked

Moshe Shaked has been for the past 31 years a professor of mathemat-
ics at the University of Arizona, Tucson, AZ. He received his B.A. and
M.A. degrees from Hebrew University of Jerusalem in 1967 and 1971,
respectively. Moshe pursued his graduate studies in mathematics and
statistics under Albert W. Marshall at the University of Rochester
from 1971 to 1975. Moshe received his Ph.D. in 1975 and his disser-
tation was entitled “On Concepts of Positive Dependence.”
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Figure 1: Moshe Shaked and Edith Shaked. (a) Beijing, China, June
2011. (b) Xiamen, China, June 2011

After short stays at the University of New Mexico, University of
British Columbia, and Indiana University, Moshe became an associate
professor of mathematics at the University of Arizona in 1981. Since
1986, he has been a full professor at Arizona (Fig. 1).

Moshe has made fundamental contributions in various areas of
probability, statistics, and operations research. He has published
over 180 papers and many of his papers appeared in the top jour-
nals in probability, statistics, and operations research. Coauthored
with George Shanthikumar, Moshe published one of the two popular
books on stochastic orders [426] (the other book was written by Alfred
Müller and Dietrich Stoyan [335]). Moshe’s contribution is extremely
broad; for example, Moshe made seminal contributions to the following
areas:

• Dependence analysis, positive and negative dependence notions,
dependence by mixture of distributions, distributions with fixed
marginals, and global dependence

• Comparison of stochastic processes, aging properties of stochastic
processes, and aging first passage times

• Stochastic variability orders, dispersive ordering of distributions,
and excess wealth order

• Accelerated life tests—inference, nonparametric approach, and
goodness of fit

• Multivariate phase-type distributions
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• Multivariate aging notions and multivariate life distributions

• Multivariate conditional hazard rate functions

• Linkages as a tool for construction of multivariate distributions

• Inventory centralization costs and games

• Stochastic convexity and concavity and stochastic majorization

• Stochastic comparisons of order statistics

• Total time on test transform order

• Use of antithetic variables in simulation

• Scientific activity and truth acquisition in social epistemology

In recognition of his many contributions, Moshe Shaked was elected
as a Fellow of the Institute of Mathematical Statistics in 1986. He has
been serving in editorial boards of various probability, statistics, and
operations research journals and book series.

Moshe enjoys collaborations and has been working with more than
60 collaborators worldwide. Moshe is a stimulating, accommodating,
and generous collaborator with colleagues and students alike. Moshe
and Edith travel a lot professionally, so the concepts of “vacation”
and “conference” often have the same meaning for them. Changing a
routine in Tucson, visiting different places in other parts of the world,
and meeting new friends (potential collaborators?) are all both relax-
ing and rewarding for Moshe and Edith. In coffee breaks of several
conferences, we have witnessed that Moshe still worked on problems
with collaborators one by one. It seems to us that Moshe values col-
laborating itself as much as he values possible products (i.e., papers)
resulting from collaboration. This reminds us of Paul Erdős, a great
mathematician, who strongly believed in scientific collaboration and
practiced mathematics research as a social activity.

On the personal side, it was Moshe who helped HL get his academic
job in the USA and it was Moshe who mentored XL in launching his
academic career. Collaborating with Moshe has been a real treat for
both of us, and by working with Moshe, we learned and became greatly
appreciative to the true value of professionalism.
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Stochastic Orders: A Historical Perspective

Stochastic ordering refers to comparing random elements in some
stochastic sense and has evolved into a deep field of enormous breadth
with ample structures of its own, establishing strong ties with numer-
ous striking applications in economics, finance, insurance, management
science, operations research, statistics, and other fields in engineer-
ing, natural, and social sciences. Stochastic ordering is a fundamental
guide for decision making under uncertainty and an essential tool in
the study of structural properties of complex stochastic systems.

Take two random variables X and Y , for example. One way to
compare them is to compare their survival functions; that is, if

P{X > t} ≤ P{Y > t}, for all real t, (1)

then Y is more likely to “survive” beyond t than X does, and we say
X is stochastically smaller than Y and denote this by X ≤st Y . Using
approximations, the path-wise ordering Eq. (1) can be showed to be
equivalent to

E[φ(X)] ≤ E[φ(Y )], for all nondecreasing functions φ : R → R, (2)

provided that the expectations exist. That is, X ≤st Y is equivalent
to the comparisons with respect to a class of increasing functionals of
random variables. If a system performance measure can be written
as an increasing functional E[φ(X)], where φ(·) is increasing, then the
system performance comparison boils down to the stochastic order
Eq. (1).

The stochastic order ≤st enjoys nice operational properties (see
[335, 426]), and its utility can be greatly enhanced via coupling [444].
For any two random variables X and Y , X ≤st Y if and only if there
exist two random variables X̂ and ̂Y , defined on the same probability
space (Ω,F ,P), such that ̂X and X have the same (marginal) distri-
bution, Ŷ and Y have the same (marginal) distribution, and

P{X̂ ≤ Ŷ } = 1. (3)

That is, one can work with almost-sure inequalities on the coupling
space (Ω,F ,P) and move back to the original random variables using
marginal distributional equivalence.

The stochastic order ≤st is also mathematically robust; namely,
the order ≤st, as described in Eqs. (1)–(3), can be extended to proba-
bility measures defined on a partially ordered Polish space [220] (i.e.,



Preface xi

a complete separable metric space endowed with a closed partial or-
dering). For example, the stochastic order ≤st on R

∞ can be applied
to comparing two discrete-time stochastic processes. The stochastic
order ≤st is also extended to nonadditive measures [138]. The models
that involve nonadditive probability measures have been used in deci-
sion theory to cope with observed violations of expected utility [412]
(e.g., the Keynes–Ellsberg paradox). These models describe such dis-
tortions using different transforms of usual probabilities and have been
applied to insurance premium pricing [116, 465, 466].

The stochastic order ≤st is just one example that illustrates the
deep stochastic comparison theory with widespread applications [335,
426]. The stochastic order ≤st, however, is one of strong orderings, and
many stochastic systems can only be compared using weak orders. One
example of weak integral stochastic orders is the increasing and convex
order ≤icx that uses the set of all increasing and convex functions
in Eq. (2). The idea of seeking various weaker versions of a problem
solution has been used throughout mathematics (e.g., in the theory
of partial differential equations), and indeed various weak stochastic
orders and their applications add enormous breadth to the field of
stochastic orders.

The studies on stochastic orders have a long and colorful history.
To the best of our knowledge, the studies on inequalities of type (2) for
convex functions φ(·) can be traced back to Karamata [223]. Known
as the dilation order, the comparison Eq. (2) for all continuous convex
functions φ(·) is closely related to the notion of majorization. The
theory of stochastic inequalities based on majorization is summarized
in Marshall and Olkin [308] and its updated version [312].

Historically, stochastic orders have been used to define and study
multivariate dependence. Some strongest dependence notions can be
defined in terms of total positivity [224]. Earlier studies have been fo-
cused on dependence structures of multivariate normal distributions
and multivariate distributions of elliptical type (see Tong [449]). For
analyzing dependence structures of non-normal multivariate distribu-
tions, stochastic orders have been substantially used in Joe [211] and
Nelsen [355], in which dependence structures of copulas, especially
extreme value copulas, have been systematically investigated using or-
thant and supermodular orders.

Stochastic orders have been applied to various domain fields and es-
pecially to reliability theory. Both of us first learned stochastic orders
from the 1975 seminal book on reliability and life testing by Barlow
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and Proschan [38], where Erich L. Lehmann’s earlier contributions to
the field are highlighted. To show how stochastic orders can be used
in reliability contexts, let us consider the following example.

There are a few aging notions and three of them, IFR (increasing
failure rate), IFRA (increasing failure rate average), and NBU (new
better than used), are particularly useful. IFR implies IFRA, which in
turn implies NBU. We now illustrate how the IFRA and NBU can nat-
urally arise from Markov chains with stochastically monotone struc-
tures. We consider only the discrete case to ease the notations and a
more complete survey can be found in [237].

Let {Xn, n ≥ 0} be a discrete-time, homogenous Markov chain on
R+. The chain is said to be stochastically monotone if

[Xn|Xn−1 = x] ≤st [Xn|Xn−1 = x′], whenever x ≤ x′. (4)

Consider the discrete first passage time Tx := inf{n : Xn > x}. In
such a discrete setting,

1. Tx is IFRA if either P{Tx = 0} = 1 or P{Tx = 0} = 0 and [P{Tx >
n}]1/n is decreasing in n ≥ 1

2. Tx is NBU if [Tx −m|Tx > m] ≤st Tx for all m ≥ 0.

Theorem. Assume that {Xn, n ≥ 0} is stochastically monotone.

1. (Brown and Chaganty [79]) Tx is NBU for any x.

2. (Shaked and Shanthikumar [419]) If, in addition, {Xn, n ≥ 0} has
increasing sample paths, then Tx is IFRA for any x.

That is, the aging properties NBU and IFRA emerge from Markov
chains with stochastic order relation (4). The continuous-time version
of this theorem can also be obtained. The comparison method used
here is again robust and this theorem can be extended to a Markov
chain with general partially ordered Polish state space.

It is well known that an IFRA life distribution arises from a weak
limit of a sequence of coherent systems of independent, exponentially
distributed components. The method used to establish such a result,
however, is restricted to the continuous case (see, e.g., [38], page 87).
In contrast, this result can be reestablished using a sequence of stochas-
tically monotone Markov chains along the lines of the above theorem.
More importantly, the stochastic order approach used in this theorem
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sheds structural insight on the fact that aging properties arise in a
very natural way from stochastically monotone systems.

Many stochastic systems used in reliability and queueing modeling
are indeed stochastically monotone in the sense of Eq. (4). The En-
glish edition of Dietrich Stoyan’s book ([443], 1977 version in German,
1979 version in Russian) attracted quite a few queueing theorists in
the 1980s and early 1990s to apply stochastic comparison methods to
queueing modeling and analysis. The 1994 book by Moshe Shaked
and George Shanthikumar included several chapters (written by some
leading queueing and reliability theorists) that highlight research on
stochastic orders in queueing and reliability contexts.

The comparison methods of stochastic processes have been dis-
cussed in detail in Szekli [446]. The studies on dependence and aging
via stochastic orders are presented in Spizzichino [440]. An early study
of stochastic orders in risk contexts is documented in Mosler [329] and
more recent applications of stochastic orders to analyzing actuarial
risks are discussed in Denuit et al. [117].

The most up-to- date, comprehensive treatments of stochastic or-
ders are given by Müller and Stoyan [335] and Shaked and Shanthiku-
mar [426].

Looking Forward

In the late 1980s and early 1990s, there were several international
workshops focusing exclusively on stochastic orders and dependence.
We mention some of them below.

• Symposium on Dependence in Probability and Statistics [62], Hid-
den Valley Conference Center, Pennsylvania, August 1–5, 1987. Or-
ganizers: H.W. Block, A.R. Sampson, and T.H. Savits

• Stochastic Orders and Decision Under Risk [330], Hamburg, Ger-
many, May 16–20, 1989. Organizers: K. Mosler and M. Scarsini

• Stochastic Inequalities [431], Seattle, WA, July 1991. Organizers:
Moshe Shaked and Y. L. Tong

• Distribution with Fixed Marginals and Related Topics [398], Seattle,
WA, August, 1993. Organizers: L. Rüschendorf, B. Schweizer, and
M. D. Taylor
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These workshops and their proceedings enhanced communication
and collaboration between scholars working in different fields and sim-
ulated research on stochastic orders and dependence. It is our hope
that at the time we honor Professor Moshe Shaked, the Xiamen Work-
shop and this volume will revive the community workshop tradition
on stochastic orders and dependence and strengthen research collabo-
ration.

Last but not least, we would like to thank the School of Mathemat-
ical Sciences of Xiamen University for the support to the SORR2011.
We would also like to express our sincere thanks to XL’s graduate stu-
dents Jianhua Lin, Jintang Wu, Yinping You, Rui Fang and Chen Li.
Without their effort in organizing the Xiamen workshop, we would not
have had such a wonderful academic meeting. Our special thanks go
to Mr. Rui Fang, who helped us edit and revise the Latex source files
of all submitted papers. Due to his enthusiasm and quiet efficiency,
we finally present this nice volume (Fig. 2).

Pullman, WA, USA Haijun Li
Xiamen, China Xiaohu Li
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Chapter 1

A Global Dependence
Stochastic Order Based
on the Presence of Noise

Moshe Shaked, Miguel A. Sordo, and Alfonso Suárez-Llorens

Abstract: Two basic ideas that give rise to global dependence
stochastic orders were introduced and studied in Shaked et al.
(Methodology and Computing in Applied Probability 14:617–648,
2012). Here these are reviewed, and two new ideas that give rise to
new global dependence orders are then brought out and discussed.
Two particular global dependence orders that come up from the two
new general ideas are studied in detail. It is shown, among other
things, how these orders can be identified and verified. In particular,
conditions on the underlying copulas that yield these global depen-
dence orders are given. The theory is illustrated by some examples.
It is shown that some global dependence measures are preserved by
the new global dependence orders. An application in reliability theory
illustrates the usefulness of the new global dependence orders.
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4 Global Dependence

1.1 Introduction

Since the late 1960s a number of researchers have introduced and stud-
ied stochastic orders that compare the strength of the positive depen-
dence of the compared random vectors. Some important contributions
in this area can be found in the papers by Yanagimoto and Okamoto
[482], Kimeldorf and Sampson [238], Fang and Joe [157], Bäuerle [46],
Shaked and Shanthikumar [424], Avérous et al. [23], Colangelo et
al. [92], Dolati et al. [134], as well as in the monograph by Joe
[211]. Further references and an extensive overview of positive de-
pendence stochastic orders can be found in Chap. 9 of Shaked and
Shanthikumar [426].

The terminology of “positive dependence orders” follows from
the fact that such orders compare random vectors according to the
strength of their positive dependence. Thus, a “positive dependent”
random vector is larger, with respect to such orders, than a vector of
independent random variables, and the latter is larger than a “nega-
tive dependent” random vector (here the exact definitions of positive
and negative dependence depend on the context). However, a vector of
random variables that strongly depend on each other may not be com-
parable to a vector of independent random variables, with respect to a
positive dependent order, if the strongly dependent random variables
are not positively (or negatively) dependent.

In order to avoid this drawback of positive dependence stochastic
orders, one needs to define and study notions of global dependence
stochastic orders (GDO). A step in this direction has been made re-
cently by Dette et al. [122]. They introduced some novel notions of
GDO based on conditional distributions. A drawback of their notions
is that, according to these notions, vectors of independent random
variables may not be comparable to (explicitly, need not be “smaller”
than) other vectors that have the same marginal distributions.

Another recent work in this area is the paper of Shaked et al. [428].
They described two other ideas, based on conditional distributions,
that give rise to some GDO. Some of the resulting orders have the
desirable properties that every random vector is larger, with respect
to the these global dependence orders, than the vector of independent
random variables with the same marginal distributions. Also, every
random vector is smaller, with respect to the these global dependence
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orders, than the vector of totally dependent random variables with the
same marginal distributions.

In this paper we introduce and discuss further new ideas that yield
some GDO.

It is worth mentioning that a completely different approach to non-
monotone dependence orders was taken by Silvey [433], Ali and Silvey
[7, 8], Joe [209, 210], and Scarsini [411]. This other approach is based
on the variation of the values of the copulas that are associated with
the compared random vectors and not on conditional distributions.
Thus it has an entirely different flavor and applications than the or-
ders that are studied in Dette et al. [122], in Shaked et al. [428], and
in this paper.

In the sequel, “increasing” and “decreasing” stand, respectively, for

“nondecreasing” and “nonincreasing.” The symbol “
st
=” denotes equal-

ity in law. For any distribution function F , we let F−1(p) = sup{x :
F (x) ≤ p}, 0 < p < 1, denote the corresponding right-continuous
quantile function. For any random vector Z and an event A we de-
note by [Z

∣

∣A] any random vector that is distributed according to the
conditional distribution of Z given A.

1.2 Two Previous Ideas

In order to motivate and intuitively grasp the new ideas of this paper,
we first describe the ideas of Shaked et al. [428].

Let (X,Y ) and (X̃, Ỹ ) be two random vectors such thatX
st
= X̃ and

Y
st
= Ỹ . Let us consider the conditional random variables

[

Y
∣

∣X = x
]

and
[

Ỹ
∣

∣X̃ = x
]

for x ∈ support(X). Define the regression curves

m(x) = E
[

Y
∣

∣X = x
]

and m̃(x) = E
[

Ỹ
∣

∣X̃ = x
]

, x ∈ support(X),
(1.2.1)

and the error curves

e(x) = Var
[

Y
∣

∣X = x
]

and ẽ(x) = Var
[

Ỹ
∣

∣X̃ = x
]

, x ∈ support(X),
(1.2.2)

provided that they exist.

First let us consider m(X) and m̃(X̃). Intuitively, if X and Y are
“close to independence,” then by observing X = x we learn “almost
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nothing” about Y ; that is, Y does not vary much with X, or, in other
words, “Y does not inherit much of the variability of X.” As a result,
m(X) has a small variability. In the extreme case of independence
we have that m(X) = EY , that is, m(X) is a constant that has no
variability at all. On the other hand, intuitively, if X̃ and Ỹ are “close
to total dependence,” then by observing X̃ = x we learn “a lot” about
Ỹ ; that is, Ỹ varies much with X̃, or, in other words, “Ỹ inherits much
of the variability of X̃.” Therefore it makes sense to define (X,Y ) as
smaller than (X̃, Ỹ ), with respect to some corresponding GDO, if

m(X) ≤variability m̃(X̃), (1.2.3)

where ≤variability is a univariate variability stochastic order (such as
≤cx, or ≤disp, or ≤ew; for the exact definition of these orders see the
sequel and/or Shaked and Shanthikumar [426]). Formally, Shaked et
al. [428] defined a family of GDO, indexed by the univariate order
≤variability, by postulating that

(X,Y ) ≤GDO1-variability (X̃, Ỹ )

if

E[Y
∣

∣X] ≤variability E
[

Ỹ
∣

∣X̃
]

(1.2.4)

(the subscript 1 under GDO above indicates that this order arises from
Idea 1). Note that the condition (1.2.4) is a rewrite of the condition
(1.2.3).

Note that the order ≤GDO1-variability is based on the comparison
of the variability of the conditional expectations E[Y

∣

∣X] and E
[

Ỹ
∣

∣X̃
]

.
An alternative idea is to define a GDO through a comparison of the
magnitude of the conditional variances e(X) = Var[Y

∣

∣X] and ẽ(X̃) =

Var
[

Ỹ
∣

∣X̃
]

.

So let us now consider e(X) and ẽ(X̃). Intuitively, again, if X and
Y are “close to independence,” then by observing X = x we learn
“almost nothing” about Y . One way to interpret this is to note that
the “uncertainty about Y ” then, given X, is relatively “large”; namely,
Var[Y

∣

∣X] is “large.” In the extreme case of independence we have
that the conditional variance Var[Y

∣

∣X] is as large as possible; that is,
it satisfies Var[Y

∣

∣X] = Var[Y ]. On the other hand, intuitively, again,

if X̃ and Ỹ are “close to total dependence,” then by observing X̃ = x
we learn “a lot” about Ỹ . One way to interpret this is to note that the
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“uncertainty about Ỹ ” then, given X̃ , is relatively “small”; namely,
Var

[

Ỹ
∣

∣X̃
]

is “small.” In the extreme case of total dependence (t.e.,

when
[

Ỹ
∣

∣X̃ = x
]

is degenerate for each x ∈ support(X)) we see that

Var
[

Ỹ
∣

∣X̃
]

is as small as possible; that is, it satisfies Var
[

Ỹ
∣

∣X̃
]

= 0.

Therefore it makes sense to define (X,Y ) as smaller than (X̃, Ỹ ), with
respect to some corresponding GDO, if

e(X) ≥magnitude ẽ(X̃), (1.2.5)

where ≤magnitude is a univariate stochastic order of magnitude (such as
≤st; for the exact definition of this order see the sequel and/or Shaked
and Shanthikumar [426]). Formally, Shaked et al. [428] defined a fam-
ily of GDO, indexed by the univariate order ≤magnitude, by postulating
that

(X,Y ) ≤GDO2-magnitude (X̃, Ỹ )

if

Var[Y
∣

∣X] ≥magnitude Var
[

Ỹ
∣

∣X̃
]

(1.2.6)

(the subscript 2 under GDO above indicates that this order arises from
Idea 2). Note that the condition (1.2.6) is a rewrite of the condition
(1.2.5).

Shaked et al. [428] obtained a better insight into the ideas
that underlie the global dependence orders ≤GDO1-variability and
≤GDO2-magnitude as follows. Consider a random vector (X,Y ) and
its regression and error curves m and e and define the following
random variable (which is a function of X and Y ):

Z =
Y −m(X)
√

e(X)
. (1.2.7)

Shaked et al. [428] noticed that the random variable Z is standard
(i.e., it has mean 0 and variance 1). Although in general Z is not
independent of X, it satisfies Cov(h(X), Z) = 0 for all functions h.
Using Z in Eq. (1.2.7), Y can be expressed as

Y = m(X) +
√

e(X) · Z, (1.2.8)

where Cov(
√

e(X), Z) = 0 and Cov(
√

m(X),
√

e(X) · Z) = 0.

For any conditional random variable below, say, [Y
∣

∣X = x], we
denote the corresponding conditional distribution function by FY |X=x,
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and the corresponding inverse by F−1Y |X=x. When x in the expression

F−1Y |X=x is substituted by X, we simply denote it as F−1Y |X .

From Eq. (1.2.7) it is clear that

F−1Y |X=x(u) = m(x) +
√

e(x) · F−1Z|X=x(u), u ∈ (0, 1).

Therefore

Y
st
= F−1Y |X(U) = m(X) +

√

e(X) · F−1Z|X(U), (1.2.9)

where U is a uniform random variable on [0, 1], which is independent

of X. Using the notation in Eq. (1.2.9), we note that F−1Z|X(U)
st
= Z, so

that F−1Z|X(U) has mean 0 and variance 1. From Eq. (1.2.9) it is clear

that m(X) and e(X) have different effects when we predict Y . If we
are looking for definitions of global dependence orders, we may try to
order m(X) in variability and e(X) in magnitude. These are the ideas
that underlie the definitions of ≤GDO1-variability and ≤GDO2-magnitude.
The expression (1.2.9) will be used in the sequel.

Based on some ideas in Dabrowska [101] and in Dette et al. [122],
we listed in Shaked et al. [428] some desirable properties for any global
dependence order. In two of these properties we use the following
notation. Let X and Y be two random variables with a general joint
distribution. Let X⊥ and Y ⊥ be two independent random variables
such that

X⊥ st
= X and Y ⊥ st

= Y. (1.2.10)

Furthermore, let h be a function such that

h(X)
st
= Y,

and consider the random variables X� and Y � defined by

X� = X and Y � = h(X). (1.2.11)

That is, (X⊥, Y ⊥) is the “independent version” of (X,Y ), whereas
(X�, Y �) is a “totally dependent” version of (X,Y ).

The following desirable properties were studied in Shaked et al.
[428]:
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(O1) The order ≤GDO is reflexive and transitive.

(O2) If (X,Y ) ≤GDO (X̃, Ỹ ), and if (V,W ) and (Ṽ , W̃ ) satisfy V
st
=

Ṽ
st
= X and W

st
= W̃

st
= Y , as well as E[W

∣

∣V ]
st
= E[Y

∣

∣X] and

E
[

W̃
∣

∣Ṽ
] st
= E

[

Ỹ
∣

∣X̃
]

, then (V,W ) ≤GDO (Ṽ , W̃ ).

(O3) If (X,Y ) ≤GDO (X̃, Ỹ ) then (φ(X), l(Y )) ≤GDO (φ(X̃), l(Ỹ )),
where φ is a one-to-one measurable function, and l is a linear
function.

(O4) Let (X,Y ) be any random vector, then (X,Y ) ≥GDO (X⊥, Y ⊥).

(O5) Let (X,Y ) be any random vector, then (X,Y ) ≤GDO (X�, Y �).

Remark 1.2.1. Shaked et al. [428] noticed that property (O2) can
be interpreted as follows: It says that all bivariate random vectors,
that have the same margins and the same distribution for m(X),
form an equivalence class for global dependence orders that satisfy
property (O2). Thus, property (O2) is a desirable property when
the global dependence between X and Y is measured by a quantity
that is based on the distribution or the expectation of the error curve
e(X). Such measures are natural for orders that arise from Idea 1, and
therefore property (O2) may be a desirable one for orders of the type
≤GDO1-variability. But it may be too strong a property for other global
dependence orders.

1.3 Two New Ideas

In order to motivate the new ideas for GDOs we find it handy to
use the following terminology (see, e.g., Mizuno [328], Ganuza and
Penalva [172], and Wu and Mielniczuk [476]). Consider the random
vector (X,Y ). Let us think about X as the unobservable or unknown
state of the world or, alternatively, as the input into some physical
system. Furthermore, let us think about Y as the noisy signal or,
alternatively, the output that corresponds to X. Similarly, when we
consider (X̃, Ỹ ), we can think about X̃ as the input into and about Ỹ
as the output from, some, conceptually other, physical system.

Again, let (X,Y ) be a random vector. If U is a uniform (0,1)
random variable that is independent of X, then

(X,Y )
st
=

(

X,F−1Y |X(U)
)

. (1.3.1)
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Based on Eq. (1.3.1), we can view Y as the outcome of the bivariate
function

Y
st
= F−1Y |X(U).

To avoid confusion we follow the notation of Wu and Mielniczuk [476]
and denote

G(x, u) = F−1Y |X=x(u), (1.3.2)

and thus we can view Y as the outcome of the bivariate function

Y
st
= G(X,U). (1.3.3)

In the words of Wu and Mielniczuk [476] “Y is viewed as the output
from a random physical system with X and U being the input and
the noise or error, respectively.” They interpret dependence “as how
the output Y depends on the input X in the presence of the noise U .”
Note that U summarily describes all the factors (others than X) that
influence Y.

Note that an expression for G(X,U) that uses the random variable
Z from Eq. (1.2.7) is given in Eq. (1.2.9). This expression will be used
later in Example 1.4.13.

Remark 1.3.1. The effects on Y , of the random variables X and U
in Eq. (1.3.3), contradict and complement each other. Intuitively it
is seen that the “more dependent” Y is on X, the “less dependent”
it is on U . Similarly, the “less dependent” Y is on X, the “more
dependent” it is on U . This intuition leads us to definitions of GDOs,
which are presented in Eqs. (1.3.12) and (1.3.13) below.

Remark 1.3.2. It is worthwhile to point out that the expression
(1.3.1) is essentially equivalent to the classical standard construction
transformation (see, for instance, Rüschendorf and de Valk [397] or
Shaked and Shanthikumar [426, Sect. 6.B.3]). In order to see it,
consider, in addition to the uniform (0,1) random variable U , another
uniform (0,1) random variable V that is independent of U . Denote the
distribution function of X by FX , and let F−1X be the corresponding
inverse. Then the classical standard construction expands Eq. (1.3.1)
as follows:

(X,Y )
st
= (X,F−1Y |X(U))

st
=

(

F−1X (V ), F−1
Y |X=F−1

X (V )
(U)

)

.
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Furthermore, analogously to Eq. (1.3.3), Y can be expressed as

Y
st
= G(X,U)

st
= F−1

Y |X=F−1
X (V )

(U)
st
= H(V,U), (1.3.4)

where H is defined by H(v, u) = F−1
Y |X=F−1

X (v)
(u)), (u, v) ∈ (0, 1)2. It

is apparent from Eq. (1.3.4) that we need two independent uniform
random variables V and U to explain Y . In Shaked et al. [428] we
studied global dependence between X and Y through the effect of V .
The definitions of the new GDOs that are introduced in Eqs. (1.3.12)
and (1.3.13) below study the global dependence between X and Y
through the effect of U .

We can also write Eq. (1.2.9) in terms of V and U as

Y
st
= F−1Y |X(U) = m(X) +

√

e(X) · F−1Z|X(U)

st
= m(F−1X (V )) +

√

e(F−1X (V )) · F−1
Z|X=F−1

X (V )
(U).

It is clear that E(Y
∣

∣V = u) and E(Y
∣

∣U = u) have different interpre-
tations.

Before we proceed to the definitions of the new GDOs, we de-
rive two interesting relationships between the copulas of (X,Y ) and
(U, Y ) that will be useful in the sequel. So let X, Y , and U be as in
Eq. (1.3.3). To recall the definition of a copula that is needed here,
let (X,Y ) have the continuous joint distribution function FX,Y with
the marginal distribution functions FX and FY . Then the function
C(X,Y ), defined by

C(X,Y )(u, v) = FX,Y
(

F−1X (u), F−1Y (v)
)

, (u, v) ∈ (0, 1)2,

is a bivariate distribution function with marginal distributions that
are uniform on (0,1), and it is called the copula that is associated with
(X,Y ). From Nelsen [355, Theorem 2.2.7] we know that the partial
derivative ∂C(X,Y )(u, v)/∂v exists for almost all v ∈ (0, 1). The copula
C(U,Y ) that is associated with (U, Y ) is similarly defined.

Proposition 1.3.3. Let X, Y , and U be as in Eq. (1.3.3), and assume
that (X,Y ) and (U, Y ) have continuous distribution functions. Then

C(U,Y )(u, v) =

∫ 1

0
min

{

u,
∂

∂p
C(X,Y )(p, v)

}

dp.
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Proof : From Eq. (1.3.4) we see that

(U, Y )
st
=

(

U,F−1
Y |X=F−1

X (V )
(U)

)

,

where V is a uniform (0,1) random variable, independent of U . There-
fore C(U,Y ) is the distribution function of

(U,FY (Y ))
st
=

(

U,FY (F
−1
Y |X=F−1

X (V )
(U))

)

.

Hence

C(U,Y )(u, v) = P

{

U ≤ u, FY

(

F−1
Y |X=F−1

X (V )
(U)

)

≤ v

}

= P

{

U ≤ u, F−1
Y |X=F−1

X (V )
(U) ≤ F−1Y (v)

}

(1.3.5)

=

∫ 1

0
P

{

U ≤ u, F−1
Y |X=F−1

X (p)
(U) ≤ F−1Y (v)

}

dp

=

∫ 1

0
P
{

U ≤ u,U ≤ FY |X=F−1
X (p)

(

F−1Y (v)
)

}

dp

=

∫ 1

0
P

{

U ≤ u,U ≤ ∂

∂p
C(X,Y )(p, v)

}

dp (1.3.6)

=

∫ 1

0
min

{

u,
∂

∂p
C(X,Y )(p, v)

}

dp, (1.3.7)

where Eq. (1.3.6) follows from (2.9.1) in Nelsen [355] and Eq. (1.3.7)
from the fact that U is a uniform (0,1) random variable.

The relationship between C(X,Y ) and C(U,Y ) in Proposition 1.3.3
goes along nicely with the intuition. For instance, if X and Y are
independent, that is, C(X,Y )(u, v) = uv, then C(U,Y )(u, v) = min{u, v},
which means that U and Y are comonotone. On the other hand, if X
and Y are comonotone, then it is easy to see that C(U,Y )(u, v) = uv;
that is, U and Y are independent.

Recall from Lehmann [278] that a random vector (X,Y ) is called
positive regression dependent (PRD) if [Y

∣

∣X = x] stochastically in-
creases in x (in such a case (X,Y ) is also often called stochastically
increasing in sequence).
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Proposition 1.3.4. Let X, Y , and U be as in Eq. (1.3.3), and as-
sume that (X,Y ) and (U, Y ) have continuous distribution functions.
Furthermore, assume that (X,Y ) is PRD. Then

C(U,Y )(u, v) =

∫ u

0
z(w, v) dw,

where

z(w, v) =

{

sup
{
p : ∂

∂p
C(X,Y )(p, v) ≥ w

}
, if the supremum is well defined;

0, otherwise.

Proof : Starting from Eq. (1.3.5) in the proof of Proposition 1.3.3 we
have

C(U,Y )(u, v) = P

{

U ≤ u, F−1
Y |X=F−1

X (V )
(U) ≤ F−1Y (v)

}

=

∫ u

0
P

{

F−1
Y |X=F−1

X (V )
(w) ≤ F−1Y (v)

}

dw

=

∫ u

0
P
{

FY |X=F−1
X (V )(F

−1
Y (v)) ≥ w

}

dw

=

∫ u

0
P
{

V ∈ {

p : FY |X=F−1
X (p)(F

−1
Y (v)) ≥ w

}

}

dw

=

∫ u

0
z(w, v) dw,

where the last equality follows from the PRD assumption and (2.9.1)
in Nelsen [355].

We now proceed to the definitions of the new GDOs. Let (X,Y )

and (X̃, Ỹ ) be two random vectors such that X
st
= X̃ and Y

st
= Ỹ .

Write

Y = G(X,U) and Ỹ = G̃(X̃, Ũ ), (1.3.8)

where G is defined in Eq. (1.3.2), U is a uniform (0,1) random variable
that is independent of X, G̃ is defined by G̃(x, u) = F−1

Ỹ |X̃=x
(u), and

Ũ is a uniform (0,1) random variable that is independent of X̃. Note
that in Eq. (1.3.8) we assume, without loss of generality, almost sure
equality rather than stochastic equality as in Eq. (1.3.3).
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Referring to the representation (1.3.8), define the conditional
expectations

k(u) = E
[

Y
∣

∣U = u
]

and k̃(u) = E
[

Ỹ
∣

∣Ũ = u
]

, u ∈ (0, 1), (1.3.9)

and the conditional variances

d(u) = Var
[

Y
∣

∣U = u
]

and d̃(u) = Var
[

Ỹ
∣

∣Ũ = u
]

, u ∈ (0, 1),
(1.3.10)

provided that they exist.

We will now describe intuitive reasonings that will lead us to two
new approaches that yield definitions of families of GDOs. The rea-
sonings parallel those of Shaked et al. [428], as was recounted earlier
in Sect. 1.2.

To describe the first approach, let Y and Ỹ be as in Eq. (1.3.8)
and consider k(U) and k̃(Ũ ). First let us intuitively examine the case
when Ũ and Ỹ are “close to independence” (note that this means that
X̃ and Ỹ are “close to total dependence”). Then the event Ũ = u tells
us “almost nothing” about Ỹ ; that is, Ỹ does not vary much with Ũ .
As a result, k̃(Ũ ) has a small variability. In the extreme case when Ũ
and Ỹ are independent we have that Ỹ = G̃(X̃, Ũ) does not depend
on Ũ and then k̃(Ũ ) is a constant that has no variability at all; note
that in this case we can write

Ỹ = h̃(X̃) (1.3.11)

for some function h̃, and therefore Ỹ then is totally dependent on
X̃ (although the dependence need not be one-to-one). On the other
hand, let us now examine the case when U and Y are “close to total
dependence” (note that this means that X and Y are “close to inde-
pendence”). In this case the event U = u tells us “a lot” about Y .
That is, Y varies much with U . As a result, k(U) has a large vari-
ability. Therefore, according to the approach that is motivated by the
intuition above, it makes sense to define (X,Y ) as smaller than (X̃, Ỹ ),
with respect to some corresponding GDO, if

k(U) ≥variability k̃(Ũ),

or, equivalently, if

E[Y
∣

∣U ] ≥variability E
[

Ỹ
∣

∣Ũ
]

,
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where ≤variability is some univariate variability stochastic order. If
either one of the above equivalent inequalities holds we denote it by

(X,Y ) ≤GDO3-variability (X̃, Ỹ ) (1.3.12)

(the subscript 3 under GDO above indicates that this order arises from
the approach that is described in the present paragraph).

To describe the second approach, let, again, Y and Ỹ be as in
Eq. (1.3.8), but now we consider d(U) and d̃(Ũ). First let us intuitively
examine the case when Ũ and Ỹ are “close to independence” (as before,
this means that X̃ and Ỹ are “close to total dependence”). Then,
again, the event Ũ = u tells us “almost nothing” about Ỹ ; that is,
given Ũ , the uncertainty about Ỹ is large. As a result, d̃(Ũ ) is large.
In the extreme case when Ũ and Ỹ are independent we have that
d̃(Ũ ) is as large as possible, that is, d̃(Ũ) = Var[Ỹ ]; we have noticed
earlier that in this case Ỹ then is totally dependent on X̃ (although
the dependence need not be one-to-one). On the other hand, let us
now examine the case when U and Y are “close to total dependence”
(as before, this means that X and Y are “close to independence”). In
this case the event U = u tells us “a lot” about Y ; that is, given U , the
uncertainty about Y is small. As a result, d(U) is small. Therefore,
according to this second approach that is motivated by the intuition
above, it makes sense to define (X,Y ) as smaller than (X̃, Ỹ ), with
respect to some corresponding GDO, if

d(U) ≤magnitude d̃(Ũ),

or, equivalently, if

Var[Y
∣

∣U ] ≤magnitude Var
[

Ỹ
∣

∣Ũ
]

,

where ≤magnitude is some univariate stochastic order of magnitude. If
either one of the above equivalent inequalities holds we denote it by

(X,Y ) ≤GDO4-magnitude (X̃, Ỹ ) (1.3.13)

(the subscript 4 under GDO above indicates that this order arises from
the approach that is described in the present paragraph).

We emphasize that the GDO3 and GDO4 orders depend on
the capacity of prediction of Y (respectively, Ỹ ) from X (respec-
tively, X̃). In other words, the GDO3 and GDO4 orders are
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not symmetric in the sense that (X,Y ) ≤GDO3-magnitude (X̃, Ỹ )
(respectively, (X,Y ) ≤GDO4-magnitude (X̃, Ỹ )) may hold, whereas
(Y,X) ≤GDO3-magnitude (Ỹ , X̃) (respectively, (Y,X) ≤GDO4-magnitude

(Ỹ , X̃)) need not hold at the same time. That is, the GDO3 and
GDO4 orders have the same drawback that the GDO1 and GDO2

orders have, as discussed at the end of Sect. 2.4 in Shaked et al. [428].
Even in the extreme case of total dependence of Ỹ on X̃ [i.e., when
Eq. (1.3.11) holds], if h̃ in Eq. (1.3.11) is not one-to-one then we do
not have total dependence of X̃ on Ỹ in the sense that X̃ may not be
predicted from Ỹ with certainty.

Before we close this section, a comment on the uniform random
variables U and V of Remark 1.3.2 is in place. The random variable V
there can be thought of as the “generator” of the input X into some
physical system, whereas the random variable U is the “generator” of
the corresponding noise. From Remark 1.3.1 we see that V and U
“contradict and complement each other.” That is, the “more depen-
dent” Y is on V , the “less dependent” it is on U , and vice versa. We
may wonder how useful is the input X for the prediction of Y . One
way of telling that is to compare the global dependence of (U, Y ) with
the global dependence of (V, Y ). For example, the orders ≤GDO1-cx or
≤GDO1-disp (which are formally defined as special cases of Eq. (1.2.4)
and which are studied in detail in Shaked et al. [428]) or the order
≤GDO2-st (which is formally defined as a special case of Eq. (1.2.6) and
which is also studied in detail in [428]) can be used for such com-
parisons. Specifically, if it happens that (V, Y ) ≤GDO1-cx (U, Y ), or
(V, Y ) ≤GDO1-disp (U, Y ), or (V, Y ) ≤GDO2-st (U, Y ), then we could say
that prediction of Y from X is not recommended. Here is a particular
example.

Example 1.3.5. Let (X,Y ) be a bivariate normal random vector.
For simplicity we assume that X and Y are standard normal random
variables with correlation coefficient ρ. A straightforward computation
leads to the function H in Eq. (1.3.4) as follows:

H(v, u) = F−1
Y |X=φ−1(v)

(u) = ρφ−1(v) + φ−1(u)
√

1− ρ2,

where φ−1 denotes the inverse of the standard normal distribution
function. Then

[Y
∣

∣U = u]
st
= ρφ−1(V ) + φ−1(u)

√

1− ρ2, (1.3.14)
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and

[Y
∣

∣V = v]
st
= ρφ−1(v) + φ−1(U)

√

1− ρ2. (1.3.15)

From Eq. (1.3.14) it follows that E[Y
∣

∣U ] has a normal distribution
with mean 0 and variance ρ2, whereas from Eq. (1.3.15) it follows that
E[Y

∣

∣V ] has a normal distribution with mean 0 and variance 1 − ρ2.
From these observations it follows that (V, Y ) ≤GDO1-cx (U, Y ) ⇐⇒
ρ2 ≤ 1 − ρ2 ⇐⇒ ρ2 ≤ 1/2 (see Example 3.4 in Shaked et al. [428]),
and that (V, Y ) ≤GDO1-disp (U, Y ) ⇐⇒ ρ2 ≤ 1/2 (see Example 4.5 in
[428]), and that (V, Y ) ≤GDO2-st (U, Y ) ⇐⇒ ρ2 ≤ 1/2 (see Example 5.5
in [428]). Thus, if |ρ| ≤ √

2/2 (i.e., if the determination coefficient
R2 = ρ2 · 100% < 50%), it may be recommended not to use X to
predict Y .

1.4 Some Properties of the New Orders

1.4.1 The Order ≤GDO3-cx

First we note that the univariate order ≤cx is reflexive and transitive.
Thus we have the following result.

Proposition 1.4.1. The order ≤GDO3-cx satisfies property (O1).

We do not know whether ≤GDO3-cx satisfies property (O2). But,
following the comments in Remark 1.2.1 we conjecture that it does
not. However, we have the following result.

Proposition 1.4.2. The order ≤GDO3-cx satisfies property (O3).

Proof : Let (X,Y ) be a random vector. Furthermore, let φ be a one-
to-one measurable function, and consider (φ(X), Y ). Let G(x, u) be
defined as in Eq. (1.3.2), and define Gφ by

Gφ(x, u) = G(φ−1(x), u).

Let U be a uniform random variable on [0, 1], which is independent of

X. Since, by Eq. (1.3.3), Y
st
= G(X,U), it follows that

Y
st
= Gφ(φ(X), U).
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Therefore the function k(u) that is defined in Eq. (1.3.9) can be
expressed both as

k(u) = E[Y
∣

∣U = u] = E[G(X,u)]

and as

k(u) = E[Y
∣

∣U = u] = E[Gφ(φ(X), u)].

In other words, both vectors (X,Y ) and (φ(X), Y ) share the same
function k(u). Similarly, if (X̃, Ỹ ) is another random vector then
(X̃, Ỹ ) and (φ(X̃), Ỹ ) share the same function k̃(u) defined in
Eq. (1.3.9). Thus, if (X,Y ) ≤GDO3-cx (X̃, Ỹ ) then (φ(X), Y ) ≤GDO3-cx

(φ(X̃), Ỹ ).
Next, it is easy to see that if (X,Y ) ≤GDO3-cx (X̃, Ỹ ) then

(X, l(Y )) ≤GDO3-cx (X̃, l(Ỹ )) for every linear function l.
Property (O3) now follows from the above two observations.

We now proceed to obtain properties (O4) and (O5). Recall the
notation X⊥, Y ⊥, X�, and Y � from Eqs. (1.2.10) and (1.2.11).

Proposition 1.4.3. With the notation in Eqs. (1.2.10) and (1.2.11),
for every random vector (X,Y ), we have

(X⊥, Y ⊥) ≤GDO3-cx (X,Y ) ≤GDO3-cx (X�, Y �). (1.4.1)

Proof : Let U , U⊥, and U� be uniform (0,1) random variables such
that U and X are independent, U⊥ and X⊥ are independent, and U�

and X� are independent. Let G, G⊥, and G� be functions such that

Y = G(X,U), Y ⊥ = G⊥(X⊥, U⊥), and Y � = G�(X�, U�).

In order to prove the first inequality in Eq. (1.4.1) we need to show
that

E[Y
∣

∣U ] ≤cx E[Y ⊥
∣

∣U⊥]. (1.4.2)

First we show that the two random variables in Eq. (1.4.2) have
the same expectation. Note that because of the independence of X⊥

and Y ⊥ we see that Y ⊥ functionally depends on U⊥, that is,

Y ⊥ = G⊥(X⊥, U⊥) = h(U⊥) (1.4.3)

for a certain function h. Then

[Y ⊥
∣

∣U⊥ = u] = h(u), u ∈ (0, 1),
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and hence,

E[Y ⊥
∣

∣U⊥] = h(U⊥). (1.4.4)

Thus

E[E[Y ⊥
∣

∣U⊥]] = E[h(U⊥)] = E[Y ⊥] = E[Y ] = E[E[Y
∣

∣U ]],

where the first equality follows from Eq. (1.4.4) and the second equality
follows from Eq. (1.4.3). Thus, the two variables in Eq. (1.4.2) have the
same expected value.

Now, let φ be a convex function. Then,

E[φ(E[Y
∣∣U ])] ≤ E[E[φ(Y )

∣∣U ]] = E[φ(Y )] = E[φ(Y ⊥)] = E[φ(E[Y ⊥∣∣U⊥])],

where the inequality follows from Jensen’s Inequality.

In order to prove the second inequality in Eq. (1.4.1) we need to
show that

E[Y �
∣

∣U�] ≤cx E[Y
∣

∣U ]. (1.4.5)

Since Y � functionally depends on X�, we have that Y � and U� are
independent, and therefore E[Y �

∣

∣U�] is degenerate at E[Y �]. Since
every random variable is larger, in the order ≤cx, than a random vari-
able that is degenerate at its mean, we obtain Eq. (1.4.5), and this
gives the second inequality in Eq. (1.4.1).

The functions k and k̃ of Eq. (1.3.9) make up a basic tool in the
study of GDO3s. So first we point out a useful property of these
functions. Let U and Y be as in Eq. (1.3.3). Abusing notation we
write it here as Y = F−1Y |X(U) [actually the Y here is not the Y in

Eq. (1.3.3), but it is a random variable that is stochastically equal to
Y ], where U and X are independent random variables. Therefore

[Y
∣

∣U = u]
st
= G(X,u) = F−1Y |X(u), u ∈ (0, 1). (1.4.6)

Obviously, for every x ∈ support(X), we have that

F−1Y |X=x(u1) ≤ F−1Y |X=x(u2), for all u1 ≤ u2 in (0, 1).

Unconditioning this with respect to X we see that

[Y
∣∣U = u1]

st
= F−1

Y |X(u1) ≤st F
−1
Y |X(u2)

st
= [Y

∣∣U = u2], for all u1 ≤ u2 in (0, 1).

We thus have proved the following result. Recall the definition of PRD
that was given before Proposition 1.3.4.
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Proposition 1.4.4. Let U and Y be as above. Then (U, Y ) is PRD.

If [Y
∣

∣U = u] stochastically increases in u then k(u) = E[Y
∣

∣U = u]
increases in u. Thus we have the following corollary.

Corollary 1.4.5. The functions k and k̃ in Eq. (1.3.9) are increasing.

Remark 1.4.6. At the first glance at Proposition 1.4.4 one may won-
der why the “noise” U affects Y in a positive manner, that is, mono-
tonically increasing. After all, the “noise” indeed should have an effect
on Y , but the effect of a “noise” usually should be unpredictable and at
least not monotone. Some reflection, however, clarifies this seemingly
not intuitive observation. Note that we could replace U in Eqs. (1.3.1)
and (1.3.3) by, say, 1−U [or, more generally, by h(U), where h is any
one-to-one function from (0,1) onto (0,1) such that h(U) is a uniform
(0,1) random variable], and this would not have affected the distribu-
tions of k(U) and of d(U). Similarly, we could replace Ũ in Eq. (1.3.9)
and in Eq. (1.3.10) by 1 − Ũ , etc., without affecting the distributions
of k̃(Ũ) and of d̃(Ũ ). So, the choice that we made [i.e., using U in
Eqs. (1.3.1) and (1.3.3)] can be considered to be just a convenient
choice that simplifies the presentation, but that does not affect the
generality. And, with this choice, Proposition 1.4.4 shows that (U, Y )
happens to be PRD—this is a nice and useful observation that does
not restrict the generality or the intuition. A consequence of it (Corol-
lary 1.4.5) is that k and k̃ in Eq. (1.3.9) are increasing, and that will
be used in the sequel.

We proceed now to a lemma that gives a sufficient condition for the
order≤GDO3-cx. The condition (1.4.7) below is somewhat technical and
may not be easy to verify. However, we use this lemma in the sequel
in order to derive nicer conditions for the order ≤GDO3-cx in terms
of the corresponding copulas (see Theorems 1.4.8 and 1.4.9). For the
purpose of stating the next result we recall that (U, Y ) is said to be
smaller than (Ũ , Ỹ ) in the positive quadrant dependence stochastic
order (denoted as (U, Y ) ≤PQD (Ũ , Ỹ )) if (U, Y ) and (Ũ , Ỹ ) have the
same marginal distributions and if

P{U ≤ u, Y ≤ y} ≤ P{Ũ ≤ u, Ỹ ≤ y} for any u and y.

The PQD order is a positive dependence stochastic order that is stud-
ied, for example, in Shaked and Shanthikumar [426, Sect. 9.A] and
in references that are given there. The functions k and k̃ in the next
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proposition are defined in Eq. (1.3.9). From Corollary 1.4.5 we know
that they are increasing. So the assumption in the next result that
they are strictly increasing is not a particularly restrictive one. It is
worthwhile to point out that the strict monotonicity of k(u), or more
explicitly of F−1Y |X=x(u), in u, depends on both the marginal distribu-

tions of (X,Y ) and on the dependence structure that is formalized by
the corresponding copula; see the discussion in Example 1.4.15 below.

Lemma 1.4.7. Let X and X̃ be two random variables, and let U and
Ũ be two independent uniform (0,1) random variables. Let Y and Ỹ
be as defined in Eq. (1.3.8). Suppose that the corresponding functions
k and k̃, defined in Eq. (1.3.9), are strictly increasing. If

(U, Y ) ≥PQD (Ũ , Ỹ ), (1.4.7)

then
(X,Y ) ≤GDO3-cx (X̃, Ỹ ). (1.4.8)

Proof : Let L denote the distribution function of k(U). Then

L(t) = P{k(U) ≤ t} = P{U ≤ k−1(t)} = k−1(t), for all t,

where the second equality follows from the strict monotonicity of k,
and the last equality follows from the fact that U is uniform (0,1).
Hence

L−1(u) = k(u), u ∈ (0, 1). (1.4.9)

Similarly, if L̃ denotes the distribution function of k̃(Ũ), then

L̃−1(u) = k̃(u), u ∈ (0, 1). (1.4.10)

Now note (see Shaked and Shanthikumar [426], page 389) that as-
sumption (1.4.7) implies that

E[Y
∣

∣U > u] ≥ E[Ỹ
∣

∣Ũ > u] for all u ∈ (0, 1);

that is,

∫ 1

u
E[Y

∣

∣U = p] dp ≥
∫ 1

u
E[Ỹ

∣

∣Ũ = p] dp for all u ∈ (0, 1),

that is,
∫ 1

u
k(p) dp ≥

∫ 1

u
k̃(p) dp for all u ∈ (0, 1);
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which, by Eqs. (1.4.9) and (1.4.10), is equivalent to

∫ 1

u
L−1(p) dp ≥

∫ 1

u
L̃−1(p) dp for all u ∈ (0, 1). (1.4.11)

Now, by Lemma 2.1 of Fagiuoli et al. [154] (see also (3.A.15) in Shaked
and Shanthikumar [426]), we see that the inequality (1.4.11) is equiv-
alent to k(U) ≥cx k̃(Ũ), which is just Eq. (1.4.8).

With the help of Lemma 1.4.7 we can now derive the following
sufficient conditions for the relation (X,Y ) ≤GDO3-cx (X̃, Ỹ ). As we
argued earlier, the assumption in the results below that k and k̃ are
strictly increasing is not a particularly restrictive one.

Theorem 1.4.8. Let (X,Y ) and (X̃, Ỹ ) be two random vectors such

that X
st
= X̃ and Y

st
= Ỹ . Suppose that the corresponding functions k

and k̃, defined in Eq. (1.3.9), are strictly increasing. Let C(X,Y ) and
C(X̃,Ỹ ) be the corresponding copulas. If

min
{

u,
∂

∂p
C(X,Y )(p, v)

}

≥ min
{

u,
∂

∂p
C(X̃,Ỹ )(p, v)

}

, (1.4.12)

for all p, v, u ∈ (0, 1), then

(X,Y ) ≤GDO3-cx (X̃, Ỹ ).

Proof : Let U and Ũ be as in Lemma 1.4.7. Using that lemma we only
need to prove that (U, Y ) ≥PQD (Ũ , Ỹ ). But, using Proposition 1.3.3,
we see that

C(U,Y )(u, v) =

∫ 1

0
min

{

u,
∂

∂p
C(X,Y )(p, v)

}

dp

≥
∫ 1

0
min

{

u,
∂

∂p
C(X̃,Ỹ )(p, v)

}

dp

= C(Ũ ,Ỹ )(u, v),

where the inequality follows from the assumption (1.4.12).

If in Theorem 1.4.8 we denote by (U1, U2) a random vector that is

distributed according to C(X,Y ) and by (Ũ1, Ũ2) a random vector that
is distributed according to C(X̃,Ỹ ) and if we denote by f[U1|U2≤v] (re-
spectively, f[Ũ1|Ũ2≤v]) the density function of [U1

∣

∣U2 ≤ v] (respectively,

[Ũ1

∣

∣U2 ≤ v]), then the condition (1.4.12) can be written as
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min
{
u, vf[U1|U2≤v](p)

} ≥ min
{
u, vf[Ũ1|Ũ2≤v](p)

}
for all p, v, u ∈ (0, 1).

If, in some applications, the condition (1.4.12) in Theorem 1.4.8
is not easy to verify, then the following result may be useful—see an
application of it in Example 1.4.15 below.

Theorem 1.4.9. Let (X,Y ) and (X̃, Ỹ ) be two PRD random vectors

such that X
st
= X̃ and Y

st
= Ỹ . Suppose that the corresponding func-

tions k and k̃, defined in Eq. (1.3.9), are strictly increasing. Let C(X,Y )

and C(X̃,Ỹ ) be the corresponding copulas, and let z(w, v) be as defined

in Proposition 1.3.4. Similarly, let z̃(w, v) be defined by

z̃(w, v) =

{

sup{p : ∂
∂p
C(X̃,Ỹ )(p, v) ≥ w}, if the supremum is well defined;

0, otherwise.

If for every v ∈ [0, 1] the difference

z(w, v)− z̃(w, v) has only one sign change from + to − as w ranges from 0 to 1,
(1.4.13)

then
(X,Y ) ≤GDO3-cx (X̃, Ỹ ).

Proof : Let U and Ũ be as in Lemma 1.4.7. Using that lemma we only
need to prove that (U, Y ) ≥PQD (Ũ , Ỹ ). Using Proposition 1.3.4 we
have

C(U,Y )(u, v)− C(Ũ ,Ỹ )(u, v) =

∫ u

0
[z(w, v) − z̃(w, v)] dw

Fix a v ∈ (0, 1). Under assumption (1.4.13), let c be a point of crossing.
Denote J1 = (−∞, c] and J2 = (c,∞). Then z(w, v) − z̃(w, v) ≥ 0 on
J1 and z(w, v) − z̃(w, v) ≤ 0 on J2. Clearly

lim
u→1

∫ u

0
[z(w, v) − z̃(w, v)] du = v − v = 0,

and

lim
u→0

∫ u

0
[z(w, v) − z̃(w, v)] du = 0.

Combining these observations shows that C(U,Y )(u, v) ≥ C(Ũ ,Ỹ )(u, v)
holds.

In the next result we identify another sufficient condition for the
order ≤GDO3-cx.
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Proposition 1.4.10. Let (X,Y ) and (X̃, Ỹ ) be two random vectors

such that X
st
= X̃ and Y

st
= Ỹ . Suppose that the corresponding func-

tions k and k̃, defined in Eq. (1.3.9), are strictly increasing. If

[Y
∣

∣X = x] ≥cx

[

Ỹ
∣

∣X̃ = x
]

, x ∈ support(X), (1.4.14)

then (X,Y ) ≤GDO3-cx (X̃, Ỹ ).

Proof : Let U be a uniform (0,1) random variable that is independent
of X, and express Y as in Eq. (1.3.8). Let L denote the distribution
function of k(U), where k is defined in Eq. (1.3.9). Then, by Eq. (1.4.9),
we have L−1(u) = k(u) for u ∈ (0, 1). Similarly, if L̃ denotes the
distribution function of k̃(Ũ), then L̃−1(u) = k̃(u)for u ∈ (0, 1).

Denote by FX the marginal distribution function of X (which is
also the marginal distribution function of X̃). From the characteriza-
tion of the convex order given in Lemma 2.1 of Fagiuoli et al. [154]
(or see (3.A.15) in Shaked and Shanthikumar [426]) we have

∫ 1

p
L−1(u) du =

∫ 1

p
k(u) du

=

∫ 1

p
E[Y

∣

∣U = u] du

=

∫ 1

p

∫

x∈support(X)
F−1Y |X=x(u) dFX(x)du

=

∫

x∈support(X)

∫ 1

p
F−1Y |X=x(u) dudFX(x)

≥
∫

x∈support(X)

∫ 1

p
F−1
Ỹ |X̃=x

(u) dudFX(x)

=

∫ 1

p
E[Ỹ

∣

∣Ũ = u] du

=

∫ 1

p
L̃−1(u) du

for every p ∈ (0, 1), where the third equality follows from Eq. (1.4.6)
and the inequality from Eq. (1.4.14). Using Lemma 2.1 of Fagiuoli et al.
[154] once more we see that the above inequality yields k(U) ≥cx k̃(Ũ)
which gives the stated result.
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It is worthwhile to note that the condition (1.4.14) was shown
in Shaked et al. [428] to imply (X,Y ) =GDO1-cx (X̃, Ỹ ) and
(X,Y ) =GDO2-st (X̃, Ỹ ).

Although in this subsection we study the order ≤GDO3-cx, we think
that it is useful to make a short digression and show how the main tool
in the proof of Proposition 1.4.10 can also yield a sufficient condition
for the order ≤GDO3-disp.

Proposition 1.4.11. Let (X,Y ) and (X̃, Ỹ ) be two random vectors

such that X
st
= X̃ and Y

st
= Ỹ . Suppose that the corresponding func-

tions k and k̃, defined in Eq. (1.3.9), are strictly increasing. If

[Y
∣

∣X = x] ≥disp

[

Ỹ
∣

∣X̃ = x
]

, x ∈ support(X), (1.4.15)

then (X,Y ) ≤GDO3-disp (X̃, Ỹ ).

Proof : We use here the notation in the proof of Proposition 1.4.10.
For 0 < α < β < 1 we have

L−1(β)− L−1(α) = k(β)− k(α)

= E[Y
∣

∣U = β]− E[Y
∣

∣U = α]

=

∫

x∈support(X)
[F−1Y |X=x(β)− F−1Y |X=x(α)] dFX (x)

≥
∫

x∈support(X)
[F−1
Ỹ |X̃=x

(β)− F−1
Ỹ |X̃=x

(α)] dFX (x)

= L̃−1(β)− L̃−1(α),

here the above inequality follows from Eq. (1.4.15). This gives the
stated result.

It is worthwhile to note that the condition (1.4.15) was shown in
Shaked et al. [428, Proposition 5.7] to imply (X,Y ) ≤GDO2-st (X̃, Ỹ ).
In fact, there is a mistype there—the stated conclusion there in-
correctly says (X,Y ) ≥GDO2-st (X̃, Ỹ ) rather than (X,Y ) ≤GDO2-st

(X̃, Ỹ ).

We note that Propositions 1.4.10 and 1.4.11 go along with the
intuition in the sense that if [Y

∣

∣X = x] is more variable than [Ỹ
∣

∣X̃ = x]

for every x ∈ support(X), then, intuitively, X̃ is a “better predictor”
of Ỹ than X is of Y . Therefore we would expect Y to be “more
independent” of X than Ỹ is of X̃ .
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As in Shaked et al. [428], we note that in the terminology of
Belzunce et al. [56], condition (1.4.15) can be denoted as (X,Y ) ≥c-disp

(X̃, Ỹ ). That is, if (X,Y ) and (X̃, Ỹ ) have the same marginals, then
Proposition 1.4.11 proves that

(X,Y ) ≥c-disp (X̃, Ỹ ) =⇒ (X,Y ) ≤GDO3-disp (X̃, Ỹ ).

The order ≥c-disp is called the multivariate conditional dispersion or-
der in Belzunce et al. [56]. It is quite weak in the sense that it
is implied by other common multivariate dispersion orders. Thus,
Proposition 1.4.11 actually indicates many instances in which the or-
der ≤GDO3-disp holds.

Let (X,Y ) be a random vector. Recall the definition of the func-
tion G in Eqs. (1.3.2) and (1.3.3). Wu and Mielniczuk [476, Sect. 2.1]
defined the following global dependence measures. Let X ′ be an inde-
pendent copy of X, and assume that both X and X ′ are independent
of the uniform (0,1) random variable U . Now, let Y = G(X,U) ∈ L p,
p > 0, and let Y ′ = G(X ′, U). Define

δp(X,Y ) = ‖Y − Y ′‖p (1.4.16)

and, for p ≥ 1, define

τp(X,Y ) = ‖Y − E[Y
∣

∣U ]‖p. (1.4.17)

A particular important case is p = 2. In this case,

δ2(X,Y ) =
√
2 τ2(X,Y ) (1.4.18)

(see Wu and Mielniczuk [476], page 128).

In relation to the measures δ2(X,Y ) and τ2(X,Y ), the order
≤GDO3-cx has the following sensible property.

Theorem 1.4.12. If (X,Y ) ≤GDO3-cx (X̃, Ỹ ) then

τ2(X,Y ) ≤ τ2(X̃, Ỹ ) and δ2(X,Y ) ≤ δ2(X̃, Ỹ ).

Proof : From Eq. (1.4.18) it is sufficient to prove the result for τ2. By
its definition,

τ2(X,Y ) = E
[

Y −E
[

Y
∣

∣U
]]2

= E
[

E
[

Y −E
[

Y
∣

∣U
]]2

∣

∣

∣U
]

= E[Var[Y
∣

∣U ]].

(1.4.19)
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Now, the assumption (X,Y ) ≤GDO3-cx (X̃, Ỹ ) means

E[Y
∣

∣U ] ≥cx E
[

Ỹ
∣

∣Ũ
]

,

which implies
Var

[

E[Y
∣

∣U ]
] ≥ Var

[

E
[

Ỹ
∣

∣Ũ
]]

. (1.4.20)

Since

Var[Y ] = Var[E[Y
∣

∣U ]] + E[Var[Y
∣

∣U ]],

Var[Ỹ ] = Var
[

E
[

Ỹ
∣

∣Ũ
]]

+ E
[

Var
[

Ỹ
∣

∣Ũ
]]

,

and

Var[Y ] = Var[Ỹ ],

it follows from Eq. (1.4.20) that

E[Var[Y
∣

∣U ]] ≤ E
[

Var
[

Ỹ
∣

∣Ũ
]]

,

which implies τ2(X,Y ) ≤ τ2(X̃, Ỹ ).

Some examples of random vectors that are ordered with respect to
the order ≤GDO3-cx will now be described.

Example 1.4.13. In this example we compare two random vectors
that are expressed in the form that is reminiscent of Eq. (1.2.8). But,
we note that Eq. (1.2.8) describes any (i.e., general) bivariate random
vector, whereas Eq. (1.4.21) below is a special case of Eq. (1.2.8). It is
a special case in the sense that Z in Eq. (1.2.8) need not be indepen-
dent of X (though they are uncorrelated), whereas Z in Eq. (1.4.21) is
independent of X.

So, let (X,Y ) and (X̃, Ỹ ) be two random vectors with the same
marginals. Following Example 2.1 of Wu and Mielniczuk [476], con-
sider the heteroscedastic regression model for these vectors:

Y = m(X) + σ(X)Z, (1.4.21)

where X and Z are independent, E[Z] = 0, and σ(·) > 0, and

Ỹ = m̃(X̃) + σ(X̃) Z̃, (1.4.22)

where X̃ and Z̃ are independent and E
[

Z̃
]

= 0. Note that since

E[Z] = 0 and E
[

Z̃
]

= 0 we have that m and m̃ in Eqs. (1.4.21) and
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(1.4.22) are indeed the same m and m̃ as in Eq. (1.2.1). But σ in
Eqs. (1.4.21) and (1.4.22) is neither e nor ẽ from Eq. (1.2.2). We also
note that

E[Y ] = E[m(X)] = E
[

m̃(X̃)
]

= E
[

Ỹ
]

. (1.4.23)

Denoting the distribution function of Z by FZ , we have [see
Eq. (1.3.2)]

G(x, u) = F−1Y |X=x(u) = m(x) + σ(x)F−1Z (u), u ∈ (0, 1).

Thus,
G(X,U) = m(X) + σ(X)F−1Z (U),

where U is a uniform (0,1) random variable independent of X. We
note that

E[Y
∣

∣U = u] = E[G(X,U)
∣

∣U = u] = E[m(X)] + E[σ(X)]F−1Z (u),

and therefore

E[Y
∣

∣U ] = E[m(X)] + E[σ(X)]F−1Z (U). (1.4.24)

Similarly, we get

E
[

Ỹ
∣

∣Ũ
]

= E
[

m̃(X̃)] + E[σ(X̃)]F−1
Z̃

(Ũ), (1.4.25)

where Ũ is a uniform (0,1) random variable independent of X̃ .

Now, from Eqs. (1.4.23)–(1.4.25), we see that

(X,Y ) ≤GDO3-cx (X̃, Ỹ ) (1.4.26)

if, and only if,

E[σ(X)]F−1Z (U) ≥cx E
[

σ(X̃)
]

F−1
Z̃

(Ũ ).

Taking into account that E[σ(X)] = E
[

σ(X̃)
]

, we see that Eq. (1.4.26)
holds if, and only if,

F−1Z (U) ≥cx F
−1
Z̃

(Ũ),

or, equivalently, if, and only if,

Z ≥cx Z̃. (1.4.27)

Indeed, under this regression model (1.4.21) and (1.4.22), condition
(1.4.27) is quite intuitive for (X,Y ) to be less globally dependent than
(X̃, Ỹ ).
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Example 1.4.14. Let (X,Y ) be a bivariate normal random vector
with zero means, unit variances, and correlation coefficient ρ. Then
the distribution of [Y

∣

∣X = x] is normal with mean ρx and variance
√

1− ρ2. Explicitly it is given by

FY |X=x(y) = Φ

(

y − ρx
√

1− ρ2

)

, y ∈ R,

where Φ denotes the univariate standard normal distribution. It fol-
lows, using the notation in Eq. (1.3.2), that

G(x, u) = ρx+
√

1− ρ2 · Φ−1(u),
and thus, following Eq. (1.3.3),

Y
st
= ρX +

√

1− ρ2 · Φ−1(U), (1.4.28)

where X is a standard normal random variable and U is a uniform
(0,1) random variable, independent of X.

Similarly, let (X̃, Ỹ ) be a bivariate normal random vector with zero
means, unit variances, and correlation coefficient ρ̃. As above, we have
that

Ỹ
st
= ρ̃X̃ +

√

1− ρ̃2 · Φ−1(Ũ), (1.4.29)

where X̃ is a standard normal random variable, and Ũ is a uniform
(0,1) random variable, independent of X̃.

Now we compute

E[Y
∣

∣U ] =
√

1− ρ2 · Φ−1(U) and E[Ỹ
∣

∣Ũ ] =
√

1− ρ̃2 · Φ−1(Ũ).

It is easy to see that

E[Y
∣

∣U ] ≥cx E[Ỹ
∣

∣Ũ ] ⇐⇒ |ρ| ≤ |ρ̃|,
that is,

(X,Y ) ≤GDO3-cx (X̃, Ỹ ) ⇐⇒ |ρ| ≤ |ρ̃|.
It is of interest to note that in comparing two bivariate normal random
vectors, the above equivalence is similar to the equivalences

(X,Y ) ≤GDO1-cx (X̃, Ỹ ) ⇐⇒ |ρ| ≤ |ρ̃|
and

(X,Y ) ≤GDO1-disp (X̃, Ỹ ) ⇐⇒ |ρ| ≤ |ρ̃|
that were obtained in Shaked, Sordo, and Suárez-Llorens [428].
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Example 1.4.15. Let (X,Y ) be a random vector with absolutely
continuous marginal distributions and with dependence structure ac-
cording to the Farlie-Gumbel-Morgenstern copula given by

Cθ(u, v) = uv + θuv(1− u)(1− v), (u, v) ∈ [0, 1]2,

where θ ∈ [−1, 1] is a parameter that governs the strength and the
sign of the dependence. Suppose that θ ∈ (0, 1]. A straightforward
computation yields that (X,Y ) is PRD. By Proposition 1.4.4 we know
that (U, Y ) is always PRD, and due to the fact that FY |X=x(·) is
absolutely continuous we have that k(u) is strictly increasing. We
are now going to use Theorem 1.4.9. For this purpose we compute
∂
∂pCθ(p, v) = v + θv(1− v)(1 − 2p) and obtain

zθ(w, v) =

⎧

⎪

⎨

⎪

⎩

1, if w ≤ v − θv(1− v);
1
2 − w−v

2θv(1−v) , if v − θv(1− v) ≤ w ≤ v + θv(1− v);

0, if w ≥ v + θv(1− v).

Let (X̃, Ỹ ) be another random vector with the same marginals as
(X,Y ) and having a Farlie-Gumbel-Morgenstern copula with param-
eter θ̃. If θ < θ̃, fixing v, it is apparent, by just plotting the function
zθ(·, v) − z̃θ̃(·, v), that Eq. (1.4.13) holds. Hence it follows from Theo-

rem 1.4.9 that if θ < θ̃ then (X,Y ) ≤GDO3-cx (X̃, Ỹ ).

The following example is inspired by Example 2.4 of Wu and Miel-
niczuk [476]. Unlike Wu and Mielniczuk, we use below the classical
standard construction as discussed in Remark 1.3.2. As is shown in
Proposition 1.4.4 and explained in Remark 1.4.6, this produces positive
dependence between U and Y in Eq. (1.3.8). This leads to a technical
dissimilarity between the following example and Example 2.4 in [476],
that is, the U in Wu and Mielniczuk [476] is 1− U below.

Example 1.4.16. Let (X,Y ) and (X̃, Ỹ ) be random vectors with the
following discrete joint probability mass functions:

�
��X
Y

0 1

0 p00 p01 p0·
1 p10 p11 p1·

p·0 p·1 1

and

�
��X̃
Ỹ

0 1

0 p̃00 p̃01 p0·
1 p̃10 p̃11 p1·

p·0 p·1 1

where the marginal probability mass function of X and X̃ is (p0·, p1·),
the marginal probability mass function of Y and Ỹ is (p·0, p·1), and all
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the pij’s and p̃ij’s are nonnegative and add up to the given marginal
probabilities.

Let U be a uniform (0,1) random variable, independent of X. Then
the function G in Eq. (1.3.8) is given by

Y = X · I{u≥p11/p1·}(U) + (1−X) · I{u≥p01/p0·}(U), (1.4.30)

where I denotes an indicator function. Similarly we can express Ỹ as

Ỹ = X̃ · I{u≥p11/p1·}(Ũ) + (1− X̃) · I{u≥p01/p0·}(Ũ ), (1.4.31)

where X̃ and Ũ are independent. Consider now the following two
cases:

Case 1: p00p11 ≥ p01p10 and p̃00p̃11 ≥ p̃01p̃10. In this case X and Y

are positively dependent (for instance, Cov(X,Y ) ≥ 0) and also
X̃ and Ỹ are positively dependent. Note that from the inequali-
ties p00p11 ≥ p01p10 and p̃00p̃11 ≥ p̃01p̃10 it follows that p01

p0· ≤ p11
p1·

and p̃01
p0· ≤ p̃11

p1· . Then from Eq. (1.4.30) we have

E[Y
∣

∣U = u] =

⎧

⎪

⎨

⎪

⎩

0, if u ∈ [0, p01p0· ];

E[1−X], if u ∈ [p01p0· ,
p11
p1· ];

1, if u ∈ [p11p1· , 1].

Hence

E[Y
∣

∣U ] =

⎧

⎪

⎨

⎪

⎩

0, with probability p01
p0· ;

1− p1·, with probability p11
p1· − p01

p0· ;

1, with probability 1− p11
p1· .

Similarly,

E[Ỹ
∣

∣Ũ ] =

⎧

⎪

⎨

⎪

⎩

0, with probability p̃01
p0· ;

1− p1·, with probability p̃11
p1· − p̃01

p0· ;

1, with probability 1− p̃11
p1· .

Now, E[Y
∣

∣U ] ≥cx E[Ỹ
∣

∣Ũ ] if, and only if, p11 ≤ p̃11. Thus, we see

that in Case 1, (X,Y ) ≤GDO3-cx (X̃, Ỹ ) if, and only if, (X̃, Ỹ ) is,
informally, “more positively dependent” than (X,Y ).
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Case 2: p00p11 ≤ p01p10 and p̃00p̃11 ≤ p̃01p̃10. In this case X and Y

are negatively dependent (for instance, Cov(X,Y ) ≤ 0) and also
X̃ and Ỹ are negatively dependent. Note that from the inequali-
ties p00p11 ≤ p01p10 and p̃00p̃11 ≤ p̃01p̃10 it follows that p11

p1· ≤ p01
p0·

and p̃11
p1· ≤ p̃01

p0· . A computation, similar to the one in Case 1,
yields

E[Y
∣

∣U ] =

⎧

⎪

⎨

⎪

⎩

0, with probability p11
p1· ;

p1·, with probability p01
p0· − p11

p1· ;

1, with probability 1− p01
p0· ;

and

E[Ỹ
∣

∣Ũ ] =

⎧

⎪

⎨

⎪

⎩

0, with probability p̃11
p1· ;

p1·, with probability p̃01
p0· − p̃11

p1· ;

1, with probability 1− p̃01
p0· .

Now, E[Y
∣

∣U ] ≥cx E[Ỹ
∣

∣Ũ ] if, and only if, p11 ≥ p̃11. Thus we see

that in Case 2, (X,Y ) ≤GDO3-cx (X̃, Ỹ ) if, and only if, (X̃, Ỹ ) is,
informally, “more negatively dependent” than (X,Y ).

Note that in the above cases we have (X,Y ) ≤GDO3-cx (X̃, Ỹ ) ⇐⇒
(Y,X) ≤GDO3-cx (Ỹ , X̃).

For the cases in which one of (X,Y ) and (X̃, Ỹ ) is positively de-
pendent and the other is negatively dependent, it is possible to make
a similar analysis; we do not present the details here.

1.4.2 The Order ≤GDO4-st

The univariate order ≤st is reflexive and transitive. Thus we have the
following result.

Proposition 1.4.17. The order ≤GDO4-st satisfies property (O1).

We do not know whether ≤GDO4-st satisfies property (O2). But,
following the comments in Remark 1.2.1 we conjecture that it does
not. However, we have the following results.

Proposition 1.4.18. The order ≤GDO4-st satisfies property (O3).

Proof : Let (X,Y ) be a random vector. Furthermore, let φ be a one-
to-one measurable function, and consider (φ(X), Y ). Let G(x, u) be
defined as in Eq. (1.3.2), and define Gφ by
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Gφ(x, u) = G(φ−1(x), u).

Let U be a uniform random variable on [0, 1], which is independent
of X. As in the proof of Proposition 1.4.2, Y can be expressed as

Y
st
= G(X,U) and also as Y

st
= Gφ(φ(X), U). Therefore the function

d(u) that is defined in Eq. (1.3.10) can be expressed both as

d(u) = Var[Y
∣

∣U = u] = Var[G(X,u)]

and as
d(u) = Var[Y

∣

∣U = u] = Var[Gφ(φ(X), u)].

In other words, both vectors (X,Y ) and (φ(X), Y ) share the same
function d(u). Similarly, if (X̃, Ỹ ) is another random vector then
(X̃, Ỹ ) and (φ(X̃), Ỹ ) share the same function d̃(u) defined in
Eq. (1.3.10). Thus, if (X,Y ) ≤GDO4-st (X̃, Ỹ ) then (φ(X), Y ) ≤GDO4-st

(φ(X̃), Ỹ ).

Next, it is easy to see that if (X,Y ) ≤GDO4-st (X̃, Ỹ ) then
(X, l(Y )) ≤GDO4-st (X̃, l(Ỹ )) for every linear function l.

Property (O3) now follows from the above two observations.

Proposition 1.4.19. The order ≤GDO4-st satisfies property (O4).

Proof : Let (X,Y ) be a random vector. Recall the notation X⊥ and
Y ⊥ from Eq. (1.2.10). We want to prove that

(X⊥, Y ⊥) ≤GDO4-st (X,Y )).

Let U and U⊥ be uniform (0,1) random variables such that U and X
are independent and U⊥ and X⊥ are independent. Let G and G⊥ be
functions such that

Y = G(X,U) and Y ⊥ = G⊥(X⊥, U⊥).

With this notation we want to prove that

Var[Y ⊥
∣

∣U⊥] ≤a.s Var[Y
∣

∣U ]. (1.4.32)

Since Y ⊥ is independent of X⊥ we see that [Y ⊥
∣

∣U⊥ = u]
st
= h(u)

for some function h. Hence Var[Y ⊥
∣

∣U⊥ = u] = 0 for all u ∈ (0, 1).
Therefore Var[Y ⊥

∣

∣U⊥] = 0, whereas Var[Y
∣

∣U ] ≥ 0, and Eq. (1.4.32)
follows.

In the following example it is shown that the order ≤GDO4-st does
not have property (O5).
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Example 1.4.20. LetX be a nonnegative continuous random variable
with a finite variance, and let U be uniform (0,1) random variable that
is independent of X. Define

Y = X · F−1Z (U)

where Z is a standard normal random variable—this is a special case
of heteroscedastic regression model in Eq. (1.4.21). Using the notation
in Eq. (1.3.8) we have

G(X,U) = X · F−1Z (U).

Denote the marginal distributions of X and Y by FX and FY , respec-
tively. A straightforward computation shows that

Var(Y ) = E(X2).

Now, recall the notation X� and Y � from Eq. (1.2.11). Explicitly,

let X� be a random variable such that X� st
= X, and define Y �

by Y � = F−1Y (FX(X
�)). Formally, as in Eq. (1.3.4), let U� be a

uniform (0,1) random variable that is independent of X�, and let G�

be a function such that Y � = G�(X�, U�). The function g�(x, u) =
F−1Y (FX (x)) is actually independent of u. Therefore Var[Y �

∣

∣U�] a.s.
=

Var[Y �] = Var[Y ] = E[X2]. On the other hand, Var[Y
∣

∣U = u] =
Var(X)(F−1Z (u))2 for all u ∈ (0, 1). For u large enough near 1, we have
that Var[Y

∣

∣U = u] ≥ E[X2] = Var[Y ]. It follows that Var[Y
∣

∣U ] �≤st

Var[Y ]
a.s.
= Var[Y �

∣

∣U�]. That is, (X,Y ) �≤GDO4-st (X
�, Y �).

Although, as Example 1.4.20 shows, it is not always true that
(X,Y ) ≤GDO4-st (X

�, Y �), a weaker stochastic inequality still holds,
as is described in Proposition 1.4.21 below. We recall that for two ran-
dom variables Z and Z̃ we denote Z ≤icv Z̃ if Eφ(Z) ≤ Eφ(Z̃) for every
increasing concave function φ for which the above expectations are well
defined. For a detailed study of the univariate order ≤icv see, for ex-
ample, Müller and Stoyan [335] or Shaked and Shanthikumar [426].
The order ≤GDO4-icv, that is mentioned in Proposition 1.4.21 below, is
the one obtained from Eq. (1.3.13) with ≤magnitude being ≤icv.

Proposition 1.4.21. With the notation in Eq. (1.2.11), for every ran-
dom vector (X,Y ), we have

(X,Y ) ≤GDO4-icv (X�, Y �). (1.4.33)
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Proof : Let U be as in Eq. (1.3.1), and let U� be similarly defined in
relation to (X�, Y �). Note that actually U� is independent of Y �.
In order to prove Eq. (1.4.33) we need to show that

Var[Y
∣

∣U ] ≤icv Var[Y ⊥
∣

∣U⊥]. (1.4.34)

Let φ be an increasing concave function. Then

E[φ(Var[Y
∣

∣U ])] ≤ φ(E[Var[Y
∣

∣U ]]) ≤ φ(Var[U ]) = φ(Var[Y ⊥
∣

∣U⊥]),

where the first inequality follows from Jensen’s Inequality, the sec-
ond inequality follows from the monotonicity of φ and the fact that
E[Var[Y

∣

∣U ]] ≤ Var[U ] (this follows from Eq. (1.2.8) or from Eq. (2.3)
in Shaked et al. [428]), and the equality follows from Eq. (1.2.11) and
the independence of Y ⊥ and U⊥. This establishes Eq. (1.4.34).

A combination of Propositions 1.4.19 and 1.4.21 gives the following
analog of Proposition 5.4 in Shaked et al. [428].

Corollary 1.4.22. With the notation in Eqs. (1.2.10) and (1.2.11),
for every random vector (X,Y ), we have

(X⊥, Y ⊥) ≤GDO4-st (X,Y ) ≤GDO4-icv (X�, Y �).

In relation to the measures δ2(X,Y ) and τ2(X,Y ) [see Eqs. (1.4.16)
and (1.4.17)], the order ≤GDO4-st has the following sensible property.

Theorem 1.4.23. If (X,Y ) ≤GDO4-st (X̃, Ỹ ) then

τ2(X,Y ) ≤ τ2(X̃, Ỹ ) and δ2(X,Y ) ≤ δ2(X̃, Ỹ ).

Proof : As in the proof of Theorem 1.4.12, it is sufficient to prove the
result for τ2. The assumption (X,Y ) ≤GDO4-st (X̃, Ỹ ) means

Var[Y
∣

∣U ] ≤st Var
[

Ỹ
∣

∣Ũ
]

,

which implies
E[Var[Y

∣

∣U ]] ≤ E
[

Var
[

Ỹ
∣

∣Ũ
]]

.

The inequality τ2(X,Y ) ≤ τ2(X̃, Ỹ ) now follows from Eq. (1.4.19).

Example 1.4.24. Let (X,Y ) and (X̃, Ỹ ) be bivariate normal random
vectors as in Example 1.4.14. Then Y and Ỹ can be expressed as in
Eqs. (1.4.28) and (1.4.29). We compute
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Var[Y
∣

∣U ] = ρ2 and Var[Ỹ
∣

∣Ũ ] = ρ̃2,

that is, here both Var[Y
∣

∣U ] and Var[Ỹ
∣

∣Ũ ] are degenerate random vari-
ables. It is easy to see that

Var[Y
∣

∣U ] ≤st Var[Ỹ
∣

∣Ũ ] ⇐⇒ |ρ| ≤ |ρ̃|,

that is,

(X,Y ) ≤GDO4-st (X̃, Ỹ ) ⇐⇒ |ρ| ≤ |ρ̃|.
It is of interest to note that in comparing two bivariate normal random
vectors, the above equivalence is similar to the equivalence

(X,Y ) ≤GDO2-st (X̃, Ỹ ) ⇐⇒ |ρ| ≤ |ρ̃|

that was obtained in Shaked et al. [428].

Example 1.4.25. Let (X,Y ) and (X̃, Ỹ ) be random vectors with
discrete joint probability mass functions as in Example 1.4.16. Below
we find necessary and sufficient conditions on the parameters pij’s and
p̃ij’s that imply (X,Y ) ≤GDO4-st (X̃, Ỹ ).

Let U be a uniform (0,1) random variable, independent of X, and
consider the representation (1.4.30) for Y . Similarly, let Ũ be a uniform
(0,1) random variable, independent of X̃, and consider the representa-
tion (1.4.31) for Ỹ . As in Example 1.4.16, consider the following two
cases:

Case 1: p00p11 ≥ p01p10 and p̃00p̃11 ≥ p̃01p̃10. Note that from the in-

equality p00p11 ≥ p01p10 it follows that p01
p0· ≤ p11

p1· . Then from
Eq. (1.4.30) we see that

[Y
∣

∣U = u] =

⎧

⎪

⎨

⎪

⎩

0, if u ∈ [0, p01p0· ];

1−X, if u ∈ [p01p0· ,
p11
p1· ];

1, if u ∈ [p11p1· , 1].

Hence

Var[Y
∣

∣U ] =

{

p0·p1·, with probability p11
p1· − p01

p0· ;

0, with probability 1− (p11
p1· − p01

p0·

)

.
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Similarly,

Var[Ỹ
∣

∣Ũ ] =

{

p0·p1·, with probability p̃11
p1· − p̃01

p0· ;

0, with probability 1− ( p̃11
p1· − p̃01

p0·

)

.

Thus, Var[Y
∣

∣U ] ≤st Var[Ỹ
∣

∣Ũ ] if, and only if, p11 ≤ p̃11 (which
is equivalent to p01 ≥ p̃01). Thus we see that in Case 1,
(X,Y ) ≤GDO4-st (X̃, Ỹ ) if, and only if, (X̃, Ỹ ) is, informally,
“more positively dependent” than (X,Y ).

Case 2: p00p11 ≤ p01p10 and p̃00p̃11 ≤ p̃01p̃10. Note that from the in-

equality p00p11 ≤ p01p10 it follows that p11
p1· ≤ p01

p0· . A computa-
tion, similar to the one in Case 1, yields

Var[Y
∣

∣U ] =

{

p0·p1·, with probability p01
p0· − p11

p1· ;

0, with probability 1− (p01
p0· − p11

p1·

)

;

and

Var[Ỹ
∣

∣Ũ ] =

{

p0·p1·, with probability p̃01
p0· − p̃11

p1· ;

0, with probability 1− ( p̃01
p0· − p̃11

p1·

)

.

Now, Var[Y
∣

∣U ] ≤st Var[Ỹ
∣

∣Ũ ] if, and only if, p11 ≥ p̃11. Thus, we

see that in Case 2, (X,Y ) ≤GDO4-st (X̃, Ỹ ) if, and only if, (X̃, Ỹ )
is, informally, “more negatively dependent” than (X,Y ).

Note that in this example we have that (X,Y ) ≤GDO4-st

(X̃, Ỹ ) ⇐⇒ (Y,X) ≤GDO4-st (Ỹ , X̃).

For the cases in which one of (X,Y ) and (X̃, Ỹ ) is positively de-
pendent and the other is negatively dependent, it is possible to make
a similar analysis; we do not give the details here either.

1.5 An Application in Reliability Theory

In the previous section we identified conditions which lead to various
GDOs, and we derived some properties of these GDOs. Now we de-
scribe a practical situation in which random vectors, that are ordered
with respect to ≤GDO3-cx, yield useful inequalities.

First we derive a result involving the behavior of order statistics
that are associated with random vectors that are ordered with respect
to the order ≤GDO3-cx. We then apply it to problems that arise in
reliability theory.
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We recall the definition of the univariate increasing convex order
(for a detailed study of the this order, see, e.g., Müller and Stoyan [335]
or Shaked and Shanthikumar [426]). Let Z and Z̃ be two univariate
random variables. It is said that Z is smaller than Z̃ with respect
to the univariate increasing convex order (denoted as Z ≤icx Z̃) if
E[φ(Z)] ≤ E[φ(Z̃)] for every increasing convex function φ for which
the above expectations are well defined.

Let (X,Y ) and (X̃, Ỹ ) be two random vectors with the same
marginal distributions, and let U and Ũ be as in Eq. (1.3.8). De-
note, as in Eq. (1.3.9), the corresponding regression functions by k
and k̃. Let (U1, Y1), (U2, Y2), . . . , (Un, Yn) be n independent copies of
(U, Y ), and let (Ũ1, Ỹ1), (Ũ2, Ỹ2), . . . , (Ũn, Ỹn) be n independent copies
of (Ũ , Ỹ ). Denote the order statistics that correspond to U1, U2, . . . , Un
by U(1) ≤ U(2) ≤ · · · ≤ U(n) and the order statistics that correspond to

Ũ1, Ũ2, . . . , Ũn by Ũ(1) ≤ Ũ(2) ≤ · · · ≤ Ũ(n). In the following result we

assume that k and k̃ are strictly increasing, but from Proposition 1.4.4,
it is seen that this is not a very restrictive assumption.

Theorem 1.5.1. Let (X,Y ) and (X̃, Ỹ ) be two random vectors with
the same marginal distributions, and let U and Ũ be as in Eq. (1.3.8).
If the corresponding functions k and k̃ are strictly increasing, and if
(X,Y ) ≤GDO3-cx (X̃, Ỹ ), then

k̃(Ũ(n)) ≤icx k(U(n)). (1.5.1)

Proof : The proof is similar to the proof of Proposition 6.1 in Shaked
et al. [428]. Let E[Y

∣

∣U ](1) ≤ E[Y
∣

∣U ](2) ≤ · · · ≤ E[Y
∣

∣U ](n) be the
order statistics that correspond to a sample of n independent copies
of E[Y

∣

∣U ]. Similarly, let E[Ỹ
∣

∣Ũ ](1) ≤ E[Ỹ
∣

∣Ũ ](2) ≤ · · · ≤ E[Ỹ
∣

∣Ũ ](n)
be the order statistics that correspond to a sample of n independent
copies of E[Ỹ

∣

∣Ũ ]. Since k is strictly increasing, it is apparent that

E[Y
∣

∣U ](i)
st
= k(U(i)), i = 1, 2, . . . , n. From the hypothesis assumption

we have E[Ỹ
∣

∣Ũ ] ≤cx E[Y
∣

∣U ], and this implies E[Ỹ
∣

∣Ũ ] ≤icx E[Y
∣

∣U ].
The stochastic inequality (1.5.1) now follows from Corollary 4.A.16 of
Shaked and Shanthikumar [426].

Consider n reliability items that are going to be put in a par-
allel system. Each of the items is tested before it is put into the
system, and as a result of the test, it may be reshaped or adjusted,
and the adjustment may affect the item lifetime. Let X1,X2, . . . ,Xn
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be the (random) results of the tests, and let U1, U2, . . . , Un be the
corresponding (random) “noises” as interpreted after Eq. (1.3.3) (the
units of which are irrelevant for our conclusions below as can be seen
from the discussion in Remark 1.4.6). Suppose that the Xis are not
observable but that the realizations of the “noises” Uis can be ob-
served (though not controlled). Let Y1, Y2, . . . , Yn be the (random)
adjusted lifetimes given the above tests results. We assume that the
pairs (U1, Y1), (U2, Y2), . . . , (Un, Yn) are independent and identically
distributed. We want to compare the above situation to another situ-
ation in which a different type of test is performed on the items before
they are put into the system. This time the tests results are denoted
by X̃1, X̃2, . . . , X̃n, and Ỹ1, Ỹ2, . . . , Ỹn are the corresponding adjusted
lifetimes of the items, given the above other tests results. We denote
the corresponding observable “noises” by Ũ1, Ũ2, . . . , Ũn. Here too we
assume that the pairs (Ũ1, Ỹ1), (Ũ2, Ỹ2), . . . , (Ũn, Ỹn) are independent
and identically distributed.

If we assume that k and k̃ are strictly increasing, then the (ran-
dom) lifetime of the system in the former case (using a notation from

the proof of Theorem 1.5.1) is E[Y
∣

∣U ](n)
st
= k(U(n)), whereas the corre-

sponding lifetime in the latter case is E[Ỹ
∣

∣Ũ ](n)
st
= k̃(Ũ(n)). Supposing

that (X̃1, Ỹ1) is more globally dependent than (X1, Y1) with respect to
the order ≤GDO3-cx, we see from Theorem 1.5.1 that a “less accurate”
test procedure (i.e., one in which a lifetime is more influenced by the
“noise”) yields a longer system lifetime, in the sense of ≤icx. This fact
can be useful to reliability engineers when they construct the testing
procedure.

Of course, the costs of the test procedures, and the unusual cost
of observing the “noise,” also need to be taken into account by the
engineers, but we do not discuss this issue here.
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Chapter 2

Duality Theory and
Transfers for Stochastic
Order Relations

Alfred Müller

Abstract: In this paper it will be demonstrated how functional
analytic tools from duality theory can be used to give interesting char-
acterizations of stochastic order relations for discrete distributions in
terms of mass transfer principles. A general result for a large class of
integral stochastic orders will be derived, and it will be shown that this
applies to many important examples like usual stochastic order, con-
vex order, supermodular order, directional convex order, and orthant
orders.

2.1 Introduction

Many stochastic order relations have a nice interpretation in terms
of a sequence of mass transfers, if the involved distributions have a
finite support. We explain the idea by a simple example concerning
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the usual stochastic order ≤st for real-valued random variables. Let
X,Y be real-valued random variables with

P{X = 0} = P{X = 2} =
1

4
, P{X = 3} =

1

2
,

and

P{Y = 1} = P{Y = 2} =
1

4
, P{Y = 4} =

1

3
, P{Y = 5} =

1

6
.

Then X ≤st Y holds. One way to see this is by using the fact that
there are random variables X̂, Ŷ with the same marginal distributions
as X and Y having the property that X̂ ≤ Ŷ almost surely. This can
be obtained, e.g., by choosing the following joint distribution:

P{X̂ = 0, Ŷ = 1} = P{X̂ = 2, Ŷ = 2} =
1

4
,

P{X̂ = 3, Ŷ = 4} =
1

3
and P{X̂ = 3, Ŷ = 5} =

1

6
.

This statement can be reinterpreted as saying that the distribution
of Y can be obtained from the distribution of X by a sequence of
threemass transfers moving probability mass upwards, namely moving
probability mass 1/4 upwards from 0 to 1, moving probability mass
1/3 upwards from 3 to 4, and moving probability mass 1/6 upwards
from 3 to 5 (the probability mass of 1/4 in the point 2 is not moved).

Using a little bit more formal notation, we can write this as fol-
lows. Let δx denote the point mass in x ∈ R, then we can write the
distributions of X and Y as

PX =
1

4
δ0 +

1

4
δ2 +

1

2
δ3, PY =

1

4
δ1 +

1

4
δ2 +

1

3
δ4 +

1

6
δ5.

The fact that PY can be obtained from PX by three mass transfers
moving probability mass upwards can be written as

PY − PX =
1

4
(δ1 − δ0) +

1

3
(δ4 − δ3) +

1

6
(δ5 − δ3).

Recall that the difference of two measures is called a signed measure.
Thus the statement that PY is obtained from PX by a sequence of mass
transfers moving probability mass upwards can be stated in mathe-
matical terms as PY − PX is a positive linear combination of signed
measures of the form δy − δx with x < y.
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The aim of this paper is to demonstrate that such a principle of
transfers holds for many well-known stochastic order relations and that
there is a unified principle on how to prove this in general by using
functional analytic results from duality theory. The use of methods
from duality theory for the analysis of stochastic order relations is not
new, see, e.g., [76, 331].

The study of mass transfer principles as described above has re-
cently found increasing interest in the economics literature in the con-
text of comparing multivariate risks, see, e.g., [109, 318, 334]. Indeed,
the basic principle that is used in this paper has already been used
in [318, 334] for the special cases of supermodular ordering and in-
framodular ordering.

2.2 Transfers and Integral Stochastic Orders

In this section the general principle of a transfer is introduced. To do
so, the basic facts about signed measures are needed. Let S ⊆ R

d be a
Borel subset of some Euclidean space and let S be the Borel-σ-algebra
on S. If μ+ and μ− are two finite measures on (S,S), the difference
μ = μ+−μ− is a signed measure. Such a signed measure is a mapping
μ : S → R that is σ-additive with μ(∅) = 0. By the well-known Hahn-
Jordan decomposition theorem we have for any signed measure μ on
(S,S) a unique decomposition μ = μ+ − μ− as a difference between
two measures with the property that there is a measurable subset
E ⊂ S such that μ+(E) = 0 and μ−(S\E) = 0. These measures μ+

and μ− are then called the positive and negative parts, respectively.
The measure |μ| := μ+ + μ− is called the total variation and ‖μ‖ :=
μ+(S) + μ−(S) is the total variation norm. Denote by M the set of
all signed measures on S with finite total variation norm ‖μ‖ < ∞
and with the property that μ+(S) = μ−(S). Notice that for any two
probability measures P,Q, the difference Q − P ∈ M and that in
fact any μ ∈ M is a multiple of such a difference of two probability
measures, i.e., M is the linear space spanned by the differences of
probability measures.

A degenerate probability measure on x is denoted δx. Given two
probability measures P,Q supported on a finite subset of Rd, call the
signed measure Q− P a transfer from P to Q. If

(Q− P )− =
n

∑

i=1

αiδxi and (Q− P )+ =
m
∑

i=1

βiδyi ,
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then the transfer Q − P removes probability mass αi from point xi,
i = 1, . . . , n and adds probability mass βi to yi, i = 1, . . . ,m. To
indicate this transfer we write

n
∑

i=1

αiδxi →
m
∑

i=1

βiδyi .

In the examples that we consider later on we will also illustrate
this graphically by green and red points. The meaning will be that
the red points will depict the points xi where we remove mass, and
the green points will depict the points yi where the mass is moved to.
Thus an increasing transfer will look as follows (Fig. 2.1):

Figure 2.1: Increasing transfer

Next we define classes of functions that are generated by sets of
transfers. In the following we denote by C the set of all continuous
functions f : S → R.

Definition 2.2.1. Consider a set M ⊂ M of transfers and the class
F ⊂ C of continuous functions f such that

m
∑

i=1

βif(yi) ≥
n

∑

i=1

αif(xi)

whenever μ ∈M , where μ :=
∑m

i=1 βiδyi −
∑n

i=1 αiδxi . The class F is
said to be induced by M .

Any class of functions F defines a so-called integral stochastic order.
Stochastic orders of this type have been considered in detail in [306,
331]. In the following we will denote the mentioned stochastic orders
with the symbols used in the monographs [335, 426].
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Definition 2.2.2. A probability measure P is dominated by a prob-
ability measure Q with respect to the integral order ≤F (denoted
P ≤F Q) if

∫

udP ≤
∫

udQ for all u ∈ F .

The class F of functions is called the generator of the order ≤F .

We will now demonstrate that many important examples of
stochastic orders have a generator F that is induced by a set of
transfers M ⊂ M. In all cases that we consider it doesn’t matter
whether or not we assume continuity of the function in F . This
follows from the results in [120]. In some cases there are different
possibilities to define the transfers. We will speak of simple transfers
if they move mass only from a very small number of points to a small
number of other points, typically from at most two points to at most
two other points.

Throughout this paper the Euclidean space R
d will be endowed

with the natural componentwise order, where for x,y ∈ R
d we write

x ≤ y if xi ≤ yi for i = 1, . . . , d.

In the following descriptions of transfers η ∈ [0, 1] will always
describe the total mass that is moved by the transfer.

Simple Increasing Transfer

Given x,y ∈ R
d with x ≤ y and η ∈ [0, 1] a simple transfer ηδx → ηδy

is called increasing. The reverse transfer is called decreasing.

If M is the set of increasing transfers then it is obvious that this
induces the class F of continuous increasing functions. Thus in this
case ≤F is the usual stochastic order ≤st (Fig. 2.2).

Figure 2.2: Increasing transfer
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Simple Convex Transfer

Given x,y,w,z ∈ R
d and α, β, γ, ε ∈ [0, 1] such that

z = αx+ (1− α)y, w = βy + (1− β)x,

γx+ (1− γ)y = εz + (1− ε)w,

a simple transfer η (εδz + (1− ε)δw) → η (γδx + (1− γ)δy) is called
convex. The reverse transfer is called concave. When α = β, hence
γ = ε = 1/2, the transfer is called symmetric. Notice that if α = 1−β,
then w = z (Fig. 2.3).

General Convex Transfer

For a discrete measure P =
∑m

i=1 αiδxi the barycenter is defined as

bar(P ) =
1

∑m
i=1 αi

m
∑

i=1

αixi

Figure 2.3: Simple convex transfer

Figure 2.4: General concave transfer (fusion)
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A general convex transfer is a transfer ηδbar(P ) → ηP = η
∑m

i=1 αiδxi

for some η ∈ [0, 1]. The reverse transfer is called concave (Fig. 2.4).

The general (non-simple) convex transfers are obtained by iterating
simple convex transfers. In dimension d = 1 a convex transfer is
nothing else than a mean-preserving spread, as studied by [394–396].
In dimension d concave transfers are related to fusions [148].

The class F generated by the set of all convex transfers is just the
class of all convex functions. Thus ≤F is the convex order ≤cx.

Simple Supermodular Transfer

The following notation is used here:

x ∨ y := (max{x1, y1}, . . . ,max{xd, yd}),
x ∧ y := (min{x1, y1}, . . . ,min{xd, yd}).

Given x,y,w,z ∈ R
d such that

x = z ∧w, y = z ∨w,

a simple transfer η
(

1
2δz + 1

2δw
) → η

(

1
2δx + 1

2δy
)

is called supermodu-
lar. The reverse transfer is called submodular.

The class F generated by the set of all supermodular transfers is
just the class of all supermodular functions. Thus ≤F is the super-
modular order ≤sm (Fig. 2.5).

x ^ y

x x y

y

Figure 2.5: Supermodular transfer
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Simple Directionally Convex Transfer

Given x,y,w,z ∈ R
d and γ, ε ∈ [0, 1] such that x ≤ w ≤ y, x ≤ z ≤ y

and

γx+ (1− γ)y = εz + (1− ε)w, (2.2.1)

a simple transfer η (εδz + (1− ε)δw) → η (γδx + (1− γ)δy) is called
directionally convex. The reverse transfer is called directionally con-
cave. When γ = ε = 1/2, the transfer is called symmetric.

The class F generated by the set of all directionally convex trans-
fers is just the class of all directionally convex functions. Thus ≤F is
the convex order ≤dcx. Notice that Eq. (2.2.1) ensures that the points
x,w,y,z are the vertices of a parallelogram (Fig. 2.6).

Figure 2.6: Directionally convex transfer

Δ-Monotone Transfer

Let x ≤ y with strict inequality xi < yi in k variables i1, . . . , ik for
some k ∈ {1, . . . , d}. Then [x,y] := {z : x ≤ z ≤ y} is a k-dimensional
hyperbox with 2k vertices. Let Vo be the subset of vertices z with the
property that the number of components with zi = xi, i ∈ {i1, . . . , ik}
is odd. Similarly, Ve shall be the subset of vertices where this number
is even.

A transfer removing mass η from each of the vertices in Vo and
moving mass η to each of the vertices in Ve is called a Δ-monotone
transfer.

The class F generated by the set of all Δ-monotone transfers is the
class of all Δ-monotone functions. To see this, recall the definition of
a Δ-monotone function f : Rd → R. For a function f : Rd → R define
the difference operators
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Δε
if(x) = f(x+ εei)− f(x),

where ei is the i-th unit vector and ε > 0. The function f is said to
be Δ-monotone, if for every subset J = {i1, . . . , ik} ⊂ {1, . . . , d} and
every ε1, . . . , εk > 0

Δε1
i1
. . .Δεk

ik
f(x) ≥ 0 for all x.

Defining y by yi := xi + εi if i ∈ {i1, . . . , ik} and yi = xi otherwise, it
is easy to see that

Δε1
i1
. . .Δεk

ik
f(x) =

∑

z∈Ve
f(z)−

∑

z∈Vo
f(z).

Thus the class F generated by the set of all Δ-monotone transfers is
the class of all Δ-monotone functions, and therefore in this case ≤F
is the upper orthant order ≤uo, as this is generated by the class of
Δ-monotone functions, see [335], Theorem 3.3.15.

In the same theorem one can find the related result that the lower
orthant order ≤lo is generated by the class of functions with the prop-
erty that x �→ −f(−x) is Δ-monotone. We call these functions Δ-
antitone transfer. Therefore a similar concept of transfer can be de-
fined which leads to the lower orthant order. One just has to replace in
the definition of the Δ-monotone transfer the sets Vo and Ve by the sets
V̄o and V̄e, where V̄o is the subset of vertices z with the property that
(−1)k times the number of components with zi = xi, i ∈ {i1, . . . , ik}
is odd. Similarly, V̄e shall be the subset of vertices where (−1)k times
the number of components with zi = xi, i ∈ {i1, . . . , ik} is even. We
will denote this as a Δ-antitone transfer (Fig. 2.7).

Figure 2.7: Δ-monotone transfer in dimension d = 3
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2.3 Duality Theory

The proof of our main results in the next section requires some results
from a part of functional analysis that is known as duality theory. For
a detailed description of that general theory we refer to [89]. Here we
will describe the most important facts adapted to our setting.

For S ⊂ R
d compact, denote by C the set of continuous functions

on S. By the compactness assumption on S these functions are all
bounded and therefore integrable with respect to any μ ∈ M.

In functional analysis it is convenient to describe integrals as a
bilinear form 〈f, μ〉 = ∫

fdμ =
∫

fdμ+ − ∫

fdμ−.
A pair (E,F ) of vector spaces is said to be in duality, if there is a

bilinear mapping 〈·, ·〉 : E × F → R. The duality is said to be strict,
if for each 0 �= x ∈ E there is a y ∈ F with 〈x, y〉 �= 0 and if for each
0 �= y ∈ F there is an x ∈ E with 〈x, y〉 �= 0.

Unfortunately the duality (M, C) is not strict, as 〈f, μ〉=0
for allμ∈M only implies f to be constant. But strict duality can
be obtained by identifying functions which differ only by a constant.
Formally, define an equivalence relation f ∼ g if f − g is constant.
Equivalently, fix some s0 ∈ S and require f(s0) = 0. Denote the
corresponding quotient space by C∼.
Lemma 2.3.1. M and C∼ are in strict duality under the bilinear
mapping

〈·, ·〉 : M× C∼ → R,

〈μ, f〉 =

∫

fdμ.

A crucial role in our further investigations is played by the bipolar
theorem for convex cones. The notion of polar is introduced following
the notation of [89].

The polar M◦ of a set M ⊂ E (in the duality (E,F )) is defined as

M◦ = {y ∈ F : 〈x, y〉 ≥ −1 for all x ∈ M}. (2.3.1)

The polar of a set N ⊂ F is defined analogously.

Given a vector space V , a subset K ⊂ V is called a cone if x ∈
K implies αx ∈ K for all α ≥ 0. Given any subset M ⊂ V , the
convex cone co(M) generated by M is the smallest convex cone that
contains M .
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Define the dual cone of an arbitrary set M ⊂ E by

M∗ = {y ∈ F : 〈x, y〉 ≥ 0 for all x ∈ M}.

It is easy to see that M∗ is a convex cone. Moreover, notice that for a
convex cone K the polar and dual cones coincide: K◦ = K∗.

For any duality (E,F ) define the weak topology σ(E,F ) on E as
the weakest topology on E such that the mappings x �→ 〈x, y〉 are
continuous for all y ∈ F . Now the bipolar theorem for convex cones
can be stated as follows [89, Corollary 22.10].

Theorem 2.3.2. Suppose E and F are in strict duality and X ⊂ E
is an arbitrary set. Then X∗∗ is the weak closure of the convex cone
generated by X.

2.4 Main Results

Theorem 2.3.2 will be the key to prove many results of the following
type:

Let M be a set of transfers, and let F be the class of functions
induced by M . Then for probability measures P and Q with finite
support P ≤F Q holds if and only if Q can be obtained from P by a
finite number of transfers from M .

Indeed we can show the following general result.

Theorem 2.4.1. Assume that the convex cone co(M) generated by
M is weakly closed in the duality (M, C∼), and let F be the class of
functions induced by M . Then for probability measures P and Q with
finite support P ≤F Q holds if and only if Q can be obtained from P
by a finite number of transfers from M .

Proof : P ≤F Q holds if and only if
∫

fdP ≤ ∫

fdQ or equivalently
∫

fd(Q−P ) ≥ 0 for all f ∈ F , where Q−P is a signed measure in M.
Using the terminology of duality theory from the last section, this can
be rewritten as Q− P ∈ F∗. The fact that F is the class of functions
induced by M can be rewritten as F = M∗: thus Q − P ∈ M∗∗.
Therefore it follows from Theorem 2.3.2 that Q − P is in the weak
closure of the convex cone generated by M . If we assume that the
convex cone co(M) is weakly closed this implies that Q− P ∈ co(M);
thus Q − P =

∑n
i=1 ηiμi with ηi > 0 and μi ∈ M . As P and Q are
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probability measures, it is possible to choose ηi ≤ 1. But this means
that Q can be obtained from P by a finite number of transfers ηiμi,
i = 1, . . . , n.

The crucial mathematical assumption that has to be shown in ex-
amples thus is the property that co(M) is weakly closed. This has
typically to be done by showing that we can choose an appropriate fi-
nite S such that supp(P )∪supp(Q) ⊂ S having the following property:
if M(S) is the restriction of M to transfers moving only mass within
S then M(S) is compact and induces a class of functions f : S → R

such that all these functions f : S → R coincide with the restrictions
of the functions f : Rd → R in F . This follows from the following
simple corollary of Theorem 2.4.1.

Corollary 2.4.2. Assume that S is finite and that M is compact.
Then co(M) is weakly closed.

Proof : As S is finite, the set of signed measures can be identified with
a finite-dimensional Euclidean space R

|S| where the elements of R|S|

are the counting densities of the signed measures. The weak topology
in this case is just the usual topology of pointwise convergence. It is
well known that in a finite-dimensional Euclidean space the convex
hull of a compact set is closed, and thus also co(M) is closed.

2.5 Examples

It will be shown now case by case that for all important examples
mentioned in Sect. 2.2 we can find an appropriate finite S.

Usual Stochastic Order

For the usual stochastic order ≤st on R
d we can choose the finite

set S = supp(P ) ∪ supp(Q). The set of all increasing transfers on
S induces the class of functions f : S → R that are increasing as a
function on S. It is clear that the restriction of any increasing function
f : Rd → R to S is an increasing function on S. On the other hand,
any increasing function f : S → R can be extended to an increasing
function f : Rd → R by defining

f(x) := sup{f(y) : y ∈ S,y ≤ x}, x ∈ R
d,

with the convention that sup ∅ := inf{f(y) : y ∈ S}.
This gives a new proof of the following known result.
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Theorem 2.5.1. For random vectors X,Y with finite support the
following statements are equivalent:

(a) X ≤st Y .

(b) PY can be obtained from PX by a finite number of simple in-
creasing transfers.

(c) There are random vectors X̂, Ŷ on a common probability space,
having the same distributions as X,Y with the property that
X̂ ≤ Ŷ almost surely.

Proof : The equivalence of (a) and (b) follows immediately from The-
orem 2.4.1 and the discussion above. For the implication of (b) to (c)
it is sufficient to consider the case that PY can be obtained from PX

by a simple increasing transfer ηδx → ηδy . In this case it is necessary
that PX({x}) ≥ η. Choose any nonatomic probability space, on which
we can define a random vector X̂ with distribution PX . Then there is
a set A with PX(A) = η and X̂(ω) = x if ω ∈ A. Define Ŷ (ω) = y if
ω ∈ A, and Ŷ (ω) = X̂(ω) otherwise. Then obviously X̂, Ŷ have the
desired properties. The implication of (c) to (a) is obvious.

Convex Orders

For the order ≤cx on R
d, we can again choose the finite set S =

supp(P ) ∪ supp(Q). However, in this case we cannot work with the
set of simple convex transfers, as these require that we can move the
mass along some line, whereas it may happen that S does not contain
any three points on a line. Consider as an example on R

2

P = δ(1,1) and Q =
1

6
δ(0,3) +

1

6
δ(2,3) +

1

3
δ(0,0) +

1

3
δ(2,0).

Then clearly P ≤cx Q, but we cannot obtain Q from P by simple
convex transfers within S = supp(P ) ∪ supp(Q), as there do not exist
any simple convex transfers on S. Therefore the class of functions F
on S induced by the set of simple convex transfers would be the set
of all functions on S which does not coincide with the restriction of
convex functions on R

2 to S. It would be possible to obtain Q from P
by simple convex transfers, if we add the points (1, 0) and (1, 2) to S.
However, it is not easy to see in general which points one has to add
to supp(P ) ∪ supp(Q) to get an appropriate set S to work with.
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A much better approach is to work with general convex transfers
and with S = supp(P ) ∪ supp(Q). Using that approach we can show
the following result.

Theorem 2.5.2. For random vectors X,Y with finite support the
following statements are equivalent:

(a) X ≤cx Y .

(b) PY can be obtained from PX by a finite number of general convex
transfers.

(c) PY can be obtained from PX by a finite number of simple convex
transfers.

Proof : To show the equivalence of (a) and (b), let M be the set of all
general convex transfers on an arbitrary finite set S. Then M induces
the class F of discretely convex functions on S, which is defined as
the set of convex functions on R

d restricted to S. Thus any restriction
of a convex function to S is obviously in F . Vice versa any function
f ∈ F can be extended constructively to a convex function on R

d by
taking the supremum over all affine functions on R

d which are smaller
or equal to f on the finite set S. Moreover, M is compact and thus
the equivalence of (a) and (b) follows from Theorem 2.4.1.

The equivalence of (b) and (c) follows from the fact that a general
convex transfer can be obtained by a finite number of simple convex
transfers. This is most easily seen by looking at the reverse general
concave transfer, which is also known as a fusion of the probability
mass on n points to one point, its barycenter. It is clear that this
fusion can be done in at most n steps always taking the fusion of
the mass in two points to their barycenter, which in each step yields
a simple concave transfer, diminishing the number of points in the
support by one.

Results very similar to Theorem 2.5.2 can be found in [148, 149].
In the univariate case a convex transfer can also be considered as a
discrete version of a mean-preserving spread as considered in [394].

We can show a similar result for the increasing convex order ≤icx.

Theorem 2.5.3. For random vectors X,Y with finite support the
following statements are equivalent:

(a) X ≤icx Y .

(b) PY can be obtained from PX by a finite number of transfers,
which are either convex transfers or increasing transfers.
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Proof : The proof is very similar to the proof of Theorem 2.5.2. The
only change is that we have to choose M as the union of the sets of
all convex transfers and all increasing transfers on an arbitrary finite
set S. ThenM induces the class F of discretely convex and increasing
functions on S. It is obvious that any restriction of an increasing
convex function to S is in F . Vice versa any function f ∈ F can
be extended constructively to an increasing convex function on R

d by
taking the supremum over all affine functions on R

d which are smaller
or equal to f on the finite set S. Moreover, M is compact and thus
the equivalence of (a) and (b) follows from Theorem 2.4.1.

Supermodular and Directionally Convex Order

For the supermodular order ≤sm on R
d we choose as the finite set S the

smallest product set containing supp(P ) ∪ supp(Q), i.e., if supp(P ) ∪
supp(Q) = {x1, . . . ,xn} with xi = (xi1, . . . , xid) then we choose

S = {x11, . . . , xn1} × · · · × {x1d, . . . , xnd}. (2.5.1)

This is obviously a lattice so that it holds for any x,y ∈ S that x ∨
y ∈ S and x ∧ y ∈ S. Using this setting we can show the following
representation of supermodular ordering.

Theorem 2.5.4. For random vectors X,Y with finite support the
following statements are equivalent:

(a) X ≤sm Y .

(b) PY can be obtained from PX by a finite number of supermodular
transfers.

Proof : Let M be the set of supermodular transfers on the set S
described in Eq. (2.5.1). Then M induces the class F of supermod-
ular functions on S. The restriction of any supermodular function
on R

d to the sublattice S obviously is supermodular on S. On the
other hand, any supermodular function f : S → R can be extended
to a supermodular function f : R

d → R as follows. For a finite
subset Si ⊂ R we define the projection mapping hi : R → Si by
hi(x) := sup{y ∈ Si : y ≤ x} with the convention sup ∅ := inf Si.
For a finite product set S = S1 × · · · × Sd ⊂ R

d we then define the
projection mapping h : Rd → S by h(x) := (h1(x1), . . . , hd(xd)). It is
easy to see that h(x) ∨ h(y) = h(x ∨ y) and h(x) ∧ h(y) = h(x ∧ y).
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Therefore a supermodular function f : S → R can be extended to a
supermodular function f : Rd → R by defining for any x ∈ R

d

f(x) := f(h(x)). (2.5.2)

Moreover, as S is finite, the setM is compact and thus the equivalence
of (a) and (b) follows from Theorem 2.4.1.

In the bivariate case a result similar to Theorem 2.5.4 can be found
in [448]. For the case of higher dimensions this seems to be new.

For directionally convex order ≤dcx we can also use S as defined in
Eq. (2.5.1). For the proof of the corresponding representation result we
can refer to [334], where the equivalent case of inframodular order has
been considered in detail. In particular, it is shown in Sect. 4.3 in that
paper how any discretely directionally convex function on S can be
extended to a directional convex function on R

d using a componentwise
linear extension which is similar to the extension of a subcopula to a
copula described in [415]. We get the following result for directional
convex order.

Theorem 2.5.5. For random vectors X,Y with finite support the
following statements are equivalent:

(a) X ≤dcx Y .

(b) PY can be obtained from PX by a finite number of directionally
convex transfers.

Orthant Orders

As a last example we will consider the lower orthant order ≤lo and
the upper orthant order ≤uo. Here we will generalize recent results
of [109], where a representation result by transfers has been proved
for these orders under the restrictions that X and Y have the same
marginals. Decancq [109] used a completely different approach with
a tedious constructive proof. We will use duality theory to show the
same result without the restriction of having the same marginals.

Theorem 2.5.6. For random vectors X,Y with finite support the
following statements are equivalent:

(a) X ≤uo Y .

(b) PY can be obtained from PX by a finite number of Δ-monotone
transfers.
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Proof : Again we choose S as in Eq. (2.5.1). Let M be the class of Δ-
monotone transfers on S. ThenM induces the class F of Δ-monotone
functions on S. The restriction of any Δ-monotone function on R

d to
the sublattice S obviously is Δ-monotone on S. On the other hand,
any Δ-monotone function f : S → R can be extended to a Δ-monotone
function f : Rd → R by using the same construction as in Eq. (2.5.2).
Moreover, as S is finite, M is compact and thus the equivalence of (a)
and (b) follows from Theorem 2.4.1.

Notice that in case d = 1 the order ≤uo is just the usual stochastic
order ≤st and in that case a Δ-monotone transfer is nothing else than
an increasing transfer. In case d = 2 the order ≤uo is equivalent to
the increasing supermodular order ≤ism and indeed in that case a
Δ-monotone transfer is either an increasing transfer (if the hyperbox
[x,y] is degenerated to a line segment) or a supermodular transfer
(if the hyperbox in nondegenerated).

With exactly the same idea of proof we get the following corre-
sponding result for the lower orthant order ≤lo.

Theorem 2.5.7. For random vectors X,Y with finite support the
following statements are equivalent:

(a) X ≤lo Y .

(b) PY can be obtained from PX by a finite number of Δ-antitone
transfers.
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3.1 Introduction

Stochastic orderings between random variables (or random vectors)
constitute primary tools for the description and the characterization
of concepts of stochastic dependence. On the one hand the relevant
literature in this direction is very well established (see in particular
[426] and the references contained therein). On the other hand it still
continues to offer various suggestions for interesting work. Here we
consider stochastic orderings between (one-dimensional) conditional
distributions, also called conditional orderings. We will analyze some
specific aspects concerning such orderings and relations among them.

Especially in a statistical setting, the following problem is of inter-
est: what can be said about dependence of X w.r.t. Y (where X and
Y are random variables or random vectors) when we assume that Y is
stochastically increasing w.r.t. X in some specified sense? Attention
to this topic has been given several times in the literature under differ-
ent standpoints or different languages. One can see in particular the
basic paper [155], [440, Chapter 3] and the recent papers [105, 106].
Related to this theme one can also see [410].

Some detailed aspects of this theme will be considered here for the
special case of two scalar random variables. As a motivating purpose,
we aim to compare the univariate stochastic orderings ≤st, ≤hr, and
≤lr in terms of differences among notions of conditional orderings.

For scalar random variables X and Y , we consider different condi-
tional orderings of the form

L (Y |X ∈ I) ≤∗ L
(

Y |X ∈ I ′
)

, (3.1.1)

where I, I ′ are intervals of different types and ≤∗ stands for ≤st, ≤hr,
or ≤lr. In a few words, we can summarize our work by saying that we
analyze implications or equivalences concerning such relations. Along
this direction we will show some simple results that, at the best of our
knowledge, have not been pointed out so far.

A concept of reversed conditional ordering will in particular emerge
as natural from our discussion and our results will point out some
symmetries existing between the mentioned univariate stochastic or-
derings≤st, ≤hr, ≤lr and different types of conditional orderings [where
a “type” of ordering can be defined in terms of the possible choices
for the intervals I, I ′ appearing in Eq. (3.1.1)]. A main result in this
direction is Theorem 3.2.6.
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It is clear that conditional orderings define special notions of pos-
itive dependence (see in particular [91] and references cited therein).
In this paper, we will analyze positive dependence properties corre-
sponding to the considered conditional orderings and we will see how
results concerning implications and equivalences between conditional
orderings can be translated in terms of dependence notions.

Then we will point out some direct applications of our results to
dependence notions related with conditions of default contagion and
to the case of conditional independence between X and Y .

More in details, this paper is organized as follows. In Sect. 3.2 we
first introduce some formal concepts needed to give a general defini-
tion of reversion of a conditional ordering. Then (Theorem 3.2.6) we
point out a specific property, related with conditioning, of the ≤st or-
der. Definitions and results given in Sect. 3.2 will be directly applied
in Sect. 3.3, where we detail the specific conditional orderings of our
interest and present Theorem 3.3.2. In a few words we show how each
conditional ordering of the form (3.1.1) is equivalent to one of the form

L (X|Y ∈ J) ≤∗̃ L
(

X|Y ∈ J ′
)

, (3.1.2)

for suitable choice of the stochastic order ≤∗̃ and of the intervals J, J ′.

The equivalence of a conditional ordering of the form (3.1.1) or of
the form (3.1.2) with a corresponding concept of dependence will be
treated in Sect. 3.4. Arguments presented therein will directly suggest
the definition of a new positive dependence concept that is related with
the notion of stochastic increasing and that we denote by SIRL. Sec-
tion 3.5 presents two different types of applications of Theorem 3.3.2:
concepts of default contagion and cases of conditional independence
between X and Y. The latter application adds some potentially useful
insight about positive dependence of conditionally independent ran-
dom variables that are stochastically increasing w.r.t. a conditioning
variable Z. Finally, we present a short discussion with some concluding
remarks in Sect. 3.6. In Appendix, we recall some notation and basic
facts about stochastic dependence and copulas (see also [211, 355]).

The choice of restricting our analysis to pairs of scalar random
variables, besides allowing us to simplify notation and definitions, is
also motivated by specially relevant symmetries related with revers-
ing conditional orderings. Our arguments, however, admit suitable
generalizations to the multivariate case.
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3.2 The Role of Usual Stochastic Ordering in

Conditioning

Let X,Y be two real-valued random variables. Let furthermore E and
E′ be random events; L(X), L(X|E), L(Y ), L(Y |E′) will denote,
respectively, the probability laws of X, X conditional on E, Y, Y
conditional on E′. As a first issue in this section, we give a suitably
general definition of stochastic monotonicity of Y w.r.t. X. To this
purpose, it is convenient to define an order on the class I of all the
intervals of R+.

Definition 3.2.1. For two intervals I, I ′ belonging to I, we set
I � I ′ if

inf I < inf I ′ or inf I = inf I ′, sup I ′ < sup I.

The relation � is symmetric, anti-reflexive, and transitive and it
defines a total order on I.

Remark 3.2.2. From an intuitive point of view, the relation I � I ′

has the following meaning: for a lifetime X, the condition of belonging
to I ′ is (in a special sense adapt for our context) more restrictive
than the one of belonging to I. In fact, when inf I < inf I ′, requiring
that X reaches inf I ′ is a stronger condition than requiring that it
reaches inf I. If inf I = inf I ′, we take into account the length of
the interval: in this case it is more restrictive requiring that X falls
into the shorter interval. Thus, we have, e.g., for any x′ > x > 0,
(0,+∞) � (x,+∞) � (x, x′) � {x}.

Let ≤∗ denote a univariate stochastic order and let A,B be two
subclasses of I. On the basis of Definition 3.2.1, we can now give the
following definition.

Definition 3.2.3. Y is (≤∗, A, B) stochastically increasing in X or
stochastically increasing w.r.t. X in the sense (≤∗, A, B), if and only
if, for any I ∈ A, I ′ ∈ B, I � I ′,

L(Y |X ∈ I) ≤∗ L(Y |X ∈ I ′).

More shortly, we will also write Y ↑(≤∗, A, B) X.
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Remark 3.2.4. By Definition 3.2.3, we obtain the classical notion of
Y stochastically increasing in X (SI(Y |X), see, e.g., Appendix section)
by setting

∗ = st, A = B = {(x− ε, x+ ε)|ε > 0, x > ε}.
Definition 3.2.5. Let A, B, ˜A, ˜B be classes of intervals and ∗, ∗̃
be stochastic orderings. The relation Y ↑(≤∗, A, B) X is reverted by
X ↑(≤∗̃, ˜A, ˜B) Y if and only if, for any I ∈ A, I ′ ∈ B, two sets J ∈
˜A, J ′ ∈ ˜B exist, such that

L(Y |X ∈ I) ≤∗ L(Y |X ∈ I ′) ⇐⇒ L(X|Y ∈ J) ≤∗̃ L(X|Y ∈ J ′).

In this paper, we consider the special cases of Definition 3.2.3
obtained by combining the following choices:

(1) ∗ = st

(2) ∗ = hr

(3) ∗ = lr

(A) L(Y ) ≤∗ L(Y |X > x) ∀x > 0

(B) L(Y |X > x) ≤∗ L(Y |X > x′) ∀x < x′

(C) L(Y |X = x) ≤∗ L(Y |X = x′) ∀x < x′

By using the notation of Definition 3.2.3, we respectively have

(A) A = {R+} and B = {(x,+∞)|x > 0}
(B) A = B = {(x,+∞)|x > 0}
(C) A = B = {(x− ε, x+ ε)|ε > 0, x > ε}

The following result points out a property of the usual stochastic
order that is relevant in our setting. This result will allow us to find
triples (≤∗, A, B), (≤∗̃, ˜A, ˜B) satisfying Definition 3.2.5.

Theorem 3.2.6. Let A,B,B′ be intervals, with B � B′. Then inter-
vals A′,D,D′ exist, with D � D′ and such that

L(Y |Y ∈ A,X ∈ B) ≤st L(Y |Y ∈ A,X ∈ B′) (3.2.1)

is equivalent to

L(X|X ∈ A′, Y ∈ D) ≤st L(X|X ∈ A′, Y ∈ D′). (3.2.2)
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Proof : By definition of usual stochastic order, inequalities (3.2.1) and
(3.2.2) also read as

P{Y > y|Y ∈ A,X ∈ B} ≤ P{Y > y|Y ∈ A,X ∈ B′} ∀ y ≥ 0,
(3.2.3)

P{X > x|X ∈ A′, Y ∈ D} ≤ P{X > x|X ∈ A′, Y ∈ D′} ∀ x ≥ 0.
(3.2.4)

By Bayes’ theorem, Eq. (3.2.4) can be rewritten as

P{X > x,X ∈ A′, Y ∈ D}
P{X ∈ A′, Y ∈ D} ≤ P{X > x,X ∈ A′, Y ∈ D′}

P{X ∈ A′, Y ∈ D′}
and subsequently

P{Y ∈ D|X > x,X ∈ A′}
P{Y ∈ D|X ∈ A′} ≤ P{Y ∈ D′|X > x,X ∈ A′}

P{Y ∈ D′|X ∈ A′} .

On its turn, Eq. (3.2.3) becomes

P{Y > y, Y ∈ A|X ∈ B}
P{Y ∈ A|X ∈ B} ≤ P{Y > y, Y ∈ A|X ∈ B′}

P{Y ∈ A|X ∈ B′} .

Thus, Eqs. (3.2.3) and (3.2.4) are equivalent if and only if, for some
x, y > 0,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

D = A
D′ = A ∩ (y,+∞)
A′ = B
B′ = A′ ∩ (x,+∞).

(3.2.5)

Since A is given, D � D′. In fact, infD′ = max(y, inf A) ≥ inf A. We
notice that, since intervals are connected sets, inf I = inf I ′ implies
I ⊂ I ′ or I ′ ⊂ I. Hence the condition inf I = inf I ′ implies I ∪ I ′ �
I ∩ I ′; therefore

• If y > inf A, A � A ∩ (y,+∞)

• If y ≤ inf A, A ∪ (A ∩ (y,+∞)) � A ∩ (y,+∞), that is, again,
A � A ∩ (y,+∞)

Remark 3.2.7. Theorem 3.2.6 implicitly provides a condition for the
existence of the intervals A′,D,D′ and therefore for a conditional or-
der being revertible. We notice that Eq. (3.2.5) is a system of four
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equations in the three unknowns A′,D,D′. The last equation allows
us to check the existence of solutions for the system. Nonexistence of
solutions means that the considered conditional order is not revertible.
When the solution exists, but at least one of the intervals A′,D,D′ is
empty, then the considered conditional order is not revertible either.

Let A,A′, B,D be intervals as in Theorem 3.2.6.

Proposition 3.2.8. A � A′ if and only if D � B.

Proof : The claim straightly follows by the definition, given in the
proof of Theorem 3.2.6, of the sets A′ and D in terms of A and B.

Theorem 3.2.6 will have a basic role for our purposes in the next
section. In this respect, it is useful to recall that the stochastic order-
ings ≤hr, ≤lr can be characterized in terms of ≤st (see [426]). More
precisely, one has

Proposition 3.2.9. L(S) ≤hr L(T ) if and only if, for any t ≥ 0,

L(S − t|S > t) ≤st L(T − t|T > t).

Proposition 3.2.10. L(S) ≤lr L(T ) if and only if L(S | S ∈ A) ≤st

L(T | T ∈ A) for any measurable set A.

In Definition 3.2.5, the interchange in the role of the variables X,Y
corresponds to a change in the stochastic order and in the choice of
the conditioning events. We notice that there is a balance between the
strength of the stochastic order and the strength of the conditioning
events. Actually, in view of Propositions 3.2.9 and 3.2.10, Proposi-
tion 3.2.8 guarantees that if ∗̃ is stronger than ∗, then D � B and
D′ � B′.

3.3 Remarkable Properties of Conditional
Orderings and Related Inversions

In this section we analyze in details the conditional orderings defined
by the positions (1)–(3), (A)–(C), mentioned in Sect. 3.2. In particular
by applying Theorem 3.2.6, we will find, for each entry, the correspond-
ing reversed ordering.

By combining (A)–(C) with cases (1)–(3), we obtain the following
matrices M(Y |X), M(X|Y ):
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A B C

1 A1(Y |X) B1(Y |X) C1(Y |X)

2 A2(Y |X) B2(Y |X) C2(Y |X)

3 A3(Y |X) B3(Y |X) C3(Y |X)

(3.3.1)

A B C

1 A1(X|Y ) B1(X|Y ) C1(X|Y )

2 A2(X|Y ) B2(X|Y ) C2(X|Y )

3 A3(X|Y ) B3(X|Y ) C3(X|Y )

(3.3.2)

Each entry of the two matrices M(Y |X),M(X|Y ) is a prop-
erty of conditional order. For example, A1(Y |X) means L(Y ) ≤st

L(Y |X > x) ∀x > 0.

Remark 3.3.1. Heuristically speaking, the conditional orderings ap-
pearing in the matrices become stronger and stronger when reading
their entries “from above to below” or “from left to right.” In view of
the chain of implications

≤lr ⇒ ≤hr ⇒ ≤st, (3.3.3)

we immediately obtain

A3 =⇒ A2 =⇒ A1, B3 =⇒ B2 =⇒ B1, C3 =⇒ C2 =⇒ C1.

On the other hand, the implications

C1 =⇒ B1 =⇒ A1, C2 =⇒ B2 =⇒ A2, C3 =⇒ B3 =⇒ A3

follow from the relation R+ � (x,+∞) � {x} in view of Theorem 3.2.6
and Proposition 3.2.8.

In principle the two matrices M(Y |X),M(X|Y ) present 18 = 9+9
different properties for the joint law of (X,Y ). Based on the existing
literature (see, e.g., [155, 426, 440]), we can guess however the existence
of some equivalences among them. Actually a complete catalogue of
equivalences can be established between pairs of them in terms of Def-
inition 3.2.5 and Theorem 3.2.6. More precisely, we have the following
result:

Theorem 3.3.2. The matrix M(X|Y ) is the transpose of M(Y |X).
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Proof : We apply Theorem 3.2.6 to any property corresponding to the
entries of M(Y |X). We provide the detailed proof for the elements in
the first column ofM(Y |X) (thus obtaining the first row of M(X|Y )).
The other equivalences can be proven by analogous arguments.

A1(Y |X) satisfies condition (3.2.1) with A = B = R+, B
′ =

(x′,+∞), ∀x′ > 0. Equation (3.2.5) in the proof of Theorem 3.2.6
allows us to write the equivalent condition (3.2.2) with A′ = D =
R+, D

′ = (y,+∞), ∀y > 0. Finally, we see that B′ = (x′,+∞) satis-
fies the last condition of the system (3.2.5), B′ = A′∩(x,+∞). Hence,
by Theorem 3.2.6, A1(Y |X) is equivalent to the inequality (3.2.2) that
turns out to be equivalent to A1(X|Y ).

In view of Proposition 3.2.9, A2(Y |X) is equivalent to condition
(3.2.1) with A = (t,+∞), ∀t ≥ 0; B = R+, B

′ = (x′,+∞), ∀x′ > 0.
By Theorem 3.2.6, A2(Y |X) is equivalent to Eq. (3.2.2) with A′ =
R+, D = (t,+∞), ∀t ≥ 0; D′ = (max(t, y),+∞), ∀y > 0. Since
max(t, y) ≥ y, Eq. (3.2.2) turns out to be equivalent to B1(X|Y ).

In view of Proposition 3.2.10, A3(Y |X) is equivalent to condition
(3.2.1) with A = (t − ε, t + ε), ∀ε > 0, t > ε; B = R+, B

′ =
(x′,+∞), ∀x′ > 0. By Theorem 3.2.6, A3(Y |X) is equivalent to
Eq. (3.2.2) with A′ = R+, D = (t − ε, t + ε), ∀ε > 0, t > ε; D′ =
(t − ε, t + ε) ∩ (y,+∞), ∀y > 0. D′ = (max(y, t − ε), t + ε) ⊂ D and
therefore D � D′ also holds. In other words, in the limit for ε going
to 0, D′ collapses in a point on the right of {t}. Therefore Eq. (3.2.2)
turns out to be equivalent to C1(X|Y ).

In view of Theorem 3.3.2, the table in Eq. (3.3.1) also reads

A1(Y |X) B1(Y |X) C1(Y |X)

B1(X|Y ) B2(Y |X) C2(Y |X)

C1(X|Y ) C2(X|Y ) C3(Y |X)

(3.3.4)

Remark 3.3.3. 1. The hazard rate order ≤hr can be characterized
as follows (see [426]): Y ≥hr X if and only if

GX(t)

GY (t)
is decreasing in t. (3.3.5)

Equation (3.3.5) allows us to define ≤hr even if one or both the
distributions to be compared are not absolutely continuous.
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2. For what concerns the likelihood ratio order, a characterization
not involving densities can be given as follows: X ≤lr Y if and
only if

P{X ∈ A}P{Y ∈ B} ≥ P{X ∈ B}P{Y ∈ A} (3.3.6)

for all measurable sets A and B such that A ≤ B, where A ≤ B
means that x ∈ A and y ∈ B imply that x ≤ y.

All our results and the conditional orderings considered so far do
not require absolute continuity.

In the absolutely continuous case, the proof of some of the equiv-
alences in Theorem 3.3.2 could also have been directly obtained by
applying Bayes’ formula. In particular, we can, for instance, argue as
follows:

•
C2(Y |X) ⇐⇒ L(Y |X = x) ≤hr L(Y |X = x′) ∀x < x′

⇐⇒ GY (y′|X = x)

GY (y|X = x)
≤ GY (y′|X = x′)

GY (y|X = x′)
∀x < x′, y < y′

⇐⇒ gX(x′|Y > y)

gX(x|Y > y)
≤ gX(x′|Y > y′)

gX(x|Y > y′)
∀x < x′, y < y′

⇐⇒ L(X|Y > y) ≤lr L(X|Y > y′) ∀y < y′

⇐⇒ B3(X|Y ),

•
A3(Y |X) ⇐⇒ L(Y ) ≤lr L(Y |X > x)

⇐⇒ GX(x|Y = y) ≤ GX(x|Y = y′) ∀y < y′

⇐⇒ L(X|Y = y) ≤st L(X|Y = y′)
⇐⇒ C1(X|Y ),

•
B2(Y |X)

⇐⇒ L(Y |X > x) ≤hr L(Y |X > x′) ∀x < x′

⇐⇒ GY (y′|X > x′)GY (y|X > x) ≥ GY (y|X > x′)GY (y′|X > x)

∀x < x′, y < y′

⇐⇒ GX(x′|Y > y′)GX(x|Y > y) ≥ GX(x|Y > y′)GX(x′|Y > y)

∀x < x′, y < y′

⇐⇒ L(X|Y > y) ≤hr L(X|Y > y′) ∀y < y′

⇐⇒ B2(X|Y ).
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Remark 3.3.4. The properties A1, B2, C3 lie on the main diagonal of
the matrix M(Y |X). Therefore, in view of Theorem 3.3.2, they must
be symmetric w.r.t. X,Y , i.e., A1(Y |X) = A1(X|Y ), B2(Y |X) =
B2(X|Y ), C3(Y |X) = C3(X|Y ). In these cases, we notice that the in-
terchange between X,Y does not require a balancing between a change
in the stochastic order and in the conditioning events.

Remark 3.3.5. When X,Y are exchangeable, M(Y |X) = M(X|Y ).
Therefore, since M(Y |X) coincides with its own transpose, it is sym-
metric.

3.4 Conditional Orderings and Dependence

All the entries of the matrices M(Y |X),M(X|Y ) can be seen as de-
pendence properties for the pair (X,Y ). In some cases the correspon-
dences are well known or immediately follow by definitions. This is
the case for A1, B1, C1, C3 (see Appendix and the table in Eq. (3.4.1)
below). This section will be devoted to analyzing the remaining ones.

The following result is a simple consequence of Bayes’ formula.

Proposition 3.4.1. B2(Y |X) ⇐⇒ (X,Y ) is RCSI.

Proof : By Eq. (3.3.5), B2(Y |X), i.e., L(Y |X > x) ≤hr L(Y |X > x′)
for any x < x′, y < y′, can be rewritten as

GY (y
′|X > x′)GY (y|X > x) ≥ GY (y|X > x′)GY (y′|X > x),

for any x < x′, y < y′. By applying Bayes’ formula, we obtain the
inequality

F (x′, y′)F (x, y) ≥ F (x, y′)F (x′, y)

that is the definition of F TP2, i.e., (X,Y ) is right corner set increasing
(RCSI) (see Appendix and [355]).

In view of the above arguments, we can rewrite M(Y |X) in the
following form:

PQD RTI(Y |X) SI(Y |X)

RTI(X|Y ) RCSI C2(Y |X)

SI(X|Y ) C2(X|Y ) PLRD

(3.4.1)

On the main diagonals of M(Y |X) and M(X|Y ), we find the sym-
metric dependence properties positive quadrant dependent (PQD),
RCSI, positive likelihood ratio dependent (PLRD).
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We aim now at completing the correspondences between depen-
dence properties and entries of M(Y |X).

Also C2(Y |X), C2(X|Y ) can be interpreted as conditions of
stochastic dependence. However they do not correspond, as far as
we know, to any definition introduced so far in the literature. In this
respect we state the following:

Proposition 3.4.2. C2(Y |X) holds if and only if Y − t|Y > t is SI
in X for any t > 0.

Proof : By Eq. (3.3.5), the condition C2(Y |X), i.e.,

L(Y |X = x) ≤hr L(Y |X = x′),

is equivalent to

GY (y
′|X = x′)GY (y|X = x) ≥ GY (y|X = x′)GY (y′|X = x)

for any x < x′, y < y′, that is,
GY (y

′|X = x)

GY (y|X = x)
is increasing in x. Since

y < y′, we can write y′ = y + t, for t > 0, and thus

GY (y + t|X = x)

GY (y|X = x)
= GY (y + t|X = x, Y > y) ↑ x, (3.4.2)

for all t > 0.
In view of the above result, it is natural to give the following.

Definition 3.4.3. Y is stochastically increasing in X in the residual
lifetime (in short SIRL(Y |X)) if SI(Y − t|Y > t,X) for any t > 0.

The matrix M(Y |X) can be finally rewritten as

PQD RTI(Y |X) SI(Y |X)

RTI(X|Y ) RCSI SIRL(Y |X)

SI(X|Y ) SIRL(X|Y ) PLRD

(3.4.3)

Condition SIRL(Y |X) is a stronger dependence property than
SI(Y |X). In particular, the chain of equivalences (3.3.3) implies PLRD
=⇒ SIRL =⇒ RCSI. Concerning the identification of SIRL with a
property of stochastic dependence, it is of interest to note that the fol-
lowing result relates such a property with the behavior of the survival

copula Ĉ(u, v) = F (G
−1
X (u), G

−1
Y (v)) (see also Appendix).
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Proposition 3.4.4. Y is SIRL in X if and only if ∂Ĉ
∂u (u, v) is TP2.

Proof : The term GY (y + t|X = x, Y > t) can also be rewritten as

P{X = x, Y > y + t}
P{X = x, Y > t} =

∂Ĉ
∂u (GX(x), GY (y + t))

∂Ĉ
∂u (GX(x), GY (t))

.

Since this function has to be increasing in x, by adopting the change
of variables

u = GX(x), u
′ = GX(x

′), v = GY (y + t), z = GY (t),

we obtain
∂Ĉ(u, v)

∂u

∂Ĉ(u′, z)
∂u

≤ ∂Ĉ(u′, v)
∂u

∂Ĉ(u, z)

∂u
. (3.4.4)

Since x < x′ < t < y + t and, therefore, u > u′, z > v, Eq. (3.4.4)

corresponds to ∂Ĉ
∂u (u, v) being TP2.

In view of Proposition 3.4.4 and Definition 3.7.3 in Appendix, the
conditional orderings treated here can be written as properties of a
copula. This circumstance is not surprising, since conditional orderings
are not affected by strictly increasing (deterministic) transformations,
as it happens for copulas.

If the copula is symmetric, in particular in the exchangeable
case, M(Y |X) = M(X|Y ), then we have in particular (for both
the matrices)

B1 ⇐⇒ A2

B3 ⇐⇒ C2

C1 ⇐⇒ A3

In the case when the copula is Archimedean, we have the further equiv-
alences

B1 ⇐⇒ B2 (see, e.g., [44])

C1 ⇐⇒ C2

as stated by the following proposition.

Proposition 3.4.5. Let Ĉ be an Archimedean copula. Then SI =⇒
SIRL.
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Proof : Let be Ĉ(u, v) = φ(φ−1(u) + φ−1(v)). Ĉ is SI if and only if,

for any a, x ≥ 0,
φ′(x+ a)

φ′(x)
is increasing w.r.t. x, i.e., for any x < x′,

φ′(x+ a)

φ′(x)
≤ φ′(x′ + a)

φ′(x′)
. (3.4.5)

In view of Proposition 3.4.4, the thesis consists in
∂Ĉ

∂u
(u, v) being TP2,

i.e., for any u, u′, v, v′ ∈ [0, 1], u < u′, v < v′,

φ′(α′ + β)φ′(α+ β′) ≤ φ′(α+ β)φ′(α′ + β′), (3.4.6)

where α = φ−1(u), α′ = φ−1(u′), β = φ−1(v), β′ = φ−1(v′) and
therefore α′ < α, β′ < β. By choosing x = α′ + β′, x′ = α + β′, a =
β − β′, we obtain that Eq. (3.4.5) implies Eq. (3.4.6).

3.5 Applications of Theorem 3.3.2

The circumstance that each entry of the matrix M(Y |X) is equivalent
to an entry of M(X|Y ) turns out to be of interest in several different
contexts. Some of them will be sketched in what follows.

3.5.1 Default Contagion and Dynamic
Dependence Properties

In several applied models, the following type of conditional ordering
can be of interest:

L(Y |X = x) ≤∗ L(Y |X > x). (3.5.1)

It is natural to wonder whether property (3.5.1) is different from those
appearing inM(Y |X). Actually, such stochastic inequalities are equiv-
alent to the ones appearing in column B of M(Y |X). More precisely
we can state

Proposition 3.5.1. For ∗ = st, hr, lr, condition (3.5.1) is equiva-
lent to

L(Y |X > x) ≤∗ L(Y |X > x′), ∀x < x′.
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Proof :

•
L(Y |X = x) ≤st L(Y |X > x)

⇐⇒ GX(x)

gX(x)
≤ GX(x|Y > y)

gX(x|Y > y)

⇐⇒ L(X) ≤hr L(X|Y > y),

and this, in view of Theorem 3.3.2, is equivalent to B1(Y |X).

•
L(Y |X = x) ≤hr L(Y |X > x)

⇐⇒ GY (y
′|X = x)

GY (y|X = x)
≤ GY (y

′|X > x)

GY (y|X > x))
, ∀y < y′

⇐⇒ GX(x|Y > y)

gX(x|Y > y)
≤ GX(x|Y > y′)

gX(x|Y > y′)
, ∀y < y′

⇐⇒ L(X|Y > y) ≤hr L(X|Y > y′),

that is B2(Y |X).

•
L(Y |X = x) ≤lr L(Y |X > x)

⇐⇒ GX(x|Y = y)

gX(x|Y = y)
≤ GX(x|Y = y′)

gX(x|Y = y′)
⇐⇒ L(X|Y = y) ≤hr L(X|Y = y′).

That is B3(Y |X).

We notice that all the three parts of the above proof are based on
Bayes’ formula and on Theorem 3.3.2.

In different frameworks, especially in the case when X,Y are non-
negative random variables with the meaning of failure times, default
times, or times to events, it is important to establish whether the
following condition holds:

L(Y |X = t, Y > t) ≤∗ L(Y |X > t, Y > t). (3.5.2)

The stochastic inequality (3.5.2) is a special case of dependence proper-
ties of dynamic type studied in the field of reliability; see in particular
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[13, 14, 361, 420]. The same inequality is also closely related to the
concept of default contagion introduced in the literature on financial
risk; see, e.g., [314] and references therein. Some relations between the
inequalities in Eq. (3.5.1) and in Eq. (3.5.2) are made precise by the
following result.

Proposition 3.5.2. For ∗ = hr, lr, condition (3.5.1) implies
Eq. (3.5.2).

Proof :

• For ∗ = lr, the implication straightly follows by [426, Theorem
1.C.6].

• For ∗ = hr, it is a consequence of the implication:

L(S) ≤hr L(T ) =⇒ L(S|S > t) ≤hr L(T |T > t), ∀t ≥ 0.

Propositions 3.5.1 and 3.5.2, applied to the results of the previous
section, lead us to link dependence properties to default contagion
properties.

Corollary 3.5.3.

(i) SIRL(X|Y ) =⇒ L(Y |X = t, Y > t) ≤lr L(Y |X > t, Y > t)

(ii) SIRL(Y |X) =⇒ L(X|X > t, Y = t) ≤lr L(X|X > t, Y > t)

(iii) RCSI(X,Y ) =⇒
{ L(Y |X = t, Y > t) ≤hr L(Y |X > t, Y > t)

L(X|X > t, Y = t) ≤hr L(X|X > t, Y > t)

Remark 3.5.4. RCSI(X,Y ) also implies default contagion in the
usual stochastic order sense, i.e.,

L(Y |X = t, Y > t) ≤st L(Y |X > t, Y > t)

and

L(X|X > t, Y = t) ≤st L(X|X > t, Y > t).
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3.5.2 Conditional Independence and Reversed
Markov Processes

Let X,Y be conditionally independent w.r.t. a random variable Z.
It is well known that, whenX and Y are both stochastically increasing
w.r.t. Z, in some suitable sense, then the pair (X,Y ) manifests some
corresponding property of positive dependence. A rich literature has
been devoted to this issue, for the general case of n ≥ 2 conditionally
independent variables. See, in particular, [217, 230, 277, 429, 446].

In this section, we show some specific aspects of this topic for the
case of the bivariate dependence notions appearing in the matrices
M(Y |X), M(Y |X).

The following definition of transitivity of a dependence property is
relevant in the present setting.

Definition 3.5.5. Let D be a dependence property. We say that D
is transitive under conditional independence, in short c.i.-transitive, if
the conditions:

(i) (X,Z) satisfies D
(ii) (Z, Y ) satisfies D
(iii) X,Y conditionally independent given Z

imply that (X,Y ) satisfies D.

For example, the following implication is clear (under the assump-
tion that X,Y are conditionally independent given Z): if

L (

Z|X = x′
) ≤st L

(

Z|X = x′′
)

for any x′ < x′′

and
L (

Y |Z = z′
) ≤st L

(

Y |Z = z′′
)

for any z′ < z′′,

then

L (

Y |X = x′
) ≤st L

(

Y |X = x′′
)

for any x′ < x′′;

in other words C1(Z|X) and C1(Y |X) imply C1(Y |Z), i.e., SI is c.i.-
transitive.

The notions of PQD, right tail increasing (RTI), and PLRD are
also c.i.-transitive. It is also obvious, by definition of c.i.-transitivity
and by Theorem 3.3.2, that a property D is c.i.-transitive if and only
if its reversed property D∗ is such.
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Proposition 3.5.6. Let X,Y be conditionally independent given Z.
Then the following implications hold:

(a) If (X,Z) and (Y,Z) are PQD, then (X,Y ) is PQD.

(b) If (X,Z) and (Y,Z) are PLRD, then (X,Y ) is PLRD.

(c) If A3(X|Z) and SI(Y |Z) hold, then SI(Y |X).

(d) If B3(X|Z) and SIRL(Y |Z) hold, then SIRL(Y |X).

Proof : The proof of (a) and (b) is immediate, by taking into account
Definition 3.5.5 and the fact that PQD and PLRD are symmetric. The
proof of (c) is also almost obvious. In fact, by Theorem 3.3.2, A3(X|Z)
is equivalent to C1(Z|X), i.e., SI(X|Z). Then C1(Y |X) follows by c.i.-
transitivity of C1. This is similar for item (d).

Items (c) and (d) of Proposition 3.5.6 are slightly different from
other results given in the literature cited above. In fact, in such
results, one considers random variables T1, . . . , Tn that are condition-
ally independent given Z and it is typically assumed that one and the
same conditional ordering holds for all the (possibly different) condi-
tional distributions of Tj given Z. Compare in particular item (c) with
[217] or [446, p. 138].

Interest of c.i.-transitive dependence properties also arises in a nat-
ural way in the analysis of real-valued Markov processes. Consider a
Markov process in discrete time, X0,X1, . . ., with transition kernel
p(x|x′), and, for n = 2, 3, . . ., let p(n)(x|x′) be the transition kernel in
n steps.

Lemma 3.5.7. Let p(x|x′) satisfy a dependence property D. If D is
transitive, then also p(n)(x|x′) satisfies D, for n = 2, 3, . . ..

Proof : p(2)(x|x′) satisfies D just by Definition 3.5.5. For n = 3, 4, . . .,
the claim follows by induction. In fact (X0,X2) satisfies D, (X2,X3)
satisfies D, and X0, X3 are conditionally independent w.r.t. X2, and
so on.

We obtain the following easy result:

Proposition 3.5.8. Let n = 1, 2, . . ..

(a) If (X0,X1) is PQD, then also (Xn,X0) is PQD.

(b) If (X0,X1) is PLRD, then also (Xn,X0) is PLRD.
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(c) If X1 is SI in X0, then (Xn,X0) satisfies A3(X0|Xn).

(d) If (X0,X1) is SIRL(X1|X0), then (Xn,X0) is B3(X0|Xn).

3.6 Discussion and Conclusions

We conclude this paper with some comments and final remarks.

Our main results are Theorems 3.2.6 and 3.3.2. These results
present advantages of both theoretical and technical type. More pre-
cisely, Theorem 3.3.2 provides a unified framework for the proofs of the
identity between the matrix M(Y |X) and the transpose of the matrix
M(X|Y ). Theorem 3.2.6 is a general result about the usual stochastic
order that can be applied to Theorem 3.3.2, by using Propositions 3.2.9
and 3.2.10. We notice that Theorem 3.2.6 does not require any regular-
ity condition on the probability distributions of the involved variables.
In particular it does not rely on absolute continuity, thus making The-
orem 3.3.2 independent of this assumption as well.

The use of Theorem 3.2.6 in the proof of Theorem 3.3.2 is made
possible by Propositions 3.2.9 and 3.2.10, which allow us to express
≤lr, ≤hr in terms of ≤st .

Theorem 3.2.6 could be similarly applied to conditional orderings
involving other stochastic orders that can still be expressed in terms
of ≤st . As a first instance, we can refer to the reversed hazard rate
order that can be characterized in terms of ≤st similarly to the hazard
rate order. However also other stochastic orderings can be linked to ≤st

by means of different characterizations: this is the case, for example,
of the mean residual life order, the harmonic mean residual life order,
the convex order, and the dispersive order (see [426], in particular
Theorems 2.A.4, 2.B.2, 3.A.4, and 3.B.13).

Initially our work has been inspired by the purpose of comparing
the univariate stochastic orderings ≤st, ≤hr, ≤lr in terms of differences
among notions of conditional orderings. In this respect, we actually
pointed out some symmetries that exist between the notions of stochas-
tic orders ≤st, ≤hr, ≤lr on one side and conditional orderings on the
other side. Our results also provide some insight about the concepts
of positive dependence. In particular, by means of Theorem 3.3.2, we
can explain the superpositions between different pairs of concepts of
positive dependence.
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Theorems 3.2.6 and 3.3.2 are also useful to understanding the link
between notions of default contagion and other notions of positive
dependence properties (see Corollary 3.5.3).

All our results can be easily extended to a particular case of mul-
tivariate conditioning, i.e., in the case when conditioning events differ
each other by the specification of only one variable, as it happens, for
example, between

E0 = {T1 = t1, . . . , Tk = tk, Tk+1 > 0, Tk+2 > 0, Tk+3 > s3, . . . , Tn > sn−k} and

E = {T1 = t1, . . . , Tk = tk, Tk+1 > s1, Tk+2 > 0, Tk+3 > s3, . . . , Tn > sn−k}.

In view of transitivity of conditioning, we can read a comparison of
the kind L(Tk+2|E0) ≤∗ L(Tk+2|E) as

L(Tk+2|E0) ≤∗ L((Tk+2|E0)|Tk+1 > s1)

and trace it back to the bivariate case treated so far, with

X = Tk+1|E0, Y = Tk+2|E0.

Our results can be suitably extended from the bivariate to the mul-
tivariate case. Provided appropriate “weak” notions of multivariate
stochastic orders are considered, such an extension can be developed
along the same lines of this present paper. This will be the subject of
some future work.

3.7 Appendix

This section is devoted to recalling basic definitions and theorems con-
cerning stochastic dependence and copulas. For further details, see,
e.g., [355].

We will consider the following positive dependence properties:

Definition 3.7.1.

(i) (X,Y ) is PQD if

F (x, y) ≥ GX(x)GY (y)

(ii) Y is right tail increasing in X (RTI(Y |X)) if
F (x, y)

GX(x)
↑ x
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(iii) (X,Y ) is RCSI if for ∀ x ≤ x′, y ≤ y′,

F (x, y)F (x′, y′) ≥ F (x′, y)F (x, y′)

i.e., F is Totally Positive of order 2 (TP2).

We will consider here only the “joint” absolutely continuous case,
with f joint density. We consider then also

Definition 3.7.2.

(i) Y is stochastically increasing in X (SI(Y |X)) if

GY (y|X = x) ↑ x.

(ii) (X,Y ) is PLRD if f is TP2.

As known, the dependence properties of a joint distribution are
actually properties of its copula only, i.e., they do not involve the
margins.

We recall that a copula can be seen as the distribution function
of two r.v.s U, V , uniformly distributed on [0, 1]. In the specific, we

considered here the survival copula Ĉ(u, v) = F
(

G
−1
X (u), G

−1
Y (v)

)

.

The dependence properties in Definitions 3.7.1 and 3.7.2 can be
restated by the following:

Definition 3.7.3.

(i) (X,Y ) is PQD if and only if Ĉ is PQD, i.e., if and only if
Ĉ(u, v) ≥ uv.

(ii) RTI(Y |X) if and only if Ĉ is LTD(V |U), i.e., if and only if

Ĉ(u, v)

u
↓ u ∀v.

(iii) (X,Y ) is RCSI if and only if Ĉ is TP2.

(iv) SI(Y |X) if and only if Ĉ is SI(V |U), i.e., if and only if

∂Ĉ(u, v)

∂u
↓ u ∀v.

(v) (X,Y ) is PLRD if and only if
∂2Ĉ(u, v)

∂u∂v
is TP2.
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Chapter 4

Multivariate Comparisons
of Ordered Data

Félix Belzunce

Abstract: In this paper we present a review for some of the main
results about multivariate comparisons of ordered data.

4.1 Introduction

One of the most prolific fields where stochastic orders find their main
application is the field of ordered data. The stochastic comparison of
ordered data has received a great attention along the last two decades
and the number of papers devoted to this topic has increased sig-
nificantly. The main models of ordered data that have been consid-
ered are order statistics, record values, and generalized order statistics.
Reviews of such results for order statistics can be found in Boland et
al. [73, 74]. More recently the case of dependent observations has re-
ceived an increasing attention and results in this direction can be found
in Navarro and Shaked [352], Navarro et al. [347], Navarro [338], and
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more recently Belzunce et al. [50]. For a review on the topic of com-
parisons of record values the reader may refer to Belzunce et al. [52]
and results for the comparison of generalized order statistics can be
found in Franco et al. [168], Belzunce et al. [54], Khaledi [227], Hu
and Zhuang [204, 205], Khaledi and Kochar [234], Qiu and Wu [379],
and Xie and Hu [479].

From previous papers and the references therein one can guess
the great variety of results that we can find. In fact we can find
results about comparisons of ordered data from one population and
from two populations and comparisons for spacings of ordered data
and results in the univariate and multivariate setting for these topics.
This paper is intended to be a review for some of the main results
about multivariate comparisons of ordered data from two populations.
Of course it is not the intention of this paper to be an exhaustive
review on this topic but to provide a first account of these results
for the reader interested on the topic. Anyway additional references
have been included for those interested on some of the other topics
mentioned above. In any case I wish to apologize for those references
that have not been included that for sure should be mentioned in this
paper.

The organization of this paper is the following. In Sect. 4.2, I will
recall the multivariate stochastic orders that we are going to consider
in this paper. In Sect. 4.3 I will make a review of some models of
ordered data and its relationships. In Sect. 4.4 I will recall some of the
main results on the topic and to finish, in Sect. 4.5 I will provide some
additional references.

In this paper “increasing” and “decreasing” mean “nondecreasing”
and “nonincreasing,” respectively. Also given a random variable X
with continuous distribution function F and density f , F ≡ 1 − F
denotes the survival function, f/F is the hazard rate, and F−1 denotes
the inverse of the distribution function which is understood to be the
left continuous one. By

st
= we denote equality in law.

4.2 Multivariate Orders

In this section we provide a review of the stochastic orders that we
are going to consider along this paper. For a general reference on
definitions and properties of stochastic orders we need to mention the
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two books by Shaked and Shanthikumar [422, 426] and the book by
Müller and Stoyan [335].

We start by considering the usual multivariate stochastic order.
Recall that given two n-dimensional random vectors X and Y , then X
is said to be less than Y in the multivariate stochastic order (denoted
by X ≤st Y ) if E[φ(X)] ≤ E[φ(Y )], for all increasing function φ :
R
n �→ R, provided the previous expectations exist. In the univariate

case given two random variables X and Y with distribution functions
F and G, respectively, X ≤st Y if, and only if, F ≤ G. This partial
order, in the univariate case, can be extended to a weaker criteria
replacing increasing functions by increasing convex functions. Given
two random variables X and Y , we say that X is less than Y in the
increasing convex order, denoted by X ≤icx Y , if

E[φ(X)] ≤ E[φ(Y )],

for all convex increasing convex functions φ, for which the involved ex-
pectations exist. In the multivariate setting, there are several possible
ways to extend this concept, depending on the kind of convexity that
we consider.

Given two random vectors X and Y , we say that X is less than Y
in the multivariate increasing convex order, denoted by X ≤icx Y , if

E[φ(X)] ≤ E[φ(Y )], (4.2.1)

for all increasing convex functions φ : Rn �→ R, for which the involved
expectations exist. It is clear from the definition that X ≤st Y =⇒
X ≤icx Y .

Some other suitable classes of functions defined on R
n can also be

considered to extend convex orders to the multivariate case by means
of a difference operator. To be specific, let Δε

i be the ith difference
operator defined for a function φ : Rn → R as

Δε
iφ(x) = φ(x+ εei)− φ(x),

where ei = (0, . . . , 0,

i
︷︸︸︷

1 , 0, . . . , 0). A function φ is said to be direc-
tionally convex if Δε

iΔ
δ
jφ(x) ≥ 0 for all 1 ≤ i ≤ j ≤ n and ε, δ ≥ 0.

We observe that directionally convex functions are also known as ul-
tramodular functions; see, for example, Marinacci and Montrucchio
[305]. A function φ is said to be supermodular if Δε

iΔ
δ
jφ(x) ≥ 0 for
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all 1 ≤ i < j ≤ n and ε, δ ≥ 0. If φ is twice differentiable, then it
is directionally convex if ∂2φ/∂xi∂xj ≥ 0 for every 1 ≤ i ≤ j ≤ n,
and it is supermodular if ∂2φ/∂xi∂xj ≥ 0 for every 1 ≤ i < j ≤ n.
Clearly a function φ is directionally convex if it is supermodular and
it is componentwise convex.

When we consider increasing directionally convex functions in
Eq. (4.2.1), then we say that X is less than Y in the increasing direc-
tionally convex order, denoted by X ≤idir-cx Y . The increasing direc-
tionally convex order is weaker than the multivariate increasing convex
order, i.e., X ≤icx Y =⇒ X ≤idir-cx Y . Note that the increasing di-
rectionally convex order compares not only the dependence structures
of two random vectors but also the variability of the marginals.

Let us consider now one order stronger than the stochastic order,
which is of interest mainly in reliability theory. First we give the defi-
nition in the univariate case. Given two nonnegative random variables
X and Y with hazard rates r and s, respectively, then X is said to
be less than Y in the hazard rate order (denoted by X ≤hr Y ) if
r(t) ≥ s(t) for all t ≥ 0. This order can be characterized in terms
of the survival functions as follows: X ≤hr Y if, and only if, F/G is
decreasing, where F and G are the survival functions of X and Y ,
respectively. This characterization allows the definition for any pair of
random variables. To extend the definition to the multivariate case,
we need first to consider the notion of multivariate conditional hazard
rate functions. Let X = (X1, . . . ,Xn) be a nonnegative n-dimensional
random vector. For t ≥ 0 let ht denote the event

ht = {XI = tI ,XĪ > te},
where e = (1, . . . , 1), I = {i1, . . . , ik} is a subset of {1, . . . , n}, Ī is its
complement with respect to {1, . . . , n}, XI and tI denote the vectors
formed by the components of X and t with indices in I, and 0 < tij ≤ t
for all j = 1, . . . , k. The event ht is called a history at the point t of the
random vector X. Given a history ht as above, and an i ∈ Ī, we define
its multivariate conditional hazard rate, at the point t, as follows:

λi|I(t|t) = lim
Δt→0+

1

Δt
P{t < Xi ≤ t+Δt|ht}.

Now let X and Y be two n-dimensional random vectors with mul-
tivariate conditional hazard rate functions η·|·(·|·) and λ·|·(·|·), respec-
tively. We say that X is smaller than Y in the multivariate hazard
rate order, denoted by X ≤hr Y , if
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ηi|I∪J(x|sI∪J ) ≥ λi|I(x|t)
whenever I ∩ J = ∅, 0 ≤ sI ≤ t ≤ xe, and 0 ≤ sJ ≤ xe, where
i ∈ I ∪ J .

In some situations it is not possible to provide an explicit expression
for the distribution function and therefore is not possible to check some
of the previous orders. An alternative is to use the density functions (or
the probability mass function in the case of discrete random variables)
to compare two random variables. Let X and Y be two n-dimensional
random vectors with joint density functions f and g, respectively. We
say that X is less than Y in the multivariate likelihood ratio order,
denoted by X ≤lr Y , if

f(x)g(y) ≤ f(x ∧ y)g(x ∨ y)

for all x and y in R
n, where ∧ and ∨ denote the componentwise

minimum and maximum operations, respectively.
In the univariate case, given two random variables X and Y with

density functions f and g, respectively, we say that X is less than Y in
the likelihood ratio order, denoted by X ≤lr Y , if f(t)g(s) ≤ f(s)g(t)
for all s < t ∈ R.

Among the likelihood ratio, hazard rate, and stochastic orders we
have the following implications:

X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤st Y .

Now we finish considering a comparison in variability through the
dispersive order. Given two random variables X and Y with dis-
tribution functions F and G, we say that X is smaller than Y in
the dispersive order, denoted by X ≤disp Y , if F−1(β) − F−1(α) ≤
G−1(β) − G−1(α) whenever 0 ≤ α ≤ β ≤ 1. That is, the dispersive
order requires that the difference between any two quantiles of X be
smaller than the difference between corresponding quantiles of Y .

There does not exist, in the literature, a unique extension of
the definition of the univariate dispersive order to the multivariate
case. Rather, one can find in the literature different multivariate ex-
tensions that generalize different useful characterizations of the uni-
variate dispersive order to the multivariate case. Here we describe
two such extensions. First, in the multivariate case, given an n-
dimensional random vector X, and a u = (u1, . . . , un) in [0, 1]n,
one way to define the multivariate u-quantile for X, denoted as
x̂(u) = (x̂1(u1), x̂2(u1, u2), . . . , x̂n(u1, . . . , un)), is as follows:
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x̂1(u1) ≡ F−11 (u1)

and
x̂i(u1, . . . , ui) ≡ F−1i|1,...,i−1(ui) for i = 2, . . . , n,

where F−1i|1,...,i−1 is the quantile function of the random variable

[Xi|X1 = x̂1(u1), . . . ,Xi−1 = x̂i−1(u1, . . . , ui−1)].

This known construction is widely used in simulation theory and
is named the standard construction. It satisfies most of the important
properties of the quantile function in the univariate case.

Given two n-dimensional random vectors X and Y , with standard
constructions x̂(u) and ŷ(u), respectively, Shaked and Shanthikumar
[425] studied the following condition:

ŷ(u)− x̂(u) is increasing in u ∈ (0, 1)n (4.2.2)

as a multivariate generalization of the dispersive order. We will say
that X is smaller than Y in the variability order, denoted by X ≤var

Y , if Eq. (4.2.2) holds.

Another multivariate generalization based on the standard con-
struction was given by Fernández-Ponce and Suárez-Llorens [161]. We
will say that X is smaller than Y in the dispersive order, denoted by
X ≤disp Y , if

‖x̂(v)− x̂(u)‖ ≤ ‖ŷ(v)− ŷ(u)‖
for all u,v ∈ [0, 1]n, where ‖ · ‖ denotes the Euclidean norm.

Shaked and Shanthikumar [425] introduce condition (4.2.2) to iden-
tify pairs of multivariate functions of random vectors that are ordered
in the st:icx order. Given two random variables X and Y , we say
that X is smaller than Y in the st:icx order, denoted by X <st:icx Y ,
if E[h(X)] ≤ E[h(Y )] for all increasing functions h for which the ex-
pectations exist (i.e., if X ≤st Y ) and if, for all increasing convex
functions h,

Var[h(X)] ≤ Var[h(Y )],

provided the variances exist.
The result was given for conditionally increasing in sequence (CIS)

random vectors. A random vector (X1, . . . ,Xn) is said to be CIS if,
for i = 2, 3, . . . , n,

(Xi | X1 = x1, . . . ,Xi−1 = xi−1) ≤st (Xi | X1 = x′1, . . . ,Xi−1 = x′i−1)
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whenever xj ≤ x′j, j = 1, 2, . . . , i− 1.

Additionally we will use along this paper the CI and conditionally
increasing in quantile (CIQ) dependence notions. We say that the
random vector (X1, . . . ,Xn) is conditionally increasing (CI) if and only
if the random vector (Xπ(1), . . . ,Xπ(n)) is CIS for all permutations π
of {1, 2, . . . , n}.

The random vector (X1, . . . ,Xn) is said to be CIQ , if the standard
construction x̂(u) is increasing in u ∈ (0, 1)n.

Shaked and Shanthikumar [425] prove that given two nonnegative
n-dimensional random vectors X and Y , with the CIS property, if
X ≤varY then

φ(X) ≤st:icx φ(Y ),

for all increasing directionally convex function φ.

Recently Belzunce et al. [56] have proved that, for random vectors
with the same CIQ copula,

X ≤disp Y ⇐⇒ X ≤var Y ⇐⇒ Xi ≤disp Yi, for all i = 1, . . . , n.

4.3 Multivariate Models with Ordered

Components

Perhaps the most well-known model of a random vector with ordered
components is the random vector of order statistics. This model arises
in natural way when we arrange in increasing order a set of observa-
tions from a random variable. Another example is the case of epoch
times of a counting process, like the case of a nonhomogeneous Poisson
process. Epoch times of nonhomogeneous Poisson processes can be in-
troduced as record values of a proper sequence of random variables,
which is another typical example of ordered data. Given the similarity
of several results for order statistics and record values Kamps [221]
introduces the model of generalized order statistics. This model pro-
vides a unified approach to study order statistics and record values
and several other models of ordered data.

First we provide the definition of generalized order statistics fol-
lowing Kamps [221, 222]:

Definition 4.3.1. Let n ∈ N, k ≥ 1, m1, . . . ,mn−1 ∈ R, Mr =
∑n−1

j=r mj , 1 ≤ r ≤ n−1 be parameters such that γr = k+n−r+Mr ≥ 1
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for all r ∈ 1, . . . , n− 1, and let m̃ = (m1, . . . ,mn−1), if n ≥ 2 (m̃ ∈ R

arbitrary, if n = 1). We call uniform generalized order statistics to the
random vector (U(1,n,m̃,k), . . . , U(n,n,m̃,k)) with joint density function

h(u1, . . . , un) = k

⎛

⎝

n−1
∏

j=1

γj

⎞

⎠

⎛

⎝

n−1
∏

j=1

(1− uj)
mj

⎞

⎠ (1− un)
k−1

on the cone 0 ≤ u1 ≤ · · · ≤ un ≤ 1. Now given a distribution function
F we call generalized order statistics based on F to the random vector

(X(1,n,m̃,k), . . . ,X(n,n,m̃,k)) ≡
(

F−1(U(1,n,m̃,k)), . . . , F
−1(U(n,n,m̃,k))

)

.

If F is an absolutely continuous distribution with density f , the
joint density function of (X(1,n,m̃,k), . . . ,X(n,n,m̃,k)) is given by

f(x1, . . . , xn) = k

⎛

⎝

n−1
∏

j=1

γj

⎞

⎠

⎛

⎝

n−1
∏

j=1

F (xj)
mjf(xj)

⎞

⎠F (xn)
k−1f(xn)

on the cone F−1(0) ≤ x1 ≤ · · · ≤ xn ≤ F−1(1).
In the special case when m1 = · · · = mn−1 = m, the vari-

ables (X(1,n,m̃,k), . . . ,X(n,n,m̃,k)) are called m-GOSs and are denoted
by (X(1,n,m,k), . . . ,X(n,n,m,k)).

Among the different distributional properties we recall a prop-
erty about the copula of a random vector of GOSs. A copula C is
a cumulative distribution function with uniform marginals on [0, 1].
Furthermore, it has been shown that if F is an n-dimensional distri-
bution function with marginal distribution functions F1, . . . , Fn, then
there exists a copula C such that for all (x1, . . . , xn) ∈ R

n, we have
F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)). Moreover, if F1, . . . , Fn are
continuous, then C is unique. For details on various properties of cop-
ulas, interested readers may refer to Nelsen [355]. For GOSs we have
that two random vectors of GOSs with the same set of parameters
and possibly based on different distributions have the same copula
(see Belzunce et al. [56]).

Let us see now several models that are included in this model. As
we have mentioned previously, order statistics and record values are a
particular case of this model.

Taking mi = 0 for all i = 1, . . . , n−1 and k = 1 we get the random
vector of order statistics (X1:n,X2:n, . . . ,Xn:n) from a set of n inde-
pendent and identically distributed (i.i.d) observations X1,X2, . . . ,Xn
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with common absolutely continuous distribution F , in particular, we

get that Xi:n
st
= X(i,n,0,1). However, the model of GOSs does not in-

clude order statistics when we remove the assumption of independent
and/or identically distributed observations. If we consider the random
vector of order statistics (X1:n,X2:n, . . . ,Xn:n) from n independent but
not necessarily identically distributed observations X1,X2, . . . ,Xn,
where, for all i = 1, 2, . . . , n, Xi has absolutely continuous distribution
with density function fi and distribution function Fi, the joint den-
sity function of (X1:n,X2:n, . . . ,Xn:n) is given by (see Vaughan and
Venables [461])

f1,2,··· ,n:n(x1, x2, . . . , xn) =
∑

π∈P

n
∏

i=1

fπi(xi),

for all x1 < x2 < · · · < xn,

where P denotes the set of all n! permutations of {1, . . . , n} and π =
(π1, . . . , πn) is one specific permutation.

If we consider order statistics (X1:n,X2:n, . . . ,Xn:n) from a random
vector of n possibly dependent observations (X1,X2, . . . ,Xn), with
absolutely continuous distribution and joint density function f , the
joint density of (X1:n,X2:n, . . . ,Xn:n) is given by

f1,2,··· ,n:n(x1, x2, . . . , xn) =
∑

π∈P
f(xπ1 , xπ2 , . . . , xπn),

for all x1 < x2 < · · · < xn.

Let us consider the case of record values. Chandler [83] introduced
the mathematical notion of record values to study, from a statistical
point of view, sequences of record values that arise in practice. Let
X1,X2, . . . be a sequence of i.i.d. random variables, which can be
considered as independent observations from the random variable X.
Denote the cumulative distribution function of X by F , and assume
that F is absolutely continuous. Also, denote by f the corresponding
density function. Record values are defined by means of record times,
so first let us recall the definition of record times. Given a sequence
of i.i.d. random variables as above, the record times are the random
variables

L(1) = 1,

L(n) = min{j > L(n− 1)|Xj > XL(n−1)}, n = 2, 3, . . . .
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The sequence of record values X(n) is defined by

X(n) ≡ XL(n), n = 1, 2, . . . .

Taking mi = −1 for all i = 1, . . . , n − 1 and k = 1 we get that
X(i) =st X(i,n,−1,1).

As mentioned above record values are related to the epoch times of
a nonhomogeneous Poisson process. A counting process {N(t), t ≥ 0}
is a nonhomogeneous Poisson process with intensity (or rate) function
r ≥ 0 if:

(a) {N(t), t ≥ 0} has the Markov property.

(b) P{N(t+Δt) = n+ 1|N(t) = n} = r(t)Δt+ o(Δt), n ≥ 0.

(c) P{N(t+Δt) > n+ 1|N(t) = n} = o(Δt), n ≥ 0.

We assume that
∫ ∞

t
r(u) du = ∞ for all t ≥ 0; (4.3.1)

this ensures that with probability 1 the process has a jump after any
time point t.

A nonnegative function r which satisfies Eq. (4.3.1) can be in-
terpreted as the hazard rate function of a random variable, and if
X1,X2, . . . is a sequence of i.i.d. random variables with hazard rate
function r then the epoch time of the nth jump, Tn, say, satisfies (see
Gupta and Kirmani [185])

Tn
st
= X(n).

An extension of this counting process, where the epoch times are
not included in the model of GOSs, is the nonhomogeneous pure birth
process (NHPB). Such processes are called “relevation counting pro-
cesses” in Pellerey et al. [372]. Epoch times of NHPB processes
correspond also to Pfeifer’s record values. Pfeifer [373] establishes
a model of record values based on a double sequence of nonidentically
distributed random variables.

A NHPB process is a Markovian point process in which the jump
intensity at any time t depends not only on t but also on the number
n of jumps before time t. Formally, we consider a point process N =
{N(t), t ≥ 0} such that
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(a) N has the Markov property

(b) P{N(t+Δt) = n+ 1
∣

∣N(t) = n} = rn(t)Δt+ o(Δt). n ≥ 1

(c) P{N(t+Δt) > n+ 1
∣

∣N(t) = n} = o(Δt), n ≥ 1.

where the rn’s are nonnegative functions that satisfy
∫ ∞

t
rn(x)dx = ∞ for all t ≥ 0. (4.3.2)

Again previous condition ensures that rn can be considered as a
failure rate of a proper distribution. Now denote by Fn and fn the
survival and the density functions associated to rn, then the joint
density of T = (T1, . . . , Tn) is given by

h(x1, x2, . . . , xn) =

n−1
∏

j=1

fj(xj)

F j+1(xj)
fn(xn) for x1 ≤ x2 ≤ · · · ≤ xn.

In a distributional theoretical sense, GOSs are contained in the
model of epoch times of an NHPB process. Consider GOSs based on
F with failure rate r and parameters k, n, and Mr, r = 1, . . . , n − 1,
then

(X(1,n,m̃,k), . . . ,X(n,n,m̃,k))
st
= (T1, . . . , Tn)

where Ti are the epoch times of a NHPB process with intensities ri =
(k + n− i+Mi)r, for i : 1, . . . , n.

We finish with some additional particular cases of GOSs.
A generalization of the record values is the case in which k ∈ N,

obtaining what is called k-records.
Let {Xi}i∈N be a sequence of i.i.d random variables with distribu-

tion function F and let k ∈ N. Denoting by

(Xj−k+1,j)j=k,k+1,...,

the sequence of k-th largest order statistics, the random variables
given by

Lk(1) = 1
Lk(n+ 1) = min{j > L(n) : Xj,j+k−1 > XLk(n),Lk(n)+k−1}

are called the record times, and the quantities

XLk(n) ≡ XLk(n),Lk(n)+k−1
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are called k-th records or k-records, which are a special case of GOSs
taking mi = −1 for all i = 1, . . . , n− 1 and k ∈ N.

A life-testing experiment of interest in reliability studies involves
N independent and identically distributed random variables placed
simultaneously on test and at the time of the m-th failure Ri surviving
units are randomly censored from the test. The progressively type II
censored order statistics arising from such a reliability experiment can
be obtained from the model of GOSs by setting n = m, mi = Ri, and
k = Rm + 1.

An interesting model contained in the model of generalized order
statistics is that of order statistics under multivariate imperfect repair;
see Shaked and Shanthikumar [418]. Suppose n items start to function
at the same time 0. Upon failure, an item undergoes a repair. If
i items (i = 0, 1, . . . , n − 1) have already been scrapped, then, with
probability pi+1, the repair is unsuccessful and the item is scrapped,
and with probability 1− pi+1, the repair is successful and minimal.

Let us now consider n items with i.i.d. random lifetimes
X1, . . . ,Xn, with the same distribution F and density function f .
Let (X(1), . . . ,X(n)) be the ordered random lifetimes resulting from
X1, . . . ,Xn under such a minimal repair policy. Then, the joint density
function of (X(1), . . . ,X(n)) is given by

f(t1, . . . , tn) = n!
n∏

j=1

pjf(tj)
[
F (tj)

](n−j+1)pj−(n−j)pj+1−1
for 0 ≤ t1 ≤ · · · ≤ tn.

It is evident that this is a particular case of the joint density function
of generalized order statistics based on F for the choice of parameters
k = pn and mj = (n− j + 1)pj − (n− j)pj+1 − 1.

We do not want to finish this section without mentioning some
additional applications of these models where the results provided in
the next section can be applied. The main applications of order statis-
tics are in statistics and reliability. In statistics, order statistics arise
in natural way when we considered ordered data and reliability order
statistics arise as a model for k-out-of-n systems. Given a system of
n components we say that the system is a k-out-of-n system if the
system works if and only if at least k of the components function, i.e.,
it works as long as at most n−k components have failed. If we denote
by X1, . . . ,Xn the random lifetimes of the components, then the ran-
dom lifetime of the k-out-of-n system is given by the order statistics
Xn−k+1:n. Other applications arise in auction theory and risk theory.
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Record values appear in a natural way in real life, for example, records
in sports and record values related to natural phenomena, like in me-
teorology and hydrology. In reliability theory, the times of repair of an
item, which is being continuously minimally repaired, are the epoch
times of a nonhomogeneous Poisson process. The nonhomogeneous
Poisson process is also a common useful model in the study of soft-
ware reliability growth. Applications of NHPB processes in insurance,
reliability theory, epidemiology, and load-sharing models can be found
in Pellerey et al. [372] and in Belzunce et al. [51].

4.4 Multivariate Comparisons

of Ordered Data

In this section we make a review of several results about stochastic
comparisons of random vectors of ordered data.

We start by considering results for the multivariate stochastic or-
der. Next result can be obtained from a characterization of the multi-
variate stochastic order by construction on the same probability space
(see Belzunce et al. [54]). Another easy proof is the following: It is
known that the stochastic order of the marginals of two random vec-
tors with the same copula implies the multivariate stochastic order for
the two random vectors. If we consider two random vectors of GOSs
with the same set of parameters, it is not difficult to show that if the
underlying distributions of the two sets of GOSs are ordered in the
stochastic order, then the marginals of the corresponding GOSs are
ordered in the same sense; therefore, given that the two random vec-
tors have the same copula, as mentioned in previous section, we can
obtain the following result:

Theorem 4.4.1. Let X and Y be random variables with distribution
functions F and G, respectively, and let X=(X(1,n,m̃,k), . . . ,X(n,n,m̃,k))
and Y = (Y(1,n,m̃,k), . . . , Y(n,n,m̃,k)) be random vectors of generalized
order statistics based on F and G, respectively. If X ≤st Y then
X ≤st Y .

Therefore this result extends previous results for order statistics
in the i.i.d. case and record values (see Belzunce et al. [51]) and
provides new results for the particular cases described in previous sec-
tion. A result for the comparison of random vectors of order statistics,
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from possibly dependent and/or not identically distributed observa-
tions, follows easily given that the arrangement in increasing order of
any set of observations is an increasing function. Therefore by the
preservation of stochastic order under increasing transformations we
have the following result.

Theorem 4.4.2. Given two sets of random variables X1, . . . ,Xn

and Y1, . . . , Yn, if, for two permutations π and π′ of {1, . . . , n},
(Xπ1 , . . . ,Xπn) ≤st (Yπ′

1
, . . . , Yπ′

n
), then we have

(X1:n, . . . ,Xn:n) ≤st (Y1:n, . . . , Yn:n).

It is also possible to provide a result for the case of epoch times of
NHPB processes (or Pfeiffer’s record values). Let us consider two such
processes, indexed by i = 1, 2, parameterized by the sets {ri,n, n ≥ 1}
of hazard rate functions that satisfy Eq. (4.3.2). The corresponding
epoch times will be denoted by 0 ≡ Ti,0 ≤ Ti,1 ≤ Ti,2 ≤ · · · . Let
{Xi,n, n ≥ 1}, i = 1, 2, be two sets of independent absolutely con-
tinuous nonnegative random variables, where Xi,n has the hazard rate
function ri,n.

Next we recall a result which gives conditions under which the
epoch times of the two NHPB processes are ordered according to the
usual stochastic order.

Theorem 4.4.3. Let Ti,n’s be the epoch times of the two NHPB pro-
cesses as described above. If X1,1 ≤st X2,1 and if X1,j ≤hr X2,j for
j ≥ 2 then

(T1,1, T1,2, . . . , T1,n) ≤st (T2,1, T2,2, . . . , T2,n), n ≥ 1.

A proof of this result can be found in Belzunce et al. [51].
Using some general ideas from Shaked and Szekli [430] it is possible
to construct an alternative, though lengthier, proof of this theorem.

The proof of the stochastic order, for the case of GOSs, based on
the fact the two random vectors of GOSs share the same copula, is a
very useful tool to provide results in this setting. In fact, based on
this idea, Balakrishnan et al. [28] provide a result for the comparison
in the idir-cx order of two random vectors of GOSs. The proof is
based on the fact that, given two random vectors with a common
CI copula, if the marginals are ordered in the increasing convex order,
then the two random vectors are ordered in the increasing directionally
convex order (see Balakrishnan et al. [28]). In the case of two random
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vectors of GOSs, with the same set of parameters, it is easy to see that
the common copula is CI (in fact has the stronger MTP2 dependence
property), so it only remains to provide conditions for the increasing
convex order of the marginals. A result in this direction has been
provided by Balakrishnan et al. [28] where they prove that a sufficient
condition for the increasing convex order of GOSs, is the increasing
convex order of the minimums. Therefore it is possible to provide the
following result:

Theorem 4.4.4. Let X and Y be two continuous random variables
with distribution functions F and G, respectively. Let random vectors
X =

(

X(1,n,m̃,k), . . . ,X(n,n,m̃,k)

)

and Y =
(

Y(1,n,m̃,k), . . . , Y(n,n,m̃,k)
)

be
generalized order statistics from F and G, respectively, with mi ≥ −1
for all i. If X(1,n,m̃,k) ≤icx Y(1,n,m̃,k), then X ≤idir-cx Y .

Again, as a particular case, we get results for the several models
included in the model of GOSs. Of particular interest is the case of
record values. In this case, the first component is equally distributed as
the distribution from which the record values are arising from. Con-
sequently, the increasing convex order of the distributions on which
the two random vectors are based on is a sufficient condition for the
comparison of the vector and in particular for the increasing convex
order of record values from the two populations. It would be also in-
teresting to see if this kind of arguments can be applied for the case
of epoch times of NHPB processes. In this case, given that the vec-
tor of epoch times can be shown to be CI, we would need to check
if two of these random vectors share the same copula and to provide
conditions for the increasing convex order of the marginals. Belzunce
and Shaked [57] provide a result for the increasing convex order of
the marginals, and therefore, it only remains to be seen if the random
vector of epoch times shares the same copula. To provide conditions
under which two random vectors of epoch times of NHPB processes
have the same copula is an open problem for future research.

Next we recall some results for the hazard rate order (see Belzunce
et al. [54]).

Theorem 4.4.5. Let X and Y be absolutely continuous random
variables with distribution functions F and G, respectively, and let
X = (X(1,n,m̃,k), . . . ,X(n,n,m̃,k)) and Y = (Y(1,n,m̃,k), . . . , Y(n,n,m̃,k))
be random vectors of generalized order statistics based on F and G,
respectively. If X ≤hr Y , then X ≤hr Y .
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There is no extension of this result to the case of order statis-
tics from possibly dependent and/or not identically distributed
observations. An extension to the case of epoch times of NHPB
processes can be found in Belzunce et al. [51]; in fact, previous result
can be derived from the next result, taking into account the rela-
tionship among GOSs and NHPB processes described in the previous
section.

Theorem 4.4.6. Let Ti,n and Xi,n be as in Theorem 4.4.3. If X1,j ≤hr

X2,j for j ≥ 1 then (T1,1, T1,2, . . . , T1,n) ≤hr (T2,1, T2,2, . . . , T2,n) for all
n ≥ 1.

Next we consider several results for the multivariate likelihood ratio
order. The proof of the following result can be seen in Belzunce et al.
[54]:

Theorem 4.4.7. Let X and Y be absolutely continuous random vari-
ables with hazard rates r and s, respectively. Let two random vectors
X = (X(1,n,m̃,k), . . . ,X(n,n,m̃,k)) and Y = (Y(1,n,m̃,k), . . . , Y(n,n,m̃,k)) be
generalized order statistics based on F and G, respectively. If either

(a) mi ≥ 0 for all i, and X ≤lr Y or

(b) mi ≥ −1 for all i, X ≤hr Y and s/r is increasing

then X ≤lr Y .

Given that the multivariate likelihood ratio order is preserved un-
der marginalization, a consequence of this result is that of the likeli-
hood ratio order of the marginals. When we compare marginals there
are a lot of papers that have been devoted to the comparison of GOSs
with different indexes and from different dimensions. Recently Balakr-
ishnan et al. [27] provide a multivariate result in this direction which
provides as a consequence results for the comparison of the marginals
in the likelihood ratio order. In particular they provide a multivariate
likelihood ratio ordering result for subsets of m-GOSs that we recall
next.

Theorem 4.4.8. Let X and Y be absolutely continuous variables with
distributions F and G and with hazard rates r and s, respectively. Let
X = (X(1,n,m,k), . . . ,X(n,n,m,k)) and Y = (Y(1,n′,m,k), . . . , Y(n′,n′,m,k))
be random vectors of m-GOSs based on distributions F and G, re-
spectively. For r1 ≤ r2 ≤ · · · ≤ ri ≤ n, r′1 ≤ r′2 ≤ · · · ≤ r′i ≤ n′,
r′1 − r1 = r′2 − r2 = · · · = r′i − ri ≥ max{0, n′ − n}, if either
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(a) X ≤lr Y and m ≥ 0 or

(b) X ≤hr Y , s/r is increasing, and −1 ≤ m < 0

then (X(r1,n,m,k),X(r2,n,m,k), . . . ,X(ri,n,m,k))≤lr(Y(r′1,n′,m,k), Y(r′2,n′,m,k),
. . . , Y(r′i,n′,m,k)).

Now we consider a different problem. We consider stochastic com-
parisons of two random vectors of GOSs with different parameters but
based on the same distribution F .

Theorem 4.4.9. Let X = (X(1,n,m̃,k), . . . ,X(n,n,m̃,k)) and X ′ =
(X(1,n,m̃′,k′), . . . ,X(1,n,m̃′,k′)) be random vectors of generalized order
statistics based on the same distribution F and with parameters k, mi,
i : 1 . . . , n− 1 and k′, m′i, i : 1 . . . , n− 1, respectively. Then X ≤lr X

′

if, and only if, k ≥ k′ and mi ≥ m′i, for all i : 1, . . . , n − 1.

Now a combination of Theorems 4.4.9 and 4.4.1, 4.4.4, 4.4.5,
and 4.4.7, leads to the following result:

Theorem 4.4.10. Let X and Y be absolutely continuous random
variables with distribution functions F and G, respectively, and let
X = (X(1,n,m̃,k), . . . ,X(n,n,m̃,k)) and Y = (Y(1,n,m̃′,k′), . . . , Y(n,n,m̃′,k′))
be random vectors of generalized order statistics based on F and G and
with parameters k, mi, i = 1 . . . , n − 1 and k′, m′i, i = 1 . . . , n − 1,
respectively. Let us suppose that k ≥ k′ and mi ≥ m′i, for all
i = 1, . . . , n− 1. Then we have the following results:

(i) If X ≤st Y then X ≤st Y .

(ii) If X(1,n,m̃,k) ≤icx Y(1,n,m̃,k) then X ≤idir-cx Y .

(iii) If X ≤hr Y then X ≤hr Y .

(iv) If

(a) mi ≥ 0 or m′i ≥ 0 for all i : 1, . . . , n − 1, and X ≤lr Y , or

(b) mi ≥ −1 or m′i ≥ −1 for all i : 1, . . . , n − 1, X ≤hr Y and
s/r is increasing,

then X ≤lr Y .
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Now we consider some results for cases not covered by the GOS’s
model. First we consider a result for the comparison in the multivari-
ate likelihood ratio order of two random vectors of order statistics in
the case of independent and possibly not identically distributed obser-
vations. This result has been provided by Belzunce et al. [50].

Theorem 4.4.11. Given two sets of n independent observations
X1,X2, . . . ,Xn and Y1, Y2, . . . , Yn, with absolutely continuous dis-
tributions, if Xi ≤lr Yj , for all i, j = 1, 2, . . . , n, then their corre-
sponding random vectors of order statistics (X1:n,X2:n, . . . ,Xn:n) and
(Y1:n, Y2:n, . . . , Yn:n) satisfy

(X1:n,X2:n, . . . ,Xn:n) ≤lr (Y1:n, Y2:n, . . . , Yn:n).

Belzunce et al. [50] provide also the following result for the
comparison of subsets of order statistics (Xr1:n,Xr2:n, . . . ,Xrk :n) and
(Yr′1:n′ , Yr′2:n′ , . . . , Yr′k:n′) in the multivariate likelihood ratio order:

Theorem 4.4.12. Suppose two random vectors of order statistics
(X1:n,X2:n, . . . ,Xn:n) and (Y1:n′ , Y2:n′ , . . . , Yn′:n′) from two sets of in-
dependent observations X1,X2, . . . ,Xn and Y1, Y2, . . . , Yn′ , with abso-
lutely continuous distributions, respectively. For 1 ≤ r1 < r2 < · · · <
rk ≤ n and 1 ≤ r′1 < r′2 < · · · < r′k ≤ n′, where r′1 − r1 = r′2 − r2 =
· · · = r′k − rk ≥ max{0, n′ − n}, if Xi ≤lr Yj , for all i, j = 1, 2, . . . , n,
then

(Xr1:n,Xr2:n, . . . ,Xrk:n) ≤lr (Yr′1:n′ , Yr′2:n′ , . . . , Yr′k :n′).

To finish we recall some additional results for the case of dependent
observations (see Belzunce et al. [50]).

Theorem 4.4.13. Given two random vectors (X1,X2, . . . ,Xn)
and (Y1, Y2, . . . , Yn), with absolutely continuous distributions, if
(Xπ1 ,Xπ2 , . . . ,Xπn) ≤lr (Yπ′

1
, Yπ′

2
, . . . , Yπ′

n
) for every pair of permuta-

tions π, π′ ∈ P, then the two corresponding order statistics satisfy

(X1:n,X2:n, . . . ,Xn:n) ≤lr (Y1:n, Y2:n, . . . , Yn:n).

A particular interesting case of the previous results is the case
of dependent and exchangeable observations. A random vector
(X1,X2, . . . ,Xn) is said to be exchangeable if for every permutation

π ∈ P, (X1,X2, . . . ,Xn)
st
= (Xπ1 ,Xπ2 , . . . ,Xπn).
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Theorem 4.4.14. Given two random vectors (X1,X2, . . . ,Xn) and
(Y1, Y2, . . . , Yn), with exchangeable and absolutely continuous distribu-
tions, respectively, if (X1,X2, . . . ,Xn) ≤lr (Y1, Y2, . . . , Yn), then the
two corresponding order statistics satisfy

(X1:n,X2:n, . . . ,Xn:n) ≤lr (Y1:n, Y2:n, . . . , Yn:n).

Apart of the application of these results to provide comparisons
of the marginals in the univariate likelihood ratio order, these results
can be also applied to provide comparisons of conditional ordered data.
This topic has received a great attention along the last decade. Some
previous results can be found in Langberg et al. [270] and Belzunce et
al. [48]. More recently, results for conditional order statistics can be
found in the recent works of Li and Zuo [298], Li and Chen [286], Asadi
and Bairamov [18], Asadi [17], Li and Zhao [296], Khaledi and Shaked
[235], Li and Zhao [297], and Sadegh [406]. In the case of independent
and nonidentically distributed random variables, Zhao et al. [491] and
Kochar and Xu [260] provide several results in this direction. Some
results for the case of record values have been discussed by Khaledi and
Shojaei [236] and Khaledi et al. [228]. Again it is possible to obtain
additional results from general results in the setting of generalized
order statistics; see, for example, Hu et al. [198], Xie and Hu [478],
Zhao and Balakrishnan [489] and Zhuang et al. [495]. For a discussion
of this topic in the case of the likelihood ratio order see Balakrishnan
et al. [27] and Belzunce et al. [50].

To finish with the results for the likelihood ratio order we recall a
result for the epoch times of NHPB processes.

Theorem 4.4.15. Let Ti,n and Xi,n be as in Theorem 4.4.3. If X1,j

≤hr X2,j , and if r2,j/r1,j is increasing, and if for j ≥ 1,

r2,j+1(t)− r2,j(t) ≥ r1,j+1(t)− r1,j(t), t ≥ 0,

then (T1,1, T1,2, . . . , T1,n) ≤lr (T2,1, T2,2, . . . , T2,n) for all n ≥ 1.

To finish this section we consider a result for the multivariate dis-
persive orders. The proof is based on the remark made at the end
of Sect. 4.2 and the fact that the dispersive order of the underlying
distributions implies the dispersive order of the corresponding GOSs.

Theorem 4.4.16. Let X and Y be random variables distribution func-
tions F and G, respectively, and let X =

(

X(1,n,m̃,k), . . . ,X(n,n,m̃,k)

)
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and Y =
(

Y(1,n,m̃,k), . . . , Y(n,n,m̃,k)
)

be random vectors of generalized
order statistics based on F and G, respectively. If X ≤disp Y then

X ≤disp[var] Y .

Let us observe that under this result we can provide comparisons
in the st:icx order of increasing directionally convex transformations of
the random vectors of GOSs as observed in Sect. 4.2. It is worthwhile
to mention that Chen and Hu [86] and Xie and Hu [480] provide a
whole bunch of results for the comparison in the var order of random
vector of GOSs based on the same distribution F .

4.5 Some Additional Comments

This paper is not intended to be an exhaustive paper on multivari-
ate comparisons of ordered data but a review on the main results of
this area taking into account the most relevant stochastic orders like
stochastic, increasing directionally convex, hazard rate, likelihood ra-
tio, and dispersive orders. Anyway there are some other papers on
the topic that we would like to mention. Avérous et al.[23], Khaledi
and Kochar [234] and Kochar and Xu [257] provide several results
to compare the degree of dependence between pairs of ordered data.
This topic is an interesting topic and it is an open area for future
research. Some other models of ordered data, not considered in this
paper, are sequential order statistics. Zhuang and Hu [493] provide
several results for this model. Another topic not covered in this paper
is the multivariate comparison of random vectors of spacings. Bar-
tosewicz [42] and Kochar[247] provide results for multivariate compar-
isons of spacings for order statistics in the multivariate stochastic and
likelihood ratio orders. Belzunce et al. [51] give several results for
spacings of epoch times of nonhomogeneous Poisson and pure birth
processes. Results for the case of spacings of GOSs have been pro-
vided by Belzunce et al. [54], Fang et al. [156] and Zhuang and Hu
[494].
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5.1 Introduction

Suppose we want to compare two different distributions, the simplest
way to do this is by their corresponding means and variances. How-
ever, such a comparison is not very informative and the means and the
variances sometimes do not exist. Comparisons based on survival func-
tions, hazard rate functions, and other suitable functions of probability
distributions establish partial orders among random variables, which
are called stochastic orderings. Since 1994 the theory of stochastic
orderings has grown significantly; see, e.g., Shaked and Shanthikumar
[426] for an excellent review of this field.

Models of ordered random variables, such as order statistics, record
values, and generalized order statistics, have been studied extensively
in the literature (cf. Arnold et al. [15, 16], Kamps [221, 222] and
Balakrishnan and Rao [29, 30]). It is well known that these models
of ordered random variables appear in the context of reliability theory
as the lifetime of k-out-of-n systems and, also, as the epoch times of
some stochastic counting processes such as nonhomogeneous Poisson
processes and nonhomogeneous pure birth processes (see, e.g., Huang
and Su [196] and Belzunce et al. [52]). Spacings, the differences be-
tween successive order statistics, have been also investigated in the last
decades, see Hu et al. [200] and Wen et al. [474], among others. In the
life-testing and reliability models they correspond to times elapsed be-
tween successive failures of k-out-of-n systems, and also, they are the
inter-epoch times of some stochastic counting processes (cf. Belzunce
et al. [52] and Khaledi and Kochar [232]). Here, we review the litera-
ture about the area of stochastic comparisons between spacings based
on order statistics from one and two samples of random variables.

The organization of this work is as follows: In Sect. 5.2 we re-
call the definition of order statistics and spacings and introduce the
probability density function of normalized and simple spacings. In
Sect. 5.3, we investigate stochastic comparisons of spacings from one
sample of random variables, and in Sect. 5.4, we do the same for two
samples. Section 5.5 is devoted to stochastic comparisons of spacings
from multiple-outlier models. Finally, we present some conclusions
and open problems in Sect. 5.6.
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5.2 Distributional Properties of Spacings

In this section we give the definition of spacings and some distribu-
tional properties of them that will be used throughout the work.

If the random variables X1, . . . ,Xn are arranged in ascending order
of magnitude, then the i-th smallest of Xi’s is denoted by Xi:n. The
ordered quantities

X1:n ≤ X2:n ≤ · · · ≤ Xn:n , (5.2.1)

are called order statistics (OS), and Xi:n is the i-th order statistic.
These random variables are of great interest in many areas of statistics,
in particular, in the characterizations of distributions (cf. Deheuvels
[115]) and testing problems (see, e.g., Berrendero and Cárcamo [60]),
among others. Specifically, there is a very interesting application of
OSs in reliability theory. The (n − k + 1)-th OS in a sample of size
n represents the life length of a k-out-of-n system which is an im-
portant technical structure. It consists of n components of the same
kind with independent and identically distributed life lengths. All n
components start working simultaneously, and the system works, if at
least k components function; i.e., the system fails if (n − k + 1) or
more components fail. Special cases of k-out-of-n systems are series
and parallel systems.

Another interesting random variables are

Di:n = Xi:n −Xi−1:n and D∗i:n = (n− i+ 1) (Xi:n −Xi−1:n) ,

for i = 1, . . . , n, with X0:n ≡ 0, respectively, called simple spacings
and normalized spacings. In the reliability context they correspond to
times elapsed between successive failures.

For heterogeneous but independent exponential random variables,
Kochar and Korwar [249] proved that for i ∈ {2, . . . , n}, the distribu-
tion of the i-th normalized spacing, D∗i , is a mixture of independent
exponential random variables with p.d.f.

f∗i (t) =
∑

rn

n
∏

k=1

λk

n
∏

k=1

(

n
∑

j=k

λrj

)

(
∑n

j=i λrj

n− i+ 1

)

exp

⎛

⎜

⎜

⎜

⎝

−t

n
∑

j=i
λrj

n− i+ 1

⎞

⎟

⎟

⎟

⎠

, (5.2.2)

where rn = (r1, . . . , rn) is a permutation of (1, . . . , n). Torrado et al.
[453] rewrite Eq. (5.2.2) in a more useful way as
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f∗i (t) =
Mi
∑

j=1

Δ(β(i)mj
, n)

(

β
(i)
mj

n− i+ 1

)

exp

(

−t β
(i)
mj

n− i+ 1

)

, (5.2.3)

where Mi =

(

n

n− i+ 1

)

,

β(i)mj
=

n
∑

�=i

λr� , (5.2.4)

with mj indicating a group of indices of size n− i+ 1, and

Δ(β(i)mj
, n) =

∑

ri−1,mj

⎛

⎝

∏

k∈Hmj

λk

⎞

⎠

⎡

⎢

⎢

⎣

i−1
∏

�=1

⎛

⎜

⎜

⎝

i−1
∑

u=�
ru∈Hmj

λru + β(i)mj

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

−1

,

(5.2.5)

whereHmj = {1, . . . , n}−mj and the outer summation are being taken
over all permutations of the elements of Hmj .

The distribution of Di is also a mixture of independent exponential
random variables, with p.d.f.

fi(t) =

Mi
∑

j=1

Δ(β(i)mj
, n) β(i)mj

e−tβ
(i)
mj , (5.2.6)

where Mi, β
(i)
mj and Δ(β

(i)
mj , n) are defined as before.

Before proceeding to the main results, let us first recall four lem-
mas, which will be used in the following sections.

Lemma 5.2.1 (Lemma 3.1. in Kochar and Korwar [249]). Let

Δ(β
(i)
mj , n) be as defined in Eq. (5.2.5). Suppose that m1 and m2 are

two subsets of {1, . . . , n} of size n − i + 1 (1 < i ≤ n) and that they
have all but one element in common. Denote the different elements in
m1 by a1 and those in m2 by a2. Then

λa1Δ(β(i)m1
, n) ≥ λa2Δ(β(i)m2

, n), if λa2 ≥ λa1 .

Lemma 5.2.2 (Chebyshev’s sum inequality, Theorem 1 in Mitrinovic
[327]). Let a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn be two increasing
sequences of real numbers. Then

n

n
∑

i=1

aibi ≥
n

∑

i=1

ai ·
n

∑

i=1

bi.
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Lemma 5.2.3 (Lemma A.1. in Torrado et al. [453]). Let Δ(β
(i)
mj , n)

be as in Eq. (5.2.5), and mj = j and mk = (j, �). Then

Δ(β
(3)
(3,4), 4)Δ(β(4)u , 4) ≥ Δ(β

(3)
(u,4), 4)Δ(β

(4)
3 , 4) ≥ Δ(β

(3)
(u,3), 4)Δ(β

(4)
4 , 4),

for u = 1, 2.

Lemma 5.2.4 (Lemma A.2. in Torrado et al. [453]). Under the same
assumptions as those in Lemma 5.2.3, then

(a) Δ(β
(3)
(2,u), 4)Δ(β

(4)
1 , 4) ≥ Δ(β

(3)
(1,2), 4)Δ(β

(4)
u , 4),

(b) Δ(β
(3)
(1,u), 4)Δ(β

(4)
2 , 4) ≥ Δ(β

(3)
(1,2), 4)Δ(β

(4)
u , 4),

(c) if β
(3)
(1,u) − β

(4)
2 < 0, then

Δ(β
(3)
(2,u), 4)Δ(β

(4)
1 , 4) ≥ Δ(β

(3)
(1,u), 4)Δ(β

(4)
2 , 4),

for u = 3, 4.

Another tool used in the literature to obtain the distribution of
spacings is the theory of permanent. Suppose A = (ai,j) is a square
matrix of order n. Then the permanent of the matrix A is defined
to be

PerA =
∑

P

n
∏

j=1

aj,ij , (5.2.7)

where
∑

P denotes the sum over all n! permutations (i1, i2, . . . , in)
of (1, 2, . . . , n). The definition of the permanent in Eq. (5.2.7) is thus
similar to that of the determinant except that it does not have the
alternating sign (c.f. Balakrishnan [25]). If d1, . . . ,dn are vectors in
R
n, then we will denote by [d1, . . . ,dn] the permanent of the n × n

matrix (d1, . . . ,dn). The permanent

⎡

⎣ d1
︸︷︷︸

r1

, d1
︸︷︷︸

r2

, . . .

⎤

⎦

is obtained by taking r1 copies of d1, r2 copies of d2, and so on.
It is useful to represent the joint density functions of order statis-

tics by using the theory of permanents when the underlying random
variables are not identical (see [31, 32]) and also the density function
of the spacing Di:n which is given by
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fi:n(t) =
1

(i− 2)!(n − i)!

∫ ∞

0

⎡

⎣F (u)
︸ ︷︷ ︸

i−2
,f(u),f(u + t), F̄ (u)

︸ ︷︷ ︸

n−i

⎤

⎦ du ,

for t ∈ R+ ≡ [0,∞) and i = 2, . . . , n, where

f(t) = (f1(t), . . . , fn(t))
′, F (t) = (F1(t), . . . , Fn(t))

′,
F̄ (t) = (F̄1(t), . . . , F̄n(t))

′

with F̄ = 1−F . The theory of permanent has been used in [200, 202,
474] in order to study stochastic orderings of spacings.

5.3 Stochastic Orderings of Spacings

from One Sample

Here, we give briefly a review of stochastic orders related to the loca-
tion, the magnitude, and the dispersion of random variables. These
notions can be found in Shaked and Shanthikumar [426].

The first results that we discuss concern the usual stochastic or-
dering. Let X and Y be univariate random variables with cumulative
distribution functions (cdf’s) F and G, respectively. We say that X is
smaller than Y in the usual stochastic order if F̄ (t) ≤ Ḡ(t), for all t
and in this case, we write X ≤st Y or F ≤st G.

Many authors have studied the stochastic properties of spacings
from restricted families of distributions, such as decreasing hazard rate
and increasing hazard rate distributions. A random variable X (or its
distribution) is said to be decreasing (increasing) hazard rate or DHR
(IHR) if F̄ is logconvex (logconcave). If X1,X2, . . . ,Xn is a random
sample from a DHR (IHR) distribution, then it has been proved by
Sukhatme and Proschan [37] that the successive normalized spacings
are stochastically increasing (decreasing), that is, for i = 1, . . . , n− 1,

D∗i:n ≤st (≥st)D
∗
i+1:n . (5.3.1)

They also showed that D∗i:n+1 ≤st (≥st)D
∗
i:n, when n ≥ i for fixed i.

The corresponding problem when the random variables have ex-
ponential distributions has also been well studied. Sukhatme [445]
showed that the normalized spacings of a random sample from an
exponential distribution are i.i.d. random variables having the same
exponential distribution. For heterogeneous but independent exponen-
tial random variables, Pledger and Proschan [377] proved that if the
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scale parameters of the exponential distributions are not all equal then
the i -th normalized spacing is stochastically smaller than the (i+1)-th
normalized spacing.

Theorem 5.3.1 (Theorem 3.1 in Pledger and Proschan [377]). If
X1,X2, . . . ,Xn are independent exponential random variables with Xi

having hazard rate λi , i = 1, . . . , n, then

D∗i:n ≤st D
∗
i+1:n, for i = 1, . . . , n− 1.

Next we consider the hazard rate ordering. Recall that, given two
random variables X and Y with hazard rate functions hX and hY ,
respectively, X is said to be smaller than Y in the hazard rate order,
denoted by X ≤hr Y or F ≤hr G, if hX(t) ≥ hY (t), for all t.

For one sample, Kochar and Kirmani [248] strengthened Eq. (5.3.1)
from stochastic ordering to hazard rate ordering, i.e., for i=1, . . . , n−1

D∗i:n ≤hr D
∗
i+1:n , (5.3.2)

when the random variables are independent and identically distributed
from a DHR distribution. Khaledi and Kochar [229] showed that
D∗i:n ≤hr D

∗
j:m whenever j ≥ i and j − i ≥ m − n, if F is DHR.

Hu and Wei [203] proved the following result for generalized spacings,
Dj,i:n = Xj:n −Xi:n, for 1 ≤ i < j ≤ n.

Theorem 5.3.2 (Theorem 4.1 in Hu and Wei [203]). If X1,X2, . . . ,Xn

are independent random variables from a DHR (IHR) distribution then

Dj−1,i−1:n−1 ≤hr (≥hr)Dj,i:n , for all 1 ≤ i < j ≤ n.

When X1,X2, . . . ,Xn are independent exponential random vari-
ables with possibly unequal scale parameters, observing Eq. (5.2.3),
note that D∗i:n ≤hr D

∗
i+1:n if and only if

Mi∑
j=1

Δ(β
(i)
mj , n)

β
(i)
mj

n−i+1
e
−tβ

(i)
mj

/(n−i+1)

Mi∑
j=1

Δ(β
(i)
mj , n) e

−tβ
(i)
mj

/(n−i+1)

≥

Mi+1∑
j=1

Δ(β
(i+1)
mj , n)

β
(i+1)
mj

n−i
e
−tβ

(i+1)
mj

/(n−i)

Mi+1∑
j=1

Δ(β
(i+1)
mj , n) e

−tβ
(i+1)
mj

/(n−i)

,

which can be rewritten as

Mi+1∑
j=1

Mi∑
k=1

Δ(β(i)
mk
, n)Δ(β(i+1)

mj
, n) e

−t

⎛
⎝ β

(i)
mk

n−i+1
+

β
(i+1)
mj
n−i

⎞
⎠ (

β
(i)
mk

n− i+ 1
− β

(i+1)
mj

n− i

)
≥ 0.

(5.3.3)
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Throughout this article, we shall suppose, without loss of general-
ity, that the λi’s are in increasing order.

Next, we give a useful lemma which will be used later.

Lemma 5.3.3 (Lemma A.3. in Torrado et al. [453]). Let β
(i)
mk be as

defined in Eq. (5.2.4), then

Mi
∑

k=1

Mi+1
∑

j=1

(

β
(i)
mk

n− i+ 1
− β

(i+1)
mj

n− i

)

= 0.

Proof : Since
(

n

n− i

)(

n− 1

n− i

)

1

n− i+ 1
=

(

n

n− i+ 1

)(

n− 1

n− i− 1

)

1

n− i
,

we have
Mi+1∑
j=1

Mi∑
k=1

(
β
(i)
mk

n− i+ 1
− β

(i+1)
mj

n− i

)

=

Mi∑
k=1

Mi+1
β
(i)
mk

n− i+ 1
−

Mi+1∑
j=1

Mi

β
(i+1)
mj

n− i

=
n∑

�=1

(
n

n− i

)(
n− 1

n− i

)
λ�

n− i+ 1
−

n∑
�=1

(
n

n− i+ 1

)(
n− 1

n− i− 1

)
λ�

n− i

=

[(
n

n− i

)(
n− 1

n− i

)
1

n− i+ 1
−

(
n

n− i+ 1

)(
n− 1

n− i− 1

)
1

n− i

]
n∑

�=1

λ�

= 0.

Kochar and Korwar [249] established the likelihood ratio order-
ing between the first normalized spacing and the others. The like-
lihood ratio order is stronger than the hazard rate order, so in par-
ticular D∗1:n ≤hr D

∗
2:n. They also conjectured that a result similar

to Eq. (5.3.2) holds and proved this conjecture for n = 3. The gen-
eral case for any n is still an open problem in the literature. Torrado
et al. [453] solved partially this problem. In particular, they proved
that, for n = 4, the successive normalized spacings from heterogeneous
exponential random variables are increasing in hazard rate ordering,
that is,

D∗1:4 ≤hr D
∗
2:4 ≤hr D

∗
3:4 ≤hr D

∗
4:4.

Therefore, they showed that, in general, the second normalized spacing
is smaller than the third normalized spacing according to the hazard
rate ordering.
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Theorem 5.3.4 (Theorem 3.1. in Torrado et al. [453]). Let
X1, . . . ,Xn be independent exponential random variables such that
Xi has a hazard rate λi , for i = 1, . . . , n, then

D∗2:n ≤hr D
∗
3:n, for all n.

We turn to consider the simple spacings of the order statistics.

Note that the probability Δ(β
(i)
mj , n) in Eq. (5.2.6) is the same than

in the p.d.f. of D∗i:n. This condition is essential to prove whether
Di:n ≤hr Di+1:n for i = 1, . . . , n− 1. We give below some advances on
this. Specifically, we prove that the second simple spacing is smaller
than the third simple spacing according to the hazard rate ordering.

Theorem 5.3.5 (Theorem 3.2. in Torrado et al. [453]). Under the
same assumptions as those in Theorem 5.3.4. Then,

D2:n ≤hr D3:n, for any n.

Next, we show that the successive simple spacings are increasing
in hazard rate ordering for n = 4. Hu et al. [200] proved that D1:n ≤lr

D2:n, and by Theorem 5.3.5 we know that D2:n ≤hr D3:n, so we have
to show D3:4 ≤hr D4:4.

Theorem 5.3.6 (Theorem 4.2. in Torrado et al. [453]). Under the
same assumptions as those in Theorem 5.3.4, then

D3:4 ≤hr D4:4.

Proof : We have to show

M4
∑

j=1

M3
∑

k=1

Δ(β(3)mk
, 4)Δ(β(4)mj

, 4) e
−t

(

β
(3)
mk

+β
(4)
mj

)

(

β(3)mk
− β(4)mj

)

≥ 0.
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Here, the matrix of β
(3)
mk − β

(4)
mj is

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

λ3 + λ4 − λ1 λ3 + λ4 − λ2 λ4 λ3
λ2 + λ4 − λ1 λ4 λ2 + λ4 − λ3 λ2
λ2 + λ3 − λ1 λ3 λ2 λ2 + λ3 − λ4

λ4 λ1 + λ4 − λ2 λ1 + λ4 − λ3 λ1
λ3 λ1 + λ3 − λ2 λ1 λ1 + λ3 − λ4
λ2 λ1 λ1 + λ2 − λ3 λ1 + λ2 − λ4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(5.3.4)

and we can use the same approach as in the proof of Theorem 5.3.5. It
is easy to check that there are only four possible negative coefficients
au,2 = λj + λk − λ� for j < k < � and u /∈ {j, k, �}. Now, we consider
the term au,1 = λj + λ� − λk ≥ 0 for u = 1, . . . , 4. Notice that

exp
{

−t
(

β
(3)
(j,�) + β

(4)
k

)}

= exp
{

−t
(

β
(3)
(j,k) + β

(4)
�

)}

.

Now, if u = 1 or 2, from Lemma 5.2.3, we find that

Δ(β
(3)
(u,4), 4)Δ(β

(4)
3 , 4) ≥ Δ(β

(3)
(u,3), 4)Δ(β

(4)
4 , 4) .

And, if u = 3 or 4, from Lemma 5.2.4, we have that

Δ(β
(3)
(1,u), 4)Δ(β

(4)
2 , 4) ≥ Δ(β

(3)
(1,2), 4)Δ(β(4)u , 4) .

From this, we conclude that

bu,1 = Δ(β
(3)
(j,�), 4)Δ(β

(4)
k , 4) ≥ Δ(β

(3)
(j,k), 4)Δ(β

(4)
� , 4) = bu,2 ,

for u = 1, . . . , 4. Hence, by Lemma 5.2.2

2
∑

h=1

au,hbu,h ≥ 1

2

(

2
∑

h=1

au,h

)(

2
∑

h=1

bu,h

)

= λj

(

2
∑

h=1

bu,h

)

≥ 0.

This proves the required result.

The last two results were given in Torrado et al. [453]. They also
conjectured that

(i) Δ(β
(n−1)
(k,�) , n)Δ(β

(n)
j , n) ≥ Δ(β

(n−1)
(j,k) , n)Δ(β

(n)
� , n),

(ii) Δ(β
(n−1)
(j,�) , n)Δ(β

(n)
k , n) ≥ Δ(β

(n−1)
(j,k) , n)Δ(β

(n)
� , n),

(iii) Δ(β
(n−1)
(k,�) , n)Δ(β

(n)
j , n) ≥ Δ(β

(n−1)
(j,�) , n)Δ(β

(n)
k , n), for j = 1 and

k = 2 if β
(n−1)
(j,�) − β

(n)
k < 0,
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(iv) Δ(β
(n−1)
(k,�) , n)Δ(β

(n)
j , n) ≥ Δ(β

(n−1)
(j,�) , n)Δ(β

(n)
k , n), for j �= 1 or

k �= 2,

where β
(n−1)
mk =

λj+λ�
2 and β

(n)
mj = λj, with mk = (j, �) and mj = j,

respectively. Assuming that these conjectures hold, it would be then
possible to prove that, for all n and for all λi > 0,

Dn−1:n ≤hr Dn:n and D∗n−1:n ≤hr D
∗
n:n,

using the same methodology as those in Theorem 5.3.6 and Theo-
rem 4.1 in Torrado et al. [453], respectively. To the best of our knowl-
edge, this is still an open problem. Another interesting, open problem
is to study whether the hazard rate ordering among simple spacings
implies the hazard rate ordering between normalized spacings and vice
versa.

Likelihood ratio orderings of spacings of heterogeneous exponen-
tial random variables have been also studied in the literature. Given
two random variables X and Y , with density functions f and g, re-
spectively, X is said to be smaller than Y in the likelihood ratio order,
denoted by X ≤lr Y , if g(t)/f(t) is increasing in t. Kochar and Korwar
[249] obtained the following result on likelihood ratio ordering between
D∗1:n and D∗i:n, for 1 < i ≤ n.

Theorem 5.3.7 (Theorem 3.5. in Kochar and Korwar [249]). Let
X1,X2, . . . ,Xn be independent exponential random variables with Xi

having hazard rate λi , i = 1, . . . , n. Then

D∗1:n ≤lr D
∗
i:n , for i = 2, . . . , n.

In a recent paper, Hu et al. [200], using the theory of permanents,
established a result similar to Theorem 5.3.7 for the first and the sec-
ond simple spacings of nonidentical independent exponential random
variables.

Theorem 5.3.8 (Theorem 3.2. in Hu et al.[200]). Under the same
assumptions as those in Theorem 5.3.7, then

D1:n ≤lr D2:n, for all λi > 0.

Furthermore, they proved that if λi + λj ≥ λk for all distinct i, j
and k, then

Dn−1:n ≤lr Dn:n and Dn:n+1 ≤lr Dn:n .
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Wen et al. [474] conjectured that simple spacings of order statistics
from independent exponential random variables with different scale
parameters are ordered according to the likelihood ratio order, that is,

Di:n ≤lr Di+1:n, for i = 1, . . . , n− 1. (5.3.5)

And also, that, for i=1, . . . , n, Di:n≤lrDi+1:n+1, if λn+1≤min
{λk, k=1, . . . , n} andDi:n+1 ≤lr Di:n, if λn+1 ≥ max {λk, k = 1, . . . , n}.
Hu et al. [200] gave some advances on this. Specifically, they proved
that Eq. (5.3.5) holds for n = 3, if λn+1 ≤ λk, for k = 1, . . . , n,
then D1:n ≤lr D2:n+1 and Dn:n ≤lr Dn+1:n+1, and if λn+1 ≥ λk, for
k = 1, . . . , n, then D2:n+1 ≤lr D2:n.

Next we proceed to provide results for the dispersive order. Given
the two random variables X and Y with cumulative distributions func-
tions F and G, respectively, we say that X is smaller than Y in
the dispersive order, denoted by X ≤disp Y , if F−1(β) − F−1(α) ≤
G−1(β) − G−1(α) whenever 0 ≤ α ≤ β ≤ 1. That is, the dispersive
order requires that the difference between any two quantiles of X to
be smaller than the difference between corresponding quantiles of Y .

Bagai and Kochar [24] proved that if X ≤hr Y and either F or G
is DHR (decreasing failure rate), then X ≤disp Y . It is known that
spacings of independent heterogeneous exponential random variables
have DHR distributions (cf. Kochar and Korwar [249]) and that the
likelihood ratio order implies the hazard rate order. Combining these
observations and some above results, we have the following corollaries
for normalized and simple spacings, respectively.

Corollary 5.3.9. Let X1,X2, . . . ,Xn be independent exponential ran-
dom variables with Xi having hazard rate λi, i = 1, . . . , n. Then

(i) D∗1:n ≤disp D
∗
i:n, for i = 2, . . . , n.

(ii) D∗1:n ≤disp D
∗
2:n ≤disp D

∗
3:n, for all n.

(iii) D∗1:4 ≤disp D
∗
2:4 ≤disp D

∗
3:4 ≤disp D

∗
4:4.

Corollary 5.3.10. Under the same assumptions as those in Corol-
lary 5.3.9, then

(i) D1:n ≤disp D2:n ≤disp D3:n, for all n.

(ii) D1:4 ≤disp D2:4 ≤disp D3:4 ≤disp D4:4.

(iii) Dn−1:n ≤disp Dn:n, if λi + λj ≥ λk for all distinct i, j, and k.
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5.4 Stochastic Orderings of Spacings

from Two Samples

In the literature, there exist different works about the problem of
stochastic comparisons of the spacings of two samples. Kochar [247]
and Khaledi and Kochar [229] considered two sequences of i.i.d. ran-
dom variables X1, . . . ,Xn and Y1, . . . , Ym from two random variables
X and Y , with cdf’s F and G and density functions f and g, respec-
tively. It was shown that if either F or G is DHR, then, whenever
j ≥ i and j − i ≥ m− n,

X ≤hr Y ⇒ D∗i:n ≤st C
∗
i:n

and
X ≤lr Y ⇒ D∗i:n ≤hr C

∗
i:n,

where C∗i:n = (n − i + 1)(Yi:n − Yi−1:n) and D∗i:n = (n − i+ 1)(Xi:n −
Xi−1:n) are the i -th normalized spacing from Yi’s and Xi’s, respec-
tively, with Y0:n ≡ 0 and X0:n ≡ 0. Hu and Wei [203] proved the
following result for generalized and simple spacings from two samples
of i.i.d. random variables.

Theorem 5.4.1 (Theorems 3.1. and 3.3. in Hu and Wei [203]). If F
or G is DFR then

X ≤hr Y ⇒ Dj,i:n ≤st C�,k:m,

whenever k ≥ i and �− j ≥ k − i ≥ m− n. Moreover, if F and G are
IMRL and DMRL, respectively, then

X ≤mrl Y ⇒ Di:n ≤st Cj:m,

for i = 1, . . . , n and j = 1, . . . ,m.

Let m(t) = E[X − t | X > t] denote the mean residual life (mrl)
function of X. Then X or F is said to be IMRL (DMRL) if m(t) is
increasing (decreasing) in t. If X and Y have mrl functions mX(t) and
mY (t) such that mX(t) ≤ mY (t) for all t, then X is said to be smaller
than Y in the mean residual life order (denoted by X ≤mrl Y ).

Many researchers have showed that the i-th normalized spacing
of a sample of size n from heterogeneous exponential population is
stochastically larger than the i-th normalized spacing of a sample of
size n whose distribution is the average of the distributions in the
heterogeneous case, according to different stochastic orderings.
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Theorem 5.4.2 (Theorem 3.2. in Pledger and Proschan [377]). Let
X1,X2, . . . ,Xn be independent exponential random variables with Xi

having hazard rate λi, i = 1, . . . , n. Let Y1, Y2, . . . , Yn be a random
sample of size n from an exponential distribution with common hazard
rate λ =

∑n
i=1 λi/n. Then

C∗i:n ≤st D
∗
i:n,

for i = 1, . . . , n, where C∗i:n = (n − i + 1)(Yi:n − Yi−1:n) and D∗i:n =
(n− i+1)(Xi:n−Xi−1:n) are the i-th normalized spacing from Yi’s and
Xi’s, respectively, with Y0:n ≡ 0 and X0:n ≡ 0.

Kochar and Korwar [249] extended this result from stochastic or-
dering to likelihood ratio ordering.

Theorem 5.4.3 (Theorem 3.5. in Kochar and Korwar [249]). Under
the same assumptions as those in Theorem 5.4.2, then

C∗i:n ≤lr D
∗
i:n, for i = 1, . . . , n.

Kochar and Rojo [255] further strengthened Theorem 5.4.3 to mul-
tivariate likelihood ratio order. For details about the definition and
properties of multivariate likelihood ratio order, see Shaked and Shan-
thikumar [426].

Theorem 5.4.4 (Theorem 2.1. in Kochar and Rojo [255]). Under the
same assumptions as those in Theorem 5.4.2, then

(C∗1:n, . . . , C
∗
n:n) ≤lr (D

∗
1:n, . . . ,D

∗
n:n) .

Kochar and Xu [261] provided necessary and sufficient conditions
for stochastically comparing according to hazard the rate and likeli-
hood ratio orderings when Y1, Y2, . . . , Yn is a random sample of size n
from an exponential distribution with common hazard rate λ which
can differ from λ.

Theorem 5.4.5 (Theorems 8 and 9 in Kochar and Xu [261]). Let
X1,X2, . . . ,Xn be independent exponential random variables with Xi

having hazard rate λi , i = 1, . . . , n. Let Y1, Y2, . . . , Yn be a random
sample of size n from an exponential distribution with common hazard
rate λ. Then, for i ≥ 2,
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Ci:n ≤lr Di:n ⇐⇒ (n− i+ 1)λ ≥

∑

j∈rn
pj

(

n
∑

j=i
λ(rj)

)2

∑

j∈rn
pj

(

n
∑

j=i
λ(rj)

) ,

and

Ci:n ≤hr Di:n ⇐⇒ (n− i+ 1)λ ≥
∑

j∈rn
pj

⎛

⎝

n
∑

j=i

λ(rj)

⎞

⎠ ,

for i = 1, . . . , n, where

pj =

n
∏

k=1

λk

n
∏

k=1

(

n
∑

j=k

λ(rj)

) .

Using Lemma 2.1 in Păltănea [365], it is easy to show that the
condition on λ is a necessary and sufficient condition for a hazard rate
order between Ci:n and Di:n.

Some researchers have investigated the effect on the survival func-
tion, the hazard rate function, and other characteristics of the time to
failure of the spacings when we switch the vector λ = (λ1, . . . , λn) to
another vector θ = (θ1, . . . , θn). Torrado and Lillo [451] proved that if
the simple spacings are ordered in the likelihood ratio ordering, then
the normalized spacings are also ordered, and vice versa. To the best
of our knowledge, this has not been proved in the one sample problem.

Theorem 5.4.6 (Theorems 3.1. in Torrado and Lillo [451]). Let
X1, . . . ,Xn and Y1, . . . , Yn be two sequences of independent but not
necessarily identically distributed random variables. Then

Ci:n ≤lr Di:n ⇐⇒ C∗i:n ≤lr D
∗
i:n,

for i = 1, . . . , n.

Proof : It is easy to see that D∗i:n = ϕi(Di:n), where ϕi(x) = (n−i+1)x
is an increasing function. If Ci:n ≤lr Di:n, then from Theorem 1.C.8.
in [426], we get that C∗i:n ≤lr D

∗
i:n, and vice versa, since ϕ−1(x) is also

an increasing function.



118 Sample Spacings

The theory of majorization has been used extensively in the litera-
ture in order to compare stochastically both order statistics and spac-
ings from two sequences of independent but not identically distributed
random variables. Let {x(1), x(2), . . . , x(n)} denote the increasing ar-
rangement of the components of the vector x = (x1, x2, . . . , xn). The

vector x is said to be majorized by the vector y, denoted by x
m≺ y, if

j
∑

i=1

x(i) ≥
j

∑

i=1

y(i), for j = 1, . . . , n− 1 and

n
∑

i=1

x(i) =

n
∑

i=1

y(i).

A real valued function ϕ defined on a set A ∈ R
n is said to be Schur-

convex (Schur-concave) on A if x ≺ y on A implies ϕ(x) ≤ (≥) ϕ(y).
For more details see Marshall and Olkin [308].

Pledger and Proschan [377] have shown with the help of an example
that for n = 3, the survival function of the last spacing D3:3 is not
Schur-convex. However, Kochar and Korwar [249] proved that the
survival function of D∗2:n is Schur-convex in (λ1, . . . , λn) for any n and,
for n = 2, the hazard rate of D∗2:2 is Schur-concave in (λ1, λ2). Kochar
and Rojo [255] strengthened this result from hazard rate ordering to
likelihood ratio ordering.

Theorem 5.4.7 (Theorem 3.2. in Kochar and Rojo [255]). Let X1and
X2 be two independent exponential random variables with hazard rates
λ1 and λ2, respectively. Let Y1and Y2 be another set of independent
exponential random variables with respective hazard rates θ1 and θ2.
Then, for (θ1, θ2) ≺ (λ1, λ2),

C2:2 ≤lr D2:2 .

Now we can establish the likelihood ratio ordering between simple
spacings from two heterogeneous exponential samples. But first, we
need a lemma which is a consequence of Lemma 5.2.1.

Lemma 5.4.8 (Lemma 3.2. in Torrado and Lillo [451]). Let Δ(β
(i)
mj , n)

be as defined in Eq. (5.2.5). Suppose that m1 and m2 are two subsets of
{1, . . . , n} of size n− i+1 (1 < i ≤ n) and having all but one element
in common. Denote the different elements in m1 by a1 and those in
m2 by a2. Then

β(i)m1
Δ(β(i)m1

, n) ≥ β(i)m2
Δ(β(i)m2

, n) if λa2 ≥ λa1 .
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Theorem 5.4.9 (Theorem 3.3. in Torrado and Lillo [451]). Let
X1, . . . ,Xn be independent exponential random variables such that
Xi has hazard rate λi, for i = 1, . . . , n, and Y1, . . . , Yn be indepen-
dent exponential random variables such that Yi has hazard rate θi, for
i = 1, . . . , n. If

n−i+1
∑

j=1

θ(j) ≥ (n− i+ 1)λ,

where λ =
∑n

i=1 λi/n and
{

θ(1), . . . , θ(n)
}

denote the increasing ar-
rangement of θi, for i = 1, . . . , n. Then

Ci:n ≤lr Di:n,

for i = 1, . . . , n, where Di:n and Ci:n are the i-th simple spacing from
Xi’s and Yi’s, respectively.

Corollary 5.4.10 (Corollary 3.7. in Torrado and Lillo [451]). Let
X1, . . . ,Xn be independent exponential random variables such that Xi

has hazard rate λi, for i = 1, . . . , n, and Y1, . . . , Yn be a random sample
of size n from an exponential distribution with common hazard rate θ.
Then,

(a) Ci:n ≤lr Di:n, if λ ≤ θ,

(b) Di:n ≤lr Ci:n, if (n− i+ 1)θ ≤ ∑n−i+1
j=1 λ(j),

for i = 1, . . . , n.

Note that Theorem 5.4.3 of Kochar and Korwar can be seen as a
particular case of Corollary 5.4.10(a), when θ = λ.

The following result is of interest because it provides upper and
lower bounds for the survival and the hazard rate functions, since the
likelihood ratio order implies the usual stochastic and the hazard rate
orders.

Proposition 5.4.11 (Proposition 3.8. in Torrado and Lillo [451]).
Let X1, . . . ,Xn be independent exponential random variables such that
Xi has hazard rate λi, for i = 1, . . . , n, Y1, . . . , Yn be a random sample
of size n from an exponential distribution with common hazard rate
λ(n) = max {λ1, . . . , λn}, and Z1, . . . , Zn be a random sample of size
n from an exponential distribution with common hazard rate λ(1) =
min {λ1, . . . , λn}. Then
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Ci:n ≤lr Di:n ≤lr Hi:n, for i = 1, . . . , n,

where Ci:n, Di:n, Hi:n denote the i-th simple spacings of Yi’s, Xi’s,
and Zi’s, respectively.

5.5 Stochastic Orderings of Spacings
from Multiple-Outlier Models

In this section, we consider the special case when X1, . . . ,Xn are in-
dependent exponential random variables such that Xi has hazard rate
λ for i = 1, . . . , p and Xj has hazard rate λ∗ for j = p + 1, . . . , n,
where two samples are independent. These models are called multiple-
outlier exponential models and have applications in robustness theory,
though much of the early work in this direction concentrated only on
the case when there is one outlier in the sample (single-outlier model);
see, e.g., Barnett and Lewis [40] and Balakrishnan [25]. The simple
spacings and normalized spacings from a multiple-outlier exponential
model are, respectively, defined by

Di:n (p, q;λ, λ∗) = Xi:n −Xi−1:n

and

D∗i:n (p, q;λ, λ∗) = (n− i+ 1)Di:n (p, q;λ, λ∗) ,

for i = 1, . . . , n, with X0:n ≡ 0, q = n − p ≥ 1 and p ≥ 1. When
p = n− 1, the multiple-outlier exponential model reduces to a single-
outlier exponential model. Khaledi and Kochar [231] demonstrated the
conjecture of Kochar and Korwar [249] in the case that the random
variables X1, . . . ,Xn follow a single-outlier model with parameters λ
and λ∗, that is, when λ1 = · · · = λn−1 = λ and λn = λ∗.

Theorem 5.5.1 (Khaledi and Kochar [231]). Let X1,X2, . . . ,Xn fol-
low a single-outlier exponential model with parameters λ and λ∗. Then

D∗i:n(n− 1, 1;λ, λ∗) ≤hr D
∗
i+1:n(n− 1, 1;λ, λ∗) ,

for i = 1, . . . , n− 1.

In a multiple-outlier exponential model, by the theory of perma-
nents, Wen et al. [474] established a likelihood ratio ordering between
consecutive simple spacings.
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Theorem 5.5.2 (Theorems 1.1. and 1.2. in Wen et al. [474]). Let
X1,X2, . . . ,Xn follow a multiple-outlier exponential model with param-
eters λ and λ∗. Then,

(i) Di:n(p, q;λ, λ∗) ≤lr Di+1:n(p, q;λ, λ∗)

(ii) Di:n(p, q;λ, λ∗) ≤lr Di+1:n+1(p+ 1, q;λ, λ∗), if λ ≤ λ∗

(iii) Di:n+1(p, q + 1;λ, λ∗) ≤lr Di:n(p, q;λ, λ∗), if λ ≤ λ∗

(iv) Di:n(p, q;λ, λ∗) ≤lr Di:n(p + 1, q − 1;λ, λ∗), if λ ≤ λ∗

for p, q ≥ 1 and i = 1, . . . , n− 1.

Chen and Hu [87] strengthened Theorem 5.5.2(ii)–(iv) to multivari-
ate likelihood ratio ordering. Recently, Torrado and Lillo [451] proved
the analogue of Theorem 5.5.2(iv) as a special case of Theorem 5.4.9
when λ ≥ λ∗.

Theorem 5.5.3 (Theorem 4.4 in Torrado and Lillo [451]). Under the
same assumptions as those in Theorem 5.5.2, if λ ≥ λ∗, p ≥ 1 and
q ≥ 1, then

Di:n(p−k2, q+k2;λ, λ∗) ≥lr Di:n(p, q;λ, λ∗) ≥lr Di:n(p+k1, q−k1;λ, λ∗),

where 1 ≤ k1 ≤ q, 1 ≤ k2 ≤ p and i = 1, . . . , n.

For two single-outlier exponential models Khaledi and Kochar [232]
showed the following result.

Theorem 5.5.4 (Theorem 5.2 in Khaledi and Kochar [232]). Let
X1,X2, . . . ,Xn follow a single-outlier exponential model with parame-
ters λ and λ∗ and let Y1, Y2, . . . , Yn another single-outlier exponential
model with parameters θ and θ∗. If (θ∗, θ, . . . , θ) ≤m (λ∗, λ, . . . , λ),
then

Ci:n(n− 1, 1; θ, θ∗) ≤hr Di:n(n− 1, 1;λ, λ∗), for i = 1, . . . , n .

Hu et al. [202] investigated stochastic comparisons of simple spac-
ings from two multiple-outlier exponential models. They used the
theory of permanents to prove the following result.

Theorem 5.5.5 (Theorem 4.1 in Hu et al. [202]). Let X1,X2, . . . ,Xn

follow a multiple-outlier exponential model with parameters λ and λ∗
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and let Y1, Y2, . . . , Yn another multiple-outlier exponential model with
parameters θ and λ∗ . If λ ≤ λ∗ ≤ θ then

(

C1:n(p, q; θ, λ∗), . . . , Cn:n(p, q; θ, λ∗)
)

≤lr

(

D1:n(p, q;λ, λ∗), . . . ,Dn:n(p, q;λ, λ∗)
)

,

with p, q ≥ 2.

Since the multivariate likelihood ratio order is closed under
marginalization (see Shaked and Shanthikumar[426]), it holds that,
for λ ≤ λ∗ ≤ θ,

Ci:n(p, q; θ, λ∗) ≤lr Di:n(p, q;λ, λ∗), for i = 1, . . . , n. (5.5.1)

It is easy to check that Eq. (5.5.1) is a special case of Theorem 5.4.9
(see Torrado and Lillo [451] for details).

Using again Theorem 5.4.9, we give below a similar result to
Eq. (5.5.1) when the number of exponential random variables with haz-
ard rate λ and λ∗ can be changed.

Theorem 5.5.6 (Theorem 4.2. in Torrado and Lillo [451]). Under
the same assumptions as those in Theorem 5.5.5. If λ ≤ λ∗ ≤ θ, then

(i) Ci:n (p, q; θ, λ∗) ≤lr Di:n (p+ k1, q − k1;λ, λ∗), with 0 ≤ k1 ≤ q

(ii) Ci:n (p, q; θ, λ∗) ≤lr Di:n (p− k2, q + k2;λ, λ∗), with 0 ≤ k2 ≤ p

where q = n− p ≥ 1, p ≥ 1.

It is worthwhile to mention that some researchers have studied
stochastic orderings of m-spacings, D

(m)
i:n = Xi+m−1:n − Xi−1:n with

i = 1, . . . , n − m + 1 and X0:n ≡ 0. Specifically, Misra and van der
Meulen [326] investigated the likelihood ratio ordering of m-spacings
of order statistics based on n independent observations of a random
variable. Xu et al. [481] studied the likelihood ratio ordering of m-
spacings when X1, . . . ,Xn follow a multiple-outlier exponential model.

5.6 Conclusions

This work is devoted to review stochastic comparisons of spacings from
one and two samples of heterogeneous exponential random variables.
In the first part of this report, we have shown results about stochastic
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orderings among both normalized spacings and simple spacings from
one sample. In this case, there exit different open problems such as
the conjectures of Sect. 5.3 and the conjectures of Torrado et al. [453]
and Wen et al. [474]. The second part of this work concerns stochas-
tic comparisons between spacings from two samples of exponential
random variables with different scale parameters. It is still an open
problem to study stochastic orderings of spacings when the scale pa-
rameters (λ1, . . . , λn) and (θ1, . . . , θn) are ordered in the majorization
ordering. We also have shown stochastic comparisons among spac-
ings of multiple-outlier exponential models. It would be interesting
to study stochastic properties of spacings from other models, such us
proportional random variables (PRV) and proportional hazard rates
(PHR) models.



Chapter 6

Sample Range of Two
Heterogeneous
Exponential Variables

Peng Zhao and Xiaohu Li

Abstract: In this paper, we discuss ordering properties of sample
range from two independent heterogeneous exponential variables in
terms of the likelihood ratio order and the hazard rate order (disper-
sive order). It is shown, among others, that the weakly majorization
order between two parameter vectors is equivalent to the likelihood ra-
tio order between sample ranges and that the p-larger order between
two parameter vectors implies the hazard rate order (dispersive order)
between sample ranges. In the case of exponential sample range, we
thus highlight the close connection that exists between some classical
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stochastic orders and majorization-type orders. Numerical examples
are also provided to illustrate the theoretic results established here.

6.1 Introduction

Spacings are of great interest in goodness-of-fit tests, reliability theory,
auction theory, actuarial science, life testing, operations research, and
many other areas. One may refer to Balakrishnan and Rao [29, 30]
for some goodness-of-fit tests based on functions of sample spacings.
Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote the order statistics of random
variables X1,X2, . . . ,Xn. Then, the kth order statistic Xk:n is just the
lifetime of a (n−k+1)-out-of-n system, which is a very popular struc-
ture of redundancy in fault-tolerant systems that have been studied
extensively. In particular, Xn:n and X1:n correspond to the lifetimes
of parallel and series systems, respectively.

Because of the nice mathematical form and the unique memory-
less property, the exponential distribution has widely been used in
many fields including reliability analysis. One may refer to Barlow
and Proschan [38] and Balakrishnan and Basu [26] for an encyclopedic
treatment to developments on the exponential distribution. There is a
large number of papers in the literature on stochastic comparisons of
exponential sample spacings, see Kochar and Xu [261] for a review on
this topic. Recently, some researchers investigated stochastic proper-
ties of sample ranges from heterogeneous exponential samples.

Let us first recall some notions of stochastic orders and majoriza-
tion and related orders that are pertinent to the present discussion.
Throughout this paper, the term increasing is used for monotone
non-decreasing and decreasing is used for monotone non-increasing.
Assume two random variables X and Y have densities fX and fY , dis-
tribution functions FX and FY , and FX = 1 − FX and F Y = 1 − FY
as survival functions, respectively. Then, X is said to be smaller than
Y in the likelihood ratio order (denoted by X ≤lr Y ) if fY (x)/fX(x)
is increasing in x; X is said to be smaller than Y in the hazard rate
order (denoted by X ≤hr Y ) if F Y (x)/FX(x) is increasing in x; X
is said to be smaller than Y in the reversed hazard rate order (de-
noted by X ≤rh Y ) if FY (x)/FX (x) is increasing in x; X is said to be
smaller than Y in the usual stochastic order (denoted by X ≤st Y ) if
F Y (x) ≥ FX(x). It is well known that the following chain of implica-
tions hold (see Shaked and Shanthikumar [426]):
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X ≤lr Y =⇒ X ≤hr [≤rh]Y =⇒ X ≤st Y,

Sometimes, it is also of interest to compare variability of probability
distributions. The following order, called dispersive order, is defined
as follows.

Definition 6.1.1. X is said to be less dispersed than Y (denoted by
X ≤disp Y ) if

F−1(v)− F−1(u) ≤ G−1(v)−G−1(u)

for 0 < u ≤ v < 1, where F−1 and G−1 are the right continuous
inverses of F and G, respectively.

The notion of majorization is quite useful in establishing various
inequalities. Let x(1) ≤ · · · ≤ x(n) be the increasing arrangement
of the components of the vector x = (x1, . . . , xn). A vector x =
(x1, . . . , xn) ∈ R

n is said to majorize another vector y = (y1, . . . , yn) ∈
R
n (written as x

m� y) if
∑j

i=1 x(i) ≤
∑j

i=1 y(i) for j = 1, . . . , n−1 and
∑n

i=1 x(i) =
∑n

i=1 y(i); a vector x ∈ R
n is said to weakly supmajorize

another vector y ∈ R
n (written as x

w� y) if
∑j

i=1 x(i) ≤
∑j

i=1 y(i) for
j = 1, . . . , n; a vector x ∈ R

n
+ is said to be p-larger than another vector

y ∈ R
n
+ (written as x

p
� y) if

∏j
i=1 x(i) ≤ ∏j

i=1 y(i) for j = 1, . . . , n.

Apparently, x
m� y implies x

w� y, and x
p
� y is equivalent to log(x)

w�
log(y), where log(x) is the vector of logarithms of the coordinates of

x. Also, x
m� y implies x

p
� y for x,y ∈ R

n
+.

For more details on majorization and p-larger orders and their
applications, one may refer to Marshall, Olkin, and Arnold [312] and
Bon and Pǎltǎnea [75].

SupposeX1, . . . ,Xn are independent exponential random variables
withXi having hazard rate λi, i = 1, . . . , n. Let Y1, . . . , Yn be a random
sample of size n from an exponential distribution with common hazard
rate λ. Kochar and Rojo [255] showed, for λ ≥ λ̄ =

∑n
i=1 λi/n, that

Xn:n −X1:n ≥st Yn:n − Y1:n. (6.1.1)

Zhao and Li [490] built the following characterization result:

λ ≥ λ∗ ⇐⇒ Xn:n −X1:n ≥st Yn:n − Y1:n, (6.1.2)

where
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λ∗ =
(∏n

i=1 λi

λ̄

)1/(n−1)
.

On the other hand, Kochar and Xu [256] improved the result in
Eq. (6.1.1) from the usual stochastic order to the reversed hazard rate
order as

Xn:n −X1:n ≥rh Yn:n − Y1:n.

Afterward, Genest et al. [174] further proved, for λ = λ̄, that

Xn:n −X1:n ≥lr Yn:n − Y1:n

and
Xn:n −X1:n ≥disp Yn:n − Y1:n.

Recently, Mao and Hu [302] further presented the following equivalent
characterizations:

λ ≥ λ̄ ⇐⇒ Xn:n−X1:n ≥lr Yn:n−Y1:n ⇐⇒ Xn:n−X1:n ≥rh Yn:n−Y1:n.
Here, we will discuss the various ordering properties of sample

range from two independent heterogeneous exponential variables. Let
X1,X2 be independent exponential random variables with Xi having
hazard rate λi, i = 1, 2. Let X∗1 ,X

∗
2 be another set of independent

exponential random variables with X∗i having hazard rate λ∗i . It is
then shown, under the condition λ1 ≤ λ∗1 ≤ λ∗2 ≤ λ2, that

(λ1, λ2)
w� (λ∗1, λ

∗
2) ⇐⇒ X2:2 −X1:2 ≥lr X

∗
2:2 −X∗1:2

and

(λ1, λ2)
p
� (λ∗1, λ

∗
2) =⇒ X2:2 −X1:2 ≥hr [≥disp]X

∗
2:2 −X∗1:2.

We also establish, under the condition λ1 ≤ λ∗1 ≤ λ2 ≤ λ∗2, that

λ2 − λ1 ≥ λ∗2 − λ∗1 =⇒ X2:2 −X1:2 ≥lr X
∗
2:2 −X∗1:2

and
λ2
λ1

≥ λ∗2
λ∗1

=⇒ X2:2 −X1:2 ≥hr [≥disp]X
∗
2:2 −X∗1:2.

Some immediate consequences of these results are also pointed out.
As a matter of fact, the above results reveal a correspondence between
the various stochastic orders of sample range from two heterogeneous
exponential variables and majorization-type orders of the vectors of
hazard rates.
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6.2 Likelihood Ratio Ordering

Let (X1,X2) be a vector of independent exponential random variables
with respective hazard rates λ1 and λ2, and (X∗1 ,X∗2 ) be another vector
of independent exponential random variables with respective hazard
rates λ∗1 and λ∗2. In what follows we shall proceed by distinguishing
three cases for parameters:

6.2.1 Case 1: max(λ1, λ2) ≤ min(λ∗1, λ
∗
2)

Theorem 6.2.1. Let (X1,X2) be a vector of independent exponential
random variables with respective hazard rates λ1 and λ2, and (X∗1 ,X∗2 )
be another vector of independent exponential random variables with
respective hazard rates λ∗1 and λ∗2. If λ1 ≤ λ2 ≤ λ∗1 ≤ λ∗2, then have

R(X1,X2) = X2:2 −X1:2 ≥lr X
∗
2:2 −X∗1:2 = R(X∗1 ,X

∗
2 ).

Proof : The density function of R(X1,X2) can be written as

fR(X1,X2)(t) =
λ1λ2
λ1 + λ2

[

e−λ1t + e−λ2t
]

, t ≥ 0.

The required result follows immediately by noting that the ratio

e−λ1t + e−λ2t

e−λ
∗
1t + e−λ

∗
2t

=
1

e−(λ
∗
1−λ1)t + e−(λ

∗
2−λ1)t

+
1

e−(λ
∗
1−λ2)t + e−(λ

∗
2−λ2)t
(6.2.1)

is increasing in t ∈ R+.

6.2.2 Case 2: min(λ1, λ2) ≤ min(λ∗1, λ
∗
2) ≤ max(λ∗1, λ

∗
2) ≤

max(λ1, λ2)

Theorem 6.2.2. Suppose λ2 = λ∗2 = λ. If λ1 ≤ min (λ, λ∗1), then,

R(X1,X2) = X2:2 −X1:2 ≥lr X
∗
2:2 −X∗1:2 = R(X∗1 ,X

∗
2 ).

Proof : It suffices for us to show the ratio

Δ(t) =
fR(X1,X2)(t)

fR(X∗
1 ,X

∗
2 )
(t)

∝ e−λ1t + e−λt

e−λ∗1t + e−λt

is increasing in t ∈ R+.
In view of the assumption λ1 ≤ min (λ, λ∗1), it holds that
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Δ′(t)
[

e−λ
∗
1t + e−λt

]2

=
[

−λ1e−λ1t − λe−λt
] [

e−λ
∗
1t + e−λt

]

−
[

−λ∗1e−λ
∗
1t − λe−λt

] [

e−λ1t + e−λt
]

= (λ∗1 − λ1)e
−(λ1+λ∗1)t + (λ∗1 − λ)e−(λ

∗
1+λ)t + (λ− λ1)e

−(λ+λ1)t

≥ (λ∗1 − λ1)
[

e−(λ1+λ
∗
1)t + e−(λ+λ

∗
1)t

]

≥ 0,

and thus the required result follows.

Theorem 6.2.3. Suppose λ1 ≤ λ∗1 ≤ λ∗2 ≤ λ2. Then, we have

(λ1, λ2)
w� (λ∗1, λ

∗
2) ⇐⇒ R(X1,X2) ≥lr R(X

∗
1 ,X

∗
2 ).

Proof : Sufficiency Suppose (λ1, λ2)
w� (λ∗1, λ∗2). We then have λ1 ≤

λ∗1 ≤ λ∗2 ≤ λ2 and λ1 + λ2 ≤ λ∗1 + λ∗2. The desired result follows
for the case when λ1 + λ2 = λ∗1 + λ∗2 by Theorem 3.2 of Kochar and
Rojo [255]. Assume λ1 + λ2 < λ∗1 + λ∗2. There then exists some λ
such that λ + λ2 = λ∗1 + λ∗2 and λ1 < λ ≤ λ∗1. Let Y2:2 − Y1:2 be
the sample range from two independent exponentials with respective
hazard rates λ and λ2. From Theorem 3.2 of Kochar and Rojo [255]
once again, we have Y2:2 − Y1:2 ≥lr R(X

∗
1 ,X

∗
2 ). Moreover, we have

R(X1,X2) ≥lr Y2:2 −Y1:2 from Theorem 6.2.2, and so we can conclude
that R(X1,X2) ≥lr R(X

∗
1 ,X

∗
2 ).

Necessity Assume R(X1,X2) ≥lr R(X
∗
1 ,X

∗
2 ). Taking derivative

of the ratio on the left side of Eq. (6.2.1) and letting t = 0, we get

λ1 + λ2 ≤ λ∗1 + λ∗2 and thus (λ1, λ2)
w� (λ∗1, λ∗2) holds.

As a consequence of Theorem 6.2.3, we have the following corollary.

Corollary 6.2.4. Let (X1,X2) be a vector of independent exponential
random variables with respective hazard rates λ1 and λ2, and (X∗1 ,X∗2 )
be another vector of independent exponential random variables with
common hazard rate λ. Then, we have

λ ≥ λ1 + λ2
2

=⇒ R(X1,X2) ≥lr R(X
∗
1 ,X

∗
2 ).

Proof : The case when λ ≤ max(λ1, λ2) can be directly obtained
from Theorem 6.2.3. We only need to discuss the case when λ >
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max(λ1, λ2). Let Zλ [Zμ] be the sample range of a random sample
of size 2 from an exponential distribution with common hazard rate
λ [μ]. Assume λ < μ. It can be readily seen from Theorem 6.2.1 that
Zλ ≥lr Zμ. Based on this fact, we can conclude that the required result
is also valid for the case with λ > max(λ1, λ2).

6.2.3 Case 3: min(λ1, λ2) ≤ min(λ∗1, λ
∗
2) ≤ max(λ1, λ2) ≤

max(λ∗1, λ
∗
2)

Theorem 6.2.5. Suppose λ1 ≤ λ∗1 ≤ λ2 ≤ λ∗2. If λ2 − λ1 = λ∗2 − λ∗1,
then

R(X1,X2) ≥lr R(X
∗
1 ,X

∗
2 ).

Proof : Without loss of generality, let us assume that λ1 ≤ λ2, λ
∗
1 ≤ λ∗2

and λ1 ≤ λ∗1. It suffices to show that the ratio

ζ(t) =
fR2(X)(t)

fR2(X∗)(t)
=
e−λ1t + e−λ2t

e−λ∗1t + e−λ∗2t

is increasing in t ∈ R+. Note that

ζ ′(t)
[

e−λ
∗
1t + e−λ

∗
2t
]2

=
[

−λ1e−λ1t − λ2e
−λ2t

] [

e−λ
∗
1t + e−λ

∗
2t
]

−
[

−λ∗1e−λ
∗
1t − λ∗2e

−λ∗2t
] [

e−λ1t + e−λ2t
]

= (λ∗1 − λ1)e
−(λ∗1+λ1)t + (λ∗2 − λ2)e

−(λ∗2+λ2)t + (λ∗2 − λ1)e
−(λ∗2+λ1)t

+(λ∗1 − λ2)e
−(λ∗1+λ2)t

= (λ∗1 − λ1)
[

e−(λ
∗
1+λ1)t + e−(λ

∗
1+λ2)t

]

+ 2(λ∗1 − λ1)e
−(λ1+λ∗2)

≥ 0,

and thus the required result follows.

Theorem 6.2.6. Suppose λ1 ≤ λ∗1 ≤ λ2 ≤ λ∗2. Then, we have

λ2 − λ1 ≥ λ∗2 − λ∗1 =⇒ R(X1,X2) ≥lr R(X
∗
1 ,X

∗
2 ).

Proof : For the case with λ2 − λ1 = λ∗2 − λ∗1, the desired result follows
directly from Theorem 6.2.5.

Let us assume λ2−λ1 > λ∗2−λ∗1. There then exists some λ such that
λ2−λ1 = λ∗2−λ and λ1 < λ ≤ λ∗1. Let Z2:2−Z1:2 be the sample range
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from two independent exponentials with respective hazard rates λ and
λ∗2. From Theorem 6.2.5 once again, we have R(X1,X2) ≥lr Z2:2−Z1:2.

On the other hand, by Theorem 6.2.2, we have R(X∗1 ,X∗2 )≤lrZ2:2−
Z1:2. And thus we can conclude that R(X1,X2)≥lrR(X

∗
1 ,X

∗
2 ).

Example 6.2.7.

(a) Set λ1 = 2, λ2 = 2.8, λ∗1 = 3 and λ∗2 = 3.5. It may be easily
verified that the assumption in Theorem 6.2.1 is satisfied. Then
R(X1,X2) ≥lr R(X

∗
1 ,X

∗
2 ). This coincides with what is displayed

in Fig. 6.1a.

(b) Set λ1 = 2, λ2 = 3.5, λ∗1 = 2.8 and λ∗2 = 3. The assumption in
Theorem 6.2.3 is satisfied. It can be seen from Fig. 6.1b that the
likelihood ratio is increasing which coincides with the theoretic
result in Theorem 6.2.3.

(c) Set λ1 = 2, λ2 = 3, λ∗1 = 2.8 and λ∗2 = 3.5. The assumption
in Theorem 6.2.6 is satisfied. By observing Fig. 6.1c, we find
that the likelihood ratio is increasing which coincides with the
theoretic result in Theorem 6.2.6.

(d) Set λ1 = 2, λ2 = 3.7, λ∗1 = 2.5 and λ∗2 = 3. The assumption
in Theorem 6.2.3 is violated, and Fig. 6.1d shows that the likeli-
hood ratio function has a locally decreasing trend, which means
R(X1,X2) �lr R(X

∗
1 ,X

∗
2 ) and R(X1,X2) �lr R(X

∗
1 ,X

∗
2 ).

(e) Set λ1 = 2, λ2 = 4.5, λ∗1 = 2.05 and λ∗2 = 6. The assumption in
Theorem 6.2.6 is violated, and Fig. 6.1e shows that the likelihood
ratio function is not monotone, which means the likelihood ratio
order does not hold in this case.

6.3 Hazard Rate and Dispersive Orderings

In this section, we establish some stochastic ordering results similar to
those presented in the preceding section for the hazard rate (dispersive)
order.
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6.3.1 Case 1: min(λ1, λ2) ≤ min(λ∗1, λ
∗
2) ≤ max(λ∗1, λ

∗
2) ≤

max(λ1, λ2)

Lemma 6.3.1 (Marshall, Olkin and Arnold, 2011 [312]). Let I ⊂ R

be an open interval and let φ : In → R be continuously differentiable.
Then, φ is Schur-convex (Schur-concave) on In if and only if φ is
symmetric on In and for all i �= j,

(zi − zj)

[

∂

∂zi
φ(z)− ∂

∂zj
φ(z)

]

≥ [≤]0 for all z ∈ In.

Theorem 6.3.2. If min (λ1, λ2) ≤ min (λ∗1, λ∗2) and λ1λ2 = λ∗1λ∗2, then

R(X1,X2) ≥hr R(X
∗
1 ,X

∗
2 ).

Proof : Without loss of generality, let us assume that λ1 ≤ λ2 and
λ∗1 ≤ λ∗2 and, hence, λ1 ≤ λ∗1 ≤ λ∗2 ≤ λ2. The hazard rate function of
R(X1,X2) can be written as

rR(X1,X2)(t) =
λ1λ2(e

−λ1t + e−λ2t)
λ2e
−λ1t + λ1e

−λ2t , t ∈ R+,

and now we need to show, under the conditions λ1 ≤ λ∗1 and λ1λ2 =
λ∗1λ

∗
2, that

e−λ1t + e−λ2t

λ2e
−λ1t + λ1e

−λ2t ≤ e−λ
∗
1t + e−λ

∗
2t

λ∗2e
−λ∗1t + λ∗1e

−λ∗2t

for all t ∈ R+, which is actually equivalent to

e−x1 + e−x2

x2e
−x1 + x1e

−x2 ≤ e−x
∗
1 + e−x

∗
2

x∗2e
−x∗1 + x∗1e

−x∗2

under the conditions x1 ≤ x∗1 and x1x2 = x∗1x
∗
2. Denote y1 =

log x1, y2 = log x2, y
∗
1 = log x∗1 and y∗2 = log x∗2. We have the following

relation:

(y1, y2)
m� (y∗1, y

∗
2).

Then, it suffices to show that the symmetrical differentiable function
H : (∞,∞)2 → (0,∞) given by

H(y1, y2) =
e−e

y1
+ e−e

y2

ey2e−e
y1

+ ey1e−e
y2

is Schur-concave.
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Figure 6.1: Likelihood ratio functions in Example 6.2.7 (a) λ1 = 2,
λ2 = 2.8, λ∗1 = 3 and λ∗2 = 3.5 (b) λ1 = 2, λ2 = 3.5, λ∗1 = 2.8 and
λ∗2 = 3 (c) λ1 = 2, λ2 = 3, λ∗1 = 2.8 and λ∗2 = 3.5 (d) λ1 = 2, λ2 = 3.7,
λ∗1 = 2.5 and λ∗2 = 3 (e) λ1 = 2, λ2 = 4.5, λ∗1 = 2.05 and λ∗2 = 6
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Note that

∂H

∂y1
(y1, y2)

[

ey2e−e
y1

+ ey1e−e
y2
]2

= −ey1e−ey1 [

ey2e−e
y1

+ ey1e−e
y2
]

− [−ey1ey2e−ey1 + ey1e−e
y2
] [

e−e
y1

+ e−e
y2
]

= ey1ey2e−(e
y1+ey2) − (e2y1 + ey1)e−(e

y1+ey2) − ey1e−2e
y2
.

Likewise,

∂H

∂y2
(y1, y2)

[

e−e
y1

+ e−e
y2 − e−(e

y1+ey2)
]2

= ey1ey2e−(e
y1+ey2) − (e2y2 + ey2)e−(e

y1+ey2) − ey2e−2e
y1
.

We observe that

∂H

∂y1
(y1, y2)− ∂H

∂y2
(y1, y2)

sgn
=

[

(e2y2+ey2)−(e2y1 + ey1)
]

e−(e
y1+ey2)+

[

ey2e−2e
y1−ey1e−2ey2 ] .

Since
(e2y2 + ey2)− (e2y1 + ey1)

sgn
= y2 − y1

and
ey2e−2e

y1 − ey1e−2e
y2 sgn

= y2 − y1,

it holds that

(y1 − y2)

[

∂H

∂y1
(y1, y2)− ∂H

∂y2
(y1, y2)

]

≤ 0.

Now, upon applying Lemma 6.3.1, we can conclude that the function
H(y1, y2) is Schur-concave and hence the desired result follows imme-
diately.

Theorem 6.3.3. Suppose λ1 ≤ λ∗1 ≤ λ∗2 ≤ λ2. Then, we have:

(λ1, λ2)
p
� (λ∗1, λ

∗
2) =⇒ R(X1,X2) ≥hr R(X

∗
1 ,X

∗
2 ).

Proof : Suppose (λ1, λ2)
p
� (λ∗1, λ∗2). Clearly, we have λ1 ≤ λ∗1 ≤ λ∗2 ≤

λ2 and λ1λ2 ≤ λ∗1λ∗2. When λ1λ2 = λ∗1λ∗2, the desired result readily
follows from Theorem 6.3.2. Now, we assume that λ1λ2 < λ∗1λ∗2. Let

λ′ = λ∗1λ
∗
2

λ2
. We then have λ′λ2 = λ∗1λ∗2 and λ1 < λ′ ≤ λ∗1. Let W2:2 −
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W1:2 be the sample range from two independent exponential random
variables with respective hazard rates λ′ and λ2. From Theorem 6.3.2,
it follows that W2:2 −W1:2 ≥hr R(X

∗
1 ,X

∗
2 ). By Theorem 6.2.2, we also

have R(X1,X2) ≥hr W2:2 − W1:2 , and hence we obtain the desired
result R(X1,X2) ≥hr R(X

∗
1 ,X

∗
2 ).

According to Theorem 3.B.20(a) of Shaked and Shanthikumar
[426], for two nonnegative random variables X and Y such that
X ≤hr Y , if either of them is DFR, then X ≤disp Y . On the other
hand, the exponential sample range has DFR property from Corol-
lary 2.1 of Kochar and Korwar [249]. Based on these facts, we have
the following result.

Theorem 6.3.4. Let (X1,X2) be a vector of independent exponential
random variables with respective hazard rates λ1 and λ2, and (X∗1 ,X∗2 )
be another vector of independent exponential random variables with
respective hazard rates λ∗1 and λ∗2. Suppose λ1 ≤ λ∗1 ≤ λ∗2 ≤ λ2. Then,
we have:

(λ1, λ2)
p
� (λ∗1, λ

∗
2) =⇒ R2(X) ≥disp R2(X

∗).

Upon using Theorems 6.3.3 and 6.3.4 and following a similar ar-
gument to the proof of Corollary 6.2.4, we can reach the following
result.

Corollary 6.3.5. Let (X1,X2) be a vector of independent exponential
random variables with respective hazard rates λ1 and λ2, and (X∗1 ,X∗2 )
be another vector of independent exponential random variables with
common hazard rate λ. Then,

λ ≥
√

λ1λ2 =⇒ R(X1,X2) ≥hr [≥disp]R(X
∗
1 ,X

∗
2 ).

6.3.2 Case 2: min(λ1, λ2) ≤ min(λ∗1, λ
∗
2) ≤ max(λ1, λ2) ≤

max(λ∗1, λ
∗
2)

Theorem 6.3.6. Suppose λ1 ≤ λ∗1 ≤ λ2 ≤ λ∗2. Then, we have

λ2
λ1

=
λ∗2
λ∗1

=⇒ R(X1,X2) ≥hr R(X
∗
1 ,X

∗
2 ).

Proof : Let λ2/λ1 = λ∗2/λ∗1 = c ≥ 1. The hazard rate function of
R(X1,X2) can be rewritten as
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rR2(X)(t) =
cλ1(e

−λ1t + e−cλ1t)
ce−λ1t + e−cλ1t

, t ∈ R+,

and now we need to show that

λ1(e
−λ1t + e−cλ1t)

ce−λ1t + e−cλ1t
≤ λ∗1(e

−λ∗1t + e−cλ
∗
1t)

ce−λ
∗
1t + e−cλ

∗
1t

for all t ∈ R+. It suffices to show the function

f(x) =
x(e−x + e−cx)
e−cx + ce−x

is increasing in x ∈ R+ for c ≥ 1. Observe that

f ′(x)
[

e−cx + ce−x
]2

=
[

(1−x)e−x+(1−cx)e−cx] [e−cx + ce−x
]

+cx
[

e−cx+e−x
]2

= [1 + c− (c− 1)2x]e−(1+c)x + ce−2x + e−2cx
sgn
= 1 + c− (c− 1)2x+ ce(c−1)x + e(1−c)x

≥ c(c− 1)x− (c− 1)2x

≥ 0,

and thus the theorem.

Theorem 6.3.7. Suppose λ1 ≤ λ∗1 ≤ λ2 ≤ λ∗2. Then, we have

λ2
λ1

≥ λ∗2
λ∗1

=⇒ R(X1,X2) ≥hr R(X
∗
1 ,X

∗
2 ).

Proof : The result follows for the case when λ2/λ1 = λ∗2/λ
∗
1 by The-

orem 6.3.6. Assume λ2/λ1 > λ∗2/λ∗1. There exists some λ such that
λ2/λ1 = λ∗2/λ and λ1 < λ ≤ λ∗1. Let V2:2 − V1:2 be the sample range
from two independent exponentials with respective hazard rates λ and
λ∗2. From Theorem 6.3.6 once again, we have R(X1,X2) ≥hr V2:2−V1:2.
On the other hand, from Theorem 6.2.2, it follows that R(X∗1 ,X∗2 ) ≤lr

V2:2−V1:2, and thus we obtain the desired result.

Similar to Theorem 6.3.4, we also have the following result for the
dispersive order.

Theorem 6.3.8. Suppose λ1 ≤ λ∗1 ≤ λ2 ≤ λ∗2. Then, we have

λ2
λ1

≥ λ∗2
λ∗1

=⇒ R(X1,X2) ≥disp R(X
∗
1 ,X

∗
2 ).
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Figure 6.2: The ratio of survival functions in Example 6.3.9 (a) λ1 = 2,
λ2 = 3.7, λ∗1 = 2.5 and λ∗2 = 3 (b) λ1 = 2, λ2 = 2.4, λ∗1 = 3 and
λ∗2 = 3.5 (c) λ1 = 2, λ2 = 10, λ∗1 = 3 and λ∗2 = 3.5 (d) λ1 = 2, λ2 = 3,
λ∗1 = 2.005 and λ∗2 = 5

Example 6.3.9.

(a) Set λ1 = 2, λ2 = 3.7, λ∗1 = 2.5 and λ∗2 = 3. In this case, as is
displayed in Fig. 6.1d, the likelihood ratio order does not hold.
The assumption in Theorem 6.3.3, however, is satisfied, and the
hazard rate order holds as displayed in Fig. 6.2a.

(b) Set λ1 = 2, λ2 = 2.4, λ∗1 = 3 and λ∗2 = 3.5. The assumption
in Theorem 6.3.7 is satisfied, and Fig. 6.2b shows that the ratio
of survival functions is increasing, which is consistent with the
result of Theorem 6.3.7.

(c) Set λ1 = 2, λ2 = 10, λ∗1 = 3 and λ∗2 = 3.5. The assumption in
Theorem 6.3.3 is violated, and Fig. 6.1c shows that the ratio of
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survival functions is not monotone, which means the hazard rate
order does not hold in this case.

(d) Set λ1 = 2, λ2 = 3, λ∗1 = 2.005 and λ∗2 = 5. The assumption in
Theorem 6.3.7 is violated, and Fig. 6.1d shows that the hazard
rate order does not hold in this case.
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Chapter 7

On Bivariate Signatures
for Systems
with Independent Modules
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Abstract: Gertsbakh et al. (Journal of Applied Probability, 49, 416–
429, 2012) proposed the concept of bivariate signature for a 3-state
system. In this paper, we first give an equivalent definition for the
bivariate signature in the sense of order statistics of component life-
times and establish the formula for computing the bivariate signature
of the dual of a 3-state system. A useful method for computing the
bivariate signature based on the combinatorial meaning of the bivari-
ate tail signature is presented. By this method, we derive formulas
for computing the bivariate signatures of some systems consisting of
independent modules. Some examples are also presented to illustrate
our main results.
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7.1 Introduction

The concept of signature, introduced by Samaniego [407] for coherent
systems with independent and identically distributed (i.i.d.) compo-
nents, has been a useful tool in studying theoretical behaviors of sys-
tems. The signature of a coherent system containing n components
with i.i.d. lifetimes was defined as the n-dimensional probability vec-
tor with the ith element pi = P{T = Xi:n}, where T denotes the
lifetime of the system, and Xi:n is the ith order statistic of the compo-
nent lifetimes X1, . . . ,Xn. Equivalently, under the i.i.d. assumption,
pi can be expressed as the ratio Ni/n!, where Ni is the number of
orderings of failure times of all components for which the ith failure
causes the system failure. A fundamental property on the signature
is that one can express the system reliability at time t in terms of
the signature and of the survival functions of lifetimes’ order statistics
(e.g., see Samaniego [408]). Based on this property, signature has been
widely used to evaluate the system reliability and to compare perfor-
mance of different system structures and so on; see Kochar et al. [253],
Navarro et al. [343, 344, 348], Navarro and Eryilmaz [341], Navarro
and Rychlik [345, 346], and related references therein.

Often, it is rather difficult to compute the signature of a system by
making use of its definition, especially when the structure of the sys-
tem is complex or the number of the components is large. A method
proposed by Boland [65] sometimes makes the computation of signa-
tures relatively easier. The method is mainly based on determining the
number of path sets of systems. Denote by ri the number of path sets
of size i of a system with n components. Then the system signatures
can be computed by

pi =
rn−i+1
(

n

i− 1

) − rn−i
(

n

i

) , i = 1, . . . , n.

Also,

ri =

(

n

i

)

P̄n−i, (7.1.1)

where P̄j =
∑n

k=j+1 pk, j = 0, . . . , n−1, are called as the tail signatures
of the system. Note that the method just associates with the combi-
nation rather than the permutation of the system components. One
may refer to Boland [65], Eryilmaz and Zuo [151], Da et al. [102, 103]
for computing signatures of some systems by employing this method.



7.1. G. DA AND T. HU 145

In the last few years, there are some extensions on the notion of
signature from various perspectives in the literature. For example,
Navarro et al. [350] and Navarro et al. [349] extended the signature
to the cases of systems with exchangeable components and of systems
with independent heterogeneous components, respectively; Marichal
and Mathonet [303] and Marichal et al. [304] studied the signature for
the systems with arbitrary dependent components.

Recently, Levitin et al. [279] and Gertsbakh et al. [182] extended
the notion of signature to multivariate case in the frame of multi-state
systems with binary components. Typically, they mainly focused on
the bivariate signatures for 3-state coherent systems. Consider a sys-
tem with three states, e.g., 0, 1, 2, which contains n binary compo-
nents. Gertsbakh et al. [182] (see also Levitin et al. [279]; Gertsbakh
and Shpungin, [179, 180]) defined the bivariate signature for such sys-
tems under some regularity assumptions (see Sect. 7.2) as an n × n
matrix, whose (i, j)-element is the ratio si,j = Ni,j/n!, where Ni,j is
the number of orderings of failure times of all components such that
ith failure leads to the change of the system state from 2 to 1, and
jth failure leads to the change of the system state from 1 to 0. The
bivariate signature has important applications especially in the field of
network reliability. As described in Levitin et al. [279], the model cor-
responds to the disintegration of an initially connected network with
n edges into isolated parts due to edge failures (nodes are supposed to
be functioning forever): the state 2 may correspond to the situation of
complete connection, state 1 corresponds to the network with several
isolated parts, and state 0 to the presence of the more isolated parts or
complete disconnection. Similar to that of the univariate signature, a
fundamental property for the bivariate signature (Theorem 7.2.3) was
established by Gertsbakh et al. [182].

In the context of 2-state coherent systems, by using different meth-
ods and in terms of the signatures of its modules, Da et al. [103] and
Gertsbakh et al. [181] derived formulas for computing the signature of
a system consisting of independent modules in the structure of series
and/or parallel. Likewise, Gertsbakh et al. [182] obtained formulas
for computing the bivariate signature of a 3-state system consisting
of independent modules in the structures of generalized series and/or
parallel by using the fundamental property mentioned above.

In the present paper, we further study the bivariate signature
and its computation for systems with independent modules. The
paper is organized as follows. In Sect. 7.2, we give an equivalent
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definition of the bivariate signature in the sense of order statistics of
component lifetimes and reprove the fundamental property established
by Gertsbakh et al. [182]. Also, we derive a formula for computing the
bivariate signature of the dual of a system, which extends a similar
result on univariate signature established by Kochar et al. [253]. In
Sect. 7.3, a useful method for computing the bivariate signature based
on combinatorial meaning of the bivariate tail signature is presented.
By using this method, in Sect. 7.4, we derive formulas for computing
the bivariate signatures of some systems consisting of independent
modules such as generalized series and parallel systems, systems with
componentwise redundancy, and an important class of 3-state systems.
In particular, the important class of 3-state systems provides us with
a way to get two different 3-state systems but which have the same
signature. Finally, in Sect. 7.5, some numerical examples are provided
to illustrate our main results.

7.2 Bivariate Signatures

Consider a 3-state monotone system containing n binary components
with its structure function

φ : {0, 1}n → {0, 1, 2},

where state “2” is called the perfection state of the system, “0” is called
the complete failure state, and “1” is the partial failure state. Further,
the system is supposed to satisfy the following regularity assumptions:

1. The system is coherent, that is, φ is increasing, and each com-
ponent is relevant.

2. The failure of one component at most changes the state by one
unit.

For the details of such systems and their applications in the network
reliability one can refer to Levitin et al. [279] and Gertsbakh et al.
[182]. For such systems, Gertsbakh et al. [182] gave a formal definition
of the bivariate signature in the following purely combinatorial way.

Denote by Πn the set of permutations of {1, 2, . . . , n}. According
to the regularity assumptions, for each π = (π1, . . . , πn) ∈ Πn, there
are two integers �1 = �1(π) and �2 = �2(π) such that
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φ(0π1 , . . . , 0π�k−1
, 1π�k , 1π�k+1

, . . . , 1πn) = 3− k, (7.2.1)

φ(0π1 , . . . , 0π�k−1
, 0π�k , 1π�k+1

, . . . , 1πn) = 2− k (7.2.2)

for k = 1, 2.
For 1 ≤ i < j ≤ n, denote

Ai,j := {π ∈ Πn : �1(π) = i, �2(π) = j}. (7.2.3)

Definition 7.2.1. The signature of system φ is defined as an n × n
probability matrix with (i, j)-element given by

si,j =

{ |Ai,j |
n! for 1 ≤ i < j ≤ n,

0 otherwise,

where |Ai,j| denotes the cardinality of Ai,j.

Note that the definition above completely avoids any reference to
lifetimes of the components. Now, we give an equivalent definition in
view of order statistics of component lifetimes of the system, which
can be seen as a direct generalization of the definition of the univari-
ate signature of coherent systems. This new definition may be useful
for further research on the bivariate signature, for example, one can
consider the case of systems with non-i.i.d. components.

Definition 7.2.2. Assume that X1, . . . ,Xn, the lifetimes of the n
components of the system φ, are i.i.d. absolutely continuous random
variables. Let T1 and T2 denote the time of the system from the state
2 to the state 1 and from the state 2 to the state 0, respectively. Then
the signature of the system is defined as an n × n probability matrix
with (i, j)-element given by

si,j =

⎧

⎨

⎩

P{T1 = Xi:n, T2 = Xj:n} for 1 ≤ i < j ≤ n,

0 otherwise,

(7.2.4)

where X1:n, . . . ,Xn:n are the order statistics of X1, . . . ,Xn.

Gertsbakh et al. [182] also presented a very important no-
tion, bivariate tail signature, denoted by S̄i,j. In the context of
Definition 7.2.2, it can be written as

S̄i,j = P{T1 > Xi:n, T2 > Xj:n} =

n−1
∑

l=i+1

n
∑

m=(l+1)∨(j+1)

sl,m. (7.2.5)
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Clearly, S̄i,j = S̄i,i for j < i. Also,

S̄
(1)
i := S̄i,1 =

n−1
∑

l=i+1

n
∑

m=l+1

sl,m, i = 1, . . . , n,

and

S̄
(2)
j := S̄0,j =

n−1
∑

l=1

n
∑

m=(l+1)∨(j+1)

sl,m, j = 1, . . . , n,

are so-called marginal tail signatures of a 3-state system. For the sake

of discrimination, S̄(1) = (S̄
(1)
1 , . . . , S̄

(1)
n ) and S̄(2) = (S̄

(2)
1 , . . . , S̄

(2)
n )

are termed as the type I and type II marginal tail signatures,
respectively. For the meaning of the marginal tail signature and
further discussion on this topic, one refers to Remark 7 in Gertsbakh
et al. [182].

Moreover, the signature can be obtained from the tail signature as
follows

si,j = S̄i−1,j−1 − S̄i,j−1 − S̄i−1,j + S̄i,j, (7.2.6)

for 1 ≤ i < j ≤ n (see Gertsbakh et al. [182]). It should be remarked
that it is more convenient to discuss the tail signature than the signa-
ture itself in many situations.

The following result states that the joint survival function of the
degradation times of a 3-state system can be represented in terms
of joint survival functions of order statistics of component lifetimes
and of the bivariate signature of the system, which can be seen as a
direct generalization of the representation in terms of the univariate
signature. The result was proved by Gertsbakh et al. [182]. Here we
reprove it briefly.

Theorem 7.2.3. Let X1, . . . ,Xn be i.i.d. component lifetimes of a
3-state coherent system of order n, and let T1 and T2 be the time of
the system from the state 2 to the state 1 and from the state 2 to the
state 0, respectively. Then,

P{T1 > t1, T2 > t2} =

n−1
∑

i=0

n
∑

j=i

S̄i,j · n!

i!(j − i)!(n − j)!
F i(t1)

[F (t2)− F (t1)]
j−iFn−j(t2), (7.2.7)

for t1 ≤ t2, where F is the common distribution function of all Xi.
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Proof : According to the regularity assumptions, T1 and T2 will
necessarily take on different values of X1:n, . . . ,Xn:n. By using the
i.i.d. assumption on the component lifetimes, we have

P{T1 > t1, T2 > t2}
=

∑

i<j

P{T1>t1, T2>t2| T1=Xi:n, T2=Xj:n} P{T1=Xi:n, T2=Xj:n}

=
∑

i<j

si,j · P{Xi:n > t1,Xj:n > t2}.

The joint survival function of ith and jth order statistics from i.i.d.
random variables is

P{Xi:n > t1,Xj:n > t2} =

i−1
∑

k=0

j−1
∑

m=k

n!

k!(m− k)!(n−m)!
F k(t1)

[F (t2)− F (t1)]
m−kFn−m(t2)

for 0 < t1 < t2. Thus, interchanging the order of summations yields

P{T1 > t1, T2 > t2}

=

n
∑

k=0

n
∑

m=k

n−1
∑

i=k+1

n
∑

j=(i+1)∨(m+1)

si,j · n!

k!(m− k)!(n −m)!

×F k(t1)[F (t2)− F (t1)]
m−kFn−m(t2)

=

n
∑

k=0

n
∑

m=k

S̄k,m · n!

k!(m− k)!(n −m)!
F k(t1)

[F (t2)− F (t1)]
m−kFn−m(t2).

This completes the proof.

Similar to traditional coherent systems, as is clear from Theorem
7.2.3, the degradation times of a 3-state system with i.i.d. components
depend on the structure of the system only through the bivariate sig-
natures si,j, 1 ≤ i < j ≤ n. In other words, if two systems have the
same signature, then the stochastic behaviors of the degradation times
of them are identical. It is natural to ask whether two different systems
can have the same signature. The answer is yes; see the discussion in
Sect. 7.4.3
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Undoubtedly, the number of 3-state systems of order n can be very
large and it is very hard to get all signatures of them. So it is necessary
to find some ways to reduce the computational burden. Obviously, to
establish the relationship between the signatures of a system and of
its dual system is an efficient way for this since it can cut this burden
in half.

The dual of a binary system φ is defined as

φD(x) = 1− φ(1− x) for all x ∈ {0, 1}n,

where 1 = (1, . . . , 1). According to Kochar et al. [253], the signature
(p1, . . . , pn) of system φ and the signature (pD1 , . . . , p

D
n ) of the dual

system φD have the following relationship:

pDi = pn−i+1, i = 1, . . . , n.

So, what can we say about the bivariate signature? By the definition
of duality for multi-state systems, proposed by EI-Neweihi et al. [145],
the dual system of a 3-state system with φ has structure function

φD(x) = 2− φ(1− x) for all x ∈ {0, 1}n.
The dual system of a 3-state system has also three states.

Theorem 7.2.4. Let si,j, 1 ≤ i < j ≤ n, be the signatures of a 3-state
system consisting of n i.i.d. components. Then the signatures of its
dual system are given by

sDi,j = sn−j+1,n−i+1 for all 1 ≤ i < j ≤ n.

Proof : Similar to Eq. (7.2.3), we define

ADr1,r2 := {π ∈ Pn| �′1(π) = r1, �
′
2(π) = r2}.

for the dual system φD. It suffices to prove that |Ar1,r2 | =
|ADn−r2+1,n−r1+1|.

For any π ∈ Ar1,r2 , from Eqs. (7.2.1) and (7.2.2), it follows that

φ(0π1 , . . . , 0πri−1 , 1πri , 1πri+1 , . . . , 1πn) = 3− i

and
φ(0π1 , . . . , 0πri−1 , 0πri , 1πri+1 , . . . , 1πn) = 2− i

for i = 1, 2. By the definition of the duality, we have
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φD(0πn , . . . , 0πri+1 , 0πri , 1πri−1 , . . . , 1π1) = i− 1

and
φD(0πn , . . . , 0πri+1 , 1πri , 1πri−1 , . . . , 1π1) = i

for i = 1, 2. Now, we replace i with 3− j in the last two equations and
then get

φD(0πn , . . . , 0πr3−j+1 , 0πr3−j
, 1πr3−j−1 , . . . , 1π1) = 2− j

and

φD(0πn , . . . , 0πr3−j+1 , 1πr3−j
, 1πr3−j−1 , . . . , 1π1) = 3− j

for j = 1, 2, which implies that, for any π ∈ Ar1,r2 ,

π′ = (πn, . . . , π1) ∈ ADn−r2+1,n−r1+1.

Similarly, the reverse one of each permutation in ADn−r2+1,n−r1+1

also belongs to Ar1,r2 . This means there is a one-to-one rela-
tionship between Ar1,r2 and ADn−r2+1,n−r1+1, and hence |Ar1,r2 | =

|ADn−r2+1,n−r1+1|. We complete the proof.

7.3 A Useful Method to Compute
Bivariate Signatures

Clearly, if we compute the bivariate signature of a given 3-state system
by using its definition, we have to check every permutation of the
ordering of component lifetimes of the system. This is really a hard
work. In this section, we present a useful method to compute the
bivariate signature of a system, which can be regarded as an extension
of the method (from Boland [65]) for computing univariate signatures
mentioned in Sect. 7.1. It should be pointed out that the method is
based on the discussion on the combinatorial meaning of bivariate tail
signatures S̄i,j given in Sect. 2.1 of Gertsbakh et al. [182].

For a given 3-state system, let us use C = (c1, . . . , cn) to represent
the n components of the system. A subset P [L] of C is called a path
set [perfection path set ] if the functioning of the components in P [L]
implies that the system is not in the complete failure state (is in the
perfection state). Denote by di,j the number of the pairs of a perfect
path set of size i and a path set of size j such that the latter is a subset
of the former, that is,
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di,j = #{(L,P ) : L ∈ Li, P ∈ Pj, P ⊂ L},

where Li and Pj represent the classes of all perfection path sets of size
i and of all path sets of size j, respectively. We define

ai,j :=
di,j

(

n

i− j, j

) (7.3.1)

for j = 1, . . . , i and i = 2, . . . , n, and di,j = 0 otherwise, where

(

m

k, l

)

=
m!

k! · l! · (m− k − l)!

is a multinomial coefficient. In fact, ai,j is the proportion of di,j among
all the pairs of two subsects of C with respective sizes i and j such
that the second is a subset of the first.

Recall that T1 and T2 denote the degenerate times of a 3-state
system, and F is the distribution function of component lifetimes of
the system. Then we can write

P{T1>t1, T2>t2} (7.3.2)

=

n
∑

i=2

i
∑

j=1

ai,j ·
(

n

i− j, j

)

Fn−i(t1)[F (t2)− F (t1)]
i−jF̄ j(t2)

=

n
∑

i=1

i
∑

j=0

ai,j ·
(

n

i− j, j

)

Fn−i(t1)[F (t2)− F (t1)]
i−jF̄ j(t2)

=

n−1
∑

i=0

n
∑

j=i

an−i,n−j ·
(

n

i, j − i

)

F i(t1)[F (t2)− F (t1)]
j−iF̄n−j(t2).

According to Eqs. (7.2.7) and (7.3.2), we have the following propo-
sition, which establishes the useful relationship between ai,j and the
tail signatures S̄i,j.

Proposition 7.3.1. For 0 ≤ i ≤ j ≤ n, S̄i,j = an−i,n−j.

Namely, Proposition 7.3.1 establishes a relationship between bi-
variate tail signatures S̄i,j and di,j for a 3-state system. From the
knowledge of bivariate tail signatures one can obtain more information
on the system structure. For example, we can obtain two additional
quantities associated with di,j , denoted by di,j̄ and dī,j, where di,j̄ is
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the number of the pairs of a perfect path set of size i and a non-path
set of size j such that the latter is a subset of the former, and dī,j is
the number of the pairs of a non-perfect path set of size i and a path
set of size j such that the latter is a subset of the former. These two
quantities will be useful in the study of Sect. 7.4. It is easily to see
that

di,j̄ = |Li| ·
(

i

j

)

− di,j (7.3.3)

and

dī,j = |Pj | ·
(

n− j

i− j

)

− di,j . (7.3.4)

Further, according to Eq. (7.1.1), we have

|Li| =
(

n

i

)

· S̄(1)
n−i (7.3.5)

and

|Pi| =
(

n

i

)

· S̄(2)
n−i, i = 1, . . . , n. (7.3.6)

7.4 The Signatures of Systems
with Independent Modules

In this section, we restrict our attention to computing bivariate signa-
tures of several classes of 3-state systems with independent modules,
including the generalized series and parallel systems, the systems with
componentwise redundancy, and an important class of 3-state systems.
We employ the method presented in Sect. 7.3 to derive expressions for
the bivariate signatures of these systems in terms of the signatures of
their modules, respectively. By the way, in this section, some nota-
tions used in the proofs may not be explained, and one can promptly
figure out their meanings according to Sect. 7.3.

7.4.1 Generalized Series and Parallel Systems

We restate the definitions of the generalized series and parallel sys-
tems given in Gertsbakh et al. [182] (see also Lisnianski and Levtin
[283]). Consider two different 3-state systems with respective structure
function:
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φ1 : {0, 1}n1 → {0, 1, 2},
φ2 : {0, 1}n2 → {0, 1, 2}.

Denote n = n1+n2. The “series system” of the two modules is defined
as the system with structure function ψS : {0, 1}n → {0, 1, 2},

ψS(x1, . . . , xn1 ; y1, . . . , yn2) = φ1(x1, . . . , xn1) ∧ φ2(y1, . . . , yn2),

and the “parallel system” is defined as the system with structure func-
tion ψP : {0, 1}n → {0, 1, 2},

ψP (x1, . . . , xn1 ; y1, . . . , yn2) = φ1(x1, . . . , xn1) ∨ φ2(y1, . . . , yn2).

Gertsbakh et al. [182] derived a formula for computing the bivari-
ate tail signature of the generalized series system ψS in terms of the
tail signatures of modules φ1 and φ2 by using Eq. (7.2.7) and pointed
out that one can obtain such a formula for the cumulative signature of
the generalized parallel system ψP in a similar way. In this section, we
make use of the method presented in Sect. 7.3 to derive such formulas
for the generalized series and parallel systems, and we can find that
our method makes the derivation more easier.

Denote by S̄i,j(ψS), S̄i,j(ψP ), S̄i,j(φ1), and S̄i,j(φ2) the tail sig-
natures of the generalized series system ψS , the generalized parallel
system ψP , the module φ1 and the module φ2, respectively.

Theorem 7.4.1. For 0 ≤ i ≤ j ≤ n,

S̄i,j(ψS) =
dn−i,n−j(ψS)
(

n

i, j − i

) ,

where

du,v(ψS) =

n1∧u
∑

l=l0

l∧v
∑

m=m0

(

n1
l −m,m

)(

n2
n2 − u+ l, v −m

)

×S̄n1−l,n1−m(φ1) · S̄n2−u+l,n2−v+m(φ2),

l0 = 2 ∨ (u− n2) and m0 = 1 ∨ (v − u+ l).

Proof : Fix u and v. We note that the fact that, for any pair (L,P ) of
the series system ψS such that L ∈ Lu(ψS), P ∈ Pv(ψS), and P ⊂ L,
the components of the module φ1 in L [P ] and the components of the
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module φ2 in L [P ] constitute a perfect path set [a path set] of size l1
[m1] for module φ1 and a perfect path set [a path set] of size l2 [m2]
for module φ2, respectively, where l1 + l2 = u, m1 +m2 = v, m1 ≤ l1
and m2 ≤ l2. Thus, the number of the pairs (L,P ) of the system ψS
is given by

du,v(ψS) =

n1∧u
∑

l=2∨(u−n2)

l∧v
∑

m=1∨(v−u+l)
dl,m(φ1) · du−l,v−m(φ2).

Then the desired result follows from Eq. (7.3.1) and Proposition
7.3.1.

Theorem 7.4.2. For 0 ≤ i ≤ j ≤ n, we have

S̄i,j(ψP ) =
dn−i,n−j(ψP )
(

n

i, j − i

) ,

where

du,v(ψP ) =

2
∑

k=1

nk∧u
∑

l=l3−k

l∧v
∑

m=m0

S̄nk−l,nk−m(φk) ·
(

nk
l −m,m

)

(

n3−k
n3−k − u+ l, v −m

)

−
n1∧u
∑

l=l2

l∧v
∑

m=m0

(

n1
l −m,m

)(

n2
n2 − u+ l, v −m

)

×S̄n1−l,n1−m(φ1) · S̄n2−u+l,n2−v+m(φ2)

+

2
∑

k=1

nk∧u
∑

l=l3−k

(l−1)∧v
∑

m=m′
0

[

S̄
(1)
nk−l(φk) ·

(

nk
l

)(

l

m

)

−S̄nk−l,nk−m(φk) ·
(

nk
l −m,m

)]

×
[

S̄
(2)
n3−k−v+m(φ3−k)

(

n3−k
v −m

)(

n3−k − v +m

u− v − l +m

)

−S̄n3−k−u+l,n3−k−v+m(φ3−k) ·
(

n3−k
n3−k − u+ l, v −m

)]

,

and
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l1 = 2 ∨ (u− n1), l2 = 2 ∨ (u− n2),

m0 = 1 ∨ (v − u+ l), m′0 = 0 ∨ (v − u+ l),

S̄
(1)
a (φk) and S̄

(2)
a (φk) denote the type I and type II marginal tail sig-

natures of module φk respectively, a = 1, . . . , n, k = 1, 2.

Proof : Fix u and v. For any given pair (L,P ) of two sets for the
system ψP with L ∈ Lu(ψP ), P ∈ Pv(ψP ), and P ⊂ L, denote by Lk
[Pk] the components of module φk in L [P ], k = 1, 2. Then only one
of the following statements holds:

1. L1 is a perfection path set and P1 is a path set for module φ1 or
L2 is a perfection path set and P2 is a path set for module φ2.

2. L1 is a perfection path set while P1 is not a path set for module
φ1 and L2 is not a perfection path set while P2 is a partial path
set for module φ2.

3. L1 is not a perfection path set while P1 is a partial path set for
module φ1 and L2 is a perfection path set while P2 is not a path
set for module φ2.

Thus, the number of all of pairs (L,P ) can be written as

du,v(ψP ) = d(1)u,v + d(2)u,v + d(3)u,v,

where d
(1)
u,v, d

(2)
u,v and d

(3)
u,v denote the numbers of pairs (L,P ) satisfying

(1), (2), and (3), respectively. Denote lk = |Lk| and mk = |Pk| for
k = 1, 2. Obviously, m1 ≤ l1, m2 ≤ l2, l1 + l2 = u and m1 +m2 = v.
Then, it is not hard to get the following expressions:

d(1)u,v =

n1∧u
∑

l1=2∨(u−n2)

l1∧v
∑

m1=1∨(v−u+l1)
dl1,m1(φ1) ·

(

n2
u− l1

)(

u− l1
v −m1

)

+

n2∧u
∑

l2=2∨(u−n1)

l2∧v
∑

m2=1∨(v−u+l2)
dl2,m2(φ2) ·

(

n1
u− l2

)(

u− l2
v −m2

)

−
n1∧u
∑

l1=2∨(u−n2)

l1∧v
∑

m1=1∨(v−u+l1)
dl1,m1(φ1) · du−l1,v−m1(φ2),
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d(2)u,v =

n1∧u
∑

l1=2∨(u−n2)

(l1−1)∧v
∑

m1=0∨(v−u+l1)
dl1,m1(φ1) · du−l1,v−m1

(φ2),

and

d(3)u,v =

n2∧u
∑

l2=2∨(u−n1)

(l2−1)∧v
∑

m2=0∨(v−u+l2)
du−l2,v−m2

(φ1) · dl2,m2(φ2).

Now, by Eqs. (7.3.1) and (7.3.3)–(7.3.6) and Proposition 7.3.1 and after
some simplifications, the desired formula is obtained.

7.4.2 Redundancy Systems

In reliability engineering, redundancy is well known since it is often
used to improve the reliability of a coherent system. There are two
types of redundancy. One is systemwise redundancy and the other is
componentwise redundancy. Consider a coherent system with n com-
ponents. Suppose one has an opportunity to enhance its performance
by incorporating redundancy of n identical spares for the components.
Systemwise redundancy is to place the n spares as an identical system
in parallel with the original system, and componentwise redundancy is
to place every spare separately in parallel with every component in the
original system. A well-known principle is that componentwise redun-
dancy is more effective than systemwise redundancy. One may refer
to Barlow and Proschan [39] and Boland and EI-Newehi [66] for de-
tails on redundancy of traditional coherent systems and to EI-Neweihi
et al. [145] for multi-state coherent systems.

Whether systemwise or componentwise redundancy, it is usually
not easy to get its signature of a redundancy system since the number
of its components is relatively large. So, can we compute the signature
of a system with redundancy in terms of the signature of its original
system? In the context of traditional coherent systems, Da et al. [103]
have established a formula for computing the signature of a redun-
dancy system in terms of the signature of its original system. In this
section, we explore similar issues for 3-state systems. We note that
the system with systemwise redundancy is just a special case of the
generalized parallel systems discussed in Sect. 7.4.1. Thus, we next
focus on the case of componentwise redundancy.

For a 3-state system containing n components with structure func-
tion φ, its componentwise redundancy system can be defined as the
system with structure function
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ψR(x1, . . . , xn; y1, . . . , yn) = φ(x1 ∨ y1, . . . , xn ∨ yn).

Denote by S̄i,j(ψR) and S̄i,j(φ) the signatures of the system with
componentwise redundancy ψR and of the original system φ. The
following theorem gives an expression for S̄i,j(ψR) in terms of S̄i,j(φ)
only:

Theorem 7.4.3. For 0 ≤ i ≤ j ≤ n, we have

S̄i,j(ψR) =
d2n−i,2n−j(ψR)

(

2n

i, j − i

) ,

where

du,v(ψR) =

u∧n
∑

l=l0

l∧v
∑

m=m0

k1
∑

k=k0

(

n

l −m,m

)(

2m− v

k

)

· c(v,m)

·c(u− v − k, l −m) · S̄n−l,n−m(φ),

l0 = �u− 1

2
 + 1, m0 = (v − u+ l) ∨ (�v − 1

2
 + 1),

k0 = u− v − 2(l −m), k1 = (2m− v) ∧ (u− v − l +m),

c(a, b) = 22b−a
(

b

a− b

)

,

and �x denotes the largest integer not greater than x.

Proof : We regard the redundancy system as being composed of n
modules, each being a parallel system containing two components—
the original component and its identical back up one. Fix u and v.
For each pair (L,P ) with L ∈ Lu(ψR), P ∈ Pv(ψR), and P ⊂ L,
there exist a unique l ∈ {�u−12  + 1, . . . , u ∧ n} and a unique m ∈
{(v − u+ l) ∨ (�v−12  + 1), . . . , l ∧ v} such that

1. The components in L are from l different modules, and the orig-
inal components of the l modules constitute a perfect path set
of size l for the original system.

2. The components in P are from m different modules, and the
original components of the m modules constitute a path set of
size m for the original system.
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3. The path set of size m is a subset of the perfection path set of
size l of the original system, where m ≥ v − u + l ensures that
the v components can be from m different modules.

Thus, the collection of all pairs (L,P ) with L ∈ Lu(ψR), P ∈ Pv(ψR),
and P ⊂ L can be written as

u∧n
⋃

l=l0

l∧v
⋃

m=m0

Wl,m;u,v,

where l0 = �u−12  +1, m0 = (v−u+l)∨(�v−12  +1), andWl,m;u,v denotes
the collection of all pairs (L,P ) satisfying (1), (2), and (3). Note that
for all (l,m), Wl,m;u,v are pairwise mutually exclusive. Hence

du,v(ψR) =
u∧n
∑

l=l0

l∧v
∑

m=m0

|Wl,m;u,v|.

Furthermore, observed that |Wl,m;u,v| can be represented as

|Wl,m;u,v| = Nl,m;u,v · dl,m(φ),
where, for given l andm, Nl,m;u,v denotes the number of all pairs (L,P )
satisfying (1), (2), and (3) above. Clearly, one can obtain Nl,m;u,v as
follows: Choose v components from the m different modules as P such
that each of the m modules has at least one component to be chosen;
then choose additionally u−v as L\P from the l modules such that each
of the other l −m modules has at least one component to be chosen.
Let k denote the number of the components of the m modules to be
chosen in the second choice, and note that it should be k0 ≤ k ≤ k1 so
as to ensure such choices can be realized, where k0 = u− v− 2(l−m)
and k1 = (2m− v) ∧ (u− v− l+m). Since the number of all possible
outcomes in choosing a components from b different modules such that
each of the modules has at least one component to be chosen is

c(a, b) = 22b−a ·
(

b

a− b

)

(see the proof of Theorem 3.4 of Da et al. [103]). Thus, |Nl,m;u,v| can
be computed as

|Nl,m;u,v| = c(v,m)

k1
∑

k=k0

(

2m− v

k

)

· c(u− v − k, l −m).

Thus, the desired result now follows from Eq. (7.3.1) and
Proposition 7.3.1.
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7.4.3 An Important Class of 3-State Systems

In this section, we consider an important class of 3-state systems which
is defined as follows. Let

φ1 : {0, 1}n1 → {0, 1} and φ2 : {0, 1}n2 → {0, 1}
denote the structure functions of two different traditional coherent
systems, respectively, and suppose there are not common components
between the two systems. We consider a new 3-state system of order
n = n1 + n2, whose structure function is defined as

ψ(x1, . . . , xn1 ; y1, . . . , yn2) = φ1(x1, . . . , xn1)+φ2(y1, . . . , yn2). (7.4.1)

It is obvious that this new 3-state system satisfies all regularity as-
sumptions given in Sect. 7.2. It should be pointed out that although
we are not yet able to give more practical backgrounds for such sys-
tems, the construction is important from a theoretical point of view
and it shows a method to generate a 3-state system by traditional
coherent systems at least.

Now, our problem is how to compute the bivariate signature of the
3-state system ψ if the signatures of systems φ1 and φ2 are given. Let
(p1, . . . , pn1) and (q1, . . . , qn2) be the signature vectors of two systems
φ1 and φ2, respectively. Let S̄i,j, 0 ≤ i ≤ j ≤ n, be the bivariate tail
signatures of system ψ. Next we give an expression for S̄i,j in terms
of (p1, . . . , pn1) and (q1, . . . , qn2).

First we present a useful lemma.

Lemma 7.4.4. For system φ1, the number of the pairs (L,P ) such
that L ∈ Pl, P �∈ Pm, |P | = m and P ⊂ L is given by

rl,m(φ1) =

(

n1
l −m,m

)

· (P̄n1−l − P̄n1−m
)

for 1 ≤ m ≤ l ≤ n1, where P̄j =
∑n

k=j+1 pk, j = 0, . . . , n1 − 1.

Proof : Denote by ri (φ1) the number of path sets of size i for system
φ1. For 1 ≤ m ≤ l ≤ n1, the number of the pairs (L,P ) with L ∈ Pl,
P ∈ Pm, and P ⊂ L is given by

rm(φ1) ·
(

n1 −m

l −m

)

.

Then we can immediately get that
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rl,m(φ1) = rl(φ1) ·
(

l

m

)

− rm(φ1) ·
(

n1 −m

l −m

)

.

Thus, the desired result follows from Eq. (7.1.1).

Theorem 7.4.5. The bivariate tail signatures of system ψ defined in
Eq. (7.4.1) are given by

S̄i,j(ψ) =
dn−i,n−j(ψ)
(

n

i, j − i

) , 0 ≤ i ≤ j ≤ n,

where

du,v(ψ) =

n1∧u
∑

l=1

l∧v
∑

m=m0

(

n1
l −m,m

)(

n2
u−l−v+m, v−m

)

(

P̄n1−m−P̄n1−l
) (

Q̄n2−u+l−Q̄n2−v+m
)

+

n1∧u
∑

l=1

(

u

v

)(

n1
l

)(

n2
u− l

)

P̄n1−l · Q̄n2−u+l

with m0 = 0 ∨ (v − u+ l).

Proof : Fix u and v. By Eq. (7.3.3), the number of all pairs (L,P )
with L ∈ Lu(ψ), P ∈ Pv(ψ) and P ⊂ L can be computed as

du,v(ψ) = |Lu(ψ)| ·
(

u

v

)

− du,v(ψ),

where du,v(ψ) represents the number of all pairs (L,P ) with L ∈ Lu(ψ),
P �∈ Pv(ψ), |P | = v, and P ⊂ L. For such a pair, denote by L1 and L2

[P1 and P2] the components of systems φ1 and φ2 in L [P ], respectively.
From the structure of system ψ, it follows that L1 and L2 are the path
sets for systems φ1 and φ2, respectively, and neither P1 is a path set
for system φ1 nor P2 is a path set for system φ2. Thus, du,v(ψ) can be
obtained by the following formula:

du,v(ψ) =

n1∧u
∑

l=1

l∧v
∑

m=0∨(v−u+l)
rl,m(φ1) · ru−l,v−m(φ2).

On the other hand, |Lu(ψ)| can be represented as
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|Lu(ψ)| =
n1∧u
∑

l=1

rl(φ1) · ru−l(φ2).

Thus, the desired result follows from Eq. (7.1.1), Lemma 7.4.4, and
Proposition 7.3.1.

In the end, we point out an important theoretical point for the
construction in Eq. (7.4.1). It is known that for traditional coherent
systems, two different systems may possess a common signature (e.g.,
Kochar et al. [253]; Samaniego [408]), does this still hold for 3-state
systems? The answer is yes. Since from Theorem 7.4.5, the bivariate
tail signature (bivariate signature) of the 3-state system ψ only de-
pends on the signatures of systems φ1 and φ2; we can construct two
different 3-state systems which possess a common bivariate signature
as follows. Let ϕ1 and ϕ2 be structure functions of two traditional
coherent systems which are different but possess a common univari-
ate signature and ϕ0 be the structure function of another traditional
coherent system. Consider two 3-state systems with respective struc-
ture functions given by ϕ0 + ϕ1 and ϕ0 + ϕ2. Obviously, these two
systems are different, but according to Theorem 7.4.5, they have the
same signature. A numerical example is given in the next section.

7.5 Some Examples

In this section, we compute the bivariate signatures for some 3-state
systems by using the formulas given in Sect. 7.4. We continue to use
the notations in the previous section.

Example 7.5.1. Consider two 3-state systems with respective struc-
ture functions φ1 and φ2 given by

φ1(x1, x2, x3, x4) = (x1 + (x2 ∨ x3) + x4 − 1) ∨ 0,

φ2(x1, x2, x3, x4) = (x1 + (x2 ∧ x3) + x4 − 1) ∨ 0.

From Example 2 of Gertsbakh et al. [182], the bivariate tail signatures
of the two systems are given by

S̄(φ1) =

⎛

⎜

⎜

⎜

⎜

⎝

1 1 5
6 0

1
2

1
2

1
2 0

0 0 0 0

0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

, S̄(φ2) =

⎛

⎜

⎜

⎜

⎜

⎝

1 1 1
3 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

.
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Now according to Theorems 7.4.1 and 7.4.2, the tail signatures of the
generalized series system ψS and parallel system ψP composed of sys-
tems φ1 and φ2 can be computed as

S̄(ψS) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 23
28

1
2

1
7 0 0 0

1
4

1
4

1
4

1
6

3
70 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

S̄(ψP ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1 33
35

9
14

1
4 0

1 1 1 1 33
35

9
14

1
4 0

5
7

5
7

5
7

5
7

73
105

17
35

27
140 0

5
14

5
14

5
14

5
14

5
14

39
140

17
140 0

1
7

1
7

1
7

1
7

1
7

1
7

31
420 0

1
28

1
28

1
28

1
28

1
28

1
28

1
28 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Further, by Eq. (7.2.6), the bivariate signatures of the systems ψS and
ψP are given by

s(ψS) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 5
28

5
21

7
30

1
10 0 0 0

0 0 1
12

13
105

3
70 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
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s(ψP ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 0 0

0 0 0 4
105

19
210

1
10

2
35 0

0 0 0 2
105

11
84

19
140

1
14 0

0 0 0 0 11
140

37
120

1
21 0

0 0 0 0 0 29
420

4
105 0

0 0 0 0 0 0 1
28 0

0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Example 7.5.2. In Example 1 of Gertsbakh et al. [182], they consid-
ered a bridge network with four nodes and five edges and computed the
signature for this system. In the present example, let us compute the
signature for the bridge system with componentwise redundancy by
using the formula given in Theorem 7.4.3. Denote by φ the structure
function of the bridge system (original system). Then, from Gertsbakh
et al. [182], the bivariate tail signature of φ is

S̄(φ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1 0

1 1 1 1 0

4
5

4
5

4
5

4
5 0

0 0 0 0 0

0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Now, according to Theorem 7.4.3 and Eq. (7.2.6), we can get the bi-
variate tail signature and the bivariate signature of the system with
componentwise redundancy ψR as follows:

S̄(ψR) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1 1 1 1 1 8
9 0

1 1 1 1 1 1 1 1 8
9 0

1 1 1 1 1 1 1 1 8
9 0

1 1 1 1 1 1 1 1 8
9 0

104
105

104
105

104
105

104
105

104
105

104
105

104
105

104
105

1388
1575 0

20
21

20
21

20
21

20
21

20
21

20
21

20
21

20
21

268
315 0

88
105

88
105

88
105

88
105

88
105

88
105

88
105

88
105

16
21 0

8
15

8
15

8
15

8
15

8
15

8
15

8
15

8
15

8
15 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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and

s(ψR) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
525

4
525 0

0 0 0 0 0 0 0 4
525

16
525 0

0 0 0 0 0 0 0 8
315

4
45 0

0 0 0 0 0 0 0 8
105

8
35 0

0 0 0 0 0 0 0 0 8
15 0

0 0 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

In the following example, we construct two different 3-state sys-
tems which possess a common signature according to discussion in
Sect. 7.4.3.

Example 7.5.3. Let φ0, φ1 and φ2 be the structure functions of three
2-state coherent systems given by

φ0(x1, x2, x3) = x1 ∧ (x2 ∨ x3),
φ1(x1, x2, x3, x4) = (x1 ∨ x2) ∧ (x2 ∨ x4) ∧ (x3 ∨ x4),
φ2(x1, x2, x3, x4) = (x1 ∨ x2)∧(x1 ∨ x3)∧(x1 ∨ x4)∧(x2 ∨ x3 ∨ x4).

From Samaniego [408] (see also Kochar et al. [253]), systems φ1 and
φ2 have the same signature (0, 1/2, 1/2, 0), and the signature of φ0
is (1/3, 2/3, 0). We now consider two 3-state systems with respective
structure functions

ψ1(x1, . . . , x7) = φ0(x1, x2, x3) + φ1(x4, x5, x6, x7),

and

ψ2(x1, . . . , x7) = φ0(x1, x2, x3) + φ2(x4, x5, x6, x7).

Clearly, the two 3-state systems are different. However, from
Theorem 7.4.5, they have the same bivariate signature given by
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s(ψ1) = s(ψ2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 1
35

3
70

3
70

1
35 0

0 0 2
35

1
10

11
105

1
14 0

0 0 0 1
7

9
70

17
210 0

0 0 0 0 4
35

2
35 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
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Stochastic Comparisons
of Cumulative Entropies
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Abstract: The cumulative entropy is an information measure which
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in reliability theory. Indeed, the cumulative entropy of a random life-
time X can be expressed as the expectation of its mean inactivity time
evaluated at X. After a brief review of its main properties, in this pa-
per, we relate the cumulative entropy to the cumulative inaccuracy
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the cumulative entropy. In conclusion, a stochastic comparison be-
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8.1 Introduction

In the last 40 years stochastic orders have attracted an increasing
number of authors, who used them in several areas of probability and
statistics, with applications in many fields, such as reliability theory,
queueing theory, survival analysis, operations research, mathematical
finance, risk theory, management science and biomathematics. Indeed,
stochastic orders are often invoked not only to provide useful bounds
and inequalities but also to compare stochastic systems. A landmark
in this area is the book by Shaked and Shanthikumar [426], which rep-
resents an essential reference for a large number of researchers dealing
with stochastic orderings. To give an idea of its broad impact we no-
tice that up to now it has received more than 2,000 citations in the
literature.

The aim of this paper is twofold: to give a brief review on the prop-
erties of an information measure recently introduced by the authors
and to provide some new results, including simple examples of appli-
cations of stochastic orders to related notions of information theory.

It is well known that the basic way to establish if one random
variable is “larger” than another is based on the comparison of their
distributions functions. Formally, given two random variables X and
Y , we say that X is smaller than Y in the usual stochastic order,
denoted by X ≤st Y , if and only if

E[φ(X)] ≤ E[φ(Y )] (8.1.1)

for all increasing functions φ : R → R for which the expectations
exist (see Sect. 1.A.1 of [426]). Equivalently, X ≤st Y if and only
if P{X ≤ t} ≥ P{Y ≤ t} for all t ∈ R. Another stochastic order
that will be used in this paper is the decreasing convex order, denoted
by X ≤dcx Y , which holds if and only if Eq. (8.1.1) is true for all
decreasing convex functions φ : R → R for which the expectations
exist. We remark that the notion of dcx order is counterintuitive,
in the sense that if X ≤dcx Y , then X is “larger” than Y in some
stochastic sense (see Sect. 4.A.1 of [426]).

Let us now recall some preliminary notions of information theory.
The concept of entropy was introduced by Claude Shannon [432] as a
measure of the uncertainty associated with a discrete random variable.
Formally, for a random variable X with possible values {x1, . . . , xn}
and probability mass function p(·), the entropy is given by
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H(X) = −E[logb p(X)] = −
n

∑

i=1

p(xi) logb p(xi), (8.1.2)

where b, the base of the logarithm, is usually equal to 2, e, or 10.
Entropy is the minimum descriptive complexity of a random variable
X, in the sense that it quantifies the expected value of the informa-
tion contained in a realization of X. For a thorough description of its
role in coding theory, compression schemes and other fields of infor-
mation theory see [96], for instance. A comprehensive description of
information-theoretic methodologies, based on focal measures such as
Shannon entropy and Kullback–Leibler information, is given in [142].

A suitable extension of the Shannon entropy to the absolutely
continuous case is the so-called differential entropy, which is a shift-
independent functional given by

H(X) = −E[log fX(X)] = −
∫ ∞

−∞
fX(x) log fX(x) dx, (8.1.3)

where log = loge and fX(x) is the probability density function of an
absolutely continuous random variable X having support in R. How-
ever, although the analogy is between definitions (8.1.2) and (8.1.3),
the differential entropy is an inaccurate extension of the Shannon dis-
crete entropy. Indeed, the latter is not invariant under changes of
variables and can even become negative.

Various alternatives for the entropy of a continuous distribution
have been proposed in the literature. In Sect. 4 of [208] the following
notion is suggested:

Hm(X) = −
∫ ∞

−∞
fX(x) log

fX(x)

m(x)
dx, (8.1.4)

where m(x) is a suitable invariant measure. More recently, the “mea-
sure problem” involving Eq. (8.1.4) has been encountered in [313]. An-
other example of information notion is due to [414], who proposed a
measure that, unlike entropy, can be easily and consistently extended
to the continuous probability distributions on interval [a, b] and, unlike
differential entropy, is always positive and invariant with respect to lin-
ear transformations of coordinates. A “length-biased” shift-dependent
measure of uncertainty that stems from the differential entropy is a
weighted entropy (see [127]):

Hw(X) = −E[X log fX(X)] = −
∫ +∞

0
x fX(x) log fX(x) dx, (8.1.5)
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which assigns larger weights to larger values of a non-negative random
variable X.

Moreover, the cumulative residual entropy is defined as (see [385])

E(X) = −
∫ +∞

−∞
F̄X(x) log F̄X(x) dx, (8.1.6)

where F̄X(x) = P{X > x} is the cumulative residual distribution, or
survival function, of a random variable X. Various applications of
Eq. (8.1.6) are given in [20, 467–469].

In Sect. 8.2 we recall an information measure, named “cumulative
entropy”, defined by substituting the survival function F̄X(x) with the
distribution function of X in Eq. (8.1.6). Evaluations of the cumula-
tive entropy for some distributions over finite and infinite domains are
explicitly given. We also present various properties of such measure.
In particular, we relate the cumulative entropy to the cumulative in-
accuracy and recall that it can be expressed as the expectation of the
mean inactivity time evaluated at X. Section 8.3 is devoted to pro-
vide some bounds and inequalities involving the cumulative entropy,
for which use of stochastic orders is made. In Sect. 8.4 the dynamic
version of the cumulative entropy is recalled, and a characterization
property is provided. Finally, in Sect. 8.5, we illustrate some features
of a simple estimator of the cumulative entropy based on the sample
spacings. The empirical cumulative inaccuracy is also introduced, and
a stochastic comparison between such empirical measures is provided.

Note that throughout this chapter, the terms “increasing” and “de-
creasing” are used in non-strict sense.

8.2 Cumulative Entropy

An information measure similar to Eq. (8.1.6) is the cumulative en-
tropy, defined as (see [128])

CE(X) = −
∫ +∞

−∞
FX(x) log FX(x) dx, (8.2.1)

where FX(x) = P{X ≤ x} is the cumulative distribution function
of a random variable X. The measure CE(X) is defined similarly to
the differential entropy (8.1.3). However, since the argument of the
logarithm is a probability, we have
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0 ≤ CE(X) ≤ +∞,

whereas H(X) may be negative. Moreover, CE(X) = 0 if and only
if X is a constant. From Eqs. (8.1.6) and (8.2.1) it follows that the
cumulative entropy and the cumulative residual entropy are related
by the following relation (see [131]):

E(X) + CE(X) =

∫ +∞

−∞
h(x) dx,

where

h(x) = −[FX(x) log FX(x) + F̄X(x) log F̄X(x)], x ∈ R

is the partition entropy of X evaluated at x (see [78]).

The cumulative entropy is evaluated in Table 8.1 for various exam-
ples of even probability density functions of standard random variables.

We point out that if Y = aX + b, with a ∈ R, a �= 0 and b ∈ R,
then

Table 8.1: Cumulative entropies for some standard random variables
with even densities

fX(x) Support CE(X)

9
√
3

10
√
10
x2 −√

5/3 < x <
√

5/3 0.789790

1

2
√
3

−√
3 < x <

√
3 0.866025

3

4
√
5

(

1− x2

5

)

−√
5 < x <

√
5 0.885688

15

784
√
7

(

7− x2
)2 −√

7 < x <
√
7 0.892215

1

6

(√
6− |x|

)

−√
6 < x <

√
6 0.892953

3

20
√
10

(

|x| −
√
10

)2 −√
10 < x <

√
10 0.900979

1√
2
e−
√
2 |x| −∞ < x < ∞ 0.901835

1√
2π

e−x
2/2 −∞ < x < ∞ 0.903197
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Table 8.2: Cumulative entropies for some non-negative variables with
mean 1 and variance 1

FX(x) Support: 0 < x < +∞ CE(X)

Γ
(

3, 2x

)

Γ(3)
(Inverse-gamma distribution) 0.474543

x3(20 + x(15 + x(6 + x)))

(1 + x)6
(Beta prime distribution) 0.556511

1

2
+

1

2
erf

( log x+ 0.5 log 2√
2 log 2

)

(Lognormal distribution) 0.565746

1− e−x (Exponential distribution) 0.644934

CE(Y ) = |a| ·
{ CE(X) if a > 0,

E(X) if a < 0.

Other features of CE(X), such as properties of its two-dimensional
version and a normalized cumulative entropy defined as NCE(X) =
CE(X)/E(X) for 0 < E(X) < +∞, were discussed in [128].

Table 8.2 shows the cumulative entropy of some non-negative ran-
dom variables having unity mean and variance.

We notice that an extension of the cumulative entropy has been
proposed by Abbasnejad [1], namely, the failure entropy of order α
defined as

FEα(X) = − 1

α− 1
log

∫ +∞

0
FαX(x) dx,

for α > 0, α �= 1.
Furthermore, we recall that a weighted version of the cumulative

entropy has been defined recently as (see [321])

CEw(X) = −
∫ +∞

0
xFX(x) log FX(x) dx,

in analogy with the weighted entropy (8.1.5).

8.2.1 Connections to Reliability Theory

Let us now recall various connections between the cumulative entropy
and concepts in reliability theory.

Let X be a non-negative random variable that represents the ran-
dom lifetime of a reliability system. Denote by [X |B] a random vari-
able whose distribution is identical to that of X conditional on an
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event B. The residual lifetime [X − t |X > t], t > 0, describes the
time length between the failure time X and the inspection time t, given
that at time t the system is still active. One of the most used functions
to describe the aging process of a system is the mean residual life of
X, given by

mrl(t) = E[X−t |X>t]= 1

F̄X(t)

∫ +∞

t
F̄X(x)dx, ∀ t ≥ 0 : F̄X(t) > 0,

(8.2.2)

which uniquely determines the distribution function of X. Its prop-
erties in the description of systems composed by finite mixtures are
pinpointed in [342]. Properties of the mean residual life function in
a renewal process and relationships with other relevant functions of
reliability theory are examined in [351].

Information measures have been proposed in the past as a tool to
explore the information content in random lifetimes. We recall [141],
where a new partial ordering among life distributions in terms of their
uncertainties is introduced and is used to assess the notion of a “bet-
ter system”. See also [139, 140], where a direct approach to measure
uncertainty in the residual lifetime distribution has been addressed.
Further developments involving new properties of the proposed mea-
sure in connection to order statistics and record values are then derived
in [19].

Theorem 2.1 of [20] shows that the cumulative residual entropy
(8.1.6) can be expressed in terms of Eq. (8.2.2) as

E(X) = E[mrl(X)]. (8.2.3)

A similar result holds for the cumulative entropy. We recall that,
given that at time t a system has been found inactive, [t−X |X ≤ t],
t > 0, describes the inactivity time of the system, i.e., the time elapsing
between the inspection time t and the failure time X. The inactivity
time is thus dual to the residual lifetime [X − t |X > t]. The mean
inactivity time of X, given by

μ̃X(t) = E[t−X |X≤t] = 1

FX(t)

∫ t

0
FX(x) dx, ∀ t ≥ 0 : FX(t) > 0,

(8.2.4)

has been studied in reliability theory in [5, 6, 323], for instance. Sim-
ilarly to Eq. (8.2.3), Theorem 3.1 of [128] shows that the cumulative
entropy can be expressed as the expectation of the mean inactivity
time evaluated at X, i.e.,
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CE(X) = E[μ̃X(X)]. (8.2.5)

We recall that the reversed hazard rate of a random lifetime X is
given by (see [63])

τX(t) =
d

dt
log FX(t) =

fX(t)

FX(t)
, t > 0 : FX(t) > 0. (8.2.6)

The following decreasing convex function is defined as a double integral
of the reversed hazard rate:

T
(2)
X (x) = −

∫ +∞

x
log FX(z) dz =

∫ +∞

x

[∫ +∞

z
τX(u) du

]

dz, x ≥ 0.

(8.2.7)

Its derivative is closely related to the distribution function of X. In-
deed, from Eq. (8.2.7), we have

Ṫ
(2)
X (x) :=

d

dx
T
(2)
X (x) = logFX(x) = −

∫ +∞

z
τX(u) du. (8.2.8)

We recall that Proposition 3.1 of [128] provides the following alterna-
tive expression of the cumulative entropy of X:

CE(X) = E
[

T
(2)
X (X)

]

, (8.2.9)

with T
(2)
X defined in Eq. (8.2.7).

Given two random lifetimes X and Y having distribution functions
FX and FY defined on (0,∞), let us now introduce the “cumulative
inaccuracy”

K[FX , FY ] = −
∫ +∞

0
FX(u) log FY (u) du, (8.2.10)

as the cumulative analog of the measure of inaccuracy due to Kerridge
[225]. Denoting the reversed hazard rate of Y as τY , we set

T
(2)
Y (x) = −

∫ +∞

x
log FY (z) dz =

∫ +∞

x

[∫ +∞

z
τY (u) du

]

dz, x ≥ 0.

(8.2.11)

Hereafter we give a probabilistic meaning of the cumulative inaccuracy
in terms of Eqs. (8.2.7) and (8.2.11).
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Proposition 8.2.1. For non-negative absolutely continuous random
variables X and Y , having distribution functions FX and FY , we have

K[FX , FY ] = E
[

T
(2)
Y (X)

]

, K[FY , FX ] = E
[

T
(2)
X (Y )

]

. (8.2.12)

The proof of Proposition 8.2.1 is omitted, being similar to that of
Proposition 3.1 of [128].

We now aim to provide a connection between the information mea-
sures CE(X) and K[·, ·]. Let X and Y be the random lifetimes of
two systems which have finite unequal means and satisfy X ≥st Y
or Y ≥st X. Proposition 3.2 of [128] shows that if X is absolutely
continuous and E[μ̃X(Y )] is finite, then

CE(X) = E[μ̃X(Y )] + E[μ̃′X(Z)] [E(X) − E(Y )], (8.2.13)

where μ̃′X(t) = 1− τX(t)μ̃X(t), for all t > 0 such that FX(t) > 0, and
where Z has probability density function

fZ(x) =
FY (x)− FX(x)

E(X)− E(Y )
, x ≥ 0. (8.2.14)

Hereafter we state an identity similar to Eq. (8.2.13).

Proposition 8.2.2. Let X and Y be non-negative random variables
with finite unequal means and satisfying X ≥st Y or Y ≥st X, with X
absolutely continuous. If K[FY , FX ] is finite, then

CE(X) = K[FY , FX ] + E
[

Ṫ
(2)
X (Z)

]

[E(X)− E(Y )], (8.2.15)

where Ṫ
(2)
X (·) is given in Eq. (8.2.8) and where Z is an absolutely con-

tinuous non-negative random variable having probability density func-
tion (8.2.14).

Proof : It follows from identity (8.2.9), from the second of Eq. (8.2.12)
and from the probabilistic analog of the mean value theorem given in
[125].

8.3 Inequalities and Stochastic Comparisons

In this section we shall focus on upper and lower bounds for the
cumulative entropy and on some stochastic comparisons.

In [128] it has been proved that if X is a non-negative random
variable, then
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(i) CE(X) ≥ C eH(X), where C = exp
{

∫ 1
0 log(x | log x|) dx

}

=

0.2065

(ii) CE(X) ≥ ∫ +∞
0 F (x) F̄ (x) dx

(iii) CE(X) ≥ − ∫ +∞
μ log F (z) dz

(iv) CE(X) ≤ E[X]

(v) CE(X) ≤ e−1 b

(vi) CE(X) ≤ (b− E[X])
∣

∣

∣log
(

1− E[X]
b

)∣

∣

∣

where bounds (v) and (vi) hold if X takes values in [0, b], with b
finite. The latter inequality can be generalized by means of the log-
sum inequality (see, for instance, [384]). Indeed, Proposition 1 of [130]
states that ifX and Y take values in [0, b], with b finite, and ifX ≥st Y ,
then

CE(X) ≤ CE(Y ) + (b− E[X])

∣

∣

∣

∣

log
b− E[X]

b− E[Y ]

∣

∣

∣

∣

. (8.3.1)

We remark that the inequality given in Eq. (8.3.1) is tighter than that
given in Proposition 4.5 of [128], which holds under the same assump-
tion, that is, X ≥st Y . When the stochastic ordering between X and
Y is reversed, the following result holds:

Proposition 8.3.1. If X and Y are non-negative random variables
such that X ≤st Y , then

K[FY , FX ] ≤ CE(X) ≤ K[FX , FY ].

Proof : Since, by assumption, FX(t) ≥ FY (t) for all t ∈ R, the proof
follows from Eqs. (8.2.1) and (8.2.10).

We remark that X ≤st Y does not imply CE(X) ≤ CE(Y ).

Proposition 8.3.2. If X and Y are non-negative random variables
such that X ≤dcx Y , then

CE(X) ≤ K[FY , FX ].
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Proof : Recalling the definition of decreasing convex order, Eq. (8.2.9)
and the second of Eq. (8.2.12), the proof follows noting that Eq. (8.2.7)
is a decreasing convex function.

We notice that Proposition 8.3.2 substitutes Proposition 4.6 of
[128].

Example 8.3.3. Let X and Y have distribution functions FX(x) =
exp{−c x−γ}, x > 0, and FY (x) = exp{−dx−γ}, x > 0, with c > 0,
d > 0 and γ > 1. From Eqs. (8.2.7) and (8.2.11) we have

T
(2)
X (x) =

c

γ − 1
x−γ+1, T

(2)
Y (x) =

d

γ − 1
x−γ+1, x > 0.

Hence, making use of Eq. (8.2.9) and the second of Eq. (8.2.12), we
obtain

CE(X) =
c1/γ

γ
Γ

(

1− 1

γ

)

, K[FY , FX ] =
cd−1+1/γ

γ
Γ

(

1− 1

γ

)

.

It immediately follows that if c ≥ d, i.e., X ≤dcx Y , then CE(X) ≤
K[FY , FX ], in agreement with Proposition 8.3.2.

We conclude this section by recalling two further inequalities stated
in [128]:

– If X and Y are non-negative and independent random variables,
then

max{CE(X), CE(Y )} ≤ CE(X + Y ).

– If X1,X2, . . . ,Xn are non-negative i.i.d. random variables, then

CE(nX1) ≥ CE(max{X1,X2, . . . ,Xn}).

8.4 Dynamic Cumulative Entropy

Dynamic information measures are often employed in system reliabil-
ity to describe the effect of the age t on the uncertainty in random
lifetimes. For instance, we recall the residual entropy [139] and the
past entropy [126], defined as the differential entropy of [X |X > t]
and of [X |X ≤ t], respectively.
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Figure 8.1: Dynamic cumulative entropy: beta prime (lower) and ex-
ponential distributions

The dynamic cumulative residual entropy was proposed by Asadi
and Zohrevand [20] as the cumulative residual entropy of [X |X > t],
given by

E(X; t) = −
∫ +∞

t

F̄X(x)

F̄X(t)
log

F̄X(x)

F̄X(t)
dx, t ≥ 0. (8.4.1)

Similarly to Eq. (8.4.1), the “dynamic cumulative entropy” was defined
in [128] as the cumulative entropy of [X |X ≤ t], namely,

CE(X; t) = −
∫ t

0

FX(x)

FX(t)
log

FX(x)

FX(t)
dx, t > 0 : FX(t) > 0.

An alternative expression of CE(X; t) is given by

CE(X; t)=− 1

FX(t)

∫ t

0
FX(x) logFX(x)dx+μ̃X(t) log FX(t), t>0:FX(t)>0,

(8.4.2)
where μ̃X(t) is the mean inactivity time defined in Eq. (8.2.4). We
remark that CE(X; t) is non-negative for all t, with

lim
t→0+

CE(X; t) = 0, lim
t→b−

CE(X; t) = CE(X),

for any random variable X with support (0, b), with b ≤ +∞.
Figure 8.1 shows two cases where CE(X; t) is increasing in t. An in-
stance of absolutely continuous distribution whose dynamic cumula-
tive entropy is not increasing for all t is provided in Example 6.2 of
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[128]. This paper also provides various properties of CE(X; t), such
as lower and upper bounds, and the following two representations as
conditional means:

CE(X; t) = E[μ̃X(X) |X ≤ t], t > 0,

and, when X is an absolutely continuous,

CE(X; t) = E[T
(2)
X (X; t) |X ≤ t], t > 0,

where

T
(2)
X (x; t) = −

∫ t

x
log

F (z)

F (t)
dz, t ≥ x ≥ 0. (8.4.3)

Hereafter we give a characterization result for CE(X; t). To this
purpose, we recall that (see Theorem 6.1 of [128]) CE(X; t) is increasing
in t if and only if CE(X; t) ≤ μ̃X(t) for all t > 0 such that FX(t) > 0.

Proposition 8.4.1. If X is a non-negative absolutely continuous ran-
dom variable and if CE(X; t) is increasing for all t ≥ 0, then CE(X; t)
uniquely determines FX(t).

Proof : Differentiating Eq. (8.4.2) we have

d

dt
CE(X; t) = τX(t) [μ̃X(t)− CE(X; t)] , (8.4.4)

where τX(t) is given in Eq. (8.2.6). Hence, for any fixed t, the reversed
hazard rate τX(t) is a positive solution of equation g(x) = 0, where

g(x) := x [μ̃X(t)− CE(X; t)]− d

dt
CE(X; t).

The assumption that CE(X; t) is increasing in t yields CE(X; t) ≤ μ̃X(t)
for all t, so that lim

x→+∞ g(x) = +∞ and g(0) ≤ 0, due to Eq. (8.4.4).

Therefore, g(x) = 0 has a unique positive solution. Consequently
τX(t), and hence FX(x), is uniquely determined by CE(X; t) under the
assumption that such function is increasing in t.

We remark that Corollary 6.1 of [128] shows that CE(X; t) is in-
creasing for all t ≥ 0 if μ̃(t) is increasing for all t ≥ 0. Such paper
presents other results on the cumulative entropy, such as characteriza-
tions involving identities CE(X; t) = c μ̃X(t) and CE(X; t) = c μX(t),
where μX(t) = E[X |X ≤ t] denotes the mean past lifetime of X.
See also Sect. 4 of [340] for related results, such as an extension of a
characterization of the power distribution that involves the cumulative
entropy.
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8.5 Empirical Cumulative Entropy

Let X1,X2, . . . ,Xn be a random sample of non-negative, absolutely
continuous i.i.d. random variables. A suitable estimator of CE(X) is
the “empirical cumulative entropy”, proposed in Sect. 7 of [128] as

CE(F̂n) = −
∫ +∞

0
F̂n(x) log F̂n(x) dx, (8.5.1)

where

F̂n(x) =
1

n

n
∑

i=1

1{Xi≤x}, x ∈ R

is the empirical distribution of the sample. Denoting by X(1) < X(2) <
· · · < X(n) the sample order statistics and by

U1 = X(1), Ui = X(i) −X(i−1), i = 2, 3, . . . , n

the corresponding sample spacings, it is not hard to prove that the
empirical cumulative entropy can be expressed as

CE(F̂n) = −
n−1
∑

j=1

Uj+1
j

n
log

j

n
. (8.5.2)

Equation (8.5.2) shows that the empirical cumulative entropy is a
positive linear combination of the sample spacings U2, . . . , Un, where
the outer spacings U2 and Un possess small weights, whereas the
larger weight is given to the spacing Uj+1 such that j is close to
e−1 n ≈ 0.3679n. Equation (8.5.2) gives asymmetric weights to the
sample spacings, so that the empirical cumulative entropy is asym-
metric to the right. It is thus appropriate to measure variability in
right-skewed distributions. A case study on neuronal firing data is
provided in [131].

A discussion on CE(F̂n) in the case of random samples from uniform
distribution and exponential distribution is given in [128]. Moreover,
the following asymptotic results have been proved:

1. The standardized empirical cumulative entropy converges in dis-
tribution to a standard normal variable as n → +∞ [128].

2. CE(F̂n) → CE(X) a.s. as n → +∞ (see [129]).
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We note that by use of identity −u log u ≤ 1− u, 0 < u < 1, from
Eq. (8.5.1), the following relation follows:

CE(F̂n) ≤ X a.s.,

where X is the sample mean.
Let us now consider another random sample Y1, Y2, . . . , Yn of non-

negative, absolutely continuous i.i.d. random variables and denote its
empirical cumulative entropy by

CE(Ĝn) = −
∫ +∞

0
Ĝn(y) log Ĝn(y) dy,

where Ĝn(y) is the empirical distribution of the sample. Moreover, in
analogy with Eq. (8.2.10), we define the empirical cumulative inaccu-
racy as

K[F̂n, Ĝn] = −
∫ +∞

0
F̂n(u) log Ĝn(u) du.

It can be expressed as

K[F̂n, Ĝn] = −
n−1
∑

j=1

∫ Y(j+1)

Y(j)

F̂n(u) log
j

n
du, (8.5.3)

where Y(1) < Y(2) < · · · < Y(n) are the order statistics of the new
sample. Let us denote by

Nj =

n
∑

i=1

1{Xi≤Y(j)}, j = 1, 2, . . . , n,

the number of random variables of the first sample that are less than
or equal to the jth order statistic of the second sample. Moreover, we
rename by Xj,1 < Xj,2 < · · · the random variables of the first sample
belonging to (Y(j), Y(j+1)], if any. From the above positions we thus
have

∫ Y(j+1)

Y(j)

F̂n(u) du =
Nj

n

[

Y(j+1) − Y(j)
]

+
1

n

Nj+1−Nj
∑

r=1

[

Y(j+1) −Xj,r

]

,

so that Eq. (8.5.3) becomes

K[F̂n, Ĝn] = − 1

n

n−1
∑

j=1

⎡

⎣Nj+1Y(j+1) −NjY(j) −
Nj+1−Nj

∑

r=1

Xj,r

⎤

⎦ log
j

n
.
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Cleary, K[Ĝn, F̂n] can be obtained by symmetry.
In analogy to Proposition 8.3.1, hereafter, we show that if the

random variables of the two samples are stochastically ordered, then
the empirical cumulative entropy and the empirical cumulative inac-
curacies are suitably ordered.

Proposition 8.5.1. If random variables Xi and Yi satisfy condition
Xi ≤st Yi, then

K[Ĝn, F̂n] ≤st CE(X) ≤st K[F̂n, Ĝn].

Proof : Since Xi ≤st Yi, from Theorem 1.A.3 of [426] we have that
1{Xi≤x} ≥st 1{Yi≤x}, and thus F̂n(x) ≥st Ĝn(x), for all x ∈ R. The
proof then follows from the definitions of the involved notions.
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failure rate (IFR) will be discussed, as well as the relationship between
the DPRL(α) and the percentile residual life orders. Besides, we in-
troduce an estimator of the percentile residual life function, under the
condition that it decreases, in the censored and the non-censored case.
Finally, a real data illustration is provided.

9.1 Introduction

The residual life associated with a random variable is of interest in
many areas of applied probability and statistics such as actuarial stud-
ies, biometry, survival analysis, economics, risk management, and reli-
ability; see, e.g., [80, 336, 470]. Let X be a random variable, and let uX
be the right endpoint of its support. For any t < uX , the residual life
at time t is the random variable whose distribution is the conditional
distribution of X − t given that X > t. We denote it by

Xt = [X − t
∣

∣X > t], t < uX .

Note that Xt is well defined for any t < uX , even if t is not in the sup-
port of X. For example, even if X is a nonnegative random variable,
we see that Xt is well defined for any t < 0. If FX denotes the dis-
tribution function of X and FX = 1 − FX denotes the corresponding
survival function, then the survival function of Xt is given by

FXt(x) =
FX(t+ x)

FX(t)
, x ≥ 0.

The expected value of Xt, which is called the mean residual life func-
tion that is associated with X, provides useful information about the
underlying random variable. The median, or other percentiles, of the
residual life of a random variable are, in some applications, useful al-
ternatives to the mean residual life of that random variable. For any
t < uX , the α-percentile residual life function at t, qX,α(t), is defined
as the α-percentile or quantile of Xt. For t ≥ uX we define qX,α(t) to
be zero. If FX denotes the distribution function of X, then it can be
shown that

qX,α(t) = F−1X (α+ (1− α)FX (t))− t, t < uX , (9.1.1)

where F−1X (p) = inf {x : FX(x) ≥ p} is the so-called quantile function.
Such a function describes, for example, the value that will be survived
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by (1−α)% of items in reliability theory or of individuals in a medical
study, among those that survived up to time t.

Statisticians have categorized life distributions according to dif-
ferent aging properties. These categories of distributions are useful
for modeling situations where items deteriorate with age. A common
approach is to stipulate the decreasingness of the mean residual life
function (or of the harmonic mean residual life function) as a model of
aging. This approach, however, sometimes has weaknesses that may
prevent its use. For example, the mean residual life function may not
exist. Or, even when it exists, it may have some practical shortcom-
ings, especially in situations where the data are censored or when the
underlying distribution is skewed or heavy-tailed. In such cases, ei-
ther the empirical mean residual life function cannot be calculated or
a single long-term survivor can have a marked effect upon it which
will tend to be unstable due to its strong dependence on very long du-
rations. Also, in an experiment, it is often impossible or impractical
to wait until all items have failed. For those reasons, it is sometimes
more convenient to consider the median residual life function or, more
generally, the α-percentile residual life function instead, since it is less
sensitive to outliers or censored data.

In this paper, we study random variables and distribution func-
tions with decreasing α-percentile residual life functions [DPRL(α)],
0 < α < 1. Earlier papers, such as [167, 186, 215], studied some
aspects of this class of distributions. This paper is organized as fol-
lows. In Sect. 9.2 we give the definition and some properties of the
decreasing percentile residual life function. Besides, we analyze its re-
lationship with the increasing hazard rate aging notion. Some charac-
terizations of the percentile residual life orders, for DPRL(α) random
variables, are reviewed in Sect. 9.3. In Sect. 9.4 we present an estima-
tor of DPRL(α) function. It is then extended to the censored situation
(Sect. 9.5). Finally we present the main conclusions and describe di-
rections for further research.

9.2 Definitions and Basic Properties

Let 0 < α < 1 with α = 1 − α. A random variable X is said to have
(or to be) DPRL(α) if qX,α(t) is decreasing in t. It is also possible
to similarly define the notion of increasing α-percentile residual life
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[IPRL(α)]. However, note that with our definition of qX,α, in order for
a random variable to be IPRL(α), it is necessary that uX = ∞.

Some useful equivalent conditions, which can help in practice to
check the DPRL(α) condition, are given in the following proposi-
tion for absolutely continuous random variables with interval support
(which may be finite or infinite). Its proof can be found in Franco–
Pereira, Lillo, and Shaked ([167], Proposition 2.1).

Proposition 9.2.1. Let X be an absolutely continuous random vari-
able with interval support (lX , uX). Let fX be the density function of
X and rX ≡ fX/FX its hazard rate function. Then, the following
conditions are equivalent:

(i) X is DPRL(α).

(ii) αfX(t) ≤ fX(F
−1
X (αFX(t))) for all t ∈ (lX , uX).

(iii) αfX(F
−1
X (p)) ≤ fX(F

−1
X (αp)) for all p ∈ (0, 1).

(iv) rX(t) ≤ rX(t+ qX,α(t)) for all t ∈ (lX , uX).

From Proposition 9.2.1(iv) it follows that if rX is increasing [i.e.,
if X has an increasing failure rate (IFR)] then X is DPRL(α) for any
α ∈ (0, 1). On the other hand, if X is DPRL(α) for some α ∈ (0, 1),
it is not necessary that X be IFR since, as it is shown in Example 3.1
in [167], IFR is a strictly stronger condition. In that example it was
proved that given any ε > 0, even if X is DPRL(α) for every α ≥ ε,
it is not necessary that X is IFR. Besides, Example 3.2 in the same
paper shows that, given α ∈ (0, 1), it is possible to find a random
variable X, and a β ∈ (α, 1), such that X is DPRL(α) but it is not
DPRL(β). However, as we detail in next proposition, if the density
function of X is decreasing on a specific region of its support, then, if
X is DPRL(α), it does follow that X is DPRL(β) for β > α.

Proposition 9.2.2. Let X be an absolutely continuous random vari-
able with interval support (lX , uX), such that uX < ∞, and with den-
sity and survival functions fX and FX , respectively. Let α ∈ (0, 1).

If X is DPRL(α) and if fX is increasing on [F
−1
X (α), uX ], then X is

DPRL(β) for all β > α.

Note that if fX is increasing on its support, then the monotonicity
condition on fX in Proposition 9.2.2 obviously holds. However, this
observation does not tell us anything new because if fX is increasing
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on its support, then X is IFR, and, as we noted at the beginning of
this section, this implies that X is DPRL(α) for all α ∈ (0, 1). The
proof of Proposition 9.2.2 can be found in [167] (Proposition 3.3).

It is worthwhile to mention that Launer [273] has shown that a
nonnegative random variable X, with a bathtub-shaped hazard rate
function rX , is DPRL(α) for all α ∈ (α0, 1) for some α0 > 0, provided
there exists a t0 ≥ 0 such that rX(t0) ≥ rX(0). More recently, in [165],
this work was extended, providing characterization results for any kind
of bathtub distributions. These characterizations are based on aging
notions that link the percentile residual life function with the hazard
rate function.

9.3 Relationship with the Percentile

Residual Life Orders

A new family of stochastic orders indexed by α (α ∈ (0, 1)), which
is based on the pointwise comparison of the percentile residual life
functions of two random variables, was introduced and studied in detail
in Franco–Pereira, Lillo, Romo, and Shaked [166]. These orders are
the percentile residual life orders. Here we recall their definition.

Let X and Y be two random variables, let α ∈ (0, 1), and let qX,α
and qY,α be their corresponding α-percentile residual life functions. If

qX,α(t) ≤ qY,α(t) for all t, (9.3.1)

then we say that X is smaller than Y in the α-percentile residual life
order, and we denote it as X ≤α-rl Y . The α-percentile residual life
orders were introduced in [216], but these orders were not extensively
studied there. The focus of [216] was to test the hypothesis H0 : FX =
FY versus H1 : qX,α ≤ qY,α but it is should be noticed that, since the
percentile residual life function does not characterize the distribution,
this kind of tests may sometimes not be adequate.

Note that Eq. (9.3.1) defines a family of stochastic orders indexed
by α ∈ (0, 1). It follows from Eqs. (9.1.1) and (9.3.1) that if X ≤α-rl Y
then

uX ≤ uY ,

where uX and uY are the right endpoints of the corresponding
supports.

In [167] some results relating the DPRL(α) and the α-percentile
residual life orders were derived. In particular, under the DPRL(α)
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aging notion, some closure properties of the α-percentile residual life
order were obtained. Here we summarize some of the main results.

Theorem 9.3.1. Let X be an absolutely continuous random variable
with interval support. Then X is DPRL(α) if and only if any of the
following equivalent conditions holds:

(i) Xt ≥α-rl Xt′ whenever t ≤ t′ < uX

(ii) X ≥α-rl Xt whenever 0 ≤ t < uX (when X is a nonnegative
random variable)

(iii) X + t ≤α-rl X + t′ whenever t ≤ t′

In the literature there are results similar to Theorem 9.3.1, but
which involve aging notions different from DPRL(α). For example,
Theorems 1.A.30, 1.B.38, 3.B.24, 3.B.25, and 4.A.53 in [426], as well
as a result in [49], give similar characterizations for the IFR aging
notion. Also, Theorems 2.A.23, 2.B.17, 3.A.56, 3.C.13, and 4.A.51 in
[426] give similar characterizations for the decreasing mean residual
life (DMRL) aging notion.

The following result is an analog of Theorem 1.B.21 in [426] which
involves the IFR aging notion and of Theorem 2.A.17 in [426] which
involves the DMRL aging notion. The proof can be found in [167].

Theorem 9.3.2. Let X be a positive, absolutely continuous, DPRL(α)
random variable with interval support. Then,

X ≤α-rl aX for all a > 1.

Another situation in which the DPRL(α) aging notion arises as a
natural condition will be described next. Theorem 9.3.3 below indi-
cates a useful property of the order ≤α-rl when one of the compared
random variables is “larger in magnitude” than the other one; it is a
generalization of the sufficiency part of Theorem 9.3.1(iii).

Theorem 9.3.3. Let X be a continuous DPRL(α) random variable.
Let Z be a nonnegative continuous random variable that is independent
of X. Then,

X ≤α-rl X + Z. (9.3.2)

It is worthwhile to point out that if X in Theorem 9.3.3 is not
DPRL(α) then the conclusion of that theorem need not hold. In or-
der to see this, note that Theorem 9.3.1(iii) actually says that X is
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DPRL(α) if and only if X ≤α-rl X + a for every a ≥ 0. Thus, if X in
Theorem 9.3.3 is not DPRL(α) then there exists a degenerate Z such
that Eq. (9.3.2) does not hold.

The DPRL(α) aging notion is also useful as a condition under
which the order ≤α-rl is preserved under certain random additions.
This is stated next.

Theorem 9.3.4. Let X and Y be two DPRL(α) random variables.
Let Z be a random variable, independent of X and Y , with support in
[l, u], where −∞ < l < u < ∞. If X + u ≤α-rl Y + l, then

X + Z ≤α-rl Y + Z.

9.4 Estimation

In many applications it is reasonable to assume that the system life is
monotonically degrading or improving with age. In [167] the estima-
tion of the mean residual life function under decreasing or increasing
restrictions was studied and, following a similar approach, Franco–
Pereira, Lillo, and Shaked [167] proposed an estimator for the decreas-
ing percentile residual life function. In this section we first review this
estimator of the percentile residual life function and its consistency.

Let X1,X2, . . . ,Xn be independent random variables with a com-
mon distribution function FX , and let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be
the corresponding order statistics. The resulting empirical distribution
function is

FX,n(t) =
#{k : Xk ≤ t, 1 ≤ k ≤ n}

n
, t ∈ R,

and the corresponding left continuous inverse (i.e., the quantile func-
tion) is

F−1X,n(p) = Xk:n if
k − 1

n
< p ≤ k

n
, k = 1, 2, . . . , n.

A natural empirical counterpart of qX,α is the sample α-percentile
residual life function, which is given by

q̂X,n,α(t) = F−1X,n(α+ (1− α)FX,n(t))− t, t < Xn:n.

Note that q̂X,n,α is a piecewise linear function with jump disconti-
nuities. It consists of line segments with slope equal to −1 with
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jump discontinuities (which gives rise to a rather ragged estimator).
The estimator q̂X,n,α was introduced and studied in Csörgö and
Csörgö (1987, [98]). Further properties of q̂X,n,α were obtained in
[9, 33, 99, 100].

The estimator suggested in [167] is based on the fact that

qX,α is DPRL(α) ⇐⇒ qX,α(t) = inf
y≤t

qX,α(y). (9.4.1)

Thus, the proposed estimator q̂∗X,n,α is given by

q̂∗X,n,α(t) = I(t,∞)(Xn:n) inf
y≤t

q̂X,n,α(y), t ∈ R,

where I(t,∞) denotes the indicator function of the indicated interval.
Note that q̂∗X,n,α is the largest decreasing function that lies below the
empirical q̂X,n,α.

In Theorem 9.4.1 below we show that q̂∗X,n,α is a strongly uniform
consistent estimator of qX,α. Its proof can be found in Franco–Pereira,
Lillo, and Shaked ([167], Theorem 6.2).

Theorem 9.4.1. Let X be a DPRL(α) random variable. If FX has a
continuous positive density function fX such that inf

0≤p≤1
fX(F

−1
X (p)) >

0, then q̂∗X,n,α is a strongly uniform consistent estimator of qX,α.

To illustrate how the estimator looks like, consider a sample of size
n = 11 with the ordered observed values X1:11 = −5, X2:11 = X3:11 =
−2, X4:11 = 1, X5:11 = X6:11 = 7, X7:11 = 11, X8:11 = 15, X9:11 = 16,
X10:11 = 18, and X11:11 = 21. Then there are k = 9 resulting ordered
values with no ties:

Y1 = −5, Y2 = −2, Y3 = 1, Y4 = 7, Y5 = 11, Y6 = 15, Y7 = 16, Y8 = 18, and Y9 = 21.

In Fig. 9.1 the empirical estimator q̂X,n,0.5 and the restricted estimator
q̂∗X,n,0.5 are shown.

9.5 Extension of the Estimator
to the Censored Case

The problem of censoring is common in survival analysis, and it occurs
when the value of a observation is only partially known. For that
reason, in Franco–Pereira and de Uña-Álvarez [164], the previous es-
timator of the percentile residual life function q̂X,n,α was extended to
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Figure 9.1: Illustration of the estimators q̂X,n,0.5 and q̂∗X,n,0.5

the censored case. In this section we review the main property of this
new estimator (consistency) and show an application to a real data
example.

Due to censoring, instead of the lifetime variables X1,X2, . . . ,Xn,
one observes an independent and identically distributed sample
(Z1, δ1), . . . , (Zn, δn) of the pair (Z, δ), where Zi = min{Xi, Ci)}
is the actual observed time, δi = I(Xi ≤ Ci) is the censoring indi-
cator, and Ci is the potential censoring time. As usual, we assume
that Xi and Ci are independent. In this setup, the nonparametric
maximum-likelihood estimator of FX is given by the Kaplan–Meier
product-limit estimator

FX,n(t) = 1−
∏

Z(i)≤t

[

1− δ[i]

n− i+ 1

]

,

where Z(1) ≤ · · · ≤ Z(n) are the ordered Z-values, ties within lifetimes
or within censoring times are ordered arbitrarily, and ties among life-
times and censoring times are treated as if the former precedes the
latter. Here, δ[i] is the concomitant of the ith ordered statistics, that
is, δ[i] = δj if Z(i) = Zj. Then, a natural nonparametric estimator of
qX,α(t), defined similarly as before, is

q̂X,n,α(t) = F−1X,n (α+ (1− α)FX,n(t))− t, t ≤ Z(n),
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where F−1X,n(p) = inf {x : FX,n(x) ≥ p} stands for the empirical
quantile function that is associated with FX,n. When Z(n) is un-
censored, we have FX,n(Z(n)) = 1 and

q̂X,n,α(Z(n)) = F−1X,n (1)− Z(n) = 0.

In this case, the estimator of the percentile residual life function qX,α(t)
is well defined for all t. However, when the maximum observed time is
censored, we have FX,n(Z(n)) < 1 and the value q̂X,n,α(t) may not be
well defined for large t. More explicitly, the function q̂X,n,α(t) is well
defined only for t ≤ τn, where

τn = inf

{

x : FX,n(x) ≥
FX,n(Z(n))− α

1− α

}

.

Certainly, for t ≤ τn, we have FX,n(t) ≥ (

FX,n(Z(n))− α
)

/(1 − α),
and hence α+ (1− α)FX,n(t) ≥ FX,n(Z(n)), from which we have that
the set

Θt = {x : FX,n(x) ≤ α+ (1− α)FX,n(t)}
is nonempty (Z(n) belongs to Θt). Therefore, q̂X,n,α(t) exists for t ≤ τn.

As n grows, we have τn → τ ≡ F−1X ((1 − α)−1(FX(bH) − α)), where
bH is the upper limit of the support of Z. In words, it is not possible
to estimate consistently the percentile residual life function beyond
time τ . This may omit a portion of interest when bH is smaller than
the upper limit of the support of X. An analogous problem is found
when recovering the cumulative distribution function FX(t) from the
censored sample; in this case, consistency cannot be obtained for t >
bH . In this sense, the almost sure and in-probability uniform rates
in Theorems 9.5.1 and 9.5.2 below, which hold on an interval [0, T ]
where T < bH ∧τ , are almost the most one can expect in this scenario.

If we assume that qX,α(t) is monotone decreasing, then we have
qX,α(t) = infy≤t qX,α(y) and a natural estimator of the percentile resid-
ual life function is introduced [analogously as in Eq. (9.4.1)] through

q̂∗X,n,α(t) = inf
y≤t

q̂X,n,α(y).

Some asymptotic properties of q̂∗α(t) are stated in the following results.
Their proofs can be found in [164]. Specifically, a law of the iterated
logarithm (LIL) and the

√
n-equivalence with respect to the unre-

stricted estimator are established. For finite sample sizes, however,
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the estimator q̂∗X,n,α(t) may outperform q̂X,n,α(t) since it incorporates
the monotonicity information. See the simulation results in [164].

PutH for the distribution function of Z and bH = inf {t : H(t) = 1}
for the upper limit of the support of Z. Let T < bH ∧ τ , i.e., T < bH
and F−1X (α + (1 − α)FX (T )) < bH . Consider the following regularity
conditions:

(C1) FX is twice differentiable.

(C2) fX = F ′X is bounded away from zero on
[

F−1X (α), F−1X

(α+ (1− α)FX (T ))].

Theorem 9.5.1 (LIL). Under (C1) and (C2) we have, with
probability 1,

sup
0≤t≤T

∣

∣q̂∗X,n,α(t)− qX,α(t)
∣

∣ = O

(

(

log log n

n

)1/2
)

.

Now, the
√
n-equivalence between the restricted and the unre-

stricted estimators of qX,α(t) is established. From this second re-
sult, other asymptotic properties of the restricted estimator q̂∗X,n,α(t)
(e.g., weak convergence) may be automatically obtained from those
of q̂X,n,α(t), as, for instance, in [90]. See Corollaries 9.5.3 and 9.5.4
below. These are taken from [164].

Theorem 9.5.2. Assume that, with T as in Theorem 9.5.1:

(A1) q′X,α(t) exists and q′X,α(t) ≤ −c1, 0 ≤ t ≤ T , for some c1 > 0.

(A2) q
′′
X,α(t) exists and sup0≤t≤T

∣

∣

∣q
′′
X,α(t)

∣

∣

∣ ≤ c2 < ∞.

(A3) conditions (C1) and (C2) above hold.

Then we have

√
n sup

0≤t≤T

∣

∣q̂∗X,n,α(t)− q̂X,n,α(t)
∣

∣ → 0 in probability.

The scaled product-limit α-percentile residual lifetime process
r∗X,n,α(t) is defined as

r∗X,n,α(t) =
√
nfX(F

−1
X (α+ (1− α)FX (t)))[q̂∗X,n,α(t)− qX,α(t)].

From our Theorem 9.5.2 and Theorem 6.1 in [90] we have the following
result about the pointwise asymptotic distribution of r∗X,n,α(t).
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Corollary 9.5.3. Under the assumptions of Theorem 9.5.2, the
asymptotic distribution of r∗X,n,α(t) is the normal with mean 0 and

variance (1− α)2(1− FX(t))
2[d(F−1X (α+ (1− α)FX (t)))− d(t)], i.e.,

r∗X,n,α(t) −→d N(0, (1−α)2(1−FX(t))2[d(F−1X (α+(1−α)FX (t)))−d(t)])

as n → ∞, where −→d denotes convergence in distribution, d(t) =
∫ t
−∞(1−H(s))−2dH̃(s), and H̃(t) =

∫ t
−∞

(1−H(s))
(1−FX(s))dFX (s).

The following corollary follows from our Theorem 9.5.2 and
Theorem 8.1 in [90]:

Corollary 9.5.4. Under the assumptions of Theorem 9.5.2, we have,
as n → ∞,

sup
0≤t≤T

∣

∣r∗X,n,α(t)−GX,α(t)
∣

∣

=
a.s. O

(

n−1/4(log n)1/2(log log n)1/4
)

where GX,α(t) is the Gaussian process in [90], Eq. (8.2), namely,

GX,α(t)=(1− α)(1−FX(t))
[

W (d(t))−W (d(F−1X (α+(1−α)FX (t))))
]

;

here W is a standard Wiener process.

9.5.1 A Real Data Example

For illustration purposes, we consider the primary biliary cirrhosis
(PBC) data set reported and widely explained in Fleming and Har-
rington (1991), with n = 312 individuals. Here we replicate the study
in [164]. The variable X denotes survival time (in days) for PBC pa-
tients. Censoring from the right is caused by the end of the follow-up
period or by liver transplantation (187 censored times or about 60% of
censoring). It is known that the survival prognosis is greatly influenced
by the level of edema, so we consider three different groups of patients
according to this variable. The first group (edema=0) corresponds to
patients with no edema; patients in second group (edema=0.5) had
an untreated or a successfully treated edema, while the third group
(edema=1) corresponds to patients with an unsuccessfully treated
edema. In Table 9.1 we report the number of cases and deaths in
each group, together with the median survival. From this table we see
that an increasing value of edema is associated to a poorer survival
prognosis.
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Table 9.1: Number of cases and deaths in each group and median
survival (in days)

Level of edema Number of cases Deaths Median survival

0 263 89 3,584
0.5 29 17 1,576
1 20 19 299

In Fig. 9.2 we give the 0.25-percentile residual life function for the
three groups of edema, when estimated by using the restricted or the
unrestricted estimators. For the first group (edema=0), the unre-
stricted estimator suggests a decreasing shape; this is not surprising,
since the convex cumulative hazard plot for this group (see Fig. 9.3)
reveals an increasing hazard rate, which is a characteristic property of
the decreasing percentile residual life populations, as we commented
in Sect. 9.3. In this case, by using the monotone estimator, we get
some smoothing of the curve which results in a nicer estimator. The
other two groups offer a different situation, since the unrestricted esti-
mator is not supporting in principle the monotonicity of the percentile
residual life function. This could be explained by the existence of a
nonincreasing hazard rate for the last two groups. Indeed, the corre-
sponding Nelson–Aalen estimators (see, for instance, [77] for a review
of the Nelson–Aalen estimators) depict a concave part (see Fig. 9.3).
This suggests an increasing-decreasing shape for the hazard rate.

9.6 Discussion

In this paper, we review some properties of the decreasing percentile
residual life aging notion, its relationship with the IFR aging notion
and with the percentile residual life orders, and its estimation, in-
cluding the random censorship setup. This estimator is convenient
when investigating units which deteriorate with age. In such a case,
the unrestricted estimator is not admissible, and the monotone esti-
mator gives a proper modification of it. A LIL has been established.
Besides, it has been demonstrated that the monotone estimator is

√
n-

equivalent to the unrestricted one. As a consequence, the asymptotic
normal distribution of the monotone estimator and its strong approx-
imation to a Gaussian process have been established. Finally, a real
data illustration has been provided.
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a b c

Figure 9.2: q̂X,n,0.25 (dotted) and q̂∗X,n,0.25 (solid) for the three groups
of edema 0 (a) the group of edema 0.5 (b) the group of edema (c) the
group of edema 1

Figure 9.3: Nelson–Aalen’s cumulative hazard estimates: 0 (solid), 0.5
(dashed), 1 (dotted)
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A key question in practice is whether one should assume beforehand
that the percentile residual life function is monotone. Our real data
application shows that this is not always the case. It would be very
interesting to develop goodness-of-fit tests for the monotonicity as-
sumption. A possible way of doing that is through a proper distance
between the restricted and the unrestricted estimators. This topic is
currently under research. Finally, the application of the ideas in this
paper for the estimation of monotone increasing residual life functions
is possible, and completely analogous estimators are obtained in such
a case.
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Chapter 10

A Review on Convolutions
of Gamma Random
Variables

Baha-Eldin Khaledi and Subhash Kochar

Abstract: Due to its wide range of applications, the distribution
theory of convolutions of gamma random variables has attracted the
attention from many researchers. In this paper, we review some of the
latest developments on this problem.

10.1 Introduction

The convolution of independent random variables has attracted consid-
erable attention in the literature due to its typical applications in many
applied areas. For example, in reliability theory, it is used to study the
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200 Convolutions of Gamma Random Variables

lifetimes of redundant standby systems with independent components
(cf. Bon and Păltănea [75]); in actuarial science, it is used to model
the total claims on a number of policies in the individual risk model
(cf. Kaas et al. [219]); in nonparametric goodness-of-fit tests, the lim-
iting distributions of U-statistics are the convolutions of independent
random variables (cf. Serfling [417], Sect. 5.2). As another example,
let Xi denote the random value of ith shock on a system; then the sys-
tem fails if the convolution of a number of Xi’s exceeds the system’s
threshold (cf. Marshall and Olkin [311]). Therefore, study of lifetime
of a standby system or a cumulative damage threshold model is based
on stochastic properties of convolutions of random variables.

The gamma distribution is one of the most popular distributions
in statistics, engineering, and reliability applications. In particular,
gamma distribution plays a prominent role in actuarial science since
most total insurance claim distributions have roughly the same shape
as gamma distributions: skewed to the right, nonnegatively supported,
and unimodal (cf. Furman [170]). As is well known, the gamma dis-
tribution includes exponential and chi-square, two important distribu-
tions, as special cases. Due to the complicated nature of the distri-
bution function of gamma random variable, most of the work in the
literature discusses only the convolutions of exponential random vari-
ables. Some relevant references are Khaledi [226], Boland et al. [71],
Kochar and Ma [252], Bon and Păltănea [75], Zhao and Balakrishnan
[488], and Kochar and Xu [259].

Let X1, . . . ,Xn be a random sample from a gamma distribution
with shape parameter a > 0, scale parameter λ > 0, and density
function

f(x) =
λa

Γ(a)
xa−1 exp {−λx} , x ≥ 0.

We are interested in studying the stochastic properties of statistics of
the form

W = θ1X1 + θ2X2 + · · ·+ θnXn,

where θ1, . . . , θn are positive weights (constants). Bock et al. [64]
showed that for n = 2, if

t ≤ a(θ1 + θ2)

λ
,

then P{W ≤ t} is Schur convex in (θ1, θ2), and if
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t ≥ (a+ 1/2)(θ1 + θ2)

λ
,

then P{W ≥ t} is Schur convex in (θ1, θ2). For general n>2, P{W≤t}
is Schur convex in the region

{

θ : min
1≤i≤n

θi ≥ tλ

na+ 1

}

,

where θ = (θ1, . . . , θn), and P{W ≥ t} is Schur convex in θ for

t ≥ (na+ 1)(θ1 + θ2 + · · ·+ θn)

λ
.

Diaconis and Perlman [123] further studied the tail probabilities of
convolution of gamma random variables. They pointed out that if

(θ1, . . . , θn)
m� (θ′1, . . . , θ

′
n) (10.1.1)

then

Var

[

n
∑

i=1

θiXi

]

≥ Var

[

n
∑

i=1

θ′iXi

]

,

where
m� means the majorization order (see Definition 10.3.1).

This property states that the convolutions are more dispersed
about their means as measured by their variances if the weights are
more dispersed in the sense of majorization. Diaconis and Perl-
man [123] also wondered whether

∑n
i=1 θiXi is more dispersed than

∑n
i=1 θ

′
iXi as measured by the stronger criterion of their tail prob-

abilities. They tried to answer this question by proving that under
the condition (10.1.1), the distribution functions of

∑n
i=1 θiXi and

∑n
i=1 θ

′
iXi have only one crossing. However, they only proved this

result for n = 2. For n ≥ 3, they required further restrictions. Hence,
this problem has been open for a long time, which is also known as
Unique Crossing Conjecture.

The rest of this paper is organized as follows: In Sect. 10.2, we first
review some stochastic orders and majorization orders. In Sect. 10.3,
we investigate the crossing properties of two convolutions of gamma
random variables under various conditions on the parameters for n=2.
In Sect. 10.4, we establish the right spread ordering between two con-
volutions of independent gamma random variables for arbitrary n. We
conclude our discussion with some remarks in the last section.
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10.2 Preliminaries

In this section, we will review some notions of stochastic orders and
majorization orders.

Assume that the positive random variables X and Y have distribu-
tion functions F and G, survival functions F = 1−F and G = 1−G,
density functions f and g, and failure rate functions rX = f/F and
rY = g/G, respectively. The following orders are usually used to com-
pare the magnitude of random variables:

Definition 10.2.1. X is said to be smaller than Y in the:

(i) Likelihood ratio order (denoted by X ≤lr Y ) if g(x)/f(x) is
increasing in x

(ii) Hazard rate order (denoted by X ≤hr Y ) if G(x)/F (x) is increas-
ing in x

(iii) Stochastic ordering (denoted by X ≤st Y ) if F (x) ≤ G(x) for
every x

(iv) Mean residual life order, denoted by X ≤mrl Y , if

∫ ∞

t
F (x)dx

F (t)
≤

∫ ∞

t
G(x)dx

Ḡ(t)

It is known that (cf. Shaked and Shanthikumar [427])

X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤mrl Y =⇒ E[X] ≤ E[Y ],

and

X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤st Y =⇒ E[X] ≤ E[Y ].

The following order, called the dispersive order, is used to compare
the variabilities of two random variables.

Definition 10.2.2. X is said to be less dispersed than Y (denoted by
X ≤disp Y ) if

F−1(β)− F−1(α) ≤ G−1(β)−G−1(α)

for all 0 < α ≤ β < 1.
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A weaker order called the right spread order has also been proposed
to compare the variabilities of two distributions (cf. Fernández-Ponce
et al. [160]).

Definition 10.2.3. X is said to be less right spread than Y (denoted
by X ≤RS Y ) if

∫ ∞

F−1(p)
F (x) dx ≤

∫ ∞

G−1(p)
G(x)dx, for all 0 ≤ p ≤ 1.

It is known that

X ≤disp Y =⇒ X ≤RS Y =⇒ Var(X) ≤ Var(Y ).

Bagai and Kochar [24] proved the following result:

Theorem 10.2.4. If X ≤disp Y and F or G is IFR (increasing failure
rate), then X ≤hr Y .

Definition 10.2.5. X is said to be smaller than Y in the star order,
denoted by X ≤∗ Y (or F ≤∗ G) if G−1F (x)/x is increasing in x on
the support of X, where G−1 is the right continuous inverse of G.

It is known that if X ≤∗ Y , then F (x) crosses G(θx) at most once
and from above as x increases from 0 to ∞, for each θ > 0. If X ≤∗ Y ,
then Y is more skewed than X as explained in Marshall and Olkin
[311]. The star order is also called more IFRA (increasing failure rate
in average) order in reliability theory for reason explained below. The
average failure of F at x is

r̃X(x) =
1

x

∫ x

0
rX(u)du =

− lnF (x)

x
.

Thus F ≤∗ G can be interpreted in terms of average failure rates as

r̃X(F
−1(u))

r̃Y (G−1(u))
=
G−1(u)
F−1(u)

being increasing in u ∈ (0, 1). A random variable X is said to have an
IFRA distribution if its average failure rate r̃X(x) is increasing. Note
that X has an IFRA distribution if and only if F is star ordered with
respect to exponential distribution.
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Definition 10.2.6. X is said to be more NBUE (new better than
used in expectation) than Y or X is smaller than Y in the NBUE
order (written as X ≤NBUE Y ) if

1

μF

∫ ∞

F−1(u)
F (x)dx ≤ 1

μG

∫ ∞

G−1(u)
G(x)dx, for all u ∈ (0, 1],

where μF (μG) denotes the expectation of X (Y ).

It has been shown in Kochar [246] that

X ≤∗ Y =⇒ X ≤NBUE Y =⇒ X ≤Lorenz Y,

where ≤Lorenz means the Lorenz order, a well-known order in eco-
nomics. It is also known that (Marshall and Olkin [311], p. 69),

X ≤Lorenz Y =⇒ γX ≤ γY ,

where γX =
√

Var[X]/E[X] denotes the coefficient of variation of X.
A good discussion of those orders can be found in Barlow and Proschan
[39], Marshall and Olkin [311], and Shaked and Shanthikumar [427].

When E[X] = E[Y ], the order ≤RS is equivalent to the order
≤NBUE. However, they are distinct when E[X] �= E[Y ]. For more
details, please refer to Kochar et al. [250].

We will also use majorization in the following discussion. Let
{x(1), x(2), . . . , x(n)} denote the increasing arrangement of the com-
ponents of the vector x = (x1, x2, . . . , xn).

Definition 10.2.7. The vector x in R
n
+ is said to majorize the vector

y in R
n
+ (denoted by x

m� y) if

j
∑

i=1

x(i) ≤
j

∑

i=1

y(i)

for j = 1, . . . , n− 1 and
∑n

i=1 x(i) =
∑n

i=1 y(i).

Relaxing the equality condition gives the following weak majoriza-
tion order:

Definition 10.2.8. The vector x in R
n
+ is said to weakly submajorize

the vector y in R
n
+ (denoted by x

w� y) if, for j = 1, . . . , n,
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j
∑

i=1

x[i] ≥
j

∑

i=1

y[i]

where {x[1], x[2], . . . , x[n]} denotes the decreasing arrangement of the
components of the vector x = (x1, x2, . . . , xn).

For extensive and comprehensive details on the theory of the ma-
jorization order and its applications, please refer to Marshall and
Olkin [308].

Another interesting weaker order related to the majorization order
introduced by Bon and Păltănea [75] is the p-larger order.

Definition 10.2.9. A vector x in R
n
+ is said to be p-larger than

another vector y in R
n
+ (denoted by x

p
� y) if

j
∏

i=1

x(i) ≤
j

∏

i=1

y(i), j = 1, . . . , n.

Zhao and Balakrishnan [488] introduced the following order of
reciprocal majorization.

Definition 10.2.10. A vector x in R
n
+ is said to reciprocally majorize

the another vector y in R
n
+ (denoted by x

rm� y) if

j
∑

i=1

1

x(i)
≥

j
∑

i=1

1

y(i)
, j = 1, . . . , n.

It has been pointed out in Kochar and Xu [259] that

x
m� y =⇒ x

p
� y =⇒ x

rm� y.

10.3 Magnitude and Dispersive Orderings

Let X1, . . . ,Xn be independent exponential random variables with Xi

having hazard rate λi, i = 1, . . . , n, and Y1, . . . , Yn be another set of
independent exponential random variables with Yi having hazard rate
λ′i, i = 1, . . . , n. Boland, EI-Newehi and Proschan [71] showed that
under the condition of the majorization order,

(λ1, . . . , λn)
m� (λ′1, . . . , λ

′
n) =⇒

n
∑

i=1

Xi ≥lr

n
∑

i=1

Yi.
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Under the same condition, Kochar and Ma [252] proved that

(λ1, . . . , λn)
m� (λ′1, . . . , λ

′
n) =⇒

n
∑

i=1

Xi ≥disp

n
∑

i=1

Yi. (10.3.1)

This topic has been extensively investigated by Bon and Păltănea
[75]. They pointed out that, under the p-larger order, which is a
weaker order than the majorization order,

(λ1, . . . , λn)
p
� (λ′1, . . . , λ

′
n) =⇒

n
∑

i=1

Xi ≥hr

n
∑

i=1

Yi.

This result has been strengthened by Khaledi [226] as

(λ1, . . . , λn)
p
� (λ′1, . . . , λ

′
n) =⇒

n
∑

i=1

Xi ≥disp

n
∑

i=1

Yi. (10.3.2)

More recently, Zhao and Balakrishnan [488] proved that, under the
condition of reciprocal order,

(λ1, . . . , λn)
rm� (λ′1, . . . , λ

′
n) =⇒

n
∑

i=1

Xi ≥mrl

n
∑

i=1

Yi. (10.3.3)

The result (10.3.1) of Kochar and Ma [252] can be immediately
extended to convolutions of Erlang random variables as follows:

Theorem 10.3.1. Let Xλ1 , . . . ,Xλn be independent random variables
such that for i = 1, . . . , n, Xλi has gamma distribution with scale pa-
rameter λi and a common shape parameter a which is an integer such
that a ≥ 1. Then

λ
m� λ∗ =⇒

n
∑

i=1

Xλi ≥disp

n
∑

i=1

Xλ∗i . (10.3.4)

Korwar [266] generalized Theorem (10.3.1) to the case of a ≥ 1.
Khaledi and Kochar [233] strengthened this result with majorization
replaced by p-larger ordering in (10.3.1).

Theorem 10.3.2. Let Xλ1 , . . . ,Xλn be independent random variables
such that Xλi has gamma distribution with shape parameter a ≥ 1 and
scale parameter λi, for i = 1, . . . , n. Then

λ
p
� λ∗ =⇒

n
∑

i=1

Xλi ≥disp

n
∑

i=1

Xλ∗i . (10.3.5)
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The following result is an immediate consequence of Theorem
10.3.2, Theorem 10.2.4, and the fact that convolutions of IFR dis-
tributions are IFR.

Corollary 10.3.3. Let Xλ1 , . . . ,Xλn be independent random variables
such that Xλi has gamma distribution with shape parameter a ≥ 1 and
scale parameter λi, for i = 1, . . . , n. Then,

λ
p
� λ∗ =⇒

n
∑

i=1

Xλi ≥hr

n
∑

i=1

Xλ∗i . (10.3.6)

Since (λ1, λ2, . . . , λn)
p
� (λ̃, λ̃, . . . , λ̃), where λ̃ is the geometric

mean of the λi’s, the following lower bounds on various quantities
of interest associated with convolutions of gamma random variables
are given next.

Corollary 10.3.4. Let Xλ1 , . . . ,Xλn be independent random variables
such that Xλi has gamma distribution with shape parameter a ≥ 1 and
scale parameter λi, for i = 1, . . . , n. Then,

(a)
∑n

i=1Xλi ≥disp

∑n
i=1 Yi.

(b)
∑n

i=1Xλi ≥hr
∑n

i=1 Yi which implies

(c)
∑n

i=1Xλi ≥st
∑n

i=1 Yi,

where Y1, . . . , Yn is a random sample from a gamma distribution with
shape parameter a ≥ 1 and scale parameter λ̃, the geometric mean of
λi’s.

This result leads to better bounds for measures of variability for
∑n

i=1Xλi by replacing λ’s by their geometric mean. On the other hand
the bounds given by Korwar [266] uses arithmetic mean λ =

∑n
i=1 λi

instead of the geometric mean on the right-hand sides of the above
inequalities.

In Figs. 10.1 and 10.2 we plot the distribution functions of convo-
lutions of two independent gamma random variables along with the
bounds given by Corollary 10.3.4(c) and by Korwar [266].

In Figs. 10.3 and 10.4 we plot the hazard functions of convolutions
of two independent gamma random variables along with the bounds
given by Corollary 10.3.4(b) and by Korwar [266]. The vector of pa-
rameters in Figs. 10.1 and 10.3 is λ1 = (1, 2) and that in Figs. 10.2
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Figure 10.1: Graphs of distribution functions of S(λ1, λ2)
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Figure 10.2: Graphs of distribution functions of S(λ1, λ2)

and 10.4 is λ2 = (0.25, 2.75). Note that λ2

m� λ1. It appears from these
figures that the improvements on the bounds are relatively more if λi’s
are more dispersed in the sense of majorization. The fact that this is
true follows because the geometric mean is Schur concave, whereas
the arithmetic mean is Schur constant and the distribution (hazard
rate) of convolutions of i.i.d. gamma random variables with common
parameter λ̃ is decreasing (increasing) in λ̃.

The following result due to Amiri, Khaledi and Samaniego [11] is
a generalization of Theorem 4.1 of Zhao and Balakrishnan [488] and
Corollary 3.8 in Kochar and Xu [259] from convolutions of independent
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Figure 10.3: Graphs of hazard rates of S(λ1, λ2)
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Figure 10.4: Graphs of hazard rates of S(λ1, λ2)

exponential distributions to convolutions of gamma distributions with
common shape parameters a ≥ 1.

Theorem 10.3.5. Let Xλ1 , . . . ,Xλn be independent random variables
such that Xλi has gamma distribution with shape parameter a ≥ 1 and
scale parameter λi, for i = 1, . . . , n. Then,

(λ1, . . . , λn)
rm� (λ∗1, . . . , λ

∗
n) =⇒

n
∑

i=1

Xλi ≥mrl

n
∑

i=1

Xλ∗i .

Corollary 10.3.6. Let Xλ1 , . . . ,Xλn be independent random variables
such that Xλi has gamma distribution with shape parameter a ≥ 1
and scale parameter λi, for i = 1, . . . , n and Y1, . . . , Yn be a random
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sample from a gamma distribution with shape parameter a ≥ 1 and
scale parameter λH , where λH is harmonic mean of λi’s. Then,

(λ1, . . . , λn)
rm� (λ∗1, . . . , λ

∗
n) =⇒

n
∑

i=1

Xλi ≥mrl

n
∑

i=1

Yi.

This corollary provides a computable lower bound on mrl function
of convolutions of gamma random variables which is sharper than those
that can be obtained from Theorem 3.4 of Korwar [266] in terms of
arithmetic mean and from Corollary 2.2 of Khaledi and Kochar [233]
in terms of geometric mean of λi’s. To justify these observations, in
Figs. 10.5 and 10.6, we plot the mean residual life functions of convo-
lutions of two independent gamma random variables with bound given
in terms of arithmetic mean, geometric mean, and harmonic mean of
λi’s. In Fig. 10.5, we plot the mean residual functions for λ1 = 3.6 and
λ2 = 0.4.

Figure 10.5: Mean residual function of convolutions of gamma random
variables

We also plot the mean residual life functions of convolutions of
independent gamma random variables for different sets of λi’s
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(2, 6)
rm� (5.2, 2.4)

rm� (3, 6)
rm� (4, 4)

that show how rm ordering between λi’s will affect the mean residual
life function of convolutions of gamma random variables.

Mi, Shi and Zhou [320] studied linear combinations of independent
gamma random variables with different integer shape parameters (i.e.,
Erlang random variables). They established the likelihood ratio or-
dering between two linear combinations of Erlang random variables
under some restrictions on the coefficients and shape parameters. It
is interesting to note that Yu [484] proved

n
∑

i=1

βiXi ≥st

n
∑

i=1

βXi ⇐⇒
n
∏

i=1

βaii ≥
n
∏

i=1

βai , (10.3.7)

where β, βi ∈ R+, and Xi’s are gamma random variables Γ(ai, λ) for
i = 1, . . . , n, respectively.

Kochar and Xu [264] presented the following equivalent charac-
terization of stochastic ordering between two linear combinations of
independent gamma random variables.

Figure 10.6: Mean residual function of convolutions of gamma random
variables
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Lemma 10.3.7. Let X1 and X2 be independent gamma random vari-
ables Γ(a1, λ) and Γ(a2, λ), respectively. If β(2)/β(1) ≥ β′(2)/β

′
(1), then

the following statements are equivalent:

1. βa1(1)β
a2
(2) ≥

(

β′(1)
)a1(β′(2)

)a2

2. β(1)X1 + β(2)X2 ≥st β
′
(1)X1 + β′(2)X2

They also proved the following result, which recovers Theorem 3.3
in Zhao [487]:

Theorem 10.3.8. Let X1, . . . ,Xn be independent gamma random
variables Γ(a1, λ), . . ., Γ(an, λ), respectively. If 1 ≤ a1 ≤ a2 ≤ . . . ≤
an, then

(log(β1), . . . , log(βn))
w� (

log(β′
1), . . . , log(β

′
n)
)
=⇒

n∑
i=1

β(i)Xi ≥disp

n∑
i=1

β′
(i)Xi.

10.4 Star Ordering

Kochar and Xu [259] proved the following result on convolutions of
exponential random variables:

(

1

λ1
, . . . ,

1

λn

)

m�
(

1

λ∗1
, . . . ,

1

λ∗n

)

=⇒
n

∑

i=1

Eλi ≥�
n

∑

i=1

Eλ∗i , (10.4.1)

where Eλi , i = 1, . . . , n is exponential random variable with hazard
rate λi and " order stands for NBUE and Lorenz order. For more
details of Lorenz order the reader is referred to Sect. 3.A. in Shaked
and Shanthikumar [426].

Let Xθ1 , Xθ2 , Xθ′1 , and Xθ′2 be independent gamma random
variables with a common shape parameter a and scale parameters
θ1 = 1/λ1, θ2 = 1/λ2, θ

′
1 = 1/λ′1, and θ′2 = 1/λ′2, respectively. Propo-

sition 2.1 of Diaconis and Perlman [123] shows that if

(λ1, λ2)
m� (λ′1, λ

′
2),

then the distribution function of Xθ1 +Xθ2 crosses that of Xθ′1 +Xθ′2
exactly once.

In this section, it will be shown that under various conditions on the
scale parameters, one can establish star ordering between convolutions
of gamma random variables .
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Recently, Kochar and Xu [263] studied the problem of comparing
the skewness of linear combinations of independent gamma random
variables. Let X1 and X2 be independent and identically distributed
gamma random variables Γ(a, λ). They proved that for (βi, β

′
i) ∈ R

2
+,

i = 1, 2, if either

(β1, β2)
m� (

β′1, β
′
2

)

(10.4.2)

or
(

1

β1
,
1

β2

)

m�
(

1

β′1
,
1

β′2

)

(10.4.3)

then

β1X1 + β2X2 ≥∗ β′1X1 + β′2X2, (10.4.4)

where ≥∗ denotes the star order and
m� denotes the majorization order.

Amiri et al. [11] also independently proved the above results when
a ≥ 1. These results are closely related to a result of Yu [484], who
proved that, for βi ∈ R+,

n
∑

i=1

βiXi ≥∗
n

∑

i=1

Xi, (10.4.5)

where Xi’s are gamma random variables Γ(ai, λ) for i = 1, . . . , n, re-
spectively. These results reveal that if the coefficients are more dis-
persed, then the linear combinations are more skewed as compared by
star ordering.

This topic is further pursued by Zhao [487] who extended the re-
sults of Eqs. (10.4.2)–(10.4.4) to the case of independent gamma ran-
dom variables with different shape parameters. More precisely, let X1

andX2 be independent gamma random variables Γ(a1, λ) and Γ(a2, λ).
Zhao proved that for β1 ≤ β2 and β′1 ≤ β′2,

(β1, β2)
m� (

β′1, β
′
2

)

=⇒ β1X1 + β2X2 ≥∗ β′1X1 + β′2X2, (10.4.6)

and if β1 ≤ β2, β
′
1 ≤ β′2, and a1 ≤ a2, then

(

1

β1
,
1

β2

)

m�
(

1

β′1
,
1

β′2

)

=⇒ β1X1 + β2X2 ≥∗ β′1X1 + β′2X2. (10.4.7)

Kochar and Xu [262] give a different sufficient condition on the
scale parameters of the convoluting gamma random variables for star
ordering to hold.
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Theorem 10.4.1. Let Xθ1 , Xθ2 , Xθ′1 , Xθ′2 be independent gamma ran-
dom variables with a common shape parameter a and scale parameters
θ1 = 1/λ1, θ2 = 1/λ2, θ

′
1 = 1/λ′1, and θ′2 = 1/λ′2. Then,

(λ1, λ2)
m� (λ′1, λ

′
2) =⇒ Xθ1 +Xθ2 ≥∗ Xθ′1 +Xθ′2 .

Remark 10.4.2. Theorem 10.4.1 implies that the distribution func-
tion of Xθ1+Xθ2 crosses that of Xθ′1+Xθ′2 at most once, no matter how
Xθ1 +Xθ2 is scaled. As a special case, they have exactly one crossing
when both sides have the same mean which strengthens Proposition 2.1
in Diaconis and Perlman [123].

Recently Kochar and Xu [264] have given a new sufficient condition
for ordering the skewness of linear combinations of two independent
gamma random variables with arbitrary shape parameters and this
result unifies the previous results on this topic as given above.

Theorem 10.4.3. Let X1 and X2 be independent gamma random
variables Γ(a1, λ) and Γ(a2, λ), respectively. Then,

β(2)

β(1)
≥
β′(2)
β′(1)

=⇒ β(1)X1 + β(2)X2 ≥∗ β′(1)X1 + β′(2)X2,

where {β(1), β(2)} denotes the increasing arrangement of the compo-
nents of the vector (β1, β2) ∈ R

2
+.

Remark 10.4.4. The condition given in the Theorem 10.4.3 is very
general. It is weaker than any of the following conditions, which are
commonly used in the literature:

1. (β1, β2)
m� (β′1, β

′
2)

2. (log(β1), log(β2))
m� (log(β′1), log(β

′
2))

3. (1/β1, 1/β2)
m� (1/β′1, 1/β′2)

Remark 10.4.5. Conditions (a) and (c) have been used to prove
Theorems 4.2 and 4.3 in Zhao [487] [see also Eqs. (10.4.6) and (10.4.7)].
The proof of Theorem 4.2 of Zhao [487] is quite involved. However,
it follows immediately from Remark 1.
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10.5 Right Spread Order of Linear

Combinations

Amiri et al. [11] proved the following result on RS ordering between
convolutions of gamma random variables with a common shape pa-
rameter.

Theorem 10.5.1. Let Xλ1 , . . . ,Xλn be independent random variables
such that Xλi has gamma distribution with shape parameter a ≥ 1 and
scale parameter λi, for i = 1, . . . , n. Then,

(λ1, . . . , λn)
rm� (λ∗1, . . . , λ

∗
n) =⇒

n
∑

i=1

Xλi ≥RS

n
∑

i=1

Xλ∗i .

Theorem 10.5.1 generalizes Corollary 3.9 of Kochar and Xu [259]
from convolutions of independent Erlang distributions to convolutions
of gamma distributions with common shape parameters a ≥ 1.

Now we consider the case when the shape parameters of the gamma
random variables are not necessarily equal. The first result (cf. Kochar
and Xu [264]) gives the following characterization of right spread order
for linear combinations of two gamma random variables:

Lemma 10.5.2. Let X1 and X2 be independent gamma random vari-
ables Γ(a1, λ) and Γ(a2, λ), respectively. If β(2)/β(1) ≥ β′(2)/β

′
(1), then

the following statements are equivalent:

1. β(1)a1 + β(2)a2 ≥ β′(1)a1 + β′(2)a2

2. β(1)X1 + β(2)X2 ≥RS β
′
(1)X1 + β′(2)X2

Proof : It follows from Theorem 4.3 in Fernández-Ponce et al. [160]
that for two nonnegative random variables X and Y , if X ≤∗ Y , then

E[X] ≤ E[Y ] ⇐⇒ X ≤RS Y.

It follows from Theorem 10.4.3 that under the given assumption,

β(1)X1 + β(2)X2 ≥∗ β′(1)X1 + β′(2)X2.

Hence,
β(1)X1 + β(2)X2 ≥RS β

′
(1)X1 + β′(2)X2

is equivalent to

E
[

β(1)X1 + β(2)X2

[

≥ E
[

β′(1)X1 + β′(2)X2

]

.

So, the desired result follows.

]
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Remark 10.5.3. Theorem 4.5 in Zhao [487] states that if 1 ≤ a1 ≤ a2,
then

(β1, β2)
w� (

β′1, β
′
2

)

=⇒ β(1)X1 + β(2)X2 ≥RS β
′
(1)X1 + β′(2)X2.

Lemma 10.5.2 removes the restriction on the shape parameters.

As a direct consequence, we have the following result:

Corollary 10.5.4. Let X1 and X2 be independent gamma random
variables Γ(a1, λ) and Γ(a2, λ), respectively. Then,

(β1, β2)
m� (

β′1, β
′
2

)

=⇒ β(1)X1 + β(2)X2 ≥RS β
′
(1)X1 + β′(2)X2.

The following result of Zhao [487] immediately follows from Corol-
lary 10.5.4, Theorem 3.C.7 of Shaked and Shanthikumar [427], and
similar argument to Theorem 10.3.8.

Corollary 10.5.5. Let mutually independent random variables
X1, . . . ,Xn have gamma distributions Γ(a1, λ), . . . ,Γ(an, λ), respec-
tively. If 1 ≤ a1 ≤ a2 ≤ · · · ≤ an, then

(β1, . . . , βn)
w� (

β′1, . . . , β
′
n

)

=⇒
n

∑

i=1

β(i)Xi ≥RS

n
∑

i=1

β′(i)Xi.

Yu [484] gave necessary and sufficient conditions for stochasti-
cally comparing linear combinations of heterogeneous and homoge-
neous gamma random variables. The following result gives necessary
and sufficient conditions for comparing linear combinations of gamma
random variables according to right spread order:

Proposition 10.5.6. Let mutually independent random variables
X1, . . . ,Xn have gamma distributions Γ(a1, λ), . . . ,Γ(an, λ), respec-
tively. Then,

n
∑

i=1

βiXi ≥RS β
n

∑

i=1

Xi ⇐⇒ β ≤
∑n

i=1 βiai
∑n

i=1 ai
.

Proof : It follows from Yu [484] [see also (10.4.5)] that

n
∑

i=1

βiXi ≥∗ β
n

∑

i=1

Xi.
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Using Theorem 4.3 in Fernández-Ponce et al. [160] again, we have

n
∑

i=1

βiXi ≥RS β

n
∑

i=1

Xi ⇐⇒ E

(

n
∑

i=1

βiXi

)

≤ E

[

n
∑

i=1

βXi

]

.

Hence, the required result follows.
Compared to Corollary 10.5.5, Proposition 10.5.6 poses no restric-

tion on the shape parameters.
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11.1 Introduction

Coherent systems are often considered in reliability theory to describe
the structure and the performance of complex systems. Consider an
item formed by a number n of components, i.e., an n-component sys-
tem. Its structure function φ : {0, 1}n → {0, 1} is a function that maps
the state vector x̂ = (x̂1, . . . , x̂n) of its components (where x̂i = 1 if
component i is working and x̂i = 0 if it is failed) to the state ŷ ∈ {0, 1}
of the system itself. The system is said to be coherent whenever every
component is relevant (i.e., it affects the working or failure of the sys-
tem) and the structure function is monotone in every component (i.e.,
replacing a failed component by a working component cannot cause a
working system to fail). For example, k-out-of-n systems, and series
and parallel systems in particular, are coherent systems. See Esary and
Marshall [152] or Barlow and Proschan [39] for a detailed introduction
to coherent systems and related properties and applications.

Several problems and results dealing with aging properties for
lifetimes of coherent systems, or with stochastic comparisons among
coherent systems, have been considered in reliability literature. In
particular, the closure property of some aging notions with respect to
construction of coherent systems has been investigated, in most of the
cases assuming independence among the lifetimes of the system’s com-
ponents (see, e.g, Barlow and Proschan [39], Samaniego [407], Desh-
pande et al. [121], Franco et al. [169], Li and Chen [286]).

Among others, a natural question dealing with coherent systems
is on the comparison between the reliability of a used coherent sys-
tem and the reliability of a systems with used components. Precisely,
denoted with X the vector of the component’s lifetimes and with TX
the lifetime of the system, one can consider stochastic comparisons
between the residual lifetimes

[TX − t | TX > t]

and

[TX − t | Xi > t, ∀i = 1, . . . , n],

for t ≥ 0. In fact, it is commonly assumed that the former is smaller,
in some stochastic sense, than the latter. The intuitive explanation of
this fact is that the reliability of a system with all components being
in working state is higher with respect to the case with some of them
being in failure state, even if the system is not in failure state. This
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assertion, which is actually true under assumption of independence
among components (see, e.g., Pellerey and Petakos [371], or Li and
Lu [291]), is not always verified for non-independent components, as
shown, for example, in Sect. 11.2.

This problem, and similar problems, has been recently investigated,
for example, in Khaledi and Shaked [235], Navarro et al. [339], or
Samaniego et al. [409], under the assumption of independence among
components’ lifetimes, or in Zhang [486], under assumption of ex-
changeability of components’ lifetimes. The purpose of this paper
is to generalize some of the results appearing in the above-mentioned
references, in particular providing conditions on the vector X such
that

[TX − t | TX > t] ≤st [TX − t | Xi > t, ∀i = 1, . . . , n], (11.1.1)

even under the case of components having non-independent or ex-
changeable lifetimes, where ≤st denotes the usual stochastic order
(whose definition is recalled below). These conditions are described
in Sect. 11.2. As a corollary of the main result, a few statements that
describe conditions on X such that the system’s lifetime TX satis-
fies some of the most well-known aging properties are presented in
Sect. 11.3.

For ease of reference, some notations are introduced, and the def-
initions of several stochastic orders and dependence concepts which
will be used in sequel are recalled.

Throughout this note, the terms increasing and decreasing stand for
nondecreasing and nonincreasing, respectively. A function φ : Rn → R

is said to be increasing when φ(x) ≤ φ(y) for x ≤ y, which denotes
xi ≤ yi for all i = 1, . . . , n. All random variables under investigation
are nonnegative, and expectations are implicitly assumed to be finite
once they appear. The notation [X | A] stands for the random object
whose distribution is the conditional distribution of X given the event
A. The dimension of a random vector is clear from the context and
unless otherwise stated it is assumed to be n. We will denote with
I = {1, . . . , n} the set of component’s indices and with Ii = {1, . . . , i},
for i = 1, . . . , n, their subsets. For any nonempty A ⊂ I, XA and xA
denote the random vector of those Xi’s with i ∈ A and the correspond-
ing constant vector, respectively. Besides, for any s ≥ 0, notation s
denotes the constant vector (s, . . . , s) with the dimension conform-
ing to its circumstance. Finally, the following notation is adopted:
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x ∧ y = (x1 ∧ y1, . . . , xn ∧ yn), x ∨ y = (x1 ∨ y1, . . . , xn ∨ yn), and
u ∧ v = min{u, v}, u ∨ v = max{u, v}.

Some well-known stochastic orders are recalled in the following
definition. Further details, properties, and applications of these orders
may be found in Shaked and Shanthikumar [426].

Definition 11.1.1. Given two random vectors (or variables) X and
Y , X is said to be smaller than Y in the following:

(i) Likelihood ratio order (denoted by X ≤lr Y ) if their joint den-
sities f and g satisfy f(x)g(y) ≤ f(x ∧ y)g(x ∨ y) for any x
and y

(ii) Stochastic order (denoted by X ≤st Y ) if E[φ(X)] ≤ E[φ(Y )]
for any increasing function φ with finite expectations;

(iii) Increasing convex order (denoted by X ≤icx Y ) if E[φ(X)] ≤
E[φ(Y )] for any increasing and convex function φ with finite
expectations

(iv) Increasing concave order (denoted by X ≤icv Y ) if E[φ(X)] ≤
E[φ(Y )] for any increasing and concave function φ with finite
expectation

(v) Upper orthant order (denoted by X ≤uo Y ) if E[
∏n
i=1 φi(Xi)] ≤

E[
∏n
i=1 φi(Yi)] for any set of nonnegative increasing functions

φi, i = 1 . . . , n such that expectations exist

Recall that, in the univariate case, X ≤st Y if, and only if,
P{X > t} ≤ P{Y > t} for all t ∈ R. The following two positive
dependence notions also are well known (see, e.g., Joe [211], or Shaked
and Shanthikumar [426]):

Definition 11.1.2. A random vector X is said to bemultivariate total
positive of order 2 (MTP2) if its joint density f satisfies f(x)f(y) ≤
f(x ∨ y)f(x ∧ y) for any x, y.

Definition 11.1.3. For a bivariate vector X = (X1,X2), X2 is said to
be right tail increasing (RTI) in X1 if [X2 | X1 > x1] is stochastically
increasing in x1 (and similarly X1 is said to be RTI in X2 if [X1 | X2 >
x2] is stochastically increasing in x2).
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It should be mentioned that MTP2 property implies RTI property
in both directions, while the reverse may not be true (see, e.g., Joe
[211], or Müller and Scarsini [333], and references therein).

Finally, we recall that for a coherent system having structure func-
tion φ, the relationship between the vector X of component’s lifetimes
and system’s lifetime TX is described by the relation TX = τ(X),
where the coherent life function τ : Rn → R is defined as

τ(x1, . . . , xn) = sup{t ≥ 0 : φ(x̂1,t, . . . , x̂n,t) = 1},
where x̂i,t = 1 if xi > t, or x̂i,t = 0 if xi ≤ t, for i ∈ I. It should recall
that coherent life functions are increasing and such that

τ(t1 − s, . . . , tn − s) = τ(t1, . . . , tn)− s, (11.1.2)

for every s ≥ 0 and ti ≥ s, i ∈ I (see Esary and Marshall [152]). Also, a
subset J = {i1, . . . , iJ} ⊆ {1, . . . , n} of the components indices is said
to be a path set if the system is working whenever the components
indexed in J are working.

11.2 Main Results

First, we show that stochastic inequality (11.1.1) does not necessarily
hold. In fact, let X = (X1,X2) be such that

P{(X1,X2) = (2, 1)} = 1/4

P{(X1,X2) = (2, 2)} = 3/8

P{(X1,X2) = (3, 1)} = 1/4

P{(X1,X2) = (3, 2)} = 1/8

and let TX = max{X1,X2}. Letting t = 1.5 and s = 1, it holds that

P{TX − t > s|TX > t} =
P{max{X1,X2} > 2.5}
P{max{X1,X2} > 1.5} = 3/8,

while

P{TX − t > s|Xi > t, ∀i} =
P{max{X1, X2} > 2.5, X1 > 1.5, X2 > 1.5}

P{X1 > 1.5, X2 > 1.5} = 1/4,

so that (11.1.1) cannot be satisfied.
The following statement provides the first sufficient condition un-

der which the stochastic comparison between [TX − t | TX > t] and
[TX − t | Xi > t,∀i = 1, . . . , n] does hold.
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Theorem 11.2.1. Let X be a vector of component’s lifetimes such
that, for any nonempty A ⊂ I and s = (s, . . . , s) with s ≥ 0,

[XĀ − s | X > s] ≥st [XĀ − s | XA ≤ s,XĀ > s]. (11.2.1)

Then, (11.1.1) holds for any coherent system with lifetime TX = τ(X),
i.e.,

[TX − s | TX > s] ≤st [TX − s | X > s], s ≥ 0.

Proof : Denote with J1, J2, . . . , J� = I all possible path sets of the
coherent system which has lifetime TX . Then it holds that, for any
s ≥ 0,

{TX > s} =

�
⋃

i=1

{

XJi > s, XJ̄i
≤ s

}

.

For any s, t ≥ 0, let

ai = P{XJi > s, XJ̄i
≤ s}, i = 1, . . . , �,

bi = P{TX > s+ t, XJi > s, XJ̄i ≤ s}, i = 1, . . . , �.

We have

P{TX > s+ t | TX > s}
=

P {TX > s+ t, TX > s}
P{TX > s}

=

∑�
i=1 P

{

TX > s+ t, XJi > s, XJ̄i
≤ s

}

∑�
i=1 P

{

XJi > s, XJ̄i
≤ s

}

=

∑�
i=1 bi

∑�
i=1 ai

.

Now, for any path set Ji, denoted with ni its cardinality, consider
the system corresponding to the structure function φJi : {0, 1}ni →
{0, 1} defined as φJi(x̂Ji) = φ(x̂Ji , 0J̄i), i.e., letting in failed state all
the components outside the path set. Let T iXJi

= τi(XJi) denote the

lifetime of the subsystem whose structure function is φJi . Clearly,
for any x̂ ∈ {0, 1}n we have φJi(x̂Ji) = φ(x̂Ji ,0J̄i) ≤ φ(x̂Ji , x̂J̄i) =
φ(x̂), so that {T iXJi

> t} ⊆ {TX > t}. Moreover, since coherent life

functions are increasing, by (11.1.2) and (11.2.1) it holds that
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bi
ai

= P{TX > s+ t | XJi > s, XJ̄i ≤ s}
= P{τ(X) > s+ t | XJi > s, XJ̄i ≤ s}
= P{τ(X − s) > t | XJi > s, XJ̄i ≤ s}
= P{τi(XJi − s) > t | XJi > s, XJ̄i ≤ s}
≤ P{τi(XJi − s) > t | XJ� > s}
≤ P{τ(X − s) > t | XJ� > s}
= P{τ(X) > s+ t | XJ� > s}
= P{TX > s+ t | XJ� > s}
=

b�
a�
, for any i = 1, . . . , �.

Thus, bia� ≤ aib� for i = 1, . . . , �. This invokes

a�b1 + · · ·+ a�b� ≤ a1b� + · · ·+ a�b�

and hence
∑�

i=1 bi
∑�

i=1 ai
≤ b�
a�
,

which is just

P{TX − s > t | TX > s} ≤ P{TX − s > t | X > s},
i.e., the assertion.

Theorem 11.2.1 has a very nice physical implication and describes
conditions under which a coherent system of used components is better
than a used coherent system, in the sense of having stochastically
larger life length. This essentially claims that the positive dependence,
or the independence, among the components of the coherent system
is a sufficient condition for this property. Herewith, we address some
other sufficient conditions for the assumption (11.2.1) to hold.

Theorem 11.2.2. If the joint density of X = (X1, . . . ,Xn) is MTP2,
then (11.2.1) holds for any nonempty A ⊆ I and s ≥ 0.

Proof : Recall that the MTP2 property of (X1, . . . ,Xn) is equivalent
to X ≤lr X. Taking A and B as {XĀ > s,XA ≤ s} and {Xi > s, i =
1, . . . , n}, respectively, in Theorem 6.E.2 of Shaked and Shanthikumar
[426], we immediately obtain

[X | X > s] ≥lr [X | XA ≤ s,XĀ > s].
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Now, by Theorem 6.E.4(b) of Shaked and Shanthikumar [426], it
follows that

[XĀ | X > s] ≥lr [XĀ | XA ≤ s,XĀ > s],

and, by Theorem 6.E.8 in the same reference, we have

[XĀ | X > s] ≥st [XĀ | XA ≤ s,XĀ > s],

for any s ≥ 0.

A long list of multivariate distributions are MTP2. For example,
a large number of vectors of lifetimes having an archimedean survival
copula, or described by means of multivariate frailty models, satisfy
this property (see, on this aim, Bassan and Spizzichino [44], or Durante
et al. [137], and references therein). Other examples may be found
in Marshall and Olkin [308] or Joe [211]. However, there are also
many cases where this property is not satisfied, for example, when
X does not admit a density. In this case, property (11.2.1) may be
verified under alternative conditions, described in the following two
statements.

Before giving the next statements, observe that inequality (11.2.1)
is verified by all joint distributions that satisfy the dynamic multivari-
ate positive aging notions defined in Shaked and Shanthikumar [420]
and references therein. Among them, the weaker one is the property
introduced in Norros [361], called weakened by failures (WBF): a vec-
tor X is said to be WBF if

[XĀ − s | XA = xA,XĀ > s] ≥st [XĀ − s | XA = xA, Xi = xi,XĀ−{i} > s]

for all A ⊆ I, i ∈ I, xA ≤ s, and xi ≤ s. Clearly, the assumptions
of Theorem 11.2.1 are satisfied whenever X is WBF. The next result
shows that inequality (11.2.1) is satisfied even under weaker assump-
tions.

Theorem 11.2.3. If, for any B ⊂ Ā ⊆ I, any xB ≥ 0 and any
yB̄ ≥ xB̄,

[XB−xB | XB > xB ,XB̄ = yB̄] ≥uo [XB−xB | XB > xB ,XB̄ = xB̄ ],
(11.2.2)

then the inequality (11.2.1) holds.
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Proof : Without loss of generality, let Ā = {1, . . . , k}, and fix s =
(s, . . . , s), s ≥ 0. For i = 2, . . . , k, set B = Ii−1 = {1, . . . , i − 1} in
(11.2.2). Let us denote Īi = {i + 1, . . . , n} and Īi−1 = {i, . . . , n}.
Thus, for any yIi−1 ≥ xIi−1 ≥ s,

P{Xi > s+ t,XĪi
> s | XĪi−1

> s,XIi−1 = yIi−1}
≥ P{Xi > s+ t,XĪi

> s | XĪi−1
> s,XIi−1 = xIi−1},

which implies

lim
Δ→0+

P{Xi > s+ t,X > s, yIi−1 ≤ XIi−1 < yIi−1 +Δ}
P{X > s, yIi−1 ≤ XIi−1 < yIi−1 +Δ}

= lim
Δ→0+

P{Xi > s+ t,XĪi
> s, yIi−1 ≤ XIi−1 < yIi−1 +Δ}

P{Xi > s,XĪi
> s, yIi−1 ≤ XIi−1 < yIi−1 +Δ}

≥ lim
Δ→0+

P{Xi > s+ t,XĪi > s, xIi−1 ≤ XIi−1 < xIi−1 +Δ}
P{Xi > s,XĪi

> s, xIi−1 ≤ XIi−1 < xIi−1 +Δ}

= lim
Δ→0+

P{Xi > s+ t,X > s, xIi−1 ≤ XIi−1 < xIi−1 +Δ}
P{X > s, xIi−1 ≤ XIi−1 < xIi−1 +Δ} .

This yields, for any i = 2, . . . , k and yB̄ ≥ xB̄ ≥ s,

P{Xi > s+ t | X > s,XIi−1 = yIi−1} ≥ P{Xi > s+ t | X > s,XIi−1 = xIi−1}.
(11.2.3)

Moreover, the inequality (11.2.2) implies, for yB̄ ≥ xB̄ and yB ≥ xB ,

P{XB > yB | XB̄ = yB̄}
P{XB > xB | XB̄ = yB̄}

≥ P{XB > yB | XB̄ = xB̄}
P{XB > xB | XB̄ = xB̄}

.

Denote C the complimentary set of B with respect to Ā, i.e., B∪C = Ā
and B ∩ C = ∅. Then, B̄ = A ∪ C. Setting yC = xC , it follows that

P{XB > yB | XC = xC ,XA = tA} · P{XB > xB | XC = xC ,XA = vA}
≥ P{XB > xB | XC = xC ,XA = tA} · P{XB > yB | XC = xC ,XA = vA},

for every tA ≥ vA.
Fix any xA, and denote D1 = {vA : 0 ≤ vA ≤ xA}, D2 = {tA :

tA ≥ xA}. By the previous inequality we have
∫

D2

P{XB > yB | XC = xC ,XA = tA}dFXA|XC
(tA | xC)

·
∫

D1

P{XB > xB | XC = xC ,XA = vA}dFXA|XC
(vA | xC)
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≥
∫

D2

P{XB > xB | XC = xC ,XA = tA}dFXA|XC
(tA | xC)

·
∫

D1

P{XB > yB | XC = xC ,XA = vA}dFXA|XC
(vA | xC),

and hence
∫

D2

P{XB > yB | XC = xC ,XA = tA}dFXA|XC
(tA | xC)

∫

D2

P{XB > xB | XC = xC ,XA = tA}dFXA|XC
(tA | xC)

≥

∫

D1

P{XB > yB | XC = xC ,XA = vA}dFXA|XC
(vA | xC)

∫

D1

P{XB > xB | XC = xC ,XA = vA}dFXA|XC
(vA | xC)

,

i.e.,

P{XB > yB ,XC = xC ,XA > xA}
P{XB > xB ,XC = xC ,XA > xA} ≥ P{XB > yB ,XC = xC ,XA ≤ xA}

P{XB > xB,XC = xC ,XA ≤ xA} .

The last inequality is equivalent to

P{XB > yB | XC = xC ,XA > xA}
P{XB > xB | XC = xC ,XA > xA} ≥ P{XB > yB | XC = xC ,XA ≤ xA}

P{XB > xB | XC = xC ,XA ≤ xA} ,

(11.2.4)

whenever yB ≥ xB.
Now, setting B = Ā, C = ∅, xB = s = (s, . . . , s), and yB =

(s+ t, s, . . . , s) in (11.2.4) yields

P{X1 > t+ s | X > s}
=

P{X1 > t+ s,XA > s,XĀ > s}
P{XA > s,XĀ > s}

=
P{X1 > t+ s,XĀ > s | XA > s}

P{XĀ > s | XA > s}
≥ P{X1 > t+ s,XĀ > s | XA ≤ s}

P{XĀ > s | XA ≤ s}
= P{X1 > t+ s | XĀ > s,XA ≤ s}, for any s, t ≥ 0.

That is,

[X1 − s | X > s] ≥st [X1 − s | XA ≤ s,XĀ > s], for any s ≥ 0.
(11.2.5)
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By (11.2.4) again, letting i = 2, . . . , k and C = Ii−1, it holds that,
for s, t ≥ 0 and xIi−1 ≥ s,

P{Xi > t+ s | XIi−1 = xIi−1 ,X > s}

=
P{Xi > t+ s,XĀ > s | XIi−1 = xIi−1 ,XA > s}

P{XĀi−1
> s | XIi−1 = xIi−1 ,XA > s}

≥ P{Xi > t+ s,XĀ > s | XIi−1 = xIi−1 ,XA ≤ s}
P{XĀi−1

> s | XIi−1 = xIi−1 ,XA ≤ s}
= P{Xi > t+ s | XIi−1 = xIi−1 ,XA ≤ s,XĀ > s}.

That is, for i = 2, . . . , k,

[Xi − s | XIi−1 = xIi−1 ,X > s] ≥st [Xi − s | XIi−1 = xIi−1 ,XA ≤ s,XĀ > s].

On the other hand, by (11.2.3), we have, for yIi−1 ≥ xIi−1 ≥ s,

[Xi − s | XIi−1 = yIi−1 ,X > s] ≥st [Xi − s | XIi−1 = xIi−1 ,X > s],

and thus

[Xi − s | XIi−1 = yIi−1 ,X > s] ≥st [Xi − s | XIi−1 = xIi−1 ,XA ≤ s,XĀ > s].

(11.2.6)

Finally, by applying Theorem 6.B.3 of Shaked and Shanthikumar [426]
to (11.2.5) and (11.2.6), we reach the desired result (11.2.1).

The following statement provides alternative conditions for (11.2.1)
in the bivariate case.

Theorem 11.2.4. If X2 is RTI in X1 and X1 is RTI in X2, then, for
any s ≥ 0,

[X1 − s | X1 > s,X2 > s] ≥st [X1 − s | X1 > s,X2 ≤ s]

and

[X2 − s | X2 > s,X1 > s] ≥st [X2 − s | X2 > s,X1 ≤ s].

That is, the inequality (11.2.1) holds.

Proof : Let s, t ≥ 0 and denote

A = {X1 > s+ t,X2 > s} ,
B = {s+ t ≥ X1 > s,X2 > s} ,
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C = {X1 > s+ t,X2 ≤ s} ,
D = {s+ t ≥ X1 > s,X2 ≤ s} .

Since X2 is RTI in X1, it holds that

P{A}
P{A ∪ C} =

P{X1 > s+ t,X2 > s}
P{X1 > s+ t} ≥ P{X1 > s,X2 > s}

P{X1 > s} =
P{A ∪B}

P{A ∪ B ∪ C ∪D} .

Note that A, B, C, and D are mutually exclusive, the above inequality
may be rephrased as

P{A}
P{A}+ P{C} ≥ P{A}+ P{B}

P{A}+ P{C}+ P{B}+ P{D} .

Equivalently,
P{A}

P{A}+ P{C} ≥ P{B}
P{B}+P{D} ,

which implies
P{A} · P{D} ≥ P{B} · P{C},

and hence

P{A} · P{D}+ P{A} · P{C} ≥ P{B} · P{C}+ P{A} · P{C}.
This is just

P{A}
P{A ∪B} ≥ P{C}

P{C ∪D} .
Consequently, we have, for any s, t ≥ 0,

P{X1 > s+ t | X1 > s,X2 > s}
=

P{X1 > s+ t,X2 > s}
P{X1 > s,X2 > s}

=
P{A}

P{A ∪B}
≥ P{C}

P{C ∪D}
=

P{X1 > s+ t,X2 ≤ s}
P{X1 > s,X2 ≤ s}

= P{X1 > s+ t | X1 > s,X2 ≤ s}.
That is, [X1 − s | X1 > s,X2 > s] ≥st [X1 − s | X1 > s,X2 ≤ s].

In a completely similar manner, we also have, for any s ≥ 0

[X2 − s | X2 > s,X1 > s] ≥st [X2 − s | X2 > s,X1 ≤ s].

Thus, (11.2.1) is validated.
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11.3 Sufficient Conditions for Positive

Aging Properties

Conditions under which lifetimes of coherent systems satisfy aging
properties have been studied extensively in the literature (see, e.g.,
Barlow and Proschan [39], or Lai and Xie [269]), in most of the cases
under the assumption of independence among component’s lifetimes.
Some interesting results dealing with the case of dependent compo-
nents have been recently shown, for example, in Hu and Li [199] and
Navarro and Shaked [351], where conditions on the joint density of the
vector of component’s lifetimes such that parallel and series systems
have monotonic hazard and reverse hazard rates are described. Some
results in the same spirit, but for more general coherent systems and
weaker aging notions, are provided in this section.

Denote with Xt = (X − t | X > t) the residual life of a random
lifetime X at time t ≥ 0. The following are among the most important
univariate aging concepts.

Definition 11.3.1. A nonnegative random variable X is said to be

(i) New better than used (NBU) if X ≥st Xt for all t ≥ 0

(ii) New better than used in the 2nd stochastic dominance (NBU(2))
if X ≥icv Xt for all t ≥ 0

(iii) New better than used in the increasing convex order (NBUC) if
X ≥icx Xt for all t ≥ 0

The aging notions defined above can be generalized to the multi-
variate setting as follows. Denote with

Xt = [(X1 − t, . . . ,Xn − t) | X1 > t, . . . ,Xn > t]

the residual life vector of X at time t ≥ 0.

Definition 11.3.2. A nonnegative random vector X is said to be

(i) Multivariate new better than used (M-NBU) if X ≥st Xt for all
t ≥ 0

(ii) Multivariate new better than used in the 2nd stochastic domi-
nance (M-NBU(2)) if X ≥icv Xt for all t ≥ 0
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(iii) Multivariate new better than used in the increasing convex order
(M-NBUC) if X ≥icx Xt for all t ≥ 0

Readers may refer to Pellerey [370] or Li and Pellerey [292] for
examples of bivariate distributions with the M-NBU property.

According to Theorem 5.1 of Barlow and Proschan [39], a coher-
ent system may inherit the NBU property of its independent com-
ponents. Theorem 11.3.3 below builds this preservation property for
coherent systems of dependent components. Note that the assump-
tion in (11.2.1) holds when all concerned components are mutually
independent; thus, Theorem 11.3.3 forms an interesting extension for
Theorem 5.1 of Barlow and Proschan [39].

Theorem 11.3.3. Under the assumption of (11.2.1), any coherent
system is NBU whenever the components’ lifetimes vector X is M-
NBU.

Proof : By Theorem 11.2.1 and inequality (11.1.2), we have

[TX − s | TX > s] ≤st [TX − s | X > s]
st
= TXs , for any s ≥ 0.

The M-NBU property of X implies Xs ≤st X for any s ≥ 0. Due to
the monotonicity of the coherent life functions, we have

TXs ≤st TX , for any s ≥ 0.

Thus, it holds that

[TX − s | TX > s] ≤st TX , for any s ≥ 0.

This completes the proof.

Example 11.3.4. Consider a random vector X having the joint sur-
vival function

F̄ (x1, . . . , xn) =

(

ebx1 + ebx2 + · · ·+ ebxn

n

)−θ
, θ, b > 0.

One may easily verify that the series system of these components has
the reliability function e−bθx of an exponential distribution and thus is
NBU. In fact, it can be verified that X has MTP2 density and satisfies
the M-NBU property (Pellerey [370]). According to Theorem 11.3.3,
any coherent system with components having lifetimes vector X is
also of NBU property.
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Example 11.3.5. Consider the random vector X having a Marshall-
Olkin bivariate exponential distribution, i.e., having joint survival
function

F (x1, x2) = P{X1 > x1, X2 > x2} = exp
{−λ1x1−λ2x2−λ3(x1∨x2)

}

,

with x1, x2 ≥ 0 and λi ≥ 0, i = 1, 2, 3. As shown in Corollary 4.2 in
Li and Pellerey [292], such a vector X satisfies the M-NBU property.
Moreover, even if it does not satisfy the MTP2 property because of the
singularity due to P{X1 = X2} > 0, it satisfies the RTI property, as
can be easily verified. Thus, according to Theorem 11.3.3 and Theo-
rem 11.2.4, the lifetime TX of any coherent system whose components’
lifetimes are described by X is NBU.

In a similar fashion, we may build the following result, which serves
as a generalization of Theorem 1 in Pellerey and Petakos [371].

Theorem 11.3.6. Under the assumption (11.2.1), any coherent sys-
tem with convex [concave] coherent life function has a lifetime TX
which is NBUC [NBU(2)] whenever the components vector X is M-
NBUC [M-NBU(2)].

As an immediate consequence, we get Corollary 11.3.7 below, which
generalizes the preservation properties of NBUC and NBU(2) aging
notions under parallel (series) systems with independent components
due to Li et al. [290] and Li and Kochar [289].

Corollary 11.3.7. Under the assumption (11.2.1), the lifetime of a
parallel [series] system is NBUC [NBU(2)] whenever the vector of com-
ponents’ lifetimes X is M-NBUC [(M-NBU(2)].
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Abstract: In reliability engineering and system security, it is of great
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12.1 Introduction and Preliminaries

A coherent system is one for which the structure function is monotone
in each component and in which every component is relevant, i.e.,
the behavior of a component does affect the performance of the sys-
tem (Barlow and Proschan [39]). In particular, the k-out-of-n system,
which functions if and only if at least k-out-of-n its components work,
has been paid much special attention. In the context of reliability, the
lifetime of the k-out-of-n system corresponds to the (n−k+1)-th order
statistic Xn−k+1:n from random lifetimes X1,X2, . . . ,Xn. Specifically,
the lifetimes of series and parallel systems are just the smallest order
statistic X1:n and the largest one Xn:n, respectively.

In reliability engineering and system security, it is of great prac-
tical interest to allocate active redundancies at either component or
system level so as to enhance the system’s lifetime or improve some
other indices of the system’s performance. In general, the following
two types of allocations are commonly used in practice, namely, (i)
active redundancy (hot standby), which is put in parallel to compo-
nent/system and starts functioning at the same time as the compo-
nent/system is initiated, and (ii) standby redundancy (cold standby),
which is put in standby and starts functioning once the working com-
ponent/system fails. Recently, Cha et al. [82] considered the so-called
general standby, which operates in a milder environment in the standby
state (and hence the hazard rate is nonzero and smaller than that in
the usual environment) and bear the normal stress in a working state.
Obviously, this is just an intermediate state between the cold standby
and the hot one. We will only focus on the active redundancy. For
more on cold standby and general standby, please refer to Boland et al.
[70], Cha et al. [82], EI-Newehi and Sethuraman [147], Li et al. [295],
Li et al. [293], Misra et al. [325], and Shaked and Shanthikumar [421].
It is worth mentioning that this review is by no means an exhaustive
summary of all related works on active redundancy allocation. The
papers we selected for inclusion only reflect our focused theme.

As far as we know, it was pointed out in Barlow and Proschan [39]
that for a coherent system, allocating active redundancies at compo-
nent level is more effective than allocating them at system level. EI-
Newehi et al. [146] were among the first to employ the powerful tools of
majorization and Schur-convex/Schur-concave function to pursue the
optimal allocation of components to parallel-series and series-parallel
systems in the sense of maximizing the system’s reliability function,
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and hence majorization plays a rather important role in comparing
policies to allocate active redundancies. Till now several models on
allocation of active redundancy to coherent system have been devel-
oped and they can be reasonably compared in terms of various stochas-
tic orders.

The rest of this paper is organized as follows: Sect. 12.2 includes
results on stochastic comparison between the lifetime of a coherent sys-
tem with active redundancies at component level and that at system
level. In Sect. 12.3, we discuss the allocation of more than one active
redundancies to a k-out-of-n system; the optimal allocation policy is
presented in some interesting scenarios such as the stochastically or-
dered working components and mutually independent working compo-
nents and redundancies. Finally, Sect. 12.4 concludes with considering
other models of allocating active redundancies to a coherent system.

In order to be self-contained, let us recall definitions of the following
stochastic orders. For further detail, see Müller and Stoyan [335] and
Shaked and Shanthikumar [426].

Definition 12.1.1. Let X and Y be two random variables with ab-
solutely continuous cumulative distribution functions F and G, prob-
ability density functions f and g, and survival functions F̄ = 1 − F
and Ḡ = 1 − G, respectively. X is said to be smaller than Y in the
following:

(i) Usual stochastic order, denoted by X ≤st Y , if F̄ (x) ≤ Ḡ(x) for
all x

(ii) Hazard rate order, denoted by X ≤hr Y , if Ḡ(x)/F̄ (x) is increas-
ing in x

(iii) Reversed hazard rate order, denoted by X ≤rh Y , if G(x)/F (x)
is increasing in x

(iv) Likelihood ratio order, denoted by X ≤lr Y , if g(x)/f(x) is in-
creasing in x

(v) Increasing convex order, denoted by X ≤icx Y , if
∫∞
x F̄ (t)dt ≤

∫∞
x Ḡ(t)dt for all x

(vi) Increasing concave order, denoted by X ≤icv Y , if
∫ x
−∞ F (t)dt ≥

∫ x
−∞G(t)dt for all x
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For ease of reference, implications among these orders are presented
in the following diagram:

X ≤hr Y X ≤icx Y
↗ ↘ ↗

X ≤lr Y X ≤st Y
↘ ↗ ↘

X ≤rh Y X ≤icv Y

The other interesting notion is the majorization order, which is
quite useful in establishing various inequalities. For extensive and
comprehensive discussions on the theory of majorization order and its
application, readers may refer to Marshall et al. [312].

Definition 12.1.2. Let x(1) ≤ · · · ≤ x(n) be the increasing arrange-
ment of the components of the vector x = (x1, . . . , xn).

(i) x is said to majorize y = (y1, . . . , yn) (denoted by x
m� y) if

∑n
i=1 xi =

∑n
i=1 yi and

j
∑

i=1

x(i) ≤
j

∑

i=1

y(i), j = 1, . . . , n− 1.

(ii) A function φ : R
n → R is said to be Schur-convex (Schur-

concave) if x
m� y implies

φ(x) ≥ (≤)φ(y), for x, y ∈ R
n.

12.2 Redundancy at Component Level Versus
that at System Level

In order to improve the reliability of the system, a measure to take
in practice is to allocate one redundancy to each component. Since
those redundant components may form another system according to
the same structure, we have two choices: (i) at component level, that
is, put one spare in parallel to one component, and (ii) at system
level, that is, put the other system composed of spares in parallel to
the system of working components. Now, one question arises naturally
in this situation: should the redundancies be allocated to the system
at component level or at system level?
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X = (X1, . . . ,Xn) Lifetimes of n independent components
Y = (Y1, . . . , Yn) Lifetimes of n independent active spares
Fi, Gi Distribution functions of Xi and Yi, i =

1, . . . , n
X ∨ Y (X1 ∨ Y1,X2 ∨ Y2, . . . ,Xn ∨ Yn), here x∨ y =

max{x, y}
T (X) Lifetime of a coherent system with compo-

nents’ lifetimes X
Tk|n(X) Lifetime of a k-out-of-n system with compo-

nents’ lifetimes X
h(p) Reliability of a coherent system with i.i.d.

components

Here is the milestone conclusion: it is better to allocate the redun-
dancies at component level than at the system level in the sense of
attaining stochastically larger lifetime of the redundant system. This
principle is well known among design engineers.

Theorem 12.2.1 (Esary, Marshall and Proschan [153]). For a coher-
ent system with the structural function T , it holds that

T (X ∨ Y ) ≥st T (X) ∨ T (Y ), (12.2.1)

for any n-dimensional random vectors X and Y .

Naturally, one may wonder whether allocating redundancies at
component level is also better than allocating redundancy at system
level in some other stronger orders such as the (reversed) hazard rate
order and the likelihood ratio order. Boland and EI-Newehi [66] pro-
vided a generally negative answer by displaying a simple counterex-
ample, in which a series system consists of two components having a
common standard exponential distribution and two spares have expo-
nential distributions with common rate 2. That is,

X1
st
= X2 ∼ exp{−t} and Y1

st
= Y2 ∼ exp{−2t}.

However, as will be seen, for several specific coherent structures, the
stronger stochastic order may be possible. Now, let us present these re-
sults in the literature in the following two scenarios: coherent systems
with matching spares and nonmatching spares, respectively.
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12.2.1 Redundancies with Matching Spares

For a series system which is the simplest popular structure in coherent
systems, allocating redundancies at component level is more effective
than at system level in the sense of the hazard rate order.

Theorem 12.2.2 (Boland and EI-Newehi [66]). Suppose Xi
st
= Yi for

i = 1, 2, . . . , n. Then,

Tn|n(X ∨ Y ) ≥hr Tn|n(X) ∨ Tn|n(Y).

However, Example 12.2.3 below tells that the hazard rate order in
Theorem 12.2.2 cannot be replaced by the reversed hazard rate order
and hence nor by the likelihood ratio order.

Example 12.2.3. Suppose the lifetimes X1 and X2 of the two com-
ponents in a series system have the standard exponential distribution
and Fréchet distribution, respectively. Denote Y1 and Y2 the lifetimes
of their respective matching spares. That is,

X1
st
= Y1 ∼ exp{−t} and X2

st
= Y2 ∼ 1− exp{−t−1}.

As can be seen in Fig. 12.1, the reversed hazard rates of the system
with redundancies at component level and that with redundancy at
system level cross with each other. That is to say, the reversed hazard
rate order does not exist at all.

When the working components of a coherent system and their
matching spares are independent and identically distributed, allocat-
ing redundancies at component level is more effective than allocating
redundancy at system level in the sense of stronger stochastic orders
for specific coherent structures.

Theorem 12.2.4 (Boland and EI-Newehi [66]). Suppose lifetimes of
the components and their spares are i.i.d.

(i) If ph′(p)/h(p) decreases in p and h(p) < p for all p ∈ (0, 1), then

T (X ∨ Y ) ≥hr T (X) ∨ T (Y ).
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Figure 12.1: A series system with redundancy at component and sys-
tem levels

(ii) It holds that T2|n(X ∨ Y ) ≥rh T2|n(X) ∨ T2|n(Y )

Since the structure of an (n−1)-out-of-n does not satisfy the condi-
tion in Theorem 12.2.4(i), Theorem 12.2.4(ii) is imperative. Afterward,
this theorem was improved and generalized as follows:

Theorem 12.2.5 (Singh and Singh[435]). Suppose lifetimes of the
components and their spares are i.i.d. Then,

Tk|n(X ∨ Y ) ≥lr Tk|n(X) ∨ Tk|n(Y ).

for k = 1, . . . , n.

Recently, Theorem 12.2.5 was further extended to the general co-
herent systems as below.

Theorem 12.2.6 (Misra et al. [322]). Suppose that a coherent system
has the reliability function h(p), the lifetimes of components and the
spares are i.i.d. If

1− h(p)

1− p

h′(p)
h′(p(2− p))

increases in p ∈ (0, 1), then,

T (X ∨ Y ) ≥lr T (X) ∨ T (Y ).
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Remark 12.2.7. One can verify that the reliability function of a k-
out-of-n system satisfies the monotone condition in Theorem 12.2.6.
Thus, Theorem 12.2.5 is just a specific case of Theorem 12.2.6. In
addition, it should be mentioned here that, in order to establish the
likelihood ratio order, both Singh and Singh [435] and Misra et al.
[322] made the tacit assumption that the common distribution of the
lifetimes of both components and spares is absolutely continuous. By
virtue of signature, Kochar et al. [253] made up this drawback through
providing an alternative proof under the assumption of the continuity
of the common lifetime distribution. For comprehensive studies on
signature, we refer readers to Samaniego [408].

12.2.2 Redundancies with Nonmatching Spares

Here, we assume that lifetimes of the working components in a coher-
ent systems are i.i.d. components and lifetimes of all its spares are also
i.i.d., but the two distributions are not necessary identical. In this con-
text, Misra et al. [322] proved for some particular coherent structures
that allocating redundancies at component level is more effective than
allocating a redundant system at system level in the sense of attaining
larger reversed hazard rate.

Theorem 12.2.8 (Misra et al. [322]). Suppose that a coherent system
composed of i.i.d. components has reliability function h(p) and the
spares are i.i.d. also. If, for any fixed q ∈ (0, 1),

h′(1− (1− p)q)

h′(p)
decreases in p ∈ (0, 1),

then,
T (X ∨ Y ) ≥rh T (X) ∨ T (Y ).

Corollary 12.2.9 follows from Theorem 12.2.6 immediately.

Corollary 12.2.9. For a k-out-of-n system with i.i.d. components
and i.i.d. spares, it holds that

Tk|n(X ∨ Y ) ≥rh Tk|n(X) ∨ Tk|n(Y ),

for k = 1, . . . , n.

As illustrated by a counterexample due to Boland and EI-Newehi
[66], the hazard rate order generally does not hold for k-out-of-n sys-
tems, and hence neither does the likelihood rate order.
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From several our numerical experiments, it seems that Theo-
rem 12.2.2 may be generalized to k-out-of-n systems. That is, for

a k-out-of-n system, if Xi
st
= Yi, i = 1, 2, . . . , n, then,

Tk|n(X ∨ Y ) ≥hr Tk|n(X) ∨ Tk|n(Y ), k = 1, . . . , n.

However, to the best of our knowledge, this is not proved/disproved
yet and hence is still an open problem.

12.3 Allocation of Active Redundancies
to a k-out-of-n System

Boland et al. [68] and Shaked and Shanthikumar [421] were among the
first to study the optimal allocation of active redundancies to coherent
systems by means of the majorization order. Other than the technique
based on the redundancy importance due to Boland et al. [68], Shaked
and Shanthikumar [421] exploited the stochastic order to deal with
the optimality. Consequently, researchers focused their attention on
comparing allocation policies of active redundancies to coherent system
with respect to a variety of stochastic orders.

This section deals with the optimal allocation of m i.i.d. active
redundancies to a k-out-of-n system. The main work in the literature
involves the following three situations: (i) components and redundan-
cies are i.i.d., (ii) component and redundancies are independent but
not necessarily identical, and (iii) components are stochastically or-
dered. All results summarized here justify the following intuitively
reasonable fact: by balancing the allocation policy of active redundan-
cies as much as possible, one can stochastically maximize the lifetime
of the redundant k-out-of-n system.

X = (X1, . . . ,Xn) Lifetimes of n independent components
Y = (Y1, . . . , Ym) Lifetimes of m independent and identically dis-

tributed spares
Fi, G Distribution functions of components Xi and

spare Yi’s
r = (r1, . . . , rn) Allocation policy with ri redundancies allo-

cated to Xi

s = (s1, . . . , sn) Allocation policy with si redundancies allo-
cated to Xi

Tk|n(r) Lifetime of the k-out-of-n redundant system
with policy r
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12.3.1 The Case with i.i.d. Components
and Redundancies

Shaked and Shanthikumar [421] were among the first to study the
problem of allocating m active redundancies to a parallel system with
n components in the situation that lifetimes of components and redun-
dancies are independent and identically distributed. They developed
the following influential benchmark in this line of research: many au-
thors devoted themselves to pursuing more general results over the
past two decades.

Theorem 12.3.1 (Shaked and Shanthikumar [421]). Suppose that the
working components and redundancies are independent and identically
distributed. Then, for two allocation policies r and s,

Tn|n(s) ≤st Tn|n(r) whenever r
m% s.

Since the hazard rate order is strictly stronger than the usual
stochastic order, an allocation policy that stochastically optimizes the
lifetime of a redundant series system may not also optimize the hazard
rate of the system. However, it was found subsequently that the allo-
cation policy stochastically optimizing the lifetime of a series system
does optimizes the hazard rate of the system.

Theorem 12.3.2 (Singh and Singh [436]). Suppose that components
and redundancies are independent and identically distributed. For two
allocation policies s and r,

Tn|n(s) ≤hr Tn|n(r) whenever r
m% s.

Afterward, Hu and Wang [201] extended the result on the series
system in Theorem 12.3.1 to the k-out-of-n systems.

Theorem 12.3.3 (Hu and Wang [201]). Suppose that components
and redundancies are independent and identically distributed. For two
allocation policies s and r,

Tk|n(s) ≤st Tk|n(r) whenever r
m% s,

for k = 1, . . . , n.
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It should be remarked here that the above result due to Hu and
Wang [201] can also be derived from Theorem 2.13 of Boland et al. [68].
Recently, we further strengthen the stochastic order in Theorem 12.3.3
to the hazard rate order. Thus, the allocation policy stochastically
optimizing the lifetime of a k-out-of-n system also optimizes the hazard
rate of the system.

Theorem 12.3.4 (Ding and Li [133]). Suppose that components and
redundancies are independent and identically distributed. For two al-
location policies s and r,

Tk|n(s) ≤hr Tk|n(r) whenever r
m% s,

for k = 1, . . . , n.

Hu and Wang [201] and Misra et al. [322] independently demon-
strated through counterexamples that the hazard rate order in Theo-
rem 12.3.4 cannot be replaced by the reversed hazard rate for coherent
systems with more than two components although they simultaneously
pointed out the following fact:

Theorem 12.3.5 (Hu and Wang [201]; Misra et al. [322]). Suppose
that components and redundancies are independent and identically dis-
tributed. For two allocation policies s and r,

T2|2(s) ≤rh T2|2(r) whenever r
m% s.

Finally, Hu and Wang [201] conjectured that the above reversed
hazard rate order on the series systems with two components may be
strengthened to the likelihood ratio order. However, this is still an
open problem.

12.3.2 The Case with i.i.d Components
and i.i.d. Redundancies

In the situation that components and redundancies have nonidentical
life distributions, Boland et al. [68] by means of redundancy impor-
tance showed that the survival function of the lifetime of a redundant
k-out-of-n system is Schur concave, and this result may be precisely
stated as follows:
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Theorem 12.3.6 (Boland et al. [68]). Suppose that components and
redundancies are independent and identically distributed, respectively,
and the two common distributions are not necessarily identical. For
allocation policies s and r,

Tk|n(s) ≤st Tk|n(r) whenever r
m% s,

for k = 1, . . . , n.

In contrast to Theorem 12.3.4, which extended the usual stochas-
tic order to the hazard rate order for k-out-of-n systems with i.i.d.
components and redundancies, Misra et al. [322] illustrated through a
series system with two components in Theorem 12.3.6 that the usual
stochastic order cannot be upgraded to the hazard rate order when
components and redundancies have nonidentical distributions. How-
ever, they obtained the hazard rate order for the series system.

Theorem 12.3.7 (Misra et al. [322]). Suppose that components and
redundancies are independent and identically distributed, respectively,
and the two common distributions are not necessarily identical. For
allocation policies r and s, if lnG(x)/ lnF (x) increases in x, then,

Tn|n(s) ≤hr Tn|n(r) whenever r
m% s.

We conjecture that Theorem 12.3.7 above may be extended to k-
out-of-n systems. Precisely, if lnG(x)/ ln F (x) increases in x, then,

Tk|n(s) ≤hr Tk|n(r) whenever r
m% s,

for k = 1, . . . , n.

12.3.3 The Case with Stochastically Ordered
Components

So far, all the developments on this topic are based on the critical as-
sumption that lifetimes of components in the system are i.i.d. However,
it may be more realistic to consider a system consisting of independent
and heterogeneous components. Misra et al. [322] firstly considered
the system with stochastically ordered lifetimes of components and
i.i.d. redundancies.
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Denote the class of allocation policies

Rm = {(r1, . . . , rn) : r1 ≥ · · · ≥ rn, r1 + · · ·+ rn = m}.
Misra et al. [322] showed the following theorem, asserting that the
lifetime of a redundant series system may be stochastically increased
through balancing the allocation policy in Rm.

Theorem 12.3.8 (Misra et al. [322]). Suppose X1 ≥st · · · ≥st Xn and
Y1, . . . , Ym are i.i.d.. For allocation policies r, s ∈ Rm, if Y1 ≥st X1,
then,

Tn|n(s) ≤st Tn|n(r) whenever r
m% s.

However, intuitively, one needs to allocate more redundancies to
less reliable components. In fact, we achieved the nice result for re-
dundant k-out-of-n systems.

Theorem 12.3.9 (Li and Ding [287]). Suppose X1 ≥st · · · ≥st Xn,
Y1, . . . , Ym are i.i.d. and Y1 ≥st X1. Let two policies r and s such that
rl = sl for l /∈ {i, j} (i < j). Then, for any k = 1, . . . , n,

Tk|n(s) ≤st Tk|n(r) if and only if rj = si > sj = ri

and

Tk|n(s) ≤st Tk|n(r) whenever si − sj ≥ 2, ri = si + 1 and rj = sj − 1.

This motivates us to further consider the so-called class of admis-
sible allocation policies

R̄m = {(r1, . . . , rn) : r1 ≤ · · · ≤ rn, r1 + · · ·+ rn = m}.
instead. And it was found once again that the lifetime of a redundant
k-out-of-n system may be stochastically increased through balancing
the allocation policy in R̄m.

Theorem 12.3.10 (Li and Ding [287]). Suppose X1 ≥st · · · ≥st Xn

and Y1, . . . , Ym are i.i.d. For allocation policies r, s ∈ R̄m, if Y1 ≥st

X1, then,

Tk|n(s) ≤st Tk|n(r) whenever r
m% s,

for k = 1, . . . , n.

Now, taking the above three theorems into account, the optimal
allocation policy r∗ = (r∗1 , . . . , r∗n) should be achieved in R̄m as follows.
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Theorem 12.3.11 (Li and Ding [287]). Suppose X1 ≥st · · · ≥st Xn

and Y1, . . . , Ym are i.i.d.. For any allocation policy r ∈ R̄m, if Y1 ≥st

X1, then, for k = 1, . . . , n,

Tk|n(r) ≤st Tk|n(r∗),

here r∗ ∈ R̄m and |r∗i − r∗j | ≤ 1 for each pair of location (i, j).

Y1 ≥st X1, which claims that redundancies are not worse than
any active component, is a bit restrictive and not always the case in
practice. However, it may not be dropped off.

Example 12.3.12. Consider three components in series with

F̄1(t) = e−0.2t, F̄2(t) = e−0.5t, F̄3(t) = e−2t

and three redundancies with common survival function Ḡ(t) = e−t, it
holds that

X1 ≥st X2 ≥st Y1 ≥st X3.

In this setup, there are only admissible allocation policies

r1 = (0, 0, 3), r2 = (0, 1, 2), r3 = (1, 1, 1).

As is seen in Fig. 12.2, the corresponding survival curves cross with
each other, and none of them is superior to the other. Due to the
violation of Y1 ≥st X1 ≥st · · · ≥st X3, the optimal allocation policy
does not exist.

As is seen, the stochastically optimal allocation policy embodies the
stochastic order among the components by increasing one redundancy
at some location and balance the two resulted subsets. It is still an
open problem to derive the optimal allocation policy in the sense of
attaining the smallest hazard rate.

12.4 Other Allocations of Active

Redundancies

For coherent systems with heterogenous components, the research
work in the literature mainly focuses on the following two scenarios:
allocating a single redundancy to a system with heterogenous com-
ponents and allocating more than one redundancy to a system with
heterogenous components.
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12.4.1 One Single Redundancy

Boland et al. [70] studied for the first time the allocation of one ac-
tive redundancy to a k-out-of-n system with lifetimes of the compo-

nents being stochastically ordered. Denote T
(i)
k|n(X;Y ) the lifetime

of the k-out-of-n system with the redundancy being put in parallel

to the ith component, i = 1, 2, . . . , n. That is, T
(i)
k|n(X;Y ) is the

(n−k+1)th order statistics based upon the independent random life-
times X1, . . . ,Xi−1,Xi ∨ Y,Xi+1, . . . ,Xn.
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Figure 12.2: Survival curves corresponding to policies ri, i = 1, 2, 3

Theorem 12.4.1 (Boland et al. [70]). Suppose X1 ≥st X2 ≥st · · · ≥st

Xn. Then,

T
(1)
k|n(X;Y ) ≤st T

(2)
k|n(X;Y ) ≤st · · · ≤st T

(n)
k|n (X;Y )

for k = 1, . . . , n.

Subsequently, Li and Hu [288] derived the similar result with re-
spect to the increasing concave order for the series system with two
components. Here, we state the general version for series systems with
more than two components without proof.



250 Allocation of Active Redundancies

Theorem 12.4.2 (Li and Hu [288]). Suppose X1 ≥icv X2 ≥icv · · · ≥icv

Xn. Then,

T
(1)
n|n(X;Y ) ≤st T

(2)
n|n(X;Y ) ≤st · · · ≤st T

(n)
n|n(X;Y ).

In Li and Hu [288], it was also pointed out that the increasing
concave order cannot be replaced by the increasing convex order in
Theorem 12.4.2 through a counterexample of one series system of two
components. On the other hand, except for the usual stochastic or-
der and the increasing concave order, allocation policies may also be
compared in the sense of other stochastic orders.

Theorem 12.4.3 (Singh and Misra [434]). Let X1, X2 and Y have
exponential distributions with hazard rates λ1, λ2, and λ, respectively.
If λ2 ≥ (λ1 ∨ λ), then,

T
(1)
2|2 (X1,X2;Y ) ≤hr T

(2)
2|2 (X1,X2;Y ).

According to Theorems 12.4.1, 12.4.2, and 12.4.3, in order to
stochastically maximize the lifetime of a k-out-of-n system, one needs
to allocate the redundancy in parallel with the weakest component.

12.4.2 Several Redundancies

For a k-out-of-n system with n heterogenous components, the following
results provide the optimal allocation of n heterogenous active redun-
dancies in the sense of the usual stochastic order and the increasing
concave order, respectively. The usual stochastic order is derived by
Boland et al. [68] by means of redundancy importance and arrange-
ment decreasing function.

Theorem 12.4.4 (Boland et al. [68]). Suppose X1 ≥st · · · ≥st Xn

and Y1 ≤st · · · ≤st Yn. Then,

Tk|n(X ∨ Y ) ≥st Tk|n(X1 ∨ Yi1 , . . . ,Xn ∨ Yin),
for any permutation (i1, . . . , in) of (1, . . . , n) and k = 1, . . . , n.

Theorem 12.4.5 (Valdès et al. [457]). Suppose X1 ≥icv · · · ≥icv Xn

and Y1 ≤st · · · ≤st Ym with m < n. Then,

Tn|n(X1, . . . ,Xn−m,Xn−m+1 ∨ Y1, . . . ,Xn ∨ Ym)
≥icv Tn|n(X1, . . . ,Xn−m,Xn−m+1 ∨ Yi1 , . . . ,Xn ∨ Yim),

for any permutation (i1, . . . , im) of (1, . . . ,m).
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For series systems with two components, Valdès and Zequeira [459]
derived the following hazard rate order.

Theorem 12.4.6 (Valdès and Zequeira [459]). Assume Xi
st
= Yi with

hazard rate λi(t) for i = 1, 2. If either of (i)-(iv) holds,

(i) X1 ≤hr X2 and λ2(t)
λ1(t)

is decreasing in t > 0

(ii) X1 ≤hr X2 and 2λ2(t)
λ1(t)

− 1 ≤ inf
t>0

λ2(t)
λ1(t)

for all t > 0

(iii) X1 ≤st X2 and λ2(t)
λ1(t)

≤ min
t≤0

1+F2(t)
1+F1(t)

for all t > 0

(iv) λ2(t) = cλ1(t) for some c > 0 and all t > 0

then,

T2|2(X1 ∨ Y1,X2 ∨ Y2) ≤hr T2|2(X1 ∨ Y2,X2 ∨ Y1).
In comparison with Theorem 12.4.6(i), Misra et al. [325] derived a

more general sufficient condition. A similar condition was also given
for the reversed hazard rate order:

Theorem 12.4.7 (Misra et al. [325]). Assume Xi
st
= Yi with hazard

rate λi(t) and reversed hazard rate ri(t), for i = 1, 2.

(i) If X1 ≤st X2 and λ2(t)F1(t) ≤ λ1(t)F2(t) for t > 0, then,

T2|2(X1 ∨ Y1,X2 ∨ Y2) ≤hr Tn|n(X1 ∨ Y2,X2 ∨ Y1)

(ii) If X1 ≤st X2 and r2(t)F̄1(t) ≤ r1(t)F̄2(t) for t > 0, then,

T2|2(X1 ∨ Y1,X2 ∨ Y2) ≤rh T2|2(X1 ∨ Y2,X2 ∨ Y1)

For a series system with two components and two active
redundancies, Valdés et al. [458] considered two allocation policies:
either allocate Y1 to component X1 or allocate Y2 to X2. Formally,
the lifetimes of the two resulting redundant systems are

U1 = (X1 ∨ Y1) ∧X2 and U2 = X1 ∧ (X2 ∨ Y2).

The two policies of allocation were compared with respect to the usual
stochastic order, the hazard rate order, and the increasing concave
order, respectively.
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Theorem 12.4.8 (Valdés et al. [458]). (i) If X1 ≤st X2 and
Y1 ≥st Y2, then U1 ≥st U2

(ii) If X1 ≤st (X2 ∧ Y1) and X2 ≥st Y2, then U1 ≥st U2

(iii) If X1 ≤hr X2, X1 ≤hr Y1 ≤hr Y2, and λ2(t)
λ1(t)

is non-increasing,
then U1 ≥hr U2

Theorem 12.4.9 (Valdés et al. [457]). (i) If X1 ≤icv X2 and
Y1 ≥st Y2, then U1 ≥icv U2

(ii) If X1 ≤icv X2, X1 ≤st Y1 and X2 ≥st Y2, then U1 ≥icv U2

Recently, Misra et al. [324] generalized/supplemented Valdés et al.
[457, 458] and presented a similar sufficient condition for the reversed
hazard rate order.

Theorem 12.4.10 (Misra et al. [324]). (i) If X1 ≤rh X2, Y1 ≥rh

Y2, X1 ≤rh Y1 and for all t ≥ 0, F1(t)G1(t) ≥ F2(t)G2(t), then
U1 ≥rh U2

(ii) If X1 ≤st X2, Y1 ≥hr Y2, X1 ≤hr Y1, and λ1(t)F2(t) ≥ λ2(t)F1(t)
for all t ≥ 0, then U1 ≥hr U2

Theorem 12.4.11 (Misra et al. [324]). If either of (i), (ii), and (iii)
holds, then U1 ≥icv U2:

(i) X1 ≤icv X2 and F̄2(t)Ḡ1(t) ≥ F̄1(t)Ḡ2(t) for all t ≥ 0

(ii) Y1 ≤icv Y2 and F̄2(t)Ḡ1(t) ≥ F̄1(t)Ḡ2(t) for all t ≥ 0

(iii) X1 ≤icv X2 and F2(t)G2(t) ≥ F1(t)G1(t) for all t ≥ 0

Another sufficient condition for the reversed hazard rate order was
presented by Li et al. [294].

Theorem 12.4.12 (Li et al. [294]). Suppose X1 ≤rh X2 and Y1 ≥rh

Y2. Then, U1 ≥rh U2 if

F1(t)G1(t)Ḡ2(t) ≤ F2(t)G2(t)Ḡ1(t), F1(t)G1(t) ≥ F2(t)G2(t),

for all t ≥ 0.

Let us move to the allocation of active redundancies put forward
by Mi [319]. Given n+r stochastically ordered components, one wants
to form the most reliable k-out-of-n system with r ≤ n active redun-
dancies in the sense of stochastically maximizing the lifetime of the
resulting system. The optimal structure was presented as below.
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Theorem 12.4.13 (Mi [319]). Suppose X1 ≤st · · · ≤st Xn+r. Then,

Tk|n(X1, . . .,Xn;Xn+1. . .,Xn+r)≥stTk|n(Xi1 , . . .,Xin ;Xin+1 . . .,Xin+r),

for any permutation (i1, . . . , in+r) of (1, . . . , n+ r) and k = 1, . . . , n.

According to Theorems 12.4.4–12.4.13, in order to make the redun-
dant system more reliable, one may improve the weakest component
by allocating an active redundancy.

12.4.3 System with Two Dependent Components

So far, all the research work is developed in the context of mutually
independent components. Belzunce et al. [53] seem to be the first to
take the dependence between components into consideration.

Let, for 1 ≤ i < j ≤ n, the transform

τij(x1, . . . , xi, . . . , xj , . . . , xn) = (x1, . . . , xj , . . . , xi, . . . , xn).

Recall that a function g : Rn −→ R is said to be arrangement increas-
ing (AI) if

(xi−xj)[g(x)−g(τij(x))] ≤ 0, for all i and j such that 1 ≤ i < j ≤ n.

It is plain that X1 ≤lr · · · ≤lr Xn along with mutual independence im-
plies AI joint density. Actually, multivariate F-distribution, Marshall–
Olkin multivariate exponential distribution, and multivariate Pareto
distribution of type I all have an AI joint density. One may refer
to Marshall et al. [312] for more details on AI functions and their
applications.

Suppose X1,X2 are lifetimes of the two dependent active com-
ponents and Y is the lifetime of the redundant one. For the series
structure, the following theorem once again confirms that it is better
to allocate the redundant to the weaker component.

Theorem 12.4.14 (Belzunce et al. [53], Theorem 3.2(b)). Suppose
the redundant lifetime Y is independent of the (X1,X2) with an AI
joint density. Then,

X1 ∧ (X2 ∨ Y ) ≤st (X1 ∨ Y ) ∧X2.
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The above excellent pioneering work forms one generalization of
Theorem 12.4.1 with two independent components in series. Suppose
the active component lifetimes X = (X1, . . . ,Xn) has an AI joint
density and is independent of the redundant lifetime Y , we conjecture
that

(X ∨ Y )k ≤st (X ∨ τir(Y ))k,

for any i < r and k = 1, . . . , n.
At last, we believe, these interesting results will attract the atten-

tion from other researchers and will propel them toward more exciting
research work along this line.
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Abstract: In this paper, we examine the capital assessment for an
insurance portfolio within the classical discrete-time risk model and
within two of its extensions: the classical discrete-time risk model
with dependent lines of business and the classical discrete-time risk
model with random income. We use finite-time ruin probabilities VaR
and TVaR dynamic risk measures over a finite-time horizon. We apply
results on stochastic orders to examine the riskiness of the portfolio
via the dynamic TVaR. Numerical examples are provided to illustrate
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13.1 Introduction

An appropriate assessment of the global risk of a portfolio is crucial for
an insurance company. A portfolio can be a set of policies or different
lines of business. Ruin theory in actuarial science has for main objec-
tive to evaluate this global risk with long-term dynamic risk models by
examining the behavior of the portfolio over several periods, either on
a discrete time or a continuous time basis. These models describe the
evolution through time of the surplus associated to the portfolio by
modeling the claims that will be paid and the premiums that will be
received in the future. The global risk is generally quantified in terms
of ruin measures, which are based on the event that the portfolio be-
comes insolvent. One important objective of ruin theory is to analyze
and to compute ruin measures, especially the ruin probabilities over
a finite-time and infinite-time horizon. One may use the ruin proba-
bilities to determine the initial capital that needs to be allocated to
the portfolio such that the ruin probability does not exceed a prede-
termined value, say, 1%, 0.5%, or 0.1%. This procedure corresponds
to the computation of a dynamic VaR. A general introduction to ruin
theory can be found, e.g., in Gerber [178], Rolski et al. [392], or in
Asmussen and Albrecher [22].

In the present paper, we examine the capital assessment for an in-
surance portfolio within the classical discrete time due to De Finetti
[110] (see also, e.g., Bühlmann [81], Gerber [178], and Dickson [124])
and within two extensions: the classical discrete-time risk model with
dependent lines of business and the classical discrete-time risk model
with random income. We use the finite-time ruin probabilities de-
fined within the classical discrete-time risk model and within both
extensions to determine dynamic risk measures VaR and TVaR over a
finite-time horizon. Traditionally, in discrete-time risk models, the in-
vestigation of the riskiness of an insurance portfolio is carried through
the adjustment coefficient. In this paper, we apply results on stochastic
orders to examine the riskiness of the portfolio via the dynamic TVaR
within the classical discrete-time risk model and the two extensions
previously mentioned

This paper is structured as follows. In Sect. 13.2, we briefly recall
the characteristics of the classical discrete-time risk model, we define
dynamic risk measures VaR and TVaR, and we use the increasing con-
vex order to analyze the impact of the riskiness of the aggregate claim
amount on the dynamic TVaR. In Sect. 13.3, we present the additional
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specifications of the classical discrete-time risk model with dependent
lines of business and we use the supermodular order to investigate the
impact of the dependence relation between the lines of business on the
dynamic TVaR. In Sect. 13.4, we provide the additional definitions for
the classical discrete-time risk model with random income and we use
the concordance order to analyze the impact of the dependence rela-
tion between the premium income and the aggregate claim amount of
the portfolio. For the three sections, numerical examples are provided
to illustrate the topics discussed in this paper.

13.2 Discrete-Time Risk Model

13.2.1 Definitions

We consider a portfolio of an insurance company in the context of the
classical discrete-time risk model. Let W = {Wk, k ∈ N+} be a se-
quence of independent and identically distributed (i.i.d.) random vari-
ables (random variables), where rv Wk is the aggregate claim amount
in period k ∈ N+. In this section, we assume that Wk follows a com-
pound distribution, meaning that it can be written as the random
sum

Wk =

{ ∑Mk
j=1Bk,j, Mk > 0,

0, Mk = 0,

where the rvMk is the number of claims in period k and {Bk,j, j ∈ N+}
are the individual claim amounts in period k. As it is often the case, it
is assumed that {Bk,j, j ∈ N+} is a sequence of i.i.d. positive random
variables and also independent of Nk. The premium income per period
is π = (1 + η)E [W ], with a strictly positive security margin η > 0.
Furthermore, it is assumed that W = {Wk, k ∈ N+} forms a sequence
of i.i.d. random variables. The classical discrete-time risk model is
due to De Finetti [110] and it is a standard model in risk theory (see,
e.g., Bühlmann [81], Gerber [178], and Dickson [124] for details).

Let U = {Uk, k ∈ N} be the surplus process of the insurance port-
folio where Uk corresponds to the surplus level at time k ∈ N. For
k = 0, U0 = u corresponds to the initial surplus and, for k ∈ N+, the
expression for Uk is

Uk = Uk−1 + π −Wk = u−
k

∑

j=1

(Wj − π) .
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Figure 13.1: A typical sample path of the surplus process U

We denote by the rv τ the time of ruin where

τ =

{

inf
k∈N+

{k, Uk < 0} , if U goes below 0 at least once

∞, if U never goes below 0
.

The finite-time ruin probability over n periods is given by ψ (u, n) =
P{τ ≤ n|U0 = u}.

In the sequel, we need to examine the behavior of the maximum
of the random walk associated to the surplus process U . Let Lk =
(Wk − π) be the net loss in period k ∈ N+. Then, L1, L2, . . . form a
sequence of i.i.d. random variables with E [Lk] = E [Wk]−π < 0 (since
η > 0), for k ∈ N+. We define the random walk with negative drift
Y = {Yk, k ∈ N} where Y0 = 0 and

Yk =

k
∑

j=1

Lj, k ∈ N+.

The maximum net cumulative loss process associated to Y is defined
by Z = {Zk, k ∈ N}, where

Zk = max
j=0,1,2,..,k

{Yj} .

An alternative definition for the finite-time ruin probability over n
periods is provided by
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ψ(u, n) = P{τ ≤ n|U0 = u} = P{Zn > u} = 1− FZn(u),

where FZn corresponds to the cumulative distribution function (cdf) of
Zn. The finite-time ruin probability can hence be studied through the
behavior of Zn for a fixed n. Note that, given the definition of Zn, its
distribution has a mass at 0, which is equal to ψ (0, n) = 1− ψ (0, n).

In Figs. 13.1 and 13.2, we provide an example of a sample path of
U and the corresponding sample path for Y .

Figure 13.2: A typical sample path of the surplus process U

13.2.2 Dynamic VaR and TVaR

In actuarial science and quantitative risk management, very popular
risk measures are the Value-at-Risk (VaR) and the Tail-Value-at-Risk
(TVaR), which are used to determine the initial capital for a fixed
period of time. See, e.g., Acerbi [3], Acerbi and Tasche [4], and McNeil
et al. [314] for details on the VaR and TVaR. Given this usage of such
risk measures, it would be also relevant to determine the initial capital
for an insurance portfolio by assessing its stochastic behavior over a
finite-time horizon. Therefore, under a risk management perspective,
the knowledge of the cdf FZn of the maximum Zn of the random walk
Y can be used to determine the initial capital required. Inspired by,
e.g., Trufin et al. [455], we consider two risk measures based on Zn,
namely, the dynamic VaR and the dynamic TVaR.
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Definition 13.2.1. The dynamic VaR is defined by

V aRκ(Zn) = F−1Zn
(κ) ,

where F−1Zn
is the inverse of FZn defined by

F−1X (u) = inf {x ∈ R : FX(x) ≥ u} ,
for u ∈]0, 1[.

One may interpret V aRκ(Zn) as the capital required such that the
probability that the maximum net cumulative aggregate loss Zn of the
random walk Y over the first n periods exceeds that capital is equal
to 1− κ.

Definition 13.2.2. The dynamic TVaR is defined by

TV aRκ(Zn) =
1

1− κ

∫ 1

1−κ
V aRv(Zn)dv

which is equal to

E
[

Zn × 1{Zn>V aRκ(Zn)}
]

+ V aRκ(Zn) (FZn (V aRκ(Zn))− κ)

1− κ
.

(13.2.1)

Compared to the dynamic VaR, the dynamic TVaR has the ad-
vantage of being more sensitive to the stochastic behavior of Zn in the
tail of its distribution.

13.2.3 Numerical Computation of the Dynamic
VaR and TVaR

To compute the values of the dynamic VaR and TVaR and to sim-
plify the presentation, we assume that individual claim amount Bj ∈
{0, 1h, 2h, . . .} and annual premium π ∈ {1h, 2h, . . .}. It implies that
Wk ∈ {0, 1h, 2h, . . .}, k ∈ N+, Lk ∈ {−π,−π + h, . . . ,−1h, 0, 1h, 2h, . . .},
k ∈ N+, and Zn ∈ {0, 1h, 2h, . . .}, n ∈ N

+ . The cdf of Zn is then
given by

FZn (kh) = 1− ψ (kh, n) = ψ (kh, n) , k ∈ N.

Let us denote the probability mass function (pmf) of W by fW (kh) =
P {W = kh} , k ∈ N. The values of ψ (kh, n) are computed with the
following recursive relation:
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ψ (kh, n) =

k+π
h

∑

j=0

fW (jh)ψ (kh+ π − jh, n − 1) , k ∈ N
+,

with ψ (kh, 0) = 1, k ∈ N. The pmf of Zn is given by

fZn (kh) =

{

ψ (0, n) , k = 0

ψ (kh, n)− ψ ((k − 1) h, n) , k ∈ N+
. (13.2.2)

Let V aRκ(Zn) = k0h, for k0 ∈ N. Then, the expression (13.2.1) for
TV aRκ(Zn) becomes

TV aRκ(Zn) =
E
[

Zn × 1{Zn>k0h}
]

+ k0h (FZn (k0h)− κ)

1− κ
, (13.2.3)

where

E
[

Zn × 1{Zn>k0h}
]

=
∞
∑

k=k0+1

khfZn (kh) = E [Zn]−
k0
∑

k=0

khfZn (kh) .

Remark 13.2.3. If the insurance company has allocated an initial
surplus of V aRκ(Zn) = k0h (k0 ∈ N) and for some reason Zn > k0h,
then only an amount of k0h is available for the payment of losses.
On the other hand, if Zn > k0h but the initial capital allocated is
TV aRκ(Zn), then the company is in a more suitable position since
it has at its disposal an amount corresponding to the average of Zn
exceeding V aRκ(Zn).

The computation of both the V aRκ(Zn) and TV aRκ(Zn) is illus-
trated in the following example.

Example 13.2.4. LetW follow a compound negative binomial distri-
bution meaning that the number of claims M has a negative binomial
distribution with parameters r and q such that E [M ] = r 1−qq and

fM (k) =
(

r+k−1
k

)

(q)r (1− q)k , k ∈ N. Let the claim amount rv B
have a geometric distribution with parameter θ such that E [B] = 1

θ

and fB (k) = θ (1− θ)k−1 , k ∈ N+. For r = 2 and 50 with q = r
r+2

such that E [M ] = 2 and for θ = 1
10 , we have obtained the following

values for V aR0.995 (Z12) and TV aR0.995 (Z12) when the net relative
security loading is fixed at η = 25% (i.e. π = 25):

r E [Z12]
√

Var (Z12) V aR0.995 (Z12) TV aR0.995 (Z12)

2 31.7731 44.7324 220 257.5559

50 23.0041 33.0174 163 190.5177
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Figure 13.3: CDF of Z12 for r = 2 and r = 50

In Fig. 13.3, we depict the values of FZ12 (k), k ∈ N, for r = 2 and
r = 50.

13.2.4 Dynamic TVaR and Increasing Convex Order

In order to examine the impact of the definition of the aggregate claim
amount W on the value of TV aRκ(Zn), we briefly recall some basic
definitions on stochastic orders (see, e.g., Shaked and Shanthikumar
[427], Müller and Stoyan [335], or Denuit et al. [117] for further de-
tails). Univariate random variables V and V ′ are ordered in increasing
convex order (denoted V ≤icx V

′) if E[φ(V )] ≤ E[φ(V ′)] holds for all
increasing convex functions φ, such that the expectations exist. For
example, φ (z) = max (z − x; 0), called the stop-loss function in actu-
arial science, is an increasing convex function. From, e.g., Müller &
Stoyan [335] and Shaked & Shanthikumar [427], M ≤icx M

′ implies
that W ≤icx W

′ and B ≤icx B
′ implies that W ≤icx W

′.
In actuarial science and quantitative risk management, the increas-

ing convex order is used to assess the riskiness of insurance risk portfo-
lio. Within the classical discrete-time risk model, the increasing convex
order is used to compare the riskiness of two portfolios via their re-
spective adjustment coefficients. A comparison of the finite-time ruin
probabilities of two portfolios and therefore their dynamic VaR cannot
be made based on the increasing convex order. However, as we shall
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see in the following proposition, it is possible to compare the dynamic
TVaR of two portfolios using the increasing convex order.

Proposition 13.2.5. If W ≤icx W
′, then TV aRκ(Zn) ≤ TV aRκ(Z

′
n)

for n ∈ N and for κ ∈ (0, 1).

Proof : Clearly, W ≤icx W
′ implies that L ≤icx L

′. We need to define

the process ˜Z =
{

˜Zk, k ∈ N

}

where

˜Zk = Yk − min
j=0,1,2,..,k

{Yj} = max
j=0,1,2,..,k

{Yk − Yj} .

Using the Lindley’s recursive equation (see, e.g., Asmussen [21]), we
have

˜Zk = max
(

˜Zk−1 + Lk, 0
)

,

for k ∈ N+ and ˜Z0 = 0. By duality, since {Lj, j ∈ N
+} is a sequence

of i.i.d. random variables, it implies that ˜Zk
d
= Zk, k ∈ N

+. Using the
results from the proofs of Theorems 4 and 5 of Müller [332], L ≤icx

L′ implies ˜Zn ≤icx
˜Z ′n, for n ∈ N. By duality, if ˜Zn ≤icx

˜Z ′n then
Zn ≤icx Z

′
n, for n ∈ N. Then, from Denuit et al. [117], it follows that

Zn ≤icx Z
′
n implies TV aRκ(Zn) ≤ TV aRκ (Z

′
n), for n ∈ N.

In Example 13.2.4, the parameters r and q of the negative bino-
mial distribution for the rv M are fixed such that M ≤icx M

′, which
implies that W ≤icx W

′. Then, by Proposition 13.2.5, the value of
TV aRκ (Zn) will decrease as the value of the parameter r increases
such that E [M ] remains unchanged. If the initial capital is computed
with that measure, its value will thereby decrease.

13.3 Discrete-Time Risk Model
with Dependent Lines of Business

13.3.1 Additional Definitions

In this section, we consider a portfolio which has m lines of busi-
ness. Several authors have examined the problem of correlated ag-
gregate claim amounts for a portfolio of dependent lines of business.
Among them, in the context of discrete-time risk models, Cossette and
Marceau [95] considered the Poisson model with common shock and
the negative binomial model with common component and studied the
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impact of the dependence relation in each model on the ruin proba-
bility. Wu & Yuen [477] have also investigated a discrete-time risk
model with dependent lines of business. They investigate their model
for a family of claim-number distributions, they carry numerical stud-
ies to compare finite-time ruin probabilities, and, for the infinite-time
ruin probabilities, they analyze the model in terms of the adjustment
coefficient.

To study this model, further definitions and assumptions must be
added. Let the rv Xi,k be the aggregate claim amount in period k for
the line i (i = 1, 2, . . . ,m, k ∈ N+) and let the rv Wk =

∑m
i=1Xi,k

be the aggregate claim amount in period k ∈ N+. We assume that
{(X1,k, . . . ,Xm,k) , k ∈ N+} forms a sequence of i.i.d. random vectors.
The rv Xi,k follows a compound distribution and

Xi,k =

{

∑Mi,k

j=1 Bi,k,j, Mi,k > 0,

0, Mi,k = 0,

where the rv Mi,k is the number of claims in period k for line i
and {Bi,k,j, j ∈ N+} is a sequence of individual claim amounts in pe-
riod k (positive random variables) for line i which are assumed to
be i.i.d. random variables. Also, we assume that {B1,k,j, j ∈ N+}, . . . ,
{Bn,k,j, j ∈ N

+}, and (M1,k, . . . ,Mn,k) are independent. The premium
income per period for the line i is πi = (1 + ηi) E [Wi], i = 1, 2, . . . ,m
and the total premium income per period is π =

∑m
i=1 πi.

We define the maximum net cumulative loss process for line i (i =

1, 2, . . . ,m) by Z(i) =
{

Z
(i)
k , k ∈ N

}

with Z
(i)
0 = 0 and

Z
(i)
k = max

{

0,
1

∑

l=1

(Xi,l − πi) , . . . ,
k

∑

l=1

(Xi,l − πi)

}

, for k ∈ N+.

The risk measures VaR and TVaR associated to Z
(i)
n are denoted

V aRκ

(

Z
(i)
n

)

and TV aRκ

(

Z
(i)
n

)

, i = 1, 2, . . . ,m. The mutualization

benefit resulting from the aggregation of m lines of business is given
by

MBV aR
κ,n =

n
∑

i=1

V aRκ

(

Z(i)
n

)

− V aRκ(Zn)

or

MBTV aR
κ,n =

n
∑

i=1

TV aRκ

(

Z(i)
n

)

− TV aRκ(Zn).
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Example 13.3.1. The portfolio is composed of m = 10 lines of busi-
ness. We assume that (M1, . . . ,Mm) follows a multivariate Poisson
distribution with parameters (λ1, . . . , λm, α0) which is defined as fol-
lows: Let K0, K1,. . . , Kn be independent random variables with K0 ∼
Pois (α0), 0 ≤ α0 ≤ min (λ1, . . . , λm), and Ki ∼ Pois (αi = λi − α0),
i = 1, 2, . . . ,m. Let the random variables M1, . . . , Mm be defined as

M1 = K1 +K0, · · · · · · ,Mm = Km +K0.

We assume here that λ1 = . . . = λm = 0.1. For each line i = 1, . . . ,m,
the claim amount follows a geometric distribution as defined in Ex-
ample 13.2.4 with θ = 1

10 . This means that (M1, . . . ,Mm) follows
a multivariate Poisson distribution. Then, by Cossette et al. [94],
W = X1 + . . . + Xn follows a compound Poisson distribution with
Poisson parameter

γm,γ0 =
n

∑

i=0

αi = m (0.1 − α0) + α0

and

fC(m,γ0) (k) =
m (0.1 − α0)

γm,γ0
fB (k) +

α0

γm,γ0
f∗mB (k), k ∈ N+.

For each line i = 1, . . . ,m, the net relative security margin is assumed
to be η = 20% which implies that the premium income per period for
the whole portfolio is π = 10× 1.2× 0.1× 1

10 = 12. Over a finite-time
horizon of n = 4 periods and for κ = 70%, we obtain the following
results:

10E
[

Z
(1)
4

]

√

10Var
(

Z
(1)
4

)

10V aRκ

(

Z
(1)
4

)

10TV aRκ

(

Z
(1)
4

)

32.0261 25.00814 0 106.7535

α0 E [Z4]
√

Var (Z4) V aRκ (Z4) TV aRκ (Z4)

0 11.8199 18.4778 14 34.4667

0.05 20.1890 41.4363 8 66.1472

0.1 29.6237 53.3903 31 96.7878

.

Clearly, the values of V aRκ (Z4) do not increase with the dependence
parameter α0 and the values of TV aRκ (Z4) increase with the de-
pendence parameter α0. This result has important consequences on
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capital assessment. Moreover, we observe the incoherence of the risk
measure VaR with the following values of MBV aR

κ,n :

α0 = 0 α0 = 0.05 α0 = 0.1

MBV aR
κ,n -14 -8 -31

As expected, if one uses the risk measure TVaR rather than the risk
measure VaR, the coherence of this risk measure is observed (regarding
the mutualization of m risks) with the following values MBTV aR

κ,n :

α0 = 0 α0 = 0.05 α0 = 0.1

MBV aR
κ,n 72.2868 40.6064 9.9661

Also, the mutualization benefit decreases as the positive dependence
relation among the lines of business becomes stronger.

13.3.2 Dynamic TVaR and Supermodular Order

In this subsection, we analyze the impact of the dependence between
the components of (M1, . . . ,Mm) on TV aRκ (Zn) with the supermodu-
lar order. Let V = (V1, . . . , Vm) and V ′ = (V ′1 , . . . , V

′
m) be two random

vectors where, for each i, Vi and V ′i have the same marginal distri-
butions (i.e., Vi ∼ V ′i for i = 1, 2, . . . ,m). Then, V is less than V ′

under supermodular order, denoted V ≤sm V ′, if E [g(V )] ≤ E [g(V ′)]
for all supermodular functions φ, given that the expectations exist. A
function φ : Rm → R is supermodular if

φ(x1, . . ., xi+ε, . . ., xj+δ, . . ., xm)−φ(x1, . . ., xi+ε, . . ., xj, . . ., xm)
≥ φ(x1, . . ., xi, . . ., xj+δ, . . ., xm)−φ(x1, . . ., xi, . . ., xj , . . ., xm)

holds for all x = (x1, . . . , xm) ∈ R
m, 1 ≤ i ≤ j ≤ m and all ε,

δ > 0. See Marshall and Olkin [308] for examples of supermodular
functions. The supermodular order is used to compare random vectors
X and X ′ with different levels of dependence. See, e.g., Shaked and
Shanthikumar [427], Müller and Stoyan [335], or Denuit et al. [117]
for details on supermodular ordering.

Some authors (e.g., Cossette and Marceau [95] and Wu and Yuen
[477]) have analyzed the impact of the dependence on the riskiness of
a portfolio on its associated adjustment coefficient. In the following
proposition, we show that we can quantify the impact of the depen-
dence relation between the lines of business of a portfolio based on its
associated TVaR. From Example 13.3.1, it is clear that such a result
cannot be obtained for the dynamic VaR.



13.4. H. COSSETTE AND E. MARCEAU 269

Proposition 13.3.2. If (M1, . . . ,Mm) ≤sm (M ′1, . . . ,M
′
m), then

TV aRκ(Zn) ≤ TV aRκ (Z
′
n) for n ∈ N.

Proof : By Denuit et al. [118],
(

M1, . . . ,Mm

) ≤sm

(

M ′1, . . . ,M ′m
)

implies
(

X1, . . . ,Xm

) ≤sm

(

X ′1, . . . ,X ′m
)

. Then, Bäuerle and
Müller [47] show that (X1, . . . ,Xm) ≤sm (X ′1, . . . ,X ′m) implies that
W ≤icx W

′. Finally, by Proposition 13.2.5, since W ≤icx W
′, we have

TV aRκ(Zn) ≤ TV aRκ (Z
′
n) for n ∈ N and κ ∈ (0, 1).

Therefore, if the dependence relation between the lines of busi-
ness becomes stronger according to the supermodular order, then the
amount of initial capital that one needs to set aside increases.

13.4 Discrete-Time Risk Model with Random
Income

13.4.1 Additional Definitions

In this section, we assume that the premium income is random (and
positive). The aggregate claim amount in period k ∈ N+ corresponds
to the rv Wk, and the aggregate premium income in period k ∈ N+ is
denoted by the rv Pk. Then, {(Wk, Pk) , k ∈ N+} forms a sequence of
i.i.d. random vectors distributed as the random vector (W,P ). The
components of (W,P ) may be dependent meaning that within a pe-
riod, the premium income and the aggregate claim amount may be
dependent. This dependence relation may be negative or positive.
The solvency condition is expressed by E [W − P ] < 0 or equivalently
E [P ] > E [W ].

We need to slightly adapt the definitions provided for the clas-
sical discrete-time risk model. The surplus process is defined by
U = {Uk, k ∈ N} with U0 = u = initial surplus and Uk = u −
∑k

j=1 (Wk − Pk) for k ∈ N+. The net loss in period k is Lk =
(Wk − Pk) (k ∈ N+), where L1, L2, . . . form a sequence of i.i.d. random
variables distributed as L =W − P , with E[L] < 0.

To compute the values of the dynamic VaR and TVaR and to
simplify the presentation, we assume again that W ∈ {0, 1h, 2h, . . .}
and P ∈ {0, 1h, 2h, . . .}. The joint pmf of (W,P ) is denoted by

fW,P (j1h, j2h) = P{W = j1h, P = j2h},

where j1, j2 ∈ N. It also implies that Zn ∈ {0, 1h, 2h, . . .}, for n ∈ N
+.
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The pmf of the rv L =W − P is given by

fL (kh) =
∞
∑

j=max(0,−k)
fW,P ((k + j) h, jh) , (13.4.1)

for k ∈ Z. Then, using Eq. (13.4.1), the finite-time non-ruin probabil-
ities are recursively computed with the following expression:

ψ (kh, n) =

k
∑

j=−∞
ψ ((k − j) h, n− 1) fL(jh), (13.4.2)

for k ∈ N, n ∈ N+ and with ψ (kh, 1) = FL (kh).
We illustrate the computation of the dynamic VaR and TVaR with

(13.2.2), (13.2.3), (13.4.1), and (13.4.2) in the following example.

Example 13.4.1. Let the aggregate claim amount W follow a geo-
metric distribution with parameter θ1 = 1

1.5 (with E [W ] = 1.5) and
the premium income follow a geometric distribution with parameter
θ2 = 1

1.8 (with E [P ] = 1.8). This implies that E [L] = −0.3. Let the
joint distribution of (W,P ) be define with a Frank copula

Cα (u1, u2) =
−1

α
ln

(

1 +
(e−αu1 − 1) (e−αu2 − 1)

(e−α − 1)

)

,

where α ∈ R\ {0} is the dependence parameter. The bivariate cumu-
lative distribution function FW,P of (W,P ) with marginals FW and FP
is defined as

FW,P (k1h, k2h) = C (FW (k1h) , FP (k2h)) , (13.4.3)

for (k1, k2) ∈ N+ × N+. The joint pmf of (W,P ) is given by

fW,P (k1h, k2h) = FW,P (k1h, k2h)−FW,P ((k1−1)h, k2h) (13.4.4)

−FW,P (k1h, (k2−1)h)+FW,P ((k1−1)h, (k2−1)h) ,

for (k1, k2) ∈ N+ × N+, and where fW,P (k1h, k2h) = 0, if k1 = 0
or k2 = 0. As mentioned in Nelsen [355], (13.4.3) is defined on the
support of (W,P ). Also, a given discrete bivariate distribution does
not lead to a unique copula. On the other hand, copulas can be used
to construct discrete bivariate distributions since this type of structure
allows the coupling of various marginals. See, e.g., in Joe [211], Trivedi
& Zimmer [454], and Cossette et al. [94] for examples of applications.



13.4. H. COSSETTE AND E. MARCEAU 271

In their review on copulas linking discrete distributions, Genest and
Nešlehovà, J. [175] mention that dependence modeling with copulas
as in Eq. (13.4.3) is a valid and attractive approach for constructing
bivariate distributions. Many stochastic dependence properties of a
copula are inherited by the bivariate model obtained in Eq. (13.4.3).
Notably, stochastic ordering relations are preserved. See Genest and
Nešlehovà [175] for further details.

The values of V aRk(Zn) for κ = 99% are provided in the following
table:

α V aRκ (Z1) V aRκ (Z4) V aRκ (Z12)

−20 4 7 11

0 3 6 9

20 1 2 3

We have also obtained the following values of TV aRk(Zn) for κ =
99%:

α TV aRκ (Z1) TV aRκ (Z4) TV aRκ (Z12)

−20 4.6173 8.0880 12.8217

0 4.2077 6.9513 10.4788

20 1.6975 2.7688 3.5781

We observe that, for a fixed n, TV aRk (Zn) decreases as α ↑. It means
that the amount of capital required to be set aside initially decreases as
the dependence between the aggregate claim amount and the aggregate
premium income goes from −∞ to ∞.

13.4.2 Dynamic TVaR and Concordance Order

We investigate the impact of the dependence between the random
variables W and P on TV aRκ(Zn) with the use of the concordance
order. Indeed, (W,P ) is less than (W ′, P ′) under the concordance
order (denoted by (W,P ) ≤co (W

′, P ′)) if

P{W ≤ a1, P ≤ a2} ≤ P{W ′ ≤ a1, P
′ ≤ a2}

or
P{W > a1, P > a2} ≤ P{W ′ > a1, P

′ > a2}
∀a1, a2 ∈ R. See, e.g., Joe [211], Müller and Stoyan [335] or Shaked
and Shanthikumar [427] for details on the concordance order.

Proposition 13.4.2. If (W ′, P ′) ≤co (W ′, P ′), then TV aRκ(Zn) ≤
TV aRκ (Z

′
n) for n ∈ N.
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Proof : By Theorem 4 of Müller [332], if (W,P ) ≤co (W ′, P ′) then
L′ =W ′−P ′ ≤icx W −P = L. Using the same arguments as the ones
in the proof of Proposition 13.2.5, we obtain the desired result.

Given Proposition 13.4.2, we can state that as the concordance in-
creases between W and P , one gets a better hedge of the aggregate
claims by the premiums. One therefore needs less capital as the con-
cordance between the aggregate claim amount W and the aggregate
premium income P becomes stronger.
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Excess Wealth Transform
with Applications
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Abstract: Shaked and Shanthikumar [425] introduced the excess
wealth transform and the related excess wealth order. A lot of re-
search activities have taken place on this topic lately. In this paper,
we discuss some recent developments of this transform and illustrate
how to use this transform in extreme value analysis. We also sum-
marize the applications of excess wealth order in reliability theory,
auction theory, and actuarial science. Some new research directions
are mentioned as well.
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14.1 Introduction and Motivation

The concept of variability is a basic one in statistics, probability, and
many other related areas, such as reliability theory, business, eco-
nomics, and actuarial science, among others. Most of the classical
measurers of variability are based only upon summary statistics such as
variance and standard deviation which are usually quite noninforma-
tive though they are convenient to deal with. In the past two decades,
several more refined transforms and stochastic orders, which measure
and compare variabilities of random variables based on their entire dis-
tribution functions, have been introduced in the literature. Shaked
and Shanthikumar [427] and Müller and Stoyan [335] present com-
prehensive discussions on most of those concepts and their properties.
Among these, the most well known one is excess wealth (ew) trans-
form as introduced by Shaked and Shanthikumar [425]. It was also
independently proposed and studied by Fernández-Ponce et al. [160]
and they called it as right spread transform. More specifically, for a
random variable X with distribution F , the excess wealth transform
is defined as

W(p ;F ) = E
[

(X − F−1(p))+
]

=

∫ ∞

F−1(p)
F̄ (x)dx,

where F−1(p) = inf{x : F (x) ≥ p} for 0 ≤ p ≤ 1, (X)+ = max{X, 0},
and F̄ = 1−F is the survival function of X. The scaled excess wealth
transform can be defined as

SEW(p ;F ) =
W(p ;F )

E(X)
,

where E(X) < ∞. In the context of economics, W(p ;F ) can be
thought of as the additional wealth (on top of the pth percentile in-
come) of the richest 100(1− p) % individuals in the population. Based
on the excess wealth transform, a stochastic partial order has also been
proposed in Shaked and Shanthikumar [425] and Fernández-Ponce
et al. [160]. A random variable X with distribution F is said to be
smaller than another random variable Y with distribution G in the
excess wealth order (denoted by X ≤ew Y ) if

W(p ;F ) ≤ W(p ;G), 0 ≤ p ≤ 1.

One may refer to Shaked and Shanthikumar [427] for a comprehensive
discussion of this order.
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The total time on test transform, a dual form of excess wealth trans-
form, proposed in Barlow and Campo [35] has been widely used in
engineering and statistics as a powerful data analysis tool; see, for
example, Bergman [59] and Klefsjö [240]. Although a lot of work
has been done in the literature on excess wealth transform, it has not
been yet used much as a data analysis tool. In this paper, we move a
first step toward this direction. We illustrate how to use transformed
excess wealth transform to detect heavy tails in distributions. We also
summarize some of the latest development on excess wealth order with
emphasis on its applications in various areas, such as actuary science,
reliability theory, and auction theory. It should be pointed out that
the list of the topics discussed in this paper is by no means exhaustive.
It only reflects our personal interests in these areas.

The organization of the paper is as follows. In the next section, we
give some properties of ew transform and ew order. In Sect. 14.3, we
discuss the EW plot and scaled EW plot. In Sect. 14.4, applications of
ew transform/order in extreme risk analysis, reliability theory, auction
theory and actuarial science are discussed. In the last section, we
mention some new directions for future research on this topic.

14.2 Properties of Excess Wealth Transform

and Order

It is known that the excess wealth transform is closely related to vari-
ance. Fernández-Ponce et al. [160] showed that

Var[X] =

∫ 1

0

[

W(p ;F )

1− p

]2

dp. (14.2.1)

Note that the scaled excess wealth transform is closely related to the
concept of coefficient of variation CV(X) =

√

Var(X)/E(X). It is easy
to see that

CV2(X) =

∫ 1

0

[

SEW(p ;F )

1− p

]2

dp.

The following proposition reveals that the excess wealth transform
is closely related to the truncated variance.

Proposition 14.2.1. For any p0 ∈ [0, 1),

Var
[

X|X > F−1(p0)
]

=
1

1− p0

∫ 1

p0

[

W(p ;F )

1− p

]2

dp.
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Proof : Denote the distribution of [X|X > F−1(p0)] by Fp0 , then

W(p ;Fp0) =

∫ ∞

F−1
p0

(p)
F̄p0(x)dx

=

∫ ∞

F−1(p∗)
F̄ (x)dx · 1

1− p0

=
W(p∗ ;Fp0)

1− p0
,

where p∗ = 1− (1− p)(1− p0). From Eq. (14.2.1), it holds that

Var
[

X|X > F−1(p0)
]

=

∫ 1

0

[

W(p ;Fp0)

1− p

]2

dp

=

∫ 1

0

[

W(p∗ ;F )
1− p0

]2 1

(1− p)2
dp

=
1

1− p0

∫ 1

p0

[

W(p ;F )

1− p

]2

dp.

The ew transform could also be used to test nonparametric life
distribution classes such as increasing failure rate (IFR), decreasing
mean residual life (DMRL), and new better than used in expectation
(NBUE) as pointed out in Fernández-Ponce et al. [160].

Proposition 14.2.2 (Fernández-Ponce et al. [160]).

(i) X is IFR if and only if W(p ;F ) is a convex function of p.

(ii) X is DMRL if and only if W(p ;F ) is convex at p = 1.

(iii) X is NBUE if and only if W(p ;F ) ≤ (1− p)E(X).

In what follows, we review some important properties of ew or-
dering, which are pertinent to the discussion below. One may refer
to Shaked and Shanthikumar [427] for a comprehensive discussion on
this order.

A desirable property of ew ordering is that it is location
independent.
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Proposition 14.2.3. X
ew
= Y ⇐⇒ X

st
= Y + c for some real constant

c, where “
st
=” represents both sides have the same distribution.

The excess wealth transform is preserved under the increasing convex
transformations.

Proposition 14.2.4. X ≤ew Y =⇒ φ(X) ≤ew φ(Y ) for any increas-
ing convex function φ.

The other desirable property of ew order shown in Shaked and
Shanthikumar [425] is as follows.

Proposition 14.2.5. Let X and Y be two continuous random vari-
ables, each having a possible mass at the origin which is assumed to be
the common left endpoint of their supports. If X ≤ew Y , then

Var[h(X)]≤Var[h(Y )] for any increasing convex function h:[0,∞)→R,

for which the variances exists.

14.3 Excess Wealth Plot

As mentioned in the introduction, the ew transform, compared to the
TTT (total time on test) transform, has not received that much at-
tention as an efficient data analysis tool. The only contribution in
the literature on this topic is by Belzunce et al. [55], where they
mentioned the idea of using ew transform to detect NBUE (NWUE)
aging property; see also Denuit et al. [119]. However, it has not been
systematically studied as a data analysis tool. In this section, we in-
troduce the excess wealth plot, which may be used as a powerful tool
in data analysis.

Let X1, · · · ,Xn be a random sample from X. Let X1:n ≤ X2:n ≤
· · · ≤ Xn:n denote the order statistics corresponding to X1, · · · ,Xn.
The empirical distribution is defined as

Fn(t) =
1

n

n
∑

i=1

I(Xi ≤ t).

Hence, the empirical version of excess wealth transform is, for 0 ≤ i ≤
n− 1,
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Wi =W

(

i

n
;Fn

)

=
n−1
∑

j=i

∫ F−1
n ((j+1)/n)

F−1
n (j/n)

F̄n(x)dx

=
n−1
∑

j=i

n− j

n
(Xj+1:n −Xj:n) ,

which may be written as, for i = 1, . . . , n− 1,

W

(

i

n
;Fn

)

=

n
∑

j=i+1

n− j + 1

n
(Xj:n −Xj−1:n) ,

which is the dual form of total time on test transform ([36, 55]). It is
observed that

W0 = X̄, Wi+1 =Wi − n− i

n
(Xi+1:n −Xi:n), 0 ≤ i ≤ n− 1.

(14.3.1)

A visual tool, called EW plot, might be constructed as follows:

(a) Order the sample: X1:n ≤ X2:n ≤ · · · ≤ Xn:n.

(b) Compute Wi as defined in Eq. (14.3.1) for i = 0, · · · , n− 1.

(c) Plot the pairs (i/n,Wi), i = 0, · · · , n, where (1,Wn) = (1, 0) and
connect the points by line segments.

The scaled EW plot might be constructed by replacingWi byWi/X̄
in the above procedure.

Similar to the TTT transform [36], if F−1 is continuous, using
Glivenko-Cantelli theorem, it holds that

W (i/n;Fn) −→ W (p;F ), n → ∞, i/n → p,

uniformly on [0, 1] with probability one. Further, we have

W (i/n;Fn)

X̄
−→ W (p;F )

EX
, n → ∞, i/n → p,

uniformly on [0, 1] with probability one, which is a direct consequence
of Glivenko-Cantelli theorem and strong law of large numbers.

The following example is used for illustration.

Example 14.3.1. Let X be an exponential random variable with rate
2, from which 200 samples are generated for EW plot and scaled EW
(SEW) plot. The EW plot and SEW plot are displayed in Fig. 14.1.
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Figure 14.1: EW/SEW plots for exponential distribution, population (solid)
and sample (dashed)

14.4 Applications

14.4.1 Extreme Risk Analysis

In extreme value theory, one popular method to study heavy-tailed
data is the so-called peaks over threshold (POT). In the POT model
the excess losses over high thresholds are modeled with the generalized
Pareto distribution (GPD), which provides a unifying approach to the
modeling of the tail of a severity distribution. For more details, one
may refer to Embrechts et al. [150] and Resnick [387].

Prior to analyzing the data using extreme value theory, it is impor-
tant for us to check whether the GPD is suitable for the tail. Recall
that a random variable X has a GPD if it has a cumulative distribution
function of the form

Gξ,β(x) =

{

1− (1 + ξx/β)−1/ξ ξ �= 0,
1− exp(−x/β) ξ = 0

where β > 0 and x ≥ 0 when ξ ≥ 0 and 0 ≤ x ≤ −β/ξ if ξ < 0. The
parameters ξ and β are referred to as the shape and scale parameters,
respectively.

It is known that the first and most important step of POT method
is to select a proper threshold. The mean excess (ME) function is a
tool popularly used to aid this choice of the proper threshold μ and
also to determine the adequacy of the GPD model in practice (see
Davison and Smith [108]).
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M(μ) = E[X − μ | X > μ],

if E(X) < ∞. It is seen that if ξ < 1, then

M(u) =
β

1− ξ
+

ξ

1− ξ
u.

Davison and Smith [108] used this property and suggested that if the
ME plot is close to linear for high values of the threshold, then there
is no evidence against the use of a GDP model. For more discussion
on this plot in practice, please refer to Embrechts et al. [150].

One intriguing property of scaled EW transform on GPD is

SEW(p;F ) = (1− p)1−ξ, ξ < 1.

Hence, the following transformed EW transform (TEW) can be used
to determine the adequacy of the GPD model in practice:

TEW(p;F ) =
ln(SEW(p;F ))

ln(1− p)
= 1− ξ.

It can be shown that, if n → ∞, i/n → p,

TEW(i/n;Fn) −→ TEW(p;F )

uniformly on [0, 1] with probability one. Hence, we may construct
the following TEW plot to determine the adequacy of GPD model in
practice:

(

i

n
, 1− TEW

(

i

n
;Fn

))

.

Example 14.4.1. We generated 1,000 observations from the GPD
distribution with β = 0.9 and ξ = 0.7, i.e.,

Gξ,β(x) = 1− (1 + .7x/.9)−1/.7.

The TEW plot and ME plot (POT package in R) are displayed in
Fig. 14.2. It is seen that the TEW plot is very informative and also
provides a rough estimate of ξ around 0.7.
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Figure 14.2: TEW plot and mean excess (ME) plot of GPD distribution
with β = 0.9 and ξ = 0.7

14.4.2 Reliability Theory

Let X1, . . . ,Xn be a random sample from distribution F and let
Y1, . . . , Yn be the other independent random sample from distribu-
tion G. For k = 1, . . . , n, let Xk:n denote the kth order statistic of
the X-sample and Yk:n that of the Y -sample. Please refer to David
and Nagaraja [107] and Balakrishnan and Rao [29, 30] for the com-
prehensive discussion on order statistics. In reliability theory, an n
component system that works if and only if at least k of the n com-
ponents work is called a k-out-of-n system. Both parallel and series
systems are special cases of the k-out-of-n system. The lifetime of a
k-out-of-n system can be represented as Xn−k+1:n.

Kochar et al. [250] proved the following result which states that
if two distributions are ordered according to ew ordering, then the
lifetimes of the parallel systems made of such i.i.d. components are
also ordered according to ew ordering.

Theorem 14.4.2. X ≤ew Y =⇒ Xn:n ≤ew Yn:n

Now we consider the case when the underlying random variables
are independent but not necessarily identical. Kochar and Xu
[258] proved the following result when the lifetimes are exponentially
distributed.
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Theorem 14.4.3. Let X1, . . . ,Xn be independent exponential random
variables with Xi having hazard rate λi, i = 1, . . . , n. Let Y1, . . . , Yn
be a random sample of size n from an exponential distribution with
common hazard rate λ. Then

λ∗ ≤ λ ⇐⇒ Yn:n ≤ew Xn:n,

where

λ∗ =
n

∑

i=1

1

i

⎡

⎢

⎢

⎢

⎢

⎢

⎣

n
∑

k=1

(−1)k+1
∑

1≤i1≤···≤ik≤n

1
k

∑

j=1

λij

⎤

⎥

⎥

⎥

⎥

⎥

⎦

−1

. (14.4.1)

The above result was extended to the proportional hazard rate
model as follows.

Theorem 14.4.4. Let X1, . . . ,Xn be independent random variables
with Xi having survival function F̄ λi , i = 1, . . . , n, and let Y1, . . . , Yn
be another random sample with the common survival function F̄ λ. If F
is a DFR (decreasing failure rate) distribution, then

λ∗ ≤ λ =⇒ Yn:n ≤ew Xn:n,

where λ∗ is given by Eq. (14.4.1).

A natural question is to examine whether Theorem 14.4.3 can be
extended to other order statistics. While we don’t know the answer for
the general case, Zhao, Li, and Da [492] proved the next two results
for the second order statistics.

Theorem 14.4.5. Let X1, . . . ,Xn be independent exponential random
variables with Xi having hazard rate λi, i = 1, . . . , n. Let Y1, . . . , Yn
be a random sample of size n from an exponential distribution with
common hazard rate λ. Then Y2:n ≤ew X2:n if and only if

λ ≥ λU =
2n − 1

n(n− 1)
(

∑n
i=1

1
Λi

− n−1
Λ(1)

) (14.4.2)

where

Λ(1) =

n
∑

i

λi and Λi = Λ(1) − λi.
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Theorem 14.4.6. Let X1, . . . ,Xn be independent random variables
with Xi having survival function F̄ λi , i = 1, . . . , n, and let Y1, . . . , Yn
be another random sample with the common survival function F̄ λ. If
F is a DFR distribution, then

λ ≥ λU =⇒ Y2:n ≤ew X2:n,

where λU is given by Eq. (14.4.2).

For comparing other k-out-of-n systems according to ew ordering,
the only available results are due to Kochar and Xu [262] as given in
the next two theorems.

Theorem 14.4.7. Let X1, . . . ,Xp be independent exponential random
variables with a common hazard rate λ1, and let Xp+1, . . . ,Xn be an-
other set of independent and identically distributed exponential random
variables with hazard rate λ2. Let Y1, . . . , Yn be independent exponen-
tial random variables with a common hazard rate λ̃, satisfying the con-
dition that

λ̃ ≥
k

∑

j=1

1

n−j+1

⎡

⎣

n
∑

j=n−k+1

(−1)j−n+k−1
(

j−1

n−k
)

⎤

⎦

−1

·
[

∑

m∈M

(

p

m

)(

n−p
j−m

)

1

mλ1+(j−m)λ2

]−1
, (14.4.3)

where M = {m : max{j − n + p, 0} ≤ m ≤ min{p, j}}. Then for
1 ≤ k ≤ n, the following equivalent statements hold:

(i) Xk:n ≥ew Yk:n.

(ii) E[Xk:n] ≥ E[Yk:n].

Theorem 14.4.8. Let X1, . . . ,Xp be independent random variables
with a common survival function F̄ λ1 , and let Xp+1, . . . ,Xn be an-
other set of independent random variables with a common survival
function F̄ λ2 . Let Y1, . . . , Yn be a random sample from a distribution
with survival function F̄ λ̃ where λ̃ is given by Eq. (14.4.3). If F is
DFR, then

Xk:n ≥ew Yk:n, for 1 ≤ k ≤ n.
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14.4.3 Auction Theory

Let Dk:n = Xk:n−Xk−1:n be the kth spacing from a random X-sample
X1, . . . ,Xn, k = 1, . . . , n, and Hk:n = Yk:n−Yk−1:n be the kth spacing
of the random Y -sample Y1, . . . , Yn, where X0: n = Y0: n ≡ 0. Spacings
have been found in many applications in statistics, engineering, and
economics, among others. One may refer to Kochar and Xu [261]
and references therein. Recently, it is found that the spacings have
interesting applications in auction theory. In this section, we discuss
the application of ew order on the spacings in auction theory. One
may refer to Krishna [267] for a comprehensive discussion of auction
theory.

In a sealed auction, bidders are not aware of each other’s offers,
and all bidders, respectively, submit their own bids for the good. The
most favorable one will be awarded the good at a price that is some
function of the submitted bids. Let X1, . . . ,Xn be the valuations of the
bidders. If the prices are bid in an ascending sequence by individual
bidders until the highest bidder remains, and the price paid by the
winner is the (n− k+1)-th largest price reached in the sequence, this
is called a k-price buyer’s auction. The rent of the winner, which is
the difference between the largest price reached and the k-th largest
price reached from bidders, can be characterized as Xn:n−Xk:n. If the
prices are bid in a descending sequence by individual bidders until only
one bidder remains, then the lowest bidder is awarded the good at a
price corresponding to the k-th largest price reached in the sequence;
this is called a k-price reverse auction. The rent of the winner is then
the difference between the k-th smallest price and the smallest price
from bidders, that is, Xk:n −X1:n. In practice, Dn:n = Xn:n −Xn−1:n
and D2:n = X2:n −X1:n are of particular interest since they represent
auction rents in buyer’s auction and reverse auction in the second-price
business auction.

Li [285] proved the following result.

Theorem 14.4.9. If X ≤ew Y , then E[Dn:n] ≤ E[Hn:n].

The above result states that in the second-price buyer’s auction,
if the bid is increasing in the sense of ew order, then the expected
winner’s rent is increasing.

This theorem was generalized in Kochar et al. [251], where they
proved the following result.
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Theorem 14.4.10. If X ≤ew Y , then Xn: n −Xk: n ≤icx Yn: n − Yk: n,
here “≤icx” means the increasing and convex order.

Theorem 14.4.10 gives a stronger conclusion that in a k-price
buyer’s auction, an increase of the bid in the sense of ew order will
result in an increase of the winner’s rent in the sense of increasing
convex order.

Now, we consider situations in which bidders are asymmetric. That
is, different bidders’ values are drawn from different distributions.
There are only few results in the literature. The next result due to
Kochar and Xu [261] gives necessary and sufficient conditions for com-
paring the sample spacings of two samples according to ew ordering
for exponential distributions.

Theorem 14.4.11. Let X1, . . . ,Xn be independent exponential ran-
dom variables with Xi having hazard rate λi, i = 1, . . . , n, and
Y1, . . . , Yn be a random sample of size n from an exponential distri-
bution with common hazard rate λ. Then, for k ≥ 2,

(a) Hk:n ≤ew Dk:n or

(b) E[Hk:n] ≤ E[Dk:n]

if and only if

1

λ
≤ (n − k + 1)

∑

r

∏n
i=1 λi

∑n
j=k λrj

∏n
i=1

∑n
j=i λrj

,

where r extends over all of the permutations of {1, 2, . . . , n}.

14.4.4 Actuarial Science

In actuarial science, people are always interested in the following ques-
tion: how much can we expect to lose with a given probability? This
introduces the concept of Value-at-Risk (VaR), which has become the
benchmark risk measure. For more details about VaR, please refer to
Denuit et al. [117]. The VaR is defined as

VaR[X; p] = F−1(p).

As the VaR at a fixed level only gives local information about the un-
derlying distribution, actuaries proposed the so-called expected short-
fall to overcome this shortcoming. Expected shortfall at probability
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level p is the stop-loss premium with retention VaR[X; p], that is,
E (X −VaR[X; p])+, which is just the excess wealth transform of X.
Hence, excess wealth order provides a natural way to compare the
risks. Sordo [439] proved the following interesting result, which is
closely related to Propositions 14.2.3 and 14.2.4.

Theorem 14.4.12. Let X and Y be two random variables with
respective distribution functions F and G. Then

X ≤ew Y ⇐⇒ Hφ,p(X) ≤ Hφ,p(Y ), 0 < p < 1,

where
Hφ,p(X) = E

[

φ(X − E(Xp))|X > F−1(p)
]

,

and φ is a convex function, and Xp = (X|X > F−1(p)). Hφ,p(Y ) is
similarly defined.

As a direct consequence, the following result follows.

Corollary 14.4.13. Let X and Y be two random variables with re-
spective distribution functions F and G. Then

X ≤ew Y =⇒ Var[Xp] ≤ Var[Yp], 0 < p < 1.

In fact, this result follows directly from Proposition 14.2.1.

Let X1, . . . ,Xn be independent random variables and Y1, . . . , Yn
be another set of independent random variables. We consider the
following individual risk model

SX = X1 + . . .+Xn,

where Xi’s are considered as risks. It is of particular interest to study
the property of aggregated risk SX .

The following result due to Hu et al. [197] states that the ew order
is preserved under convolution under suitable conditions.

Theorem 14.4.14. Let (Xi, Yi), i = 1, . . . , n be independent pairs of
random variables such that Xi ≤ew Yi, i = 1, 2 . . . , n. If Xi, Yi all have
logconcave densities, except possibly one Xl and one Yk (l �= k), then

n
∑

i=1

Xi ≤ew

n
∑

i=1

Yi.
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In practice, the risks may not be identically distributed. Kochar
and Xu [259, 263] studied the aggregated risk SX composed of several
subclaims which come from different gamma distributions. Recall that
Xλ is a gamma random variable Γ(a, λ) with shape parameter a > 0
and scale parameter λ > 0, if its density function can be written as

f(x) =
λa

Γ(a)
xa−1 exp {−λx} , x > 0.

Kochar and Xu [263] showed that more heterogeneity within the
scale parameters of gamma distributions leads to increased uncertainty
for the aggregated risk.

Theorem 14.4.15. Let X1, . . . ,Xn be independent gamma random
variables Γ(a1, λ), . . . ,Γ(an, λ), respectively. If 1 ≤ a1 ≤ a2 ≤ . . . ≤
an, then

(β1, · · · , βn)
w� (

β′1, · · · , β′n
)

=⇒
n

∑

i=1

β(i)Xi ≥ew

n
∑

i=1

β′(i)Xi,

where “
w�” means the weak majorization [312].

The following result due to Kochar and Xu [264] provides a suffi-
cient and necessary condition to compare heterogeneous gamma risks.

Theorem 14.4.16. Let X1, . . . ,Xn be independent gamma random
variables Γ(a1, λ), . . . ,Γ(an, λ), respectively. Then,

n
∑

i=1

βiXi ≥ew β

n
∑

i=1

Xi ⇐⇒ β ≤
∑n

i=1 βiai
∑n

i=1 ai
.

14.5 Remarks

The research on ew transform/order is far from complete. There are
many ways to continue this topic. We list some topics of interest.

1. TEW plot. There are several plots used to detect heavy tails,
such as Hill plot, Pickand plot, and QQ plot ([387]) in the liter-
ature. It is worth carrying out the comparison of TEW plot to
the existed ones. Meanwhile, it is interesting to prove limiting
results for TEW plot similar to Ghosh and Resnick [183] and
Das and Ghosh [104].
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2. Dependence. In the literature, the results on ew order are under
the assumption that the underlying random variables are inde-
pendent. However, in practice, the dependence also exists be-
tween random variables. Hence, it is of interest to study the
dependence cases. For example, can we extend Theorems 14.4.3
and 14.4.15 to the dependence cases?

3. Heterogeneity. Statistics, such as order statistics, spacings, and
convolutions, from heterogeneous samples have attracted more
attention lately, since they are more realistic in practice. Un-
fortunately, there are few results on the ew order in this aspect,
although it is an important and interesting topic. More research
in this direction is needed. For example, can we generalize the
results in Sects. 4.2 4.3 and 4.4 from exponential or gamma dis-
tributions to other general distributions?

4. Nonparametric testing. In the literature, several attempts have
been made to develop nonparametric tests for the excess wealth
order. Belzunce et al. [55] established L-statistics to test the
right spread order based on Proposition 14.2.3

H0 : X
ew
= Y

vs. the alternative,
H1 : X <ew Y.

Denuit et al. [119] proposed a Kolmogorov-Smirnov-type test for
the shortfall dominance against parametric alternatives, where
the shortfall order is equivalent to the excess wealth order with
replacing p by 1−p. It is interesting to develop some nonparamet-
ric tests, such as Kolmogorov-Smirnov-type, Cramer-von Mises
type or Anderson-Darling-type test, for ew order in two-sample
cases; see, for example, [41, 119].
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Abstract: The concept of intermediate tail dependence is useful if one
wants to quantify the degree of positive dependence in the tails when
there is no strong evidence of presence of the usual tail dependence.
We first review existing studies on intermediate tail dependence, and
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tail dependence for elliptical, extreme value, and Archimedean cop-
ulas is reviewed and further studied, respectively. For Archimedean
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15.1 Introduction

For applications in many areas such as environmetrics, actuarial
science, and quantitative finance, in addition to prudent examinations
of univariate margins, careful modeling of various dependence patterns
in corresponding distributional tails is often very important. For sta-
tistical modeling of dependence structures between random variables,
a very useful approach is to employ a copula function to combine the
univariate margins together to get the joint distribution. A copula
C : [0, 1]d → [0, 1] for a d-dimensional random vector can be defined
as C(u1, . . . , ud) = F (F−11 (u1), . . . , F

−1
d (ud)), where F is the joint cu-

mulative distribution function (cdf), Fi is the univariate cdf for the
ith margin, and F−1i is the generalized inverse function defined as
F−1i (u) = inf{x : Fi(x) ≥ u}. To avoid technical complexity, through-
out the article, the univariate cdfs Fi’s are assumed to be supported
on [0,∞), and Fi’s are continuous and thus the copula C is unique
due to Sklar’s theorem [437]. We refer the readers to [211] and [355]
for references of copulas. Moreover, all distribution functions and den-
sity functions are assumed to be ultimately monotone to the left and
right endpoints; this condition is very mild and satisfied by all the
commonly used distributions.

The so-called tail dependence parameters (also called tail de-
pendence coefficients or tail dependence index) have been stud-
ied as a summary quantity to capture the degree of tail depen-
dence. Let λ be the upper tail dependence parameter, then λ :=
limu→0+

̂C(u, . . . , u)/u (provided that the limit exists), where ̂C is the
survival copula of C; that is, ̂C(u1, . . . , ud) := C(1 − u1, . . . , 1 − ud),
and C is the survival function of C and defined as C(u1, . . . , ud) :=
1 +

∑

∅�=I⊆{1,...,d}(−1)|I|CI(ui, i ∈ I), where CI is the copula for the
I-margin.

The concept of intermediate tail dependence arises when one wants
to quantify the strength of such dependence in the tails but the usual
tail dependence parameter λ = 0. In this case, one needs to find
another quantity to capture the strength of dependence in the tails.

In [193], the concept of tail order (κ) is suggested as a quantity to
capture the leading information of dependence in the tails when λ = 0.
When we look at the decay of a copula function along the diagonal as a
function in u, then a mild assumption is that C(u, . . . , u) ∼ uκ�(u) as
u → 0+, where � is a slowly varying function [61] and the notation g ∼
h means that the functions g and h are asymptotically equivalent; that
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is, limt→t0 g(t)/h(t) = 1 with t0 being the corresponding limiting point
that is usually 0 or ∞. The leading parameter κ is referred to as the
lower tail order of copula C. In parallel, the upper tail order of copula
C can be defined as the κ that satisfies that ̂C(u, . . . , u) ∼ uκ�(u), u →
0+. Clearly, κ = 1 corresponds to the usual tail dependence and then
the limit of the slowly varying function �(u) is used as the quantity to
capture the degree of tail dependence.

If copulas C1 and C2 have lower tail orders κ1 and κ2, respectively,
and κ1 < κ2, then C1(u) ≥ C2(u) for all u in a neighborhood of
0. Similarly, this holds for the upper tail orders in terms of survival
functions. That is, the tail order for comparing copulas implies a form
of multivariate stochastic order in the joint lower or upper tails.

To the best of our knowledge, [276] is the first paper that employs a
regularly varying function to study the weaker dependence in the tails
with the tail dependence parameter λ = 0. More specifically, for a bi-
variate random vector (X1,X2), where X1 and X2 are unit Fréchet dis-
tributed with cdf Fi(x) = e−1/x, x ≥ 0, i = 1, 2, and are nonnegatively
associated, assume P{X1 > r,X2 > r} ∼ �(r)r−1/η, r → ∞, where
1/2 ≤ η ≤ 1. It can be verified that the tail order κ corresponds to
1/η of Ledford and Tawn’s representation, and η is called the residual
dependence index in [190] and references therein. A lot of research has
been done following this direction. We refer to [93, 191, 275, 276, 383]
for further development of this idea.

Although the concept of tail order is defined with respect to a
copula, which is a more intuitive way, the κ itself or some functional
forms of κ simply describe the relative speed of decay of the joint tail
probability to certain functional forms of the tail probability of one of
the standardized margins. How to standardize the margins and how to
choose the functional forms depend on how to make such relative speed
of decay meaningful and be able to capture the leading information of
dependence in the tails.

Another notion that is close to the concept of tail order is a tail
dependence measure in the sense of [93], in which an upper tail depen-
dence measure for a bivariate copula is defined as

χ̄ := lim
u→0+

2 log(u)/ log(C(1− u, 1− u))− 1.

So, χ̄ = 2/κU−1. Note that if C(u, . . . , u) ∼ uκ�(u) as u → 0+, letting
C ′(u, . . . , u) := d(C(u, . . . , u))/du and [uκ�(u)]′ := d(uκ�(u))/du, then
by the l’Hopital’s rule and the Monotone Density Theorem [61]:
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lim
u→0+

log(C(u, . . . , u))

log(u)
= lim

u→0+

C ′(u, . . . , u)
[uκ�(u)]′

× u[uκ�(u)]′

C(u, . . . , u)

= lim
u→0+

κuκ�(u)

C(u, . . . , u)
= κ. (15.1.1)

Therefore, in some cases it may be easier to obtain the lower tail
order by applying Eq. (15.1.1); for example, it will be used in the
proof of Proposition 15.4.3 for a bivariate elliptical copula. Similarly,
the upper tail order can be calculated as κU = limu→0+ [log(C(1 −
u, . . . , 1− u))]/[log(u)].

In what follows, we will introduce the concepts of tail order and
intermediate tail dependence in Sect. 15.2. Some detailed results for
extreme value, elliptical, and Archimedean copulas are presented in
Sects. 15.3, 15.4, and 15.5, respectively. In particular, in Sect. 15.5, we
will study intermediate tail dependence through two different stochas-
tic representations of Archimedean copulas: the frailty model and the
scale mixture model. The study of upper intermediate tail dependence
of Archimedean copulas derived from the scale mixture model is new
in the literature. References are given for existing results, and proofs
are only provided for new results. Sect. 15.6 will conclude the article.

15.2 Tail Order and Intermediate Tail

Dependence

The theory of regular variation will be applied throughout the article.
We refer the reader to [61], [386, 387], [113], and [173] for references.
A measurable function g : R+ → R+ is regularly varying at ∞ with
index α �= 0 (written g ∈ RVα) if for any t > 0, limx→∞(g(xt)/g(x)) =
tα. If the above equation holds with α = 0 for any t > 0, then g is
said to be slowly varying at ∞ and written as g ∈ RV0. For regularly
varying at 0, that is, limx→0+(g(xt)/g(x)) = tα for any t > 0, the
notation is g ∈ RVα(0

+), and slow variation of � at 0 is written as
� ∈ RV0(0

+). For any g ∈ RVα, α ∈ R, there exists an � ∈ RV0 such
that g(x) = xα�(x).

Other notation: a bold letter is used to represent a transposed
vector, e.g., x := (x1, . . . , xd), and (u1d) represents (u, . . . , u) with
d components of u’s and (uw) represents (uw1, . . . , uwd). We use
(wI) := (wi; i ∈ I) when I is a subset of {1, . . . , d}, and sometimes
(w1, . . . , wd) is abbreviated as (wd).
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Definition 15.2.1. Suppose C is a d-dimensional copula. If there
exists a real constant κL(C) > 0 and � ∈ RV0(0

+) such that

C(u1d) ∼ uκL(C)�(u), u → 0+,

then we refer to κL(C) as the lower tail order of C and refer to λL(C) =
limu→0+ �(u) as the lower tail order parameter, provided that the limit
exists. Similarly, the upper tail order is defined as κU (C) that satisfies
C((1−u)1d) ∼ uκU (C)�(u), u → 0+, with the upper tail order parameter
being λU (C) = limu→0+ �(u), provided that the limit exists.

The notion of tail order is especially useful for bivariate copulas or
for multivariate permutation-symmetric (i.e., exchangeable) copulas.
Otherwise, the study of tail order involves more technical issues. All
the copulas studied in this article are assumed to be permutation sym-
metric, in order to illustrate the main ideas and key results without
involving too much technical discussion. Under such assumptions, in-
termediate tail dependence simply means that the corresponding tail
order κ satisfies 1 < κ < d.

Definition 15.2.2. Suppose C is a d-dimensional copula and
C(u1d) ∼ uκ�(u), u → 0+ for some � ∈ RV0(0

+). The lower tail
order function b : Rd+ → R+ is defined as

b(w;C, κ) = lim
u→0+

C(uwj, 1 ≤ j ≤ d)

uκ�(u)
,

provided that the limit function exists. In parallel, if C((1 − u)1d) ∼
uκ�(u), u → 0+ for some � ∈ RV0(0

+), the upper tail order function
b∗ : Rd+ → R+ is defined as

b∗(w;C, κ) = lim
u→0+

C(1− uwj, 1 ≤ j ≤ d)

uκ�(u)
,

provided that the limit function exists. If �(u) → h �= 0, then
hb(w;C, 1) and hb∗(w;C, 1) become the tail dependence functions pro-
posed in [213]. That is, the definition of the tail order function here
absorbs a constant into � so that b(1d;C, κ) = 1.

The following are some elementary properties of the lower and
upper tail order functions b and b∗. Obvious properties of tail order
for ̂C are the following: κL(C) = κU ( ̂C), κU (C) = κL( ̂C), b(w;C, κ) =
b∗(w; ̂C, κ), and b∗(w;C, κ) = b(w; ̂C, κ).
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Proposition 15.2.3. A lower tail order function b(w) = b(w;C, κ)
has the following properties: (1) b(w) = 0 if there exists an i ∈
{1, . . . , d} with wi = 0; (2) b(w) is increasing in wi, i ∈ {1, . . . , d}; (3)
b(w) is positive homogeneous of order κ; that is, for any fixed t > 0,
b(tw) = tκb(w); (4) if b(w) is partially differentiable with respect to
each wi on (0,+∞), then b(w) = 1

κ

∑d
j=1

∂b
∂wj

wj,∀w ∈ R
d
+.

Other properties of tail order and tail order functions can be found
in [193]. Due to the limitation of space, in what follows, we will fo-
cus on the study of intermediate tail dependence for three important
copula families.

15.3 Extreme Value Copula

If a copula C satisfies C(ut1, . . . , u
t
d) = Ct(u1, . . . , ud) for any

(u1, . . . , ud) ∈ [0, 1]d and t > 0, then we refer to C as an extreme
value copula. For any extreme value copula C, there exists a function
A : [0,∞)d → [0,∞) such that

C(u1, . . . , ud) = exp{−A(− log u1, . . . ,− log ud)}, (15.3.1)

where A is convex, positive homogeneous of order 1 and satisfies

max(x1, . . . , xd) ≤ A(x1, . . . , xd) ≤ x1 + · · ·+ xd.

We refer to [375], [447], and Chap. 6 of [211] for references.

For the lower tail of an extreme value copula C, it can be ver-
ified [193] that C(u, . . . , u) = uA(1,...,1). That is, for any extreme
value copula C, the lower tail order is κL(C) = A(1, . . . , 1), and there
is intermediate lower tail dependence except for the boundary cases,
such as the independence copula and the comonotonicity copula, where
A(1, . . . , 1) = d and 1, respectively.

For the upper tail of an extreme value copula C, write the survival
copula as ̂C(u1d) := C((1 − u)1d) = 1 +

∑

∅�=I⊆{1,...,d}(−1)|I|CI((1 −
u)1|I|). Since each I-margin of C with 2 ≤ |I| ≤ d is also an extreme
value copula [447], let AI be the corresponding function in the sense
of Eq. (15.3.1) for the extreme value copula CI , then,

̂C(u, . . . , u) = C(1− u, . . . , 1− u) = 1 +
∑

∅�=I⊆{1,...,d}
(−1)|I|CI(1− u|I|)



15.4. L. HUA AND H. JOE 297

= 1− d+ du+
∑

I⊆{1,...,d},|I|≥2
(−1)|I|CI(1− u|I|)

= 1− d+ du+
∑

I⊆{1,...,d},|I|≥2
(−1)|I|(1− u)AI (1|I|).

By the l’Hopital’s rule, as u → 0+,

̂C(u, . . . , u) ∼ u

⎛

⎝d−
∑

I⊆{1,...,d},|I|≥2
(−1)|I|AI(1|I|)

⎞

⎠ =: uλ.

So if λ �= 0, then C has usual upper tail dependence with tail depen-
dence parameter λ = d−∑

I⊆{1,...,d},|I|≥2(−1)|I|AI(1|I|). If λ = 0, then
it is unclear if an extreme value copula can have upper intermediate
tail dependence or not; certain structures of those AI functions are
needed in this regard.

15.4 Elliptical Copula

Since a copula is invariant to a strict increasing transformation on
margins, for the study of elliptical copula, we may omit the location
and scale parameters of joint elliptical distributions. Intermediate tail
dependence depends just on the radial random variable, and the con-
dition on the radial random variable can be seen from the bivariate
case, so the main result in this section is bivariate, and it can be easily
extended to exchangeable multivariate elliptical copulas. Now con-
sider the following representation: let X := (X1,X2) be an elliptical
random vector such that

X
d
= RAU , (15.4.1)

where the radial random variable R ≥ 0 is independent of U , U is
a bivariate random vector uniformly distributed on the surface of the
unit hypersphere {z ∈ R

2|zzT = 1}, and A is a 2×2 matrix such that
AAT = Σ where the entries of Σ are Σ11 = Σ22 = 1 and Σ12 = Σ21 = �

with −1 < � < 1, e.g., A =

(

1 0

�
√

1− �2

)

. For such an elliptical

distribution, the margins have the same cdf assumed to be F .
For the usual tail dependence case, [413] proved that when the

radial random variable R has a regularly varying tail, then X1 and
X2 are tail dependent, and thus the tail order of the corresponding
elliptical copula is κ = 1.
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Example 15.4.1 (Student’s t copula). The radial random variable
R for Student’s t distributions is a generalized inverse Gamma distri-
bution such that R2 follows an inverse Gamma distribution with the
shape and scale parameters being ν/2, where ν is the degree of free-
dom. It can be verified that FR ∈ RV−ν (see Example 3 of [194]).
So the tail order for Student’s t copula is κ = 1.

For univariate tail heaviness, one often uses a concept referred to
as maximum domain of attraction (MDA) of a univariate extreme
value distribution. The following well-known result characterizes the
distributions that belong to the MDA of Gumbel, which is relevant to
intermediate tail dependence of elliptical copulas. We refer to [150]
and [113] for more details about MDA. For notation, Λ is the Gumbel
extreme value distribution for maxima, and Φα is the Fréchet extreme
value distribution with parameter α > 0.

Theorem 15.4.2. A random variable X with cdf F is said to belong
to the Gumbel MDA (denoted as X ∈ MDA(Λ) or F ∈ MDA(Λ)) if
and only if there exists a positive auxiliary function a(·) such that

lim
x→∞

F (x+ ta(x))

F (x)
= e−t, t ∈ R, (15.4.2)

where a(·) can be chosen as a(x) =
∫∞
x F (t)/F (x)dt.

For the case where R has lighter tails than any regularly varying
tails, some asymptotic study has been conducted for elliptical distri-
butions where R ∈ MDA(Λ). We refer to [188], [190], and [189] for
relevant references. Now we are ready to present a result that is useful
to find the tail order of a bivariate elliptical copula where the radial
random variable R belongs to Gumbel MDA, and this result is cited
from [192]. [190] has a version of this result in Theorem 2.1 but the
proof here is different.

Proposition 15.4.3. Let C be the copula for an elliptical random vec-
tor X := (X1,X2) constructed as Eq. (15.4.1), and b� =

√

2/(1 + �).
If R ∈ MDA(Λ), then the upper and lower tail orders of C is

κ = lim
r→∞

log (1− FR(b�r))

log (1− FR(r))
, (15.4.3)

provided that the limit exists.
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Proof : Letting r := F−1(1− u) and b� =
√

2/(1 + �), then by Exam-
ple 6.2 (i) of [188], as u → 0+ and thus r → ∞,

C(1− u, 1 − u)

= P
[

X1 > F−1(1− u),X2 > F−1(1− u)
]

= P[X1 > r,X2 > r]

= (1 + o(1))
(1 − �2)3/2

2π(1 − �)2
[a(b�r)/r][1− FR(b�r)], (15.4.4)

where FR is the cdf of R and a(·) is an auxiliary function of R with
respect to the Gumbel MDA in the sense of Eq. (15.4.2). As u → 0+,
i.e., r → ∞, both a(b�r)/r → 0 (see Theorems 3.3.26 and 3.3.27 of
[150]) and 1 − FR(b�r) → 0. Let G(x) := 1/[1 − FR(x)], then G :
R → R+ is increasing and the condition of Eq. (15.4.2) is equivalent to
that G ∈ Γ-varying with auxiliary function a(·) [111, Definition 1.5.1].
The inverse function of a Γ-varying function is a Π-varying function
[112, Corollary 1.10]. Therefore, G−1 ∈ Π-varying. Assuming that
an auxiliary function of G−1 is a0(·), by Lemma 1.2.9 of [113], the
auxiliary function a0(·) of the Π-varying function G−1 is slowly varying
at ∞. Moreover, a0(t) = a(G−1(t)) [112, Corollary 1.10]. So, a(x) =
a0(G(x)). Then in Eq. (15.4.4),

a(b�r)/r = a0(G(b�r))/r = a0(1/[1 − FR(b�r)])/r,

while 1 − FR(b�r) is rapidly varying in r at ∞ due to the fact that
G is Γ-varying and any Γ-varying function is rapidly varying [111,
Theorem 1.5.1]. Therefore,

1− FR(b�r) = 1− FR

(
√

2/(1 + �)F−1(1− u)
)

dominates the tail behavior of Eq. (15.4.4) as u → 0 and thus deter-
mines the corresponding tail order of the elliptical copula. By the
definition of tail order in Definition 15.2.1, we may also obtain the
upper tail order by the following:

κ = lim
u→0+

logC(1− u, 1− u)

log u
= lim

r→∞
log (1− FR(b�r))

log (1− F (r))
.

By Example 6.2 (iii) of [188], as r → ∞,

P{X1 > r} = (1 + o(1))(2π)−1/2 [a(r)/r]1/2[1− FR(r)].
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Due to the similar argument as before, 1 − FR(r) dominates the tail
behavior of P[X1 > r], as r → ∞. Therefore, we may write

κ = lim
r→∞

log (1− FR(b�r))

log (1− FR(r))
,

which completes the proof.

It is very convenient to apply this method to derive the tail or-
der if we know the tail behavior of R, and R belongs to MDA of
Gumbel. By Theorem 3.1 of [188], this result can also be extended
to multivariate cases. For d-dimensional exchangeable elliptical cop-
ula, of which the off-diagonal entries of Σ are all � and the diago-
nals are all 1’s, the tail order is Eq. (15.4.3) where b� is replaced by
b�,d =

√

d/[1 + (d− 1)�].

Example 15.4.4 (Bivariate symmetric Kotz-type [158] copula). The
density generator

g(x) = KxN−1 exp{−βxξ}, β, ξ,N > 0,

where K is a normalizing constant. By Theorem 2.9 of [158], the
density function of R is fR(x) = 2πxg(x2) = 2Kπx2N−1 exp{−βx2ξ}.
So, the survival function is

1− FR(x) =

∫ ∞

x

2Kπt2N−1 exp{−βt2ξ}dt

=

∫ ∞

βx2ξ

Kπ

ξ
β−N/ξwN/ξ−1 exp{−w}dw

=
Kπ

ξ
β−N/ξΓ(N/ξ, βx2ξ), Γ(·, ·)incomplete Gamma function

∼ Kπ

ξ
β−1x2N−2ξ exp{−βx2ξ}, x→ ∞,

where the asymptotic relation is referred to Sect. 6.5 of [2]. Then by
Eq. (15.4.3), we can easily get that

κ = b2ξ� = [2/(1 + �)]ξ.

Therefore, the tail order for the symmetric Kotz-type copula is κ =
[2/(1 + �)]ξ. Gaussian copula belongs to this class with ξ = 1, so its
tail order is 2/(1 + �) which is consistent to Example 1 of [193].
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15.5 Archimedean Copula

An Archimedean copula C has the following typical form:

C(u1, . . . , ud) = ψ(ψ−1(u1), · · · , ψ−1(ud)), (15.5.1)

where ψ is referred to as the generator of the Archimedean copula C,
and ψ needs to satisfy certain conditions (some papers or books also
refer ϕ = ψ−1 as the generator; e.g., [355]). Most of the commonly
used Archimedean copulas correspond to ψ being a Laplace Transform
(LT) of a positive random variable X [211, 212]; that is, ψ(s) :=
∫∞
0 exp{−st}FX(dt), where FX is the cdf of X. In this case, ψ is
completely monotonic, ψ(x) is decreasing in x, ψ(0) = 1, and ψ(∞) =
0. When ψ is of such a LT, it can generate Archimedean copulas
of any dimension. However, this condition is not necessary for a d-
dimensional Archimedean copula with d being given and finite. A
necessary and sufficient condition for finite-dimensional Archimedean
copulas has been given in [301] and [315].

The above two sets of conditions on ψ correspond to two types of
stochastic representations of Archimedean copulas, respectively. One
is the well-known frailty model [310, 362], and the other is the recently
studied scale mixture model [315] (or the resource-sharing model in
the sense of [176]) for finite-dimensional Archimedean copulas. In this
chapter, we will discuss conditions that lead to intermediate tail de-
pendence of Archimedean copulas for both stochastic representations.
The former has been studied in the literature [193], and the latter is
only studied for the lower tail [272]. In what follows, we will first re-
view existing studies on intermediate tail dependence for Archimedean
copulas, then we will present our findings of conditions that lead to
upper intermediate tail dependence of Archimedean copulas through
the scale mixture model.

15.5.1 Resilience or Frailty Models

Denote

Gj(u) := exp{−ψ−1(u)}, 0 ≤ u ≤ 1, for j = 1, . . . , d,

then clearly Gj ’s are identical univariate cdfs. Then,

C(u1, . . . , ud) =

∫ ∞

0

d
∏

j=1

Gξj(uj)FH(dξ), (15.5.2)
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where FH is the cdf of the resilience random variable H, and

ψ(s) = ψH(s) =

∫ ∞

0
e−sξFH(dξ).

The mixture representation means that there are random variables
X1, . . . ,Xd such that given H = ξ, they are conditionally independent
with respective cdfs Gξ1, . . . , G

ξ
d. Let Fj(1−u) := Gj(u), then Fj ’s are

also cdfs, and

C(u1, . . . , ud) =

∫ ∞

0

d
∏

j=1

F
ξ
j(1− uj)FH(dξ).

Assume that Fj is the cdf of Yj for each j. Then we can also look at
the copula C as the survival copula for the vector (Y1, . . . , Yd) that are
independent conditioning on the frailty random variableH; that is why
we refer to this representation as a frailty model [176]. Actually, from
different perspectives, the same random variable H can be referred to
as either a resilience or a frailty random variable. We refer to [311] for
more discussion about the concepts of resilience and frailty.

We now use the resilience model (15.5.2) to study how tail heavi-
ness of H affects the tail behavior of the corresponding Archimedean
copula, and we refer to [193] for relevant studies. For any given
(u1, . . . , ud), 0 ≤ ui ≤ 1, a larger value of ξ leads to a smaller value
of C(u1, . . . , ud), and thus a heavier right tail of H tends to gener-
ate stronger positive dependence in the upper tail. Sufficient con-
ditions on the tail heaviness of H have been given in order to get
an intermediate upper tail-dependent Archimedean copula. If we use
MH := sup{m ≥ 0 : E[Hm] < ∞} to describe the degree of tail heavi-
ness of H, then under certain regularity conditions, k < MH < k + 1
with k ∈ {1, . . . , d − 1} leads to upper intermediate tail dependence.
The next result is presented in [193].

Proposition 15.5.1. Suppose ψ is the LT of a positive random vari-
able Y with k < MY < k + 1 for some k ∈ {1, . . . , d − 1}, and
|ψ(k)(0)−ψ(k)(·)| is regularly varying at 0+ with the associated slowly
varying function � satisfying lims→0+ �(s) < ∞. Then the Archimedean
copula Cψ has upper intermediate tail dependence, and the correspond-
ing upper tail order is κU =MY .

There are some upper intermediate tail-dependent Archimedean
copulas that have a simple form. One example is the Archimedean
copula constructed by LT [214]
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ψ(s) =

∫ ∞

s
exp{−vα}dv/Γ(1 + α−1), 0 < α < 1,

and the upper tail order is κU = 1 + α and the lower tail order is
κL = dα. Another one-parameter Archimedean copula that has a very
flexible upper tail dependence structure is the following:

Example 15.5.2 (Archimedean copula based on inverse Gamma LT
(ACIG) [193]). Let Y = X−1 and X follows Gamma(α, 1) with α > 0,
and then MY = α and the LT of the inverse Gamma distributed Y is

ψ(s;α) =
2

Γ(α)
sα/2Kα(2

√
s), s ≥ 0, α > 0, (15.5.3)

where Kα is the modified Bessel function of the second kind.
For α∈(0,+∞) noninteger, κU (Cψ)=max{1,min{α, d}} and κL
(Cψ)=

√
d.

The interesting property of ACIG is that it captures a very wide
range of upper tail dependence patterns by involving only one param-
eter. That is, when 0 < α ≤ 1, there is usual tail dependence in the
upper tail; when 1 < α < d, intermediate upper tail dependence is
present; when d ≤ α, the upper tail becomes tail quadrant indepen-
dent (i.e., κ = d).

The condition of MY in Proposition 15.5.1 being noninteger seems
to be unnecessary. In the next subsection, the restriction will be re-
laxed when we study the tail behavior of Archimedean copulas through
the scale mixture model.

15.5.2 Scale Mixture Models

An Archimedean copula can also be represented as the survival copula
for a random vector [315]

X := (X1, . . . ,Xd)
d
= R× (S1, . . . , Sd), (15.5.4)

whereR and Si are independent for i = 1, . . . , d, R is a positive random
variable, and (S1, . . . , Sd) is uniformly distributed on the simplex {x ∈
R
d
+ :

∑

i xi = 1}. The relationship between R in Eq. (15.5.4) and H in
Eq. (15.5.2) is given in Proposition 1 of [316]; that is,

R
d
= Ed/H,
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where Ed is independent of H and is Erlang(d) distributed (i.e., Ed
follows Gamma(d, 1)). The Archimedean copula can be constructed
as

Cψ,d(u1, . . . , ud) := ψ(ψ−1(u1) + · · ·+ ψ−1(ud)), (15.5.5)

where the generator ψ is the Williamson d-transform of cdf FR with
FR(0) = 0 [475]; that is,

ψ(s) =

∫ ∞

s
(1− s/r)d−1F (dr), s ∈ [0,∞).

Note that Williamson d-transform of a positive random variable can
also lead to a generator ψ that is completely monotonic (see Exam-
ple 15.5.5). Throughout this subsection, assume ϕ(x) := ψ−1(x). If
the joint cdf of (U1, . . . , Ud) is Cψ,d, then

(X1, . . . ,Xd)
d
= (ϕ(U1), . . . , ϕ(Ud))

d
= Rψ,d × (S1, . . . , Sd);

that is, for each margin Xi, P{Xi > x} = ψ(x). From the proof of

Theorem 1 in [272], we know that Xi
d
= RY for i = 1, . . . , d, where

Y ∼ Kumaraswamy(1, d − 1); that is,

FY (x) = 1− (1− x)d−1, x ∈ [0, 1].

We refer to [438] for more discussion of margins of a Lp-norm uniform
distribution.

Recently, [272] has studied the tail behavior of Archimedean copu-
las via the scale mixture representation. In Sect. 5 of [272], some tail
dependence patterns have been derived except for the intermediate
upper tail dependence case. We will fill the gap in this subsection.

The lower intermediate tail dependence of bivariate Archimedean
copulas has been studied in Proposition 7 of [272], and the conditions
needed on ψ is essentially the same as Theorem 3.3 of [84]. A more
intuitive and fairly general pattern of ψ has been considered in [193];
that is, as s → ∞,

ψ(s) ∼ T (s) = a1s
q exp{−a2s1−β} and ψ′(s) ∼ T ′(s).

In this case, if 0 < β < 1, then Cψ has lower intermediate tail depen-
dence with 1 < κL(Cψ) = d1−β < d.

With survival copula for Eq. (15.5.4), the upper tail of R may
influence the lower tail of the corresponding Archimedean copula.
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Using the notation of lower tail order κ and the relation (15.1.1), the
result about the lower intermediate tail dependence in [272] becomes
the following:

Proposition 15.5.3. Let C be a d-dimensional Archimedean cop-
ula constructed as the survival function of the random vector in
Eq. (15.5.4) and the associated ψ in Eq. (15.5.5) is differentiable.
Assume further that the radial part R in Eq. (15.5.4) satisfies R ∈
MDA(Λ) with the auxiliary function a(·) of R satisfying a ∈ RVβ for
some 0 < β < 1 and Eq. (15.1.1) holds, then κL = d1−β and thus C
has lower intermediate tail dependence.

Based on Eq. (15.5.4), the lower tail of R, or equivalently, the upper
tail of 1/R may affect the upper tail of the associated Archimedean
copula. In what follows, we will prove that 1/R belonging to the
MDA of Fréchet (written as 1/R ∈ MDA(Φα)) may lead to upper
intermediate tail dependence for the associated Archimedean copula;
here the condition of the tail order being an integer is relaxed.

Proposition 15.5.4. If 1/R ∈ MDA(Φα) with k ≤ α < k + 1, where
k ∈ {1, . . . , d − 1} is a positive integer, and ψ is the Williamson
d-transform of FR such that FR(0) = 0, and if k = d−2 or d−1, then
further require that ψ is (d+1)-monotone and (d+2)-monotone, respec-
tively, then the Archimedean copula constructed by ψ as Eq. (15.5.5)
has upper tail order κU = α and thus upper intermediate tail depen-
dence if 1 < α < d.

Proof : First note that either ψ being (d + 1)-monotone or (d + 2)-
monotone can imply ψ being d-monotone [315]. So we can still apply
the Williamson d-transform for the two cases where k = d−2 or d−1.
By definition, the Williamson d-transform of R is

ψ(s) =

∫ ∞

s

(1− s/r)
d−1

FR(dr)

=

∫ ∞

s

d−1
∑

i=0

(

d− 1

i

)

(−s/r)iFR(dr)

= 1− FR(s) +
d−1
∑

i=1

(

d− 1

i

)

(−1)isi
∫ ∞

s

r−iFR(dr)

= 1− FR(s) +
d−1
∑

i=1

(

d− 1

i

)

(−1)isi
(

−s−iFR(s) + i

∫ ∞

s

FR(r)r
−i−1dr

)
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= 1− FR(s) +
d−1
∑

i=1

(

d− 1

i

)

(−1)i

(

−FR(s) + isi
∫ 1/s

0

FR(1/y)y
i−1dy

)

= 1 +
d−1
∑

i=1

(

d− 1

i

)

(−1)i

(

isi
∫ 1/s

0

FR(1/y)y
i−1dy

)

=: 1 +
d−1
∑

i=1

(

d− 1

i

)

(−1)imi(s). (15.5.6)

For any 1 ≤ α < d, there exists a positive integer k ∈ {1, 2, . . . , d−
1} such that

k ≤ α < k + 1.

To study the upper tail for an Archimedean copula, we now investigate
the behavior of the functions mi(s) in Eq. (15.5.6) for i = k, . . . , d− 1,
as s → 0+. Depending on the value of i, we consider the following
cases:

Case 1: α < k + 1 ≤ i ≤ d− 1.
The condition 1/R ∈ MDA(Φα) implies that P{1/R > ·} ∈ RV−α,

and FR = P{R ≤ ·} ∈ RVα(0
+). Write FR(s) := sα�R(s), where �R ∈

RV0(0
+). Since y �→ FR(1/y) ∈ RV−α, we have y �→ FR(1/y)y

i−1 ∈
RVi−α−1. By Karamata’s theorem (e.g., [387]), i ≥ k + 1 > α implies
that

∫ 1/s

0
FR(1/y)y

i−1dy ∼ 1

i− α
FR(s)s

−i, s → 0+,

and thus

mi(s) := isi
∫ 1/s

0

FR(1/y)y
i−1dy ∼ i

i − α
FR(s) =

i

i− α
sα�R(s), s → 0+.

(15.5.7)

Case 2: 1 ≤ i < α. The condition FR ∈ RVα(0
+) implies that

�i(s) := i

∫ 1/s

0
FR(1/y)y

i−1dy ↗ E[R−i] < ∞, as s → 0+.

Therefore, mi(s) ∼ E[R−i]si as s → 0+.

Case 3: i = k = α. Let �k(s) := k
∫ 1/s
0 FR(1/y)y

k−1dy. Sim-
ilar to the derivation of Eq. (15.5.7), by Karamata’s theorem (e.g.,
Theorem 2.1 (a) of [387]), �k ∈ RV0(0

+), and hence, mk ∈ RVk(0
+).
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Then ψ(s) = 1 +
∑d−1

i=1

(d−1
i

)

(−1)imi(s) implies that

if α is a positive noninteger, that is, k < α, then �i(s) → E[R−i]
for i = 1, . . . , k, and

ψ(s) ∼ 1 +
k

∑

i=1

(

d− 1

i

)

(−1)isi�i(s)

+

d−1
∑

i=k+1

(

d− 1

i

)

(−1)i
i

i− α
sα�R(s), s→ 0+; (15.5.8)

if α is a positive integer, that is, k = α, then �i(s) → E[R−i] for
i = 1, . . . , k − 1, and

ψ(s) ∼ 1 + 1{k > 1} ×
(k−1)∨1
∑

i=1

(

d− 1

i

)

(−1)isi�i(s)

+

(

d− 1

k

)

(−1)ksk�k(s)

+
d−1
∑

i=k+1

(

d− 1

i

)

(−1)i
i

i− α
sα�R(s), s→ 0+. (15.5.9)

Therefore, 1 ≤ α implies that the map 1− ψ(·) ∈ RV1(0
+). Write

1− ψ(s) = s�0(s), where �0 ∈ RV0(0
+).

Assume that there exists a constant κ and a slowly varying function
�∗ ∈ RV0(0

+) such that C(1−u, . . . , 1−u) ∼ uκ�∗(u) as u → 0+. If we
can prove that κ = α, get the expression of �∗, and prove that such an
�∗ is a slowly varying function, then the proof is finished.

Let s := ψ−1(1− u), then 1− ψ(s) = s�0(s) implies that

1 = lim
u→0+

C(1− u, . . . , 1 − u)

uκ�∗(u)

= lim
u→0+

1 +
∑d

j=1(−1)j
(d
j

)

ψ(jψ−1(1− u))

uκ�∗(u)

=
lims→0+

{

1 +
∑d

j=1(−1)j
(d
j

)

ψ(js)
}

sκ�κ0(s)�∗(1− ψ(s))
.

The locally uniform convergence of �∗ at 0+, together with 1− ψ(·) ∈
RV1(0

+), implies that, for any given t > 0,
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lim
s→0+

�∗(1− ψ(ts))

�∗(1− ψ(s))
= lim

s→0+

�∗(
1−ψ(ts)
1−ψ(s) × (1− ψ(s))

�∗(1− ψ(s))
= lim

u→0+

�∗(tu)
�∗(u)

= 1.

Hence, �∗(1 − ψ(·)) ∈ RV0(0
+). Let �(s) := �κ0(s)�∗(1 − ψ(s)), then

� ∈ RV0(0
+), due to Proposition 1.3.6 of [61].

Applying the Monotone Density Theorem [61, Theorem 1.7.2b] k−
1 times on Eq. (15.5.6) implies that ψ(i)(0) < ∞ for i = 0, . . . , k − 1.
Moreover, choosing wi ≡ 1 for each i in Lemma 2 of [193] implies
that

∑d
j=1(−1)j

(d
j

)

ji ≡ 0 for any positive integer i that is less than

d. Therefore,
∑d

j=1(−1)j
(d
j

)

jiψ(i)(0) = 0 for i = 0, . . . , k − 1. Define
[x] := max{z integer; z < x}, and for any y > 0, y! := y × (y − 1) ×
· · · × (y − [y]). By the l’Hopital’s rule,

1 = lim
s→0+

∑d
j=1(−1)j

(

d
j

)

jk−1ψ(k−1)(js)
[κ!/(κ − k + 1)!]sκ−k+1�(s)

. (15.5.10)

If α is a noninteger, that is, if k < α < k + 1, then applying
the Monotone Density Theorem two more times for Eq. (15.5.10) with
respect to Eq. (15.5.8) leads to

(−1)k+1ψ(k+1)(s) ∼
∣

∣

∣

∣

∣

∣

d−1
∑

i=k+1

(

d− 1

i

)

(−1)i
i

i− α

∣

∣

∣

∣

∣

∣

[α!/(α− k − 1)!]sα−k−1	R(s);

(15.5.11)

1 = lim
s→0+

∑d
j=1(−1)j

(

d
j

)

jkψ(k)(js)

[κ!/(κ− k)!]sκ−k�(s)

= lim
s→0+

∑d
j=1(−1)j−k−1

(

d
j

)

jk+1[(−1)k+1ψ(k+1)(js)]

[κ!/(κ− k − 1)!]sκ−k−1�(s)
(15.5.12)

Combining Eqs.(15.5.11) and (15.5.12) leads to κ = α, and then

�(s) =
d

∑

j=1

(−1)j−k−1
(

d

j

)

jα

∣

∣

∣

∣

∣

d−1
∑

i=k+1

(

d− 1

i

)

(−1)i
i

i− α

∣

∣

∣

∣

∣

�R(js),

which is a slowly varying function. Thus, the slowly varying function �∗

can be chosen accordingly, which proves the case where α is a positive
noninteger.

If α is a positive integer, that is, α = k, then applying the Mono-
tone Density Theorem one more time for Eq. (15.5.10) with respect
to Eq. (15.5.9) leads to κ = k = α, and similarly, the slowly varying
function �∗ can be obtained accordingly.
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Example 15.5.5 (ACIG copula). For the ACIG copula studied in
Example 4 of [193], H−1 ∼ Gamma(α, 1) for α > 0. Therefore, R
has the same distribution as the product of two independent Gamma
random variables with scale parameter 1 and respective shape param-
eters d and α. The product follows a K-distribution and the density
function is

fR(x; d, α) =
2

Γ(d)Γ(α)
x(α+d)/2−1Kd−α(2

√
x),

x ∈ [0,∞); d positive integer;α > 0,

(15.5.13)

whereK is the modified Bessel function of the second kind. We refer to
[206] for the reference of density functions of a K-distribution. Because
the left tail behavior of R affects the upper tail dependence pattern of
the corresponding Archimedean copula derived from Eq. (15.5.4), we
need to study the behavior of Eq. (15.5.13) at 0. If α is not an integer,
then, as s → 0+,

Kd−α(s) ∼ 1

2

(

Γ(d− α)(s/2)α−d + Γ(α− d)(s/2)d−α
)

.

Therefore, as x → 0+,

fR(x; d, α) ∼ Γ(d− α)

Γ(d)Γ(α)
xα−1 +

Γ(α− d)

Γ(d)Γ(α)
xd−1.

If 1 < α < d, then the term xα−1 dominates the tail behavior at 0;
this is an upper intermediate tail dependence case. When d − α is a
positive integer, then by [2],

Kd−α(s) ∼ 1
2 (s/2)

α−d
d−α−1
∑

k=0

(−1)k(d− α− k − 1)!

k!
(s/2)2k

∼ (d− α− 1)!

2
(s/2)α−d , s → 0+.

Therefore,

fR(x; d, α) ∼ (d− α− 1)!

Γ(d)Γ(α)
xα−1 =

Γ(d− α)

Γ(d)Γ(α)
xα−1, x → 0+,

which is the same as α being a noninteger. Combining these two cases,
1 < α < d implies upper intermediate tail dependence of the ACIG
copula.
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Proposition 15.5.4 is actually very useful to guide us to find a scale
mixture random vector whose survival copula is an upper intermediate
tail-dependent Archimedean copula. For example, let R follow the pos-
itive Weibull distribution; that is, FR(x) = 1 − exp{−xα} ∼ xα, x →
0+ with 1 < α < d. Then Proposition 15.5.4 implies that κU = α and
thus the corresponding Archimedean copula has upper intermediate
tail dependence. Another example of Archimedean copula that has
upper intermediate tail dependence is presented in the following:

Example 15.5.6 (Dagum-simplex mixture). The Dagum distribution
is also referred to as an inverse Burr distribution, and it is a special
case of generalized beta distribution of the second kind (e.g., [241]).
Let the cdf of the radial random variable R be Dagum, then

FR(x) =
[

1 + (x/σ)−α
]−β

, x > 0, α, β, σ > 0.

We choose σ = 1 for simulation as the scale parameter does not
affect the associated Archimedean copula. It can be derived that FR ∈
RVαβ(0

+). By Proposition 15.5.4, if 1 < αβ < 2, then the copula
C(u, v) := ψ(ψ−1(u)+ψ−1(v)) should have upper tail order κU = αβ.
The simulated scatter plots are illustrated in Fig. 15.1, where the left
plot is for uniform margins and the right plot is for standard normal
margins. The sample size was 2, 000 for the simulations.

In Fig. 15.1, the upper tail order is κU = 1.08, which belongs
to upper intermediate tail dependence. For the lower tail, FR(x) =
1− (1 + x−α)−β, and as x → ∞,

F
(1)
R (x) = −αβ(1 + x−α)−β−1x−α−1 ∼ −αβx−α−1.

So FR ∈ RV−α. By Corollary 2 of [272], there is lower tail dependence
and the tail order parameter λL = 2−α.

15.6 Remark and Future Work

The notion of tail order provides a quantity to evaluate the degree of
dependence in the tails of joint distributions, especially when interme-
diate tail dependence appears. We first review fundamental concepts
and existing results of intermediate tail dependence. Throughout the
review, some new properties of intermediate tail dependence have been
given to supplement existing results. The new results mainly consist
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Figure 15.1: Simulation of Dagum-simplex copula (a) Dagum (1.2, 0.9)
(b) Dagum (1.2, 0.9)

of an easy way to derive the tail order of a bivariate intermediate tail-
dependent elliptical copula, and the study of intermediate upper tail
dependence for Archimedean copulas constructed from a scale mixture
model.

Proposition 15.5.4 is helpful for constructing an upper intermedi-
ate tail-dependent Archimedean copula. However, the scale mixture
approach can often only give us a simple way to simulate desired tail
dependence structures, but not a simple closed-form parametric copula
family. So, how to apply the scale mixture model to provide various
desirable models and to make statistical inference efficiently will be a
very interesting topic for future research.

As mentioned earlier in Sect. 15.1, there is a link between tail
orders and multivariate stochastic orders. Future research also includes
whether certain forms of multivariate stochastic orders [426, Chap. 6]
can be adapted to tail forms for comparing the strength of dependence
in the tails of copulas.
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16.1 Introduction

Regular variation (RV) has become one of the key notions which
appears in a natural way in applied probability, statistics, risk man-
agement, telecommunications networks, and other fields. There are
a variety of concepts extending RV, among which are the extended
regular variation (ERV), second-order regular variation (2RV) , and
second-order extended regular variation (2ERV). Here, RV and ERV
are termed as the first-order conditions, and 2RV and 2ERV are termed
as the second-order conditions. The second-order conditions can be
used to study the speed of convergence of certain estimators in the
extreme value theory. Standard references on RV and its different
extensions are given by [61, 113, 114, 194, 387].

A measurable function h : R+ → R that is eventually positive is
said to be of RV at infinity with index α ∈ R\{0}, denoted by h ∈ RVα,
if for any x > 0,

lim
t→∞

h(tx)

h(t)
= xα. (16.1.1)

If Eq. (16.1.1) holds with α = 0 for any x > 0, then h is said to be
slowly varying at infinity and denoted by h ∈ RV0. h : R+ → R is
said to be of ERV, denoted by h ∈ ERVγ , if there exists a function
a : R+ → R+ such that for some γ ∈ R and all x > 0,

lim
t→∞

h(tx)− h(t)

a(t)
=
xγ − 1

γ
, (16.1.2)

where, for γ = 0, the right hand side in Eq. (16.1.2) is interpreted as
log x. The function a is called an auxiliary function for h. h ∈ ERV0

is also written as h ∈ Π.
In order to specify the inherent rate of the convergence in

Eqs. (16.1.1) and (16.1.2), second-order conditions are needed. A mea-
surable function h : R+ → R that is eventually positive is said to be
of 2RV with the first-order parameter γ ∈ R and the second-order pa-
rameter ρ ≤ 0, denoted by h ∈ 2RVγ,ρ, if there exists some ultimately
positive or negative function A(t) with A(t) → 0 as t → ∞ such that

lim
t→∞

h(tx)/h(t) − xγ

A(t)
= xγ

∫ x

1
uρ−1du, ∀ x > 0. (16.1.3)

Here, A(t) is referred to as an auxiliary function of h, and ρ governs
the speed of convergence in Eq. (16.1.1). h : R+ → R is said to be
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of 2ERV with the first-order parameter γ ∈ R and the second-order
parameter ρ ≤ 0, denoted by h ∈ 2ERVγ,ρ, if there exists some positive
function a(t) and some ultimately positive or negative function A(t)
with A(t) → 0 as t → ∞ such that

lim
t→∞

h(tx)−h(t)
a(t) − xγ−1

γ

A(t)
= Hγ,ρ(x) (16.1.4)

with

Hγ,ρ(x) =

∫ x

1
sγ−1

∫ s

1
uρ−1duds, ∀ x > 0.

Here, a(t) and A(t) are referred to as first-order and second-order
auxiliary functions of h, respectively, and ρ governs the speed of con-
vergence in Eq. (16.1.2).

There are closed connections between different notions of RV. For
example, ERV can be characterized by RV (see Theorems B.2.2 and
B.2.12 in [113]), and 2ERV can be characterized by ERV (see Theorems
B.3.6 in [113] or Theorem 2 in [114]). More recently, Fraga Alves
et al. (2007, [163]) and Neves (2009, [358]) established connections
from 2ERV to 2RV.

Drees (1998, [135]) and Cheng and Jiang (2001, [88]) established
uniform bounds for the class of RV [resp. ERV, 2RV, and 2ERV]
functions in the sense that the difference between the terms in both
sides of Eq. (16.1.1) [resp. (16.1.2), Eq. (16.1.3), and Eq. (16.1.4)] is
uniformly bounded under appropriately chosen auxiliary functions a0
and/or A0 instead of auxiliary functions a and/or A. For example, if
h ∈ ERVγ with auxiliary function a and γ ∈ R, then for all ε, δ > 0,
there exists t0 = t0(ε, δ) such that for any t, tx > t0,

∣

∣

∣

∣

h(tx)− h(t)

a0(t)
− xγ − 1

γ

∣

∣

∣

∣

≤ εxγ max
{

xδ, x−δ
}

, (16.1.5)

where

a0(t) =

⎧

⎪

⎨

⎪

⎩

γh(t), γ > 0;

h(t)− t−1
∫ t
0 h(s)ds, γ = 0;

−γ(h(∞)− h(t)), γ < 0.

(16.1.6)

Here, h(∞) := limt→∞ h(t) is finite when γ < 0. If h ∈ 2ERVγ,ρ with
first-order and second-order auxiliary functions a and A, respectively,
γ ∈ R, ρ ≤ 0, then for all ε, δ > 0, there exists t0 = t0(ε, δ) such that
for any t, tx > t0,



316 Second-Order Regular Variation

∣

∣

∣

∣

∣

∣

h(tx)−h(t)
a0(t)

− xγ−1
γ

A0(t)
−Hγ,ρ(x)

∣

∣

∣

∣

∣

∣

≤ εxγ+ρmax
{

xδ, x−δ
}

, (16.1.7)

where a0 and A0 are chosen specifically, taking complicated forms such
that A0(t) ∼ A(t) and a0(t)/a(t)−1 = o(A(t)) as t → ∞. These kinds
of inequalities are referred to as Drees-type inequalities.

The purposes of this paper are twofold. First, we reexamine the
connections from 2ERV to 2RV and recover and strengthen the main
result in [163, 358] by using a different but straightforward approach.
Second, we present new Drees-type inequalities, similar to Eqs. (16.1.5)
and (16.1.7), in which the original auxiliary functions a and A are not
replaced by a0 and A0, respectively. These kinds of inequalities may
have potential applications.

Throughout, the notation “g(t) ∼ h(t), t → t0” means asymptotic
equivalence; that is, limt→t0 g(t)/h(t) = 1. For any increasing function
h, define its generalized inverse h← by

h←(x) = inf{t : h(t) ≥ x}, ∀ x.

16.2 Connections Between 2ERV and 2RV

First, note that Hγ,ρ in Eq. (16.1.4) can be written as

Hγ,ρ(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
ρ

(

xγ+ρ−1
γ+ρ − xγ−1

γ

)

, ρ �= 0;

1
γ

(

xγ log x− xγ−1
γ

)

, ρ = 0, γ �= 0;

1
2 (log x)

2, γ = ρ = 0.

(16.2.1)

Also,

• If a satisfies (16.1.2) for γ ∈ R, then a ∈ RVγ ; see Theorem B.2.1
in [113].

• If the functions a and A satisfy (16.1.4), then |A| ∈ RVρ and
a ∈ 2RVγ,ρ with auxiliary function A; see Theorem B.3.1 in
[113].

• For γ ∈ R, h ∈ ERVγ if and only if h̃ ∈ RVγ , where

h̃(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

h(t), γ > 0;

h(t)− 1
t

∫ t
t0
h(s)ds, γ = 0;

h(∞)− h(t), γ < 0,

for any fixed t > 0; see Theorem B.2.2 in [113].
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• For γ ∈ R and ρ ≤ 0, h ∈ 2RVγ,ρ if and only if t−γh(t) ∈ ERVρ.
In particular, for ρ ≤ 0, h ∈ 2RV0,ρ if and only if h ∈ ERVρ.

Obviously, h ∈ 2RVγ,ρ implies h ∈ 2ERVγ,ρ for γ �= 0 and γ+ρ �= 0.
While, for γ = 0 or γ+ρ = 0, h ∈ 2RVγ,ρ does not imply h ∈ 2ERVγ,ρ.
In the next result, we will establish some other connections from ERV
to 2RV. First, we give the following useful lemma, whose proof follows
from Theorem 3.6.6 in [61].

Lemma 16.2.1. For γ ∈ R and ρ < 0, h ∈ 2RVγ,ρ with auxiliary
function A(t) if and only if there exists a constant c > 0 such that

h(t) = ctγ
[

1 +
1

ρ
A(t) + o(A(t))

]

, t → ∞. (16.2.2)

Proposition 16.2.2. Let h ∈ 2ERVγ,ρ with γ �= 0, ρ ≤ 0 and with
first-order and second-order auxiliary functions a(t) and A(t), respec-
tively, i.e., Eq. (16.1.4) holds. Then h̃ ∈ 2RVγ,ρ with an auxiliary
function B, where the functions h̃ and B are given as follows accord-
ing to different cases:

(i) For ρ ≤ 0 and ρ+ γ > 0,

h̃(t) = h(t) and B(t) =
γ

ρ+ γ
A(t).

(ii) For ρ ≤ 0 and ρ+ γ < 0,

h̃(t) = − γ

|γ|(w∞ − h(t)) and B(t) =
γ

ρ+ γ
A(t),

where w∞ = h(∞) ∈ R for ρ = 0, limt→∞ t−γa(t) = c ∈ (0,∞)
and

w∞ := lim
t→∞

[

h(t)− c
tγ

γ

]

= lim
t→∞

[

h(t)− a(t)

γ

]

(16.2.3)

exist and are finite for ρ < 0.

(iii) For ρ < 0 and ρ + γ = 0, w∞ defined by Eq. (16.2.3) exists and
w∞ ∈ (0,∞].
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If w∞ = +∞, then choose

h̃(t) = h(t) and B(t) = γtρ
∫ t

1
uγ−1A(u)du; (16.2.4)

and if w∞ < ∞, then choose

h̃(t) = |w∞ − h(t)| and B(t) = −γtρ
∫ ∞

t
uγ−1A(u)du.

Proof : From Remark B.3.7 in [113], it follows that h ∈ 2RVγ,ρ with
auxiliary function A for ρ = 0 and γ > 0, and h(∞)−h ∈ 2RVγ,ρ with
auxiliary function A for ρ = 0 and γ < 0, where h(∞) exists and is
finite when γ < 0. This means that Part (i) and Part (ii) hold for the
case ρ = 0. Thus, to prove the desired result, it suffices to prove the
case ρ < 0.

Suppose that ρ < 0 and γ �= 0. Again from Remark B.3.7 in [113],
limt→∞ t−γa(t) = c ∈ (0,∞) and

lim
t→∞

h(tx)− c (tx)
γ

γ −
(

h(t)− c t
γ

γ

)

a(t)A(t)/ρ
=
xγ+ρ − 1

γ + ρ
. (16.2.5)

Now, we consider three cases:

Case 1: γ + ρ > 0 Applying Theorem B.2.2 in [113] to Eq. (16.2.5),
we have

h(t)− c
tγ

γ
∼ 1

ρ(ρ+ γ)
a(t)A(t) ∼ c

ρ(ρ+ γ)
tγA(t), t → ∞,

or, equivalently,

h(t) =
c

γ
tγ

[

1 +
γ

ρ(ρ+ γ)
A(t) + o(A(t))

]

, t → ∞. (16.2.6)

Since |A| ∈ RVρ and A(t) → 0 as t → ∞, it follows from Eq. (16.2.6)
that h ∈ 2RVγ,ρ with auxiliary function γ

γ+ρA(t).

Case 2: γ + ρ < 0 Again applying Theorem B.2.2 in [113] to
Eq. (16.2.5), we get that

lim
t→∞

[

h(t)− c
tγ

γ

]

= w∞ exists and is finite,
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and

lim
t→∞

w∞ −
(

h(t)− c t
γ

γ

)

a(t)A(t)/ρ
= − 1

ρ+ γ
.

The last equation reduces to

w∞ − h(t) = − c

γ
tγ

[

1 +
γ

ρ(ρ+ γ)
A(t) + o(A(t))

]

, t → ∞.

This implies − γ
|γ|(w∞ − h) ∈ 2RVγ,ρ with auxiliary function γ

γ+ρA(t).

The second equality of Eq. (16.2.3) follows from Lemma 16.2.1.

Case 3: γ + ρ = 0 From Eq. (16.2.5), we know that h(t)− ctγ/γ ∈
Π with auxiliary function a(t)A(t)/ρ. By Corollary B.2.13 in [113], w∞
defined by Eq. (16.2.3) exists and w∞ ∈ (0,∞]. By Theorem B.2.12 in
[113], there exists a function ϕ ∈ RV0 such that

ϕ(t) ∼ 1

ρ
a(t)A(t) ∼ c

ρ
tγA(t), t → ∞, (16.2.7)

and

h(t)− c
tγ

γ
= ϕ(t) +

∫ t

1

ϕ(u)

u
du. (16.2.8)

Define

g(t) =
γ

ctγ

[

ϕ(t) +

∫ t

1

ϕ(u)

u
du

]

, t > 0.

Then

h(t) = c
tγ

γ
+
c

γ
tγg(t) =

c

γ
tγ [1 + g(t)] .

Since ϕ ∈ RV0, we have

lim
t→∞

ϕ(t)
∫ t
1 ϕ(u)/udu

= 0 (16.2.9)

by Karamata’s theorem (see Theorem B.1.5 in [113]). Hence, in terms
of γ > 0 and Eq. (16.2.7), exploiting L’Hôpital’s rule yields that

lim
t→∞ g(t) = lim

t→∞
γ

c

∫ t
1 ϕ(u)/udu

tγ
= lim

t→∞
ϕ(t)/t

ctγ−1
= lim

t→∞
A(t)

ρ
= 0.

(16.2.10)
Two subcases arise: w∞ = ∞ and 0 < w∞ < ∞.



320 Second-Order Regular Variation

First, consider the subcase w∞ = ∞. In view of Eq. (16.2.9), we
conclude from Eq. (16.2.8) that

∫ ∞

1

ϕ(u)

u
du = ∞.

Define

A∗(t) =
∫ t

1
uγ−1A(u)du.

Then A∗(t) → ∞ as t → ∞ since

lim
t→∞

A∗(t)
∫ t
1 ϕ(u)/udu

= lim
t→∞

tγ−1A(t)
ϕ(t)/t

=
ρ

c
> 0

by L’Hôpital’s rule. Again, applying L’Hôpital’s rule and by
Eq. (16.2.7), we have

lim
t→∞

∫ tx
1 ϕ(u)/udu

cA∗(t)/ρ
= lim

t→∞
ϕ(tx)

ctγA(t)/ρ
= xγ lim

t→∞
A(tx)

A(t)
= 1, x > 0.

(16.2.11)
Therefore, for any x > 0,

lim
t→∞

h(tx)/h(t) − xγ

γtρA∗(t)

= xγ lim
t→∞

g(tx)− g(t)

γtρA∗(t)
· 1

1 + g(t))

= xγ lim
t→∞

g(tx)− g(t)

γtρA∗(t)
[by (16.2.10)]

= xγ lim
t→∞

(tx)ρ
(

ϕ(tx) +
∫ tx
1 ϕ(u)/udu

)

− tρ
(

ϕ(t) +
∫ t
1 ϕ(u)/udu

)

ctρA∗(t)

= xγ lim
t→∞

[xρϕ(tx)− ϕ(t)] +
[

xρ
∫ tx
1 ϕ(u)/udu − ∫ t

1 ϕ(u)/udu
]

cA∗(t)

= xγ lim
t→∞

xρ
∫ tx
1 ϕ(u)/udu− ∫ t

1 ϕ(u)/udu

cA∗(t)
[by (16.2.9)]

= xγ
xρ − 1

ρ
. [by (16.2.11)]

This means that h ∈ 2RVγ,ρ with an auxiliary function γtρA∗(t).
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Next, we consider the subcase 0 < w∞ < ∞. Then, in terms of
Eqs. (16.2.8) and (16.2.9), we have

w∞ =

∫ ∞

1

ϕ(u)

u
du < ∞ and A∗(∞) < ∞

and, hence,

A∗(t) :=
∫ ∞

t
uγ−1A(u)du −→ 0, t → ∞.

By Karamata’s theorem,

lim
t→∞

ϕ(t)

A∗(t)
= lim

t→∞
ϕ(t)

tγA(t)
· t
γA(t)

A∗(t)
= 0. (16.2.12)

Applying L’Hôpital’s rule and by Eq. (16.2.7), we have

lim
t→∞

∫∞
tx ϕ(u)/udu

cA∗(t)/ρ
= lim

t→∞
ρϕ(tx)

ctγA(t)
= 1, x > 0. (16.2.13)

Since w∞ − h(t) has the same sign as ρA(t) for t large enough, we
have, for any x > 0,

lim
t→∞

w∞−h(tx)
w∞−h(t) − xγ

γtρA∗(t)

= lim
t→∞

c(tx)γ [g(tx)− g(t)] − γw∞(1− xγ)

ctγ [1 + g(t)] − w∞γ
· 1

γtρA∗(t)

= lim
t→∞

c(tx)γ [g(tx)− g(t)] − γw∞(1− xγ)

cγA∗(t)
[by (16.2.10)]

= lim
t→∞

[ϕ(tx)−ϕ(t)xγ ] + ∫ tx
1 ϕ(u)/udu−xγ∫ t1ϕ(u)/udu−w∞(1−xγ)

cA∗(t)

= lim
t→∞

∫ tx
1 ϕ(u)/udu−xγ ∫ t1 ϕ(u)/udu−w∞(1−xγ)

cA∗(t)
[by (16.2.12)]

= lim
t→∞

xγ
∫∞
t ϕ(u)/udu− ∫∞

tx ϕ(u)/udu

cA∗(t)

=
xγ − 1

ρ
= −xγ x

ρ − 1

ρ
, [by (16.2.13) and ρ+ γ = 0]

which means that |w∞ − h| ∈ 2RVγ,ρ with an auxiliary function
−γtρA∗(t). This completes the proof of the proposition.
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Neves (2009, [358]) conducted a similar study on the relationships
from 2ERV to 2RV under a restriction γ �= ρ upon the parameters.
The conclusions of Theorem 1 in [358] and of Proposition 16.2.2 are
the same under the conditions (1) γ > 0 and γ+ ρ > 0, and (2) γ > 0,
γ + ρ < 0 and w∞ = 0, respectively. For convenience of comparison,
we list the other conclusions of [358] in the following proposition.

Proposition 16.2.3 (Neves [358]). Let h be any measurable (even-
tually) positive function, and let w∞ be as defined by Eq. (16.2.3) for
ρ < 0. Assume that h ∈ 2ERVγ,ρ with first-order and second-order
auxiliary functions a(t) and A(t), respectively. Then

(i) For γ > 0, γ + ρ < 0, and w∞ �= 0, h ∈ 2RVγ,−γ with auxiliary
function a(t)/h(t) − γ

(ii) For γ > 0 and γ + ρ = 0, h ∈ 2RVγ,−γ with auxiliary function
a(t)/h(t) − γ

(iii) For γ ≤ 0, h ∈ ERVγ

Proposition 16.2.3(iii) is trivial since h ∈ 2ERVγ,ρ implies h ∈
ERVγ . Proposition 16.2.3(i) and (ii) can be derived from Proposi-
tion 16.2.2 as follows.

Proposition 16.2.2(ii) =⇒ Proposition 16.2.3(i): From Lemma
16.2.1, it is easy to see that, for γ > 0, γ + ρ < 0, and any constant
d �= 0,

h∈2RVγ,ρ =⇒ h(t)+d∈2RVγ,−γ with auxiliary function −γd
c
t−γ ,

(16.2.14)

where c = limt→∞ t−γh(t). Now, suppose that h ∈ 2ERVγ,ρ with first-
order and second-order auxiliary functions a(t) and A(t), respectively.
For γ > 0, γ + ρ < 0, and w∞ �= 0, by Proposition 16.2.2 (ii), we
have h(t) − w∞ ∈ 2RVγ,ρ. Thus, in view of the observation (16.2.14),
h = (h−w∞) + w∞ ∈ 2RVγ,−γ with auxiliary function B(t) given by

B(t) = −γ lims→∞(h(s)−a(s)/γ)
lims→∞ s−γh(s)

t−γ∼−γ (h(t)−a(t)/γ)
t−γh(t)

t−γ =
a(t)

h(t)
−γ

as t → ∞.
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Proposition 16.2.2(iii) =⇒ Proposition 16.2.3(ii): First, consider
the case γ > 0, ρ + γ = 0, and w∞ = ∞; Proposition 16.2.2(iii) im-
plies h ∈ 2RVγ,−γ with auxiliary function B given by Eq. (16.2.4). It
suffices to prove that

B(t) ∼ a(t)

h(t)
− γ, t → ∞. (16.2.15)

From Eq. (16.2.5), we know h(t) − ctγ/γ ∈ Π. By Theorem B.2.12 in
de Haan and Ferreira [113], there exists ϕ ∈ RV0 such that

ϕ(t) ∼ a(t)A(t)

ρ
, t → ∞, (16.2.16)

and

h(t)− a(t)

γ
∼ h(t)− c

γ
tγ = ϕ(t) +

∫ t

1

ϕ(s)

s
ds, t → ∞.

Since w∞ = ∞ and ϕ(t) = o
(

∫ t
1 ϕ(s)/sds

)

as t → ∞ by Karamata’s

theorem, it follows that
∫ t
1 ϕ(s)/sds → ∞ as t → ∞ and, hence,

h(t)− a(t)

γ
∼

∫ t

1

ϕ(s)

s
ds ∼

∫ t

1

a(s)A(s)

sρ
ds, t → ∞,

where the second asymptotic equivalence follows from Eq. (16.2.16) by
applying L’Hôpital’s rule. Therefore,

lim
t→∞

B(t)

a(t)/h(t) − γ
= − lim

t→∞
h(t)

γ

B(t)

h(t)− a(t)/γ

= − lim
t→∞

c

γ

∫ t
1 u

γ−1A(u)du
∫ t
1
a(s)A(s)

sρ ds
= lim

t→∞
ctγ

a(t)
= 1,

implying (16.2.15).

Next, consider the case γ > 0, ρ + γ = 0, and 0 < w∞ < ∞.
Applying Corollary B.2.13 in [113] to Eq. (16.2.5) yields that

a(t)A(t)

ρ
= o

(

w∞ −
[

h(t)− c

γ
tγ
])

, t → ∞,

implying a(t)A(t) → 0 as t → ∞. Hence,
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lim
t→∞

A(t)

γh(t)/a(t) − 1
=

1

γ
lim
t→∞

a(t)A(t)

h(t)− a(t)/γ
=

1

γ
lim
t→∞

a(t)A(t)

w∞
= 0.

Since a ∈ 2RVγ,ρ, by Lemma 16.2.1, we have

h(t) =
a(t)

γ
+

(

h(t)− a(t)

γ

)

=
a(t)

γ

[

1 +

(

γh(t)

a(t)
− 1

)]

=
c

γ
tγ

(

1 +
A(t)

ρ
+ o(A(t))

)[

1 +

(

γh(t)

a(t)
− 1

)]

=
c

γ
tγ

(

1 +

(

γh(t)

a(t)
− 1

)

(1 + o(1))

)

=
c

γ
tγ

(

1 +
1

−γ
(

a(t)

h(t)
− γ

)

(1 + o(1))

)

. (16.2.17)

Note that
∣

∣

∣

∣

a(t)

h(t)
− γ

∣

∣

∣

∣

=
γ

|h(t)| ·
∣

∣

∣

∣

h(t)− a(t)

γ

∣

∣

∣

∣

=
w∞γ
|h(t)| ∼ w∞γ2

a(t)
∈ RV−γ .

Therefore, again, applying Lemma 16.2.1 to Eq. (16.2.17) yields Propo-
sition 16.2.3(ii) for the case w∞ < ∞.

Next, we are going to investigate the relationships between a sur-
vival function F and its tail quantile function U =

(

1/F
)←

when they
exhibit some form of second-order condition.

Proposition 16.2.4. Let U ∈ 2ERVγ,ρ with first-order and second-
order auxiliary functions a(t) and A(t), respectively, where γ �= 0 and
ρ ≤ 0. Define

w∞ = lim
t→∞

(

U(t)− a(t)

γ

)

when ρ < 0.

Then

(i) For γ > 0 and ρ + γ > 0 or for γ > 0, ρ + γ < 0, and w∞ = 0,
F ∈ 2RV−1/γ,ρ/γ with an auxiliary function 1

γ(ρ+γ)A(1/F (t))

(ii) For γ > 0 and ρ + γ = 0 or for γ > 0, ρ + γ < 0, and w∞ �= 0,

F ∈ 2RV−1/γ,−1 with an auxiliary function 1
γ

(

a(1/F (t))
t − 1

)
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(iii) For γ < 0, F (x̂− 1/·) ∈ 2RV1/γ,−ρ/γ with an auxiliary function

− 1
γ(ρ+γ)A(1/F (x̂− 1/t))

Proof :

(i) For γ > 0 and ρ+ γ > 0, from Proposition 16.2.2(i),

U ∈ 2RVγ,ρ with auxiliary function
γ

ρ+ γ
A(t). (16.2.18)

By Proposition 2.6 in [299], we have

1

F
∈ 2RV1/γ,ρ/γ with auxiliary function − 1

γ(ρ+ γ)
A(1/F (t)).

Then, by Proposition 2.5 in [299],

F ∈ 2RV−1/γ,ρ/γ with auxiliary function
1

γ(ρ+ γ)
A(1/F (t)).

(16.2.19)

It should point out that the conclusion of Proposition 2.6 in [299]
is stated only for ρ < 0, but by Vervaat’s Theorem in Appendix
A of [113], one can prove that the conclusion is also valid for
increasing function U with ρ = 0. In fact, Eq. (16.2.19) follows
from Eq. (16.2.18) directly by Theorem 2.3.9 in [113].

(ii) The proof is similar to Part (i) by Proposition 16.2.3.

(iii) For γ < 0, from Proposition 16.2.2(ii),

x̂− U(·) ∈ 2RVγ,ρ with auxiliary function
γ

ρ+ γ
A(t).

This is equivalent to

1

x̂− U(·) ∈ 2RV−γ,ρ with auxiliary function − γ

ρ+ γ
A(t).

Since the inverse function of 1/(x̂ − U(·)) is 1/F (x̂− 1/·), then
1

F (x̂− 1/·)∈2RV−1/γ,−ρ/γ with auxiliary function
1

γ(ρ+ γ)
A

(
1

F (x̂− 1/t)

)

by a similar argument to Part (i). Now, Part (ii) follows.

Therefore, we complete the proof of the proposition.
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16.3 Inequalities of Drees Type

In this section, we give new Drees-type inequalities for ERV and 2ERV
functions. Compared with the ordinary Drees-type inequalities, the
original auxiliary functions in these new inequalities are not replaced
by other ones with special forms.

Proposition 16.3.1. If h ∈ ERVγ with auxiliary function a(t) and
γ ∈ R, then for any ε, δ > 0, there exists t0 = t0(ε, δ, γ) such that for
all t, tx ≥ t0,

∣

∣

∣

∣

h(tx)− h(t)

a(t)
− xγ − 1

γ

∣

∣

∣

∣

≤ ε

(∣

∣

∣

∣

xγ − 1

γ

∣

∣

∣

∣

+ xγmax
{

xδ, x−δ
}

)

.

(16.3.1)

Proof : Suppose h ∈ ERVγ with auxiliary function a(t) and γ ∈ R.
Let a0 be as defined by Eq. (16.1.6). Since a(t) ∼ a0(t) as t → ∞,
for any ε ∈ (0, 1) and δ > 0, choose t0 = t0(ε, δ, γ) such that for all
t, tx ≥ t0, Eq. (16.1.5) holds and

0 < (1− ε)a(t) ≤ a0(t) ≤ (1 + ε)a(t).

Now, consider two cases: x ≥ 1 and x ∈ (0, 1).
Case 1. t > t0 and x ≥ 1 Note that

h(tx)− h(t) ≤ a0(t)
xγ − 1

γ
+ εa0(t)x

γ max
{

xδ, x−δ
}

≤ a(t)
xγ−1

γ
+εa(t)

(

xγ−1

γ
+(1+ε)xγ max

{

xδ, x−δ
}

)

,

implying

h(tx)− h(t)

a(t)
− xγ − 1

γ
≤ ε

(

xγ − 1

γ
+ (1 + ε)xγ max

{

xδ, x−δ
}

)

.

(16.3.2)

Similarly,

h(tx)− h(t) ≥ a0(t)
xγ − 1

γ
− εa0(t)x

γ max
{

xδ, x−δ
}

≥ a(t)
xγ − 1

γ
(1− ε)− εa(t)(1 + ε)xγ max

{

xδ, x−δ
}

= a(t)
xγ−1

γ
−εa(t)

(

xγ−1

γ
+(1+ε)xγ max

{

xδ, x−δ
}

)

,
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implying

h(tx)− h(t)

a(t)
− xγ − 1

γ
≥ −ε

(

xγ − 1

γ
+ (1 + ε)xγ max

{

xδ, x−δ
}

)

.

(16.3.3)
Thus, Eq. (16.3.1) follows from Eqs. (16.3.2) and (16.3.3) by replacing
the above ε by ε/2.

Case 2. tx > t0 and 0 < x < 1 Note that (xγ − 1)/γ < 0. Then,

h(tx)− h(t) ≤ a(t)(1− ε)
xγ − 1

γ
+ εa(t)(1 + ε)xγ max

{

xδ, x−δ
}

≤ a(t)
xγ−1

γ
+εa(t)

(

−x
γ−1

γ
+(1+ε)xγ max

{

xδ, x−δ
}

)

,

implying

h(tx)− h(t)

a(t)
− xγ − 1

γ
≤ ε

(

−x
γ − 1

γ
+ (1 + ε)xγ max

{

xδ, x−δ
}

)

.

Similarly,

h(tx)− h(t)

a(t)
− xγ − 1

γ
≥ −ε

(

−x
γ − 1

γ
+ (1 + ε)xγ max

{

xδ, x−δ
}

)

.

Therefore, the desired result follows.

Note that | log x| ≤ Cmax
{

xδ, x−δ
}

for some constant C and all
x > 0. Also, h ∈ 2RVγ,ρ if and only if t−γh(t) ∈ ERVρ for γ ∈ R

and ρ ≤ 0. Two immediate consequences of Proposition 16.3.1 are the
following two corollaries.

Corollary 16.3.2. Let h ∈ Π with auxiliary function a(t). Then,
for any ε > 0 and δ > 0, there exists t0 = t0(ε, δ) such that for all
t, tx ≥ t0,

∣

∣

∣

∣

h(tx)− h(t)

a(t)
− log x

∣

∣

∣

∣

≤ εmax
{

xδ, x−δ
}

.

Corollary 16.3.3. If h ∈ 2RVγ,ρ with auxiliary functions A(t), γ ∈ R

and ρ ≤ 0, then, for any ε, δ > 0, there exists t0 = t0(ε, δ, γ, ρ) > 0
such that for all t, tx ≥ t0,

∣

∣

∣

∣

∣

∣

h(tx)
h(t) − xγ

A(t)
− xγ

xρ − 1

ρ

∣

∣

∣

∣

∣

∣

≤ ε xγ
(∣

∣

∣

∣

xρ − 1

ρ

∣

∣

∣

∣

+ xρmax
{

xδ, x−δ
}

)

.
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Proposition 16.3.4. If h ∈ 2ERVγ,ρ with first-order and second-order
auxiliary functions a(t) and A(t), respectively, then, for any ε, δ > 0,
there exists t0 = t0(ε, δ, γ, ρ) > 0 such that for all t, tx ≥ t0,

∣

∣

∣

∣

∣

∣

h(tx)−h(t)
a(t) − xγ−1

γ

A(t)
−Hγ,ρ(x)

∣

∣

∣

∣

∣

∣

≤ εWγ,ρ,δ(x), (16.3.4)

where Wγ,ρ,δ(x) is given by

Wγ,ρ,δ(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∣

∣

∣

xγ+ρ−1
γ+ρ

∣

∣

∣+ xγ
∣

∣

∣

xρ−1
ρ

∣

∣

∣+ xγ+ρmax
{

xδ, x−δ
}

, γ �= 0;
∣

∣

∣

xρ−1
ρ

∣

∣

∣+xρmax
{

xδ, x−δ
}

, γ=0, ρ�=0;

max
{

xδ, x−δ
}

, γ=0, ρ=0.

Proof :

(1) First, consider the case γ �= 0. Note that, for x > 0,

h(tx)− h(t)− a(t)x
γ−1
γ

a(t)A(t)

=
h(tx)− 1

γa(t)x
γ −

(

h(t)− 1
γa(t)

)

a(t)A(t)

=
h(tx)−a(tx) 1γ−

(

h(t)− 1
γa(t)

)

a(t)A(t)
+
xγ

γ

(tx)−γa(tx)−t−γa(t)
t−γa(t)A(t)

.

(16.3.5)

Since a ∈ 2RVγ,ρ with auxiliary function A(t), it follows that
t−γa(t) ∈ ERVρ with auxiliary function t−γa(t)A(t) and, hence,
the second term in the right hand of Eq. (16.3.5) converges to
xγ

γ
xρ−1
ρ as t → ∞. Then the first term in the right hand of

Eq. (16.3.5) converges to − 1
γ
xγ+ρ−1
γ+ρ as t → ∞, i.e., h − a/γ ∈

ERVγ+ρ with auxiliary function −a(t)A(t)/γ. So, by Proposi-
tion 16.3.1, for any ε > 0 and δ > 0, there exists t1 = t1(ε, δ, γ, ρ)
such that for all t, tx ≥ t1,

∣

∣

∣

∣

∣

∣

h(tx)− a(tx) 1γ −
(

h(t)− 1
γa(t)

)

a(t)A(t)
+

1

γ

xγ+ρ − 1

γ + ρ

∣

∣

∣

∣

∣

∣
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≤ ε

2|γ|
(∣

∣

∣

∣

xγ+ρ − 1

γ + ρ

∣

∣

∣

∣

+ xγ+ρmax
{

xδ, x−δ
}

)

and
∣

∣

∣

∣

(tx)−γa(tx)−t−γa(t)
tγa(t)A(t)

−x
ρ−1

ρ

∣

∣

∣

∣

≤ε
2

(∣

∣

∣

∣

xρ−1

ρ

∣

∣

∣

∣

+xρmax
{

xδ, x−δ
}

)

.

Inserting these two inequalities into Eq. (16.3.5), we conclude
(16.3.4) for the case γ �= 0.

(2) Next, consider the case γ = 0 and ρ < 0. Since a ∈ 2RV0,ρ with
auxiliary function A(t), we have a(t) = c[1 + A(t)/ρ + o(A(t))]
as t → ∞ with 0 < c < ∞ by Lemma 16.2.1. Then, for x > 0,

h(tx)− h(t)− a(t) log x

a(t)A(t)

=
h(tx)− h(t)− c

(

1 + A(t)
ρ + o(A(t))

)

log x

a(t)A(t)

=
h(tx)− c log(tx)− (h(t)− c log t)

a(t)A(t)
− c+ o(1)

ρa(t)
log x.

By Theorem B.3.6 in de Haan and Ferreira [113] or by
Eq. (16.2.5), we get h(t)− c log t ∈ ERVρ with auxiliary function
a(t)A(t)/ρ. So, by Proposition 16.3.1, for any ε > 0 and δ > 0,
there exists t1 = t1(ε, δ, γ, δ) such that for all t, tx ≥ t1,

∣

∣

∣

∣

h(tx)− c log tx− (h(t)− c log t)

a(t)A(t)
− xρ − 1

ρ2

∣

∣

∣

∣

≤ ε

2|ρ|
(∣

∣

∣

∣

xρ − 1

ρ

∣

∣

∣

∣

+ xρmax
{

xδ, x−δ
}

)

and
∣

∣

∣

∣

c+ o(1)

ρa(t)
log x+

1

ρ
log x

∣

∣

∣

∣

≤ ε

2|ρ| max
{

xδ, x−δ
}

.

Thus,

∣

∣

∣

∣

h(tx)−h(t)−a(t) log x
a(t)A(t)

−H0,ρ(x)

∣

∣

∣

∣

≤ε
(∣

∣

∣

∣

xρ−1

ρ2

∣

∣

∣

∣

+xρmax{xδ, x−δ}
)

.
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(3) Finally, consider the case γ = ρ = 0. From Eq. (16.1.7), it
follows that, for any ε > 0 and δ > 0, there exists t1 = t1(ε, δ)
such that for all t, tx ≥ t1,

∣

∣

∣

∣

∣

∣

h(tx)−h(t)
a0(t)

− log x

A0(t)
− 1

2
(log x)2

∣

∣

∣

∣

∣

∣

≤ 1

4
εmax

{

xδ, x−δ
}

,

where a0 and A0 are chosen such that A0(t) ∼ A(t) and
a0(t)/a(t) − 1 = o(A(t)) as t → ∞. Note that

h(tx)−h(t)
a(t) − log x

A(t)

=
h(tx)− h(t)− a0(t) log x

a0(t)A0(t)
· a0(t)A0(t)

a(t)A(t)
− a(t)− a0(t)

a(t)A(t)
log x

def
= J1(t) + J2(t),

where

J1(t) −→ 1

2
(log x)2 and J2(t) −→ 0 as t → ∞.

Also, note that (log x)2 ≤ Cmax
{

xδ, x−δ
}

for all x > 0 and
some constant C. Therefore, as t large enough,

∣

∣

∣

∣

J1(t)− 1

2
(log x)2

∣

∣

∣

∣

≤
∣

∣

∣

∣

h(tx)− h(t)− a0(t) log x

a0(t)A0(t)
− 1

2
(log x)2

∣

∣

∣

∣

· a0(t)A0(t)

a(t)A(t)

+

∣

∣

∣

∣

1

2
(log x)2

∣

∣

∣

∣

∣

∣

∣

∣

a0(t)A0(t)

a(t)A(t)
− 1

∣

∣

∣

∣

≤ 1

2
εmax

{

xδ, x−δ
}

,

and ∣

∣

∣

∣

a(t)− a0(t)

a(t)A(t)
log x

∣

∣

∣

∣

≤ 1

2
εmax

{

xδ, x−δ
}

.

This means that Eq. (16.3.4) holds for this last case. We thus
complete the proof of the whole proposition.
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Chapter 17

Individual and Moving
Ratio Charts for Weibull
Processes
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Abstract: This chapter proposes methods for monitoring Weibull
processes when data collection is restricted to one observation per
sampling period. Because the Weibull distribution is an asymmetric
distribution, it is not appropriate to apply normal-based individual and
moving range charts to Weibull data. A transformation of Weibull to
approximate normality prior to applying normal-based methods has
been suggested in the literature. This chapter studies the run length
properties of and the difficulties encountered with this approach. As
an alternative, this chapter proposes combined individual and moving
range charts for monitoring changes in either the Weibull scale or shape
parameter. A method for computing the average run length ARL is
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17.1 Introduction

The Weibull distribution is named in honor of Weibull who, in [472,
473], used it to describe the breaking strength distribution of materi-
als. Its theoretical origin is rooted in extreme value theory. The time
to failure of a series system with n parts is the failure time of the first
failure. For instance, in composite materials such as ceramics, failure
happens at the weakest flaw of the test specimen. For many distribu-
tions that describe failure times, the distribution of the “weakest link”
approaches the Weibull distribution as the number n of parts or flaws
becomes large. See [171]. The Weibull distribution is now often used
to model lifetimes of test units or electronic products and strength dis-
tributions of materials. References [274, 317, 356, 357, 388] describe
various Weibull applications in engineering.

There are practical situations, e.g., chemical processes, when sam-
ples are restricted to a single observation per sampling period because
of budget, time, and resource constraints. Thus, there is not enough
observations that define a “rational subgroup” from which to compute
statistics (e.g., sample mean and variance) that are relevant to pro-
cess performance. One approach is to construct respective charts for
individual values or the moving ranges (absolute differences between
consecutive individual values). These charts can be used individually
or simultaneously.

Work on individual and moving range charts is predominantly on
the normal distribution. There is a disproportionately smaller amount
of work on these charts for non-normal or asymmetric distributions
such as Weibull. Because of the Weibull distribution’s importance in
real-life applications, the Weibull versions of these charts are valuable
tools for the practitioner in process monitoring.

17.1.1 Outline

This chapter is organized as follows. Section 17.2 describes meth-
ods in the literature for monitoring Weibull processes. Section 17.3
describes model assumptions and notation that will be used in the
discussions. Section 17.4 describes a transformation proposed in the
literature to approximate normality of the Weibull distribution that
can be applied before normal-based control charts can be implemented.
Properties of this approach are explored specifically when samples are
restricted to single observations. Section 17.5 describes the proposed
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combined individual and moving ratio charts for Weibull processes.
The following section describes computation of the average run length
(ARL) for the proposed method. Control limits are tabulated in
Sect. 17.7. The proposed method is applied to an example in Sect. 17.8.

17.2 Related Work

When normal-based median and range charts were applied to Weibull
processes, [354] concluded that the rates of out-of-control signals were
different from what were anticipated. Chen and Cheng [85] investi-
gated the effect of non-normality on the control limits of the X̄ chart
and concluded that the effects of non-normality were significant and
“should not be ignored.” Benneyan [58] studied the consequences of
applying normal-based individual and moving range charts on non-
normal single-parameter distributions. The author remarked that the
charts have a poor ability to detect process changes for geometric and
exponential processes and, furthermore, noted that using 3σ or proba-
bility limits often resulted in ARL that was significantly different from
what was anticipated.

If normal-based control charts are used on an exponential variable
W , [353] suggested the transformation W 0.2777 because the respective
skewness and kurtosis ofW 0.2777’s distribution are close to those of the
normal. As an improvement, [483] suggested the power 0.2654 instead
of 0.2777 based on the Kullback-Leibler information. These results
are extended by noting that if Y is a Weibull variable with shape
parameter β, then Y β is exponential. Normal-based control charts
can then be applied to values of Y 0.2777β , as done in [45], or Y 0.2654β .
See also [58].

Padgett and Spurrier [363] proposed Shewhart-type charts for mon-
itoring quantiles of Weibull strength distributions. Nichols and Pad-
gett [359] computed control limits for monitoring Weibull quantiles
by Monte Carlo simulations of maximum likelihood estimates. Huang
and Pascual [195] discussed ARL-unbiased control charts for moni-
toring the quantiles of a Weibull process when the shape parameter
β was known and data were censored at the first failure. Ramalhoto
and Morais [381, 382] studied EWMA and Shewhart control charts
for the Weibull scale parameter when the Weibull shape and threshold
parameters were known. Zhang and Chen [485] studied EWMA charts
for monitoring the mean of Weibull lifetimes assuming that the shape
parameter was known and stable.
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Pascual and Zhang [368] studied ARL-unbiased control charts
based on the sample range of log-Weibull [smallest extreme value
(SEV)] data for monitoring β. For Weibull samples of size n = 1,
[367] studied ARL-unbiased moving range charts for monitoring β.
Pascual [366] studied methods for monitoring β based on the Page cu-
mulative sum in [364] and the exponentially weighted moving average.
The authors of the above articles showed that their charts depended
on the sample size n and the ratio between the stable and true val-
ues of β and not on η. Their chart schemes were motivated by the
need to check the stability of the shape parameter β that is assumed
by other methods found in the literature for monitoring the Weibull
mean, quantiles, or scale parameter η.

The body of work on individual and moving range charts is mostly
for the normal distribution. They have been applied in various ar-
eas such as engineering, health care, chemistry, and computer science.
References [10, 136] are early references that described the use of these
charts. Crowder [97] discussed how to compute the ARL, while [460]
(p. 172) used the former’s results to tabulate constants for computing
control limits that yield target stable-process ARLs.

17.3 Model Assumptions

Let i = 1, 2, . . . denote the sampling period. In period i, the prac-
titioner takes a single measurement Xi assumed to follow a two-
parameter Weibull distribution with scale and shape parameters η > 0
and β > 0, respectively. Write Xi ∼ WEI(η, β). The probability den-
sity (pdf) and cumulative distribution (cdf) functions are, respectively,

fX(x; η, β) =
β

η

(

x

η

)

β−1 exp
[

−
(

x

η

)

β

]

, FX(x; η, β) = 1− exp

[

−
(

x

η

)

β

]

(17.3.1)

for x ≥ 0. The Weibull mean and variance are

E[Xi] = ηΓ

(

1 +
1

β

)

, Var[Xi] = η2
[

Γ

(

1 +
2

β

)

− Γ2

(

1 +
1

β

)]

(17.3.2)

where Γ denotes the gamma function.
For period i = 2, 3, . . . , define the moving ratio as

Ri = max{Xi−1,Xi}/min{Xi−1,Xi}.
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Of course, there is no moving ratio in period 1 because there is no
prior observation. The results of [464] can be used to show that the
cdf of Ri is

FR(r;β) = 1− 2

rβ + 1
, r ≥ 1

from which can be derived the p quantile given by

rp =

(

1 + p

1− p

)1/β

, (17.3.3)

for 0 < p < 1. Observe that rp is a strictly decreasing function of β.
Thus, Ri is an appropriate statistic for monitoring shifts in β that does
not depend on the actual value of η. Also, observe that log(Xi) has
a SEV distribution, and log(Ri) is a moving range of two consecutive
SEV variables. The distributional properties of logRi are discussed in
[367]. They studied SEV moving range control charts for monitoring
changes in β.

Below, control charts based on the individual and moving ratio
are explored. Equation (17.3.2) suggests that interpretation of out-of-
control signals in the individual chart may be tricky because they may
be attributed to either shifts in the scale η and/or the shape β. How-
ever, the distributional properties of Ri, e.g., dependence on β only,
suggest that simultaneously implementing a moving range chart may
provide valuable information in pinpointing the cause(s) for signals.

17.4 Normal Individual and Moving Range

Charts

IfW is an exponential random variable, thenW 0.2777 is approximately
normal with similar symmetry and kurtosis as normal’s. See [353]. It
can easily be shown that if X ∼ WEI(η, β), then Xβ is exponential
with mean ηβ. Hence, Y = X0.2777β is approximately normal.

Based on the above results, [45] studied the application of
normal-based individual and moving range charts on the process
Yi = X0.2777βS

i where βS is the target Weibull shape. The au-
thors simulated values of the individuals Yi and the moving range
MRi = |Yi − Yi−1| assuming a stable process and obtained respective
sample means and standard deviations. They then used the mean to
approximate the centerline and the mean ± 3 standard deviations to
approximate the upper/lower control limits. They did not recommend
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using the moving range chart because their simulation study suggested
that it was not effective at all in detecting shifts in all scenarios that
they considered. They recommended the individual chart but only in
specific cases. The theoretical properties of the above approach are
presented below.

17.4.1 Shewhart Control Limits

If Xi ∼ WEI(η, β) and λ > 0, then it can be shown that Yi = Xλβ
i ∼

WEI(ηλβ , 1/λ) for any positive constant λ. Thus, the mean and vari-
ance of Yi are

E[Yi] = ηλβΓ(1 + λ), Var[Yi] = η2λβ
{

Γ(1 + 2λ)− [Γ(1 + λ)]2
}

.

It can also be shown, using the results of [218] (Chap. 21), that

E[MRi] = 2ληλβΓ(λ)

(

1− 1

2λ

)

.

Let ηS and βS denote the stable-process parameters. The center-
lines and control limits of the individuals Y and moving range MR
charts are given by

CLY = E[Yi] = ηλβSS λΓ(λ),

UCLY = ηλβSS λΓ(λ)

[

1− 5.319149

(

1− 1

2λ

)]

,

LCLY = αλβSλΓ(λ)

[

1 + 5.319149

(

1− 1

2λ

)]

,

and

CLMR = 2ηλβSS λΓ(λ)

(

1− 1

2λ

)

, UCLMR = 6.534ηλβSS λΓ(λ)

(

1− 1

2λ

)

.

There is no LCL for the MR chart because the lower 3-sigma limit
is negative for λ values that yield close normal approximations. [45]
considered λ = 0.2777 for which

CLY =0.901119η0.2777βS

S , UCLY =1.740382η0.2777βS

S , LCLY =0.061856η0.2777βS

S

and

CLMR = 0.315563η0.2777βSS , UCL = 1.030944η0.2777βSS .
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[45] (in Tables IV–VII) assigned ηS = 1 and performed simulations to
estimate the centerline and control limits. Hence, the UCL, CL, and
LCL values found in the last four lines of their Table V (control limits
for individual charts) are four sets of estimates of 1.740382, 0.901119,
and 0.061856, respectively. The UCL and CL values in the last four
lines of Table VII (control limits for moving range charts) are estimates
of 1.030944 and 0.315563, respectively.

Given λ, E[Yi] and E[MRi] are directly proportional to each other.
More specifically, the Y and MR charts, in essence, both monitor
changes in the value of ηβ . This could be troublesome for the practi-
tioner because both η and β may shift significantly while changes in
ηβ may be relatively small. More importantly, changes in the Weibull
mean and variance may not necessarily be suggested by changes in the
value of ηβ .

17.4.2 Run Length Properties of the Y and MR Charts

The run length L of a control chart is the number of sampling periods
till the first OOC signal. Its expected value E[L] is known as the
ARL. If the charted process statistics are independent from sample to
sample, then L is a geometric random variable with success probability
p = P{OOC} and ARL = 1/p. This is true for the individual Y
chart discussed above. On the other hand, this does not hold for the
MR chart because the moving range spans two sampling periods and,
hence, two consecutive moving ranges are not independent.

Let ηT and βT be the true parameter values and assign ρη = ηS/ηT
and ρβ = βS/βT . The Y chart has ARL given by

ARL−1=P{OOC}=1−exp
{
−ρρββS

η

(
LCLY /η

λβS
S

)}
+exp

{
−ρρββS

η

(
UCLY /η

λβS
S

)}
.

Observe that ARL depends on ρη, ρβ, and βS because LCLY /η
λβS
S

and UCLY /η
λβS
S do not depend on ηS. It suffices to assume for the

discussions below that ηS = 1.
If the process is stable, i.e., ρη = ρβ = 1, then ARL=̇1462 for λ =

0.2777. Figure 17.1 is a series of contour plots of ARL for βS = 0.5, 1, 2.
The solid lines indicate constant ARL curves. As expected the ARL =
1462 curve passes through the point (ρη = 1, ρβ = 1). The exponential
(Rayleigh) case is given by βS = 1 (βS = 2), and, if the Xi stays within
the exponential (Rayleigh) family, then the ARL values are given by
the intersection of the contour curves with the horizontal line at ρβ = 1.
The curve denoted by “− − −” indicates the combinations of ρη and
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ρβ for which the Weibull mean is equal to the stable-process mean.
Points to the left of this curve correspond to decreases from the target
Weibull mean. The “− · −” curve is when the Weibull variance is the
same as the stable-process variance, and points to the left represent
decreases from the target Weibull variance. A broader view of the
exponential case (βS = 1) is shown in Fig. 17.2 to show ARL behavior
at extreme upward shifts in η.

The ARL for theMR chart is computed using a Fredholm integral
equation of the second kind. The Appendix provides the details. ARL
contour plots for theMR chart that are analogous to those of Fig. 17.1
are given in Fig. 17.3.

17.4.3 Discussion

For the (transformed individual) Y chart, we have the following
observations:

• Recall that the region above (or to the left of) the equal-mean
curve in Fig. 17.1 indicates increases from the stable-process
Weibull mean. In general, the Y chart is effective in detect-
ing increases in the mean because the ARL is mostly below the
all-OK ARL of 1,462. It is also capable of detecting decreases
in the mean around the region bounded by the equal-mean and
the equal-variance curves in the first quadrant because, here,
the ARL falls below the all-OK ARL. But it is ineffective in
detecting decreases because ARL is above 1,462 in most cases.

• The region above the equal-variance curve corresponds to in-
creases in the Weibull variance from the stable-process value.
Because the equal-mean and equal-variance curves are both pos-
itively sloped, the conclusions in the previous item regarding the
process mean is also true for the process variance. Thus, the Y
chart is capable of detecting increases in the variance in general.

• A broader view of the exponential case is depicted in Fig. 17.2.
This plot shows that for fixed ρβ, the ARL eventually reaches a
peak and decreases when ρη gets large enough. But, in this case,
ηT has to be a lot smaller than ηS for the ARL to fall below
1,462. The ARL drops more quickly for larger βS . Still, the
inability to detect smaller changes can be a cause for concern.
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Figure 17.1: ARL contour of Y chart for λ = 0.2777, βS = 0.5, 1, 2

• In summary, the Y chart is capable of detecting increases in both
mean and variance. However, this is disconcerting particularly
for reliability engineers because a decrease in, say, average prod-
uct life or material strength is probably more detrimental than
an increase in the variance.

For the MR chart, we have the following observations:

• The ARL trends as shown in Fig. 17.3 are similar to those for
the Y chart, and remarks made above regarding the Y chart also
apply to theMR chart. TheMR chart is capable of detecting in-
creases in Weibull mean and variance which may be problematic
to reliability engineers.

• On the other hand, the MR chart’s ARL does not exhibit the
behavior of reaching a peak and coming back down as in the Y
charts even for extremely large values of ρη. This suggests that
using the MR chart may be more problematic than using the Y
chart.
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Figure 17.2: ARL of the exponential Y chart for λ = 0.2777 and
different values of ρη and ρβ

The above results agree with [45]’s recommendation not to use either
Y or MR charts as described above in general. Below, a method
simultaneously using individual and moving ratio charts of Weibull
data is proposed. This method avoids the ARL and shift detection
problems encountered with the Y and MR charts.

17.5 Individual and Moving Ratio Charts
for Weibull Distribution

The objective here is to develop monitoring schemes that declare that
a Weibull process is OOC when a shift in either the scale or shape
parameter has occurred. For this, charts for the individual value (X)
and the moving ratio (R) are proposed. Distributional properties of
X and R are used to determine chart limits and run length properties
without using simulations.

Let ηS and βS be the stable-process parameter values. The individ-
ual (X) chart is a time-series plot of X1,X2, . . . with centerline CLX ,
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Figure 17.3: ARL of MR chart for λ = 0.2777, βS = 0.5, 1, 2 and
different values of ρη and ρβ

upper control limits UCLX , and lower control limits LCLX given by

CLX = ηS [− log(0.5)]1/βS , UCLX=ηS(ux)
1/βS , LCLX=ηS(lx)

1/βS

(17.5.1)

so that an OOC signal occurs if Xi > UCLX or Xi < LCLX for
i = 1, 2, . . .. The centerline is at the median of WEI(ηS , βS) but the
mean given by Eq. (17.3.2) may be used as an alternative value. The
constants lx and ux are the control limits when ηS = βS = 1 and,
hence, are referred to as the standardized X control limits. Also,
UCLX and LCLX are the (1− e−ux) and (1− e−lx) quantiles, respec-
tively, of WEI(ηS , βS).

The moving ratio (R) chart is a time-series plot of R2, R3, . . . with
centerline and control limits given by

CLR = 31/βS , UCLR = (ur)
1/βS , LCLR = (lr)

1/βS (17.5.2)

so that an OOC signal occurs when Ri > UCLR or Ri < LCLR for
i = 2, 3, . . .. Equation (17.3.3) shows that the above chart values are,
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respectively, the 0.50, [(ur−1)/(ur+1)], and (lr−1)/(lr+1) quantiles
of Ri under a stable process. The constants lr and ur are referred to
as the standardized R chart control limits because they are the chart
constants when βS = 1.

The X chart is appropriate for monitoring changes in the process
mean if the practitioner can assume that the shape parameter β is
constant and stable. However, the X chart is not adequate to monitor
changes in both parameters. Equation (17.3.2) suggests that there
are infinitely many combinations of η and β for which the mean is
constant. Furthermore, a constant mean does not necessarily mean a
constant variance, and vice versa.

Suppose that the shift in η occurs immediately before implementing
the R chart. The process statistic R does not depend on η because the
effect of a scale parameter is multiplicative and taking the ratio of two
measurements eliminates that effect. So, in this case, the R chart is
not appropriate for monitoring shifts in both η and β. For this reason,
the application of the R chart alone is not studied below. Instead, the
reader is referred to [367].

If both scale and shape parameters shift over time, the above dis-
cussions do not suggest implementing the X and R charts separately.
Instead, it makes intuitive sense to use these charts simultaneously
to monitor a Weibull process. Below, the properties of the combined
application of the X and R charts are investigated and evaluated with
respect to run length.

17.6 Average Run Length and Unbiasedness

The number of periods L till the first OOC signal is called the run
length of a control chart. Its expected value called the ARL is often
used in the literature to study and compare the performance of control
chart schemes.

17.6.1 Average Run Length

Let ηT and βT be the true parameter values. If the process is stable,
i.e., ηT = ηS and βT = βS , the ARL is referred to as the stable-process
ARL. Otherwise, the ARL is called an OOC ARL. Let L0 denote the
desired stable-process ARL. The X and R chart parameters lx, ux, lr,
and ur are chosen so that ARL = L0 when the process is stable. To
describe the respective changes in parameters, define
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ρ =
βT
βS
, Δ =

(

ηT
ηS

)βS

.

The percent changes in the scale η and shape β are given by 100[1 −
exp(Δ/βS)]% and 100(ρ − 1)%, respectively.

For the combined X/R chart, the ARL is approximated using
Markov chains. See the Appendix for details. A careful inspection
of the results therein reveals that the required transition probabilities
depend on ρ and Δ. Consequently, the ARL is uniquely determined by
ρ and Δ as in the case of the X chart. This suggests that to study the
ARL performance of a specific X/R chart, it suffices to assume that
ηS = βS = 1, and calculate the ARL under different combinations of
ρ and Δ.

17.6.2 ARL Unbiasedness

It is possible that when the process is OOC, the ARL is actually longer
than the desired stable-process ARL L0. This produces an undesir-
able result because an OOC situation must be detected quickly. To
address this issue, [376] studied the concept of ARL-unbiasedness. For
the X/MR chart proposed here, this means finding chart parameters
lx, ux, lr, and ur so that

• ARL = L0 when ρ = 1 and Δ = 0 (i.e., the process is stable)

• ARL < L0 when ρ �= 1 or Δ �= 0 (i.e., the process has shifted)

Below, the performance of the X/R charts in detecting shifts in
both η and β is studied. All the X/R charts presented below are
unbiased for shifts in both η and β. Unbiasedness is verified through
contour plots of the ARL.

17.7 Numerical Results

In this section, standardized control limits for X/R charts are tab-
ulated. Computations of the limits are carried out using computer
programs written in the R language of [380]. The programs are avail-
able from the author.
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17.7.1 Control Limits for the Combined X/R Charts

Table 17.1 gives the natural logarithms of the X/R standardized limits
for desired all-OK ARL of L0 = 50, 100, 200, 300, 400, and 500. These
values are used with Eqs. (17.5.1) and (17.5.2) to compute the control
limits in actual applications. Observe that |lx| �= |ux| and |lr| �= |ur|
suggest that using just one constant (e.g., constant=3 for the normal
case) to determine control limits for Xi is not appropriate for Weibull
individual values or moving ranges.

Table 17.1: Standardized control limits for ARL-unbiased X/R charts
Control L0

limits 50 100 200 300 400 500

log(lx) −6.2955 −7.1106 −7.9180 −8.5834 −8.5824 −8.6850
log(ux) 2.1883 2.2930 2.3877 2.4919 2.4312 2.4165
log(lr) 0.0360 0.0180 0.0090 0.0060 0.0046 0.0036
log(ur) 6.7789 7.5064 8.2291 8.5070 9.1708 9.8827

17.7.2 ARL-Unbiasedness of X/R Charts

Unbiasedness of X/R charts can be checked graphically. For the
application in Sect. 17.8 below, stable-process parameters are ηS = 3.2
and βS = 4.8, and the X/R chart control limits are LCLX = 0.7274,
UCLX = 5.1596, LCLR = 1.0038, and UCLR = 4.7771 so that the
stable-process ARL is 100. Figure 17.4 is a contour plot of ARL values
under this chart and for different combinations of true values for η and
β. The plot suggests ARL unbiasedness because ARL < 100 when at
least one of η �= 3.2 and β �= 4.8 is true. Similar graphs, not included
here, also suggest unbiasedness for other values of L0 in Table 17.1.

17.7.3 Sample Size Requirements for Phase I

With respect to how process parameters are obtained, there are two
types of control charts, namely, standards-given and retrospective
charts. See [460]. In standards-given charts, stable-process parameters
are known, e.g., from prior experience with the process or engineering
judgment. In this case, both parameters and control limits are fixed
quantities. In retrospective charts, process parameters and control
limits are estimated because, for example, the process may be related
to a new product design or a pilot study. Thus, stable-process data
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Figure 17.4: Contour plot of ARL for the unbiased X/R chart with
L0 = 100

from m periods are used to estimate process parameters from which
control limits are derived. The priorm periods are referred to as Phase
I. The subsequent monitoring of the process using the estimated con-
trol limits is referred to as Phase II. For retrospective charts, control
limits are, in reality, random variables.

The respective run length distributions under the standards-given
and retrospective scenarios are expected to be different. Thus, it is
important to know how large m should be so that the run length dis-
tributions of standards-given and retrospective charts are reasonably
similar. Simulations are performed to compare the empirical distribu-
tions of run lengths under stable-process conditions for different values
of m. Maximum likelihood methods are used to estimate process pa-
rameters.

Based on the discussion of Sect. 17.6, it can be assumed without
loss of generality that ηS = 1 and βS = 1 for studying the properties
of run lengths for X/R charts. Simulation results suggest that run
length distributions of standards-given and retrospective charts are
similar for m ≥ 150 for the values of L0 considered here.
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17.8 An Application

In this section, the proposed X/R charts are applied to a data set on
the strength of carbon fibers. Padgett and Spurrier [363] presented
data on the strengths of the carbon fibers. The data set consisted of
samples of size 5 from 20 inspection periods. It was known that the
first 10 periods were obtained from a stable process, while the later 10
periods were from a process that had shifted. The stable-process dis-
tribution for carbon-fiber strengths was WEI(η = 3.2, β = 4.8). Thus,
ηS = 3.2 and βS = 4.8. One observation is randomly chosen from each
of the 20 sampling periods. These values and the corresponding mov-
ing ratio values are given under the X and R columns, respectively, of
Table 17.2. The proposed method is applied to this data subset.

Table 17.2: Individual observations and moving ratio for strength dis-
tribution of carbon fibers

Period X R Period X R

1 2.74 NA 11 1.36 1.5956
2 3.11 1.1350 12 3.68 2.7059
3 3.19 1.0257 13 1.73 2.1272
4 1.87 1.7059 14 1.71 1.0117
5 2.97 1.5882 15 1.18 1.4492
6 2.93 1.0137 16 4.38 3.7119
7 2.55 1.1490 17 0.39 11.2308
8 2.85 1.1176 18 4.70 12.0513
9 2.35 1.2128 19 2.03 2.3153

10 2.17 1.0829 20 3.65 1.7980

Suppose that the desired stable-process ARL is L0 = 100. The
control limits for L0 = 100 in Table 17.1 yield LCLX = 0.7274,
UCLX = 5.1596, LCLR = 1.0038, and UCLR = 4.7771 for the X/R
chart. Figure 17.5 gives the X/R charts for the carbon-fiber data.
Monitoring starts in Period 1. It is discernible from a quick inspection
of each of the respective time-series plots of individual and moving
ratio values that there is an increased variance in observations in the
later 10 periods. The X/R charts signal OOC in period 17 (7 periods
after shift occurs). These charts suggest a shift in, at least, the shape
parameter β. Table 17.3 gives the different OOC ARL values for this
application and different target stable-process ARL L0.
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Figure 17.5: X/R chart with stable-process ARL L0 = 100 for the
strengths of carbon fibers

Table 17.3: ARL of X/R charts for the shift in carbon-fiber strength
distribution

L0

50 100 200 300 400 500

ARL 20.2 35.5 62.15 92.7 101.9 112.7

17.9 Conclusion

The Weibull is a relevant distribution in many practical situations
such as time-to-event applications, engineering reliability, and survival
analysis. It is not recommended to apply normal-based individual
and moving range charts using the transformation X0.2777β to Weibull
data. The authors of [45] performed simulations that illustrated prob-
lems with this approach. This chapter provides theoretical results that
agree with their findings. This chapter also presents ARL-unbiased
combined individual and moving ratio X/R charts when the process
is described by a Weibull distribution. The proposed X/R charts pro-
vide the practitioner a method of monitoring a Weibull process when
shifts in either scale or shape are possible.
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17.10 Appendix

17.10.1 ARL Computation for the Moving Range Chart

Let Xi ∼ WEI(ηT , βT ), λ > 0, and Yi = XλβS
i . Then, Yi is a

WEI(ηλβST , 1/(λρβ)) variable. The moving range is given by MRi =
|Yi − Yi−1| for i = 2, 3, . . .. The MR chart signals OOC in period

i > 1 if MRi > UCLMR = 6.534ηλβSS λΓ(λ)(1 − 1/2λ). Based on this,
there is no OOC signal in period i if max{0, Yi−1 − UCLMR} ≤ Yi ≤
Yi−1 + UCLMR. Let L(yi−1) be the expected number of observa-
tions to an OOC signal when the current value is yi−1. For simplicity,
assign u = UCLMR. Table 17.4 enumerates the possible values of
L(yi−1) given the next individual value yi. Thus, if f(x) is the pdf of

WEI(ηλβST , 1/(λρβ)), then

L(yi−1) =

∫ max{0,yi−1+u}

0

1f(x)dx+

∫ yi−1+u

max{0,yi−1+u}
[1+L(x)]f(x)dx+

∫ ∞

yi−1+u

Q1f(x)dx

= 1 +

∫ yi−1+u

max{0,yi−1+u}
L(x)f(x)dx

This is a Fredholm integral equation of the second kind. The values
of L(y) can be approximated using the Fortran codes in [378]. The
earliest possible OOC signal is when i = 2. Thus, it seems sensible to
approximate the ARL of the MR chart by L(ηλβST (− log(0.5))λρβ ),

i.e., we substitute the median of WEI(ηλβST , 1/(λρβ)) for the
first observation y1.

Table 17.4: Expected number of observations till an OOC signal
Next value Yi = yi Expected number of steps to OOC

yi > u+ yn−1 1
0 < yi < max{0, yi−1 + u} 1

max{0, Yi−1 − u} ≤ Yi ≤ Yi−1 + u 1 + E[L(yi)]

17.10.2 X/R ARL Computation by Markov Chains

Consider the X/R scheme described in Sect. 17.5. Let n denote the
next period with response Xn. For the current period n− 1, let xn−1
denote the response such that ηS(lx)

1/βS ≤ xn−1 ≤ ηS(ux)
1/βS . Let

NS (no signal) be the complement of OOC, i.e., NS is the event that
OOC is not signaled in period n. Define the following quantities:
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a1 = max{xn−1(ur)
−1/βS , ηS(lx)

1/βS}, a2 = min{xn−1(lr)
−1/βS , ηS(ux)

1/βS},

b1 = max{xn−1(lr)
−1/βS , ηS(lx)

1/βS}, b2 = min{xn−1(ur)
−1/βS , ηS(ux)

1/βS}.
Define the following intervals:

A =

{

[a1, a2] if a1 < a2
φ otherwise

, B =

{

[b1, b2] if b1 < b2
φ otherwise

.

It can be shown that NS = {Xn ∈ A ∪B}.
Divide the interval [ηS(lx)

1/βS , ηS(ux)
1/βS ] into t intervals so that

interval i is given by (Li, Ui] where

Li = ηS(lx)
1/βS

(

ux
lx

) i−1
tβS

, Ui = ηS(lx)
1/βS

(

ux
lx

) i
tβS

for i = 1, 2, . . . , t. Include L1 in the first interval, that is, the first
interval is closed on both ends. If Xn falls in interval i, let Xn assume
the value of the geometric mean mi =

√
LiUi, i.e., Xn = mi.

For the Markov chain, define the following non-OOC states:

M0 = The state prior to period 1, Mi = {Xn = mi}
for i = 1, 2, . . . , t. The absorbing state is Mt+1 = {OOC}. Let pij
be the transition probability that the next state is Mj given that the
current state is Mi, that is, pij = P{Mj |Mi}. Suppose that the true
state is Yi ∼ WEI(ηT , βT ). The cdf of Yi is FX(x; ηT , βT ) given by
Eq. (17.3.1). Then,

pi0 = 0

p0j = FX(uj ; ηT , βT )− FX(lj ; ηT , βT )

for i = 0, 1, . . . , t and j = 1, 2, . . . t. Furthermore, for i, j = 1, 2, . . . , t

pij = P{Xn ∈ (Lj , Uj ] ∩NS}
which can be evaluated using the cdf FX .

Let R be the (t+ 1)× (t+ 1) matrix whose (i, j) element is given
by pi,j for i, j = 0, 1, . . . , t. Define the vector

L = [I −R]−1 × 1

where I is the (t+1)× (t+1) identity matrix and 1 is the vector of 1’s
of length t + 1. Element i of L is the expected number of periods to
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OOC if the process is currently in state Mi. Thus, the all-OK ARL is
the first element of L. Computer codes written in the R language to
carry out necessary computations are available from the author. For
this chapter, simulations of run lengths suggest that t = 50 is adequate
for approximating the ARL.



Chapter 18

On a Slow Server Problem

Vladimir Rykov

Abstract: The slow server problem is generalized for the case of
additional cost structure. With the help of special partial ordering
of the system state space it is shown that the optimal policy for the
problem has a monotone property consisting in the following: an addi-
tional server should be switched on only in the case if the queue length
exceeds some level depending on the system state, and in this case the
server with minimal service cost should be used.

18.1 Introduction and Motivation

This chapter focuses on the meaning of usual ordering for stochastic
systems control problems decision. It will be done with the example
of a slow server problem (SSP). For a queueing system with heteroge-
neous servers there exists a problem of the sojourn time of customers in
the system minimization. The problem can be considered and solved
with special ordering in the system state space. There exists some
special partial order on the phase space of the system, in which the

V. Rykov (�)
Department of Applied Mathematics and Computational Modeling,
Gubkin Russian State University of Oil and Gas,
Moscow 119991, Leninsky prosp. 65, Russia
e-mail: vladimir_rykov@mail.ru

H. Li and X. Li (eds.), Stochastic Orders in Reliability and Risk, Lecture Notes
in Statistics 208, DOI 10.1007/978-1-4614-6892-9 18,
© Springer Science+Business Media New York 2013

351

mailto:vladimir_rykov@mail.ru


352 Slow Server Problem

optimal control policy possesses some special monotonicity properties
that allows to describe its characterization and simplify their real con-
struction.

The SSP has an enough long history that consists of the following.
Using the traditional conservative service discipline in queueing sys-
tems (QS) with heterogeneous servers is noneffective because it leads to
increasing the queue length and waiting time. This stimulates search-
ing of the system service rules in order to minimize the mean sojourn
time.

The SSP is interesting both from theoretical and practical points of
view.

• Theoretically the problem is based on the theory of controllable
queueing systems (see, e.g., Kitaev and Rykov [239] and Sen-
nott [416]) and also introduces the new direction in the theory–
investigation of qualitative properties of optimal control policies
(Rykov [402]).

• In practice the knowledge of qualitative properties of optimal
policies allows to essentially simplify their real construction.

• The last circumstance allows to use these models in different
applications especially in telecommunications (see Pedro [369],
Vishnevsky, and Semenova [463]).

The SSP has been initially stated and considered by Krishnamoor-
thy [268] in 1963 for the system with two servers. The problem for
two servers has been studied in more details by Hajek [187] and by
Lin and Kumar [282], where the monotonicity of optimal policy has
been proved. Koole [265] in 1995 proposed a simplified proof with the
same result also for two servers, and Weber [471] in 1993 formulated
a conjecture that the result is true in general case. An appropriate
solution has been provided by Rykov [403], where the suggested con-
dition of the optimal service rule stability has been omitted, leading
to incompleteness of the formal proof of the result. It has been noted
in Verycourt and Zhou [462].

In Rykov and Efrosinin [404], it was shown that the monotonic-
ity property of optimal rule takes also place for the queueing system
with heterogeneous servers with additional structure of penalties for
busy servers and customers waiting. In Efrosinin and Breuer [144]
and Efrosinin [143], it was shown numerically that the monotonic-
ity property of optimal service rule preserves also for retrial service
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systems and for the systems with PH-distributed inter-arrival times.
An improved proof for the generalized case of the queueing system with
heterogeneous servers with respect to mean lost minimization has been
obtained in Rykov and Efrosinin [405].

In this chapter these results will be summarized. The chapter is
organized as follows: in the next section the problem formulation is
presented. The optimality equation is discussed in the third section
and its transformation to more convenient form for the problem solu-
tion is detailed in the fourth section. The main result of the chapter,
a theorem about monotonicity properties of optimal policies, is pre-
sented in the fifth section. The chapter is concluded with some new
problems formulation.

18.2 Problem Formulation

Consider anM/M/K/N−K (K ≤ N ≤ ∞) QS, presented in Fig. 18.1,
with:

• K heterogeneous exponential servers with intensities μk, 1 ≤
k ≤ K

• N −K places in the buffer

• A Poisson input with intensity λ

• A cost CQ(q) = c0q for q customers holding in the queue

• A cost CU (μk) = ck, 1 ≤ k ≤ K, for using the k-th server with
intensity μk per unit of time

In the case of infinite buffers for existence of the stationary regime
it is supposed that

λ <
∑

1≤k≤K
μk ≡ M.

The control consists of switching the servers on and off at the
control times Sn that coincide with the arrival and service completion
times. The goal is to minimize the average long-run working cost of the
system per unit of time. For example, for the problem of minimizing
the mean number of customers in the system, it is necessary to put

c0 = ck = 1. (18.2.1)
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µ1

µ2

µK

λ
N − K

Figure 18.1: Multi-server queueing system with heterogeneous servers

For modeling of the system operation we consider the controllable
process

{Z(t)} = {(X(t), U(t))}

with the observed process

{X(t)} = {(Q(t),D(t))},

whereQ(t) is the queue length at time t andD(t) = (D1(t), . . . ,DK(t))
describes the states of servers at this time,

Di(t) =

{

0, when the i-th server is idle at the time t and

1, otherwise.

Denote the state space of the observed process by

E = N× {0, 1}K

with the denumerable set N. For each state x = (q, d1, . . . , dK) de-
note by

J0(x) = {j : dj(x) = 0}, J1(x) = {j : dj(x) = 1}

the sets of indices j for which components dj = 0 or dj = 1, respec-
tively.

As a controlling process, consider the process {U(t) : t ≥ 0}, which
takes their values in the sets A(x), where

A(x) =

{

J0(x) ∪ {0} for x with q(x) < N ,

J0(x) for x with q(x) = N .
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Its values a = k denote the server’s number k which must be switched
on or do not do it if a = 0 at the nearest to t control time.

Thus for this model the decision set A = {0, 1, . . . ,K} consists
of K + 1 points, and control a = 0 denotes do not switch on any
server, while control a = k denotes to switch on k-th server in times
of customers arrival and service completion.

Under the considered assumptions, the process

{Z(t)} = {(X(t), U(t))}

is a Markov decision one with phase space E = N × {0, 1}K and a
control space A(x) depending on the state x ∈ E.

Consider the shift operators S0, Sj on the phase space E,

S0x = x+ e01{q(x)<N}, Sjx = x+ ej1{j∈J0(x)}, (18.2.2)

where ei is (K +1)-dimensional vector with the i-th component being
one (beginning from 0-th), and zero otherwise. Denote by

S−1j x, (j = 0, 1, . . . ,K)

the inverse operators for such points x ∈ E, for which it exists and
put S−1j x = x in another cases, i.e.,

S−10 x = x, if q(x) = 0, S−1j x = x, if j ∈ J0(x). (18.2.3)

Put

Gj = S−10 S−1j

and spread out the act of operators Sj for the functions h(·) on E, as
usual by the relations

Sjh(x) =

{

h(Sjx), for j ∈ {0} ∪ J0(x),
h(x), for j ∈ J1(x).

(18.2.4)

With the above notations, the transition intensities of the process
{Z(t)} get the form for a ∈ A(x)

λxy(a) =

⎧

⎪

⎨

⎪

⎩

λ, for y = Sax,

μj, for y = SaGjx, j ∈ J1(x),

0, otherwise.
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In accordance with the given cost structure, the objective (loss)
functional has the form

Y (t) =

∫ t

0

⎡

⎣c0Q(u) +
∑

1≤k≤K
ckDk(u)

⎤

⎦ du.

As usual (see, e.g., Kitaev and Rykov [239]), define

• A strategy δ

• The probability distribution Pδx of the process {Z(t)} given initial
state x and strategy δ

• The expectation Eδx with respect to this probability distribution

• The expectation Eax on the control interval (transition period)
Tn = Sn+1 − Sn given initial state x and decision a

18.3 Optimality Equation

Denote by:

• c(x) = c0q +
∑

j∈J1(x) cj the loss rate at the state x.

• M1(x) =
∑

j∈J1(x) μj the total intensity of service completion in
the state x

In particular for the problem of minimizing the mean number of
customers in the system, i.e., in the case Eq. (18.2.1), one has

c(x) = q +
∑

1≤j≤K
dj(x) = l(x),

where l(x) is the number of customers in the system when it is in the
state x.

It is well known (see, e.g., [239, 271, 416]) that for the problem
under consideration, the optimality principle is valid. This means that:

(i) The approximation

inf
δ
Eδx[Y (t)] ≈ gt+ v(x) + o(1)

takes place, where:
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(ii) The price of the model (minimal mean service cost per unit of
time)

g = inf
δ

lim
t→∞

1

t
Eδx[(t)] (18.3.1)

jointly with the value function of the model

v = {v(x) : x ∈ E} : E → R+

exist.

(iii) They satisfy the optimality equation

v(x) = min
a∈A(x)

c(x)− g + λv(Sax) +
∑

1≤j∈J1(x) μjv(SaGjx)
λ+M1(x)

.

(18.3.2)

(iv) Also optimal strategy can be chosen as a stationary Markov one,
i.e., it is determined by the optimal policy f = {f(x) : x ∈ E}
with

f(x) = argmin
a∈A(x)

c(x)− g + λv(Sax) +
∑

1≤j∈J1(x) μjv(SaGjx)
λ+M1(x)

.

(18.3.3)

Based on the optimality equation (18.3.2), we investigate some
qualitative properties of the optimal policy (18.3.3). To do that, we
first transform the optimality equations to a more convenient form.

18.4 Transformation of Optimality Equations

Multiply each side of Eq. (18.3.2) by

λ+M1(x)

and add to each side the term

v(x)
∑

j∈J0(x)
μj

to obtain

(λ+M)v(x) = min
a∈A(x)

⎡

⎣c(x)− g + λv(Sax) +
∑

1≤j≤K
μjv(SaGjx)

⎤

⎦,
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where

M =
∑

1≤j≤K
μj

and accordingly to Eq. (18.2.4) for j ∈ J0(x),

v(SaGjx) = v(x).

Using a scale of time as (λ+M) = 1 produces the equation

v(x) = min
a∈A(x)

⎡

⎣c(x)− g + λv(Sax) +
∑

1≤j≤K
μjv(SaGjx)

⎤

⎦. (18.4.1)

With the help of the operators

T0v(x) = min[v(Skx) : k ∈ A(x)], (18.4.2)

Tjv(x) =

⎧

⎪

⎨

⎪

⎩

T0v(Gjx) for j ∈ J1(x), q(x) > 0,

v(S−1j x) for j ∈ J1(x), q(x) = 0,

v(x) for j ∈ J0(x)

(18.4.3)

the latter equation can be represented in the form

v(x) = c(x) + λT0w(x) +
∑

l∈J1(x)
μlTlv(x) +

∑

l∈J0(x)
μlv(x) − g = Bv(x),

(18.4.4)

where dynamic programming operator Bv(x) is determined with this
equality.

The above argumentations can be summarized in the following
theorems.

Theorem 18.4.1. Equations (18.3.2), (18.4.1), and (18.4.4) are
equivalent in the sense that their prices, value functions and policies
are identical.

Theorem 18.4.2. Optimal policy f : E → A is determined with the
model value function v(x) as follows:

f(x) = argmin{v(Skx) : k ∈ A(x)}. (18.4.5)
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Remark 18.4.3. The last statement shows that:

• It is enough to study decisions only at the arrival times, because
the decisions at the service completion times coincide with
appropriate decisions at the arrival times in appropriated shifted
states.

• The optimal policy is determined with the function

b(x, k) = v(Skx), (18.4.6)

which we refer to as the Bellman function of the model.

It depends on the value function of the model v(x) and is sim-
ple enough that allows to investigate the qualitative properties of the
model in terms of this function.

18.5 Monotonicity of Optimal Policies

In order to investigate the optimal policy properties, enumerate the
servers in the increasing order of their mean full service costs, i.e.,

0 ≤ c1
μ1

≤ c2
μ2

≤ · · · ≤ cK
μK

, (18.5.1)

and suppose that the following condition holds:

0 ≤ 1

μ1
≤ 1

μ2
≤ · · · ≤ 1

μK
. (18.5.2)

In the same order arrange the components of the vector d =
(d1, . . . , dK). This arrangement determines the usual total order
in the decision set A, where 0 ≤ 1 ≤ · · · ≤ K.

Define a partial order in E = N×{0, 1}K with the help of the shift
operators S0 and Sj by the following relations:

S0x ≥ x, Sjx ≥ x for all j ∈ J0(x),

Six ≥ Sjx for all i, j ∈ J0(x) with i ≥ j (ciμ
−1
i ≥ cjμ

−1
j )

One can see that these relations, in fact, determine some partial order
on the set E, in which, however, the points S0x and Sjx, j �= 0 are
not comparable.

The main result consists of the following main theorem that allows
to produce some qualitative properties of any optimal policy, and for
which we need an additional definition.
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Definition 18.5.1. Define the state x ∈ E of the system as a stable
one with respect to the optimal policy if it does not demand to send
the customers to any free server from the queue, formally

v(x) = min
k∈A0(x)

v(S−10 Skx). (18.5.3)

Theorem 18.5.2. The value function of the model v : E → R+ pos-
sesses the following properties for all stable states x ∈ E of the system:

C1. Non-decreasing property:

v(x) +
ci
μi

≤ v(Six), v(Sjx) ≤ v(Six), i, j ∈ J0(x).

C2. Super-modularity property:

v(S0x)− v(x) ≤ v(S0Six)− v(Six), i ∈ J0(x).

C3. Super-convexity property:

v(S0x)− v(Six) ≤ v(S2
0x)− v(S0Six), i ∈ J0(x).

C4. Convexity (with respect to the shift S0) property:

2v(S0x) ≤ v(x) + v(S2
0x).

The proof of the theorem is based on several lemmas.

Lemma 18.5.3. The operator T0, determined by Eq. (18.4.2), pre-
serves the properties (C1—C4) of functions for all stable states of the
system.

Lemma 18.5.4. The operators Tl, determined by Eq. (18.4.3), pre-
serve the properties (C1–C4) of functions if the l-th server is busy for
all stable states of the system contained in the inequalities.

Lemma 18.5.5. The operator B, determined by Eq. (18.4.4), pre-
serves the properties (C1–C4) of functions for all stable states of the
system.
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The proofs of all these statements are technical and cumbersome;
they can be found in Rykov and Efrosinin [405].

Because the function

v0(x) =
∑

l∈J1(x)

cl
μl

possesses the properties (C1–C4), then by successive approximation it
is possible to prove the following consequence.

Corollary 18.5.6. An optimal control policy f(x) is a monotone (with
respect to the introduced partial order) one and demands:

• To switch on some server in the state x only in the case if queue
length exceeds the threshold level q∗(x), depending on the system
state (structure of busy servers) x.

• In this case it is necessary to switch on the server with minimal
service cost min{ciμ−1i : i ∈ J0(x)}.

18.6 Conclusion

The classical SSP has been generalized to the case of mean long-run
service cost minimization. The conditions for optimality of threshold
policy have been obtained.

The numerical analysis shows that the monotonicity of optimal
policy holds without condition (18.5.2)

0 ≤ μ−11 ≤ μ−12 ≤ · · · ≤ μ−1K .

However, our proof depends on this condition. It would be interesting
to establish the optimal policy monotonicity without this condition.
The theoretical proof of this fact is still an open problem.



Chapter 19

Dependence Comparison
of Multivariate Extremes
via Stochastic Tail Orders

Haijun Li

Abstract: A stochastic tail order is introduced to compare right tails
of distributions and related closure properties are established. The
stochastic tail order is then used to compare the dependence struc-
ture of multivariate extreme value distributions in terms of upper tail
behaviors of their underlying samples.

19.1 Introduction

Let Xn = (X1,n, · · · ,Xd,n), n = 1, 2, · · · be independent and iden-
tically distributed (i.i.d.) random vectors with common distribution
function (df) F . Define component-wise maxima Mi,n := ∨nj=1Xi,j

and minima mi,n := ∧nj=1Xi,j, 1 ≤ i ≤ d. Here and hereafter
∨ (∧) denotes the maximum (minimum). This paper focuses on
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dependence comparison of the limiting distributions of properly nor-
malized vectors of component-wise maxima Mn := (M1,n, . . . ,Md,n)
and of component-wise maxima mn := (m1,n, . . . ,md,n), as n → ∞.
The comparison method is based on asymptotic comparisons of upper
tails of F of the underlying sample (Xn, n ≥ 1).

For any two vectors a, b ∈ R
d, the sum a+b, product ab, quotient

a/b, and vector inequalities such as a ≤ b are all operated component-
wise. Let G and H be dfs defined on R

d with nondegenerate margins.
A df F is said to be in the domain of attraction of G for the maxima,
denoted as F ∈ DA∨(G), if there exist R

d-valued sequences an =
(a1,n, · · · , ad,n) with ai,n > 0, 1 ≤ i ≤ d, and bn = (b1,n, · · · , bd,n),
n = 1, 2, · · · , such that for any x = (x1, · · · , xd), as n → ∞,

P

{

M1,n − b1,n
a1,n

≤ x1, · · · , Md,n − bd,n
ad,n

≤ xd

}

= Fn(anx+ bn) → G(x), (19.1.1)

and in this case, G is called a max multivariate extreme value (MEV)
distribution. Similar definitions for min MEV distributions and their
domain of attraction can be made. For minima, Eq. (19.1.1) is
replaced by

P

{

m1,n − b1,n
a1,n

> x1, · · · , md,n − bd,n
ad,n

> xd

}

= F
n
(anx+ bn) → H(x), (19.1.2)

which is denoted by F ∈ DA∧(H). Here and hereafter bars on the top
of dfs denote (joint) survival functions. A key property of an MEV
distribution G is that all positive powers of G are also distributions,
and max MEV distributions coincide with the max-stable distribu-
tions, which form a subclass of max-infinitely divisible distributions.
Similarly min MEV distributions coincide with the min-stable distri-
butions, which form a subclass of min-infinitely divisible distributions.
One needs only to study the case of maxima as the theory for minima
is similar.

LetX = (X1, . . . ,Xd) be a generic random vector with distribution
F and continuous, univariate margins F1, . . . , Fd. If F ∈ DA∨(G), then
G is closely related to the upper tail distribution of X, which often
possesses the heavy tail property of regular variation. Without loss
of generality, we may assume that X is nonnegative component-wise.
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Consider the standard case in which the survival functions F i(x) :=
1− Fi(x), 1 ≤ i ≤ d of the margins are right tail equivalent; that is,

F i(x)

F 1(x)
=

1− Fi(x)

1− F1(x)
→ 1, as x → ∞, 1 ≤ i ≤ d. (19.1.3)

The distribution F or random vector X is said to be multivariate
regularly varying (MRV) at ∞ with intensity measure ν if there exists
a scaling function b(t) → ∞ and a nonzero Radon measure ν(·) such
that as t → ∞,

tP

{

X

b(t)
∈ B

}

→ ν(B),∀ relatively compact sets B ⊂ R
d
+\{0},

with ν(∂B) = 0, (19.1.4)

where R
d
+ := [0,∞]d. The extremal dependence information of X

is encoded in the intensity measure ν that satisfies that ν(tB) =
t−αν(B), for all relatively compact subsets B that are bounded away
from the origin, where α > 0 is known as the tail index. Since the set

B1 = {x ∈ R
d : x1 > 1} is relatively compact within the cone R

d
+\{0}

and ν(B1) > 0 under Eq. (19.1.3), it follows from Eq. (19.1.4) that
the scaling function b(t) can be chosen to satisfy that F 1(b(t)) = t−1,
t > 0, after appropriately normalizing the intensity measure by ν(B1).

That is, b(t) can be chosen as b(t) = F
−1

(t−1) = F−11 (1 − t−1) under
the condition (19.1.3), and thus, Eq. (19.1.4) can be expressed equiv-
alently as

lim
t→∞

P{X ∈ tB}
P{X1 > t} = ν(B), ∀ relatively compact sets B ⊂ R

d
+\{0},
(19.1.5)

satisfying that μ(∂B) = 0. It follows from Eqs. (19.1.5) and (19.1.3)
that for 1 ≤ i ≤ d,

lim
t→∞

P{Xi > ts}
P{Xi > t} = ν((s,∞]× R

d−1
) = s−αν((1,∞] × R

d−1
), ∀ s > 0.

That is, univariate margins have regularly varying right tails. In gen-
eral, a Borel-measurable function g : R+ → R+ is regularly varying
with exponent ρ ∈ R, denoted as g ∈ RVρ, if and only if

g(t) = tρ�(t), with �(·) ≥ 0 satisfying that lim
t→∞

�(ts)

�(t)
= 1, for s > 0.

(19.1.6)
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The function �(·) is known as a slowly varying function and denoted
as � ∈ RV0. Since F 1 ∈ RV−α, 1/F 1 ∈ RVα, and thus, by Proposition
2.6 (v) of [387], the scaling function b ∈ RVα−1 .

Since all the margins are tail equivalent as assumed in Eq. (19.1.3),
one has

F i(t) = t−α	i(t), where 	i ∈ RV0, and 	i(t)/	j(t) → 1 as t→ ∞, for any i = j,

(19.1.7)
which, together with F 1(b(t)) = t−1, imply that

lim
t→∞ tP{Xi > b(t)s} = lim

t→∞
P{Xi > b(t)s}

F i(b(t))

F i(b(t))

F 1(b(t))
= s−α, s > 0, 1 ≤ i ≤ d.

(19.1.8)

The detailed discussions on univariate and multivariate regular
variations can be found in [61, 387]. The extension of MRV beyond
the nonnegative orthant can be done by using the tail probability of
||X||, where || · || denotes a norm on R

d, in place of the marginal tail
probability in Eq. (19.1.5) (see [387], Sect. 6.5.5). The case that the
limit in Eq. (19.1.3) is any nonzero constant can be easily converted
into the standard tail equivalent case by properly rescaling margins.
If the limit in Eq. (19.1.3) is zero or infinity, then some margins have
heavier tails than others. One way to overcome this problem is to stan-
dardize the margins via marginal monotone transforms (see Theorem
6.5 in [387]) or to use the copula method [281].

Theorem 19.1.1 (Marshall and Olkin [309]). Assume that Eq. (19.1.3)
holds. Then there exist normalization vectors an > 0 and bn such
that, as n → ∞,

P
{Mn − bn

an
≤ x

}

→ G(x), ∀ x ∈ R
d
+,

where G is a d-dimensional distribution with Fréchet margins Gi(s) =
exp{−s−α}, 1 ≤ i ≤ d, if and only if F is MRV with intensity measure
ν([0,x]c) := − logG(x).

In other words, F ∈ DA∨(G) where G has Fréchet margins with
tail index α if and only if F is MRV with intensity measure ν([0,x]c) =
− logG(x).

Remark 19.1.2.

1. The normalization vectors an > 0 and bn in Theorem 19.1.1 can
be made precise so that bn=0 and an=(F

−1
1 (1/n), . . . , F

−1
d (1/n))

that depend only on the margins of F .
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2. If Eq. (19.1.3) does not hold, Theorem 19.1.1 can still be
established, but the nonstandard global regular variation with
different scaling functions among various margins needs to be
used in place of Eq. (19.1.5), which uses the same scaling function
among different margins.

3. One-dimensional version of Theorem 19.1.1 is due to Gnedenko
[184]. Note that the parametric feature enjoyed by univariate
extremes is lost in the multivariate context.

4. Let S
d−1
+ = {a : a = (a1, . . . , ad) ∈ R

d
+, ||a|| = 1}, where || · ||

is a norm defined in R
d. Using the polar coordinates, G can be

expressed as follows:

G(x) = exp
{

− c

∫

Sd+

max
1≤i≤d

{(ai/xi)α}Q(da)
}

,

where c > 0 and Q is a probability measure defined on S
d−1
+ .

This is known as the Pickands representation [374], and cQ(·) is
known as the spectral or angular measure.

5. Note that the spectral measure is a finite measure that can be
approximated by a sequence of discrete measures. Using this
idea, Marshall and Olkin [309] showed that the MEV distribution
G is positively associated. This implies that as n is sufficiently
large, we have asymptotically,

E
[

f
(

Mn

)

g
(

Mn

)

]

≥ E
[

f
(

Mn

)

]

E
[

g
(

Mn

)

]

for all nondecreasing functions f, g : R
d �→ R. Observe that

the sample vector Xn could have any dependence structure, but
the strong positive dependence emerges among multivariate ex-
tremes.

6. Since G is max-infinitely divisible, all bivariate margins of G are
TP2, a positive dependence property that is even stronger than
the positive association of bivariate margins (see Theorem 2.6 in
[211]).

Since the normalization vectors an > 0 and bn in Theorem 19.1.1
depend only on the margins, dependence comparison of G can be eas-
ily established using the orthant dependence order on sample vectors.
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Recall that a d-dimensional random vector X = (X1, . . . ,Xd) with
df F is said to be smaller than another d-dimensional random vec-
tor X ′ = (X ′1, . . . ,X ′d) with df F ′ in the upper (lower) orthant order,
denoted as X ≤uo X

′ or F ≤uo F
′ (X ≤lo X

′ or F ≤lo F
′), if

P{X1 > x1, . . . ,Xd > xd} ≤ P{X ′1 > x1, . . . ,X
′
d > xd}, (19.1.9)

P{X1 ≤ x1, . . . ,Xd ≤ xd} ≤ P{X ′1 ≤ x1, . . . ,X
′
d ≤ xd}, (19.1.10)

for all (x1, . . . , xd) ∈ R
d. If, in addition, their corresponding univariate

margins are identical, then X is said to be smaller than X ′ in the
upper (lower) orthant dependence order, denoted as X ≤uod X ′ or
F ≤uod F

′ (X ≤lod X ′ or F ≤lod F
′). Clearly X ≤uod X ′ implies that

X ≤uo X ′, but the order ≤uod focuses on comparing scale-invariant
dependence among components. The detailed discussions on these
orders can be found in [335, 426]. The following result is immediate
due to the fact that the orthant order is closed under weak convergence.

Proposition 19.1.3. Let (Xn, n ≥ 1) and (X ′n, n ≥ 1) be two
i.i.d. samples with dfs F and F ′, respectively. If F ∈ DA∨(G) and
F ′ ∈ DA∨(G′) with Fréchet margins, then Xn ≤lod X ′n implies that
G ≤lod G

′.

Note, however, that the ordering Xn ≤lod X ′n is strongly affected
by the behavior at the center and often too strong to be valid. The fact
that MRV is a tail property motivates us to focus on comparing only
upper tails of Xn and X ′n, leading to weaker notions of stochastic tail
orders. In Sect. 19.2, we introduce a notion of stochastic tail order for
random variables and establish related closure properties and discuss
its relation with other asymptotic orders that are already available in
the literature. In Sect. 19.3, we extend the stochastic tail order to ran-
dom vectors and show that the stochastic tail order of sample vectors
sufficiently implies the orthant dependence order of the corresponding
MEV distributions.

19.2 Stochastic Tail Orders

Let X and Y be two R+-valued random variables. X is said to be
smaller than Y in the sense of stochastic tail order, denoted as X ≤sto

Y , if there exists a threshold constant t0 > 0 (usually large) such that

P{X > t} ≤ P{Y > t}, ∀ t > t0. (19.2.1)
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Remark 19.2.1.

1. The stochastic tail order ≤sto is reflexive and transitive. ≤sto is
antisymmetric if tail identically distributed random variables are
considered to be equivalent.

2. If X is smaller than Y in the usual stochastic order (denoted as
X ≤st Y ; see Sect. 1.A in [426]); that is, P{X > t} ≤ P{Y > t}
for all t, then X ≤sto Y .

3. X ≤sto Y if and only if there exists a small open neighborhood
of ∞ within which X is stochastically smaller than Y .

4. X ≤sto Y implies

lim sup
t→∞

P{X > t}
P{Y > t} ≤ 1. (19.2.2)

The stochastic tail orders using limiting inequalities such as
Eq. (19.2.2) have been introduced and studied in [43, 242, 243, 389–
391] and more recently in [300]. Most of these tail orders, however,
are based on limiting approaches rather than stochastic comparison
theory.

1. Mainik and Rüschendorf studied in [300] the following weak tail
order: A random variable X is said to be smaller than an-
other random variable Y in the asymptotic portfolio loss order,
denoted as X ≤apl Y , if the limiting inequality (19.2.2) holds.

Observe that sup
s>t

P{X>s}
P{Y >s} is decreasing in t, and as such, in the

case of X ≤apl Y with

lim sup
t→∞

P{X > t}
P{Y > t} = lim

t→∞

[

sup
s>t

P{X > s}
P{Y > s}

]

= 1,

one can find in any open neighborhood (c,∞] of ∞ that P(X >
s) ≥ P(Y > s) for some s > c. That is, neither X nor Y could
dominate the other in any open neighborhood (c,∞] of ∞, but
asymptotically, the right tail of X decays at the rate that is
bounded from above by the tail decay rate of Y .

2. Rojo introduced in [391] a stronger version of tail orders: Define
X <sq Y if
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lim sup
u→1

F−1(u)
G−1(u)

< 1

where F−1(·) and G−1(·) denote the left-continuous inverses of
dfs of X and Y , respectively. Obviously, X <sq Y implies that
X ≤sto Y . Note, however, that <sq is not a partial ordering.

The stochastic tail orders via limiting inequalities resemble the
idea of comparing the asymptotic decay rates that is often employed
in theory of large (and small) deviations [284]. In contrast, the notion
Eq. (19.2.1) compares stochastically random variables in a small open
neighborhood of ∞ within which theory of stochastic orders retains
its full power. For example, coupling remains valid in a small open
neighborhood of ∞.

Theorem 19.2.2. Let X and Y be two positive random variables with
support [0,∞). X ≤sto Y if and only if there exists a random variable
Z defined on the probability space (Ω,F ,P) with support [a, b], and
nondecreasing functions ψ1 and ψ2 with limz→b ψi(z) = ∞, i = 1, 2,

such that X
d
= ψ1(Z), Y

d
= ψ2(Z) and P{ψ1(Z) ≤ ψ2(Z) | Z ≥ z0} = 1

for some z0 > 0.

Proof : Let X and Y have distributions F and G with support [0,∞),
respectively, and let F−1(·) and G−1(·) denote the corresponding left-
continuous inverses. Recall that for any df H on R, the left-continuous
inverse of H is defined as

H−1(u) := inf{s : H(s) ≥ u}, 0 ≤ u ≤ 1.

The left-continuous inverse has the following desirable properties:

1. H(H−1(u)) ≥ u for all 0 ≤ u ≤ 1, and H−1(H(x)) ≤ x for all
x ∈ R.

2. H−1(u) ≤ x if and only if u ≤ H(x).

3. The set {s : H(s) ≥ u} is closed for each 0 ≤ u ≤ 1.

Necessity: Using Properties 1 and 2, X ≤sto Y implies that
F−1(u) ≤ G−1(u), ∀u > u0 for some 0 < u0 < 1. Let U be a random
variable with standard uniform distribution, and thus P{F−1(U) ≤
G−1(U) | U ≥ u0} = 1. Using Property 2, P{F−1(U) ≤ x} = P{U ≤
F (x)} = F (x). Similarly, P{G−1(U) ≤ x} = G(x).
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Sufficiency: For all t ≥ c, a constant with c > ψ1(z0),

P{X > t} = P{Z ≥ z0}P{ψ1(Z) > t | Z ≥ z0}
≤ P{Z ≥ z0}P{ψ2(Z) > t | Z ≥ z0}
≤ P{ψ2(Z) > t}
= P{Y > t}.

The tail coupling presented in Theorem 19.2.2 enables us to estab-
lish desirable closure properties for the stochastic tail order. A Borel
measurable function ψ : Rd → R is called a Radon function if ψ is
bounded on every compact subset of Rd. Obviously, any nondecreas-
ing function and any continuous function defined on R

d are Radon
functions.

Definition 19.2.3. A Borel measurable function ψ : R
d
+ → R is

said to be eventually increasing if there exists a compact subset
S ⊂ R

d
+ such that ψ is component-wise nondecreasing on Sc with

limxi→∞ ψ(x1, . . . , xi, . . . , xd) = ∞.

Proposition 19.2.4. Let X and Y be two positive random variables
with support [0,∞).

1. X ≤sto Y implies g(X) ≤sto g(Y ) for any Radon function g that
is eventually increasing.

2. If X1,X2 are independent, and X ′1,X ′2 are independent, then
X1 ≤sto X

′
1 and X2 ≤sto X

′
2 imply g(X1,X2) ≤sto g(X

′
1,X

′
2) for

any Radon function g that is eventually increasing.

Proof :

(1) Since g is a Radon function that is eventually increasing, there
exists a threshold x0 > 0 such that g(·) is increasing to ∞ on
[x0,∞). By Theorem 19.2.2, there exists a random variable Z de-
fined on the probability space (Ω,F ,P) and nondecreasing func-
tions ψ1 and ψ2 with limz→b ψi(z) = ∞, i = 1, 2, such that

X
d
= ψ1(Z) and Y

d
= ψ2(Z) and

P{ψ1(Z) ≤ ψ2(Z) | Z ≥ z0}=1 for some z0>0 with ψ1(z0)>x0.
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Thus,

P{g(ψ1(Z)) ≤ g(ψ2(Z)) | Z ≥ z0} = 1 for z0 > 0.

Clearly, g(X)
d
= g(ψ1(Z)) and g(Y )

d
= g(ψ2(Z)), and thus,

P{g(X) > t} = P{Z ≥ z0}P{g(ψ1(Z)) > t | Z ≥ z0}
≤ P{Z ≥ z0}P{g(ψ2(Z)) > t | Z ≥ z0}
≤ P{g(ψ2(Z)) > t} = P{g(Y ) > t}

for any t ≥ c where c is a constant with c > g(ψ1(z0)).

(2) Without loss of generality, assume that (X1,X2) and (X ′1,X ′2)
are independent. We only need to show that g(X1,X2) ≤sto

g(X ′1,X2). Since g(·) is a Radon function that is eventually in-
creasing, there exists a (x1, x2) such that g(·) is bounded on
[0, x1]× [0, x2] and increasing on ([0, x1]× [0, x2])

c.

1. By Theorem 19.2.2, there exists a random variable Z1 defined
on the probability space (Ω1,F1,P1) and nondecreasing func-

tions ψ1 and ψ′1 such that X1
d
= ψ1(Z1) and X ′1

d
= ψ′1(Z1) and

P1{ψ1(Z1) ≤ ψ′1(Z1) | Z1 ≥ z1} = 1 for some z1 > 0 with
ψ1(z1) > x1.

2. Let (Ω2,F2,P2) denote the underlying probability space of X2.

Construct a product probability space (Ω,F ,P) = (Ω1 × Ω2,F ,P1 ×
P2), where F is the σ-field generated by F1 × F2. On this en-
larged product probability space, since P{ψ1(Z1) ≤ ψ′1(Z1) | Z1 ≥
z1} = 1, and g(·) is increasing on ([0, x1] × [0, x2])

c, we have that
P{g(ψ1(Z1),X2) ≤ g(ψ′1(Z1),X2) | Z1 ≥ z1 or X2 > x2} = 1. Clearly,

g(X1,X2)
d
= g(ψ1(Z1),X2) and g(X

′
1,X2)

d
= g(ψ′1(Z1),X2), and thus

P{g(X1,X2) > t}
= P{Z1≥z1 or X2>x2}P{g(ψ1(Z1),X2) > t | Z1 ≥ z1 or X2 > x2}
≤ P{Z1≥z1 or X2>x2}P{g(ψ′1(Z1),X2) > t | Z1 ≥ z1 or X2 > x2}
≤ P{g(ψ′1(Z1),X2) > t}
= P{g(X ′1,X2) > t}

for any t ≥ c where c is a constant with c > g(ψ1(z1), x2). That is,
g(X1,X2) ≤sto g(X

′
1,X2). Similarly, g(X ′1,X2) ≤sto g(X

′
1,X

′
2).
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Corollary 19.2.5. If X1,X2 are independent and Y1, Y2 are
independent, then X1 ≤sto Y1 and X2 ≤sto Y2 imply

X1X2 ≤sto Y1Y2, X1 +X2 ≤sto Y1 + Y2,

X1 ∨X2 ≤sto Y1 ∨ Y2, X1 ∧X2 ≤sto Y1 ∧ Y2.
In particular, R1 ≤sto R2 implies that R1V ≤sto R2V for any non-

negative random variable V that is independent of R1, R2. Mainik and
Rüschendorf obtained this inequality in [300] for the random variable
V that is bounded using the ordering ≤apl, and their proof is based on
the method of mixture.

Proposition 19.2.6. Let X and Y be two positive random variables
with support [0,∞) and Θ be a random variable with bounded support
[θL, θU ]. Assume that:

1. Θ is a random variable with finite masses.

2. Θ is a continuous random variable such that P{X > t | Θ = θ}
and P{Y > t | Θ = θ} are continuous in θ.

If [X | Θ = θ] ≤sto [Y | Θ = θ] for all θ in the support of Θ, then
X ≤sto Y .

Proof : Since [X | Θ = θ] ≤sto [Y | Θ = θ] for all θ ∈ [θL, θU ], there
exists a threshold tθ that is given by

tθ := sup
{

s : P{X > s | Θ = θ} > P{Y > s | Θ = θ}}, (19.2.3)

such that

P{X > t | Θ = θ} ≤ P{Y > t | Θ = θ}, ∀ t > tθ.

Notice that the threshold tθ depends on the mixing value θ. Consider
the following two cases. Construct the threshold t[θL,θU ] as follows:

1. If Θ is discrete with finite masses, then define

t[θL,θU ] := max{tθ : θ ∈ [θL, θU ]} < ∞.

2. If Θ is continuous, then tθ is continuous in θ due to the assump-
tion that P{X > t | Θ = θ} and P{Y > t | Θ = θ} are continuous
in θ. Define

t[θL,θU ] := sup{tθ : θ ∈ [θL, θU ]},
which is finite because of the continuity of tθ and the compactness
of [θ0, θn].
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In any case, for any θ ∈ [θL, θU ], any t > t[θL,θU ],

P{X > t | Θ = θ} ≤ P{Y > t | Θ = θ}.

Taking the integrations on both sides from θL to θU , we obtain P{X >
t} ≤ P{Y > t} for any t > t[θL,θU ].

Remark 19.2.7. The closure property under mixture when the mix-
ing variable has unbounded support, say [0,∞), becomes more subtle.
This is because the threshold tθ defined in Eq. (19.2.3) can approach
to infinity as θ goes to infinity. Our conjecture is that in the case of
unbounded support, [X | Θ = θ] ≤sto [Y | Θ = θ] for all θ in the

support of Θ implies that lim supt→∞
P{X>t}
P{Y >t} ≤ 1; that is, X ≤apl Y .

In the examples to be discussed below, all involved random vari-
ables fail to satisfy the usual stochastic order.

Example 19.2.8.

1. Let X have the Weibull distribution with unit scale parameter
and shape parameter k and Y have the exponential distribution
with unit (scale) parameter. If the shape parameter k > 1 (i.e.,
increasing hazard rate), then X ≤sto Y . If the shape parameter
k < 1 (i.e., decreasing hazard rate), then X ≥sto Y . Note that
both X and Y have exponentially decayed right tails.

2. Let X have the exponential distribution with unit (scale) pa-
rameter and Y have the distribution of Pareto Type II with tail
index α = 2; that is,

P{Y > t} = (1 + t)−2, t ≥ 0. (19.2.4)

Then X ≤sto Y . Note that Y has regularly varying right tail as
described in Eq. (19.1.6).

3. If X has the Fréchet distribution with tail index α = 3 (see
Theorem 19.1.1) and Y has the distribution Eq. (19.2.4) of Pareto
Type II with tail index α = 2, then X ≤sto Y . Note that X and
Y are regularly varying with respective tail indexes 3 and 2, but
Y has a heavier tail than that of X.
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4. Let X have the survival function of Pareto Type I as defined as
follows:

P{X > t} =

(

t

0.5

)−1
, t ≥ 0.5.

Let Y have the survival function of Pareto Type II with tail index
1; that is,

P{Y > t} = (1 + t)−1, t ≥ 0.

Then X ≤sto Y . Note that both X and Y have regularly varying
right tails with same tail index 1.

5. Let R1 and R2 have regularly varying distributions with tail
indexes α1 and α2, respectively. If α1 > α2, then R1 ≤sto R2.
That is, the random variable with heavier regularly varying right
tail is larger stochastically in the tail.

6. Let R be regularly varying with tail index α. If V1 and V2 are
random variables with finite moments of any order, independent
of R, such that E[V α

1 ] < E[V α
2 ]. By Breiman’s theorem (see

[387], p. 232),

lim
t→∞

P{RV1 > t}
P{R > t} = E[V α

1 ] < E[V α
2 ] = lim

t→∞
P{RV2 > t}
P{R > t}

Thus, for t > t0 where t0 is sufficiently large, P{RV1 > t} <
P{RV2 > t}, implying that RV1 ≤sto RV2.

A multivariate extension of scale mixtures discussed in Exam-
ple 19.2.8 (6) includes the multivariate elliptical distribution. A ran-
dom vector X ∈ R

d is called elliptically distributed if X has the
representation:

X
d
= μ+RAU (19.2.5)

where μ ∈ R
d, A ∈ R

d×d and U is uniformly distributed on S
d−1
2 :=

{x ∈ R
d : ||x||2 = 1} and R ≥ 0 is independent of U . We denote this

by X ∼ E(μ,Σ, R) where Σ = AA�.

Proposition 19.2.9. Let X∼E(μ1,Σ1, R1) and Y ∼E(μ2,Σ2, R2). If

μ1≤μ2, R1≤stoR2, and ξ�Σ1ξ ≤ ξ�Σ2ξ, for fixed ξ∈Sd−1
1 :={x∈Rd : ||x||1=1},

then |ξ�X| ≤sto |ξ�Y |.
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Proof : Let ai := ξ�Σiξ, i = 1, 2. Without loss of generality, we can
assume that μ1 = μ2 = 0 and a1 > 0. Let

vi :=
A�ξ
ξ�Σiξ

=
A�ξ
ai

, i = 1, 2.

Clearly v�
i vi = 1, i = 1, 2, and thus, by symmetry, v�

1 U and v�
2 U

have the same distribution. Let Θ := v�
1 U , and we have

|ξ�X| = R1a1|v�
1 U | d

= R1a1|Θ|, |ξ�Y | = R2a2|v�
2 U | d

= R2a2|Θ|.
The inequality then follows from Corollary 19.2.5 immediately.

This is our ≤sto-version of a similar result that is obtained in [300]
using the ≤apl order.

Remark 19.2.10. Anderson in [12], Fefferman, Jodeit, and Perlman

in [159] show that if μ1 = μ2, R1
d
= R2, and

ξ�Σ1ξ ≤ ξ�Σ2ξ, ∀ ξ ∈ R
d,

then E(ψ(X)) ≤ E(ψ(Y )) for all symmetric and convex functions ψ :
R
d �→ R, such that the expectations exist. This is known as dilatation,

which can be defined on any locally convex topological linear space
V (traced back to Karamata’s work in 1932; see [308], pp. 16–17).
Dilatation provides various versions of continuous majorization [308].

19.3 Tail Orthant Orders

Let X = (X1, . . . ,Xd) and X ′ = (X ′1, . . . ,X ′d) be nonnegative random
vectors with dfs F and F ′, respectively. Observe that X ≤lo X ′ is
equivalent to that max

1≤i≤d
{Xi/wi} ≥st max

1≤i≤d
{X ′i/wi}, and X ≤uo X ′

is equivalent to that min
1≤i≤d

{Xi/wi} ≤st min
1≤i≤d

{X ′i/wi}. In comparing

orthant tails of these random vectors, we focus on the cones R
d
+ and

R
d
+ := {(x1, . . . , xd) : xi > 0, 1 ≤ i ≤ d}. Note that x ∈ R

d
+ can have

some components taking +∞.

Definition 19.3.1.

1. X is said to be smaller than X ′ in the sense of tail lower orthant
order, denoted as X ≤tlo X ′, if for all w = (w1, . . . , wd) ∈ R

d
+,

max
1≤i≤d

{Xi/wi} ≥sto max
1≤i≤d

{X ′i/wi}.
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2. X is said to be smaller than X ′ in the sense of tail upper orthant
order, denoted as X ≤tuo X ′, if for all w = (w1, . . . , wd) ∈ R

d
+,

min
1≤i≤d

{Xi/wi} ≤sto min
1≤i≤d

{X ′i/wi}.

It follows from Eq. (19.2.1) that X ≤tlo X ′ is equivalent to for

w = (w1, . . . , wd) ∈ R
d
+,

P{X1 ≤ tw1, . . . ,Xd ≤ twd} ≤ P{X ′1 ≤ tw1, . . . ,X
′
d ≤ twd} (19.3.1)

for all t > tw for some tw > 0 that may depend on w. Similarly,
X ≤tuo X

′ is equivalent to for w = (w1, . . . , wd) ∈ R
d
+,

P{X1 > tw1, . . . ,Xd > twd} ≤ P{X ′1 > tw1, . . . ,X
′
d > twd} (19.3.2)

for all t > tw for some tw > 0 that may depend on w.
In comparing tail dependence, however, we assume that all the

margins of F and F ′ are tail equivalent. Since we need to compare
upper interior orthant tails given fixed marginal tails, consider the two
smaller cones:

1. Cl := R
d
+\ ∪dj=1 {te−1j , t ≥ 0}, where e−1j , 1 ≤ j ≤ d, denotes the

vector with the j-th component being 1 and infinity otherwise.

2. Cu := R
d
+\ ∪dj=1 {tej , t ≥ 0}, where ej , 1 ≤ j ≤ d, denotes the

vector with the j-th component being 1 and zero otherwise.

That is, Cl and Cu are the subsets of R
d
+ after eliminating all the

axes that correspond to the margins of a distribution. Note that w =
(w1, . . . , wd) ∈ Cl if and only if at least two components of w are finite,
and w = (w1, . . . , wd) ∈ Cu if and only if at least two components of
w are positive.

Definition 19.3.2.

1. X is said to be smaller than X ′ in the sense of tail lower orthant
dependence order, denoted as X ≤tlod X ′, if all the margins of
F and F ′ are tail equivalent, and for all w = (w1, . . . , wd) ∈ Cl,

max
1≤i≤d

{Xi/wi} ≥sto max
1≤i≤d

{X ′i/wi}.

2. X is said to be smaller than X ′ in the sense of tail upper orthant
dependence order, denoted as X ≤tuod X ′, if all the margins of
F and F ′ are tail equivalent, and for all w = (w1, . . . , wd) ∈ Cu,

min
1≤i≤d

{Xi/wi} ≤sto min
1≤i≤d

{X ′i/wi}.
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It follows from Eq. (19.2.1) that if all the margins of F and F ′

are tail equivalent, then X ≤tlod X ′ is equivalent to that Eq. (19.3.1)
holds for w = (w1, . . . , wd) ∈ Cl, and X ≤tuod X ′ is equivalent to that
Eq. (19.3.2) holds for w = (w1, . . . , wd) ∈ Cu.

Remark 19.3.3.

1. If

(w1, . . . , wd)∈
d
⋃

j=1

{te−1j , t≥0} or (w1, . . . , wd)∈
d
⋃

j=1

{tej , t≥0},

then the inequalities in Definition 19.3.2 reduce to the stochastic
tail orders of the marginal distributions. Since the margins are
assumed to be tail equivalent, which may not satisfy stochastic
tail comparison, we need to eliminate the margins from consider-
ation. On the other hand, with given fixed marginal tails, what
really matters in dependence comparison is various interior or-
thant subsets of Cl or Cu.

2. If some corresponding margins of F and F ′ are not tail equiv-
alent, one can still define the tail orthant orders ≤tlo and ≤tuo

to compare their tail behaviors in orthants. But all correspond-
ing margins of F and F ′ have to be tail equivalent in order to
compare their tail dependence.

3. If some margins of F (or F ′) are not tail equivalent, then one
can still define the tail orthant dependence order, but scaling
functions would be different among the components.

4. Another alternative is to convert all the margins of F and F ′ to
standard Pareto margins, resulting in Pareto copulas [245], and
then compare their Pareto copulas using the ≤tlod and ≤tuod

orders.

The preservation properties under the ≤tlod and ≤tuod orders can
be easily established using Definitions 19.3.1 and 19.3.2, and Proposi-
tions 19.2.4 and 19.2.6. In particular, we have the following.

Proposition 19.3.4. Let X = (X1, . . . ,Xd), X
′ = (X ′1, . . . ,X ′d) and

Y = (Y1, . . . , Yd), Y
′ = (Y ′1 , . . . , Y ′d) be positive random vectors with

support R
d
+, and Θ be a random variable with bounded support. As-

sume that (X,X′) and (Y,Y ′) are independent, and the regularity
conditions of Proposition 19.2.6 are satisfied:
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1. X ≤tlo X ′ and Y ≤tlo Y ′ imply that X ∨ Y ≤tlo X′ ∨ Y ′.
X ≤tlod X ′ and Y ≤tlod Y ′ imply that X ∨ Y ≤tlod X′ ∨ Y ′.

2. X ≤tuo X ′ and Y ≤tuo Y ′ imply that X ∧ Y ≤tuo X′ ∧ Y ′.
X ≤tuod X ′ and Y ≤tuod Y ′ imply that X ∧ Y ≤tuod X′ ∧ Y ′.

3. If [X | Θ = θ] ≤tlo [X
′ | Θ = θ] for all θ in the bounded support

of Θ, then X ≤tlo X ′. If [X | Θ = θ] ≤tlod [X ′ | Θ = θ] for all
θ in the bounded support of Θ, then X ≤tlod X ′.

4. If [X | Θ = θ] ≤tuo [X
′ | Θ = θ] for all θ in the bounded support

of Θ, then X ≤tuo X ′. If [X | Θ = θ] ≤tuod [X ′ | Θ = θ] for all
θ in the bounded support of Θ, then X ≤tuod X ′.

Example 19.3.5. Let X ∼ E(0,Σ1, R1) and X ′ ∼ E(0,Σ2, R2) [see
Eq. (19.2.5)], where Σ1 = A1A

�
1 = (σij) and Σ2 = A2A

�
2 = (λij).

Consider X+ = X ∨ 0 and X ′+ = X′ ∨ 0:

1. Suppose that

R1 ≤sto R2, Σ1 ≤ Σ2 component-wise with σii = λii, i = 1, . . . , d.

It follows from Example 9.A.8 in [426] thatX+ ≤uo R1(A2U∨0),
which implies that X+ ≤tuo R1(A2U ∨ 0). Clearly,

(R1, . . . , R1
︸ ︷︷ ︸

d

) ≤tuo (R2, . . . , R2
︸ ︷︷ ︸

d

),

which, together with Proposition 19.3.4 (4) and the fact that
A2U has a bounded support, imply that X+ ≤tuo R1(A2U ∨
0) ≤tuo R2(A2U ∨ 0). Thus X+ ≤tuo X

′
+.

2. Suppose that

R1 ≥sto R2, Σ1 ≤ Σ2 component-wise with σii = λii, i = 1, . . . , d.

It follows from Example 9.A.8 in [426] that X+ ≤lo R1(A2U∨0),
which implies that X+ ≤tlo R1(A2U ∨ 0). Clearly,

(R1, . . . , R1
︸ ︷︷ ︸

d

) ≤tlo (R2, . . . , R2
︸ ︷︷ ︸

d

),

which, together with Proposition 19.3.4 (3) and the fact that
A2U has a bounded support, imply that X+ ≤tlo R1(A2U ∨
0) ≤tlo R2(A2U ∨ 0). Thus X+ ≤tlo X

′
+.
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To construct a wide class of examples involving the ≤tlod and
≤tuod orders, we employ the copula approach. A copula C is a mul-
tivariate distribution with standard uniformly distributed margins on
[0, 1]. Sklar’s theorem (see, e.g., [211], Sect. 1.6) states that every
multivariate distribution F with margins F1, . . . , Fd can be written as
F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) for some d-dimensional copula
C. In fact, in the case of continuous margins, C is unique and

C(u1, . . . , ud) = F (F−11 (u1), . . . , F
−1
d (ud))

where F−1i (ui) are the quantile functions of the i-th margin, 1 ≤ i ≤ d.
Let (U1, . . . , Ud) denote a random vector with Ui, 1 ≤ i ≤ d, being
uniformly distributed on [0, 1]. The survival copula ̂C is defined as
follows:

̂C(u1, . . . , un) = P{1−U1 ≤ u1, . . . , 1−Un ≤ un} = C(1−u1, . . . , 1−un)
(19.3.3)

where C is the joint survival function of C. The upper exponent and
upper tail dependence functions (see [207, 213, 244, 360]) are defined
as follows,

a(w;C) := lim
u→0+

P{∪di=1{Ui > 1− uwi}}
u

,

∀ w = (w1, . . . , wd) ∈ R
d
+\{0} (19.3.4)

b(w;C) := lim
u→0+

P{∩di=1{Ui > 1− uwi}}
u

,

∀ w = (w1, . . . , wd) ∈ R
d
+\{0} (19.3.5)

provided that the limits exist. Note that both a(w;C) and b(w;C)
are homogeneous of order 1 in the sense that a(cw;C) = ca(w;C) and
b(cw;C) = cb(w;C) for any c > 0.

Theorem 19.3.6. Let X = (X1, . . . ,Xd) and X ′ = (X ′1, . . . ,X ′d) be
two d-dimensional random vectors with respective copulas C and C ′

and their respective continuous margins F1, . . . , Fd and F ′1, . . . , F
′
d.

1. If C = C ′ and Fi ≤sto F
′
i , 1 ≤ i ≤ d, then X ≤tuo X

′.

2. Assume that the upper tail dependence functions b(·;C) and

b(·;C ′) exist, and F i ∈ RV−αi and F
′
i ∈ RV−α′

i
, i = 1, . . . , d.

If Fi and F
′
i , 1 ≤ i ≤ d, are all tail equivalent, and b(w;C) <

b(w;C ′) for all w = (w1, . . . , wd) with wi > 0, 1 ≤ i ≤ d, then
X ≤tuod X ′.
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3. Assume that the upper tail dependence functions b(·;C) and

b(·;C ′) exist, and F i ∈ RV−αi and F
′
i ∈ RV−α′

i
, i = 1, . . . , d.

If Fi ≤sto F ′i , 1 ≤ i ≤ d, and b(w;C) < b(w;C ′) for all
w = (w1, . . . , wd) with wi > 0, 1 ≤ i ≤ d, then X ≤tuo X

′.

Proof :

(1) Since Fi(twi) ≥ F ′i (twi), 1 ≤ i ≤ d, for all t > twi , we have, for
all t > max{twi , 1 ≤ i ≤ d}

P{X1 > tw1, . . . ,Xd > twd}
= P{F1(X1) > F1(tw1), . . . , Fd(Xd) > Fd(twd)}
≤ P{F1(X1) > F ′1(tw1), . . . , Fd(Xd) > F ′d(twd)}
= P{F ′1(X ′1) > F ′1(tw1), . . . , F

′
d(X

′
d) > F ′d(twd)}

= P{X ′1 > tw1, . . . ,X
′
d > twd}.

(2) Write F i(t) = Li(t) t
−αi and F ′i(t) = L′i(t) t

−α′
i , 1 ≤ i ≤ d.

Since all the margins are tail equivalent, we have

αi = α′i =: α, and lim
t→∞

Li(t)

L1(t)
= lim

t→∞
L′i(t)
L1(t)

= 1, 1 ≤ i ≤ d.

In addition, since the functions Li(·)s and L′i(·)s are slowly vary-
ing, then for all w = (w1, . . . , wd) with wi > 0, 1 ≤ i ≤ d,

lim
t→∞

Li(twi)

L1(t)
= lim

t→∞
L′i(twi)
L1(t)

= 1, 1 ≤ i ≤ d.

That is, for any ε > 0, there exists tw that is sufficiently large,
such that, for 1 ≤ i ≤ d and all t > tw,

(1− ε)L1(t) ≤ Li(twi) ≤ (1 + ε)L1(t),

(1− ε)L1(t) ≤ L′i(twi) ≤ (1 + ε)L1(t).

Observe that

P{X1 > tw1, . . . ,Xd > twd}
= P

{

Fi(Xi) > 1− Li(twi)t
−αw−αi , 1 ≤ i ≤ d

}

≤ P
{

Fi(Xi) > 1− L1(t)t
−α(1 + ε)w−αi , 1 ≤ i ≤ d

}

,

and thus
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lim sup
t→∞

P{X1 > tw1, . . . ,Xd > twd}
F 1(t)

≤ lim
t→∞

P
{

Fi(Xi) > 1− F 1(t)(1 + ε)w−αi , 1 ≤ i ≤ d
}

F 1(t)

= b
(

(1 + ε)w−α;C
)

= (1 + ε)b
(

w−α;C
)

.

Similarly,

lim inf
t→∞

P{X1 > tw1, . . . ,Xd > twd}
F 1(t)

≥ (1− ε)b
(

w−α;C
)

.

Let ε → 0, we have

lim
t→∞

P{X1 > tw1, . . . ,Xd > twd}
F 1(t)

= b
(

w−α;C
)

.

For X ′ with copula C ′, we have

lim
t→∞

P{X ′1 > tw1, . . . ,X
′
d > twd}

F 1(t)
= b

(

w−α;C ′
)

.

Since b
(

w−α;C
)

< b
(

w−α;C ′
)

for each w = (w1, . . . , wd) with
wi > 0, 1 ≤ i ≤ d, there exists tw such that, for all t > tw,

P{X1 > tw1, . . . ,Xd > twd} ≤ P{X ′1 > tw1, . . . ,X
′
d > twd}.

(3) The stochastic tail order follows from (1) and (2).

For the ≤tlo order, we can establish a similar result.

Theorem 19.3.7. Let X = (X1, . . . ,Xd) and X ′ = (X ′1, . . . ,X ′d) be
d-dimensional random vectors with respective copulas C and C ′ and
respective continuous margins F1, . . . , Fd and F ′1, . . . , F ′d.

1. If C = C ′ and Fi ≥sto F
′
i , 1 ≤ i ≤ d, then X ≤tlo X

′.

2. Assume that the exponent functions a(·;C) and a(·;C ′) exist,

and F i ∈ RV−αi and F
′
i ∈ RV−α′

i
, i = 1, . . . , d. If Fi and F ′i ,

1 ≤ i ≤ d, are all tail equivalent, and a(w;C) > a(w;C ′) for all
w = (w1, . . . , wd) with wi > 0, 1 ≤ i ≤ d, then X ≤tlod X ′.

3. Assume that the upper tail dependence functions a(·;C) and

a(·;C ′) exist, and F i ∈ RV−αi and F
′
i ∈ RV−α′

i
, i = 1, . . . , d.

If Fi ≥sto F ′i , 1 ≤ i ≤ d, and a(w;C) > a(w;C ′) for all
w = (w1, . . . , wd) with wi > 0, 1 ≤ i ≤ d, then X ≤tlo X

′.



19.3. H. LI 383

Example 19.3.8. The tail dependence functions of Archimedean
copulas were derived in [34, 84] (also see Propositions 2.5 and 3.3
in [213]). Let CArch(u;φ) = φ(

∑d
i=1 φ

−1(ui)) be an Archimedean cop-
ula with strict generator φ−1, where φ is regularly varying at ∞ with
tail index θ > 0. The upper tail dependence function of the survival
copula ̂CArch is given by

b(w; ̂CArch) =
(

d
∑

j=1

w
−1/θ
j

)−θ
.

Observe that b(w; ̂CArch) is strictly increasing in θ. For θ < θ′, and
C and C ′ be two copulas with df ̂CArch having parameters θ and θ′

respectively. Thus b(w;C) < b(w;C ′) for all w > 0. For 1 ≤ i ≤ d,
let Fi have the Fréchet df with tail index α (i.e., Fi(s) = exp{−s−α})
and F ′i have the distribution of Pareto Type II with tail index α (i.e.,
F ′i (s) = 1 − (1 + s)−α). Clearly, Fi and F ′i are tail equivalent. Let X
and X ′ have the dfs of

C(F1(x1), . . . , Fd(xd)), and C ′(F ′1(x1), . . . , F
′
d(xd)),

respectively, and by Theorem 19.3.6, X ≤tuod X ′.

Example 19.3.9. The exponent functions of Archimedean copulas
were derived in [34, 177] (also see Propositions 2.5 and 3.3 in [213]).
Let CArch(u;φ) = φ(

∑d
i=1 φ

−1(ui)) be an Archimedean copula, where
the generator φ−1 is regularly varying at 1 with tail index β > 1. The
upper exponent function of CArch is given by

a(w;CArch) =
(

d
∑

j=1

wβj
)1/β

.

Observe that a(w;CArch) is strictly decreasing in β. For β < β′, and
C and C ′ be two copulas with df CArch having parameters β and β′,
respectively. Thus a(w;C) > a(w;C ′) for all w > 0. For 1 ≤ i ≤ d,
let Fi have the Fréchet df with tail index α (i.e., Fi(s) = exp{−s−α})
and F ′i have the distribution of Pareto Type II with tail index α (i.e.,
F ′i (s) = 1− (1+ s)−α), such that Fi and F

′
i are tail equivalent. Let X

and X ′ have the dfs of

C(F1(x1), . . . , Fd(xd)) and C ′(F ′1(x1), . . . , F
′
d(xd)),

respectively, and by Theorem 19.3.7, X ≤tlod X ′.
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Remark 19.3.10. Due to the homogeneity property, the conditions
on tail dependence and exponent functions used in Theorem 19.3.6
(2) and (3) and in Theorem 19.3.7 (2) and (3) can be simplified. For
example, it is sufficient in Theorem 19.3.6 (2) and (3) to verify that
b(w;C) < b(w;C ′) for all w = (w1, . . . , wd) with wi > 0, 1 ≤ i ≤ d,
and ||w|| = 1, where || · || denotes any norm on R

d
+.

Theorem 19.3.11. Let (Xn, n ≥ 1) and (X ′n, n ≥ 1) be two i.i.d.
samples with dfs F and F ′, respectively. Assume that F ∈ DA∨(G)
and F ′ ∈ DA∨(G′) with tail equivalent Fréchet margins.

1. If Xn ≤tlod X ′n, then G ≤lod G
′.

2. G ≤lod G
′ if and only if G ≤tlod G

′.

Proof : Let Y = (Y1, . . . , Yd) and Y ′ = (Y ′1 , . . . , Y ′d) denote two ran-
dom vectors that have the same distributions as these of Xn and X ′n,
respectively.

(1) It follows from Theorem 19.1.1 and Remark 19.1.2 (1) that

[P{Xk ≤ anx}]n → G(x), ∀ x = (x1, . . . , xd) ∈ R
d
+,

where an = (a1,n, . . . , ad,n) = (F
−1
1 (1/n), . . . , F

−1
d (1/n)). Tak-

ing the logarithm on both sides, we have, as n → ∞,

n log P{Xk ≤ anx} ≈ −nP{ ∪di=1 {Yi > ai,nxi}
} → logG(x).

(19.3.6)

Since the margins are tail equivalent, ai,n/a1,n → 1 as n → ∞.
Thus, for any small ε > 0, when n is sufficiently large,

(1− ε)a1,n ≤ ai,n ≤ (1 + ε)a1,n, i = 1, . . . , n, (19.3.7)

which imply that

− nP
{ ∪di=1 {Yi > a1,nxi}

} ≥ −nP{ ∪di=1 {Yi > ai,n(1+ε)
−1xi}

}

→ logG((1 + ε)−1x).

Observing that logG(x) is homogeneous of order −α, we have

lim inf
n→∞

[ − nP
{ ∪di=1 {Yi > a1,nxi}

}] ≥ (1 + ε)α logG(x).
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Similarly,

lim sup
n→∞

[− nP
{ ∪di=1 {Yi > a1,nxi}

}] ≤ (1− ε)α logG(x).

Let ε → 0, we obtain that

lim
n→∞

[− nP
{ ∪di=1 {Yi > a1,nxi}

}]

= logG(x). (19.3.8)

That is, using the tail equivalence Eq. (19.3.7), we can rewrite
the limit Eq. (19.3.6) in the form of Eq. (19.3.8), in which the
scaling a1,n is the same for all margins. Working on X ′n in the
same way, we also obtain that

lim
n→∞

[− nP
{ ∪di=1 {Y ′i > a′1,nxi}

}]

= logG′(x), (19.3.9)

where a′n = (a′1,n, . . . , a′d,n) = (F ′1
−1

(1/n), . . . , F ′d
−1

(1/n)).
Again, since the margins are tail equivalent, a′1,n/a1,n → 1 as
n → ∞. Using the same idea as that of Eq. (19.3.7), the limit
Eq. (19.3.9) is equivalent to

lim
n→∞

[− nP
{ ∪di=1 {Y ′i > a1,nxi}

}]

= logG′(x). (19.3.10)

Since Xn ≤tlod X ′n, via Eq. (19.3.1), we have

P
{ ∪di=1 {Yi > a1,nxi}

} ≥ P
{ ∪di=1 {Y ′i > a1,nxi}

}

.

It follows from Eqs. (19.3.8) and (19.3.10) that G(x) ≤ G′(x) for
all x ∈ R

d
+.

(2) It follows from the Pickands representation [see Remark 19.1.2
(4)] that

G(x) = exp
{

− c

∫

Sd+

max
1≤i≤d

{(ai/xi)α}Q(da)
}

, (19.3.11)

G′(x) = exp
{

− c′
∫

S
d
+

max
1≤i≤d

{(ai/xi)α}Q′(da)
}

, (19.3.12)

where c > 0, c′ > 0, and Q and Q
′ are probability measures

defined on S
d−1
+ . Taking the scaling function t for both dfs, we

have

G(tx) = exp
{

− c

tα

∫

S
d
+

max
1≤i≤d

{(ai/xi)α}Q(da)
}

,
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G′(tx) = exp
{

− c′

tα

∫

S
d
+

max
1≤i≤d

{(ai/xi)α}Q′(da)
}

.

For each fixed x, when t is sufficiently large,

1−G(tx)

1−G′(tx)
∼

c
∫

S
d
+
max1≤i≤d{(ai/xi)α}Q(da)

c′
∫

S
d
+
max1≤i≤d{(ai/xi)α}Q′(da) .

If G ≤tlod G
′, then 1−G(tx) ≥ 1−G′(tx) for t > tx, where tx

is sufficiently large. That is,

c

∫

S
d
+

max
1≤i≤d

{(ai/xi)α}Q(da) ≥ c′
∫

S
d
+

max
1≤i≤d

{(ai/xi)α}Q′(da),

which, together with Eqs. (19.3.11) and (19.3.12), imply that
G(x) ≤ G′(x) for all x.

Conversely, it is trivial that G ≤lod G
′ implies that G ≤tlod G

′.
Using similar arguments, we can also establish the upper orthant

dependence comparisons for MEV distributions.

Theorem 19.3.12. Let (Xn, n ≥ 1) and (X ′n, n ≥ 1) be two i.i.d.
samples with dfs F and F ′ respectively. Assume that F ∈ DA∧(H)
and F ′ ∈ DA∧(H ′) with tail equivalent, negative Fréchet margins (i.e.,
Fi(x) = F ′i (x) = 1− exp{−(−x)−θ}).

1. If Xn ≤tuod X
′
n, then H ≤uod H

′.

2. H ≤uod H
′ if and only if H ≤tuod H

′.

As illustrated in Theorems 19.3.11 (2) and 19.3.12 (2), upper tail
comparisons of MEV dfs trickle down to comparisons of entire distri-
butions due to the scalable property of homogeneity.

We conclude this paper with an example to illustrate an idea for
obtaining asymptotic Fréchet bounds.

Example 19.3.13. Let (T1, T2) denote a random vector with a
Marshall-Olkin distribution [307] as defined as follows:

T1 = E1 ∧ E12, T2 = E2 ∧ E12,

where E1, E2, E12 are i.i.d. exponentially distributed with unit mean.
Clearly, for t1 > 0, or t2 > 0,
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P{T1 > t1, T2 > t2} = e−(t1+t2)−t1∨t2 < e−t1∨t2 = P{T1 > t1, T1 > t2}.

Hence (T1, T2) ≤uod (T1, T1), which is known as the Fréchet upper
bound for the class of dfs with fixed exponential margins.

Let R1 and R2 denote two nonnegative random variables that are
independent of (T1, T2). Assume that the survival functions of R−11

and R−12 are tail equivalent, regularly varying with tail index −α [see
Eq. (19.1.6)]. Since R−11 and R−12 are tail equivalent, the margins of
(R−12 T1, R

−1
2 T2) and (R−11 T1, R

−1
1 T1) are all tail equivalent. It follows

from Theorem 3.2 of [280] that the upper tail dependence functions of
(R−12 T1, R

−1
2 T2) and (R−11 T1, R

−1
1 T1) are given by

b(w1, w2) = 2α(w1 + w2 + w1 ∨ w2)
−α

b′(w1, w2) = 2α(w1 ∨ w2)
−α.

Clearly, b(w1, w2) < b′(w1, w2), and thus by Theorem 19.3.6 we
have (R−12 T1, R

−1
2 T2) ≤tuod (R−11 T1, R

−1
1 T1). Note that the df of

(R−11 T1, R
−1
1 T1) is viewed as an asymptotic Fréchet upper bound in

the sense of tail upper orthant order, because the respective margins
of (R−12 T1, R

−1
2 T2) and (R−11 T1, R

−1
1 T1) are only tail equivalent, rather

than being identical as required in the case of Fréchet bounds.
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[175] Genest, C. and Nešlehovà, J.: A primer on copulas for count
data. ASTIN Bulletin, 37 (2), 475–515 (2007)
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[245] Klüppelberg, C. and Resnick, S. I.: The Pareto copula, aggrega-
tion of risks, and the emperor’s socks. Journal of Applied Prob-
ability, 45(1), 67–84 (2008)

[246] Kochar, S. C.: On extensions of DMRL and related partial
orderings of life distributions. Communications in Statistics—
Stochastic Models, 5, 235–245 (1989)

[247] Kochar, S. C.: On stochastic ordering between distributions and
their sample spacings. Statistics and Probability Letters, 42,
345–352 (1999)



BIBLIOGRAPHY 411

[248] Kochar, S. C. and Kirmani, S. N. U. A.: Some results on normal-
ized spacings from restricted families of distributions. Journal of
Statistical Planning and Inference, 46, 47–57 (1995)

[249] Kochar, S. C. and Korwar, R.: Stochastic orders for spacings of
heterogeneous exponential random variables. Journal of Multi-
variate Analysis, 57, 69–83 (1996)

[250] Kochar, S. C., Li, X. and Shaked, M.: The total time on test
transform and the excess wealth stochastic order of distributions.
Advances in Applied Probability, 34, 826–845 (2002)

[251] Kochar, S. C., Li, X. and Xu, M.: Excess wealth order and
sample spacings. Statistical Methodology, 4, 385–392 (2007)

[252] Kochar, S. C. and Ma, C.: Dispersive ordering of convolutions of
exponential random variables. Statistics & Probability Letters,
43 321–324 (1999)

[253] Kochar, S. C., Mukerjee, H. and Samaniego, F. J.: The “sig-
nature” of a coherent system and its application to comparison
among systems. Naval Research Logistics, 46, 507–523 (1999)

[254] Kochar, S. C., Mukerjee, H. and Samaniego, F. J.: Estimation of
a monotone mean residual life. Annals of Statistics, 28, 905–921
(2000)

[255] Kochar, S. C. and Rojo, J.: Some new results on stochastic
comparisons of spacings from heterogeneous exponential distri-
butions. Journal of Multivariate Analysis, 59, 272–281 (1996)

[256] Kochar, S. C. and Xu, M.: Stochastic comparisons of paral-
lel systems when components have proportional hazard rates.
Probability in the Engineering and Informational Sciences, 21,
597–609 (2007)

[257] Kochar, S. C. and Xu, M.: A new dependence ordering with
applications. Journal of Multivariate Analysis, 99, 2172–2184
(2008)

[258] Kochar, S. C. and Xu, M.: Comparisons of parallel systems ac-
cording to the convex transform order. Journal of Applied Prob-
ability, 46, 342–352 (2009)



412 BIBLIOGRAPHY

[259] Kochar, S. C. and Xu, M.: On the right spread order of convo-
lutions of heterogeneous exponential random variables. Journal
of Multivariate Analysis, 101, 165–176 (2010)

[260] Kochar, S. C. and Xu, M.: On residual lifetime of k-out-of-n
systems with nonidentical components. Probability in the Engi-
neering and Informational Sciences, 24, 109–127 (2010)

[261] Kochar, S. C. and Xu, M.: Stochastic comparisons of spacings
from heterogeneous samples. (Martin Wells and Ashis Sengupta
edited) Festschrift Volume for Sreenivasa Rao Jammalamadaka,
113–129, Springer (2011)

[262] Kochar, S. C. and Xu, M.: On the skewness of order statistics in
the multiple-outlier models. Journal of Applied Probability, 48,
271–284 (2011)

[263] Kochar, S. C. and Xu, M.: The tail behavior of the convolutions
of Gamma random variables. Journal of Statistical Planning and
Inference, 141, 418–428 (2011)

[264] Kochar, S. C. and Xu, M.: Some unified results on comparing
linear combinations of independent gamma random variables.
Probability in Engineering and Information Sciences, 26, 393–
404 (2012)

[265] Koole, G.: A simple proof of the optimality of a threshold policy
in two-server queueing system. Systems & Control Letters, 26,
301–303 (1995)

[266] Korwar, R. M.: On stochastic orders for sums of independent
random variables. Journal of Multivatiate Analysis, 80, 344–357
(2002)

[267] Krishna, V.: Auction theory. Academic Press, New York (2010)

[268] Krishnamoorthy, B.: On Poisson queue with two heterogeneous
servers. Operational Research, 11, 321–330 (1963)

[269] Lai, C. D. and Xie, M.: Stochastic Ageing and Dependence for
Reliability. Springer, New York (2006)

[270] Langberg, N., Leon, R. V. and Proschan, F.: Characterization of
nonparametric classes of life distributions. Annals of Probability,
8, 1163–1170 (1980)



BIBLIOGRAPHY 413

[271] Langrock, P. and Rykov V. V.: Methoden und Modelle zur Steu-
rung von Bedienungssystemen. Handbuch der Bedienungs theo-
rie. Berlin, Akademie-Verlag, B. 2, 422–486 (1984)
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