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Preface

Meta-analysis plays a key role in evidence synthesis in many research disciplines,
not least the social sciences, medicine and economics. The aim of this book is to
equip those involved in such work (who are often not trained statisticians) to use
R for meta-analysis, and thus promote both the use of R and the latest statistical
methods in this area.

The attractions of R in this context (besides its free availability from http://www.
r-project.org/) are its fast yet powerful and flexible graphics and its well-established
algorithmic base.

The book assumes no prior knowledge of R, and takes readers through every step
of the way from installing R, loading data from other packages, performing and
interpreting the analyses. Parts I and II cover the essentials, while Part III considers
more advanced topics, which remain the subject of active research.

Throughout, the ideas are illustrated with examples, and all the codes necessary
to repeat these examples (including creating all the plots in the book) are either in
the text itself or the web-appendix http://meta-analysis-with-r.org/. In selecting the
code to include in the main text, we have assumed readers are relatively new to R.
More experienced users can easily skip over familiar material.

Freiburg, Germany Guido Schwarzer
London, UK James R. Carpenter
Freiburg, Germany Gerta Rücker
December, 2014
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Part I
Getting Started



Chapter 1
An Introduction to Meta-Analysis in R

The world is awash with information. For any question, the briefest of internet
searches will throw up a range of frequently contradictory answers. This underlies
increasing awareness of the value of systematic evidence synthesis—both qualita-
tive and quantitative—by researchers, policy makers and the broader public. It is
reflected in the continuing development of the Cochrane Collaboration (http://www.
cochrane.org/), an international collaboration devoted to undertaking, publishing
and promoting systematic evidence synthesis [2].

Quantitative aspects have a key role to play in evidence synthesis. The statistical
methodology for combining quantitative evidence from studies, known as meta-
analysis, therefore features in almost every systematic review, and continues to
undergo rapid development. A major concern of such developments is the need
to detect and adjust for possible biases, as well as the synthesis of evidence from
studies that have compared different combinations of interventions and measured
these interventions with different outcomes.

The statistical software environment R [4] is now firmly established, and is one
of the most widely used software packages for both the development of statistical
methodology and day-to-day data analysis using established methods. It features
excellent graphics and is readily extensible. It is freely available, both as source
code and as compiled binaries for Windows, Linux, and Mac OS. In addition to
the broad range of inbuilt functions, over 6000 additional packages are available
on the Comprehensive R Archive Network (CRAN). R has been registered for use
in clinical trials (http://www.r-project.org/doc/R-FDA.pdf) and has its own journal
“The R Journal” (http://journal.r-project.org/).

We believe that R is a natural choice for meta-analysis, as it provides the greatest
range of methodology for meta-analysis in any single statistical software package.
Our aim in writing this book is to introduce data analysts involved in meta-analysis,
whether they are existing R users or not, to this software. No previous knowledge of
R is assumed, and throughout the development is illustrated with worked examples.

© Springer International Publishing Switzerland 2015
G. Schwarzer et al., Meta-Analysis with R, Use R!,
DOI 10.1007/978-3-319-21416-0_1
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The data, and script files to repeat the examples, are downloadable from the website
http://meta-analysis-with-r.org/.

Established R users can probably skip the remainder of this chapter, in which we
introduce some key R concepts and illustrate them with a simple meta-analysis. The
aim in what follows is to get new users (who have used other statistics packages)
started with R so that they can follow the presentation in the remainder of the book.
For a more comprehensive introduction we recommend [1].

The remainder of this chapter is best read alongside a computer running R. Thus,
if you have not yet installed R, we would encourage you to do so: full installation
details are given in Appendix A.1.

1.1 Getting Started with R

To start R either press on the R desktop icon created during installation or select the
corresponding entry in the menu of installed applications. This should open the R
Console window, an example of which in Mac OS X is shown in Fig. 1.1. R is
not a menu driven program, so the user must either type commands at the command
line, or execute a pre-written script. R is case sensitive, and most function names are
in lower case. Typing the function name shows the code; to execute a function we
must type parentheses. For example,

Fig. 1.1 Screenshot of R Console window under Mac OS X

http://meta-analysis-with-r.org/
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• type demo (followed by <RETURN>), and R will print the code for the demo
function,

• type demo() (followed by <RETURN>), and R will open a window showing
some of the demonstrations available.

Towards the top of the list is the graphics demonstration. To run this, we
need to give the argument graphics to the demo function, by placing it in the
parentheses: demo(graphics) <RETURN>. Try this; you will need to press
<RETURN> twice more to start the demonstration, and to move through the various
plots. In summary: we pass information to R functions through the arguments which
go between the parentheses that immediately follow function names.

1.1.1 Quitting R

To exit R at the command line type q(). You will be asked Save workspace
image? [y/n/c]: . Type one of y (yes: quit and save your data); n (no: quit
without saving your data) or c (continue with R session), followed by <RETURN>.
An alternative way to exit R is using the menu File ! Exit (under Windows) or R
! Quit (under Mac OS).

1.1.2 R as a Calculator

To begin, we note the following:

• Commands in R are typed into the R Console window to the right of the
command prompt: >

• If R detects a command is not finished (for example, parentheses or quotes are
not matched) then the next line will show the continuation prompt: +

Either complete the command, or interrupt it by typing Ctrl+C under Linux.
• The “#” means that the remainder of the line will not be executed: we use this

repeatedly to give a commentary on our R code.

Armed with this, we can start to explore R. In the R Console try the following
commands (you do not need to type lines that begin with the “#” sign):

> # set x to be 2
> x <- 2
> # same assignment
> x = 2
> # display x
> x
[1] 2
> # set x to be the vector 1,2,3 using R function c
> x <- c(1,2,3)
> # same assignment
> x <- 1:3
> # display x
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> x
[1] 1 2 3
> # add up the elements of x:
> sum(x)
[1] 6
> # set x to be a matrix
> x <- matrix(c(1,2,3,4), nrow=2)
> # display x
> x

[,1] [,2]
[1,] 1 3
[2,] 2 4
> # square the matrix x
> x*x

[,1] [,2]
[1,] 1 9
[2,] 4 16
> # square x and add 3 to all entries
> x*x + 3

[,1] [,2]
[1,] 4 12
[2,] 7 19
> # create a function, called f, which squares its argument
> f <- function(x){x*x}
> f(2)
[1] 4
> f(c(1,2,3))
[1] 1 4 9
> # square the matrix x using R function f
> f(x)

[,1] [,2]
[1,] 1 9
[2,] 4 16

1.1.3 Getting Help

The easiest way to get help on a function, for example the ls function is to type a
“?” followed by the function name at the R prompt: ?ls. Equivalently, we can type
help(ls). Either will open a window giving details of how to use the function.
For more extensive help, the command help.start() opens a window or tab in
your web browser with links to all the documentation.

1.2 Loading, Saving and Restoring Data

Data are stored in R in a slightly different way to many other packages: instead
of having a single dataset available at a time, we have instead a workspace (also
called global environment or environment) that may be thought of as a “virtual
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library” or “virtual directory”, which can contain many datasets, together with other
R objects such as functions. This workspace is stored as a file, with default name
.RData under Mac/Linux/Unix and _RData under Windows. Not only can we
have separate .RData files for different projects, we can make the contents of
as many as we like available to R. This can cause some confusion if they contain
different objects of the same name!

For this book, we will only need one .RData file. This we store in the current
Working directory. To find the current working directory type getwd() at the R
command line.

Within R, objects are accessed by typing their names. Typical objects include
numbers, variables, vectors, matrices, data frames (approximately equivalent to
datasets in other packages) and functions.

To see the objects in the attached .RDataworkspace, use the ls function. After
doing the graphics demonstration in Sect. 1.1, you should see the following listing
of R objects if the workspace has been empty before; otherwise some additional R
objects will be listed.

> ls()
[1] "g" "lev" "n" "opar" "pie.sales" "pin"
[7] "scale" "usr" "x" "xadd" "xdelta" "xscale"
[13] "xx" "y" "yadd" "ydelta" "yscale" "yy"

In order to delete R object g, you can use R function rm:

> rm(g)
> ls()
[1] "lev" "n" "opar" "pie.sales" "pin" "scale"
[7] "usr" "x" "xadd" "xdelta" "xscale" "xx"
[13] "y" "yadd" "ydelta" "yscale" "yy"

To delete all R objects in the workspace (without any further warning!) you can
use the following command:

> rm(list=ls())
> ls()
character(0)

The result “character(0)” means that no R objects are found in the workspace.
Note, changes to the workspace are not permanent as long as you do not save

them in the file .RData. If R stops due to an internal error (which almost never
happens) or if you kill the R process, all changes to the workspace will be lost.

You can save the workspace at any time in an R session using R command
save.image() which saves the file .RData in the current working directory.
When you quit R (see Sect. 1.1.1) you also have the option to save the workspace in
the .RData file.
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To change the current working directory, type setwd("my_directory"),
replacing my_directory with the path to a pre-existing directory on your
computer.1 Alternatively, the current working directory may be changed from the
toolbar under Mac OS and Windows.

We will now go through a sequence of commands to load, view and save data
from a meta-analysis. We will then go through a second sequence: restart R, reload
the data and view it. First, check the current working directory. At the command
prompt type getwd(). Next, outside R download the file dataset01.csv
from the website http://meta-analysis-with-r.org/ and save it in the current working
directory. These data come from a meta-analysis comparing Nedocromil sodium
with placebo for preventing exercise-induced bronchoconstriction [7]. To check it is
there, use the following command:

> list.files(pattern="dataset01")
[1] "dataset01.csv"

This will list all files in the current working directory containing the text
“dataset01”, in this case only the file “dataset01.csv”.

We can now load these data into R with the commands given in Fig. 1.2. The
str command shows that R object data1 is a data frame, i.e. a dataset. The data
consist of 17 studies; for each we have

• the author,
• the year of publication,
• Ne, the Number of patients (sample size) in the experimental treatment group,
• Me, the Mean response among the patients in the experimental group,
• Se, the Standard deviation of the response in the experimental group, and
• Nc, Mc and Sc the sample size, mean response and standard deviation in the

control patients.

Finally, we simply type save.image() to save the data. Satisfy yourself this
has worked. Quit R not saving the data: q("no"). Now restart R, if you are not
using the default working directory change to your working directory, then type
load(".RData") and type data1. All being well, the data should still be there.

Note, instead of saving the whole workspace, a subset of R objects, e.g.
datasets and/or functions, can be saved in a file for access in future R sessions
using the save function. For example, in order to save R object data1 in
the file “data1.rda” in the current working directory we can use the command
save(data1, file="data1.rda"); the extension “.rda” is recommended
for files containing R objects. The file data1 can be loaded into R using the
command load("data1.rda").

1The easiest way to create a new directory is to use the Explorer under Windows, the Finder under
Mac OS, or your preferred file manager under Linux.

http://meta-analysis-with-r.org/
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> # 1. Read in the data
> data1 <- read.csv("dataset01.csv", as.is=TRUE)
> # 2. Print structure of R object data1
> str(data1)
’data.frame’: 17 obs. of 8 variables:
$ author: chr "Boner" "Boner" "Chudry" "Comis" ...
$ year : chr "1988" "1989" "1987" "1993" ...
$ Ne : int 13 20 12 12 17 8 13 12 12 12 ...
$ Me : num 13.5 15.7 21.3 14.5 14.4 ...
$ Se : num 13.8 13.1 13.1 12.2 11.1 ...
$ Nc : int 13 20 12 12 17 8 13 12 12 12 ...
$ Mc : num 20.8 22.7 39.7 31.3 27.4 ...
$ Sc : num 21.5 16.5 12.9 15.1 17.3 ...

> # 3. To view an R object, just type its name:
> data1

author year Ne Me Se Nc Mc Sc
1 Boner 1988 13 13.54 13.85 13 20.77 21.46
2 Boner 1989 20 15.70 13.10 20 22.70 16.47
3 Chudry 1987 12 21.30 13.10 12 39.70 12.90
4 Comis 1993 12 14.50 12.20 12 31.30 15.10
5 DeBenedictis 1994a 17 14.40 11.10 17 27.40 17.30
6 DeBenedictis 1994b 8 14.80 18.60 8 31.40 20.60
7 DeBenedictis 1995 13 15.70 16.80 13 29.60 18.90
8 Debelic 1986 12 29.83 15.95 12 48.08 15.08
9 Henriksen 1988 12 17.50 13.10 12 47.20 16.47
10 Konig 1987 12 12.00 14.60 12 26.20 12.30
11 Morton 1992 16 15.83 13.43 16 38.36 18.01
12 Novembre 1994f 24 15.42 8.35 24 28.46 13.84
13 Novembre 1994s 19 11.00 12.40 19 26.10 14.90
14 Oseid 1995 20 14.10 9.50 20 28.90 18.00
15 Roberts 1985 9 18.90 17.70 9 38.90 18.90
16 Shaw 1985 8 10.27 7.02 8 34.43 10.96
17 Todaro 1993 13 10.10 8.90 13 23.50 4.00

Fig. 1.2 Code to read in data for the bronchoconstriction meta-analysis [7] using the read.csv
function. The structure of the imported dataset is shown with the str command. The whole dataset
is printed by typing its name

1.2.1 Importing Data from Other Packages

It is usually straightforward to import meta-analysis data from other packages,
including the Review Manager 5 (RevMan 5) [9], the program for preparing and
maintaining Cochrane Reviews, and Stata [8]. We describe how to do this in
Appendix A.2, which we recommend referring to after finishing this chapter.
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1.3 Select Variables from an R Dataset

We created the dataset data1 in the last section and have seen that we can print
the whole dataset by typing its name (followed by <RETURN>). Notice that the
variable names author, year and so on are not known to R without first referring
to the name of object data1. Accordingly, using an R command existing only of
the variable name will result in an error.

> author
Error: object ’author’ not found

Different ways are possible to print data for variable author. First, we can use
the dollar sign “$” to select a single variable of a dataset.2 The following R code
selects variable author from dataset data1:

> data1$author
[1] "Boner" "Boner" "Chudry" "Comis"
[5] "DeBenedictis" "DeBenedictis" "DeBenedictis" "Debelic"
[9] "Henriksen" "Konig" "Morton" "Novembre"
[13] "Novembre" "Oseid" "Roberts" "Shaw"
[17] "Todaro"

Second, we can use square brackets to select rows (observations) and columns
(variables) of a dataset.3 Variable author from dataset data1, i.e. a column, can
be extracted in the following way:

> data1[, "author"]
[1] "Boner" "Boner" "Chudry" "Comis"
*** Output truncated ***

Furthermore, the first four authors/rows of dataset data1 can be printed either
using

> data1[1:4, "author"]
[1] "Boner" "Boner" "Chudry" "Comis"

or

> data1$author[1:4]
[1] "Boner" "Boner" "Chudry" "Comis"

Third, we can use the with function to select the list of authors.

> # List the first four authors in data frame data1
> with(data1, author[1:4])
[1] "Boner" "Boner" "Chudry" "Comis"
> with(data1[1:4,], author)
[1] "Boner" "Boner" "Chudry" "Comis"

2See help("$") for more details.
3See help("[") for more details.
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First argument of the with function is a dataset, here data1 and
data1[1:4,], respectively. The second argument of the with function is an
expression that is evaluated within the specified dataset.

Fourth, we can attach a dataset, i.e. make all variables of a dataset available in
the search path, using R command attach:

> # 1. Make variables of data frame data1 directly available:
> attach(data1)
> # 2. List the first four authors in data frame data1
> author[1:4]
[1] "Boner" "Boner" "Chudry" "Comis"
> # 3. Detach data frame data1
> detach(data1)

One disadvantage of this method is that an R object in the workspace may conceal
a variable in the attached dataset data1. We show this in the next example R code.

> # 1. Create a new R object author (numeric variable)
> author <- 123
> # 2. Attaching data frame data1 results in a warning
> attach(data1)
The following object is masked _by_ .GlobalEnv:

author

> # 3. The following command prints the numeric variable author
> author[1:4]
[1] 123 NA NA NA
> # 4. Search for R objects called "author"
> find("author")
[1] ".GlobalEnv" "data1"
> # 5. Detach data frame data1
> detach(data1)
> # 6. Remove R object author from global environment
> rm(author)

The find command reveals that an R object author is present both in the
workspace (called .GlobalEnv in the search path) and in R object data1.4 As
the workspace is searched first, this R object is used in the print command.

Accordingly, in this book we use one of the first three methods to select variables
from a dataset. The dollar assignment is preferred if we are interested in the
information of a single variable. The square brackets can be used to select several
variables from a dataset. For example, the following R code can be used to print
year of publication as well as sample sizes in addition to the author name.

> data1[1:4, c("author", "year", "Ne", "Nc")]
author year Ne Nc

1 Boner 1988 13 13
2 Boner 1989 20 20

4The complete search path can be printed using the command search().
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3 Chudry 1987 12 12
4 Comis 1993 12 12

On the other hand, function with is typically more concise in calculations based
on several variables of a dataset. We demonstrate this in an example with only two
variables.

> # 1. Calculate and display the total sample sizes:
> data1$Ne + data1$Nc
[1] 26 40 24 24 34 16 26 24 24 24 32 48 38 40 18 16 26
> with(data1, Ne + Nc)
[1] 26 40 24 24 34 16 26 24 24 24 32 48 38 40 18 16 26
> # 2. Calculate and display the total sample size
> # for the Chudry study
> data1$Ne[data1$author=="Chudry"] +
+ data1$Nc[data1$author=="Chudry"]
[1] 24
> with(data1[data1$author=="Chudry",], Ne + Nc)
[1] 24

1.4 Running Scripts

It is very often useful to generate a file, or script, of R commands both as a record
of what has been done and for subsequent execution. An R script is simply a text
file of commands, which can be created and edited either inside or outside R. If it is
created outside R, then commands need to be copied and pasted into the R console
window. If it is created inside R, we can highlight regions of the script and execute
them alone.

We now illustrate how to create and execute a simple source file. From the toolbar
click on File ! New Script (under Windows) or File ! New Document (under Mac
OS). A new script file will appear. In the script file enter the following commands:

getwd()
dir(pattern="example1")
data1 <- read.csv("dataset01.csv")
summary(data1)
print(summary(data1))

Save the script file. Although it is a text file, it will be given the suffix “.R”. To
execute the first line, move the cursor to this line, hold down the Ctrl key and press
R (under Windows) or cmd key and <RETURN> on a Mac. To execute part of the
code or the whole script, you first have to highlight the corresponding region.

Alternatively, if the file is saved in the current working directory as
example1.R in the R console, you can enter source("example1.R") to
execute all commands in the script file. Note that this will only display the output
from commands explicitly printing R objects but that output generated by other
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commands as they execute is not shown. Accordingly, the summary(data1)
command will not print any output, however, the print command in the last line
of the script will print the summary of dataset data1.

The analyses presented in each of the chapters in this book are available as
R script files from the website http://meta-analysis-with-r.org/. These are best
executed step by step.

1.5 Installing and Using Libraries of Additional Functions

The final step before we can perform a meta-analysis is to install the R library of
meta-analysis functions. For this, your computer needs to be connected to the inter-
net, and R running. At the R command prompt either type install.packages
("meta") or install.packages(). In the later case, a dialogue box will
open, showing the available R packages in alphabetical order. Scroll down to meta
and click on OK. You may be prompted to choose the nearest R repository; the
package should then install without further user input. To find out about the package
type help(package=meta). To make the functions in the package available in
your R session type library(meta).

It is worth noting that meta [5, 6] is not the only R package with functions
for meta-analysis. Other R packages with general methods for meta-analysis are
metafor [10] and rmeta [3], for example. In particular, metafor is a suggested R
package for meta as certain methods, e.g. restricted maximum-likelihood estimator
for the between-study variance and meta-regression methods, are only available
if metafor has been installed. Accordingly, it is recommended to also install R
package metafor.5

See Appendix A.3 for information on R packages not explicitly used in the book.

1.6 A First Meta-Analysis with R

Spooner et al. [7] report a meta-analysis comparing Nedocromil sodium (exper-
imental treatment) with placebo (control) for preventing exercise-induced bron-
choconstriction. The response is the maximum fall in the forced expiratory volume
in 1 second (FEV1) over the course of follow-up, expressed as a percentage. For
each study, mean value, standard deviation and sample size are reported for both
experimental and control group. The mean difference is used as effect measure, i.e.
mean value in Nedocromil sodium group minus mean value in placebo group.

5R command to install R package metafor: install.packages("metafor").

http://meta-analysis-with-r.org/
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> # 1. Load add-on package meta
> library(meta)
Loading ’meta’ package (version 4.0-2).
> # 2. Do meta-analysis
> m <- metacont(Ne, Me, Se, Nc, Mc, Sc,
+ studlab=paste(author, year),
+ data=data1)
> # 3. Produce forest plot
> forest(m, xlab="Maximum % fall in FEV1")

Fig. 1.3 Code for producing forest plot for the bronchoconstriction meta-analysis [7]. The
response is the maximum fall in FEV1 over the course of follow-up, expressed as a percentage
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Fixed effect model
Random effects model
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Fig. 1.4 Forest plot for the bronchoconstriction meta-analysis [7]. For details, see text

We described how to read in the data in Sect. 1.2. The code in Fig. 1.3 carries
out a meta-analysis for these data with continuous response using the metacont
function, and the forest command produces the plot shown in Fig. 1.4.

This figure shows, for each study, the estimated mean difference and its 95 %
confidence interval in the middle of the plot. The area of the square centred on
the estimated mean difference is proportional to the inverse of the variance of the
study estimate resulting in a larger square for studies with more precise results,
i.e. smaller variances. Note the use of the xlab option to label the x-axis. For
each study—labelled by first author and date—we see the data which has been
used in the calculations on the left side of the forest plot. On the right side of the
forest plot, mean difference (MD) and its 95 % confidence interval are depicted.
By default, results for both fixed effect and random effects meta-analysis are
given. The columns labelled W(fixed) and W(random) reflect the percentage
weight given to a study in the respective meta-analysis. Results of fixed effect
or random effects model could be easily removed from the forest plot by using
the arguments comb.fixed=FALSE or comb.random=FALSE in the forest
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function, respectively. In Chap. 2 we discuss the estimation of the overall effect
and its confidence interval, and explain how to control the output of the forest
function.

To conclude this chapter, we make four points about the code in Fig. 1.3, which
are relevant to the rest of the book:

1. We began by typing library(meta), thus making the functions in the R
package meta available. Unless explicitly stated, this should be done before all
the analyses presented in the remainder of the book.

2. Data from the meta-analysis is given to the metacont function through the
arguments of the function which can be extracted by using the args function:

> args(metacont)
function (n.e, mean.e, sd.e, n.c, mean.c, sd.c, studlab,

data = NULL, subset = NULL, sm = .settings$smcont,
pooledvar = .settings$pooledvar, level = .settings$level,

*** Output truncated ***

The key arguments of the metacont function, which are used to provide
the function with the minimum data it needs, are the first six arguments (n.e,
mean.e, sd.e, n.c, mean.c, sd.c) with

• n.e, n.c
the number of patients in the experimental treatment group and control group;

• mean.e, sd.e
the mean and standard deviation of the response in the experimental group,
and

• mean.c, sd.c
the mean and standard deviation of the response in the control group.

When calling the metacont function we are matching up the first argument
n.e of the metacont function with the column Ne of the dataset data1; and
similarly for the other arguments.

3. Notice that as we want to label the studies by their first author and year, we
have to give this information to the metacont function. The paste function
joins strings together, separated by a space. Thus studlab=paste(author,
year) gives the author and year separated by a space. Other arguments of the
metacont function will be explained later in the text.

4. The output of the metacont function is given to a new R object, called m.
This R object is not simply a variable. Instead, it has a specific structure,

consisting of a number of objects, together with additional information. The
additional information means that the object can be used for other purposes
with minimum additional input from the user. Thus the command forest(m)
recognised that object m has been created using data from a meta-analysis; it
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also correctly identifies the variables in the object m needed to produce a forest
plot. Accordingly, we say that the forest function is a generic function which
considers the class of an R object during execution.

This illustrates that R is an object orientated language. Another example is
that we can use the same command, such as summary(m), for any R object
m resulting in different output depending on the class of the R object. R notes
the class of the object we wish to summarise (e.g. meta-analysis, numeric
vector, matrix) and returns an appropriate summary. For example, the following
commands calculate a summary for the numbers from 1 to 10:

> # Class of meta-analysis object m
> class(m)
[1] "metacont" "meta"
> # Assign a numeric vector to object m
> m <- 1:10
> # Class of numeric vector m
> class(m)
[1] "integer"
> # Summary of vector with integers
> summary(m)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 3.25 5.50 5.50 7.75 10.00

Note, the command m <- 1:10 overwrites the existing meta-analysis object
m generated in Fig. 1.3.

1.7 Summary

In this chapter we have sought to introduce new R users to the basics of R necessary
to get the most out of the remainder of this book. Hopefully both the elegance of
R, illustrated by the relatively few commands needed to produce Fig. 1.4, and the
quality of the output have whetted your appetite to read on.
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Part II
Standard Methods



Chapter 2
Fixed Effect and Random Effects Meta-Analysis

In this chapter we describe the two main methods of meta-analysis, fixed effect
model and random effects model, and how to perform the analysis in R. For both
models the inverse variance method is introduced for estimation. The pros and cons
of these methods in various contexts have been debated at length in the literature
[9, 28, 29, 41], without any conclusive resolution. Here, we briefly describe each
model, and how it is estimated in the R package meta [33, 34].1

An estimated treatment effect and its variance from each study are sufficient to
apply the inverse variance method. Therefore, this method is sometimes called the
generic inverse variance method. For the random effects model, various methods to
estimate the between-study variance, the Hartung–Knapp adjustment and prediction
intervals are briefly described.

We also show how to use R to generate forest plots. Along the way, we will show
how the tabular and graphical summaries usually included in Cochrane reviews can
be generated in R. We give examples using both base R and functions provided
by our R package meta. The various methods of meta-analysis are best illustrated
using base R; furthermore some basic R knowledge is gained from working with
fundamental R functions. The R code using functions from the R package meta
shows how routine manipulations and calculations can be automated. In practice a
meta-analyst would like to do the analyses using the more sophisticated functions in
the R package meta. Accordingly, readers not interested in the mathematical details
could run over the examples using base R functions.

We will use a continuous outcome to introduce both fixed effect and ran-
dom effects model. Accordingly, we start by describing the two most common
effect measures for continuous outcomes, mean difference and standardised mean

1If you did not already install R package meta do so using R command install.
packages("meta").

© Springer International Publishing Switzerland 2015
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difference. In Sect. 2.6, the generic inverse variance method is applied in meta-
analyses with survival outcome, cross-over trials and adjusted estimates from
regression models.

2.1 Effect Measures for Continuous Outcomes

Meta-analysis typically focuses on comparing two interventions, which we refer
to as experimental and control. When the response is continuous (i.e. quantitative)
typically the mean, standard deviation and sample size are reported for each group.
Let O�ek; s2ek; nek and O�ck; s2ck; nck denote the observed mean, standard deviation and
sample size for study k, k D 1; : : : ;K (see Table 2.1).

We consider two different types of effect measures for continuous outcomes:
mean difference and standardised mean difference. The mean difference is typically
used when all studies report the outcome on the same scale. On the other hand,
the standardised mean difference can be used when studies measure the outcome on
different scales, e.g. different depression scales like the Hamilton Depression Rating
Scale or the Hospital Anxiety and Depression Scale.

2.1.1 Mean Difference

For study k, the estimated mean difference is

O�k D O�ek � O�ck; (2.1)

Table 2.1 Variable names in R datasets for meta-analyses of continuous responses

Variable name Notation Description

author First author of study

year Year study published (if available)

Ne ne Number of patients in the experimental (i.e. active) treatment arm

Me O�e Mean response in the experimental treatment arm

Se se Standard deviation of the response in the experimental treatment arm

Nc nc Number of patients in the control (often equivalent to placebo) arm

Mc O�c Mean response in the control arm

Sc sc Standard deviation of the response in the control arm
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with variance estimate2

cVar . O�k/ D s2ek

nek
C s2ck

nck
: (2.2)

An approximate two-sided .1� ˛/ confidence interval for the mean difference is
given by

. O�ek � O�ck/ ˙ z1� ˛
2

s

s2ek

nek
C s2ck

nck
(2.3)

with z1� ˛
2

denoting the 1 � ˛
2

quantile of the standard normal distribution. For the
usual 95 % confidence interval, z1� 0:05

2
D z0:975 D 1:96, i.e. the 97.5 % point of the

standard normal distribution.

Example 2.1 We return to the meta-analysis by Spooner et al. [37] comparing
Nedocromil sodium with placebo for preventing exercise-induced bronchoconstric-
tion which we already used in Chap. 1. Outcome of interest is the maximum fall
in the forced expiratory volume in 1 second (FEV1) over the course of follow-up,
expressed as a percentage. Accordingly, all studies report the same outcome and the
use of the mean difference is warranted.

The raw data consist of eight variables with headings in Table 2.1. Code to read
in the data, together with the data, are shown in Fig. 1.2. From the data we see that
the meta-analysis contains 17 studies, with sample sizes ranging between 16 (Shaw
1985; DeBenedictis 1995) and 48 (Novembre 1994f).

For each study (labelled by first author and date) mean values, standard devi-
ations and sample sizes are given in Fig. 1.2. Thus for study 1 (Boner 1988)
the estimated mean difference is 13:54 � 20:77 D �7:23 and for study 2 (Boner
1989) it is 15:70 � 22:70 D �7:00 (see Fig. 1.4). Accordingly, the maximum fall
in FEV1 is on average about 7 % in Boner 1988 and Boner 1989. For study 1
(Boner 1988) the 95 % confidence interval (2.3) is

.13:54� 20:77/ ˙ 1:96

r

13:852

13
C 21:462

13
giving .�21:11; 6:65/:

We can use base R to calculate mean difference and 95 % confidence interval for
the Boner 1988 trial (assuming that the file dataset01.csv is in the current
working directory; see Sect. 1.2 for details):

> # 1. Read in the data
> data1 <- read.csv("dataset01.csv", as.is=TRUE)
> # 2. Calculate mean difference and its standard error for

2Note we could use a pooled estimate of the sample variance, but this assumes that the response
variance is the same in the two groups which will not be true in general.
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> # study 1 (Boner 1988) of dataset data1:
> MD <- with(data1[1,], Me - Mc)
> seMD <- with(data1[1,], sqrt(Seˆ2/Ne + Scˆ2/Nc))
> # 3. Print mean difference and limits of 95% confidence
> # interval using round function to show only two digits:
> round(c(MD, MD + c(-1,1) * qnorm(1-(0.05/2)) * seMD), 2)
[1] -7.23 -21.11 6.65

The values for mean difference, lower and upper limit of the 95 % confidence
interval are identical to those calculated manually.

We can also use the metacont function from R package meta to calculate mean
difference and confidence interval:

> with(data1[1, ],
+ print(metacont(Ne, Me, Se, Nc, Mc, Sc),
+ digits=2))

MD 95%-CI z p-value
-7.23 [-21.11; 6.65] -1.02 0.3074

Details:
- Inverse variance method

We get the same result by using the metacont function with argument
sm="MD" (i.e. summary measure is the Mean Difference) as this is the default
setting.

Note, the printout states that the inverse variance method has been used which
strictly speaking refers to the method of meta-analysis, i.e. a setting with at least two
studies. For a single study this simply means that Eqs. (2.1)–(2.3) have been used in
the calculation of the mean difference and its confidence interval.

Instead of using the with function, a more convenient way is to use the
metacont function with arguments data and subset.

> print(metacont(Ne, Me, Se, Nc, Mc, Sc,
+ data=data1, subset=1), digits=2)

MD 95%-CI z p-value
-7.23 [-21.11; 6.65] -1.02 0.3074
*** Output truncated ***

In addition to mean difference and its 95 % confidence interval, the metacont
function reports z-score and p-value for the test of an overall treatment effect. These
quantities can be calculated using base R functions pnorm and abs as follows:

> zscore <- MD/seMD
> round(c(zscore, 2*pnorm(abs(zscore), lower.tail=FALSE
[1] -1.0206 0.3074

When calling metacont we are matching up the first argument n.e of the
metacont function with the variable Ne of the Boner 1988 trial; and similarly
for the other arguments. In order to access the data of the Boner 1988 trial we use
the argument subset=1 which selects the first row of the dataset data1. A more
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general way to select the Boner 1988 trial which is not relying on the order of
the dataset is subset=(author=="Boner"&year=="1988").3

The argument subset can also be used to exclude some studies, e.g.,
subset=-2 selects all but the second trial, subset=author!="Boner"
excludes all trials from the author Boner, and subset=!(author=="Boner"
&year=="1988") excludes the Boner 1988 trial.4 ut

2.1.2 Standardised Mean Difference

In the bronchoconstriction meta-analysis used in Example 2.1 all studies measured
the outcome of interest on the same scale, so an overall effect can be estimated
directly by pooling the mean differences in the individual studies. However, in many
settings different studies use different outcome scales, e.g. different depression
scales or quality of life scales. In such cases we cannot pool the effect estimates
(mean differences) directly. Instead, we calculate a dimensionless effect measure
from every study and use this for pooling. A very popular dimensionless effect
measure is the standardised mean difference which is the study’s mean difference
divided by a standard deviation based either on a single treatment group or both
treatment groups.

There are a number of formulae in the literature for calculating a standardised
mean difference and its variance; see Chapter 16 of Cooper and Hedges [3] for a
summary. The metacont function from R package meta uses the same estimator
as RevMan 5 [40], i.e. a version of the standardised mean difference which is called
Hedges’s g [15, 16] based on the pooled sample variance. This standardised mean
difference for study k is calculated as:

Ogk D
�

1 � 3

4 nk � 9
� O�ek � O�ck
q

�

.nek � 1/s2ek C .nck � 1/s2ck

�

=.nk � 2/

(2.4)

where nk D nek C nck and the factor 1 � 3=.4 nk � 9/ corrects for the bias in
the estimated standard error. To calculate a confidence interval for Ogk, we need its
variance; again following RevMan 5 this is calculated as [18, page 80, equation (8)]

cVar .Ogk/ D nk

nek � nck
C Og2k
2.nk � 3:94/

: (2.5)

3The parentheses are not mandatory to select Boner 1988; we use them only to make the R code
more accessible.
4The parentheses are mandatory to exclude Boner 1988 using the variables author and year.
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Once Ogk and cVar .Ogk/ are calculated a two-sided (1�˛) confidence interval can be
calculated by

Ogk ˙ z1� ˛
2

S.E. .Ogk/ (2.6)

with standard error S.E. .Ogk/ D
q

cVar .Ogk/ and z1� ˛
2

denoting the 1 � ˛
2

quantile of
the standard normal distribution.

Example 2.2 Furukawa et al. [10] carried out a systematic review comparing low
dosage tricyclic antidepressants with placebo for the treatment of depression. They
reported the effect on presence/absence of depression and on depression severity.
Here we focus on the latter outcome. Unfortunately, different studies used different
scores to measure depression severity, e.g. 19 studies used some version of the
Hamilton Depression Rating Scale and five studies used the Montgomery-Åsberg
Depression Rating Scale. Accordingly, it is not possible to pool the estimated effects
directly.

Figure 2.1 reads in and views the data assuming that the file dataset02.csv
is in the current working directory; see Sect. 1.2 for details. The large differences
in means (columns Me, Mc) and standard deviations (columns Se, Sc) within the
experimental and control arms are typical of what occurs when different studies use
different outcome measures.

For each study (labelled by first author) mean values, standard deviations and
sample sizes are given in Fig. 2.1. For study 1 (Blashki), the standardised mean
difference with its 95 % confidence interval can be calculated using formulae (2.4)
to (2.6) in the following way:

Og1 D
�

1 � 3

4 .13C 18/� 9

�

6:4 � 11:4
p

.12 � 5:42 C 17 � 9:62/=.13C 18 � 2/
D �0:60:

Further

cVar .Og1/ D 13C 18

13 � 18 C �0:602
2 .13C 18 � 3:94/ D 0:1391305

and thus

S.E. .Og1/ D p
0:1391305 D 0:373002:

The 95 % confidence interval is

�0:6 ˙ 1:96 � 0:373002; i.e. .�1:33; 0:13/:
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> # 1. Read in the data:
> data2 <- read.csv("dataset02.csv")
> # 2. As usual, to view an object, type its name:
> data2

author Ne Me Se Nc Mc Sc
1 Blashki(75%150) 13 6.40 5.40 18 11.40 9.60
2 Hormazabal(86) 17 11.00 8.20 16 19.00 8.20
3 Jacobson(75-100) 10 17.50 8.80 6 23.00 8.80
4 Jenkins(75) 7 12.30 9.90 7 20.00 10.50
5 Lecrubier(100) 73 15.70 10.60 73 18.70 10.60
6 Murphy(100) 26 8.50 11.00 28 14.50 11.00
7 Nandi(97) 17 25.50 24.00 10 53.20 11.20
8 Petracca(100) 11 6.20 7.60 10 10.00 7.60
9 Philipp(100) 105 -8.10 3.90 46 -8.50 5.20
10 Rampello(100) 22 13.40 2.30 19 19.70 1.30
11 Reifler(83) 13 12.50 7.60 15 12.50 7.60
12 Rickels(70) 29 1.99 0.77 39 2.54 0.77
13 Robertson(75) 13 11.00 8.20 13 15.00 8.20
14 Rouillon(98) 78 15.80 6.80 71 17.10 7.20
15 Tan(70) 23 -8.50 8.60 23 -8.30 6.00
16 Tetreault(50-100) 11 51.90 18.50 11 74.30 18.50
17 Thompson(75) 11 8.00 8.10 18 10.00 9.70
> # 3. Calculate total sample sizes
> summary(data2$Ne+data2$Nc)

Min. 1st Qu. Median Mean 3rd Qu. Max.
14.00 26.00 31.00 53.06 54.00 151.00

Fig. 2.1 Data from meta analysis by Furukawa et al. [10]. See Table 2.1 for details on the variables
in dataset data2

We can calculate the standardised mean difference, its standard error and 95 %
confidence interval for study 1 (Blashki) using base R:

> # 1. Calculate standardised mean difference (SMD) and
> # its standard error (seSMD) for study 1 (Blashki) of
> # dataset data2:
> N <- with(data2[1,], Ne + Nc)
> SMD <- with(data2[1,],
+ (1 - 3/(4 * N - 9)) * (Me - Mc) /
+ sqrt(((Ne - 1) * Seˆ2 + (Nc - 1) * Scˆ2)/(N - 2)))
> seSMD <- with(data2[1,],
+ sqrt(N/(Ne * Nc) + SMDˆ2/(2 * (N - 3.94))))
> # 2. Print standardised mean difference and limits of 95% CI
> # interval using round function to show only two digits:
> round(c(SMD, SMD + c(-1,1) * qnorm(1-(0.05/2)) * seSMD), 2)
[1] -0.60 -1.33 0.13
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We get the same result by using the metacont function with argument
sm="SMD" (Standardised Mean Difference):

> print(metacont(Ne, Me, Se, Nc, Mc, Sc, sm="SMD",
+ data=data2, subset=1), digits=2)

SMD 95%-CI z p-value
-0.6 [-1.33; 0.13] -1.61 0.1083

Details:
- Inverse variance method

Once the standardised mean difference and its variance have been calculated
using the formulae (2.4) and (2.5), the calculations for both fixed effect and random
effects meta-analyses follow exactly as described in the next section. ut

2.2 Fixed Effect Model

The fixed effect model assumes that the estimated effects from the component
studies in a meta-analysis come from a single homogeneous population. In order
to calculate an overall estimate, we therefore average the estimates from each study,
allowing for the fact that some estimates are more precise than others (having come
from larger studies).

More formally, let k D 1; : : : ;K index study, O�k denote the intervention effect
estimate from study k, and � denote the intervention effect in the population, which
we wish to estimate. Denote by O�2k the sample estimate of Var . O�k/.

The fixed effect model is

O�k D � C �k�k; �k
i.i.d.� N.0; 1/: (2.7)

We now consider the fixed effect estimate of � , denoted by O�F. Given estimates
. O�k; O�k/; k D 1; : : : ;K; the maximum-likelihood estimate under model (2.7) is

O�F D

K
P

kD1
O�k= O�2k

K
P

kD1
1= O�2k

D

K
P

kD1
wk

O�k

K
P

kD1
wk

: (2.8)

Accordingly, O�F is a weighted average of the individual effect estimates O�k with
weights wk D 1= O�2k . Therefore, this method is called the inverse variance method.

The variance of O�F is estimated by

cVar . O�F/ D 1

K
P

kD1
wk

: (2.9)
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A (1 � ˛) confidence interval for O�F can be calculated by

O�F ˙ z1� ˛
2

S.E. . O�F/ (2.10)

with standard error S.E. . O�F/ D
q

cVar . O�F/ and z1� ˛
2

denoting the 1 � ˛
2

quantile
of the standard normal distribution. A corresponding test for an overall treatment

effect can be constructed using O�F

.

S.E. . O�F/ as test statistic.

Example 2.3 The fixed effect estimate O�F and its 95 % confidence interval for the
bronchoconstriction meta-analysis are given in Fig. 1.4; here we show how O�F can
be calculated using R. Recall Eqs. (2.1) and (2.2) which give the mean difference O�k

and its variance estimate cVar . O�k/. The fixed effect estimate O�F and its variance can
be calculated using the following quantities:

O�k D O�k

O�2k D cVar . O�k/:

The fixed effect estimate and its variance can be calculated using base R code:

> # 1. Calculate mean difference, variance and weights
> MD <- with(data1, Me - Mc)
> varMD <- with(data1, Seˆ2/Ne + Scˆ2/Nc)
> weight <- 1/varMD
> # 2. Calculate the inverse variance estimator
> round(weighted.mean(MD, weight), 4)
[1] -15.514
> # 3. Calculate the variance
> round(1/sum(weight), 4)
[1] 1.4126

Note, the standard weighted.mean function is used to calculate O�F.
The meta-analysis can be conducted much easier using the metacont function

which yields identical results:

> mc1 <- metacont(Ne, Me, Se, Nc, Mc, Sc,
+ data=data1,
+ studlab=paste(author, year))
> round(c(mc1$TE.fixed, mc1$seTE.fixedˆ2), 4)
[1] -15.5140 1.4126

We select mc1$TE.fixed, i.e. the Treatment Estimate in the fixed effect
model, and its standard error mc1$seTE.fixed from the meta-analysis object
mc1. We can use the command str(mc1) to print the whole structure of the meta-
analysis object mc1 and look at the help page of the metacont function which
describes the individual elements of mc1.

A complete printout for the meta-analysis is given in Fig. 2.2. The first thing the
output gives is a table whose rows are the component studies in the meta-analysis.



30 2 Fixed Effect and Random Effects Meta-Analysis

MD 95%-CI %W(fixed) %W(random)
Boner 1988 -7.2 [-21.1; 6.7] 2.82 3.08
Boner 1989 -7.0 [-16.2; 2.2] 6.38 6.58
Chudry 1987 -18.4 [-28.8; -8.0] 5.01 5.29
Comis 1993 -16.8 [-27.8; -5.8] 4.50 4.78
DeBenedictis 1994a -13.0 [-22.8; -3.2] 5.68 5.93
DeBenedictis 1994b -16.6 [-35.8; 2.6] 1.47 1.64
DeBenedictis 1995 -13.9 [-27.6; -0.2] 2.87 3.13
Debelic 1986 -18.2 [-30.7; -5.8] 3.52 3.80
Henriksen 1988 -29.7 [-41.6; -17.8] 3.83 4.11
Konig 1987 -14.2 [-25.0; -3.4] 4.65 4.93
Morton 1992 -22.5 [-33.5; -11.5] 4.48 4.76
Novembre 1994f -13.0 [-19.5; -6.6] 12.98 12.15
Novembre 1994s -15.1 [-23.8; -6.4] 7.14 7.28
Oseid 1995 -14.8 [-23.7; -5.9] 6.82 6.99
Roberts 1985 -20.0 [-36.9; -3.1] 1.90 2.10
Shaw 1985 -24.2 [-33.2; -15.1] 6.67 6.85
Todaro 1993 -13.4 [-18.7; -8.1] 19.29 16.58

Number of studies combined: k=17

MD 95%-CI z p-value
Fixed effect model -15.5 [-17.8; -13.2] -13.1 < 0.0001
Random effects model -15.6 [-18.1; -13.2] -12.3 < 0.0001

Quantifying heterogeneity:
tauˆ2 = 2.4374; H = 1.05 [1; 1.35]; Iˆ2 = 8.9% [0%; 45.3%]

Test of heterogeneity:
Q d.f. p-value

17.57 16 0.3496

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tauˆ2

Fig. 2.2 Output from meta-analysis of the bronchoconstriction meta-analysis [37]. The output
starts with a table of the included studies. For each study, the mean difference (MD) with 95 %
confidence interval is given, along with weights used for fixed effect and random effects model.
There are 17 studies in the example. Next, the results of fixed effect and random effects model are
presented with 95 % confidence intervals, z statistic and p-value. Heterogeneity is quantified by the
estimated between-study variance �2, H and I2, see Sects. 2.3 and 2.4, and tested using Cochran’s
Q statistic, see Eq. (2.12). There is not much heterogeneity present in this example. The output
ends with details of the methods used, e.g. how �2 was estimated, see Sect. 2.3.1

This table is also shown in Fig. 1.4 on the right side of the forest plot. The columnMD
is the mean difference of the response (maximum change in FEV1 as a percentage)
between the Nedocromil sodium and placebo group. Next comes a 95 % confidence
interval for this difference, calculated based on (2.3). The next two columns are the
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weights given to the study under the fixed effect (%W(fixed)) and random effects
model (%W(random)).

The weight of study 1 (Boner 1988) in the fixed effect meta-analysis is given
by the inverse of the variance (2.2) which can be calculated as

1

��

13:852

13
C 21:462

13

�

D 1=50:18108 D 0:01992783:

The percentage weight of study 1 (Boner 1988) in the fixed effect meta-
analysis reported in Figs. 1.4 and 2.2 is

100 � w1
P17

iD1 wi

D 100 � 0:01992783
0:7079028

D 2:82%:

We could also use R to calculate these values:

> mc1$w.fixed[1]
[1] 0.01992783
> sum(mc1$w.fixed)
[1] 0.7079028
> round(100*mc1$w.fixed[1] / sum(mc1$w.fixed), 2)
[1] 2.82

After reporting the number of studies combined in meta-analysis, fixed effect
estimate O�F; random effects estimate O�R (see Sect. 2.3) and their 95 % confidence
intervals, z and p-values are given in Fig. 2.2. Next come the measures for
heterogeneity and a test for heterogeneity (see Sect. 2.4). Finally a note indicates
that the “Inverse variance method” has been used. This is in fact the only method
for continuous data; but with binary data (see Chap. 3) we shall see there are other
alternatives.

A forest plot is shown in Fig. 2.3 which has been produced by the R command

> forest(mc1, comb.random=FALSE, xlab=
+ "Difference in mean response (intervention - control)
+ units: maximum % fall in FEV1",
+ xlim=c(-50,10), xlab.pos=-20, smlab.pos=-20)

Note the use of the xlab option to label the x-axis, and in particular how a line
break in the input text creates a line break in the axis label on the graph. The option
xlim=c(-50,10) is used to specify that the limits of the x-axis are between �50
and 10. The options xlab.pos and smlab.pos specify the centre of the label
on x-axis and the summary measure at the top of the figure; otherwise these texts
would be centred around 0.

Note, the meta-analysis could have also been done using the metagen function
which is the primary function in R package meta to conduct a meta-analysis based
on the generic inverse variance method.

> # 1. Apply generic inverse variance method
> mc1.gen <- metagen(mc1$TE, mc1$seTE, sm="MD")
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Study

Fixed effect model
Heterogeneity: I−squared=8.9%, tau−squared=2.437, p=0.3496

Boner 1988
Boner 1989
Chudry 1987
Comis 1993
DeBenedictis 1994a
DeBenedictis 1994b
DeBenedictis 1995
Debelic 1986
Henriksen 1988
Konig 1987
Morton 1992
Novembre 1994f
Novembre 1994s
Oseid 1995
Roberts 1985
Shaw 1985
Todaro 1993

Total

240

 13
 20
 12
 12
 17
  8
 13
 12
 12
 12
 16
 24
 19
 20
  9
  8
 13

Mean

13.54
15.70
21.30
14.50
14.40
14.80
15.70
29.83
17.50
12.00
15.83
15.42
11.00
14.10
18.90
10.27
10.10

SD

13.85
13.10
13.10
12.20
11.10
18.60
16.80
15.95
13.10
14.60
13.43
 8.35
12.40
 9.50
17.70
 7.02
 8.90

Experimental
Total

240

 13
 20
 12
 12
 17
  8

 13
 12
 12
 12
 16
 24
 19
 20
  9
  8

 13

Mean

20.77
22.70
39.70
31.30
27.40
31.40
29.60
48.08
47.20
26.20
38.36
28.46
26.10
28.90
38.90
34.43
23.50

SD

21.46
16.47
12.90
15.10
17.30
20.60
18.90
15.08
16.47
12.30
18.01
13.84
14.90
18.00
18.90
10.96
 4.00

Control

−50 −40 −30 −20 −10 0 10

Mean difference

Difference in mean response (intervention − control)
units: maximum % fall in FEV1

MD

−15.51

 −7.23
 −7.00

−18.40
−16.80
−13.00
−16.60
−13.90
−18.25
−29.70
−14.20
−22.53
−13.04
−15.10
−14.80
−20.00
−24.16
−13.40

95%−CI

[−17.84; −13.18]

[−21.11;   6.65]
[−16.22;   2.22]

[−28.80;  −8.00]
[−27.78;  −5.82]
[−22.77;  −3.23]
[−35.83;   2.63]

[−27.65;  −0.15]
[−30.67;  −5.83]

[−41.61; −17.79]
[−25.00;  −3.40]

[−33.54; −11.52]
[−19.51;  −6.57]
[−23.82;  −6.38]
[−23.72;  −5.88]
[−36.92;  −3.08]

[−33.18; −15.14]
[−18.70;  −8.10]

W(fixed)

100%

 2.8%
 6.4%
 5.0%
 4.5%
 5.7%
 1.5%
 2.9%
 3.5%
 3.8%
 4.7%
 4.5%
13.0%
 7.1%
 6.8%
 1.9%
 6.7%
19.3%

Fig. 2.3 Forest plot for the bronchoconstriction meta-analysis [37]. For details, see text

> # 2. Same result
> mc1.gen <- metagen(TE, seTE, data=mc1, sm="MD")
> # 3. Print results for fixed effect and random effects method
> c(mc1$TE.fixed, mc1$TE.random)
[1] -15.51403 -15.64357
> c(mc1.gen$TE.fixed, mc1.gen$TE.random)
[1] -15.51403 -15.64357

In steps 1 and 2, the generic inverse variance method is applied using the
metagen function; we use the list elements mc1$TE (treatment effect) and
mc1$seTE (standard error) as inputs to the metagen function. Output of resulting
objectmc1.gen is identical to results using the metacont function as exemplified
in step 3 for the fixed effect and random effects estimates. Applying the metagen
function in this way seems rather artificial, however, as we will see in Sect. 2.6 this
function can be used to conduct a meta-analysis for other outcomes. ut

Following RevMan 5, the following quantities are used to estimate the standard-
ised mean difference in the fixed effect model:

O�k D Ogk

O�2k D cVar .Ogk/

with Ogk and cVar .Ogk/ defined in (2.4) and (2.5). These quantities are utilised in
formulae (2.8)–(2.10) to calculate the fixed effect estimate of the standardised mean
difference.
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Example 2.4 For the standardised mean difference, we can calculate the fixed effect
estimate and its variance using base R:

> # 1. Calculate standardised mean difference,
> # variance and weights
> N <- with(data2, Ne + Nc)
> SMD <- with(data2,
+ (1 - 3/(4 * N - 9)) * (Me - Mc)/
+ sqrt(((Ne - 1) * Seˆ2 + (Nc - 1) * Scˆ2)/(N - 2)))
> varSMD <- with(data2,
+ N/(Ne * Nc) + SMDˆ2/(2 * (N - 3.94)))
> weight <- 1/varSMD
> # 2. Calculate the inverse variance estimator
> round(weighted.mean(SMD, weight), 4)
[1] -0.3915
> # 3. Calculate the variance
> round(1/sum(weight), 4)
[1] 0.0049

Again, the meta-analysis can be conducted using the metacont function:

> mc2 <- metacont(Ne, Me, Se, Nc, Mc, Sc, sm="SMD",
+ data=data2)
> round(c(mc2$TE.fixed, mc2$seTE.fixedˆ2), 4)
[1] -0.3915 0.0049

A complete summary for the meta-analysis is given in Fig. 2.4. ut

> print(summary(mc2), digits=2)
Number of studies combined: k=17

SMD 95%-CI z p-value
Fixed effect model -0.39 [-0.53; -0.25] -5.61 < 0.0001
Random effects model -0.59 [-0.87; -0.30] -4.04 < 0.0001

Quantifying heterogeneity:
tauˆ2 = 0.2309; H = 1.91 [1.5; 2.43]; Iˆ2 = 72.5% [55.4%; 83.1%]

Test of heterogeneity:
Q d.f. p-value

58.27 16 < 0.0001

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tauˆ2

Fig. 2.4 Output from meta-analysis of the tricyclic antidepressants for depression [10]. The output
is organised similar to Fig. 2.2, except that information on individual studies is omitted by using
the summary.meta function
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2.3 Random Effects Model

The random effects model seeks to account for the fact that the study effect estimates
O�k are often more variable than assumed in the fixed effect model. Under the random
effects model,

O�k D � C uk C �k�k; �k
i.i.d.� N.0; 1/I uk

i.i.d.� N.0; �2/; (2.11)

where the u’s and �’s are independent. Comparing with (2.7) shows the random
effects model has the fixed effect model as a special case when �2 D 0: A key
assumption of the random effects model is that the uk we see in our data are not
intrinsically associated with study kI if study k was rerun, the new uk would be an
independent draw from N.0; �2/: This is known as the exchangeability assumption.
If we accept this assumption then, compared with the fixed effect model, calculating
an overall effect estimate will pay greater attention to the effect estimates from
the smaller studies. This difference with the fixed effect model lies at the heart
of discussions about whether the random effects model is appropriate. A number
of authors have argued that, as small studies are more susceptible to bias, the fixed
effect estimate is (almost) always preferable [11, 30].

Under the random effects model there are a number of options for estimating
� , Var . O�/ and �2. Maximum-likelihood is attractive, but the resulting variance
estimates are biased downwards if the number of studies is small. This has led to
the widespread use of the method of moments estimate proposed by DerSimonian
and Laird [7], which has the attraction that it can be readily calculated when the
response is discrete, when maximum-likelihood estimation is less straightforward.

Again, the default settings in the metacont function are the same as those in
RevMan 5. Define

Q D
K
X

kD1
wk. O�k � O�F/

2 (2.12)

the weighted sum of squares about the fixed effect estimate with wk D 1= O�2k . This
is usually referred to as either the homogeneity test statistic or the heterogeneity
statistic [18, p. 266, 290]. Next define

S D
K
X

kD1
wk �

K
P

kD1
w2k

K
P

kD1
wk

:

If Q < .K � 1/; then O�2 is set to 0 and the random effects estimate O�R is set equal
to the fixed effect estimate O�F: Otherwise, the DerSimonian–Laird estimator of the
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between-study variance is defined as

O�2 D Q � .K � 1/
S

and the random effects estimate and its variance are given by

O�R D

K
P

kD1
w�

k
O�k

K
P

kD1
w�

k

(2.13)

cVar . O�R/ D 1

K
P

kD1
w�

k

: (2.14)

with weights w�
k D 1=. O�2k C O�2/. The random effects estimator O�R is a weighted

average of the individual effect estimates O�k with weights 1=. O�2k C O�2/. Accordingly,
this method is often called “Inverse variance method”, too.

A (1�˛) confidence interval for O�R can be calculated by

O�R ˙ z1� ˛
2

S.E. . O�R/ (2.15)

with standard error S.E. . O�R/ D
q

cVar . O�R/ and z1� ˛
2

denoting the 1 � ˛
2

quantile
of the standard normal distribution. A corresponding test for an overall treatment

effect can be constructed using O�R

.

S.E. . O�R/ as test statistic.

Note, formulae (2.13)–(2.15) are used for the standardised mean difference, too.
The method used to estimate the between-study variance �2 may have a large

impact on the weighting of studies. Several method to estimate �2 besides the
DerSimonian–Laird method have been published in the literature. These methods
will be described in the next Sect. 2.3.1.

Example 2.5 The result for the random effects model fitted to the bronchoconstric-
tion dataset is given in Fig. 2.2. The weight of study 1 (Boner 1988) is

100 � w�
1

PK
iD1 w�

i

D 100 � 0:019005
0:6179183

D 3:08:

The random effects estimate is very similar to the fixed effect estimate ( O�F D
�15:5, O�R D �15:6); likewise confidence interval limits are similar. ut
Example 2.6 For the depression meta-analysis fixed effect and random effects
estimates are rather different ( O�F D �0:39, O�R D �0:59), see Fig. 2.4. Furthermore,
the confidence interval for the random effects model is much wider. Nevertheless,
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both models show a highly statistically significant beneficial effect of tricyclic
antidepressants on depression severity. ut

2.3.1 Estimation of Between-Study Variance

The following methods to estimate the between-study variance �2 are available in
the metagen and other functions of R package meta (argument method.tau):

• DerSimonian–Laird estimator [7] (method.tau="DL") (default)
• Paule–Mandel estimator [27] (method.tau="PM")
• Restricted maximum-likelihood estimator [43] (method.tau="REML")
• Maximum-likelihood estimator [43] (method.tau="ML")
• Hunter–Schmidt estimator [22, 43] (method.tau="HS")
• Sidik–Jonkman estimator [35] (method.tau="SJ")
• Hedges estimator [17] (method.tau="HE")
• Empirical Bayes estimator [39] (method.tau="EB").

The DerSimonian–Laird estimator is by far the most popular method, especially
in medical research. For example, the DerSimonian–Laird estimator is the only
method available in RevMan 5 [40]. Accordingly, this method is the default in R
package meta.

The properties of these estimators have been evaluated in Monte Carlo sim-
ulations [36, 43] as well as analytically [43]. Results of these evaluations are
inconsistent, recommending the restricted maximum-likelihood estimator [43] and
Sidik–Jonkman or Empirical Bayes estimator [36], respectively.

As a technical note, with exception of the DerSimonian–Laird and the Paule–
Mandel methods the rma.uni function of R package metafor is called internally
in the metagen function. Thus, it is a good idea to install R package metafor to
make all estimation methods available.5 Further details on the various methods are
provided in the help page of the rma.uni function.

Example 2.7 A forest plot with results for the various estimates of �2 in the bron-
choconstriction dataset is shown in Fig. 2.5.6 Results are similar for DerSimonian–
Laird, restricted maximum-likelihood and empirical Bayes estimator. Whereas the
Sidik–Jonkman estimator is surprisingly large, other estimators (i.e. Paule–Mandel,
maximum-likelihood, Hunter–Schmidt and Hedges) are rather small. The very large
estimate of �2 from the Sidik–Jonkman method cautions against relying exclusively
on this approach. ut

5R command: install.packages("metafor").
6R code to create the forest plot is given in the web-appendix.



2.3 Random Effects Model 37

Method

Fixed−effect model 

Random−effect model
DerSimonian−Laird
Paule−Mandel
Restricted maximum−likelihood
Maximum−likelihood
Hunter−Schmidt
Sidik−Jonkman
Hedges
Empirical Bayes

Between−study
heterogeneity

0

2.44
0

2.52
0.06
0.81

15.75
0

2.48

−20 −18 −16 −14 −12

MD

−15.51

−15.64
−15.51
−15.65
−15.52
−15.56
−15.96
−15.51
−15.65

95%−CI

[−17.84; −13.18]

[−18.14; −13.15]
[−17.84; −13.18]
[−18.15; −13.15]
[−17.85; −13.18]
[−17.95; −13.18]
[−19.10; −12.81]
[−17.84; −13.18]
[−18.14; −13.15]

Fig. 2.5 Forest plot for the bronchoconstriction meta-analysis [37] comparing estimation methods
for between-study heterogeneity �2

2.3.2 Hartung–Knapp Adjustment

Hartung and Knapp [14, 25] introduced a new meta-analysis method based on a
refined variance estimator in the random effects model. It has been argued in a recent
publication in the Annals of Internal Medicine that the Hartung–Knapp method is
preferred over the DerSimonian–Laird method [4].

Instead of using the variance estimate given in Eq. (2.14), Hartung and Knapp
propose to use the following variance estimator for O�R:

cVar HK. O�R/ D 1

K � 1
K
X

kD1

w�
k

w�
� O�k � O�R

�2

(2.16)

with weights w�
k as given in Eq. (2.14) and w� D PK

kD1 w�
k .

Hartung [13] showed that

O�R � �

S.E. HK. O�R/

with standard error S.E. HK. O�R/ D
q

cVar HK. O�R/ follows a t-distribution with K � 1

degrees of freedom.
Accordingly, a (1�˛) confidence interval for O�R based on the Hartung–Knapp

method can be calculated by

O�R ˙ tK�1I1� ˛
2

S.E. HK. O�R/ (2.17)
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with tK�1I1� ˛
2

denoting the 1 � ˛
2

quantile of the t-distribution with K � 1 degrees
of freedom. A corresponding test for an overall treatment effect can be constructed

using O�R

.

S.E. HK. O�R/ as test statistic.

It has been shown in simulations [25] that a test based on the Hartung–Knapp
modification holds the prespecified significance level much better than tests based
on S.E. . O�F/ and S.E. . O�R/.

Example 2.8 Results of fixed effect and random effects model to evaluate the use
of tricyclic antidepressants for depression [10] are reported in Fig. 2.4.

We can either use the metacont function to conduct the Hartung–Knapp
adjustment

> mc2.hk <- metacont(Ne, Me, Se, Nc, Mc, Sc, sm="SMD",
+ data=data2, comb.fixed=FALSE,
+ hakn=TRUE)

or the metagen function

> mc2.hk <- metagen(TE, seTE, data=mc2, comb.fixed=FALSE,
+ hakn=TRUE)

We print the summary of the meta-analysis in the usual way.

> print(summary(mc2.hk), digits=2)
Number of studies combined: k=17

95%-CI t p-value
Random effects model -0.59 [-0.95; -0.22] -3.4 0.0036

Quantifying heterogeneity:
tauˆ2 = 0.2309; H = 1.91 [1.5; 2.43]; Iˆ2 = 72.5% [55.4%; 83.1%]

Test of heterogeneity:
Q d.f. p-value

58.27 16 < 0.0001

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tauˆ2
- Hartung-Knapp adjustment for random effects model

Use of the Hartung–Knapp method yields a much wider 95 % confidence interval
as compared to the classic random effects model (see Fig. 2.4): Œ�0:95I �0:22�
versus Œ�0:87I �0:30�. Furthermore, using the test for an overall treatment effect is
based on a t-distribution with K � 1 degrees of freedom. Accordingly, the p-value is
much larger (p D 0:0036) as compared to the p-value of the classic random effects
method (p < 0:0001, see Fig. 2.4). Nonetheless, the test for an overall treatment
effect is still highly significant. ut
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2.3.3 Prediction Intervals

The confidence interval for the random effects estimator O�R given by Eq. (2.15)
describes the uncertainty in the estimation of the mean treatment effect. However,
in order to calculate a prediction interval [21] for the treatment effect in a future
study from the random effects model (2.11), we need to take into account not
only uncertainty in estimating the mean treatment effect but also the between-study
variance �2:

Such a (1� ˛) prediction interval can be calculated as

O�R ˙ tK�2;1� ˛
2

q

cVar . O�R/C O�2; (2.18)

where we include the estimate of � in the variance, and tK�2;1� ˛
2

denotes the 1 � ˛
2

quantile of the t-distribution with K � 2 degrees of freedom.

Example 2.9 In the R package meta a prediction interval can be printed in
several ways. We can use the argument prediction=TRUE in the creation of
a meta-analysis object using the metacont function.7 Or, we can specify the
prediction argument in a summary, forest or print command. In the
following R code we use the prediction argument in the summary.meta
command.

> print(summary(mc1, prediction=TRUE), digits=2)
Number of studies combined: k=17

MD 95%-CI z p-value
Fixed effect model -15.51 [-17.84; -13.18] -13.05 < 0.0001
Random effects model -15.64 [-18.14; -13.15] -12.30 < 0.0001
Prediction interval [-19.94; -11.35]
*** Output truncated ***

The result for the prediction interval is printed just below the results for the two
meta-analysis methods. Note that the point estimate, i.e. the random effects estimate
O�R, is not reported for a prediction interval. In the bronchoconstriction meta-analysis
the prediction interval is .�19:94;�11:35/: Therefore, in a new study we expect an
average treatment effect of more than 11 %.

A forest plot showing a prediction interval can be easily generated using the
following command:

> forest(mc1, prediction=TRUE, col.predict="black")

This is shown in Fig. 2.6. The prediction interval is shown as a bar below the two
diamonds for the meta-analysis results. We changed the colour of the bar to black;
by default, a red bar would be printed. ut

7We did not do this in the creation of R object mc1.
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Study

Fixed effect model
Random effects model

Heterogeneity: I−squared=8.9%, tau−squared=2.437, p=0.3496
Prediction interval

Boner 1988
Boner 1989
Chudry 1987
Comis 1993
DeBenedictis 1994a
DeBenedictis 1994b
DeBenedictis 1995
Debelic 1986
Henriksen 1988
Konig 1987
Morton 1992
Novembre 1994f
Novembre 1994s
Oseid 1995
Roberts 1985
Shaw 1985
Todaro 1993

Total

240

 13
 20
 12
 12
 17
  8

 13
 12
 12
 12
 16
 24
 19
 20
  9
  8

 13

Mean

13.54
15.70
21.30
14.50
14.40
14.80
15.70
29.83
17.50
12.00
15.83
15.42
11.00
14.10
18.90
10.27
10.10

SD

13.85
13.10
13.10
12.20
11.10
18.60
16.80
15.95
13.10
14.60
13.43
 8.35

12.40
 9.50

17.70
 7.02
 8.90

Experimental
Total

240

 13
 20
 12
 12
 17
  8

 13
 12
 12
 12
 16
 24
 19
 20
  9
  8

 13

Mean

20.77
22.70
39.70
31.30
27.40
31.40
29.60
48.08
47.20
26.20
38.36
28.46
26.10
28.90
38.90
34.43
23.50

SD

21.46
16.47
12.90
15.10
17.30
20.60
18.90
15.08
16.47
12.30
18.01
13.84
14.90
18.00
18.90
10.96
 4.00

Control
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Mean difference
MD

−15.51
−15.64
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 −7.00

−18.40
−16.80
−13.00
−16.60
−13.90
−18.25
−29.70
−14.20
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−14.80
−20.00
−24.16
−13.40

95%−CI

[−17.84; −13.18]
[−18.14; −13.15]
[−19.94; −11.35]

[−21.11;   6.65]
[−16.22;   2.22]

[−28.80;  −8.00]
[−27.78;  −5.82]
[−22.77;  −3.23]
[−35.83;   2.63]

[−27.65;  −0.15]
[−30.67;  −5.83]
[−41.61; −17.79]
[−25.00;  −3.40]
[−33.54; −11.52]
[−19.51;  −6.57]
[−23.82;  −6.38]
[−23.72;  −5.88]
[−36.92;  −3.08]
[−33.18; −15.14]
[−18.70;  −8.10]

W(fixed)

100%
−−

 2.8%
 6.4%
 5.0%
 4.5%
 5.7%
 1.5%
 2.9%
 3.5%
 3.8%
 4.7%
 4.5%

13.0%
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 6.8%
 1.9%
 6.7%

19.3%

W(random)

−−
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 3.1%
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 4.8%
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 3.1%
 3.8%
 4.1%
 4.9%
 4.8%
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 2.1%
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16.6%

Fig. 2.6 Forest plot for the bronchoconstriction meta-analysis [37] showing a prediction interval
which was generated using argument prediction=TRUE in the forest.meta command

2.4 Tests and Measures of Heterogeneity

There are a number of heterogeneity measures in the literature [19, 32]. The most
commonly used measures are calculated by the metacont function, and we now
briefly describe them. More details on these measures are given in Sect. 4.2.

The first, Q, defined in (2.12), is the weighted sum of squares about the fixed
effect estimate O�F. Large values of Q indicate greater heterogeneity between the
individual studies in a meta-analysis, and greater values of the between-study
heterogeneity �2. Under the null hypothesis that �2 D 0;

Q � �2K�1;

and this can be used to calculate a p-value against this null hypothesis.
Two related statistics [20] are commonly quoted:

H2 D Q

K � 1
(2.19)

I2 D
	

.H2 � 1/=H2 if Q > .K � 1/
0 otherwise

(2.20)

Under the null hypothesis that �2 D 0; Q has mean K � 1; so H2 has mean 1;
again large values of H2 indicate greater heterogeneity. I2 is a scaled version of H2;

lying between 0 and 1 (or 0 % and 100 %). Again, large values are consistent with
heterogeneity, although for given �2; values of I2 will increase as the sample sizes
of the component trials increase [32].



2.5 Subgroup Analysis 41

Example 2.10 For the bronchoconstriction meta-analysis, estimates of the measures
of heterogeneity (�2 D 2:44, H D 1:05 Œ1I 1:35�, I2 D 8:9% Œ0%I 45:3%�) and the
test for heterogeneity (Q D 17:57, p-value D 0:35) are given in Fig. 2.2. All these
quantities indicate that not much statistical heterogeneity is present. Accordingly,
as both fixed effect and random effects are similar and show very strong evidence
of an effect, and there is no evidence of heterogeneity, we conclude there is strong
evidence Nedocromil sodium ameliorates post-exercise bronchoconstriction. ut
Example 2.11 For the depression meta-analysis, estimates of the measures of
heterogeneity (�2 D 0:23, H D 1:91 Œ1:5I 2:43�, I2 D 72:5% Œ55:4%I 83:1%�)
and the test for heterogeneity (Q D 58:27, p-value < 0:0001) can be found
in Fig. 2.4. All these quantities indicate that very large statistical heterogeneity
is present. Despite this very large statistical heterogeneity both fixed effect and
random effects meta-analysis show a statistically significant beneficial effect of
tricyclic antidepressants. Furthermore, only 1 of 17 trials shows a detrimental effect
of tricyclic antidepressants. Accordingly, we conclude there is strong evidence for
a beneficial effect of tricyclic antidepressants; however, the size of the effect is
unclear. ut

2.5 Subgroup Analysis

From time to time we need to work with subgroups of studies in a meta-analysis.
The various R commands for meta-analysis in the R package meta support a
byvar option, i.e. conduct a subgroup analysis by a variable, which makes this
straightforward. We now illustrate its use. More technical details on subgroup
analyses are provided in Sect. 4.3.

Example 2.12 Poole and Black [31] report a meta-analysis of mucolytic agents
versus placebo for patients with chronic bronchitis and/or chronic obstructive
pulmonary disease. The outcome is the mean number of acute exacerbations per
month. Acute exacerbation is defined as an increase in cough and in the volume
and/or purulence of sputum. As all studies report a mean number of exacerbations,
we can work with mean differences, rather than standardised mean differences. R
code to read in the data is given in Fig. 2.7. Notice that studies 5 and 12 (Jackson
1984, Grillage 1985) have zero standard errors.

We do a meta-analysis of the chronic bronchitis data using the following R
command:

> mc3 <- metacont(Ne, Me, Se, Nc, Mc, Sc, data=data3,
+ studlab=paste(author, year))
Warning message:
In metacont(Ne, Me, Se, Nc, Mc, Sc, data = data3, :

Studies with non-positive values for sd.e or sd.c get no weight
in meta-analysis.
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> # 1. Read in the data:
> data3 <- read.csv("dataset03.csv")
> # 2. As usual, to view an object, type its name:
> data3

author year Ne Me Se Nc Mc Sc duration
1 Bontognali 1991 30 0.70 3.76 30 1.27 4.58 <= 3 months
2 Castiglioni 1986 311 0.10 0.21 302 0.20 0.29 <= 3 months
3 Cremonini 1986 21 0.25 0.23 20 0.71 0.29 <= 3 months
4 Grassi 1994 42 0.16 0.29 41 0.45 0.43 <= 3 months
5 Jackson 1984 61 0.11 0.00 60 0.13 0.00 <= 3 months
6 Allegra 1996 223 0.07 0.11 218 0.11 0.14 > 3 months
7 Babolini 1980 254 0.13 0.18 241 0.33 0.27 > 3 months
8 Boman 1983 98 0.20 0.27 105 0.32 0.30 > 3 months
9 Borgia 1981 10 0.05 0.08 9 0.15 0.17 > 3 months
10 Decramer 2005 256 0.10 0.11 267 0.11 0.16 > 3 months
11 Grassi 1976 35 0.14 0.15 34 0.27 0.21 > 3 months
12 Grillage 1985 54 0.10 0.00 55 0.12 0.00 > 3 months
13 Hansen 1994 59 0.11 0.15 70 0.16 0.19 > 3 months
14 Malerba 2004 115 0.06 0.08 119 0.07 0.08 > 3 months
15 McGavin 1985 72 0.42 0.34 76 0.52 0.35 > 3 months
16 Meister 1986 90 0.15 0.15 91 0.20 0.19 > 3 months
17 Meister 1999 122 0.06 0.15 124 0.10 0.15 > 3 months
18 Moretti 2004 63 0.12 0.14 61 0.17 0.17 > 3 months
19 Nowak 1999 147 0.03 0.06 148 0.06 0.12 > 3 months
20 Olivieri 1987 110 0.18 0.31 104 0.33 0.41 > 3 months
21 Parr 1987 243 0.18 0.21 210 0.21 0.21 > 3 months
22 Pela 1999 83 0.17 0.18 80 0.29 0.32 > 3 months
23 Rasmussen 1988 44 0.13 0.21 47 0.14 0.19 > 3 months

Fig. 2.7 Reading in data from meta-analysis of mucolytic agents versus placebo for patients with
chronic bronchitis and/or chronic obstructive pulmonary disease [31]

A warning has been printed for studies with zero weights. We can verify that
these are the Jackson 1984 and Grillage 1985 trials:

> mc3$studlab[mc3$w.fixed==0]
[1] "Jackson 1984" "Grillage 1985"

The result of the meta-analysis is given by

> print(summary(mc3), digits=2)
Number of studies combined: k=21

MD 95%-CI z p-value
Fixed effect model -0.05 [-0.05; -0.04] -10.06 < 0.0001
Random effects model -0.08 [-0.11; -0.05] -5.82 < 0.0001

Quantifying heterogeneity:
tauˆ2 = 0.0027; H = 2.63 [2.19; 3.15]; Iˆ2 = 85.5% [79.1%; 89.9%]

Test of heterogeneity:
Q d.f. p-value

138.08 20 < 0.0001
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tauˆ2
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The results indicate significant between-study heterogeneity (Q D 138, p <

0:0001) with I2 D 85:5%: Looking at the data (Fig. 2.7), subgroup information is
available for study duration: studies whose duration was greater or less than three
months.

A subgroup analysis can be done by using argument byvar in the original call
of the metacont function:

> mc3s <- metacont(Ne, Me, Se, Nc, Mc, Sc, data=data3,
+ studlab=paste(author, year),
+ byvar=duration, print.byvar=FALSE)

Another more convenient way is to update the original meta-analysis by using
the update.meta function from R package meta:8

> mc3s <- update(mc3, byvar=duration, print.byvar=FALSE)

The update.meta function is a wrapper function for the metacont function
as well as other R functions discussed in the following chapters. Using the
update.meta function we only have to specify arguments that should be changed
as all other arguments are kept fixed. Note, in order for the update.meta
function to work the data used in the original function call has to be part of R
object mc3. This is—by default—the case as argument keepdata is equal to
TRUE. Applying the update.meta function to an R object that was created with
argument keepdata=FALSE would result in a descriptive warning message.

Results of a meta-analysis with subgroups are given by the following R com-
mand.

> print(summary(mc3s), digits=2)
Number of studies combined: k=21

MD 95%-CI z p-value
Fixed effect model -0.05 [-0.05; -0.04] -10.06 < 0.0001
Random effects model -0.08 [-0.11; -0.05] -5.82 < 0.0001

Quantifying heterogeneity:
tauˆ2 = 0.0027; H = 2.63 [2.19; 3.15]; Iˆ2 = 85.5% [79.1%; 89.9%]

Test of heterogeneity:
Q d.f. p-value

138.08 20 < 0.0001

Results for subgroups (fixed effect model):
k MD 95%-CI Q tauˆ2 Iˆ2

<= 3 months 4 -0.13 [-0.17; -0.09] 22.43 0.035 86.6%
> 3 months 17 -0.04 [-0.05; -0.03] 94.92 0.002 83.1%

Test for subgroup differences (fixed effect model):
Q d.f. p-value

8R function update is a generic function like print or summary.
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Between groups 20.73 1 < 0.0001
Within groups 117.35 19 < 0.0001

Results for subgroups (random effects model):
k MD 95%-CI Q tauˆ2 Iˆ2

<= 3 months 4 -0.28 [-0.50; -0.05] 22.43 0.035 86.6%
> 3 months 17 -0.06 [-0.09; -0.04] 94.92 0.002 83.1%

Test for subgroup differences (random effects model):
Q d.f. p-value

Between groups 3.41 1 0.0647

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tauˆ2

The results for the fixed effect model show that between-group heterogeneity
is highly statistically significant (Q D 20:73 on 1 degrees of freedom) as well as
within-group heterogeneity (Q D 117:35, 19 degrees of freedom). Further, the
fixed effect estimates (�0:13, short duration; �0:04, long duration) are not that
different. While short duration studies seem to have far fewer patients, the effect
appears similar; study duration does not appear to be the source of the high degree
of heterogeneity in these data. This observation is supported by the results for
the random effects model (between-study heterogeneity: Q D3.41, 1 degrees of
freedom).

A forest plot with subgroups for length of duration, which is shown in Fig. 2.8,
can be produced using the following R command.

> forest(mc3s, xlim=c(-0.5, 0.2),
+ xlab="Difference in mean number of acute exacerbations

per month")

The argument subset which has been used before to select a single study can
also be used to conduct a meta-analysis of a subgroup of studies, e.g. for studies
with short study duration:

> print(metacont(Ne, Me, Se, Nc, Mc, Sc, data=data3,
+ subset=duration=="<= 3 months",
+ studlab=paste(author, year)),
+ digits=2)

*** Output truncated ***
Number of studies combined: k=4

MD 95%-CI z p-value
Fixed effect model -0.13 [-0.17; -0.09] -6.78 < 0.0001
Random effects model -0.28 [-0.50; -0.05] -2.43 0.0153
*** Output truncated ***

Or alternatively using the update.meta function:

> print(update(mc3, subset=duration=="<= 3 months"),
+ digits=2)
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Study

Fixed effect model
Random effects model
Heterogeneity: I−squared=85.5%, tau−squared=0.0027, p<0.0001

<= 3 months

> 3 months 

Fixed effect model

Fixed effect model

Random effects model

Random effects model

Heterogeneity: I−squared=86.6%, tau−squared=0.035, p<0.0001

Heterogeneity: I−squared=83.1%, tau−squared=0.002, p<0.0001

Bontognali 1991
Castiglioni 1986
Cremonini 1986
Grassi 1994
Jackson 1984

Allegra 1996
Babolini 1980
Boman 1983
Borgia 1981
Decramer 2005
Grassi 1976
Grillage 1985
Hansen 1994
Malerba 2004
McGavin 1985
Meister 1986
Meister 1999
Moretti 2004
Nowak 1999
Olivieri 1987
Parr 1987
Pela 1999
Rasmussen 1988

Total

2543

 465

2078

  30
 311
  21
  42
  61

 223
 254
  98
  10
 256
  35
  54
  59
 115
  72
  90
 122
  63
 147
 110
 243
  83
  44

Mean

0.70
0.10
0.25
0.16
0.11

0.07
0.13
0.20
0.05
0.10
0.14
0.10
0.11
0.06
0.42
0.15
0.06
0.12
0.03
0.18
0.18
0.17
0.13

SD

3.76
0.21
0.23
0.29
0.00

0.11
0.18
0.27
0.08
0.11
0.15
0.00
0.15
0.08
0.34
0.15
0.15
0.14
0.06
0.31
0.21
0.18
0.21

Experimental
Total

2512

 453

2059

  30
 302
  20
  41
  60

 218
 241
 105
   9

 267
  34
  55
  70
 119
  76
  91
 124
  61
 148
 104
 210
  80
  47

Mean

1.27
0.20
0.71
0.45
0.13

0.11
0.33
0.32
0.15
0.11
0.27
0.12
0.16
0.07
0.52
0.20
0.10
0.17
0.06
0.33
0.21
0.29
0.14

SD

4.58
0.29
0.29
0.43
0.00

0.14
0.27
0.30
0.17
0.16
0.21
0.00
0.19
0.08
0.35
0.19
0.15
0.17
0.12
0.41
0.21
0.32
0.19

Control

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2

Mean difference

Difference in mean number of acute exacerbations per month

MD

−0.05
−0.08

−0.13

−0.04

−0.28

−0.06

−0.57
−0.10
−0.46
−0.29
−0.02

−0.04
−0.20
−0.12
−0.10
−0.01
−0.13
−0.02
−0.05
−0.01
−0.10
−0.05
−0.04
−0.05
−0.03
−0.15
−0.03
−0.12
−0.01

95%−CI

[−0.05; −0.04]
[−0.11; −0.05]

[−0.17; −0.09]

[−0.05; −0.03]

[−0.50; −0.05]

[−0.09; −0.04]

[−2.69;  1.55]
[−0.14; −0.06]
[−0.62; −0.30]
[−0.45; −0.13]

[−0.06; −0.02]
[−0.24; −0.16]
[−0.20; −0.04]
[−0.22;  0.02]
[−0.03;  0.01]

[−0.22; −0.04]

[−0.11;  0.01]
[−0.03;  0.01]
[−0.21;  0.01]
[−0.10;  0.00]
[−0.08;  0.00]
[−0.10;  0.00]

[−0.05; −0.01]
[−0.25; −0.05]
[−0.07;  0.01]

[−0.20; −0.04]
[−0.09;  0.07]

W(fixed)

100%
−−

 5.5%

94.5%

−−

−−

 0.0%
 4.9%
 0.3%
 0.3%
 0.0%

14.2%
 4.8%
 1.3%
 0.5%

14.3%
 1.1%
 0.0%
 2.3%

18.7%
 0.6%
 3.2%
 5.6%
 2.6%

16.8%
 0.8%
 5.2%
 1.2%
 1.2%

W(random)

−−
100%

−−

−−

10.3%

89.7%

 0.0%
 6.2%
 2.1%
 2.1%
 0.0%

 6.7%
 6.1%
 4.5%
 3.0%
 6.7%
 4.2%
 0.0%
 5.4%
 6.8%
 3.3%
 5.7%
 6.3%
 5.5%
 6.8%
 3.7%
 6.2%
 4.4%
 4.3%

Fig. 2.8 Subgroup analysis for mucolytic agents data [31]

*** Output truncated ***
MD 95%-CI z p-value

Fixed effect model -0.13 [-0.17; -0.09] -6.78 < 0.0001
Random effects model -0.28 [-0.50; -0.05] -2.43 0.0153
*** Output truncated ***

These are exactly the same treatment estimates and confidence intervals for fixed
effect and random effects model, respectively, in studies with short duration as
shown in the upper part of Fig. 2.8. ut

2.6 Meta-Analysis of Other Outcomes

In this section, the application of the generic inverse variance method to other
outcomes will be described. All examples use the metagen function to conduct
the meta-analysis. Other functions are available in R package meta for specific
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outcomes:

• metacor function for meta-analysis of correlations,
• metainc function for meta-analysis of incidence rate ratios,
• metaprop function for meta-analysis of single proportions.

The first two R functions are not covered in this book and the metaprop
function is only briefly used in Chap. 9 to calculate confidence intervals for
sensitivities and specificities. The corresponding help pages of these functions give
further details on these methods as well as a couple of examples.

2.6.1 Meta-Analysis with Survival Outcomes

Statistical methods for binary data are described in detail in Chap. 3. Very often not
only the information that an event occurred but also when the event happened is of
central interest. This type of data is called time-to-event or survival data if the event
of interest is death. Time to an event is a continuous quantity, however, in contrast
to the examples with continuous outcomes used so far time to an event can typically
not be observed for all participants as the maximum follow-up time is limited in a
study. Patients where the event of interest did not occur during the follow-up period
are called censored observations. Censoring is a distinguishing feature of time-
to-event data. Another important aspect of time-to-event data, not covered in this
book, are competing events, e.g. time to either cardiovascular or non-cardiovascular
death. In this situation only the time to death either due to a cardiovascular or non-
cardiovascular reason can be observed. Specific statistical methods for survival data
have been developed [2, 24] and should be used in the analysis.

In survival analysis the hazard function, i.e. a function describing the instanta-
neous risk of dying given survival up to a specific timepoint, plays a central role. To
compare two treatments the hazard ratio, i.e. a ratio of hazard functions, is typically
used. The interpretation of a hazard ratio is similar to a risk ratio which is introduced
in Sect. 3.1.2.

A meta-analysis with survival time outcomes is typically based on the hazard
ratio as measure of treatment effect [26]. Accordingly, the logarithm of the hazard
ratio and its standard error are the basic quantities utilised in meta-analysis.
As hazard ratio and corresponding standard error are not always reported in
publications, several methods exist to derive these quantities, e.g. from published
survival curves [26, 42].

The generic inverse variance method can be used straightforward with log hazard
ratio O�k and its standard error S.E. . O�k/, for study k, k D 1; : : : ;K.

Using these quantities, all methods described in Sects. 2.2 and 2.3 can be used
for meta-analysis. In the following example we consider the most basic case, i.e.
fixed effect and random effects meta-analysis using the DerSimonian–Laird method
to estimate the between-study variance �2.
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> # 1. Read in the data
> data4 <- read.csv("dataset04.csv")
> # 2. Print data
> data4

author year Ne Nc logHR selogHR
1 FCG on CLL 1996 53 52 -0.5920 0.3450
2 Leporrier 2001 341 597 -0.0791 0.0787
3 Rai 2000 195 200 -0.2370 0.1440
4 Robak 2000 133 117 0.1630 0.3120

Fig. 2.9 Data from meta-analysis of single-agent purine analogues for the treatment of chronic
lymphocytic leukaemia [38]

Example 2.13 Steurer et al. [38] conducted a Cochrane review to evaluate the
effect of single-agent purine analogues for the treatment of chronic lymphocytic
leukaemia. Data for the main outcome overall survival are reported in Fig. 2.9.
Columns logHR and selogHR correspond to the log hazard ratio and its standard
error.

The following R command can be used to conduct a meta-analysis using the
generic inverse variance method.

> mg1 <- metagen(logHR, selogHR,
+ studlab=paste(author, year), data=data4,
+ sm="HR")

Specifying argument sm="HR", it is assumed that hazard ratios are entered
on the log scale. If hazard ratios instead of log hazard ratios are available in
a dataset, the base log function can be used to transform the hazard ratio, e.g.
metagen(log(HR), ...). Regardless of the input of hazard ratios or log
hazard ratios, the metagen function expects that the standard error from the log
hazard ratio and not the standard error of the hazard ratio is provided as input for
argument seTE. Note, sample sizes given in columns Ne and Nc in Fig. 2.9 are not
utilised in the calculations.

As usual we can print the results of the meta-analysis.

> print(mg1, digits=2)
HR 95%-CI %W(fixed) %W(random)

FCG on CLL 1996 0.55 [0.28; 1.09] 3.68 5.85
Leporrier 2001 0.92 [0.79; 1.08] 70.70 59.76
Rai 2000 0.79 [0.59; 1.05] 21.12 27.32
Robak 2000 1.18 [0.64; 2.17] 4.50 7.08

Number of studies combined: k=4

HR 95%-CI z p-value
Fixed effect model 0.89 [0.78; 1.01] -1.82 0.0688
Random effects model 0.87 [0.74; 1.03] -1.58 0.1142

Quantifying heterogeneity:
tauˆ2 = 0.0061; H = 1.1 [1; 2.81]; Iˆ2 = 17.2% [0%; 87.3%]
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Test of heterogeneity:
Q d.f. p-value

3.62 3 0.3049

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tauˆ2

These results correspond to those reported in [38]. ut

2.6.2 Meta-Analysis of Cross-Over Trials

Until now methods have been described to conduct a meta-analysis of trials
comparing two parallel treatment groups. Cross-over trials are another popular
design to compare treatments [23]. In a cross-over trial each participant serves as
his/her own control. Accordingly, between-patient variation is removed from the
treatment comparison resulting in a smaller number of patients to achieve the same
statistical power. A typical setting for a cross-over trial is chronic but stable diseases,
i.e. a patient neither gets cured nor does the condition (dramatically) worsen over
time.

In a simple cross-over design, a patient is randomly assigned to treatment
sequence AB or BA, i.e. either receiving treatment A first and “cross-over” to
treatment B or vice versa. Typically, the first and second treatment period are
separated by a so-called washout period such that the effect of the treatment effect
in the first treatment period is not carried over to the second treatment period. In
principle, longer sequences of two treatments A and B are possible, e.g. ABBA.
Note, the first period of a cross-over trial is equivalent to a parallel group study
design.

Statistical methods for meta-analysis of cross-over trials and the combination
of parallel group and cross-over trials have been described in a series of papers in
Statistics in Medicine [5, 6, 8]. For the meta-analysis of cross-over trials with a
continuous outcome the generic inverse variance method can be used [5].

Example 2.14 Curtin et al. [5, Table 2] report the results of 12 parallel group and 21
cross-over trials to evaluate the effect of potassium supplementation on the reduction
of systolic and diastolic blood pressure. Here, we only look at the 21 cross-over trials
and diastolic blood pressure as outcome of interest.

Mean difference in diastolic blood pressure (column mean) and its standard
error (SE) as well as the within-patient correlation (corr) are given in Fig. 2.10.
Correlations are not utilised in the meta-analysis, however, the values give some
indication on the gain in precision by using a cross-over design. All correlations are
above zero and ranging from 0.29 to 0.88. Accordingly, using a cross-over design
results in a gain in precision in all trials.
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> # 1. Read in the data
> data5 <- read.csv("dataset05.csv")
> # 2. Print data
> data5

author year N mean SE corr
1 Skrabal et al. 1981a 20 -4.5 2.1 0.49
2 Skrabal et al. 1981b 20 -0.5 1.7 0.54
3 MacGregor et al. 1982 23 -4.0 1.9 0.41
4 Khaw and Thom 1982 20 -2.4 1.1 0.83
5 Richards et al. 1984 12 -1.0 3.4 0.50
6 Smith et al. 1985 20 0.0 1.9 0.50
7 Kaplan et al. 1985 16 -5.8 1.6 0.65
8 Zoccali et al. 1985 23 -3.0 3.0 0.50
9 Matlou et al. 1986 36 -3.0 1.5 0.61
10 Barden et al. 1986 44 -1.5 1.4 0.44
11 Poulter and Sever 1986 19 2.0 2.2 0.36
12 Grobbee et al. 1987 40 -0.3 1.5 0.61
13 Krishna et al. 1989 10 -8.0 2.2 0.48
14 Mullen and O’Connor 1990a 24 3.0 2.0 0.50
15 Mullen and O’Connor 1990b 24 1.4 2.0 0.50
16 Patki et al. 1990 37 -13.1 0.7 0.53
17 Valdes et al. 1991 24 -3.0 2.0 0.50
18 Barden et al. 1991 39 -0.6 0.6 0.88
19 Overlack et al. 1991 12 3.0 2.0 0.50
20 Smith et al. 1992 22 -1.7 2.5 0.29
21 Fotherby and Potter 1992 18 -6.0 2.5 0.81

Fig. 2.10 Data from meta-analysis of potassium supplementation for blood pressure reduction [5]

The following R code can be used for the meta-analysis of these cross-over trials

> mg2 <- metagen(mean, SE, studlab=paste(author, year),
+ data=data5, sm="MD")

which yields the results

> print(summary(mg2), digits=2)
Number of studies combined: k=21

MD 95%-CI z p-value
Fixed effect model -3.71 [-4.32; -3.11] -12.03 < 0.0001
Random effects model -2.38 [-4.76; -0.01] -1.96 0.0495

Quantifying heterogeneity:
tauˆ2 = 27.03; H = 3.66 [3.14; 4.25]; Iˆ2 = 92.5% [89.9%; 94.5%]

Test of heterogeneity:
Q d.f. p-value

267.24 20 < 0.0001
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Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tauˆ2

Both fixed effect and random effects model show a statistically significant
reduction in diastolic blood pressure for potassium supplementation. Due to the very
large between-study heterogeneity the confidence interval for the random effects
estimate is much wider than the confidence interval for the fixed effect estimate.
Accordingly, the p-value for the random effects model is much larger.

Results for the fixed effect model have also been reported in [5, Table 3] and are
almost identical. ut

2.6.3 Meta-Analysis of Adjusted Treatment Effects

Another application of the generic inverse variance method is a meta-analysis of
adjusted treatment effects, e.g. adjusted log odds ratios from a logistic regression
model [1] or log hazard ratios from a Cox regression model [24].

Example 2.15 Greenland and Longnecker [12] describe a method to combine trend
estimates from summarised dose–response data. A meta-analysis of 16 case–control
studies evaluating the impact of alcohol consumption on breast cancer risk was used
as an illustrative example (see [12, Table 3]).

Data for these studies are given in Fig. 2.11. For meta-analysis the adjusted log
risk ratio (column b) and its standard error (SE) are utilised. In order to report results
as log risk ratios like the authors [12] we use argument backtransf=FALSE.

> # 1. Read in the data
> data6 <- read.csv("dataset06.csv")
> # 2. Print data
> data6

author year b SE
1 Hiatt and Bawol 1984 0.004340 0.00247
2 Hiatt et al. 1988 0.010900 0.00410
3 Willett t al. 1987 0.028400 0.00564
4 Schatzkin et al. 1987 0.118000 0.04760
5 Harvey et al. 1987 0.012100 0.00429
6 Rosenberg et al. 1982 0.087000 0.02320
7 Webster et al. 1983 0.003110 0.00373
8 Paganini-Hill and Ross 1983 0.000000 0.00940
9 Byers and Funch 1982 0.005970 0.00658
10 Rohan and McMichael 1988 0.047900 0.02050
11 Talamini et al. 1984 0.038900 0.00768
12 O’Connell et al. 1987 0.203000 0.09460
13 Harris and Wynder 1988 -0.006730 0.00419
14 Le et al. 1984 0.011100 0.00481
15 La Vecchia et al. 1985 0.014800 0.00635
16 Begg et al. 1983 -0.000787 0.00867

Fig. 2.11 Data from meta-analysis evaluating impact of alcohol consumption on breast cancer risk
[12]
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> mg3 <- metagen(b, SE, studlab=paste(author, year),
+ data=data6, sm="RR", backtransf=FALSE)

The results for the meta-analysis are as follows.

> summary(mg3)
Number of studies combined: k=16

logRR 95%-CI z p-value
Fixed effect model 0.0082 [0.0056; 0.0108] 6.2409 < 0.0001
Random effects model 0.0131 [0.0062; 0.0199] 3.7298 0.0002

Quantifying heterogeneity:
tauˆ2 = 0.0001; H = 2.24 [1.78; 2.82]; Iˆ2 = 80.1% [68.5%; 87.4%]

Test of heterogeneity:
Q d.f. p-value

75.31 15 < 0.0001

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tauˆ2

As we used argument backtransf=FALSE, treatment estimates are reported
on the log scale (see logRR in the printout). Results for the fixed effect model are
identical to those reported in [12]. ut

2.7 Summary

In this chapter the generic inverse variance method and its application in meta-
analysis has been described in detail using continuous outcomes. Both fixed effect
and random effects methods have been introduced. We have shown how typical data
can be used with the metacont and metagen function, respectively, and how the
results of a meta-analysis can be printed and plotted.

We also discussed various methods for estimating the between-study variance �2

and the Hartung–Knapp adjustment has been described as an alternative method to
the classic random effects method. Furthermore, we have illustrated the use of the
byvar option, which makes subgroup analysis straightforward. More details on
tests for subgroup differences are provided in Sect. 4.3.

Lastly, the generic inverse variance method has been used in very different
settings (survival outcomes, cross-over trials, adjusted treatment effects) indicating
the wide applicability of the method.

In the next chapter, we describe the analogue of these analyses for binary data.
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Chapter 3
Meta-Analysis with Binary Outcomes

This chapter describes how to perform meta-analysis with binary data using R. We
introduce the usual effect measures for binary outcomes and discuss issues raised
by sparse binary data. We describe how to perform meta-analysis using the inverse
variance method [17] and the DerSimonian–Laird method [12]. Furthermore, we
introduce the Mantel–Haenszel method [24] and the Peto method [36] which are
specific to binary outcomes. Several examples use base R commands. We also
describe the metabin function from R package meta [31, 32] which provides a
unified syntax for all methods in this chapter.

3.1 Effect Measures for Binary Outcomes

The most commonly used effect measures for binary outcomes are the odds ratio,
risk ratio and risk difference. In addition, we describe another effect measure, the
arcsine difference, which is used in tests for small-study effects in Chap. 5.

In the context of systematic reviews with binary outcomes, a discussion of
the pros and cons of the various choices of effect measure, together with some
recommendations, is given by Deeks [10] and Deeks and Altman [11]. In practice,
the odds ratio and risk ratio are typically used. The main reason is that these relative
effect measures are on average more stable across studies than the risk difference
[10, 15], especially if the individual studies include patients with different follow-up
times.

As before we consider a meta-analysis of K randomised controlled trials, but
now each study has binary outcome data as shown in Table 3.1. Given the number
of patients in the two groups, nek D akCbk and nck D ckCdk;we assume the number
of events in each group follows a binomial distribution [1, p. 39]. Specifically, cell
count ak � Binomial.nek; pek/ and cell count ck � Binomial.nck; pck/; where pek

and pck denote the probability of the event in the experimental (i.e. intervention) and
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Table 3.1 Summary data of
study k in meta-analysis with
binary responses
.k D 1; : : : ;K/

Event No event Group size

Experimental ak bk nek D ak C bk

Control ck dk nck D ck C dk

ak C ck bk C dk nk

Table 3.2 Variable names in R datasets for meta-analyses of binary responses; same notation used
as in Table 3.1

Variable name Notation Description

study
Unique study label consisting of first author of study and

year of publication (if necessary)

Ee ak Number of events in the experimental (i.e. active) treatment arm

Ne nek Number of patients in the experimental treatment arm

Ec ck Number of events in the control arm

Nc nck Number of patients in the control arm

control group, respectively. These probabilities are estimated from the observed cell
counts by Opek D ak=.ak C bk/ D ak=nek and Opck D ck=.ck C dk/ D ck=nck.

Example 3.1 Greb et al. [20] conducted a Cochrane review to assess the effects
of high-dose chemotherapy with autologous stem cell transplantation as part of
first-line treatment of adult patients with aggressive non-Hodgkin lymphoma. The
primary outcome was survival time; complete response, a binary outcome, was one
of several secondary outcomes. The Cochrane review used the risk ratio as measure
of treatment effect for binary outcomes and the fixed effect model for pooling.

For datasets with binary data, we always use the same variable names which
are described in Table 3.2. R code to import the complete response data using the
read.csv function and to print the dataset is shown in Fig. 3.1.

We see that the meta-analysis contains 14 trials with sample sizes ranging
between 48 (Intragumtornchai) and 370 (Gisselbrecht). Before moving
on, we note that in these data the number of events Ee and Ec, which correspond to
cell counts .ak; ck/ in Table 3.1, are all greater than zero—as are the number of “non-
events” Ne-Ee and Nc-Ec, which correspond to cell counts .bk; dk/ in Table 3.1.

ut
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> # 1. Read in the data
> data7 <- read.csv("dataset07.csv")
> # 2. Display data
> data7

study Ee Ne Ec Nc
1 De Souza 14 28 10 26
2 Gianni 46 48 35 50
3 Gisselbrecht 119 189 116 181
4 Intragumtornchai 10 23 9 25
5 Kaiser 110 158 97 154
6 Kluin-Nelemans 67 98 56 96
7 Martelli 1996 3 22 4 27
8 Martelli 2003 57 75 51 75
9 Milpied 74 98 56 99
10 Rodriguez 2003 39 55 30 53
11 Santini 1998 46 63 34 61
12 Santini-2 80 117 71 106
13 Verdonck 25 38 26 35
14 Vitolo 35 60 46 66
> # 3. Calculate experimental and control event probabilities
> summary(data7$Ee/data7$Ne)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1364 0.5949 0.6837 0.6370 0.7249 0.9583
> summary(data7$Ec/data7$Nc)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1481 0.5594 0.6066 0.5661 0.6775 0.7429

Fig. 3.1 Data from meta-analysis on high-dose chemotherapy [20]; for details of the table headers,
see Table 3.2

3.1.1 Odds Ratio

The odds ratio for study k;  k; is defined as the ratio of the odds of an event in the
experimental arm to that in the control arm. That is

 k D

�

pek

1 � pek

�

�

pck

1 � pck

� D pek .1 � pck/

pck .1 � pek/
: (3.1)

If either of the two estimated event probabilities is zero the log odds ratio, log k,
is either �1 or C1. If both are zero, the log odds ratio is undefined.

Based on the data given in Table 3.1, the odds ratio from study k is estimated by

O k D ak dk

bk ck
: (3.2)

As this estimator has a skewed distribution in typical sample sizes, effect
estimates, standard errors and confidence intervals are usually calculated using the
natural logarithm of O k [1, p. 71], which we write log. O k/: The final results are then
back-transformed to the original scale for presentation. For typical sample sizes, the
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variance of the natural logarithm of the odds ratio is well approximated by

cVar .log O k/ D 1

ak
C 1

bk
C 1

ck
C 1

dk
; (3.3)

where the approximation improves as nek and nck increase.
Using the estimate of the log odds ratio, and its estimated variance, an approxi-

mate two-sided .1 � ˛/ confidence interval for the odds ratio is given by

exp
�

log O k ˙ z1� ˛
2

S.E. .log O k/
�

; (3.4)

where the standard error S.E. .log O k/ D
q

cVar .log O k/ and z1� ˛
2

denote the 1 �
˛
2

quantile of the standard normal distribution [1, p. 71]. Further, as illustrated in
Sect. 3.3.1, the estimates (3.2) and (3.3) can be used in a meta-analysis using the
inverse variance method for pooling.

Example 3.2 To illustrate the estimation of the odds ratio, we use data from the
ninth trial in Fig. 3.1, i.e. the Milpied trial. The following base R code calculates
the odds ratio and its approximate 95 % confidence interval for this trial.

> # 1. Calculate log odds ratio and its standard error for
> # Milpied trial
> logOR <- with(data7[data7$study=="Milpied",],
+ log((Ee*(Nc-Ec)) / (Ec*(Ne-Ee))))
> selogOR <- with(data7[data7$study=="Milpied",],
+ sqrt(1/Ee + 1/(Ne-Ee) + 1/Ec + 1/(Nc-Ec)))
> # 2. Print odds ratio and limits of 95% confidence interval
> round(exp(c(logOR,
+ logOR + c(-1,1) *
+ qnorm(1-0.05/2) * selogOR)), 4)
[1] 2.3676 1.2887 4.3495

In order to access the necessary data, i.e. (Ne, Ee, Nc, Ec) from the Milpied
trial, it is simplest to use the with function (see Sect. 1.3). The two assignments
calculate the log odds ratio (3.2) and its standard error (3.3). Then we use the exp
function to back-transform the logarithmised values and the round function to print
result with four decimal places. The three values returned are the odds ratio and the
lower and upper limit of the 95 % confidence interval.

We obtain the same result using the metabin function with arguments
sm="OR" (i.e. summary measure is the Odds Ratio) and method="I" (i.e.
Inverse variance method).

> metabin(Ee, Ne, Ec, Nc, sm="OR", method="I",
+ data=data7, subset=study=="Milpied")

OR 95%-CI z p-value
2.3676 [1.2887; 4.3495] 2.7774 0.0055

Details:
- Inverse variance method
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The software reports the z-score and p-value for the test of an overall treatment
effect in addition to the odds ratio and its 95 % confidence interval.

Note, the metabin function requires the number of events (Ee, Ec) and the
sample sizes (Ne, Nc) as input as this information is typically reported in publica-
tions for binary outcomes. Likewise, RevMan 5 [35] requires this information as
input. By contrast, the Stata function metan [33] requires the number of events
(Ee, Ec) and non-events (Ne-Ee, Nc-Ec) as input. This subtle difference is no
restriction as any number can be calculated from the other two numbers. ut

3.1.2 Risk Ratio

The risk ratio 	k, often called relative risk, is defined as the ratio of the two event
probabilities,

	k D pek

pck
: (3.5)

If either of the two event probabilities is zero the log risk ratio log	k, is either
�1 or C1. If both probabilities are zero, the log risk ratio is undefined.

The risk ratio is estimated by

O	k D

�

ak

ak C bk

�

�

ck

ck C dk

� ; (3.6)

whose variance is approximated by

cVar .log O	k/ D 1

ak
C 1

ck
� 1

ak C bk
� 1

ck C dk
; (3.7)

where—as with the log odds ratio—the approximation works well for typical trials
and improves as the number of patients, nek and nck, increases. A confidence interval
for O	k can be constructed by replacing O k with O	k in Eq. (3.4).

Example 3.3 Continuing with the previous example, we first use base R code for
calculating the risk ratio and its confidence interval for the Milpied trial.

> # 1. Calculate log risk ratio and its standard error for
> # Milpied study
> logRR <- with(data7[data7$study=="Milpied",],
+ log((Ee/Ne) / (Ec/Nc)))
> selogRR <- with(data7[data7$study=="Milpied",],
+ sqrt(1/Ee + 1/Ec - 1/Ne - 1/Nc))
> # 2. Print risk ratio and limits of 95% confidence interval



60 3 Meta-Analysis with Binary Outcomes

> round(exp(c(logRR,
+ logRR + c(-1,1) *
+ qnorm(1-0.05/2) * selogRR)), 4)
[1] 1.3349 1.0862 1.6406

As before, a simpler alternative is to use the metabin function with argument
sm="RR" (Risk Ratio).

> metabin(Ee, Ne, Ec, Nc, sm="RR", method="I",
+ data=data7, subset=study=="Milpied")

RR 95%-CI z p-value
1.3349 [1.0862; 1.6406] 2.7461 0.006

Details:
- Inverse variance method

Again, in addition to the risk ratio and confidence interval, the metabin
function reports z-score and p-value for the test of an overall treatment effect. Note,
the R code for the risk ratio differs from the R code for the odds ratio only by
setting parameter sm="RR" instead of sm="OR". Actually, we do not have to use
argument sm="RR" as this is the default effect measure in the metabin function.

In the Milpied trial, the odds ratio is almost twice as large as the risk ratio. This
is because the probability of an event is large in both the experimental and control
arms (0:755 and 0:566, respectively), so the risk ratio is not well approximated
by the odds ratio. Nevertheless, the overall conclusions about the effectiveness of
high-dose chemotherapy with autologous stem cell transplantation as part of first-
line treatment in adult patients with aggressive non-Hodgkin lymphoma are very
similar: the p-value of the test for treatment difference is 0:0055 for the odds ratio
and 0:006 for the risk ratio. ut

3.1.3 Risk Difference

The risk difference 
k is defined as the difference between the two event probabili-
ties


k D pek � pck : (3.8)

The risk difference is always defined and has finite range from �1 to 1.
The natural estimate of the risk difference is

O
k D ak

ak C bk
� ck

ck C dk
; (3.9)

with corresponding variance estimate

cVar . O
k/ D ak bk

.ak C bk/3
C ck dk

.ck C dk/3
: (3.10)
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An approximate two-sided .1 � ˛/ confidence interval for the risk difference is
thus

O
k ˙ z1� ˛
2

S.E. . O
k/ (3.11)

with standard error S.E. . O
k/ D
q

cVar . O
k/ and z1� ˛
2

denoting the 1 � ˛
2

quantile of
the standard normal distribution. Unfortunately, for when the risk difference is close
to �1 or 1 this confidence interval will sometimes include values below �1 or above
1, respectively.

Example 3.4 Continuing with the Milpied trial, we could use base R code to
calculate a confidence interval. However, it is more straightforward to use the
metabin function with argument sm="RD" (Risk Difference).

> metabin(Ee, Ne, Ec, Nc, sm="RD", method="I",
+ data=data7, subset=study=="Milpied")

RD 95%-CI z p-value
0.1894 [0.0599; 0.319] 2.8662 0.0042

Details:
- Inverse variance method

Again, the only change in the R code is to give a different value, RD, to function
argument sm. Using the risk difference as the effect measure, we obtain a similar
p-value to those obtained using the odds ratio and risk ratio. ut

3.1.4 Arcsine Difference

The arcsine difference has a long history, dating back to the 1940s [3, 4, 16, 18, 25],
and is often used in other contexts [2, 9, 23]. It has been considered as a measure
of effectiveness in clinical trials [13, 15, 30], though it is rarely used in practice.
However, it has certain advantages when assessing whether a meta-analysis may be
affected by publication bias or other small-study effects. We therefore introduce it
here.

The arcsine difference is defined as the difference of the arcsine-transformed
event probabilities, that is

�k D arcsin
p

pek � arcsin
p

pck : (3.12)

Like the risk difference, the arcsine difference is always defined, with a finite
range from ��=2 to �=2. The value of the arcsine difference is similar to the risk
difference if both event probabilities are close to 0.5, otherwise the values can be
quite different.
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The arcsine difference is estimated by

O�k D arcsin
r

ak

nek
� arcsin

r

ck

nck
; (3.13)

with approximate variance

cVar . O�k/ D 1

4nek
C 1

4nck
� 1

nk
; if nek � nck; (3.14)

where the approximation improves as nek and nck increase. Notice that the approx-
imate variance of O�k only depends on the sample size in the two groups. A
confidence interval for O�k can be constructed by replacing O
k with O�k in for-
mula (3.11).

Example 3.5 Continuing with the previous example, estimation of the arcsine
difference is straightforward either using base R code.

> # 1. Calculate arcsine difference and its standard error for
> # Milpied study
> ASD <- with(data7[data7$study=="Milpied",],
+ asin(sqrt(Ee/Ne)) - asin(sqrt(Ec/Nc)))
> seASD <- with(data7[data7$study=="Milpied",],
+ sqrt(1/(4*Ne) + 1/(4*Nc)))
> # 2. Print arcsine difference and its 95% confidence interval
> round(c(ASD,
+ ASD + c(-1,1) *
+ qnorm(1-0.05/2) * seASD), 4)
[1] 0.2019 0.0622 0.3415

or using the metabin function argument with sm="ASD" (Arc Sine Difference).

> metabin(Ee, Ne, Ec, Nc, sm="ASD", method="I",
+ data=data7, subset=study=="Milpied")

ASD 95%-CI z p-value
0.2019 [0.0622; 0.3415] 2.8333 0.0046

Details:
- Inverse variance method

In the Milpied trial, both the arcsine difference and the p-value are very close
to their respective values for the risk difference. In summary, the overall conclusion
concerning the effectiveness of high-dose chemotherapy is insensitive to the choice
of metric. ut
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3.2 Estimation in Sparse Data

We now consider the issues raised when the number of events in one or both of
the study arms is small. In such cases, we have already noted that estimates of the
odds ratio and risk ratio may be undefined. In the literature, a two-by-two table is
referred to as sparse if any of the cell counts is small [1, p. 391]. Sparse data are
likely to occur if either the total sample size of a study is small, or if the sample size
is large but the probability of an event is very close to zero or one. In the context of
systematic reviews of randomised controlled trials, both cases are likely.

Example 3.6 Quan et al. [27] conducted a Cochrane review to evaluate whether
the benefit of treating hypertension in women differed between younger and older
women, as well as between white and African-American women. In the systematic
review, the Peto method, i.e. a fixed effect estimate using the odds ratio as effect
measure, was used for pooling (see Sect. 3.3.3). The primary outcome was the
occurrence of fatal cerebrovascular events—a rare event in hypertension. Here, we
only look at the subgroup of women older than 55 years. These data are shown in
Fig. 3.2.

The meta-analysis contains 11 trials having large sample sizes ranging between
349 (Shep Pilot) and 3710 (MRC). However, experimental and control event
probabilities are small in some trials (STOP, Shep Pilot), and in one trial

> # 1. Read in the data
> data8 <- read.csv("dataset08.csv")
> # 2. Print dataset
> data8

study Ee Ne Ec Nc
1 Australian 0 300 1 295
2 CASTEL 7 232 8 192
3 Coope 3 297 6 314
4 EWPHE 17 287 21 299
5 HDFP 11 984 19 938
6 MRC 6 1858 5 1852
7 MRC elderly 18 1273 17 1287
8 STOP 1 510 10 509
9 Shep 8 1331 9 1359
10 Shep Pilot 2 279 1 70
11 Syst-eur 12 1618 12 1520
> # 3. Calculate experimental and control event rates
> summary(data8$Ee/data8$Ne)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000000 0.004620 0.007417 0.013690 0.012660 0.059230
> summary(data8$Ec/data8$Nc)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.002700 0.007259 0.014290 0.019910 0.019950 0.070230

Fig. 3.2 Data from meta-analysis on hypertension in women [27]; see Table 3.2 for details on
table headers
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(Australian), no events are observed in the experimental group. These three
studies are typical examples of what is usually referred to as sparse binary data. ut

Suppose study k has sparse data. As already noted, if either ak or ck is zero, both
the estimated odds ratio and estimated risk ratio are either 0 or 1. If both cell counts
are zero, the two summary measures are undefined. In both cases, variance estimates
given in (3.3) and (3.7) are 1 due to division by zero. For the odds ratio, the same
holds true if either cell count bk or dk is zero; while the risk ratio has finite estimates
in this case, the variance formula is unreliable.

In order to proceed with the meta-analysis, we either have to omit such studies,
or add a small increment to each cell of two-by-two tables with zero entries. The
latter is known as adding a continuity correction. Gart and Zweifel [19] showed
that, if any of the cell counts are zero (but the underlying true probabilities are not
zero or 1), adding 0.5 to the cell counts .ak; bk; ck; dk/ in Table 3.1 improves the
estimators (3.2) and (3.3) by reducing their bias. We obtain

O mod
k D .ak C 0:5/.dk C 0:5/

.bk C 0:5/.ck C 0:5/
(3.15)

and

cVar .log O mod
k / D 1

ak C 0:5
C 1

bk C 0:5
C 1

ck C 0:5
C 1

dk C 0:5
: (3.16)

While this modification can be used quite generally, in the literature it is usually
only used if any of the cell counts is zero. The estimated variance of the log odds
ratio is reduced if 0.5 is added to each cell of the two-by-two table since all four
denominators in (3.3) are increased. Obviously, a different increment than 0.5 could
be used, for example 0.01 or 0.1 to evaluate how sensitive results are to different
choices of increments.

Sweeting et al. [34] proposed an alternative continuity correction, so called
treatment arm continuity correction, based on the number of observations in the two
groups. The continuity correction in experimental (incre) and control group (incrc)
are defined as

incre D ne

ne C nc

and

incrc D nc

ne C nc
:

The two increments incre and incre add up to 1. If both groups have equal sample
size the increment is 0.5 in both groups. The idea of this continuity correction is to
get less biased results if groups are severely unbalanced with respect to sample size.
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Example 3.7 The odds ratio and 95 % confidence interval for the Australian
study can be calculated using base R code by manually adding 0:5 to each count.

> # 1. Calculate log odds ratio and its standard error for
> # Australian study (with continuity correction)
> logOR <- with(data8[data8$study=="Australian",],
+ log(((Ee+0.5)*(Nc-Ec+0.5)) /
+ ((Ec+0.5)*(Ne-Ee+0.5))))
> selogOR <- with(data8[data8$study=="Australian",],
+ sqrt(1/(Ee+0.5) + 1/(Ne-Ee+0.5) +
+ 1/(Ec+0.5) + 1/(Nc-Ec+0.5)))
> # 2. Print odds ratio and limits of 95% confidence interval
> round(exp(c(logOR,
+ logOR + c(-1,1) * qnorm(1-0.05/2) * selogOR)), 4)
[1] 0.3267 0.0133 8.0515

or—less tediously—using the metabin function.

> metabin(Ee, Ne, Ec, Nc, sm="OR", method="I",
+ data=data8, subset=study=="Australian")

OR 95%-CI z p-value
0.3267 [0.0133; 8.0515] -0.6842 0.4938

Details:
- Inverse variance method
- Continuity correction of 0.5 in studies with zero cell

frequencies

We see that metabin prints the information that an increment of 0.5 has been
added to the data of studies with zero cells, i.e. the Australian study. The default
increment of 0.5 can be changed by setting a different value using argument incr
in the metabin function. For example, adding 0.1 to the cells results in a somewhat
different estimated odds ratio.

> metabin(Ee, Ne, Ec, Nc, sm="OR", method="I",
+ data=data8, subset=study=="Australian",
+ incr=0.1)

OR 95%-CI z p-value
0.0891 [1e-04; 57.8269] -0.7319 0.4642

Details:
- Inverse variance method
- Continuity correction of 0.1 in studies with zero cell

frequencies

However, confidence intervals are very wide and overlapping for the two different
choices of the increment.

We can conduct an analysis based on the treatment arm continuity correction [34]
using argument incr="TACC".

> metabin(Ee, Ne, Ec, Nc, sm="OR", method="I",
+ data=data8, subset=study=="Australian",
+ incr="TACC")

OR 95%-CI z p-value
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0.3303 [0.0135; 8.0698] -0.6793 0.4969

Details:
- Inverse variance method
- Treatment arm continuity correction in studies with

zero cell frequencies

In the Australian study—with similar sample sizes in the two groups, see
Fig. 3.2—results are very similar to the default method using an increment of 0.5.

ut
Similarly, when calculating the risk ratio with sparse data, Pettigrew et al. [26]

showed that the estimators given by Eqs. (3.6) and (3.7) behave better when a
continuity correction is added

O	mod
k D ak C 0:5

ak C bk C 0:5

�

ck C 0:5

ck C dk C 0:5
(3.17)

and

cVar .log O	mod
k / D 1

ak C 0:5
C 1

ck C 0:5
� 1

ak C bk C 0:5
� 1

ck C dk C 0:5
: (3.18)

Again, this modification can be used in general, but is typically only applied to a
study if a cell count is zero.

Example 3.8 The risk ratio and 95 % confidence interval for the Australian
study can be easily calculated using the metabin function:

> metabin(Ee, Ne, Ec, Nc, sm="RR", method="I",
+ data=data8, subset=study=="Australian")

RR 95%-CI z p-value
0.3278 [0.0134; 8.014] -0.6839 0.494

Details:
- Inverse variance method
- Continuity correction of 0.5 in studies with zero cell

frequencies

As we have already noted, by default the metabin function only adds an incre-
ment of 0.5 in a study with a zero cell. You can use the argument addincr=TRUE
to apply a continuity correction to a study regardless of zero cells. ut

3.2.1 Peto Odds Ratio

An alternative method for the estimation of the odds ratio, which we term the Peto
Odds Ratio method, was proposed by Yusuf et al. [36]. This method is sometimes
referred to as the Yusuf and Peto method, or just the Peto method. The latter name
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is confusing, since the Peto Odds Ratio method is different from the Peto method
for meta-analysis (see Sect. 3.3.3).

The key advantage of this method is that no correction for zero cell counts is
necessary. The method is based on the observed cell count ak and the expected cell
count E.akj : : : I D 1/ where “� � � ” denotes the four marginal totals in Table 3.1.
The Peto estimate of the odds ratio is

O �
k D exp

�

ak � E.akj � � � I k D 1/

Var .akj � � � I k D 1/

�

; (3.19)

where E.akj � � � I k D 1/ and Var .akj : : : I k D 1/ are the mean and variance of ak

under the hypergeometric distribution. Under this distribution, we have

E.akj � � � I k D 1/ D .ak C bk/.ak C ck/

nk

and

Var .akj � � � I k D 1/ D .ak C bk/.ck C dk/.ak C ck/.bk C dk/

n2k.nk � 1/ :

An estimator of the variance of log O �
k is

cVar .log O �
k / D 1

Var .akj : : : I k D 1/
: (3.20)

Greenland and Salvan [22] showed that the Peto estimator performs poorly in
unbalanced designs (i.e. when nek is very different from nck) and in nearly balanced
designs when the true odds ratio differs substantially from 1. Brockhaus et al. [8]
showed that the Peto estimator is not consistent (i.e. does not converge to the true
odds ratio for large sample sizes) if the design is unbalanced. In the context of
randomised controlled trials, the use of the Peto method is reasonable in most cases,
i.e. if treatment groups are of comparable size (in the case of 1:1 randomisation) and
treatment effects are moderate.

Once the log odds ratio and its standard error have been calculated, the meta-
analysis proceeds in the usual way as described in Sects. 3.3 and 3.4 for the fixed
effect and random effects model, respectively.

Example 3.9 Returning to the high-dose chemotherapy study, the Peto odds ratio
for the Milpied trial is calculated using the metabin function with argument
method="P".

> metabin(Ee, Ne, Ec, Nc, sm="OR", method="P",
+ data=data7, subset=study=="Milpied")

OR 95%-CI z p-value
2.316 [1.2863; 4.1698] 2.7992 0.0051

Details:
- Peto method
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For the Milpied trial, the value of the Peto odds ratio, 2.316, is similar to the
usual odds ratio estimate, 2:368, calculated in Example 3.2. ut
Example 3.10 For the Australian study, the Peto odds ratio can be calculated
similarly.

> metabin(Ee, Ne, Ec, Nc, sm="OR", method="P",
+ data=data8, subset=study=="Australian")

OR 95%-CI z p-value
0.1331 [0.0026; 6.7068] -1.0084 0.3132

Details:
- Peto method

In this case, the Peto odds ratio, 0.1331 differs substantially from the usual odds
ratio, 0.3267, calculated in Example 3.7 with a continuity correction of 0:5. ut

3.3 Fixed Effect Model

For the fixed effect model there are three approaches to estimate the pooled
treatment effect with binary data: inverse variance, Mantel–Haenszel and Peto
method. While the inverse variance method can be used for all effect measures,
the Mantel–Haenszel method is only suitable for the odds ratio, risk ratio and risk
difference and the Peto method is specific for the odds ratio. For a more general
discussion of the fixed effect model, see Sect. 2.2.

3.3.1 Inverse Variance Method

As already noted, the inverse variance method is generic. To use it, we require only
an estimate of the treatment effect and its variance from each study. We apply the
inverse variance method on the scale where the distribution of the estimators is
best approximated by the normal distribution, and then back-transform the results if
necessary.

The pooled fixed effect estimate is therefore

O�F D

K
P

kD1
wk

O�k

K
P

kD1
wk

; with Var . O�F/ D
 

K
X

kD1
wk

!�1
; (3.21)
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and weights wk D cVar . O�k/
�1. As usual, an approximate two-sided .1 � ˛/

confidence interval is given by

O�F ˙ z1� ˛
2

S.E. . O�F/; (3.22)

with standard error S.E. . O�F/ D
q

cVar . O�F/ [17].
When working on a transformed scale as we do for the odds ratio and risk

ratio, O�k is the transformed effect measure, wk the reciprocal of the variance of
the transformed effect measure and S.E. . O�F/ the standard error of the transformed
effect measure. Then, Eqs. (3.21) and (3.22) give the fixed effect estimate and
the confidence interval on the transformed scale. Usually, these values are back-
transformed to the original scale to report the results.

Depending on the metric, O�k and cVar . O�k/ are given by

• risk difference: (3.9) and (3.10);
• arcsine difference: (3.13) and (3.14);
• odds ratio: natural logarithm of (3.2) and (3.3);
• odds ratio (with continuity correction for sparse data): natural logarithm of (3.15)

and (3.16);
• Peto odds ratio: natural logarithm of (3.19) and (3.20);
• risk ratio: natural logarithm of (3.6) and (3.7);
• risk ratio (with continuity correction for sparse data): natural logarithm of (3.17)

and (3.18).

Unfortunately, for sparse data the pooled estimate based on the inverse variance
method is biased [7, 21]. Preferable methods for estimating the pooled fixed effect
estimate in these situations are described in Sects. 3.3.2 and 3.3.3.

Example 3.11 For the high-dose chemotherapy data, a meta-analysis based on the
inverse variance method with odds ratio as effect measure can be carried out using
base R code as follows.

> # 1. Calculate log odds ratio, variance and weights
> logOR <- with(data7,
+ log((Ee*(Nc-Ec)) / (Ec*(Ne-Ee))))
> varlogOR <- with(data7,
+ 1/Ee + 1/(Ne-Ee) + 1/Ec + 1/(Nc-Ec))
> weight <- 1/varlogOR
> # 2. Calculate the inverse variance estimator
> round(exp(weighted.mean(logOR, weight)), 4)
[1] 1.3228
> # 3. Calculate the variance
> round(1/sum(weight), 4)
[1] 0.0089

These calculations can be done much easier using the metabin function.

> mb1 <- metabin(Ee, Ne, Ec, Nc, sm="OR", method="I",
+ data=data7, studlab=study)
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Study

Fixed effect model

De Souza
Gianni
Gisselbrecht
Intragumtornchai
Kaiser
Kluin−Nelemans
Martelli 1996
Martelli 2003
Milpied
Rodriguez 2003
Santini 1998
Santini−2
Verdonck
Vitolo

Events

 14
 46
119
 10
110
 67
  3

 57
 74
 39
 46
 80
 25
 35

Total

1072

  28
  48

 189
  23

 158
  98
  22
  75
  98
  55
  63

 117
  38
  60

Experimental
Events

 10
 35

116
  9

 97
 56
  4

 51
 56
 30
 34
 71
 26
 46

Total

1054

  26
  50

 181
  25

 154
  96
  27
  75
  99
  53
  61

 106
  35
  66

Control

0.1 0.5 1 2 10

Odds Ratio
OR

1.32

1.60
9.86
0.95
1.37
1.35
1.54
0.91
1.49
2.37
1.87
2.15
1.07
0.67
0.61

95%−CI

[1.10;  1.59]

[0.54;  4.73]
[2.11; 45.96]
[0.62;  1.45]
[0.43;  4.36]
[0.84;  2.16]
[0.86;  2.78]
[0.18;  4.57]
[0.73;  3.06]
[1.29;  4.35]
[0.84;  4.14]
[1.01;  4.56]
[0.61;  1.87]
[0.24;  1.83]
[0.29;  1.27]

W(fixed)

100%

 2.9%
 1.4%

19.0%
 2.5%

15.3%
 9.8%
 1.3%
 6.6%
 9.2%
 5.4%
 6.0%

10.8%
 3.3%
 6.3%

Fig. 3.3 Meta-analysis on high-dose chemotherapy [20]: forest plot using the inverse variance
method using the forest function

> round(c(exp(mb1$TE.fixed), mb1$seTE.fixedˆ2), 4)
[1] 1.3228 0.0089

A summary for the meta-analysis is returned by the following R command.

> print(summary(mb1), digits=2)
Number of studies combined: k=14

OR 95%-CI z p-value
Fixed effect model 1.32 [1.10; 1.59] 2.97 0.003
*** Output truncated ***

The forest plot shown in Fig. 3.3 was produced by the R command
> forest(mb1, comb.random=FALSE, hetstat=FALSE). ut

Example 3.12 For the hypertension in women dataset, the base R code used in
the previous example to calculate the inverse variance estimate would give the
Australian study zero weight in the calculation as one of the cells in the
Australian study is zero.

> # 1. Calculate log odds ratio, variance and weights
> logOR <- with(data8,
+ log((Ee*(Nc-Ec)) / (Ec*(Ne-Ee))))
> varlogOR <- with(data8,
+ 1/Ee + 1/(Ne-Ee) + 1/Ec + 1/(Nc-Ec))
> weight <- 1/varlogOR
> # 2. Weight for Australian study
> weight[data8$study=="Australian"]
[1] 0

ut
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Building on Sect. 3.2, we can use a continuity correction for meta-analysis with
sparse data in one of four ways:

• add 0.5 (or any other small increment) to all two-by-two tables regardless of zero
cells (referred to as “add all”);

• add 0.5 (or any other small increment) to all two-by-two tables only in the case
of zero cell counts in one or more studies (referred to as “add all conditional”),

• add 0.5 only to cell counts of corresponding two-by-two tables with zero cell
counts (referred to as “add selective”), or

• treatment arm continuity correction based on the number of observations in the
two groups.

All four approaches are available in the metabin function. By default, the
“add selective” approach is used. The “add all” approach is applied using the
argument addincr=TRUE; the “add all conditional” approach is applied using the
argument allincr=TRUE. A meta-analysis based on the treatment arm continuity
correction can be conducted using argument incr="TACC".

Usually studies with zero events in both treatment groups are excluded from a
meta-analysis with odds ratio or risk ratio as measure of treatment effect.

Example 3.13 While it would be possible to modify the base R code to allow for
zero cells, it is much more convenient to conduct the hypertension in women meta-
analysis using the metabin function.

> mb2 <- metabin(Ee, Ne, Ec, Nc, sm="OR", method="I",
+ data=data8, studlab=study)
> print(summary(mb2), digits=2)
Number of studies combined: k=11

OR 95%-CI z p-value
Fixed effect model 0.78 [0.58; 1.05] -1.63 0.1026
*** Output truncated ***
- Continuity correction of 0.5 in studies with zero cell

frequencies

The last line tells us that a continuity correction has been applied to studies
with zero cells (“add selective” approach). The continuity correction has only been
applied to the Australian study as we can easily check.

> as.data.frame(mb2)[,c("studlab", "incr.e", "incr.c")]
studlab incr.e incr.c

1 Australian 0.5 0.5
2 CASTEL 0.0 0.0
*** Output truncated ***
11 Syst-eur 0.0 0.0

This R command converts an object of class meta into a data frame. From this
newly created data frame, we only print information on the study label (variable
studlab) and the increments added to cells in the experimental and control group
(variables incr.e and incr.c). ut
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3.3.2 Mantel–Haenszel Method

Mantel and Haenszel [24] proposed an estimator for the common odds ratio in a
stratified case–control study, and this method can also be used in a meta-analysis
of randomised controlled trials. The Mantel–Haenszel method was extended to
the risk ratio and risk difference as measure of treatment effect by Greenland and
Robins [21]. The Mantel–Haenszel method has been recommended as the “method
of choice” for estimating a pooled odds ratio in most situations [14]. Thus, for
binary outcome data, the Mantel–Haenszel method is the default procedure in the
metabin function (argument method="MH") and in RevMan 5 [35].

For the Mantel–Haenszel method, there is no need to add 0.5 to each cell of
two-by-two tables with zero cell counts. Nevertheless, this modification is utilised
in commonly used software, e.g. in RevMan 5 [35] and in the Stata procedure
metan [33]. Accordingly, this modification is also the default in the metabin
function; the exact Mantel–Haenszel method is available by specifying the argument
MH.exact=TRUE.

We now describe the Mantel–Haenszel method for pooling for the odds ratio,
risk ratio and risk difference.

Odds Ratio

The pooled odds ratio is estimated by combining the individual odds ratios O k on
the natural scale

O MH D

K
P

kD1
wk O k

K
P

kD1
wk

(3.23)

with weights wk D bkck

nk
.

An estimator of the variance of the logarithm of O MH that is robust both in sparse
data and large strata models was introduced by Robins et al. [29], see also [28],

cVar .log O MH/ D

K
P

kD1
PkRk

2

�

K
P

kD1
Rk

�2
C

K
P

kD1
.PkSk C QkRk/

2
K
P

kD1
Rk

K
P

kD1
Sk

C

K
P

kD1
QkSk

2

�

K
P

kD1
Sk

�2
(3.24)

with Pk D ak C dk

nk
, Qk D bk C ck

nk
, Rk D ak dk

nk
, and Sk D bk ck

nk
.
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Risk Ratio

The pooled risk ratio O	MH is calculated by combining individual risk ratios O	k on
the natural scale

O	MH D

K
P

kD1
wk O	k

K
P

kD1
wk

(3.25)

using weights wk D .ak C bk/ck

nk
.

A robust estimator of the variance of the logarithm of O	MH is given by Greenland
and Robins [21]

cVar .log O	MH/ D

K
X

kD1

.ak C bk/.ck C dk/.ak C ck/ � akcknk

n2k
K
X

kD1

ak.ck C dk/

nk

K
X

kD1

ck.ak C bk/

nk

: (3.26)

Risk Difference

The pooled risk difference O
MH is calculated by combining risk differences O
k

O
MH D

K
P

kD1
wk O
k

K
P

kD1
wk

(3.27)

with weights wk D .ak C bk/.ck C dk/

nk
.

A robust estimator of the variance of O
MH [21] is given by

cVar . O
MH/ D

K
X

kD1

.akbknc/
3 C .ckdkne/

3

.nenc.ne C nc//
2

 

K
X

kD1

.ak C bk/.ck C dk/

nk

!2
: (3.28)
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A .1 � ˛/ confidence interval for log O MH or log O	MH is calculated using (3.22)
with O�F equal to log O MH or log O	MH and S.E. . O�F/ the square root of (3.24)
and (3.26), respectively. Typically, this interval is back-transformed to the original
scale.

Example 3.14 The following R command performs a meta-analysis for the high-
dose chemotherapy dataset using the odds ratio as measure of treatment effect
(argument sm="OR") based on the Mantel–Haenszel method (the argument
method="MH" is the default).

> mb1.mh <- metabin(Ee, Ne, Ec, Nc, sm="OR",
+ data=data7, studlab=study)
> print(summary(mb1.mh), digits=2)
Number of studies combined: k=14

OR 95%-CI z p-value
Fixed effect model 1.35 [1.12; 1.61] 3.21 0.0013
*** Output truncated ***

The Mantel–Haenszel estimate is slightly different from the fixed effect estimate
obtained using the inverse variance method. Thus measures which depend on the
value of the fixed effect estimate are also slightly different, i.e. �2, H2, I2, and Q.

A forest plot, following analysis using the Mantel–Haenszel method is shown in
Fig. 3.4. This was produced using the following R command.

> forest(mb1.mh, comb.random=FALSE, hetstat=FALSE,
+ text.fixed="MH estimate")

Study

MH estimate

De Souza
Gianni
Gisselbrecht
Intragumtornchai
Kaiser
Kluin−Nelemans
Martelli 1996
Martelli 2003
Milpied
Rodriguez 2003
Santini 1998
Santini−2
Verdonck
Vitolo

Events

 14
 46
119
 10
110
 67
  3

 57
 74
 39
 46
 80
 25
 35

Total

1072

  28
  48
 189
  23
 158
  98
  22
  75
  98
  55
  63
 117
  38
  60

Experimental
Events

 10
 35

116
  9
 97
 56
  4
 51
 56
 30
 34
 71
 26
 46

Total

1054

  26
  50

 181
  25

 154
  96
  27
  75
  99
  53
  61

 106
  35
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Fig. 3.4 Meta-analysis on high-dose chemotherapy [20]: forest plot based on Mantel–Haenszel
method using the forest function
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The Mantel Haenzel method is only used for pooling the data (i.e. calculating
the weights); thus for individual studies estimated odds ratio and 95 % confidence
interval are identical to those in Fig. 3.3. ut
Example 3.15 The following R command can be used to calculate the Mantel–
Haenszel estimate in the hypertension in women dataset.

> mb2.mh <- metabin(Ee, Ne, Ec, Nc, sm="OR", method="MH",
+ data=data8, studlab=study)
> print(summary(mb2.mh), digits=2)
Number of studies combined: k=11

OR 95%-CI z p-value
Fixed effect model 0.75 [0.56; 1.00] -1.98 0.0479
*** Output truncated ***

The Mantel–Haenszel odds ratio and its standard error are slightly smaller
than results for the inverse variance method (see Example 3.13). This leads to a
statistically significant result. ut

3.3.3 Peto Method

The Peto method for pooling is a variant of the inverse variance method for meta-
analysis described in Sect. 3.3.1. The Peto odds ratio which is introduced in Sect. 3.2
and its variance are calculated for each study. These quantities are used in the inverse
variance method to calculate an overall estimate.

O Peto D exp

0

B

B

B

@

K
P

kD1
wk log O �

k

K
P

kD1
wk

1

C

C

C

A

(3.29)

with wk D 1=cVar .log O �
k /; O �

k and cVar .log O �
k / as defined in (3.19) and (3.20),

respectively.
The variance of the log odds ratio is given by

cVar .log O Peto/ D 1

1=
K
P

kD1
cVar .log O �

k /

: (3.30)

As usual, a .1�˛/ confidence interval for log O Peto can be calculated using (3.22)
with O�F D log O Peto; and S.E. .log O IV / given by the square root of (3.30). Typically,
this is then back-transformed to the original scale.
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For the Peto method to combine individual log odds ratios, no correction for
zero cell counts is necessary. The method has been found to perform well in meta-
analysis with very sparse data [6].

Example 3.16 A meta-analysis of the high-dose chemotherapy dataset based on the
Peto method can be performed with the metabin function.

> mb1.peto <- metabin(Ee, Ne, Ec, Nc, sm="OR", method="P",
+ data=data7, studlab=study)
> print(summary(mb1.peto), digits=2)
Number of studies combined: k=14

OR 95%-CI z p-value
Fixed effect model 1.35 [1.12; 1.61] 3.22 0.0013
*** Output truncated ***

The result labeled as “fixed effect model” is actually the Peto odds ratio which—
in this example—is almost identical to the result of the Mantel–Haenszel method
(see Example 3.14). ut
Example 3.17 The following R code performs a meta-analysis based on the Peto
method for the hypertension in women dataset.

> mb2.peto <- metabin(Ee, Ne, Ec, Nc, sm="OR", method="Peto",
+ data=data8, studlab=study)
> print(summary(mb2.peto), digits=2)
Number of studies combined: k=11

OR 95%-CI z p-value
Fixed effect model 0.75 [0.56; 1] -1.99 0.0465
*** Output truncated ***

As in the previous example, the result for the Peto odds ratio (fixed effect
estimate) is almost identical to the result for the Mantel–Haenszel method (see
Example 3.15). ut

3.4 Random Effects Model

In a random effects model, the assumption of a constant treatment effect across
studies is relaxed by allowing the treatment effect from each study to have
a probability distribution about the pooled treatment effect. Usually a normal
distribution is used, so that

O�k D � C uk C �k�k; �k
i.i.d.� N.0; 1/I uk

i.i.d.� N.0; �2/;

where the u’s and �’s are independent. The between-study variance �2 describes the
extent of heterogeneity between individual study results. For the odds ratio and risk
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ratio, the random effects model is estimated using the log odds ratio or log risk ratio,
and the corresponding variance.

See Sect. 2.3 for a more general introduction of the random effects model.

3.4.1 DerSimonian–Laird Method

The most widely used method to estimate the between-study variance �2 is due to
DerSimonian and Laird [12] which is the only method available in RevMan 5 [35].
Accordingly, we describe this method in the context of a meta-analysis with a binary
outcome.

The DerSimonian and Laird [12] estimate is given by

O�2 D Q � .K � 1/

K
X

kD1
wk �

K
P

kD1
w2k

K
P

kD1
wk

;

where Q, the heterogeneity statistic, is given by Q D PK
kD1 wk. O�k � O�F/

2 and wk D
cVar . O�k/

�1: The estimator O�2 is set to zero if Q < K � 1.
Following RevMan 5 [35], O�F D log O MH as defined in (3.23) is used in

the metabin function to calculate the heterogeneity statistic Q for the Mantel–
Haenszel method. For the Peto method, O�k is the natural logarithm of (3.19), wk the
reciprocal of (3.20) and O�F the natural logarithm of (3.29) yielding a different value
for the heterogeneity statistic Q. Accordingly, the DerSimonian–Laird estimates O�2
will also differ for the inverse variance, Mantel–Haenszel, and Peto method.

Using the DerSimonian–Laird method to estimate �2; the pooled log odds ratio
in the random effects model is calculated by

O�DL D

K
P

kD1
w�

k
O�k

K
P

kD1
w�

k

(3.31)

with weights w�
k D .cVar . O�k/C O�2/�1.

The variance of O�DL is estimated by .
PK

kD1 w�
k /

�1; and a .1 � ˛/ confidence
interval is given by

O�DL ˙ z1� ˛
2

q

Var . O�DL/:

If �2 D 0, the DerSimonian–Laird estimator corresponds to the inverse variance
estimator given in Eq. (3.21).
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Note as the DerSimonian–Laird estimates O�2 typically differ for the inverse
variance, Mantel–Haenszel, and Peto method the random effects estimate O�DL will
also differ for these methods.

Example 3.18 The results of the random effects model are automatically returned
after any call to the metabin function.

> print(summary(mb1), digits=2)
Number of studies combined: k=14

OR 95%-CI z p-value
Fixed effect model 1.32 [1.10; 1.59] 2.97 0.003
Random effects model 1.37 [1.06; 1.77] 2.39 0.0166
*** Output truncated ***

Table 3.3 brings together our various analyses of the chemotherapy data. For
inverse variance and Mantel–Haenszel method, the estimates of �2 and hence the
random effects estimates are very similar; the result of the random effects model
based on Peto’s log odds ratio and its standard error is slightly different. In general,
as is usually the case, the confidence interval for the random effects model is larger
as compared to the fixed effect model resulting in a larger p-value. Nevertheless,
both fixed effect and random effects models are consistent with increased chance of
remission for patients with autologous stem cell transplantation in aggressive non-
Hodgkin lymphoma who receive high-dose chemotherapy. ut

Example 3.19 Results for both fixed effect and random effects meta-analysis in the
hypertension in women dataset are summarised in Table 3.4. For all three methods,
the estimate O�2 is zero indicating no between-study heterogeneity. Thus, fixed effect
and random effects model estimates are identical for the inverse variance and the
Peto method, respectively. The fixed effect and random effects estimates are slightly
different for the Mantel–Haenszel method, because the inverse-variance weights are
used in the random effects model. ut

Table 3.3 Summary of results for the chemotherapy dataset [20] given in Fig. 3.1

Method Fixed effect model Random effects model O�2
Inverse variance 1.32 [1.10; 1.59] 1.37 [1.06; 1.77] 0.0897

Mantel–Haenszel 1.35 [1.12; 1.61] 1.37 [1.06; 1.77] 0.0900

Peto 1.35 [1.12; 1.61] 1.39 [1.08; 1.80] 0.0992

Table 3.4 Summary of results for the hypertension in women dataset [27] given in Fig. 3.2

Method Fixed effect model Random effects model O�2
Inverse variance 0.78 [0.58; 1.05] 0.78 [0.58; 1.05] 0.00

Mantel–Haenszel 0.75 [0.56; 1.00] 0.78 [0.58; 1.05] 0.00

Peto 0.75 [0.56; 1.00] 0.75 [0.56; 1.00] 0.00
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3.5 Heterogeneity and Subgroup Analyses

Subgroup analyses are easily performed with the metabin function and associated
measures of heterogeneity are calculated automatically. More technical details on
subgroup analyses are provided in Sect. 4.3.

Example 3.20 Bassler et al. [5] conducted a Cochrane Review to evaluate the
effects of Ketotifen alone or in combination with other co-interventions in children
with asthma and/or wheezing. The primary outcome was the reduction in use of
rescue bronchodilators. Secondary clinical endpoints included physicians judge-
ment on the overall efficacy of Ketotifen. For this outcome, a prespecified subgroup
analysis was conducted to evaluate whether the treatment effect is different in trials
with adequate blinding compared to trials with inadequate/unclear blinding. The
data for this outcome is shown in Fig. 3.5.

In the systematic review, the random effects model with the risk ratio as measure
of treatment effect is used throughout. The meta-analysis of the clinical judgement
data contains ten trials having rather small sample sizes ranging between 20 (Chay
1992) and 133 (Rackham 1989). Despite these small sample sizes, no studies
have zero cells. In three trials the method of blinding was judged adequate whereas
in the remaining seven trials the method of blinding was unclear, i.e. these seven
trials are likely to be a mixture of trials with and without adequate blinding.

> # 1. Read in the data
> data9 <- read.csv("dataset09.csv")
> # 2. Print dataset
> data9

study Ee Ne Ec Nc blind
1 Chay 1992 1 10 6 10 Adequate blinding
2 Rackham 1989 31 68 38 65 Adequate blinding
3 Van Asperen 1992 16 52 19 51 Adequate blinding
4 Croce 1995 19 39 17 36 Method unclear
5 de Benedictis 1990 7 34 35 41 Method unclear
6 Longo 1986 10 18 15 18 Method unclear
7 Montoya 1988 6 20 14 20 Method unclear
8 Mulhern 1982 6 16 8 15 Method unclear
9 Salmon 8 28 16 34 Method unclear
10 Spicak 1983 9 25 20 25 Method unclear
> # 3. Calculate experimental and control event rates
> summary(data9$Ee/data9$Ne)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1000 0.2893 0.3338 0.3433 0.4357 0.5556
> summary(data9$Ec/data9$Nc)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.3725 0.4875 0.5923 0.6220 0.7750 0.8537

Fig. 3.5 Data from meta-analysis on Ketotifen in children with asthma and/or wheezing [5]; for
details on table headers, see Table 3.2
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The following R code fits the fixed effect and random effects model.

> mb3 <- metabin(Ee, Ne, Ec, Nc, sm="RR", method="I",
+ data=data9, studlab=study)
> print(summary(mb3), digits=2)
Number of studies combined: k=10

RR 95%-CI z p-value
Fixed effect model 0.65 [0.55; 0.78] -4.81 < 0.0001
Random effects model 0.60 [0.46; 0.79] -3.64 0.0003

Quantifying heterogeneity:
tauˆ2 = 0.0915; H = 1.45 [1.01; 2.07]; Iˆ2 = 52.3% [2.2%; 76.7%]

Test of heterogeneity:
Q d.f. p-value

18.87 9 0.0263

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tauˆ2

Both fixed effect and random effects estimates show a statistically significant
benefit of Ketotifen, according to the clinical judgement of the physicians. However,
both heterogeneity measures Q and I2 indicate a large amount of heterogeneity in
this meta-analysis.

A subgroup analysis comparing trials with adequate blinding to trials with
inadequate/unclear blinding can be readily conducted as follows.

> mb3s <- update(mb3, byvar=blind, print.byvar=FALSE)
> print(summary(mb3s), digits=2)
Number of studies combined: k=10

RR 95%-CI z p-value
Fixed effect model 0.65 [0.55; 0.78] -4.81 < 0.0001
Random effects model 0.60 [0.46; 0.79] -3.64 0.0003

Quantifying heterogeneity:
tauˆ2 = 0.0915; H = 1.45 [1.01; 2.07]; Iˆ2 = 52.3% [2.2%; 76.7%]

Test of heterogeneity:
Q d.f. p-value

18.87 9 0.0263

Results for subgroups (fixed effect model):
k RR 95%-CI Q tauˆ2 Iˆ2

Adequate blinding 3 0.77 [0.58; 1.01] 2.49 0.0237 19.7%
Method unclear 7 0.59 [0.47; 0.74] 14.29 0.1282 58%

Test for subgroup differences (fixed effect model):
Q d.f. p-value

Between groups 2.09 1 0.1483
Within groups 16.79 8 0.0324
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Results for subgroups (random effects model):
k RR 95%-CI Q tauˆ2 Iˆ2

Adequate blinding 3 0.75 [0.53; 1.08] 2.49 0.0237 19.7%
Method unclear 7 0.56 [0.39; 0.79] 14.29 0.1282 58%

Test for subgroup differences (random effects model):
Q d.f. p-value

Between groups 1.4 1 0.2367

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tauˆ2

The subgroup analysis is conducted by using the argument byvar in the
update.meta function. The subgroup analysis shows that method of blinding
does not explain the statistical heterogeneity between trials neither in the fixed effect
model (Qbetween = 2.09, p-value = 0.1483) nor in the random effects model (Qbetween

= 1.40, p-value = 0.2367). ut

3.6 Summary

In this chapter, the most commonly used effect measures for binary outcomes,
i.e. odds ratio, risk ratio, risk difference, together with the arcsine difference, have
been described. We have illustrated the use of both base R code and the metabin
function for estimating these effect measures, their standard errors and confidence
intervals, and performing fixed effect and random effects meta-analysis. In addition,
we have described the common approaches for tackling the issues raised by sparse
binary data, especially situations where one or more of the constituent studies in a
meta-analysis have zero counts.

The most important meta-analytical methods for binary outcome data, i.e. inverse
variance, Mantel–Haenszel, Peto method, and the DerSimonian–Laird random
effects model have been introduced and their estimation in R has been illustrated.

We concluded with a detailed example of using R, and specifically the metabin
function, for subgroup analyses.
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Chapter 4
Heterogeneity and Meta-Regression

Various aspects of statistical heterogeneity have been introduced briefly in previous
chapters. We now review and develop these ideas and describe the connection
between subgroup analysis and meta-regression.

4.1 Sources of Heterogeneity

In meta-analysis, three principal sources of heterogeneity can be distinguished
[13]:

• Clinical baseline heterogeneity between patients from different studies, mea-
sured, e.g., in patient baseline characteristics and not necessarily reflected on
the outcome measurement scale,

• Statistical heterogeneity, quantified on the outcome measurement scale, that may
or may not be clinically relevant and may or may not be statistically significant,

• Heterogeneity from other sources, e.g. design-related heterogeneity.

In this chapter, we only deal with statistical heterogeneity. There is a substantial
literature on statistical heterogeneity in meta-analysis, for example [6, 8, 9, 11–15,
18, 19].

4.2 Measures of Heterogeneity

Let K denote the number of studies in a meta-analysis. Further, let O�k be the
treatment effect estimate (e.g., a log odds ratio), O�2k its estimated variance, and
wk D 1= O�2k the corresponding weight from study k, k D 1; : : : ;K. Several measures
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of statistical heterogeneity are widely used:

1. Cochran’s Q statistic, which under the null hypothesis of no heterogeneity
follows a �2-distribution with K � 1 degrees of freedom [3]. Q is given by
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2. Higgins’ and Thompson’s I2 [9], derived from Cochran’s Q by defining

I2 D max

	

0;
Q � .K � 1/

Q




I

3. the between-study variance, �2, as estimated in a random effects meta-analysis.
There are several proposals for estimating �2 in a meta-analysis (see Sect. 2.3.1).
Nevertheless, most reviewers use the moment-based estimate of �2 [5], imple-
mented in RevMan 5 [16] and calculated as
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4. H2, derived from Cochran’s Q by defining [9]

H2 D Q

K � 1
;

and
5. R2, similar to H2 and calculated from �2 and a so-called “typical” within-study

variance �2 (which must be estimated), and defined as:

R2 D �2 C �2

�2
:

Some measures are directly related [9, 13], and others approximately related.
Table 4.1 shows key properties of the various measures; more details are given in
Higgins and Thompson [9]. In summary:

1. Q, which follows a �2-distribution with K � 1 degrees of freedom under the
null hypothesis of no heterogeneity, is the weighted sum of squared differences
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Table 4.1 Properties of measures of heterogeneity

Measured on Increasing with

Number of studies in Precision (size of

Measure Scale Range meta-analysis studies)

Q Absolute Œ0;1/ Yes Yes

I2 Percent Œ0; 100%� No Yes

� Outcome Œ0;1/ No No

H2 Absolute Œ1;1/ No Yes

R2 Absolute Œ1;1/ No Yes

between the study means and the fixed effect estimate. It always increases with
the number of studies, K, in the meta-analysis.

2. In contrast to Q, the statistic I2 was introduced by Higgins and Thompson [9]
as a measure independent of K, the number of studies in the meta-analysis. I2

is interpreted as the percentage of variability in the treatment estimates which is
attributable to heterogeneity between studies rather than to sampling error.

3. �2 describes the underlying between-study variability. Its square root, � , is
measured in the same units as the outcome. Its estimate does not systematically
increase with either the number of studies or the sample size.

4. H2 is a test statistic. It describes the relative difference between the observed
Q and its expected value in the absence of heterogeneity. Thus it does not
systematically increase with the number of studies [9]. H corresponds to the
residual standard deviation in a radial plot [7]. H D 1 indicates perfect
homogeneity.

5. R2 is the square of a statistic R which describes the inflation of the random effects
confidence interval compared to that from the fixed effect model. It does not
increase with K. R2 D 1 indicates perfect homogeneity [9].

Notice that, in contrast to �2, the measures Q, I2, H and R all depend on the
precision, which is proportional to study size. Thus, given an underlying model,
if the study sizes are enlarged, the confidence intervals become smaller and the
heterogeneity, measured for example using I2, increases. This is reflected in the
interpretation: I2 is the percentage of variability that is due to between-study
heterogeneity and 1 � I2 is the percentage of variability that is due to sampling
error. When the studies become very large, the sampling error tends to 0 and I2

tends to 1. Such heterogeneity may not be clinically relevant.

Example 4.1 The standard printout of a meta-analysis object contains the most
commonly used measures of heterogeneity, i.e. Q, I2, and �2, see Fig. 2.2.1 As
these measures of heterogeneity are part of meta-analysis object mc1 created in
Example 2.3 we can print them directly.

1The test statistic H is also printed in Fig. 2.2, however, it is rarely used in meta-analysis.
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> round(mc1$Q, 2) # Cochran’s Q statistic
[1] 17.57
> round(100*c(mc1$I2, mc1$lower.I2, mc1$upper.I2), 1) # I-squared
[1] 8.9 0.0 45.3
> round(mc1$tauˆ2, 4) # Between-study variance tau-squared
[1] 2.4374

These are the same values as given in Fig. 2.2. ut

4.3 Test for Subgroup Differences

Often we are interested in comparing subgroups of studies in a meta-analysis. For
example, if studies differ in the eligibility criteria for patients, we might ask whether
the treatment is more effective in some studies than in others. In this case, the
factor which defines the subgroups is said to be an effect moderator. To address
this question we need to test for a treatment-subgroup interaction, i.e. whether the
treatment effect is modified, or moderated, by subgroup membership.

There are a number of issues we need to be aware of when considering using
subgroup analyses or its more general form of meta-regression. The first is that if—
as in many medical meta-analyses—there are only a few studies, we do not have
enough information to look for treatment-subgroup interactions. Specifically, it does
not make sense to look for a treatment-subgroup interaction if there are only three
studies, or to investigate two or more factors if there are less than ten studies in a
meta-analysis [10].

The second issue is that while meta-regression and subgroup analysis are
particularly useful when we have individual participant data, in meta-analysis of
aggregate data their use is limited [17]. This is because we typically only have a
few study level variables to include in such analyses. We should not include the
aggregate value of individual patient characteristics because of the risk of the so-
called ecological bias [1, 17]. For example, if age is suspected of being an effect
moderator, it is tempting to use mean age (or the proportion of patients older
than some threshold) as a covariate in meta-regression. However, the fact that,
say, studies having older patients on average show a smaller treatment effect does
not support the conclusion that the treatment is less effective for the elderly at an
individual level.

We have already shown how to perform tests for subgroup differences in
Sects. 2.5 and 3.5. In this section we give additional technical details about these
statistical tests. Those readers who are not interested in these details may skip to the
next section.
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Following Borenstein et al. [2, Chap. 19] we distinguish three different models
which we may use to conduct tests for subgroup differences:

• fixed effect models,
• random effects models with separate estimates for between-study variance �2

across the subgroups, and
• random effects models with a common estimate for �2.

Borenstein et al. [2] also describe three methods to test for subgroup differences
which are mathematically equivalent. We restrict our attention to their Method 3,
i.e. a Q-test for heterogeneity.

Assume that the studies can be divided into G subgroups. Then, estimates of the
pooled treatment effect and its corresponding standard errors can be calculated for
each of G subgroups. Let O�gk denote the intervention effect estimate from study k in
subgroup g with k D 1; : : : ;Kg, g D 1; : : : ;G, and �g denote the intervention effect
in subgroup g, which we wish to estimate. Furthermore, denote by O�2gk the sample

estimate of Var . O�gk/.

4.3.1 Fixed Effect Model

The model with G fixed subgroup effects is

O�gk D �g C O�gk�gk; �gk
i.i.d.� N.0; 1/ (4.1)

for g D 1; : : : ;G.
We now consider the fixed effect estimate of �g in subgroup g, denoted by

O�Fg. Given . O�gk; O�gk/; k D 1; : : : ;Kg; the maximum likelihood estimate under
model (4.1) is

O�Fg D

Kg
P

kD1
O�gk= O�2gk

Kg
P

kD1
1= O�2gk

D

Kg
P

kD1
wgk

O�gk

Kg
P

kD1
wgk

:

Accordingly, O�Fg is a weighted average of the individual effect estimates O�gk with
weights wgk D 1= O�2gk.

The variance of O�Fg is estimated by

bVar . O�Fg/ D O�2g D 1

Kg
P

kD1
wgk

D 1

wg
:
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The estimated treatment effects O�Fg and their variances O�2g ; g D 1; : : : ;G; can
be used as inputs for the generic inverse variance method introduced in Sect. 2.2.
Cochran’s Q statistic

QF D
G
X

gD1
wg

0

B

B

B

@

O�Fg �

G
P

gD1
wg

O�Fg

G
P

gD1
wg

1

C

C

C

A

2

(4.2)

can be utilised to test for differences between the G subgroups. The statistic QF

follows a �2-distribution with G�1 degrees of freedom [3] under the null hypothesis
of no heterogeneity between subgroups, i.e. �1 D � � � D �G D � .

Example 4.2 In Example 2.12 a subgroup analysis was conducted in a meta-
analysis on the effects of mucolytic agents and placebo in patients with chronic
bronchitis/obstructive pulmonary disease. A test of subgroup differences for the
outcome of interest (mean number of acute exacerbations per month) was calcu-
lated using the metacont function from R package meta. Here, we redo these
calculations step by step.

It is assumed that R dataset data3 is still available in the R session (see Fig. 2.7).
The dataset consists of 23 studies which are divided in two subgroups. As two
studies have zero standard errors, effectively subgroups with 4 and 17 studies are
utilised in analyses.

In a first step, a meta-analysis is conducted for each subgroup respectively using
the subset argument in the metacont function.

> # Conduct meta-analysis for first subgroup:
> mc3s1 <- metacont(Ne, Me, Se, Nc, Mc, Sc, data=data3,
+ studlab=paste(author, year),
+ subset=duration=="<= 3 months")
> # Conduct meta-analysis for second subgroup:
> mc3s2 <- metacont(Ne, Me, Se, Nc, Mc, Sc, data=data3,
+ studlab=paste(author, year),
+ subset=duration=="> 3 months")

To conduct the test for subgroup differences estimated treatment effects as well
as corresponding standard errors are needed.

> # Subgroup treatment effects (fixed effect model)
> TE.duration <- c(mc3s1$TE.fixed, mc3s2$TE.fixed)
> # Corresponding standard errors (fixed effect model)
> seTE.duration <- c(mc3s1$seTE.fixed, mc3s2$seTE.fixed)

A meta-analysis of subgroup effects using the generic inverse variance method is
conducted using the following command.

> mh1 <- metagen(TE.duration, seTE.duration,
+ sm="MD",
+ studlab=c("<= 3 months", " > 3 months"),
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+ comb.random=FALSE)
> print(mh1, digits=2)

MD 95%-CI %W(fixed)
<= 3 months -0.13 [-0.17; -0.09] 5.5
> 3 months -0.04 [-0.05; -0.03] 94.5
*** Output truncated ***
Test of heterogeneity:

Q d.f. p-value
20.73 1 < 0.0001
*** Output truncated ***

This meta-analysis of subgroup mean values yields identical results to those
given in Example 2.12 in the printout for R object mc3swhich considers subgroups
using argument byvar.

> print(summary(mc3s), digits=2)
Number of studies combined: k=21
*** Output truncated ***
Results for subgroups (fixed effect model):

k MD 95%-CI Q tauˆ2 Iˆ2
<= 3 months 4 -0.13 [-0.17; -0.09] 22.43 0.035 86.6%
> 3 months 17 -0.04 [-0.05; -0.03] 94.92 0.002 83.1%

Test for subgroup differences (fixed effect model):
Q d.f. p-value

Between groups 20.73 1 < 0.0001
Within groups 117.35 19 < 0.0001
*** Output truncated ***

The “Test of heterogeneity” in the meta-analysis of subgroup means corresponds
to the “Test for subgroup differences (fixed effect model)—Between groups” in the
meta-analysis of all studies considering subgroups.

We can also extract the corresponding test statistics directly from the two R
objects.

> mh1$Q
[1] 20.72833
> mc3s$Q.b.fixed
[1] 20.72833

Both methods report the same value, i.e. a highly statistical significant difference
between the two subgroups. ut

4.3.2 Random Effects Model with Separate Estimates of �2

The model with G random subgroup effects and separate between-study variances
�2g is

O�gk D �g C ugk C �gk�gk; �gk
i.i.d.� N.0; 1/I ugk

i.i.d.� N.0; �2g /; (4.3)
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with k D 1; : : : ;Kg; g D 1; : : : ;G and independent error terms u and �. The fixed
effect model is a special case of the random effects model when the between-
study variances �2g are equal to 0. Accordingly, in the random effects model with
separate between-study variances an additional parameter has to be estimated for
each subgroup.

Using appropriate estimates O�2g , see Eq. (4.6) below, the random effects estimate
O�Rg and its variance can be calculated as

O�Rg D

Kg
P

kD1
w�

gk
O�gk

Kg
P

kD1
w�

gk

(4.4)

Var . O�Rg/ D 1

Kg
P

kD1
w�

gk

D 1

w�
g

(4.5)

with weights w�
gk D 1=. O�2gk C O�2g /.

Again, estimated treatment effects O�Rg and variances O�2g C O�2g ; g D 1; : : : ;G;
can be used as inputs for the generic inverse variance method, see Example 4.2.
Cochran’s Q statistic
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1
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can be utilised to test for differences in the G subgroups. The statistic QR follows a
�2-distribution with G � 1 degrees of freedom [3] under the null hypothesis of no
heterogeneity between subgroups.

Estimate Separate Between-Study Variances (DerSimonian–Laird Method)

Defining a scaling factor C D PK
kD1 wk � PK

kD1 w2k=
PK

kD1 wk, the DerSimonian–
Laird estimate of the between-study variance in a meta-analysis without subgroups
described in Sect. 4.2 can be written as

O�2 D Q � .K � 1/
C

:
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Accordingly, for each subgroup, g D 1; : : : ;G, the corresponding quantities Qg,
Kg, and Cg, can be calculated and separate estimates of the between-study variances
O�2g are given by

O�2g D Qg � .Kg � 1/
Cg

: (4.6)

As always, estimates of between-study variances are set to zero for negative
values: O�2g D max

˚

0; O�2g
�

; g D 1; : : : ;G.

Example 4.3 R objects mc3s1 and mc3s2 created in Example 4.2 can be used to
calculate the test for subgroup differences in the random effects model with separate
between-study variances.

First, we print the estimated between-study variances O�2g ; g D 1; 2,:

> data.frame(duration=c("<= 3 months", " > 3 months"),
+ tau2=round(c(mc3s1$tauˆ2, mc3s2$tauˆ2), 4))

duration tau2
1 <= 3 months 0.035
2 > 3 months 0.002

These values have already been given in Example 2.12 in the printout of R object
mc3s. We can also check that using the quantities Q1, K1 � 1, and C1 for the first
subgroup yields the same estimate of �21 :

> round((mc3s1$Q - (mc3s1$k-1))/mc3s1$C, 4)
[1] 0.035

Next we conduct a meta-analysis of the random effects treatment estimates in the
two subgroups.

> # Subgroup treatment effects (random effects model)
> TE.duration.r <- c(mc3s1$TE.random, mc3s2$TE.random)
> # Corresponding standard errors (random effects model)
> seTE.duration.r <- c(mc3s1$seTE.random, mc3s2$seTE.random)
> # Do meta-analysis of subgroup estimates
> mh1.r <- metagen(TE.duration.r, seTE.duration.r,
+ sm="MD",
+ studlab=c("<= 3 months", " > 3 months"),
+ comb.random=FALSE)
> print(mh1.r, digits=2)

MD 95%-CI %W(fixed)
<= 3 months -0.28 [-0.50; -0.05] 1.28
> 3 months -0.06 [-0.09; -0.04] 98.72
*** Output truncated ***
Test of heterogeneity:

Q d.f. p-value
3.41 1 0.0647
*** Output truncated ***

The “Test of heterogeneity” corresponds to the “Test for subgroup differences
(random effects model)—Between groups” in the printout of R object mc3s on
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Page 44; both methods report a value of 3.41 for the Q-statistic with 1 degree of
freedom and corresponding p-value of 0.0647. ut

4.3.3 Random Effects Model with Common Estimate of �2

The model with G random subgroup effects and assuming a common between-study
variance �2? across subgroups is2

O�gk D �g C ugk C �gk�gk; �gk
i.i.d.� N.0; 1/I ugk

i.i.d.� N.0; �2?/; (4.7)

with k D 1; : : : ;Kg; g D 1; : : : ;G and independent error terms u and �. The fixed
effect model is a special case of the random effects model when the between-study
variance �2? is equal to 0. In comparison to the random effects model with separate
between-study variances a single additional parameter has to be estimated.

Using an appropriate estimate O�2? , see Eq. (4.10) below, the random effects
estimate O�?Rg and its variance can be calculated as

O�?Rg D

Kg
P

kD1
w?gk

O�gk

Kg
P

kD1
w?gk

(4.8)

Var . O�Rg/ D 1
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P

kD1
w?gk

D 1

w?g
: (4.9)

with weights w?gk D 1=. O�2gk C O�2?/.
Again, estimated treatment effects O�?Rg and its variance O�2g C O�2?; g D 1; : : : ;G;

can be used as inputs for the generic inverse variance method, see Example 4.2.
Cochran’s Q statistic
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2Super- and sub-script “?” denote calculations based on the assumption of a common between-
study variance across subgroups.



4.3 Test for Subgroup Differences 95

can be utilised to test for differences in the G subgroups. The statistic Q?
R follows a

�2-distribution with G � 1 degrees of freedom [3] under the null hypothesis of no
heterogeneity between subgroups.

Estimate Common Between-Study Variance (DerSimonian–Laird Method)

Based on the quantities Qg, Kg, and Cg, g D 1; : : : ;G which have been defined in
Sect. 4.3.2, a common between-study variance [2] is given by

O�2? D

G
P

gD1
Qg �

G
P

gD1
.Kg � 1/

G
P

gD1
Cg

(4.10)

with Kg � 1 denoting the degrees of freedom.
The estimate of the between-study variance is set to zero for negative values:

O�2? D max
˚

0; O�2?
�

.

Example 4.4 In Example 4.2, results of subgroup analyses have been conducted and
saved in R objects mc3s1 and mc3s2. These R objects can be used to calculate
the common between-study variance and thus to test for subgroup differences in
the random effects model with a common between-study variance. The necessary
quantities Qg, Kg, and Cg, g D 1; : : : ;G to estimate the common between-study
variance are readily available.3

> # Q-statistic within subgroups
> Q.g <- c(mc3s1$Q, mc3s2$Q)
> # Degrees of freedom within subgroups
> df.Q.g <- c(mc3s1$k-1, mc3s2$k-1)
> # Scaling factor within subgroups
> C.g <- c(mc3s1$C, mc3s2$C)

Next we estimate the pooled between-study variance.

> # Calculate common estimate of tau-squared
> tau2.common <- (sum(Q.g) - sum(df.Q.g)) / sum(C.g)
> # Set negative value of tau.common to zero
> tau2.common <- ifelse(tau2.common < 0, 0, tau2.common)
> # Print common between-study variance
> round(tau2.common, 4)
[1] 0.0024

3We could have used list element mc3s1$df.Q instead of mc3s1$k-1.
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This estimated between-study variance can be used in the metacont function
with argument tau.preset.4

> mc3s.p <- metacont(Ne, Me, Se, Nc, Mc, Sc, data=data3,
+ studlab=paste(author, year),
+ byvar=duration, print.byvar=FALSE,
+ tau.preset=sqrt(tau2.common))
> print(summary(mc3s.p), digits=2)
Number of studies combined: k=21
*** Output truncated ***
Results for subgroups (random effects model):

k MD 95%-CI Q tauˆ2 Iˆ2
<= 3 months 4 -0.21 [-0.29; -0.12] 22.43 0.0024 86.6%
> 3 months 17 -0.07 [-0.09; -0.04] 94.92 0.0024 83.1%

Test for subgroup differences (random effects model):
Q d.f. p-value

Between groups 10.21 1 0.0014

Details on meta-analytical method:
- Inverse variance method
- Preset between-study variance: tauˆ2 = 0.0024

A more convenient way to conduct the test for subgroup differences is to use
argument tau.common in the metacont function which calculates the pooled
between-study variance directly.

> mc3s.c <- metacont(Ne, Me, Se, Nc, Mc, Sc, data=data3,
+ studlab=paste(author, year),
+ byvar=duration, print.byvar=FALSE,
+ tau.common=TRUE, comb.fixed=FALSE)
> print(summary(mc3s.c), digits=2)
Number of studies combined: k=21
*** Output truncated ***
Results for subgroups (random effects model):

k MD 95%-CI Q tauˆ2 Iˆ2
<= 3 months 4 -0.21 [-0.29; -0.12] 22.43 0.0024 86.6%
> 3 months 17 -0.07 [-0.09; -0.04] 94.92 0.0024 83.1%

Test for subgroup differences (random effects model):
Q d.f. p-value

Between groups 10.21 1 0.0014
Within groups 117.35 19 < 0.0001

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tauˆ2 (assuming

common tauˆ2 in subgroups)

4Alternatively, the command update(mc3s, tau.preset=sqrt(tau2.common))
could be used—see Sect. 2.5.
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This command produces identical results for the subgroup analysis as the call of
the metacont function with argument tau.preset. Notice the slight difference
under “Details on meta-analytical method”. ut

4.4 Meta-Regression

In the last section, tests for subgroup differences have been described which are
based on a single covariate with a limited number of values, i.e. a binary or
categorical covariate. Meta-regression is an extension for either more than one
binary/categorical covariate or a continuous covariate. In the later case, a subgroup
analysis could result in subgroups of size one, i.e. each covariate value generates a
subgroup.

We consider the following meta-regression model

O�k D �Cˇ1x1k C� � �CˇPxPk Cuk C�k�k; �k
i.i.d.� N.0; 1/I uk

i.i.d.� N.0; �2/; (4.11)

with k D 1; : : : ;K and independent error terms u and �. As this model has both
fixed effect (ˇs) and random effects terms (uk with variance �2) this meta-regression
model is also called a mixed effects model [20]. The fixed effect meta-regression is
a special case of the mixed effects model when the between-study variance �2 D 0.

4.4.1 Meta-Regression with a Categorical Covariate

A subgroup analysis with G subgroups and a common between-study variance can
be written as a special case of our meta-regression model (4.11) with G � 1 dummy
variables

O�k D � C ˇ1x1k C � � � C ˇG�1xG�1k C uk C �k�k (4.12)

with xgk D 1 if study k belongs to subgroup g; g D 1; : : : ;G � 1 and xgk D 0

otherwise. Parameter � corresponds to the treatment effect in subgroup G (baseline
group) whereas parameters ˇg describe the difference of the treatment effect in
subgroup g from the baseline group. Accordingly, treatment effect in subgroup g
is equal to � C ˇg, g D 1; : : : ;G � 1.

Example 4.5 The metareg function in R package meta can be used to conduct a
meta-regression. Actually, the metareg function is a wrapper function that calls
the rma.uni function from R package metafor (rma.uni stands for random
effects meta-analysis with a univariate outcome).
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The first argument of the metareg function, i.e. an object of class meta, is
mandatory. The second argument is a formula specifying the right side of Eq. (4.11).
This argument is mandatory if the meta object was created without argumentbyvar
otherwise it can be omitted.

We can use R object mc3s.c to conduct a meta-regression for study duration.

> mc3s.mr <- metareg(mc3s.c, duration)
Warning message:
In metafor::rma.uni(yi = x$TE, sei = x$seTE, data = dataset, :

Studies with NAs omitted from model fitting.

A warning is printed from the rma.uni function of R package metafor as two
studies have zero standard errors. Note, as R object mc3s.c was created using
argumentbyvarwe could have omitted the second argument. The metareg com-
mand creates an R object of class rma.uni. Accordingly, the print.rma.uni
function from R package metafor is used to print this object.

> print(mc3s.mr, digits=2)
Mixed-Effects Model (k = 21; tauˆ2 estimator: DL)

tauˆ2 (estimated amount of residual heterogeneity): 0.00
tau (square root of estimated tauˆ2 value): 0.05
Iˆ2 (residual heterogeneity / unaccounted variability): 83.81%
Hˆ2 (unaccounted variability / sampling variability): 6.18
Rˆ2 (amount of heterogeneity accounted for): 11.92%

Test for Residual Heterogeneity:
QE(df = 19) = 117.35, p-val < .01

Test of Moderators (coefficient(s) 2):
QM(df = 1) = 10.21, p-val < .01

Model Results:

estimate se zval pval ci.lb ci.ub
intrcpt -0.21 0.04 -4.94 <.01 -0.29 -0.12 ***
duration> 3 months 0.14 0.04 3.20 <.01 0.05 0.23 **

---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

First, information on heterogeneity ( O�2, I2 etc.) is printed. As we only wanted to
print two decimal places, the estimated between-study variance is reported as zero.
However, the square root of O�2 is 0.05 which corresponds to a value of 0:0025 for the
between-study variance which is very close to the common between-study variance
estimate.5

Next comes a test for residual heterogeneity as well as a test of moderators.
The later test corresponds to the test for subgroup differences in the random effects

5Actually, using command round(mc3s.mr$tau2, 4) would print the value 0.0024.
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model with a common between-study variance. Reported Q-statistics as well as p-
value are identical to the values calculated in Example 4.4: Q D 10:21; p D 0:0014.

Last, estimated treatment effects are reported under “Model Results”. The
estimated treatment effect in studies with study duration less than 3 months is
reported in the line starting with “intrcpt”. The estimated treatment effect (column
“estimate”) as well as lower and upper 95 % confidence limits (columns “ci.lb” and
“ci.ub”) are identical to values reported in Example 4.4. The estimated treatment
effect in the subgroup with longer study duration can easily be calculated: �0:21C
0:14 D �0:07. Again, this treatment estimate has been reported in Example 4.4.

In order to calculate 95 % confidence intervals for studies with longer study
duration based on information from the meta-regression model, the variance–
covariance matrix of the estimated coefficients has to be taken into account.

> # Variance-covariance matrix
> varcov <- vcov(mc3s.mr)
> # Estimated treatment effect in studies with longer duration
> TE.s2 <- sum(coef(mc3s.mr))
> # Standard error of treatment effect
> seTE.s2 <- sqrt(sum(diag(varcov)) + 2*varcov[1,2])

The quantities TE.s2 and seTE.s2 can be used as input to the metagen
function to estimate a 95 % confidence interval.

> print(metagen(TE.s2, seTE.s2, sm="MD"), digits=2)
MD 95%-CI z p-value

-0.07 [-0.09; -0.04] -4.68 < 0.0001

The same values for lower and upper 95 % confidence interval have been reported
in Example 4.4. ut
Example 4.6 A subgroup analysis comparing trials with adequate blinding to trials
with inadequate/unclear blinding was conducted for the Ketotifen meta-analysis
with a binary outcome in Example 3.20. The subgroup analysis was based on
separate estimates of the between-study variance. Here we redo the subgroup
analysis using a common between-study variance accordingly results are slightly
different from those reported in Example 3.20. It is assumed that R dataset data9
is still available in the R session; otherwise we refer to Fig. 3.5 for R code to generate
the R object.

> mb3s.c <- metabin(Ee, Ne, Ec, Nc, sm="RR", method="I",
+ data=data9, studlab=study,
+ byvar=blind, print.byvar=FALSE,
+ tau.common=TRUE)
> print(summary(mb3s.c), digits=2)
Number of studies combined: k=10
*** Output truncated ***

Results for subgroups (random effects model):
k RR 95%-CI Q tauˆ2 Iˆ2

Adequate blinding 3 0.72 [0.43; 1.21] 2.49 0.1028 19.7%
Method unclear 7 0.56 [0.40; 0.78] 14.29 0.1028 58%
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Test for subgroup differences (random effects model):
Q d.f. p-value

Between groups 0.64 1 0.4245
Within groups 16.79 8 0.0324
*** Output truncated ***

Before having a closer look at this printout we conduct a meta-regression:

> mb3s.mr <- metareg(mb3s.c)
> print(mb3s.mr, digits=2)
Mixed-Effects Model (k = 10; tauˆ2 estimator: DL)
*** Output truncated ***
Test for Residual Heterogeneity:
QE(df = 8) = 16.79, p-val = 0.03

Test of Moderators (coefficient(s) 2):
QM(df = 1) = 0.64, p-val = 0.42

Model Results:

estimate se zval pval ci.lb ci.ub
intrcpt -0.33 0.27 -1.23 0.22 -0.85 0.19
.byvarMethod unclear -0.25 0.32 -0.80 0.42 -0.87 0.37
*** Output truncated ***

The “Test of Moderators” in the meta-regression corresponds to the “Test for sub-
group differences (Between groups)”: Q D0.64, 1 degree of freedom. Furthermore,
the “Test for Residual Heterogeneity” is identical to the “Within groups” results in
the subgroup analysis: Q D16.79, 1 degree of freedom. Otherwise, results of the
two analyses look at first glance differently. However, the subgroup analysis reports
risk ratios whereas the meta-regression reports log risk ratios. Using the exponential
function we get the same treatment estimates for studies with adequate blinding as
well as studies with unclear method of blinding.

> # Treatment effect in studies with adequate blinding
> round(exp(coef(mb3s.mr)["intrcpt"]), 2)
intrcpt

0.72
> # Treatment effect in studies with unclear method of blinding
> round(exp(sum(coef(mb3s.mr))), 2)
[1] 0.56

ut

4.4.2 Meta-Regression with a Continuous Covariate

In this subsection we introduce meta-regression with a continuous covariate using
a famous vaccination meta-analysis. The importance of centring a continuous
covariate in a meta-regression is well illustrated by this example.
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Example 4.7 Colditz et al. [4] evaluated the overall effectiveness of the Bacillus
Calmette-Guerin (BCG) vaccine against tuberculosis. In addition, covariates that
may potentially influence the effect of vaccination were examined. We will use
one covariate, absolute geographical latitude (i.e. distance from the equator), as an
example.

The BCH data with 13 studies is part of the R package metafor and can be easily
loaded in R.

> data(dat.colditz1994, package="metafor")
> data10 <- dat.colditz1994

This R command creates an R object dat.colditz1994 in the workspace
which we assign to R object data10. A meta-analysis of the BCG data shows that
substantial heterogeneity exists.

> mh2 <- metabin(tpos, tpos+tneg, cpos, cpos+cneg,
+ data=data10, studlab=paste(author, year))
> summary(mh2)
Number of studies combined: k=13
*** Output truncated ***
Test of heterogeneity:

Q d.f. p-value
152.57 12 < 0.0001
*** Output truncated ***

Accordingly, the next step is to examine whether the absolute geographical
latitude can explain the very large between-study heterogeneity at least to some
extent. This covariate has nine different values, ranging from 13 to 55:

> table(data10$ablat)
13 18 19 27 33 42 44 52 55
2 1 1 1 2 2 2 1 1

Given this, it is natural to conduct a meta-regression analysis with the continuous
covariate ablat.

> mh2.mr <- metareg(mh2, ablat)
> print(mh2.mr, digits=2)
Mixed-Effects Model (k = 13; tauˆ2 estimator: DL)
*** Output truncated ***
Test for Residual Heterogeneity:
QE(df = 11) = 30.73, p-val < .01

Test of Moderators (coefficient(s) 2):
QM(df = 1) = 18.85, p-val < .01

Model Results:

estimate se zval pval ci.lb ci.ub
intrcpt 0.26 0.23 1.12 0.26 -0.20 0.71
ablat -0.03 0.01 -4.34 <.01 -0.04 -0.02 ***

---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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The “Test for Residual Heterogeneity” and the “Test for Moderators” clearly
show the large influence of the absolute geographical latitude on the effectiveness
of the BCG vaccine. The residual heterogeneity decreases from Q D152.57 (with
12 degrees of freedom) to Q D30.73 (with 11 degrees of freedom). The effect of
absolute geographical latitude is highly statistical significant: Q D18.85 (with 1
degree of freedom).

The estimated effect of BCG vaccination at the equator, i.e. at an absolute
geographical latitude of 0, is reported in the line starting with “intrcpt”. The
influence of a 1ı change in absolute geographical latitude on the efficacy of the BCG
vaccine is given in the line starting with “ablat”. These results are reported on the
log scale. As we can see the effect of absolute geographical latitude on the efficacy
of the BCG vaccine is negative, �0.03, which translates in a stronger reduction of
positive tuberculosis cases with increasing distance from the equator.

A bubble plot can be generated using the bubble.metareg function.

> bubble(mh2.mr)

The resulting bubble plot is shown in Fig. 4.1. It is clear from this figure that the
intercept, i.e. effect of BCG vaccination at the equator, involves extrapolation way
beyond the range of the available data.

In situations like this, it is typically more sensible to centre the continuous
covariate around its mean value and to conduct a meta-regression using this centered
covariate. This we now do:

> mean(data10$ablat)

Covariate ablat
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Fig. 4.1 Bubble plot for meta-regression of BCG data [4] with absolute geographical latitude
(covariate ablat) as continuous covariate
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[1] 33.46154
> ablat.c <- with(data10, ablat - mean(ablat))
> mh2.mr.c <- metareg(mh2, ablat.c)
> print(mh2.mr.c, digits=2)
Mixed-Effects Model (k = 13; tauˆ2 estimator: DL)
*** Output truncated ***
Test for Residual Heterogeneity:
QE(df = 11) = 30.73, p-val < .01

Test of Moderators (coefficient(s) 2):
QM(df = 1) = 18.85, p-val < .01

Model Results:

estimate se zval pval ci.lb ci.ub
intrcpt -0.72 0.10 -7.09 <.01 -0.92 -0.52 ***
ablat.c -0.03 0.01 -4.34 <.01 -0.04 -0.02 ***
*** Output truncated ***

This meta-regression based on a centered continuous covariate has exactly the
same results for the test of heterogeneity, test of moderators, effect of the absolute
graphical latitude, and fitted values. However, the estimate of the intercept and its
interpretation are different. Here, the intercept corresponds to the effect of BCG
vaccination at an absolute geographical latitude of 33:5ı. As this is a log risk ratio,
we will backtransform this to a risk ratio.

> round(exp(coef(mh2.mr.c)["intrcpt"]), 2)
intrcpt

0.49

We see that BCG vaccination at an absolute geographical latitude of 33:5ı results
in a reduction of the tuberculosis positive cases by about 50 %.

We can also use the metagen function to print the risk ratio and corresponding
confidence interval.

> TE.33.5 <- coef(mh2.mr.c)["intrcpt"]
> seTE.33.5 <- sqrt(vcov(mh2.mr.c)["intrcpt", "intrcpt"])
> print(metagen(TE.33.5, seTE.33.5, sm="RR"), digits=2)

RR 95%-CI z p-value
0.49 [0.4; 0.59] -7.09 < 0.0001
*** Output truncated ***

These results are identical to the meta-regression results, e.g. the z-value is
�7.09. ut

4.5 Summary

In this chapter various measures for heterogeneity used in meta-analysis have
been introduced. Furthermore, statistical tests for subgroup differences based
respectively on fixed effect and random effects models have been described. Last,
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meta-regression—an extension of subgroup analysis—has been introduced and its
connection to a subgroup analysis assuming a common between-study variance has
been illustrated through examples. Our final example also illustrated the importance
of centring a continuous covariate in a meta-regression.
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Chapter 5
Small-Study Effects in Meta-Analysis

This chapter describes small-study effects in meta-analysis and how the issues they
raise may be addressed. “Small-study effects” is a generic term for the phenomenon
that smaller studies sometimes show different, often larger, treatment effects than
large ones. This notion was coined by Sterne et al. [55]. One possible, probably
the most well-known, reason is publication bias. This is said to occur when the
chance of a smaller study being published is increased if it shows a stronger effect
[3, 41, 52]. This can happen for a number of reasons, for example authors may be
more likely to submit studies with “significant” results for publication or journals
may be more likely to publish smaller studies if they have “significant” results.
If this occurs, it in turn biases the results of meta-analyses and systematic reviews.
There are a number of other possible reasons for small-study effects. One is selective
reporting of the most favourable outcomes, known as outcome selection bias or
outcome reporting bias [8, 9, 18, 61]. Another possible cause of small-study effects
is clinical heterogeneity between patients in large and small studies; e.g., patients
in smaller studies may have been selected so that a favourable outcome of the
experimental treatment may be expected. In the case of a binary outcome, also a
mathematical artefact arises from the fact that for the odds ratio or the risk ratio,
the variance of the treatment effect estimate is not independent of the estimate itself
[47]. This problem will be discussed in Sect. 5.2.2. Lastly, it can never be ruled out
that small-study effects result from mere coincidence [42]. Empirical studies have
established evidence for these and other kinds of bias [19, 42, 53]. There is a vast
range of tests for small-study effects [4, 20, 24, 38, 43, 48], most of them based on
a funnel plot which will be introduced in Sect. 5.1.1.
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5.1 Graphical Illustration of Small-Study Effects

Typically, the first step in exploring possible small-study effects in meta-analysis is
to look at a graphical presentation of the data. The most common approach is the
funnel plot, which we introduce using the following example.

Example 5.1 Moore et al. [34] conducted a systematic review of 37 randomized
placebo-controlled trials on the effectiveness and safety of topical non-steroidal
anti-inflammatory drugs (NSAIDS) in acute pain. The main outcome was treatment
success, defined as a reduction in pain of at least 50 %. R code to read in the data
and print some information is shown in Fig. 5.1.

A forest plot of the NSAIDS studies using the odds ratio as treatment effect
measure and the Mantel–Haenszel method for pooling is given in Fig. 5.2. This
figure was created using the following R commands.

> ms1 <- metabin(Ee, Ne, Ec, Nc, data=data11, sm="OR")
> forest(ms1,
+ label.left="NSAIDS worse", label.right="NSAIDS better",
+ ff.lr="bold")

Figure 5.2 shows that both fixed effect and random effects estimates are highly
significant. However, the estimated treatment effects of these two models are rather
different. The estimated odds ratio is smaller than 1 (i.e. showing a detrimental effect
of NSAIDS) in only a single study. In some studies estimated odds ratios are rather
extreme with values up to 115.

The large difference in estimates of the fixed effect and random effects model
acts as a warning of possible small-study effects. This is because the random
effects model assigns more weight to smaller studies than the fixed effect model.
Accordingly, the estimated treatment effect of the random effects model is shifted
in direction of the treatment effects of smaller studies if a small-study effect is
present. ut

> # 1. Read the data
> data11 <- read.csv("dataset11.csv")
> # 2. Print structure of R object data11
> str(data11)
’data.frame’: 37 obs. of 5 variables:
$ study: int 1 2 3 4 5 6 7 8 9 10 ...
$ Ee : int 23 69 79 35 10 23 20 35 56 28 ...
$ Ne : int 30 123 102 49 15 50 32 50 84 40 ...
$ Ec : int 10 54 45 13 2 13 9 40 33 16 ...
$ Nc : int 30 116 102 42 15 50 24 50 84 40 ...

> # 3. Calculate experimental and control event probabilities
> summary(data11$Ee/data11$Ne)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.4200 0.6250 0.7203 0.7089 0.8276 1.0000

> summary(data11$Ec/data11$Nc)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.2750 0.4000 0.3824 0.4655 0.8000

Fig. 5.1 Data from meta-analysis on NSAIDS in acute pain [34]; for details on variable names,
see Table 3.2
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Fig. 5.2 Forest plot for meta-analysis on NSAIDS in acute pain [34]

5.1.1 Funnel Plot

A funnel plot [31] shows the estimated treatment effects on a suitable scale (usually
on the x-axis) against a measure of their precision, usually the standard error, on the
y-axis with standard error at top, i.e. an inverted axis [54]. For the odds ratio (3.2)
the coordinates xk and yk of the funnel plot are defined as

xk D log O k

yk D S.E. .log O k/:

Less frequently, the y-axis shows the inverse standard error, the inverse variance or
a function of sample size instead of the standard error.

In the absence of small-study effects, treatment effects of large and small
studies would scatter around a common average treatment effect. If no excessive
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Fig. 5.3 Funnel plot for fictional meta-analysis of 25 studies without small-study effect

between-study heterogeneity exists, smaller studies (with larger standard errors)
would scatter more than larger studies. That is, the funnel plot would show the
form of a triangle symmetric with respect to the average treatment effect, with
broad variability for small imprecise studies (at the bottom of the plot) and small
dispersion for large, precise studies (at the top). Figure 5.3 shows such an example
with 25 fictional studies generated from a fixed effect model with an odds ratio of
0.8.1

If the funnel plot appears asymmetric, this may be due to small-study effects.
In the presence of selection we expect small studies which have “wrong” (that is,
unfavourable) treatment effects are more likely to be missing. This results in a biased
estimate if the treatment effects are pooled in a meta-analysis.

Example 5.2 The necessary information to produce a funnel plot for the NSAIDS
meta-analysis is available in R object ms1, i.e. treatment estimates ms1$TE and
standard errors ms1$seTE of individual studies. The following R code could be
used to produce crude funnel plots (figures not shown).

> # Funnel plot with log odds ratio values on x-axis
> plot(ms1$TE, ms1$seTE, ylim=c(max(ms1$seTE), 0))
> # Funnel plot with odds ratio values on x-axis and
> # descriptive axis labels
> plot(exp(ms1$TE), ms1$seTE, ylim=c(max(ms1$seTE), 0),
+ log="x", xlab="Odds Ratio", ylab="Standard error")

Note, the argument ylim is necessary in the R commands to invert the y-axis.

1R code to generate the funnel plot is given in the web-appendix.
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Fig. 5.4 Funnel plot for meta-analysis on NSAIDS in acute pain [34]

A more convenient way to generate a funnel plot is the use of the funnel
function in R package meta.

> funnel(ms1)

The resulting funnel plot is shown in Fig. 5.4. Filled circles represent estimated
treatment effect (odds ratio) and its precision (standard error) for each individual
study. In addition to individual study results, the fixed effect estimate (vertical
dashed line) with 95 % confidence interval limits (diagonal dashed lines) and the
random effects estimate (vertical dotted line) are shown in the figure. Since the
width of the confidence interval is proportional to the standard error, the choice of
the standard error as y-axis is preferable [54]. This leads to the confidence interval
limits becoming straight lines making the funnel plot ideally look like a triangle, i.e.
if no small-study effects and no excessive between-study heterogeneity exists.

In Fig. 5.4 we observe a large gap in the bottom left corner of the plot, indicating
that we may be missing smaller trials with odds ratios around one, corresponding
to indecisive or even unfavourable results. This example of funnel plot asymmetry
will be examined in detail in the following. ut

Details on funnel.meta Function

The funnel function is a generic function. Accordingly, for objects of class meta
the funnel.meta function is utilised. This function has numerous arguments,
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allowing fine control of the resulting plot. They can be printed using the args
function.

> args(funnel.meta)
function (x, xlim = NULL, ylim = NULL, xlab = NULL,

ylab = NULL, comb.fixed = x$comb.fixed,
*** Output truncated ***

col = "black", bg = "darkgray", col.fixed = "black",
col.random = "black", log = "", yaxis = "se",
contour.levels = NULL, col.contour,

*** Output truncated ***

The key argument of the funnel.meta function is x which is an object of
class meta, such as R object ms1 from the NSAIDS example. The other arguments
give fine control of the graphical output. For example, xlab and ylab allows
the user to specify the axis labels, xlim and ylim the axis ranges, and col,
col.fixed, col.random and col.contour for colours of various parts of
the plot. Alternative choices for the y-axis are possible using yaxis="invvar"
(inverse of the variance), yaxis="invse" (inverse of the standard error), and
yaxis="size" (study size).

As usual, a detailed explanation of the various options can be found by using the
help command help(funnel.meta) or ?funnel.meta.

Contour-Enhanced Funnel Plot

Contour-enhanced funnel plots have been proposed to help differentiate between
asymmetry due to publication bias and that due to other reasons [40]. Contour lines
representing well established levels of statistical significance are added to a funnel
plot to indicate regions where a test of treatment effect is significant.

A contour-enhanced funnel plot can be generated with the funnel.meta
function by specifying the contour levels (argument contour.levels. By
default (argument col.contour missing), suitable grey levels will be used to
distinguish the levels of statistical significance.

Example 5.3 For the NSAIDS meta-analysis a contour-enhanced funnel plot is
shown in Fig. 5.5 which was generated using the following commands.

> funnel(ms1, comb.random=FALSE, pch=16,
+ contour=c(0.9, 0.95, 0.99),
+ col.contour=c("darkgray", "gray","lightgray"))
> legend(0.25, 1.25,
+ c("0.1 > p > 0.05", "0.05 > p > 0.01", "< 0.01"),
+ fill=c("darkgray", "gray","lightgray"), bty="n")

Figure 5.5 clearly shows that almost all smaller studies have a statistically
significant result, favouring NSAIDS, either at the 5 % level (medium grey region)
or even the 1 % level (light grey region). On the other hand, some of the larger
studies (i.e. standard error smaller than 0.5) show non-significant results (white
region). In summary, the NSAIDS meta-analysis is a clear example for asymmetry,
probably due to publication bias. ut
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Fig. 5.5 Contour-enhanced funnel plot for meta-analysis on NSAIDS in acute pain [34]

5.1.2 Radial Plot

Galbraith [22] introduced a graphical method in order to display point estimates
with different standard errors—so-called Galbraith plot or radial plot. An additional
paper [21] is focused on medical applications and the use of the log odds ratio as
measure of the treatment effect. If the number of estimates is large, a radial plot
has certain advantages as compared to other displays like a forest plot which is
commonly used for summarising the result of a meta-analysis.

For the odds ratio, a scatter plot of

xk D 1=S.E. .log O k/

and

yk D log O k=S.E. .log O k/

is called a radial plot and has the following properties under a fixed effect model
[22]:

(a) Var .yk/ is equal to 1,
(b) for each study k, the estimated log odds ratio, log O k, is equal to the slope of a

line through the origin (0,0) and the point (xk, yk),
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(c) points are close to zero on the x-axis for large S.E. .log O k/,
(d) logarithm of pooled odds ratio using the inverse variance method, O�F, see (3.21),

equals the slope parameter ˇ1 in a unweighted linear regression going through
the origin: yk D ˇ1xk.

Due to properties (b) and (d) a radial scale is sometimes shown on the right-hand
side of a radial plot to indicate the treatment effects. The values yk are often called
z-scores because they correspond to the statistic of a test that log k is different from
zero.

If there are no small-study effects, individual study results are expected to
scatter randomly around the regression line through the origin corresponding to the
fixed effect estimate (see property (d) above). Details of these considerations are
discussed in the literature [11, 21, 47]. Egger’s test [20], introduced in Sect. 5.2.1, is
based on the radial plot.

Example 5.4 Base R code could be used to produce a crude radial plot (figure not
shown).

> plot(1/ms1$seTE, ms1$TE/ms1$seTE)

The preferred way to generate a radial plot is the use of the radial function in
R package meta.

> radial(ms1)

The resulting radial plot is shown in Fig. 5.6. It is obvious that results for smaller
studies (inverse of standard error less than 2) do not scatter randomly around the
regression line. Again, this is a clear indication of small-study effects. ut
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Fig. 5.6 Radial plot for meta-analysis on NSAIDS in acute pain [34]
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5.2 Statistical Tests for Small-Study Effects

A large range of tests has been designed to examine whether asymmetry exists in
a funnel plot. These tests are often called tests for publication bias. However, tests
for asymmetry are not specific to publication bias and therefore it is preferred to
call them tests for small-study effects or tests for funnel plot asymmetry. Regardless
of publication bias, it is useful to quantify the evidence for funnel plot asymmetry,
though this may be due to other sources than publication bias [27, 30, 56, 58].

Tests for small-study effects can be categorised into:

1. non-parametric tests using rank-correlation methods, introduced and influenced
by Begg and Mazumdar [4, 48],

2. regression tests, represented by the so-called Egger’s test [20] and its modifica-
tions [24, 32, 38, 43, 59].

A further class of methods, not be considered in detail, are models of estimating
the number of missing studies, such as Rosenthal’s “fail-safe N” [23, 37, 41].
Likewise, we do not consider selection models based on p-values [60] or tests based
on an excess of significant findings [26].

5.2.1 Classical Tests by Begg and Egger

These tests assume that under the null hypothesis of no small-study effects, among
studies included in a meta-analysis there is no association between effect size and
precision.

Begg and Mazumdar Test: Rank Correlation Test

An adjusted rank correlation test was proposed by Begg and Mazumdar [4] to
test for publication bias in meta-analysis; the power of the test was evaluated via
simulations assuming a normal distribution for the estimated treatment effect. The
test is based on the correlation between a standardised treatment effect and the
within-trial variance; the inverse variance method is used in the construction of the
test. For the odds ratio as measure of treatment effect, the corresponding quantities
are the variance of the log odds ratio cVar . O�k/ and a standardised treatment effect

s. O�k/ D
� O�k � O�F

�

�q

cVar . O�k/ � cVar . O�F/ :

Begg and Mazumdar [4] utilised Kendall’s tau as correlation measure, however,
other rank correlation coefficients like Spearman’s rho which is probably better
known might be used alternatively.
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Let x denote the number of pairs of studies with standardised effects and
variances ranked in the same order, i.e.

�

s. O�k/ > s. O�k0/ and cVar .log O�k/ > cVar .log O�k0/
�

or
�

s. O�k/ < s. O�k0/ and cVar .log O�k/ < cVar .log O�k0/
�

;

for k ¤ k0. The number of pairs ranked in the opposite order are denoted by y. The
normalised test statistic for the case that no ties neither within s. O�k/ nor cVar .log O�k/

are present is

z D x � y
p

K.K � 1/.2K C 5/=18
; (5.1)

where K is the number of studies involved in the meta-analysis.
In the case of ties, i.e. s. O�k/ D s. O�k0/ or cVar .log O�k/ D cVar .log O�k0/, the standard

error given in the denominator in Eq. (5.1) requires some modification; a modified
version for tied observations can be found in Kendall and Gibbons [29, p. 66].

The test statistic z is asymptotically distributed according to a standard normal
distribution under the null hypothesis of no bias in meta-analysis. The null
hypothesis of no bias in meta-analysis is rejected at the significance level ˛ if

jzj > z1�˛=2;

with z1�˛=2 denoting the .1 � ˛=2/ quantile of the standard normal distribution.
Alternatively to conducting a statistical test, an estimate of Kendall’s tau with

.1 � ˛/ confidence interval could be reported in a systematic review. Simulations
showed that the power of the Begg and Mazumdar test is poor.

Example 5.5 Sufficient information to conduct the Begg and Mazumdar test is
available in the R object ms1: treatment estimate ms1$TE and its standard
error ms1$seTE (i.e. square-root of variance) as well as fixed effect estimate
ms1$TE.fixed and its standard error ms1$seTE.fixed. We do not provide
base R code to conduct the Begg and Mazumdar test, but use the metabias
function of the R package meta instead.

> metabias(ms1, method="rank")

Rank correlation test of funnel plot asymmetry

data: ms1
z = 3.5836, p-value = 0.0003389
alternative hypothesis: asymmetry in funnel plot
sample estimates:

ks se.ks
274.00000 76.45914
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At first a test statistic is given (zD 3:5836 for the Begg and Mazumdar test),
followed by the p-value. For the NSAIDS meta-analysis, the Begg and Mazumdar
test shows a significant p-value (p D 0:0003) leading to rejection of the null
hypothesis of symmetry in the funnel plot and decision in favour of the alternative
hypothesis, indicating marked asymmetry of the funnel plot. At last the numerator
ks and denominator se.ks of the test statistic z are provided. ut

Egger’s Test: Linear Regression Test

The test proposed by Egger et al. [20] for the detection of publication bias in meta-
analyses is strongly connected to a radial plot. The test is based on a simple linear
regression including a parameter for the intercept ˇ0:

yk D ˇ0 C ˇ1xk;

with

xk D 1=S.E. . O�k/

and

yk D O�k=S.E. . O�k/:

In contrast to the radial plot, the regression line is not constrained to run through the
origin. In fact, the test is constructed by testing for a non-zero intercept ˇ0 which is
asymptotically distributed according to Student’s t-distribution with K � 2 degrees
of freedom under the null hypothesis of no bias in meta-analysis.

The approach is justified by the intuitive argument that, in the presence of
publication bias, small studies with non-significant or negative results are less likely
to get published. Thus, points close to zero on the x-axis do not scatter randomly
around the overall effect resulting in a non-zero intercept which is a departure from
property (d) of a radial plot described in Sect. 5.1.2.

The null hypothesis of no bias in meta-analysis is rejected at the significance
level ˛ if

ˇ

ˇ

ˇ

Ǒ
0=S.E. . Ǒ

0/
ˇ

ˇ

ˇ D jtj > tK�2I1�˛=2

with tK�2I1�˛=2 denoting the .1�˛=2/ quantile of Student’s t-distribution with K �2
degrees of freedom. The test procedure is implicitly based on the assumption that
linearity still holds in the presence of bias.

Example 5.6 The metabias function can be used to conduct Egger’s test.
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> metabias(ms1, method="linreg")

Linear regression test of funnel plot asymmetry

data: ms1
t = 4.7147, df = 35, p-value = 3.786e-05
alternative hypothesis: asymmetry in funnel plot
sample estimates:

bias se.bias slope
2.7652744 0.5865197 -0.1122134

At first the test statistic is given (tD 4:7147with K�2 D 35 degrees of freedom,
df=35), followed by the p-value. For the NSAIDS meta-analysis, Egger’s test
shows a significant p-value (p < 0:0001) leading to rejection of the null hypothesis
of symmetry in the funnel plot. At last the numerator bias and denominator
se.bias of test statistic t are provided which correspond to the intercept of a
regression line not restricted to go through the origin. In addition, the slope of
the regression line is printed. These values can be compared to the result of a
corresponding linear regression model using base R commands.

> reg <- lm(I(ms1$TE/ms1$seTE) ˜ I(1/ms1$seTE))
> summary(reg)
*** Output truncated ***
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.7653 0.5865 4.715 3.79e-05 ***
I(1/ms1$seTE) -0.1122 0.2707 -0.415 0.681
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
*** Output truncated ***

Here, the generic lm function is used to build a linear model with dependent
variable ms1$TE/ms1$seTE and independent variable 1/ms1$seTE. These
variables were framed using the I function in order to insure that the “=” operator
is used as an arithmetical operator. Intercept and its standard error are identical to
those given in the output of metabias function. In addition, slope estimate and
its standard error are reported which are of no importance for the test of funnel plot
asymmetry.

The regression line with an intercept can be printed to a radial plot in two
different ways.

> radial(ms1)
> abline(reg)

Or using the plotit argument of the metabias function.

> metabias(ms1, method = "linreg", plotit=TRUE)

The resulting plot using the radial function and abline function is shown in
Fig. 5.7. In the metabias function with plotit argument the regression line for
the fixed effect model (dashed line) is not plotted.
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Fig. 5.7 Radial plot for meta-analysis on NSAIDS in acute pain [34] including regression line
(solid line) for Egger’s test [20]

Note that the regression line (solid line) differs markedly from the line through
the origin (dashed line) in Fig. 5.7. This is due to the asymmetry in the funnel
plot. ut

Test by Thompson and Sharp

A variant of Eggers’s test allowing for between-study heterogeneity was proposed
by Thompson and Sharp [59, method (3a)]. This test statistic is based on a weighted
linear regression of the treatment effect on its standard error using the method of
moments estimator for the additive between-study variance component. The test
statistic follows a t-distribution with K � 2 degrees of freedom.

Example 5.7 Again, the metabias function can be used to conduct the Test by
Thompson and Sharp.

> metabias(ms1, method = "mm")

Linear regression test of funnel plot asymmetry (methods
of moment)

data: ms1
t = 5.1726, df = 35, p-value = 9.518e-06
alternative hypothesis: asymmetry in funnel plot
sample estimates:

bias se.bias slope
2.72761281 0.52732226 -0.09076304
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This test also shows a significant p-value (p < 0:0001), leading to rejection of
the null hypothesis of symmetry in the funnel plot. ut

5.2.2 Modified Versions of Classical Tests for Binary Outcomes

The assumption of funnel plot symmetry in the absence of small-study effects is
plausible when the outcome is continuous, as under the assumption of normality
the sample mean is statistically independent of the sample variance. However, this
is not generally true for discrete data, a fact mentioned and discussed by several
authors [5, 24, 32, 38, 47, 48, 59]. Specifically, suppose the outcome is binary
and the effect is summarised by the log risk ratio or log odds ratio. Then the
variance estimators of both the log risk ratio and log odds ratio are statistically
dependent on the estimated log risk ratio and log odds ratio. Even in absence
of small-study effects, this dependence induces some asymmetry in the funnel
plot. Accordingly, this mathematical artefact is another source of asymmetry in
funnel plots for binary outcomes. When tests designed for quantitative outcomes
are applied in meta-analyses with binary outcomes, they are anti-conservative,
potentially reporting significant p-values for small-study effects more often than
they should [32, 47]. This observation has motivated proposals to modify existing
tests for binary outcomes [24, 38, 43, 48].

Harbord’s Test: Score-Based Test

For binary data with the odds ratio as effect measure, Harbord et al. [24] proposed
a modification. They replaced the log odds ratio of study k, k D 1; : : : ;K, and its
variance with the score-based effect measure Zk=Vk (which is an approximation to
the log odds ratio, if this is not too far from zero) and its variance 1=Vk, where

Zk D ak � .ak C bk/.ak C ck/=nk

and

Vk D .ak C bk/.ak C ck/.bk C dk/.ck C dk/=Œn
2
k.nk � 1/�

(notation see Table 3.1). Zk=Vk (with variance 1=Vk) is seldom used as a measure of
outcome for a single study, but well-known as Peto odds ratio in meta-analysis, see
Sects. 3.2.1 and 3.3.3.

Following Egger et al. [20], the treatment effect Zk=Vk can be regressed on
the standard error 1=

p
Vk with study weights Vk, testing the null hypothesis of a

zero slope. The equivalent on the radial plot is to regress Zk=
p

Vk on
p

Vk without
weighting, and to test for a zero intercept.
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The advantage of this test is that the variance estimate depends only on the
marginal totals in Table 3.1. The superiority of this test for binary data compared to
Egger’s test was confirmed in simulations [24, 43].

Example 5.8 The metabias function can be used to conduct Harbord’s test.

> metabias(ms1, method = "score")

Linear regression test of funnel plot asymmetry
(efficient score)

data: ms1
t = 3.7618, df = 35, p-value = 0.0006181
alternative hypothesis: asymmetry in funnel plot
sample estimates:

bias se.bias slope
2.87991968 0.76556515 -0.07549869

Harbord’s test shows a significant p-value (p D 0:0006), leading to rejection of
the null hypothesis of symmetry in the funnel plot. ut

Macaskill’s Test and Peters’ Test

Peters et al. [38] proposed a modification of Macaskill’s test [32] with the sample
size serving as measure of precision. For both tests, the usual estimate of the log
odds ratio, log O k D log..akdk/=.bkck// is used. Macaskill et al. [32] proposed to
regress this on the total study size nk, weighting the study with Œ1=.akCck/C1=.bkC
dk/�

�1. Peters et al. [38] proposed to regress log O k on the inverse of the total study
size, 1=nk, using the same weights. Simulations showed superiority of the Peters’
test compared to Egger’s test and Macaskill’s test [38].

Example 5.9 The metabias function can be used to conduct Peters’ test.

> metabias(ms1, method = "peters")

Linear regression test of funnel plot asymmetry (based
on sample size)

data: ms1
t = 4.7796, df = 35, p-value = 3.116e-05
alternative hypothesis: asymmetry in funnel plot
sample estimates:

bias se.bias slope
74.9937870 15.6903262 0.4096863

Peters’ test also shows a significant p-value (p < 0:0001), leading to rejection of
the null hypothesis of symmetry in the funnel plot.

The test by Macaskill is not implemented in the metabias function. However,
it could be conducted using the generic lm function. ut
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Schwarzer’s Test

Schwarzer et al. [48] described a rank test of the correlation between a standardised
form of .ak � EŒAk�/ and variance Var .Ak/, where expectation EŒAk� and variance
Var .Ak/ of the random variable Ak denoting the number of events in the treatment
arm (where ak is observed) are estimated under the non-central hypergeometric
distribution for each 2 � 2 table, given the overall fixed effect estimate of treatment
on the log odds ratio scale.

Example 5.10 Again, the metabias function can be used to conduct Schwarzer’s
test.

> metabias(ms1, method = "count")

Rank correlation test of funnel plot asymmetry (based on
counts)

data: ms1
z = 3.0866, p-value = 0.002024
alternative hypothesis: asymmetry in funnel plot
sample estimates:

ks se.ks
236.00000 76.45914

This test also shows a significant p-value (p D 0:002), leading to rejection of the
null hypothesis of symmetry in the funnel plot. ut

Rücker’s Tests: Tests Based on Arcsine Difference

Rücker et al. [43] proposed three versions of a test based on the arcsine difference
as effect measure. The function x 7! arcsin

p
x is the variance-stabilising transform

for the binomial distribution [15, 33], see also [1, 2, 28, 44]. The arcsine regression
test is defined by choosing the arcsine difference �k (3.12) as effect measure.
Following Egger et al. [20], the observed treatment effect O�k (3.13) is regressed on
its standard error, which is estimated by

p

0:25=nek C 0:25=nck with study weights
.0:25=nek C 0:25=nck/

�1, and the null hypothesis of zero slope is tested. Thus the
variance estimate depends only on the row totals, that is, on the sample sizes. It does
not depend on the treatment effect estimate.

Instead of Egger’s test, other tests can be applied to the arcsine difference, such
as the Begg and Mazumdar test. In a simulation study comparing all these tests it
was shown that Harbord’s test, Peters’ test and the Thompson and Sharp version of
Rücker’s test maintain the type I error better than Egger’s test [43, 59].

Example 5.11 If one of the arcsine tests is used, the arcsine difference must
be specified as effect measure. To this aim, we generate a new meta-analysis
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Fig. 5.8 Funnel plot and radial plot for meta-analysis on NSAIDS in acute pain [34] using arcsine
transformation

ms1.asd using the update.meta function (setting argument sm="ASD").2

The Egger and Begg and Mazumdar versions of the arcsine test are called using
the metabias function with arguments method = "linreg" or method =
"rank", respectively. The Thompson and Sharp version of the arcsine test can
be carried out using method = "mm" in the metabias function. Furthermore,
results can be illustrated in funnel plot and radial plot, see Fig. 5.8, here realised by
setting plotit = TRUE in the metabias function.

> ms1.asd <- update(ms1, sm="ASD")
> summary(ms1.asd)
Number of studies combined: k=37

ASD 95%-CI z p-value
Fixed effect model 0.2806 [0.2471; 0.3141] 16.4200 < 0.0001
Random effects model 0.3398 [0.2686; 0.4111] 9.3448 < 0.0001

Quantifying heterogeneity:
tauˆ2 = 0.0346; H = 2.04 [1.74; 2.39]; Iˆ2 = 76% [67.1%; 82.5%]

Test of heterogeneity:
Q d.f. p-value

149.79 36 < 0.0001

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tauˆ2
> funnel(ms1.asd)

2Alternatively, the command ms1.asd <- metabin(Ee, Ne, Ec, Nc,
data=data11, sm="ASD") could have been used.
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> metabias(ms1.asd, method = "mm", plotit=TRUE)

Linear regression test of funnel plot asymmetry (methods
of moment)

data: ms1.asd
t = 5.0863, df = 35, p-value = 1.236e-05
alternative hypothesis: asymmetry in funnel plot
sample estimates:

bias se.bias slope
4.2484242 0.8352690 -0.1451581

The Thompson and Sharp version of the arcsine test shows a significant p-value
(p < 0:0001), leading to rejection of the null hypothesis of symmetry in the funnel
plot. ut

Table 5.1 gives an overview on regression tests. We note that Harbord’s test and
the arcsine test follow the original principle of Egger’s test to regress the treatment
effect on an estimate of its standard error, using inverse variance weights. In the
right part of the table, the alternative version of these tests is given, represented
by the radial plot, where the regression variables are defined such that weights are
unnecessary. Macaskill’s test [32] and Peters’ test [38] depart from this principle. In
this respect, they are ad hoc methods, nevertheless working well [32, 35, 38, 43].

Readers more deeply interested in the pros and cons of all these funnel plot-
based tests are advised to look at recommendations made by a group of authors led
by Sterne [56].

5.3 Adjusting for Small-Study Effects

All significance tests have in common that they at best give evidence of small-study
effects. They are, however, not designed to correct the treatment effect estimate
appropriately. In this section we discuss existing approaches providing adjusted
treatment effect estimates: the trim-and-fill method, the Copas selection model, and
regression approaches.

5.3.1 Trim-and-Fill Method

The trim-and-fill method is a nonparametric method to assess selection
bias/publication bias in meta-analysis [16, 17]. The method provides an estimate of
(1) the number of missing studies and (2) the treatment effect adjusted for selection
bias. The basic idea of the trim-and-fill method is to add studies to the funnel plot
until it becomes symmetric. The trim-and-fill method consists of the following five
steps:
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1. Estimate the number of studies in the outlying part of the funnel plot using rank-
based methods;

2. remove (trim) these studies and do meta-analysis on the remaining studies;
3. consider the estimate from the “trimmed” meta-analysis as the true center of the

funnel;
4. for each “trimmed” study, create (“fill”) an additional study as the mirror image

about the center of funnel plot;
5. do meta-analysis on original and filled studies.

Three different methods have been proposed to estimate the number of missing
studies [16, 17]. Two of these methods (L- and R-estimators) have been shown to
perform better in simulations, and we use these here. In steps 1–4 and 5, respectively,
either a fixed effect or random effects model can be used. Simulation results [39]
indicate that the fixed–random model, that is, using a fixed effect model for steps
1–4 and a random effects model for step 5 (1) performs better than the fixed–fixed
model and (2) performs no worse than and marginally better in certain situations
than the random–random model, and we adopt this approach here.

As the Cochrane Handbook for Systematic Reviews of Interventions [25] notes,
the trim-and-fill method assumes that the small-study effect is caused by selection,
but requires no assumptions about the mechanism leading to small-study effects.
However, it is built on the strong assumption of a symmetric funnel plot.

The performance of the trim-and-fill method was compared to that of the Copas
selection model—described in Sect. 5.3.2—using a large set of meta-analyses [49]
and to regression approaches [39, 46]—described in Sect. 5.3.3. The method is
known to perform poorly in the presence of substantial between-study heterogeneity
[39, 57]. Additionally, estimation and inferences are based on a dataset containing
imputed intervention effect estimates, potentially resulting in too narrow CIs for the
overall treatment effect.

Example 5.12 We now apply the trim-and-fill method to the NSAIDS example
using the trimfill function of R package meta. The commands

> tf1 <- trimfill(ms1)
> class(tf1)
[1] "metagen" "meta" "trimfill"
> funnel(tf1)

yield a default trim-and-fill analysis. As we can see R object tf1 has several classes.
As the metagen function is called internally, R object tf1 is of classes metagen
and meta; class trimfill is added by the trimfill function. The resulting
funnel plot is shown in Fig. 5.9. The filled-in study results are printed as open circles.

The following command prints R object tf1.

> print(tf1, digits=2, comb.fixed=TRUE)
OR 95%-CI %W(fixed) %W(random)

1 6.57 [2.11; 20.48] 1.49 2.13
*** Output truncated ***
37 5.69 [1.51; 21.42] 1.10 1.91
Filled: 37 0.95 [0.25; 3.56] 1.10 1.91
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Fig. 5.9 Funnel plot for meta-analysis on NSAIDS in acute pain [34] after applying the trim-and-
fill method

Filled: 27 0.86 [0.16; 4.68] 0.67 1.53
Filled: 16 0.82 [0.25; 2.73] 1.34 2.05
Filled: 1 0.82 [0.26; 2.55] 1.49 2.13
Filled: 21 0.72 [0.21; 2.40] 1.32 2.05
Filled: 20 0.58 [0.13; 2.47] 0.91 1.77
Filled: 15 0.48 [0.17; 1.35] 1.79 2.25
Filled: 5 0.41 [0.07; 2.59] 0.57 1.40
Filled: 30 0.39 [0.15; 1.04] 2.04 2.33
Filled: 36 0.26 [0.02; 3.03] 0.32 0.97
Filled: 22 0.22 [0.01; 4.45] 0.21 0.72
Filled: 14 0.17 [0.03; 0.95] 0.64 1.49
Filled: 31 0.15 [0.01; 2.68] 0.23 0.77
Filled: 32 0.05 [0.00; 1.08] 0.20 0.68

Number of studies combined: k=51 (with 14 added studies)

OR 95%-CI z p-value
Fixed effect model 2.32 [2.02; 2.66] 11.87 < 0.0001
Random effects model 2.45 [1.83; 3.28] 6.00 < 0.0001

Quantifying heterogeneity:
tauˆ2 = 0.7113; H = 1.93 [1.68; 2.22]; Iˆ2 = 73.2% [64.7%; 79.7%]

Test of heterogeneity:
Q d.f. p-value

186.73 50 < 0.0001

Details on meta-analytical method:
- Inverse variance method
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- DerSimonian-Laird estimator for tauˆ2
- Trim-and-fill method to adjust for funnel plot asymmetry

First, all 37 NSAIDS studies are printed followed by 14 filled-in studies that are
mirror images of the most outlying studies (numbers given in the output, e.g. No. 37,
27, . . . ). Note, the fixed effect estimate is not printed by default as the corresponding
confidence interval is too narrow. Accordingly, argument comb.fixed=TRUE is
used in the above command. Estimates from fixed effect and random effects model
are much more similar after applying the trim-and-fill method. ut

5.3.2 Copas Selection Model

In contrast to the trim-and-fill method, the selection model by Copas [10, 12–14]
explicitly models publication bias.

Briefly, the Copas selection model has two components:

(a) a model for the treatment effect,
(b) a model giving the probability that study k is selected for publication.

A correlation parameter  between these two components indicates the extent of
publication bias; the stronger the correlation, the greater the chance that only the
more extreme treatment effects are selected for publication and observed by others.

In more detail, let .�k; ık/ follow a bivariate normal distribution with mean 0 and
covariance matrix

�

1 

 1

�

:

Given parameters � , �2, and �2k , the observed treatment effect O�k (e.g., log odds
ratio) of study k is modelled by the random effects model

O�k D � C
q

�2k C �2 �k (5.2)

(approximating a normal distribution). This form of the random effects model
comprises both components of the variance into a single term. The first component,
�2k , represents the random error within study k. The second component, �2 represents
the variance between studies (that constitutes the “random” effect). Thus �2k C �2

is the total variance coming from both sources of variation, such that
q

�2k C �2 is
the standard deviation. Accordingly, the error terms are merged to one term �k. An
extended version of this model will be treated in Sect. 5.3.3.

We say study k is observed if Zk > 0, where

Zk D �0 C �1=sk C ık (5.3)
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with fixed �0 and �1 (for their choice, see below) and standard error sk. From (5.3),
the marginal probability that study k is observed is

Pr.Zk > 0/ D Pr.ık > ��0 � �1=sk/ D ˚.�0 C �1=sk/; (5.4)

where ˚. � / is the cumulative density function of the standard normal. Thus, ˚.�0/
can be interpreted as the marginal probability of publishing a study with infinite
standard error, and �1 is associated with the change in publication probability
with increasing precision. Note that the appearance of sk in (5.3) means that the
probability of publication reflects the sampling variance from the data simulated for
study k.

Copas and Shi [10, 13] use standard properties of the normal distribution to show
that the probability of observing study k is

˚

8

ˆ

<

ˆ

:

�0 C �1=sk C �k
O�k��
�2k C�2

q

1 � 2�2k =.�2k C �2/

9

>

=

>

;

: (5.5)

Thus, if  D 0, (5.2) and (5.3) are unrelated, so a meta-analysis of observed studies
will give an approximately unbiased estimate of � . Conversely, if �1 �  < 0

then the probability of observing study k is increased the smaller O�k, because this
corresponds to smaller �k and hence larger ık. In this situation, a meta-analysis of
observed studies will give a downwardly biased estimate of � .

The Copas selection model has two parameters �0 and �1 describing the extent
of selection. If the model is fitted, these parameters are not estimated, but fixed.
Later, in a sensitivity analysis they are varied and the sensitivity of the adjusted
effect to variation of �0 and �1 is examined. To interpret �0 and �1, take the marginal
probability of observing study k, given by (5.4). If we look at the standard error of
smallest and largest study, ssmall and slarge, we can assume that the smallest study
is published with probability psmall and the largest study with probability plarge, for
example, take psmall D 0:1 and plarge D 0:9. Then we find �0 and �1 by solving

psmall D ˚.�0 C �1=ssmall/

plarge D ˚.�0 C �1=slarge/:

For fitting the Copas selection model and carrying out the sensitivity analysis,
a special R package copas was written [6] which has been replaced by R package
metasens [50]. The implementation of the Copas selection model is described in
detail in Carpenter et al. [7]. The Copas selection model has also been compared to
the trim-and-fill method [49].

Example 5.13 The following set of commands (i) loads the R package metasens,
(ii) applies the copas function to the meta-analysis object ms1 defined above, thus
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Fig. 5.10 Graphical output from Copas selection model for meta-analysis on NSAIDS in acute
pain [34]

producing an object c1 of class copas, and (iii) produces a graphical summary of
the result of the Copas selection model.

> library(metasens)
Loading required package: meta
Loading ’meta’ package (version 4.0-2).
Loading ’metasens’ package (version 0.2-0).
> c1 <- copas(ms1)
> plot(c1)

Figure 5.10 shows the four plots generated by the plot command.
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Funnel plot (Top Left)

We know this plot already from Fig. 5.4. Note, in this funnel plot values on the x-axis
are printed as log odds ratios instead of odds ratios.

Contour plot (Top Right)

This plot shows the estimated treatment effects, measured as log odds ratios, for a
range of pairs .�0; �1/, with contours delineated for selected log odds ratios (dashed
lines). With decreasing probability of publishing the study with the largest standard
error (that is, increasing selection), we are stepping downwards along the line of
steepest descent (the solid line approximately orthogonal to the contours) from the
top right corner of the plot to the left. This line of steepest descent is crossing six
contour lines in Fig. 5.10 with corresponding treatment estimates decreasing from a
log odds ratio of about 1.3–0.8.

Treatment effect plot (Bottom Left)

The six treatment estimates highlighted in the contour plot are also shown in the
third plot, along with their 95 % confidence intervals. In this plot a seventh treatment
estimate is added on the left side corresponding to a Copas selection model without
adjustment for selection. This additional treatment estimate is very similar to
the estimate from the usual random effects model, however, uses a Maximum
Likelihood estimator for the between-study variance instead of the DerSimonian–
Laird method. These seven treatment estimates are part of R object c1.

> c1$TE.slope
[1] 1.3170832 1.3000441 1.2007513 1.1010823 1.0010173 0.9011074
[7] 0.8011047

Values on the x-axis are calculated according to Eq. (5.4) using the largest
standard error of all studies in the given meta-analysis (the “smallest study”) and
values for .�0; �1/ from the contour plot where the line of steepest descent crosses
the contour lines. The largest standard error smax can be easily calculated from R
object c1.

> max(c1$seTE)
[1] 1.602172

The corresponding values for .�0; �1/ are not part of R object c1 but can be
calculated.

> gamma0 <- min(c1$gamma0.range) + c1$x.slope*diff(c1$gamma0.range)
> gamma1 <- min(c1$gamma1.range) + c1$y.slope*diff(c1$gamma1.range)

Accordingly, the probability of publishing the study with the largest standard
error can be calculated.
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> print(pnorm(gamma0 + gamma1/max(c1$seTE)), digits=2)
[1] 0.98 0.84 0.70 0.59 0.50 0.43

This plot clearly shows that the estimated treatment effect is decreasing if the
degree of selection is increasing (i.e. by decreasing the probability of publishing the
study with the largest standard error).

P-value plot (Bottom Right)

The last plot shows the p-value of the test for residual selection, which is significant
(here defined as being less than 0.1—see argument sign.rsb in plot.copas
function) throughout. If this would cross the p D 0:1 line, the adjusted treatment
effect would be read off at this point of selection. This cannot be done here since
we do not observe the point of crossing anymore. The reason is the large extent of
selection in the example.

A summary of the two bottom plots in Fig. 5.10 is provided by the
summary.copas function.

> print(summary(c1), digits=2)
Summary of Copas selection model analysis:

publprob OR 95%-CI pval.treat pval.rsb N.unpubl
1.00 3.73 [2.77; 5.02] < 0.0001 < 0.0001 0
0.98 3.67 [2.89; 4.65] < 0.0001 < 0.0001 0
0.84 3.32 [2.43; 4.55] < 0.0001 < 0.0001 3
0.70 3.01 [2.21; 4.09] < 0.0001 < 0.0001 8
0.59 2.72 [2.01; 3.69] < 0.0001 0.0004 14
0.50 2.46 [1.82; 3.34] < 0.0001 0.0014 20
0.43 2.23 [1.65; 3.02] < 0.0001 0.0054 28

Copas model (adj)
RE model 3.73 [2.80; 4.97] < 0.0001

Significance level for test of residual selection bias: 0.1

Legend:
publprob - Probability of publishing study with largest

standard error
pval.treat - P-value for hypothesis of overall treatment effect
pval.rsb - P-value for hypothesis that no selection remains

unexplained
N.unpubl - Approximate number of unpublished studies suggested

by model

The column publprob lists the probabilities of publishing the study with the
largest standard error already used in the two bottom plots of Fig. 5.10. Selection
increases from top to bottom. The second column, OR lists the odds ratios estimated
by the model if selection takes place as given by the publication probability in the
first column, together with a 95 % confidence interval in the next column 95%-CI
(left bottom plot shows log odds ratios). Column pval.treat shows the p-value
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for the null hypothesis that the treatment effect is equal in both groups, which for
the example is highly significant throughout. This is likewise true here for column
pval.rsb which shows the p-value for the hypothesis that no further selection
remains unexplained already used in the bottom right plot of Fig. 5.10. In other
words, selection remains unexplained here even if the probability of publishing the
“smallest study” is as low as 0.43. The last column, N.unpubl tells us how many
studies are assumed to be missing based on the Copas selection model; for details
see [13]. Unfortunately, the result of the Copas selection model which should be
shown after the text Copas model (adj) is missing here. The reason is that
selection seems to be even greater than assumed by the default range of potential
selection probabilities, here from 0.43 to 1.00.

As a remedy, we can extend the range of the parameters �0 and �1 by explicit
specifying a greater range. To this aim, we first look at the full output using the
print.copas function.

> c1
Copas selection model analysis

min max
range of gamma0: -0.5 2.0
range of gamma1: 0.0 0.4
*** Output truncated ***

followed by more information on the Copas selection model analysis—including
the summary given above. In the NSAIDS meta-analysis the default range is [�0:5,
2] and [0, 0.4] for parameter �0 and �1, respectively. We therefore decide to extend
the ranges to [�1, 2] and [0, 1].

> c2 <- copas(ms1, gamma0.range=c(-1,2), gamma1.range=c(0,1))
> plot(c2)

The resulting plot is shown in Fig. 5.11. We find that the range of �0 and �1 in the
contour plot is now sufficiently large that the p-value curve crosses the p D 0:1 line
in the bottom right plot, which takes place at a selection probability of about 0.3.

From the summary output we see that no evidence of residual selection is present
for a selection probability of 0.26.

> print(summary(c2), digits=2)
Summary of Copas selection model analysis:

publprob OR 95%-CI pval.treat pval.rsb N.unpubl
1.00 3.73 [2.77; 5.02] < 0.0001 < 0.0001 0
0.75 3.33 [2.45; 4.52] < 0.0001 < 0.0001 4
0.49 2.73 [2.05; 3.64] < 0.0001 0.0018 15
0.35 2.24 [1.72; 2.92] < 0.0001 0.0356 30
0.26 1.82 [1.46; 2.26] < 0.0001 0.3273 48

Copas model (adj) 1.82 [1.46; 2.26] < 0.0001 0.3273 48
RE model 3.73 [2.80; 4.97] < 0.0001
*** Output truncated ***



134 5 Small-Study Effects in Meta-Analysis

−2 −1 0 1 2 3 4 5

1.
5

1.
0

0.
5

0.
0

log OR

S
ta

nd
ar

d 
er

ro
r

Funnel plot

 0 
 0.2 

 0.4 
 0.6  0.8 
 1  1.2 

−1 −0.4 0.2 0.8 1.4 2

0
0.

2
0.

4
0.

6
0.

8
1

Values of gamma0
V

al
ue

s 
of

 g
am

m
a1

Contour plot

1 0.8 0.6 0.4

0
0.

5
1

1.
5

Probability of publishing the trial
with largest sd

lo
g 

O
R

Treatment effect plot

1 0.8 0.6 0.4

0
0.

2
0.

4
0.

6
0.

8
1

Probability of publishing the trial
with largest sd

P
−

va
lu

e 
fo

r 
re

si
du

al
 s

el
ec

tio
n 

bi
as

P−value for residual selection bias

Fig. 5.11 Graphical output from Copas selection model for meta-analysis on NSAIDS in acute
pain [34] after changing ranges for sensitivity parameters gamma0 and gamma1

The adjusted treatment effect estimate based on the Copas selection model is
therefore read off at the corresponding place in the treatment effect plot (and printed
in the last row of the table in the summary) as 1.82 [1.46; 2.26]. This result is also
given as “Copas model (adj)” in the printed output. We conclude that though there is
much selection, the adjusted estimate from the Copas selection model still indicates
that the treatment is effective. ut
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5.3.3 Adjustment by Regression

Stanley [51] seems to be the first author who proposed a regression-based treatment
effect estimate adjusting for small-study effects. Moreno et al. [35] compared
various regression-based approaches for adjusting the treatment effect for small-
study effects and included also the trim-and-fill method in their extensive simulation
study. The methods proposed by Moreno et al. [35] are based on regression tests
discussed in Sect. 5.2. The slope of the weighted linear regression is used to
construct a test for asymmetry of the funnel plot. Thereby the intercept is interpreted
as the estimated treatment effect for a study of infinite precision, adjusted for small-
study effects. This idea was also discussed by Copas and Malley [12].

Another paper by Moreno et al. [36] showed that their adjusted treatment effect
estimates were able to predict the effect of the whole database of antidepressant
trials in the FDA registry from a biased subset of these trials that were published.

Rücker et al. [45, 46] used a similar approach and combined it with a shrinkage
procedure. The underlying model is an extended random effects model that takes
account of possible small-study effects by allowing the effect to depend on the
standard error.

O�k D �� C
q

�2k C �2 .�k C �B/; �k
i.i.d.� N.0; 1/: (5.6)

Here O�k is the observed effect in study k, �� the global mean, �2k the within-study
sampling variance, and �2 the between-study variance. The parameter �B represents
the bias introduced by small-study effects, as is seen by either of the following
considerations.

On the one hand, �B can be interpreted as the expected shift in the standardized
treatment effect if precision is very small

E

" O�k � ��
�k

#

! �B if �k ! 1:

On the other hand, �adj D �� C ��B is interpreted as the limit treatment effect if
precision is infinite

EŒ�k� ! �� C ��B if �k ! 0:

Note that as �B is included in Eq. (5.6), �� has not the same interpretation as
parameter � in the usual random effects model (2.11). The two models are only the
same if �B D 0. If there are genuine small-study effects, i.e. �B ¤ 0, model (5.6)
includes a component making the treatment effect depend on the standard error. The
expected treatment effect of a study of infinite size is �� C ��B, whereas �� alone
does not appropriately represent the treatment effect.
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The ML estimates O�B and O�� can be interpreted as intercept and slope in a linear
regression on a so-called generalised radial plot, which makes them readily available
by standard software [12]. Using estimates for �B; �� and � , the adjusted treatment
effect is estimated by O�adj D O�� C O� O�B.

Example 5.14 Standard regression modelling applied to the generalised radial plot
and using the lm function could be used for parameter estimation in the extended
random effects model. However, it is more convenient to use the limitmeta
function of R package metasens. We apply it to our example.

> l1 <- limitmeta(ms1)
> print(l1, digits=2)
Results for individual studies (left: original data;

right: shrunken estimates)

OR 95%-CI OR 95%-CI
1 6.57 [2.11; 20.48] 2.65 [0.85; 8.25]
*** Output truncated ***
37 5.69 [1.51; 21.42] 1.96 [0.52; 7.38]

Result of limit meta-analysis:

Random effects model OR 95%-CI z pval
Adjusted estimate 1.84 [1.26; 2.68] 3.17 0.0015

Unadjusted estimate 3.73 [2.80; 4.97] 9.01 < 0.0001

Quantifying heterogeneity:
tauˆ2 = 0.4670; Iˆ2 = 68.3% [55.5%; 77.4%]; Gˆ2 = 91.5%

Test of heterogeneity:
Q d.f. p.value

113.52 36 < 0.0001

Test of small-study effects:
Q-Q’ d.f. p.value
44.20 1 < 0.0001

Test of residual heterogeneity beyond small-study effects:
Q’ d.f. p.value

69.32 35 0.0005

Details on adjustment method:
- expectation (beta0)

The printout shows the estimates and 95 % confidence intervals of the primary
studies (left) and those of the shrunken estimates (right), followed by the result
of the adjusted model, compared to that of the usual random effects model. The
adjusted point estimate is comparable to that of the Copas selection model given
in Sect. 5.3.2, OR D 1:82 Œ1:46I 2:26�, however, the 95 % confidence interval
is considerably wider. Both results differ substantially from the results of the
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trim-and-fill method given in Sect. 5.3.1, OR D 2:45 Œ1:83I 3:28� for the random
effects model.

Heterogeneity is quantified as usual, with an added measure G2 that is interpreted
as the proportion of unexplained variance after allowing for possible small-study
effects in the limit meta-analysis [45]. In the example, G2 D 91:5% is very large,
which means that there is still unexplained variance even after adjusting for small-
study effects. This is caused by the large studies at the top of the funnel plot
shown in Fig. 5.4 which have very different point estimates that cannot be explained
by a small-study effect. The various sources of heterogeneity are separated by
partitioning Q D 113:52 into two parts Q � Q0 D 44:2 and Q0 D 69:2 as shown in
the next part of the printout. Both parts are interpreted as tests and give significant
results, that is, we have both a small-study effect and residual heterogeneity beyond
that.

The limitmeta function was run with the default option method.adjust=
"beta0" that represents one of three available adjustment methods; for details,
see [45].

Finally, we show how the result of the regression-based adjusting method can be
illustrated by inserting a curve into the funnel plot using the R command

> funnel(l1)

The resulting funnel plot, shown in Fig. 5.12, adds to the fixed effect and random
effects estimates (dashed and dotted vertical lines, respectively) a grey curve. It
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Fig. 5.12 Graphical output from regression-based adjustment method for meta-analysis on
NSAIDS in acute pain [34]. The grey curve runs from a biased effect estimate for a very small-
study (bottom) to the adjusted estimate for a study with infinite precision (top)
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starts at the bottom from a very biased treatment effect estimate (thought resulting
from a hypothetical small-study with infinite standard error), then runs to the top
of the figure and finally ends at the adjusted treatment effect estimate exp. O�adj/,
indicated by a grey diamond. The grey curve corresponds to the regression line
originating from the generalised radial plot, here transformed and transposed for
fitting into the funnel plot. ut

5.4 Summary

In this chapter we have described how the extent of possible small-study effects such
as publication bias can be investigated and—if appropriate—adjusted for. We began
by showing how R could be used to create funnel and radial plots, and discussed
their interpretation. Then, we reviewed the large number of statistical tests for funnel
plot asymmetry, and illustrated their application. We concluded by illustrating three
established methods which attempt to correct the treatment estimate for small-study
effects.
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Chapter 6
Missing Data in Meta-Analysis

In this chapter we discuss issues raised by missing data. In Sect. 6.1 we discuss how
to explore the robustness of our inference to different assumptions about missing
outcome measures, while in Sect. 6.2 we describe an imputation approach which
may be used when a study does not report the precision.

6.1 Missing Outcome Data: Some Considerations

Here we consider the case where one, or more, studies contributing to a meta-
analysis have missing outcome data. Our intention is to outline some of the issues to
consider, and illustrate how some of the resulting analyses may be performed using
R. For a broader discussion of the issues, see White et al. [9].

Usually, a study report will detail the nature and extent of missing data in
each intervention arm, following the CONSORT guidelines [4]. If the proportion
of patients with missing outcome is non-trivial, the reported point estimate and
standard error need to be interpreted in the light of this. In particular, reviewers
need to look at the assumptions about the missing outcome data that underpin the
reported results, and consider how they relate to the overall research question of the
systematic review.

In many trials, outcome data will only be collected while patients broadly comply
with the intervention and other requirements of the protocol; when they cease such
compliance, they will be deemed to have withdrawn and subsequent outcome data
will be missing. We call patients who complete the study according to such rules
de jure patients. Thus, analysis of data from de jure patients will estimate the effect
of the intervention if patients adequately comply with the intervention and other
aspects of the trial protocol. This applies to analyses made under the missing at
random assumption, which in this context assumes that the conditional distribution
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144 6 Missing Data in Meta-Analysis

of a patient’s outcome data given baseline (and possibly intermediate follow-up
data) is the same whether or not that outcome is actually observed.

By contrast, a pragmatic understanding of the intervention will often seek to
estimate the effect of the intervention under de facto patient behaviour, representing
the likely effect of use of the intervention in the health sector.

In this setting, we may wish to explore the sensitivity of a point estimate
obtained from de jure patients to various assumptions about the difference in average
outcomes between (often missing) de facto outcomes and (usually observed) de jure
outcomes. Such analyses generally need to assume missing data are missing not at
random, or that missing data are informative. Further discussion of these issues is
given in [1] and Chapter 10 of [3].

In an ideal world, the assumptions made for the primary analysis would be clear
from the report, and the authors would also explore and report the robustness of
their primary analysis to different assumptions concerning the missing outcomes.
Unfortunately, this is not always the case. The following approach described by [6],
and developed in the context of meta-analysis of binary data by [7] may be helpful.

This is a two-stage approach. In the first stage, for contributing studies with
missing outcome data we consider if any adjustment is needed to take account of
this. Having made any adjustments, the second stage is simply to perform a meta-
analysis in the usual way.

6.1.1 Study-Level Adjustment for Missing Data

Suppose study k reports a complete records analysis, i.e. treatment effect estimates
O�ke and O�kc with corresponding standard errors S.E. . O�ke/ and S.E. . O�kc/ where
“e” denotes experimental arm and “c” control arm. These quantities estimate the
population parameters values

	

�ke;

q

Var . O�ke/; �kc;

q

Var . O�kc/




:

Accordingly, the treatment effect is defined as �k D �ke � �kc. For ease of notation,
we write se and sc instead of S.E. . O�ke/ and S.E. . O�kc/, respectively, and omit the
study index k when the context makes it clear we refer to a specific study.

Suppose that, for a particular study, treatment estimates are based on only neo out
of ne patients in the experimental arm and nco out of nc patients in the control arm.1

Accordingly the proportion of missing data in the experimental and control arms

1Index o stands for observed.
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respectively is given by

�e D ne � neo

ne
and �c D nc � nco

nc
:

Let ıe; ıc be the average difference between observed and missing responses in the
experimental and control arms. Then the average effect of intervention is

� D f.1 � �e/�e C �e.�e C ıe/g � f.1 � �c/�c C �c.�c C ıc/g
D .�e � �c/C .ıe�e � ıc�c/; (6.1)

where �e and �c are respectively the mean of the complete records analysis in the
experimental and control arms.

From this we see that if the average difference between observed and missing
outcomes is the same in the experimental and control group, then the difference
between � and the complete records analysis �e � �c depends on the difference in
the proportions of missing data in the two arms.

When it is reasonable to believe that� � .�e��c/, then the study can be included
in the meta-analysis in the usual way. When this is not reasonable, or if we wish to
explore the sensitivity of our conclusions to this assumption, we need to specify a
distribution for ıe; ıc. We suppose

ıe � N.�e; �
2
e / ; ıc � N.�c; �

2
c / ; Cor.ıe; ıc/ D : (6.2)

Then, using the complete records, we have . O�e; s2e ; O�c; s2c/ as estimates of treatment
effects and variances as well as estimates of the probability of missing data in each
arm O�e and O�c. Substituting these estimates into (6.1), we have

O� D . O�e � O�c/C .�e O�e � �c O�c/; (6.3)

with

Var . O�/ D s2e C s2c C V1 C V2: (6.4)

Here, .s2e C s2c/ represents the usual variance estimate, calculated using the complete
records, and using the conditional variance formula

V1 D �2e O�2e C �2c O�2c � 2�e�c O�e O�c; (6.5)

and

V2 D .�2e C �2e /
O�e.1 � O�e/

neo
C .�2c C �2c /

O�c.1 � O�c/

nco
: (6.6)

For reasonable sample sizes V2 will negligible compared to V1.
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In order to use this approach, we need to specify (or obtain expert opinion on)
�e; �c; �

2
e ; �

2
c , and . In practice obtaining expert opinion on plausible values of

these parameters is often not possible. Given that our aim is to explore the sensitivity
of the meta-analytic estimate of the treatment effect to different assumptions about
the missing outcome data, we can instead use the approach below.

6.1.2 Sensitivity Analysis Strategies

Following [7], we suggest four choices for the sensitivity parameters �e; �c; �
2
e ; �

2
c ,

and , which explore sensitivity to four different features of the studies in the meta-
analysis.

For each choice we (i) re-estimate all the treatment effects and standard errors
for studies with missing data and (ii) re-fit the random effects meta-analysis to the
resulting data. Note that because of the heterogeneity of missing data and its effects
across studies, we do not typically consider the fixed effect model appropriate in
this context. The four choices, or sensitivity strategies, are:

1. Fixed Equal: assume �e D �c D �, and �2c D �2e D 0, so that ı is common
across all treatment arms within each study, and the same for all studies.

As this analysis assumes the average difference between missing and observed
outcomes is the same across all arms and studies, it is therefore sensitive to
imbalance in missing data between treatment arms.

2. Fixed Opposite: assume �e D ��c, and �2c D �2e D 0, so that across all studies
in the active arms observed and missing outcomes differ by ı, whereas they differ
by �ı in the control arms.

By assuming the differences between missing and observed arms are equal
and opposite across the studies, this analysis is sensitive to the overall proportion
of missing data in the studies.

3. Random Equal: assume ıe D ıc D ı, with ı � N.�; �2/. That is, differences are
common across arms within a study, but random across studies.

This analysis builds on (1) by increasing the standard errors of study estimates
according to the imbalance in the proportion of missing observations. Studies
with unbalanced proportions of missing data are therefore further down-weighted
in the subsequent meta-analysis.

4. Random Uncorrelated: assume ıe independent of ıc, i.e.  D 0. With this strategy
it may be appropriate to build on strategy 2 by choosing �e D ��c. Relative
to strategy 2, this analysis thus further increases the standard errors of study
estimates according to the proportion of missing data in the study. Such studies
are then further down-weighted in the subsequent meta-analysis.
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> # 1. Do meta-analysis
> m <- metacont(Ne, Me, Se, Nc, Mc, Sc,
+ studlab=paste(author, year),
+ data=data1)
> # 2. Extract dataset
> mdata <- as.data.frame(m)
> mdata$studlab <- as.character(mdata$studlab)
> # 3. Select seven studies with smallest standard error
> data12 <- mdata[rank(mdata$seTE)<=7, c(7,1:6)]
> names(data12) <- c("study", "Ne", "Me", "Se", "Nc", "Mc", "Sc")
> # 4. Print dataset
> data12

study Ne Me Se Nc Mc Sc
2 Boner 1989 20 15.70 13.10 20 22.70 16.47
5 DeBenedictis 1994a 17 14.40 11.10 17 27.40 17.30
12 Novembre 1994f 24 15.42 8.35 24 28.46 13.84
13 Novembre 1994s 19 11.00 12.40 19 26.10 14.90
14 Oseid 1995 20 14.10 9.50 20 28.90 18.00
16 Shaw 1985 8 10.27 7.02 8 34.43 10.96
17 Todaro 1993 13 10.10 8.90 13 23.50 4.00

Fig. 6.1 Code to read in data for the bronchoconstriction meta-analysis [5] and to extract studies
with seven smallest standard errors

Example 6.1 We consider data from the meta-analysis introduced in Sect. 1.6,
comparing Nedocromil sodium (experimental treatment) with placebo (control) for
preventing exercise-induced bronchoconstriction. As before, the response is the
maximum fall in the forced expiratory volume in 1 s (FEV1) over the course of
follow-up, expressed as a percentage. For each study, the mean value, standard
deviation and sample size are reported for both experimental and control group.

To illustrate the four strategies for sensitivity analysis described above, we
consider only data from the studies with the seven smallest standard errors. R code
to create the analysis dataset and the data are shown in Fig. 6.1.

To explore the effect of missing data, we make eight patients missing in each
arm of the Novembre 1994f study and five patients missing in each arm of the
Oseid 1995 study.

> data12$Nem <- rep(0, length(data12$Ne))
> data12$Nem[data12$study=="Novembre 1994f"] <- 8
> data12$Nem[data12$study=="Oseid 1995"] <- 5
> #
> data12$Ncm <- data12$Nem
> #
> data12$Neo <- data12$Ne - data12$Nem
> data12$Nco <- data12$Nc - data12$Ncm
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Next, we conduct a meta-analysis using the observed number of patients (objects
Neo and Nco) for the seven studies. Then we print the calculated mean differences
and corresponding standard errors (objects TE and seTE) for the complete records
analysis.

> mm1 <- metacont(Neo, Me, Se, Nco, Mc, Sc,
+ data=data12, studlab=study)
> data12$TE <- mm1$TE
> data12$seTE <- mm1$seTE
> data12[, c("study", "TE", "seTE", "Neo", "Nco")]

study TE seTE Neo Nco
2 Boner 1989 -7.00 4.705693 20 20
5 DeBenedictis 1994a -13.00 4.985272 17 17
12 Novembre 1994f -13.04 4.040947 16 16
13 Novembre 1994s -15.10 4.447175 19 19
14 Oseid 1995 -14.80 5.255156 15 15
16 Shaw 1985 -24.16 4.601657 8 8
17 Todaro 1993 -13.40 2.706261 13 13

The random effects estimate for the complete report analysis is �14:22with 95 %
confidence interval of Œ�17:20I �11:13�. The funnel plot is shown in Fig. 6.2. ut
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Fig. 6.2 Funnel plot for selected data from the bronchoconstriction meta analysis [5], with missing
values introduced in Novembre 1994f and Oseid 1995
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Before giving R code to implement each of the four strategies, we write an R
function to calculate the standard error given in (6.4).

> semiss <- function(se, n.e, p.e, n.c, p.c,
+ mu.e, nu.e, mu.c, nu.c, rho){
+ V1 <- function(p.e, p.c, nu.e, nu.c, rho)
+ nu.eˆ2*p.eˆ2 + nu.cˆ2*p.cˆ2 - 2*rho*nu.e*nu.c*p.e*p.c
+ V2 <- function(n.e, p.e, n.c, p.c, mu.e, nu.e, mu.c, nu.c)
+ (mu.eˆ2+nu.eˆ2)*p.e*(1-p.e)/n.e +
+ (mu.cˆ2+nu.cˆ2)*p.c*(1-p.c)/n.c
+ #
+ sqrt(seˆ2 +
+ V1(p.e, p.c, nu.e, nu.c, rho) +
+ V2(n.e, p.e, n.e, p.c,
+ mu.e, nu.e, mu.c, nu.c))
+}

6.1.3 Strategy 1: Fixed Equal

This strategy has a fixed difference between the mean of the observed and missing
data, which is moreover the same in each arm. Thus, in the notation of (6.2),
�e D �c D �, say, and �2e D �2c D 0. Looking back at (6.3) shows that this
analysis explores sensitivity to different proportions of missing data in study arms.
The variance component V1 is zero for �2e D �2c D 0, see (6.5). Accordingly, the
variance of the treatment estimate, (6.4), will only be slightly larger than for the
complete records analysis.

Example 6.2 For this analysis, we choose �e D �c D � D 8, that is about half the
treatment effect estimated from the observed data.

> # 1. Define parameters
> mu.e <- mu.c <- 8
> nu.e <- nu.c <- 0
> rho <- 0
> # 2. Calculate proportion missing in each study arm
> data12$Pe <- with(data12, Pe <- (Ne - Neo) / Ne)
> data12$Pc <- with(data12, Pc <- (Nc - Nco) / Nc)
> # 3. Calculate the mean effect for each study under strategy 1
> data12$TEs1 <- with(data12, TE + mu.e*Pe - mu.c*Pc)
> data12$seTEs1 <- with(data12,
+ semiss(seTE, Neo, Pe, Nco, Pc,
+ mu.e, nu.e, mu.c, nu.c, rho))
> # 4. Create indicator for studies with missings
> selmiss <- data12$study %in% c("Novembre 1994f", "Oseid 1995")
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Using these commands, the following values are generated for the two studies
with missing values. Note, corresponding values are identical for studies with no
missing data.

> data12[selmiss, c("study", "TE", "seTE", "TEs1", "seTEs1")]
study TE seTE TEs1 seTEs1

12 Novembre 1994f -13.04 4.040947 -13.04 4.255236
14 Oseid 1995 -14.80 5.255156 -14.80 5.405244

As expected, since the proportion of missing data is the same in each arm, we
see no change in the means of the studies, but some increase in the variance.

Accordingly, results for a meta-analysis using these values are very similar to
those given above.

> mm1.s1 <- metagen(TEs1, seTEs1, data=data12,
+ studlab=study, comb.fixed=FALSE)
> print(summary(mm1.s1), digits=2)
*** Output truncated ***

95%-CI z p.value
Random effects model -14.23 [-17.7; -10.77] -8.05 < 0.0001
*** Output truncated ***

We discuss the results in more detail after performing the calculations for the
other strategies. ut

6.1.4 Strategy 2: Fixed Opposite

This strategy has a fixed difference between the mean of the observed and missing
data, but one that is of opposite sign in the intervention and control arms.

Example 6.3 As with strategy 1, we choose this to be 8 units, corresponding to
about half the estimated treatment effect from the observed data. For a conservative
analysis, we assume that in the intervention arm the missing patients had a score
that was on average 8 units greater (i.e. treatment less effective) than that observed,
while in the placebo arm the missing patients had a score that was on average 8 units
lower (i.e. treatment more effective) than that observed. Thus �e D 8; �c D �8 and
again �2e D �2c D 0. This strategy is therefore sensitive to the overall proportion of
missing data.

> # 1. Define parameters
> mu.e <- 8
> mu.c <- -mu.e
> nu.e <- nu.c <- 0
> rho <- 0
> # 2. Calculate the mean effect for each study under strategy 2
> data12$TEs2 <- with(data12, TE + mu.e*Pe - mu.c*Pc)
> data12$seTEs2 <- with(data12,
+ semiss(seTE, Neo, Pe, Nco, Pc,
+ mu.e, nu.e, mu.c, nu.c, rho))



6.1 Missing Outcome Data: Some Considerations 151

> # 3. Print calculate values
> data12[selmiss, c("study", "TE", "seTE", "TEs2", "seTEs2")]

study TE seTE TEs2 seTEs2
12 Novembre 1994f -13.04 4.040947 -7.706667 4.255236
14 Oseid 1995 -14.80 5.255156 -10.800000 5.405244
> # 4. Do meta-analysis
> mm1.s2 <- metagen(TEs2, seTEs2, data=data12,
+ studlab=study, comb.fixed=FALSE)
> print(summary(mm1.s2), digits=2)
Number of studies combined: k=7

95%-CI z p-value
Random effects model -13.08 [-17.08; -9.09] -6.42 < 0.0001
*** Output truncated ***

As expected, this strategy markedly decreases the treatment benefit in the studies
with missing data, while slightly increasing the standard errors. ut

6.1.5 Strategy 3: Random Equal

Here we set �e D �c D �, �2e D �2c D � and  D 1. This strategy is thus similar
to strategy 1, but more sensitive to imbalances in the proportion of missing data
between study arms, since while (6.5) is always zero with strategy 1, it is only zero
with this strategy if (as in our example) the proportion of missing data is the same
in each arm.

Example 6.4 Again, we choose � D 8, and now we have to specify �2, which we
choose as 5, so that approximately 95 % of the time ı is in the interval .3:5; 12:5/.

> # 1. Define parameters
> mu.e <- mu.c <- 8
> nu.e <- nu.c <- sqrt(5)
> rho <- 1
> # 2. Calculate the mean effect for each study under strategy 2
> data12$TEs3 <- with(data12, TE + mu.e*Pe - mu.c*Pc)
> data12$seTEs3 <- with(data12,
+ semiss(seTE, Neo, Pe, Nco, Pc,
+ mu.e, nu.e, mu.c, nu.c, rho))
> # 3. Print calculate values
> data12[selmiss, c("study", "TE", "seTE", "TEs3", "seTEs3")]

study TE seTE TEs3 seTEs3
12 Novembre 1994f -13.04 4.040947 -13.04 4.271525
14 Oseid 1995 -14.80 5.255156 -14.80 5.416795
> # 4. Do meta-analysis
> mm1.s3 <- metagen(TEs3, seTEs3, data=data12,
+ studlab=study, comb.fixed=FALSE)
> print(summary(mm1.s3), digits=2)
Number of studies combined: k=7

95%-CI z p.value
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Random effects model -14.24 [-17.7; -10.77] -8.05 < 0.0001
*** Output truncated ***

Since the proportion of missing data is exactly balanced in the two arms, variance
component V1, see (6.5), is zero, so in this example the results are almost the same
as for strategy 1. ut

6.1.6 Strategy 4: Random Uncorrelated

In this strategy �2e and �2c are non-zero whereas correlation  D 0.

Example 6.5 Here we set �e D 8; �c D �8, �2e D �2c D 5 and  D 0. This explores
the effect of the overall proportion of missing data on both the mean (as in strategy
2) but also the variance, since variance component V1 in (6.5) is now non-zero, even
with the same proportion of missing data in each arm, because  D 0.

> # 1. Define parameters
> mu.e <- 8
> mu.c <- -mu.e
> nu.e <- nu.c <- sqrt(5)
> rho <- 0
> # 2. Calculate the mean effect for each study under strategy 2
> data12$TEs4 <- with(data12, TE + mu.e*Pe - mu.c*Pc)
> data12$seTEs4 <- with(data12,
+ semiss(seTE, Neo, Pe, Nco, Pc,
+ mu.e, nu.e, mu.c, nu.c, rho))
> # 3. Print calculate values
> data12[selmiss, c("study", "TE", "seTE", "TEs4", "seTEs4")]

study TE seTE TEs4 seTEs4
12 Novembre 1994f -13.04 4.040947 -7.706667 4.399663
14 Oseid 1995 -14.80 5.255156 -10.800000 5.474182
> # 4. Do meta-analysis
> mm1.s4 <- metagen(TEs4, seTEs4, data=data12,
+ studlab=study, comb.fixed=FALSE)
> print(summary(mm1.s4), digits=2)
Number of studies combined: k=7

95%-CI z p.value
Random effects model -13.12 [-17.12; -9.12] -6.43 < 0.0001
*** Output truncated ***

ut
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6.1.7 Discussion of the Four Strategies

The results of the four strategies are summarised in Table 6.1, and four correspond-
ing funnel plots are shown in Fig. 6.3.2 As the proportion of missing data is the same
in each study arm, strategy 1 (fixed equal) gives the same estimate of the mean as the
complete records; however, the standard error is slightly inflated. This can also be
seen by comparing Fig. 6.2 and the top left panel of Fig. 6.3. The corresponding
random effects meta-analysis is virtually unchanged from the complete records
analysis.

Strategy 2 (fixed opposite) results in a marked move towards the null for the
point estimates from the studies with missing data, but no change in the standard

Table 6.1 Summary of results from the “complete records” (i.e. data remaining after the
introduction of missing data), and under the four sensitivity analysis strategies

Sensitivity strategy
Complete 1: fixed 2: fixed 3: random 4: random

records equal opposite common opposite

Point estimate

Boner 1989 �7:00 ? ? ? ?

DeBenedictis 1994a �13:00 ? ? ? ?

Novembre 1994f �13:04 �13:04 �7:71 �13:04 �7:71
Novembre 1994s �15:10 ? ? ? ?

Oseid 1995 �14:80 �14:80 �10:80 �14:80 �10:80
Shaw 1985 �24:16 ? ? ? ?

Todaro 1993 �13:40 ? ? ? ?

Standard error

Boner 1989 4:71 ? ? ? ?

DeBenedictis 1994a 4:99 ? ? ? ?

Novembre 1994f 4:04 4:26 4:26 4:27 4:40

Novembre 1994s 4:45 ? ? ? ?

Oseid 1995 5:26 5:41 5:41 5:42 5:47

Shaw 1985 4:60 ? ? ? ?

Todaro 1993 2:71 ? ? ? ?

Random effects meta-analysis

Estimate �14:22 �14:23 �13:08 �14:24 �13:12
Std. Err. 1:75 1:77 2:04 1:77 2:04

z-value �8:13 �8:05 �6:42 �8:05 �6:43
�2 3:84 3:90 10:40 3:91 10:20

A “?” indicates results must be equal to the observed data for that study, as there are no missing
data in that study

2R code to generate the funnel plots is given in the web-appendix.



154 6 Missing Data in Meta-Analysis

−25 −20 −15 −10 −5

5
4

3
2

1
0

Strategy 1: Fixed Equal

Difference in % reduction in FEV1

S
ta

nd
ar

d 
er

ro
r

−25 −20 −15 −10 −5

5
4

3
2

1
0

Strategy 2: Fixed Opposite

Difference in % reduction in FEV1

S
ta

nd
ar

d 
er

ro
r

Strategy 3: Random Equal

Difference in % reduction in FEV1

S
ta

nd
ar

d 
er

ro
r

−25 −20 −15 −10 −5

5
2

1
0

−25 −20 −15 −10 −5

5

4
3

4
3

2
1

0

Strategy 4: Random Uncorrelated

Difference in % reduction in FEV1

S
ta

nd
ar

d 
er

ro
r

Fig. 6.3 Funnel plot showing results of strategy 1 (top left), strategy 2 (top right), strategy 3
(bottom left) and strategy 4 (bottom right). For ease of comparison with Fig. 6.2, studies with
missing data are indicated by a diamond. The solid line is the random effects meta-analysis mean
from the complete records

errors; compare Fig. 6.2 and the top right panel of Fig. 6.3. In the corresponding
meta-analysis, this results in a marked increase in heterogeneity (although the
heterogeneity statistic is still not significant at the 10 % level), slight reduction in the
point estimate and increase in the standard error, and therefore a slight attenuation
of the z-score.

Strategy 3 (random equal) would increase the standard error for the studies with
missing data relative to strategy 1 if the proportion of missing data was different in
the two arms; here it gives virtually identical results to strategy 1.

Lastly, strategy 4 (random opposite) increases the standard error of the estimates
from studies with missing data relative to strategy 2 (bottom right panel Fig. 6.3).
In these data this gives essentially the same results as strategy 2. If anything, the
increased standard error for the studies with missing data downweights them in the
random effects meta-analysis, resulting in a fractionally smaller estimate of �2, and
slight increase in the absolute z-score, relative to strategy 2.

Overall, the test for heterogeneity does not reach significance at the 10 % level
in any of the analyses, and the results from the complete records are robust to these
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four sensitivity analyses, which give point estimates well within one standard error
of the complete records analysis.

While the above example is artificial, it nevertheless illustrates the relative ease
with which such sensitivity analyses can be performed, and how the different
strategies can be used to highlight key features of the missing data and the
corresponding impact on inferences about the treatment effect.

This approach may be applied to binary outcomes by replacing the mean effect
and its standard error with the log odds ratio and its standard error. Such an
approach clearly relies on the log odds being approximately normally distributed
in the sample size at hand. For rare events, especially in smaller sample sizes,
this may be inappropriate. Moreover, investigators may well be more comfortable
discussing differences in the odds of an outcome between patients whose responses
are observed and missing.

Thus [7] give details of how this approach may be applied to studies with binary
outcomes. In this setting, �e; �c are replaced by informative missing odds ratios
(IMORs). Paralleling the discussion above, the IMOR is the ratio of the odds of
a good outcome in the missing data to that in the observed data. In this setting a
closed formula for the study specific mean and variance of the log odds of success
under strategies 3 and 4 above is more awkward; several options are discussed in
the paper.

The approach outlined above is a two-stage approach: we first derive the
impact of our assumptions about the missing data on the study specific estimates
and standard errors, then follow this through to the meta-analysis. However, if
desired a one stage process can be implemented, using a (generalised) linear mixed
model. This approach has attractions in the context of rare events, and can allow
for covariates and/or incorporating the sensitivity analysis into a wider evidence
synthesis model. Details are given by [8].

6.2 Missing Precision

Here we consider the case where one or more studies we would like to include in a
meta-analysis does not report the measure of precision. We assume that the number
of patients enrolled is reported, but our multiple imputation approach can potentially
extend to the scenario when both are missing.

We consider continuous outcome measures, since discrete data are typically
modelled with the binomial or Poisson distribution where the variance is a known
function of the mean.
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6.2.1 Multiple Imputation Approach

We will tackle this problem using multiple imputation (MI), a practical and well-
established tool for the analysis of partially observed data. A practical introduction
to the key steps involved in MI is given by [2, pp. 37–46]. It involves the following
steps:

1. choose a model for the missing data given the observed data;
2. taking full account of the uncertainty, draw the missing data from this model,

creating M imputed datasets;
3. fit the substantive model to each of these M datasets, obtaining M point estimates

and their associated standard errors, and
4. combine the results for final inference using Rubin’s combination rules [2, p. 39].

This algorithm is very general, as is the applicability of Rubin’s combination rules,
so it provides a natural way to approach this problem.

Suppose that we have K studies, and each reports the estimated mean difference
O�k D O�ke � O�kc and the number of participants nke; nkc, k D 1; : : : ;K, where “e”
denotes experimental arm and “c” control arm. However, suppose we only have
the estimated standard error of the treatment difference for the first K � 1 studies,
s1; : : : ; sK�1, as neither the estimated standard error sK nor the estimated response
variances O�2Ke; O�2Kc are reported for study K.

Basic Idea of Multiple Imputation Algorithm

We propose a multiple imputation approach for this setting:

1. Using data from the studies where the standard error is reported, estimate the
response variance for the experimental and control arms, O�2e ; O�2c .

2. Apply multiple imputation as follows:

a. Draw the missing study variances from an appropriate imputation distribution
and calculate the study standard error.

b. Fit the meta-analysis to the imputed data.
c. Repeat steps 2a and 2b M times, and then summarise the results using Rubin’s

rules.

Further Details

Our approach rests on the assumption that the underlying variance of the response
in the experimental and control arms, �2e ; �

2
c , are each approximately common

across studies, so that it is reasonable to assume that the standard error for the
estimated treatment effect in study k is approximately �2e =nke C �2c =nkc. When
this is not appropriate, we need to identify a subset of studies which plausibly
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have approximately the same response standard deviation as the study with missing
precision, and apply the approach below in this subset.

We may also wish to explore whether the assumption of common underlying
response variances �2e ; �

2
c , across studies is plausible. This is most easily done by

performing an F-test for equality of variances between one of the larger studies and
all the other studies in turn. For example, if studies 1 and 2 have respectively n1c; n2c

patients in the control arm with reported variances O�21c; O�22c, then under the null
hypothesis of equal variances O�21c= O�22c follows an F-distribution with n1c �1; n2c �1
degrees of freedom.

Provided that the assumption of a common underlying variance is reasonable,
recall that in our setting the Kth study has missing standard error. Thus in the first
step we estimate the value of �2e as

O�2e D
"

K�1
X

kD1
.nke � 1/

#�1 ( K�1
X

kD1
.nke � 1/ O�2ke

)

;

and analogously estimate �2c .
One option would be to set the missing s2K D O�2e =nKeC O�2c =nKc, and then carry out

the meta-analysis as usual. However, as this ignores any uncertainty in estimating
s2K , treating it the same as all the reported standard errors, this pretends we have
more information than is actually the case.

Instead, we use the multiple imputation approach outlined above. Under our
assumptions we note that

(

K�1
X

kD1
.nke � 1/ O�2ke

)

� �2e �
2
PK�1

kD1 .nke�1/
(6.7)

and

.nKe � 1/s2Ke � �2e �
2
nKe�1

and similarly for the control arm.
Let s2e denote the left-hand side of (6.7) and define s2c analogously. For imputation

m D 1; : : : ;M we

1. draw

Q�2e � s2e=�
2
PK�1

kD1 .nke�1/ and Q�2c � s2c=�
2
PK�1

kD1 .nkc�1/

2. and draw

Q�2em � Q�2e
�2nKe�1
nKe � 1

and Q�2cm � Q�2c
�2nKc�1
nKc � 1

;

and calculate Qs2Km D Q�2em=nKe C Q�2cm=nKc.
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3. Take QsKm as the imputed standard error for the treatment estimate for study K and
fit the meta analysis (fixed effect or random effects model), obtaining a pooled
estimate O�m� with corresponding standard error s2m�.

We combine the M results for final inference using Rubin’s rules [2, p. 39], so that

O�� D 1

M

M
X

mD1
O�m�

and

cVar . O��/ D s2w C
�

1C 1

M

�

s2b;

where

s2w D 1

M

M
X

mD1
s2m� and s2b D 1

M � 1

M
X

mD1
. O�m� � O��/2:

For inference, we replace the normal distribution with a t� distribution with
degrees of freedom � given by

� D .M � 1/
�

1C s2w
.1C 1=M/s2b

2

In practice, M D 10 imputations are typically sufficient [2, p. 54], but if the
results are close to statistical significance we may want to increase the number of
imputations so we are not misled by Monte-Carlo variation.

We now give an example, and then briefly consider how we might proceed if only
the overall treatment estimate is available in study K.

Example 6.6 To illustrate the multiple imputation approach, we once again use the
bronchoconstriction meta-analysis used in Example 6.1. As in that example, we take
the subset of seven studies with the smallest treatment effect standard errors.

We will set the standard deviations for the experimental and control arm to
missing in Shaw 1985, impute them, and then compare the results of (1) the
original (full) data analysis; (2) the analysis of excluding Shaw 1985 and (3) the
analysis with the precision of Shaw 1985 imputed.3

> # 1. Select seven studies with smallest standard error
> data13 <- mdata[rank(mdata$seTE)<=7, c(7, 1:6)]
> names(data13) <- c("study", "Ne", "Me", "Se", "Nc", "Mc", "Sc")
> # 2. Set missing standard deviations for Shaw 1985 study

3See Fig. 6.1 for creation of dataset mdata.
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> data13.noshaw <- data13
> data13.noshaw$Se[data13.noshaw$study=="Shaw 1985"] <- NA
> data13.noshaw$Sc[data13.noshaw$study=="Shaw 1985"] <- NA
> # 3. Print dataset
> data13.noshaw

study Ne Me Se Nc Mc Sc
2 Boner 1989 20 15.70 13.10 20 22.70 16.47
5 DeBenedictis 1994a 17 14.40 11.10 17 27.40 17.30
12 Novembre 1994f 24 15.42 8.35 24 28.46 13.84
13 Novembre 1994s 19 11.00 12.40 19 26.10 14.90
14 Oseid 1995 20 14.10 9.50 20 28.90 18.00
16 Shaw 1985 8 10.27 NA 8 34.43 NA
17 Todaro 1993 13 10.10 8.90 13 23.50 4.00

Looking at the data above suggests the standard deviation is markedly smaller
for the Todaro 1993 study, especially in the control arm. This observation is
confirmed in the F-tests using Boner 1989 as the reference study.

> # First study, i.e., Boner 1989, as reference group
> f.tests <- with(data13.noshaw,
+ c(pf(Seˆ2/Se[1]ˆ2, Ne-1, Ne[1]-1),
+ pf(Scˆ2/Sc[1]ˆ2, Nc-1, Nc[1]-1)))
> # Drop first study (reference group)
> f.tests <- matrix(f.tests, ncol=2)[-1,]
> # Define row and column names and print results
> rownames(f.tests) <- data13.noshaw$study[-1]
> colnames(f.tests) <- c("pval.e", "pval.c")
> round(f.tests, 2)

pval.e pval.c
DeBenedictis 1994a 0.25 0.59
Novembre 1994f 0.02 0.21
Novembre 1994s 0.41 0.34
Oseid 1995 0.09 0.65
Shaw 1985 NA NA
Todaro 1993 0.09 0.00

Overall, the results of the F-tests for equality of outcome variances against the
variance in Boner 1989 suggest that the variances are reasonably comparable.
However, the Todaro 1993 study has smaller variances, particularly in the
control arm. Thus we will not consider data from Todaro 1993 in imputing
the precision of Shaw 1985. We set the number of imputations M D 100 in
order to use the normal distribution, instead of the t-distribution for post-imputation
inference.

> # Define analysis dataset miss
> miss <- data13.noshaw
> # Set number of imputations
> M <- 100
> # Create data frame to hold results of each imputation
> imp.shaw <- data.frame(seTE=rep(NA, M),
+ TE.fixed=NA, seTE.fixed=NA,
+ TE.random=NA, seTE.random=NA,
+ tau=NA)



160 6 Missing Data in Meta-Analysis

> # Set seed so results are reproducible
> set.seed(10)
> # Select studies for imputation
> selimp <- !(miss$study %in% c("Shaw 1985", "Todaro 1993"))
> selshaw <- miss$study=="Shaw 1985"
> # Form pooled estimate of variability:
> S2.e <- with(miss, sum((Ne[selimp]-1)*Se[selimp]ˆ2))
> S2.c <- with(miss, sum((Nc[selimp]-1)*Sc[selimp]ˆ2))
> # Calculate degrees of freedom:
> df.e <- sum(miss$Ne[selimp]-1)
> df.c <- sum(miss$Nc[selimp]-1)
> #
> miss$Se.shaw <- miss$Se
> miss$Sc.shaw <- miss$Sc
> #
> for (m in 1:M) {
+ # Draw sigma2.e, sigma2.c
+ sigma2.e <- S2.e / rchisq(1, df=df.e)
+ sigma2.c <- S2.c / rchisq(1, df=df.c)
+ # Draw standard deviations for Shaw 1985
+ sd.e.shaw <- sigma2.e *
+ rchisq(1, df=miss$Ne[selshaw]-1)/(miss$Ne[selshaw]-1)
+ sd.c.shaw <- sigma2.c *
+ rchisq(1, df=miss$Nc[selshaw]-1)/(miss$Nc[selshaw]-1)
+ # Store imputed standard error for illustrative funnel plot
+ imp.shaw$seTE[m] <- sqrt(sd.e.shaw/miss$Ne[selshaw] +
+ sd.c.shaw/miss$Nc[selshaw])
+ # Meta-analysis of current imputed dataset
+ miss$Se.shaw[selshaw] <- sqrt(sd.e.shaw)
+ miss$Sc.shaw[selshaw] <- sqrt(sd.c.shaw)
+ #
+ m.shaw <- metacont(n.e=Ne, mean.e=Me, sd.e=Se.shaw,
+ n.c=Nc, mean.c=Mc, sd.c=Sc.shaw,
+ data=miss)
+ # Store results
+ imp.shaw$TE.fixed[m] <- m.shaw$TE.fixed
+ imp.shaw$seTE.fixed[m] <- m.shaw$seTE.fixed
+ imp.shaw$TE.random[m] <- m.shaw$TE.random
+ imp.shaw$seTE.random[m] <- m.shaw$seTE.random
+ imp.shaw$tau[m] <- m.shaw$tau
+ }

Having performed the imputation, we now apply Rubin’s rules to get the point
estimates and standard errors. First, we calculate the between and within variances
as well as the degrees of freedom for the fixed effect and random effects models.

> # Calculate between and within variances
> s2.b.fixed <- var(imp.shaw$TE.fixed)
> s2.b.random <- var(imp.shaw$TE.random)
> s2.w.fixed <- mean(imp.shaw$seTE.fixedˆ2)
> s2.w.random <- mean(imp.shaw$seTE.randomˆ2)
> # Determine number of imputations
> M <- length(imp.shaw$TE.fixed)
> # Fixed effect estimate using multiple imputation
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> TE.fixed.imp <- mean(imp.shaw$TE.fixed)
> seTE.fixed.imp <- sqrt(var(imp.shaw$TE.fixed)*(1 + 1/M) +
+ mean(imp.shaw$seTE.fixedˆ2))
> # Random effects estimate using multiple imputation
> TE.random.imp <- mean(imp.shaw$TE.random)
> seTE.random.imp <- sqrt(var(imp.shaw$TE.random)*(1 + 1/M) +
+ mean(imp.shaw$seTE.randomˆ2))
> # Calculate degrees of freedom
> df.fixed <- (M-1)*(1 + s2.w.fixed /((1+1/M)*s2.b.fixed) )ˆ2
> df.random <- (M-1)*(1 + s2.w.random/((1+1/M)*s2.b.random))ˆ2
> # Print degrees of freedom
> df.fixed
[1] 134360.2
> df.random
[1] 119359.6

In both cases we see that by choosing M D 100 imputations we have ensured
that the reference t-distribution has sufficient degrees of freedom that the normal
distribution can be used instead. Accordingly, we can calculate confidence limits
based on the normal approximation.

> round(unlist(ci(TE.fixed.imp, seTE.fixed.imp))[1:5], 2)
TE seTE lower upper z

-13.55 1.54 -16.56 -10.54 -8.83
> round(unlist(ci(TE.random.imp, seTE.random.imp))[1:5], 2)

TE seTE lower upper z
-13.56 1.56 -16.61 -10.50 -8.70

Finally, we conduct a meta-analysis of the original data and create a funnel plot
(see Fig. 6.4) to show the actual treatment effect standard error for Shaw 1985 and
the imputed standard errors.

> # 1. Do meta-analysis of original data
> mm2 <- metacont(Ne, Me, Se, Nc, Mc, Sc,
+ studlab=study, data=data13)
> TE.shaw <- mm2$TE[mm2$studlab=="Shaw 1985"]
> seTE.shaw <- mm2$seTE[mm2$studlab=="Shaw 1985"]
> # 2. Generate funnel plot
> funnel(mm2,
+ xlim=c(-30, 0), ylim=c(max(imp.shaw$seTE), 0))
> # 2a. Label Shaw 1985 study
> text(TE.shaw-0.25, seTE.shaw-0.1, "Shaw 1985", cex=0.8, adj=1)
> # 2b. Add small triangles representing imputed standard errors
> set.seed(456) # Set seed so results are reproducible
> points(jitter(rep(TE.shaw,
+ length(imp.shaw$seTE)), 0.5),
+ imp.shaw$seTE, pch=2, cex=0.2)

Figure 6.4 shows that the great majority of imputed standard errors are far greater
than that actually observed for Shaw 1985. Looking back at the data (see Fig. 6.1),
this makes sense, because all studies used to impute the missing standard deviations
for Shaw 1985 had higher standard deviations for both experimental and control
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Fig. 6.4 Funnel plot of the seven studies, showing the range of imputed standard errors for Shaw
1985

Table 6.2 Results of fixed and random effects meta-analysis of full data, excluding Shaw 1985
and using multiple imputation for the missing precision

Fixed effect Random effects

Analysis Estimate (std. err.) z-score Estimate (std. err.) z-score

Full data (all seven studies) �14.10 (1.47) �9.56 �14.17 (1.67) �8.50

Excluding Shaw 1985 �12.95 (1.56) �8.32 �12.95 (1.56) �8.32

Multiple imputation �13.55 (1.54) �8.83 �13.56 (1.56) �8.70

arms. Note, the jitter function is used to separate overlapping points by adding
a small random error to each value on the x-axis.

In Table 6.2, results for the fixed effect analysis show that, compared with the
analysis of all seven studies, omitting Shaw 1985 increases the point estimate by
about 1 unit from �14:10 to �12:95, increases the standard error and thus results
in a smaller z-score. This reflects the loss of information. After imputation, the
point estimate is decreased (�13:55) towards the original, and the standard error
slightly decreased. The z-score is larger than for the analysis omitting Shaw 1985
but not as large as for the analysis of all seven studies. Thus, as we would hope,
multiple imputation has successfully recovered some information, but not more than
we would have had if we had seen the original data.

The picture for the random effects meta-analysis is slightly more complicated.
When Shaw 1985 is omitted, the fixed effect and random effects analysis are
identical: not unexpectedly, as we are omitting the only study outside the 95 %
confidence interval limits (diagonal dashed lines) in Fig. 6.4. This figure also
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shows that, of the imputed standard errors, almost all put Shaw 1985 inside the
confidence limits. Thus the result that 87 of 100 imputed datasets result in O�2 D 0 is
not unexpected. Further, in this example, fitting the random effects meta-analysis if
we increase the standard error of Shaw 1985 over its actual value reduces O�2 and
hence increases the z-score for the treatment effect.

Taking these points together explains the random effect results in Table 6.2:
after multiple imputation, as the large majority of the imputed datasets have larger
precision values putting Shaw 1985 within the confidence limits, the imputed
estimate of �2 is lower than in the original meta-analysis, with the consequence
that the z-score for the treatment effect is very slightly higher than for the original
data. ut

6.2.2 Missing Participant Numbers

The above method provides a straightforward approach to including information
from studies with missing precision, assuming that the mean effect is known within
each arm as well as the number of patients in each arm.

If we only have the mean difference reported for a study and the study size n,
then we can apply the method above to impute values of �2e C �2c for that study,
from which we can calculate the treatment effect standard error

s

�2e
n=2

C �2c
n=2

;

assuming that there are n=2 patients in each arm of the study.
If, in addition the number of patients is unknown, then at each imputation step

a value for this can be drawn at random from the other studies, or a subset of the
studies expected to be of similar size. Of course, the more that has to be imputed,
the less the information recovered by imputation will be.

6.3 Summary

In this chapter we have described how to approach the two main missing data
issues in meta-analysis of summary data. The first, and most common, is that
contributing studies have missing outcome data. Here, we may well wish to
explore the robustness of our meta-analytic inferences to plausible departures from
the assumptions underlying the primary study authors’ analysis. The framework
developed by White, Higgins and Wood [7], presented in Sect. 6.1, provides a
practical approach for doing this. Less commonly, we may be missing a study
precision. We have described a flexible multiple imputation approach for this issue.
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We hope the examples and associated R code will enable readers to apply both these
approaches in a wide range of settings.
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Chapter 7
Multivariate Meta-Analysis

In many clinical areas, there is no single, widely accepted outcome measure. For
example, in rheumatoid arthritis three different outcome measures are in widespread
use: the Health Assessment Questionnaire (HAQ) designed for measuring the
severity of inflammatory joint disorders, the Disease Activity Score (DAS-28) to
assess the level of disease activity and the American College of Rheumatology
(ACR) response criteria. Similarly, in respiratory disease, we have (among other
measures) Forced Expiratory Volume in one second (FEV1), Forced Vital Capacity
(FVC) and Peak Expiratory Flow (PEF).

Given data of this kind, it is natural to consider a joint meta-analysis of the
various outcome measures simultaneously, especially when—as will typically be
the case—not all the contributing studies have reported data on a common outcome
scale.

7.1 Fixed Effect Model

We consider first the multivariate extension of the fixed effect model, and then the
corresponding extension of the random effects model. For ease of presentation we
describe the bivariate case, which extends directly if more outcomes are available.

Example 7.1 Lloyd et al. [8] report a meta-analysis of the effectiveness of anti-
TNF-˛ inhibitors (e.g. etanercept, infliximab and adalimumab) in the treatment
of rheumatoid arthritis. We take a non-random sample of five of these studies to
illustrate the methods in this chapter. Figure 7.1 shows R code to read and print the
data from these five studies. The data shown are mean change from baseline under
treatment for two outcomes (DAS-28 and HAQ score), not comparisons between
different arms. ut
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> # 1. Read in the data
> data14 <- read.csv("dataset14.csv")
> # 2. Print dataset
> data14

author year mean.das se.das mean.haq se.haq
1 Bennet 2005 -1.7 0.25 -0.31 0.13
2 Bingham 2009 -1.6 0.10 -0.35 0.05
3 Bombardieri 2007 -1.9 0.05 -0.48 0.02
4 Navarro-Sarabia 2009 -1.1 0.18 -0.21 0.07
5 Van der Bijl 2008 -1.5 0.25 -0.21 0.08

Fig. 7.1 Illustrative subset of studies from the Lloyd data [1, 8] that report both DAS-28 score and
HAQ score. Effects are mean change from baseline

Let O�k D . O�k1; O�k2/
T denote the bivariate outcome from study k D 1; : : : ;K. The

multivariate fixed effect model is

O�k1 D �F1 C �k1

O�k2 D �F2 C �k2

�

�k1

�k2

�

� N

	

0 D
�

0

0

�

;˝k D
�

�2k1 �k12

�k12 �
2
k2

�


; (7.1)

where �F D .�F1; �F2/
T is the fixed effect parameter vector for the two outcomes.

As ˝ k is unknown, it has to be estimated

Ő k D
� O�2k1 O�k12

O�k12 O�2k2

�

: (7.2)

Whereas O�2k1 and O�2k2 are usually reported directly (or can be derived from con-
fidence intervals), information on the covariance O�k12 is quite often not reported
in publications. If this is the case, then we may need to use an estimate of the
covariance obtained from elsewhere (perhaps a subset of studies on which individual
participant data are available). When we do this, we should explore the robustness
of our inferences to a range of plausible estimates of the covariance.

Let Wk D Ő �1
k , then the fixed effect estimate is

O�F D
 

K
X

kD1
Wk

!�1  K
X

kD1
Wk

O�k

!

: (7.3)
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with corresponding covariance matrix

bVar . O�F/ D
 

K
X

kD1
Wk

!�1
: (7.4)

The multivariate analogue of the heterogeneity statistic, Q, is defined as

Q D
K
X

kD1
. O�k � O�F/

TWk. O�k � O�F/: (7.5)

It can be shown that Q is approximately distributed as �2j , where j D .Kp/ � 2;

where p is the number of outcomes. As in the univariate case, this can be used to
evaluate whether there is more between study heterogeneity than would be expected
under the fixed effect model.

Similarly, the I2 measure of heterogeneity is defined as

I2 D H2 � 1

H2
; where H2 D Q

j
;

with j defined above.

Example 7.2 Figure 7.2 shows forest plots for both outcomes for the selection of the
Lloyd data in Fig. 7.1. The following R code can be used to generate these figures
using the metagen function and forest.meta function from R package meta.

> # Univariate meta-analysis of the DAS-28 outcome
> m.das <- metagen(mean.das, se.das,
+ data=data14, sm="MD",
+ studlab=paste(author, year),
+ comb.random=FALSE)
> # Univariate meta-analysis of the HAQ outcome
> m.haq <- metagen(mean.haq, se.haq,
+ data=data14, sm="MD",
+ studlab=paste(author, year),
+ comb.random=FALSE)
> forest(m.das, hetstat=FALSE)
> forest(m.haq, hetstat=FALSE)

We will compare univariate meta-analyses with bivariate meta-analyses. While,
in this example, the data are change in outcome from baseline, the analysis proceeds
in the same way if the data are estimated treatment differences from a randomised
controlled trial. As the software does not handle treatment estimates from each arm
in a randomised study directly, we need to derive estimated treatment differences
(and associated standard errors) first.
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Study
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Fig. 7.2 Forest plots for the DAS-28 and HAQ outcomes in Fig. 7.1

To fit the bivariate fixed effect meta-analysis outcome model, we use R package
mvmeta, written by Antonio Gasparrini [3].1 First, we make R package mvmeta
available and print the list of arguments for the mvmeta function.

> library(mvmeta)
This is mvmeta 0.4.5. For an overview type: help(’mvmeta-package’).
> args(mvmeta)
function (formula, S, data, subset, method = "reml", bscov = "unstr",
model = TRUE, contrasts = NULL, offset, na.action, control = list())

The first two arguments formula and S are mandatory. In the bivariate setting
without covariates, argument formula is a K � 2 matrix of estimated treatment
effects

0

B

@

O�11 O�12
:::

:::
O�K1

O�K2

1

C

A

1To install R package mvmeta use R command install.packages("mvmeta").
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and argument S is a K � 3 matrix of variances and covariances

0

B

@

O�211 O�112 O�212
:::

:::
:::

O�2K1 O�K12 O�2K2

1

C

A ;

whose rows come from Ő k; k D 1; : : : ;K [see (7.2)].
Note the Lloyd dataset does not include any information about the covariance or

correlation between the outcomes. To illustrate the approach, we therefore explore
various values of the correlation (since these are more intuitive than the correspond-
ing covariances). As the mvmeta function requires the input of covariances, we
have to calculate covariances from correlations recalling the association between
covariances and correlations.2 We write our own R function for this purpose:

> cor2cov <- function(sd1, sd2, cor) sd1*sd2*cor

For our first bivariate meta-analysis, we assume a correlation of 0 and create the
necessary matrices.3

> theta <- cbind(data14$mean.das, data14$mean.haq)
> dimnames(theta) <- list(data14$author,
+ c("mean.das", "mean.haq"))
> rho <- 0
> S.arth <- cbind(data14$se.dasˆ2,
+ cor2cov(data14$se.das, data14$se.haq, rho),
+ data14$se.haqˆ2)
> dimnames(S.arth) <- list(data14$author,
+ c("var.das", "cov", "var.haq"))
> S.arth

var.das cov var.haq
Bennet 0.0625 0 0.0169
Bingham 0.0100 0 0.0025
Bombardieri 0.0025 0 0.0004
Navarro-Sarabia 0.0324 0 0.0049
Van der Bijl 0.0625 0 0.0064

Using these matrices we conduct the multivariate meta-analysis with the
mvmeta function.

> m.arth <- mvmeta(theta, S.arth, method="fixed")
> print(summary(m.arth), digits=2)
Call: mvmeta(formula = theta ˜ 1, S = S.arth, method = "fixed")

Multivariate fixed-effects meta-analysis
Dimension: 2

Fixed-effects coefficients

2Cor.X; Y/ D Cov.X; Y/=
p

Var .X/ Var .Y/; so Cov.X; Y/ D Cor.X; Y/
p

Var .X/ Var .Y/.
3Assigning row and column names to matrices theta and S.arth using the base R function
dimnames is optional, however it makes the printouts easier to follow!
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Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
mean.das -1.79 0.04 -42.37 0.00 -1.87 -1.70 ***
mean.haq -0.43 0.02 -24.89 0.00 -0.47 -0.40 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Multivariate Cochran Q-test for heterogeneity:
Q = 51.70 (df = 8), p-value = 0.00
I-square statistic = 84.5%

5 studies, 10 observations, 2 fixed and 0 random-effects parameters
logLik AIC BIC
-11.12 26.24 26.85

The output from this model should be familiar from the results in earlier
chapters and the definitions given above. Notice that the univariate (see Fig. 7.2)
and multivariate results agree when the correlation is zero. We now experiment with
different correlations.

> # All studies have a correlation of 0.9 between outcomes
> rho <- 0.9
> S.arth2 <- cbind(data14$se.dasˆ2,
+ cor2cov(data14$se.das, data14$se.haq, rho),
+ data14$se.haqˆ2)
> dimnames(S.arth2) <- dimnames(S.arth)
> # All studies have a correlation of -0.9 between outcomes
> rho <- -0.9
> S.arth3 <- cbind(data14$se.dasˆ2,
+ cor2cov(data14$se.das, data14$se.haq, rho),
+ data14$se.haqˆ2)
> dimnames(S.arth3) <- dimnames(S.arth)
> # A mix of modest positive correlations between outcomes
> rho <- c(0.5, 0.2, 0.1, 0.6, 0.4)
> S.arth4 <- cbind(data14$se.dasˆ2,
+ cor2cov(data14$se.das, data14$se.haq, rho),
+ data14$se.haqˆ2)
> dimnames(S.arth4) <- dimnames(S.arth)
> # Do meta-analyses
> m.arth2 <- mvmeta(theta, S.arth2, method="fixed")
> m.arth3 <- mvmeta(theta, S.arth3, method="fixed")
> m.arth4 <- mvmeta(theta, S.arth4, method="fixed")

We can use the generic coef and vcov functions to extract the fixed effect
estimates as well as the estimated covariance matrix from an object of class
mvmeta. The base R function diag is convenient to extract the corresponding
standard errors. For example, taking the results with an assumed correlation of 0.9
(i.e. R object m.arth2), we proceed as follows:

> # Fixed effect means
> round(coef(m.arth2), 3)
mean.das.(Intercept) mean.haq.(Intercept)

-1.776 -0.427
> # Covariance matrix
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Table 7.1 Results from univariate and bivariate fixed effect meta-analysis, with different assumed
correlations

Assumed outcome Fixed effect estimate (std. err.)
Method correlation DAS-28 HAQ

Univariate metagen 0 �1:786 (0.0422) �0:432 (0.0174)

Multivariate mvmeta 0 �1:786 (0.0422) �0:432 (0.0174)

Multivariate mvmeta 0.9 �1:776 (0.0413) �0:427 (0.0170)

Multivariate mvmeta �0.9 �1:762 (0.0413) �0:442 (0.0170)

multivariate mvmeta mix �1:805 (0.0416) �0:439 (0.0171)

Estimates are change in mean score from baseline

> vcov(m.arth2)
mean.das.(Intercept) mean.haq.(Intercept)

mean.das.(Intercept) 0.0017048052 0.0006286747
mean.haq.(Intercept) 0.0006286747 0.0002890715
> # Standard errors of fixed effect means
> round(sqrt(diag(vcov(m.arth2))), 4)
mean.das.(Intercept) mean.haq.(Intercept)

0.0413 0.0170

Table 7.1 shows the results of univariate and bivariate fixed effect meta-analyses
for both outcomes using data from our selection of five studies from the Lloyd
dataset, given in Fig. 7.1. We see that the results of the univariate and multivariate
meta-analysis agree when the correlation is zero, but differ by within one standard
error as the correlation moves from 0.9 to �0.9. Note too, that for a common
correlation, the standard errors vary with the absolute value of that correlation.

To complete this example we illustrate the analysis when ˝k D ˙=nk; k D
1; : : : ;K; for a common response covariance matrix ˙ : If we take

˙ D
�

2:146 
p
2:146 � 0:352


p
2:146 � 0:352 0:352

�

and the sample sizes for the five studies as .27; 188; 810; 68; 41/; then the calcula-
tions are as follows:

> rho <- 0.9
> sample.sizes <- c(27,188,810,68,41)
> # We use matrix multiplication (of a 5-by-1 and a 1-by-3 matrix)
> # as a concise way of generating the argument S for mvmeta:
> S.arth.common <- matrix(1/sample.sizes, ncol=1) %*%
+ matrix(c(2.146, rho*sqrt(2.146*0.352), 0.352), nrow=1)
> dimnames(S.arth.common) <- list(data14$author,
+ c("var.das", "cov", "var.haq"))
> round(S.arth.common, 4)

var.das cov var.haq
Bennet 0.0795 0.0290 0.0130
Bingham 0.0114 0.0042 0.0019
Bombardieri 0.0026 0.0010 0.0004
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Table 7.2 Results from univariate and bivariate fixed effect meta-analysis, with common response
covariance matrix ˙

Assumed outcome Fixed effect estimate (std. err.)
Method correlation DAS-28 HAQ

Univariate metagen 0.0 �1:786 (0.0422) �0:432 (0.0174)

Multivariate mvmeta 0.9 �1:783 (0.0435) �0:428 (0.0176)

Multivariate mvmeta �0.9 �1:783 (0.0435) �0:428 (0.0176)

Estimates are change in mean DAS-28, HAQ, score from baseline

Navarro-Sarabia 0.0316 0.0115 0.0052
Van der Bijl 0.0523 0.0191 0.0086
> # Conduct and print bivariate meta-analysis
> m.arth.common <- mvmeta(theta, S.arth.common, method="fixed")
> print(summary(m.arth.common), digits=2)
*** Output truncated ***

Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
mean.das -1.78 0.04 -40.99 0.00 -1.87 -1.70 ***
mean.haq -0.43 0.02 -24.32 0.00 -0.46 -0.39 ***
*** Output truncated ***
5 studies, 10 observations, 2 fixed and 0 random-effects parameters
logLik AIC BIC
-0.22 4.43 5.04

Examination of the likelihood shows that, for a common response covariance
matrix ˙ ; the univariate and multivariate fixed effect model results are very similar.
The results in Table 7.2 confirm this. ut

The above results suggest that, when both outcomes are available on all studies,
there is little to be gained from a multivariate meta-analysis. While, if the correlation
is available for each study, the results may be fractionally more precise, this
is unlikely to be practically important. Moreover, this gain comes because the
outcomes are assumed to follow a multivariate normal distribution. This assumption
cannot be checked from summary data alone, and the more outcomes there are, the
less likely it is to be true. Likewise, if we are only interested in one outcome, which
is observed on all studies, multivariate meta-analysis is unlikely to be useful.

However, there are two other general reasons why we might wish to perform
multivariate meta-analysis. The first is that our ultimate summary is some function
of the meta-analytic means of the multivariate outcomes, e.g. some f .�F1; �F2/

in (7.1). For example, [3] consider multivariate meta-analysis of the non-linear
relationship between temperature and mortality. Here, data from each of K studies
(urban centres) results in K separate estimates of a set of p parameters describing
the non-linear relationship between mortality and temperature, together with their
covariance matrix. These parameters are then the multivariate responses in a
subsequent p-dimensional meta-analysis; the set of p mean parameters estimated
in this meta-analysis and the associated covariance matrix, are then used to provide
the meta-analytic summary of the relationship between temperature and mortality.
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The second reason is that many studies may not report all the outcomes. We
consider this next.

7.2 Dealing with Unbalanced Data

It will often be the case that not all studies report all outcomes. For example, the five
studies shown in Fig. 7.1, which report both DAS-28 and HAQ, are our non-random
subset of the 21 studies in [8], the remaining 16 of which report one or other of
DAS-28 and HAQ, but not both. In this case, a multivariate meta-analysis of the full
data has the potential to reduce bias and gain precision. Naturally, this comes at the
price of additional assumptions.

The first assumption concerns the mechanism driving which studies report
which outcomes. This could be completely random, i.e. completely unrelated to
the outcome values. In this case, the outcomes are said to be “Missing Completely
At Random”, and a univariate analysis is unbiased, but a multivariate meta-analysis
may gain precision.

However, it could be that within a study the chance of a particular outcome being
seen, or reported, is associated with its underlying potentially unseen value, but that
this association is broken given the other observed, or reported, outcomes from that
study. For example, it may be that study k was in a higher risk patient population,
and that outcome A, which is more invasive to ascertain, is not really ethical to
collect in this patient group. If the risk in the patient population is associated with
values of outcome A, then the chance of reporting outcome A is associated with its
value. However, suppose that outcomes B and C are less invasive, and are reported
(irrespective of their values). Then it is plausible to assume (for we can never be
sure) that the chance of outcome A being reported, given reported outcomes B
and C, is no longer associated with the value of outcome A. This is an example
of data being “Missing At Random” (see [2, Chap. 1] for more details). In this case,
a univariate meta-analysis of outcome A will generally be biased, and an appropriate
multivariate meta-analysis has the potential to both reduce bias and gain precision.

If we are prepared to assume that unreported outcomes are missing at random
given reported outcomes, then we do not have to explicitly model the chance of
seeing an outcome. Of course, we can never know if this assumption is correct, so in
certain contexts we may need to be cautious in our inferences. Multiple imputation
provides a natural way to explore the robustness of inferences to this assumption,
for example applying the approaches described in [2, Chap. 10].

The second key assumption that the gains of a multivariate meta-analysis rest on
is that the joint distribution of the summary outcomes from a study is multivariate
normal. If the underlying outcomes themselves have a multivariate normal distribu-
tion it follows that the summary outcomes (e.g. means) will. However, even if the
underlying outcomes are not normally distributed, the central limit theorem implies
that—if the sample size is large enough—summary measures (means, log odds
ratios, log risk ratios, log hazard ratios) will have a multivariate normal distribution.
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Unfortunately, this assumption cannot be checked from summary data. In practice,
we are reasonably comfortable with this assumption for study k if it has hundreds of
participants, but not if it has tens of participants. If in doubt, we should explore the
robustness of our conclusions to omitting study k.

We therefore proceed under the assumption that unreported outcomes are missing
at random, and that within each study the outcomes (reported or not) are multivariate
normal. As we describe below, this makes the analysis relatively straightforward.
First though, since any reductions in bias and gains in precision are going to arise
from pooling information, it makes sense to look at the data carefully.

Example 7.3 Returning to the extract from the Lloyd data, Fig. 7.3 shows funnel
plots for the two outcomes of the five studies from the Lloyd data in Fig. 7.1. The
following R code was used to generate this figure.

> funnel(m.das,
+ xlab="Mean difference in DAS-28 score from baseline")
> sel <- m.das$studlab %in% c("Bennet 2005", "Bombardieri 2007",
+ "Navarro-Sarabia 2009")
> text(m.das$TE[sel]-0.015, m.das$seTE[sel]-0.002,
+ m.das$studlab[sel],
+ adj=1, cex=0.8)
> text(m.das$TE[!sel]+0.015, m.das$seTE[!sel]-0.002,
+ m.das$studlab[!sel],
+ adj=0, cex=0.8)
> funnel(m.haq,
+ xlab="Mean difference in HAQ score from baseline")
> text(m.haq$TE-0.005, m.haq$seTE-0.002,
+ m.haq$studlab,
+ adj=1, cex=0.8)
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Fig. 7.3 Funnel plot of change in DAS-28 and HAQ scores for the five studies from the Lloyd
data. Numbers correspond to study numbers in Fig. 7.1
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We see that the Bombardieri study has considerably more information than
the others, and that omitting the DAS-28 score for the Navarro-Sarabia study
will have a marked effect on the overall DAS-28 mean.

We now show how to use R to obtain a bivariate plot of the outcomes, showing
the 95 % confidence regions. To illustrate this, we assume a common correlation
between the outcomes is 0.25 across all five studies. The R code is as follows4:

> # Load R library ellipse which provides R function ellipse
> library(ellipse)
> # Plot the study means, setting the x-limits and y-limits
> # so that the confidence regions will be visible
> plot(data14$mean.das, data14$mean.haq,
+ xlim=c(-2.5, -0.5), ylim=c(-0.7, 0), pch="+",
+ xlab="Mean difference in DAS-28 score from baseline",
+ ylab="Mean difference in HAQ score from baseline")
> # Add confidence regions
> rho <- 0.25
> with(data14,
+ for (i in seq(along=mean.das)){
+ S <- matrix(c(se.das[i]ˆ2,
+ se.das[i]*se.haq[i]*rho,
+ se.das[i]*se.haq[i]*rho,
+ se.haq[i]ˆ2),
+ byrow=TRUE, ncol=2)
+ lines(ellipse(S, centre=c(mean.das[i], mean.haq[i]),
+ level=0.95 ), col="grey")
+ })
> # Add study labels
> studlab <- paste(data14$author, data14$year)
> # Study label from Van der Bijl needs a line break
> # in order not to overwrite another label
> bijl <- data14$author=="Van der Bijl"
> studlab[bijl] <- paste(data14$author[bijl], "\n",
+ data14$year[bijl])
> text(data14$mean.das+0.015, data14$mean.haq, studlab, adj=0)

The resulting Fig. 7.4 again indicates that the DAS-28 score from the
Navarro-Sarabia study is somewhat of an outlier. Notice that the common
correlation ( D 0:25) does not imply a common covariance because the marginal
variances are different for the different studies, hence the difference between the
ellipses. We also see that if the DAS-28 score from the Navarro-Sarabia study
were to be missing, then the multivariate meta-analysis would lean heavily on the
Bombardieri study, whose estimates are much more precise. The figure also
suggests that, were this outcome missing, multivariate meta-analysis may imply
a lower value than the truth, consistent with the relationship between HAQ and
DAS-28 score estimated from the studies with both outcomes. Below we therefore
set the DAS-28 score from the Navarro-Sarabia study to missing, and explore
how multivariate meta-analysis performs. ut

4To install the ellipse package use R command install.packages("ellipse").
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Fig. 7.4 Plot of change in DAS-28 and HAQ scores with 95 % confidence regions for the five
studies from the Lloyd data

Under the two assumptions discussed above, the outcomes reported by each study
can readily be included in the multivariate meta-analysis. Each study’s contribution
to the likelihood for the model is simply the marginal likelihood of its observed
outcomes. For example, in the bivariate fixed effect model (7.1), if the first outcome
is missing in study k, the likelihood contribution comes from the marginal model of
the second outcome, see also Eq. (7.6):

O�k2 D �F2 C �k2; �k2 � N.0; �2k2/:

Another way to describe the handling of missing outcomes is as follows. We set

O�k D
 

0
O�k2

!

and Wk D
�

0 0

0 1= O�2k2

�

(7.6)

and then apply Eq. (7.3) as before.
Calculation of the heterogeneity statistic, Q, is slightly more complicated in case

of missing outcomes in studies. Suppose there are K studies, and that there are p
outcomes. Suppose further that study k reports the subset of pk � p outcomes which
we denote by the pk � 1 vector O�k with corresponding pk � pk covariance matrix
Ő k. Let Wk D Ő �1

k and �kF be the pk � 1 vector of the corresponding fixed effect
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estimates from (7.1). Then the heterogeneity statistic is defined as

Q D
K
X

kD1
. O�k � �kF/

TWk. O�k � �kF/: (7.7)

It can then be shown that Q is approximately distributed as �2j , where j D
.
PK

kD1 pk/� 2.
For studies with missing outcomes, R package mvmeta automatically uses the

appropriate marginal likelihood without any prompting from the user.

Example 7.4 We now set the DAS-28 score for the Navarro-Sarabia study to
missing:

> theta.miss <- theta
> selnava <- rownames(theta.miss)=="Navarro-Sarabia"
> theta.miss[selnava, "mean.das"] <- NA
> theta.miss

mean.das mean.haq
Bennet -1.7 -0.31
Bingham -1.6 -0.35
Bombardieri -1.9 -0.48
Navarro-Sarabia NA -0.21
Van der Bijl -1.5 -0.21

For the first bivariate meta-analysis we use S.arth defined above, which sets
the outcome correlations to zero.

> m.arth.miss <- mvmeta(theta.miss, S.arth, method="fixed")
> print(summary(m.arth.miss), digits=2)
Call: mvmeta(formula = theta.miss ˜ 1, S = S.arth, method = "fixed")

Multivariate fixed-effects meta-analysis
Dimension: 2

Fixed-effects coefficients
Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub

mean.das -1.83 0.04 -42.11 0.00 -1.91 -1.74 ***
mean.haq -0.43 0.02 -24.89 0.00 -0.47 -0.40 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Multivariate Cochran Q-test for heterogeneity:
Q = 36.34 (df = 7), p-value = 0.00
I-square statistic = 80.7%

5 studies, 9 observations, 2 fixed and 0 random-effects parameters
logLik AIC BIC
-4.24 12.47 12.87
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Table 7.3 Comparison of univariate and multivariate meta-analyses of the Lloyd data when the
DAS-28 score from the Navarro-Sarabia study is set to missing

Assumed outcome Fixed effect estimate (std. err.)
Data Analysis correlation DAS-28 HAQ

Full Univariate – �1:786 (0.042) �0:432 (0.017)

Full Multivariate (0.25,0.25,0.25,0.25,0.25) �1:786 (0.042) �0:432 (0.017)

Missing Univariate – �1:826 (0.042) �0:432 (0.017)

Missing Multivariate (0.25,0.25,0.25, – ,0.25) �1:817 (0.043) �0:431 (0.017)

Missing Multivariate (0.90,0.90,0.90, – ,0.90) �1:783 (0.041) �0:426 (0.017)

Missing Multivariate (0.00,0.00,0.90, – ,0.00) �1:752 (0.040) �0:418 (0.015)

Missing Multivariate (0.90,0.90,0.00, – ,0.90) �1:849 (0.035) �0:436 (0.015)

The output shows that five studies with nine observations were considered in
the multivariate meta-analysis. Note, results for the HAQ score are identical to the
univariate results reported above as we assume a correlation of 0.

Table 7.3 shows results comparing univariate and multivariate meta-analysis
under a range of correlations. These may be readily performed by following the
examples above; full R code is available in the web-appendix. The first row shows
the univariate meta-analysis of the DAS-28 score when no data are missing, and the
second row the result of a bivariate meta-analysis of the DAS-28 and HAQ score,
again when no data are missing and the HAQ and DAS-28 scores are assumed
to have a common correlation of 0.25 across studies. This is close to the value
estimated by [1]. This relatively weak correlation is typical of many settings, and
the univariate and bivariate analyses agree to three significant figures.

With the DAS-28 score missing from the Navarro-Sarabia study, the mean
DAS-28 score from the univariate analysis decreases by about 1 standard error to
�1:826. The multivariate meta-analysis again with correlation 0.25, which includes
the HAQ outcome but not the DAS-28 outcome for the Navarro-Sarabia
study, gives a mean DAS-28 of �1:817, which is fractionally lower. This illustrates
that any bias reduction with a multivariate meta-analysis is likely to be small
if the correlation is moderate. Notice that because the DAS-28 score from the
Navarro-Sarabia study is missing, the correlation between outcomes for this
study does not enter the likelihood.

The last three rows of Table 7.3 illustrate that—assuming unreported outcomes
are missing at random—a relatively large correlation is needed for multivariate
meta-analysis to correct any bias in a univariate meta-analysis. They also indicate
what the analysis says about the missing outcomes is dominated by the information
coming from the larger studies. Lastly, the low standard error (0.035) from the final
analysis cautions that information is bought with assumptions. ut
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7.3 Random Effects Model

The multivariate fixed effect meta-analysis model extends to include random effects
in an analogous way to the univariate case. For simplicity, we again focus on the
bivariate case. The random effects counterpart to model (7.1) is

O�k1 D �R1 C uk1 C �k1

O�k2 D �R2 C uk2 C �k2

�

uk1

uk2

�

� N

	

0 D
�

0

0

�

;T D
�

�21 �12
�12 �

2
2

�


; (7.8)

�

�k1

�k2

�

� N

	

0 D
�

0

0

�

;˝ k D
�

�2k1 �k12

�k12 �
2
k2

�


; (7.9)

where �R D .�R1; �R2/
T is the random effects parameter vector for the two out-

comes. Here T is the covariance matrix of the random effects .uk1; uk2/ describing
the between-study heterogeneity in the outcomes.

7.3.1 Fitting the Random Effects Model

Fitting the multivariate random effects model requires estimation of T. This can
be done by Maximum Likelihood (ML), Restricted Maximum Likelihood (REML),
or a multivariate version of the DerSimonian–Laird method of moments estimator
[6, 9]. All three options are available in R package mvmeta and we now describe
them briefly.

Let W?
k D . Ő k C T/�1. The likelihood corresponding to (7.8) and (7.9) is

L.�F;T/ D �1
2

"

K
X

kD1

n

log j Ő k C Tj C . O�k � �R/
TW?

k .
O�k � �R/

o

#

C c (7.10)

with a normalising constant c. For studies with only a subset of the outcomes
observed, their contribution to (7.10) is replaced by the appropriate marginal
likelihood of the observed studies, as discussed on page 176. Estimates of �R and T
are obtained by maximizing the likelihood.

REML seeks to correct downward bias in the ML estimates of T when the
number of studies, K; is small (as is often the case in meta-analysis). It does this
by adding a penalty to the likelihood:

LREML D L � 1

2
log

ˇ

ˇ

ˇ

ˇ

ˇ

K
X

kD1
W?

k

ˇ

ˇ

ˇ

ˇ

ˇ

: (7.11)
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REML is usually preferable to ML in applications.
There are various method of moments estimators for T. We outline the recent

proposal by [6], which is implemented in R package mvmeta. This method is
equivalent to the DerSimonian–Laird method in the univariate case.

The method of moments first requires us to calculate the fixed effect estimate, O�F

using Eq. (7.3). Then, setting Wk D Ő �1
k , we calculate the p � p matrix

OV D
K
X

kD1
Wk. O�k � O�F/. O�k � O�F/

T : (7.12)

The method of moments estimator is derived by evaluating the expectation, EŒ OV�;
which in the case where each study reports all p outcomes is

EŒ OV� D .K � 1/Ip

 

WC �
K
X

kD1
WkW�1C Wk

!

T; (7.13)

where WC D PK
kD1 Wk: To obtain the estimate OT, we replace EŒ OV� in (7.13) by its

observed value (7.12) and solve for T.
Once we have OT, generalising from the univariate random effects model we set

W?
k D . OT C Ő k/

�1 and have

O�R D
(

K
X

kD1
W?

k

) �1 K
X

kD1
W?

k
O�k (7.14)

with variance–covariance matrix

Var Œ O�R� �
(

K
X

kD1
W?

k

) �1
: (7.15)

When a subset of studies do not report all the outcomes, the formula for obtaining
the method of moments estimator of T needs to be modified, using the ideas
described for the fixed effect estimator (7.6). Details of the appropriate modification,
and the extension to include covariates, are given by [6].

Example 7.5 We now illustrate the use of the mvmeta function to fit multivariate
random effects meta-analysis. As before, we have to specify the correlation between
the DAS-28 and HAQ outcomes.

First we assume a correlation of 0.25 for all the studies, and show the results of
using all three methods to estimate T:

> rho <- 0.9
> S.arth.r <- cbind(data14$se.dasˆ2,
+ cor2cov(data14$se.das, data14$se.haq, rho),
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+ data14$se.haqˆ2)
> m.arth.reml <- mvmeta(theta, S.arth.r, method="reml")
> m.arth.ml <- mvmeta(theta, S.arth.r, method="ml")
> m.arth.mm <- mvmeta(theta, S.arth.r, method="mm")

The use of argument method="reml" is optional for the REML method as
this is the default for the mvmeta function. The REML method gives the following
results

> print(summary(m.arth.reml), digits=2)
Call: mvmeta(formula = theta ˜ 1, S = S.arth.r, method = "reml")

Multivariate random-effects meta-analysis
Dimension: 2
Estimation method: REML

Fixed-effects coefficients
Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub

mean.das -1.55 0.14 -11.45 0.00 -1.82 -1.29 ***
mean.haq -0.33 0.06 -5.74 0.00 -0.44 -0.22 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Between-study random-effects (co)variance components
Structure: General positive-definite

Std. Dev Corr
mean.das 0.27 mean.das
mean.haq 0.11 1

Multivariate Cochran Q-test for heterogeneity:
Q = 42.29 (df = 8), p-value = 0.00
I-square statistic = 81.1%

5 studies, 10 observations, 2 fixed and 3 random-effects parameters
logLik AIC BIC

3.19 3.62 4.02

We see that, in addition to the output for the fixed effect model, the program
returns the following:

1. Information on the structure of the variance covariance matrix of the random
effects, which we call T above. By default this matrix is unstructured (argument
bscov="unstr" in the mvmeta function) which results in the printout
‘general positive-definite’.

2. The standard deviation of the variance components and their correlation. These
give the estimated elements of T as:

�

0:272 0:27 � 0:11 � 1
0:27 � 0:11 � 1 0:112

�
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Table 7.4 Results from
bivariate random effects
meta-analysis of the Lloyd
data, for ML, REML and MM
estimates of T, taking within
study correlation between
outcomes as 0.25 for all
studies

Random effects estimate (std. err.)
Method DAS-28 HAQ

REML �1:552 (0.136) �0:330 (0.058)

ML �1:558 (0.123) �0:332 (0.052)

MM �1:561 (0.143) �0:323 (0.067)

Estimates are change in mean DAS-28 and
HAQ score from baseline

In this example, we have assumed that the between-study correlation is 0.25.
This leads to an estimated value of 1 for the correlation between the random
effects for DAS-28 and HAQ (column corr in output). When we assume a
higher between-study correlation, the estimated correlation between the random
effects is no longer 1.

Results of bivariate meta-analyses based on the three different methods to
estimate T are given in Table 7.4. We see that estimates obtained using ML have a
noticeably smaller standard error than those obtained using REML. This is expected,
as the ML estimate of T is downwardly biased (with the bias declining as the number
of studies, K, increases). Since the number of studies in a meta-analysis is often
quite small, the bias from an ML analysis can be quite marked. REML removes
much of this bias, and is therefore preferable to ML. However, the standard errors
from REML are also downwardly biased when the number of studies is small. This
problem can be addressed using the “Kenward Roger” correction [7], but this is not
available in R package mvmeta, version 0.4.5. In the absence of this, we prefer the
results from the method of moments.

We now compare the results of the fixed effect model with various correlations
(Table 7.1) with those from the random effects analysis in Table 7.5. R code for
these calculations are available in the web-appendix. For each outcome correlation,
the random effects estimates are closer to zero than the fixed effect estimates. This
is because the random effects analysis gives more weight to the smaller studies,
and as Fig. 7.3 shows these have estimates that are closer to zero. The random
effects analysis also gives markedly larger standard errors because of the substantial
heterogeneity in the data. In general, marked differences between the fixed effect
and random effects analysis can be an indicator of funnel plot asymmetry and
possible publication bias (Chap. 5); in this example all the analyses definitively
reject the null hypothesis.

In some analyses it will be useful to estimate and plot the study specific random
effects, here .uk1; uk2/; k D 1; : : :K: These are readily extracted. The functionblup
returns O� C Ouk, so to obtain the study specific random effects we need to subtract O� .

> blup(m.arth.mm)
mean.das mean.haq

Bennet -1.604610 -0.3435751
Bingham -1.604856 -0.3436913
Bombardieri -1.890980 -0.4786708
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Table 7.5 Results from univariate and bivariate random effects meta-analysis of the Lloyd data,
using a range of correlations and the MM estimates of T throughout

Assumed outcome Random effects estimate (std. err.)
Method correlation DAS-28 HAQ

Univariate metagen – �1:582 (0.147) �0:323 (0.066)

Multivariate mvmeta 0.00 �1:564 (0.140) �0:320 (0.068)

Multivariate mvmeta 0.25 �1:561 (0.143) �0:323 (0.067)

Multivariate mvmeta 0.90 �1:566 (0.147) �0:325 (0.066)

Multivariate mvmeta �0.90 �1:665 (0.084) �0:273 (0.094)

Estimates are change in mean DAS-28 and HAQ score from baseline

Navarro-Sarabia -1.292164 -0.1961779
Van der Bijl -1.411576 -0.2525105

> blup(m.arth.mm) - fitted(m.arth.mm)
y1 y2

mean.das mean.haq
Bennet -0.04377303 -0.02064998
Bingham -0.04401904 -0.02076614
Bombardieri -0.33014273 -0.15574565
Navarro-Sarabia 0.26867336 0.12674718
Van der Bijl 0.14926143 0.07041459

As expected from Fig. 7.3, we see that the residuals from Navarro-Sarabia
and Van der Bijl are positive. The software will also calculate standard errors
for the Ouk’s, which are needed to produce a “caterpillar”. See help(blup) for
more details. ut

7.4 Discussion

In this chapter we have described how the generic fixed effect and random effects
meta-analysis models can be extended to multiple responses, and shown how the R
package mvmeta can be used to fit such models.

If study outcomes are plausibly multivariate normal, then theory suggests we will
obtain estimates with better statistical properties [10]. As the analyses in this chapter
illustrate, the practical gain depends on (1) whether information on the correlation
between the outcomes is available and (2) whether each study contributing to the
meta-analysis reports all the outcomes.

For the case when our outcome of interest is reported by all the contributing
studies the results in this chapter suggest there is no practical benefit of a
multivariate meta-analysis; essentially the same conclusion was reached by Riley
et al. [10].
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When different studies report different outcomes, then multivariate meta-analysis
has potential. As usual in statistics, though, additional information is bought at the
price of additional assumptions. We discussed these in Sect. 7.2 and they need to
be critically appraised; see also [5]. Graphical exploration of the data is therefore
essential. Care also needs to be taken with random effects modelling in these
settings, as (particularly when there is some funnel plot asymmetry) information
can be borrowed across studies in unexpected ways.

Unfortunately, in many applications the use of multivariate meta-analysis will be
hindered by lack of information about the correlation between outcomes, at least for
some studies. Appropriate pooling of correlation information across studies is pos-
sible, requires careful modelling and entails further assumptions (e.g. [1], who also
consider different types of outcomes); in applications the potential for practically
relevant gain needs to be assessed before these are undertaken. In practice, it may
be simplest to investigate the sensitivity to a range of different outcome correlation
values, particularly the largest and smallest contextually plausible values.

Just as univariate meta-analysis extends to meta-regression, so multivariate meta-
analysis can be extended to include covariates (which may have fixed or random
coefficients). This is possible with the mvmeta package, although we have not
explored this here. This has an additional potential gain if not all studies report all
outcomes, since covariates can increase the plausibility of the underlying missing at
random assumption [2, Chap. 1]. Such covariates, which are associated both with the
chance of outcomes being reported and their underlying values, should be included.

The number of recent papers on multivariate meta-analysis is testament to the
recent research activity in this area [4]. The more individual patient data are
available, the more attractive multivariate meta-analysis becomes; therefore its
relevance is likely to increase with the passage of time.
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Chapter 8
Network Meta-Analysis

Network meta-analysis (also known as multiple treatment comparison or mixed
treatment comparison) seeks to combine information from all randomised compar-
isons among a set of treatments for a given medical condition. It is therefore a key
tool for evidence-based medicine [24] and is currently a very active research topic
[1, 21, 31, 32].

Network meta-analysis is a generalisation of pairwise meta-analysis. It aims
to answer, in a statistically principled way, the natural clinical question of how a
number of existing treatments for a patient with a given diagnosis compare to each
other. To do this, network meta-analysis combines direct and indirect evidence on
treatment effects, as we explain in Sect. 8.1. However, problems of heterogeneity
and potential inconsistency are ever present and potentially even more challenging
than in pairwise meta-analysis. In Sect. 8.5 we therefore discuss graphical tools for
presenting and understanding heterogeneity.

There are a variety of different methods and software for network meta-analysis
[3]. In this chapter, we describe and illustrate a frequentist weighted least squares
approach, described by Rücker [27, 28] and implemented in the R package netmeta
[30]. This stable, computationally fast, and widely applicable approach is essentially
equivalent to maximum likelihood estimation. Other approaches are described
briefly in Appendix A.3.

8.1 Concepts and Challenges of Network Meta-Analysis

To introduce the ideas, suppose we wish to compare three treatments, say two active
treatments A and B and a control C. Then each randomised comparison in a study
having arms A and C provides a direct estimate of the difference of the treatment
effects of A and C, measured on some scale, e.g., as a log odds ratio. Suppose we
denote this O�direct

AC . Other studies may provide information on the direct comparison
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between treatment B and the same control C; denoted O�direct
BC : Such studies provide

indirect evidence for the comparison of A and B from the treatment difference A�C
and B � C as follows:

O� indirect
AB D O�direct

AC � O�direct
BC (8.1)

with variance

Var . O� indirect
AB / D Var . O�direct

AC / C Var . O�direct
BC /: (8.2)

Of course, in addition to this indirect evidence, we may have direct evidence from
studies comparing A and B, denoted by O�direct

AB . We wish to combine the direct and
indirect evidence to get the most precise estimates of the treatment differences and
associated standard errors. In order to do this we need to make some assumptions,
principally

1. that the studies are independent, and
2. that the underlying effects are—in some sense—consistent. This is also known

as transitivity assumption [31, 35].

We will see in Sect. 8.3.1 that the data available can be summarised in a network
graph. Formally, a network is said to be consistent if the sum of direct treatment
effects over all closed circuits in the graph is zero. In practice, consistency means
that indirect evidence for the difference between any two treatments does not differ
from the direct evidence. Consistency in our network of treatments A, B, and control
C means that �direct

AB D � indirect
AB for the comparison of A and B, �direct

AC D � indirect
AC for

the comparison of A and C, and �direct
BC D � indirect

BC for the comparison of B and C.
A consequence of this is that if data giving direct comparisons between A and B are
available alongside data giving indirect comparisons, the extent of inconsistency,
O�direct
AB � O� indirect

AB , can be assessed. Further, the proportion of the evidence coming
from direct and indirect comparisons can be calculated and used to help interpret
the results.

Example 8.1 Figure 8.1 shows a slightly more complex network with four treat-
ments, named A, B, C and D: The treatments, called nodes in graph theory, which
are joined with a line, called edge in graph theory, correspond to those for which
direct evidence is available. Thus, we see that direct evidence is available for all
comparisons except A � C which must be estimated indirectly. Furthermore, for
example, the comparison of A and D can draw on both direct information, and also
indirect information following the paths A ! B ! D and A ! B ! C ! D.
Returning to the A � C comparison without direct evidence, this is built up by
combining information of both paths A ! B ! C and A ! D ! C. ut

The statistical problem is to estimate the treatment differences, in our example
�AB; �AC; �AD; �BC; �BD and �CD, and their standard errors from the available studies.
To do this we shall assume in the first instance that all the direct and indirect effects
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Fig. 8.1 A network with four
treatments, A, B, C and D.
Lines indicate we have data
from one or more studies
comparing the two treatments

A

B

C

D

are consistent with each other and that differences we see in the data are due to
random error. We will explore how to assess this assumption and modify the analysis
when it may not be realistic.

8.2 Model and Estimation in Network Meta-Analysis

There has been a considerable literature on frequentist estimation of treatment
effects in network meta-analysis. The approach we now present draws on the
following references: [19, 22, 27, 33]. We begin by considering data consisting of
only two-arm trials. The extension to multi-arm studies is detailed on page 192.

Suppose there are n treatments, corresponding to the nodes in a network graph.
Suppose further we wish to estimate the n treatment effects, which we denote
by the n � 1 vector � treat: To do this we have data from K � .n � 1/ two-arm
studies,1 which we denote by O� D . O�1; O�2; : : : ; O�K/ with associated standard errors
s D .s1; s2; : : : ; sK/. Then our model is

O� D X� treat C �; � � N.0;˙ /; (8.3)

where ˙ is a diagonal matrix whose ith entry is s2i .
Note, O� is a K � 1 vector in a network meta-analysis consisting only of two-arm

trials. In the situation of multi-arm studies, this vector is of dimension m � 1 with m
denoting the total number of pairwise comparisons.

Example 8.2 Consider again the network shown in Fig. 8.1, and suppose we have
K D 5 studies each providing a single pairwise treatment comparison: A �B, B �C,
C�D, A�D and B�D, i.e. the data consist of m D 5 pairwise treatment comparisons.
Then O� D . O�AB

1 ; O�BC
2 ; O�CD

3 ; O�AD
4 ; O�BD

5 /T ; and � treat D .�A; �B; �C; �D/
T is the vector of

1A minimum of n � 1 two-arm studies is necessary to create a connected network graph with n
treatments (nodes).
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treatment effects (n D 4). Based on this information, we can easily build the design
matrix X and write down (8.3) for this special case:

0

B

B

B

B

B

@

O�AB
1O�BC
2O�CD
3O�AD
4O�BD
5

1

C

C

C

C

C

A

D

0

B

B

B

B

B

@

1 �1 0 0

0 1 �1 0

0 0 1 �1
1 0 0 �1
0 1 0 �1

1

C

C

C

C

C

A

0

B

B

@

�A

�B

�C

�D

1

C

C

A

C

0

B

B

B

B

B

@

�1
�2
�3
�4

�5

1

C

C

C

C

C

A

D X� treat C �:

ut
We note that, since—as usual in meta-analysis of summary data—we only have

data on treatment differences, we cannot estimate each of the elements in � treat:

However, as we describe in the next subsection, we can nevertheless estimate the
fitted values from (8.3), and then use these to estimate the treatment comparisons
and assess the extent of heterogeneity.

8.2.1 Fixed Effect Model

Here we describe details of the frequentist weighted least squares approach by
Rücker [27]. Less technically minded readers may wish to skip to the worked
example in Sect. 8.3.

We have already noted that (8.3) is over-parameterised, as we only have at most
.n � 1/ independent treatment comparisons, but the model has a parameter for each
of the n treatments, � treat. Thus the matrix X is not of full rank, so its inverse does
not exist, and we cannot obtain the weighted least squares estimates of � treat directly.

We could re-parameterise the model so that X is of full rank. However, as
Rücker [27] shows we can avoid this by taking the approach outlined below. This
approach was originally developed using graph-theoretical methods that have a long
history in electrical network theory [7, 9, 26, 27, 34]. In fact, it is also equivalent to
weighted least squares methodology developed for experimental design as far back
as the 1930s [4, 5, 25, 27, 33, 36]. Indeed, network meta-analyses are examples of
incomplete block designs [33]. The difference from agricultural designs is that the
decisions about which comparisons to estimate, i.e. trials to perform, are not made
in advance with the network meta-analysis in mind!

As before, we denote by n the number of different treatments (nodes) in the
network and let m be the number of pairwise treatment comparisons (and hence the



8.2 Model and Estimation in Network Meta-Analysis 191

number of studies, since thus far we are only considering two-arm studies).2 We
number the treatments 1; : : : ; n and pairwise comparisons 1; : : : ;m in an arbitrary
order which remains unchanged throughout the calculation.

Then, let O� D . O�1; : : : ; O�m/
T and s D .s1; : : : ; sm/

T be the vectors of observed
treatment differences and their standard errors, respectively. As is common in meta-
analysis, we treat the standard errors as fixed.

As in (8.3), the network structure is defined by the design matrix X which is an
m � n matrix. Here, if we only include two-arm studies, each row corresponds to a
study and m is the number of studies. Then, as illustrated in Example 8.2, we have
a “1” in the column that corresponds to the first treatment and a “�1” in the column
that belongs to the second treatment. Each row of X should then sum to zero.

As previously mentioned, XTX is not of full rank, so to estimate the treatment
effects we need to construct the Moore–Penrose pseudoinverse matrix [2, 28]. To
do this, we define the n � n Laplacian matrix L (which plays a central role in graph
theory) as

L D XTWX; (8.4)

where W is a diagonal matrix of dimension m � m whose diagonal elements are the
inverse variance study weights .1=s21; : : : ; 1=s2m/.

L, the Laplacian matrix, has rank n�1 and is not invertible. However, its Moore–
Penrose pseudoinverse LC [10, 26] is defined and can be calculated by

LC D .L � J=n/�1 C J=n; (8.5)

where J is the n � n matrix whose elements are all 1.

Estimation of Treatment Effects

Once we have LC; we can calculate our estimates of the fitted values O�nma
as

O�nma D XLCXTW O�;
D H O�; (8.6)

where H is known as the hat matrix in regression. Equation (8.6) means that the
elements of O�nma

(the network estimates) are linear combinations of the elements of
O� (the observed estimates) with coefficients coming from the rows of H. In other
words, each network estimate is constituted by the observed estimates, weighted

2Note that if we allow multi-edge graphs, so, for example, if there are two studies comparing A
and B we have two edges connecting nodes A and B; we may call m the number of edges.
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with the elements of the corresponding row of H. Accordingly, the elements of this
row of H are interpreted as generalised weights.

We can also calculate the variance–covariance matrix of O�nma
; XLCXT : From

this we can estimate all treatment contrasts and associated standard errors of interest.
These estimates and standard errors are the same as those obtained by (weighted)
maximum likelihood [25, 33, 36].

The hat matrix, H, is a projection matrix which maps O� onto the consistent .n �
1/-dimensional subspace. This gives the fitted values O�nma

;which can be interpreted
as the values that minimize the quadratic form

Qtotal D . O� � O�nma
/>W. O� � O�nma

/: (8.7)

The Qtotal statistic (8.7) therefore measures the extent of heterogeneity within
the network. When all studies are two-arm studies, under the null hypothesis of no
heterogeneity it is approximately�2-distributed with m�.n�1/ degrees of freedom.
This therefore provides an approximate test of consistency. For a standard pairwise
meta-analysis, Qtotal corresponds to Cochran’s Q statistic [12].

Variance Estimation

After fitting the network meta-analysis model, for any treatment comparison, we can
calculate an estimate of the treatment effect using the direct evidence, and each piece
of indirect evidence. The variance of the resulting treatment estimate is estimated
by

Vij D LC
ii C LC

jj � 2LC
ij ; (8.8)

where Vij denotes the variance of the resulting (potentially indirect) comparison
of treatments i and j [7]. We note explicitly that by Eq. (8.8) variances are
also estimated for pairs of treatments for which no direct comparison exists.
Assuming that treatment estimates are consistent across the network, by using all
the information in the data through the network meta-analysis, we obtain the most
precise estimates of all comparisons.

Multi-Arm Studies

Usually, we have a number of multi-arm studies (i.e. studies with more than two
treatment groups) to include in our network meta-analysis. We can do this most
easily by including each multi-arm study in the dataset as a series of two-arm
comparisons. However, the standard error of each two-arm comparison from a
multi-arm study needs to be adjusted to reflect the fact that comparisons within
multi-arm studies are correlated.
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Consider a multi-arm study of p treatments with known variances. For this study,
in the netmeta function, the user needs to supply treatment effects and standard
errors for each of p. p � 1/=2 possible comparisons. For instance, a three-arm study
contributes three pairwise comparisons, 3.3 � 1/=2 D 3, and a four-arm study six
possible pairwise comparisons, 4.4� 1/=2 D 6.

We have to take care to account for within-study correlation before computing
the weighted least squares estimator (8.6). To do this we inflate the standard errors
for comparisons within each multi-arm study by back-calculation. Using these back-
calculated standard errors in the weighted least squares estimator then gives results
that correctly reflect the within-study correlation. To achieve this, we use a theorem
by Gutman and Xiao [10, Theorem 7] to determine LC

s and Ls D .LC
s /

C for each
multi-arm study, also called sub-network s, with s D 1; : : : ; S, and S denoting the
number of multi-arm studies, as described by [27]. The calculation proceeds as
follows.

For multi-arm study s with ps > 2 arms, for each of the ps.ps �1/=2 comparisons
we have a variance for the comparison of each treatment contrast i and j (i ¤ j/, say
�2sij: Let Vs be a ps � ps symmetric matrix with zeros on the diagonal and with .i; j/
entry �2sij: Let Xs be the design matrix for the ps.ps �1/=2 comparisons in multi-arm
study s, formed as in (8.3) above.

Then calculate

LC
s D � 1

2p2s
X>

s XsVsX>
s Xs; (8.9)

and from this, calculate Ls D .LC
s /

C using (8.5). Denote the elements of Ls by lsij:

The adjusted variances for the comparison of treatment i and j are �1=l�1sij : Rücker
et al. [28] show this method leads to results that are identical to those of the standard
approach [19, 33].

Example 8.3 We illustrate the calculation for a network with a single four-arm
study (p1 D 4), so that V D V1 has dimension 4 � 4. If �ij is the variance of
the comparison of treatment i and j, then we set

V D

0

B

B

@

0 �12 �13 �14
�12 0 �23 �24
�13 �23 0 �34
�14 �24 �34 0

1

C

C

A

:
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Then,

X1 D

0

B

B

B

B

B

B

B

@

1 �1 0 0

1 0 �1 0

1 0 0 �1
0 1 �1 0

0 1 0 �1
0 0 1 �1

1

C

C

C

C

C

C

C

A

;

and we calculate LC
1 as given by (8.9). ut

I-Squared for Network Meta-Analysis

The generalised heterogeneity statistic Qtotal given in Eq. (8.7) is used to measure
heterogeneity/inconsistency across the whole network. It can be partitioned in
various ways, to help identify and understand the sources of heterogeneity. We
return to this in Sect. 8.4.

We now consider the degrees of freedom of Qtotal: Each p-arm study contributes
p � 1 degrees of freedom to the total Qtotal statistic. The total degrees of freedom
are given by the sum of the degrees of freedom contributed by each study minus
n � 1 (the number of treatments minus 1, which is the dimension of the consistent
subspace). Denoting this by df , we can define a generalised I2 statistic [12] as

I2 D max

�

Qtotal � df

Qtotal
; 0

�

: (8.10)

8.2.2 Random Effects Model

A simple random effects model can be defined using the estimate of a common
heterogeneity variance �2 for each pairwise treatment comparison. This is then
added to each of the comparison variances, s2i C O�2, i D 1; : : :m; before calculating
LC (8.5) which is used in (8.6). For multi-arm studies, the estimate O�2 is added to
the observed variance of each comparison before reducing the weights as described
on page 192. Network meta-analysis is applied to the same observed treatment
differences, now using the enlarged standard errors, as in standard pairwise meta-
analysis.

In order to do this, we need an estimate of �2: For this we use a special case of
the generalised DerSimonian–Laird estimate given in Jackson et al. [16] referred to
in Sect. 7.3.1. It is estimated by

O�2 D max

�

Qtotal � df

tr ..I � H/UW/
; 0

�

; (8.11)
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where I is the m � m identity matrix and tr denotes the trace of a matrix, which is
the sum of its diagonal elements. The matrix H is defined in (8.6) and W is given in
Sect. 8.2.1. U is obtained as a block diagonal matrix derived from the m � m matrix
XX>=2 by selecting for each p-arm study a p � p block while setting the rest of the
matrix elements to zero.

8.3 Using the R Package netmeta for Network Meta-Analysis

In this section we present an extended example using data from a network meta-
analysis by Senn et al. [33] comparing different treatments for controlling blood
glucose levels in patients with diabetes. This dataset comes with the R package
netmeta.3

Example 8.4 To load the data, use the R code shown in Fig. 8.2. Patients enrolled
in studies included in this dataset were treated with one of ten diabetes treatments,
designed to reduce blood glucose levels. The effect measure was the mean difference
of average plasma glucose concentration, referred to as HbA1c and measured in
mmol/mol. The full names of the various treatments can be obtained by typing

> help("Senn2013")

at the command line.
Variable TE contains the pairwise treatment effect comparing treatments

treat1 and treat2; variable seTE is the corresponding standard error. For
example, the DeFrozo1995 study is comparing metformin (metf) and placebo
(plac). The average plasma glucose concentration is larger in the placebo group
accordingly the mean difference is negative, �1:90.

The dataset contains one three-arm study (Willms1999 in rows 3, 27, 28).
The netmeta function which is described in the next subsection requires as
input all pairwise comparisons for multi-arm studies. Therefore, we now show
how the necessary information can be extracted from a publication using the
Willms1999 study as an example. This study reports sample sizes, group means,
and corresponding standard deviations.

> willms <- data.frame(treatment=c("metf", "acar", "plac"),
+ n=c(29, 31, 29),
+ mean=c(-2.5, -2.3, -1.3),
+ sd=c(0.862, 1.782, 1.831),
+ stringsAsFactors=FALSE)
> willms

treatment n mean sd
1 metf 29 -2.5 0.862
2 acar 31 -2.3 1.782
3 plac 29 -1.3 1.831

3To install R package netmeta use R command install.packages("netmeta").
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Using the metacont function we can calculate all three pairwise treatment
comparisons:

> comp12 <- metacont(n[1], mean[1], sd[1], n[2], mean[2], sd[2],
+ data=willms, sm="MD")
> comp13 <- metacont(n[1], mean[1], sd[1], n[3], mean[3], sd[3],
+ data=willms, sm="MD")
> comp23 <- metacont(n[2], mean[2], sd[2], n[3], mean[3], sd[3],
+ data=willms, sm="MD")

Next, we extract mean differences and corresponding standard errors from R
objects comp12, comp13 and comp23

> TE <- c(comp12$TE, comp13$TE, comp23$TE)
> seTE <- c(comp12$seTE, comp13$seTE, comp23$seTE)

and define R objects

> treat1 <- c(willms$treatment[1], willms$treatment[1],
+ willms$treatment[2])
> treat2 <- c(willms$treatment[2], willms$treatment[3],
+ willms$treatment[3])

with information on the two treatments.
These R objects can be combined in an R data set

> data.frame(TE, seTE=round(seTE, 4), treat1, treat2,
+ studlab="Willms1999")

TE seTE treat1 treat2 studlab
1 -0.2 0.3579 metf acar Willms1999
2 -1.2 0.3758 metf plac Willms1999
3 -1.0 0.4669 acar plac Willms1999

which contains exactly the same information as given in rows 3, 27 and 28 of
Fig. 8.2.

Note, a shortened version of this R code can be used to calculate the treatment
comparison for a two-arm study reporting sample sizes, group means and standard
deviations. Likewise, the code can be altered in order to calculate treatment
comparisons for binary data using the metabin function instead of the metacont
function.4

8.3.1 Basic Analysis and Network Plots

The netmeta function has the following arguments:

> args(netmeta)
function (TE, seTE, treat1, treat2, studlab, data = NULL,

4After finishing the book manuscript, a new R function pairwise to conduct these calculations
automatically has been added to R package meta.
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> # 1. Make R package netmeta available
> library(netmeta)
Loading required package: meta
Loading ’meta’ package (version 4.0-2).
Loading ’netmeta’ package (version 0.6-0).
> # 2. Load dataset
> data(Senn2013)
> data15 <- Senn2013
> # 3. Print dataset
> data15

TE seTE treat1 treat2 studlab
1 -1.90 0.1414 metf plac DeFronzo1995
2 -0.82 0.0992 metf plac Lewin2007
3 -0.20 0.3579 metf acar Willms1999
4 -1.34 0.1435 rosi plac Davidson2007
5 -1.10 0.1141 rosi plac Wolffenbuttel1999
6 -1.30 0.1268 piog plac Kipnes2001
7 -0.77 0.1078 rosi plac Kerenyi2004
8 0.16 0.0849 piog metf Hanefeld2004
9 0.10 0.1831 piog rosi Derosa2004
10 -1.30 0.1014 rosi plac Baksi2004
11 -1.09 0.2263 rosi plac Rosenstock2008
12 -1.50 0.1624 rosi plac Zhu2003
13 -0.14 0.2239 rosi metf Yang2003
14 -1.20 0.1436 rosi sulf Vongthavaravat2002
15 -0.40 0.1549 acar sulf Oyama2008
16 -0.80 0.1432 acar plac Costa1997
17 -0.57 0.1291 sita plac Hermansen2007
18 -0.70 0.1273 vild plac Garber2008
19 -0.37 0.1184 metf sulf Alex1998
20 -0.74 0.1839 migl plac Johnston1994
21 -1.41 0.2235 migl plac Johnston1998a
22 0.00 0.2339 rosi metf Kim2007
23 -0.68 0.2828 migl plac Johnston1998b
24 -0.40 0.4356 metf plac Gonzalez-Ortiz2004
25 -0.23 0.3467 benf plac Stucci1996
26 -1.01 0.1366 benf plac Moulin2006
27 -1.20 0.3758 metf plac Willms1999
28 -1.00 0.4669 acar plac Willms1999

Fig. 8.2 R code to load the diabetes example and view the data. For each treatment comparison
(columns treat1 and treat2) in the network, the estimated treatment effect on HbA1c; TE,
and its standard error, seTE, are shown. The right-hand column shows the study labels. Note
Willms1999 (rows 3, 27, 28) is a three-arm study

subset = NULL, sm = "", level = 0.95, level.comb = 0.95,
comb.fixed = TRUE, comb.random = FALSE, reference.group = "",
all.treatments = NULL, seq = NULL, tau.preset = NULL,
title = "", warn = TRUE)
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Of these, the first four arguments: TE, seTE, treat1, and treat2 are
mandatory. However, the study label argument studlab will be used in almost all
analyses, and is essential for telling the software if there are multi-arm studies in the
network. As with the Willms1999 study in Fig. 8.2, the treatment comparisons
within a multi-arm study must have exactly the same study label, or the software
will not be able to link them. A further important point is that it does not matter
what order we put each study’s treatment comparisons in; the software will re-order
them (and change the sign of the treatment effect) as appropriate.

We can illustrate these points as follows.

> mn0 <- netmeta(TE, seTE, treat1, treat2, data=data15)
Warning messages:
1: In netmeta(TE, seTE, treat1, treat2, data = data15) :

No information given for argument ’studlab’. Assuming that
comparisons are from independent studies.

2: In netmeta(TE, seTE, treat1, treat2, data = data15) :
Treatments within a comparison have been re-sorted in
increasing order.

The first warning tells us that we did not give the study labels, and that the
software is assuming that each row of the data matrix data15 comes from a
different two-arm study. This is incorrect for this example, as we have one three-
arm study, Willms1999. The second warning simply says that the software has
re-ordered the treatment comparisons appropriately before performing any analyses.

As usual, we can print the object nm0 by entering it at the command line:

> mn0
Original data:

treat1 treat2 TE seTE
1 metf plac -1.90 0.1414
2 metf plac -0.82 0.0992
3 acar metf 0.20 0.3579
4 plac rosi 1.34 0.1435
*** Output truncated ***
Number of studies: k=28
Number of treatments: n=10
Number of pairwise comparisons: m=28
*** Output truncated ***

Comparing with Fig. 8.2, we see the number of studies is wrongly reported as
28, instead of 26. Furthermore, again comparing with Fig. 8.2, we see the fourth
comparison (study Davidson2007) has been reversed, and the treatment effect
correctly changed to 1:34.

The argumentsm tells the software which summary measure to use for displaying
the results of the network meta-analysis. Note that the treatment effects supplied to
the software must be on the scale on which the analysis should be performed (e.g.
log odds ratios, not odds ratios). For example, if log odds ratios are used as input to
the netmeta function, odds ratios will be shown in printouts as well as forest plots
if argument sm="OR" is used; otherwise, log odds ratios will be shown. The default
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is sm="", i.e. no information on the underlying summary measure is provided and
thus no back-transformation is used in printouts and forest plots.

In many cases, the user will want to specify the reference group for making
treatment comparisons. To do this, the argumentreference.group (abbreviated
ref or r) allows the user to specify a reference group. For example with the
diabetes data we may specify r="plac". To see all possible contrasts in the form
of an effect matrix, the argument all.treatments (abbreviated all or a) is set
to TRUE. This is the default.

The remaining arguments are the same as those we have met earlier in standard
pairwise meta-analysis, and are discussed in detail in Part II. By default, only the
results of a fixed effect network meta-analysis are printed. In order to also show
results of a random effects analysis the argument comb.random=TRUE needs to
be specified.

Before proceeding, we need to repeat the analysis, this time including the study
labels. We also take the opportunity to specify the summary measure as mean
difference (MD):

> mn1 <- netmeta(TE, seTE, treat1, treat2, studlab,
+ data=data15, sm="MD")
*** Warning message on study reordering omitted ***

8.3.2 A First Network Plot

We now show how to create a graphical representation of the network using the
netgraph function.

> netgraph(mn1, seq=c("plac", "benf", "migl", "acar", "sulf",
+ "metf", "rosi", "piog", "sita", "vild"))

The results are shown in Fig. 8.3. Note the use of the argumentseq to specify the
order of the sequence in which the treatments are shown anti-clockwise around the
perimeter of the circle.5 Treatments that are directly compared in at least one study
are connected by a line. The thickness of this line is proportional to the inverse
standard error of the direct treatment effect obtained using data from all studies
which compared the two treatments. Thus, the thicker the line, the smaller the
standard error, and the greater the evidence for that comparison. Of course, as this
does not show the estimated treatment effect, this does not represent the statistical
significance of the comparison.

From time to time we may wish to highlight a particular comparison, and this
can be done with the argument highlight. We explore additional capabilities of
the netgraph function in Sect. 8.3.4.

5We can also use argument seq in the netmeta function which would be considered in the
netgraph and other functions, e.g. print.netmeta.
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Fig. 8.3 A graph of the network for the diabetes data, generated using the netgraph function.
The treatments are equally spaced on the perimeter of the circle. Any two treatments are connected
by a line when there is at least one study comparing the two treatments. The thickness of the line is
proportional to the inverse standard error of the direct treatment comparison. The shading indicates
the three-arm study

8.3.3 A More Detailed Look at the Output

Next, we view the output stored in the R object nm1 using the print function. We
split this into several chunks which we discuss in turn.

> print(mn1, digits=2)
Original data (with adjusted standard errors for multi-arm studies):

treat1 treat2 TE seTE seTE.adj narms multiarm
DeFronzo1995 metf plac -1.90 0.14 0.14 2
Lewin2007 metf plac -0.82 0.10 0.10 2
Willms1999 acar metf 0.20 0.36 0.39 3 *
Davidson2007 plac rosi 1.34 0.14 0.14 2
*** Output truncated ***
Moulin2006 benf plac -1.01 0.14 0.14 2
Willms1999 metf plac -1.20 0.38 0.41 3 *
Willms1999 acar plac -1.00 0.47 0.82 3 *
...

First comes the data (treatments within a study have been re-ordered alphabet-
ically by the program). Columns 1–5 correspond to the study labels, treatment
groups (treat1, treat2), treatment effects (TE) and standard errors (seTE).
The remaining three columns are only printed if at least one multi-arm study is
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included in the meta-analysis. As discussed in Sect. 8.2.1, for multi-arm studies—
Willms1999 in the example—standard errors have to be adjusted accordingly.
This is given in the column headed seTE.adj. Note that the standard error and
adjusted standard error are the same for two-arm studies. The other two columns
give the number of treatment arms per study (narms) and highlight multi-arm
studies using a star (multiarm).

As we have already noted, it is important to use exactly identical study
labels for all treatment comparisons belonging to the same multi-arm study (here
Willms1999), otherwise the program will treat them as separate two-arm studies.
The reason for this special caution with multi-arm studies is, as mentioned before,
that the netmeta function automatically accounts for within-study correlation by
reweighing all pairwise comparisons of each multi-arm study.

The next chunk of output gives a list of all the studies in alphabetical order with
information on the numbers of treatment arms per study (column narms). Once
again we see that Willms1999 is the only study with three treatment arms.

...
Number of treatment arms (by study):

narms
Alex1998 2
*** Output truncated ***
Vongthavaravat2002 2
Willms1999 3
Wolffenbuttel1999 2
Yang2003 2
Zhu2003 2
...

The next chunk of output gives results from the fixed effect network meta-
analysis. For each study, and for each treatment comparison within that study, we
have the treatment effect (here the mean difference) fitted by the network meta-
analysis model, O�nma

, see (8.6), and its 95 % confidence interval. Results are given
to two decimal places; this is controlled by the digits argument in the print
function. The corresponding contributions to the overall heterogeneity statistic,
Qtotal, see (8.7), are then shown, followed by the leverage (which is given by the
corresponding diagonal element of the m � m hat matrix, H).

...
Data utilised in network meta-analysis (fixed effect model):

treat1 treat2 MD 95%-CI Q leverage
DeFronzo1995 metf plac -1.11 [-1.23; -1.00] 30.89 0.18
Lewin2007 metf plac -1.11 [-1.23; -1.00] 8.79 0.36
Willms1999 acar metf 0.29 [ 0.06; 0.51] 0.05 0.09
Davidson2007 plac rosi 1.20 [ 1.11; 1.30] 0.93 0.11
*** Output truncated ***
Hermansen2007 plac sita 0.57 [ 0.32; 0.82] 0.00 1.00
Garber2008 plac vild 0.70 [ 0.45; 0.95] 0.00 1.00
*** Output truncated ***
Gonzalez...2004 metf plac -1.11 [-1.23; -1.00] 2.69 0.02
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Stucci1996 benf plac -0.91 [-1.15; -0.66] 3.79 0.13
Moulin2006 benf plac -0.91 [-1.15; -0.66] 0.59 0.87
Willms1999 metf plac -1.11 [-1.23; -1.00] 0.04 0.02
Willms1999 acar plac -0.83 [-1.04; -0.61] 0.04 0.02

Number of studies: k=26
Number of treatments: n=10
Number of pairwise comparisons: m=28
...

Each of the heterogeneity statistics approximately follows a �21-distribution. They
are useful to identify studies whose data differ markedly from what the model
predicts. When there is only a single study evaluating a treatment comparison—e.g.
Hermansen2007 and Garber2008 are the only studies evaluating sitagliptin
and vildagliptin, respectively—the model fits perfectly and the corresponding Q
statistic is zero. Conversely, we see that the results of DeFronzo1995 differ
markedly from what the rest of the network predicts. We can confirm this by
comparing the estimated metformin vs placebo comparison from the network in
the output immediately above (�1:11) with the original data from this study in the
printout on page 200 (�1:90). The leverage of comparison i is the ith diagonal
element of the hat matrix H. The model shows that this is the factor by which the
variance of the estimate of a treatment comparison from a study is reduced by the
information of the whole network. A small value of the leverage, close to 0, means
a large variance reduction and thus a large gain in precision from the network.
Conversely, a large value (close to 1) means almost no variance reduction and no
gain in precision.

The mean leverage [27] depends only on the number of treatments n and the
number of comparisons m: .n � 1/=m. This can be checked by the following R
commands

> mn1$n
[1] 10
> mn1$m
[1] 28
> mean(mn1$leverage.fixed)
[1] 0.3214286
> (mn1$n-1)/mn1$m
[1] 0.3214286

which are identical, and equal to 9=28 D 0:3214286.
In the diabetes example the strongest gain from the network is seen in the

Gonzales-Ortiz2004 and two of the Willms1999 comparisons with a
leverage of 0.02. These comparisons have rather large standard errors and gain
a lot from information through the network, particularly from other studies that
have evaluated the same comparison, metformin or acarbose vs placebo. The largest
possible leverage is 1.00, and two studies have this value: Hermansen2007 and
Garber2008. This occurs because they are the only studies evaluating sitagliptin
and vildagliptin, respectively. Therefore these two drugs are not part of any loop
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(circuit) in the network, see Fig. 8.3, and estimation cannot benefit from the
additional data available within the network.

The next chunk of information gives the estimates for all the treatment contrasts
in the network meta-analysis.

...
Fixed effect model

Treatment estimate (sm=’MD’):
acar benf metf migl piog plac rosi sita sulf vild

acar 0.00 0.08 0.29 0.12 0.24 -0.83 0.37 -0.26 -0.39 -0.13
*** Output truncated ***
vild 0.13 0.21 0.41 0.24 0.37 -0.70 0.50 -0.13 -0.26 0.00

Lower 95%-confidence limit:
acar benf metf migl piog plac rosi sita sulf vild

acar 0.00 -0.25 0.06 -0.21 -0.01 -1.04 0.15 -0.59 -0.61 -0.46
*** Output truncated ***
vild -0.20 -0.15 0.14 -0.11 0.08 -0.95 0.24 -0.49 -0.57 0.00

Upper 95%-confidence limit:
acar benf metf migl piog plac rosi sita sulf vild

acar 0.00 0.41 0.51 0.44 0.49 -0.61 0.60 0.07 -0.17 0.20
*** Output truncated ***
vild 0.46 0.56 0.69 0.60 0.66 -0.45 0.77 0.23 0.05 0.00
...

Above we have three n � n matrices (recall n is the number of treatments).
These show the estimated treatment comparisons as well as lower and upper 95 %
confidence limits. Results for each possible treatment comparisons are given.

Estimated treatment effects and confidence limits use information both from
direct and indirect treatment comparisons. As the network is connected, all com-
parisons can be estimated.

The last chunk of output gives measures of heterogeneity/network inconsistency.

...
Quantifying heterogeneity/inconsistency:
tauˆ2 = 0.1087; Iˆ2 = 81.4%

Test of heterogeneity/inconsistency:
Q d.f. p.value

96.99 18 < 0.0001

Specifically we have the generalised DerSimonian–Laird estimator �2 [8, 15],
Higgins’ I2, Cochran’s Qtotal (Q) with its degrees of freedom (d.f.), and a p-
value for Qtotal [12]. The results show that there is considerable heterogeneity in the
network, and this needs to be explored further.

Finally, as an alternative to print.netmeta function, we can obtain a shorter
summary of the analysis using the summary.netmeta function:

> print(summary(mn1))
Number of studies: k=26
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Number of treatments: n=10
Number of pairwise comparisons: m=28
*** Output truncated ***

The resulting output includes matrices for treatment effects and confidence
limits, as presented above.

8.3.4 Additional Network Plots

In Fig. 8.3 we have already seen a network plot produced by function netgraph.
Here, we explore ways how to create alternative network plots using some of the
additional functionality of netgraph [29].

We used the default settings to obtain Fig. 8.3. This placed the nodes (treatments)
on a circle as, by default, argument start.layout is equal to "circle".

We can use argument iterate=TRUE to further optimise the layout. First,
“ideal” distances between each pair of nodes in the plane are specified. We followed
a proposal in the literature to take the graph distance of nodes i and j, defined
as the length, i.e. the number of edges, of the shortest path connecting i and j
[14]. However, for most graphs this cannot be perfectly realised. Therefore, starting
from an initial layout, the optimum is approximated in an iterative process called
stress majorisation [14, 17, 23, 29], which is essentially a form of least squares
optimisation. Users can choose whether network graphs generated for each iteration
step are shown using argument allfigures=TRUE. A different starting layout
than a circle can be chosen by argumentstart.layout (or abbreviated start):
a starting layout obtained via eigenvectors of the Laplacian matrix (following
Hall’s algorithm [11]) or a random starting layout (start="random"). For Hall’s
algorithm, there are two possible options for setting the argumentstart.layout,
"eigen", or "prcomp". These correspond to different procedures for computing
eigenvectors by R function eigen or prcomp (via principal component analysis).

To see a series of random layouts, repeatedly execute the command (graph not
shown):

> netgraph(mn1, start="random", iterate=TRUE,
+ col="darkgray", cex=1.5, multiarm=FALSE,
+ points=TRUE, col.points="green", cex.points=3)

If argument points is set to TRUE, nodes are marked. The marker type, size,
and colour of the points can be specified using the arguments pch.points,
cex.points, col.points which may be vectors. As usual, further generic
plotting arguments are available, such as cex (determining the size of the treatment
labels), lwd (determining the thickness of lines), col (determining the colour of
lines), and others; see also help page of netgraph function.

In addition, the netgraph function allows us to identify multi-arm studies
by coloured polygons. If argument multiarm is set to FALSE as in the
command we have used, multi-arm studies are not identified in the figure.
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Fig. 8.4 Network graph for
the diabetes data, drawn by
the stress majorisation
algorithm. The shading
indicates the three-arm study
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Using multiarm=TRUE (default) without explicitly specifying argument
col.multiarm means that multi-arm studies are coloured using transparent
colours from the R library colorspace if this is available, or colours from the
rainbow scale otherwise. Unfortunately, transparent colours are not possible to
display with all graphics devices. However, they can usually be incorporated into
PDF-files. The function issues a warning if colours are not appropriately displayed.

As we have only one multi-arm study in our dataset, transparent colouring is not
needed. Figure 8.4 is generated with the command

> netgraph(mn1, start="circle", iterate=TRUE,
+ col="darkgray", cex=1.5,
+ points=TRUE, col.points="black", cex.points=3,
+ col.multiarm="gray")

If you wish to view all the details of the iterations, then include the argument
allfigures=TRUE (graphs not shown):

> netgraph(mn1, start="circle", iterate=TRUE,
+ col="darkgray", cex=1.5,
+ points=TRUE, col.points="black", cex.points=3,
+ col.multiarm="gray", allfigures=TRUE)

8.3.5 Forest Plots

Sometimes in a network meta-analysis the primary interest is to compare a number
of treatments to a common treatment (also called reference or baseline treatment).
This is usually placebo, usual care, no treatment, or a well-established standard
treatment. When summarising the output, a reference treatment can be specified
using the argument reference.group (abbreviated ref) in the netmeta,
summary.netmeta, and the corresponding print functions.
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> summary(mn1, ref="plac")
Number of studies: k=26
Number of treatments: n=10
Number of pairwise comparisons: m=28

Fixed effect model

Treatment estimate (sm="MD", reference.group="plac"):
MD 95%-CI

acar -0.8274 [-1.0401; -0.6147]
benf -0.9052 [-1.1543; -0.6561]
metf -1.1141 [-1.2309; -0.9973]
migl -0.9439 [-1.1927; -0.6952]
piog -1.0664 [-1.2151; -0.9178]
plac 0.0000 [ 0.0000; 0.0000]
rosi -1.2018 [-1.2953; -1.1084]
sita -0.5700 [-0.8230; -0.3170]
sulf -0.4395 [-0.6188; -0.2602]
vild -0.7000 [-0.9495; -0.4505]
*** Output truncated ***

We see that in this printout all treatments are compared to the reference treatment,
which is placebo.

A corresponding forest plot using reference group "plac" can be generated
using the following R command:

> forest(mn1, ref="plac")

This produces a forest plot (graph not shown) for the fixed effect model because
the analysis which created the R object mn1 used the fixed effect model.

For the forest.netmeta function the argument reference.group is
mandatory if this argument has not been used in the generation of the netmeta
object. For example, the following R command will result in an error message.

> forest(mn1)
Error in forest.netmeta(mn1) :

Argument ’reference.group’ must match any of the following
values: ’acar’ - ’benf’ - ’metf’ - ’migl’ - ’piog’ - ’plac’ -

’rosi’ - ’sita’ - ’sulf’ - ’vild’

Additional arguments are available in the forest.netmeta function to
modify the figure. As always, the arguments of a function can be displayed using
the args function.

> args(forest.netmeta)
function (x, pooled = ifelse(x$comb.random, "random", "fixed"),

reference.group = x$reference.group, leftcols = "studlab",
leftlabs = "Treatment", smlab = NULL, sortvar = x$seq, ...)

The argumentpooled is used to explicitly specify whether the forest plot should
be based on a fixed effect or random effects model. If comb.random=FALSE in
the generation of the netmeta object, the fixed effect model is used. Otherwise, if
comb.random=TRUE, the random effects model is used.
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Fig. 8.5 Forest plot for the Senn data example, fixed effect model, with placebo as reference

Contrast to placebo
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Fig. 8.6 Forest plot for the Senn data example, random effects model, with placebo as reference

Forest plots for fixed effect and random effects model are shown in Figs. 8.5 and
8.6, respectively. The following commands were used to produce these plots.

> forest(mn1, xlim=c(-1.5, 1), ref="plac",
+ leftlabs="Contrast to Placebo",
+ xlab="HbA1c difference")
> forest(mn1, xlim=c(-1.5, 1), ref="plac",
+ leftlabs="Contrast to placebo",
+ xlab="HbA1c difference",
+ pooled="random")

ut
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8.4 Decomposition of the Heterogeneity Statistic

The Qtotal statistic (of the “whole network”) can be decomposed into a Q statistic for
assessing the heterogeneity between studies with the same design (“within designs”)
and a Q statistic for assessing the design inconsistency (“between designs”). Designs
are defined by the subset of treatments compared in a study. For example, the
comparison acarbose vs placebo in Costa1997 and the comparison acarbose vs
metformin vs placebo in Willms1999 are two different designs in the Senn data
example (see Fig. 8.2) even though the pairwise treatment comparison acarbose vs
placebo is included in both designs.

Example 8.5 We can use the decomp.design function to calculate the Q
statistics.

> round(decomp.design(mn1)$Q.decomp, 3)
Q df pval

Whole network 96.986 18 0.000
Within designs 74.455 11 0.000
Between designs 22.530 7 0.002

We have used the fixed effect model for this analysis and we see there exists
considerable heterogeneity/inconsistency within as well as between designs. We can
further decompose the total within-design heterogeneity into the contribution from
each design:

> print(decomp.design(mn1)$Q.het.design, digits=2)
design Q df pval

1 acar:plac 0.00 0 NA
2 acar:sulf 0.00 0 NA
3 benf:plac 4.38 1 3.6e-02
4 metf:piog 0.00 0 NA
5 metf:plac 42.16 2 7.0e-10
6 metf:rosi 0.19 1 6.7e-01
7 metf:sulf 0.00 0 NA
8 migl:plac 6.45 2 4.0e-02
9 piog:plac 0.00 0 NA
10 piog:rosi 0.00 0 NA
11 plac:rosi 21.27 5 7.2e-04
12 plac:sita 0.00 0 NA
13 plac:vild 0.00 0 NA
14 rosi:sulf 0.00 0 NA
15 acar:metf:plac 0.00 0 NA

As we can see, 15 different designs are used in the 26 studies included in the
network meta-analysis. Since there are only five designs for which we have more
than one study, the remaining design specific Q statistics are equal to zero and have
no degrees of freedom. Except for design metf:rosi (p D 0:67), for all the other
four designs there is more heterogeneity between the contributing studies than we
would expect by chance; in the case of metf:plac a substantial amount more
(p < 0:0001). In a substantive application we would try and identify the sources of
this and update the analysis appropriately.
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The decomp.design function also gives the between-designs Q statistic
based on a random effects model. This can be calculated based on a full design-
by-treatment interaction random effects model [13]. Here, �2 is estimated by
the method of moments [15]. Alternatively, the square-root of the between-study
variance can be prespecified with tau.preset. This Q statistic can be displayed
by entering:

> round(decomp.design(mn1)$Q.inc.random, 3)
Q df pval tau.within

Between designs 2.194 7 0.948 0.38

ut

8.5 The Net Heat Plot

We now introduce the net heat plot, proposed by Krahn, König, and Binder [18–
20]. This is a graphical presentation which displays in a single plot two types of
information. These are:

(1) for each network estimate, the contribution of each design to this estimate, and
(2) for each network estimate, the extent of inconsistency due to each design.

Taking (1) first, we have already seen in (8.6) that the elements in a row of the
matrix H describe the contribution of the treatment comparison in each column to
the network estimate in the row. The hat matrix H of dimension m � m was defined
based on all individual pairwise treatment comparisons in the network, i.e. m D 28

treatment comparisons in the Senn data example. By contrast, the net heat plot is
based on a condensed hat matrix with rows and columns corresponding to treatment
comparisons within designs instead of single comparisons. This hat matrix therefore
has lower dimension.

Example 8.6 Figure 8.7 shows a net heat plot for the fixed effect analysis of the
Senn data example which was created using the following netheat command.

> netheat(mn1)

The rows and columns correspond to treatment comparisons within designs;
treatment comparisons for which there is only one source of evidence are omitted.
Pairwise comparisons corresponding to the three-arm design are designated by “_”
following the treatment comparison label. The grey squares have area proportional
to the contribution from the treatment comparison in the column to the treatment
comparison in the row. For example, for the acar:plac treatment comparison,
the largest grey square is on the diagonal indicating that the direct comparison is
the greatest source of information. However, there are also moderate size squares
in the same row for the metf:sulf, rosi:sulf, plac:rosi, metf:plac,
and acar:sulf comparisons, indicating these are important sources of additional
indirect evidence.
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Fig. 8.7 Net heat plot of the Senn data example based on a fixed effect model

Now we consider (2). Recall that above we have decomposed the heterogeneity
statistic Qtotal into a within and between design component. We can further
decompose the between design component into the contribution for each design.
These are displayed in colour on the top-left to bottom-right diagonal of Fig. 8.7,
with the largest heterogeneity shown in red in the top left corner. These correspond
to the metf:sulf and rosi:sulf designs, which are together responsible for
the majority of between-design heterogeneity.

We now turn to the off-diagonal colours. For each treatment comparison row,
these are determined by the change in design inconsistency when a particular design
is detached, i.e. after removing the consistency assumption for that specific design.
For example, consider the top row of Fig. 8.7, corresponding to the metf:sulf
treatment comparison. The (1,2) position is coloured red, which corresponds to a
score of 6–8 in the colour scale on the right-hand side of the plot. This means
that if we “remove” the assumption of consistency for the design in column 2
(rosi:sulf) and re-estimate the between-design inconsistency contribution to the
design metf:sulf, it decreases. This means that the evidence for the treatment
comparison metf:sulf from the design rosi:sulf is inconsistent with the
other evidence.

Conversely, blue indicates that the evidence for the treatment comparison
in the row from the design in the column is consistent. For example, for the
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acar:sulf treatment comparison, the indirect evidence from the metf:sulf
and rosi:sulf designs supports the direct evidence (coloured blue in the plot).

If the colours of a column corresponding to a design are identical to the colours
on the diagonal, the detaching of the effect of this design removes the total
inconsistency in the network.

As we have already noted, the diagonal colours show the designs metf:sulf,
rosi:sulf, metf:piog, piog:plac, and plac:rosi contribute the most
to the between-design inconsistency. The contributions of each design can also be
printed as follows:

> round(decomp.design(mn1)$Q.inc.design, 2)
acar:plac acar:sulf benf:plac metf:piog

0.04 0.01 0.00 1.75
metf:plac metf:rosi metf:sulf migl:plac

0.20 0.01 6.62 0.00
piog:plac piog:rosi plac:rosi plac:sita

3.39 0.04 1.05 0.00
plac:vild rosi:sulf acar:metf:plac acar:metf:plac

0.00 9.29 0.01 0.13

We reiterate the point made above, that designs where only one treatment is
involved in other designs of the network or where the removal of corresponding
studies would lead to a splitting of the network do not contribute to the inconsistency
assessment and are not incorporated into the net heat plot in Fig. 8.7. These are the
four designs benf:plac, migl:plac, plac:sita, and plac:vild.

We see that the metf:sulf design contributes 6.62, and the rosi:sulf
design contributes 9.29, consistent with the red colouring of the first and second
diagonals of Fig. 8.7.

We have already commented on the red entries in positions (1,1), (1,2), (2,1) and
(2,2) of Fig. 8.7. However, entries (4,3) and (4,4) are coloured orange, indicating
inconsistency of evidence from the designs metf:piog and piog:plac.

Now consider the design plac:rosi (fifth row). There are six studies of this
design in the network, and the within-design heterogeneity for this statistic, shown
in Sect. 8.4 is large (21.27 on 5 degrees of freedom, p < 0:001). However, its large
evidence base means it provides a lot of direct information (a large grey square in
position (5,5)) as well as providing a lot of indirect information (as shown by the
number of large grey squares in the plac:rosi column).

The colours in the metf:plac column are very light yellow in rows 1 and 2,
then blue in rows 3 and 4, and then white. This means that relaxing the consistency
assumption for this design slightly decreases the inconsistency contribution to
the metf:sulf and rosi:sulf comparisons. However, the evidence from the
metf:plac design is consistent with that from the metf:piog and piog:plac
designs.

Overall, the heterogeneity in the network cannot be traced to one design.
However, the single largest reduction in the whole network inconsistency is achieved
by removing the rosi:sulf design (see the design inconsistency Q statistics
above).
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Fig. 8.8 Net heat plot of the Senn data example from a random effects model

Given the extent of heterogeneity, we may conclude a random effects analysis is
more appropriate. The corresponding net heat plot is shown in Fig. 8.8, and shows a
marked reduction in inconsistency. It is obtained by the following command:

> netheat(mn1, random=TRUE)

ut

8.5.1 Bland–Altman Plot to Assess the Effect of Heterogeneity
on Estimated Treatment Comparisons

In the Senn data example there is a substantial amount of heterogeneity. This is
reflected in the fact that the estimated common heterogeneity variance O�2 is larger
than most of the study-specific sampling variances. Accordingly, alongside the fixed
effect model, we might consider a random effects model.

Example 8.7 The results for the fixed effect and random effects model can be
compared in a Bland–Altman plot [6] as follows:

> # Set seed so results are reproducible
> set.seed(125)
> fe <- mn1$TE.nma.fixed
> re <- mn1$TE.nma.random
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> plot(jitter((fe+re)/2, 5), jitter(fe-re, 5),
+ xlim=c(-1.2, 1.2),
+ ylim=c(-0.25, 0.25),
+ xlab="Mean treatment effect (in fixed effect and random

effects model)",
+ ylab="Difference of treatment effect (fixed effect minus

random effects model)")
> abline(h=0)

The jitter function is used to separate overlapping points by adding a small
random error to each x- and y-value. As the plot contains a random element, we use
the set.seed command to generate a random, but reproducible, graph.

Figure 8.9 shows that estimated treatment effects of fixed effect and random
effects model are similar with two exceptions. Estimated treatment effects in the
random effects model are somewhat larger in the studies by Stucci1996 and
Moulin2006 (bottom left of the plot).

A comparison of standard errors for fixed effect and random effects model shows
that standard errors in the random effects model are much larger.

> summary(mn1$seTE.nma.random / mn1$seTE.nma.fixed)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.826 2.265 2.588 2.502 2.681 3.231

On average, standard errors in the random effects model (and accordingly
confidence intervals) are about 2.5 times as large as those in the fixed effect model.
However, treatment effect estimates are broadly similar. The results can be further
illustrated using forest plots if desired (not shown). ut
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Fig. 8.9 Bland–Altman plot comparing individual treatment effects for fixed effect and random
effects model
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8.6 Summary

Network meta-analysis is a potentially powerful tool for using all the evidence in a
particular area to estimate and compare treatment effects.

In this chapter, we have described a weighted least squares estimation approach
which is implemented in the R package netmeta. The software can handle both
single-arm and multi-arm studies; for the latter it accounts for the correlation
appropriately. We have illustrated this approach using an example from diabetes
[33], showing how the network can be graphed and a range of analyses explored.

Two important aspects of network meta-analysis are the extent of information
gained on a particular treatment comparison through the indirect evidence and the
extent of heterogeneity. Information about both of these is conveyed in the net heat
plot; in addition the software provides a decomposition of heterogeneity within
designs and between designs.

If there is clinically relevant heterogeneity, it should be explored further. As
covariate adjustment is not currently possible with the software, one approach is to
perform study specific (ideally individual participant data) analyses with appropriate
covariate adjustment before using the software presented here to perform the
network meta-analysis.
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Chapter 9
Meta-Analysis of Diagnostic Test Accuracy
Studies

Meta-analysis of diagnostic test accuracy (DTA) studies differs from meta-analysis
of intervention studies in a number of respects. In this chapter, we explain the
issues raised by meta-analysis of diagnostic accuracy studies and how these
may be addressed. Alongside the statistical models, we present the R pack-
age mada [5] written for fitting these models and graphing the results.1 Full
details about the R package mada can be obtained by entering the R command
vignette("mada").

9.1 Special Challenges in Meta-Analysis of Diagnostic Test
Accuracy Studies

The methodology of systematic reviews and meta-analyses of DTA studies is
relatively new, with the first papers appearing in the 1990s, and recent important
contributions [20]. Methods for meta-analysis of intervention studies cannot be
readily translated to DTA studies. The reason is that in DTA studies the outcome
is bivariate, typically consisting of the (sensitivity, specificity) pair for a number
of studies. As we will outline, the large across-study correlation between these
parameters is of central interest. Therefore, it is not appropriate to conduct separate
meta-analyses for sensitivity and specificity [7]. Instead, bivariate modelling is
necessary. Thus meta-analysis of DTA studies is a special application of multivariate
meta-analysis, introduced in Chap. 7; however, we use a separate package to make
the calculations easier. A further challenge is that heterogeneity is typically much
larger in meta-analysis of DTA studies because of (1) variation between studies

1To install the R package mada use the R command install.packages("mada"). This will
automatically install the package R package mvmeta which it depends on.
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in how a continuous marker is dichotomised into a test classification and also (2)
variation in the accuracy of tests across different settings.

9.2 Analysis of Diagnostic Test Accuracy Studies

In a typical DTA study, there are two groups of patients, those who truly have a
certain condition or disease, and those who in truth are disease free. In this chapter,
we assume that the presence or absence of the disease has been ascertained by a
fully accurate “gold standard” procedure, so that the true condition of each patient
is assumed known.

Now we are interested in a so-called index test which we hope will be a reliable
guide as to whether the patient has the disease or not. The test may be based on
a biomarker, a questionnaire, an imaging modality, or a more complex diagnostic
procedure. However, the index test is not completely reliable. Thus, for a proportion
of patients who have a positive index test result (denoted TC) they will in truth not
have the disease. Likewise, a proportion of patients who have a negative index test
result (denoted T�) will in truth have the disease. A generic representation of the
resulting data is given in Table 9.1.

9.2.1 Definition of Sensitivity and Specificity

Two common measures to evaluate the performance of a diagnostic test are
sensitivity and specificity.

The sensitivity is defined as the probability that a patient has a positive index test
result given he/she in truth has the disease. It is estimated by

bSe D TP

n1
:

Table 9.1 Generic
representation of data from a
diagnostic test accuracy study

Disease status

Test result D
C

D
�

Total

T
C

TP FP TPCFP

T
�

FN TN FNCTN

Total n1 n2 n

Here, n1 patients truly have the disease,
and n2 are disease free
T

C
denotes a positive test result, and T

�

a negative test result
TP true positives, FP false positives, TN
true negatives, FN false negatives
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The estimated sensitivity is also called true positive rate (TPR). The corresponding
false negative rate (FNR) is given by 1 � bSe D FN=n1.

The specificity is defined as the probability that a patient has a negative index
test result given he/she in truth does not have the disease. This is estimated by the
true negative rate (TNR)

bSp D TN

n2
:

The corresponding false positive rate (FPR) is 1� bSp D FP=n2.
Ideally, both sensitivity and specificity of a diagnostic test are close to one.

However, as we will see in Sect. 9.2.3 there is a trade-off between these two
measures.

Example 9.1 Scheidler et al. [18] conducted a DTA meta-analysis to compare
the utility of lymphangiography, computed tomography and magnetic resonance
imaging (MR) for the diagnosis of lymph node metastasis in patients with cervical
cancer. Here we restrict our attention to the MR data from ten studies. R code to
read in and print the MR dataset is given in Fig. 9.1.

As shown in Fig. 9.1, sensitivity and specificity can be easily calculated from
the available data. In this dataset there is substantial heterogeneity with sensitivity
values ranging from 0 to 0.89. On the other hand, much less heterogeneity is seen
in specificity values which range from 0.84 to 1.

> # 1. Load MR dataset (Scheidler 1997, Table 3)
> data16 <- read.csv("dataset16.csv", as.is=TRUE)
> # 2. Print dataset
> data16

author year tp n1 tn n2
1 Hricak 1988 9 11 44 46
2 Greco 1989 3 8 32 38
3 Janus 1989 3 4 16 18
4 Kim 1990 3 15 44 45
5 Ho 1992 0 5 15 15
6 Kim 1993 7 29 167 169
7 Hawnaur 1994 12 16 29 33
8 Kim 1994 23 37 230 235
9 Subak 1995 8 13 53 58
10 Heuck 1997 16 18 22 24
> # 3. Calculate sensitivity
> round(data16$tp / data16$n1, 4)
[1] 0.8182 0.3750 0.7500 0.2000 0.0000 0.2414 0.7500 0.6216
[9] 0.6154 0.8889
> # 4. Calculate specificity
> round(data16$tn / data16$n2, 4)
[1] 0.9565 0.8421 0.8889 0.9778 1.0000 0.9882 0.8788 0.9787
[9] 0.9138 0.9167

Fig. 9.1 Magnetic resonance imaging data for the diagnosis of lymph node metastasis in patients
with cervical cancer [18]. See Table 9.1 for an explanation of the column headings tp, n1, tn
and n2
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We can use the metaprop function from R package meta to calculate confi-
dence intervals for sensitivity

> metaprop(tp, n1, data=data16,
+ comb.fixed=FALSE, comb.random=FALSE,
+ studlab=paste(author, year))

proportion 95%-CI
Hricak 1988 0.8182 [0.4822; 0.9772]
Greco 1989 0.3750 [0.0852; 0.7551]
Janus 1989 0.7500 [0.1941; 0.9937]
Kim 1990 0.2000 [0.0433; 0.4809]
Ho 1992 0.0000 [0.0000; 0.5218]
Kim 1993 0.2414 [0.1030; 0.4354]
Hawnaur 1994 0.7500 [0.4762; 0.9273]
Kim 1994 0.6216 [0.4476; 0.7754]
Subak 1995 0.6154 [0.3158; 0.8614]
Heuck 1997 0.8889 [0.6529; 0.9862]
*** Output truncated ***

and specificity

> metaprop(tn, n2, data=data16,
+ comb.fixed=FALSE, comb.random=FALSE,
+ studlab=paste(author, year))

proportion 95%-CI
Hricak 1988 0.9565 [0.8516; 0.9947]
Greco 1989 0.8421 [0.6875; 0.9398]
Janus 1989 0.8889 [0.6529; 0.9862]
Kim 1990 0.9778 [0.8823; 0.9994]
Ho 1992 1.0000 [0.7820; 1.0000]
Kim 1993 0.9882 [0.9579; 0.9986]
Hawnaur 1994 0.8788 [0.7180; 0.9660]
Kim 1994 0.9787 [0.9510; 0.9931]
Subak 1995 0.9138 [0.8102; 0.9714]
Heuck 1997 0.9167 [0.7300; 0.9897]
*** Output truncated ***

These commands print the same values for sensitivity and specificity as given in
Fig. 9.1. Furthermore, exact binomial confidence intervals are printed for sensitivity
and specificity, respectively.

Note, we do not conduct a meta-analysis for sensitivity and specificity (argu-
ments comb.fixed=FALSE and comb.random=FALSE) separately, as the
(sensitivity, specificity) pairs from all studies are correlated, and this plays an
important role in the analysis [7]. ut

9.2.2 Additional Measures: Diagnostic Odds Ratio and
Likelihood Ratios

The results of a DTA study are typically reported as a (sensitivity, specificity) pair.
However, some attempts have been made to condense the result of a DTA study in
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a single number. The most common approach is the use of the diagnostic odds ratio
(DOR) [12].

The DOR is defined as

DOR D TP=FN

FP=TN
D TP � TN

FP � FN
D

bSe � bSp

.1 � bSe/ .1 � bSp/
:

This is exactly the same information as used in Eq. (3.2) which defines the odds ratio
for studies with binary outcome, see also Table 3.1. Accordingly, the metabin
function can be used to calculate DORs, as shown in the next example.

The DOR can also be defined in terms of the so-called likelihood ratios. The
positive and negative likelihood ratio are defined as

LRC D
bSe

1 � bSp

and

LR� D 1 � bSe
bSp

:

A good diagnostic test should have both high sensitivity and specificity. Accord-
ingly, the positive likelihood ratio should be large (as bSe should be close to 1 while
1� bSp should be close to zero) and the negative likelihood ratio should be small (as
1 � bSe should be close to zero while bSp should be close to 1). Values close to one
for LRC or LR� would mean that the diagnostic test has no predictive ability with
respect to positive (LRC) or negative (LR�) test results.

An alternative definition of the DOR using likelihood ratios is then

DOR D
bSe � bSp

.1 � bSe/ .1� bSp/
D
bSe
.

.1 � bSp/

.1 � bSe/
.

bSp
D LRC

LR�
:

A good diagnostic test has a large positive likelihood ratio and a small negative
likelihood ratio. Accordingly, a good diagnostic test has a large DOR.

Example 9.2 The DOR with 95 % confidence limits can be calculated using the
metabin function.

> metabin(tp, n1, n2-tn, n2, data=data16, sm="OR",
+ comb.fixed=FALSE, comb.random=FALSE,
+ studlab=paste(author, year),
+ addincr=TRUE, allstudies=TRUE)

OR 95%-CI
Hricak 1988 67.6400 [10.2408; 446.7581]
Greco 1989 3.1818 [ 0.6536; 15.4906]
Janus 1989 15.4000 [ 1.4987; 158.2474]
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Kim 1990 8.3067 [ 1.1097; 62.1816]
Ho 1992 2.8182 [ 0.0497; 159.9591]
Kim 1993 22.3333 [ 4.9958; 99.8391]
Hawnaur 1994 18.2099 [ 4.2099; 78.7671]
Kim 1994 67.9216 [23.3129; 197.8885]
Subak 1995 15.0331 [ 3.7599; 60.1067]
Heuck 1997 59.4000 [ 9.2046; 383.3273]
*** Output truncated ***

Note, we have used argument addincr=TRUE in order to add 0.5 to
event counts in Table 9.1 for all the studies. In particular the argument
allstudies=TRUE is necessary to calculate the DOR for Ho 1992 which has
zero true positives and zero false positives.

We could use base R to calculate likelihood ratios. However, this can be done
much more simply using function madad from R package mada:

> library(mada)
Loading required package: mvtnorm
Loading required package: ellipse
Loading required package: mvmeta
This is mvmeta 0.4.5. For an overview type:

help(’mvmeta-package’).
> args(madad)
function (x = NULL, TP, FN, FP, TN, level = 0.95,

correction = 0.5, correction.control = "all",
method = "wilson", yates = TRUE, suppress = TRUE, ...)

This function like many other function in R package mada can be applied (1) to
a data frame or matrix or (2) to a set of vectors TP, FN, FP and TN—corresponding
to the number of true positive test results, etc. However, when applying R package
mada to a data frame or matrix, this must have columns with the names TP, FN, FP
and TN, otherwise an error is produced:

> md1 <- madad(data16)
Error in checkdata(origdata) :

Data frame or matrix must have columns labelled TP, FN,
FP and TN.

In order to use the madad function and other function in R package mada, we
add four additional columns to dataset data16:

> data16$TP <- data16$tp
> data16$FN <- data16$n1 - data16$tp
> data16$FP <- data16$n2 - data16$tn
> data16$TN <- data16$tn
> md1 <- madad(data16)

These commands create an object of class madad for which the corresponding
print function generates the following output. For better readability we split the
output into two parts. The first part is:

> print(md1, digits=2)
Descriptive summary of data16 with 10 primary studies.
Confidence level for all calculations set to 95 %
Using a continuity correction of 0.5 if applicable
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Diagnostic accuracies
sens 2.5% 97.5% spec 2.5% 97.5%

[1,] 0.79 0.51 0.93 0.95 0.84 0.98
[2,] 0.39 0.15 0.69 0.83 0.69 0.92
[3,] 0.70 0.30 0.93 0.87 0.65 0.96
[4,] 0.22 0.08 0.46 0.97 0.87 0.99
[5,] 0.08 0.01 0.48 0.97 0.76 1.00
[6,] 0.25 0.13 0.43 0.99 0.95 1.00
[7,] 0.74 0.50 0.89 0.87 0.72 0.94
[8,] 0.62 0.46 0.76 0.98 0.95 0.99
[9,] 0.61 0.36 0.81 0.91 0.81 0.96
[10,] 0.87 0.65 0.96 0.90 0.72 0.97

Test for equality of sensitivities:
X-squared = 38.2443, df = 9, p-value = 1.6e-05
Test for equality of specificities:
X-squared = 31.2101, df = 9, p-value = 0.00027
...

This first part of the output prints the sensitivity (column sens) and specificity
(column spec) with corresponding 95 % confidence limits. Two �2-tests are
conducted to test the hypotheses that sensitivities and specificities are equal across
studies. These are calculated using the prop.test function from base R package
stats. In this example, both hypotheses are rejected (p-values < 0:001 and 0:0003
for sensitivity and specificity, respectively).

Looking closely, we see that sensitivity and specificity values differ from those in
Sect. 9.2.1 above, which were obtained using the metaprop function. This discrep-
ancy is because using a continuity correction is the default in the madad function
but not for the metaprop function. To get the same estimates for sensitivity and
specificity we can use the argument correction.control="none" in the
madad function.2

The second part of the output prints DORs as well as likelihood ratios:

...
Diagnostic OR and likelihood ratios

DOR 2.5% 97.5% posLR 2.5% 97.5% negLR 2.5% 97.5%
[1,] 67.64 10.24 446.76 14.88 4.30 51.46 0.22 0.07 0.66
[2,] 3.18 0.65 15.49 2.33 0.79 6.86 0.73 0.43 1.26
[3,] 15.40 1.50 158.25 5.32 1.46 19.32 0.35 0.09 1.33
[4,] 8.31 1.11 62.18 6.71 1.08 41.66 0.81 0.62 1.05
[5,] 2.82 0.05 159.96 2.67 0.06 119.92 0.95 0.73 1.22
[6,] 22.33 5.00 99.84 17.00 4.29 67.42 0.76 0.62 0.94
[7,] 18.21 4.21 78.77 5.56 2.24 13.76 0.31 0.14 0.68
[8,] 67.92 23.31 197.89 26.54 11.20 62.89 0.39 0.26 0.59
[9,] 15.03 3.76 60.11 6.51 2.65 16.03 0.43 0.22 0.84
[10,] 59.40 9.20 383.33 8.68 2.64 28.52 0.15 0.05 0.47
Correlation of sensitivities and FPRs:

rho 2.5 % 97.5 %
0.44 -0.26 0.84

2Confidence limits would be still different if we used the argument correction.
control="none" as different methods are used to calculate these.
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We get exactly the same values for DORs and corresponding confidence limits
by using the metabin function command given above.

Finally, the Pearson correlation coefficient of the sensitivities (TPR) and FPR
across studies is printed; here, it is 0.44. It is expected to be positive, but this is
not always the case. In the example, the 95 % confidence interval for the correlation
coefficient includes zero. Sensitivities, specificities, DORs and positive and negative
likelihood ratios can all be displayed using forest plots, by analogy to meta-analyses
of intervention studies. The forest.madad function which is hidden inside R
package mada can be used for this purpose. Figure 9.2 showing forest plots for
sensitivity and specificity generated using the following commands3:

> # Changes to plot layout:
> # - two plots (columns) in one row (argument mfrow)
> # - use maximal plotting region (argument pty)
> oldpar <- par(mfrow=c(1,2), pty="m")
> # Forest plot for sensitivities
> forest(md1, type="sens", main="Sensitivity")
> # Forest plot for specificities
> forest(md1, type="spec", main="Specificity")
> # Use previous graphical settings
> par(oldpar)

Sensitivity

Study 1

Study 2

Study 3

Study 4

Study 5

Study 6

Study 7

Study 8

Study 9

Study 10

0.79 [0.51, 0.93]

0.39 [0.15, 0.69]

0.70 [0.30, 0.93]

0.22 [0.08, 0.46]

0.08 [0.01, 0.48]

0.25 [0.13, 0.43]

0.74 [0.50, 0.89]

0.62 [0.46, 0.76]

0.61 [0.36, 0.81]

0.87 [0.65, 0.96]

0.01 0.48 0.96

Specificity

Study 1

Study 2

Study 3

Study 4

Study 5

Study 6

Study 7

Study 8

Study 9

Study 10

0.95 [0.84, 0.98]

0.83 [0.69, 0.92]

0.87 [0.65, 0.96]

0.97 [0.87, 0.99]

0.97 [0.76, 1.00]

0.99 [0.95, 1.00]

0.87 [0.72, 0.94]

0.98 [0.95, 0.99]

0.91 [0.81, 0.96]

0.90 [0.72, 0.97]

0.65 0.83 1.00

Fig. 9.2 Univariate forest plots for sensitivity and specificity in MR studies [18]

3We use R object oldpar in order to restore the settings of the graphics windows. This is
recommended after changing these settings for a specific plot; however, from now on we do not
display this command.
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Fig. 9.3 Univariate forest
plot for the log diagnostic
odds ratio in MR studies [18]

Log diagnostic odds ratio

Study 1

Study 2

Study 3

Study 4

Study 5

Study 6

Study 7

Study 8

Study 9

Study 10

 4.21 [ 2.33,  6.10]

 1.16 [−0.43,  2.74]

 2.73 [ 0.40,  5.06]

 2.12 [ 0.10,  4.13]

 1.04 [−3.00,  5.07]

 3.11 [ 1.61,  4.60]

 2.90 [ 1.44,  4.37]

 4.22 [ 3.15,  5.29]

 2.71 [ 1.32,  4.10]

 4.08 [ 2.22,  5.95]

−3.00 1.55 6.10

Other possible options for argument type are "DOR", "posLR", or "negLR".
For these, we may prefer to use a log-transformed scale, which is achieved by using
argument log=TRUE in the following command

> forest(md1, type="DOR", log=TRUE,
+ main="Log diagnostic odds ratio")

This gives the plot shown in Fig. 9.3. ut

9.2.3 Tests Based on a Continuous Marker

Diagnostic tests are often based on some continuous biomarker that is known
to distinguish diseased and non-diseased individuals. For example, patients with
diabetes mellitus have higher values of the biomarker HbA1c than healthy people
(see Example 8.4).

Let X be the continuous diagnostic marker that underlies a test, and consider
two distinct probability distributions for X among diseased and non-diseased
individuals, respectively. Without loss of generality, we assume that the diagnostic
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Fig. 9.4 Distributions of a continuous biomarker for diseased and non-diseased individuals with
a specific cut-off. The probabilities for TN, FN, FP and TP are proportional to the shaded areas

marker tends to be higher for diseased patients than for non-diseased individuals.
An idealised representation is shown in Fig. 9.4.4

A test is typically defined by determining a threshold or cut-off x0 and giving
individuals with X � x0 a negative test result and individuals with X > x0 a positive
test result. This dichotomisation yields a two-by-two table as given in Table 9.1.

A test defined in this way is usually not perfect (unless the two distributions do
not overlap). A consequence of overlapping distributions is that the threshold is not
unambiguously defined. If, e.g., the cut-off point moves to the left, the total number
of positive test results and thus both TPR (i.e. sensitivity) and FPR increase, whereas
both TNR (i.e. specificity) and FNR decrease. Conversely, if the cut-off point moves
to the right, the specificity increases, but sensitivity decreases.

It follows that, for a given biomarker, for each possible cut-off there is a different
two-by-two table and therefore a distinct (sensitivity, specificity) pair. There is also a
trade-off between sensitivity and specificity, as they are negatively correlated within
a study. The variation in (sensitivity, specificity) as the cut-off, x0; varies is typically
shown by the receiver operating characteristic (ROC) curve (a term which comes
from information theory) [13]. This is obtained by plotting the TPR (sensitivity) on
the vertical axis (y-axis) against the FPR (one minus specificity) on the horizontal
axis (x-axis). A typical ROC curve is shown in Fig. 9.5.5 The dot represents the pair
of sensitivity and specificity for a specific cut-off value. In Fig. 9.5 the dot refers to
the cut-off given in Fig. 9.4. The better the test, the closer to the top left corner the
curve lies, and the closer the area under the curve is to 1.

4R code to generate the figure is given in the web-appendix.
5R code to generate the ROC curve is given in the web-appendix.
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Fig. 9.5 A ROC curve for distributions shown in Fig. 9.4

In published DTA studies, often only a single (sensitivity, specificity) pair is
reported, without information on the underlying cut-off value. In other words,
information on other (sensitivity, specificity) pairs which are needed to plot the
whole ROC curve for that study is typically missing. Thus, usually the available data
look like those shown in Table 9.1. The mutual dependency between sensitivity and
specificity—and the importance of this correlation for the properties of the test—is
the reason why they need to be analysed as a bivariate outcome.

We note that an implicit ROC curve may even underlie diagnostic tests in
radiology that are based on imaging methods such as magnetic resonance or
computed tomography. This is because, when judging an image, raters may take
a more sensitive or a more specific point of view. In this sense, rating an image is
comparable to measuring a biomarker.

For the remainder of this section we assume that each study reports only the
numbers TP, FN, TN and FP, as in Table 9.1, that is, there is only one pair of
sensitivity and specificity per study. This means that the study specific ROC curves
are unknown.

9.3 Scatterplot of Sensitivity and Specificity

So far, sensitivity and specificity have been summarised and plotted separately.
However, statistical models for DTA studies model the bivariate distribution of
sensitivity and specificity. Before fitting such models, it is a good idea to examine
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a scatterplot of sensitivities and specificities. We can use base R to produce a
scatterplot of FPR and sensitivity as follows:

> par(pty="s") # use a square plotting region
> plot(1-md1$spec$spec, md1$sens$sens,
+ xlim=c(0,1), ylim=c(0,1),
+ xlab="False positive rate (1-Specificity)",
+ ylab="Sensitivity", pch=16)

The resulting plot is shown in Fig. 9.6. The large heterogeneity of sensitivities as
compared to the small heterogeneity in specificities is clearly visible. The par
command is used to produce a square plot, which is natural because the x- and
y-axis have the same limits.

As previously noted, heterogeneity between DTA studies is to be expected, and
has two principal causes [17]. First, there may well be variation between DTA
studies in the cut-off value used to dichotomize the underlying measure into a
test result. If there is no other source of heterogeneity, this leads us to observing
a number of points from a single ROC curve common to all the studies. However,
secondly, accuracy may vary between studies due to clinical heterogeneity in patient
populations and/or differences in the implementation of the diagnostic test. For this
reason, the observed points need not lie on a common ROC curve at all.

In Fig. 9.6 variation in cut-off points seems to be larger than variation in
accuracy. However, the heterogeneity in the precision of point estimates (i.e. pairs
of sensitivity and specificity) is not shown. To show this uncertainty graphically, the
ROCellipse function from R package mada can be used. It allows the plotting
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Fig. 9.6 Scatter plot of (1—specificity) and sensitivity, i.e. in the ROC space, for the MR data [18]
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Fig. 9.7 Estimates from primary studies [18] with confidence regions in ROC space

of individual confidence regions for the estimates from the primary studies in the
ROC space (these regions are assumed to be ellipsoids in the logit space, and back-
transformed to the ROC space). Figure 9.7 was generated using the following R
commands:

> par(pty="s") # use a square plotting region
> ROCellipse(data16, pch=16)

The ROCellipse function automatically uses the TP, FP, TN, FN variables
from the dataset data16. The uncertainty is clearly visible. In particular, the
smaller studies, e.g. Ho 1992 at the lower left end, have very wide confidence
ellipsoids.

9.4 Models for Meta-Analysis of Diagnostic Test Accuracy
Studies

The information shown in Fig. 9.6 is the basis for statistical analysis of DTA studies.
Such meta-analyses may have several aims. First, we may want to estimate an
average (sensitivity, specificity) pair along with a joint confidence region. Second,
we may wish to estimate a prediction region where future pairs are expected to be
found. Third, we may be interested in a summary ROC (SROC) curve across the
observed studies.
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For these goals statistical modelling is necessary. Broadly speaking, two models
have become established during the last decade, a hierarchical model [17] and a
bivariate model [14]. However, as two groups of researchers independently showed
[1, 8], hierarchical and bivariate models are equivalent in the special (and most
common) case of absence of covariates. Therefore, in the R package mada, the
bivariate model is fitted with R function reitsma; however, the output also gives
estimates of the parameters of the hierarchical model.

9.4.1 Hierarchical Model

The first authors who developed a model accounting for heterogeneity and study size
were Rutter and Gatsonis [17] who proposed a hierarchical model, with an empirical
Bayes version added by Macaskill [11]. The model included random effects for the
cut-off and the test accuracy and focussed on estimating the SROC curve.

At the study level, it is assumed that within study k, k D 1; : : : ;K, the true
positives (TP) and the false positives (FP) follow binomial distributions:

TP � Binomial.nk1;Sek/

FP � Binomial.nk2; 1 � Spk/;

where index 1 denotes diseased individuals and index 2 denotes non-diseased.
The authors parameterised the sensitivities and specificities as follows:

logit.Sek/ D .�k C ˛k=2/e
�ˇ=2

logit.1 � Spk/ D .�k � ˛k=2/e
ˇ=2;

where �k is the random threshold in study k, ˛k is the random accuracy in study k,
and ˇ is a shape (asymmetry) parameter. Normal distributions are used to model
variation in the study-specific parameters across studies:

�k � N.�; �2� /; ˛k � N.�; �2˛/:

In total, the model has five parameters:

• mean and variance of the cut-off .�; �2� /,
• mean and variance of accuracy .�; �2˛/,
• shape parameter ˇ.

A value of ˇ D 0 would represent symmetry about the antidiagonal of the ROC
space. The SROC curve is calculated by applying the inverse function of the logit
(sometimes called “expit”) to a function that is linear in logit.1 � Sp/ W

Se D logit�1
n

e�ˇlogit.1 � Sp/C �e� ˇ
2

o

:
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This is equivalent to

Se D
	

1C exp

�

�e�ˇ log
1 � Sp

Sp
� �e� ˇ

2

�
�1
;

see [11, 17].

9.4.2 Bivariate Model

By contrast, Reitsma et al. [14] proposed a bivariate model of the joint distribution
of sensitivity and specificity, allowing for across-study correlation. This model
followed an approach developed for meta-analysis of binary outcomes [10]. It was
then refined by others [1, 3].

At the study level, this model assumed that the true positives and false positives
within study k, k D 1; : : : ;K, follow binomial distributions (as in Sect. 9.4.1).
At the between-studies level, a bivariate random effects model is assumed for
logit.Sek/ and logit.1�Spk/, where normal priors are assumed for the study-specific
parameters:

�

logit.Sek/

logit.1 � Spk/

�

� N

��

�1
�2

�

;

�

�21 �12
�12 �

2
2

��

:

Alternatively, the covariance can be parametrised using the correlation coefficient
 and the standard errors such that �12 D �1�2. Either way, this model has also
five parameters:

• means �1; �2;
• variances �21 ; �

2
2 ;

• covariance �12 (or, alternatively, correlation coefficient ).

Example 9.3 As mentioned at the beginning of this section, only the bivariate model
can be fitted in R package mada, using the reitsma function. We now illustrate
this with the MR dataset.

> mrfit <- reitsma(data16)
> print(summary(mrfit), digits=2)
Call: reitsma.default(data = data16)

Bivariate diagnostic random-effects meta-analysis
Estimation method: REML

Fixed-effects coefficients
Estimate Std. Error z Pr(>|z|) 95%ci.lb

tsens.(Intercept) 0.22 0.36 0.62 0.54 -0.49
tfpr.(Intercept) -2.70 0.32 -8.39 0.00 -3.34
sensitivity 0.56 - - - 0.38
false pos. rate 0.06 - - - 0.03
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95%ci.ub
tsens.(Intercept) 0.94
tfpr.(Intercept) -2.07 ***
sensitivity 0.72
false pos. rate 0.11
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Variance components: between-studies Std. Dev and correlation
matrix
Std. Dev tsens tfpr

tsens 0.94 1.00 .
tfpr 0.80 0.62 1.00

logLik AIC BIC
18.16 -26.32 -21.34

AUC: 0.844
Partial AUC (restricted to observed FPRs and normalized): 0.571

HSROC parameters
Theta Lambda beta sigma2theta sigma2alpha
-1.36 3.13 -0.16 0.61 0.57

The output first shows the estimation method (here REML, i.e. restricted
maximum likelihood), then the estimates for the bivariate mean (on the logit
scale) for sensitivity (tsens.(Intercept)) and FPR (tfpr.(Intercept))
with the corresponding standard errors, z-statistics p-values, and 95 % confidence
limits. Next, the average sensitivity (0.56) and FPR (0.06) are presented. The
correlation matrix is provided in the paragraph headed Variance components;
the estimated correlation across studies is 0.62.

The program also provides estimates of the log-likelihood and the information
criteria AIC (Akaike information criterion) and BIC (Bayesian information crite-
rion) [2], which may be used to guide model choice.

In many cases, we will wish to summarize the results in an estimate of the
area under the SROC curve (AUC). For a useful diagnostic test, the AUC should
be markedly greater than 0.5 (the maximum possible value is 1). The software
gives two estimates of the AUC, one for the whole ROC curve (here 0.844) and
another using only the region where FPRs of studies were actually observed, and
then normalised to the whole space. In our example the latter, partial AUC is 0.571,
which is much smaller. The difference alerts us to the fact that the region in which
the observed data lie is rather narrow, so we have limited direct knowledge about
the shape of the overall ROC curve, and hence the AUC, from the data.

Finally, because of the equivalence of the bivariate model and the hierar-
chical model in the case of no covariates, the software is able to give the
parameter estimates for the corresponding the hierarchical model (HSROC
parameters): Theta is the estimated mean O� of the cut-off (with variance
sigma2theta), Lambda is the estimated mean accuracy parameter O� (with
variance sigma2alpha), and beta is the estimated shape parameter Ǒ. ut



9.5 Methods for Estimating a Summary ROC Curve 233

9.5 Methods for Estimating a Summary ROC Curve

We have already looked at the scatterplot of pairs of FPRs (i.e. 1–specificity)
versus the TPRs (i.e. sensitivity). Now we are interested in estimating the SROC
curve across the studies. The simplest, somewhat naïve idea is to regress the logit-
transformed TPRs against the logit-transformed FPRs and then back-transform to
the ROC space. However, this curve addresses only one very specific question,
i.e. “What is the sensitivity, given the specificity?” [1, Eq. (13)]. Further, as usual
in regression, exchanging sensitivity and specificity gives a different curve [1,
Eq. (14)]. Neither curve is symmetric with respect to sensitivity and specificity and
both can be misleading [15].

The first attempt to defining a SROC curve in a different way was made by Moses
et al. [12]. This approach is based on a regression of the difference of the logit-
transformed positive rates (that is, the logarithm of the DOR) against their sum
(which is a proxy for the threshold, see [1, Eq. (15)]). It is symmetric with respect
to sensitivity and specificity, but does not account for potential heterogeneity or for
the different precision of the estimates from different studies. The proposal by Rutter
and Gatsonis [11, 17] leads to a different solution. The slope of this line in the logit
space is the geometric mean of the slopes of the two regression lines, logit.Se/ on
logit.1 � Sp/ and vice versa. [1, Eq. (16)].

Arends et al. [1] pointed out that the SROC curve is in principle unidentifiable if
only one .Se;Sp/ pair per study is known. Rücker and Schumacher [16] proposed an
SROC curve based on the assumption that investigators of the primary studies, after
considering the whole empirical ROC curve, selected the cut-off that maximised
some optimality criterion for reporting, e.g., the Youden index. Holling et al. [9]
defined a parametric SROC curve based on the assumption of a constant ratio of
log.TPR/ and log.FPR/. Doebler et al. [6] considered a more general family of
transformations (t˛ transformations) which includes the logit transformation as the
special case ˛ D 1. The generalisations by Holling et al. and Doebler et al. are
available in the R package mada, but will not be discussed here.

As we have already noted, none of the SROC curves proposed in the literature
can be interpreted as an average ROC curve over all studies without making
further assumptions. An example of a particularly challenging situation with a
positive correlation between sensitivity and specificity is the lymphangiography data
presented by Scheidler et al. [18], which has been also analysed by many others
[4, 8, 11, 14, 16, 17, 19] and which we consider in the next example.

Example 9.4 The R object mrfit generated with the reitsma function can be
used to plot both the mean sensitivity and specificity as well as the SROC curve
proposed by Rutter and Gatsonis [17] using the plot function from R package
mada:

> par(pty="s") # use a square plotting region
> plot(mrfit, predict=TRUE, cex=2)
> points(1-md1$spec$spec, md1$sens$sens, pch=16)
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Fig. 9.8 Joint estimate of FPR and sensitivity for the MR data with 95 % confidence and prediction
regions. Solid closed curve: 95 % confidence region; dotted closed curve: 95 % prediction region.
In addition, three SROC curves are seen. Short solid line: curve proposed by Rutter and Gatsonis
[17]; dashed line: curve proposed by Moses et al. [12]; dotted line: curve proposed by Rücker and
Schumacher [16]

These commands give Fig. 9.8. The estimated mean (FPR, TPR) pair is shown by
the open circle. It is surrounded by its 95 % confidence region (solid closed curve)
and a 95 % prediction region (dotted closed curve). The SROC curve proposed by
Rutter and Gatsonis [17] is shown by the black solid curve through the estimated
mean (FPR, TPR) pair.

The curve proposed by Moses et al. [12] was added to Fig. 9.8 using a dashed
line with the mslSROC function:

> # Argument lty=2 gives the dashed line
> mslSROC(data16, lty=2, add=TRUE)

Finally, the curve proposed by Rücker and Schumacher [16] was added as a
dotted line, using the rsSROC function:

> # Argument lty=3 gives the dotted line
> rsSROC(data16, lty=3, add=TRUE)

The Rücker and Schumacher curve is based on the assumption that for each
primary study, the investigator has chosen the cut-off such that a weighted mean
of sensitivity and specificity .�Se C .1 � �/Sp/ with a common parameter � .0 <
� < 1/ was maximised. The method also gives an estimate of �; which represents
the weight which is attributed to the sensitivity, whereas 1�� represents the weight
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attributed to the specificity.6 We can request the estimate of this parameter using the
commands7

> rs <- rsSROC(data16)
> lambda <- rs$lambda
> c(lambda, 1-lambda)
[1] 0.2041087 0.7958913

This indicates that investigators attributed about 80 % of the weight to the
specificity and only about 20 % to the sensitivity. This is reflected by the fact that the
points tend to lie near the left-hand border of the ROC space, with some sensitivities
being quite poor, see Fig. 9.5.

Obviously, the three curves do not completely agree in this example. Moreover,
the differences may be more striking with other examples. The reason is that the
distinct curves are based on different assumptions. Our example illustrates the fact
that the construct of a “SROC curve” is not unambiguously defined. ut

9.6 Summary

In this chapter, we have given an overview of the issues raised in meta-analysis of
DTA studies, which may be seen as a special case of multivariate meta-analysis.
After introducing the basic concepts of diagnostic tests, particularly those based
on a continuous biomarker, we presented the two principal models for meta-
analysing DTA study data, noting they are equivalent when (as will typically be
the case) we have no covariates. We then showed how the R package mada can
be used to perform meta-analysis of DTA studies using the bivariate model. It also
provides estimates of the parameters from the hierarchical model and in addition
some univariate measures of accuracy such as the DOR and positive and negative
likelihood ratios. The package also allows a number of useful plots to be easily
created. These include confidence regions for the study-level estimates of sensitivity
and specificity. To this we can add a pooled estimate of the (sensitivity, specificity)
pair, a prediction region, and a number of SROC curves. The package has a number
of other capabilities, which can be found in the documentation and particularly
in the vignette provided at http://cran.r-project.org/web/packages/mada/vignettes/
mada.pdf.

6Note that this parameter should not be confused with the parameter � of the hierarchical model.
7Even though we are only interested in an estimate of parameter �, the rsSROC command
generates a plot.

http://cran.r-project.org/web/packages/mada/vignettes/mada.pdf
http://cran.r-project.org/web/packages/mada/vignettes/mada.pdf
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Appendix A
Further Information on R

Many valuable information and files for installation of R can be found on the
Comprehensive R Archive Network (CRAN). The user is advised to choose a mirror
of CRAN which is close to the current location. A list of all mirrors is available on
the website http://cran.r-project.org/mirrors.html. At the time of writing about 100
mirrors from 48 countries exist.

On CRAN, a general R FAQ [3] and FAQs for Mac OS and Windows are
provided.

Furthermore, the following manuals are available on CRAN.

1. An Introduction to R
2. R Data Import/Export
3. R Installation and Administration
4. Writing R Extensions
5. The R language definition (draft)
6. R Internals
7. The R Reference Index

For beginners, manuals 1 and 2 are of most interest.

A.1 Installation of R

Precompiled binary distributions of R are available on CRAN for the major
operation systems Linux, Windows and Mac OS. Furthermore, R can be configured
and built by the user on many Unix-like operation systems [3].

In order to install R for Windows or Mac OS, go to your favourite CRAN mirror,
open the webpage Download R for Windows or Download R for (Mac) OS X and
download the EXE- or PKG-file of the precompiled binary distribution, respectively.
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For Debian, Ubuntu, Red Hat and SuSE Linux, instructions to install precompiled
binaries are available on your favourite CRAN mirror on the webpage Download R
for Linux.

For all other operation systems, the source code can be downloaded from any
CRAN mirror.

A.2 Importing Data into R

The R manual ‘R Data Import/Export’ available on CRAN is obviously a good
starting point for information on data import. Furthermore, a Use-R! book on data
manipulation has two chapters on reading and writing data [11].

A.2.1 Import Text Files

Throughout the book we have used the read.csv to import data in R from a text
file. This function expects that fields are separated by a comma whereas a dot is
used as decimal point. Some information on this and similar R functions is given in
the following listing.

R function Separator (argument sep) Decimal point (argument dec)
read.csv Comma Dot
read.csv2 Semicolon Comma
read.delim Tabulator Dot
read.delim2 Tabulator Comma
read.table White Space Dot

Note, these functions only differ in default values for sep and dec as well as other
arguments (see shared help page for these commands).

The following function calls all result in the same dataset.

> rd1 <- read.csv("dataset01.csv", as.is=TRUE)
> rd2 <- read.csv2("dataset01.csv", as.is=TRUE,
+ sep=",", dec=".")
> rd3 <- read.delim("dataset01.csv", as.is=TRUE,
+ sep=",", dec=".")
> rd4 <- read.delim2("dataset01.csv", as.is=TRUE,
+ sep=",", dec=".")
> rd5 <- read.table("dataset01.csv", as.is=TRUE,
+ sep=",", dec=".", header=TRUE)

which can be checked using the following commands

> all.equal(rd1, rd2)
[1] TRUE
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> all.equal(rd1, rd2)
[1] TRUE
> all.equal(rd1, rd3)
[1] TRUE
> all.equal(rd1, rd4)
[1] TRUE
> all.equal(rd1, rd5)
[1] TRUE

A.2.2 Import Data from RevMan 5

It is possible to export the analyses data from RevMan 5 [13] to a CSV-file (Comma
Separated Values). Whereas it is in principle possible to import this CSV-file in
R using any of the above-mentioned R functions, a much more convenient way to
import these data is using the read.rm5 function from R package meta.

The following steps are necessary in RevMan 5 to create the CSV-file:

1. Open the Menu File ! Export ! Data and analyses.
2. Click ‘Next’ at the bottom of the dialog box Which analyses would you like to

export?.
3. Select all items but ‘Risk of bias tables’ in the dialog box Which fields do you

want to include? and click ‘Next’.
4. Click ‘Finish’ and save the CSV-file.

The resulting CSV-file can be imported in R using the read.rm5 function.

> examples <- read.rm5("Examples from Meta-Analysis with R.csv",
+ numbers.in.labels=FALSE)
> dim(examples)
[1] 31 54
> class(examples)
[1] "rm5" "data.frame"

The read.rm5 function creates a data frame with the additional class rm5.
This data frame contains 31 observations, i.e. studies which are included in meta-
analyses, and 54 variables with detailed information to conduct the meta-analyses.
The following command prints some information for this data frame.

> examples[, 1:6]
comp.no outcome.no group.no studlab year event.e

1 1 1 1 Boner 1988 1988 0
2 1 1 1 Boner 1989 1989 0
*** Output truncated ***
17 1 1 1 Todaro 1993 1993 0
18 2 1 1 De Souza NA 14
*** Output truncated ***
31 2 1 1 Vitolo NA 35
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The first 17 observations contain data from the bronchoconstriction meta-
analysis (see Fig. 1.2) and the following 14 observations from the high-dose
chemotherapy meta-analysis (see Fig. 3.1).

The metacr function can be used to conduct a meta-analysis for the RevMan 5
data.

> args(metacr)
function (x, comp.no = 1, outcome.no = 1, method, sm,

level = .settings$level, level.comb = .settings$level.comb,
comb.fixed, comb.random,
hakn = FALSE, method.tau = "DL", tau.common = FALSE,
prediction = .settings$prediction,
level.predict = .settings$level.predict, swap.events,
logscale, backtransf = .settings$backtransf,
title, complab, outclab, keepdata = .settings$keepdata,
warn = FALSE)

NULL

Argument x is a RevMan 5 object and arguments comp.no and outcome.no
define which meta-analysis to conduct. The other arguments can be used to conduct
a meta-analysis with different setting than in RevMan 5.

By default, the metacr function conducts a meta-analysis for the first compar-
ison and first outcome, i.e. data from the bronchoconstriction meta-analysis in our
example file. In order to do a meta-analysis for the high-dose chemotherapy data,
we have to specify arguments comp.no and outcome.no.

> mc1.cr <- metacr(examples)
> mb1.cr <- metacr(examples, 2, 1)

Based on the CSV-files for each meta-analysis separately, we could conduct these
meta-analyses in the following way.

> # 1. Read in the data
> data1 <- read.csv("dataset01.csv", as.is=TRUE)
> # 2. Conduct meta-analysis
> mc1.md <- metacont(Ne, Me, Se, Nc, Mc, Sc,
+ data=data1, studlab=paste(author, year),
+ comb.random=FALSE)
> # 3. Read in the data
> data7 <- read.csv("dataset07.csv")
> # 4. Conduct meta-analysis
> mb1.rr <- metabin(Ee, Ne, Ec, Nc, data=data7, studlab=study,
+ comb.random=FALSE)

These meta-analyses will give the same results as those based on the CSV-file
from RevMan 5 and the metacr function. We only show results for Example 2.1.

The class of the R objects are identical

> class(mc1.cr)
[1] "metacont" "meta"
> class(mc1.md)
[1] "metacont" "meta"
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as well as the meta-analytical results

> print(summary(mc1.cr), digits=2)
Review: Examples from Meta-Analysis with R
Comparison: Chapter 2 - Meta-Analysis with Continuous Outcomes
Outcome: Example 2.1 - Nedocromil sodium for bronchoconstriction

Number of studies combined: k=17

MD 95%-CI z p.value
Fixed effect model -15.51 [-17.84; -13.18] -13.05 < 0.0001

Quantifying heterogeneity:
tauˆ2 = 2.4374; H = 1.05 [1; 1.35]; Iˆ2 = 8.9% [0%; 45.3%]

Test of heterogeneity:
Q d.f. p.value

17.57 16 0.3496

Details on meta-analytical method:
- Inverse variance method
> print(summary(mc1.md), digits=2)
Number of studies combined: k=17

MD 95%-CI z p.value
Fixed effect model -15.51 [-17.84; -13.18] -13.05 < 0.0001

Quantifying heterogeneity:
tauˆ2 = 2.4374; H = 1.05 [1; 1.35]; Iˆ2 = 8.9% [0%; 45.3%]

Test of heterogeneity:
Q d.f. p.value

17.57 16 0.3496

Details on meta-analytical method:
- Inverse variance method

Only difference in the printout is a header giving details on the review, com-
parison, and outcome which is only printed for the meta-analysis conducted using
the metacr function. However, we could add the header using arguments title,
complab and outclab in the metacont function.

Another nice thing about using the read.rm5 function is that we can conduct
tests for small-study effects for all meta-analyses using a single command.

> metabias(examples)
Review: Examples from Meta-Analysis with R
Comparison: Chapter 2 - Meta-Analysis with Continuous Outcomes
Outcome: Example 2.1 - Nedocromil sodium for bronchoconstriction

Linear regression test of funnel plot asymmetry

data: m1
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t = -1.1828, df = 15, p-value = 0.2553
alternative hypothesis: asymmetry in funnel plot
sample estimates:

bias se.bias slope
-0.9571707 0.8092752 -11.0548678

*****

Review: Examples from Meta-Analysis with R
Comparison: Chapter 3 - Meta-Analysis of Binary Outcomes
Outcome: Example 3.1 - Stem Cell Transplantation

Linear regression test of funnel plot asymmetry

data: m1
t = 0.185, df = 12, p-value = 0.8564
alternative hypothesis: asymmetry in funnel plot
sample estimates:

bias se.bias slope
0.16233218 0.87767199 0.09201333

A similar function is available to print a summary of all meta-analyses, i.e. the
summary.rm5 function.

A.3 R Packages for Meta-Analysis

In our book we primarily used the R packages meta, metasens, netmeta, mvmeta
and mada. In this section we will give some information on other R packages
for meta-analysis which are also available on CRAN. Furthermore, we would
like to refer the reader to the CRAN ‘Task View on meta-analysis’ with short
descriptions on available R packages for meta-analysis: http://cran.r-project.org/
web/views/MetaAnalysis.html. We now briefly review some of the general meta-
analysis packages and some recent network meta-analysis software developments.

A.3.1 General Purpose R Packages for Meta-Analysis

Besides the R package meta [8, 9], metafor [15] and rmeta [5] are two other general
purpose R packages for meta-analysis providing the inverse variance and Mantel–
Haenszel method. In addition, metafor provides the Peto method.

The following R code shows how to conduct a meta-analysis with a binary
outcome using the metabin function from R package meta; by default risk ratio
(see Sect. 3.1.2) and Mantel–Haenszel method (see Sect. 3.3.2) are used.

> # Make R package meta available
> library(meta)

http://cran.r-project.org/web/views/MetaAnalysis.html
http://cran.r-project.org/web/views/MetaAnalysis.html
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Loading ’meta’ package (version 4.0-2).
> # Do meta-analysis
> mb1.meta <- metabin(Ee, Ne, Ec, Nc, data=data7, studlab=study,
+ comb.random=FALSE)

R code to conduct this meta-analysis with binary outcomes using the rma.mh
function from R package metafor is given as follows.1

> # Make R package metafor available
> library(metafor)
Loading ’metafor’ package (version 1.9-5). For an overview
and introduction to the package please type: help(metafor).

Attaching package: ’metafor’

The following objects are masked from ’package:meta’:

baujat, forest, funnel, labbe, radial, trimfill

> # Do meta-analysis using default settings (numbers of events)
> mb1.metafor <- rma.mh(Ee, Ne-Ee, Ec, Nc-Ec,
+ data=data7, measure="RR")
> # Do meta-analysis using same input as R function metabin
> mb1.metafor <- rma.mh(ai=Ee, n1i=Ne, ci=Ec, n2i=Nc,
+ data=data7, measure="RR")

You can safely ignore the warnings regarding R objects masked from R package
meta as both R packages have been designed to work together. All masked functions
act as wrapper functions for other functions in R packages meta and metafor,
respectively. Note, we have to use argument measure="RR" as the default effect
measure in the rma.mh function is the odds ratio.

The following R code can be used to conduct a meta-analysis using the Mantel–
Haenszel method using the meta.MH function from R package rmeta.2

> # Make R package rmeta available
> library(rmeta)
Loading required package: grid
> mb1.rmeta <- meta.MH(Ne, Nc, Ee, Ec, data=data7,
+ statistic="RR")

Again, we have to use an argument, here statistic="RR", to specific the
risk ratio as the default effect measure in the meta.MH function is the odds ratio.

First, we print the meta-analysis result of R object mb1.meta created with the
R package meta using the print.meta function.

> print(summary(mb1.meta), digits=2)

1If you did not already install R package metafor do so using R command
install.packages("metafor").
2In order to do these analyses you have to install R package rmeta using the command
install.packages("rmeta").
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Number of studies combined: k=14

RR 95%-CI z p.value
Fixed effect model 1.11 [1.04; 1.18] 3.2 0.0014

Quantifying heterogeneity:
tauˆ2 = 0.0079; H = 1.25 [1; 1.71]; Iˆ2 = 35.6% [0%; 65.9%]

Test of heterogeneity:
Q d.f. p.value

20.19 13 0.0906

Details on meta-analytical method:
- Mantel-Haenszel method

Next, we print the meta-analysis result of R object mb1.metafor created with
the R package metafor using the print.rma.mh function.

> print(mb1.metafor, digits=2)

Fixed-Effects Model (k = 14)

Test for Heterogeneity:
Q(df = 13) = 20.19, p-val = 0.09

Model Results (log scale):

estimate se zval pval ci.lb ci.ub
0.10 0.03 3.20 <.01 0.04 0.16

Model Results (RR scale):

estimate ci.lb ci.ub
1.11 1.04 1.18

Last, we print the meta-analysis result of R object mb1.rmeta created with the
R package rmeta using the print.meta.MH function.

> print(mb1.rmeta)
Fixed effects ( Mantel-Haenszel ) Meta-Analysis
Call: meta.MH(ntrt = Ne, nctrl = Nc, ptrt = Ee, pctrl = Ec,

data = data7, statistic = "RR")
Mantel-Haenszel RR =1.11 95% CI ( 1.04, 1.18 )
Test for heterogeneity: Xˆ2( 13 ) = 20.19 ( p-value 0.0906 )

As we can see in the printouts, all R packages provide comparable outputs using
different printing formats.

The rma.uni function from R package metafor can be used to do a meta-
regression. Actually, the metareg function from R package meta calls this
function internally. R package metafor also provides several functions for model
diagnostics [15] which can be used with an R object generated with the rma.uni
or metareg function.
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A.3.2 R Packages to Conduct Network Meta-Analysis

Van Valkenhoef et al. [14] have published an R package gemtc that conducts
network meta-analysis using a Bayesian hierarchical model.

A widely applied analysis method is the Bayesian approach, more specifically a
Markov Chain Monte Carlo (MCMC) method [1, 2, 4, 6, 7]. It is implemented in
special software such as WinBUGS [10]. We will not explain the Bayesian approach
here. It is only noted that there exist a number of interfaces from R to WinBUGS
and similar MCMC software, such as the R package R2WinBUGS [12]. These
packages enable R users to manage their data in R such that they can be processed
by the Bayesian software, using calls from the R environment.
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Symbols

I2 see I-squared
Q see heterogeneity statistic
H see hat matrix
L see Laplacian matrix
�2 see tau-squared
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absolute risk reduction see risk difference
adjusted treatment effect see bias,
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arcsine difference 55, 61–62, 69, 122
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version of; Schwarzer’s test
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qnorm 24, 58
read.csv 12, 23, 108, 147, 166
rm 7, 11
round 24, 58
set.seed 159, 161, 212
setwd 8
summary 12, 13, 16
weighted.mean 29
with 10, 12, 23, 24, 27, 29, 33, 58, 59,

62, 65, 69, 70, 102, 149–152, 159,
175

R functions for meta-analysis
bubble.metareg 102
copas 130, 133
forest 14, 15, 31, 39, 44, 70, 74, 108,

167, 206, 207, 224, 225
forest.madad 224, 225
forest.meta 14, 15, 31, 39, 44, 70, 74,

108, 167, 224
forest.netmeta 206, 207
funnel 111, 112, 126, 137
funnel.limitmeta 137
funnel.meta 111, 112, 126
limitmeta 136, 137
madad 222, 223
meta.MH 243
metabias 116–119, 121–123
metabin 55, 58, 60–62, 65–69, 71, 72,

74–80, 99, 101, 108, 123, 221, 224,
240, 242, 243

metacont 15, 39, 90, 95, 96, 147, 148,
160, 161, 196

metacor 46
metacr 240, 241
metagen 31, 32, 36, 38, 45, 47, 49, 50,

90, 93, 99, 103, 126, 150, 167, 171,
172, 183
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metainc 46
metaprop 46, 220
metareg 97, 98, 100–102, 244
mvmeta 169–172, 177, 180, 181, 183
netgraph 199, 204, 205
netheat 209
netmeta 196, 198, 199, 201, 205, 206,

209
plot.copas 133
print.meta 39, 243
print.meta.MH 244
print.netmeta 203, 205
print.rma.mh 244
print.rma.uni 98
radial 114, 118
rma.mh 243
rma.uni 36, 97, 98, 244
summary.copas 133
summary.meta 39
summary.mvmeta 169, 177, 181
summary.netmeta 203, 205
trimfill 126

R packages
colorspace 205
copas 129, 242
gemtc 245
mada 217, 222, 228, 229, 233, 242
meta 13, 15, 21, 24, 25, 31, 36, 39, 41,

43, 46, 55, 77, 90, 97, 111, 114, 116,
126, 167, 219, 242, 243

metafor 13, 36, 97, 98, 101, 242–244
metasens 129, 130, 136
mvmeta 167, 168, 177, 179, 180, 182,

217, 242
netmeta 187, 195, 242
R2WinBUGS 245
rmeta 13, 242–244
stats 223

radial plot 87, 113, 114, 117, 118, 120, 122,
135

generalised 135, 136, 138
random effects model 34–35, 76–78, 91–92,

94–95, 128, 135, 179–180, 194–195,
230–231

in network meta-analysis see network
meta-analysis

random error see sampling error
rank correlation test see Begg and

Mazumdar test
for binary outcomes see Begg and

Mazumdar test, modifications of
RD see risk difference
receiver operating characteristic curve see

ROC curve

regression see regression coefficients;
meta-regression

regression coefficients 99, 100, 103
relative risk see risk ratio
Review Manager 9, 25, 32, 34, 36, 59, 72, 77,

86, 239, 240
RevMan see Review Manager
risk difference 55, 60, 61, 68, 69, 72, 73
risk ratio 46, 55, 59, 60, 63, 64, 66, 68,

69, 71–73, 77, 100, 103, 107, 242,
243

risks see risk difference; risk ratio
ROC curve 226, 228, 230, 233
RR see risk ratio
Rubin’s combination rule see multiple

imputation
Rücker’s test

linear regression version of 122,
124

rank version of 122
Thompson and Sharp version of 122,

124

S

sampling error 87
Schwarzer’s test 122
score-based regression test see Harbord’s test
score-based test see Harbord’s test
selection bias see publication bias
sensitivity 217, 218, 224, 226, 227, 230,

231, 233
sensitivity analysis see Copas selection

model; limit meta-analysis; missing
data; trim-and-fill method

SMD see standardised mean difference
specificity 217, 218, 224, 226, 227, 230,

231, 233
SROC curve see summary ROC curve
standardised mean difference 22, 25, 26, 28,

32
Stata 9, 59, 72
subgroup analysis 41, 79, 88–97
summary ROC curve 229, 230, 233

Moses version of 233,
234

Rücker and Schumacher version of 233,
234

Rutter and Gatsonis version of 233,
234

survival data see hazard ratio; examples,
survival outcome, with



252 Index

T

tau-squared 34–36, 40, 41, 76, 77, 86–88,
92 see also random effects model

estimation of
DerSimonian–Laird method 34–36,

46, 55, 77, 92, 95, 131
Empirical Bayes method 36
Hedges method 36
Hunter–Schmid method 36
ML method 36
Paule–Mandel method 36
REML method 36
Sidik–Jonkman method 36

in network meta-analysis 194, 203, 208,
212

Thompson and Sharp test 119, 124
threshold see cut-off
transitivity see consistency

trim-and-fill method 124–126 see also
publication bias

V

variance estimation
in network meta-analysis see network

meta-analysis

W

weight see fixed effect model; inverse
variance method; random effects
model

weight matrix 191
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