CGP

A-Level
 Chemistry

Exam Board: Edexcel

Complete Revision \& Practice

CGP

Our bestselling books are now available on kindle...

...perfect for revision on your computer or tablet!

See our full Kindle range at cgpbooks.co.uk/kindle or browse our books at amazon.co.uk
 \title{
A-Level
 \title{
A-Level Chemistry

 Exam Board: Edexcel
}

 Exam Board: Edexcel
}

Revising for Chemistry exams is stressful, that's for sure - even just getting your notes sorted out can leave you needing a lie down. But help is at hand...

This brilliant CGP book explains everything you'll need to learn (and nothing you won't), all in a straightforward style that's easy to get your head around.
We've also included exam questions to test how ready you are for the real thing.

A-Level revision? It has to be CGP!

Published by CGP
Editors:
Katie Braid, Katherine Faudemer, Robin Flello, Emily Howe, Paul Jordin, Sophie Scott and Ben Train.

Contributors:
Mike Bossart, Rob Clarke, Ian H. Davis, John Duffy, Max Fishel, Emma Grimwood, Paddy Gannon, Lucy Muncaster, Jane Simoni, Derek Swain, Paul Warren and Christopher Workman.

CER72DK

With thanks to Jamie Sinclair for the proofreading.
With thanks to Jan Greenway for the copyright research.

Cover Photo © Laguna Design/Science Photo Library

Clipart from Corel ${ }^{\circledR}$

Based on the classic CGP style created by Richard Parsons.
Text, design, layout and original illustrations © Coordination Group Publications Ltd. (CGP) 2015
All rights reserved.

Contents

> If you're revising for the AS exams, you'll need Topics $1-10$, and the Practical Skills section at the back. If you're revising for the A-Level exams, you'll need the whole book.
The Scientific Process (AS
The Scientific Process 2
Topic 1 -Atomic Structure and the Periodic Table (AS)
The Atom 4
Relative Mass 6
More on Relative Mass 8
Electronic Structure 10
Atomic Emission Spectra 12
Ionisation Energies 14
Periodicity 16
Topic 2 - Bonding and Structure
(AS)
Ionic Bonding 19
Covalent Bonding 22
Shapes of Molecules 24
Giant Covalent and Metallic Structures 26
Electronegativity and Polarisation 28
Intermolecular Forces 30
Hydrogen Bonding 32
Solubility 34
Predicting Structures and Properties 36
Topic 3-Redox I AS
Oxidation Numbers 38
Redox Reactions 40
Topic 4 - Inorganic Chemistry and the Periodic Table (AS)
Group 2 42
Group 1 and 2 Compounds 44
Halogens 46
Reactions of Halogens 48
Reactions of Halides 50
Tests for Ions 52
Topic 5 - Formulae, Equations \& Amounts of Substances(AS)
The Mole 54
Empirical and Molecular Formulae 56
Chemical Equations 58
Calculations with Gases 60
Acid-Base Titrations 62
Titration Calculations 64
Uncertainty and Errors 66
Atom Economy and Percentage Yield 68
Topic 6 - Organic Chemistry I (AS)
The Basics 70
Organic Reactions 72
Isomerism 74
Alkanes 76
Crude Oil 78
Fuels 80
Alkenes 82
Stereoisomerism 83
Reactions of Alkenes 86
Polymers 88
Halogenoalkanes 90
More on Halogenoalkanes 92
Alcohols 94
Oxidation of Alcohols 96
Organic Techniques 98
Topic 7 - Modern Analytical Techniques I (AS)
Mass Spectrometry 100
Infrared Spectroscopy 102
Topic 8 - Energetics I AA
Enthalpy Changes 104
More on Enthalpy Changes 106
Hess's Law 108
Bond Enthalpy 110
Topic 9 - Kinetics 1 AS
Collision Theory 112
Reaction Rates 114
Catalysts 116
Topic 10 - Equilibrium I (AS
Dynamic Equilibrium 118
Le Chatelier's Principle 120
Topic 11 - Equilibrium II
Calculations Involving K_{c} 122
Gas Equilibria 124
Le Chatelier's Principle and Equilibrium Constants 126
Topic 12 - Acid-Base Equilibria
Acids and Bases 128
pH. 130
The lonic Product of Water 132
Experiments Involving pH 134
Titration Curves and Indicators 136
Buffers 139
Topic 13 - Energetics II
Lattice Energy 142
Polarisation. 144
Dissolving 146
Entropy 148
More on Entropy Change 150
Free Energy 152
Topic 14 - Redox II
Electrochemical Cells 154
Electrode Potentials 156
The Electrochemical Series 158
Storage and Fuel Cells 160
Redox Titrations 162
More on Redox Titrations 165
Topic 15 - Transition Metals
Transition Metals 168
Complex Ions 170
Complex lons and Colour 172
Chromium 174
Reactions of Ligands 176
Transition Metals and Catalysis 178
Topic 16 - Kinetics II
Reaction Rates 180
Orders of Reactions 182
The Initial Rates Method 184
Rate Equations 186
The Rate-Determining Step 188
Halogenoalkanes and Reaction Mechanisms 190
Activation Energy 192
Topic 17 - Organic Chemistry II
Optical Isomerism 194
Aldehydes and Ketones 196
Reactions of Aldehydes and Ketones 198
Carboxylic acids 200
Esters 202
Acyl Chlorides 204
Topic 18 - Organic Chemistry III
Aromatic Compounds 205
Electrophilic Substitution Reactions 208
Phenols 211
Amines 212
Amides 215
Condensation Polymers 216
Amino Acids 218
Grignard Reagents 220
Organic Synthesis 221
Practical Techniques 224
More Practical Techniques 226
Empirical and Molecular Formulae 228
Topic 19 - Modern Analytical Techniques II
High Resolution Mass Spectrometry 230
NMR Spectroscopy 231
Proton NMR Spectroscopy 234
Chromatography 236
Combined Techniques 238
Practical Skills AS
Planning Experiments 240
Practical Techniques 242
Presenting Results 244
Analysing Results 246
Evaluating Experiments 248
Do Well In Your Exams 250
Answers 252
Index 273

The Scientific Process

These pages are all about the scientific process - how we develop and test scientific ideas. It's what scientists do all day, every day (well except at coffee time - never come between scientists and their coffee).

Scientists Come Up with Theories — Then Test Them...

Science tries to explain how and why things happen. It's all about seeking and gaining knowledge about the world around us. Scientists do this by asking questions and suggesting answers and then testing them, to see if they're correct - this is the scientific process.

1) Ask a question - make an observation and ask why or how whatever you've observed happens. E.g. Why does sodium chloride dissolve in water?
2) Suggest an answer, or part of an answer, by forming a theory or a model (a possible explanation of the observations or a description of what you think is happening actually happening).
E.g. Sodium chloride is made up of charged particles which are pulled apart by the polar water molecules.
3) Make a prediction or hypothesis - a specific testable statement, based on the theory, about what will happen in a test situation. ミ11 1111111111111111111
A theory is only scientific
if it can be tested
$=111111111111111111$ E.g. A solution of sodium chloride will conduct electricity much better than water does.
4) Carry out tests - to provide evidence that will support the prediction or refute it.
E.g. Measure the conductivity of water and of sodium chloride solution.

.Then They Tell Everyone About Their Results...

The results are published - scientists need to let others know about their work. Scientists publish their results in scientific journals. These are just like normal magazines, only they contain scientific reports (called papers) instead of the latest celebrity gossip.

1) Scientific reports are similar to the lab write-ups you do in school. And just as a lab write-up is reviewed (marked) by your teacher, reports in scientific journals undergo peer review before they're published.

Scientists use standard terminology when writing their reports. This way they know that other scientists will understand them. For instance, there are internationally agreed rules for naming organic compounds, so that scientists across the world will know exactly what substance is being referred to. See page 70.
2) The report is sent out to peers - other scientists who are experts in the same area. They go through it bit by bit, examining the methods and data, and checking it's all clear and logical. When the report is approved, it's published. This makes sure that work published in scientific journals is of a good standard.
3) But peer review can't guarantee the science is correct - other scientists still need to reproduce it.
4) Sometimes mistakes are made and bad work is published. Peer review isn't perfect but it's probably the best way for scientists to self-regulate their work and to publish quality reports.

...Then Other Scientists Will Test the Theory Too

1) Other scientists read the published theories and results, and try to test the theory themselves. This involves:

- Repeating the exact same experiments.
- Using the theory to make new predictions and then testing them with new experiments.

2) If all the experiments in the world provide evidence to back it up, the theory is thought of as scientific 'fact'.
3) If new evidence comes to light that conflicts with the current evidence the theory is questioned all over again. More rounds of testing will be carried out to try to find out where the theory falls down.

This is how the scientific process works - evidence supports a theory, loads of other scientists read it and test it for themselves, eventually all the scientists in the world agree with it and then bingo, you get to learn it. When looking at experiments that give conflicting results, it's important to look at all the evidence to work out whether a theory is supported or not - this includes looking at the methodology (the techniques) used in the experiments and the data collected.

This is how scientists arrived at the structure of the atom (see page 4) - and how they came to the conclusion that electrons are arranged in shells and orbitals. As is often the case, it took years and years for these models to be developed and accepted.

The Scientific Process

If the Evidence Supports a Theory, It's Accepted - for Now

Our currently accepted theories have survived this 'trial by evidence'. They've been tested over and over again and each time the results have backed them up. BUT, and this is a big but (teehee), they never become totally indisputable fact. Scientific breakthroughs or advances could provide new ways to question and test the theory, which could lead to changes and challenges to it. Then the testing starts all over again...
And this, my friend, is the tentative nature of scientific knowledge - it's always changing and evolving.

Evidence Comes From Lab Experiments...

1) Results from controlled experiments in laboratories are great.
2) A lab is the easiest place to control variables so that they're all kept constant (except for the one you're investigating).
3) This means you can draw meaningful conclusions.
 For example, if you're investigating how temperature affects the rate of a reaction, you need to keep everything but the temperature constant, e.g. the pH of the solution, the concentration of the solution, etc.

.But You Can't Always do a Lab Experiment

There are things you can't study in a lab. And outside the lab, controlling the variables is tricky, if not impossible.

- Are increasing CO_{2} emissions causing climate change? There are other variables which may have an effect, such as changes in solar activity. You can't easily rule out every possibility. Also, climate change is a very gradual process. Scientists won't be able to tell if their predictions are correct for donkey's years.
- Does drinking chlorinated tap water increase the risk of developing certain cancers? There are always differences between groups of people. The best you can do is to have a well-designed study using matched groups - choose two groups of people (those who drink tap water and those who don't) which are as similar as possible (same mix of ages, same mix of diets, etc). But you still can't rule out every possibility. Taking newborn identical twins and treating them identically, except for making one drink gallons of tap water and the other only pure water, might be a fairer test, but it would present huge ethical problems.

Samantha thought her study was very well designed - especially the fitted bookshelf.

Science Helps to Inform Decision-Making

Lots of scientific work eventually leads to important discoveries that could benefit humankind — but there are often risks attached (and almost always financial costs). Society (that's you, me and everyone else) must weigh up the information in order to make decisions - about the way we live, what we eat, what we drive, and so on. Information is also used by politicians to devise policies and laws.

- Chlorine is added to water in small quantities to disinfect it (see page 49).

Some studies link drinking chlorinated water with certain types of cancer.
But the risks from drinking water contaminated by nasty bacteria are far, far greater.
There are other ways to get rid of bacteria in water, but they're heaps more expensive.

- Scientific advances mean that non-polluting hydrogen-fuelled cars can be made. They're better for the environment, but are really expensive. And it'd cost a lot to adapt filling stations to store hydrogen.
- Pharmaceutical drugs are really expensive to develop, and drug companies want to make money. So they put most of their efforts into developing drugs that they can sell for a good price. Society has to consider the cost of buying new drugs - the NHS can't afford the most expensive drugs without sacrificing something else.

So there you have it - how science works...

Hopefully these pages have given you a nice intro to how science works. You need to understand it for the exam, and for life. Once you've got it sussed it's time to move on to the really good stuff - the chemistry. Bet you can't wait...

The Atom

This stuff about atoms and elements should be ingrained in your brain from GCSE. You do need to know it perfectly though if you are to negotiate your way through the field of man-eating tigers and pesky atoms...

Atoms are made up of Protons, Neutrons and Electrons

Atoms are the stuff all elements and compounds are made of.
They're made up of 3 types of subatomic particle - protons, neutrons and electrons.

Electrons

1) Electrons have - $\mathbf{1}$ charge.
2) They whizz around the nucleus in orbitals. The orbitals take up most of the volume of the atom.

Nucleus

1) Most of the mass of the atom is concentrated in the nucleus.
2) The diameter of the nucleus is rather titchy compared to the whole atom.
3) The nucleus is where you find the protons and neutrons.

The mass and charge of these subatomic particles are tiny, so relative mass and relative charge are used instead.

Subatomic particle	Relative mass	Relative charge
Proton	1	+1
Neutron	1	0
Electron, e^{-}	0.0005	-1

Nuclear Symbols Show Numbers of Subatomic Particles

You can figure out the number of protons, neutrons and electrons from the nuclear symbol,
which is found in the periodic table.

1) This is the number of protons in the nucleus - it identifies the element.
2) All atoms of the same element have the same number of protons.
3) For neutral atoms, which have no overall charge, the number of electrons is the same as the number of protons.
4) The number of neutrons is just mass number minus atomic number, ie. 'top minus bottom' in the nuclear symbol.

Nuclear symbol	Atomic number, Z	Mass number, A	Protons	Electrons	Neutrons
${ }_{3}^{7} \mathrm{Li}$	3	7	3	3	$7-3=4$
${ }^{19}{ }_{9}^{19} \mathrm{~F}$	9	19	9	9	$19-9=10$
${ }_{12}^{24} \mathrm{Mg}$	12	24	12	12	$24-12=12$

Ions have Different Numbers of Protons and Electrons

"Hello, I'm Newt Ron..."

Negative ions have more electrons than protons...
The negative charge means that there's
 1 more electron than there are protons. F has 9 protons (see table above), so F^{-}must have 10 electrons. The overall charge $=+9-10=-1$.
...and positive ions have fewer electrons than protons.

> The 2+ charge means that there are
Mg^{2+} 2 fewer electrons than there are protons. Mg has 12 protons (see table above),
so Mg^{2+} must have 10 electrons.
The overall charge $=+12-10=+2$.

The Atom

Isotopes are Atoms of the Same Element with Different Numbers of Neutrons

Isotopes of an element are atoms with the same number of protons but different numbers of neutrons. Chlorine-35 and chlorine-37 are examples of isotopes:

$$
\begin{gathered}
\text { Different mass numbers mean different } \\
\text { masses and different numbers of neutrons. } \\
\text { The atomic numbers are the same. }
\end{gathered}
$$

1) It's the number and arrangement of electrons that decides the chemical properties of an element. Isotopes have the same configuration of electrons (see pages 10-11), so they've got the same chemical properties.
2) Isotopes of an element do have slightly different physical properties though, such as different densities, rates of diffusion, etc. This is because physical properties tend to depend more on the mass of the atom.

Here's another example - naturally occurring magnesium consists of 3 isotopes.

${ }^{24} \mathrm{Mg}(79 \%)$	${ }^{25} \mathrm{Mg}(\mathbf{1 0 \%})$	${ }^{26} \mathrm{Mg}(\mathbf{1 1} \%)$
12 protons	12 protons	12 protons
$\mathbf{1 2}$ neutrons	$\underline{\mathbf{1 3}}$ neutrons	$\underline{\mathbf{1 4}}$ neutrons
12 electrons	12 electrons	12 electrons

Practice Questions

Q1 Draw a diagram showing the structure of an atom, labelling each part.
Q2 Where is the mass concentrated in an atom, and what makes up most of the volume of an atom?
Q3 Draw a table showing the relative charge and relative mass of the three subatomic particles found in atoms.
Q4 Using an example, explain the terms 'atomic number' and 'mass number'.

Exam Questions

Q1 Hydrogen, deuterium and tritium are all isotopes of each other.
a) Identify one similarity and one difference between these isotopes.
b) Deuterium can be written as ${ }_{1}^{2} \mathrm{H}$. Determine the number of protons, neutrons and electrons in a deuterium atom.
c) Write the nuclear symbol for tritium, given that it has 2 neutrons.

Q2 This question relates to the atoms or ions A to D: $\mathbf{A}_{16}^{32} \mathrm{~S}^{2-} \quad \mathbf{B} \quad{ }_{18}^{40} \mathrm{Ar} \quad \mathbf{C}_{16}^{30} \mathrm{~S} \quad \mathbf{D}{ }_{20}^{42} \mathrm{Ca}$
a) Identify the similarity for each of the following pairs, justifying your answer in each case.
i) A and B.
ii) A and C.
iii) B and D.
b) Which two of the atoms or ions are isotopes of each other? Explain your reasoning.

Q3 A molecule of propanol, $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$, is made up of ${ }_{1}^{1} \mathrm{H},{ }_{8}^{16} \mathrm{O}$ and ${ }_{6}^{12} \mathrm{C}$ atoms.
Calculate the number of electrons, protons and neutrons in one molecule of propanol.
[2 marks]

Got it learned yet? - Isotope so...

This is a nice page to ease you into things. Remember that positive ions have fewer electrons than protons, and negative ions have more electrons than protons. Get that straight in your mind or you'll end up in a right mess.

Relative Mass

Relative mass... What? Eh?... Read on...

Relative Masses are Masses of Atoms Compared to Carbon-12

The actual mass of an atom is very, very tiny. Don't worry about exactly how tiny for now, but it's far too small to weigh with a normal pair of scales in your classroom. So, the mass of one atom is compared to the mass of a different atom. This is its relative mass. Here are some definitions for you to learn:

The relative atomic mass, $A_{r^{\prime}}$ is the weighted mean mass of an atom of an element, compared to $1 / 12^{\text {th }}$ of the mass of an atom of carbon-12.

Relative isotopic mass is the mass of an atom of an isotope, compared with $1 / 12^{\text {th }}$ of the mass of an atom of carbon-12.

1) Relative atomic mass is an average of all the relative isotopic masses, so it's not usually a whole number.
2) Relative isotopic mass is usually a whole number.
E.g. a natural sample of chlorine contains a mixture of ${ }^{35} \mathrm{Cl}$ (75%) and ${ }^{37} \mathrm{Cl}(25 \%)$, so the relative isotopic masses are 35 and 37. But its relative atomic mass is $\mathbf{3 5 . 5}$.

Relative Molecular Masses are Masses of Molecules

The relative molecular mass (or relative formula mass), M_{r}, is the average mass of a molecule or formula unit, compared to $1 / 12^{\text {th }}$ of the mass of an atom of carbon-12.

Don't worry, this is one definition that you don't need to know for the exam.
But... you do need to know how to work out the relative molecular mass, and the relative formula mass, so it's probably best if you learn what they mean anyway.

1) Relative molecular mass is used when referring to simple molecules.
2) To find the relative molecular mass, just add up the relative atomic mass values of all the atoms in the molecule.
E.g. $M_{r}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)=(2 \times 12.0)+(6 \times 1.0)+16.0=46.0$

See page 22 for more on simple molecules, and pages 20 and 26-27 for more on giant structures.

3) Relative formula mass is used for compounds that are ionic (or giant covalent, such as SiO_{2}).
4) To find the relative formula mass, add up the relative atomic masses $\left(\boldsymbol{A}_{r}\right)$ of all the ions or atoms in the formula unit. (A_{r} of ion $=A_{r}$ of atom. The electrons make no difference to the mass.)

$$
\text { E.g. } M_{\mathrm{r}}\left(\mathrm{CaF}_{2}\right)=40.1+(2 \times 19.0)=78.1
$$

A_{r} Can Be Worked Out from Isotopic Abundances

You need to know how to calculate the relative atomic mass $\left(A_{r}\right)$ of an element from its isotopic abundances.

1) Different isotopes of an element occur in different quantities, or isotopic abundances.
2) To work out the relative atomic mass of an element, you need to work out the average mass of all its atoms.
3) If you're given the isotopic abundances in percentages, all you need to do is follow these two easy steps:

Step 1: Multiply each relative isotopic mass by its \% relative isotopic abundance, and add up the results.
Step 2: Divide by 100.

Example: Find the relative atomic mass of boron, given that 20.0% of the boron atoms found on Earth have a relative isotopic mass of 10.0 , while 80.0% have a relative isotopic mass of 11.0 .

Step 1: $(20.0 \times 10)+(80.0 \times 11)=1080$
Step 2: $1080 \div 100=\mathbf{1 0 . 8}$

Relative Mass

Mass Spectrometry Can Tell Us About Isotopes

Mass spectra are produced by mass spectrometers - devices which are used to find out what samples are made up of by measuring the masses of their components. Mass spectra can tell us dead useful things, e.g. the relative isotopic masses and abundances of different elements.

Mass spectra can be used to work out the relative atomic masses of different elements.

This is the mass spectra for chlorine.
The y-axis gives the abundance of ions, often as a percentage. For an element, the height of each peak gives the relative isotopic abundance.

The \boldsymbol{x}-axis units are given as a ' m / z^{\prime} value, which is a mass/charge ratio. Since the charge on the ions is mostly +1 , you can often assume the x-axis is simply the relative isotopic mass.

The method for working out the relative atomic mass from a graph is a bit different to working it out from percentages (see previous page), but it starts off in the same way.

Step 1: Multiply each relative isotopic mass by its
relative isotopic abundance, and add up the results.
Step 2: Divide by the sum of the isotopic abundances.

Example: Use the data from this mass spectrum to work out the relative atomic mass of neon. Give your answer to 1 decimal place.

Step 1: $(20 \times 114.0)+(21 \times 0.2)+(22 \times 11.2)=2530.6$
Step 2: $(114.0+0.2+11.2=125.4)$ $2530.6 \div 125.4=20.2$

Practice Questions

Q1 Explain what relative atomic mass $\left(A_{\mathrm{r}}\right)$ and relative isotopic mass mean.
Q2 Explain the difference between relative molecular mass and relative formula mass.
Q3 Explain what relative isotopic abundance means.

Exam Questions

Q1 Copper exists in two main isotopic forms, ${ }^{63} \mathrm{Cu}$ and ${ }^{65} \mathrm{Cu}$.
a) Calculate the relative atomic mass of copper using the information from the mass spectrum.
b) Explain why the relative atomic mass of copper is not a whole number.

Q2 The percentage make-up of naturally occurring potassium is:
$93.1 \%{ }^{39} \mathrm{~K}, 0.120 \%{ }^{40} \mathrm{~K}$ and $6.77 \%{ }^{41} \mathrm{~K}$.
Use the information to determine the relative atomic mass of potassium.

You can't pick your relatives, you just have to learn them...

Isotopic masses are a bit frustrating. Why can't all atoms of an element just be the same? But the fact is they're not, so you're going to have to learn how to use those spectra to work out the relative atomic masses of different elements. The actual maths is pretty simple. A pinch of multiplying, a dash of addition, some division to flavour and you're away.

More on Relative Mass

＂More relative mass？！How much more could there possibly be？＂I hear you cry．Well，as you＇re about to see， there＇s plenty more．This is all dead useful to scientists and（more importantly）to you in your exams．

You Can Calculate Isotopic Masses from Relative Atomic Mass

If you know the relative atomic mass of an element，and you know all but one of the abundances and relative isotopic masses of its isotopes，you can work out the abundance and isotopic mass of the final isotope．Neat huh？

Example：Silicon can exist in three isotopes． 92.23% of silicon is ${ }^{28} \mathrm{Si}$ and 4.67% of silicon is ${ }^{29} \mathrm{Si}$ ．
Given that the A_{r} of silicon is 28．1，calculate the abundance and isotopic mass of the third isotope．
Step 1：First，find the abundance of the third isotope．
You＇re dealing with percentage abundances，so you know they need to total 100% ．
So，the abundance of the final isotope will be $100 \%-92.23 \%-4.67 \%=3.10 \%$
Step 2：You know that the relative atomic mass $\left(A_{r}\right)$ of silicon is 28．1，and you know two of the three isotopic masses．So，you can put all of that into the equation you use to work out the relative atomic mass from relative abundances and isotopic masses（see page 6），
which you can then rearrange to work out the final isotopic mass，X ．
$28.1=((28 \times 92.23)+(29 \times 4.67)+(X \times 3.10)) \div 100$
$28.1=(2717.87+(X \times 3.10)) \div 100$
$2810-2717.87=X \times 3.10$
$29.719=X \quad$ So the isotopic mass of the third isotope is $30-{ }^{30} \mathrm{Si}$ ．

ミl1！11111111111।111111 Remember－isotopic masses are usually whole numbers，so you should round your answer to the nearest whole number． ノ।।।।।।।।।।।।।।।।バミ

You Can Predict the Mass Spectra for Diatomic Molecules

Now，this is where it gets even more mathsy and interesting（seriously－I love it）．You can use your knowledge to predict what the mass spectra of diatomic molecules（i．e．molecules containing two atoms）look like．

Example：Chlorine has two isotopes．${ }^{35} \mathrm{Cl}$ has an abundance of 75% and ${ }^{37} \mathrm{Cl}$ has an abundance of 25% ．Predict the mass spectrum of Cl_{2} ．

1）First，express each of the percentages as a decimal： $75 \%=0.75$ and $25 \%=0.25$ ．
2）Make a table showing all the different Cl_{2} molecules．For each molecule，multiply the abundances （as decimals）of the isotopes to get the relative abundance of each one．

	${ }^{35} \mathrm{Cl}$	${ }^{37} \mathrm{Cl}$
${ }^{35} \mathrm{Cl}$	${ }^{35} \mathrm{Cl}-{ }^{35} \mathrm{Cl}: 0.75 \times 0.75$ $=0.5625$	${ }^{35} \mathrm{Cl}-{ }^{37} \mathrm{Cl}: 0.25 \times 0.75$ $=0.1875$
${ }^{37} \mathrm{Cl}$	${ }^{37} \mathrm{Cl}-{ }^{35} \mathrm{Cl}: 0.25 \times 0.75$ $=0.1875$	${ }^{37} \mathrm{Cl}-{ }^{37} \mathrm{Cl}: 0.25 \times 0.25$ $=0.0625$

3）Look for any molecules in the table that are the same and add up their abundances． In this case，${ }^{37} \mathrm{Cl}-{ }^{35} \mathrm{Cl}$ and ${ }^{35} \mathrm{Cl}-{ }^{37} \mathrm{Cl}$ are the same，so the actual abundance for this molecule is： $0.1875+0.1875=\mathbf{0 . 3 7 5}$ ．

4）Divide all the relative abundances by the smallest relative abundance to get the smallest whole number ratio．And by working out the relative molecular mass of each molecule，you can predict the mass spectrum for Cl_{2} ：

Molecule	Relative Molecular Mass	Relative abundance
${ }^{35} \mathrm{Cl}-{ }^{35} \mathrm{Cl}$	$35+35=70$	$0.5625 \div 0.0625=9$
${ }^{35} \mathrm{Cl}-{ }^{37} \mathrm{Cl}$	$35+37=72$	$0.375 \div 0.0625=6$
${ }^{37} \mathrm{Cl}-{ }^{37} \mathrm{Cl}$	$37+37=74$	$0.0625 \div 0.0625=1$

More on Relative Mass

Mass Spectrometry Can Also Help to Identify Compounds

1）You＇ve seen how you can use a mass spectrum showing the relative isotopic abundances of an element to work out its relative atomic mass．You need to make sure you can remember how to do this．You can also get mass spectra for molecules made up from more than one element．
2）When the molecules in a sample are bombarded with electrons， an electron is removed from the molecule to form a molecular ion， $\mathbf{M}^{+}{ }_{(g)}$ ．
）To find the relative molecular mass of a compound，you look at the molecular ion peak（the \mathbf{M} peak）on the mass spectrum．This is the peak with the highest m / z value（ignoring any small $M+1$ peaks that occur due to the presence of any atoms of carbon－13）．The mass／charge value of the molecular ion peak is the molecular mass．

The y－axis gives the abundance of ions，often as a percentage．\rightarrow

The x－axis units are given as a ＇mass／charge＇ ratio． $\underbrace{2}$

This is the mass spectrum of an unknown alcohol．
1）The m / z value of the molecular ion peak is 46 ，so the M_{r} of the compound must be 46 ．
2）If you calculate the molecular masses of the first few alcohols，you＇ll find that the one with a molecular mass of 46 is ethanol （ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ ）．
M_{r} of ethanol $=(2 \times 12.0)+(5 \times 1.0)$

$$
+16.0+1.0=46.0
$$

3）So the compound must be ethanol．

There＇s loads more on mass spectrometry on pages 100－101． テllllllllllllllllllllllllा

Practice Questions

Q1 Explain why diatomic molecules can have different relative molecular masses．
Q2 What is the significance of the molecular ion peak on a mass spectrum？

Exam Questions

Q1 The table below shows the percentage abundances of isotopes of oxygen found in a sample of O_{2} ．

Isotopes	\％Abundance
${ }^{16} \mathrm{O}$	98
${ }^{18} \mathrm{O}$	2

a）Calculate the relative abundances of all the possible molecules of O_{2} ．
b）Sketch a mass spectrum of O_{2} ．
Q2 Potassium $\left(A_{\mathrm{r}}=39.1\right)$ can exist in one of three isotopes． 94.20% exists as ${ }^{39} \mathrm{~K}$ and 0.012% exists as ${ }^{40} \mathrm{~K}$ ．
a）Calculate the abundance of the third isotope of potassium．
［1 mark］
b）Calculate the isotopic mass of the third isotope of potassium．
［2 marks］
Q3 A sample of an unknown straight－chain alkane is analysed using mass spectrometry． The molecular ion peak is seen at a m / z value of 58 ．
－The structures of alkanes
a）What is the M_{r} of this compound？
are covered on page 76.
テル।いいいいいいいいいいいいいた
b）Using your answer to part a），suggest a structure for this compound．
［1 mark］
［1 mark］

How do you make a colourful early noughties girl group？Diatomic Kitten．．．

Dye Atomic Kitten．．．Geddit．．．？Only nine pages into this revision guide and we already have a strong contender for world＇s worst joke．But don＇t be too dismayed，there are plenty more terrible puns on their way，I assure you．Before you go looking for them，make sure you know how to do all these relative mass calculations－they＇re pretty important．

Electronic Structure

Those little electrons prancing about like mini bunnies decide what'll react with what - it's what chemistry's all about.

Electron Shells are Made Up of Subshells and Orbitals

1) Electrons move around the nucleus in quantum shells (sometimes called energy levels).

These shells are all given numbers known as principal quantum numbers.
2) Shells further from the nucleus have a greater energy level than shells closer to the nucleus.
3) The shells contain different types of subshell. These subshells have different numbers of orbitals, which can each hold up to 2 electrons.

- And this one shows the subshells and

三electrons in the first four quantum shells. $\bar{\square}$
= 1111111111111111111111111111111111

Subshell	Number of orbitals	Maximum electrons
S	1	$1 \times 2=2$
p	3	$3 \times 2=6$
d	5	$5 \times 2=10$
f	7	$7 \times 2=14$

Shell	Subshells	Total number or electrons	
1st	$1 s$	2	$=2$
2nd	$2 s \quad 2 p$	$2+(3 \times 2)$	$=8$
3rd	$3 s ~ 3 p ~ 3 d$	$2+(3 \times 2)+(5 \times 2)$	$=18$
4th	$4 s 4 p 4 d \quad 4 f$	$2+(3 \times 2)+(5 \times 2)+(7 \times 2)$	$=32$

Orbitals Have Characteristic Shapes

There are a few things you need to know about orbitals... like what they are -

1) An orbital is the bit of space that an electron moves in. Orbitals within the same subshell have the same energy.
2) The electrons in each orbital have to 'spin' in opposite directions - this is called spin-pairing.
3) s-orbitals are spherical - p-orbitals have dumbbell shapes. There are 3 p-orbitals and they're at right angles to one another.

4) You can represent electrons in orbitals using arrows in boxes. Each of the boxes represents one orbital. Each of the arrows represents one electron.

 The up and down arrows Erepresent the electrons spinning in opposite directions.

Work Out Electronic Configurations by Filling the Lowest Energy Levels First

You can figure out most electronic configurations pretty easily, so long as you know a few simple rules -

1) Electrons fill up the lowest energy subshells first.

い111/, - There's always got to be an exception to mess things up. The 4s subshell has a lower energy level than the
$3 d$ subshell, even though its principal quantum number is bigger. This means the $4 s$ subshell fills up first.

Subshell notation is another way of showing electronic configuration.
The electronic configuration of calcium is:

Watch out - noble gas symbols, like that of argon (Ar), are sometimes used in electronic configurations. For example, calcium $\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}\right)$ can be written as $[A r] 4 s^{2}$, where $[A r]=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$.

Electronic Structure

You can use the Periodic Table to work out Electronic Configurations

The periodic table can be split into an s－block， \mathbf{d}－block and \mathbf{p}－block．
1）The s－block elements have an outer shell electronic configuration of s^{1} or s^{2} ． E．g．lithium（ $1 s^{2} \mathbf{2} \mathbf{s}^{1}$ ）and magnesium（ $1 s^{2} 2 s^{2} 2 p^{6} \mathbf{3} \mathbf{s}^{2}$ ）．
2）The p－block elements have an outer shell configuration of $s^{2} p^{1}$ to $s^{2} p^{6}$ ．
E．g．aluminium（ $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 \mathbf{p}^{1}$ ）and bromine（ $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 \mathbf{p}^{5}$ ）．

Example：Electronic configuration of phosphorus， P ：
Period $1-1 s^{2} \rightleftarrows$ Complete subshells
Period $2-2 s^{2} 2 p^{6}$
Period $3-3 s^{2} 3 p^{3} \longleftarrow$ Incomplete outer subshell

$$
\text { So it's: } 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}
$$

3）To work out the configuration of an ion，up to Ca， you just write the electronic structure of the atom and then add or remove electrons to or from the highest－energy occupied subshell．

Example：a）Give the electronic configuration a Ca^{2+} ion．
Ca： $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} \quad$ E \quad Ca a^{2+} has two fewer $\mathrm{Ca}^{2+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}<$ electrons than Ca． いいいいいいいいいいに
b）Give the electronic configuration a Cl^{-}ion．
$\mathrm{Cl}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{5} \quad$ Cl has
$\mathrm{Cl}^{-}: 1 \mathrm{~s}^{2} 2 s^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}<$ electron than Cl ． デ electron than Cl．ミ

4）The d－block elements are a bit trickier to work out－the 4 s sub－shell fills before the 3 d subshell．
E．g．vanadium（ $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3} 4 s^{2}$ ）and nickel（ $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{8} 4 s^{2}$ ）．
5）Chromium（ Cr ）and copper (Cu) are badly behaved．They donate one of their $\mathbf{4 s}$ electrons to the $\mathbf{3 d}$ subshell．It＇s because they＇re more stable with a full or half－full d－subshell．

$$
\text { Cr atom }\left(24 e^{-}\right): 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{1} \quad \text { Cu atom }\left(29 e^{-}\right): 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{1}
$$

6）Different elements form ions with different charges．
You can use the periodic table to predict what ion each element will form（see page 19 for more on this）．

Practice Questions

Q1 How many electrons do full s－，p－and d－subshells contain？
Q2 What does the term＇spin－pairing＇mean？
Q3 Draw diagrams to show the shapes of a s－and a p－orbital．
Q4 Write down the subshells in order of increasing energy up to $4 p$ ．

Exam Questions

Q1 Potassium reacts with oxygen to form potassium oxide， $\mathrm{K}_{2} \mathrm{O}$ ．
a）Give the electronic configurations of the K atom and K^{+}ion．
b）Give the electronic configuration of the oxygen atom．
Q2 This question concerns electronic configurations in atoms and ions．
a）Identify the element with the 4 th shell configuration of $4 s^{2} 4 p^{2}$ ．
［1 mark］
b）Suggest the identities of an atom，a positive ion and a negative ion with the electronic configuration $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ ．
c）Give the electronic configuration of a Cu atom．

She shells sub－sells on the shesore．．．

The way electrons fill up the orbitals is kind of like how strangers fill up seats on a bus．Everyone tends to sit in their own seat till they＇re forced to share．Except for the scary man who comes and sits next to you．Make sure you learn the order that the subshells are filled up in，so you can write electronic configurations for any atom or ion they throw at you．

Atomic Emission Spectra

Atomic emission spectra, which you're about to meet, provide evidence for quantum shells. Read on...

Electromagnetic Spectrum — the Range of Electromagnetic Radiation

1) Electromagnetic radiation is energy that's transmitted as waves, with a spectrum of different frequencies.
2) Along the electromagnetic spectrum, the radiation increases in frequency and decreases in wavelength:

Electrons Release Energy in Fixed Amounts

1) Electron shells are sometimes called quantum shells, or energy levels (see page 10).
2) In their ground state, atoms have their electrons in their lowest possible energy levels.
3) If an atom's electrons take in energy from their surroundings they can move to higher energy levels, further from the nucleus. At higher energy levels, electrons are said to be excited. (More excited than you right now, I'll bet.)

4) Electrons release energy by dropping from a higher energy level down to a lower energy level. The energy levels all have certain fixed values - they're discrete.
5) A line spectrum (called an emission spectrum) shows the frequencies of light emitted when electrons drop down from a higher energy level to a lower one. These frequencies appear as coloured lines on a dark background.
 emission spectrum
6) Each element has a different electron arrangement, so the frequencies of radiation absorbed and emitted are different. This means the spectrum for each element is unique.

Emission Spectra are Made Up of Sets of Lines

1) You get lots of sets of lines in emission spectra - each set represents electrons moving to a different energy level. So, in an emission spectrum, you get one set of lines produced when electrons fall to the $\boldsymbol{n}=\mathbf{1}$ level, and another set produced when they fall to the $\boldsymbol{n}=\mathbf{2}$ level, and so on.
2) Each set of lines on emission spectra get closer together as the frequency increases.
3) Here's the emission spectrum of hydrogen (it only has one electron that can move). It has three important sets of lines:

Before dropping down to these energy levels, the electrons are excited from $n=1$, which is the ground state.

Atomic Emission Spectra

Emission Spectra Support the Idea of Quantum Shells

1) Our current understanding of electronic configuration involves the idea that electrons exist in quantum shells around the nucleus.
2) When it comes to electron shells, there are four basic principles:

- Electrons can only exist in fixed orbits, or shells, and not anywhere in between.
- Each shell has a fixed energy.
- When an electron moves between shells electromagnetic radiation is emitted or absorbed.
- Because the energy of shells is fixed, the radiation will have a fixed frequency.

Herbert was a critically acclaimed expert in shells.
3) The emission spectrum of an atom has clear lines for different energy levels. This supports the idea that energy levels are discrete, i.e. not continuous. It means that an electron doesn't 'move' from one energy level to the next. It just jumps, with no in-between stage at all.
4) This is a really weird and quite confusing idea, but emission spectra and ミO111111111111111111111111111,
Other evidence, such as ionisation
energies (pages 14-15), supports
= the model of electrons in shells.
$=11111111111111111111111$ other evidence back up the idea that electrons exist in quantum shells.

Practice Questions

Q1 Is energy absorbed or released when electrons drop from a higher energy level to a lower one?
Q2 Are energy levels discrete or continuous?

Exam Questions

Q1 The diagram below shows part of an atomic emission spectrum of a single element.
The lines in the spectrum are labelled A to E.

a) What happens in the atom when energy is emitted?
b) Which line in the spectrum represents the largest emission of energy?
c) Explain why the lines get closer together from A to E .

Q2 Many models of the atom have been presented in the past. One of the most widely used models currently relies on evidence provided by emission spectra, amongst other things.
a) What happens as an electron moves from a higher to a lower quantum shell?
b) Describe what the lines on an emission spectrum show.
[1 mark]
c) Explain how emission spectra provide evidence that supports our current understanding of electrons existing in fixed energy levels.
[2 marks]
d) Name one other factor that provides evidence that supports our current understanding of electrons existing in fixed energy levels.

Spectra - aren't they the baddies in those James Bond films?

All this stuff about fixed energy levels and electrons jumping up and down is a bit mind bending but it's actually pretty cool (if you're a Chemistry nerd like me). Emission spectra allow you to 'see' the gaps between these energy levels and show that the crazy idea of fixed energy levels dreamed up by an old, beardy chemist was actually spot on. Neat, huh?

Ionisation Energies

This page gets a trifle brain－boggling，so I hope you＇ve got a few aspirin handy．．．

Ionisation is the Removal of One or More Electrons

When electrons have been removed from an atom or molecule，it＇s been ionised．
The energy you need to remove the first electron is called the first ionisation energy．

The first ionisation energy is the energy needed to remove 1 electron from each atom in 1 mole of gaseous atoms to form 1 mole of gaseous $1+$ ions．

You must use the gas state symbol，（g），and always refer to $\mathbf{1}$ mole of atoms，as stated in the definition．
Energy is put in to ionise an atom or molecule，so it＇s an endothermic process－there＇s more about this on page 104.
You can write equations for this process－here＇s the equation for the first ionisation of oxygen：

$$
\mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{O}_{(\mathrm{g})}^{+}+\mathrm{e}^{-} \quad 1 \text { st ionisation energy }=+1314 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

These Three Factors Affect lonisation Energy

Nuclear charge

Electron shell

Shielding

The more protons there are in the nucleus，the more positively charged the nucleus is and the stronger the attraction for the electrons．

Attraction falls off very rapidly with distance．An electron in an electron shell close to the nucleus will be much more strongly attracted than one in a shell further away．
As the number of electrons between the outer electrons and the nucleus increases， the outer electrons feel less attraction towards the nuclear charge．This lessening of the pull of the nucleus by inner shells of electrons is called shielding（or screening）．

A high ionisation energy means there＇s a strong attraction between the electron and the nucleus， so more energy is needed to overcome the attraction and remove the electron．

ご11111111111111111111111111に

First lonisation Energies Decrease Down a Group

1）As you go down a group in the periodic table，ionisation energies
Z lonisation energy also increases generally fall，i．e．it gets easier to remove outer electrons．
2）It happens because：
－Elements further down a group have extra electron shells compared to ones above．The extra shells mean that the atomic radius is larger，so the outer electrons are further away from the nucleus， which greatly reduces their attraction to the nucleus．
＝across a period（see page 17）．
ニハノ।।।।।।।।।।।।।
－The extra inner shells shield the outer electrons from the attraction of the nucleus．
3）A decrease in ionisation energy going down a group provides evidence that electron shells really exist．

Successive Ionisation Energies Involve Removing Additional Electrons

1）You can remove all the electrons from an atom，leaving only the nucleus．Each time you remove an electron， there＇s a successive ionisation energy．For example，the definition for the second ionisation energy is：

The second ionisation energy is the energy needed to remove 1 electron from each ion in 1 mole of gaseous $1+$ ions to form 1 mole of gaseous $2+$ ions．

And here＇s the equation for the second ionisation of oxygen：

$$
\mathrm{O}^{+}{ }_{(\mathrm{g})} \rightarrow \mathrm{O}_{(\mathrm{g})}^{2+}+\mathrm{e}^{-} \quad 2 \text { nd ionisation energy }=+3388 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

2）You need to be able to write equations for any successive ionisation energy．The equation for the $\boldsymbol{n}^{\text {th }}$ ionisation energy is．．．

$$
\mathrm{X}^{(n-1)+}{ }_{(\mathrm{g})} \rightarrow \mathrm{X}_{(\mathrm{g})}^{n+}+\mathrm{e}^{-}
$$

Ionisation Energies

Successive Ionisation Energies Show Shell Structure

A graph of successive ionisation energies (like this one for sodium) provides evidence for the shell structure of atoms.

- Within each shell, successive ionisation energies increase. This is because electrons are being removed from an increasingly positive ion - there's less repulsion amongst the remaining electrons, so they're held more strongly by the nucleus.
- The big jumps in ionisation energy happen when a new shell is broken into - an electron is being removed from a shell closer to the nucleus.

1) Graphs like this can tell you which group of the periodic table an element belongs to.

Just count how many electrons are removed before the first big jump to find the group number.
E.g. In the graph for sodium, one electron is removed before the first big jump - sodium is in group 1.
2) These graphs can be used to predict the electronic structure of elements. Working from right to left, count how many points there are before each big jump to find how many electrons are in each shell, starting with the first.
E.g. The graph for sodium has 2 points on the right-hand side, then a jump, then 8 points, a jump, and 1 final point. Sodium has 2 electrons in the first shell, 8 in the second and 1 in the third.

Practice Questions

Q1 Define first ionisation energy and give an equation as an example.
Q2 Describe the three main factors that affect ionisation energies.
Q3 How is ionisation energy related to the force of attraction between an electron and the nucleus of an atom?

Exam Questions

Q1 This table shows the nuclear charge and first ionisation energy for four elements.

Element	B	C	N	0
Charge of Nucleus	+5	+6	+7	+8
$1^{\text {st }}$ Ionisation Energy (kJ mol ${ }^{-1}$)	801	1087	1402	1314

a) Write an equation, including state symbols, to represent the first ionisation energy of carbon (C). [2 marks]
b) In these four elements, what is the relationship between nuclear charge and first ionisation energy? [1 mark]
c) Explain why nuclear charge has this effect on first ionisation energy.

Q2 This graph shows the successive ionisation energies of a certain element.
a) To which group of the periodic table does this element belong?
[1 mark]
b) Why does it takes more energy to remove each successive electron?
[2 marks]
c) What causes the sudden increases in ionisation energy? [1 mark]
d) What is the total number of electron shells in this element?
[1 mark]

Shirt crumpled - ionise it...

When you're talking about ionisation energies in exams, always use the three main factors - shielding, nuclear charge and distance from nucleus. Recite the definition of the first ionisation energies to yourself until you can't take any more.

Periodicity

One last thing now in this Topic, and then you'll be onto the real juicy stuff. But first have a look at these pages about periodicity. Periodicity describes the trends of elements going across the Periodic Table.

The Modern Periodic Table Arranges Elements by Proton Number

Dmitri Mendeleev was one of the first scientists to put the elements in any meaningful order to create the periodic table in 1869. It has changed a bit and been added to since then to give us the modern periodic table we use today:

1) The periodic table is arranged into periods (rows) and groups (columns).
2) All the elements within a period have the same number of electron shells (if you don't worry about the subshells). The elements of Period 1 (hydrogen and helium) both have 1 electron shell, the elements in Period 2 have 2 electron shells, and so on... This means there are repeating trends in the physical and
 chemical properties of the elements across each period (e.g. decreasing atomic radius). These trends are known as periodicity.
3) All the elements within a group have the same number of electrons in their outer shell. This means they have similar chemical properties. The group number tells you the number of electrons in the outer shell, e.g. Group 1 elements have 1 electron in their outer shell, Group 4 elements have 4 electrons, etc... (This isn't the case for Group 0 elements - they all have 8 electrons in their outer shell, except for helium, which has 2.)

Electronic Configuration Decides the Chemical Properties of an Element

The number of outer shell electrons decides the chemical properties of an element.

1) The s-block elements (Groups 1 and 2) have 1 or 2 outer shell electrons. These are easily lost to form positive ions with an inert gas configuration.
E.g. $\mathrm{Na}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{1} \rightarrow \mathrm{Na}^{+}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}$ (the electronic configuration of neon).
2) The elements in Groups 5, 6 and 7 (in the p-block) can gain 1, 2 or 3 electrons to form negative ions with an inert gas configuration. E.g. O: $1 s^{2} 2 s^{2} 2 p^{4} \rightarrow O^{2-}: 1 s^{2} 2 s^{2} 2 p^{6}$.

3) Groups 4 to 7 can also share electrons when they form covalent bonds.
4) Group 0 (the inert gases) have completely filled s and p subshells and don't need to bother gaining, losing or sharing electrons - their full subshells make them inert.
5) The d-block elements (transition metals) tend to lose s and d electrons to form positive ions.

Atomic Radius Decreases across a Period

1) As the number of protons increases, the positive charge of the nucleus increases. This means electrons are pulled closer to the nucleus, making the atomic radius smaller.
2) The extra electrons that the elements gain across a period are added to the outer energy level so they don't really provide any extra shielding effect (shielding is mainly provided by the electrons in the inner shells).

Periodicity

Ionisation Energy Increases Across a Period

The graph below shows the first ionisation energies of the elements in Period 2 and Period 3.

1) As you move across a period, the general trend is for the ionisation energies to increase i.e. it gets harder to remove the outer electrons.
2) This can be explained because the number of protons is increasing, which means a stronger nuclear attraction.
3) All the extra electrons are at roughly the same energy level, even if the outer electrons are in different orbital types.
4) This means there's generally little extra shielding effect or extra distance to lessen the attraction from the nucleus.
5) But, there are small drops between Groups 2 and 3, and 5 and 6 . Tell me more, I hear you cry. Well, alright then...

The Drop between Groups 2 and 3 Shows Subshell Structure

Generally, it requires more energy to remove an electron from a higher energy subshell than a lower energy subshell (see page 10 for a diagram showing the relative energies of subshells 1 s to 4 f).

$$
\begin{array}{lll}
\text { Example: } & \mathrm{Mg} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} & 1 \mathrm{st} \text { ionisation energy }=738 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{Al} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{1} & 1 \mathrm{st} \text { ionisation energy }=578 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

1) Aluminium's outer electron is in a 3p orbital rather than a 3 s . The 3 p orbital has a slightly higher energy than the 3 s orbital, so the electron is, on average, to be found further from the nucleus.
2) The $3 p$ orbital has additional shielding provided by the $3 \mathbf{s}^{\mathbf{2}}$ electrons.
3) Both these factors together are strong enough to override the effect of the increased nuclear charge, resulting in the ionisation energy dropping slightly.
4) This pattern in ionisation energies provides evidence for the theory of electron subshells.

The Drop between Groups 5 and $\mathbf{6}$ is due to Electron Repulsion

In general, elements with singly filled or full subshells are more stable than those with partially filled subshells, so have higher first ionisation energies.

$$
\begin{array}{rlll}
\text { Example: } & \mathrm{P} & 1 \mathrm{~s}^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3} & 1 \text { st ionisation energy }=1012 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \mathrm{~S} & 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 p^{6} 3 s^{2} 3 p^{4} & 1 \text { st ionisation energy }=1000 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

1) The shielding is identical in the phosphorus and sulfur atoms, and the electron is being removed from an identical orbital.
2) In phosphorus's case, the electron is being removed from a singly-occupied orbital. But in sulfur, the electron is being removed from an orbital containing two electrons.

		3 s		$3 p$	

Sulfur: [Ne]

 N This is the 'electrons-in-boxes' notation that you saw on page 10. テノ।।।।।।।

The repulsion between two electrons in an orbital means that electrons are easier to remove from shared orbitals.
3) Yup, yet more evidence for the electronic structure model.

The repulsion between two bears in a river means that bears are easier to remove from shared rivers.

Periodicity

Bond Strength Affects Melting and Boiling Points Across a Period

As you go across a period, the type of bond formed between the atoms of an element changes. This affects the melting and boiling points of the element.
The graph on the right shows the trend in boiling points across Periods 2 and 3.

1) For the metals ($\mathrm{Li}, \mathrm{Be}, \mathrm{Na}, \mathrm{Mg}$ and Al), melting and boiling points increase across the period because the metallic bonds (see page 27) get stronger. The bonds get stronger because the metal ions have an increasing number of delocalised electrons and a decreasing radius (i.e. the metal ions have a higher charge density - see page 19). This means there's a stronger attraction between the metal ions and delocalised electrons, so stronger metallic bonding.
2) The elements with giant covalent lattice structures (C and Si) have strong covalent bonds (see page 26) linking all their atoms together. A lot of energy is needed to break all of these bonds. So, for example, carbon (as graphite or diamond) and silicon have the highest boiling points in their periods. (The carbon data in the graph to the right is for graphite - diamond has an even higher boiling point.)
3) Next come the simple molecular structures $\left(\mathrm{N}_{2}, \mathrm{O}_{2}\right.$ and $\mathrm{F}_{2}, \mathrm{P}_{4}, \mathrm{~S}_{8}$ and $\left.\mathrm{Cl}_{2}\right)$. Their melting points depend upon the strength of the London forces (see page 30) between their molecules. London forces are weak and easily overcome, so these elements have low melting and boiling points.

4) More electrons in a molecule mean stronger London forces (see page 30). For example, in Period 3 a molecule of sulfur $\left(\mathrm{S}_{8}\right)$ has the most electrons, so it's got higher melting and boiling points than phosphorus and chlorine.
5) The noble gases (Ne and Ar) have the lowest melting and boiling points in their periods because they exist as individual atoms (they're monatomic) resulting in very weak London forces.

Practice Questions

Q1 Which elements in Period 3 are found in the s-block of the periodic table?
Q2 Explain the meaning of the term 'periodicity'.
Q3 What happens to the first ionisation energy as you move across a period?

Exam Questions

Q1 The graph on the right shows first ionisation energy plotted against atomic number. Which of the labelled points on the graph shows the first ionisation energy of:
a) a Group 2 metal? [1 mark]
b) an element with a full outer electron shell?
[1 mark]
c) an element in Period 3?
[1 mark]
Q2 This table shows the melting points for the Period 3 elements.

Element	Na	Mg	Al	Si	P	S	Cl	Ar
Melting point $/ \mathrm{K}$	371	923	933	1687	317	392	172	84

In terms of structure and bonding explain why:
a) silicon has a high melting point.
b) the melting point of sulfur is higher than that of phosphorus.

Periodic trends - my mate Dom's always a couple of decades behind...

I may not be the trendiest person in the world, but I do love my periodic trends. Yes indeed. That ionisation energy one is my particular favourite. And whether you like it or not, you better learn it so you're not caught out in your exams...

Ionic Bonding

When different elements join or bond together, you get a compound. There are two main types of bonding in compounds - ionic and covalent. You need to make sure you've got them both totally sussed. Let's start with ionic.

Ions are Positively or Negatively Charged Atoms (or Groups of Atoms)

1) Ions are formed when electrons are transferred from one atom to another. They may be positively charged (cations) or negatively charged (anions).
2) The simplest ions are single atoms which have either lost or gained 1, 2 or 3 electrons so that they've got a full outer shell. Here are some examples of ions:

A sodium atom (Na) loses 1 electron to form a sodium ion $\left(\mathrm{Na}^{+}\right)$	$\mathrm{Na} \rightarrow \mathrm{Na}^{+}+\mathrm{e}^{-}$
A magnesium atom (Mg) loses 2 electrons to form a magnesium ion $\left(\mathrm{Mg}^{2+}\right)$	$\mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$
A chlorine atom (Cl) gains 1 electron to form a chloride ion $\left(\mathrm{Cl}^{-}\right)$	$\mathrm{Cl}+\mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}$
An oxygen atom (O) gains 2 electrons to form an oxide ion $\left(\mathrm{O}^{2-}\right)$	$\mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{O}^{2-}$

3) You don't have to remember what ion each element forms - for a lot of them you just look at the periodic table. Elements in the same group all have the same number of outer electrons, so they have to lose or gain the same number to get the full outer shell. And this means that they form ions with the same charges. E.g. Mg and Sr are both in Group 2. They both lose 2 electrons to form $2+$ ions $\left(\mathrm{Mg}^{2+}\right.$ and $\left.\mathrm{Sr}^{2+}\right)$.
4) Generally the charge on a metal ion is equal to its group number. The charge on a non-metal ion is equal to its group number minus eight.

Ionic Bonding is when lons are Stuck Together by Electrostatic Attraction

Electrostatic attraction holds positive and negative ions together - it's very strong.
When ions are held together like this, it's called ionic bonding. Here comes a definition for you to learn...
An ionic bond is the strong electrostatic attraction between two oppositely charged ions.

When oppositely charged ions form an ionic bond, you get an ionic compound. The formula of an ionic compound tells you what ions that compound has in it.

$$
\text { Example: } \begin{aligned}
& \mathrm{NaCl} \text { is made up of } \mathrm{Na}^{+} \text {and } \mathrm{Cl}^{-} \text {ions in a } 1: 1 \text { ratio. } \\
& \mathrm{CaCl}_{2} \text { is made up of } \mathrm{Ca}^{2+} \text { and } \mathrm{Cl}^{-} \text {ions in a } 1: 2 \text { ratio. }
\end{aligned}
$$

lonic Charges and lonic Radii Affect lonic Bonding

Ionic bonds are all to do with the attraction between oppositely charged ions. So, the stronger the electrostatic attraction, the stronger the ionic bond. There are two things that affect the strength of an ionic bond:

IONIC CHARGES

In general, the greater the charge on an ion, the stronger the ionic bond and therefore, the higher the melting/boiling point.
E.g. the melting point of NaF , (which is made up of singly charged Na^{+}and F^{-}ions) is $993{ }^{\circ} \mathrm{C}$, while CaO (which is made up of Ca^{2+} and O^{2-} ions) has a much higher melting point of $2572{ }^{\circ} \mathrm{C}$.

[^0]
IONIC RADII

Smaller ions can pack closer together than larger ions. Electrostatic attraction gets weaker with distance, so small, closely packed ions have stronger ionic bonding than larger ions, which sit further apart. Therefore, ionic compounds with small, closely packed ions have higher melting and boiling points than ionic compounds made of large ions.
E.g. the ionic radius of Cs^{+}is greater than that of Na^{+}. NaF has a melting point of $992{ }^{\circ} \mathrm{C}$, whereas CsF has a melting point of $683{ }^{\circ} \mathrm{C}$ since the Na^{+}and F^{-}ions can pack closer together in NaF than the Cs^{+}and F^{-}ions in CsF .

Ionic Bonding

The Size of an Ion Depends on its Electron Shells and Atomic Number

There are two trends in ionic radii you need to know about.

1) The ionic radius increases as you go down a group.

Ion	Li^{+}	Na^{+}	K^{+}	Rb^{+}
Ionic radius (nm)	0.060	0.095	0.133	0.148

All these Group 1 ions have the same charge. As you go down the group the ionic radius increases as the atomic number increases.
This is because extra electron shells are added.
2) Isoelectronic ions are ions of different atoms with the same number of electrons. The ionic radius of a set of isoelectronic ions decreases as the atomic number increases.

ミ゙"111111111111111।1/ See page 4 for how to Ework out the subatomic particles in an ion.

Ion	N^{3-}	O^{2-}	F^{-}	Na^{+}	Mg^{2+}	Al^{3+}
No. of electrons	10	10	10	10	10	10
No. of protons	7	8	9	11	12	13
Ionic radius (nm)	0.171	0.140	0.136	0.095	0.065	0.050

As you go through this series of ions the number of electrons stays the same, but the number of protons increases.
This means that the electrons are attracted to the nucleus more strongly, pulling them in a little, so the ionic radius decreases.

Dot-and-Cross Diagrams Show Where the Electrons in a Bond Come From

Dot-and-cross diagrams show the arrangement of electrons in an atom or ion. Each electron is represented by a dot or a cross. They can also show which atom the electrons in a bond originally came from.

1) For example, sodium chloride (NaCl) is an ionic compound:

Here, the dots represent the Na electrons and the crosses represent the Cl electrons (all electrons are really identical, but this is a good way of following their movement).

Na
2, 8, 1 sodium atom
 chlorine atom

Na^{+}
2, 8
sodium cation

2, 8, 8 chloride anion
2) When there's a 1:2 ratio of ions, such as in magnesium chloride, MgCl_{2}, you draw dot-and-cross diagrams like this:

- ${ }^{\prime \prime}$ Here 1111111111111111111111 Z Here we've only shown the outer = shells of electrons on the dot-and-cross diagram. It makes , it easier to see what's going on.

Ionic Compounds Form Giant Ionic Lattice Structures

1) Ionic crystals (e.g. crystals of common salt, such as NaCl) are giant lattices of ions. A lattice is just a regular structure. The structure's called 'giant' because it's made up of the same basic unit repeated over and over again.
2) It forms because each ion is electrostatically attracted in all directions to ions of the opposite charge.
3) In sodium chloride, the Na^{+}and Cl^{-}ions are packed together alternately in a lattice.
4) The sodium chloride lattice is cube shaped - different ionic compounds
 have different shaped structures, but they're all still giant lattices.

Ionic Bonding

The Theory of lonic Bonding Fits the Evidence from Physical Properties

Scientists develop models of ionic bonding based on experimental evidence - they're an attempt to explain observations about how ionic compounds behave. Some evidence is provided by the physical properties of ionic compounds:

1) They have high melting points - this tells you that the ions are held together by a strong attraction. Positive and negative ions are strongly attracted, so the model fits the evidence.
2) They are often soluble in water but not in non-polar solvents - this tells you that the particles are charged. The ions are pulled apart by polar molecules like water, but not by non-polar molecules. Again, the model of ionic structures fits this evidence.
3) Ionic compounds don't conduct electricity when they're solid — but they do when they're molten or dissolved. This supports the idea that there are ions, which are fixed in position by strong ionic bonds in a solid, but are free to move (and carry a charge) as a liquid or in a solution.
4) Ionic compounds can't be shaped - for example, if you tried to pull layers of NaCl over each other, you'd get negative chlorine ions directly over other negative chlorine ions (and positive sodium ions directly over each other). The repulsion between these ions would be very strong, so ionic compounds are brittle (they break when they're stretched or hammered). This supports the lattice model.

The Migration of lons is Evidence for the Presence of Charged Particles

- When you electrolyse a green solution of copper(II) chromate(VI) on a piece of wet filter paper, the filter paper turns blue at the cathode (the negative electrode) and yellow at the anode (the positive electrode).
- Copper(II) ions are blue in solution and chromate(VI) ions are yellow. Copper(II) chromate(VI) solution is green because it contains both ions.
- When you pass a current through the solution, the positive ions move to the cathode and the negative ions move to the anode.
drop of
copper(II) chromate(VI) wet filter paper solution

Practice Questions

Q1 What is an ionic bond?
Q2 What two factors affect the strength of ionic bonds?
Q3 Why do many ionic compounds dissolve in water?

Exam Questions

Q1 a) What type of structure does sodium chloride have?
b) Would you expect sodium chloride to have a high or a low melting point? Explain your answer.
c) How would you expect the melting point of sodium bromide (NaBr) to compare with sodium chloride? Explain your answer.

Q2 Calcium oxide is an ionic compound with ionic formula CaO .
a) Draw a dot-and-cross diagram to show the formation of a bond and subsequent bonding in calcium oxide. Show the outer electrons only.
b) Solid calcium oxide does not conduct electricity, but molten calcium oxide does. Explain this with reference to ionic bonding.

Q3 In terms of electron transfer, what happens when sodium reacts with fluorine to form sodium fluoride?
Q4 Which of the following sets of atoms and ions are isoelectronic?
A $\mathrm{Ca}^{2+}, \mathrm{K}^{+}, \mathrm{Cl}$
B $\mathrm{Mg}^{+}, \mathrm{Ne}, \mathrm{Na}^{+}$
C $\mathrm{Ar}, \mathrm{S}^{2-}, \mathrm{Sc}^{3+}$
D $\mathrm{Ti}^{4+}, \mathrm{Cl}^{-}, \mathrm{S}$
[1 mark]

The name's Bond... Ionic Bond... Electrons taken, not shared...

It's all very well learning the properties of ionic compounds, but make sure you can also explain why they do what they do. And practise drawing dot-and-cross diagrams to show ionic bonding - they're easy marks in exams.

Covalent Bonding

And now for covalent bonding - this is when atoms share electrons with one another so they've all got full outer shells.

Covalent Bonds Hold Atoms in Molecules Together

Molecules are formed when 2 or more atoms bond together, and are held together by covalent bonds.
It doesn't matter if the atoms are the same or different.
Chlorine gas $\left(\mathrm{Cl}_{2}\right)$, carbon monoxide (CO), water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ and ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ are all molecules.
In covalent bonding, two atoms share electrons, so they've both got full outer shells of electrons. A covalent bond is the strong electrostatic attraction between the two positive nuclei and the shared electrons in the bond.
E.g. two hydrogen atoms bond covalently
to form a molecule of hydrogen.

Make Sure You Can Draw the Bonding in These Molecules

1) Dot-and-cross diagrams can be used to show how electrons behave in covalent bonds.
2) The bonded molecules are drawn with their outer atomic orbitals overlapping.

The shared electrons that make up the covalent bond are drawn within the overlapping area.
3) To simplify the diagrams, not all the electrons in the molecules are shown - just the ones in the outer shells.
4) Most of the time the central atom ends up with eight electrons in its outer shell.

This is good for the atom - it's a very stable arrangement.
5) Atoms don't have to stick with forming single bonds (when there's just one pair of electrons shared between two atoms). You can get atoms sharing multiple pairs of electrons. A bond containing two electron pairs is a double bond, a bond containing three electron pairs is a triple bond and so on...
\|ll|l|l|l|l|l|ll|l|lllll The outer electrons in hydrogen are in the first electron shell, which only needs two electrons to be filled.

Bond Enthalpy is Related to the Length of a Bond

1) In covalent molecules, the positive nuclei are attracted to the area of electron density between the two nuclei (where the shared electrons are). But there's also a repulsion. The two positively charged nuclei repel each other, as do the electrons. To maintain the covalent bond there has to be a balance between these forces.
2) The distance between the two nuclei is the distance where the attractive and repulsive forces balance each other. This distance is the bond length.
3) The higher the electron density between the nuclei (i.e. the more electrons in the bond), the stronger the attraction between the atoms, the higher the bond enthalpy and the shorter the bond length. It makes sense really. If there's more attraction, the nuclei are pulled closer together.

A $C=C$ bond has a greater bond enthalpy and is shorter than a $\mathrm{C}-\mathrm{C}$ bond. Four electrons are shared in $\mathrm{C}=\mathrm{C}$ and only two in $\mathrm{C}-\mathrm{C}$, so the electron density between the two carbon atoms is greater and the bond is shorter. $\mathrm{C} \equiv \mathrm{C}$ has an even higher bond enthalpy and is shorter than $C=C$ - six electrons are shared here.

Bond	$\mathrm{C}-\mathrm{C}$	$\mathrm{C}=\mathrm{C}$	$\mathrm{C}=\mathrm{C}$
$\left.\begin{array}{c}\text { Average Bond } \\ \text { Enthalpy (k) mol} \\ -1\end{array}\right)$	+347	+612	+838
Bond length (nm)	0.154	0.134	0.120

Covalent Bonding

Dative Covalent Bonding is Where Both Electrons Come From One Atom

1) In the molecules on the last page, the atoms are acting in a bit of an "I'll lend you mine if you lend me yours" way - each atom puts an electron into the bond and, in return, they get use of the electron put in by the other atom.
2) But there's another kind of covalent bond as well - a dative covalent (or coordinate) bond.

This is where one atom donates both electrons to a bond. You've already seen an example of this in CO.
3) The ammonium ion $\left(\mathrm{NH}_{4}^{+}\right)$is formed by dative covalent (or coordinate) bonding.

It forms when the nitrogen atom in an ammonia molecule donates a pair of electrons to a proton $\left(\mathrm{H}^{+}\right)$.

4) The ammonium ion can go on to form ionic bonds with other ions (see pages 19-21 for more on ionic bonding).

Practice Questions

Q1 What happens during covalent bonding?
Q2 Put the following three bonds in order from shortest to longest: $\mathrm{C}-\mathrm{C}, \mathrm{C}=\mathrm{C}, \mathrm{C} \equiv \mathrm{C}$.
Q3 What is a dative covalent bond?
Q4 Draw a dot-and-cross diagram to show the arrangement of the outer electrons in a molecule of $\mathrm{Al}_{2} \mathrm{Cl}_{6}$.

Exam Questions

Q1 Draw a dot-and-cross diagram (showing outer shell electrons only) to represent the bonding in the molecule silicon hydride $\left(\mathrm{SiH}_{4}\right)$.

Q2 a) Draw a dot-and-cross diagram of the ammonia molecule $\left(\mathrm{NH}_{3}\right)$ showing the outer shell electrons only. [1 mark]
b) Draw a dot-and-cross diagram of the hydrogen chloride molecule (HCl) showing the outer shell electrons only.
c) Ammonia reacts with hydrogen chloride to form ammonium chloride. Draw a dot-and-cross diagram to show the bonding in ammonium chloride.

Q3 a) Would you expect an $\mathrm{N}-\mathrm{N}$ single bond to be shorter or longer than an $\mathrm{N}=\mathrm{N}$ bond? Explain your answer. [3 marks]
b) Draw a dot-and-cross diagram to show the bonding a molecule of nitrogen gas $\left(\mathrm{N}_{2}\right)$.
c) How would you expect the bond enthalpy of the bond(s) in a molecule of N_{2} to compare to those in a)? Explain your answer.

Dative covalent bonds - an act of charity on an atomic scale...

More pretty diagrams to learn. If you're asked to draw dot-and-cross diagrams in the exam, don't panic. It's a bit of trial and error really. Just sort the outer electrons until every atom has a full outer shell (that's 8 electrons for most atoms, except hydrogen which only has 2 in its outer shell). Watch out for double, triple and dative covalent bonds too...

Shapes of Molecules

Chemistry would be heaps more simple if all molecules were flat．But they＇re not．

Molecular Shape Depends on Electron Pairs Around the Central Atom

Molecules and molecular ions come in loads of different shapes．
The shape depends on the number of pairs of electrons in the outer shell of the central atom．
In ammonia，the outermost shell of nitrogen has four pairs of electrons．

Bonding pairs of electrons are shared with another atom in a covalent bond．

A lone pear．

Electron Pairs Repel Each Other

1）Electrons are all negatively charged，so electron pairs will repel each other as much as they can．
2）This sounds straightforward，but the type of the electron pair affects how much it repels other electron pairs．Lone pairs repel more than bonding pairs．
3）This means the greatest angles are between lone pairs of electrons，and bond angles between bonding pairs are often reduced because they are pushed together by lone pair repulsion．

Lone pair／lone pair	Lone pair／bonding pair	Bonding pair／bonding pair
angles are the biggest．	angles are the second biggest．	bond angles are the smallest．

4）So the shape of the molecule depends on the type of electron pairs surrounding the central atom as well as the number．
5）This way of predicting molecular shape is known as＇electron pair repulsion theory＇． Here are some examples of the theory being used：

The central atoms in these molecules all have four pairs of electrons in their outer shells，but they＇re all different shapes．

E Learn the bond angles
＝for these three examples．
ラノ।1।1।11

2 lone pairs reduce the bond angle even more

Water－ 2 lone pairs．
The bond angle is 104.5° ．

To draw molecules in 3D，use solid wedges to show bonds pointing out of the page towards you， and broken lines to show bonds pointing into the page away from you．ミ

You Can Use Electron Pairs to Predict the Shapes of Molecules

To predict the shape of a molecule，you first have to know how many bonding and non－bonding electron pairs are on the central atom．Here＇s how：
1）Find the central atom（the one all the other atoms are bonded to）．
2）Work out the number of electrons in the outer shell of the central atom． Use the periodic table to do this，or you could draw a dot－and－cross diagram．
3）The molecular formula tells you how many atoms the central atom is bonded to． From this you can work out how many electrons are shared with the central atom．
4）Add up the electrons and divide by 2 to find the number of electron pairs on the central atom．If you have an ion remember to account for its charge．
5）Compare the number of electron pairs with the number of bonds to find the number of lone pairs．

6）You can then use the number of electron pairs and the number of lone pairs and bonding centres around the central atom to work out the shape of the molecule（see next page）．
，リ111111111111111।11111111／
ב Bonding centres are the atoms＝
च bonded to the central atom．

Shapes of Molecules

Practise Drawing these Molecules

Once you know how many electron pairs are on the central atom, you can use electron pair repulsion theory to work out the shape of the molecule. These are the common shapes that you need to be able to draw:

3 ELECTRON PAIRS AROUND CENTRAL ATOM

1 lone pair - non-linear or 'bent'

1 lone pair

- trigonal pyramidal

2 lone pairs - nonlinear or 'bent'

no lone pairs trigonal bipyramidal

5 ELECTRON PAIRS AROUND CENTRAL ATOM

one lone pair - seesaw

two lone pairs distorted T

6 ELECTRON PAIRS AROUND CENTRAL ATOM

no lone pairs - octahedral

two lone pairs square planar

Practice Questions

Q1 What is a lone pair of electrons?
Q2 Write down the order of the strength of repulsion between different kinds of electron pair.
Q3 Explain why a water molecule is not linear.
Q4 Draw a tetrahedral molecule.

Exam Questions

Q1 a) Draw the shapes of the following molecules, showing the approximate values of the bond angles on the diagrams and naming each shape.
i) NCl_{3}
ii) BF_{3}
[6 marks]
b) Explain why the shapes of NCl_{3} and BCl_{3} are different.

Q2 The displayed formula of an organic compound is shown. Use electron pair repulsion theory to predict the shape and relevant bond angles of the bonds around atoms A, B and C .

These molecules ain't square...

In the exam, those evil examiners might try to throw you by asking you for the shape of an unfamiliar molecule. Don't panic - you can use the steps on page 24 to work out the shape of any covalent molecule. It often helps to draw a dot-and-cross diagram of the molecule you're working out the shape of - it'll help you see where all the electrons are.

Giant Covalent and Metallic Structures

Not all covalent structures are tiny molecules... some form vast structures (well... vast compared to simple molecules).

Some Covalently Bonded Substances Have Giant Structures

1) Covalent bonds form when atoms share electrons with other atoms. Very often, this leads to the formation of small molecules, including $\mathrm{CO}_{2}, \mathrm{~N}_{2}$ and the others on page 22.
2) But they can also lead to huge great lattices too - containing billions and billions of atoms.
3) These giant structures have a huge network of covalently bonded atoms. The electrostatic attractions holding the atoms together in these structures are much stronger than the electrostatic attractions between simple covalent molecules.
4) Carbon and silicon can form these giant networks. This is because they can each form four strong, covalent bonds.

This is the structure of diamond. Each carbon atom is bonded to its four neighbours in a tetrahedral arrangement.

Silicon(IV) dioxide $\left(\mathrm{SiO}_{2}\right)$ can form a 'similar but different' lattice arrangement to diamond with oxygen atoms between each silicon atom. (SiO_{2} can also form other lattice structures.)

triangular-based pyramid. The structures on the left are called tetrahedral because the four atoms bonded to each carbon or silicon atom form a tetrahedron shape.
こノ।।।।। =

The Properties of Giant Structures Provide Evidence for Covalent Bonding

The forces holding individual particles together help determine a substance's properties. All of these giant covalent structures have some properties in common. Because of the strong covalent bonds in giant molecular structures, they:

1) Have very high melting points - you need to break a lot of very strong bonds before the substance melts, which takes a lot of energy.
2) Are often extremely hard - again, this is because of the very strong bonds all through the lattice arrangement.
3) Are good thermal conductors - since vibrations travel easily through the stiff lattices.
4) Insoluble - the covalent bonds mean atoms are more attracted to their neighbours in the lattice than to solvent molecules. The fact that they are all insoluble in polar solvents (like water) shows that they don't contain ions.
5) Can't conduct electricity - since there are (in most giant covalent lattice structures) no charged ions or free electrons (all the bonding electrons are held in localised covalent bonds).

Graphite Can Conduct Electricity

An exception to the "can't conduct electricity rule" above is graphite (a form of carbon). Carbon atoms form sheets, with each carbon atom sharing three of its outer shell electrons with three other carbon atoms. This leaves the fourth outer electron in each atom fairly free to move between the sheets, making graphite a conductor.

Graphene is One Layer of Graphite

Graphene is a sheet of carbon atoms joined together in hexagons.
The sheet is just one atom thick, making it a two-dimensional compound.
Graphene's structure gives it some pretty useful properties. Like graphite, it can conduct electricity as the delocalised electrons are free to move along the sheet. It's also incredibly strong, transparent, and really light.
 Each carbon atoms has three covalent bonds (and one delocalised electron).

Giant Covalent and Metallic Structures

Metals have Giant Structures Too

Metal elements exist as giant metallic lattice structures.

1) In metallic lattices, the electrons in the outermost shell of the metal atoms are delocalised - they're free to move. This leaves a positive metal ion, e.g. $\mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Al}^{3+}$.
2) The positive metal ions are electrostatically attracted to the delocalised negative electrons. They form a lattice of closely packed positive ions in a sea of delocalised electrons - this is metallic bonding.
3) The overall lattice structure is made up of layers of positive metal ions, separated by layers of electrons.

The metallic bonding model explains why metals do what they do -

1) The melting points of metals are generally high because of the strong metallic bonding, with the number of delocalised electrons per atom affecting the melting point.
The more electrons there are, the stronger the bonding will be and the higher the melting point.
Mg^{2+} has two delocalised electrons per atom, so it's got a higher melting point than Na^{+}, which only has one. The size of the metal ion and the lattice structure also affect the melting point.
2) As there are no bonds holding specific ions together, and the layers of positive metal ions are separated by layers of electrons, metals are malleable (can be shaped) and are ductile (can be drawn into a wire). The layers of metal ions can slide over each other without disrupting the attraction between the positive ions and electrons.
3) The delocalised electrons can pass kinetic energy to each other, making metals good thermal conductors.
4) Metals are good electrical conductors because the delocalised electrons are free to move and can carry a current. Any impurities can dramatically reduce electrical conductivity by reducing the number of electrons that are free to move and carry charge - the electrons transfer to the impurities and form anions.
5) Metals are insoluble, except in liquid metals, because of the strength of the metallic bonds.

Practice Questions

Q1 Are the melting points of giant covalent lattices high or low? Explain why.
Q2 Why won't giant covalent structures dissolve?
Q3 Explain how the model of metallic bonding accounts for: i) the relatively high melting points of metals.
ii) a metal's ability to conduct electricity.

Exam Questions

Q1 a) Explain what is meant by metallic bonding. Draw a diagram to illustrate your explanation.
b) Explain why calcium has a higher melting point than potassium.
[1 mark]
Q2 Silicon dioxide is a covalent compound that melts at $1610^{\circ} \mathrm{C}$.
Explain the high melting point of silicon in terms of its bonding.
[2 marks]
Q3 Graphite is a giant covalent structure. However, unlike most giant covalent structures, it is able to conduct electricity. Explain why graphite is able to conduct electricity.
[2 marks]
Q4 Electrical grade copper must be 99.99% pure. If sulfur and oxygen impurities react with the copper ions, its electrical conductivity is reduced. Use your knowledge of metallic and ionic bonding to explain this.

Q5 Carborundum (silicon carbide) has the formula SiC and is almost as hard as diamond.
a) What sort of structure would you expect carborundum to have as a solid?
[1 mark]
b) Apart from hardness, give two other physical properties you would expect carborundum to have.

Tetrahedron - sounds like that monster from Greek mythology...

Close the book and write down a list of the typical properties of a giant covalent lattice - then look back at the page and see what you missed. Then do the same for the typical properties of giant metallic lattices. The fun never stops...

Electronegativity and Polarisation

I find electronegativity an incredibly attractive subject. It's all to do with how strongly an atom attracts electrons.

Some Atoms Attract Bonding Electrons More than Other Atoms

```
The ability of an atom to attract the bonding electrons in a covalent bond is called electronegativity.
```

1) Electronegativity is usually measured using the Pauling scale. The higher the electronegativity value, the more electronegative the element. Fluorine is the most electronegative element - it's given a value of 4.0 on the Pauling scale. Oxygen, chlorine and nitrogen are also very strongly electronegative.
2) The least electronegative elements have electronegativity values of around 0.7.
3) More electronegative elements have higher nuclear charges (there are more protons in the nucleus) and smaller atomic radii. Therefore, electronegativity increases across periods and up the groups (ignoring the noble gases).
4) There'll be a copy of the periodic table showing the Pauling values of different elements in your exam data book.

Covalent Bonds may be Polarised by Differences in Electronegativity

1) In a covalent bond, the bonding electrons sit in orbitals between two nuclei. If both atoms have similar or identical electronegativities, the electrons will sit roughly midway between the two nuclei and the bond will be non-polar.
2) The covalent bonds in homonuclear, diatomic gases (e.g. $\mathrm{H}_{2}, \mathrm{Cl}_{2}$) are non-polar because the atoms have equal electronegativities and so the electrons are equally attracted to both nuclei.
3) Some elements, like carbon and hydrogen, also have pretty similar electronegativities, so bonds between them are essentially non-polar.
4) If the bond is between two atoms with different electronegativities, the bonding electrons will be pulled towards the more electronegative atom. This causes the electrons to be spread unevenly, and so there will be a charge across the bond (each atom has a partial charge - one atom is slightly positive, and the other slightly negative). The bond is said to be polar.
5) In a polar bond, the difference in electronegativity between the two atoms causes a dipole. A dipole is a difference in charge between the two atoms caused by a shift in electron density in the bond.
6) So remember that the greater the difference in electronegativity, the greater the shift in electron density, and the more polar the bond.

Use the Pauling Scale to work out the Percentage Ionic Character

1) Only bonds between atoms of a single element, like diatomic gases, can be purely covalent. This is because the electronegativity difference between the atoms is zero and so the bonding electrons are arranged completely evenly within the bond. At the same time, very few compounds are completely ionic.
2) Really, most compounds come somewhere in between the two extremes

- meaning they've often got ionic and covalent properties.

3) You can use electronegativity to predict what type of bonding will occur between two atoms. The higher the difference in electronegativity, the more ionic in character the bonding becomes.
4) In your data book, you'll be given a periodic table of all the Pauling values of the elements, and also see a table which tells you how ionic a bond is, given the electronegativity difference between the atoms. A copy is shown below:

Electronegativity difference	0.1	0.3	0.5	0.7	1.0	1.3	1.5	1.7	2.0	2.5	3.0
$\%$ ionic character	0.5	2	6	12	22	34	43	51	63	79	89

Example: Predict the \% ionic character of a $\mathrm{C}-\mathrm{Cl}$ bond, given that the Pauling electronegativity values of carbon and chlorine are $\mathrm{C}=2.5$ and $\mathrm{Cl}=3.0$.
The difference between the electronegativities of chlorine and carbon is:

$$
3.0-2.5=0.5
$$

So the bond will have a percentage ionic character of about 6%.

Electronegativity and Polarisation

Polar Bonds Don't Always Make Polar Molecules

Whether a molecule is polar or not depends on its shape and the polarity of its bonds. A polar molecule has an overall dipole, which is just a dipole caused by the presence of a permanent charge across the molecule.

Permanent polar bonding

1) In a simple molecule, such as hydrogen chloride, the polar bond gives the whole molecule a

2) A more complicated molecule may have several polar bonds. If the polar bonds are arranged so they point in opposite directions, they'll cancel each other out - the molecule is non-polar overall.

3) If the polar bonds all point in roughly the same direction, then the molecule will be polar.

Practice Questions

Q1 What scale is electronegativity measured on?
Q2 What is the most electronegative element?
Q3 What is a dipole?
Q4 Why isn't CO_{2} a polar molecule, even though it has polar bonds?

Exam Questions

Q1 Many covalent molecules have a permanent dipole, due to differences in electronegativities.
a) Define the term electronegativity.
b) What are the trends in electronegativity as you go across a period and down a group in the periodic table?
c) Which of the following molecules is polar?
A $\mathrm{H}_{2} \mathrm{O}$
B Br_{2}
C CCl 4
D SF_{6}
[1 mark]
Q2 a) Draw diagrams to show the shape of the covalently bonded molecules below.
Mark any partial charges on your diagrams.
i) Boron trichloride $\left(\mathrm{BCl}_{3}\right)$ [2 marks]
ii) Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ [2 marks]
b) Explain whether or not the molecules in part a) have an overall dipole. [2 marks]

I got my tongue stuck on an ice cube last week - it was a polar bond...

It's important to remember that just because a molecule has polar bonds, doesn't mean it will have a permanent dipole - you have to look carefully at the shape first to see if the polar bonds will cancel each other out or not. So if you're feeling a bit hazy on how to work out the shape of a molecule, have a read of pages 24-25, and all will be revealed.

Intermolecular Forces

Intermolecular forces hold molecules together. They're pretty important, cos we'd all be gassy clouds without them.

Intermolecular Forces are Very Weak

Intermolecular forces are forces between molecules. They're much weaker than covalent, ionic or metallic bonds. There are three types you need to know about:

1) London forces (instantaneous dipole-induced dipole bonds).
2) Permanent dipole-permanent dipole bonds.

You might see intermolecular forces三 called intermolecular bonds - don't
\#worry, they're exactly the same thing.

3) Hydrogen bonding (this is the strongest type of intermolecular forces - see pages 32-33).

All Atoms and Molecules Form London Forces

London forces (also called instantaneous dipole-induced dipole bonds)
cause all atoms and molecules to be attracted to each other.

1) Electrons in charge clouds are always moving really quickly. At any particular moment, the electrons in an atom are likely to be more to one side than the other. At this moment, the atom would have a temporary (or instantaneous) dipole.
2) This dipole can induce another temporary dipole in the opposite direction on a neighbouring atom. The two dipoles are then attracted to each other.
3) The second dipole can induce yet another dipole in a third atom. It's kind of like the domino effect.

4) Because the electrons are constantly moving, the dipoles are being created and destroyed all the time. Even though the dipoles keep changing, the overall effect is for the atoms to be attracted to each other.

London Forces Can Hold Molecules in a Lattice

London forces are responsible for holding iodine molecules together in a lattice.

Stronger London Forces mean Higher Melting and Boiling Points

1) Not all London forces are the same strength - larger molecules have larger electron clouds, meaning stronger London forces.
2) Molecules with greater surface areas also have stronger London forces because they have a bigger exposed electron cloud (see next page).
3) When you boil a liquid, you need to overcome the intermolecular forces, so that the particles can escape from the liquid surface. It stands to reason that you need more energy to overcome stronger intermolecular forces, so liquids with stronger London forces will have higher boiling points.

London Forces.
4) Melting solids also involves overcoming intermolecular forces, so solids with stronger London forces will have higher melting points too.
5) Alkanes demonstrate this nicely...

Intermolecular Forces

Intermolecular Forces in Organic Molecules Depend on Their Shape

The shape of an organic compound＇s molecules affects the strength of the intermolecular forces．
Take alkanes，for example．．．
1）Alkanes have covalent bonds inside the molecules．Between the molecules there are London forces，which hold them all together．
2）The longer the carbon chain，the stronger the London forces－because there＇s more molecular surface contact and more electrons to interact．
3）So as the molecules get longer，it gets harder to separate them because it takes more energy to overcome the London forces．

Smaller molecular surface contact，so weaker intermolecular forces．

4）Branched－chain alkanes can＇t pack closely together and their molecular surface contact is small compared to straight chain alkanes of similar molecular mass．
So fewer London forces can form．Look at these isomers of $\mathbf{C}_{4} \mathbf{H}_{10^{\prime}}$ ，for example．．．

Butane

Boiling point $=273 \mathrm{~K}$

Methylpropane

Boiling point $=261 \mathrm{~K}$

ーノ।।ノ।ノ।ノ।।।ノハ
intermolecular forces．

Greater molecular surface contact，so stronger

Polar Molecules have Permanent Dipole－Permanent Dipole Bonds

The $\delta+$ and δ－charges on polar molecules cause weak electrostatic forces of attraction between molecules．
These are known as permanent dipole－permanent dipole bonds．E．g．，hydrogen chloride gas has polar molecules：

Permanent dipole－permanent dipole bonds happen as well as（not instead of）London forces．So，molecules that can form permanent dipole－permanent dipole bonds，in addition to their London forces，will generally have higher boiling and melting points than those with similar London forces that can＇t form permanent dipole－permanent dipole bonds．

Practice Questions

Q1 What＇s the strongest type of intermolecular force？
Q2 Explain what London forces are．
Q3 Explain what gives rise to permanent dipole－permanent dipole intermolecular forces．

Exam Questions

Q1 The molecules in the table on the right all have the molecular formula $\mathrm{C}_{5} \mathrm{H}_{12}$ ．

Explain the differences in the boiling points of these molecules．

Molecule	Boiling Point $\left({ }^{\circ} \mathbf{C}\right)$
Pentane	36.1
2－methylbutane	27.7
2，2－dimethylpropane	9.50

［3 marks］
Q2 What intermolecular forces are present in chloroethane $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}\right)$ ？
Q3 $\quad \mathrm{N}_{2}$ and NO are both gases at room temperature．
Predict，with reasoning，which gas has a higher boiling point．

London Forces－the irresistible pull of streets paved with gold．．．

You may well see London forces called instantaneous dipole－induced dipole bonds．But don＇t panic，they＇re the same thing．It＇s useful to remember both names though－especially since instantaneous dipole－induced dipole describes what＇s going on in this sort of intermolecular bonding．It＇s all to do with the attraction between temporary dipoles．

Hydrogen Bonding

Hydrogen bonds form between certain types of molecule. Water, alcohols, ammonia, hydrogen fluoride... Shall I go on?

Hydrogen Bonding is the Strongest Intermolecular Force

1) Hydrogen bonding only happens when hydrogen is covalently bonded to fluorine, nitrogen or oxygen.
2) Fluorine, nitrogen and oxygen are very electronegative, so they draw the bonding electrons away from the hydrogen atom.
3) The bond is so polarised, and hydrogen has such a high charge
= See page 28 信 = See page 28 for more about electronegativity.

density because it's so small, that the hydrogen atoms form weak bonds with
lone pairs of electrons on the fluorine, nitrogen or oxygen atoms of other molecules.
4) Water, ammonia and hydrogen fluoride all have hydrogen bonding:

ミ111111111111111111111111111111111111/
E The dotted lines represent hydrogen bonds.
E
E111111111111111111111111111111111111111
5) Organic molecules that form hydrogen bonds often contain - $\mathbf{O H}$ or $-\mathbf{N H}$ groups, e.g. alcohols and amines.
6) So, if you're asked to predict whether a substance forms hydrogen bonds or not, you need to watch out for these groups of atoms.

Hydrogen Bonds Affect How a Substance Behaves

Hydrogen bonds are the strongest type of intermolecular forces and have a huge effect on the properties of substances. Substances that form hydrogen bonds have high melting and boiling points because a lot of energy is required to overcome the intermolecular forces.

The graph on the right shows how the boiling points of Group 7 hydrides vary as you go down Group 7.

- Molecules of hydrogen fluoride form hydrogen bonds with each other (see above). Hydrogen bonding is the strongest intermolecular force, so the intermolecular bonding in HF is very strong. It requires a lot of energy to overcome these bonds, so HF has a high boiling point.
- From HCl to HI , although the permanent dipole-dipole interactions
 decreases, the number of electrons in the molecule increases, so the strength of the London forces also increases. This effect overrides the decrease in the strength of the permanent dipole-permanent dipole interactions, so the boiling points increase from HCl to HI .
- Water has some pretty weird properties. Despite the fact that it's a pretty small molecule, it has a fairly high boiling point (373 K , or $100^{\circ} \mathrm{C}$).
- If you look at the trend in boiling points of Group 6 hydrides, you'll see they follow a similar trend to the boiling points of the Group 7 hydrides above.
- Water's ability to form hydrogen bonds with itself gives it a high boiling point, while the increase in the strength of the London forces from $\mathrm{H}_{2} \mathrm{~S}$ to $\mathrm{H}_{2} \mathrm{Te}$ overrides the decrease in the strength of the permanent dipole-permanent dipole forces, causing the boiling point to increase from $\mathrm{H}_{2} \mathrm{~S}$ to $\mathrm{H}_{2} \mathrm{Te}$.

Substances that form hydrogen bonds are also soluble in water.
This is because they can form hydrogen bonds with the water molecules, allowing them to mix and dissolve.

Hydrogen Bonding

Hydrogen Bonds Explains Why Ice Floats on Water

1) Ice is another example of a simple molecular structure.
2) In ice, the water molecules are arranged so that there is the maximum number of
 hydrogen bonds - the lattice structure formed in this way 'wastes' lots of space.
3) As the ice melts, some of the hydrogen bonds are broken and the lattice breaks down - allowing molecules to 'fill' the spaces.
4) This effect means ice is much less dense than water - which is why ice floats.

Alcohols are Less Volatile than Similar Alkanes

1) All alcohols contain a polar hydroxyl group $(-\mathrm{OH})$ that has a δ - charge on the oxygen atom and a $\delta+$ charge on the hydrogen atom. This polar group helps alcohols to form hydrogen bonds.
2) Hydrogen bonding gives alcohols low volatilities (i.e. they have high boiling points) compared to non-polar compounds, e.g. alkanes, of similar sizes, with similar numbers of electrons.

三There's more about alcohols on pages 94-97.

utane
For example, butan- 1 -ol has a boiling point of $118^{\circ} \mathrm{C}$, while but
boils at $-1^{\circ} \mathrm{C}$. The only intermolecular forces present in butane are London forces which are relatively weak - it doesn't take much energy to overcome these forces and for butane to evaporate.

- The strength of the London forces in both butan- 1 -ol and butane will be similar, but butan-1-ol can form hydrogen bonds in addition to London forces. Hydrogen bonds are the strongest type of intermolecular force and require much more energy to break. This gives butan- 1 -ol a much higher boiling point.

Practice Questions

Q1 What atoms need to be present for hydrogen bonding to occur?
Q2 Name three substances that undergo hydrogen bonding.
Q3 Why is ice less dense than water?

Exam Questions

Q1 a) Explain why water's boiling point is higher than expected in comparison to other similar molecules. [2 marks]
b) Draw a labelled diagram showing the intermolecular bonding that takes place in water.

Your diagram should show at least 4 water molecules.
Q2 a) For each of the following pairs of compounds, state which will have the higher boiling point.
i) Ammonia $\left(\mathrm{NH}_{3}\right)$ and methane $\left(\mathrm{CH}_{4}\right)$.
ii) Water and hydrogen sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$.
iii) Butane and propan-1-ol.
b) Explain your choices in part a).

Q3 An organic compound used as antifreeze is ethane-1,2-diol. Its structure is shown on the right.
The boiling point of ethane-1,2-diol is $197^{\circ} \mathrm{C}$, whereas the boiling point of ethanol is $78^{\circ} \mathrm{C}$. Suggest a reason for this difference.

[1 mark]

I never used to like Chemistry, but after this, I feel we've truly bonded...

There you have it, hydrogen bonding. The king of intermolecular bonding in my opinion. If you need to draw a picture of hydrogen bonding in the exam, make sure you draw any lone pairs and all the partial charges (those are the δ - and $\delta+$ signs). And show any hydrogen bonds with a dotted line (unless you're told otherwise). Don't go missing easy marks.

Solubility

Ever wondered why that teaspoon of sugar dissolves in your afternoon cuppa'? Or why all the salt doesn't just fall out of the sea onto the seabed? Well my friend, you're about to find out. It's all to do with solubility...

Solubility is Affected by Bonding

1) For one substance to dissolve in another, all these things have to happen:

- bonds in the substance have to break,
- bonds in the solvent have to break, and
- new bonds have to form between the substance and the solvent.

2) Usually a substance will only dissolve if the strength of the new bonds formed is about the same as, or greater than, the strength of the bonds that are broken.

There Are Polar and Non-Polar Solvents

There are two main types of solvent:

1) Polar solvents are made of polar molecules, such as water.
 You may see water referred to as an aqueous solvent. Any solvent that isn't water is known as a non-aqueous solvent.
 Water molecules bond to each other with hydrogen bonds. But not all polar solvents can form hydrogen bonds. For example, propanone (often called acetone) is a polar solvent but only forms London forces and permanent dipole-permanent dipole bonds.
2) Non-polar solvents such as hexane.

Hexane molecules bond to each other by London forces.
Many substances are soluble in one type of solvent but not the other - and you'll be expected to understand why...
 Look back at pages 28-29 for more on polarity, 三 and pages 30-33 for lots on intermolecular forces. =

Ionic Substances Dissolve in Polar Solvents such as Water

1) Water is a polar solvent - water molecules have a slightly positively-charged end (the $\delta+$ hydrogens) and a slightly negatively-charged end (the δ - oxygen).
2) When an ionic substance is mixed with water, the ions in the ionic substance are attracted to the oppositely charged ends of the water molecules.
3) The ions are pulled away from the ionic lattice by the water molecules, which surround the ions. This process is called hydration.

ions in a lattice

polar water molecules

4) Some ionic substances don't dissolve because the bonding between their ions is too strong. For example, aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ is insoluble in water because the bonds between the ions are stronger than the bonds they'd form with the water molecules. (Al^{3+} has a high charge density, so forms strong ionic bonds - see page 19.)

Alcohols also Dissolve in Polar Solvents such as Water

1) Alcohols are covalent but they dissolve in water...
2) ... because the polar $\mathrm{O}-\mathrm{H}$ bond in an alcohol is attracted to the polar $\mathrm{O}-\mathrm{H}$ bonds in water. Hydrogen bonds form between the lone pairs on the δ - oxygen atoms and the $\delta+$ hydrogen atoms.
3) The carbon chain part of the alcohol isn't attracted to water, so the more carbon atoms there are, the less soluble the alcohol will be.

Solubility

Not All Molecules with Polar Bonds Dissolve in Water

1) Halogenoalkanes (see page 90) contain polar bonds but their dipoles aren't strong enough to form hydrogen bonds with water.
2) The hydrogen bonding between water molecules is stronger than the bonds to form hydrogen bonds. that would be formed with halogenoalkanes, so halogenoalkanes don't dissolve.

Example:

When the halogenoalkane chlorobutane is added to water, they don't mix, but separate into two layers.

Henry couldn't understand why the champagne wouldn't dissolve.
3) But, halogenoalkanes can form permanent dipole-permanent dipole bonds. They happily dissolve in polar solvents that also form permanent dipole-permanent dipole bonds (not hydrogen bonds).

Non-Polar Substances Dissolve Best in Non-Polar Solvents

1) Non-polar substances such as ethene have London forces between their molecules.

They form similar bonds with non-polar solvents such as hexane - so they tend to dissolve in them.
2) Water molecules are attracted to each other more strongly than they are to non-polar
molecules such as iodine - so non-polar substances don't tend to dissolve easily in water.
Like dissolves like (usually) - substances usually dissolve best in solvents with similar intermolecular forces.

Practice Questions

Q1 Which type of solvent, polar or a non-polar, would you choose to dissolve: i) sodium chloride?
ii) ethane?

Q2 Why do most ionic substances dissolve in water?
Q3 What is meant by 'hydration'?
Q4 Some ionic substances don't dissolve in water. Why not?
Q5 What type of bonding occurs between an alcohol and water?
Q6 Why are most non-polar substances insoluble in water?

Exam Questions

Q1 Hydrogen bonds are present between molecules of water.
a) i) Explain why alcohols often dissolve in water while halogenoalkanes do not.
ii) Draw a diagram to show the bonds that form when propan-1-ol dissolves in water.
b) Explain the process by which potassium iodide dissolves in water to form hydrated ions. Include a diagram of the hydrated ions.

Q2 a) An unknown substance, X is suspected to be a non-polar simple covalent molecule. Describe how you could confirm this by testing with two different solvents.
Name the solvents chosen and give the expected results.
b) Explain these results in terms of the intermolecular bonding within X and the solvents.

When the ice-caps melt, where will all the polar solvents live?

I reckon it's logical enough, this business of what dissolves what. Remember, water is a polar molecule - so other polar molecules, as well as ions, are attracted to its $\delta+$ and δ - ends. If that attraction's stronger than the existing bonds (which have to break), the substance will dissolve. It's worth remembering that rule of thumb about 'like dissolves like.'

Predicting Structures and Properties

By looking at certain properties that a substance has, such as its melting/boiling points, its solubility and whether it conducts electricity, you can predict what sort of bonding it has. If this doesn't excite you, then I don't know what will.

The Physical Properties of a Solid Depend on the Nature of its Particles

Here are a just a few examples of the ways in which the particles that make up a substance affect it properties:

1) The melting and boiling points of a substance are determined by the strength of the attraction between its particles (the intermolecular forces).
2) A substance will only conduct electricity if it contains charged particles that are free to move.
3) How soluble a substance is in water depends on the type of particles that it contains.

Water is able to form hydrogen bonds, so substances that are also able to form hydrogen bonds, or are charged (i.e. ions) will dissolve in it well, whereas non-polar or uncharged substances won't.

Learn the Properties of the Main Substance Types

Make sure you know this stuff like the back of your hand:

Bonding	Examples	Melting and boiling points	Typical state at room temperature and pressure	Does solid conduct electricity?	Does liquid conduct electricity?	Is it soluble in water?
Ionic	NaCl MgCl_{2}	High	Solid	No (ions are held in place)	Yes (ions are free to move)	Yes
Simple covalent (molecular)	$\begin{gathered} \mathrm{CO}_{2} \\ \mathrm{I}_{2} \\ \mathrm{H}_{2} \mathrm{O} \end{gathered}$	Low (involves breaking intermolecular forces but not covalent bonds)	May be solid (like I_{2}) but usually liquid or gas	No	No	Depends on whether it can form hydrogen bonds
Giant covalent	Diamond Graphite SiO_{2}	High	Solid	No (except graphite)	(sublimes rather than melting)	No
Metallic	Fe Mg Al	High	Solid	Yes (delocalised electrons)	Yes (delocalised electrons)	No

You Can Use the Properties of a Material to Predict its Structure

You need to be able to predict the type of structure from a list of its properties. Here's a quick example.

Example: Substance X has a melting point of 1045 K. When solid, it is an insulator, but once melted it conducts electricity. Identify the type of structure present in substance X .

1) Substance X doesn't conduct electricity when it's solid, but does conduct electricity once melted. So it looks like it's ionic — that would fit with the fact that it has a high melting point too.
2) You can also tell that it definitely isn't simple covalent because it has a high melting point, it definitely isn't metallic because it doesn't conduct electricity when it's solid, and it definitely isn't giant covalent because it does conduct electricity when melted.
So substance X must be ionic.

Snowman building - family bonding with a melting point of $\mathrm{O}^{\circ} \mathrm{C}$.

Predicting Structures and Properties

You can make Predictions about a Substance's Properties from its Bonding

1) You can also predict how a substance will behave depending on the bonding it has.
2) If you're dealing with metallic, ionic or giant covalent substances, you just need to consider the strong ionic or covalent bonds between the atoms.
3) If you're dealing with simple molecular compounds, you need to think about the intermolecular forces between the molecules, rather than the covalent bonds between the atoms.

Example: Aminomethane $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)$ has a simple molecular structure. Predict the properties of aminomethane, including its solubility in water, its electrical conductivity, and its physical state at room temperature.

- Aminomethane contains an $-\mathrm{NH}_{2}$ group, so is likely to form hydrogen bonds with water. This would make aminomethane soluble in water.
- Aminomethane has a simple molecular structure. In this type of structure, there are no free particles that can carry a charge, so aminomethane doesn't conduct electricity.
- To melt or boil a simple covalent compound you only have to overcome the intermolecular forces that hold the molecules together. You don't need to break the much stronger covalent bonds that hold the atoms together in the molecules. Aminomethane would have weak London forces between its molecules as well as stronger hydrogen bonds. However you would still expect aminomethane to have low boiling and melting points, and so be a gas at room temperature.

Practice Questions

Q1 If a substance has a low melting point, what type of structure is it most likely to have?
Q2 Out of the four main types of structure (ionic, simple covalent, giant covalent and metallic), which will conduct electricity when they are liquids?
Q3 Would you expect a substance with a giant covalent structure to be soluble or insoluble in water?

Exam Questions

Q1 The table below describes the properties of four compounds, A, B, C and D.

Substance	Melting point	Electrical conductivity of solid	Electrical conductivity of liquid	Solubility in water
A	high	poor	good	soluble
B	low	poor	poor	insoluble
C	high	good	good	insoluble
D	very high	poor	(compound sublimes rather than melting)	insoluble

Identify the type of structure present in each substance.
[4 marks]
Q2 Iodine, I_{2}, and graphite are both solid at r.t.p.. At 500 K , iodine exists as a gas, while graphite remains solid. Explain this difference in the properties of iodine and graphite in terms of their structures.
[4 marks]
Q3 A substance, X , has a melting point of $650^{\circ} \mathrm{C}$ and a boiling point of $1107^{\circ} \mathrm{C}$. It conducts electricity in both the solid and liquid states, but is insoluble in water. Which of the follow substances could be substance X ?
A Carbon dioxide
B Magnesium
C Caesium chloride
D Silicon dioxide
[1 mark]

Mystic Molecular Meg - predicting fortunes and properties since 1995.

You need to learn the info in the table on page 36. With a quick glance in my crystal ball, I can almost guarantee you'll need a bit of it in your exam... let me look closer and tell you which bit.... hmm.... No, it's clouded over. You'll have to learn the lot. Sorry. Tell you what - close the book and see how much of the table you can scribble out from memory.

Oxidation Numbers

This double page has more occurrences of＂oxidation＂than the Beatles＇＂All You Need is Love＂features the word＂love＂．

Oxidation Numbers Tell You About the Movement of Electrons

When atoms react with or bond to other atoms，they can lose or gain electrons．The oxidation number（or oxidation state）tells you how many electrons an atom has donated or accepted to form an ion，or to form part of a compound． There are certain rules you need to remember to help you assign oxidation numbers．Here they are．．．

1）All uncombined elements have an oxidation number of $\mathbf{0}$ ．This means they haven＇t accepted or donated any electrons．Elements that are bonded to identical atoms will also have an oxidation number of $\mathbf{0}$ ．

Elements bonded to identical elements．
Oxidation number $=0$

2）The oxidation number of a simple，monatomic ion（that＇s an ion consisting of just one atom）is the same as its charge．

Metals generally form ions with a charge that＇s equal to their Group number．Non－metals form ions with charges equal to their Group number minus 8. ＝1111111111111111111111111心

3）For molecular ions（ions that are made up of a group of atoms with an overall charge），the sum of the oxidation numbers is the same as the overall charge of the ion．Each of the constituent atoms will have an oxidation number of its own，and the sum of their oxidation numbers equals the overall charge．

$$
\begin{aligned}
& \text { Combined oxygen has an oxidation } \\
& \text { number of }-2 \text { (apart from in } \mathrm{O}_{2} \\
& \text { and peroxides - see below). } \\
& \text { There are } 4 \text { oxygen atoms in } \mathrm{SO}_{4}^{2-} \\
& \text { so the total charge from oxygens is } \\
& 4 \times-2=-8 \text {. }
\end{aligned}
$$

4）For a neutral compound，the overall charge is $\mathbf{0}$ ，and each atom in the compound will have its own oxidation number．The sum of these oxidation numbers is 0 ．

| Chlorine forms ions with a |
| :---: | :---: |
| charge of -1 ．So，the oxidation |
| number of each chlorine is -1. |

5）Hydrogen always has an oxidation number of $\boldsymbol{+ 1}$ ，except in metal hydrides $\left(M H_{x^{\prime}}\right.$ where $M=$ metal）where it＇s $\mathbf{- 1}$ and in molecular hydrogen $\left(H_{2}\right)$ where it＇s $\mathbf{0}$ ．
 e．g．in hydrogen chloride： oxidation no． $\mathrm{H}=+1$ oxidation no． $\mathrm{Cl}=-1$

In metal hydrides，e．g． $\mathrm{CaH}_{2} . .$.

．．． H has an oxidation number of -1 ．

The oxidation number of hydrogen in H_{2} is O ．
\qquad lattice structure
シハいいいい11いいいいいた
6）Oxygen nearly always has an oxidation number of $\mathbf{- 2}$ ，except in peroxides $\left(\mathrm{O}_{2}{ }^{2-}\right)$ where it＇s $\mathbf{- 1}$ ，and molecular oxygen $\left(\mathrm{O}_{2}\right)$ where it＇s $\mathbf{0}$ ．

Oxidation Numbers

Roman Numerals tell you the Oxidation Number

1) If an element can have multiple oxidation numbers, or isn't in its 'normal' oxidation number, its oxidation number can be shown by using Roman numerals, e.g. (I) $=+1$, (II) $=+2$, (III) $=+3$ and so on. The Roman numerals are written after the name of the element they correspond to.

Example: In copper(I) oxide, copper has an oxidation number of +1 . Formula $=\mathrm{Cu}_{2} \mathrm{O}$ In copper(II) sulfate, copper has an oxidation number of +2 . Formula $=\mathrm{CuSO}_{4}$
2) lons with names ending in -ate (e.g. sulfate, nitrate, chlorate, carbonate) contain oxygen and another element. For example, sulfates contain sulfur and oxygen, nitrates contain nitrogen and oxygen... and so on.
3) Sometimes the 'other' element in the ion can exist with different oxidation numbers, and so form different '-ate ions'. In these cases, the oxidation number is attached as a Roman numeral after the name of the -ate compound. The Roman numerals correspond to the non-oxygen element in the -ate compound.

Example: In sulfate(VI) ions, the sulfur has oxidation number +6 - this is the $\mathrm{SO}_{4}{ }^{2-}$ ion. In nitrate(III), nitrogen has an oxidation number of +3 - this is the $\mathrm{NO}_{2}{ }^{-}$ion.

You can use Oxidation Numbers to Write Chemical Formulae

1) You might need to use oxidation numbers to work out the chemical formula of a certain compound.
2) Unless you're told otherwise, you can assume the overall charge on a compound is $\mathbf{0}$.
3) To work out the chemical formula, you've just got to work out what ratio of anions
(negatively charged ions) and cations (positively charged ions) gives an overall charge of 0.
Example: What is the formula of barium(II) nitrate?
From the systematic name, you can tell barium has an oxidation number of $\mathbf{+ 2}$.
The formula of the nitrate ion is $\mathrm{NO}_{3}{ }^{-}$and it has an overall charge of -1 .
The overall charge of the compound is 0 , so you need to find a ratio of $\mathrm{Ba}^{2+}: \mathrm{NO}_{3}^{-}$that will make the overall charge 0 .

$$
(+2)+(-1 \times 2)=2+-2=0 \quad \text { The ratio of } \mathrm{Ba}^{2+}: \mathrm{NO}_{3}^{-} \text {is } \mathbf{1 : 2}
$$

So the formula is $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$.

Hands up if you like Roman numerals...

Practice Questions

Q1 What is the oxidation number of H in H_{2} ?
Q2 What is the usual oxidation number for oxygen when it's combined with another element?

Exam Questions

Q1 Sulfur can exist in a variety of oxidation states.
Work out the oxidation state of sulfur in the following compounds:
a) S_{8},
b) $\mathrm{SO}_{3}{ }^{2-}$,
c) $\mathrm{H}_{2} \mathrm{SO}_{4}$,
d) $\mathrm{H}_{2} \mathrm{~S}$.
[4 marks]

Q2 Hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ is a commonly used component of bleach.
a) In hydrogen peroxide, what is the oxidation number of:
i) hydrogen?
ii) oxygen?
[2 marks]
b) Hydrogen peroxide reacts with sodium sulfite $\left(\mathrm{Na}_{2} \mathrm{SO}_{3}\right)$ to produce sodium sulfate and water.
What is the oxidation number of sulfur in the sodium sulfite compound?
[1 mark]

Sockidation number - a measure of how many odd socks are in my drawers...

There isn't any tricky maths involved with oxidation numbers, just a bit of adding, some subtracting... maybe a bit of multiplying if you're unlucky. The real trick is to learn all the rules about predicting oxidation numbers. So get cracking.

Redox Reactions

Oxidation numbers are great. They're darn useful for showing where electrons move from and to during redox reactions.

If Electrons are Transferred, it's a Redox Reaction

1) A loss of electrons is called oxidation.
2) A gain in electrons is called reduction.
3) Reduction and oxidation happen simultaneously
 Example: the formation of sodium chloride — hence the term "redox" reaction.
4) An oxidising agent accepts electrons and gets reduced.
5) A reducing agent donates electrons and gets oxidised.
from sodium and chlorine is a redox reaction:

Oxidation Numbers go Up or Down as Electrons are Lost or Gained

1) The oxidation number for an atom will increase by $\mathbf{1}$ for each electron lost.
2) The oxidation number will decrease by $\mathbf{1}$ for each electron gained.
3) To work out whether something has been oxidised or reduced, you need to assign each element an oxidation number before the reaction, and after the reaction.
4) If the oxidation number has increased, then the element has lost electrons and been oxidised.
5) If the oxidation number has decreased, then the element has gained electrons and been reduced.

Example: Identify the oxidising and reducing agents in this reaction: $4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$
Iron has gone from having an oxidation number of 0 to having an oxidation number of +3 . It's lost electrons and has been oxidised. This makes it the reducing agent in this reaction.
Oxygen has gone from having an oxidation number of 0 to having an oxidation number of -2 . It's gained electrons and has been reduced. This means it's the oxidising agent in this reaction.
6) When metals form compounds, they generally donate electrons to form positive ions and their oxidation numbers increase (they usually have positive oxidation numbers).
7) When non-metals form compounds, they generally gain electrons to form negative ions and their oxidation numbers decrease (they usually have negative oxidation numbers).
8) A disproportionation reaction is a special redox reaction. During a disproportionation reaction, an element in a single species is simultaneously oxidised and reduced. Oxidation numbers can show this happening.

Example:
Chlorine and its ions undergo disproportionation reactions:

You can Write Half-Equations and Combine them into Redox Equations

1) Ionic half-equations show oxidation or reduction.
2) You show the electrons that are being lost or gained in a half-equation. For example, this is the half-equation for the oxidation of sodium: $\mathrm{Na} \rightarrow \mathrm{Na}^{+}+\mathrm{e}$
3) You can combine half-equations for different oxidising or reducing agents together to make full equations for redox reactions.

Example: Magnesium burns in oxygen to form magnesium oxide.
Oxygen is reduced to $\mathrm{O}^{2-}: \mathrm{O}_{2}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{O}^{2-} \quad$ Magnesium is oxidised to $\mathrm{Mg}^{2+}: \mathbf{M g} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$
You need both equations to contain the same number of electrons. So double everything in the second half-equation: $2 \mathbf{M g} \rightarrow \mathbf{2 \mathbf { M g } ^ { 2 + }}+\mathbf{4 \mathrm { e } ^ { - }}$
Combining the half-equations makes: $2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow \mathbf{2 M g O}$
The electrons aren't included in the full equation. You end up with four on each side - so they cancel.

Redox Reactions

Use $\mathbf{e}^{-}, \mathbf{H}^{+}$and $\mathbf{H}_{2} \mathbf{O}$ to Balance Half-Equations

1) For some redox equations, you'll find that you can't balance the equation by just multiplying up the reactants and products and adding a few electrons.
2) You might have to add some \mathbf{H}^{+}ions and $\mathbf{H}_{2} \mathbf{O}$ to your half-equations to make them balance.

Example: Acidified manganate(VII) ions $\left(\mathrm{MnO}_{4}^{-}\right)$can be reduced to Mn^{2+} by Fe^{2+} ions. Write the full redox equation for this reaction.

Iron is being oxidised. The half-equation for this is: $\mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-}$
The second half-equation is a little bit trickier...

1) Manganate is being reduced. Start by writing this down: $\mathrm{MnO}_{4}^{-}{ }_{(\text {aq) }} \rightarrow \mathrm{Mn}^{2+}{ }_{\text {(aq) }}$
2) To balance the oxygens, you need to add water to the right-hand side of the equation:

$$
\mathrm{MnO}_{4}^{-}{ }_{\text {(aq) }}+\rightarrow \mathrm{Mn}^{2+}{ }_{\text {(aq) }}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

3) Now you need to add some H^{+}ions to the left-hand side to balance the hydrogens:

$$
\mathrm{MnO}_{4{ }_{(\text {aq) }}^{-}}+8 \mathrm{H}_{(\mathrm{aq})}^{+} \rightarrow \mathrm{Mn}^{2+}{ }_{(\mathrm{aq)}}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

4) Finally, balance the charges by adding some electrons:

Now you have to make sure the number of electrons produced in the iron half-equation equal the number of electrons used up in the

$$
\mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \xrightarrow{\times 5} 5 \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \rightarrow 5 \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+5 \mathrm{e}^{-}
$$ manganate half-equation.

Now combine both half-equations to give a full redox equation.

$$
\mathrm{MnO}_{4}^{-}{ }_{(\mathrm{aq})}+8 \mathrm{H}_{(\mathrm{aq)}}^{+}+5 \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Mn}^{2+}{ }_{(\mathrm{aq)}}+5 \mathrm{Fe}^{3+}{ }_{(\mathrm{aq)}}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Practice Questions

Q1 What is a reducing agent?
Q2 What happens to the oxidation number of an element that loses electrons?
Q3 What happens during a disproportionation reaction?

Exam Questions

Q1 Lithium oxide forms when lithium is burned in air. Combustion is a redox reaction.
The equation for the combustion of lithium is: $4 \mathrm{Li}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{Li}_{2} \mathrm{O}_{(\mathrm{s})}$
a) Define oxidation in terms of the movement of electrons.
b) State which reactant in this reaction is reduced. Write a half-equation for this reduction reaction.

Q2 The half-equation for chlorine acting as an oxidising agent is: $\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}$
a) Define the term oxidising agent in terms of electron movement.
b) Given that indium reacts with chlorine to form indium(III) ions,
form a balanced equation for the reaction of indium with chlorine.
[2 marks]
Q3 The following reaction is a disproportionation reaction: $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$.
By using oxidation numbers, show why this reaction can be classified as a disproportionation reaction. [3 marks]
Q4 Vanadyl(IV) ions $\left(\mathrm{VO}^{2+}\right)$ react with $\operatorname{tin}(\mathrm{II})$ ions. During this reaction, the vanadyl(IV) ions are reduced to vanadium(III) ions, and tin is oxidised to tin(IV). Write a full redox equation for this reaction.

Oxidising agent SALE NOW ON - everything's reduced...

Half-equations look evil, with all those electrons flying about. But they're not too bad really. Just make sure you get lots of practice using them. (Oh, look, there are some handy questions up there.)

And while we're on the redox page, I suppose you ought to learn the most famous memory aid thingy in the world..

Group 2

Get ready to learn about the elements magnesium, calcium, strontium and barium. They're lovely.

Ionisation Energy Decreases Down the Group

1) Each element down Group 2 has an extra electron shell compared to the one above.
2) The extra inner shells shield the outer electrons from the attraction of the nucleus.
3) Also, the extra shell means that the outer electrons are further away from the
nucleus, which greatly reduces the electrostatic attraction between the nucleus and the outer electrons.

4) This can explain the trend in reactivity of the Group 2 elements - most of these elements react by losing their two outer electrons (see below). So, the higher their first and second ionisation energies, the less likely they are to lose these electrons and the less reactive they will be. So, reactivity increases down the group.

Group 2 Elements React with Water, Oxygen and Chlorine

When Group 2 elements react, they form ions with a charge of $\mathbf{2 +} \mathrm{M} \rightarrow \mathrm{M}^{2+}+1111111111111111$ This is because Group 2 atoms contain 2 electrons in their outer shell. They lose both of these electrons when they react.

$$
\text { E.g. } \quad \mathbf{C a} \rightarrow \mathbf{C a}^{2+}+2 \mathrm{e}^{-}
$$

They react with WATER to produce HYDROXIDES.

The Group 2 metals react with water to give a metal hydroxide and hydrogen.
e.g.

$$
\begin{aligned}
& \mathrm{M}_{(\mathrm{s}}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{M}(\mathrm{OH})_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})} \\
& \mathrm{Ca}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
\end{aligned}
$$

Mr Kelly has one final attempt at explaining electron shielding to his students...

> Both of these factors make it easier to remove outer electrons, meaning the ionisation energy decreases as you go down Group 2 .

Group 2

...So They Form Alkaline Solutions and Neutralise Acids

	Reaction with Water	Reaction with Dilute Acid
Oxides	$\mathrm{MO}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{M}(\mathrm{OH})_{2(\mathrm{aq})}$	$\mathrm{MO}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{MCl}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
Hydroxides	$\mathrm{M}(\mathrm{OH})_{2(\mathrm{~s})} \xrightarrow{+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}} \mathrm{M}(\mathrm{OH})_{2(\mathrm{aq})}$	$\mathrm{M}(\mathrm{OH})_{2(\mathrm{aq})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{MCl}_{2(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

Solubility Trends Depend on the Compound Anion

1) Generally, compounds of Group 2 elements that contain singly charged negative ions (e.g. OH^{-}) increase in solubility down the group...
2) ...whereas compounds that contain doubly charged negative ions (e.g. $\mathrm{SO}_{4}{ }^{2-}$ and $\mathrm{CO}_{3}{ }^{2-}$) decrease in solubility down the group.
3) You need to know the solubility trends for the Group 2 hydroxides and the sulfates.

Group 2 element	hydroxide $\left(\mathbf{O H}^{-}\right)$	sulfate $\left(\mathbf{S O}_{4}{ }^{2-}\right)$
magnesium	least soluble	most soluble
calcium		
strontium		
barium	most soluble	least soluble

4) Most sulfates are soluble in water, but barium sulfate is insoluble.
5) Compounds like magnesium hydroxide that have very low solubilities are said to be sparingly soluble.

Practice Questions

Q1 Which is the least reactive metal in Group 2?
Q2 Why does reactivity with water increase down Group 2?
Q3 Describe two reactions of a Group 2 oxide that show it to be a base.
Q4 Which is less soluble, barium hydroxide or magnesium hydroxide?
Q5 Which is more soluble, strontium sulfate or calcium sulfate?

Exam Questions

Q1 Barium and calcium are both Group 2 elements.
a) Which of the following would be more soluble than calcium hydroxide?
A magnesium hydroxide only
B strontium hydroxide and barium hydroxide
C strontium hydroxide only
D magnesium hydroxide and barium hydroxide
[1 mark]
b) Which, out of barium and calcium, has the highest, combined first and second ionisation energy? Explain your answer.
c) Calcium can be burned in chlorine gas. Write an equation, including state symbols, for the reaction.

Q2 a) Write a balanced equation for the reaction of magnesium hydroxide with dilute hydrochloric acid.
b) Write a balanced equation for the reaction of calcium oxide with water.

I'm not gonna make it. You've gotta get me out of here, Doc...

We're deep in the dense jungle of Inorganic Chemistry now. Those carefree days of atomic structure are well behind us. It's now an endurance test and you've just got to keep going. It's tough, but you've got to stay awake and keep learning.

Group 1 and 2 Compounds

These pages are about Group 1 and 2 compounds, starting with the thermal stability of their carbonates and nitrates. So - quick, get your vest and long johns on before you topple over - we haven't even started yet.

Thermal Stability of Carbonates and Nitrates Changes Down the Group

Thermal decomposition is when a substance breaks down (decomposes) when heated.
The more thermally stable a substance is, the more heat it will take to break it down.

Thermal stability increases down a group

The carbonate and nitrate ions are large negative ions (anions) and can be made unstable by the presence of a positively charged ion (a cation). The cation polarises the anion, distorting it. The greater the distortion, the less stable the compound.
Large cations cause less distortion than small cations as they have a lower charge density - the charge on the ion is spread out over a larger area. So the further down the group, the larger the cations, the lower the charge

Magnesium ions polarise carbonate ions more than barium ions do, meaning magnesium carbonate is less stable. density so the less distortion caused and the more stable the carbonate/nitrate compound.

Group 2 compounds are less thermally stable than Group 1 compounds

The greater the charge on the cation, the greater the distortion and the less stable the carbonate/nitrate compound becomes. Group 2 cations have a +2 charge, compared to a +1 charge for Group 1 cations. So Group 2 carbonates and nitrates are less stable than those of Group 1.

Group 1	Group 2
Group 1 carbonates* are thermally stable - you can't heat them enough with a Bunsen to make them decompose (though they do decompose at higher temperatures). *except $\mathrm{Li}_{2} \mathrm{CO}_{3}$ which decomposes to $\mathrm{Li}_{2} \mathrm{O}$ and CO_{2} (there's always one...).	Group 2 carbonates decompose to form the oxide and carbon dioxide. $\text { e.g. } \begin{aligned} & \mathrm{MCO}_{3(\mathrm{~s})} \rightarrow \mathrm{MO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})} \\ & \mathrm{CaCO}_{3(\mathrm{~s})} \end{aligned} \rightarrow \underset{\text { calcium }}{\text { carbonate }} \begin{gathered} \text { calcium } \\ \text { caride } \end{gathered}+\mathrm{CO}_{2(\mathrm{~g})}$
Group 1 nitrates** decompose to form the nitrite and oxygen. $\begin{aligned} & \quad 2 \mathrm{MNO}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{MNO}_{2(\mathrm{~s})}+\mathrm{O}_{2(\mathrm{~g})} \\ & \text { e.g. } 2 \mathrm{KNO}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{KNO}_{2(\mathrm{~s})}+\mathrm{O}_{2(\mathrm{~g})} \\ & \text { potassium } \\ & \text { nitrate } \end{aligned} \begin{aligned} & \text { potassium } \\ & \text { nitrite } \end{aligned}$ ${ }^{* *}$ except LiNO_{3} which decomposes to form $\mathrm{Li}_{2} \mathrm{O}, \mathrm{NO}_{2}$ and O_{2}.	Group 2 nitrates decompose to form the oxide, nitrogen dioxide and oxygen. $\left.\begin{array}{rl} 2 \mathrm{M}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{~s})} & \rightarrow \mathrm{MO}_{(\mathrm{s})} \end{array}+4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}\right)$

Here's How to Test the Thermal Stability of Nitrates and Carbonates

How easily nitrates decompose can be tested by measuring...

- how long it takes until a certain amount of oxygen is produced (i.e. enough to relight a glowing splint).
- how long it takes until an amount of brown gas $\left(\mathrm{NO}_{2}\right)$ is produced. This needs to be done in a fume cupboard because NO_{2} is toxic.

Daisy the cow *

Group 1 and 2 Compounds

Group 1 and 2 Compounds Burn with Distinctive Flame Colours

...not all of them, but quite a few. For compounds containing the ions below, flame tests can help identify them.

Flame colours of Group 1 and 2 metals and their compounds

Li red
Na orange/yellow
K lilac
Rb red
Cs blue
Ca brick-red
Sr crimson
Ba green

Here's how to do a flame test:

1) Mix a small amount of the compound you're testing with a few drops of hydrochloric acid.
2) Heat a piece of platinum or nichrome wire in a hot Bunsen flame to clean it.
3) Dip the wire into the compound/acid mixture. Hold it in a very hot flame and note the colour produced.

The explanation:

The energy absorbed from the flame causes electrons to move to higher energy levels. The colours are seen as the electrons fall back down to lower energy levels, releasing energy in the form of light. The difference in energy between the higher and lower levels determines the wavelength of the light released - which determines the colour of the light.
 The movement of electrons between energy levels is called electron transition.

Practice Questions

Q1 What is the trend in the thermal stability of the nitrates of Group 1 elements?
Q2 Write a general equation for the thermal decomposition of a Group 2 carbonate.
Use M to represent the Group 2 metal.
Q3 Describe two ways that you could test how easily the nitrates of Group 2 decompose.
Q4 Which Group 1 or 2 metal ions are indicated by the following flame colours?
a) Iilac
b) brick-red
c) orange/yellow

Exam Questions

Q1 Barium and calcium are both Group 2 elements. They both form carbonates.
a) Write a balanced equation for the thermal decomposition of calcium carbonate, including state symbols.
[2 marks]
b) State whether barium carbonate or calcium carbonate is more thermally stable. Explain your answer. [3 marks]

Q2 a) Write a balanced equation, including state symbols, for the thermal decomposition of sodium nitrate. [1 mark]
b) How could you test for the gas produced in the thermal decomposition?
c) Place the following in order of ease of thermal decomposition (easiest first).
magnesium nitrate potassium nitrate sodium nitrate
Explain your answer.
Q3 a) When a substance is heated, what changes occur within the atom that give rise to a coloured flame? [2 marks]
b) A compound gives a blue colour in a flame test.

What s-block metal ions might this compound contain?
Bored of Group 2? Me too. Let's play noughts and crosses...

x	0	
x	x	
0	0	

Noughts and crosses is pretty rubbish really, isn't it? It's always a draw. Ho hum. Back to Chemistry then, I guess...

Halogens

Hold on to your hats... here come the halogens...

Halogens are the Highly Reactive Non-Metals of Group 7

1) The table below gives some of the main properties of the first 4 halogens.

halogen	formula	colour	physical state (at room temp.)	electronic structure	electronegativity
fluorine	F_{2}	pale yellow	gas	$1 s^{2} 2 s^{2} 2 p^{5}$	increases up the group
chlorine	Cl_{2}	green	gas	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$	
bromine	Br_{2}	red-brown	liquid	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{5}$	
iodine	I_{2}	grey	solid	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{5}$	

2) Halogens in their natural state exist as covalent diatomic molecules (e.g. $\mathrm{Br}_{2}, \mathrm{Cl}_{2}$). Because they're non-polar, they have low solubility in water.
3) But they do dissolve easily in organic compounds like hexane. Some of these resulting solutions have distinctive colours that can be used to identify them.

	colour in water	colour in hexane
chlorine	virtually colourless	virtually colourless
bromine	yellow/orange	orange/red
iodine	brown	pink/violet

Halogens get Less Reactive Down the Group

1) Halogen atoms usually react by gaining an electron in their outer p subshell
 - this means they're reduced. As they're reduced, they oxidise another
ox. state: 0

$$
\mathrm{X}+\mathrm{e}^{-} \rightarrow \mathrm{X}^{-}
$$ substance (it's a redox reaction) - so they're oxidising agents.

2) As you go down the group, the atoms become larger, so their outer electrons are further from the nucleus. The outer electrons are also shielded more from the attraction of the positive nucleus, because there are more inner electrons. This makes it harder for larger atoms to attract the electron needed to form an ion. So larger atoms are less reactive and reactivity decreases down the group.
3) This also explains the trend in electronegativity. Electronegativity is a measure of how well an atom attracts electrons in a covalent bond (see page 28). Electronegativity decreases down Group 7 due to the increase in the number of inner electron shells and the increase in distance between the nucleus and the bonding electrons.

Melting and Boiling Points Increase Down the Group

1) As you go down Group 7, there's an increase in electron shells (and therefore electrons). This means the London forces (see pages 30-31) between the halogen molecules get stronger.
2) The increase in London forces makes it harder to overcome the intermolecular forces, and so melting and boiling points also increase.
3) The chemistry of fluorine and astatine is hard to study. Fluorine is a toxic gas and astatine is highly radioactive and decays quickly. But, you can predict how they will behave by looking at the trends in the behaviour of the other halogens. Generally, they fit with the trends seen down the other elements in Group 7.

Halogen	Melting Point / ${ }^{\circ} \mathrm{C}$	Boiling Point / ${ }^{\circ} \mathrm{C}$
F 2	-220	-188
Cl	-102	-34
$\mathrm{Br} \stackrel{\text { ¢ }}{\text { ¢ }}$	-7	59
	114	184

Halogens can Displace Halide lons from Solution

1) A displacement reaction is a type of reaction where one element replaces another element in a compound.

For example, if you add aqueous chlorine to a potassium bromide solution, the chlorine kicks the bromine out and takes its place:

2) The halogens' relative oxidising strengths can be seen in their displacement reactions with halide ions.
3) In a displacement reaction, a more reactive halogen will replace a less reactive halide in a solution:

- Chlorine $\left(\mathrm{Cl}_{2}\right)$ will displace both bromide $\left(\mathrm{Br}^{-}\right)$and iodide $\left(\mathrm{I}^{-}\right)$ions.
- Bromine $\left(\mathrm{Br}_{2}\right)$ will displace iodide $\left(\mathrm{I}^{-}\right)$but not chloride $\left(\mathrm{Cl}^{-}\right)$ions.
- Iodine $\left(\mathrm{I}_{2}\right)$ will not displace chloride $\left(\mathrm{Cl}^{-}\right)$or bromide $\left(\mathrm{Br}^{-}\right)$ions.

Halogens

Halogen-Halide Reactions are Redox Reactions

1) A displacement reaction between halogens and halides is a redox reaction.

The thing that is displaced is oxidised, and the thing that does the displacing is reduced.

Here are the half-equations for the reaction of chlorine with potassium bromide:

$$
\begin{array}{ll}
\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-} & \text {Chlorine displaces bromine and is reduced. } \\
2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{e}^{-} & \text {Bromine is displaced by chlorine and gets oxidised. }
\end{array}
$$

2) This table shows the ionic equations for the reactions that happen if you add aqueous halogen solutions to solutions containing halide ions. (Remember, halogens only displace halides that are below them in the periodic table.)

	Potassium chloride solution $\mathrm{KCl}_{\text {(aq) }}$ (colourless)	Potassium bromide solution $\mathrm{KBr}_{(\text {(aq) }}$ (colourless)	Potassium iodide solution $\mathrm{KI}_{\text {(aq) }}$ (colourless)
Chlorine water $\mathrm{Cl}_{2(\text { aq) }}$ (colourless)	no reaction	$\mathrm{Cl}_{2(\text { (aq) }}+2 \mathrm{Br}^{-}$(aq) $\rightarrow 2 \mathrm{Cl}^{-}{ }_{\text {(aq) }}+\mathrm{Br}_{2(\text { (aq) }}$	$\mathrm{Cl}_{2(\mathrm{aq)}}+2 \mathrm{I}_{(\text {(aq) }} \rightarrow 2 \mathrm{Cl}^{-}{ }_{(\mathrm{aq})}+\mathrm{I}_{2(\mathrm{aq})}$
Bromine water $\mathrm{Br}_{2 \text { (aq) }}$ (orange)	no reaction	no reaction	$\mathrm{Br}_{2(\mathrm{aq})}+2 \mathrm{I}^{-}{ }_{\text {(aq) }} \rightarrow 2 \mathrm{Br}^{-}{ }_{\text {(aq) }}+\mathrm{I}_{2(\mathrm{aq})}$
Iodine solution $I_{\text {2(aq) }}$ (brown)	no reaction	no reaction	no reaction

3) If a reaction takes place, you will see a colour change:

- If bromide is displaced and bromine $\left(\mathrm{Br}_{2}\right)$ is formed, the reaction mixture will turn orange.
- If iodide is displaced and iodine $\left(\mathrm{I}_{2}\right)$ is formed, the reaction mixture will turn brown.

4) You can make these changes easier to see by shaking the reaction mixture with an organic solvent like hexane. The halogen that's present will dissolve in the organic solvent, which settles out as a distinct layer above the aqueous solution.

Practice Questions

Q1 What colour is a solution of bromine in water? And in hexane?
Q2 Going down the group, the halogens become less reactive. Explain why.
Q3 Write an ionic equation for the reaction that occurs when potassium iodide is added to bromine water.

Exam Questions

Q1 The halogens can be found in Group 7 of the periodic table.
a) Write an ionic equation for the reaction between chlorine solution and sodium bromide (NaBr). [1 mark]
b) Describe and explain the trend in the boiling points of the halogens.
[3 marks]

Q2 A student has a sample of an aqueous potassium halide solution. She knows it contains either chloride, bromide or iodide ions. The student adds a few drops of aqueous bromine solution to the test tube and a reaction takes place.
a) Which halide ion is present in the potassium halide solution?
[1 mark]
b) What colour will the aqueous solution in the test tube be after the reaction has finished?
[1 mark]

Bromine molecules - Chemistry's greatest Bromance...

This looks like a lot of tricky stuff, but really it all boils down to just spending a bit of time learning it. Make sure you can remember the Group 7 trends, and that you're able to explain them too. But it's not all bad - you get a periodic table in the exam, so you don't have to remember what order the halogens come in. Sounds like you're being spoilt, to me...

Reactions of Halogens

Here comes another page jam-packed with golden nuggets of halogen fun. Oh yes, I kid you not.
This page is the roller coaster of Chemistry... white-knuckle excitement all the way...

Halogens Can React with Group 1 and Group 2 Metals

Remember, when halogens react they're reduced - and they oxidise other substances.

Abstract

जl|tा1ा11111111111, Halogens are toxic, so make sure you carry out any reactions with them in a fume cupboard. ノ।।।।।।।।

 For example, they oxidise Group 1 and Group 2 metals in reactions that produce halide salts.Group 1 Metals...

$$
\begin{array}{lcllll}
\text { E.g. } 2 \mathrm{Li}_{(\mathrm{s})}+\mathrm{F}_{2(\mathrm{~g})} & \rightarrow 2 \mathrm{LiF}_{(\mathrm{s})} & & \\
\text { ox. state of } \mathrm{Li}: \mathbf{0} & & \rightarrow+1 & \text { oxidation } & \text { Lithium is oxidised: } \mathrm{Li} \rightarrow \mathrm{Li}^{+}+\mathrm{e}^{-} \\
\text {ox. state of } \mathrm{F}: & \mathbf{0} & \rightarrow-1 & \text { reduction } & \text { Fluorine is reduced: } \mathrm{F}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{~F}^{-}
\end{array}
$$

Group 2 Metals...

$$
\text { E.g. } \quad \mathrm{Mg}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{MgCl}_{2(\mathrm{~s})}
$$

ox. state of Mg : $\mathbf{0}$
$\rightarrow \quad+2$
oxidation
ox. state of Cl:
$0 \rightarrow-1$
reduction
$\begin{aligned} \text { Magnesium is oxidised: } & \mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-} \\ \text {Chlorine is reduced: } & \mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}\end{aligned}$

Halogens Undergo Disproportionation with Cold Alkalis

The halogens will react with cold dilute alkali solutions.
In these reactions, the halogen is simultaneously oxidised and reduced (called disproportionation)...

The halogens (except fluorine) can exist in a wide range of oxidation states.
For example:

Oxidation state	-1	0	+1	+1	+3	+5	+7
Ion	Cl^{-}	Cl	ClO^{-}	BrO^{-}	BrO_{2}^{-}	IO_{3}^{-}	IO_{4}^{-}
Name	chloride	chlorine	chlorate(I)	bromate(I)	bromate(III)	iodate(V)	iodate(VII)

Chlorine and Sodium Hydroxide make Bleach

If you mix chlorine gas with cold, dilute aqueous sodium hydroxide, the above reaction takes place and you get sodium chlorate(I) solution, $\mathrm{NaClO}_{(\mathrm{aq})^{\prime}}$, which just happens to be bleach.

$$
2 \mathrm{NaOH}_{(\mathrm{aq)}}+\underset{0}{\mathrm{Cl}_{2(\mathrm{~g})}} \rightarrow \underset{+1}{\mathrm{NaClO}_{(\mathrm{aq)}}}+\underset{-1}{\mathrm{NaCl}_{(\mathrm{aq)}}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

The oxidation number of Cl goes up and down so, you guessed it, it's disproportionation. Hurray.

The sodium chlorite(I) solution (bleach) has loads of uses - it's used in water treatment, to bleach paper and textiles... and it's good for cleaning toilets, too. Handy...

Reactions of Halogens

Halogens Also Undergo Disproportionation with Hot Alkalis

In reactions with hot alkalis, halogens are also simultaneously oxidised and reduced (disproportionation).

	$\mathbf{3 X _ { \mathbf { 2 } } + \mathbf { 6 N a O H }} \rightarrow \mathbf{N a X O}_{\mathbf{3}}+\mathbf{5 N a X}+\mathbf{3} \mathbf{H}_{\mathbf{2}} \mathbf{O}$	
lonic equation:	$3 \mathrm{X}_{2}+6 \mathrm{OH}^{-} \rightarrow \mathrm{XO}_{3}^{-}+5 \mathrm{X}^{-}+3 \mathrm{H}_{2} \mathrm{O}$	
Oxidation number of $\mathrm{X}:$	0	+5

11111111111111111111111111, Reactions using chlorine need to be carried out in a fume

Chlorine is used to Kill Bacteria in Water

When you mix chlorine with water, it undergoes disproportionation.
You end up with a mixture of hydrochloric acid and hypochlorous acid.

Hypochlorous acid ionises to make chlorate(I) ions (also called hypochlorite ions).

$$
\mathrm{HClO}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{ClO}_{(\mathrm{aq})}^{-}+\mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}
$$

Chlorate (I) ions kill bacteria.

So, adding chlorine (or a compound containing hypochlorite ions) to water can make it safe to drink or swim in.

Crystal and Shane were thrilled to hear that the water was safe to swim in.

Practice Questions

Q1 What is formed when a halogen reacts with a Group 1 metal?
Q2 How is common household bleach formed?
Q3 Write the equation for the reaction of chlorine with water. State underneath the oxidation numbers of the chlorine.

Exam Question

Q1 If liquid bromine is mixed with cold, dilute potassium hydroxide, potassium bromate(I) is formed.
a) Give the ionic equation for the reaction.
[1 mark]
b) What type of reaction is this?
[1 mark]
If liquid bromine is reacted with hot, dilute potassium hydroxide, a reaction, different to that outlined in a), occurs.
c) Write the equation for the reaction that occurs when liquid bromine is mixed with hot, dilute potassium hydroxide

Remain seated until the page comes to a halt. Please exit to the right...

Oooh, what a lovely page, if I do say so myself. I bet the question of how bleach is made and how chlorine reacts with sodium hydroxide has plagued your mind since childhood. Well now you know. And remember... anything that chlorine can do, bromine and iodine can generally do as well. Eeee... it's just fun, fun, fun all the way.

Reactions of Halides

Ah, halides. Personally, I can never get enough of them.

The Reducing Power of Halides Increases Down the Group...

A halide ion can act as a reducing agent by losing an electron from its outer shell (see the reaction with halogens on page 47). How easy this is depends on the attraction between the halide's nucleus and the outer electrons. As you go down the group, the attraction gets weaker because...

1) ... the ions get bigger, so the electrons are further away from the positive nucleus,
2) ... there are extra inner electron shells, so there's a greater shielding effect.

...which Explains their Reactions with Sulfuric Acid

All the halides react with concentrated sulfuric acid to give a hydrogen halide as a product to start with.
But what happens next depends on which halide you've got. Here are the reactions of the Group 1 halides.

Reaction of KF or KCl with $\mathrm{H}_{2} \mathrm{SO}_{4}$

1) Hydrogen fluoride (HF) or hydrogen chloride gas (HCl) is formed.

$$
\begin{array}{ll}
\mathrm{KF}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{l})} \rightarrow \mathrm{KHSO}_{4(\mathrm{~s})}+\mathrm{HF}_{(\mathrm{g})}<\mathrm{You}^{\prime} l l \\
\mathrm{KCl}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{l})} \rightarrow \mathrm{KHSO}_{4(\mathrm{~s})}+\mathrm{HCl}_{(\mathrm{g})} & \text { 2) misty fumes as the gas comes into contact with moisture in the air. } \\
& \begin{array}{l}
\text { But fluoride ions (} \mathrm{F}^{-} \text {) and chloride ions }\left(\mathrm{Cl}^{-}\right) \text {aren't strong enough reducing } \\
\text { agents to reduce the sulfuric acid, so the reaction stops there. }
\end{array} \\
& \text { 3) } \begin{array}{l}
\text { It's not a redox reaction - the oxidation numbers of } \\
\text { the halide and sulfur stay the same (}-1 \text { and }+6) .
\end{array}
\end{array}
$$

Reaction of KBr with $\mathrm{H}_{2} \mathrm{SO}_{4}$

$$
\begin{aligned}
& \mathrm{KBr}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{SO}_{4(1)} \rightarrow \mathrm{KHSO}_{4(\mathrm{~s})}+\mathrm{HBr}_{(\mathrm{g}} \\
& 2 \mathrm{HBr}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{l})} \rightarrow \mathrm{Br}_{2(\mathrm{~g})}+\mathrm{SO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& \text { 1) The first reaction gives misty fumes } \\
& \text { of hydrogen bromide gas (HBr). } \\
& \text { 2) But bromide ions }\left(\mathrm{Br}^{-}\right) \text {are a stronger } \\
& \text { reducing agent than chloride ions }\left(\mathrm{Cl}^{-}\right) \text {and }
\end{aligned}
$$

Reaction of KI with $\mathrm{H}_{2} \mathrm{SO}_{4}$

Hydrogen Halides are Acidic Gases

The hydrogen halides are colourless gases, but you can't forget about them just cos you can't see 'em.

1) The hydrogen halides can dissolve in water (and moisture in the air) to produce misty fumes of acidic gas. (They'll happily turn damp, blue litmus paper red.)
E.g. $\quad \mathrm{HCl}_{(\mathrm{g})} \rightarrow \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})}$ $\mathrm{HCl}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\text {aq) }}+\mathrm{Cl}_{(\text {(aq) }}^{-}$
2) Hydrogen chloride forms hydrochloric acid, hydrogen bromide forms hydrobromic acid and hydrogen iodide gives hydroiodic acid.
3) The hydrogen halides also react with ammonia gas to give white fumes.

$$
\text { E.g. } \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{HCl}_{(\mathrm{g})} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})} \text { (t's an acid-base reaction.) }
$$ E.g. hydrogen chloride gives ammonium chloride.

Reactions of Halides

Silver lons React with Halide lons to Form a Precipitate

This can be used as a test for halides. First you add dilute nitric acid to remove ions which might interfere with the reaction.

$$
\mathrm{Ag}_{(\text {aq) }}^{+}+\mathrm{X}_{(\text {aq) }}^{-} \rightarrow \mathrm{AgX}_{(\mathrm{s})} \quad \ldots \text { where } \mathrm{X} \text { is } \mathrm{Cl}, \mathrm{Br} \text { or } \mathrm{I}
$$

A precipitate of the silver halide is formed.
For example, if you add silver nitrate to sodium chloride:

$$
\mathrm{Ag}_{(\mathrm{aq})}^{+}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{AgCl}_{(\mathrm{s})}
$$

The colour of the precipitate identifies the halide present in the original solution.

Halide	Precipitate formed
Fluoride, F^{-}	no precipitate (AgF is soluble)
Chloride, Cl^{-}	white precipitate
Bromide, Br^{-}	cream precipitate
lodide, I^{-}	yellow precipitate

These precipitates can look quite similar, so it can be difficult to identify a halide based on just this test.
Thankfully, you can tell them apart by watching what happens when you add some ammonia solution.

Original Precipitate	Observation
AgCl	precipitate dissolves in dilute ammonia solution to give a colourless solution
AgBr	precipitate remains unchanged if dilute ammonia solution is added, but will dissolve in concentrated ammonia solution to give a colourless solution
Agl	precipitate does not dissolve, even in concentrated ammonia solution

Practice Questions

Q1 Give two reasons why a bromide ion is a more powerful reducing agent than a chloride ion.
Q2 Name the gaseous products formed when potassium bromide reacts with concentrated sulfuric acid.
Q3 What type of substance is formed when a hydrogen halide is passed through water?
Q4 What would you see if you mixed hydrogen iodide with ammonia?
Q5 What colour precipitate forms during the reaction between silver ions and bromide ions?

Exam Questions

Q1 What colour precipitate would be produced from the reaction of sodium iodide with silver ions?
A yellow
B white
C blue
D cream
[1 mark]
Q2 A student carried out chemical tests using concentrated sulfuric acid in order to distinguish between solid samples of sodium chloride and sodium bromide.
For each test, state what she would have observed and write an equation for the reaction which occurred. [6 marks]
Q3 Potassium iodide and potassium bromide both react with sulfuric acid.
Compare the reactions of these two potassium halides with sulfuric acid.
You should include suitable chemical equations in your answer.
[6 marks]

Get your umbrella - there's silver halide precipitation heading this way...

Having to learn the reactions of the halides with silver nitrate can be a bore, but they're on the specification so you really do need to know 'em. You can't ignore the reactions of the halides with sulfuric acid either, or the reactions of hydrogen halides with ammonia and water. Sorry. Best thing for it is to just crack on I guess. Get yourself a cuppa first.

Tests for lons

If you've got some unknown ions, there are some nifty little experiments you can do to identify them. There are tests for both positive ions and for negative ions. And that's what the next couple of pages are all about.

Hydrochloric Acid Can Help Detect Carbonates

The first of the negative ion tests is for carbonate ions $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ and hydrogencarbonate $\left(\mathrm{HCO}_{3}{ }^{-}\right)$ions:
With dilute hydrochloric acid, carbonates will fizz because they give off carbon dioxide.

$$
\mathrm{CO}_{3}{ }^{2-}{ }_{(\mathrm{s})}+2 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

With dilute hydrochloric acid, hydrogencarbonates will also fizz because they give off carbon dioxide.

$$
\mathrm{HCO}_{3(\mathrm{~s})}^{-}+\mathrm{H}_{(\mathrm{aq})}^{+} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

You can test for carbon dioxide using limewater.
Carbon dioxide turns limewater cloudy - just bubble the gas through a test tube of limewater and watch what happens. If the water goes cloudy you've identified a carbonate ion or a hydrogencarbonate.

Test for Sulfates with Hydrochloric Acid and Barium Chloride

To identify a sulfate ion $\left(\mathrm{SO}_{4}{ }^{2-}\right)$, add dilute HCl , followed by barium chloride solution, $\mathrm{BaCl}_{2(\mathrm{aq})}$.

$$
\mathrm{Ba}^{2+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}^{2-}{ }_{(\mathrm{aq})}^{2} \rightarrow \mathrm{BaSO}_{4(\mathrm{~s})}
$$

The hydrochloric acid is added to get rid of any traces of
carbonate ions before you do the test. These would also
produce a precipitate, so they'd confuse the results.
=1111111111

If a white precipitate of barium sulfate forms, it means the original compound contained a sulfate.

Tests for lons

Use Litmus Paper and $\mathbf{N a O H}$ to Test for Ammonium Compounds

1) Ammonia gas $\left(\mathrm{NH}_{3}\right)$ is alkaline, so you can check for it using a damp piece of red litmus paper. If there's ammonia present, it'll dissolve in the water on the damp litmus paper, turning it blue.
2) You can use this to test whether a substance contains ammonium ions $\left(\mathrm{NH}_{4}{ }^{+}\right)$. Add some sodium hydroxide to your mystery substance in a test tube and gently heat the mixture. If there's ammonia given off this means there are ammonium ions in your mystery substance.

$$
\mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-} \rightarrow \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Example: $\quad \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq)}}+\mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{NaCl}_{(\mathrm{aq})}$

Practice Questions

Q1 What substance do you need to add to a sample to test for hydrogencarbonate ions?
Q2 a) Why is dilute HCl added to a compound as the first step in a test for sulfates?
b) Name the second substance you need to add to a sample to test for sulfates.

Q3 a) In which ion test would you use damp red litmus paper?
b) Why does the litmus paper need to be damp?

Exam Questions

Q1 Describe a test that can be used to test for carbonates in a solution.
Q2 a) What colour precipitate would be produced from the reaction of calcium sulfate and barium chloride solution?
A yellow
C white
B brick red
D pale blue
[1 mark]
b) Write an ionic equation to show the formation of the precipitate in the reaction between magnesium sulfate and barium chloride solution, including state symbols.

Q3 A student is given a solution of ammonium bromide.
Describe how the student could prove that the solution contains ammonium ions.

l've got my ion you...

Remember, you know some other ways to identify ions too. You learnt about flame tests on p.45, which help to identify Group 1 and 2 metals. You also learnt about identifying halide ions using the colour of the precipitate formed when silver nitrate solution is added (p.51). Armed with this handful of tests, you're ready to do some fine detective work.

The Mole

It'd be handy to be able to count out atoms - but they're way too tiny. You'd never be able to pick them up with tweezers to count them. But never mind - by using the idea of relative mass, you can figure out how many you've got.

A Mole is Just a (Very Large) Certain Number of Particles

Chemists often talk about 'amount of substance'. Basically, all they mean is 'number of particles'.

1) Amount of substance is measured using a unit called the mole (or mol). The number of moles is given the symbol \boldsymbol{n}.
2) The number of particles in one mole is $\mathbf{6 . 0 2} \times \mathbf{1 0}^{\mathbf{2 3}}$. This number is the Avogadro constant, \boldsymbol{L}.

It's given to you in your data booklet in the exam, so don't worry about learning its value, just what it means.
3) It doesn't matter what the particles are.

They can be atoms, molecules, penguins - anything.
4) Here's a nice simple formula for finding the number of moles from the number of atoms or molecules:

Example: I have 1.50×10^{24} carbon atoms. How many moles of carbon is this?

$$
\text { Number of moles }=\frac{1.50 \times 10^{24}}{6.02 \times 10^{23}} \approx 2.49 \text { moles }
$$

Number of moles $=\frac{\text { Number of particles you have }}{\text { Number of particles in a mole }}$

Molar Mass is the Mass of One Mole

Molar mass, \boldsymbol{M}, is the mass per mole of something. Just remember:
Molar mass is just the same as the relative molecular mass, $M_{r^{*}}$.

The only difference is it has units of 'grams per mole', so you stick a ' $\mathrm{g} \mathrm{mol}^{-1 \text { ' }}$ on the end.
Example: Find the molar mass of CaCO_{3}.
Relative formula mass, M_{r}, of $\mathrm{CaCO}_{3}=40.1+12.0+(3 \times 16.0)=100.1$
So the molar mass, M, is $100.1 \mathrm{~g} \mathrm{~mol}^{-1}$. - i.e. 1 mole of CaCO_{3} weighs 100.1 g .

Here's another formula.
This one's really important - you need it all the time:

$$
\text { Number of moles }=\frac{\text { mass of substance }}{\text { molar mass }}
$$

Example: How many moles of aluminium oxide are present in 5.1 g of $\mathrm{Al}_{2} \mathrm{O}_{3}$?

Molar mass, M , of $\mathrm{Al}_{2} \mathrm{O}_{3}=(2 \times 27.0)+(3 \times 16.0)=102.0 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles of $\mathrm{Al}_{2} \mathrm{O}_{3}=\frac{5.1}{102.0}=\mathbf{0 . 0 5 0}$ moles

The Mole

The Concentration of a Solution Can be Measured in mol $\mathrm{dm}^{-3} \ldots$

1) The concentration of a solution is how many moles are dissolved per $\mathbf{1} \mathbf{d m}^{\mathbf{3}}$ (that's 1 litre) of solution. The units are $\mathbf{m o l} \mathbf{d m}^{\mathbf{3}}$.
2) Here's the formula to find the number of moles:

$$
\text { Number of moles }=\text { Concentration }\left(\mathrm{mol} \mathrm{dm}^{-3}\right) \times \text { Volume }\left(\mathrm{dm}^{3}\right)
$$

3) Watch out for the units - you might be given the volume in cm^{3} rather than dm^{3}.
 If that's the case, you'll have to convert it to dm^{3} first.
Example: What mass of sodium hydroxide (NaOH) needs to be dissolved in water
to give $50.0 \mathrm{~cm}^{3}$ of a solution with a concentration of $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$?
Volume of solution in $\mathrm{dm}^{3}=50 \div 1000=0.05 \mathrm{dm}^{3}$
Number of moles $\mathrm{NaOH}=2.00 \times 0.0500=0.100 \mathrm{~mol}$
Molar mass, M, of $\mathrm{NaOH}=23.0+16.0+1.0=40.0 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass $=$ number of moles $\times M=0.100 \times 40.0=4.00 \mathrm{~g}$
ミ111111111111111/
$1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}$
So to convert from
cm^{3} to dm^{3} you need
to divide by 1000 .

...Or in $\boldsymbol{g} \mathrm{dm}^{-3}$

The concentration of a solution can also be measured by how many grams of a substance are dissolved per $\mathbf{1} \mathbf{d m}^{\mathbf{3}}$ of the solution. The units are $\mathbf{g} \mathbf{d m}^{\mathbf{- 3}}$.
Here's the formula to find the mass of the substance dissolved in a given volume of solution:

```
Mass of substance = Concentration (g dm-3) × Volume (dm}\mp@subsup{)}{}{3}
```


Example: What is the concentration, in $\mathrm{g} \mathrm{dm}^{-3}$, of a solution of sodium chloride

 (NaCl) that was made by dissolving 0.0210 mol NaCl in $16.0 \mathrm{~cm}^{3}$ of water?Volume of solution in $\mathrm{dm}^{3}=16.0 \div 1000=0.0160 \mathrm{dm}^{3}$
Molar mass, M, of $\mathrm{NaCl}=23.0+35.5=58.5 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of $\mathrm{NaCl}=0.0210 \mathrm{~mol} \times 58.5=1.2285 \mathrm{~g}$
Concentration $=\frac{\text { Mass of substance }}{\text { Volume }}=\frac{1.2285}{0.016}=76.8 \mathrm{~g} \mathrm{dm}^{-3}$ (3 s.f.)

Practice Questions

Q1 How many particles are there in one mole?
Q2 What are the units of molar mass?
Q3 What formula links the concentration in $\mathrm{mol} \mathrm{dm}^{-3}$ to the number of moles and the volume of a solution?

Exam Questions

Q1 How many moles of calcium sulfate are there in 34.05 g of CaSO_{4} ?
Q2 Calculate the mass of 0.360 moles of ethanoic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$.
Q3 Calculate the concentration, in $\mathrm{g} \mathrm{dm}^{-3}$, of 0.100 moles of HCl dissolved in $100 \mathrm{~cm}^{3}$ of water.
Q4 What mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is needed to produce $60.0 \mathrm{~cm}^{3}$ of $0.250 \mathrm{~mol} \mathrm{dm}^{-3}$ solution?
Q5 A 0.500 g sample of sterling silver is dissolved in $15.0 \mathrm{~cm}^{3}$ concentrated nitric acid, and then an excess of potassium iodide is added. All the silver in the solution precipitates out as solid silver iodide $\left(\mathrm{AgI}_{(\mathrm{s})}\right)$.
The total mass of the dry silver iodide precipitate formed is 1.01 g . What was the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of the silver ions in the solution before the addition of potassium iodide?

Put your back teeth on the scale and find out your molar mass...

You need this stuff for loads of the calculation questions you might get, so learn it inside out. Before you start plugging numbers into formulae, make sure they're in the right units. If they're not, you need to know how to convert them or you'll be tossing marks out the window. Learn all the definitions and formulae, then have a bash at the questions.

Empirical and Molecular Formulae

Here＇s another page piled high with numbers－it＇s all just glorified maths really．

Empirical and Molecular Formulae are Ratios

You have to know what＇s what with empirical and molecular formulae，so here goes．．．
1）The empirical formula gives the smallest whole number ratio of atoms of each element in a compound．
2）The molecular formula gives the actual numbers of atoms of each type of element in a molecule．
3）The molecular formula is made up of a whole number of empirical units．
Example：A molecule has an empirical formula of $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{2}$ ，and a molecular mass of $166 \mathrm{~g} \mathrm{~mol}^{-1}$ ．
Work out its molecular formula．

V111111111।111／
Compare the empirical and molecular masses． Molecula11111111

First find the empirical mass：$(4 \times 12.0)+(3 \times 1.0)+(2 \times 16.0)$

$$
=48.0+3.0+32.0=83.0 \mathrm{~g} \mathrm{~mol}^{-1}
$$

But the molecular mass is $166 \mathrm{~g} \mathrm{~mol}^{-1}$ ，
so there are $\frac{166}{83.0}=2$ empirical units in the molecule．
The molecular formula must be the empirical formula $\times 2$ ， so the molecular formula $=\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{4}$ ．

ミ Empirical massisjustlike Empirical mass is just like the relative formula mass． （if that helps at all．．．）．

Empirical Formulae are Calculated from Experiments

You need to be able to work out empirical formulae from experimental results．
Example：When a hydrocarbon is burnt in excess oxygen， 4.4 g of carbon dioxide and 1.8 g of water are made． What is the empirical formula of the hydrocarbon？
ミ111111111111111111111111111
＝First work out how many
moles of the products you have．
No．of moles of $\mathrm{CO}_{2}=\frac{\text { mass }}{M}=\frac{4.4}{12.0+(2 \times 16.0)}=\frac{4.4}{44.0}=0.10 \mathrm{moles}$

1 mole of CO_{2} contains 1 mole of carbon atoms，so you must have started with 0.10 moles of carloon atoms．

$$
\text { No. of moles of } \mathrm{H}_{2} \mathrm{O}=\frac{1.8}{(2 \times 1.0)+16.0}=\frac{1.8}{18.0}=0.10 \mathrm{moles}
$$

1 mole of $\mathrm{H}_{2} \mathrm{O}$ contains 2 moles of hydrogen atoms (H) ，so you must have started with 0.20 moles of hydrogen atoms．

Ratio $\mathrm{C}: \mathrm{H}=0.10: 0.20$ ．Now you divide both numbers by the smallest－here it＇s 0.10 ． So，the ratio $\mathrm{C}: \mathrm{H}=1: 2$ ．So the empirical formula must be CH_{2} ．

ㄴIIIIII\｜1111111111111 only place the carbon in the carbon dioxide and the hydrogen in the water could have come from is the hydrocarbon．

You also need to know how to work out empirical formulae from the percentages of the different elements．
Example：A compound is found to have percentage composition 56.5% potassium， 8.70% carbon and 34.8% oxygen by mass．Calculate its empirical formula．
In 100 g of compound there are：
 ラ11।11111111戸 Divide each number of moles by the smallest number — in this case it＇s 0.725 ．
$K: \frac{1.45}{0.725}=2.00$
$C: \frac{0.725}{0.725}=1.00$
O：$\frac{2.18}{0.725}=3.01$

The ratio of $\mathrm{K}: \mathrm{C}: \mathrm{O} \approx 2: 1: 3$ ．So you know the empirical formula＇s got to be $\mathrm{K}_{2} \mathrm{CO}_{3}$ ．

The calculation above involves using percentage compositions．Sometimes you may have to calculate the percentage composition yourself，by working out the proportions of different elements in a given compound．
You use the formula：percentage composition of element $X=\frac{\text { total mass of element in compound }}{\text { totalmass of compound }} \times 100 \%$
Example：The percentage composition of H in CH_{4} is $\frac{(4 \times 1.0)}{12.0+(4 \times 1.0)} \times 100=25 \%$ ．

Empirical and Molecular Formulae

Molecular Formulae are Calculated from Experimental Data Too

Once you know the empirical formula，you just need a bit more info and you can work out the molecular formula too．

Example：

When 4.6 g of an alcohol，with molar mass $46 \mathrm{~g} \mathrm{~mol}^{-1}$ ，is burnt in excess oxygen， it produces 8.8 g of carbon dioxide and 5.4 g of water．
Calculate the empirical formula for the alcohol and then its molecular formula．

1111111111111111111／，
The carbon in the CO_{2} and the hydrogen in the $\mathrm{H}_{2} \mathrm{O}$ must have come from the alcohol－ work out the number of moles of each of these． ノノ।।い।।।।।।い।い।！バ

Number of moles of $\mathrm{CO}_{2}=\frac{\text { mass }}{M}=\frac{8.8}{44}=0.20 \mathrm{moles}$
1 mole of CO_{2} contains 1 mole of C ．So， 0.20 moles of CO_{2} contains $\mathbf{0 . 2 0}$ moles of C ．
Number of moles $\mathrm{H}_{2} \mathrm{O}=\frac{\text { mass }}{M}=\frac{5.4}{18}=0.30$ moles
1 mole of $\mathrm{H}_{2} \mathrm{O}$ contains 2 moles of H ．So， 0.30 moles of $\mathrm{H}_{2} \mathrm{O}$ contains 0.60 moles of H ．

Mass of $\mathrm{C}=$ no．of moles $\times M=0.20 \times 12.0=2.4 \mathrm{~g}$

Mass of $\mathrm{H}=$ no．of moles $\times M=0.60 \times 1.0=0.60 \mathrm{~g}$
Mass of $\mathrm{O}=4.6-(2.4+0.60)=1.6 \mathrm{~g}$
Number of moles $\mathrm{O}=\frac{\text { mass }}{M}=\frac{1.6}{16.0}=\mathbf{0 . 1 0}$ moles

Molar Ratio $=\mathrm{C}: \mathrm{H}: \mathrm{O}=0.20: 0.60: 0.10=2: 6: 1$ Empirical formula $=\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$

NWh11111111111111111111111111／ When you know the number of moles of each element，you＇ve got the molar ratio． Divide each number by the smallest．

Mass of empirical formula $=(2 \times 12.0)+(6 \times 1.0)+16.0=46.0 \mathrm{~g}$
In this example，the mass of the empirical formula equals the
molecular mass，so the empirical and molecular formulae are the same．
Molecular formula $=\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$

Compare the empirical and molecular masses．

Practice Questions

Q1 What＇s the difference between a molecular formula and an empirical formula？
Q2 What＇s the formula to work out the percentage composition of an element in a substance？

Exam Questions

Q1 In an experiment to determine the formula of an oxide of copper， 2.80 g of the oxide was heated in a stream of hydrogen gas until there was no further mass change． 2.50 g of copper remained．

Calculate the empirical formula of the oxide．$\left[A_{\mathrm{r}}(\mathrm{Cu})=63.5, A_{\mathrm{r}}(\mathrm{O})=16.0\right]$
Q2 Hydrocarbon X has a molecular mass of 78.0 g ．It is found to have 92.3% carbon and 7.70% hydrogen by mass．Calculate the empirical and molecular formulae of X．

Q3 When 1.20 g of magnesium ribbon is heated in air，it burns to form a white powder which has a mass of 2.00 g ．What is the empirical formula of the powder？

Q4 When 19.8 g of an organic acid，A，is burnt in excess oxygen，
33.0 g of carbon dioxide and 10.8 g of water are produced．

Calculate the empirical formula for A and hence its molecular formula，if $M_{\mathrm{r}}(\mathrm{A})=132$ ．
［4 marks］

The Empirical Strikes Back．．．

With this stuff，you can＇t just learn some facts parrot－fashion to regurgitate in the exam－you＇ve gotta know how to use them．The only way to do that is to practise．Go through the examples on these two pages again，this time working the answers out for yourself．Then test yourself on the practice exam questions．It＇ll help you sleep at night－honest．

Chemical Equations

Balancing equations might cause you a few palpitations－as soon as you make one bit right，the rest goes pear－shaped．

Balanced Equations Have Equal Numbers of Each Atom on Both Sides

1）Balanced equations have the same number of each atom on both sides．They＇re．．．well．．．you know．．．balanced．
2）You can only add more atoms by adding whole reactants or products．You do this by putting a number in front of a substance or changing one that＇s already there．You can＇t mess with formulae－ever．

Example：Balance the equation： $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ ．
$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ First work out how many of each atom you have on each side．

2111111111112
－Nope，still not balanced．

The right side needs 2 C ＇s，so try $2 \mathrm{CO}_{2}$ ． It also needs $6 \mathrm{H}^{\prime}$ s，so try $3 \mathrm{H}_{2} \mathrm{O}$ ．

The left side needs 7 O＇s，so try $31 / 2 \mathrm{O}_{2}$ ． This balances the equation．
$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

$\mathrm{C}=2$	$\mathrm{C}=2$			
$\mathrm{H}=6$	$\mathrm{H}=6$		$\mathrm{O}=2$	$\mathrm{O}=7$
:---	:---			
$\mathrm{O}=7$				

[^1]
Ionic Equations Only Show the Reacting Particles

1）You can also write an ionic equation for any reaction involving ions that happens in solution．
2）In an ionic equation，only the reacting particles（and the products they form）are included．
Example：Here is the full balanced equation for the reaction of nitric acid with sodium hydroxide：

$$
\mathrm{HNO}_{3(\mathrm{aq)}}+\mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{NaNO}_{3(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

\qquad ミ1111111111111111111111111＝ These little symbols tell you $\overline{\text { E }}$ The ionic substances in this equation will dissolve，breaking up into ions in solution．
You can rewrite the equation to show all the ions that are in the reaction mixture： what state each substance is
in（see the next page）．
－ $111111111111111111111111=$
To get from this to the ionic equation，just cross out any ions that appear on both sides of the equation－in this case， that＇s the sodium ions $\left(\mathrm{Na}^{+}\right)$and the nitrate ions $\left(\mathrm{NO}_{3}{ }^{-}\right)$． So the ionic equation for this reaction is：

$$
\mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

ミLeave anything that isn＇t an ion in ב solution（like the $\mathrm{H}_{2} \mathrm{O}$ ）as it is．
 F111111111111111111
$1111111111111111 /=$ An ion that＇s present in the reaction mixture，but doesn＇t get involved in the reaction is called a spectator ion．

3）When you＇ve written an ionic equation，check that the charges are balanced，
as well as the atoms－if the charges don＇t balance，the equation isn＇t right．
In the example above，the net charge on the left hand side is $(+1+-1)=\mathbf{0}$ and the net charge on the right hand side is $\mathbf{0}$－so the charges balance．

Balanced Equations Can Be Used to Work out Masses

Balanced equations show the reaction stoichiometry．The reaction stoichiometry tells you the ratios of reactants to products，i．e．how many moles of product are formed from a certain number of moles of reactants．

Example：Calculate the mass of iron oxide produced if 28 g of iron is burnt in air． $2 \mathrm{Fe}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$ The molar mass，M ，of $\mathrm{Fe}=55.8 \mathrm{~g} \mathrm{~mol}^{-1}$ ，so the number of moles in 28 g of $\mathrm{Fe}=\frac{\mathrm{mass}}{M}=\frac{28}{55.8}=0.50$ moles． From the equation： 2 moles of Fe produces 1 mole of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ ，so 0.50 moles of Fe produce 0.25 moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ ．

```
Mass of }\mp@subsup{\textrm{Fe}}{2}{}\mp@subsup{\textrm{O}}{3}{}=\mathrm{ no. of moles }\timesM=0.25\times159.6=40 g (2 s.f.)
```


Chemical Equations

State Symbols Give a bit More Information about the Substances

State symbols are put after each reactant or product in an equation. They tell you what state of matter things are in.

```
s = solid
    I = liquid
g=gas aq = aqueous
    (solution in water)
```

To show you what I mean, here's an example -

$$
\underset{\text { saCO }}{3(\mathrm{~s})}+\underset{\text { aqueous }}{2 \mathrm{HCl}_{(\mathrm{aq})}} \rightarrow \underset{\text { aqueous }}{\mathrm{CaCl}_{2(\mathrm{aq})}}+\underset{\text { liquid }}{\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}}+\underset{\mathrm{CO}_{2(\mathrm{~g})}}{ } \text { gas }
$$

You can use state symbols and chemical equations to show what's going on during a reaction...

In Displacement Reactions, One Element Replaces Another

1) In displacement reactions, a more reactive element reacts

2) For example, chlorine reacts with potassium bromide to form bromine and potassium chloride.

Full equation: $\mathrm{Cl}_{2(\text { aq) }}+2 \mathrm{KBr}_{(\text {(aq) }} \rightarrow \mathrm{Br}_{2(\mathrm{aq)}}+2 \mathrm{KCl}_{(\mathrm{aq)}} \quad$ Ionic Equation: $\mathrm{Cl}_{2(\mathrm{aq)}}+2 \mathrm{Br}_{(\mathrm{aq)}} \rightarrow \mathrm{Br}_{2(\mathrm{aq)}}+2 \mathrm{Cl}^{-}$

In Reactions of Acids, a Salt and Water are Produced

When bases react with acids, a salt and water are always produced.
Sometimes, other compounds such as carbon dioxide gas are also formed.

Е When acids react with bases,
三 it's a neutralisation reaction.

Example: Sulfuric acid reacts with sodium hydroxide to form sodium sulfate and water:
$\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{NaOH}_{(\text {aq) }} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{\text {(l) }}$
Ionic equation: $2 \mathrm{H}^{+}{ }_{\text {(aq) }}+2 \mathrm{OH}_{(\text {aq) }}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

Example: Nitric acid and sodium carbonate react to form sodium nitrate, water and carbon dioxide.
$2 \mathrm{HNO}_{3(\mathrm{aq)}}+\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq)}} \rightarrow 2 \mathrm{NaNO}_{3(\text { aq) }}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}+\mathrm{CO}_{2(\mathrm{~g})}$ Ionic equation: $2 \mathrm{H}^{+}{ }_{(\text {aq) }}+\mathrm{CO}_{3}{ }^{2-}{ }_{(\text {aq })} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})}$

In Precipitation Reactions, a Solid is Formed

If two aqueous compounds react together and one of the products forms as a solid, then a precipitation reaction has taken place.
E.g. barium chloride and potassium sulfate react to form potassium chloride and a precipitate of barium sulfate.

Ionic Equation: $\mathrm{Ba}^{2+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{2-}{ }_{(\text {aq })} \rightarrow \mathrm{BaSO}_{4(\mathrm{~s})}$

Practice Questions

Q1 What is the difference between a full balanced equation and an ionic equation?
Q2 What is the state symbol for a solution of hydrochloric acid?

Exam Questions

Q1 Balance this equation: $\mathrm{KI}_{(\mathrm{aq})}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})} \rightarrow \mathrm{PbI}_{2(\mathrm{~s})}+\mathrm{KNO}_{3(\mathrm{aq})}$
Q2 Ethene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ reacts with hydrochloric acid (HCl) to produce chloroethane $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}\right)$.
Calculate the mass of ethene required to produce 258 g of chloroethane.
[4 marks]
Q3 A solution of magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$ is mixed with a solution of silver nitrate $\left(\mathrm{AgNO}_{3}\right)$, resulting in a precipitation reaction to form silver chloride (AgCl) and a solution of magnesium nitrate $\left(\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}\right)$. Write a balanced ionic equation for this reaction, including state symbols.

Don't get in a state about equations...

Balancing equations is a really, really important skill in Chemistry, so make sure you can do it. You will ONLY be able to calculate reacting masses if you've got a balanced equation to work from. I've said it once, and l'll say it again practise, practise, practise... It's the only road to salvation. (By the way, exactly where is salvation anyway?)

Calculations with Gases

You may think this page is full of hot air，but there are some important equations for calculating amounts of gases coming up．

All Gases Take Up the Same Volume under the Same Conditions

1）The space that one mole of a gas occupies at a certain temperature and pressure is known as the molar gas volume．It has units of $\mathbf{d m}^{\mathbf{3}} \mathbf{m o l}^{-\mathbf{1}}$ ．
2）If temperature and pressure stay the same，one mole of any gas always has the same volume．
At room temperature and pressure（r．t．p．），this happens to be $\mathbf{2 4} \mathbf{d m}^{\mathbf{3}} \mathbf{m o l}^{-\mathbf{1}}$（r．t．p．is $293 \mathrm{~K}\left(20^{\circ} \mathrm{C}\right)$ and 101.3 kPa ）． Meanwhile，at standard temperature and pressure（s．t．p．），it＇s $\mathbf{2 2 . 4} \mathbf{d m}^{\mathbf{3}} \mathbf{m o l}^{\mathbf{- 1}}$（s．t．p．is $273 \mathrm{~K}\left(0^{\circ} \mathrm{C}\right)$ and 101.3 kPa ）．
3）Here＇s the formula for working out the
number of moles in a volume of gas：

Number of moles $=\frac{\text { Volume in } \mathrm{dm}^{3}}{\text { Molar gas volume }}$
Example：How many moles are there in $6.0 \mathrm{dm}^{3}$ of oxygen gas at r．t．p．？
Number of moles $=\frac{6.0}{24}=\mathbf{0 . 2 5}$ moles of oxygen molecules

11111111111111111111111， At r．t．p．，just substitute $24 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ into this equation $=$ as the molar gas volume．At s．t．p．，substitute $22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ ．

You Can Measure the Molar Volume of a Gas

You can find the volume of gas evolved in a reaction by collecting the gas that is produced in a gas syringe or by displacing water from a measuring cylinder．
You can use experiments to work out the molar volume of a gas．

Example：Explain how you could measure the molar volume of carbon dioxide，in dm^{3} ，at room temperature using this reaction： $\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})}=111111111 / 1111111 / \begin{aligned} & 1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}\end{aligned}$ テリルいいいいいいいいいいに
1）Measure out a set volume of hydrochloric acid into a conical flask connected to a gas syringe．
2）Add a known mass of sodium carbonate to the conical flask， replace the bung and allow the reaction to go to completion．
3）Record the volume of carbon dioxide gas collected in the gas syringe．
4）Repeat the experiment，varying the mass of sodium carbonate each time．
5）Use your results to draw a graph with the mass of sodium carbonate on the x－axis and the volume of gas produced on the y－axis．
6）Read off the volume of gas produced for a sensible mass of sodium carbonate （e．g． 0.20 g of sodium carbonate produces $45 \mathrm{~cm}^{3}$ of carbon dioxide）．
7）From the reaction equation， 1 mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ reacts to form 1 mole of CO_{2} ． $M_{\mathrm{r}} \mathrm{Na}_{2} \mathrm{CO}_{3}=106$ ，so 0.20 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ contain $0.20 \div 106=0.00188 \ldots$ moles． Therefore， 1 mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ will produce $0.045 \div 0.00188 \ldots=23.85 \mathrm{dm}^{3}$ of CO_{2} ． So the molar volume of a gas under the conditions of this reaction is $24 \mathrm{dm}^{3}$ ．

气l1111111111111111111111／， Make sure you use balanced equations for all these calculations（see page 58 for more on balancing equations）．

You Can Work Out Gas Volumes Using Molar Calculations．．．

It＇s handy to be able to work out how much gas a reaction will produce，so that you can use large enough apparatus．
Example：How much gas is produced when 15 g of sodium is reacted with excess water at r．t．p．？

$$
2 \mathrm{Na}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 2 \mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
$$

シll｜1111111111111111111に
M of $\mathrm{Na}=23.0 \mathrm{~g} \mathrm{~mol}^{-1}$ ，so number of moles in 15 g of $\mathrm{Na}=\frac{15}{23.0}=0.652 \ldots$ moles $\begin{gathered}\text { Excess water means you know } \\ \text { all the sodium will react．}\end{gathered}$ From the equation， 2 moles of Na produce 1 mole of $\mathrm{H}_{2^{\prime}}$
so you know $0.652 \ldots$ moles Na produces $\frac{0.652 \ldots}{2}=0.326 \ldots$ moles H_{2} ．
So the volume of $\mathrm{H}_{2}=0.326 \ldots \times 24=7.8 \mathrm{dm}^{3}$（2 s．f．）

Calculations with Gases

．．．Or Using Volume Calculations

If you have a reaction involving gases，you can use the volumes of reactant gases，along with the reaction equation，to work out the volume of gaseous products that will be produced．
Example：Calculate the total volume of gas produced when $8.25 \mathrm{dm}^{3}$ of dinitrogen pentoxide decomposes：

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5(\mathrm{~g})} \rightarrow \mathrm{O}_{2(\mathrm{~g})}+4 \mathrm{NO}_{2(\mathrm{~g})}
$$

From the equation， 2 moles $\mathrm{N}_{2} \mathrm{O}_{5}$ produces 1 mole O_{2} and 4 moles NO_{2} ，which is 5 moles of gas in total．
So $8.25 \mathrm{dm}^{3} \mathrm{~N}_{2} \mathrm{O}_{5}$ decomposes to produce $\frac{5}{2} \times 8.25=20.6 \mathrm{dm}^{3}$ gas． 1 If you＇re given the volumes of gas that react and are produced，you can use the ratio of these volumes to work out the reaction equation．
「ノ।ノ।।ノ।।l।

Ideal Gas Equation－$p V=n R T$

The ideal gas equation lets you find the number of moles in a certain volume at any temperature and pressure．

$p V=n R T$ Where：$p=$ pressure（ Pa ）	$V=$ volume（ m^{3} ）	$n=$ number of moles
$\begin{aligned} & \text { N } \\ & =R \text { is the gas constant. } \\ & \\ & \\ & \end{aligned}$	T＝temperature（K）	$\begin{aligned} & \Rightarrow 111111111111 \\ & \Rightarrow K={ }^{\circ} \mathrm{C}+273 \end{aligned}$
ハいいいいいいいいいいいいに		ハ11いいいいいい下

Example：At a temperature of $60^{\circ} \mathrm{C}$ and a pressure of 250 kPa ，a gaseous hydrocarbon occupied a volume of $1100 \mathrm{~cm}^{3}$ and had a mass of き111111111111111111
ミ1kPa＝1000 Pa
フ1111111111111111／ 1.60 g ．Find the molecular formula of the hydrocarbon．
$n=\frac{p V}{R T}=\frac{\left(250 \times 10^{3}\right) \times\left(1.1 \times 10^{-3}\right)}{8.31 \times 333}=0.0993 \ldots$ moles $\begin{aligned} & \text { Ell } 111111111111111111111 \\ & 1100 \mathrm{~cm}^{3}=1.1 \times 10^{-3} \mathrm{~m}^{3} \\ & 1111111111111111111111\end{aligned}$
If $0.0993 \ldots$ moles is 1.60 g ，then 1 mole $=\frac{1.60}{0.0993 \ldots}=16.1 \ldots \mathrm{~g}$ ．So the molar mass (M) is $16 \mathrm{~g} \mathrm{~mol}^{-1}(2 \mathrm{~s} . \mathrm{f}$ ．$)$
Hydrocarbons contain only carbon and hydrogen atoms．
The only hydrocarbon with a molecular mass of $16 \mathrm{~g} \mathrm{~mol}^{-1}$ is methane， CH_{4} ．
You can use the ideal gas equation to work out the molar mass of an unknown，volatile liquid：
－Put a known mass of the liquid in a flask，then attach it to a sealed gas syringe． Gently warm the apparatus in a water bath，until the liquid completely evaporates．
－Record the volume of gas in the syringe and the temperature of the water bath．
－Use the ideal gas equation to work out how many moles of the liquid were in your sample， and the equation molar mass $=$ mass \div moles to calculate the molar mass．

Practice Questions

Q1 What volume does 1 mole of gas occupy at r．t．p．？
Q2 Describe two methods you could use to measure the amount of gas produced over the course of a reaction．
Q3 State the ideal gas equation．

Exam Questions

Q1 At what temperature will 1.28 g of chlorine gas occupy $98.6 \mathrm{dm}^{3}$ ，at a pressure of 175 Pa ？
Q2 What volume will be occupied by 88 g of propane gas $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ at r．t．p．？
Q3 What volume of oxygen is required，at room temperature and pressure for the complete combustion of $3.50 \times 10^{-2} \mathrm{~mol}$ of butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$ ？
［2 marks］
Q4 Magnesium carbonate $\left(\mathrm{MgCO}_{3}\right)$ thermally decomposes to produce magnesium oxide (MgO) and carbon dioxide．
What mass of magnesium carbonate is needed to produce $6.00 \mathrm{dm}^{3}$ of carbon dioxide at r．t．p．？
［2 marks］

I can＇t carry on－l＇ve run out of gas．．．

The ideal gas equation is really important，so make sure you know it．To make life a bit easier，the gas constant is in your exam data booklet along with the molar gas volumes at r．t．p．and s．t．p．and conversions between $\mathrm{m}^{3}, \mathrm{dm}^{3}$ and cm^{3} ．

Acid－Base Titrations

Titrations are used to find out the concentrations of acid or alkali solutions．

Experiments Involve Risks and Hazards

1）A hazard is anything that has the potential to cause harm or damage．The risk associated with that hazard is the probability of someone（or something）being harmed if they are exposed to the hazard．
2）Many chemistry experiments have risks associated with them．These can include risks associated with the equipment you＇re using（e．g．the risk of burning from an electric heater）as well as risks associated with chemicals．
3）When you plan an experiment，you need to identify all the hazards and what the risk is from each hazard． This includes working out how likely it is that something could go wrong，and how serious it would be if it did． You then need to think of ways to reduce these risks．This procedure is called a risk assessment．

Example：A student is going to find the concentration of a solution of sodium hydroxide by titrating it with hydrochloric acid．Identify any hazards in this experiment，and suggest how you could reduce the risk．

Sodium hydroxide and hydrochloric acid are irritants at low concentrations and corrosive at high concentrations． Irritants cause inflammation，and corrosive substances cause chemical burns if they come into contact with your skin or eyes．To reduce the risks posed by these hazards，the student should try to use low concentrations of the substances if possible，and wear gloves，a lab coat and goggles when handling the chemicals．

A Standard Solution Has a Known Concentration

Before you start a titration，you have to make up a standard solution．A standard solution is any solution that you
know the concentration of．Making a standard solution needs careful measuring and a hint of maths：
Example：Make $250 \mathrm{~cm}^{3}$ of a solution of benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$ with a concentration of about $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$ ．
1）First work out roughly how many moles of solute you need by using the formula： moles $=\frac{\text { concentration } \times \text { volume }\left(\mathrm{cm}^{3}\right)}{1000}=\frac{0.200 \times 250}{1000}=0.0500 \mathrm{~mol}$

2）Now work out roughly how many grams of solute is needed using the formula mass $=$ moles \times molar mass $=0.0500 \mathrm{~mol} \times 122.0=6.10 \mathrm{~g}$

3）Carefully weigh out this mass of solute using a balance with a precision of at least 2 d．p．－first weigh the weighing vessel，note the weight，then add the correct mass．

4）Add the solid acid to a beaker containing about $100 \mathrm{~cm}^{3}$ of distilled water and stir until all the solute has dissolved．

4）Reweigh the weighing vessel，and use this value along with the combined mass of

11111111111111111111／， Dissolving an acid can release a lot of heat． To stay safe，always add the acid to the water． the vessel and the acid to calculate the exact mass of acid that has been added to the beaker． Use this exact mass to calculate what the concentration of your standard solution will be： Mass of acid added to beaker：24．78－18．72 $=6.06 \mathrm{~g}$
Moles of acid added to beaker $=6.06 \div 122.0=0.0496 \ldots$ moles
Exact concentration of standard solution $=(0.0496 \ldots \times 1000) \div 250=0.199 \mathrm{~mol} \mathrm{dm}^{-3}$

5）Tip the solution into a volumetric flask－make sure it＇s the right size for the volume you＇re making．Use a funnel to make sure it all goes in．

6）Rinse the beaker and stirring rod with distilled water and add that to the flask too．This makes sure there＇s no solute clinging to the beaker or rod．

7）Now top the flask up to the correct volume $\left(250 \mathrm{~cm}^{3}\right)$ with more distilled water．Make sure the bottom of the meniscus reaches the line－when you get close to the line use a pipette to add water drop by drop．If you go over the line you＇ll have to start all over again．

8）Stopper the bottle and turn it upside down a few times to make sure it＇s all mixed．

Acid-Base Titrations

Titrations Need to Be Done Accurately

1) Titrations allow you to find out exactly how much acid is needed to neutralise a quantity of alkali.
2) You measure out some alkali of unknown concentration (the analyte), e.g. NaOH using a pipette and put it in a flask, along with some indicator, e.g. phenolphthalein.
3) Rinse the burette with some of your standard solution of acid. Then fill it with your standard solution.
4) First of all, do a rough titration to get an idea where the end point is (the point where the alkali is exactly neutralised and the indicator changes colour). To do this, take an initial reading to see how much acid is in the burette to start off with. Then, add the acid to the alkali giving the flask a regular swirl. Stop when your indicator shows a permanent colour change (the end point). Record the final reading from your burette.
5) Now do an accurate titration. Run the acid in to within $2 \mathrm{~cm}^{3}$ of the end point, then add the acid dropwise. If you don't notice exactly when the solution changed colour you've overshot and your result won't be accurate.

Pipette:
Pipettes measure only one
volume of solution. Fill the
pipette to just above the line,
then take the pipette out of
the solution (or the water
pressure will hold up the
level). Now drop the level
down carefully to the line.

6) Work out the amount of acid used to neutralise the alkali. This is just the final reading minus the initial reading. This volume is known as the titre.
7) It's best to repeat the titration a few times, until you get answers that are concordant (similar) - your readings should be within $0.1 \mathrm{~cm}^{3}$ of each other. Then calculate a mean titre (see page 246), using only your concordant results. Also, remember to wash out the conical flask between each titration to remove any acid or alkali left in it.

Indicators Show You When the Reaction's Just Finished

Indicators change colour, as if by magic. In titrations, indicators that change colour quickly over a very small pH range are used so you know exactly when the reaction has ended. good here - its colour三change is too gradual.

The main two indicators for acid/alkali reactions are -
methyl orange - turns yellow to red when adding acid to alkali. phenolphthalein - turns red to colourless when adding acid to alkali.

It's best to place the flask containing the indicator and the acid or alkali solution on a white surface, so the colour change is easy to see.

Practice Questions

Q1 Describe the steps needed to make a standard solution from a solid.
Q2 Describe the procedure for doing a titration.

Exam Questions

Q1 Calculate the mass of sulfamic acid $\left(\mathrm{H}_{3} \mathrm{NSO}_{3}\right)$ needed to
make $200 \mathrm{~cm}^{3}$ of $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfamic acid solution.

Car indicators are no good here - they're not always right (because sometimes they're left).

Q2* Describe how indicators are used and explain the importance of selecting an appropriate indicator when carrying out a titration. Include examples of indicators that would and would not be suitable for use in titrations.
[2 marks]
[6 marks]

Burettes and pipettes - big glass things, just waiting to be dropped...

Titrations work best if the concentration of the standard solution is similar to what you think the concentration of the solution that you're titrating it against is. If the standard solution is too dilute it'll take ages to reach the end point of the titration. If it's too concentrated then tiny amounts will cause large pH changes and your results may be inaccurate.

[^2]
Titration Calculations

There＇s far more to a titration than just simply carrying it out．There are a whole load of calculations to carry out．．．Gulp．

You can Calculate Concentrations from Titrations

Example： $25.0 \mathrm{~cm}^{3}$ of $0.500 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ was used to neutralise $35.0 \mathrm{~cm}^{3}$ of NaOH solution． Calculate the concentration of the sodium hydroxide solution．

First write a balanced equation and decide what you know and what you need to know：
 The method for carrying out this titration was shown on page 63. ハハい111111111।いに

$$
\begin{aligned}
& \underset{35.0 \mathrm{~cm}^{3}}{\mathrm{HCl}}+\underset{\mathrm{NaOH}}{25.0 \mathrm{~cm}^{3}}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\
& 0.500 \mathrm{~mol} \mathrm{dm}^{-3} \text { ? }
\end{aligned}
$$

Now work out how many moles of HCl you have：
，V1111111111111111111111111／
E It＇s just the formula from
三page 55 ，but with volume in
届
Number of moles $\mathrm{HCl}=\frac{\text { concentration } \times \text { volume }\left(\mathrm{cm}^{3}\right)}{1000}=\frac{0.500 \times 25.0}{1000}=0.0125 \mathrm{moles}$
From the equation，you know 1 mole of HCl neutralises 1 mole of NaOH ． So 0.0125 moles of HCl must neutralise 0.0125 moles of NaOH ．

Now it＇s a doddle to work out the concentration of NaOH ．
Concentration of $\mathrm{NaOH}(\mathrm{aq})=\frac{\text { moles of } \mathrm{NaOH} \times 1000}{\text { volume }\left(\mathrm{cm}^{3}\right)}=\frac{0.0125 \times 1000}{35.0}$

I1111111111111111111，
If you＇re asked for the三 concentration in $\mathrm{g} \mathrm{dm}^{-3}$ ， you need to multiply the concentration by the molar mass．
シハいいいいいいいいいけいいい

You Can Also Use Titrations to Find the Concentration of an Acid

If you carry out a titration like the one on page 63，but use a standard solution of a base and an acid of unknown concentration，then your results can be used to find the concentration of the acid．

Example：A student carried out an experiment to find the concentration of a solution of hydrochloric acid（HCl）． He first dissolved 0.987 g of sodium hydroxide (NaOH) in $250 \mathrm{~cm}^{3}$ of distilled water to make a standard solution．He then titrated this standard solution against $15.0 \mathrm{~cm}^{3}$ of the hydrochloric acid solution of unknown concentration．Given that the mean titre of NaOH required to neutralise this volume of HCl solution was $21.7 \mathrm{~cm}^{3}$ ，calculate the concentration of the solution of HCl ．

First calculate the concentration of the standard solution of NaOH ：
Moles of NaOH dissolved $=0.987 \div 40.0=0.024675$ moles
Concentration of standard solution $=(0.024675 \times 1000) \div 250=0.0987 \mathbf{~ m o l ~ d m}^{-3}$
\111111111111111111／， There＇s more about the techniques for making a standard solution on page 62 solution on page 62．＝
ハハ111111111111111111

Now write out a balanced equation showing what you do know，and what you＇re trying to find out．

$$
\begin{aligned}
& \mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\
& 15.0 \mathrm{~cm}^{3} 21.7 \mathrm{~cm}^{3} \\
& ? \quad 0.0987 \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

So，you can use the concentration of the standard solution（that you
worked out above）to calculate the concentration of the HCl solution：
Number of moles $\mathrm{NaOH}=\frac{\text { concentration } \times \text { volume }\left(\mathrm{cm}^{3}\right)}{1000}=\frac{0.0987 \times 21.7}{1000}=0.00214 \ldots$ moles
Since the reaction equation shows that 1 mole of NaOH neutralises 1 mole of $\mathrm{HCl}, 0.00214 \ldots$ moles of NaOH will neutralise $0.00214 \ldots$ moles of HCl ．So．．．

$$
\text { Concentration of } \mathrm{HCl}=\frac{\text { moles of } \mathrm{HCl} \times 1000}{\text { volume }\left(\mathrm{cm}^{3}\right)}=\frac{0.00214 \ldots \times 1000}{15.0}=0.143 \mathrm{~mol} \mathrm{dm}^{-3}
$$

Titration Calculations

You use a Pretty Similar Method to Calculate Volumes for Reactions

This is usually used for planning experiments.
You need to use your trusty old concentration = moles \div volume formula again, but this time you need to rearrange it to find the volume. volume $\left(\mathrm{cm}^{3}\right)=\frac{\text { moles } \times 1000}{\text { concentration }}$

Example: $20.4 \mathrm{~cm}^{3}$ of a $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of sodium carbonate reacts with $1.50 \mathrm{~mol} \mathrm{dm}^{-3}$ nitric acid. Calculate the volume of nitric acid required to neutralise the sodium carbonate.
Like before, first write a balanced equation for the reaction and decide what you know and what you want to know:

$$
\begin{gathered}
\mathrm{Na}_{2} \mathrm{CO}_{3}+\underset{2}{2 \mathrm{HNO}_{3}} \rightarrow 2 \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \\
20.4 \mathrm{~cm}^{3} \\
0.500 \mathrm{~mol} \mathrm{dm}^{-3} 1.50 \mathrm{~mol} \mathrm{dm}^{-3}
\end{gathered}
$$

ミ111111111111111111111।11111111111, - imporiting a balanced equation is really important because not all reactions happen as 1:1 molar reactions. This reaction is a
$1: 2$ ratio of $\mathrm{Na}_{2} \mathrm{CO}_{3}: \mathrm{HNO}_{3}$

Now work out how many moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ you've got:

$$
\text { No. of moles of } \mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{\text { concentration } \times \text { volume }\left(\mathrm{cm}^{3}\right)}{1000}=\frac{0.500 \times 20.4}{1000}=0.0102 \text { moles }
$$

1 mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ neutralises 2 moles of HNO_{3}, so 0.0102 moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ neutralises 0.0204 moles of HNO_{3}. Now you know the number of moles of HNO_{3} and the concentration, you can work out the volume:

$$
\text { Volume of } \mathrm{HNO}_{3}=\frac{\text { number of moles } \times 1000}{\text { concentration }}=\frac{0.0204 \times 1000}{1.50}=13.6 \mathrm{~cm}^{3}
$$

You might also be asked to calculate the volume of a solution required to neutralise a known mass of a substance. The calculation is very similar to the one above, except that you start by working out the number of moles of the substance using your old friend 'moles $=$ mass \div molar mass'.

Practice Questions

Q1 What equation links the number of moles, concentration and volume (in cm^{3})?
Q2 What equation links the number of moles, the mass of a substance and its molar mass, M ?

Exam Questions

Q1 Calculate the concentration (in mol dm ${ }^{-3}$) of a solution of ethanoic acid, $\mathrm{CH}_{3} \mathrm{COOH}$,
if $25.4 \mathrm{~cm}^{3}$ of it is neutralised by $14.6 \mathrm{~cm}^{3}$ of $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution.

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}
$$

Q2 You are supplied with 0.750 g of calcium carbonate and a solution of $0.250 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid.
What volume of acid will be needed to neutralise the calcium carbonate?
$\mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
Q3 In a titration, $17.1 \mathrm{~cm}^{3}$ of $0.250 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid neutralises $25.0 \mathrm{~cm}^{3}$ calcium hydroxide solution.
a) Write out a balanced equation for this reaction.
b) Work out the concentration of the calcium hydroxide solution.

DJs can't do titrations - they just keep on dropping the base...

This just looks like a horrible load of calculations, but it's not that bad. Just remember the equation linking volume, concentration and moles and the one that links moles, mass and molar mass, and you'll be able to work out pretty much everything. They're the only tools you need to become a whizz at titration calculations. And that's the dream.

Uncertainty and Errors

Even if you＇re a super duper Chemistry whizz，you＇re not error free．Time to meet errors and．．．errrmmm．．．uncertainty？

Uncertainty is the Amount of Error Your Measurements Might Have

1）Any measurements you make will have uncertainty in them due to the limits to the sensitivity of the equipment you used．
2）The uncertainty in your measurements varies for different equipment． For example，the scale on a $50 \mathrm{~cm}^{3}$ burette has marks every $\mathbf{0 . 1} \mathbf{c m}^{3}$ ． You should be able to tell which mark the level＇s closest to，so any reading you take won＇t be more than $\mathbf{0 . 0 5} \mathbf{~ c m}^{\mathbf{3}}$ out（as long as you don＇t make a daft mistake）．The uncertainty of a reading from the burette is the maximum error you could have－so that＇s $\mathbf{\pm 0 . 0 5} \mathbf{c m}^{3}$ ．
3）The \pm sign tells you the range in which the true value could lie． This range can also be called the margin of error．
4）For any piece of equipment you use，the uncertainty will be half the smallest increment the equipment can measure，in either direction．

5）Equipment will also have an error based on how accurately it has been made．The manufacturers should give you these uncertainty values－often they＇ll be written on the equipment somewhere．
6）If you＇re combining measurements that have the same units，you＇ll need to combine their uncertainties．
Example：A student is using a set of electronic scales that measures to the nearest 0.05 g ．He zeros the scales and measures out 1.35 g of solid．Calculate the total uncertainty of the measurement．
There are two readings here－the initial reading is 0.00 g and the final reading is 1.35 g
The uncertainty of each reading is $0.05 \div 2=0.025 \mathrm{~g}$ ，so the total uncertainty is $0.025+0.025=\mathbf{0 . 0 5} \mathbf{g}$ ．

The Percentage Uncertainty in a Result Should be Calculated

ふ।।।।।।।।।।।।।।।।।1 You might also see percentage uncertainty called＇percentage error＇．
／1111111111111111111111

Example：A $250 \mathrm{~cm}^{3}$ volumetric flask has a manufacturer＇s error of $\pm 0.25 \mathrm{~cm}^{3}$ ． Calculate the percentage uncertainty of the volumetric flask．
The standard volume of the volumetric flask has an uncertainty of $0.25 \mathrm{~cm}^{3}$ ， so the percentage uncertainty is $\frac{0.25}{250} \times 100=0.1 \%$

You Can Minimise the Percentage Uncertainty

1）One obvious way to reduce errors in your measurements is to use the most precise equipment you can．
2）Planning can also improve your results．If you measure out $\mathbf{5} \mathbf{~ c m}^{\mathbf{3}}$ of liquid in a measuring cylinder that has increments of $0.1 \mathrm{~cm}^{3}$ then the percentage uncertainty is $(0.05 \div 5) \times 100=\mathbf{1} \%$ ．But if you measure $\mathbf{1 0} \mathbf{~ c m}^{\mathbf{3}}$ of liquid in the same measuring cylinder the percentage uncertainty is $(0.05 \div 10) \times 100=\mathbf{0 . 5} \%$－you＇ve halved the percentage uncertainty．So the percentage uncertainty can be reduced by planning an experiment so you use a larger volume of liquid．

こll11111111111111111111111111111।1／三 In general，the smaller the measurement， the larger the percentage uncertainty．

Errors Can Be Systematic or Random

1）Systematic errors are the same every time you repeat the experiment．They may be caused by the set－up or equipment you used．For example，if the $10.00 \mathrm{~cm}^{3}$ pipette you used to measure out a sample for titration actually only measured $9.95 \mathrm{~cm}^{3}$ ，your sample would have been about $0.05 \mathrm{~cm}^{3}$ too small every time you repeated the experiment．
2）Random errors vary－they＇re what make the results a bit different each time you repeat an experiment． The errors when you make a reading from a burette are random．You have to estimate or round the level when it＇s between two marks－so sometimes your figure will be above the real one，and sometimes it will be below．
3）Repeating an experiment and finding the mean of your results helps to deal with random errors． The results that are a bit high will be cancelled out by the ones that are a bit low．But repeating your results won＇t get rid of any systematic errors，so your results won＇t get more accurate．

Uncertainty and Errors

The Total Uncertainty in a Result Should be Calculated

In titrations，here＇s how you find the total uncertainty in the final result：

－Find the percentage uncertainty for each bit of equipment．
－Add the individual percentage uncertainties together．This gives the percentage uncertainty in the final result．
－Use this to work out the actual total uncertainty in the final result．
Example： $10.00 \mathrm{~cm}^{3}$ of KOH solution is neutralised by $27.30 \mathrm{~cm}^{3}$ of HCl of known concentration．
The volume of KOH has an uncertainty of $0.060 \mathrm{~cm}^{3}$ ．
The volume of HCl has an uncertainty of $0.10 \mathrm{~cm}^{3}$ ．
The concentration of the KOH is calculated to be $1.365 \mathrm{~mol} \mathrm{dm}^{-3}$ ．
What is the uncertainty in this concentration？
First work out the percentage uncertainty for each volume measurement：

The KOH volume of $10.00 \mathrm{~cm}^{3}$ has an uncertainty of $0.060 \mathrm{~cm}^{3}$ ：
percentage uncertainty $=\frac{0.060}{10.00} \times 100=0.60 \%$

The HCl volume of $27.3 \mathrm{~cm}^{3}$ has an uncertainty of $0.1 \mathrm{~cm}^{3}$ ：
percentage uncertainty $=\frac{0.10}{27.30} \times 100=0.36 \ldots \%$

Find the percentage uncertainty in the final result：
Total percentage uncertainty $=0.60 \%+0.36 \ldots \%=0.96 \ldots \%$

You＇re not done yet－you still have to calculate the uncertainty in the final result．
Uncertainty in the final answer is $0.96 \ldots \%$ of $1.365 \mathrm{~mol} \mathrm{dm}^{-3}=0.013 \mathrm{~mol} \mathrm{dm}^{-3}$

ハ111111111111111111111111，
ミ So the actual concentration may be $0.013 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ bigger or $三$ smaller than $1.365 \mathrm{~mol} \mathrm{dm}^{-3}$ ．

Practice Questions

Q1 If the uncertainty of a reading from a burette is $0.05 \mathrm{~cm}^{3}$ ，why is the uncertainty of a titre quoted as being $0.1 \mathrm{~cm}^{3}$ ？
Q2 Write down the equation for the percentage uncertainty of a measurement．
Q3 Other than using more precise equipment，describe one way in which you could minimise the percentage uncertainty of a measurement using a mass balance that reads to the nearest 0.05 g ．

Exam Questions

Q1 The table shows the data recorded from a titration experiment．
a）Each reading recorded in the experiment has an uncertainty of $\pm 0.05 \mathrm{~cm}^{3}$ ．Calculate the percentage uncertainty in the titre in Run 1.
b）Explain how you could reduce the percentage error in these titre values by changing the concentration of the solution in the burette．
［2 marks］

Run	Initial volume $\left(\mathbf{c m}^{\mathbf{3}}\right)$	Final volume $\left(\mathbf{c m}^{\mathbf{3}}\right)$	Titre $\left(\mathbf{c m}^{\mathbf{3}}\right)$
Rough	1.1	5.2	4.1
1	1.2	4.3	3.1

［2 marks］
Q2 The concentration of a solution of NaOH is measured by titration against $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl} .25 .00 \mathrm{~cm}^{3}$ of NaOH solution requires $19.25 \mathrm{~cm}^{3}$ of HCl for neutralisation，so the concentration of NaOH is $0.0770 \mathrm{~mol} \mathrm{dm}^{-3}$ ． The volume of NaOH was measured using a pipette with an uncertainty of $0.06 \mathrm{~cm}^{3}$ ．
The titre reading from the burette has an uncertainty of $0.1 \mathrm{~cm}^{3}$ ．
By combining percentage uncertainties calculate the uncertainty in the concentration of the NaOH ．

Random error is human，systematic，divine．．．

Working out errors and uncertainty is important in every experiment you do．So important，in fact，that this topic is covered again in the Practical Skills section on page 248．Remember－if a question asks for the uncertainty of a result， find the uncertainty in the same units as the result．If you work out the total percentage uncertainty，you＇ll miss out．

Atom Economy and Percentage Yield

How to make a subject like Chemistry even more exciting - introduce the word 'economy'...

The Theoretical Yield of a Product is the Maximum You Could Get

1) The theoretical yield is the mass of product that should be made in a reaction if no chemicals are 'lost' in the process. You can use the masses of reactants and a balanced equation to calculate the theoretical yield for a reaction.
2) The actual mass of product (the actual yield) is always less than the theoretical yield. Some chemicals are always 'lost', e.g. some solution gets left on filter paper, or is lost during transfers between containers.
3) The percentage yield is the actual amount of product you collect, written as a percentage of the theoretical yield. You can work out the percentage yield with this formula: percentage yield $=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \%$

Example: Ethanol can be oxidised to form ethanal: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O}$ 9.2 g of ethanol was reacted with an oxidising agent in excess and 2.1 g of ethanal was produced. Calculate the theoretical yield and the percentage yield.

Number of moles $=$ mass of substance \div molar mass
Moles of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=9.2 \div[(2 \times 12.0)+(5 \times 1.0)+16.0+1.0]=9.2 \div 46.0=0.20$ moles
1 mole of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ produces 1 mole of $\mathrm{CH}_{3} \mathrm{CHO}$, so 0.2 moles of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ will produce 0.20 moles of $\mathrm{CH}_{3} \mathrm{CHO}$. M of $\mathrm{CH}_{3} \mathrm{CHO}=(2 \times 12.0)+(4 \times 1.0)+16.0=44.0 \mathrm{~g} \mathrm{~mol}^{-1}$
Theoretical yield (mass of $\left.\mathrm{CH}_{3} \mathrm{CHO}\right)=$ number of moles $\times M=0.20 \times 44.0=8.8 \mathrm{~g}$
So, if the actual yield was 2.1 g , the percentage yield $=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \%=\frac{2.1}{8.8} \times 100 \% \approx 24 \%$

Atom Economy is a Measure of the Efficiency of a Reaction

1) The percentage yield tells you how wasteful the process is - it's based on how much of the product is lost because of things like reactions not completing or losses during collection and purification.
2) But percentage yield doesn't measure how wasteful the reaction itself is. A reaction that has a 100% yield could still be very wasteful if a lot of the atoms from the reactants wind up in by-products rather than the desired product.
3) Atom economy is a measure of the proportion of reactant atoms that become part of the desired product (rather than by-products) in the balanced chemical equation. It's calculated using this formula:

$$
\% \text { atom economy }=\frac{\text { molar mass of desired product }}{\text { sum of molar masses of all products }} \times 100 \%
$$

4) In an addition reaction, the reactants combine to form a single product.

The atom economy for addition reactions is always $\mathbf{1 0 0 \%}$ since no atoms are wasted.
E.g. ethene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ and hydrogen react to form ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ in an addition reaction: $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$ The only product is ethane (the desired product). No reactant atoms are wasted so the atom economy is $\mathbf{1 0 0 \%}$.
5) In an ideal world, all reactions would have an atom economy of 100%. Unfortunately, this isn't the case, and reactions often have unwanted by-products which lead to a lower atom economy.

Example: Aluminium oxide is formed by heating aluminium hydroxide until it decomposes.
Calculate the atom economy of the reaction.

$$
2 \mathrm{Al}(\mathrm{OH})_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O}
$$

$\%$ atom economy $=\frac{\text { molar mass of desired product }}{\text { sum of molar masses of all products }} \times 100 \%$

$$
\begin{aligned}
& =\frac{M\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)}{M\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)+3 \times M\left(\mathrm{H}_{2} \mathrm{O}\right)} \times 100 \% \\
= & \frac{(2 \times 27.0)+(3 \times 16.0)}{[(2 \times 27.0)+(3 \times 16.0)]+3 \times[(2 \times 1.0)+16.0]} \times 100 \%=\frac{102}{102+54} \times 100 \%=65.4 \%
\end{aligned}
$$

Atom Economy and Percentage Yield

Reactions Can Have High Percentage Yields and Low Atom Economies

A substitution reaction is one where some atoms from one reactant are swapped with atoms from another reactant. This type of reaction always results in at least two products - the desired product and at least one by-product.

Example: 0.475 g of $\mathrm{CH}_{3} \mathrm{Br}$ reacts with an excess of NaOH in this reaction: $\mathrm{CH}_{3} \mathrm{Br}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{NaBr}$. 0.153 g of $\mathrm{CH}_{3} \mathrm{OH}$ is produced.
a) Calculate the atom economy of this reaction.

$$
\begin{aligned}
\% \text { atom economy } & =\frac{\text { molar mass of desired product }}{\text { sum of molar masses of all products }} \times 100 \% \\
& =\frac{M\left(\mathrm{CH}_{3} \mathrm{OH}\right)}{M\left(\mathrm{CH}_{3} \mathrm{OH}\right)+M(\mathrm{NaBr})} \times 100 \% \\
& =\frac{12.0+(3 \times 1.0)+16.0+1.0}{[12.0+(3 \times 1.0)+16.0+1.0]+[23.0+79.9]} \times 100 \% \\
& =\frac{32.0}{32.0+102.9} \times 100 \%=23.7 \%
\end{aligned}
$$

b) Calculate the percentage yield of this reaction.

Number of moles $=$ mass of substance \div molar mass
Moles of $\mathrm{CH}_{3} \mathrm{Br}=0.475 \div(12.0+(3 \times 1.0)+79.9)=0.475 \div 94.9=\mathbf{0 . 0 0 5 0} \ldots$ moles
The reactant: product ratio is $1: 1$, so the maximum number of moles of $\mathrm{CH}_{3} \mathrm{OH}$ is $\mathbf{0 . 0 0 5 0 0} \ldots$.
Theoretical yield $=0.00500 \ldots \times M\left(\mathrm{CH}_{3} \mathrm{OH}\right)$

$$
=0.00500 \ldots \times(12.0+(3 \times 1.0)+16.0+1.0)=0.00500 \ldots \times 32=\mathbf{0 . 1 6 0} \ldots \mathbf{g}
$$

Practice Questions

Q1 Give the equation for calculating the \% atom economy of a reaction.
Q2 How many products are there in an addition reaction?

Exam Questions

Q1 Reactions 1 and 2 below show two possible ways of preparing the compound chloroethane $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}\right)$:

$$
\begin{array}{ll}
1 & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{PCl}_{5} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{POCl}_{3}+\mathrm{HCl} \\
2 & \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{HCl} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}
\end{array}
$$

a) Which of these is an addition reaction?
b) Calculate the atom economy for reaction 1 .
c) Reaction 2 has an atom economy of 100%. Explain why this is, in terms of the products of the reaction. [1 mark]

Q2 Phosphorus trichloride $\left(\mathrm{PCl}_{3}\right)$ reacts with chlorine to give phosphorus pentachloride $\left(\mathrm{PCl}_{5}\right)$:

$$
\mathrm{PCl}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{PCl}_{5}
$$

a) 0.275 g of PCl_{3} reacts with an excess of chlorine. What is the theoretical yield of PCl_{5} ?

c) Changing conditions such as temperature and pressure will alter the percentage yield of this reaction. Will changing these conditions affect the atom economy? Explain your answer.
[2 marks]

I knew a Tommy Conomy once - strange bloke...

These pages shouldn't be too much trouble - you've survived worse already. Make sure that you get plenty of practice using the percentage yield and atom economy formulae. And whatever you do, don't get mixed up between percentage yield (which is to do with the process) and atom economy (which is to do with the reaction).

The Basics

This topic's all about organic chemistry... carbon compounds, in other words. Read on...

There are Loads of Ways of Representing Organic Compounds

Type of formula	What it shows you	Formula for Butan-1-0l
General formula	An algebraic formula that can describe any member of a family of compounds.	$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+1} \mathrm{OH}$ (for all alcohols)
Empirical formula	The simplest whole number ratio of atoms of each element in a compound (cancel the numbers down if possible). (So ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$, has the empirical formula CH_{3}.)	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$
Molecular formula	The actual number of atoms of each element in a molecule.	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$
Structural formula	Shows the arrangement of atoms carbon by carbon, with the attached hydrogens and functional groups.	
Skeletal formula	Shows the bonds of the carbon skeleton only, with any functional groups. The hydrogen and carbon atoms aren't shown. This is handy for drawing large complicated structures, like cyclic hydrocarbons.	
Displayed formula	Shows how all the atoms are arranged, and all the bonds between them.	

Nomenclature is a Fancy Word for the Naming of Organic Compounds

Organic compounds used to be given whatever names people fancied, but
these names led to confusion between different countries.
The IUPAC system for naming organic compounds was invented as an international language for chemistry. It can be used to give any organic compound a systematic name using these rules of nomenclature...

1) Count the carbon atoms in the longest continuous chain - this gives you the stem.

No. of Carbons	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Stem	meth-	eth-	prop-	but-	pent-	hex-	hept-	oct-	non-	dec-

2) The main functional group of the molecule usually tells you what homologous series the molecule is in, and so gives you the prefix or suffix - see the table on the next page.
3) Number the longest carbon chain so that the main functional group has the lowest possible number. If there's more than one longest chain, pick the one with the most side-chains.
4) Any side-chains or less important functional groups are added as prefixes at the start of the name. Put them in alphabetical order, after the number of the carbon atom each is attached to.
5) If there's more than one identical side-chain or functional group, use di- (2), tri- (3) or tetra- (4) before that part of the name - but ignore this when working out the alphabetical order.

Example: $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}$

1) The longest chain is 5 carbons.

So the stem is pent-.
2) The main functional group is -OH .

So the name will be based on 'pentanol'.
3) Numbering the longest carbon chain so that -OH has the lowest possible number (and you have most side chains) puts - OH on carbon 2, so it's some sort of pentan-2-ol.

4) The side chains are an ethyl group on carbon-3, and methyl groups on carbon-2 and carbon-4, so the systematic name for this molecule is: 3-ethyl-2,4-dimethylpentan-2-ol.

The Basics

Members of Homologous Series Have the Same General Formulae

1) Organic chemistry is more about groups of similar chemicals than individual compounds.
2) These groups are called homologous series. A homologous series is a bunch of organic compounds that have the same functional group and general formula. Consecutive members of a homologous series differ by $-\mathbf{C H}_{2}$ -

- A functional group is a group of atoms in a molecule responsible Z for the characteristic reactions of that compound.

Example:

1) The simplest homologous series is the alkanes. They're straight chain molecules that contain only carbon and hydrogen atoms. There's a lot more about the alkanes on pages 76-77.
2) The general formula for alkanes is $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+2}$. So the first alkane in the series is $\mathrm{C}_{1} \mathrm{H}_{(2 \times 1)+2}=\mathrm{CH}_{4}$ (you don't need to write the 1 in C_{1}), the second is $\mathrm{C}_{2} \mathrm{H}_{(2 \times 2)+2}=\mathrm{C}_{2} \mathrm{H}_{6}$, the seventeenth is $\mathrm{C}_{17} \mathrm{H}_{(2 \times 17)+2}=\mathrm{C}_{17} \mathrm{H}_{36}$, and so on...
3) Here are the homologous series you need to know about:

Homologous Series	Prefix or Suffix	Example
alkanes	-ane	propane $-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
branched alkanes	alkyl- (-yl)	methylpropane - $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}$
alkenes	-ene	propene - $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$
halogenoalkanes	chloro-/bromo-/iodo-	chloroethane - $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$
alcohols	-ol	ethanol - $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
aldehydes	-al	ethanal - $\mathrm{CH}_{3} \mathrm{CHO}$ 三
ketones	-one	propanone - $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
cycloalkanes	cyclo- ... -ane	cyclohexane $\mathrm{C}_{6} \mathrm{H}_{12}$
carboxylic acids	-oic acid	ethanoic acid - $\mathrm{CH}_{3} \mathrm{COOH}$

Practice Questions

Q1 Explain the difference between molecular formulae and structural formulae.
Q2 In what order should prefixes be listed in the name of an organic compound?
Q3 What is a homologous series? Give four examples of homologous series.

Exam Questions

Q1 1-bromobutane is prepared from butan-1-ol in this reaction: $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{NaBr}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}+\mathrm{NaHSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
a) Draw the displayed formulae for butan-1-ol and 1-bromobutane.
b) What does the ' 1 ' in the name butan-1-ol tell you, and why is it necessary to include it in the name?

Q2 a) Name the following molecules.
i)

ii)

b) i) Write down the molecular formula for 3-ethylpentane.
ii) Write down the structural formula for this molecule.
iii)

HINT: The double bond is the most important functional group, so give it the lowest number.
[3 marks]

It's as easy as 1,2,3-trichloropentan-2-ol...

The best thing to do now is find some organic compounds and work out their names. Then have a go at it the other way around - use the name to draw the compound. It might seem boring, but come the exam, you'll be thanking me.

Organic Reactions

This page is chock-full of really good words, like 'radical substitution'. And 'electrophilic addition'. It's well worth a read.

You Can Classify Reactions by Reaction Type...

There are lots of different reaction types that organic compounds can take part in.
Here's a run down of the ones that you'll meet in Topic 6:
Addition - joining two or more molecules together to form a larger molecule.
Polymerisation - joining together lots of simple molecules to form a giant molecule.
Elimination - when a small group of atoms breaks away from a larger molecule.
Substitution - when one species is replaced by another.

A species is an atom, = an ion, a radical or a molecule.

Hydrolysis - splitting a molecule into two new molecules by adding H^{+}and OH^{-}derived from water.
Oxidation - any reaction in which a species loses electrons.
Reduction - any reaction in which a species gains electrons.

A Mechanism Breaks Down a Reaction into Individual Stages

1) It's all very well knowing the outcome of a reaction, but it can also be useful to know how a reaction happens.
2) Mechanisms are diagrams that break reactions down into individual stages to show how substances react together. Some mechanisms use curly arrows to show how electron pairs move around when bonds are made or broken.

Curly Arrows Show How Electron Pairs Move Around

In order to make or break a bond in a reaction, electrons have to move around.
A curly arrow shows where a pair of electrons goes during a reaction. They look like this:
The arrow starts at the bond or lone pair where
the electrons are at the beginning of the reaction.

There are Different Types of Mechanisms Too

1) Some reaction types can happen by more than one mechanism. Take addition, for example you can get nucleophilic addition, electrophilic addition and radical addition.
2) There are some mechanisms coming up in this Topic that you're expected to remember:

- radical substitution of halogens in alkanes, to make halogenoalkanes - see pages 76-77.
- electrophilic addition of halogens and hydrogen halides to alkenes, to make halogenoalkanes - see pages 86-87.
- nucleophilic substitution of primary halogenoalkanes with aqueous potassium hydroxide to make alcohols and with ammonia to make amines - see pages 92-93.

Organic Reactions

Classifying Reagents Helps to Predict What Reactions Will Happen

Knowing the type of reagent that you have helps you predict which chemicals will react together and what products you＇re likely to end up with．
1）Nucleophiles are electron pair donors．They＇re often negatively charged ions（e．g．halide ions）or species that contain a lone pair of electrons（e．g．the oxygen atoms in water）．They＇re electron rich，so they＇re attracted to places that are electron poor．So they like to react with positive ions．Molecules with polar bonds are often attacked by nucleophiles too，as they have $\delta+$ areas．

Nucleophiles are attracted to the $\mathbf{C}^{\delta+}$ atom in a polar carbon－halogen bond． The carbon－halogen bond breaks and the nucleophile takes the halogen＇s place－and that＇s nucleophilic substitution（see page 92）．

Frank put safety first when he tested his nuclear file．．．
 Remember that＇$\delta+$＇and＇δ－＇show partial charges－see page 28.
シノ।11111111111111111111111111た

2）Electrophiles are electron pair acceptors．They＇re often positively charged ions（e．g． H^{+}），or $\delta+$ areas（e．g． $\mathrm{H}^{\delta+}$ in a hydrogen halide $\mathrm{H}-\mathrm{X}$ bond）．They＇re electron poor，so they＇re attracted to places that are electron rich． They like to react with negative ions，atoms with lone pairs and the electron－rich area around a $\mathbf{C = C}$ bond．

Alkene molecules undergo electrophilic addition．In a molecule with a polar bond，like HBr ，the $\mathrm{H}^{\delta+}$ acts as an electrophile and is strongly attracted to the $\mathrm{C}=\mathrm{C}$ double bond（which polarises the $\mathrm{H}-\mathrm{Br}$ bond even more，until it finally breaks）．There＇s more about this reaction on page 87.

3）Radicals have an unpaired electron，e．g．the chlorine atoms produced when UV light splits a Cl_{2} molecule．Because they have unpaired electrons，they＇re very，very reactive． Unlike electrophiles and nucleophiles，they＇ll react with anything，positive，negative or neutral．

Radicals will even attack stable non－polar bonds，like C－C and $\mathrm{C}-\mathrm{H}$（so they＇re one of the few things that will react with alkanes）． There＇s loads about the reactions of radicals with alkanes on pages 76－77．

Practice Questions

Q1 What is a hydrolysis reaction？
Q2 What do curly arrows show？
Q3 What type of reagent accepts a pair of electrons during a reaction？

Exam Questions

Q1 Which of the following species would you expect to act as a nucleophile？
A Bromine radicals， $\mathrm{Br} \cdot$ ．
B The non－polar alkane，methane， CH_{4} ．
C Hydroxide ions， OH^{-}．
D The $\mathrm{C}^{\delta+}$ atom in the polar $\mathrm{C}-\mathrm{OH}$ bond in ethanol， $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ ．
［1 mark］

Q2 Classify each of the following reactions according to its type：
a）A reaction in which lots of ethene molecules join together to form one long molecule，polyethene．［1 mark］
b）The reaction between chloroethane and water，in which a water molecule breaks chloroethane into ethanol and hydrogen chloride．
c）The reaction between chlorine radicals and ethane，in which a hydrogen atom in ethane is replaced by chlorine to form chloroethane．

My brother says I＇m rubbish at archery，but I blame the curly arrows．．．

Scientists do love to classify everything，and have it neatly in order．I knew one who liked to alphabetise his socks．But that＇s a different issue．Just learn the definitions for the types of reactions and reagents－and what types of reagent undergo what types of reaction．Then you＇ll have this page sorted．Without having to alphabetise anything．

Isomerism

Isomerism is great fun. It's all about how many ways there are of making different molecules from the same molecular formula. They can be a bit sneaky, though, so best be on your guard...

Isomers Have the Same Molecular Formula

1) Two molecules are isomers of one another if they have the same molecular formula but the atoms are arranged differently.
2) There are two types of isomers you need to know about - structural isomers and stereoisomers. Structural isomers are coming right up, and you'll meet stereoisomers on pages 83-85.

Structural Isomers Have Different Structural Arrangements of Atoms

In structural isomers, the atoms are connected in different ways.
So although the molecular formula is the same, the structural formula is different.
There are three different types of structural isomer:

1. Chain Isomers

The carbon skeleton can be arranged differently - for example, as a straight chain, or branched in different ways. These isomers have similar chemical properties - but their physical properties, like boiling point, will be different because of the change in shape of the molecule.

2. Positional Isomers

The skeleton and the functional group could be the same, only with the functional group attached to a different carbon atom.
These also have different physical properties, and the chemical properties might be different too.

3. Functional Group Isomers

The same atoms can be arranged into different functional groups.
These have very different physical and chemical properties.

Isomerism

Don't be Fooled - What Looks Like an Isomer Might Not Be

Atoms can rotate as much as they like around single $\mathbf{C}-\mathbf{C}$ bonds.
Remember this when you work out structural isomers - sometimes what looks like an isomer, isn't.

For example, there are no chain isomers and only

1-bromopropane

1-bromopropane again...

. and again
1-bromopropane

and again
1-bromopropane two positional isomers of $\mathbf{C}_{3} \mathbf{H}_{7} \mathbf{B r}$.

2-bromopropane

2-bromopropane again...

Practice Questions

Q1 What are isomers?
Q2 Name the three types of structural isomerism.
Q3 Draw the skeletal formulae of two isomers that both have the molecular formula $\mathrm{C}_{4} \mathrm{H}_{10}$.

Exam Questions

Q1 a) How many structural isomers are there of the alkane $\mathrm{C}_{6} \mathrm{H}_{14}$?
A 4
B 5
C 6
D 7
b) Explain what is meant by the term 'structural isomerism'.

Q2 Pentane has the structural formula $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$.
a) Draw the skeletal formula of a structural isomer of pentane.
b) Draw the displayed formula of an isomer of pentane that is not the molecule you drew in part a). [1 mark]

Q3 Two structural isomers, A and B , have the molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$. They both contain a $\mathrm{C}=\mathrm{O}$ double bond.
a) Draw the skeletal formulae of molecules A and B.
b) Give the structural formulae of isomers A and B.

Q4 Which of the following compounds is not an isomer of 1-buten-4-ol, $\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$?
A

B

C

C
[1 mark]

Alkanes

Alkanes are your basic hydrocarbons - like it says on the tin, they've got hydrogen and they've got carbon.

Alkanes are Saturated Hydrocarbons

1) Alkanes have the general formula $\mathbf{C}_{\mathrm{n}} \mathbf{H}_{2 \mathrm{n}+2}$. They've only got carbon and hydrogen atoms, so they're hydrocarbons.
2) Every carbon atom in an alkane has four single bonds with other atoms.
3) Alkanes are saturated - all the carbon-carbon bonds are single bonds.

Here are a few examples of alkanes:			Cyclohexane $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ Cycloalkanes have two fewer hydrogens than alkanes. Their general formula is $\mathrm{C}_{n} \mathrm{H}_{2 n}$	ミ"1111111111111111", $\begin{array}{l}\text { Cyclohexane has the } \\ \text { skeletal formula: }\end{array}$ $\begin{array}{l}\text { ミ }\end{array}$
Methane	Ethane	Propane		

There are Two Types of Bond Fission - Homolytic and Heterolytic

Breaking a covalent bond is called bond fission. A single covalent bond is a shared
pair of electrons between two atoms. It can break in two ways:

Heterolytic Fission:

In heterolytic fission the bond breaks unevenly with one of the bonded atoms receiving both electrons from the bonded pair. Two different substances can be formed - e.g. a positively charged cation $\left(\mathrm{X}^{+}\right)$, and a negatively charged anion $\left(\mathrm{Y}^{-}\right)$.

$$
\underset{\text { ('hetero' means 'different') }}{\mathrm{X}} \rightarrow \mathrm{X}^{+}+\mathrm{Y}^{-}
$$

- ll112
= A curly arrows shows the movement of an electron pair.

Homolytic Fission:

In homolytic fission, the bond breaks evenly and each bonding atom receives one electron from the bonded pair. Two electrically uncharged 'radicals' are formed. Radicals are particles that have an unpaired electron. They are shown in mechanisms by a big dot next to the molecular formula (the dot represents the unpaired electron.)

$$
X-Y \rightarrow X \bullet+Y \cdot
$$

Because of the unpaired electron, radicals are very reactive.

Halogens React with Alkanes, Forming Halogenoalkanes

1) Halogens react with alkanes in photochemical reactions. Photochemical reactions are started by light this reaction requires ultraviolet light to get going.
2) A hydrogen atom is substituted (replaced) by chlorine or bromine. This is a radical substitution reaction.

Example: Chlorine and methane react with a bit of a bang to form chloromethane: $\mathrm{CH}_{4}+\mathrm{Cl}_{2} \xrightarrow{\mathrm{UV}} \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{HCl}$
The reaction mechanism has three stages: initiation, propagation and termination.

Radicals are Produced by Initiation Reactions

In initiation reactions, radicals are produced. \qquad

1) Sunlight provides enough energy to break the $\mathrm{Cl}-\mathrm{Cl}$ bond - this is photodissociation: $\mathrm{Cl}_{2} \xrightarrow{U K} 2 \mathrm{Cl} \cdot$
2) The bond splits equally and each atom gets to keep one electron - homolytic fission.

The atom becomes a highly reactive radical, $\mathrm{Cl} \cdot$, because of its unpaired electron.

Radicals are Used Up and Created in Propagation Reactions

During propagation reactions, radicals are used up and created in a chain reaction.

1) $\mathrm{Cl} \cdot$ attacks a methane molecule: $\mathrm{Cl} \cdot+\mathrm{CH}_{4} \rightarrow \cdot \mathrm{CH}_{3}+\mathrm{HCl}$
2) The new methyl radical, $\bullet \mathrm{CH}_{3}$, can attack another Cl_{2} molecule: $\cdot \mathrm{CH}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl} \cdot$
3) The new $\mathrm{Cl} \cdot$ can attack another CH_{4} molecule, and so on, until all the Cl_{2} or CH_{4} molecules are wiped out.

Alkanes

Radicals are Destroyed in Termination Reactions

In termination reactions, radicals are mopped up by reacting together to form stable molecules.

1) If two free radicals join together, they make a stable molecule.
2) There are heaps of possible termination reactions. Here are a couple of them to give you the idea:

The Problem is - You End Up With a Mixture of Products

1) The big problem with radical substitution if you're trying to make a particular product is that you don't only get the product you're after, but a mixture of products.
2) For example, if you're trying to make chloromethane and there's too much chlorine in the reaction mixture, some of the remaining hydrogen atoms on the chloromethane molecule will be swapped for chlorine atoms. The propagation reactions happen again, this time to make dichloromethane.

$\mathrm{Cl} \cdot+\mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow \cdot \mathrm{CHCl}_{2}+\mathrm{HCl}$
$\cdot \mathrm{CHCl}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{CHCl}_{3}+\mathrm{Cl} \cdot$
trichloromethane
3) Tetrachloromethane $\left(\mathrm{CCl}_{4}\right)$ is formed in the last possible substitution. There are no more hydrogens attached to the carbon atom, so the substitution process has to stop.
4) So the end product is a mixture of $\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$ and CCl_{4}. This is a nuisance, because you have to separate the chloromethane from the other three unwanted by-products.
5) The best way of reducing the chance of these by-products forming is to have an excess of methane. This means there's a greater chance of a chlorine radical colliding only with a methane molecule and not a chloromethane molecule.
6) Another problem with radical substitution is that it can take place at any point along the carbon chain. So a mixture of structural isomers can be formed. For example, reacting propane with chlorine will produce a mixture of $\mathbf{1}$-chloropropane and $\mathbf{2}$-chloropropane.

Practice Questions

Q1 What's the general formula for alkanes?
Q2 What's homolytic fission?
Q3 What's a radical?
Q4 Write down the chemical equation for the radical substitution reaction between methane and chlorine.

Exam Question

Q1 When irradiated with UV light, methane gas will react with bromine to form a mixture of several organic compounds.
a) Name the type of mechanism involved in this reaction.
[1 mark]
b) Write an overall equation to show the formation of bromomethane from methane and bromine.
c) Write down the two equations in the propagation step for the formation of $\mathrm{CH}_{3} \mathrm{Br}$.
d) i) Explain why a tiny amount of ethane is found in the product mixture.

You should include the equation for the formation of this ethane in your answer.
ii) Name the mechanistic step that leads to the formation of ethane.
[1 mark]
e) Name the major product formed when a large excess of bromine reacts with methane in the presence of UV light.
[1 mark]

This page is like... totally radical, man...

Mechanisms can be a pain in the bum to learn, but unfortunately reactions are what Chemistry's all about. There's no easy trick - you've just got to sit down and learn the stuff. Keep hacking away at it, till you know it all off by heart.

Crude Oil

Crude oil is a big mixture of hydrocarbons．Some parts of the mixture are useful，like the hydrocarbons that make up petrol and diesel，but some aren＇t．Luckily，it＇s possible to convert the less useful parts into more usable compounds．

Crude Oil is Mainly Alkanes

1）Petroleum is just a fancy word for crude oil－the sticky black stuff they get out of the ground with oil wells．
2）Petroleum is a mixture of hydrocarbons．It＇s mostly made up of alkanes．
They range from small alkanes，like pentane，to massive alkanes of more than 50 carbons．
3）Crude oil isn＇t very useful as it is，but you can separate it out into useful bits（fractions）by fractional distillation．
Here＇s how fractional distillation works－don＇t try this at home．
1）First，the crude oil is vaporised at about $350^{\circ} \mathrm{C}$ ．
2）The vaporised crude oil goes into a fractionating column and rises up through the trays．The largest hydrocarbons don＇t vaporise at all，because their boiling points are too high－they just run to the bottom and form a gooey residue．

3）As the crude oil vapour goes up the fractionating column，it gets cooler．
Because the alkane molecules have different chain lengths，they have different boiling points，so each fraction condenses at a different temperature．The fractions are drawn off at different levels in the column．
4）The hydrocarbons with the lowest boiling points don＇t condense．
They＇re drawn off as gases at the top of the column．

Heavy Fractions can be＇Cracked＇to Make Smaller Molecules

1）People want loads of the light fractions of crude oil，like petrol and naphtha．They don＇t want so much of the heavier stuff like bitumen though．Stuff that＇s in high demand is much more valuable than the stuff that isn＇t．
2）To meet this demand，the less popular heavier fractions are cracked．Cracking is breaking long－chain alkanes into smaller hydrocarbons（which can include alkenes）．It involves breaking the $\mathbf{C}-\mathbf{C}$ bonds．
For example，decane could crack like this：

$$
\underset{\text { decane }}{\mathrm{C}_{10} \mathrm{H}_{22}} \rightarrow \underset{\substack{\mathrm{C}_{2} \mathrm{H}_{4} \\ \text { ethene }}}{ }+\underset{8}{\mathrm{C}_{8} \mathrm{H}_{18}}
$$

Here are two types of cracking－thermal cracking and catalytic cracking．

Thermal Cracking Produces Lots of Alkenes

1）Thermal cracking takes place at high temperature（up to $1000^{\circ} \mathrm{C}$ ）and high pressure（up to 70 atm ）．
2）It produces a lot of alkenes．
3）These alkenes are used to make heaps of valuable products，like polymers
（plastics）．A good example is poly（ethene），which is made from ethene．
Topic 6 －Organic Chemistry I

Crude Oil

Catalytic Cracking Produces Lots of Aromatic Compounds

1）Catalytic cracking uses something called a zeolite catalyst（hydrated aluminosilicate），at a slight pressure and high temperature（about $450^{\circ} \mathrm{C}$ ）．
2）It mostly produces aromatic hydrocarbons and motor fuels．
3）Using a catalyst cuts costs，because the reaction can be done at a low pressure and a lower temperature．The catalyst also speeds up the reaction，saving time（and time is money）．

ふ11111111।11।11।1।।11।1 Aromatic compounds contain benzene rings．Benzene rings contain a ring of 6 carbon I atoms with delocalised ring of electrons（see page 2O5）． ノ।।।।।।।।।।।।।।।।।।।।।

Alkanes can be Reformed into Cycloalkanes and Aromatic Hydrocarbons

1）Most people＇s cars run on petrol or diesel，both of which contain a mixture of alkanes（as well as other hydrocarbons，impurities and additives）．
2）Some of the alkanes in petrol are straight－chain alkanes，e．g．hexane－ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ ．
3）Knocking is where alkanes explode of their own accord when the fuel／air mixture in the engine is compressed．Straight chain alkanes are the most likely hydrocarbons to cause knocking．Adding branched chain and cyclic hydrocarbons to the petrol mixture makes knocking less likely to happen，so combustion is more efficient．

ミ1111111111111111111111111।111， Don＇t worry too much about knocking． You shouldn＇t be asked about it in the exams，but you do have to know how alkanes are reformed．

4）You can convert straight－chain alkanes into branched chain alkanes and cyclic hydrocarbons by reforming． This uses a catalyst（e．g．platinum stuck on aluminium oxide）．

Hexane can be reformed into cyclohexane and hydrogen gas，which can be reformed into benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ and hydrogen gas：

Octane can be reformed into 2，4－dimethylhexane：

Practice Questions

Q1 How does fractional distillation work？
Q2 What is cracking？
Q3 Why is reforming used？

Exam Question

Q1 Crude oil is a source of fuels and petrochemicals．
It＇s vaporised and separated into fractions using fractional distillation．
a）Some heavier fractions are processed using cracking．
i）Explain why cracking is carried out．
ii）Write a possible equation for the cracking of dodecane， $\mathrm{C}_{12} \mathrm{H}_{26}$ ．
b）Some hydrocarbons present in petrol are processed using reforming．
i）Name two types of compound that are produced by reforming．
ii）What effect do these compounds have on the petrol＇s performance？

Crude oil－not the kind of oil you could take home to meet your mother．．．

This isn＇t the most exciting topic in the history of the known universe．Although in a galaxy far，far away there may be lots of pages on more boring topics．But，that＇s neither here nor there，because you＇ve got to learn this stuff anyway． Get fractional distillation and cracking straight in your brain and make sure you know why people bother to do it．

Fuels

If we didn't burn fuels to keep warm and power vehicles, we'd all wear lots of jumpers and use pogo sticks... maybe.

Alkanes are Useful as Fuels...

1) If you burn (oxidise) alkanes with oxygen, you get carbon dioxide and water - this is a combustion reaction.

Here's the equation for the combustion of propane $-\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
2) If there isn't much oxygen around, the alkane will still burn, but it will produce a mixture of mainly carbon monoxide, carbon and water (there could also be some carbon dioxide). This is incomplete combustion.

For example, burning ethane with not much $\mathrm{O}_{2}-\mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{(\mathrm{s})}+\mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
3) Combustion reactions happen between gases, so liquid alkanes have to be vaporised first. Smaller alkanes turn into gases more easily (they're more volatile), so they'll burn more easily too.
4) Combustion reactions are exothermic reactions (they release heat).
5) Larger alkanes release heaps more energy per mole because they have more bonds to react.
6) Because they release so much energy when they burn, alkanes make excellent fuels. For example:

1) Methane's used for central heating and cooking in homes.
2) Alkanes with 5-12 carbon atoms are used in petrol.
3) Kerosene is used as jet fuel. Its alkanes have 11-15 carbon atoms.
4) Diesel is made of a mixture of alkanes with 15-19 carbon atoms.

...But They Produce Harmful Emissions

1) We generate most of our electricity by burning fossil fuels (coal, oil and natural gas) in power stations. We also use loads and loads of fossil fuels for transport and heating. Burning all these fossil fuels causes a lot of pollution.
2) Pollutants formed from burning fossil fuels include carbon monoxide, unburnt hydrocarbons and carbon particulates from the incomplete combustion of fuels, as well as oxides of sulfur (SO_{x}) and nitrogen $\left(\mathrm{NO}_{\mathrm{x}}\right)$.
3) These pollutants can cause lots of problems for our health as well as for the environment.

Carbon Monoxide is Toxic

1) The oxygen in your bloodstream is carried around by haemoglobin.
2) Carbon monoxide is better at binding to haemoglobin than oxygen is, so it binds to the haemoglobin in your bloodstream before the oxygen can.
3) This means that less oxygen can be carried around your body, leading to oxygen deprivation. At very high concentrations, carbon monoxide can be fatal.

Sulfur Dioxide and Oxides of Nitrogen (NO_{x}) Lead to Acid Rain

1) Acid rain can be caused by burning fossil fuels that contain sulfur. The sulfur burns to produce sulfur dioxide gas which then enters the atmosphere, dissolves in the moisture, and is converted into sulfuric acid.
2) Oxides of nitrogen $\left(\mathrm{NO}_{x}\right)$ are produced when the high pressure and temperature in a car engine cause the nitrogen and oxygen in the air to react together. When oxides of nitrogen $\left(\mathrm{NO}_{x}\right)$ escape into the atmosphere, they dissolves in moisture and are converted into nitric acid, which can fall as acid rain.
3) Acid rain destroys trees and vegetation, as well as corroding buildings and statues and killing fish in lakes.

Catalytic Converters Remove Some Pollutants from Car Emissions

1) Catalytic converters sit quietly in a car exhaust and stop some pollutants from coming out.
2) Without catalytic converters, cars spew out lots of bad stuff, like carbon monoxide, oxides of nitrogen and unburnt hydrocarbons.
3) Catalytic converters get rid of theses pollutants by using a platinum catalyst to change them to harmless gases, like water vapour and nitrogen, or to less harmful ones like carbon dioxide.
4) For example, nitrogen monoxide and carbon monoxide can be converted to nitrogen and carbon dioxide:

$$
2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{CO}_{(\mathrm{g})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

Fuels

Fossil Fuels are Non-Renewable

The various kinds of pollution produced by burning fossil fuels aren't the only problems.
They're also becoming more and more scarce as we use more and more of them.

1) The main fossil fuels (coal, oil, and natural gas) are relatively easily extracted and produce a large amount of energy when burnt. But, there's a finite amount of them and they're running out.
2) Oil will be the first to go - and as it gets really scarce, it'll become more expensive. It's not sustainable to keep using fossil fuels willy-nilly.

"Bruce... bring some more fossils - the barbie's going out."

Biofuels Include Biodiesel and Alcohols Made from Renewable Sources

1) Fortunately, there are alternatives to fossil fuels which are renewable.
2) Biofuels are fuels made from living matter over a short period of time:

- bioethanol is ethanol (an alcohol) made by the fermentation of sugar from crops such as maize,
- biodiesel is made by refining renewable fats and oils such as vegetable oil,
- biogas is produced by the breakdown of organic waste matter.

3) These fuels do produce CO_{2} when they're burnt, but it's CO_{2} that the plants
absorbed while growing, so biofuels are usually still classed as carbon neutral.
But CO_{2} is still given out while refining and transporting the fuel, as well as making the fertilisers
and powering agricultural machinery used to grow and harvest the crops.
4) Biodiesel and biogas can also be made from waste that would otherwise go to landfill.
5) But one problem with switching from fossil fuels to biofuels in transport is that petrol car engines would have to be modified to use fuels with high ethanol concentrations.
6) Also, the land used to grow crops for fuel can't be used to grow food - this could be a serious problem...

Developed countries (like the UK) will create a huge demand as they try to find fossil fuel alternatives.
Poorer developing countries (in South America, say) could use this as a way of earning money, and convert farming land to produce 'crops for fuels'. This may mean they won't grow enough food to eat.

Practice Questions

Q1 Name three products that form when an alkane burns in limited oxygen.
Q2 Why is the production of sulfur dioxide harmful for the environment?
Q3 Describe how bioethanol is produced.

Exam Questions

Q1 One of the components in petrol is the alkane pentane $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$.
a) Write a balanced equation for the complete combustion of pentane.
b) Explain how the incomplete combustion of pentane could cause serious health problems.

Q2 One problem caused by pollution is acid rain.
a) Name two pollutants which lead to acid rain.
b) Explain how one of these pollutants can be removed from car emissions.

Q3 Biodiesel is a fuel that can be used as an alternative to fossil fuels.
Give one advantage and one disadvantage of using biodiesel over fossil fuels.

Fixing the pollution problem - a fuels errand...

It's a dirty business, burning fossil fuels. You need to know about the various pollutants they release (such as sulfur oxides, nitrogen oxides, carbon monoxide, unburnt hydrocarbons, carbon particulates) and what damage they do. Then there are the alternatives. Biofuels may well be renewable, but they're not without their own drawbacks.

Alkenes

An alkene is like an alkane's wild younger brother. They look kinda similar, but alkenes are way more reactive.

Alkenes are Unsaturated Hydrocarbons

1) Alkenes have the general formula $\mathbf{C}_{n} \mathbf{H}_{2 n}$. They're made of carbon and hydrogen atoms, so they're hydrocarbons.
2) Alkene molecules all have at least one $\mathbf{C = C}$ double covalent bond. Molecules with $\mathrm{C}=\mathrm{C}$ double bonds are unsaturated because they can make more bonds with extra atoms in addition reactions (see pages 86-87).

Bonds in Organic Molecules can be Sigma or Pi Bonds

Covalent bonds form when atomic orbitals from different atoms, each containing a single electron, overlap, causing the electrons to become shared. A bond forms because the nuclei of the atoms are attracted by electrostatic attraction to the bonding electrons. The way that atomic orbitals overlap causes different types of bond to form.

1) Single covalent bonds in organic molecules are sigma (σ-) bonds. A σ-bond is formed when two orbitals overlap, in a straight line, in the space between two atoms. This gives the highest possible electron density between the two positive nuclei. $\checkmark \checkmark$
2) The high electron density between the nuclei
 means there is a strong electrostatic attraction between the nuclei and the shared pair of electrons. This means that σ-bonds have a high bond enthalpy - they're the strongest type of covalent bonds.
3) A double bond is made up of a sigma (σ-) bond and a pi ($\pi-$) bond. A π-bond is formed when two lobes of two orbitals overlap sideways. It's got two parts to it one 'above' and one 'below' the molecular axis. For example, p-orbitals can form π-bonds.
4) In a π-bond, the electron density is spread out above and below the nuclei. This causes the electrostatic attraction between the nuclei and the shared pair of electrons to be weaker in π-bonds than in σ-bonds, so π-bonds have a relatively low bond enthalpy.
5) This means that a double bond (π-bond $+\sigma$-bond) is less than twice as strong as a single bond (just a σ-bond).
6) Although they're usually written as $\mathrm{C}=\mathrm{C}$, double bonds really look more like this:
7) In alkenes, the $\mathbf{C}-\mathbf{C}$ and $\mathbf{C}-\mathbf{H}$ bonds are all σ-bonds. The $\mathbf{C}=\mathbf{C}$ bonds in alkenes contain both a σ - and a π-bond.

Practice Questions

Q1 What is the general formula of an alkene?
Q2 Describe how a sigma ($\sigma-$) bond forms.

Exam Question

Q1 The $\mathrm{C}=\mathrm{C}$ bond in ethene is made up of two different types of bond.
a) Give one similarity between these bonds.
[1 mark]
b) Give one difference between these bonds.
[1 mark]

Double, double toil and trouble. Alkene burn and pi bond bubble...

Double bonds are always made up of a σ-bond and a π-bond. So even though π-bonds are weaker than σ-bonds, double bonds will be stronger than single bonds because they have the combined strength of a σ - and a π-bond.

Stereoisomerism

The chemistry on these pages isn＇t so bad．And don＇t be too worried when I tell you that a good working knowledge of both German and Latin would be useful．It＇s not absolutely essential．．．You＇ll be fine without．

Double Bonds Can＇t Rotate

1）Carbon atoms in a $C=C$ double bond and the atoms bonded to these carbons all lie in the same plane（they＇re planar）． Because of the way they＇re arranged，they＇re actually said to be trigonal planar－the atoms attached to each double－bonded carbon are at the corners of an imaginary equilateral triangle．

The $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angles in the planar unit are all 120° ．

4）Even though atoms can＇t rotate about the double bond，things can still rotate about any single bonds in the molecule．
5）The restricted rotation around the $C=C$ double bond is what causes alkenes to form double bond is
stereoisomers．

Ethene， $\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{4}}$（like in the diagram above），is completely planar， but in larger alkenes，only the $>\mathrm{C}=\mathrm{C}<$ unit is planar．
3）Another important thing about $\mathrm{C}=\mathrm{C}$ double bonds is that atoms can＇t rotate around them like they can around single bonds （because of the way the p－orbitals overlap to form a π－bond －see previous page）．In fact，double bonds are fairly rigid －they don＇t bend much either．
 $\mathrm{CH}_{3} \mathrm{CHCHCH}_{3}$ ．The restricted rotation around the double bond means you can＇t turn one into the other so they are isomers．

EIZ isomerism is a Type of Stereoisomerism

1）Stereoisomers have the same structural formula but a different arrangement in space．
（Just bear with me for a moment．．．that will become clearer，I promise．）
2）Because of the lack of rotation around the double bond，some alkenes can have stereoisomers．
3）Stereoisomers occur when the two double－bonded carbon atoms each have two different atoms or groups attached to them．
4）One of these isomers is called the＇E－isomer＇and the other is called the＇ \mathbf{Z}－isomer＇（hence the name E / Z isomerism）．
5）The \mathbf{Z}－isomer has the same groups either both above or both below the double bond， whilst the E－isomer has the same groups positioned across the double bond．

Example：But－2－ene

Z－isomer
（Z－but－2－ene）

E－isomer （E－but－2－ene）

The double－bonded carbon atoms in but－2－ene each have an H and a CH_{3} group attached．

Here，the same groups are both above the double bond so it＇s the Z－isomer．
This molecule is Z－but－2－ene．
Z stands for＇zusammen＇，the German for＇together＇．

Here，the same groups are across the double bond so it＇s the E－isomer． This molecule is E－but－2－ene．

E stands for＇entgegen＇，a German word meaning＇opposite＇．
，\1।1।।1।।।।1।।।।।।।।।ノ
＝When you＇re naming stereoisomers，you need to put＇E＇or＇Z＇at the beginning of the name． ＝ノいいいいいいいいいいいいいいが

Stereoisomerism

The EIZ System Works Even When All the Groups Are Different

1) When the carbons on either end of a double bond both have the same groups attached, then it's easy to work out which is the E-isomer and which is the Z-isomer (like in the example on the last page).
2) It only starts to get problematic if the carbon atoms both have totally different groups attached.
3) Fortunately, a clever person (well, three clever people - Mr Cahn, Mr Ingold and Mr Prelog) came up with a solution to this problem.
4) Using the Cahn-Ingold-Prelog (CIP) rules you can work out which is the E-isomer and which is the Z-isomer for any alkene. They're really simple, and they work every time.

Atoms With a Larger Atomic Number are Given a Higher Priority

1) Look at the atoms directly bonded to each of the $C=C$ carbon atoms.

The atom with the higher atomic number on each carbon is given the higher priority.
Example: Here's one of the stereoisomers of 1-bromo-1-chloro-2-fluoroethene:

- The atoms directly attached to carbon-1 are bromine and chlorine. Bromine has an atomic number of 35 and chlorine has an atomic number of 17 . So bromine is the higher priority group.
- The atoms directly attached to carbon-2 are fluorine and hydrogen. Fluorine has an atomic number of 9 and hydrogen has an atomic number of 1 . So fluorine is the higher priority group.

2) Now you can assign the isomers as E- and Z- as before, just by looking at how the groups of the same priority are arranged.

In this stereoisomer of 1-bromo-1-chloro-2-fluoroethene, the higher priority groups (bromine and fluorine) are positioned across the double bond from one another. So it's the E-isomer.

You May Have to Look Further Along the Chain

If the atoms directly bonded to the carbon are the same then you have to look at the next atom in the groups to work out which has the higher priority.

This carbon is directly bonded to two carbon atoms, so you need to go further along the chain to work out the ordering.
The methyl carbon is only attached to hydrogen atoms, but the ethyl carbon is attached to another carbon atom. So the ethyl group is higher priority.

Stereoisomerism

Cis-Trans Isomerism is a Special Type of EIZ isomerism

1) If the carbon atoms have at least one group in common (like in but-2-ene), then you can call the isomers 'cis' or 'trans' (as well as E- or Z-) where...

- 'cis' means the same groups are on the same side of the double bond,
- 'trans' means the same groups are on opposite sides of the double bond.

So E-but-2-ene can be called trans-but-2-ene, as it has methyl groups on opposite sides of the double bond, and Z-but-2-ene can be called cis-but-2-ene, as the methyl groups are on the same side of the double bond.

Here's an example:
The \mathbf{H} atoms are on opposite sides of the The H atoms are on opposite sides of the
double bond, so this is trans-1-bromopropene. No problems there.
2) If the carbon atoms both have totally different groups attached to them, the cis-trans naming system can't cope.

E-1-bromo-1-fluoropropene

, ハ111111111111111111111/, -'"We're talking Latin this time... 'cis' means 'on the same side', while 'trans' means 'across'

Here, the cis/trans naming system doesn't work because the carbon atoms have different groups attached so there's no way of deciding which isomer is cis and which isomer is trans.

Practice Questions

Q1 Why is an ethene molecule said to be planar?
Q2 Define the term 'stereoisomers'.
Q3 Which of the following molecules, \mathbf{A}, \mathbf{B} or \mathbf{C}, is the Z -isomer of but-2-ene?

Q4 Is chlorine or bromine higher priority under the Cahn-Ingold-Prelog priority rules?
Q5 Which of the molecules in Question $3(\mathbf{A}, \mathbf{B}$ or $\mathbf{C})$ is the trans-isomer of but-2-ene?

Exam Questions

Q1 a) Draw and name the E / Z isomers of pent-2-ene, using full systematic names.
[2 marks]
b) Explain why alkenes can have E / Z isomers but alkanes cannot.
[2 marks]
Q2 How many stereoisomers are there of the molecule $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$?
A 1
B 2
C 3
D 4

Q3 a) Draw and name the E / Z isomers of:
i) 1-bromo-2-chloroethene,
ii) 1-bromo-2-chloroprop-1-ene.
b) i) Which of the molecules in part a) exhibits cis-trans isomerism? Explain your answer.
ii) Draw and name the cis-trans isomers of the molecule identified in part b) i).

You've reached the ausfahrt (that's German for exit)...

IMPORTANT FACT: If the two groups connected to one of the double-bonded carbons in an alkene are the same, then it won't have E / Z isomers. So neither propene nor but-1-ene have E / Z isomers. Try drawing them out if you're not sure.

Reactions of Alkenes

I'll warn you now - some of this stuff gets a bit heavy - but stick with it, as it's pretty important.

Electrophilic Addition Reactions Happen to Alkenes

In an electrophilic addition reaction, the alkene double bond opens up and atoms are added to the carbon atoms.

1) Electrophilic addition reactions happen because the double bond has got plenty of electrons and is easily attacked by electrophiles.
2) Electrophiles are electron-pair acceptors - they're usually a bit short of electrons, so they're attracted to areas where there are lots of electrons about.
3) Electrophiles include positively charged ions, like H^{+}and $\mathrm{NO}_{2}{ }^{+}$, and polar molecules (since the $\delta+$ atom is attracted to places with lots of electrons).

Adding Hydrogen to $C=C$ Bonds Produces Alkanes

1) Ethene will react with hydrogen gas in an addition reaction to produce ethane. It needs a nickel catalyst and a temperature of $150{ }^{\circ} \mathrm{C}$ though.

$$
\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{H}_{2} \xrightarrow{150^{\circ} \mathrm{C}} \mathrm{CH}_{3} \mathrm{CH}_{3}
$$

2) Margarine's made by 'hydrogenating' unsaturated vegetable oils. By removing some double bonds, you raise the melting point of the oil so that it becomes solid th room temperature.

Halogens React With Alkenes to Form Dihalogenoalkanes

1) Halogens will react with alkenes to form dihalogenoalkanes - the halogens add across the double bond, and each of the carbon atoms ends

$$
\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{X}_{2} \longrightarrow \mathrm{CH}_{2} \mathrm{XCH}_{2} \mathrm{X}
$$ up bonded to one halogen atom. It's an electrophilic addition reaction.

2) Here's the mechanism - bromine is used as an example, but chlorine and iodine react in the same way.
The double bond repels
the electrons in Br_{21}

polarising $\mathrm{Br}-\mathrm{Br}$. \begin{tabular}{l}
Heterolytic (unequal) fission of

Br_{2}. The closer Br gives up the

bonding electrons to the other

Br and bonds to the C atom.

You get a positively

charged carbocation

intermediate. The Br

now zooms over...
\end{tabular}

Alcohols Can be Made by Steam Hydration

1) Alkenes can be hydrated by steam at $300^{\circ} \mathrm{C}$ and a pressure of 60-70 atm. The reaction needs a solid phosphoric(\mathbf{V}) acid catalyst.
2) The reaction is used to manufacture ethanol from ethene:

$$
\begin{array}{|l}
\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \stackrel{\mathrm{H}_{3} \mathrm{PO}_{4}}{300^{\circ} \mathrm{C}} \\
60 \mathrm{~atm} \\
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}_{(\mathrm{g})}
\end{array}
$$

Alkenes are Oxidised by Acidified Potassium Manganate(VII)

1) If you shake an alkene with acidified potassium manganate(VII), the purple solution is decolourised. You've oxidised the alkene and made a diol (an alcohol with two -OH groups).
2) For example, here's how ethene reacts with acidified potassium manganate(VII):

Reactions of Alkenes

Alkenes also Undergo Addition with Hydrogen Halides

Alkenes also undergo addition reactions with hydrogen halides - to form halogenoalkanes.
For example, this is the reaction between ethene and HBr :

$$
\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{HBr} \rightarrow \mathrm{CH}_{2} \mathrm{BrCH}_{3}
$$

Adding Hydrogen Halides to Unsymmetrical Alkenes Forms Two Products

1) If the hydrogen halide adds to an unsymmetrical alkene, there are two possible products.
2) The amount of each product depends on how stable the carbocation formed in the middle of the reaction is.
3) Carbocations with more alkyl groups are more stable because the alkyl groups feed electrons towards the positive charge. The more stable carbocation is much more likely to form.

4) Here's how hydrogen bromide reacts with propene:

5) This can be summed up by Markownikoff's rule which says: \Rightarrow

Practice Questions

Q1 What is an electrophile?
Q2 Write an equation for the reaction of ethene with hydrogen.
Q3 Give the reagents and conditions needed to convert an alkene into a diol.

Exam Question

Q1 But-1-ene is an alkene. Alkenes contain at least one $\mathrm{C}=\mathrm{C}$ double bond.
a) Describe how bromine water can be used to test for $\mathrm{C}=\mathrm{C}$ double bonds.
[1 mark]
b) Name and show the reaction mechanism involved in the above test.
c) Hydrogen bromide reacts with but-1-ene, producing two isomeric products.
Draw the displayed formulae of these two isomers and explain which will be the major product.
[4 marks]

Electrophiles - they all want a piece of the pi...

Mechanisms are a classic that examiners just love. You need to know the electrophilic addition examples on these pages, so shut the book and scribble them out. And remember that sometimes the product has more than one isomer.

Polymers

Polymers are long, stringy molecules made by joining lots of alkenes together. They're made up of one unit repeated over and over again. Get the idea? OK, let's get started.

Alkenes Join Up to form Addition Polymers

1) The double bonds in alkenes can open up and join together to make long chains called polymers.

It's kind of like they're holding hands in a big line. The individual, small alkenes are called monomers.
2) This is called addition polymerisation. For example, poly(ethene) is made by the addition polymerisation of ethene.
3) To find the monomer used to form an addition polymer, take the

'Side-links' show that both sides are attached to other units. The bit in brackets is the 'repeat unit' (or 'repeating unit'). n represents the number of repeat units. repeat unit, add a double bond remove between the carbon atoms and $\mathbf{r e m}$
the single bonds from each end.
4) To find the repeat unit from a monomer, just do the reverse - change the $\mathrm{C}=\mathrm{C}$ bond into a single bond, and add another single bond to each of the $\mathbf{C}=\mathbf{C}$ carbons.

There are Different Methods for Disposing of Polymers

In the UK over 2 million tonnes of plastic waste are produced each year. It's important to find ways to get rid of this waste while minimising environmental damage. There are various possible approaches...

Waste Plastics can be Buried

1) Landfill is used to dispose of waste plastics when the plastic is:

- difficult to separate from other waste,
- not in sufficient quantities to make separation financially worthwhile,
- too difficult technically to recycle.

2) But because the amount of waste we generate is becoming more and more of a problem, there's a need to reduce landfill as much as possible.

Waste Plastics can be Reused

1) Many plastics are made from non-renewable oil-fractions, so it makes sense to reuse plastics as much as possible.
2) There's more than one way to reuse plastics.
 After sorting into different types:

- some plastics (poly(propene), for example) can be recycled by melting and remoulding them,
- some plastics can be cracked into monomers, and these can be used as an organic feedstock to make more plastics or other chemicals.

Waste Plastics can be Burned

1) If recycling isn't possible for whatever reason, waste plastics can be burned - and the heat can be used to generate electricity.
2) This process needs to be carefully controlled to reduce toxic gases. For example, polymers that contain chlorine (such as PVC) produce $\mathbf{H C l}$ when they're burned - this has to be removed.
3) Waste gases from the combustion are passed through scrubbers which can neutralise gases, such as HCl , by allowing them to react with a base.

Rex and Dirk enjoy some waist plastic.
4) Plastics can also be sorted before they are burnt to separate out any materials that will produce toxic gases.

Polymers

Chemists Can Work to Make Polymers Sustainably

Lots of chemicals that are used in the manufacture of polymers are pretty dangerous.
The way that a polymer is made should be designed to minimise the impact on human health and the environment. There are a set of principles that chemists follow when they design a sustainable polymer manufacturing process:

- Use reactant molecules that are as safe and environmentally friendly as possible.
- Use as few other materials, like solvents, as possible.

If you have to use other chemicals, choose ones that won't harm the environment.

- Renewable raw materials should be used wherever possible.
- Energy use should be kept to a minimum. Catalysts are often utilised in polymer synthesis to lower energy use.
- Limit the waste products made, especially those which are hazardous to human health or the environment.
- Make sure the lifespan of the polymer is appropriate for its use. If you make a polymer that just keeps breaking, you'll end up having to make loads more than if you create a more enduring polymer.

Biodegradable Polymers Decompose in the Right Conditions

1) Scientists can now make biodegradable polymers (ones that naturally decompose). They decompose pretty quickly in certain conditions because organisms can digest them.
2) Biodegradable polymers can be made from renewable raw materials such as starch (from maize and other plants), or from oil fractions such as the hydrocarbon isoprene.

Using renewable raw material has several advantages.

- Raw materials aren't going to run out like oil will.
- When polymers biodegrade, carbon dioxide (a greenhouse gas) is produced. If your polymer is plant-based, then the CO_{2} released as it decomposes is the same CO_{2} absorbed by the plant when it grew.
But with an oil-based biodegradable polymer, you're effectively transferring carbon from the oil to the atmosphere.
- Over their 'lifetime' some plant-based polymers save energy compared to oil-based plastics.

3) Even though they're biodegradable, these polymers still need the right conditions before they'll decompose. This means that you still need to collect and separate the biodegradable polymers from non-biodegradable plastics. At the moment, they're also more expensive than non-biodegradable equivalents.

Practice Questions

Q1 Draw the displayed formulae for the monomer and repeat unit used to make poly(propene).
Q2 Describe three ways in which used polymers such as poly(propene) can be disposed of.
Q3 What is a biodegradable polymer?

Exam Questions

Q1 Part of the structure of a polymer is shown on the right.
a) Draw the repeating unit of the polymer.
b) Draw the monomer from which the polymer was formed.
 [1 mark] [1 mark]

Q2 Waste plastics can be disposed of by burning.
a) Describe one advantage of disposing of waste plastics by burning.
b) Describe a disadvantage of burning waste plastic that contains chlorine, and explain how the impact of this disadvantage could be reduced.
[2 marks]
Q3* Outline and discuss some of the considerations an industrial chemist should make when designing a sustainable polymer manufacturing process.
[6 marks]

Alkenes - join up today, your polymer needs YOU...

You may have noticed that all this recycling business is a hot topic these days. This suits examiners just fine - they like you to know how useful and important chemistry is. So learn this stuff, pass your exams, and do some recycling.

[^3]will be assessed for this question.
Topic 6 - Organic Chemistry I

Halogenoalkanes

If you haven't had enough of organic chemistry yet, there's more. If you have had enough - there's still more.

Halogenoalkanes are Alkanes with Halogen Atoms

A halogenoalkane is an alkane with at least one halogen atom in place of a hydrogen atom.
E.g.

trichloromethane

2-iodopropane

2-bromo-2-chloro-1,1,1-trifluoroethane

Halogenoalkanes can be Primary, Secondary or Tertiary

Halogenoalkanes with just one halogen atom can be primary, secondary or tertiary halogenoalkanes.
On the carbon with the halogen attached:

1) A primary halogenoalkane has two hydrogen atoms and just one alkyl group.
2) A secondary halogenoalkane has just one hydrogen atom and two alkyl groups.
3) A tertiary halogenoalkane has no hydrogen atoms and three alkyl groups.
$X=$ halogen
$\mathrm{R}=$ alkyl group

1 alkyl group

2 alkyl groups

3 alkyl groups

Halogenoalkanes Can be Hydrolysed to Form Alcohols

1) Halogenoalkanes can be hydrolysed to alcohols in a nucleophilic substitution reaction (see page 92).

One way to do this is to use water.
2) The general equation is:

$$
\mathrm{R}-\mathrm{X}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{R}-\mathrm{OH}+\mathrm{H}^{+}+\mathrm{X}^{-}
$$

 E Hydrolysis is when water breaks bonds. ミ
3) Here's what would happen with bromoethane:

You Can Compare the Reactivities of Halogenoalkanes Using Experiments

1) When you mix a halogenoalkane with water, it reacts to form an alcohol. \qquad $\mathrm{R}-\mathrm{X}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{R}-\mathrm{OH}+\mathrm{H}^{+}+\mathrm{X}^{-}$
2) If you put silver nitrate solution in the mixture too, the silver ions react with the halide ions as soon as they form,
 $\mathrm{Ag}^{+}{ }_{(\mathrm{aq})}+\mathrm{X}_{(\mathrm{aq})}^{-} \rightarrow \mathrm{AgX}_{(\mathrm{s})}$ giving a silver halide precipitate (see page 51).
3) To compare the reactivities of different halogenoalkanes, set up three test tubes each containing a different halogenoalkane, ethanol (as a solvent) and silver nitrate solution (this contains the water).
4) Time how long it takes for a precipitate to form in each test tube. The more quickly a precipitate forms, the faster the rate of hydrolysis is for that halogenoalkane.

Halogenoalkanes

Primary, Secondary and Tertiary Halogenoalkanes Have Different Reactivities

You can compare the reactivities of primary, secondary and tertiary halogenoalkanes using the reaction on the last page.
Example: A student sets up an experiment to compare the reactivities of a primary, a secondary and a tertiary bromoalkane. His results are shown below. Which is the most reactive halogenoalkane?

Halogenoalkane	Time taken for precipitate to form / s
1-bromobutane (primary)	112
2-bromobutane (secondary)	62
2-bromo-2-methylpropane (tertiary)	8

From the results, you can tell that the tertiary halogenoalkane is the most reactive, since it reacted fastest with the water. The primary halogenoalkane is the least reactive.

ミThis example uses bromoalkanes, but the order of $\overline{\text { E }}$
E reactivity is the same whichever halogen you use.

lodoalkanes are Hydrolysed the Fastest

1) In order to hydrolyse a halogenoalkane, you have to break the carbon-halogen bond.
2) How quickly different halogenoalkanes are hydrolysed depends on the carbon-halogen bond enthalpy - see page 110 for more on this.
3) Weaker carbon-halogen bonds break more easily - so they react faster.
4) Bond enthalpy depends on the size of the halogen - the larger the halogen, the longer the $\mathrm{C}-\mathrm{X}$ bond, and the lower the bond enthalpy.
5) The size of the halogen increases down Group 7, so iodoalkanes have the weakest bonds, and are hydrolysed the fastest. Fluoroalkanes have the strongest bonds, so they're the slowest at hydrolysing.
6) You can compare the reactivity of chloroalkanes, bromoalkanes and

bond	bond enthalpy $/ \mathrm{kJ} \mathrm{mol}^{-1}$
$\mathrm{C}-\mathrm{F}$	467
$\mathrm{C}-\mathrm{Cl}$	346
$\mathrm{C}-\mathrm{Br}$	290
$\mathrm{C}-\mathrm{I}$	228
Faster hydrolysis as bond enthalpy decreases (the bonds get weaker).	

Example: A student sets up an experiment to compare the reactivities of a chloroalkane, a bromoalkane and an iodoalkane. Her results are shown below. Which is the most reactive halogenoalkane?

Halogenoalkane	Time taken for precipitate to form /
2-iodopropane	7
2-bromopropane	240
2-chloropropane	$567 \geq 1$

A pale yellow precipitate quickly forms with
2-iodopropane - so iodoalkanes must be the most reactive of these halogenoalkanes. Bromoalkanes react slower than iodoalkanes to form a cream precipitate, and chloroalkanes form a white precipitate even more slowly. \therefore The halogenoalkanes should have the same carbon skeleton so it's a fair test.

Practice Questions

Q1 What is a halogenoalkane?
Q2 What is a secondary halogenoalkane? Draw and name an example of one.
Q3 Put primary, secondary and tertiary halogenoalkanes in order of reactivity with water.

Exam Question

Q1 a) A tertiary halogenoalkane has the molecular formula $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{I}$. Draw and name the halogenoalkane. [2 marks]
b) The halogenoalkane in part a) is mixed with water and silver nitrate solution. Give the formula of the precipitate that forms.
c) Predict, with reasoning, whether the tertiary chloroalkane with formula $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ will be hydrolysed faster or slower than the halogenoalkane in part a) if all the other reactant conditions are the same.
[1 mark]
[3 marks]

Hydra-lies - stories told by a many-headed monster...

You can only compare the effect of one variable on the rates of hydrolysis of different halogenoalkanes if you keep the other variables the same. If you're investigating the effect of the halogen, the carbon skeletons of the halogenoalkanes need to be the same, and for the effect of primary, secondary or tertiary, the molecular formulae need to be identical.

More on Halogenoalkanes

Two more pages all about halogenoalkanes．It must be your lucky day．．．

Halogenoalkanes May React by Nucleophilic Substitution

1）Halogens are generally more electronegative than carbon．So，the carbon－halogen bond is polar．
2）The δ＋carbon doesn＇t have enough electrons．This means it can be attacked by a nucleophile．
A nucleophile＇s an electron－pair donor．It donates an electron pair to somewhere without enough electrons．
3） $\mathbf{O H}^{-}, \mathbf{N H}_{3}$ and $\mathbf{C N}^{-}$are examples of nucleophiles that react readily with halogenoalkanes．
Water is also a weak nucleophile．
4）A nucleophile can bond with the $\delta+$ carbon of a halogenoalkane，and be substituted for the halogen． This is called nucleophilic substitution：

Here＇s what happens．It＇s a nice simple one－step mechanism．

－ X is the halogen．Nuc is the nucleophile，which provides a pair of electrons for the $\mathbf{C}^{\delta+}$ ．
－The C－X bond breaks heterolytically－both electrons from the bond are taken by the halogen．
－The halogen falls off as the nucleophile bonds to the carbon．

5）There are three examples of nucleophilic
substitution you need to know．Read on．

Halogenoalkanes React with Aqueous KOH to form Alcohols

1）Halogenoalkanes react with hydroxide ions by nucleophilic substitution to form alcohols．You can use warm aqueous potassium hydroxide and do the reaction under reflux，otherwise it won＇t work．
2）Here＇s the general equation for the reaction：

3）And here＇s how the reaction happens：

ミIIIIIIIIIIIIIIIIIIIミ
ミ The OH ion acts as a
ミ nucleophile，attacking
＝the $\delta+$ carbon atom．
The $\mathrm{C}-\mathrm{Br}$ bond is polar． The C^{8+} attracts a lone pair of electrons from the OH^{-}ion．

The C－Br bond breaks heterolytically， and a new bond forms between
 The charges of each step in the

4）As you saw on page 90，you can also use water to hydrolyse halogenoalkanes and form alcohols．Water is a worse nucleophile mechanism have to balance－here， each step has an overall charge of -1 ．
 that hydroxide ions，so the reaction with water is slower．

Cyanide Ions React with Halogenoalkanes to form Nitriles

If you reflux a halogenoalkane with potassium cyanide in ethanol，then the cyanide ions will react with the halogenoalkane by nucleophilic substitution to form a nitrile．

$$
\mathrm{R}-\mathrm{X}+\mathrm{CN}^{-} \xrightarrow[\text { reflux }]{\text { ethanol }} \mathrm{R}-\mathrm{C} \equiv \mathrm{~N}+\mathrm{X}^{-}
$$

More on Halogenoalkanes

Halogenoalkanes React With Ammonia to Form Amines

1) Amines are organic compounds. They're based on ammonia $\left(\mathrm{NH}_{3}\right)$, but one or more of the hydrogen atoms are replaced by alkyl groups.
2) If you warm a halogenoalkane with excess ethanolic ammonia, the ammonia swaps places with the halogen to form a primary amine - yes, it's another one of lone pair of electrons

Halogenoalkanes also Undergo Elimination Reactions

You know what happens when a halogenoalkane reacts with an aqueous alkali (yes, you do - it's on the opposite page). But nucleophilic substitution isn't the only game in town. Swap 'aqueous' for 'ethanolic', and things change.

1) If you react a halogenoalkane with a warm alkali dissolved in ethanol, you get an alkene.

The mixture must be heated under reflux or volatile stuff will be lost.
2) Here's bromoethane. Again.
 ₹ form from elimination, just like with the elimination reaction of alcohols on page 95.

3) In elimination reactions, the hydroxide ions are acting as a base to remove an H^{+}ion from the halogenoalkane.

Practice Questions

Q1 What is a nucleophile?
Q2 Sketch the mechanism, including curly arrows, for the reaction of bromoethane with warm aqueous KOH .
Q3 Write a general equation for the reaction under reflux of a halogenoalkane with potassium cyanide in ethanol.

Exam Question

Q1 Some reactions of 2-bromopropane, $\mathrm{CH}_{3} \mathrm{CHBrCH}_{3}$, are shown.
a) Give the structural formula of organic product, A. [1 mark]
b) i) Give the reagents and conditions for reaction 2. [2 marks]
ii) Draw a mechanism for reaction 2 .
[4 marks]
c) Give the structural formula of organic product, B. [1 mark]

If you don't learn this, you will be eliminated. Resistance is nitrile...

The nucleophilic substitution mechanisms on these pages are all quite similar. They start with the nucleophile attacking the $\delta+$ carbon, causing the $C-X$ bond to break. Then it's a case of getting rid of hydrogens from the substituted group, if necessary, to make the organic product neutral. Practise drawing the mechanisms - they may come up in the exams.

Alcohols

These two pages could well be enough to put you off alcohols for life...

Alcohols are Primary, Secondary or Tertiary

1) The alcohol homologous series has the general formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+1} \mathbf{O H}$.
2) An alcohol is primary, secondary or tertiary, depending on which carbon atom the - OH group is bonded to.

Tertiary $\left(3^{\circ}\right)$
R_{3}
$\mathrm{R}_{2}-\mathrm{C}-\mathrm{OH}$
I
R_{1}

E.g. $\mathrm{R}_{2}^{\mathrm{H}}$

Alcohols Can React to Form Halogenoalkanes

Alcohols can react in substitution reactions to form halogenoalkanes.
The reagents and method you use depends on the halogenoalkane that you're trying to make.

Reacting Alcohols with PCl_{5} or $\mathbf{H C l}$ Produces Chloroalkanes

1) If you react an alcohol with phosphorus pentachloride (PCl_{5}), a chloroalkane is produced.
The general equation for this reaction is:
2) You can also make chloroalkanes if you react an alcohol with hydrochloric acid. The general equation for this reaction is:

ミ111111111111111111111111/, You'll probably do this synthesis as part of a practical in class. You can purify the 2-chloro-2-methylpropane product by separation and then distillation (see page 98).

3) For example, 2-methylpropan-2-ol reacts with hydrochloric acid at room temperature to form 2-chloro-2-methylpropane:

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{HCl} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}+\mathrm{H}_{2} \mathrm{O}
$$

4) The reaction between alcohols and hydrochloric acid is fastest if the alcohol is a tertiary alcohol, and slowest if it is a primary alcohol (the rate for secondary alcohols is somewhere in between).

-OH can be Swapped for Bromine to Make a Bromoalkane

1) Alcohols will react with compounds containing bromide ions (such as KBr) in a substitution reaction.
2) The hydroxyl (-OH) group is replaced by the bromide, so the alcohol is transformed into a bromoalkane.
3) The reaction also requires an acid catalyst, such as $\mathbf{5 0} \%$ concentrated $\mathbf{H}_{2} \mathbf{S O}_{4}$.

Example: To make 2-bromo-2-methylpropane you just need to shake 2-methylpropan-2-ol (a tertiary alcohol) with potassium bromide and 50% concentrated sulfuric acid at room temperature.

First, potassium bromide reacts with sulfuric acid to form hydrogen bromide: $2 \mathrm{KBr}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{HBr}+\mathrm{K}_{2} \mathrm{SO}_{4}$. The hydrogen bromide then reacts with the alcohol to form a bromoalkane:

bromoalkane
(2-bromo-2-methylpropane)

You Can Make lodoalkanes Using Red Phosphorus and lodine

1) You can make an iodoalkane from an alcohol by reacting it with phosphorus triiodide $\left(\mathbf{P I}_{3}\right)$.
2) $\mathbf{P I}_{3}$ is usually made in situ (within the reaction mixture)
by refluxing the alcohol with 'red phosphorus' and iodine.
3) This is the general equation:

$$
3 \mathrm{ROH}+\mathrm{PI}_{3} \rightarrow 3 \mathrm{RI}+\mathrm{H}_{3} \mathrm{PO}_{3}
$$

Alcohols

Alcohols can be Dehydrated to Form Alkenes

1) You can make alkenes by eliminating water from alcohols in an elimination reaction.
2) The alcohol is mixed with an acid catalyst such as concentrated phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$. The mixture is then heated.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

4) The water molecule is made up from the hydroxyl group and a hydrogen atom that was bonded to a carbon atom adjacent to the hydroxyl carbon.
5) This means that often there are two possible alkene products from one elimination reaction depending on which side of the hydroxyl group the hydrogen is eliminated from.
6) Also, watch out for if any of the alkene products can form \mathbf{E} / \mathbf{Z} isomers (see pages 83-85) - if they can then a mixture of both isomers will form.

Example: When butan-2-ol is heated to $170{ }^{\circ} \mathrm{C}$ with concentrated phosphoric acid, it dehydrates to form a mixture of products. Give the names and structures of all the organic compounds in this mixture.

- Elimination can occur between the hydroxyl group and the hydrogen either on carbon-1 or carbon-3. This results in two possible alkene products - but-1-ene and but-2-ene.
- In addition, but-2-ene can form E/Z isomers.
- So there are 3 possible products -but-1-ene, E-but-2-ene and Z-but-2-ene.

Practice Questions

Q1 What is the general formula for an alcohol?
Q2 Describe two different ways that propan-2-ol could be converted into 2-chloropropane.
Q3 What products are made when ethanol is refluxed with 'red phosphorus' and iodine?

Exam Questions

Q1 a) Draw and name a primary alcohol, a secondary alcohol and a tertiary alcohol, each with the formula $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$.
b) Describe how ethanol could be converted into bromoethane.

Q2 When 3-methyl-pentan-3-ol is heated with concentrated phosphoric acid, it reacts to form a mixture of organic products.
a) What is the name of this type of reaction?
[1 mark]
b) How many organic compounds will be produced?
A 4
B 3
C 2
D 1
[1 mark]

Euuurghh, what a page... I think I need a drink...

Not too much to learn here - a few basic definitions, two different ways to make a chloroalkane, a reaction to make a bromoalkane and another to make an iodoalkane, a tricky little dehydration reaction...
As I was saying, not much here at all... Think I'm going to faint.
[THWACK]

Oxidation of Alcohols

Another two pages of alcohol reactions．Probably not what you wanted for Christmas．．．

The Simplest way to Oxidise Alcohols is to Burn Them

It doesn＇t take much to set ethanol alight and it burns with a pale blue flame．
The $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bonds break and ethanol is completely oxidised to make carbon dioxide and water．This is a combustion reaction． $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{l})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
If you burn any alcohol along with plenty of oxygen，you get carbon dioxide and water as products．
But if you want to end up with something more interesting，you need a more sophisticated way of oxidising．．．

How Much an Alcohol can be Oxidised Depends on its Structure

You can use the oxidising agent acidified dichromate（ $\mathbf{V I}$ ）$\left(\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} / \mathrm{H}^{+}\right.$，e．g． $\left.\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{SO}_{4}\right)$ to mildly oxidise alcohols．
－Primary alcohols are oxidised to aldehydes and then to carboxylic acids．
－Secondary alcohols are oxidised to ketones only．
－Tertiary alcohols won＇t be oxidised．

ミThe orange dichromate（VI）
＝ion is reduced to the green
chromium（III）ion， Cr^{3+}
＝
Illl

Aldehydes and Ketones Contain C＝O bonds

Aldehydes and ketones are carbonyl compounds－they have the functional group $\mathrm{C}=\mathrm{O}$ ．
Their general formula is $\mathbf{C}_{\mathbf{n}} \mathbf{H}_{2 n} \mathbf{O}$ ．

1）Aldehydes have a hydrogen and one allkyl group attached to the carbonyl carbon atom．
E．g．

propanal
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
You can test whether a compound is an aldehyde or a ketone using Benedict＇s solution．This is a blue solution of complexed copper（II）ions dissolved in sodium carbonate．
If it＇s heated with an aldehyde the blue copper（II）ions are reduced to a brick－red precipitate of copper（I）oxide．

2）Ketones have two alkyl groups attached to the carbonyl carbon atom．
E．g．
 This test can also be done using Fehling＇s solution，which contains copper（II）ions dissolved in sodium hydroxide．The colour change from blue to red in the presence of an aldehyde is the same．Again，nothing happens with a ketone．
 If it＇s heated with a ketone，nothing happens as ketones can＇t be easily oxidised．

Primary Alcohols will Oxidise to Aldehydes and Carboxylic Acids

Primary alcohols can be oxidised twice－first to form aldehydes which can then be oxidised to form carboxylic acids．

［O］＝oxidising agent
e．g．potassium dichromate（VI）

Distil for an Aldehyde，and Reflux for a Carboxylic Acid

You can control how far the alcohol is oxidised by controlling the reaction conditions．For example．．．
1）Gently heating ethanol with potassium dichromate (VI) solution and sulfuric acid in a test tube should produce＂apple＂smelling ethanal（an aldehyde）．However，it＇s really tricky to control the amount of heat and the aldehyde is usually oxidised to form＂vinegar＂smelling ethanoic acid．
2）To get just the aldehyde，you need to get it out of the oxidising solution as soon as it＇s formed．You can do this by gently heating excess alcohol with a controlled amount of oxidising agent in distillation apparatus，so the aldehyde （which boils at a lower temperature than the alcohol）is distilled off immediately．
3）To produce the carboxylic acid，the alcohol has to be vigorously oxidised． The alcohol is mixed with excess oxidising agent and heated under reflux．

[^4]
Oxidation of Alcohols

Secondary Alcohols will Oxidise to Ketones

1) Refluxing a secondary alcohol, e.g. propan-2-ol, with acidified dichromate(VI) will produce a ketone.
2) Ketones can't be oxidised easily, so even prolonged refluxing won't produce anything more.

Monty and Bill were getting some much needed rest and refluxation.

Tertiary Alcohols can't be Oxidised Easily

1) Tertiary alcohols don't react with potassium dichromate (VI) at all - the solution stays orange.
2) The only way to oxidise tertiary alcohols is by burning them.

Practice Questions

Q1 Write an equation for the complete combustion of ethanol in oxygen.
Q2 What's the structural difference between an aldehyde and a ketone?
Q3 Why must you control the reaction conditions when oxidising a primary alcohol to an aldehyde?
Q4 How would you oxidise ethanol to ethanoic acid?
Q5 What will acidified potassium dichromate (VI) oxidise secondary alcohols to?
Q6 How would you oxidise a tertiary alcohol?

Exam Questions

Q1 A student wanted to produce the aldehyde propanal from propanol, and set up reflux apparatus using acidified potassium dichromate(VI) as the oxidising agent.
a) The student tested his product and found that he had not produced propanal.
i) What is the student's product?
ii) Write equations to show the two-stage reaction. You may use [O] to represent the oxidising agent.
iii) What technique should the student have used and why?
b) The student also tried to oxidise 2-methylpropan-2-ol, unsuccessfully.
i) Draw the full structural formula for 2-methylpropan-2-ol.
ii) Why is it not possible to oxidise 2-methylpropan-2-ol with an oxidising agent?

Q2 What will be produced if 2-methylbutan-2-ol is heated under reflux with acidified dichromate(VI)?
A an aldehyde
B a carboxylic acid
C a ketone
D an unreacted alcohol
[1 mark]
Q3 Plan an experiment to prepare 2-methylpropanal $\left(\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CHO}\right)$ from an appropriate alcohol.
Your plan should include details of the chemicals (including an alcohol that could be used as a starting material) and procedure used for the reaction.

Organic Techniques

There are some practical techniques that get used a lot in organic chemistry. They may be used during the synthesis of a product, or to purify it from unwanted by-products or unreacted reagents once it's been made.

Refluxing Makes Sure You Don't Lose Any Volatile Organic Substances

1) Organic reactions are slow and the substances are usually flammable and volatile (they've got low boiling points). If you stick them in a beaker and heat them with a Bunsen burner they'll evaporate or catch fire before they have time to react.
2) You can reflux a reaction to get round this problem.
3) The mixture's heated in a flask fitted with a vertical Liebig condenser this continuously boils, evaporates and condenses the vapours and recycles them back into the flask, giving them time to react.
4) The heating is usually electrical - hot plates, heating mantles, or electrically controlled water baths are normally used. This avoids naked flames that might ignite the compounds.

Distillation Separates Substances With Different Boiling Points

1) Distillation works by gently heating a mixture in a distillation apparatus. The substances will evaporate out of the mixture in order of increasing boiling point.
2) The thermometer shows the boiling point of the substance that is evaporating at any given time.
3) If you know the boiling point of your pure product, you can use the thermometer to tell you when it's evaporating and therefore when it's condensing.
4) If the product of a reaction has a lower boiling point than the starting materials then the reaction mixture can be heated so that the product evaporates from the reaction mixture as it forms.
5) If the starting material has a higher boiling point than the product, as long as the temperature is controlled, it won't evaporate out from the reaction mixture.

- Sometimes, a product is formed that will go on to react further if it's left in the reaction mixture.
- For example, when you oxidise a primary alcohol, it is first oxidised to an aldehyde and then oxidised to a carboxylic acid. If you want the aldehyde product, then you can do your reaction in the distillation equipment. The aldehyde product has a lower boiling point than the alcohol starting material, so will distil out of the reaction mixture as soon as it forms. It is then collected in a separate container.

6) If a product and its impurities have different boiling points, then distillation can be used to separate them. You use the distillation apparatus shown above, but this time you're heating an impure product, instead of the reaction mixture.
7) When the liquid you want boils (this is when the thermometer is at the boiling point of the liquid), you place a flask at the open end of the condenser ready to collect your product.
8) When the thermometer shows the temperature is changing, put another flask at the end of the condenser because a different liquid is about to be delivered.

Separation Removes Any Water Soluble Impurities From the Product

If a product is insoluble in water then you can use separation to remove any impurities that do dissolve in water such as salts or water soluble organic compounds (e.g. alcohols).

1) Once the reaction to form the product is completed, pour the mixture into a separating funnel, and add water.
2) Shake the funnel and then allow it to settle. The organic layer and the aqueous layer (which contains any water soluble impurities) are immiscible, (they don't mix), so separate out into two distinct layers.
3) You can then open the tap and run each layer off into a separate container. (In the example on the left, the impurities will be run off first, and the product collected second.)

Organic Techniques

You Can Remove Traces of Water From a Mixture Using an Anhydrous Salt

1) If you use separation to purify a product, the organic layer will end up containing trace amounts of water, so it has to be dried.
2) To do this you can add an anhydrous salt such as magnesium sulfate $\left(\mathrm{MgSO}_{4}\right)$ or calcium chloride $\left(\mathrm{CaCl}_{2}\right)$. The salt is used as a drying agent -it binds to any water present to become hydrated.
3) When you first add the salt to the organic layer it will be lumpy. This means you need to add more. You know that all the water has been removed when you can swirl the mixture and it looks like a snow globe.
4) You can filter the mixture to remove the solid drying agent.

Measuring Boiling Point is a Good way to Determine Purity

1) You can measure the purity of an organic, liquid product by looking at its boiling point.
2) If you've got a reasonable volume of liquid, you can determine its boiling point using a distillation apparatus, like the one shown on the previous page.
3) If you gently heat the liquid in the distillation apparatus, until it evaporates, you can read the temperature at which it is distilled, using the thermometer in the top of the apparatus. This temperature is the boiling point.
4) You can then look up the boiling point of the substance in data books and compare it to your measurement.
5) If the sample contains impurities, then your measured boiling point will be higher than the recorded value. You may also find your product boils over a range of temperatures, rather than all evaporating at a single temperature.

Practice Questions

Q1 Draw a labelled diagram to show the apparatus used in a reflux reaction.
Q2 Why might you want to avoid naked flames when performing an experiment with organic substances?
Q3 Name two ways of purifying organic products.
Q4 Describe a technique you could use to assess the purity of an organic liquid.

Exam Question

Q1 a) A student carried out an experiment to make hex-1-ene from hexan-1-ol using the following procedure:

1) Mix $1 \mathrm{~cm}^{3}$ hexan-1-ol with concentrated phosphoric acid in a reflux apparatus, and reflux for 30 minutes.
2) Once the mixture has cooled, separate the alkene from any aqueous impurities.
3) Dry the organic layer with anhydrous magnesium sulfate.
i) What is meant by reflux and why is it a technique sometimes used in organic chemistry?
ii) What organic compound is removed in the separating step?
iii) Describe, in detail, how the student would carry out the separation in step 2).
b) In another experiment, the student decides to make 1-hexen-6-ol by carrying out a single dehydration reaction of the diol 1,6-hexanediol.

i) If the student follows the procedure in part a), why might he produce a mixture of products?
ii) How could the procedure in part a) be adapted to prevent a mixture of products being formed?

Thought this page couldn't get any drier? Try adding anhydrous $\mathrm{MgSO}_{4} \ldots$

Learning the fine details of how experiments are carried out may not be the most interesting thing in the world, but you should get to try out some of these methods in practicals, which is a lot more fun.

Mass Spectrometry

This topic＇s about some of the fancy techniques chemists use to work out what different unknown compounds are．Neat．

Mass Spectrometry Can Help to Identify Compounds

1）You saw on page 7 how you can use a mass spectrum showing the relative isotopic abundances of an element to work out its relative atomic mass．You can also get mass spectra for molecular samples．
2）A mass spectrum is produced by a mass spectrometer．The molecules in the sample are bombarded with electrons，which remove an electron from the molecule to form a molecular ion， $\mathbf{M}^{+}{ }_{(\mathrm{g})}$ ．
3）To find the relative molecular mass of a compound you look at the molecular ion peak（the M peak）．This is the peak with the highest m / z value （ignoring any small $M+1$ peaks that occur due to the isotope carbon－13）． The mass／charge value of the molecular ion peak is the molecular mass．
\qquad
ミ11111111111111111111， Assuming the ion
E has a +1 charge，which三 it normally will have．厉いいいいいいいいいいいい

The y－axis gives the abundance of ions，often as a percentage．\neg

The x－axis units are given as a ＇mass／charge＇ ratio．

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+}$

M peak－caused by molecular ion $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}^{+}$

Here＇s the mass spectrum of pentane． Its M peak is at 72 －so the compound＇s M_{r} is 72 ．
For most organic compounds the M peak is the one with the second highest mass／charge ratio． The smaller peak to the right of the M peak is called the $M+1$ peak－ it＇s caused by the presence of the carbon isotope ${ }^{13} \mathrm{C}$ ．

The Molecular Ion can be Broken into Smaller Fragments

1）The bombarding electrons make some of the molecular ions break up into fragments．
The fragments that are ions show up on the mass spectrum，making a fragmentation pattern．Fragmentation patterns are actually pretty cool because you can use them to identify molecules and even their structure．

For propane，the molecular ion is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}{ }^{+}$，and the fragments it breaks into include $\mathrm{CH}_{3}{ }^{+}\left(M_{\mathrm{r}}=15\right)$ and $\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{+}\left(M_{\mathrm{r}}=29\right)$ ．
Only the ions show up on the mass spectrum－the free radicals are＇lost＇．

2）To work out the structural formula，you＇ve got to work out what ion could have made each peak from its $\boldsymbol{m} / \boldsymbol{z}$ value．（You assume that the m / z value of a peak matches the mass of the ion that made it．）Here are some common fragments：

Example：Use this mass spectrum to work out the structure of the molecule：

Fragment	Molecular Mass
CH_{3}^{+}	15
$\mathrm{C}_{2} \mathrm{H}_{5}^{+}$	29
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}^{+}$ or $\mathrm{CH}_{3} \mathrm{CHCH}^{+}$	43
OH^{+}	17

1．Identify the fragments

This molecule＇s got a peak at $15 \mathrm{~m} / \mathrm{z}$ ， so it＇s likely to have a CH_{3} group．
It＇s also got a peak at $17 \mathrm{~m} / \mathrm{z}$ ， so it＇s likely to have an OH group．
Other ions are matched to the peaks here：

2．Piece them together to form a molecule with the correct M_{r}
Ethanol has all the fragments on this spectrum．
Ethanol＇s molecular mass is 46 ．
This should be the same as the m / z value of the M peak－it is．

Mass Spectrometry

Mass Spectrometry is Used to Differentiate Between Similar Molecules

1) Even if two different compounds contain the same atoms, you can still tell them apart with mass spectrometry because they won't produce exactly the same set of fragments.
2) The formulae of propanal and propanone are shown below.

A massage spectrum

They've got the same M_{r}, but different structures, so they produce some different fragments.
For example, propanal will have a $\mathbf{C}_{2} \mathbf{H}_{5}{ }^{+}$fragment but propanone won't.
3) Every compound produces a different mass spectrum - so the spectrum's like a fingerprint for the compound. Large computer databases of mass spectra can be used to identify a compound from its spectrum.

Practice Questions

Q1 What is meant by the molecular ion?
Q2 What is the M peak?
Q3 What causes the presence of an $M+1$ peak on the mass spectra of most organic compounds?

Exam Questions

Q1 Below is the mass spectrum of an organic compound, Q .

a) What is the M_{r} of compound Q ? [1 mark]
b) What fragments are the peaks marked X and Y most likely to correspond to?
c) Suggest a structure for this compound.
[1 mark]
d) Why is it unlikely that this compound is an alcohol?

Q2 Mass spectrometry is run on a sample of but-2-ene $\left(\mathrm{CH}_{3} \mathrm{CHCHCH}_{3}\right)$ and a mass spectrum is produced. For the following questions, assume that all ions form with a +1 charge.
a) At what m / z value would you expect the M peak of but-2-ene to appear?
b) A peak appears on the spectrum at $m / z=41$. Suggest which fragment is responsible for this peak.
c) Apart from the M peak and the peak at $m / z=41$, suggest one other peak that you would expect to be present on the mass spectrum of but-2-ene. What fragment does it correspond to?

Q3 An unknown alcohol has the chemical formula $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$.
A sample of the compound was inserted into a mass spectrometer and a mass spectrum was produced.
A peak appears on the mass spectrum at $m / z=31$.
Name the unknown alcohol and draw its structure. Explain your answer.

I hate break ups - even if it is to make some lovely ions and a fragmentation pattern. But remember - mass spectrometry only records fragments that have a charge. So, when drawing or writing the fragments that a peak could be responsible for, remember to put that little positive sign next to them - you'll lose marks in the exam if you don't show it.

Infrared Spectroscopy

If you＇ve got some stuff and don＇t know what it is，don＇t taste it．You can stick it in an infrared spectrometer． You＇ll wind up with some scary looking graphs．But just learn the basics，and you＇ll be fine．

Infrared Radiation Makes Some Bonds Vibrate More

1）In infrared（IR）spectroscopy，a beam of IR radiation is passed through a sample of a chemical．
2）The IR radiation is absorbed by the covalent bonds in the molecules，increasing their vibrational energy．
3）Bonds between different atoms absorb different frequencies of $I R$ radiation．Bonds in different places in a molecule absorb different frequencies too－so the $\mathrm{O}-\mathrm{H}$ group in an alcohol and the $\mathrm{O}-\mathrm{H}$ in a carboxylic acid absorb different frequencies．This table shows what frequencies different bonds absorb：

Group	Where it＇s found	Wavenumber（ cm^{-1} ）
C－H stretching	Alkanes	2962－2853
	Alkenes	3095－3010
	Aldehydes	2900－2820 and 2775－2700
$\mathrm{C}-\mathrm{H}$ bending	Alkanes	1485－1365
$\mathrm{N}-\mathrm{H}$ stretching	Amines	3500－3300
$\mathrm{O}-\mathrm{H}$ stretching	Alcohols	3750－3200
	Carboxylic Acids	3300－2500（broad）
$\mathrm{C}=\mathrm{C}$ stretching	Alkenes	1669－1645
$\mathrm{C}=\mathrm{O}$ stretching	Aldehydes	1740－1720
	Ketones	1720－1700 ごい
	Carboxylic Acids	1725－1700 三 le

information．Don＇t worry though－just use it in the same way as the stuff above．

Infrared Spectroscopy Helps You Identify Organic Molecules

1）An infrared spectrometer produces a graph that shows you what frequencies of radiation the molecules are absorbing．So you can use it to identify the functional groups in a molecule．All you have to do is use the infrared data table to match up the peaks on the spectrum with the functional groups that made them．
2）The peaks show you where radiation is being absorbed （the peaks on IR spectra are upside－down－they point downwards）．
3）Transmittance is always plotted on the y－axis，and wavenumber on the x－axis．
Wavenumber is the measure used for the frequency（it＇s just $1 /$ wavelength in cm ）．

The toe toucher was Carol＇s favourite stretch．

Infrared Spectroscopy

Infrared Spectroscopy Can Show if a Reaction's Happened

Infrared spectroscopy is great for telling if a functional group has changed during a reaction. For example, if you oxidise an alcohol to an aldehyde you'll see the $\mathrm{O}-\mathrm{H}$ absorption disappear See pages 96-97 for more on the oxidation of alcohols. from the spectrum, and a $\mathrm{C}=\mathrm{O}$ absorption appear. If you then oxidise it further to a carboxylic acid an $\mathrm{O}-\mathrm{H}$ peak at a slightly lower frequency than before will appear, alongside the $\mathrm{C}=\mathrm{O}$ peak.

Example: A chemical was suspected to be a pure sample of an unknown aldehyde. When the chemical was tested using infrared spectroscopy, the spectrum below was obtained. Is the chemical an aldehyde? Explain your answer.

1) If the chemical was an aldehyde, it would contain a carbonyl group (a C=O functional group - see page 96).
2) In infrared spectroscopy, a carbonyl group would show a strong, sharp peak at about $\mathbf{1 7 0 0} \mathbf{- 1 7 5 0} \mathbf{~ c m}^{-1}$.
3) The spectrum on the right doesn't have a strong peak at this frequency, and so is not an aldehyde (or a ketone, a carboxylic acid or an ester).

ミ11111111111111111111111111111111111111
= Actually, this is the infrared spectrum of ethanol.

Practice Questions

Q1 What happens to a covalent bond when it absorbs infrared radiation?
Q2 Why do most infrared spectra of organic molecules have a strong, sharp peak at around $3000 \mathrm{~cm}^{-1}$?
Q3 What functional group would be responsible for a peak on an infrared spectrum at around 1740-1720 cm^{-1} ?

Exam Questions

Q1 The IR spectrum of an organic molecule is shown on the right.
a) Which of the following compounds could be responsible for the spectrum? Use the infrared data on page 102.
A butanoic acid
B butanal
C 1-aminobutane
D butanol
[1 mark]
b) Explain your answer to a).
[2 marks]

Q2 The molecule that produces the IR spectrum shown on the right has the molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$.

Use the infrared data on page 102.
a) Which functional groups are responsible for peaks A and B ?
b) Give the structural formula and name of this molecule. Explain your answer. [2 marks]

To analyse my sleep patterns, I use into-bed spectroscopy...

Infrared spectra may just appear to be big, squiggly messes - but they're actually dead handy at telling you what sort of molecule an unknown compound is. Luckily you don't have to remember where any of the infrared peaks are, but you do need to be able to identify them using your data sheet. So get some practice in now and do those exam questions above.

Enthalpy Changes

A whole new topic to enjoy - but don't forget, Big Brother is watching...

Chemical Reactions Often Have Enthalpy Changes

When chemical reactions happen, some bonds are broken and some bonds are made. More often than not, this'll cause a change in energy. The souped-up chemistry term for this is enthalpy change.

Enthalpy change, ΔH (delta H), is the heat energy change in a reaction at constant pressure. The units of ΔH are $\mathrm{kJ} \mathrm{mol}^{-1}$.

You write ΔH^{\ominus} to show that the measurements were made under standard conditions and that the elements were in their standard states (their physical states under standard conditions). Standard conditions are $\mathbf{1 0 0} \mathbf{~ k P a}$ (about 1 atm) pressure and a specified temperature (which is normally $\mathbf{2 9 8} \mathbf{K}$). The next page explains why this is necessary.

Reactions can be Either Exothermic or Endothermic

The Smiths were enjoying the standard conditions in British summertime.

1) Exothermic reactions give out heat energy. ΔH is negative. In exothermic reactions, the temperature often goes up.
2) Endothermic reactions absorb heat energy. ΔH is positive. In endothermic reactions, the temperature often falls.

The combustion of a fuel like methane is exothermic: $\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \Delta_{\mathrm{c}} H^{\ominus}=-890 \mathrm{~kJ} \mathrm{~mol}^{-1}$

The thermal decomposition of calcium carbonate is endothermic:
$\mathrm{CaCO}_{3(\mathrm{~s})} \rightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
$\Delta_{\mathrm{r}} \mathrm{H}^{\ominus}=+178 \mathrm{~kJ} \mathrm{~mol}^{-1}$

E The symbols $\Delta_{c} H^{\theta}$ and $\Delta_{r} H^{\ominus}$ are explained on the next page.

Enthalpy Level Diagrams Show the Overall Change of a Reaction

1) Enthalpy (or energy) level diagrams show the relative energies of the reactants and products in a reaction. The difference in the enthalpies is the enthalpy change of the reaction.
2) The less enthalpy a substance has, the more stable it is.

Enthalpy

In an exothermic reaction, the reactants release energy to the surroundings, so the products have less enthalpy than the reactants.

In an endothermic reaction, the reactants take in energy from the surroundings, so the products have more enthalpy than the reactants.

Reaction Profile Diagrams Show Enthalpy Changes During a Reaction

1) Reaction profile diagrams show you how the enthalpy changes during reactions.
2) The activation energy, $E_{a^{\prime}}$ is the minimum amount of energy needed to begin breaking reactant bonds and start a chemical reaction. (There's more on activation energy on page 112.)

Enthalpy Changes

You Need to Specify the Conditions for Enthalpy Changes

1）You can＇t directly measure the actual enthalpy of a system．In practice，that doesn＇t matter，because it＇s only ever enthalpy change that matters．You can find enthalpy changes either by experiment or in data books．
2）Enthalpy changes you find in data books are usually standard enthalpy changes－enthalpy changes under standard conditions

ミ゙11111111111111111111111
298 K is the same as $25^{\circ} \mathrm{C}$ ．三 （ $\mathbf{1 0 0} \mathbf{~ k P a}$ and a specified temperature，usually $\mathbf{2 9 8} \mathrm{K}$ ）．

3）This is important because changes in enthalpy are affected by temperature and pressure－ using standard conditions means that everyone can know exactly what the enthalpy change is describing．

There are Different Types of $\Delta \boldsymbol{H}$ Depending On the Reaction

1）Standard enthalpy change of reaction，$\Delta_{r} H^{\ominus}$ ，is the enthalpy change when the reaction occurs in the molar quantities shown in the chemical equation，under standard conditions．

2）Standard enthalpy change of formation，$\Delta_{\mathrm{f}} \mathrm{H}^{\ominus}$ ，is the enthalpy change when 1 mole of a compound is formed from its elements in their standard states，under standard conditions，e．g． $2 \mathrm{C}_{(\mathrm{s})}+3 \mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(1)}$ ．
3）Standard enthalpy change of combustion，$\Delta_{c} H^{\ominus}$ ，is the enthalpy change when 1 mole of a substance is completely burned in oxygen，under standard conditions．
4）Standard enthalpy change of neutralisation，$\Delta_{\text {neut }} H^{\ominus}$ ，is the enthalpy change when an acid and an alkali react together，under standard conditions，to form 1 mole of water．

Practice Questions

Q1 Explain the terms exothermic and endothermic，giving an example reaction in each case．
Q2 Draw and label enthalpy level diagrams for an exothermic and an endothermic reaction．
Q3 Define standard enthalpy change of formation and standard change enthalpy of combustion．

Exam Questions

Q1 Hydrogen peroxide， $\mathrm{H}_{2} \mathrm{O}_{2}$ ，can decompose into water and oxygen．

$$
2 \mathrm{H}_{2} \mathrm{O}_{2(\mathrm{I})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})} \quad \Delta H^{\ominus}=-98 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Draw a reaction profile diagram for this reaction．Mark on the activation energy，E_{a} ，and ΔH ．
Q2 Methanol， $\mathrm{CH}_{3} \mathrm{OH}_{(1)}$ ，when blended with petrol，can be used as a fuel．$\Delta_{\mathrm{c}} H^{\ominus}\left[\mathrm{CH}_{3} \mathrm{OH}\right]=-726 \mathrm{~kJ} \mathrm{~mol}^{-1}$
a）Write an equation，including state symbols，for the standard enthalpy change of combustion of methanol．［1 mark］
b）Write an equation，including state symbols，for the standard enthalpy change of formation of methanol．［1 mark］
c）Petroleum gas is a fuel that contains propane， $\mathrm{C}_{3} \mathrm{H}_{8}$ ．
Why does the following equation not represent a standard enthalpy change of combustion？

$$
2 \mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+10 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 6 \mathrm{CO}_{2(\mathrm{~g})}+8 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad \Delta_{\mathrm{r}} H^{\ominus}=-4113 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Q3 Coal is mainly carbon．It is burned as a fuel．$\Delta_{\mathrm{c}} H^{\ominus}=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
a）Write an equation，including state symbols，for the standard enthalpy change of combustion of carbon．［1 mark］
b）Explain why the standard enthalpy change of formation of carbon dioxide will also be $-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ．［1 mark］
c）How much energy would be released when 1 tonne of carbon is burned？（ 1 tonne $=1000 \mathrm{~kg}$ ）
［2 marks］

Enthalpy changes－ethylpan，thenalpy，panthely，lanthepy，nyapleth．．．

Quite a few definitions here．And you need to know them all．If you＇re going to bother learning them，you might as well do it properly and learn all the pernickety details．They probably seem about as useful as a dead fly in your custard right now，but all will be revealed over the next few pages．Learn them now，so you＇ve got a bit of a head start．

More on Enthalpy Changes

Now you know what enthalpy changes are，here＇s how to calculate them．．．

You Can Find Enthalpy Changes Using Experiments

To find the enthalpy change for a reaction，you only need to know two things：
－the number of moles of the stuff that＇s reacting，
－the change in temperature of the reaction．
Once you know these two things，you can work out the change in heat energy of the reaction using the equation on the next page．For reactions carried out at constant pressure，the heat change is the same as the enthalpy change．

You Can Directly Measure the Temperature Change of Some Reaction Mixtures

For reactions where all the reactants are solids or liquids，you can just mix the reactants together，stick a thermometer in the reaction mixture and measure the overall temperature change．The problem with this method is that some heat will be lost to the surroundings（or gained if the reaction is endothermic），so the temperature change you measure will be less than the actual temperature change of the reaction．You can account for this problem by using the method below．

Some Some enthalpy changes can＇t be found by measuring a single temperature change．Fear not－ Ethere＇s a way round this on page 109 こノ।।।।।।।।।।।।।।।।।।।।।।।।।

Example：Describe an experiment that could be used to find the enthalpy change of the endothermic reaction between citric acid and sodium bicarbonate．

1）Add a set volume of citric acid of a known concentration to a polystyrene cup．
2）Put a lid on the beaker and measure the temperature of the solution every 30 seconds until it＇s stabilised．
3）Add a set mass of sodium bicarbonate to the beaker，and stir the mixture．
4）Measure the temperature of the reaction mixture every 30 seconds until the temperature has reached a minimum （or maximum for an exothermic reaction）and has been returning to the initial temperature for a couple of minutes．
5）Draw a graph of temperature against time．
6）To find the temperature change of the reaction，accounting for the fact the heat is gained from the surroundings，extrapolate the line from where the reaction is returning to its initial temperature back towards the time when the reaction started．
7）Read off the temperature from the extrapolated line at the time when the reaction started（when the sodium bicarbonate was added）．Here，it＇s 2 minutes and the temperature is $1^{\circ} \mathrm{C}$ ．
8）Compare this with the initial reading to find the temperature change of the reaction－the initial temperature was $21^{\circ} \mathrm{C}$ ，so the temperature change is $1-21=-20^{\circ} \mathrm{C}$ ．

 EFor an exothermic reaction，the temperature will $\overline{=}$ rise to a maximum and then fall．To find the temperature change，extrapolate the line from the point where the temperature starts falling back to the time where the reaction started．

To Find Enthalpy Changes of Combustion You Need A Calorimeter

It＇s harder to measure the temperature change of a reaction where one of the reactants is a gas，such as in combustion reactions．You can use a calorimeter to find how much heat is given out by a reaction by measuring the temperature change of some water．
1）To find the enthalpy of combustion of a
flammable liquid，you burn it－using apparatus like this．．．
2）As the fuel burns，it heats the water．You can work out the heat absorbed by the water if you know the mass of water，the temperature change of the water (ΔT) ，and the specific heat capacity of water $\left(=4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}\right)$－see the next page for the details．
3）Ideally，all the heat given out by the fuel as it burns would be absorbed by the water，so you could accurately work out the enthalpy of combustion（next page）． But，you always lose some heat（you heat the apparatus and the surroundings．

＇Calorimetry＇means ＇measuring heat changes＇． The experiments on this page are calorimetry
experiments．

More on Enthalpy Changes

Calculate Enthalpy Changes Using the Equation $q=m \boldsymbol{c} \Delta \boldsymbol{T}$

It seems there＇s a snazzy equation for everything these days，and enthalpy change is no exception：

Example：In a laboratory experiment， 1.16 g of an organic liquid fuel was completely burned in oxygen．The heat formed during this combustion raised the temperature of 100 g of water from $17.5^{\circ} \mathrm{C}$ to $80.0^{\circ} \mathrm{C}$ ． Calculate the standard enthalpy of combustion，$\Delta_{\mathrm{c}}{H^{\ominus}}^{\ominus}$ ，of the fuel．Its M_{r} is 58．0．ミRemember $-m$ is the mass of water，NOT the mass of fuel．
（1）First，you need to calculate the amount of heat given out by the fuel，using $\boldsymbol{q}=\boldsymbol{m c \Delta t}$ ．シノいいいいいいいいいいいい

$$
\begin{aligned}
& q=m c \Delta T \\
& q=100 \times 4.18 \times(80.0-17.5)=26125 \mathrm{~J} \\
& 26125 \div 1000=26.125 \mathrm{~kJ}
\end{aligned}
$$

（2）The standard enthalpy of combustion involves 1 mole of fuel．So next you need to find out how many moles of fuel produced this heat．It＇s back to the old $n=$ mass $\div M_{\mathrm{r}}$ equation．

$$
n=1.16 \div 58.0=0.0200 \mathrm{~mol} \text { of fuel }
$$

So，the heat produced by 1 mole of fuel $=26.125 \div 0.0200$
Flllllllllllllllllllllll\｜lll $\approx-\mathbf{1 3 1 0} \mathbf{~ k J ~ m o l}^{-1}$（ 3 s. f．）．This is the standard enthalpy change of combustion．

The actual $\Delta_{c} H^{\ominus}$ of this compound is $-1615 \mathrm{~kJ} \mathrm{~mol}^{-1}$－lots of heat has been lost and not measured．
For example，it＇s likely a bit escaped through the calorimeter，the fuel might not have
combusted completely，or the conditions might not have been standard．

Practice Questions

Q1 Briefly describe an experiment that could be carried out to find the enthalpy of combustion of a reaction between a solid and a liquid．
Q2 What equation is used to calculate the enthalpy change in a calorimetry experiment？
Q3 Why might the enthalpy of combustion calculated from an experiment be different from the real value？

Exam Questions

Q1 The initial temperature of $25.0 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid in a polystyrene cup was measured as $19.0^{\circ} \mathrm{C}$ ． This acid was exactly neutralised by $25.0 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution．
The maximum temperature of the resulting solution was measured as $25.8^{\circ} \mathrm{C}$ ．
Calculate the standard enthalpy change of neutralisation for the reaction．（You may assume the neutral solution formed has a specific heat capacity of $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$ ，and a density of $1.00 \mathrm{~g} \mathrm{~cm}^{-3}$ ．）

Q2 A $50.0 \mathrm{~cm}^{3}$ sample of $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$ copper（II）sulfate solution placed in a polystyrene beaker gave a temperature increase of 2.00 K when excess zinc powder was added and stirred．（Ignore the increase in volume due to the zinc．） Calculate the enthalpy change when 1 mol of zinc reacts．Assume the solution＇s specific heat capacity
is $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$ ．The equation for the reaction is： $\mathrm{Zn}_{(\mathrm{s})}+\mathrm{CuSO}_{4(\mathrm{aq})} \rightarrow \mathrm{Cu}_{(\mathrm{s})}+\mathrm{ZnSO}_{4 \text {（aq）}}$
［3 marks］

If you can＇t stand the heat，get out of the calorimeter．．．

There＇s quite a lot to wrap your noggin round on these pages．Not only are there some fiddly calorimetry experiments， but you need to know how to calculate enthalpy changes from your results．You need to know the limitations of the experiments，too．You＇ll often assume that no heat is lost（or gained）from the surroundings，but this isn＇t always true．．．

Hess's Law

You can't always work out an enthalpy change by measuring a single temperature change. But there are other ways...

Hess's Law - the Total Enthalpy Change is Independent of the Route Taken

Hess's Law says that: The total enthalpy change of a reaction is always the same, no matter which route is taken.
This law is handy for working out enthalpy changes that you can't find directly by doing an experiment.
Here's an example:
The total enthalpy change for route 1 is the same as for route 2.

| So, $\Delta_{\mathrm{r}} H^{\circ}=+114.4+(-180.8)=-66.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$. |
| ---: | :--- | ---: | :--- |

Enthalpy Changes Can be Worked Out From Enthalpies of Formation

Enthalpy changes of formation are useful for calculating enthalpy changes you can't find directly.
You need to know $\Delta_{\mathrm{f}} H^{\ominus}$ for all the reactants and products that are compounds - $\Delta_{\mathrm{f}} H^{\ominus}$ for elements is zero.

Example: Use the enthalpy cycle on the right to calculate $\Delta_{\mathrm{r}} H^{\ominus}$
for the reaction: $\mathrm{SO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})} \rightarrow 3 \mathrm{~S}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(1)}$

Using Hess's Law: Route 1 = Route 2
$\Delta_{\mathrm{r}} H^{\ominus}+$ the sum of $\Delta_{\mathrm{f}} H^{\ominus}$ (reactants) $=$ the sum of $\Delta_{\mathrm{f}} H^{\ominus}$ (products)
So, $\Delta_{\mathrm{r}} H^{\ominus}=$ the sum of $\Delta_{\mathrm{i}} H^{\ominus}$ (products) - the sum of $\Delta_{\mathrm{f}} H^{\ominus}$ (reactants)
Just plug the numbers given on the right into the equation above:
$\Delta_{\mathrm{r}} H^{\ominus}=[0+(2 \times-286)]-[-297+(2 \times-20.2)]=-235 \mathbf{k J ~ m o l}^{-1}$
$\Delta_{\mathrm{f}} \mathrm{H}^{\circ}$ of sulfur is zero There are 2 moles of $\mathrm{H}_{2} \mathrm{O}$

- it's an element. and 2 moles of $\mathrm{H}_{2} \mathrm{~S}$.

It always works, no matter how complicated the reaction...

Example: Use the enthalpy cycle on the right to calculate $\Delta_{\mathrm{r}} \mathrm{H}^{\circ}$ for the reaction: $2 \mathrm{NH}_{4} \mathrm{NO}_{3(\mathrm{~s})}+\mathrm{C}_{(\mathrm{s})} \rightarrow 2 \mathrm{~N}_{2(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

Using Hess's Law: Route $1=$ Route 2
$\Delta_{\mathrm{i}} H^{\ominus}$ (reactants) $+\Delta_{\mathrm{r}} H^{\ominus}=\Delta_{\mathrm{f}} H^{\ominus}$ (products)
$(2 \times-365)+0+\Delta_{\mathrm{r}} H^{\circ}=0+-394+(4 \times-286)$
$\Delta_{\mathrm{r}} H^{\ominus}=-394+(-1144)-(-730)$
$=-808 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Enthalpy Changes Can be Worked Out From Enthalpies of Combustion

You can use a similar method to find an enthalpy change from enthalpy changes of combustion.
Example: Use the enthalpy cycle on the right to calculate $\Delta_{\mathrm{f}} \mathrm{H}^{\ominus}$ for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$.

Using Hess's Law: Route $1=$ Route 2
$\Delta_{\mathrm{f}} H^{\ominus}\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]+\Delta_{\mathrm{c}} H^{\ominus}\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]=2 \Delta_{\mathrm{c}} H^{\ominus}[\mathrm{C}]+3 \Delta_{\mathrm{c}} H^{\ominus}\left[\mathrm{H}_{2}\right]$
$\Delta_{\mathrm{f}} \mathrm{H}^{\ominus}\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]+(-1367)=(2 \times-394)+(3 \times-286)$
$\Delta_{\mathrm{f}} \mathrm{H}^{\circ}\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]=-788+-858-(-1367)=-279 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$\Delta_{\mathrm{c}} \mathrm{H}^{\ominus}\left[\mathrm{C}_{(\mathrm{s})}\right]=-394 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{\mathrm{c}} \mathrm{H}^{\ominus}\left[\mathrm{H}_{2(\mathrm{~g})}\right]=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{\mathrm{c}} \mathrm{H}^{\ominus}\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{()]}\right]=-1367 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Hess's Law

Hess's Law Lets You Find Enthalpy Changes Indirectly From Experiments

On pages 106-107 you saw how you could find the enthalpy change of a reaction using calorimetry.
Sometimes you can combine the enthalpy change results from these experiments (neutralisation reactions,
for example) to work out an enthalpy change that you can't find directly. It's clever stuff... read on.
You can't find the enthalpy change of the
thermal decomposition of calcium carbonate

$$
\mathrm{CaCO}_{3(\mathrm{~s})} \rightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})} \quad \text { Enthalpy change }=?
$$

by measuring a temperature change.
(It's an endothermic reaction, so you'd expect the temperature to fall. But you need to heat it up for the reaction to happen at all).
But you can find it in a more indirect way.
The aim is to make one of those Hess cycles (the technical name for a "Hess's Law triangle diagram thing").

1) Write the reaction you want to find the enthalpy change for at the top of the triangle - include your reactants and products:

$$
\mathrm{CaCO}_{3} \xrightarrow{\Delta_{\mathrm{r}} H^{\theta}} \mathrm{CaO}+\mathrm{CO}_{2}
$$

2) Next, you're going to carry out two neutralisation reactions involving hydrochloric acid, and use the results to complete your Hess cycle. You can find the enthalpy changes of these reactions (using calorimetry - see pages 106-107). Call them $\Delta \boldsymbol{H}_{1}$ and $\Delta \boldsymbol{H}_{2}$.
$\begin{array}{ll}\text { Reaction 1: } \mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} & \Delta \boldsymbol{H}_{1} \\ \text { Reaction 2: } \mathrm{CaO}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O} & \Delta \boldsymbol{H}_{2}\end{array}$
3) Now you can build the other two sides of your Hess cycle. Add 2 moles of $\mathbf{H C l}$ to both sides of your triangle's top \longrightarrow (representing the 2 moles of HCl in the above equations).
Add the products of the neutralisation reactions to the bottom

Practice Questions

Q1 What does Hess's Law state?
Q2 What is the standard enthalpy change of formation of any element?
Q3 Describe how you can make a Hess cycle to find the standard enthalpy change of a reaction using standard enthalpy changes of formation.

Exam Questions

Q1 Using the facts that the standard enthalpy change of formation of $\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}$ is $-1676 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and the standard enthalpy change of formation of $\mathrm{MgO}_{(\mathrm{s})}$ is $-602 \mathrm{~kJ} \mathrm{~mol}^{-1}$, calculate the enthalpy change of the following reaction.

$$
\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{Mg}_{(\mathrm{s})} \rightarrow 2 \mathrm{Al}_{(\mathrm{s})}+3 \mathrm{MgO}_{(\mathrm{s})}
$$

Q2 Calculate the enthalpy change for the reaction below (the fermentation of glucose).

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\mathrm{~s})} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{l})}+2 \mathrm{CO}_{2(\mathrm{~g})}
$$

Use the following standard enthalpies of combustion in your calculations:

$$
\Delta_{\mathrm{c}} H^{\ominus}(\text { glucose })=-2820 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \Delta_{\mathrm{c}} H^{\ominus}(\text { ethanol })=-1367 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad[2 \text { marks }]
$$

Meet Hessie. She's the Lawch Hess Monster...

To get your head around those enthalpy cycles, you're going to have to do more than skim read them. It'll also help if you know the definitions for those standard enthalpy thingumabobs. I'd read those enthalpy cycle examples again and make sure you understand how the elements/compounds at each corner were chosen to be there.

Bond Enthalpy

During chemical reactions, some bonds are broken, whilst others are made. By working out the total energy needed to break all the bonds, and the energy given out as new bonds form, you can find the enthalpy change of a reaction.

Reactions are all about Breaking and Making Bonds

When reactions happen, reactant bonds are broken and product bonds are formed.

1) You need energy to break bonds, so bond breaking is endothermic (ΔH is positive).
2) Energy is released when bonds are formed, so this is exothermic (ΔH is negative).
3) The enthalpy change for a reaction is the overall effect of these two changes. If you need more energy to break bonds than is released when bonds are made, ΔH is positive. If it's less, ΔH is negative.

You Need Energy to Break the Attraction Between Atoms or lons

1) In ionic bonding, positive and negative ions are attracted to each other. In covalent molecules, the positive nuclei are attracted to the negative charge of the shared electrons in a covalent bond.
2) You need energy to break this attraction - stronger bonds take more energy to break.

Bond enthalpy is the amount of energy required to break 1 mole of a type of bond in a molecule in the gas phase.

ふl11111111111111111111111111 Breaking bonds is always an endothermic process, so bond enthalpies are always positive.
//।1।111।11111।1।1।11111111

Mean Bond Enthalpies are Not Exact

1) Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ has two $\mathbf{O}-\mathbf{H}$ bonds. You'd think it'd take the same amount of energy to break them both. but it doesn't.
2) The data book says the mean bond enthalpy for $\mathrm{O}-\mathrm{H}$ is $+463 \mathrm{~kJ} \mathrm{~mol}^{-1}$. It's a bit different

$$
\begin{array}{ll}
\text { The first bond, } \mathrm{H}-\mathrm{OH}_{(\mathrm{g}}: & E(\mathrm{H}-\mathrm{OH})=+492 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\text { The second bond, } \mathrm{H}-\mathrm{O}_{(\mathrm{g})}: & E(\mathrm{H}-\mathrm{O})=+428 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

($\mathrm{O}-\mathrm{H}$ is a bit easier to break apart because of the extra electron repulsion.) So the mean bond enthalpy is $(492+428) \div 2=+460 \mathrm{~kJ} \mathrm{~mol}^{-1}$. because it's the average for a much bigger range of molecules, not just water. For example, it includes the $\mathrm{O}-\mathrm{H}$ bonds in alcohols and carboxylic acids too.
3) So when you look up a mean bond enthalpy, what you get is:

The energy needed to break one mole of bonds in the gas phase, averaged over many different compounds.

Enthalpy Changes Can Be Calculated Using Mean Bond Enthalpies

In any chemical reaction, energy is absorbed to break bonds and given out during bond formation.
The difference between the energy absorbed and released is the overall enthalpy change of reaction:

Example: Calculate the overall enthalpy change for this reaction: $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$ Use the mean bond enthalpy values in the table.

Bonds broken: 1 mole of $\mathrm{N} \equiv \mathrm{N}$ bond broken $=1 \times 945=945 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 moles of $\mathrm{H}-\mathrm{H}$ bonds broken $=3 \times 436=1308 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Sum of bond enthalpies $=945+1308=2253 \mathbf{k J ~ m o l}^{-1}$
Bonds formed: 6 moles of N-H bonds formed $=6 \times 391=2346 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Sum of bond enthalpies $=\mathbf{2 3 4 6} \mathbf{~ k J ~ m o l}^{-1}$

Bond	Average Bond Enthalpy
$\mathrm{N} \equiv \mathrm{N}$	$945 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{H}-\mathrm{H}$	$436 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{~N}-\mathrm{H}$	$391 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Now you just subtract the bond enthalpies of the products from the bond enthalpies of the reactants.
Enthalpy Change of Reaction $=2253-2346=\mathbf{- 9 3} \mathbf{~ k J ~ m o l}^{-1}$
There might be a small amount of variation between the enthalpy change of reaction calculated from mean bond enthalpies and the true enthalpy change of reaction. This is because the specific bond enthalpies of the molecules in the reaction will be slightly different from the average values.
Topic 8 - EnERGEtics I

Bond Enthalpy

You Can Calculate Mean Bond Enthalpies Using Reaction Enthalpies

If you＇re given the enthalpy change of a reaction along with all but one of the bond enthalpies of the reactants and products，you can rearrange the equation on the previous page to find the remaining mean bond enthalpy．

Example：The enthalpy change of the reaction between nitrogen and fluorine to form nitrogen trifluoride is $-264.2 \mathrm{~kJ} \mathrm{~mol}^{-1}: \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{~F}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NF}_{3(\mathrm{~g})}$ Find the mean $N-F$ bond enthalpy in NF_{3} ．
Bonds broken： 1 mole $\mathrm{N} \equiv \mathrm{N}$ bonds broken $=1 \times 945=945 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$$
3 \text { moles F-F bonds broken }=3 \times 158=474 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Bond	Mean Bond Enthalpy
$\mathrm{N} \equiv \mathrm{N}$	$945 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{~F}-\mathrm{F}$	$158 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Sum of bond enthalpies $=945+474=1419 \mathrm{~kJ} \mathrm{~mol}^{-1}$
ㄴ1111111111111111111111111111111／
Bonds formed： $6 \mathrm{~N}-\mathrm{F}$ bonds formed $=6 \times E(\mathrm{~N}-\mathrm{F})<{ }^{\text {E }}$＇$E(X)$＇is just a quick way of writing $\overline{\text { the }}$
Enthalpy change of reaction $=-246.2 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad$ ジい mean bond enthalpy of bond X ．
You know that：Enthalpy Change＝Sum of bond＿Sum of bond
Substituting in the values given in the question gives：$-264.2=(945+474)-(6 \times E(N-F))$
Rearranging this gives：$E(N-F)=[945+474-(-264.2)] \div 6=+281 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Jack preferred bones to bonds．

Practice Questions

Q1 Is energy taken in or released when bonds are broken？
Q2 Define bond enthalpy．
Q3 What state must compounds be in when bond dissociation enthalpies are measured？
Q4 Define mean bond enthalpy．

Exam Questions

Q1 The table below shows some mean bond enthalpy values．

Bond	$\mathrm{C}-\mathrm{H}$	$\mathrm{C}=\mathrm{O}$	$\mathrm{O}=\mathrm{O}$	$\mathrm{O}-\mathrm{H}$
Mean Bond Enthalpy（ $\mathrm{kJ} \mathrm{mol}^{-1}$ ）	435	805	498	464

The complete combustion of methane can be represented by the equation： $\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
Use the table of bond enthalpies above to calculate the enthalpy change for the reaction．
［2 marks］
Q2 Use the following bond enthalpy data to calculate the standard
enthalpy change for the formation of water： $1 / 2 \mathrm{O}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ ．
$E(\mathrm{H}-\mathrm{O})$ in water $=+460 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$E(\mathrm{O}=\mathrm{O})$ in oxygen $=+498 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$E(\mathrm{H}-\mathrm{H})$ in hydrogen $=+436 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Q3 Methane and chlorine gas will react together under certain conditions to form chloromethane：

$$
\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}_{(\mathrm{g})}+\mathrm{HCl}_{(\mathrm{g})} \Delta_{\mathrm{r}} H=-101 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

$\begin{array}{ll}E(\mathrm{C}-\mathrm{H}) \text { in methane }=+435 \mathrm{~kJ} \mathrm{~mol}^{-1} & E(\mathrm{C}-\mathrm{H}) \text { in chloromethane }=+397 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ E(\mathrm{Cl}-\mathrm{Cl})=+243 \mathrm{~kJ} \mathrm{~mol}^{-1} & E(\mathrm{H}-\mathrm{Cl})=+432 \mathrm{~kJ} \mathrm{~mol}^{-1}\end{array}$
$E(\mathrm{Cl}-\mathrm{Cl})=+243 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad E(\mathrm{H}-\mathrm{Cl})=+432 \mathrm{~kJ} \mathrm{~mol}^{-1}$
a）Calculate the $\mathrm{C}-\mathrm{Cl}$ bond enthalpy in chloromethane．
［2 marks］
b）The data book value for the mean bond enthalpy of $\mathrm{C}-\mathrm{Cl}$ is $+346 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ．
Comment on this value with reference to your answer to part a）．
［1 mark］

Do you expect me to react？No，Mr Bond，I expect you to break．．．

Reactions are like pulling plastic building bricks apart and building something new．Sometimes bits get stuck together and you need lots of energy to pull＇em apart．Okay，so energy＇s not really released when you stick them together，but you can＇t have everything－it wasn＇t that bad an analogy up till now．Ah，well．．．You best get on and learn this stuff．

Collision Theory

The rate of a reaction is just how quickly it happens. Lots of things can make it go faster or slower.

Particles Must Collide to React

1) Particles in liquids and gases are always moving and colliding with each other. They don't react every time though - only when the conditions are right. A reaction won't take place between two particles unless -

- They collide in the right direction. They need to be facing each other the right way.
- They collide with at least a certain minimum amount of kinetic (movement) energy.

This stuff's called Collision Theory.
2) The minimum amount of kinetic energy particles need to react is called the activation energy. The particles need this much energy to break the bonds to start the reaction.
3) Reactions with low activation energies often happen pretty easily. But reactions with high activation energies don't. You need to give the particles extra energy by heating them.
To make this a bit clearer, here's a reaction profile diagram.

Reaction Profile Diagram

Here, the bonds within each particle are being stretched.

This is the energy barrier that the particles have to overcome in order to react.

, 1111111111111111 - A reaction profile Z is sometimes called an energy profile. ハ।1।1।l।।111।

Progress of Reaction

Molecules Don't all have the Same Amount of Energy

Imagine looking down on Oxford Street when it's teeming with people. You'll see some people ambling along slowly, some hurrying quickly, but most of them will be walking with a moderate speed. It's the same with the molecules in a liquid or gas. Some don't have much kinetic energy and move slowly. Others have loads of kinetic energy and whizz along. But most molecules are somewhere in between.
If you plot a graph of the numbers of molecules in a substance with different kinetic energies you get a
Maxwell-Boltzmann distribution. It looks like this -

Collision Theory

Increasing the Temperature makes Reactions Faster

1) If you increase the temperature, the particles will, on average, have more kinetic energy and will move faster.
2) So, a greater proportion of molecules will have at least the activation energy and be able to react.

This changes the shape of the Maxwell-Boltzmann distribution curve - it pushes it over to the right.

へ111111111111111111111111111111,
\equiv The total number of molecules is Z still the same, which means the area - under each curve must be the same.

3) Because the molecules are flying about faster, they'll collide more often. This is another reason why increasing the temperature makes a reaction faster, i.e. the reaction rate increases (see the next page for more on reaction rates).

Concentration, Pressure and Catalysts also Affect the Reaction Rate

Increasing Concentration Speeds Up Reactions
If you increase the concentration of reactants in a solution, there'll be more particles in a given volume of the solution, so particles will collide more frequently. If there are more collisions, they'll have more chances to react.

Increasing Pressure Speeds Up Reactions

If any of your reactants are gases, increasing the pressure will increase the rate of reaction.
It's pretty much the same as increasing the concentration of a solution - at higher pressures, there are more particles in a given volume of gas, which increases the frequency of successful collisions.

Catalysts Can Speed Up Reactions

Catalysts are really useful. They lower the activation energy by providing a different way for the bonds to be broken and remade. If the activation energy's lower, more particles will have enough energy to react. There's heaps of information about catalysts on pages 116-117.

Practice Questions

Q1 Explain the term 'activation energy'.
Q2 Name four factors that affect the rate of a reaction.

Exam Questions

Q1 Nitrogen oxide (NO) and ozone $\left(\mathrm{O}_{3}\right)$ sometimes react to produce nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$ and oxygen $\left(\mathrm{O}_{2}\right)$.
How would increasing the pressure affect the rate of this reaction? Explain your answer.
[2 marks]
Q2 Use the collision theory to explain why the reaction between a solid and a liquid is generally faster than that between two solids.
Q3 On the right is a Maxwell-Boltzmann distribution curve for a sample of a gas at $25^{\circ} \mathrm{C}$.
a) Which of the curves, X or Y , shows the Maxwell-Boltzmann distribution curve for the same sample at $15^{\circ} \mathrm{C}$?
b) Explain how this curve shows that the reaction rate will be lower at $15^{\circ} \mathrm{C}$ than at $25^{\circ} \mathrm{C}$.
[1 mark]

Will a collision between this book and my head increase my rate of revision?

No equations, no formulae... What more could you ask for. Remember, increasing concentration and pressure do exactly the same thing. The only difference is, you increase the concentration of a solution and the pressure of a gas.

Reaction Rates

Sorry - this section gets a bit mathsy. Just take a deep breath, dive in, and don't bash your head on the bottom.

Reaction Rate tells you How Fast Reactants are Converted to Products

Reaction rate is the change in amount of reactant or product per unit time (usually seconds).
E.g. if the reactants are in solution, the rate will be change in concentration per second. The units will be $\mathbf{m o l}_{\mathbf{d m}} \mathbf{d m}^{\mathbf{- 3}} \mathbf{s}^{\mathbf{- 1}}$.

You can Work out Reaction Rate from the Gradient of a Graph

If you draw a graph of the amount of reactant or product against time for a reaction (with time on the x-axis), then the reaction rate is just the gradient of the graph. You can work out the gradient using the equation...

$$
\text { gradient }=\text { change in } y \div \text { change in } x
$$

The data on the graph came from measuring the volume of gas given off during a chemical reaction.

change in $y=3.6-1.4=2.2 \mathrm{~cm}^{3}$
change in $x=5.0-2.0=3.0$ minutes gradient $=2.2 \div 3.0=0.73 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$

So the rate of reaction $=0.73 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$

You May Need to Work Out the Gradient from a Curved Graph

When the points on a graph lie in a curve, you can't draw a straight line of best fit through them. But you can still work out the gradient, and so the rate, at a particular point in the reaction by working out the gradient of a tangent. The gradient at time $=\mathbf{0}$ is called the initial rate.

ミ11111111111111111111111111111111/
A tangent is a line that just touches
玉
a curve and has the same gradient as
= the curve does at that point.
=
(1) Find the point on the curve that you need to look at. For example, if you want to find the rate of reaction at 3 minutes, find 3 on the x-axis and go up to the curve from there.

(2)

Place a ruler at that point so that it's just touching the curve. Position the ruler so that you can see the whole curve.
(3) Adjust the ruler until the space between the ruler and the curve is equal on both sides of the point.

Pick two points on the tangent that are easy to read.
(4) Draw a line along the ruler to make the tangent. Extend the line right across the graph - it'll help to make your gradient calculation easier as you'll have more points to choose from.
(5) Calculate the gradient of the tangent to find the rate at that point: gradient $=$ change in $y \div$ change in x

$$
\begin{aligned}
& =(0.46-0.22) \div(5.0-1.4) \\
& =0.24 \mathrm{~mol} \mathrm{dm}^{-3} \div 3.6 \mathrm{mins}=0.067 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~min}^{-1}
\end{aligned}
$$

So, the rate of reaction at 3 mins is $\mathbf{0 . 0 6 7} \mathrm{mol} \mathrm{dm}^{-3} \mathrm{~min}^{-1}$.
ll|111hy $1111111111111 /$
Z Don't forget the units - you've divided mol dm^{-3} by mins, so they're mol $\mathrm{dm}^{-3} \mathrm{~min}^{-1}$.

Reaction Rates

You Can Work out the Initial Rate of a Reaction

The initial rate of a reaction is the rate at the start of the reaction. You can find this from a concentration-time graph by calculating the gradient of the tangent at time $=\mathbf{0}$.

Example: The graph on the right shows the change in concentration of H^{+} ions over time in a reaction. Calculate the initial rate of reaction.

- Draw a tangent to the curve at time $=\mathbf{0}$.
- Work out the gradient of the tangent. gradient $=$ change in $y \div$ change in x

$$
\begin{aligned}
=(0.3-3.0) \div(0.7-0.0) & =-2.7 \mathrm{~mol} \mathrm{dm}^{-3} \div 0.7 \mathrm{mins} \\
& =-3.875 \ldots \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~min}^{-1}
\end{aligned}
$$

- So the initial rate of reaction was $3.9 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~min}^{-1}$.

You Can Work Out Rates From Experimental Data

1) In some reactions, you'll measure the time taken for something to happen, e.g. a colour change to occur.
2) If you're waiting for a set amount of product to form, or a set amount of reactant to be used up, you can use rate of reaction $=\frac{\text { amount of reactant used or amount of product formed }}{\text { time taken }}$ this equation to work out the rate: on, it took $\mathbf{1 6}$ seconds for $\mathbf{1 0} \mathbf{~ c m}^{\mathbf{3}}$ of a gas to form,
3) The rate of reaction is proportional to $\mathbf{1} \div$ time, so you can use $\mathbf{1 / t i m e}$ as a measure of the relative rate of reaction.

Example: A student measures the time taken for a colour change to occur in a reaction as he varies the concentration of a reactant, A. His results are shown in the table. Calculate the relative rates of reaction.

1) First calculate the relative rate of each reaction in s^{-1}.

When $[A]=0.10 \mathrm{~mol} \mathrm{dm}^{-3}, 1 \div 124=0.00806 \ldots \mathrm{~s}^{-1}$
When $[A]=0.15 \mathrm{~mol} \mathrm{dm}^{-3}, 1 \div 62=0.0161 \ldots \mathrm{~s}^{-1}$
When $[A]=0.20 \mathrm{~mol} \mathrm{dm}^{-3}, 1 \div 25=0.0400 \mathrm{~s}^{-1}$

$[\mathrm{A}] / \mathrm{mol} \mathrm{dm}$	
	3

2) You should report the relative rate as a ratio.

Divide by the smallest relative rate to get the rates as the smallest whole number ratio possible.

$$
0.0081: 0.016: 0.040=1: 2: 5
$$

Practice Questions

Q1 What is meant by the term 'reaction rate'?
Q2 What is the formula to find the gradient of a line?

Exam Question

Q1 Compounds X and Y react as in the equation below.

$$
\mathrm{X}+\mathrm{Y} \rightarrow \mathrm{Z}
$$

From the graph on the right, work out the rate of reaction at 3 minutes.

Calculate your reaction to this page. Boredom? How dare you...

Plenty to learn on this page, but first things first - make sure you've got a ruler in the exam in case you need to draw a tangent to find the gradient from a curved graph. Then, make sure you know what you actually need to do with it. Finally, make sure you know how to deal with any calculations that might come your way, not forgetting any units.

Catalysts

Catalysts were tantalisingly mentioned a couple of pages ago - here's the full story...

Catalysts Increase the Rate of Reactions

You can use catalysts to make chemical reactions happen faster. Learn this definition:
A catalyst increases the rate of a reaction by providing an alternative reaction pathway with a lower activation energy, so a greater proportion of collisions result in a reaction. The catalyst is chemically unchanged at the end of the reaction.

1) Catalysts are great. They don't get used up in reactions, so you only need a tiny bit of catalyst to catalyse a huge amount of stuff. They do take part in reactions, but they're remade at the end.
2) Catalysts are very fussy about which reactions they catalyse. Many will usually only work on a single reaction.

The 1985 Nobel Prize in Chemistry was awarded to Mr Tiddles for discovering catalysis.

Reaction Profiles Show Why Catalysts Work...

Heterogeneous Catalysis

A heterogeneous catalyst is one that is in a different phase from the reactants - i.e. in a different physical state. For example, in the Haber Process (see below), gases are passed over a solid iron catalyst.
The reaction happens on the surface of the heterogeneous catalyst. So, increasing the surface area of the catalyst increases the number of molecules that can react at the same time, increasing the rate of the reaction. The heterogeneous catalyst works by lowering the activation energy of the reaction - you can see this on a reaction profile diagram.

Solid heterogeneous catalysts can provide a surface for a reaction to take place on. Here's how it works -

1) Reactant molecules arrive at the surface and bond with the solid catalyst. This is called adsorption.
2) The bonds between the reactant's atoms are weakened and break up. This forms radicals - atoms or molecules with unpaired electrons. These radicals then get together and make new molecules.
3) The new molecules are then detached from the catalyst. This is called desorption.

This example shows you how an iron catalyst provides a surface for the atoms to react on in the Haber Process to produce ammonia.

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \stackrel{\mathrm{Fe}_{(\mathrm{s})}}{\rightleftharpoons} \mathrm{NH}_{3(\mathrm{~g})}
$$

Fe Catalyst surface

Fe Catalyst surface

Homogeneous Catalysis

Homogeneous catalysts are in the same physical state as the reactants. Usually a homogeneous catalyst is an aqueous catalyst for a reaction between two aqueous solutions.
During homogeneous catalysis, the reactants combine with the catalyst to make an intermediate species, which then reacts to form the products and reform the catalyst.

$$
\begin{aligned}
& E^{\prime}=\text { the activation energy of the first step in the catalysed reaction. } \\
& E^{\prime \prime}=\text { the activation energy of the second step in the catalysed reaction. }
\end{aligned}
$$

Catalysts

...as do Maxwell-Boltzmann Distributions

As you've seen in the graphs on the previous page, in both homogeneous and heterogeneous catalysis, the catalyst lowers the activation energy.
This means there are more particles with enough energy to react when they collide. This is shown by the Maxwell-Boltzmann distribution on the right.
So, in a certain amount of time, more particles react.

Catalysts Have Economic Benefits

Loads of industries rely on catalysts. They can dramatically lower production costs, give you more product in a shorter time and help make better products. Here are a few examples:

1) Iron is used as a catalyst in ammonia production. If it wasn't for the catalyst, the temperature would have to be raised loads to make the reaction happen quick enough. Not only would this be bad for the fuel bills, it'd reduce the amount of ammonia produced since the reaction is reversible, and exothermic in the direction of ammonia production.
\111111111111111111111/, ¿See pages 120-121 for more $=$ ₹ on reversible reactions and changing conditions. ンノ।।।।।।।।।।।।।।।।।।
2) Using a catalyst can change the properties of a product to make it more useful, e.g. poly(ethene).

	Made without a catalyst	Made with a catalyst (a Ziegler-Natta catalyst, to be precise)
Properties of poly(ethene)	less dense, less rigid	more dense, more rigid, higher melting point

Practice Questions

Q1 Explain what a catalyst is.
Q2 Explain what the difference between a heterogeneous and a homogeneous catalyst is.
Q3 Describe two reasons why catalysts are useful for industry.

Exam Question

Q1 Sulfuric acid is manufactured by the contact process. In one of the stages, sulfur dioxide gas is mixed with oxygen gas and converted into sulfur trioxide gas. A solid vanadium (V) oxide $\left(\mathrm{V}_{2} \mathrm{O}_{5}\right)$ catalyst is used. The enthalpy change for the uncatalysed reaction is $-197 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
a) Which of the following reaction profile diagrams is correct for the catalysed reaction?

b) Describe how a catalyst works to increase the rate of the reaction.
c) Is the vanadium (V) oxide catalyst heterogeneous or homogeneous? Explain your answer.

Catalysts and walking past bad buskers - increased speed but no change...

Whatever you do, don't confuse the Maxwell-Boltzmann diagram for catalysts with the one for a temperature change. Catalysts lower the activation energy without changing the shape of the curve. BUT, the shape of the curve does change with temperature. Get these mixed up and you'll be the laughing stock of the Examiners' tea room.

Dynamic Equilibrium

There＇s a lot of to－ing and fro－ing on this page．Mind your head doesn＇t start spinning．

Reversible Reactions Can Reach Dynamic Equilibrium

1）Lots of chemical reactions are reversible－they go both ways．To show a reaction＇s reversible，you stick in a \rightleftharpoons ． Here＇s an example：

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}
$$

This reaction can go in either direction－
forwards $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}$ ．．．or backwards $2 \mathrm{HI}_{(\mathrm{g})} \rightleftharpoons \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}$
2）As the reactants get used up，the forward reaction slows down－ and as more product is formed，the reverse reaction speeds up．
3）After a while，the forward reaction will be going at exactly the same rate as the backward reaction，so the amounts of reactants and products won＇t be changing any more－it＇ll seem like nothing＇s happening．
4）This is called dynamic equilibrium． At equilibrium the concentrations of reactants and products stay constant．
5）A dynamic equilibrium can only happen in a closed system． This just means nothing can get in or out．

Although it appeared that the Smiths were doing nothing，they were actually in a state of dynamic equilibrium．

K_{c} is the Equilibrium Constant

The equilibrium constant，or $K_{c^{\prime}}$ gives you an idea of how far to the left or right the equilibrium is． It＇s calculated using the equilibrium concentrations of the reactants and products in a system．

Homogeneous Equilibria and \boldsymbol{K}_{c}

へ11111111111111 In Chemistry，the word system is used to refer to a particular thing being studied．
テノ।ノ।ノ।！ミ

1）A homogeneous system is a system in which everything is in the same physical state．
2）When you have a homogeneous reaction that＇s reached dynamic equilibrium，you can work out the equilibrium constant， $\boldsymbol{K}_{\mathbf{c}^{\prime}}$ using the concentrations of the products and reactants at equilibrium．
3）For homogeneous equilibria，all the products and reactants are included in the expression for K_{c} ．
The products go on the top line．
For the general reaction： $\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{dD}+\mathrm{eE}, \quad K_{\mathrm{c}}=\frac{[\mathrm{D}]^{\mathrm{d}}[\mathrm{E}]^{\mathrm{e}}}{[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}} \quad \begin{array}{r}\text { The square brackets，}[] \text { ，mean } \\ \text { concentration in mol } \mathrm{dm}^{-3} .\end{array}$
N11111111111111111111111111111111／＝
$=$ The lower－case letters a, b, d and e are
＝the number of moles of each substance．

Example：Write an expression for the equilibrium constant for the following reaction：

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}
$$

The reaction is homogeneous－all the reactants and products are gases．
So the expression for the equilibrium constant will include all the reactants and products．

Dynamic Equilibrium

Heterogeneous Equilibria and \boldsymbol{K}_{c}

1) In a heterogeneous system, not everything's in the same physical state.
2) Writing the expression for K_{c} for a heterogeneous reaction (a reaction where not all the reactants and products are in the same physical state) that's reached dynamic equilibrium can be a bit tricky.
3) Unlike with homogeneous equilibria, not everything is included in the expression for K_{c}.
4) You don't include solids or pure liquids in the expression for K_{c} when you're dealing with heterogeneous equilibria. This is because their concentrations stay constant throughout the reaction.

Example: Write an expression for the equilibrium constant for the following reaction:

$$
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{C}_{(\mathrm{s})} \rightleftharpoons \mathrm{H}_{2(\mathrm{~g})}+\mathrm{CO}_{(\mathrm{g})}
$$

The reaction is heterogeneous, so don't include any solids or pure liquids in your expression for K_{c}. In this reaction, carbon is a solid and everything else is a gas.
Therefore, carbon is the only thing you exclude from your expression for K_{c}.

$$
K_{c}=\frac{\left[\mathrm{H}_{2}\right]^{1}[\mathrm{CO}]^{1}}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{1}}=\frac{\left[\mathrm{H}_{2}\right][\mathrm{CO}]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}
$$

Catalysts Don't Affect the Equilibrium Constant

You don't include catalysts in expressions for the equilibrium constant. Catalysts don't affect the equilibrium concentrations of the products or reactants - they just speed up the rate at which dynamic equilibrium is reached.

Practice Questions

Q1 Using an example, explain the term 'reversible reaction'.
Q2 What is a meant by a homogeneous system?
Q3 Write an expression for the equilibrium constant of the reaction, $a A+b B \rightleftharpoons d D+e E$.
Q4 What shouldn't you include in the expression for K_{c} for a heterogeneous system at dynamic equilibrium?

Exam Questions

Q1 In the Haber Process, nitrogen and hydrogen gases react to form ammonia: $\quad \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$
a) At a certain point, the reaction reaches 'dynamic equilibrium'. Explain what is meant by this. [2 marks]
b) Write an expression for the equilibrium constant, K_{c}, for the Haber Process. [1 mark]

Q2 A student is investigating the equilibrium constant for the following reaction: $\mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$ He states that the expression for the equilibrium constant, K_{c}, is: $K_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}$.
Explain what mistakes the student has made in his expression for K_{c}.
[2 marks]
Q3 Which of the reactions below can be represented by the following expression for the equilibrium constant? $K_{\mathrm{c}}=\left[\mathrm{CO}_{2}\right]$
A $\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{CO}_{2(\mathrm{~g})}$
B $\mathrm{CaCO}_{3(\mathrm{~s})} \rightleftharpoons \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
C $2 \mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{CO}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
D $\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
[1 mark]

I'm constantly going on about equilibrium - that's what it feels like anyway...

Working out the expression for K_{c} for both homogeneous and heterogeneous systems is pretty straightforward once you've got the hang of it. If you've not quite got it yet go back through these two pages until it all makes perfect sense. Once you've done that, keep going. You're halfway through the topic already - just 2 pages to go. You lucky devil...

Le Chatelier's Principle

'Oh no, not another page on equilibria', I hear you cry... Fair enough really.

Le Chatelier's Principle Predicts what will Happen if Conditions are Changed

If you change the concentration, pressure or temperature of a reversible reaction, you tend to alter the position of equilibrium. This just means you'll end up with different amounts of reactants and products at equilibrium.

If the position of equilibrium moves to the left, you'll get more reactants.

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}
$$

If the position of equilibrium moves to the right, you'll get more products.

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}
$$

Le Chatelier's principle tells you how the position of equilibrium will change if a condition changes:
If there's a change in concentration, pressure or temperature, the equilibrium will move to help counteract the change.

So, basically, if you raise the temperature, the position of equilibrium will shift to try to cool things down.
And, if you raise the pressure or concentration, the position of equilibrium will shift to try to reduce it again.

Here Are Some Handy Rules for Using Le Chatelier's Principle

You need to know how temperature, concentration and pressure affect equilibrium.
So, here goes...

Concentration

$$
2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}
$$

1) If you increase the concentration of a reactant $\left(\mathrm{SO}_{2}\right.$ or $\left.\mathrm{O}_{2}\right)$, the equilibrium tries to get rid of the extra reactant. It does this by making more product $\left(\mathrm{SO}_{3}\right)$. So the equilibrium's shifted to the right.
2) If you increase the concentration of the product $\left(\mathrm{SO}_{3}\right)$, the equilibrium tries to remove the extra product. This makes the reverse reaction go faster. So the equilibrium shifts to the left.
3) Decreasing the concentrations has the opposite effect.

Pressure (this only affects gases)

$$
2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}
$$

There are 3 moles on the left, but only 2 on the right.
So, increasing the pressure shifts the equilibrium to the right.

1) Increasing the pressure shifts the equilibrium to the side with fewer gas molecules. This reduces the pressure.
2) Decreasing the pressure shifts the equilibrium to the side with more gas molecules. This raises the pressure again.

Temperature

1) Increasing the temperature means adding heat. The equilibrium shifts in the endothermic (positive ΔH) direction to absorb this heat.
2) Decreasing the temperature removes heat. The equilibrium shifts in the exothermic (negative ΔH) direction to try to replace the heat.
3) If the forward reaction's endothermic, the reverse reaction will be exothermic, and vice versa.

This reaction's exothermic in the forward direction ($\Delta H=-197 \mathrm{~kJ} \mathrm{~mol}^{-1}$). If you increase the temperature, the equilibrium shifts to the left to absorb the extra heat.

$$
\begin{gathered}
\text { Exothermic } \rightleftharpoons \\
2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})} \\
\rightleftarrows \text { Endothermic }
\end{gathered}
$$

Le Chatelier's Principle

In Industry, the Conditions Chosen are a Compromise

In the exam, you may be asked to look at an industrial process and work out what conditions should be used to give the best balance between a high rate and a high yield. If you're asked to do this, you'll need to look at any data given, e.g. the enthalpy change of reaction, and use Le Chatelier's principle to work out what the optimum conditions are. Let's have a look at an example...

Ethanol can be Formed From Ethene and Steam

1) The industrial production of ethanol is a good example of why Le Chatelier's principle is important in real life.
2) Ethanol is produced via a reversible exothermic reaction between ethene and steam:

$$
\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{g})} \quad \Delta H=-46 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

3) The reaction is carried out at a pressure of 60-70 atmospheres

Mr and Mrs Le Chatelier celebrate another successful year in the principle business and a temperature of $\mathbf{3 0 0}{ }^{\circ} \mathbf{C}$, with a phosphoric (V) acid catalyst.

- Because it's an exothermic reaction, lower temperatures favour the forward reaction. This means more ethene and steam are converted to ethanol at lower temperatures - you get a better yield.
- But lower temperatures mean a slower rate of reaction.

You'd be daft to try to get a really high yield of ethanol if it's going to take you 10 years.
So the $300^{\circ} \mathrm{C}$ is a compromise between maximum yield and a faster reaction.

- Higher pressures favour the forward reaction, so a pressure of 60-70 atmospheres is used - high pressure moves the reaction to the side with fewer molecules of gas. Increasing the pressure also increases the rate of reaction.
Cranking up the pressure as high as you can sounds like a great idea so far.
But high pressures are expensive to produce. You need stronger pipes and containers to withstand high pressure. In this process, increasing the pressure can also cause side reactions to occur.
- So the 60-70 atmospheres is a compromise between maximum yield and expense.

Practice Questions

Q1 If the equilibrium moves to the right, do you get more products or reactants?
Q2 A reaction at equilibrium is endothermic in the forward direction.
What happens to the position of equilibrium as the temperature is increased?

Exam Questions

Q1 Nitrogen and oxygen gases were reacted together in a closed flask and allowed to reach equilibrium, with nitrogen monoxide being formed. The forward reaction is endothermic.

$$
\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{(\mathrm{g})}
$$

a) Explain how the following changes would affect the position of equilibrium of the above reaction:
i) Pressure is increased.
ii) Temperature is reduced.
iii) Nitrogen monoxide is removed.

Q2 Explain why moderate reaction temperatures are a compromise for exothermic reactions.

If it looks like I'm not doing anything, I'm just being dynamic... honest...

Equilibria never do what you want them to do. They always oppose you. Be sure you know what happens to an equilibrium if you change the conditions. About pressure - if there's the same number of gas moles on each side of the equation, you can raise the pressure as high as you like and it won't make a difference to the position of equilibrium.

Calculations Involving K_{c}

The equilibrium constant is about to become a constant presence in your life - just you wait and see...

K_{c} is the Equilibrium Constant

You learnt on page 118 that $\boldsymbol{K}_{\mathbf{c}^{\prime}}$ the equilibrium constant, is calculated from the ratio of product concentration to reactant concentration. This means that if you know the molar concentration of each substance at equilibrium, you can work out K_{c}. A particular value of $\boldsymbol{K}_{\mathbf{c}}$ will be constant for a given temperature.

$$
\text { For the general reaction } \quad \mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{dD}+\mathbf{e E}, \boldsymbol{K}_{\mathrm{c}}=\frac{[\mathrm{D}]^{\mathrm{d}}[\mathrm{E}]^{\mathrm{e}}}{[\mathrm{~A}]^{2}[B]^{\mathrm{b}}}
$$

So for the reaction $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})^{\prime}} K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]^{1}\left[\mathrm{I}_{2}\right]^{1}}$. This simplifies to $K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}$.

1) Actually, this definition of K_{c} only applies to homogeneous equilibria, i.e. ones where all the products and reactants are in the same phase. If you've got more than one phase in there - a heterogeneous equilibrium - not everything is necessarily included in the expression for K_{c}.
2) You don't include solids or pure liquids in the expression for K_{c} when you're dealing with
heterogeneous equilibria. This is because their concentrations stay constant throughout the reaction.

You Might Need to Work Out the Equilibrium Concentrations

You might have to figure out some of the equilibrium concentrations before you can find K_{c} :
Example: 0.20 moles of phosphorus (V) chloride decomposes at 600 K in a vessel of $5.00 \mathrm{dm}^{3}$.
The equilibrium mixture is found to contain 0.080 moles of chlorine.
Write the expression for K_{c} and calculate its value, including units. $\mathrm{PCl}_{5(\mathrm{~g})} \rightleftharpoons \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$
First find out how many moles of PCl_{5} and PCl_{3} there are at equilibrium:
The equation tells you that when 1 mole of PCl_{5} decomposes, 1 mole of PCl_{3} and 1 mole of Cl_{2} are formed. So if 0.080 moles of chlorine are produced at equilibrium, then there will be 0.080 moles of PCl_{3} as well. 0.080 moles of PCl_{5} must have decomposed, so there will be ($0.20-0.080=0.12$ moles left.

Divide each number of moles by the volume of the flask to give the molar concentrations:

$$
\left[\mathrm{PCl}_{3}\right]=\left[\mathrm{Cl}_{2}\right]=0.08 \div 5.00=0.016 \mathrm{~mol} \mathrm{dm}^{-3} \quad\left[\mathrm{PCl}_{5}\right]=0.12 \div 5.00=0.024 \mathrm{~mol} \mathrm{dm}^{-3}
$$

Put the concentrations in the expression for K_{c} and calculate it:

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{PCl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}=\frac{[0.016][0.016]}{[0.024]}=0.011
$$

Now find the units of $K_{\mathrm{c}}: \quad K_{\mathrm{c}}=\frac{\left(\mathrm{moldm} \mathrm{m}^{-3}\right)\left(\mathrm{mol} \mathrm{dm}^{-3}\right)}{\left(\mathrm{moldm}^{-3}\right)}=\mathrm{mol} \mathrm{dm}^{-3} \quad$ So $K_{\mathrm{c}}=0.011 \mathrm{~mol} \mathrm{dm}^{-3}$

K_{c} can be used to Find Concentrations in an Equilibrium Mixture

Example: When the reaction between ethanoic acid and ethanol was allowed to reach equilibrium at $25^{\circ} \mathrm{C}$, it was found that the equilibrium mixture contained $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid and $3.5 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanol. K_{c} of the equilibrium is 4.0 at $25^{\circ} \mathrm{C}$. What are the concentrations of the other components?

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{I})}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(I)} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(\mathrm{l})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}
$$

Put all the values you know in the K_{c} expression:

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]} \Rightarrow 4.0=\frac{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{2.0 \times 3.5}
$$

Rearranging this gives: $\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]=4.0 \times 2.0 \times 3.5=28.0$
From the equation, you know that an equal number of moles of $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ and $\mathrm{H}_{2} \mathrm{O}$ will form, so:

$$
\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]=\left[\mathrm{H}_{2} \mathrm{O}\right]=\sqrt{28}=5.3 \mathrm{~mol} \mathrm{dm}^{-3}
$$

Calculations Involving K_{c}

The Equilibrium Constant Can Be Calculated from Experimental Data

A simple experiment that can be carried out in $\mathrm{Fe}^{2+}+\mathrm{Ag}^{+} \rightleftharpoons \mathrm{Fe}^{3+}+\mathrm{Ag}$ ミ1111111111111111111111111／， the laboratory involves the following reaction：

1）If you leave a mixture of iron（II）sulfate solution and silver nitrate solution sulfate provides the Fe^{2+} ions． in a stoppered flask at 298 K ，the reaction above will eventually reach equilibrium． こハいいいいいいいいいいいいいいいいい
2）You can then take samples of the equilibrium mixture and titrate them－this will let you work out the equilibrium concentration of the $\mathbf{F e}^{\mathbf{2 +}}$ ions（there＇s more on redox titrations on pages 162－167）．
Normally，if you change the amounts involved in an equilibrium，the position of equilibrium changes（see page 120）．
However，this reaction is really slow to reach equilibrium，so carrying out the titration doesn＇t affect the equilibrium enough to matter．
3）From this，you can work out the equilibrium concentrations of the other components，and so K_{c} ．
Example： $500 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ iron（II）sulfate solution and $500 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ silver nitrate solution are placed in a stoppered flask and allowed to reach equilibrium．It＇s found that the equilibrium concentration of Fe^{2+} is $0.0439 \mathrm{~mol} \mathrm{dm}^{-3}$ under s．t．p．．Calculate K_{c} for this reaction at s．t．p．．

The reaction equation（see above）tells you 1 mole of Fe^{2+} reacts with 1 mole of Ag^{+}to form 1 mole of Fe^{3+} and 1 mole of Ag．In this particular reaction，solid silver is formed．The concentration of a solid is constant，so you don＇t need to include it in the expression for K_{c} ．
The starting concentrations of Ag^{+}and Fe^{2+} are the same and equal to $0.0500 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ The equilibrium concentration of Ag^{+}will be the same as Fe^{2+} ，i．e． $0.0439 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ ． The equilibrium concentration of Fe^{3+} will be $0.0500-0.0439=0.0061 \mathrm{~mol} \mathrm{dm}^{-3}$ ．
So $K_{\mathrm{c}}=\frac{\left[\mathrm{Fe}^{3+}\right]}{\left[\mathrm{Fe}^{2+}\right]\left[\mathrm{Ag}^{+}\right]}=\frac{0.0061}{0.0439 \times 0.0439}=3.17$
The units of K_{c} are：$\frac{\mathrm{mot} \mathrm{dm}^{-3}}{\left(\mathrm{mot} d \mathrm{~m}^{5}\right)\left(\mathrm{mol} \mathrm{dm}^{-3}\right)}=\mathrm{mol}^{-1} \mathrm{dm}^{3}$

N11111111111111111111，
E $500 \mathrm{~cm}^{3}$ of each solution is used，so you have a total of $1000 \mathrm{~cm}^{3}$ of solution． The concentration of each reactant is therefore halved since you have the same number of moles of each玉 reactant，but in double the volume．
こノ।।।।।।।।ノ।ノ।ノ।ノ।।।
At s．t．p．，$K_{\mathrm{c}}=3.17 \mathrm{~mol}^{-1} \mathrm{dm}^{3}$

Practice Questions

Q1 What do the square brackets，［ ］，represent in a K_{c} expression？
Q2 Write the expression for K_{c} for the following equilibrium： $\mathrm{Cl}_{2(\mathrm{~g})}+\mathrm{PCl}_{3(\mathrm{~g})} \rightleftharpoons \mathrm{PCl}_{5(\mathrm{~g})}$ ．What are the units of K_{c} ？

Exam Questions

Q1 At 723 K ，the equilibrium constant for the reaction $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HCl}_{(\mathrm{g})}$ is 60 ．
The equilibrium concentrations of H_{2} and Cl_{2} are $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ and $0.30 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ respectively．
What is the molar concentration of HCl at equilibrium？
A $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$
B $0.010 \mathrm{~mol} \mathrm{dm}^{-3}$
C $\quad 6.0 \mathrm{~mol} \mathrm{dm}^{-3}$
D $36 \mathrm{~mol} \mathrm{dm}^{-3}$
［1 mark］

Q2 Copper is shaken with silver nitrate solution to form the following equilibrium． $\mathrm{Cu}_{(\mathrm{s})}+2 \mathrm{Ag}^{+}{ }_{\text {（aq）}} \rightleftharpoons \mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{Ag}_{(\mathrm{s})}$ At a certain temperature，there are $0.431 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Ag}^{+}$and $0.193 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Cu}^{2+}$ at equilibrium．Calculate K_{c} ，giving its units．
［3 marks］
Q3 Nitrogen dioxide dissociates according to the equation $2 \mathrm{NO}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})}$ ．
When 42.5 g of nitrogen dioxide were heated in a vessel of volume $22.8 \mathrm{dm}^{3}$ at $500^{\circ} \mathrm{C}$ ，
14.1 g of oxygen were found in the equilibrium mixture．
a）Calculate：i）the number of moles of nitrogen dioxide originally．
［1 mark］
ii）the number of moles of each gas in the equilibrium mixture．
b）Write an expression for K_{c} for this reaction．Calculate the value for K_{c} at $500^{\circ} \mathrm{C}$ and give its units．

As far as I＇m concerned，equilibria are a constant pain in the＊＠？！

K_{c} is there to be calculated，so calculate it you must－and the only way to get good at it is to practise．And then practise again，just to be on the safe side．Now now，don＇t start moaning－you＇ll thank me if it comes up in the exam．

Gas Equilibria

It＇s easier to talk about gases in terms of their pressures rather than their molar concentrations．If you want to do this， you need a slightly different equilibrium constant－it＇s called K_{p}（but I＇m afraid it＇s got nothing to do with peanuts）．

The Total Pressure is Equal to the Sum of the Partial Pressures

In a mixture of gases，each individual gas exerts its own pressure－this is called its partial pressure．
The total pressure of a gas mixture is the sum of all the partial pressures of the individual gases．
You might have to put this fact to use in pressure calculations：
Example：When 3.0 moles of the gas PCl_{5} is heated，it decomposes into PCl_{3} and $\mathrm{Cl}_{2}: \mathrm{PCl}_{5(\mathrm{~g})} \rightleftharpoons \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$ In a sealed vessel at 500 K ，the equilibrium mixture contains chlorine with a partial pressure of 2.6 atm ． If the total pressure of the mixture is 7.0 atm ，what is the partial pressure of PCl_{5} ？

From the equation you know that PCl_{3} and Cl_{2} are produced in equal amounts，so the partial pressures of these two gases are the same at equilibrium－they＇re both 2.6 atm ．
Total pressure $=p\left(\mathrm{PCl}_{5}\right)+p\left(\mathrm{PCl}_{3}\right)+p\left(\mathrm{Cl}_{2}\right)$

$$
7.0=p\left(\mathrm{PCl}_{5}\right)+2.6+2.6
$$

So the partial pressure of $\mathrm{PCl}_{5}=7.0-2.6-2.6=1.8 \mathrm{~atm}$

You might see this notation used withou brackets，but it means the same thing．

Partial Pressures can be Worked Out from Mole Fractions

A＇mole fraction＇is just the proportion of a gas mixture that is a particular gas．So if you＇ve got four moles of gas in total，and two of them are gas A ，the mole fraction of gas A is $1 / 2$ ．There are two formulae you＇ve got to know：

$$
\text { 1) Mole fraction of a gas in a mixture }=\frac{\text { number of moles of gas }}{\text { total number of moles of gas in the mixture }}
$$

2）Partial pressure of a gas $=$ mole fraction of gas \times total pressure of the mixture

Example：When 3.00 mol of PCl_{5} is heated in a sealed vessel，the equilibrium mixture contains 1.75 mol of chlorine．If the total pressure of the mixture is 7.0 atm ，what is the partial pressure of PCl_{5} ？
From the equation above， PCl_{3} and Cl_{2} are produced in equal amounts，so there＇ll be 1.75 moles of PCl_{3} too．
1.75 moles of PCl_{5} must have decomposed so（ $3.00-1.75=$ ） 1.25 moles of PCl_{5} must be left at equilibrium．

This means that the total number of moles of gas at equilibrium $=1.75+1.75+1.25=4.75$
So the mole fraction of $\mathrm{PCl}_{5}=\frac{1.25}{4.75}=\mathbf{0 . 2 6 3} \ldots$
The partial pressure of $\mathrm{PCl}_{5}=$ mole fraction \times total pressure $=0.263 \ldots \times 7.0=1.8 \mathrm{~atm}$

The Equilibrium Constant $\boldsymbol{K}_{\boldsymbol{p}}$ is Calculated from Partial Pressures

$\boldsymbol{K}_{\mathbf{p}}$ is an equilibrium constant that you can calculate dealing with equilibria involving gases．
The expression for K_{p} is just like the one for K_{c}－except you use partial pressures instead of concentrations．

$$
\begin{aligned}
& \text { For the equilibrium } \mathrm{aA}_{(\mathrm{g})}+\mathrm{bB}_{(\mathrm{g})} \rightleftharpoons \mathrm{dD}_{(\mathrm{g})}+\mathrm{eE}_{(\mathrm{g})}: K_{\mathrm{p}}=\frac{p(\mathrm{D})^{\mathrm{d}} \boldsymbol{p}(\mathrm{E})^{\mathrm{e}}}{\boldsymbol{p}(\mathrm{~A})^{\mathrm{a}} \boldsymbol{p}(\mathrm{~B})^{\mathrm{b}}} \\
& \text { ミ'11111111111111111111111111111111111に } \\
& \text { = There are no square brackets because they're = } \\
& \text { partial pressures, not molar concentrations. }
\end{aligned}
$$

To calculate K_{p} ，you just have to put the partial pressures in the expression．You work out the units like you did for K_{c} ．
Example：Calculate K_{p} for the decomposition of PCl_{5} gas at $500 \mathrm{~K}: \mathrm{PCl}_{5(\mathrm{~g})} \rightleftharpoons \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$
The partial pressures of each gas are：$p\left(\mathrm{PCl}_{5}\right)=1.8 \mathrm{~atm}, p\left(\mathrm{PCl}_{3}\right)=2.6 \mathrm{~atm}, p\left(\mathrm{Cl}_{2}\right)=2.6 \mathrm{~atm}$
$K_{\mathrm{p}}=\frac{p\left(\mathrm{Cl}_{2}\right) p\left(\mathrm{PCl}_{3}\right)}{p\left(\mathrm{PCl}_{5}\right)}=\frac{2.6 \times 2.6}{1.8}=3.755 \ldots=3.8(2 \mathrm{~s} . \mathrm{f}$ ．$)$
The units for K_{p} are worked out by putting the units into the
expression instead of the numbers，and cancelling（like for K_{c} ）：$K_{\mathrm{p}}=\frac{\mathrm{a} \not \mathrm{m} \times \mathrm{atm}}{\mathrm{atmT}}=\mathrm{atm}$ ．So，$K_{\mathrm{p}}=3.8 \mathrm{~atm}$

Gas Equilibria

K_{p} can be Used to Find Partial Pressures

You might be given the value of $\boldsymbol{K}_{\mathrm{p}}$ and have to use it to calculate equilibrium partial pressures.
Example: An equilibrium exists between ethanoic acid monomers, $\mathrm{CH}_{3} \mathrm{COOH}$, and dimers, $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{2}$. At $160^{\circ} \mathrm{C}, K_{\mathrm{p}}$ for the reaction $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{g})}$ is 1.78 atm . At this temperature the partial pressure of the dimer, $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{2}$, is 0.281 atm . Calculate the partial pressure of the monomer in this equilibrium and state the total pressure exerted by the equilibrium mixture.
First, use the chemical equilibrium to write an expression for K_{p} : $\quad K_{\mathrm{p}}=\frac{p\left(\mathrm{CH}_{3} \mathrm{COOH}\right)^{2}}{p\left(\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{2}\right)}$
This rearranges to give: $p\left(\mathrm{CH}_{3} \mathrm{COOH}\right)^{2}=K_{\mathrm{p}} \times p\left(\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{2}\right)=1.78 \times 0.281=0.500 \ldots$
$p\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=\sqrt{ } 0.500 \ldots=0.707 \ldots$ atm
So the total pressure of the equilibrium mixture $=0.281+0.707 \ldots=0.988 \mathrm{~atm}$

K_{p} for Heterogeneous Equilibria Still Only Includes Gases

You met the idea of homogeneous and heterogeneous equilibria on pages 118 and 119.
Up until now we've only thought about K_{p} expressions for homogeneous equilibria.
If you're writing an expression for $\boldsymbol{K}_{\mathbf{p}}$ for a heterogeneous equilibrium, only include gases.
Example: Write an expression for K_{p} for the following reaction: $\mathrm{NH}_{4} \mathrm{HS}_{(\mathrm{s})} \rightleftharpoons \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$.
The equilibrium is heterogeneous - a solid decomposes to form two gases. N゙111111111111111111/= Solids don't get included in $K_{p^{\prime}}$, so $K_{\mathrm{p}}=p\left(\mathrm{NH}_{3}\right) p\left(\mathrm{H}_{2} \mathrm{~S}\right)$. \quad There's no bottom line as

Practice Questions

Q1 What is meant by partial pressure?
Q2 How do you work out the mole fraction of a gas?
Q3 Write the expression for K_{p} for the following equilibrium: $\mathrm{NH}_{4} \mathrm{HS}_{(\mathrm{g})} \rightleftharpoons \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{~S}_{\mathrm{(g)}}$

Exam Questions

Q1 At high temperatures, $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ dissociates according to the equation $\mathrm{SO}_{2} \mathrm{Cl}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$. When 1.50 moles of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ dissociates at 700 K , the equilibrium mixture contains SO_{2} with a partial pressure of 0.594 atm . The mixture has a total pressure of 1.39 atm .
a) Write an expression for K_{p} for this reaction.
b) Calculate the partial pressure of Cl_{2} and the partial pressure of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ in the equilibrium mixture.
c) Calculate a value for K_{p} for this reaction and give its units.

Q2 When nitric oxide and oxygen were mixed in a 2:1 mole ratio at a constant temperature in a sealed flask, an equilibrium was set up according to the equation: $2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{2(\mathrm{~g})}$. The partial pressure of the nitric oxide (NO) at equilibrium was 0.36 atm . The total pressure in the flask was 0.98 atm .
a) Deduce the partial pressure of oxygen in the equilibrium mixture.
b) Calculate the partial pressure of nitrogen dioxide in the equilibrium mixture.
c) Write an expression for the equilibrium constant, K_{p}, for this reaction and calculate its value at this temperature. State its units.

I'm rather partial to a few pressure calculations - and a chocolate biscuit...

Partial pressures are like concentrations for gases. The more of a substance you've got in a solution, the higher the concentration, and the more of a gas you've got in a container, the higher the partial pressure. It's all to do with how many molecules are crashing into the sides. With gases though, you've got to keep the lid on tight or they'll escape.

Le Chatelier's Principle and Equilibrium Constants

You should already know that changing conditions can change the position of the equilibrium. That's great, but you also need to be able to predict what will happen to the equilibrium constant when you change conditions.

If Conditions Change the Position of Equilibrium Will Move

1) You learnt on page 118 that when a reversible reaction reaches dynamic equilibrium, the forward reaction will be going at exactly the same rate as the backward reaction, so the amounts of reactants and products won't be changing any more. The concentrations of reactants and products stay constant.
2) If you change the concentration, pressure or temperature of a reversible reaction, you're going to alter the position of equilibrium. This just means you'll end up with different amounts of reactants and products at equilibrium.
3) If the change causes more product to form, then you say that the equilibrium shifts to the right. If less product forms, then the equilibrium has shifted to the left.
4) You also met Le Chatelier's principle on pages 120-121, which lets you predict how the position of equilibrium will change if a condition changes. Here it is again:

If there's a change in concentration, pressure or temperature, the equilibrium will move to help counteract the change.

The removal of his dummy was a change that Maxwell always opposed.
5) So, basically, if you raise the temperature, the position of equilibrium will shift to try to cool things down. And if you raise the pressure or concentration, the position of equilibrium will shift to try to reduce it again.
6) The size of the equilibrium constant tells you where the equilibrium lies. The greater the value of K_{c} or K_{p}, the further to the right the equilibrium lies. Smaller values of K_{c} and K_{p} mean the equilibrium lies further to the left.

Temperature Changes Alter the Equilibrium Constant

1) From Le Chatelier's principle, you know that an increase in temperature causes more of the product of an endothermic reaction to form so that the extra heat is absorbed. Le Chatelier also states that a decrease in temperature causes more of the product of an exothermic reaction to form.
2) The equilibrium constant for a reaction depends on the temperature.

Changing the temperature alters the position of equilibrium and the value of the equilibrium constant.

Example: The reaction below is exothermic in the forward direction. If you increase the temperature, the equilibrium shifts to the left to absorb the extra heat. What happens to K_{p} ?

$$
\begin{aligned}
\text { Exothermic } & \Longleftrightarrow \\
2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} & \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})} \quad \Delta H=-197 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \text { Endothermic }
\end{aligned}
$$

If the equilibrium shifts to the left, then less product will form. By looking at the expression for the equilibrium constant, you can see that if there's less product, the value of K_{p} will decrease.

This reaction is between gases, so it's easiest to use K_{p}, but it's exactly the same for K_{c} and the other equilibrium constants you'll meet in this course.	$K_{\mathrm{p}}=\frac{p\left(\mathrm{SO}_{3}\right)^{2}<}{p\left(\mathrm{SO}_{2}\right)^{2} p\left(\mathrm{O}_{2}\right)}$	There's less product and more reactant, so the number on the top gets smaller and the number on the bottom gets bigger. This means K_{p} must have decreased.

3) The general rule for what happens to an equilibrium constant when you change the temperature of a reaction is that:

- If changing the temperature causes less product to form, the equilibrium moves to the left, and the equilibrium constant decreases.
- If changing the temperature causes more product to form, the equilibrium moves to the right, and the equilibrium constant increases.

Le Chatelier's Principle and Equilibrium Constants

Concentration and Pressure Changes Don't Affect the Equilibrium Constant

Concentration

The value of the equilibrium constant is fixed at a given temperature. So if the concentration of one thing in the equilibrium mixture changes then the concentrations of the others must change to keep the value of K_{c} the same.

$$
\text { E.g. } \mathrm{CH}_{3} \mathrm{COOH}_{(1)}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(1)} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(1)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}
$$

If you increase the concentration of $\mathrm{CH}_{3} \mathrm{COOH}$ then the equilibrium will move to the right to get rid of the extra $\mathrm{CH}_{3} \mathrm{COOH}$ - so more $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ and $\mathrm{H}_{2} \mathrm{O}$ are produced. This keeps the equilibrium constant the same.

Pressure

Increasing the total pressure increases the partial pressures (or concentration) of each of the products and reactants. The equilibrium shifts to the side with fewer moles of gas to decrease the pressure. The overall effect is that K_{p} and K_{c} are unchanged.

$$
\text { E.g. } 2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}
$$

There are 3 moles on the left, but only 2 on the right. So an increase in pressure would shift the equilibrium to the right. The equilibrium constant however doesn't change.

So, to summarise, concentration and pressure don't affect the values of K_{c} or K_{p}. Changes to concentration and pressure do change the amounts of products and reactants present at equilibrium, but the ratio of reactants to products stays the same (leaving K_{c} or K_{p} unchanged). Changes in temperature not only alter the amounts of products and reactants present at equilibrium, but also change the value of the equilibrium constants.

Catalysts have NO EFFECT on the position of equilibrium, so don't affect the value of K_{c} (or K_{p}).
They can't increase yield - but they do mean equilibrium is approached faster.

Practice Questions

Q1 If you raise the temperature of a reversible reaction, in which direction will the reaction move?
Q2 Does temperature change affect the equilibrium constant?
Q3 Why doesn't concentration affect the equilibrium constant?

Exam Questions

Q1 At temperature T_{1}, the equilibrium constant K_{c} for the following reaction is $0.67 \mathrm{~mol}^{-1} \mathrm{dm}^{3}$.

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})} \quad \Delta H=-92 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

a) When equilibrium was established at a different temperature, T_{2}, the value of K_{c} increased. State which of T_{1} or T_{2} is the lower temperature and explain why.
b) The experiment was repeated exactly the same in all respects at T_{1}, except a flask of smaller volume was used. How would this change affect the yield of ammonia and the value of K_{c} ?

Q2 The reaction between methane and steam is used to produce hydrogen. The forward reaction is endothermic.

$$
\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons \mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{~g})}
$$

a) Write an equation for K_{p} for this reaction.
b) Which of the following will cause the value of K_{p} to increase?
A Increasing the temperature.
B Using a catalyst.
C Decreasing the pressure.
D Decreasing the temperature.
[1 mark]

The performers at the equilibrium concert were unaffected by pressure...

Predicting how the equilibrium position shifts if the conditions change isn't always simple. E.g. if you increase the pressure and temperature of the reaction between SO_{2} and O_{2} (see the last two pages), the increase in pressure would want to shift the equilibrium to the right but the increase in temperature would want to push it to the left. Tricky...

Acids and Bases

The scientific definition of an acid has changed over time - originally, the word acid just meant something that tasted sour. But, in 1923, Johannes Nicolaus Brønsted and Martin Lowry came along and refined the definition.

An Acid Releases Protons - a Base Accepts Protons

Brønsted-Lowry acids are proton donors - they release hydrogen ions $\left(\mathrm{H}^{+}\right)$when they're mixed with water. You never get H^{+}ions by themselves in water though - they're always combined with $\mathrm{H}_{2} \mathrm{O}$ to form hydroxonium ions, $\mathrm{H}_{3} \mathrm{O}^{+}$.

$$
\mathrm{HA}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{A}_{(\mathrm{aq)}}^{-}
$$

Brønsted-Lowry bases are proton acceptors. When they're in solution, they grab hydrogen ions from water molecules.

$$
\mathrm{B}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{BH}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}
$$

- 11111111111111111111111111111112 HA is any old acid and B is just a random base.

Acids and Bases can be Strong or Weak

1) Strong acids dissociate (or ionise) almost completely in water - nearly all the H^{+}ions will be released.
Hydrochloric acid is a strong acid:
Strong bases (like sodium hydroxide) dissociate almost completely in water too:
2) Weak acids (e.g. ethanoic acid) dissociate only very slightly in water - so only small numbers of H^{+}ions are formed. An equilibrium is set up which lies well over to the left:

$$
\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}
$$

Weak bases (such as ammonia) only slightly protonate in water.
Just like with weak acids, the equilibrium lies well over to the left:

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

Acids and Bases form Conjugate Pairs

1) Acids can't just throw away their protons
— they can only get rid of them if there's a base to accept them. $\quad \mathrm{HA}_{(\mathrm{aq)}}+\mathrm{B}_{(\mathrm{aq)}} \rightleftharpoons \mathrm{BH}^{+}{ }_{(\mathrm{aq)}}+\mathrm{A}^{-}{ }_{(\mathrm{aq)}}$ In this reaction the acid, HA, transfers a proton to the base, B:

2) It's an equilibrium, so if you add more $\mathbf{H A}$ or \mathbf{B}, the position of equilibrium moves to the right. But if you add more $\mathbf{B H}^{+}$or \mathbf{A}^{-}, the equilibrium will move to the left. This is all down to Le Chatelier's principle (see page 120).
3) Conjugate pairs are species that are linked by the transfer of a proton. They're always on opposite sides of the reaction equation.
4) The species that has lost a proton is the conjugate base and the species that has gained a proton is the conjugate acid. For example...

- When an acid's added to water, the equilibrium shown on the right is set up. \longrightarrow conjugate pair
- In the forward reaction, HA acts as an acid as it donates a proton. In the reverse reaction, A^{-}acts as a base and accepts a proton from the $\mathrm{H}_{3} \mathrm{O}^{+}$ion to form HA .
- HA and A^{-}are called a conjugate pair - HA is the conjugate acid of A^{-}and A^{-}is the conjugate base of the acid, HA. $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$are a conjugate pair too.
- The acid and base of a conjugate pair are linked by an H^{+}, e.g. $\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$or this: $\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}$
Here's the equilibrium for
玉
aqueous HCl . Cl^{-}is the
= conjugate base of $\mathrm{HCl}_{(\text {aq) }}$ -
= 11111111111111111111111
- An equilibrium with conjugate pairs is also set up when a base dissolves in water.
- The base, B , takes a proton from the water to form BH^{+}- so B is the conjugate base of BH^{+}, and BH^{+}is the conjugate acid of B .

conjugate pair$\begin{gathered} \mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OH}^{-}+\mathrm{BH}^{+} \\ \text {base } \\ \text { acid } \\ \text { conjugate pair } \end{gathered}$

Acids and Bases

Acids and Bases React in Neutralisation Reactions

1) When acids and bases react together, a salt and water are produced: \qquad Example: The reaction of hydrochloric acid and sodium hydroxide.

$$
\mathrm{HCl}_{(\mathrm{aq)}}+\mathrm{NaOH}_{(\mathrm{aq)}} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{NaCl}_{(\mathrm{aq})}
$$

2) If the concentration of H^{+}ions from the acid is equal to the concentration of OH^{-}ions from the base, then a neutral solution is produced - this is one where $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$. All of the H^{+}ions from the acid and the OH^{-}ions from the base react to form water.
3) There's a change in enthalpy when neutralisation reactions happen - the enthalpy change of neutralisation.

> The standard enthalpy change of neutralisation is the enthalpy change when solutions of an acid and a base react together, under standard conditions, to produce 1 mole of water.
4) As you saw on the last page, weak acids and weak bases only dissociate slightly in solution - it's a reversible reaction. When they're involved in neutralisation reactions, their H^{+}ions (for acids) or OH^{-}ions (for bases) get used up quickly, as there are only a few of them in solution. The acid or base is therefore constantly dissociating more to replace the $\mathrm{H}^{+} / \mathrm{OH}^{-}$ions in solution and maintain the equilibrium (see page 120 for more on concentration and equilibrium). This requires enthalpy, so the standard enthalpy change of neutralisation for weak acids and weak bases includes enthalpy to do with the reaction between \mathbf{H}^{+}and $\mathbf{O H}^{-}$ions, and enthalpy to do with dissociation. The enthalpy of dissociation varies, depending on the acid and base involved, so the standard enthalpy change of neutralisation for reactions involving weak acids or weak bases varies.
5) On the last page, you also saw that strong acids and strong bases fully dissociate in solution. When they react together in neutralisation reactions, there's no dissociation enthalpy for the acid or base - just enthalpy for the reaction of the \mathbf{H}^{+}and $\mathbf{O H}^{-}$ ions. Therefore, since this reaction is always the same, the standard enthalpy of $\mathrm{H}^{+}{ }_{\text {(aq) }}+\mathrm{OH}_{(\text {aq) }}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ neutralisation is very similar for all the reactions of strong acids with strong bases.

Practice Questions

Q1 Give the Brønsted-Lowry definitions of an acid and a base.
Q2 Give the definition of: a) a strong acid, b) a weak acid.
Q3 Write the equilibrium for hydrochloric acid dissolving in water and identify the conjugate pairs.
Q4 What is a neutral substance?

Exam Questions

Q1 Hydrocyanic acid, $\mathrm{HCN}_{(\mathrm{aq})}$, is a weak acid with a faint smell of bitter almonds. It is extremely poisonous.
a) Write the equation for the equilibrium set up when it dissolves in water.
b) What can you say about the position of this equilibrium? Explain your answer.
c) What is the conjugate base of this acid?

Q2 A student is investigating the standard enthalpy change of neutralisation of some acid/base reactions.
a) Define the standard enthalpy change of neutralisation.
b) The student knows that the standard enthalpy change of neutralisation for the reaction of potassium hydroxide and nitric acid (a strong acid) is $-57.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
He predicts that the standard enthalpy change of neutralisation of the reaction of potassium hydroxide and ethanoic acid (a weak acid) will be the same. Is the student correct? Explain your answer.

pH

Get those calculators warmed up - especially the log function key.

The pH Scale is a Measure of the Hydrogen Ion Concentration

The concentration of hydrogen ions can vary enormously, so some clever chemists decided to express the concentration on a logarithmic scale.

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]
$$

The pH scale normally goes from $\mathbf{0}$ (very acidic) to $\mathbf{1 4}$ (very alkaline/basic). $\mathbf{p H} \mathbf{7}$ is regarded as being neutral.

For Strong Monoprotic Acids, $\left[\mathrm{H}^{+}\right]=$Acid Concentration

1) Hydrochloric acid and nitric acid $\left(\mathrm{HNO}_{3(\mathrm{aq})}\right)$ are strong acids so they dissociate fully.

They're also monoprotic, so each mole of acid produces one mole of hydrogen ions. This means the H^{+}concentration is the same as the acid concentration. Here's an example:

Example: Calculate the pH of $0.050 \mathrm{~mol} \mathrm{dm}^{-3}$ nitric acid.

$$
\left[\mathrm{H}^{+}\right]=0.050 \Rightarrow \mathrm{pH}=-\log _{10}(0.050)=1.30
$$

2) You also need to be able to work out $\left[\mathbf{H}^{+}\right]$if you're given the $\mathbf{p H}$ of a solution. You do this by finding the inverse \log of $-\mathbf{p H}$, which is $\mathbf{1 0}^{\mathbf{- p H}}$.

Example: An acid solution has a pH of 2.45 . What is the hydrogen ion concentration, or $\left[\mathrm{H}^{+}\right]$, of the acid?

$$
\left[\mathrm{H}^{+}\right]=10^{-2.45}=3.5 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}
$$

Polyprotic Acids Can Lose More Than One Proton

1) You saw above that monoprotic acids only have one proton that they can release into solution.
2) But some acids, such as sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$, are polyprotic - this means they have more than one proton that they can release into solution.
3) Each molecule of a strong diprotic acid releases two protons when it dissociates.
4) Calculating the $\left[\mathbf{H}^{+}\right]$, and therefore the $\mathbf{p H}$ of polyprotic acids is a bit trickier, as more than one mole of hydrogen ions is released per mole of acid - you won't be asked to do this in the exam though, so don't panic.

To Find the $\mathbf{p H}$ of a Weak Acid You Use \mathbf{K}_{a} (the Acid Dissociation Constant)

Weak acids (like $\mathrm{CH}_{3} \mathrm{COOH}$) don't dissociate fully in solution, so the $\left[\mathrm{H}^{+}\right]$isn't the same as the acid concentration. This makes it a bit trickier to find their pH .
You have to use yet another equilibrium constant, $\boldsymbol{K}_{\mathbf{a}}$ (the acid dissociation constant).

- For a weak aqueous acid, HA , you get the following equilibrium: $\mathrm{HA}_{\text {(aq) }} \rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq)}}+\mathrm{A}_{\text {(aq) }}^{-}$
- As only a tiny amount of HA dissociates, you can assume that $\left[\mathrm{HA}_{\text {(aq) }}\right] \gg\left[\mathrm{H}^{+}{ }_{\text {(aq) }}\right]$ so $\left[\mathrm{HA}_{\text {(aq) }}\right]_{\text {start }} \approx\left[\mathrm{HA}_{\text {(aq) }}\right]_{\text {equilibrium }}$.
- So if you apply the equilibrium law, you get: $K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]_{\text {start }}} \quad \begin{gathered}\text { See page } 132 \text { for more about } \\ \text { the dissociation of water. }\end{gathered}$

- You can also assume that dissociation of the acid is much greater than dissociation of water. This means you can assume that all the H^{+}ions in solution come from the acid, so $\left[\mathrm{H}^{+}{ }_{\text {(aq) }}\right] \approx\left[\mathrm{A}^{-}{ }_{(\text {aq) }}\right]$.

The assumptions made above to find K_{a} only work for weak acids.
Strong acids dissociate more in solution, so the difference between $[\mathrm{HA}]_{\text {start }}$ and $[\mathrm{HA}]_{\text {equilibrium }}$
becomes significant, so the assumption that $[\mathrm{HA}]_{\text {start }}=[\mathrm{HA}]_{\text {equilibrium }}$ is no longer valid.

pH

To Find the $\mathbf{p H}$ of a Weak Acid, You Use $\mathbf{K}_{\mathbf{a}}$

K_{a} is an equilibrium constant just like K_{c} (see page 122). It applies to a particular acid at a specific temperature regardless of the concentration. You can use this fact to find the $\mathbf{p H}$ of a known concentration of a weak acid.

> Example: Calculate the hydrogen ion concentration and the pH of a 0.02 mol dm dm^{-3} solution of propanoic acid $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right)$. K_{a} for propanoic acid at this temperature is $1.30 \times 10^{-5} \mathrm{~mol} \mathrm{dm}$

First, write down your expression for K_{a} and rearrange to find $\left[\mathrm{H}^{+}\right]$.

$K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]} \Longrightarrow\left[\mathrm{H}^{+}\right]^{2}=K_{\mathrm{a}}\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]=1.30 \times 10^{-5} \times 0.02=2.60 \times 10^{-7}$
$\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(2.60 \times 10^{-7}\right)=5.10 \times 10^{-4} \mathrm{~mol} \mathrm{dm}$

You can now use your value for $\left[\mathrm{H}^{+}\right]$to find $\mathrm{pH}: \quad \mathrm{pH}=-\log _{10} 5.10 \times 10^{-4}=3.29$

You Might Have to Find the Concentration or \mathbf{K}_{a} of a Weak Acid

You don't need to know anything new for this type of calculation. You usually just have to find $\left[\mathbf{H}^{+}\right]$ from the pH , then fiddle around with the $\boldsymbol{K}_{\mathrm{a}}$ expression to find the missing bit of information.

This bunny may look cute, but he can't help Horace with his revision.

Example: The pH of an ethanoic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ solution was 3.02 at 298 K .
Calculate the molar concentration of this solution.
K_{a} of ethanoic acid is $1.75 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$ at 298 K .
First, use the pH to find $\left[\mathrm{H}^{+}\right]: \quad\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-3.02}=9.55 \times 10^{-4} \mathbf{~ m o l ~ d m}{ }^{-3}$ Then rearrange the expression for K_{a} and plug in your values to find $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$:

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \longleftrightarrow \mathrm{CH}_{3} \mathrm{COOH}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{K_{\mathrm{a}}}=\frac{\left(9.55 \times 10^{-4}\right)^{2}}{1.75 \times 10^{-5}}=0.0521 \mathrm{~mol} \mathrm{dm}^{-3}
$$

Practice Questions

Q1 Explain what is meant by the term 'diprotic acid'?
Q2 Explain how to calculate the pH of a strong monoprotic acid from its concentration.
Q3 Explain how to calculate the pH of a weak acid from its concentration and K_{a}.

Exam Questions

Q1 a) What's the pH of a solution of the strong acid, hydrobromic acid (HBr), if it has a concentration of $0.32 \mathrm{~mol} \mathrm{dm}^{-3}$?
[1 mark]
b) Hydrofluoric acid (HF) is a weaker acid than hydrochloric acid. Explain what that means in terms of hydrogen ions and pH .
[1 mark]
Q2 The value of K_{a} for the weak acid HA, at 298 K , is $5.60 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$.
a) Write an expression for K_{a}.
b) Calculate the pH of a $0.280 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of HA at 298 K .
[2 marks]
Q3 The pH of a $0.150 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of a weak monoprotic acid, HX, is 2.65 at 298 K .
Calculate the value of K_{a} for the acid HX at 298 K .
[3 marks]

pH calculations are pH -ing great...

No, I really like them. Honestly. Although they can be a bit tricky. Just make sure you learn all the key formulae. Oh and not all calculators work the same way, so make sure you know how to work logs out on your calculator. There's loads more on pH coming up, and lots more calculations (eek), so make sure you've nailed this page before you move on.

The Ionic Product of Water

More pH calculations to come, but this time they're to do with bases. If only that meant they were basic - they're actually quite tricky. But fear not, there are loads of examples over the next two pages to guide you through $K_{w} \ldots$

The Ionic Product of Water, \boldsymbol{K}_{w}, Depends on the Concentration of \boldsymbol{H}^{+}and $\mathbf{O H}^{-}$

Water can act as an acid by donating a proton - but it can also act as a base by accepting a proton.
So, in water there'll always be both hydroxonium ions and hydroxide ions swimming around at the same time. So the following equilibrium exists in water:

$$
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq)}}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-} \quad \text { or more simply: } \quad \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}
$$

And, just like for any other equilibrium reaction, you can apply the equilibrium law and write an expression for the equilibrium constant:

$$
K_{c}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}
$$

Water only dissociates a tiny amount, so the equilibrium lies well over to the left. There's so much water compared to the amounts of H^{+}and OH^{-}ions that the concentration of water is considered to have a constant value.
So if you multiply K_{c} (a constant) by $\left[\mathrm{H}_{2} \mathrm{O}\right]$ (another constant), you get a constant.
This new constant is called the ionic product of water and it is given the symbol K_{w}.

For pure water, there's a $\mathbf{1 : 1}$ ratio of H^{+}and OH^{-}ions due to dissociation. This means $\left[\mathbf{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$and $\boldsymbol{K}_{\mathbf{w}}=\left[\mathbf{H}^{+}\right]^{2}$. So if you know K_{w} of pure water at a certain temperature, you can calculate $\left[\mathrm{H}^{+}\right]$and use this to find the pH .

The fact that K_{w} always has the same value for pure water or an aqueous solution
at a given temperature is really useful, as you're about to discover...

$$
\text { At } 25^{\circ} \mathrm{C}(298 \mathrm{~K}), K_{\mathrm{w}}=1.0 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}
$$

Use \mathbf{K}_{w} to Find the $\mathbf{p H}$ of a Strong Base

1) Sodium hydroxide (NaOH) and potassium hydroxide (KOH) are strong bases that fully dissociate in water:

$$
\mathrm{NaOH}_{(\mathrm{s})} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}{ }_{\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-} \quad \mathrm{KOH}_{(\mathrm{s})} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{~K}_{(\mathrm{aq)}}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}
$$

2) They donate one mole of OH^{-}ions per mole of base. This means that the concentration of OH^{-}ions is the same as the concentration of the base. So for $0.02 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution, $\left[\mathrm{OH}^{-}\right]$is also $\mathbf{0 . 0 2} \mathbf{~ m o l ~ d m}^{-3}$.
3) But to work out the $\mathbf{p H}$ you need to know $\left[\mathbf{H}^{+}\right]$- this is linked to $\left[\mathrm{OH}^{-}\right]$through the ionic product of water, $\boldsymbol{K}_{\mathbf{w}}$:
4) So if you know K_{w} and $\left[\mathrm{OH}^{-}\right]$for a strong aqueous base at a certain temperature, you can work out $\left[\mathbf{H}^{+}\right]$(then the $\mathbf{p H}$).

Example: Find the pH of $0.10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ at 298 K , given that K_{w} at 298 K is $1.0 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$.

1) First put all the values you know into the expression for the ionic product of water, K_{w} :

$$
1.0 \times 10^{-14}=\left[\mathrm{H}^{+}\right][0.10]
$$

2) Now rearrange the expression to find $\left[\mathrm{H}^{+}\right]$:

$$
\left[\mathrm{H}^{+}\right]=\frac{1.0 \times 10^{-14}}{0.10}=1.0 \times 10^{-13} \mathrm{~mol} \mathrm{dm}^{-3}
$$

3) Use your value of $\left[\mathrm{H}^{+}\right]$to find the pH of the solution:

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]=-\log _{10}\left(1.0 \times 10^{-13}\right)=13.00
$$

The Ionic Product of Water

$p K_{w}=-\log _{10} K_{w}$ and $K_{w}=10^{-p K_{w}}$
$\mathrm{p} K_{\mathrm{w}}$ is calculated from K_{w}. And, since under standard conditions K_{w} is always $1.0 \times 10^{-14}, \mathrm{p} K_{\mathrm{w}}$ is always:

$$
\mathrm{p} K_{\mathrm{w}}=-\log _{10} K_{\mathrm{w}}=-\log _{10}\left(1.0 \times 10^{-14}\right)=14.00
$$

ミ111111111111111111111111111111111111
三 The advantage of $p K_{w}$ values is that they're a decent size so they're easy to work with.

$p K_{a}=-\log _{10} K_{a}$ and $K_{a}=10^{-p K a}$

Since $\boldsymbol{K}_{\mathrm{a}}$ is different for different acids, $\mathrm{p} K_{\mathrm{a}}$ is a bit trickier than $\mathrm{p} K_{\mathrm{w}}$.
$\mathbf{p} \boldsymbol{K}_{\mathrm{a}}$ is calculated from $\boldsymbol{K}_{\mathrm{a}}$ in exactly the same way as $\mathbf{p H}$ is calculated from $\left[\mathbf{H}^{+}\right]$- and vice versa.
Example: i) If an acid has a K_{a} value of $1.50 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{3}$, what is its $\mathrm{p} K_{\mathrm{a}}$?

$$
\mathrm{p} K_{\mathrm{a}}=-\log _{10}\left(1.50 \times 10^{-7}\right)=6.824
$$

ii) What is the K_{a} value of an acid if its $\mathrm{p} K_{\mathrm{a}}$ is 4.32?

$$
K_{\mathrm{a}}=10^{-4.32}=4.8 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}
$$

" ${ }^{\text {"11 }} 111111111111111$, the stronger the acid (just like for pH).

Just to make things that bit more complicated, you might be given a $\mathbf{p} \boldsymbol{K}_{\mathrm{a}}$ value in a question to work out concentrations or pH . If so, you just need to convert $\mathrm{p} K_{\mathrm{a}}$ to K_{a} so that you can use the $\boldsymbol{K}_{\mathrm{a}}$ expression.

Example: Calculate the pH of $0.0500 \mathrm{~mol} \mathrm{dm}^{-3}$ methanoic acid (HCOOH).
 Methanoic acid has a $\mathrm{p} K_{\mathrm{a}}$ of 3.75 at this temperature.

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HCOOH}]} \longrightarrow\left[\mathrm{H}^{+}\right]^{2}=K_{\mathrm{a}} \times[\mathrm{HCOOH}]=1.77 \ldots \times 10^{-4} \times 0.0500=8.91 \ldots \times 10^{-6}
$$

$$
\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(8.91 \ldots \times 10^{-6}\right)=2.98 \ldots \times 10^{-3} \mathrm{~mol} \mathrm{dm}{ }^{-3}=\text { You might also be asked to work out a }
$$

$$
\mathrm{pH}=-\log _{10}\left(2.98 \ldots \times 10^{-3}\right)=2.53 \quad \begin{array}{ll}
& p K_{\mathrm{a}} \text { value from concentrations or } \mathrm{pH} . \\
\text { In this case, you just work out the } K
\end{array}
$$

Practice Questions

Q1 Give the equation for the ionic product of water.
Q2 What equation would you use to work out $\mathrm{p} K_{\mathrm{w}}$ from K_{w} ?

Exam Questions

Q1 At 298 K , a solution of sodium hydroxide contains $2.50 \mathrm{~g} \mathrm{dm}^{-3}$. K_{w} at 298 K is $1.0 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$.
a) What is the molar concentration of the hydroxide ions in this solution?
b) Calculate the pH of this solution.

Q2 Calculate the pH of a $0.0370 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of sodium hydroxide at 298 K .
K_{w}, the ionic product of water, is $1.0 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ at 298 K .
Q3 Benzoic acid is a weak acid that is used as a food preservative. It has a $\mathrm{p} K_{\mathrm{a}}$ of 4.20 at 298 K .
Find the pH of a $1.60 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ solution of benzoic acid at 298 K .

An ionic product - when your trousers have no creases in them...

You know things are getting serious when maths stuff like logs start appearing. It's fine really though, just practise a few questions and make sure you know how to use the log button on your calculator. And make sure you've learned the equations for $K_{w^{\prime}}, p K_{w} A N D p K_{a}$. And while you're up, go and make me a nice cup of tea, lots of milk, no sugar.

Experiments Involving pH

You thought that was all there was to know about pH？Sorry to disappoint，but you＇re only halfway through this topic．．．

You Can Measure the pH of a Solution Using a pH Meter

1） $\mathrm{A} \mathbf{~ p H}$ meter is an electronic gadget you can use to tell you the $\mathbf{p H}$ of a solution．
2） pH meters have a probe that you put into your solution and a digital display that shows the reading．
3）Before you use a pH meter，you need to make sure it＇s calibrated correctly．To do this．．．
－Place the bulb of the pH meter into deionised water and allow the reading to settle． Now adjust the reading so that it reads 7．0．
－Do the same with a standard solution of pH 4 and another of pH 10.
 Make sure you rinse the probe with deionised water in between each reading．
4）You＇re now ready to take your actual measurement． Place the probe in the liquid you＇re measuring and let the reading settle before you record the result．After each measurement，you should rinse the probe in deionised water．

The pH of Equimolar Solutions Can Tell You About the Substances

You can learn quite a lot about the nature of a chemical just by looking at its $\mathbf{p H}$ ．
By measuring the $\mathbf{p H s}$ of different equimolar solutions（solutions that contain the same number of moles）， you can see whether a substance is an acid，base or a salt，and whether it is strong or weak．
（1） HCl has a pH of O .00 ．
$\left[\mathrm{H}^{+}\right]=1 \mathrm{O}^{-\mathrm{pH}}=1 \mathrm{moldm}^{-3}$ and the concentration of HCl is also $1 \mathrm{~mol} \mathrm{dm}^{-3}$
So HCl must be completely dissociated
－it＇s a strong acid．
3 NaCl has a pH of 7.00 which gives $\left[\mathrm{H}^{+}\right]$of $1 \times 10^{-7} \mathrm{~mol} \mathrm{dm}{ }^{-3}$ ． Using $K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$ ， $\left[\mathrm{OH}^{-}\right]$is also $1 \times 10^{-7} \mathrm{~mol} \mathrm{dm}{ }^{-3}$ ． $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$，so the substance is neutral．This is true for salts of strong acids with strong bases．
$2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ has a pH of 2.44 ，which gives $\left[\mathrm{H}^{+}\right]$of $0.0036 \mathrm{~mol} \mathrm{dm}^{-3}$ ． The concentration is $1 \mathrm{~mol} \mathrm{dm}^{-3}$ ，so only a small fraction of the molecules are dissociated．It＇s a weak acid．
NH_{3} has $\left[\mathrm{H}^{+}\right]$of 2.4×10^{-11} which gives $\left[\mathrm{OH}^{-}\right]$of $4.2 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ （using $K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$ ）． This shows only a tiny fraction of H^{+}ions are accepted from the water molecules by NH_{3} ，so it＇s a weak base．

You Can Use Masses and pH to Work Out $\mathbf{K}_{\mathbf{a}}$

You can use experimental data to work out K_{a} for weak acids．The example below shows you how this works．
Example： 1.31 g of ethanoic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ are dissolved in $250 \mathrm{~cm}^{3}$ of distilled water to create a solution of ethanoic acid．The solution has a pH of 2．84．Calculate the acid dissociation constant for ethanoic acid．

1）First，you need to work out the number of moles of ethanoic acid that are in the solution．

$$
\text { moles }=\text { mass } \div M \Longleftrightarrow \text { moles }=1.31 \div[(2 \times 12.0)+(4 \times 1.0)+(2 \times 16.0)]=0.02183 \ldots \text { moles }
$$

2）Then，calculate the concentration of the ethanoic acid solution．

$$
\text { concentration }=\frac{\text { moles } \times 1000}{\text { volume }\left(\mathrm{cm}^{3}\right)} \Longrightarrow \text { concentration }=\frac{0.02183 \ldots \times 1000}{250}=0.0873 \ldots \mathrm{~mol} \mathrm{dm}^{-3}
$$

3）You can use the pH to work out $\left[\mathrm{H}^{+}\right]$at equilibrium：$\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-2.84}=0.00144 \ldots$
4）For weak acids，$K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HA}]}$ ，so $\quad K_{\mathrm{a}}=\frac{[0.00144 \ldots]^{2}}{[0.0873 . .]}=0.00002392 \ldots=2.4 \times 10^{-5}$

Experiments Involving pH

When Acids are Diluted their pH Changes

Diluting an acid reduces the concentration of \mathbf{H}^{+}in the solution．This increases the $\mathbf{p H}$ ．The table shows the pH of a strong and a weak acid at different concentrations．

Strong Acid — Hydrochloric Acid（HCl）

Diluting a strong acid by a factor of 10 increases the pH by 1 It＇s easy to see this for yourself．Remember that for a strong acid，$\left[\mathrm{H}^{+}\right]=[$acid $]$，so $\mathrm{pH}=-\log _{10}[$ acid $]$ ．
Just try sticking［acid］$=1,0.1,0.01$ ，etc．into this formula．
ミ1111111111111111111111111／，

EThese results may seem a bit random，but they＇re true．

It＇s all in the maths．．．
ノノ।।।।।।।।।।।।।।।い।।

Sir John used teaH calculations to work out the optimum concentration of tea in the perfect cuppa．

Weak Acid－Propanoic Acid $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right)$

Diluting a weak acid by a factor of 10 increases the pH by 0.5 ．
Again，you can see this for yourself if you like by sticking numbers into the right formula，but it＇s a lot more fiddly this time．．．

Rearranging $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\text { Acid }]}$ gives $\left[\mathrm{H}^{+}\right]=\sqrt{K_{\mathrm{a}}[\text { acid }]}$ ，and then $\mathrm{pH}=-\log _{10} \sqrt{K_{\mathrm{a}}[\text { acid }]}$
Stick $[\mathrm{acid}]=1,0.1,0.01$ ，etc．into this formula to find the pH each time．
The pH will always change by 0.5 ，no matter what value you use for K_{a} ．
E．g．To get the figures in the table above，K_{a} of propanoic acid is 1.31×10^{-5} ．
So $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right]=1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ gives $\left[\mathrm{H}^{+}\right]=3.6 \times 10^{-3}$ which gives $\mathrm{pH}=2.44$
$\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right]=0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ gives $\left[\mathrm{H}^{+}\right]=1.14 \times 10^{-3}$ which gives $\mathrm{pH}=2.94$

Practice Questions

Q1 What pH would you expect a $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of a base that completely dissociates in solution to have？
Q2 What would happen to the pH of a strong acid if you diluted it by a factor of 100 ？

Exam Questions

Q1 A student is measuring the pH of three $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solutions， A, B and C ，to investigate the extent of their acidity or basicity．The pHs of A, B and C ，at standard temperature and pressure are $3.20,13.80$ and 6.80 respectively．
a）Suggest a piece of equipment that she could use to accurately measure the pH of the solutions．
［1 mark］
b）In A，B and C，only one mole of hydrogen or hydroxide ions are released per mole of acid or base． Comment on whether A，B or C dissociates most in solution．Show your working．
［4 marks］
Q2 1.22 g of benzoic acid， $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ ，are dissolved in $100 \mathrm{~cm}^{3}$ of distilled water to create a standard solution of benzoic acid．The pH of the solution is 2.60 at 298 K ．
a）Calculate a value for K_{a} for the acid at this temperature．
［5 marks］
b）Use the value of K_{a} that you have calculated to find the $\left[\mathrm{H}^{+}\right]$of a $0.0100 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of this acid．
c）Calculate the pH of the $0.0100 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of the acid at 298 K ．
d）Show that the pH of a $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of the acid is 2.1 at 298 K ．
e）Without further calculations，predict the pH of a $0.001 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of benzoic acid at 298 K ．Explain your answer．

The perfect dilution－ 1 part orange squash to 10 parts water．．．

Remember，if you dilute a weak acid by a factor of 10 ，you＇ll increase its pH by 0.5 ．But diluting a strong acid by a factor of 10 will increase the pH by a whole 1．Don＇t get them mixed up，it might cost you valuable marks．．．

Titration Curves and Indicators

If you add base to acid the pH changes in a squiggly sort of way．

Use Titration to Find the Concentration of an Acid or Base

You met titrations back on page 63，so here＇s just a quick reminder of how to do them．
1）Measure out some base using a pipette and put it in a flask， along with some indicator．
2）Rinse a burette with some of your standard solution of acid．Then fill it with your standard solution．
3）Do a rough titration to get an idea where the end point is（the point where the base is exactly neutralised and the indicator changes colour）． To do this，take an initial reading to see how much acid is in the burette to start off with．Then，add the acid to the base－giving the flask a regular swirl． Stop when your indicator shows a permanent colour change（the end point）． Record the final reading from your burette．
4）Now do an accurate titration．Run the acid in to within $2 \mathrm{~cm}^{3}$ of the end point， then add the acid dropwise until you reach the end point．
5）Work out the amount of acid used to neutralise the base（the titre）．
6）Repeat the titration a few times，making sure you get a similar answer each time－your readings should be within $0.1 \mathrm{~cm}^{3}$ of each other． Then calculate a mean titre（see page 244），ignoring any anomalous results．

 Z You can also do titrations the other 三 \＃way round－adding base to acid． テル।।।।।।।।।।।।।।।।।।।।।।ハ

Titration Curves Plot pH Against Volume of Acid or Base Added

1）Titrations let you find out exactly how much base is needed to neutralise a quantity of acid．
2）All you have to do is plot the $\mathbf{p H}$ of the titration mixture against the amount of base added as the titration goes on．The pH of the mixture can be measured using a pH meter and the scale on the burette can be used to see how much base has been added．
3）The shape of your plot looks a bit different depending on the strengths of the acid and base that are used．
4）Here are the titration curves for the different combinations of equimolar strong and weak monoprotic acids and bases：
－V1111111111111111111111111111111111111112
＝You may see titration curves called pH curves．

strong acid／strong base

You can explain why each graph has a particular shape：
－The initial pH depends on the strength of the acid．
So a strong acid titration will start at a much lower pH than a weak acid．

＝If you titrate a base with an acid
Instead，the shapes of the curves
₹ stay the same，but they＇re reversed．

－To start with，addition of small amounts of base have little impact on the pH of the solution．
－All the graphs（apart from the weak acid／weak base graph）have a bit that＇s almost vertical －this is the equivalence line．The point at the centre of the equivalence line is the equivalence point or end point．At this point $\left[\mathrm{H}^{+}\right] \approx\left[\mathrm{OH}^{-}\right]$－it＇s here that all the acid is just neutralised． When this is the case，a tiny amount of base causes a sudden，big change in pH ．
－The change in pH is also less pronounced when strong acids are added to strong bases（or vice versa）， compared to when strong acids are added to weak bases（or strong bases are added to weak acids）．
－The final pH depends on the strength of the base－the stronger the base，the higher the final pH ．

Titration Curves and Indicators

Titration Curves Can Help you Decide which Indicator to Use

1) When carrying out a titration, you'll often need to use an indicator that changes colour to show you when your sample has been neutralised.
2) You need your indicator to change colour exactly at the end point of your titration. So you need to pick one that changes colour over a narrow $\mathbf{p H}$ range that lies entirely on the vertical part of the titration curve.
3) Methyl orange and phenolphthalein are indicators that are often used for acid-base titrations. They each change colour over a different $\mathbf{p H}$ range:
E.g. For this titration, the curve is vertical between pH 8 and pH 11 - so a very small amount of base will cause the pH to change from 8 to 11 . So you want an indicator that changes colour somewhere between pH 8 and pH 11.

Name of indicator	Colour at low pH	Approx. pH of colour change	Colour at high pH
Methyl orange	red	$3.1-4.4$	yellow
Phenolphthalein	Colourless	$8.3-10$	pink

- For a strong acid/strong base titration, you can use either of these indicators

methyl orange - there's a rapid pH change over the range for both indicators.
- For a strong acid/weak base only methyl orange will do. The pH changes rapidly across the range for methyl orange, but not for phenolphthalein.
- For a weak acid/strong base, phenolphthalein is the stuff to use. The pH changes rapidly over phenolphthalein's range, but not over methyl orange's.
- For weak acid/weak base titrations there's no sharp pH change, so neither of these indicators works. In fact, there aren't any indicators you can use in weak acid/weak base titrations, so you should just use a pH meter.

Another Great Use for Titration Curves - Finding the $\mathbf{p K} \mathrm{K}_{\mathrm{a}}$ of a Weak Acid

1) You can work out $\mathbf{p} \boldsymbol{K}_{\mathrm{a}}$ of a weak acid using the titration curve for a weak acid/strong base titration. It involves finding the $\mathbf{p H}$ at the half-equivalence point.
2) Half-equivalence is the stage of a titration when half of the acid has been neutralised it's when half of the equivalence volume of strong base has been added to the weak acid.

- A weak acid, HA, dissociates like this: $\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$.

At the half-equivalence point, $[\mathrm{HA}]=\left[\mathrm{A}^{-}\right]$.

- So for the weak acid HA:

ミ11 111111111111111112 $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \stackrel{\mathrm{a}}{ }=\left[\mathrm{H}^{+}\right]$and $\mathrm{p} K_{\mathrm{a}}=\mathrm{pH}$. $\begin{array}{ll}\text { NK } \\ \mathrm{pK}_{\mathrm{a}}=-\log _{1}\left[\mathrm{H}^{+}\right](\text {which is } \mathrm{pH}) . & \mathrm{pH} \text { at this }\end{array}$ = $\mathrm{PK}=-\log _{10}[\mathrm{H}$ (1)
Jl।

- So the pH at half-equivalence is actually the $\mathrm{p} K_{\mathrm{a}}$ value for the weak acid.
- And if you know the $\mathrm{p} K_{\mathrm{a}}$ value you can work out $K_{\mathrm{a}}\left(K_{\mathrm{a}}=10^{-\mathrm{p} K_{\mathrm{a}}}\right.$ - see page 133$)$.

Titration Curves and Indicators

You Can Follow pH Changes with a pH Chart

pH charts show what colour an indicator appears at different pHs. You can compare the colour of a solution containing an indicator with the indicator's pH chart to determine the $\mathbf{~ p H}$ of the solution. For example, if a solution containing thymol blue was light blue, its pH would be somewhere between $\mathbf{8}$ and $\mathbf{1 0}$.

pH chart for thymol blue

Practice Questions

Q1 Sketch the titration curve for a weak acid/strong base titration.
Q2 What indicator should you use for a strong acid/weak base titration - methyl orange or phenolphthalein?
Q3 What colour is methyl orange at pH 2 ?
Q4 What is meant by the half-equivalence point?

Exam Questions

Q1 $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ (a strong base) is added separately to $25 \mathrm{~cm}^{3}$ samples of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ nitric acid (a strong acid) and $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid (a weak acid).
Sketch the titration curves for each of these titrations.
[2 marks]
Q2 A sample of ethanoic acid (a weak acid) was titrated against potassium hydroxide (a strong base).

From the table on the right, select the best indicator for this titration, and explain your choice.

Q3 This curve shows the pH change as sodium hydroxide solution

Name of indicator	$\mathbf{p H}$ range
bromophenol blue	$3.0-4.6$
methyl red	$4.2-6.3$
bromothymol blue	$6.0-7.6$
thymol blue	$8.0-9.6$

a) What is the pH at the equivalence point?
b) What volume of base had been added at this point?
c) Suggest an indicator to use for the titration and explain your choice.
[1 mark]
[2 marks]
d) Sketch the curve you would get if the titration was repeated using ammonia solution (a weak base) as the base. [1 mark]
e) Why couldn't you use an indicator to identify the end point of a titration between ethanoic acid and ammonia solution?
[1 mark]
Q4 This curve shows the pH change when sodium hydroxide (a strong base) is added to a $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of methanoic acid (a weak acid).
a) What is the pH of:
i) the equivalence point?
[1 mark]
ii) the half-equivalence point?
b) Write an expression for K_{a} for the dissociation of this acid.
[1 mark]
c) At the half-equivalence point what is the concentration of the acid?
[1 mark]
[1 mark]
[2 marks]

I'll burette my bottom dollar that you're bored of acids and bases by now...

Titrations involve playing with big bits of glassware that you're told not to break as they're really expensive - so you instantly become really clumsy. I highly recommend not dropping your burette though. If it's smashed into hundreds or thousands of teeny weeny tiny pieces, you'll find it much harder to take readings from it. I speak from experience...

Buffers

How can a solution resist becoming more acidic if you add acid to it？Here＇s where you find out．．．

Buffers Resist Changes in pH

A buffer is a solution that minimises changes in pH when small amounts of acid or base are added．
A buffer doesn＇t stop the pH from changing completely－it does make the changes very slight though． Buffers only work for small amounts of acid or base－put too much in and they won＇t be able to cope．

Acidic Buffers Contain a Weak Acid and its Conjugate Base

Acidic buffers have a pH of less than 7 －they＇re made by setting up an equilibrium between a weak acid and its conjugate base．This can be done in two ways：

1）Mix a weak acid with the salt of its conjugate base． e．g．ethanoic acid and sodium ethanoate：
－The salt fully dissociates into its ions when it dissolves：

$$
\mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{Na}^{+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}+\mathrm{Na}^{+}{ }_{(\mathrm{aq})}
$$

－Ethanoic acid is a weak acid， so only slightly dissociates：

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{CH}_{3} \mathrm{COO}_{(\mathrm{aq})}^{-}
$$

2）Mix an excess of weak acid with a strong base． e．g．ethanoic acid and sodium hydroxide：
－All the base reacts with the acid：

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

－The weak acid was in excess，so there＇s still some left in solution once all the base has reacted．This acid slightly dissociates： $\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}$

In both cases，the following equilibrium is set up between the weak acid and its conjugate base：

It＇s the job of the conjugate pair to control the pH of a buffer solution．The conjugate base mops up any extra \mathbf{H}^{+}，while the conjugate acid releases H^{+}if there＇s too much base around．
－If you add a small amount of acid the \mathbf{H}^{+}concentration increases．Most of the extra H^{+}ions combine with $\mathrm{CH}_{3} \mathrm{COO}^{-}$ions to form $\mathrm{CH}_{3} \mathrm{COOH}$ ．This shifts the equilibrium to the left， reducing the H^{+}concentration to close to its original value．So the $\mathbf{p H}$ doesn＇t change much．
－If a small amount of base（e．g． NaOH ）is added，the $\mathbf{O H}^{-}$concentration increases．
Most of the extra OH^{-}ions react with H^{+}ions to form water－removing H^{+}ions from the solution．
This causes more $\mathrm{CH}_{3} \mathrm{COOH}$ to dissociate to form H^{+}ions－shifting the equilibrium to the right．
The H^{+}concentration increases until it＇s close to its original value，so the $\mathbf{p H}$ doesn＇t change much．

Alkaline Buffers are Made from a Weak Base and one of its Salts

A mixture of ammonia solution（a base）and ammonium chloride（a salt of ammonia） acts as an alkaline（or basic）buffer．It works in a similar way to acidic buffers：

シル1111111111111111111111／ An alkaline solution is a basic三 solution that＇s soluble in water． ＝solution thats soluble in water．

1）The salt is fully dissociated in solution： $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq)}} \rightarrow \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq)}}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})}$ ．
2）An equilibrium is set up between the ammonium ions and ammonia：

3）If a small amount of acid is added，the H^{+}concentration increases －most of the added H^{+}reacts with NH_{3} and the equilibrium shifts left．
This reduces the H^{+}concentration to near its original value．So the pH doesn＇t change much．
4）If a small amount of base is added，the OH^{-}concentration increases． OH^{-}ions react with the H^{+}ions， removing them from the solution．There are plenty of $\mathrm{NH}_{4}{ }^{+}$molecules around that can dissociate to generate replacement H^{+}ions－so the equilibrium shifts right，stopping the pH from changing much．

Buffers

Buffer Action can be Seen on a Titration Curve

1) You met titration curves back on pages 136 and 137. They show you how the $\mathbf{p H}$ of a solution changes as an increasing volume of acid or base is added.
2) The titration curves for weak acids with strong bases, and for strong acids with weak bases, have a distinctive shape due to the formation of buffer solutions as the reaction proceeds.

Buffer Solutions are Important in the Blood

1) Blood needs to be kept at around $\mathbf{p H}$ 7.4. The $\mathbf{~} \mathrm{HH}$ is controlled using a carbonic acid-hydrogencarbonate buffer system. Carbonic acid dissociates into H^{+}ions and $\mathrm{HCO}_{3}{ }^{-}$ions.
2) If the concentration of \mathbf{H}^{+}ions rises in blood, then $\mathbf{H C O}_{3}{ }^{-}$ions from the $\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq)}} \rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{HCO}_{3}^{-}{ }_{(\mathrm{aq})}$ carbonic acid-hydrogencarbonate buffer system will react with the excess H^{+}ions, and the equilibrium will shift to the left, reducing the H^{+}concentration to almost its original value. This stops the $\mathbf{p H}$ of blood from dropping.
3) Meanwhile, if the concentration of \mathbf{H}^{+}ions falls in blood, then more $\mathrm{H}_{2} \mathrm{CO}_{3}$ molecules from the carbonic acid-hydrogencarbonate buffer system will dissociate, and the equilibrium will shift to the right, increasing the H^{+}concentration to almost its original value. This stops the $\mathbf{p H}$ of blood from rising.
4) The levels of $\mathrm{H}_{2} \mathrm{CO}_{3}$ are controlled by respiration. By breathing out CO_{2},
5) The levels of $\mathrm{HCO}_{3}{ }^{-}$are controlled by the kidneys, with excess being excreted in the urine.

Here's How to Calculate the pH of a Buffer Solution

Calculating the $\mathbf{p H}$ of an acidic buffer isn't too tricky. You just need to know the $\boldsymbol{K}_{\mathrm{a}}$ of the weak acid and the concentrations of the weak acid and its salt. Your calculation requires the following assumptions to be made:

- The salt of the conjugate base is fully dissociated, so assume that the equilibrium concentration of A^{-}is the same as the initial concentration of the salt.
- HA is only slightly dissociated, so assume that its equilibrium concentration is the same as its initial concentration.
 The conjugate base doesn't only come from dissociation of the weak acid so $\left[\mathrm{H}^{+}\right] \neq\left[\mathrm{A}^{-}\right]$.

Example: At a certain temperature, a buffer solution contains $0.40 \mathrm{~mol} \mathrm{dm}^{-3}$ methanoic acid, HCOOH , and $0.60 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium methanoate, $\mathrm{HCOO}^{-} \mathrm{Na}^{+}$. At this temperature, K_{a} for methanoic acid $=1.8 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$. What is the pH of this buffer?

Firstly, write the expression for K_{a} of the weak acid:

$$
\mathrm{HCOOH}_{(\mathrm{aq)}} \rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{HCOO}_{(\mathrm{aq})}^{-} \longrightarrow K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]} \text { concentrations. }
$$

Then rearrange the expression and stick in the data to calculate $\left[\mathrm{H}^{+}\right]$:

$$
\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \times \frac{[\mathrm{HCOOH}]}{\left[\mathrm{HCOO}^{-}\right]}
$$

$$
\left[\mathrm{H}^{+}\right]=1.8 \times 10^{-4} \times \frac{0.40}{0.60}=1.2 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-}
$$

Finally, convert $\left[\mathrm{H}^{+}\right]$to pH :

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]=-\log _{10}\left(1.2 \times 10^{-4}\right)=3.92
$$

- 1111111111111 these are all equilibrium $=$ concentrations.

Buffers

You Need to be Able to Calculate Concentrations

You may want to create a buffer with a specific $\mathbf{p H}$.
To work out the concentrations of salt and acid or base that you'll need, you may need to use a fancy equation, known as the Henderson-Hasselbalch equation. Here it is:

$$
\begin{aligned}
& \text { N1111111111111111111/, } \\
& \text { This equation relies on the } \\
& =\text { fact that }[H A] \approx[H A]_{\text {start }} \\
& =\quad \text { and }\left[A^{-}\right] \approx\left[A^{-}\right]_{\text {start }}
\end{aligned}
$$

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10}\left(\frac{\left[\mathrm{~A}^{-}\right]}{[\mathrm{HA}]}\right)
$$

Acids and bases didn't mess with Jeff after he became buffer.

Example: A buffer is made using ethanoic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ and an ethanoic acid salt $\left(\mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{Na}^{+}\right)$. $1.20 \mathrm{~mol} \mathrm{dm}^{-3}$ of the ethanoic acid salt is used. What concentration of ethanoic acid is required so that the buffer has a pH of 4.9 ? Under these conditions, K_{a} of ethanoic acid $=1.75 \times 10^{-5}$.

You know that $\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}^{\prime}}$ so you can work out the $\mathrm{p} K_{\mathrm{a}}$ of ethanoic acid: $\mathrm{p} K_{\mathrm{a}}=-\log _{10}\left(1.75 \times 10^{-5}\right)=4.756 \ldots$
Now, substitute your value for $\mathrm{p} K_{\mathrm{a}^{\prime}}$ and the desired pH (which you were given in the question) into the Henderson-Hasselbalch equation to work out the ratio of $\left[\mathrm{A}^{-}\right]:[\mathrm{HA}]$ that you need.

- Il11111111111111111111111111111111111/2
- This is a log rule (from maths). You'll need

ב to remember it to do questions like this one.
= ر।
You know that the salt fully dissociates, so $[$ salt $]=\left[\mathrm{A}^{-}\right]$. This lets you calculate $[\mathrm{HA}]$ at equilibrium, which is equal to $[\mathrm{HA}]$ at the start of the reaction (since ethanoic acid is a weak acid).

$$
\begin{aligned}
\frac{1.20}{\left.\mathrm{H}_{3} \mathrm{COOH}\right]}=1.39 \ldots \longrightarrow\left[\mathrm{CH}_{3} \mathrm{COOH}\right] & =1.20 \div 1.39 \ldots \\
{\left[\mathrm{CH}_{3} \mathrm{COOH}\right] } & =0.86 \mathrm{~mol} \mathrm{dm}
\end{aligned}
$$

Practice Questions

Q1 What's a buffer solution?
Q2 How can a mixture of ethanoic acid and sodium ethanoate act as a buffer?
Q3 Describe how to make an alkaline buffer.
Q4 Describe how the pH of the blood is buffered.

Exam Questions

Q1 A buffer solution contains $0.400 \mathrm{~mol} \mathrm{dm}^{-3}$ benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$, and $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium benzoate, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-} \mathrm{Na}^{+}$. At $25^{\circ} \mathrm{C}$, K_{a} for benzoic acid is $6.40 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$.
a) Calculate the pH of the buffer solution.
b) Explain the effect on the buffer of adding a small quantity of dilute sulfuric acid.

Q2 A buffer was prepared by mixing solutions of butanoic acid, $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}$, and sodium butanoate, $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COO}^{-} \mathrm{Na}^{+}$, so that they had the same concentration.
a) Write a balanced chemical equation to show butanoic acid acting as a weak acid.
b) Given that K_{a} for butanoic acid is $1.5 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$ at 298 K , calculate the pH of the buffer solution. [2 marks]

Old buffers are often resistant to change...

So that's how buffers work. There's a pleasing simplicity and neatness about it that I find rather elegant. Like watching the sun rise on a misty May morning, with only bird song for company... OK, I'll shut up now.

Lattice Energy

On these pages you can learn about lattice energy, not lettuce energy which is the energy change when 1 mole consumes salad from a veggie patch. Bu-dum cha... (that was meant to be a drum - work with me here).

Lattice Energy is a Measure of Ionic Bond Strength

Ionic compounds can form regular structures called giant ionic lattices where the positive and negative ions are held together by electrostatic attractions. When gaseous ions combine to make a solid lattice, energy is given out - this is called the lattice energy.
Here's the definition of standard lattice energy that you need to know:
The standard lattice energy, $\Delta_{\mathrm{LE}} H^{\ominus}$, is the energy change when 1 mole of an ionic solid is formed from its gaseous ions under standard conditions.

いい1111111111,

Standard

 conditions are $298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$ and 100 kPa .

Part of the sodium chloride lattice

The standard lattice energy is a measure of ionic bond strength. The more negative the lattice energy, the stronger the bonding.
E.g. out of NaCl and $\mathrm{MgO}, \mathrm{MgO}$ has stronger bonding.

$$
\begin{gathered}
\mathrm{Na}^{+}{ }_{(\mathrm{g})}+\mathrm{Cl}^{-}{ }_{(\mathrm{g})} \rightarrow \mathrm{NaCl}_{(\mathrm{s})} \quad \Delta_{\mathrm{LE}} \mathrm{H}^{\ominus}=-787 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
-\mathrm{Mg}^{2+}{ }_{(\mathrm{g})}+\mathrm{O}^{2-}{ }_{(\mathrm{g})} \rightarrow \mathrm{MgO}_{(\mathrm{s})} \quad \Delta_{\mathrm{LE}} \mathrm{H}^{\ominus}=-3791 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{gathered}
$$

Ionic Charge and Size Affects Lattice Energy

1) The higher the charge on the ions, the more energy is released when an ionic lattice forms. This is due to the stronger electrostatic forces between the ions.
 Energy changes are sometimes known as enthalpy changes don't worry, they're the same thing.
2) More energy released means that the lattice energy will be more negative. So the lattice energies for compounds with $2+$ or $\mathbf{2 -}$ ions (e.g. Mg^{2+} or S^{2-}) are more exothermic than those with $\mathbf{1 +}$ or $\mathbf{1}$ - ions (e.g. Na^{+}or Cl^{-}).
E.g. the lattice energy of NaCl is only $-787 \mathrm{~kJ} \mathrm{~mol}^{-1}$, but the lattice energy of MgCl_{2} is $-2526 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

MgS has an even higher lattice energy ($-3299 \mathrm{~kJ} \mathrm{~mol}^{-1}$) because both Mg and S ions have double charges.
3) The smaller the ionic radii of the ions involved, the more exothermic (more negative) the lattice energy. Smaller ions have a higher charge density and their smaller ionic radii mean that the ions can sit closer together in the lattice. Both these things mean that the attractions between the ions are stronger.

Born-Haber Cycles can be Used to Calculate Lattice Energies

Hess's law says that the total enthalpy change of a reaction is always the same,
no matter which route is taken - this is known as the conservation of energy.
You can't calculate a lattice energy directly, so you have to use a Born-Haber cycle to figure out what the enthalpy change would be if you took another, less direct, route.
Here's a Born-Haber cycle you could use to calculate the lattice energy of NaCl :

The electron affinity goes up here...

[^5]
Lattice Energy

Calculations involving Group 2 Elements are a Bit Different

Born-Haber cycles for compounds containing Group 2 elements have a few changes from the one on the previous page. Make sure you understand what's going on so you can handle whatever compound they throw at you.
Here's the Born-Haber cycle for calculating the lattice energy of magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$:

```
Group 2 elements form
``` \(2+\) ions - so you've got to include the second ionisation energy.

2 There are 2 moles of chlorine ions in each mole of \(\mathrm{MgCl}_{2}-\) so you need to double the atomisation energy of chlorine...

\section*{Practice Questions}

Q1 What is the definition of standard lattice energy?
Q2 What does a large, negative lattice energy mean, in terms of bond strength?
Q3 Why does magnesium chloride have a more negative lattice energy than sodium chloride?
Q4 What is the definition of the enthalpy of atomisation?

\section*{Exam Questions}

Q1 Using this data:
\(\Delta_{\mathrm{f}} H^{\ominus}\) [potassium bromide] \(=-394 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \Delta_{\mathrm{at}} H^{\ominus}\) [bromine] \(=+112 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \Delta_{\mathrm{at}} H^{\ominus}\) [potassium] \(=+89 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
\(\Delta_{\text {iel }} H^{\ominus}\) [potassium] \(=+419 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \Delta_{\mathrm{el}} H^{\ominus}\) [bromine] \(=-325 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
a) Construct a Born-Haber cycle for potassium bromide (KBr). [3 marks]
b) Use your Born-Haber cycle to calculate the lattice energy of potassium bromide.

Q2 Using this data:
\(\Delta_{\mathrm{f}} H^{\ominus}\) [aluminium chloride] \(=-706 \mathrm{~kJ} \mathrm{~mol}^{-1} \Delta_{\mathrm{at}} H^{\ominus}\) [chlorine] \(=+122 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \Delta_{\mathrm{at}} H^{\ominus}\) [aluminium] \(=+326 \mathrm{~kJ} \mathrm{~mol}^{-1}\) \(\Delta_{\mathrm{e} 1} H^{\ominus}\) [chlorine] \(=-349 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \Delta_{\text {ie1 }} H^{\ominus}\) [aluminium] \(=+578 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
\(\Delta_{\text {ie } 2} H^{\ominus}\) [aluminium] \(=+1817 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \Delta_{\text {ie } 3} H^{\ominus}\) [aluminium] \(=+2745 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
a) Construct a Born-Haber cycle for aluminium chloride \(\left(\mathrm{AlCl}_{3}\right)\).
b) Use your cycle to calculate the lattice energy of aluminium chloride.

Q3 Using this data:
\(\Delta_{\mathrm{f}} H^{\ominus}\) [aluminium oxide] \(=-1676 \mathrm{~kJ} \mathrm{~mol}^{-1} \Delta_{\mathrm{at}} H^{\ominus}\) [oxygen] \(=+249 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \Delta_{\mathrm{at}} H^{\ominus}\) [aluminium] \(=+326 \mathrm{~kJ} \mathrm{~mol}^{-1}\) \(\Delta_{\mathrm{ie1}} H^{\ominus}\) [aluminium] \(=+578 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \Delta_{\mathrm{ie} 2} H^{\ominus}\) [aluminium] \(=+1817 \mathrm{~kJ} \mathrm{~mol}^{-1} \Delta_{\mathrm{ie} 3}^{\mathrm{a}} H^{\ominus}\) [aluminium] \(=+2745 \mathrm{~kJ} \mathrm{~mol}^{-1}\) \(\Delta_{\mathrm{e} 1} H^{\ominus}\) [oxygen] \(=-141 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \Delta_{\mathrm{e} 2} H^{\ominus}\) [oxygen] \(=+844 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
a) Construct a Born-Haber cycle for aluminium oxide \(\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)\).
b) Use your cycle to calculate the lattice energy of aluminium oxide.

\section*{Using Born-Haber cycles - it's just like riding a bike...}

All this energy going in and out can get a bit confusing. Remember these simple rules: 1) It takes energy to break bonds, but energy is given out when bonds are made. 2) A negative \(\Delta H\) means energy is given out (it's exothermic). 3) A positive \(\Delta H\) means energy is taken in (it's endothermic). 4) Never return to a firework once lit.

\section*{Polarisation}

And you thought you'd finished with lattice energies...

\section*{Theoretical Lattice Energies are Based on the Ionic Model}
1) There are two ways to work out a lattice energy:
- the experimental way - using experimental enthalpy values in a Born-Haber cycle (see previous page).
- the theoretical way - doing some calculations based on the purely ionic model of a lattice.
2) To work out a 'theoretical' lattice energy, you assume that all the ions are spherical and have their charge evenly distributed around them - a purely ionic lattice. Then you work out how strongly the ions are attracted to one another based on their charges, the distance between them and so on (you don't need to know the details of these calculations, fortunately - just what they're based on). That gives you a value for the energy change when the ions form the lattice.

\section*{Comparing Lattice Energies Can Tell You 'How lonic' an Ionic Lattice Is}

For any one compound, the experimental and theoretical lattice energies are usually different. How different they are tells you how closely the lattice actually resembles the 'purely ionic' model used for the theoretical calculations.
1) For example, the table shows both lattice energy values for some sodium halides.
- The experimental and theoretical values are a pretty close match - so you can say that these compounds fit the 'purely ionic' model (spherical ions with evenly distributed charge, etc.) very well.
- This indicates that the structure of the lattice for these compounds is quite close to being purely ionic.
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{} & \multicolumn{2}{|c|}{ Lattice Energy (kJ mol} \\
\cline { 2 - 3 } & \begin{tabular}{c}
From experimental values \\
(in Born-Haber cycle)
\end{tabular} & From theory \\
\hline Sodium chloride & -787 & -756 \\
\hline Sodium bromide & -742 & -731 \\
\hline Sodium iodide & -698 & -686 \\
\hline
\end{tabular}
2) Here are some more lattice energies, for magnesium halides this time:
\left.\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{} & \multicolumn{2}{|c|}{ Lattice Energy (kJ mol} \\
& -1
\end{tabular}\(\right)\)
- The experimental lattice energies are more negative than the theoretical values by a fair bit.
- This tells you that the bonding is, in practice, stronger than the calculations from the ionic model predict.
- The difference shows that the bonding in the magnesium halides isn't as close to 'purely ionic' as it is with sodium halides.
- It tells you that the ionic bonds in the magnesium halides are more polarised - they have some covalent character - whereas the bonds in sodium halides have almost no polarisation and very little covalent character.

Bill was a Grizzly bear before he was polarised.

\section*{Polarisation of Ionic Bonds Leads to Covalent Character in Ionic Lattices}

So, magnesium halides have more covalent character in their ionic bonds than sodium halides. Here's why...
1) In a sodium halide, e.g. NaCl , the cation, \(\mathrm{Na}^{+}\), has only a small charge (+1) so it can't really pull electrons from the anion towards itself - so the charge is distributed evenly around the ions (there's almost no polarisation).
2) This is pretty much what the simple ionic model looks like - that's why the theoretical calculations of lattice energy match the experimental ones so well for sodium halides.
3) However, the magnesium halides don't fit the ionic model quite so well, because charge isn't evenly distributed around the ions - the cation, \(\mathrm{Mg}^{2+}\), has a bigger charge (+2), so it can pull electrons from the anion towards itself a bit, polarising the bond.
4) In general, the greater the charge density of the cation (its charge compared to its volume), the poorer the match will be between Charge Density \(=\) Charge \(\div\) Volume experimental and theoretical values for lattice energy.

\section*{Polarisation}

\section*{Small Cations Are Very Polarising}

What normally happens in ionic compounds is that the positive charge on the cation attracts electrons towards it from the anion－this is polarisation．
1）Small cations with a high charge are very polarising because they have a high charge density －the positive charge is concentrated in the ion．So the cation can pull electrons towards itself．
2）Large anions with a high charge are polarised more easily than smaller ones with a lower charge． This is because their electrons are further away from the nucleus and there is more repulsion between the electrons，so the electrons can be pulled away more easily towards cations．
3）If a compound contains a cation with a high polarising ability and an anion which is easily polarised， some of the anion＇s electron charge cloud will be dragged towards the positive cation．
4）If the compound is polarised enough，a partially covalent bond is formed．

The more an ionic bond is polarised，the more covalent character it gains，resulting in compounds with different properties to those with purely ionic bonds．

\section*{Pauling Values Can Be Used to Work Out How Polar a Covalent Bond Is}

1）Electronegativity is the ability of an atom to attract the bonding electrons in a covalent bond．
2）The Pauling Scale is usually used to measure the electronegativity of an atom．
3）The greater the difference in electronegativity，the greater the shift in electron density，and the more polar the bond．
4）Bonds are polar if the difference in Pauling electronegativity values is more than about 0．4．
Example：Predict whether a \(\mathrm{C}-\mathrm{Cl}\) bond will be polar，given that the Pauling electronegativity values of carbon and bromine are \(\mathrm{C}=2.5\) and \(\mathrm{Cl}=3.0\)

The difference between the electronegativities of chlorine and carbon is： So the bond will be polar．The chlorine atom will have a slight negative charge and the carbon atom will have a slight positive charge．

5）Differences in electronegativity can also be given as \％ionic character（see page 28）．

\section*{Practice Questions}
\(3.0-2.5=0.5\)
－（11111111111111111／
ミ Don＇t worry about remembering Pauling values－you＇ll be given this data in the exam．Lucky you．
テハいいいいいいいいいいいい

Q1 How can you tell，using lattice energies，whether an ionic compound is significantly polarised？
Q2 What sort of cation is highly polarising？What sort of anion is easily polarised？

\section*{Exam Questions}

Q1 Metal／non－metal compounds are usually ionic，yet solid aluminium chloride exhibits many covalent characteristics．Explain why．

Q2 Consider the following compounds： \(\mathrm{MgBr}_{2} \mathrm{NaBr} \quad \mathrm{MgI}_{2}\)
a）These compounds have differing degrees of covalent character in their bonds． Arrange the compounds in order of increasing covalent character，and explain your reasoning．
b）The theoretical lattice enthalpy of sodium iodide matches well with its experimental value but the theoretical lattice enthalpy of magnesium iodide does not match well with its experimental value． Explain this difference．
［2 marks］

\section*{Lattice Energy－it＇s why rabbits have so many babies．．．．}

Is it ionic？Is it covalent？Who knows？Interpreting data is important when you＇re looking at the differences between theoretical and experimental values for lattice energies－you need to be able to explain what the data shows．
Remember，the closer the two lattice energy values，the better the purely ionic model fits your compound．

\section*{Dissolving}

Once you know what's happening when you stir sugar into your tea, your cuppa'll be twice as enjoyable.

\section*{Dissolving Involves Enthalpy Changes}

When a solid ionic lattice dissolves in water these two things happen:
1) The bonds between the ions break - this is endothermic.

The enthalpy change is the opposite of the lattice enthalpy.
2) Bonds between the ions and the water are made - this is exothermic. The enthalpy change here is called the enthalpy change of hydration.
The enthalpy change of solution is the overall effect of these two things.

Luckily for Geraldine, her lattice energy was greater than her enthalpy of hydration.

This effect happens because oxygen is more electronegative than hydrogen, so it draws the bonding electrons toward itself, creating a dipole.
 \({ }^{\delta-}{ }_{-H_{-H}}^{H^{\delta+}}\)

So now, here are a couple more fancy definitions you need to know:
The enthalpy change of hydration, \(\Delta_{\text {hyd }} H\), is the enthalpy change when 1 mole of gaseous ions dissolves in water. The enthalpy change of solution, \(\Delta_{\text {sol }} H\), is the enthalpy change when 1 mole of solute dissolves in water.

Substances generally only dissolve if the energy released is roughly the same, or greater than the energy taken in. So soluble substances tend to have exothermic enthalpies of solution.

\section*{Enthalpy Change of Solution can be Calculated}

You can work out the enthalpy change of solution using an energy cycle.
You just need to know the lattice energy of the compound and the enthalpies of hydration of the ions.
Here's how to draw the energy cycle for working out the enthalpy change of solution for sodium chloride:
(1) Put the ionic lattice and the dissolved ions on the top - connect them by the enthalpy change of solution. This is the direct route.
(2) Connect the ionic lattice to the gaseous ions by the lattice energy. The breakdown of the lattice has the opposite enthalpy change to the formation of the lattice.
 ions by the hydration enthalpies of each ion. This completes the indirect route.
ㄴ111111111111111111111111111111111 enthalpy value, you can use these cycles to work out any value on the arrows. For example, if you know the enthalpy change of solution and the enthalpy changes of hydration, you can use those values to work out the lattice energy.

From Hess's law: \(\Delta H 3=-\Delta H 1+\Delta H 2=+905+(-464+-364)=+77 \mathrm{~kJ} \mathrm{~mol}\)
This is much more endothermic than the enthalpy change of solution for sodium chloride. As such, silver chloride is insoluble in water.
\(1111111111111111111111 /\)
- Energy level diagrams are only different to energy cycles in that substances are arranged vertically in the diagram according to their energies.

\section*{Dissolving}

\section*{Ionic Charge and Ionic Radius Affect the Enthalpy of Hydration}

The two things that can affect the lattice energy (see page 142) can also affect the enthalpy of hydration.
They are the size and the charge of the ions.

\section*{lons with a greater charge have a greater enthalpy of hydration.}
lons with a higher charge are better at attracting water molecules than those with lower charges the electrostatic attraction between the ion and the water molecules is stronger. This means more energy is released when the bonds are made giving them a more exothermic enthalpy of hydration.

\section*{Smaller ions have a greater enthalpy of hydration.}

Smaller ions have a higher charge density than bigger ions. They attract the water molecules better and have a more exothermic enthalpy of hydration.

The higher charge and smaller radius of the \(2+\) ion create a higher charge density than the \(1+\) ion. This creates a stronger attraction for the water molecules and gives a more exothermic enthalpy of hydration.
E.g. a magnesium ion is smaller and more charged than a sodium ion, which gives it a much more exothermic enthalpy of hydration.
\[
\begin{aligned}
& \Delta_{\text {hyd }} H^{\ominus}\left[\mathrm{Mg}^{2+}{ }_{(\mathrm{g}}{ }^{2}\right]=-1920 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \Delta_{\text {hyd }} H^{\ominus}\left[\mathrm{Na}^{+}{ }_{(\mathrm{g})}\right]=-406 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
\]

\section*{Practice Questions}

Q1 Describe the two steps that occur when an ionic lattice dissolves in water.
Q2 Define the enthalpy change of solution.
Q3 Do soluble substances have exothermic or endothermic enthalpies of solution in general?
Q4 Sketch an energy cycle that could be used to calculate the enthalpy change of solution of sodium chloride.
Q5 Name two factors that affect the enthalpy of hydration of an ion.

\section*{Exam Questions}

Q1 a) Draw an energy cycle for the enthalpy change of solution of \(\mathrm{AgF}_{(\mathrm{s})}\). Label each enthalpy change. [2 marks]
b) Calculate the enthalpy change of solution for AgF from the following data:
[2 marks]
\[
\Delta_{\mathrm{LE}} H^{\ominus}\left[\mathrm{AgF}_{(\mathrm{s})}\right]=-960 \mathrm{~kJ} \mathrm{~mol}^{-1}, \quad \Delta_{\mathrm{hyd}} H^{\ominus}\left[\mathrm{Ag}_{(\mathrm{g})}^{+}\right]=-464 \mathrm{~kJ} \mathrm{~mol}^{-1}, \quad \Delta_{\mathrm{hyd}} H^{\ominus}\left[\mathrm{F}_{(\mathrm{g})}^{-}\right]=-506 \mathrm{~kJ} \mathrm{~mol}^{-1} .
\]

Q2 a) Draw an energy level diagram for the dissolving of \(\mathrm{CaCl}_{2}\) using the data below. Label each enthalpy change.
[2 marks]
\[
\Delta_{\mathrm{LE}} H^{\ominus}\left[\mathrm{CaCl}_{2(\mathrm{~s})}\right]=-2258 \mathrm{~kJ} \mathrm{~mol}^{-1}, \quad \Delta_{\mathrm{hyd}} H^{\ominus}\left[\mathrm{Ca}^{2+}{ }_{(\mathrm{g})}\right]=-1579 \mathrm{~kJ} \mathrm{~mol}^{-1}, \quad \Delta_{\mathrm{hyd}} H^{\ominus}\left[\mathrm{Cl}_{(\mathrm{g})}^{-}\right]=-364 \mathrm{~kJ} \mathrm{~mol}^{-1}
\]
b) Calculate the enthalpy change of solution for \(\mathrm{CaCl}_{2}\).

Q3 Show that the enthalpy of hydration of \(\mathrm{Cl}_{(\mathrm{g})}^{-}\)is \(-364 \mathrm{~kJ} \mathrm{~mol}^{-1}\), given that:
\[
\Delta_{\mathrm{LE}} H^{\ominus}\left[\mathrm{MgCl}_{2(\mathrm{~s})}\right]=-2526 \mathrm{~kJ} \mathrm{~mol}^{-1}, \quad \Delta_{\mathrm{hyd}} H^{\ominus}\left[\mathrm{Mg}_{(\mathrm{g})}^{2+}\right]=-1920 \mathrm{~kJ} \mathrm{~mol}^{-1}, \quad \Delta_{\mathrm{sol}} H^{\ominus}\left[\mathrm{MgCl}_{2(\mathrm{~s})}\right]=-122 \mathrm{~kJ} \mathrm{~mol}^{-1} .
\]

Q4 Which of these ions will have a greater enthalpy of hydration - \(\mathrm{Ca}^{2+}\) or \(\mathrm{K}^{+}\)?
Explain your answer.

\section*{Enthalpy change of solution of the Wicked Witch of the West \(=939 \mathrm{~kJ} \mathrm{~mol}^{-1} \ldots\)}

Compared to the ones on pages 142 and 143, these energy cycles are an absolute breeze. You've got to make sure the definitions are firmly fixed in your mind though. You only need to know the lattice enthalpy and the enthalpy of hydration of your lattice ions, and you're well on your way to finding out the enthalpy change of solution.

\section*{Entropy}

If you were looking for some random chemistry pages, you've just found them.

\section*{Entropy Tells you How Much Disorder There Is}
1) Entropy is a measure of the disorder of a system - it tells you the number of ways that particles can be arranged and the number of ways that the energy can be shared out between the particles.
2) The more disordered the particles are, the higher the entropy is. A large, positive value of entropy shows a high level of disorder.
3) There are a few things that affect entropy:

\section*{Physical State affects Entropy}

You have to go back to the good old solid-liquid-gas particle explanation thingy to understand this. Solid particles just wobble about a fixed point - there's hardly any randomness, so they have the lowest entropy. Gas particles whizz around wherever they like. They've got the most random arrangements of particles, so they have the highest entropy.

Examples:
- The exothermic burning of magnesium ribbon in air has a single solid product. One of the reactants (oxygen) is a gas, so in this reaction disorder reduces and entropy is lowered.

\[
2 \mathrm{Mg}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{MgO}_{(\mathrm{s})}
\]
- The reaction of ethanoic acid with ammonium carbonate produces \(\mathrm{CO}_{2}\) gas as a product, so in this reaction disorder increases
and entropy is raised.

\section*{Dissolving affects Entropy}

Dissolving a solid also increases its entropy - dissolved particles can move freely as they're no longer held in one place.

Example: Dissolving ammonium nitrate crystals
\[
\mathrm{py}: \sim \mathrm{NH}_{4} \mathrm{NO}_{3(\mathrm{~s})} \rightarrow \mathrm{NH}_{4}^{+}{ }_{(\text {aq })}+\mathrm{NO}_{3}^{-}{ }_{(\mathrm{aq)}}
\]

More Particles means More Entropy

It makes sense - the more particles you've got, the more ways they and their energy can be arranged. So in a reaction like \(\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})^{\prime}}\), entropy increases because the number of moles increases.

\section*{More Arrangements Means More Stability}
1) Substances are actually more energetically stable when there's more disorder.

So particles will move to try to increase their entropy.
2) This is why some reactions are feasible (they just happen by themselves
- without the addition of energy) even when the enthalpy change is endothermic.

Example: The reaction of sodium hydrogencarbonate with hydrochloric acid is an endothermic reaction but it is feasible. This is due to an increase in entropy as the reaction produces carbon dioxide gas and water. Liquids and gases are more disordered than solids and so have a higher entropy. This increase in entropy overcomes the change in enthalpy.

\section*{Entropy}

\section*{You Can Calculate the Entropy Change of a System}

During a reaction there's an entropy change \((\Delta S)\) between the reactants and products the entropy change of the system.
\[
\Delta S_{\text {system }}=S_{\text {products }}-S_{\text {reactants }}
\]
\1111111111111111111111111/ - The units of entropy are \(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\).

Example: Calculate the entropy change for the reaction of ammonia and hydrogen chloride under standard conditions.
\[
\mathrm{NH}_{3(\mathrm{~g})}+\mathrm{HCl}_{(\mathrm{g})} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})}
\]
\[
S^{\ominus}\left[\mathrm{NH}_{3(\mathrm{~g})}\right]=192.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, S^{\ominus}\left[\mathrm{HCl}_{(\mathrm{g})}\right]=186.8 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, S^{\ominus}\left[\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})}\right]=94.60 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\]
1) First find the entropy of the products:
\[
S_{\text {products }}^{\ominus}=S^{\ominus}\left[\mathrm{NH}_{4} \mathrm{Cl}\right]=94.60 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\]
2) Now find the entropy change of the reactants:
\[
S_{\text {reactants }}^{\ominus}=S^{\ominus}\left[\mathrm{NH}_{3}\right]+S^{\ominus}[\mathrm{HCl}]=192.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}+186.8 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=379.1 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\]

3) Finally you can subtract the entropy of the reactants from the entropy of the products to find the entropy change for the system:

EThis shows a negative change in entropy.三 It's not surprising as 2 moles of gas have combined to form 1 mole of solid.
\[
\Delta S_{\text {system }}=S_{\text {products }}^{\ominus}-S_{\text {reactants }}^{\ominus}=94.60-379.1=-284.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\]

A positive entropy change means that a reaction is likely to be feasible, but a negative total entropy change doesn't guarantee the reaction can't happen - enthalpy, temperature and kinetics also play a part in whether or not a reaction occurs.

\section*{Practice Questions}

Q1 What does the term 'entropy' mean?
Q2 Arrange the following compounds in order of increasing entropy values: \(\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}, \mathrm{MgO}_{(\mathrm{s})}, \mathrm{CO}_{2(\mathrm{~g})}\)
Q3 Write down the formula for the entropy change of a system.

\section*{Exam Questions}

Q1 a) Based on just the equation below, predict whether the reaction is likely to be feasible.
Give a reason for your answer.
\[
\mathrm{Mg}_{(\mathrm{s})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{MgO}_{(\mathrm{s})}
\]
b) Use the data on the right to calculate the entropy change for the system above.
\begin{tabular}{|c|c|}
\hline Substance & \begin{tabular}{c}
Entropy — standard \\
conditions (\(\mathbf{J ~ K}^{-1}\) mol\(\left.^{-1}\right)\)
\end{tabular} \\
\hline \(\mathrm{Mg}_{(\mathrm{s})}\) & 32.7 \\
\hline \(\mathrm{O}_{2(\mathrm{~g})}\) & 205.0 \\
\hline \(\mathrm{MgO}_{(\mathrm{s})}\) & 26.9 \\
\hline
\end{tabular}
c) Does the result of the calculation indicate that the reaction will be feasible? Give a reason for your answer.
[1 mark]

Q2 For the reaction \(\mathrm{H}_{2} \mathrm{O}_{(1)} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}\) :
\[
S^{\ominus}\left[\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\right]=70 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, \quad S^{\ominus}\left[\mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}\right]=48 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\]
a) Calculate the entropy change for this reaction.
[1 mark]
b) Explain why this reaction might be feasible.

\section*{In the chemistry lab - chaos reigns...}

Well, there you go. Entropy in all its glory. You haven't seen the back of it yet though, oh no. There's more where this came from. Which is why, if random disorder has left you in a spin, I'd suggest reading it again and making sure you've got your head round this lot before you turn over. You'll thank me for it... Chocolates are always welcome...

\section*{More on Entropy Change}

Here we go, as promised, more entropy. Don't ever say I don't spoil you rotten...

\section*{The Total Entropy Change Includes the System and the Surroundings}
1) As shown on page 149, during a reaction, there's an entropy change between the reactants and products - the entropy change of the system.
2) The entropy of the surroundings changes too (because energy is transferred to or from the system).
3) The TOTAL entropy change is the sum of the entropy changes of the system and the surroundings.

Luckily, as well as for \(\Delta S_{\text {system }}\), there's a formula for calculating the change of entropy of the surroundings:

\section*{You can Calculate the Total Entropy Change for a Reaction}

Example: Calculate the total entropy change for the reaction of ammonia and hydrogen chloride under standard conditions.
\[
\mathrm{NH}_{3(\mathrm{~g})}+\mathrm{HCl}_{(\mathrm{g})} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})} \quad \Delta H=-315 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { (at } 298 \mathrm{~K} \text {) }
\]
\[
S^{\ominus}\left[\mathrm{NH}_{3(\mathrm{~g})}\right]=192.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, S^{\ominus}\left[\mathrm{HCl}_{(\mathrm{g})}\right]=186.8 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, S^{\ominus}\left[\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})}\right]=94.60 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\]

First find the entropy change of the system - you've already done this on the previous page.
\[
\Delta S_{\text {system }}=S_{\text {products }}-S_{\text {reactants }}=94.60-(192.3+186.8)=-284.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\]

Now find the entropy change of the surroundings:
\[
\Delta H=-315 \mathrm{~kJ} \mathrm{~mol}^{-1}=-315 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}
\]
\[
\Delta S_{\text {surroundings }}=-\frac{\Delta H}{T}=\frac{-\left(-315 \times 10^{3}\right)}{298}=+1057 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\]

Finally you can find the total entropy change:
\[
\Delta S_{\text {total }}=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }}=-284.5+(+1057)=+772.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\]

Example: Calculate the total entropy change for ammonium nitrate crystals being dissolved in water under standard conditions.
\[
\begin{gathered}
\mathrm{NH}_{4} \mathrm{NO}_{3(\mathrm{~s})} \xrightarrow{\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}} \mathrm{NH}_{4(\text { aq) }}^{+}+\mathrm{NO}_{3}^{-}{ }_{(\mathrm{aq})} \quad \Delta H=+25.70 \mathrm{~kJ} \mathrm{~mol}^{-1}(\text { at } 298 \mathrm{~K}) \\
S^{\ominus}\left[\mathrm{NH}_{4} \mathrm{NO}_{3(\mathrm{~s})}\right]=151.1 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, S^{\ominus}\left[\mathrm{NH}_{4}^{+}{ }_{(\text {aq })}\right]=113.4 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, \quad S^{\ominus}\left[\mathrm{NO}_{3}^{-}{ }_{(\mathrm{aq)}}\right]=146.4 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{gathered}
\]

Find the entropy change of the system:
\[
\Delta S_{\text {system }}=S_{\text {products }}-S_{\text {reactants }}=(146.4+113.4)-151.1=+108.7 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\]

Now find the entropy change of the surroundings:
\[
\Delta S_{\text {surroundings }}=-\frac{\Delta H}{T}=-\frac{\left(25.70 \times 10^{3}\right)}{298}=-86.24 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\]

So, the total entropy change is:

This makes sense if you look at the equation - you'd expect an increase in the entropy of the system because a solid is dissolving to produce freely moving ions, increasing disorder.

\[
\Delta S_{\text {total }}=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }}=108.7-86.24=+22.46 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\]

\section*{More on Entropy Change}

\section*{You Can Relate Reaction Results to Changes in Entropy and Enthalpy}

Example：Reaction between barium hydroxide and ammonium chloride．
First，place a flask on top of a piece of damp cardboard．Add to the flask solid barium hydroxide crystals， \(\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}\) ，and solid ammonium chloride，then stir．Within about 30 seconds，the smell of ammonia becomes noticeable and a short time later，the bottom of the flask will be frozen to the cardboard．The temperature drops to well below \(0{ }^{\circ} \mathrm{C}\) ．
\[
\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}+2 \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})} \rightarrow \mathrm{BaCl}_{2(\mathrm{~s})}+10 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+2 \mathrm{NH}_{3(\mathrm{~g})} \quad \Delta H=+164.0 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { (at } 298 \mathrm{~K} \text {) }
\]

Looking at the equation，you would expect an increase in the entropy of the system because two solids are combining to produce a solid，a liquid and a gas－that＇s an increase in disorder．
Calculating \(\Delta S_{\text {system }}\) using standard entropies confirms this：
\[
\begin{aligned}
& S^{\ominus}\left[\mathrm{Ba}(\mathrm{OH})_{2} .8 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}\right]=+427.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, S^{\ominus}\left[\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})}\right]=+94.6 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, S^{\ominus}\left[\mathrm{BaCl}_{2(\mathrm{~s})}\right]=+123.7 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \text {, } \\
& S^{\ominus}\left[\mathrm{H}_{2} \mathrm{O}_{(1)}\right]=+69.9 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, S^{\ominus}\left[\mathrm{NH}_{3(\mathrm{~g})}\right]=+192.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& S_{\text {reactants }}=427.0+(2 \times 94.6)=+616.2 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& S_{\text {products }}=123.7+(10 \times 69.9)+(2 \times 192.3)=+1207.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \Delta S_{\text {system }}=S_{\text {products }}-S_{\text {reactants }}=1207.3-616.2=+591.1 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \text { E The formula for barium hydroxide } \\
& \text { crystals is } \mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \text {. } \\
& \text { The } 8 \mathrm{H}_{2} \mathrm{O} \text { part of the formula tells } \\
& \text { you that there is water within the } \\
& \text { crystalline structure. } \\
& \text { - ハいいいいいいいいいいいいいいいいいいいいい }
\end{aligned}
\]

The reaction is endothermic，so the entropy change of the surroundings must be negative．
\[
\Delta S_{\text {surroundings }}=-\Delta H / T=-164000 \div 298=-550.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\]

Once you know \(\Delta S_{\text {surroundings }}\) and \(\Delta S_{\text {system }}\) you can calculate the total entropy change for the reaction．
\[
\Delta S_{\text {total }}=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }}=591.1-550.3=+40.8 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\]

\section*{Practice Questions}

Q1 What is the formula for calculating the total entropy change of a reaction？
Q2 What is the formula for calculating \(\Delta S_{\text {surroundings }}\) ？
Q3 What sign will the entropy of surroundings be for an endothermic reaction？

\section*{Exam Questions}

Q1 When a small amount of ammonium carbonate solid is added to \(10 \mathrm{~cm}^{3}\) of \(1.0 \mathrm{~mol} \mathrm{dm}^{-3}\) ethanoic acid， carbon dioxide gas is evolved．This is an endothermic reaction，so the temperature of the reaction mixture drops．
\[
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3(\mathrm{~s})}+2 \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{aq})} \rightarrow 2 \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{NH}_{4(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})} \quad \Delta H^{\ominus}>0
\]
a）Looking at the equation，what would you expect to happen to the entropy of the system during this reaction？Explain your answer．
b）Explain how this reaction can be both endothermic and have a positive \(\Delta S_{\text {total }}\) ．
Q2 Thin ribbons of magnesium burn brightly in oxygen to leave a solid，white residue of magnesium oxide． The equation for this reaction is：
\[
\begin{aligned}
& 2 \mathrm{Mg}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{MgO}_{(\mathrm{s})} \quad \Delta H=-1204 \mathrm{~kJ} \mathrm{~mol}^{-1}(\text { at } 298 \mathrm{~K}) \\
& S^{\ominus}\left[\mathrm{Mg}_{(\mathrm{s})}\right]=+32.7 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, S^{\ominus}\left[\mathrm{O}_{2(\mathrm{~g})}\right]=+205 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, S^{\ominus}\left[\mathrm{MgO}_{(\mathrm{s})}\right]=+26.9 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
\]
a）Using the data given，calculate \(\Delta S_{\text {system }}\) at 298 K ．
b）Calculate \(\Delta S_{\text {total }}\) for the reaction． ［4 marks］

\section*{The entropy of my surrounds is always increasing，take a look at my kitchen．．．}

Still awake？Great stuff．Let me be the first to congratulate you on making it to the end of this page－I nearly didn＇t． As a reward I suggest ten minutes of looking at clips of talented cats online．It＇ll cheer you up no end and you can think of all those lovely calculations while watching Mr Smudge walks on his hind legs．Ahh．．．the Internet．

\section*{Free Energy}

Free energy - I could do with a bit of that. My gas bill is astronomical.

\section*{For Feasible Reactions \(\Delta \mathbf{G}\) must be Negative or Zero}
1) The tendency of a process to take place is dependent on three things - the entropy, \(\Delta \boldsymbol{S}\), the enthalpy, \(\Delta \boldsymbol{H}\), and the temperature, \(\boldsymbol{T}\). When you put all these things together you get the free energy change, \(\Delta \boldsymbol{G}\).
\(\Delta G\) tells you if a reaction is feasible or not - the more negative the value of \(\Delta G\), the more feasible the reaction.
Of course, there's a formula for it:

= The units of \(\Delta \mathrm{G}\) are often \(\mathrm{J} \mathrm{mol}^{-1}\). Е

\[
\Delta G=\Delta H-T \Delta S_{\text {system }}
\]
\(\Delta H=\) enthalpy change \(\left(\right.\) in \(\mathrm{J} \mathrm{mol}^{-1}\))
\(T=\) temperature (in K)
\(\Delta S_{\text {system }}=\) entropy change of the system (in J K\({ }^{-1} \mathrm{~mol}^{-1}\))

Example: Calculate the free energy change for the following reaction at 298 K .
\[
\begin{aligned}
& \mathrm{MgCO}_{3(\mathrm{~g})} \rightarrow \mathrm{MgO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})} \quad \Delta H^{\ominus}=+117000 \mathrm{~J} \mathrm{~mol}^{-1}, \quad \Delta S_{\text {system }}=+175 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
\]
2) When \(\Delta G=0\), the reaction is just feasible. So the temperature at which the reaction becomes feasible can be calculated by rearranging the equation like this:
\[
\Delta H-T \Delta S_{\text {system }}=0, \text { so } T=\frac{\Delta H}{\Delta S_{\text {system }}}
\]

Example: At what temperature does the reaction \(\mathrm{MgCO}_{3(\mathrm{~g})} \rightarrow \mathrm{MgO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}\) become feasible?
\[
T=\frac{\Delta H}{\Delta S_{\text {system }}}=\frac{+117000}{+175}=669 \mathrm{~K}
\]
3) You can use \(\Delta G\) to predict whether or not a reaction is feasible. By looking at the equation \(\Delta G=\Delta H-T \Delta S\), you can see that:

When \(\Delta H\) is negative and \(\Delta S\) is positive, \(\Delta G\) will always be negative and the reaction is feasible.
When \(\Delta H\) is positive and \(\Delta S\) is negative, \(\Delta G\) will always be positive and the reaction is not feasible.

In other situations, the feasibility of the reaction is dependent on the temperature.

\section*{Feasible Reversible Reactions have Large Equilibrium Constants}
1) An equilibrium constant is a measure of the ratio of the concentration of products to reactants at equilibria for a reversible reaction at a specific temperature.
2) Reactions with negative \(\Delta G\), and so are theoretically feasible, have large values for their equilibrium constants - greater than 1.
3) Reactions with positive \(\Delta G\), and so not theoretically feasible, have small values for their equilibrium constants - smaller than 1.
4) This relationship is represented by the equation:

\(R=\) gas constant, \(8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\)
\(T\) = temperature (in K)
In \(K=\) the natural \(\log\) of the equilibrium constant

Example: Ethanoic acid and ethanol were reacted together at 298 K and allowed to reach equilibrium. The equilibrium constant was calculated to be 4 at 298 K . Calculate the free energy change for the reaction.
\[
\mathrm{CH}_{3} \mathrm{COOH}_{(1)}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(1)} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(1)}+\mathrm{H}_{2} \mathrm{O}_{(1)}
\]

The equilibrium constant is greater than 1 , so you'd expect \(\Delta G\) to be negative...
\[
\Delta G=-R T \ln K=-(8.31 \times 298) \times \ln (4)=-3430 \mathrm{~J} \mathrm{~mol}^{-1}(3 \mathrm{~s} . \mathrm{f} .) \quad \text {...and it is. }
\]

\section*{Free Energy}

\section*{Equilibrium Constants can be Calculated from \(\Delta \mathbf{G}\)}

You may get asked to calculate equilibrium constants from the free energy change of a reaction.
Example: Hydrogen gas and iodine are mixed together in a sealed flask forming hydrogen iodide. Calculate the equilibrium constant at 763 K .
\[
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})} \quad \Delta \mathrm{G}=-24287 \mathrm{~J} \mathrm{~mol}^{-1}
\]

Firstly, you need to rearrange the equation, \(\Delta G=-R T \ln K\), to find \(\ln K\) :
\[
\ln K=\frac{\Delta G}{-R T}=\frac{-24287}{-(8.31 \times 763)}=3.8304
\]

To find the value of \(K\), you need to find the inverse of the log.
To do this, use the exponential function for your value of \(\ln K: \leadsto \ln K=3.8304\) so \(K=\mathrm{e}^{3.8304}=46\) Finally, you need to calculate the units of \(K\) :
\[
K=\frac{\left(\text { moldmin } x^{-3}(\text { moldm })^{-3}\right)}{\left(\text { moldm } T^{-3}\right)\left(\text { mold } m^{-3}\right)^{-3}}=\text { no units }
\]

So \(K=46\) (2 s.f.)

\section*{Negative \(\Delta G\) doesn't Guarantee a Reaction}

The value of the free energy change doesn't tell you anything about the reaction's rate.
Even if \(\Delta G\) shows that a reaction is theoretically feasible, it might have a really high activation energy or happen so slowly that you wouldn't notice it happening at all. For example:
\[
\mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad \Delta H^{\ominus}=-242000 \mathrm{Jmol}^{-1}, \quad \Delta S^{\ominus}=-44.4 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\]

At \(298 \mathrm{~K}, \Delta \mathrm{G}=-242000-(298 \times(-44.4))=-229000 \mathrm{Jmol}^{-1}\) (\(3 \mathrm{~s} . \mathrm{f}\).)
But this reaction doesn't occur at 298 K - it needs a spark to start it off due to its high activation energy.

\section*{Practice Questions}

Q1 What are the three things that determine the value of \(\Delta G\) ?
Q2 If the free energy change of a reaction is positive, what can you conclude about the reaction?
Q3 What is the relationship between the free energy change and equilibrium constants?
Q4 Why might a reaction with a negative \(\Delta G\) value not always be feasible?

\section*{Exam Questions}

Q1 a) Use the equation below and the table on the right to calculate the free energy change for the complete combustion of methane at 298 K .
\[
\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \Delta H^{\ominus}=-730 \mathrm{~kJ} \mathrm{~mol}^{-1}
\]
b) Explain whether the reaction is feasible at 298 K .
c) What is the maximum temperature at which the reaction is feasible?
\begin{tabular}{c|c|c|}
& Substance & \(S^{\ominus}\left(\mathbf{J K}^{-1} \mathbf{m o l}^{-1}\right)\) \\
\cline { 2 - 3 } [2 marks] & \(\mathrm{CH}_{4(\mathrm{~g})}\) & 186 \\
\cline { 2 - 3 } & \(\mathrm{O}_{2(\mathrm{~g})}\) & 205 \\
\cline { 2 - 3 } [1 mark] & \(\mathrm{CO}_{2(\mathrm{~g})}\) & 214 \\
\cline { 2 - 3 } & \(\mathrm{H}_{2} \mathrm{O}_{(1)}\) & 69.9 \\
\cline { 2 - 3 } [1 mark] & \(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}_{(1)}\) & 193 \\
\cline { 2 - 3 } & &
\end{tabular}

Q2 At 723 K , the equilibrium constant for the exothermic reaction \(\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HCl}_{(\mathrm{g})}\) is 60 . \(\Delta S\) for the reaction is negative.
a) Calculate the free energy change for this reaction.
[1 mark]
b) Describe the effect of increasing the temperature of the reaction on the free energy change.
[2 marks]

\section*{\(\Delta\) Gfor chemistry revision definitely has a positive value...}

Okay, so \(\Delta G\) won't tell you for definite whether a reaction will happen, but it will tell you if the reaction is at least theoretically feasible. Make sure you know the formulae for \(\Delta G\), how to rearrange them and how to work out the numbers to plonk in it. And don't forget to check your units, check your units, check your units.

\section*{Electrochemical Cells}

On these pages there are electrons to-ing and fro-ing in redox reactions. And when electrons move, you get electricity.

\section*{If Electrons are Transferred, it's a Redox Reaction}
1) A loss of electrons is called oxidation.

When an element is oxidised, its oxidation number will increase.
2) A gain of electrons is called reduction. When an element is reduced, its oxidation number will decrease.
3) Reduction and oxidation happen simultaneously - hence the term "redox" reaction.
- s-block metals tend to react by being oxidised - they lose electrons to form positive ions with charges the same as their group number (i.e. Group 1 metals form \(1+\) ions and Group 2 metals form 2+ ions).
- p-block metals can react by losing electrons (like the s-block elements), but the non-metals in the p-block react by gaining electrons to form negative ions with charges the same as their group number minus 8. p-block elements often react to form covalent species, where electrons are shared (rather than lost or gained) - see page 22.
- d-block metals form ions with variable oxidation states (see page 169) so predicting how these elements react can be tricky. But, they tend to form positive ions with positive oxidation numbers.

\section*{Electrochemical Cells Make Electricity}
1) Electrochemical cells can be made from two different metals dipped in salt solutions of their own ions and connected by a wire (the external circuit). There are always two reactions within an electrochemical cell. One's an oxidation and one's a reduction - so it's a redox process.
2) Oxidation always happens at the anode (the positive electrode) and reduction always happens at the cathode (the negative electrode). Electrons flow from the anode to the cathode.
3) Reactive metals form ions more readily than unreactive metals. The more reactive metal gives up its electrons and is oxidised (it becomes the anode, where electrons flow from). The less reactive metal becomes the cathode.

Here's what happens in the zinc/copper electrochemical cell on the right:
- Zinc loses electrons more easily than copper. So in the left-hand half-cell, zinc (from the zinc electrode) is OXIDISED to form \(\mathbf{Z n}^{2+}{ }_{(\text {aq })}\) ions.
\[
\mathrm{Zn}_{(\mathrm{s})} \rightarrow \mathbf{Z n}^{2+}{ }_{(\mathrm{aq})}+2 \mathbf{e}^{-}
\]

This releases electrons into the external circuit.
- In the other half-cell, the same number of electrons are taken from the external circuit, REDUCING the \(\mathrm{Cu}^{2+}\) ions to copper atoms.
\[
\mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}_{(\mathrm{s})}
\]
4) Electrons flow through the wire from the most reactive metal to the least.
5) A voltmeter in the external circuit shows the voltage between the two half-cells. This is the cell potential or EMF, \(\boldsymbol{E}_{\text {cell }}\). Voltmeters also measure the direction of the flow of electrons (see page 156).

You can also have half-cells involving solutions of
two aqueous ions of the same element, such as \(\mathrm{Fe}^{2+}{ }_{(\text {aq })} / \mathrm{Fe}^{3+}{ }_{(\text {aq) }}\).
The conversion from \(\mathrm{Fe}^{2+}\) to \(\mathrm{Fe}^{3+}\), or vice versa,
happens on the surface of the electrode.
\[
\mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \quad \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}{ }_{(\text {aq) }}
\]

Because neither the reactants nor the products are solids, you need something else for the electrode.
It needs to conduct electricity and be very inert, so that it won't react with anything in the half-cell. Platinum is an excellent choice, but is very expensive, so graphite is often used instead.

external circuit to

 Look back at your page 40 for more about redox reactions.

\section*{Electrochemical Cells}

\section*{The Reactions at Each Electrode are Reversible}
1) The reactions that occur at each electrode in the zinc/copper cell on the last page are: \(\qquad\) \(\mathrm{Zn}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Zn}_{(\mathrm{s})} \quad \mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Cu}_{(\mathrm{s})}\)
2) The reversible arrows show that both reactions can go in either direction. Which direction each reaction goes in depends on how easily each metal loses electrons (i.e. how easily it's oxidised).
3) These reactions are called half-reactions and, even though they're reversible, they're always written with the reduction reaction going in the forward direction, with the electrons being added on the left-hand side.

\section*{You Need to Know How to Set Up an Electrochemical Cell}

You can set up an electrochemical cell and use it to take measurements of voltage.
Here's a method you can use to construct an electrochemical cell involving two metals.
1) Get a strip of each of the metals you're investigating. These are your electrodes. Clean the surfaces of the metals using a piece of emery paper (or sandpaper).
2) Clean any grease or oil from the electrodes using some propanone. From this point on, be careful not to touch the surfaces of the metals with your hands - you could transfer grease back onto the strips.
3) Place each electrode into a beaker filled with a solution containing ions of that metal. For example, if you had an electrode made of zinc metal, you could place it in a beaker of \(\mathbf{Z n S O}_{4 \text { (aq) }}\). If you had an electrode made of copper, you could use a solution of \(\mathbf{C u S O}_{4 \text { (aq) }}\). If one of the half-cells contains an oxidising agent that contains oxygen (e.g. \(\mathrm{MnO}_{4}^{-}\)), you'll have to add acid too.
4) Create a salt bridge to link the two solutions together. You can do this by simply soaking a piece of filter paper in salt solution, e.g. \(\mathrm{KCl}_{(\mathrm{aq})}\) or \(\mathrm{KNO}_{3}(\mathrm{aq})^{\prime}\) and draping it between the two beakers. The ends of the filter paper should be immersed in the solutions.
5) Connect the electrodes to a voltmeter using crocodile clips and wires. If you've set up your circuit correctly, you'll get a reading on your voltmeter.

\section*{Practice Questions}
- V1111111111111111111111111111, If your electrochemical cell is made up of half-cells where neither the oxidised or reduced species are solid (e.g. they're both aqueous ions), your method will be slightly different. For example, you'll need to use an inert electrode (e.g. platinum).

Q1 Do s-block metals tend to react by losing or gaining electrons?
Q2 Does oxidation happen at the cathode or the anode?
Q3 How would you set up a half-cell cell between two ions of the same element in different oxidation states?

\section*{Exam Questions}

Q1 A cell is made up of an iron and a zinc electrode. The half-equations for the two electrodes are:
\[
\mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}_{(\mathrm{s})} \quad \mathrm{Zn}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Zn}_{(\mathrm{s})}
\]
a) Describe how you would set up an electrochemical cell using an iron and a zinc half-cell.
b) Given that zinc is more easily oxidised than iron, draw a diagram to show this cell. Show the direction of the flow of electrons around the cell

Q2 A student sets up an electrochemical cell by placing strips of copper and silver metal in solutions containing copper and silver salts respectively. He connects the strips of metal to a voltmeter with wires, and connects the salt solutions together with a salt bridge.
a) What is the role of the salt bridge?
b) Suggest how the student could make the salt bridge.
c) Given that copper is a more reactive metal than silver, which metal strip will form the cathode?

\section*{Cells aren't just for biologists, you know...}

You'll probably have to do an experiment involving electrochemical cells in your class, so make sure you read that method above really carefully so you can set up any electrochemical cell even with your eyes closed (though this is not advised...). You could be asked about this practical in your exam too, so even more reason to know it inside out...

\section*{Electrode Potentials}

Time for some more electrochemical cell fun. Bet you can't wait - these pages have real potential...

\section*{Each Half-Cell has an Electrode Potential}
1) Each half-cell in an electrochemical cell has its own electrode potential this is a measure of how easily the substance in the half-cell is oxidised (i.e. loses electrons).
2) As the substances in the half-cells are oxidised or reduced, a potential difference builds up, due to the difference in charge between the electrode and the ions in solution. E.g., in the zinc half-cell, the \(\mathbf{Z n}\) electrode is negatively charged (due to the electrons left behind when \(\mathrm{Zn}^{2+}\) ions form) and the \(\mathbf{Z n}^{2+}\) ions in solution are positively charged.
3) The half-reaction with the more positive electrode potential \(\left(E^{\ominus}\right)\) value goes forwards. The half-reaction with the more negative \(E^{\ominus}\) value goes backwards.
4) The table on the right shows the electrode potentials for the copper and zinc half-cells. The zinc half-cell has a more negative electrode potential, so zinc is oxidised (the reaction goes backwards), while copper is reduced (the reaction goes forwards). The little \(\theta\) symbol next to the \(E\) shows they're standard electrode potentials (see below).
5) In this example, zinc is being oxidised and copper is being reduced, so zinc is acting as a reducing agent and copper is acting as an oxidising agent.

\section*{Electrode Potentials are Measured Against Standard Hydrogen Electrodes}

You measure the electrode potential of a half-cell against a standard hydrogen electrode.
The standard electrode potential, \(E^{\ominus}\), of a half-cell is the voltage measured under standard conditions when the half-cell is connected to a standard hydrogen electrode.

Standard Hydrogen

> Standard conditions are:
> 1) The solutions of the ions you're interested in must have a concentration of 1.00 mol dm
>
> 2-3

The equation for the reaction at the hydrogen electrode is: \(\qquad\) \(2 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2(\mathrm{~g})}\)

The standard hydrogen electrode is always shown on the left
- it doesn't matter whether or not the other half-cell is where oxidation happens.

The standard hydrogen electrode is a reference electrode, and allows scientists to work out and compare the electrode potentials of whatever half-cell the hydrogen electrode's connected to. The hydrogen half-cell has a value of \(\mathbf{0 . 0 0} \mathrm{V}\). This means the voltage reading will be equal to \(E^{*}\) of the other half-cell (as \(E^{*}\) for the standard hydrogen electrode is 0.00 V).

\section*{Work Out \(E_{\text {cell }}\) From Standard Electrode Potentials}
1) You can use standard electrode potentials to calculate the cell potential, \(E^{\ominus}{ }_{\text {cell }}\) of an electrochemical cell. You'll need to use this formula: \(\qquad\) \(E_{\text {cell }}^{\ominus}=\left(E_{\text {reduction }}^{\ominus}-E_{\text {oxidation }}^{\ominus}\right)\)
2) The cell potential will always be a positive voltage, because the more negative \(E^{\ominus}\) value is being subtracted from the more positive \(E^{\ominus}\) value.

Example: Calculate the cell potential of a magnesium-bromine electrochemical cell: \(\mathrm{Br}_{2}+\mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{Br}^{-}\)
\[
\mathrm{Mg}^{2+}\left(\mathrm{aq)}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mg}_{(\mathrm{s})} E^{\ominus}=-2.37 \mathrm{~V} \quad 1 / 2 \mathrm{Br}_{2(\mathrm{aq})}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Br}_{(\mathrm{aq})}^{-} E^{\ominus}=+1.09 \mathrm{~V}\right.
\]

All you have to do is substitute the standard electrode potentials of \(\mathrm{Mg} / \mathrm{Mg}^{2+}\) and \(1 / 2 \mathrm{Br}_{2} / \mathrm{Br}^{-}\)into the equation:
\[
E_{\text {cell }}^{\ominus}=\left(E_{\text {reduction }}^{\ominus}-E_{\text {oxidation }}^{\ominus}\right) \Longrightarrow E_{\text {cell }}^{\ominus}=+1.09-(-2.37)=+3.46 \mathrm{~V}
\]

\section*{Electrode Potentials}

\section*{Conditions Affect the Value of the Electrode Potential}

Just like any other reversible reaction, the equilibrium position in a half-cell is affected by changes in temperature, pressure and concentration. Changing the equilibrium position changes the cell potential. To get around this, standard conditions are used to measure electrode potentials - using these conditions means you always get the same value for the electrode potential and you can compare values for different cells.

Caroline showed great potential from a young age.

\section*{There's a Convention for Drawing Electrochemical Cells}

It's a bit of a faff drawing pictures of electrochemical cells. There's a shorthand way of representing them though. This is known as the conventional representation-for example, the \(\mathbf{Z n} / \mathbf{C u}\) cell is shown on the right. There are a couple of important conventions when drawing cells:
1) The half-cell with the more negative potential goes on the left.
2) The oxidised forms go in the centre of the cell diagram and reduced forms go on the outside.
3) Double vertical lines show the salt bridge, and single
 vertical lines separate species in different physical states.
4) Commas separate species that are in the same half-cell and in the same physical state.
5) In conventional representations of electrochemical cells involving the standard hydrogen electrode, the standard hydrogen half-cell should always go on the left.
6) If either of the half-cells use platinum, lead or other inert electrodes, show these on the outside of the diagram.

Example: Draw the conventional representation of the electrochemical cell formed between magnesium and the standard hydrogen half-cell.
\[
\begin{array}{l|l|l|l|l}
\mathrm{Pt} & \mathrm{H}_{2(\mathrm{~g})} & 2 \mathrm{H}_{(\mathrm{aq)}}^{+} & \mathrm{Mg}_{(\mathrm{aq})}^{2+} & \mathrm{Mg}_{(\mathrm{s})}
\end{array}
\]

\section*{Practice Questions}

Q1 What's the definition of standard electrode potential?
Q2 What is the voltage of the standard hydrogen electrode half-cell?
Q3 State the equation you could use to work out \(E_{\text {cell }}\).

\section*{Exam Questions}

Q1 A cell is made up of a lead and an iron plate, dipped in solutions of lead(II) nitrate and iron(II) nitrate respectively and connected by a salt bridge. The electrode potentials for the two electrodes are:
\[
\mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}_{(\mathrm{s})} \quad E^{\ominus}=-0.44 \mathrm{~V} \quad \mathrm{~Pb}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Pb}_{(\mathrm{s})} \quad E^{\ominus}=-0.13 \mathrm{~V}
\]
a) Which metal becomes oxidised in the cell? Explain your answer.
b) Find the standard cell potential of this cell.

Q2 An electrochemical cell containing a zinc half-cell and a silver half-cell was set up using a potassium nitrate salt bridge. The cell potential at \(25^{\circ} \mathrm{C}\) was measured to be 1.40 V .
\[
\mathrm{Zn}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Zn}_{(\mathrm{s})} \quad E^{\ominus}=-0.76 \mathrm{~V} \quad \mathrm{Ag}_{(\mathrm{aq})}^{+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Ag}_{(\mathrm{s})} \quad E^{\ominus}=+0.80 \mathrm{~V}
\]
a) Use the standard electrode potentials given to calculate the standard cell potential for a zinc-silver cell. [1 mark]
b) Suggest two possible reasons why the actual cell potential was different from the value calculated in part (a).

\section*{This is potentially the best page l've ever read...}

Standard electrode potentials are measured under standard conditions - the name kind of gives it away doesn't it? Make sure you remember what those conditions are though. Since I'm nice, I'll remind you. They're a temperature of 298 K , a pressure of 100 kPa , and all the reacting ions have to have concentrations of \(1.00 \mathrm{~mol} \mathrm{dm}{ }^{-3}\). Got it? I hope so...

\section*{The Electrochemical Series}

The electrochemical series is like a pop chart of the most reactive metals - but without the pop. So it's really just a chart.

\section*{The Electrochemical Series Shows You What's Reactive and What's Not}
1) The more reactive a metal is, the more easily it loses electrons to form a positive ion. More reactive metals have more negative standard electrode potentials.

Example: Magnesium is more reactive than zinc - so it forms \(2+\) ions more easily than zinc.
The list of standard electrode potentials shows that \(\mathrm{Mg}^{2+} / \mathrm{Mg}\) has a more negative value than \(\mathrm{Zn}{ }^{2+} / \mathrm{Zn}\). In terms of oxidation and reduction, magnesium would reduce \(\mathrm{Zn}^{2+}\) (or \(\mathrm{Zn}^{2+}\) would oxidise Mg).
2) The more reactive a non-metal is, the more easily it gains electrons to form a negative ion. More reactive non-metals have more positive standard electrode potentials.

Example: Chlorine is more reactive than bromine - so it forms a negative ion more easily than bromine does. The list of standard electrode potentials shows that \(1 / 2 \mathrm{Cl}_{2} / \mathrm{Cl}^{-}\)is more positive than \(1 / 2 \mathrm{Br}_{2} / \mathrm{Br}^{-}\). In terms of oxidation and reduction, chlorine would oxidise \(\mathrm{Br}^{-}\)(or \(\mathrm{Br}^{-}\)would reduce \(\mathrm{Cl}_{2}\)).
3) Here's an electrochemical series showing some standard electrode potentials:
\begin{tabular}{|c|c|c|c|c|}
\hline & Half-reaction & \(E^{\ominus} / \mathrm{V}\) & \multirow[t]{6}{*}{} & \multirow{6}{*}{\begin{tabular}{l}
More negative electrode potentials mean that: \\
1. The right-hand substances are more easily oxidised. \\
2. The left-hand substances are more stable.
\end{tabular}} \\
\hline More positive electrode potentials mean that: & \(\mathrm{Mg}^{2+}{ }_{\text {aq) }}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mg}_{(\mathrm{s})}\) & -2.37 & & \\
\hline 1. The left-hand & \(\mathrm{Zn}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Zn}_{(\mathrm{s})}\) & -0.76 & & \\
\hline substances are more easily reduced. & \(\mathrm{H}^{+}{ }_{\text {aq) }}+\mathrm{e}^{-} \rightleftharpoons 1 / 2 \mathrm{H}_{2(\mathrm{~g})}\) & 0.00 & & \\
\hline 2. The right-hand substances are & \(\mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Cu}_{(\mathrm{s})}\) & +0.34 & & \\
\hline more stable. & \({ }^{1 / 2} \mathrm{Br}_{2(\mathrm{aq)}}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Br}^{-}{ }_{\text {aq) }}\) & +1.09 & & \\
\hline
\end{tabular}

\section*{Use Electrode Potentials to Predict Whether a Reaction Will Happen}

To figure out if a metal will react with the aqueous ions of another metal, you can use their \(E^{\ominus}\) values. If a reaction is thermodynamically feasible, the overall potential will be positive. A reaction isn't feasible if \(E^{\ominus}\) is negative.

Example: Predict whether zinc metal reacts with aqueous copper ions.
First write the two half-equations down as reduction reactions:
\[
\mathrm{Zn}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Zn}_{(\mathrm{s})} \quad E^{\circ}=-0.76 \mathrm{~V} \quad \mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Cu}_{(\mathrm{s})} \quad E^{\ominus}=+0.34 \mathrm{~V}
\]

Then combine them to create the reaction described in the question (in this case, you'll have to swap the direction of the zinc one, since the question is talking about the reaction of zinc metal).
The two half-equations combine to give: \(\mathrm{Zn}_{(\mathrm{s})}+\mathrm{Cu}^{2+}{ }_{(\text {aq) }} \rightarrow \mathrm{Zn}^{2+}{ }_{(\text {aq) }}+\mathrm{Cu}_{(\mathrm{s})} \underset{\quad}{ } \quad \begin{aligned} & 1111111111111111111111111111111 \\ & \text { Zinc loses electrons so }\end{aligned}\) Then, use the equation \(E_{\text {cell }}^{\ominus}=\left(E_{\text {reduction }}^{\ominus}-E_{\text {oxidation }}^{\circ}\right)\) Copper gains electrons so is reduced. to work out the overall potential of this reaction. \(\longrightarrow E_{\text {cell }}^{\circ}=0.34-(-0.76)=+1.10 \mathrm{~V}\)

The overall cell potential is positive, so zinc will react with aqueous copper ions.

\section*{Electrode Potentials can Predict Whether Disproportionation Reactions will Happen}

During a disproportionation reaction, an element is simultaneously oxidised and reduced.
You can use electrode potentials to show why these sorts of reactions happen.
Example: Use the following equations to predict whether or not \(\mathrm{Ag}^{+}\)ions will disproportionate in solution.
\[
\mathrm{Ag}_{(\mathrm{aq})}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}_{(\mathrm{s})} \quad E^{\circ}=+0.80 \mathrm{~V} \quad \mathrm{Ag}_{(\mathrm{aq})}^{2+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}_{(\mathrm{aq})}^{+} \quad E^{\circ}=+2.00 \mathrm{~V}
\]

First combine the half-equations to create the equation for the disproportionation of \(\mathrm{Ag}^{+}: 2 \mathrm{Ag}^{+}{ }_{\text {(aq) }} \rightarrow \mathrm{Ag}_{(\mathrm{s})}+\mathrm{Ag}^{2+}{ }_{\text {(aq) }}\) Then, use the equation \(E_{\text {cell }}^{\ominus}=\left(E_{\text {reduction }}^{\ominus}-E_{\text {oxidation }}^{\ominus}\right)\)
to work out the overall potential of this reaction. \(\qquad\) \(E_{\text {cell }}^{\circ}=0.80-(2.00)=-1.20 \mathrm{~V}\)
The overall cell potential is negative, so silver will not disproportionate in solution.

\section*{The Electrochemical Series}

\section*{Sometimes the Prediction is Wrong}

A prediction using \(E^{\ominus}\) only states if a reaction is possible under standard conditions. The prediction might be wrong if...
...the conditions are not standard.
1) Changing the concentration (or temperature) of the solution can cause the electrode potential to change.
2) For example the zinc/copper cell has these half equations in equilibrium:
\[
\begin{array}{ll}
\mathrm{Zn}_{(\mathrm{s})} \rightleftharpoons \mathrm{Zn}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} & E^{\circ}=-0.76 \mathrm{~V} \\
\mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Cu}_{(\mathrm{s})} & E^{\ominus}=+0.34 \mathrm{~V}
\end{array} \quad \mathrm{Zn}_{(\mathrm{s})}+\mathrm{Cu}^{2+}{ }_{(\mathrm{aq})} \rightleftharpoons \mathrm{Zn}^{2+}{ }_{(\mathrm{aq})}+\mathrm{Cu}_{(\mathrm{s})} \quad E_{\text {cell }}=+1.10 \mathrm{~V}
\]
3) If you increase the concentration of \(\mathrm{Zn}^{2+}\), the equilibrium will shift to the left, reducing the ease of electron loss of Zn . The electrode potential of \(\mathrm{Zn} / \mathrm{Zn}^{2+}\) becomes less negative and the whole cell potential will be lower.
4) If you increase the concentration of \(\mathrm{Cu}^{2+}\), the equilibrium will shift to the right, increasing the ease of electron gain of \(\mathrm{Cu}^{2+}\). The electrode potential of \(\mathrm{Cu}^{2+} / \mathrm{Cu}\) becomes more positive and the whole cell potential is higher.

\section*{..the reaction kinetics are not favourable.}
1) The rate of a reaction may be so slow that the reaction might not appear to happen.
2) If a reaction has a high activation energy, this may stop it happening.

\section*{Cell Potential is Related to Entropy and the Equilibrium Constant}

The bigger the cell potential, the bigger the total entropy change taking place during the reaction in the cell. This gives the following equations:

\section*{Practice Questions}

Q1 Use electrode potentials to show that zinc metal will react with \(\mathrm{Cu}^{2+}\) ions.
Q2 How are cell potential and the total entropy change during a reaction related?

\section*{Exam Questions}

Q1 Use the \(E^{\ominus}\) values in the table on the right and on the previous page to determine the outcome of mixing the following solutions. If there is a reaction, determine the \(E^{\ominus}\) value and write the equation. If there isn't a reaction, state this and explain why.
a) Zinc metal and \(\mathrm{Ni}^{2+}\) ions.
b) Acidified \(\mathrm{MnO}_{4}^{-}\)ions and \(\mathrm{Sn}^{2+}\) ions.
c) \(\mathrm{Br}_{2(\text { aq) }}\) and acidified \(\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}\) ions.
[2 marks]
[2 marks]
[2 marks]
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Half-reaction } & \(E^{\ominus} / \mathrm{V}\) \\
\hline \(\mathrm{MnO}_{4}^{-{ }_{(\mathrm{aq})}}+8 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+5 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\) & +1.51 \\
\hline \(\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}{ }_{(\mathrm{aq})}+14 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+6 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cr}^{3+}{ }_{(\mathrm{aq})}+7 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\) & +1.33 \\
\hline \(\mathrm{Sn}^{4+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Sn}^{2+}{ }_{(\mathrm{aq})}\) & +0.14 \\
\hline \(\mathrm{Ni}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Ni}_{(\mathrm{s})}\) & -0.25 \\
\hline
\end{tabular}

Q2 Potassium manganate(VII), \(\mathrm{KMnO}_{4}\), and potassium dichromate, \(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\), are both used as oxidising agents. From their electrode potentials (given in the table above), which would you predict is the stronger oxidising agent? Explain why.

Q3 A cell is set up with copper and nickel electrodes in \(1 \mathrm{~mol} \mathrm{dm}{ }^{-3}\) solutions of their ions, \(\mathrm{Cu}^{2+}\) and \(\mathrm{Ni}^{2+}\), connected by a salt bridge.
a) What is the overall equation for this reaction?
[1 mark]
b) How would the voltage of the cell change if a more dilute copper solution was used?

\section*{Storage and Fuel Cells}

More electrochemical reactions on these pages. It's like Christmas come early (if electrochemistry is your sort of thing)...

\section*{Energy Storage Cells are Like Electrochemical Cells}

Energy storage cells (fancy name for a battery) have been around for ages and modern ones work just like an electrochemical cell. For example the nickel-iron cell was developed way back at the start of the 1900s and is often used as a back-up power supply because it can be repeatedly charged and is very robust. You can work out the voltage produced by these cells by using the electrode potentials of the substances used in the cell.
There are lots of different cells and you won't be asked to remember the \(E^{\circ}\) for the reactions, but you might be asked to work out the cell potential or cell voltage for a given cell... so here's an example I prepared earlier.

Example: The nickel-iron cell has a nickel oxide hydroxide (\(\mathrm{NiO}(\mathrm{OH})\)) cathode and an iron (Fe) anode with potassium hydroxide as the electrolyte. Using the half equations given:
a) write out the full equation for the reaction.
b) calculate the cell voltage produced by the nickel-iron cell.
\[
\begin{array}{ll}
\mathrm{Fe}(\mathrm{OH})_{2}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}+2 \mathrm{OH}^{-} & E^{\circ}=-0.89 \mathrm{~V} \\
\mathrm{NiO}(\mathrm{OH})+\mathrm{H}_{2} \mathrm{O}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Ni}(\mathrm{OH})_{2}+\mathrm{OH}^{-} & E^{\circ}=+0.49 \mathrm{~V}
\end{array}
\]

The overall reaction is...
\(2 \mathrm{NiO}(\mathrm{OH})+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Fe} \rightarrow 2 \mathrm{Ni}(\mathrm{OH})_{2}+\mathrm{Fe}(\mathrm{OH})_{2}\)
\[
\begin{aligned}
\text { So the cell voltage } & =E_{\text {reduction }}^{\ominus}-E_{\text {oxidation }}^{\ominus} \\
& =+0.49-(-0.89)=\mathbf{1 . 3 8} \mathrm{V}
\end{aligned}
\]

\section*{Fuel Cells can Generate Electricity From Hydrogen and Oxygen}

In most cells the chemicals that generate the electricity are contained in the electrodes and the electrolyte that form the cell. In a fuel cell the chemicals are stored separately outside the cell and fed in when electricity is required. One example of this is the alkaline hydrogen-oxygen fuel cell, which can be used to power electric vehicles. Hydrogen and oxygen gases are fed into two separate platinum-containing electrodes. The electrodes are separated by an anion-exchange membrane that allows anions \(\left(\mathrm{OH}^{-}\right)\)and water to pass through it, but not hydrogen and oxygen gas. The electrolyte is an aqueous alkaline (KOH) solution.

The electrons flow from the positive electrode through an external circuit to the negative electrode. The \(\mathrm{OH}^{-}\)ions pass through the anion-exchange membrane towards the positive electrode.

The overall effect is that \(\mathrm{H}_{2}\) and \(\mathrm{O}_{2}\) react to make water: \(2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(1)}\)

\section*{Storage and Fuel Cells}

\section*{Hydrogen-Oxygen Fuel Cells Work in Acidic Conditions Too}
1) At the anode the platinum catalyst splits the \(\mathbf{H}_{2}\) into protons and electrons.
2) The polymer electrolyte membrane (PEM) only allows the \(\mathbf{H}^{+}\)across and this forces the \(\mathbf{e}^{-}\)to travel around the circuit to get to the cathode.
3) An electric current is created in the circuit, which is used to power something like a car or a bike or a dancing Santa.
4) At the cathode, \(\mathbf{O}_{2}\) combines with the \(\mathbf{H}^{+}\) from the anode and the \(\mathbf{e}^{-}\)from the circuit to make \(\mathbf{H}_{\mathbf{2}} \mathbf{O}\). This is the only waste product.

\section*{Fuel Cells Don't Just Use Hydrogen}

Scientists in the car industry are developing fuel cells that use hydrogen-rich fuels - these have a high percentage of hydrogen in their molecules and can be converted into \(\mathrm{H}_{2}\) in the car by a reformer. Such fuels include the two simplest alcohols, methanol and ethanol. There is also a new generation of fuel cells that can use alcohols directly without having to reform them to produce hydrogen.

A rowdy, ethanol-fuelled brawl had broken out in Hastings.

In these new fuel cells, the alcohol is oxidised
at the anode in the presence of water. \(\sim\) E.g. \(\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{2}+6 \mathrm{e}^{-}+6 \mathrm{H}^{+}\)
The \(\mathrm{H}^{+}\)ions pass through the electrolyte
and are oxidised themselves to water. \(\leadsto 6 \mathrm{H}^{+}+6 \mathrm{e}^{-}+3 / 2 \mathrm{O}_{2} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}\)

\section*{Practice Questions}

Q1 Name a metal that is used in the electrodes of an alkaline hydrogen-oxygen fuel cell.
Q2 What electrolyte is used in an alkaline hydrogen-oxygen fuel cell?

\section*{Exam Questions}

Q1 The diagram on the right shows the structure of an alkaline hydrogen-oxygen fuel cell.
a) i) Label the site of oxidation and the site of reduction on the diagram. [1 mark]
ii) Draw an arrow to show the direction of the flow of electrons.
b) Write a half-equation for the reaction at each electrode.
c) Explain the purpose of the anion-exchange membrane in the fuel cell.

Q2 Acidic hydrogen fuel cells are used to power buses in Iceland. There are also plans to convert their fishing fleet to use them.
a) Explain the purpose of the polymer electrolyte membrane (PEM) in a hydrogen fuel cell.
b) Give equations for the reactions at the electrodes in an acidic hydrogen fuel cell.

\section*{Fuel sells - \(£ 1.15\) per litre of petrol, \(£ 1.20\) per litre of diesel...}

These fuel cells are pretty nifty aren't they? Make sure you can draw the hydrogen-oxygen fuel cells in both acidic and alkaline conditions. Make sure you know the equations happening at the anode and cathode in each one too.

\section*{Redox Titrations}

Better check your Year 1 notes and brush up on acid－base titrations．Redox titrations work like acid－base titrations but they＇re used to find out how much oxidising agent is needed to exactly react with a quantity of reducing agent（or vice versa）．

\section*{Acid－Base Titrations－How Much Acid is Needed to Neutralise a Base}

1）You met titrations back in on page 63. They allow you to find out exactly how much acid is needed to neutralise a quantity of alkali（or vice versa）．
2）A known volume of an alkali with an unknown concentration is titrated with an acid of known concentration．The volume of acid needed to neutralise the acid can then be used to calculate the concentration of the alkali．
3）To carry out a titration，you＇ll need to apparatus a bit like this：

\section*{Titrations Using Transition Element lons are Redox Titrations}

1）An oxidising agent accepts electrons and gets reduced．

A reducing agent donates electrons and gets oxidised．
2）Transition（d－block）elements are good at changing oxidation number （see page 169）．This makes them useful as oxidising and reducing agents as they＇ll readily give out or receive electrons．
3）To work out the concentration of a reducing agent，you just need to titrate a known volume of it against an oxidising agent of known concentration． This allows you to work out how much oxidising agent is needed to exactly react with your sample of reducing agent．
4）To find out how many manganate（VII）ions \(\left(\mathrm{MnO}_{4}^{-}\right)\) are needed to react with a reducing agent：

Fred＇s celebration dance was a good indicator of the end point．
－First you measure out a quantity of the reducing agent， e．g．aqueous \(\mathrm{Fe}^{2+}\) ions，using a pipette，and put it in a conical flask．
－You then add some dilute sulfuric acid
 to the flask－this is an excess， so you don＇t have to be too exact．
－Now do rough titration gradually the oxidising agent to be reduced． aqueous \(\mathrm{MnO}_{4}^{-}\)（the oxidising agent）to the reducing agent using a burette，swirling the conical flask as you do so．
－You stop when the mixture in the flask just becomes tainted with the purple colour of the \(\mathrm{MnO}_{4}^{-}\)（the end point） and record the volume of the oxidising agent added．
－Run a few accurate titrations and then calculate the mean volume of \(\mathrm{MnO}_{4}{ }^{-}\)．

5）You can also do titrations the other way round －adding the reducing agent to the oxidising agent． The rule tends to be that you add the substance of known concentration to the substance of unknown concentration．

\footnotetext{

－You can also work out the concentration三 of an oxidising agent by titrating it with a＝ reducing agent of known concentration． ンノ।।।।।।।।।।।।।।।।।।ノ।।।।।।।।
}

\section*{Redox Titrations}

\section*{You Don't Always Need an Indicator During Redox Titrations}
1) As transition metals change oxidation state they often also change colour, so it's easy to spot when the reaction is finished. Here are a couple of examples:

Acidified potassium manganate(VII) solution, \(\mathrm{KMnO}_{4(\mathrm{aq})}\), is used as an oxidising agent. It contains manganate \((\mathrm{VII})\) ions \(\left(\mathrm{MnO}_{4}^{-}\right)\), in which manganese has an oxidation number of +7 . They can be reduced to \(\mathrm{Mn}^{2+}\) ions during a redox reaction.

Example: The oxidation of \(\mathrm{Fe}^{2+}\) to \(\mathrm{Fe}^{3+}\) by manganate(VII) ions in solution.
Half-equations: \(\quad \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \quad\) Manganese is reduced
\[
\frac{5 \mathrm{Fe}^{2+} \rightarrow 5 \mathrm{Fe}^{3+}+5 \mathrm{e}^{-} \quad \text { Iron is oxidised }}{\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{Fe}^{2+} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Fe}^{3+}}
\]

Acidified potassium dichromate solution, \(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7(\mathrm{aq})^{\prime}}\) is another oxidising agent.
It contains dichromate(VI) ions \(\left(\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}\right)\) in which chromium has an oxidation number of \(+\mathbf{6}\).
They can be reduced to \(\mathrm{Cr}^{3+}\) ions during a redox reaction.
Example: The oxidation of Zn to \(\mathrm{Zn}^{2+}\) by dichromate \((\mathrm{VI})\) ions in solution.
Half-equations: \(\quad \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \quad\) Chromium is reduced
\[
\frac{3 \mathrm{Zn} \rightarrow 3 \mathrm{Zn}^{2+}+6 \mathrm{e}^{-} \quad \text { Zinc is oxidised }}{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+3 \mathrm{Zn} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Zn}^{2+}}
\]
\begin{tabular}{|c|}
\hline \multirow[t]{6}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
2) So, when you're carrying out redox titrations, you need to watch out for a sharp colour change.
3) When you're adding an oxidising agent to a reducing agent, they start reacting. This reaction will continue until all of the reducing agent is used up. The very next drop into the flask will give the mixture the colour of the oxidising agent. The trick is to spot exactly when this happens. (You could use a coloured reducing agent and a colourless oxidising agent instead - then you'd be watching for the moment that the colour in the flask disappears.)
4) Doing the reaction in front of a white surface can make colour changes easier to spot.

\section*{You Can Calculate the Concentration of a Reagent from the Titration Results}

It wouldn't be a titration without some horrid calculations...
Example: \(\quad 27.5 \mathrm{~cm}^{3}\) of \(0.0200 \mathrm{~mol} \mathrm{dm}^{-3}\) aqueous potassium manganate(VII) reacted with \(25.0 \mathrm{~cm}^{3}\) of acidified iron(II) sulfate solution. Calculate the concentration of \(\mathrm{Fe}^{2+}\) ions in the solution.
\[
\mathrm{MnO}_{4}^{-}{ }_{(\mathrm{aq})}+8 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+5 \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+5 \mathrm{Fe}^{3+}{ }_{\text {(aq) }}
\]
1) Work out the number of moles of \(\mathrm{MnO}_{4}{ }^{-}\)ions added to the flask.

Number of moles \(\mathrm{MnO}_{4}^{-}\)added \(=\frac{\text { concentration } \times \text { volume }}{1000}=\frac{0.0200 \times 27.5}{1000}=5.50 \times 10^{-4}\) moles
2) Look at the balanced equation to find how many moles of \(\mathrm{Fe}^{2+}\) react with one mole of \(\mathrm{MnO}_{4}^{-}\). Then you can work out the number of moles of \(\mathrm{Fe}^{2+}\) in the flask.

5 moles of \(\mathrm{Fe}^{2+}\) react with 1 mole of \(\mathrm{MnO}_{4}^{-}\). So moles of \(\mathrm{Fe}^{2+}=5.50 \times 10^{-4} \times 5=2.75 \times 10^{-3}\) moles.
3) Work out the number of moles of \(\mathrm{Fe}^{2+}\) that would be in \(1000 \mathrm{~cm}^{3}\left(1 \mathrm{dm}^{3}\right)\) of solution
- this is the concentration.
\(25.0 \mathrm{~cm}^{3}\) of solution contained \(2.75 \times 10^{-3}\) moles of \(\mathrm{Fe}^{2+}\).
\(1000 \mathrm{~cm}^{3}\) of solution would contain \(\frac{\left(2.75 \times 10^{-3}\right) \times 1000}{25.0}=0.110\) moles of \(\mathrm{Fe}^{2+}\).
So the concentration of \(\mathrm{Fe}^{2+}\) is \(0.110 \mathrm{~mol} \mathrm{dm}^{-3}\).

\section*{Redox Titrations}

\section*{You Can Also Estimate the Percentage of Iron in Iron Tablets}

This titration can be used to find out the percentage of iron in the iron tablets that are used to treat people with the blood disorder anaemia. The iron is usually in the form of iron(II) sulfate.

Example: A 2.56 g iron tablet was dissolved in dilute sulfuric acid to give \(250 \mathrm{~cm}^{3}\) of solution. \(25.0 \mathrm{~cm}^{3}\) of this solution was found to react with \(12.5 \mathrm{~cm}^{3}\) of \(0.0250 \mathrm{~mol} \mathrm{dm}{ }^{-3}\) potassium manganate(VII) solution. Calculate the percentage of iron in the tablet.
\[
\mathrm{MnO}_{4}^{-}{ }_{(\mathrm{aq})}+8 \mathrm{H}_{(\mathrm{aq})}^{+}+5 \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+5 \mathrm{Fe}_{(\mathrm{aq})}^{3+}
\]
1) Work out the number of moles of manganate(VII) ions which took part in the reaction:

Number of moles of \(\mathrm{MnO}_{4}^{-}=\frac{\text { concentration } \times \text { volume }}{1000}=\frac{0.0250 \times 12.5}{1000}=3.125 \times 10^{-4} \mathrm{moles}\)
2) From the equation, you can see that 5 moles of iron(II) ions react with 1 mole of manganate(VII) ions.

So in \(25.0 \mathrm{~cm}^{3}\) of the iron solution there must be: \(5 \times 3.125 \times 10^{-4}=1.5625 \times 10^{-3} \mathrm{moles}\) of iron(II) ions.
3) Now you can work out the number of moles of iron in \(250 \mathrm{~cm}^{3}\) of the solution - this will be the number of moles of iron in the whole tablet:
\[
\text { Number of moles of } \mathrm{Fe}^{2+}=1.5625 \times 10^{-3} \times 10=1.5625 \times 10^{-2} \text { moles }
\]
4) From this, you can work out the mass of iron in the tablet:

1 mole of iron weighs 55.8 g , so 1 tablet contains: \(1.5625 \times 10^{-2} \times 55.8=0.871 \ldots \mathrm{~g}\) of iron
5) Finally, you can calculate the percentage of iron in the tablet. The total weight of the tablet is 2.56 g .
\[
\text { So, the percentage of iron }=(0.871 \ldots \div 2.56) \times 100=34.1 \%
\]

\section*{Practice Questions}

Q1 Write a half equation to show manganate(VII) ions acting as an oxidising agent.
Q2 Why is dilute acid added to the reaction mixture in redox titrations involving \(\mathrm{MnO}_{4}^{-}\)ions?

\section*{Exam Questions}

Q1 A 3.20 g iron tablet was dissolved in dilute sulfuric acid and made up to \(250 \mathrm{~cm}^{3}\) with deionised water.
\(25.0 \mathrm{~cm}^{3}\) of this solution was found to react with \(15.0 \mathrm{~cm}^{3}\) of \(0.00900 \mathrm{~mol} \mathrm{dm}^{-3}\) potassium manganate(VII) solution.
a) Calculate the number of moles of iron in \(25.0 \mathrm{~cm}^{3}\) of the solution.
b) Calculate the number of moles of iron in the tablet.
c) What percentage, by mass, of the tablet is iron?

Q2 A \(10.0 \mathrm{~cm}^{3}\) sample of \(0.500 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{SnCl}_{2}\) solution was titrated with acidified potassium manganate(VII) solution. Exactly \(20.0 \mathrm{~cm}^{3}\) of \(0.100 \mathrm{~mol} \mathrm{dm}^{-3}\) potassium manganate(VII) solution was needed to fully oxidise the tin(II) chloride.
a) What type of reaction is this?
b) How many moles of \(\operatorname{tin}\) (II) chloride were present in the \(10.0 \mathrm{~cm}^{3}\) sample?
c) How many moles of potassium manganate(VII) were needed to fully oxidise the tin(II) chloride?

The half-equation for acidified \(\mathrm{MnO}_{4}^{-}\)acting as an oxidising agent is: \(\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}\)
d) Find the oxidation number of the oxidised tin ions present in the solution at the end of the titration. [4 marks]

\section*{And how many moles does it take to change a light bulb...}
...two, one to change the bulb, and another to ask "Why do we need light bulbs? We're moles - most of the time that we're underground, we keep our eyes shut. And the electricity costs a packet. We haven't thought this through..."

\section*{More on Redox Titrations}

This is another example of a redox titration - it's a nifty little reaction that you can use to find the concentration of an oxidising agent. And since it's a titration, that also means a few more calculations to get to grips with...

\section*{lodine-Sodium Thiosulfate Titrations are Dead Handy}
lodine-sodium thiosulfate titrations are a way of finding the concentration of an oxidising agent.
The more concentrated an oxidising agent is, the more ions will be oxidised by a certain volume of it. So here's how you can find out the concentration of a solution of the oxidising agent potassium iodate(V):

STAGE 1: Use a sample of oxidising agent to oxidise as much iodide as possible.
1) Measure out a certain volume of potassium iodate \((\mathbf{V})\) solution \(\left(\mathbf{K I O}_{3}\right)\) (the oxidising agent) — say \(\mathbf{2 5 . 0} \mathbf{~ c m}\).
2) Add this to an excess of acidified potassium iodide solution (KI).

The iodate \((\mathrm{V})\) ions in the potassium iodate \((\mathrm{V})\) solution
oxidise some of the iodide ions to iodine. \(\sim \mathrm{IO}_{3}^{-}{ }_{(\mathrm{aq})}+5 \mathrm{I}^{-}{ }_{(\mathrm{aq})}+6 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow 3 \mathrm{I}_{2(\mathrm{aq})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\)

STAGE 2: Find out how many moles of iodine have been produced.
You do this by titrating the resulting solution with sodium thiosulfate (\(\mathbf{N a}_{2} \mathbf{S}_{\mathbf{2}} \mathbf{O}_{\mathbf{3}}\)). (You need to know the concentration of the sodium thiosulfate solution.)
The iodine in the solution reacts
with thiosulfate ions like this: \(\Longrightarrow \mathrm{I}_{2(\mathrm{aq)}}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}{ }_{(\text {(aq) }} \rightarrow 2 \mathrm{I}^{-}{ }_{(\mathrm{aq})}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}{ }_{(\text {aq) }}\)

\section*{Titration of Iodine with Sodium Thiosulfate}
1) Take the flask containing the solution that was produced in Stage 1.
2) From a burette, add sodium thiosulfate solution to the flask drop by drop.
3) It's hard to see the end point, so when the iodine colour fades to a pale yellow (this is close to the end point), add \(2 \mathrm{~cm}^{3}\) of starch solution (to detect the presence of iodine). The solution in the conical flask will go dark blue, showing there's still some iodine there.
4) Add sodium thiosulfate one drop at a time until the blue colour disappears.
5) When this happens, it means all the iodine has just been reacted.
6) Now you can calculate the number of moles of iodine in the solution.

Here's how you'd do the titration calculation to find the number of moles of iodine produced in Stage 1.

Example: The iodine in the solution produced in Stage 1 reacted fully with \(11.0 \mathrm{~cm}^{3}\) of \(0.120 \mathrm{~mol} \mathrm{dm}^{-3}\) thiosulfate solution. Work out the number of moles of iodine present in the starting solution.
\[
\begin{aligned}
\mathrm{I}_{2}+ & 2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-} \\
& 11.0 \mathrm{~cm}^{3} \\
& 0.120 \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
\]

Number of moles of thiosulfate \(=\frac{\text { concentration } \times \text { volume }\left(\mathrm{cm}^{3}\right)}{1000}=\frac{0.120 \times 11.0}{1000}=1.32 \times \mathbf{1 0}^{-3}\) moles
1 mole of iodine reacts with 2 moles of thiosulfate.
So number of moles of iodine in the solution \(=1.32 \times 10^{-3} \div 2=6.60 \times 10^{-4}\) moles

\section*{More on Redox Titrations}

STAGE 3: Calculate the concentration of the oxidising agent.
1) Now look back at your original equation: \(\quad \mathrm{IO}_{3_{(a q)}^{-}}^{-}+5 \mathrm{I}_{(\text {(aq) }}^{-}+6 \mathrm{H}_{(\mathrm{aq})}^{+} \rightarrow 3 \mathrm{I}_{2(\mathrm{aq)}}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}\)
2) \(25.0 \mathrm{~cm}^{3}\) of potassium iodate \((\mathrm{V})\) solution produced \(\mathbf{6 . 6 0} \times \mathbf{1 0}^{\mathbf{- 4}}\) moles of iodine.

The equation shows that one mole of iodate \((\mathrm{V})\) ions will produce three moles of iodine.
3) That means there must have been \(\mathbf{6 . 6 0 \times 1 0 ^ { - 4 }} \div \mathbf{3}=\mathbf{2 . 2 0} \times \mathbf{1 0}^{-4}\) moles of iodate \((\mathrm{V})\) ions in the original solution. So now it's straightforward to find the concentration of the potassium iodate(V) solution, which is what you're after:
\[
\begin{aligned}
\text { number of moles }= & \frac{\text { concentration } \times \text { volume }\left(\mathrm{cm}^{3}\right)}{1000} \quad 2.20 \times 10^{-4}=\frac{\text { concentration } \times 25.0}{1000} \\
& \Rightarrow \text { concentration of potassium iodate }(\mathrm{V}) \text { solution }=0.00880 \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
\]

\section*{You Can Use the Titration to Find the Percentage of Copper in an Alloy}

Copper(II) ions will oxidise iodide ions to iodine.
This can be used to find the percentage of copper in an alloy, e.g. brass...
STAGE 1: Use a sample of oxidising agent to oxidise as much iodide as possible.
1) Dissolve a weighed amount of the alloy in some concentrated nitric acid.

Pour this mixture into a \(\mathbf{2 5 0} \mathbf{~ c m}^{\mathbf{3}}\) volumetric flask and make up to \(250 \mathrm{~cm}^{3}\) with deionised water.
2) Pipette out a \(\mathbf{2 5} \mathbf{c m}^{\mathbf{3}}\) portion of the diluted solution and transfer to a flask. Slowly add sodium carbonate solution to neutralise any remaining nitric acid. Keep going until a slight precipitate forms. This is removed if you add a few drops of ethanoic acid.
3) Add an excess of potassium iodide solution which reacts with the copper ions:
\[
2 \mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+4 \mathrm{I}_{(\mathrm{aq})}^{-} \rightarrow 2 \mathrm{CuI}_{(\mathrm{s})}+\mathrm{I}_{2(\mathrm{aq)}}
\]

King Henry was 30\% steel, 20\% velvet and 50\% bravery.
4) A white precipitate of copper(I) iodide forms. The copper(II) ions have been reduced to copper(I).

STAGE 2: Find out how many moles of iodine have been produced.
Titrate the product mixture against sodium thiosulfate solution to
find the number of moles of iodine present.
STAGE 3: Calculate the concentration of the oxidising agent.
1) Now you can work out the number of moles of copper present in both the \(25 \mathrm{~cm}^{3}\) and \(250 \mathrm{~cm}^{3}\) solutions (from the equation above, you can see that \(\mathbf{2}\) moles of copper ions produce 1 mole of iodine).
2) From this you can calculate the mass of copper in the whole piece of brass.
3) Finally, you can work out the percentage of copper in the alloy.

\section*{There are a Few Sources of Error in These Titrations...}
1) The starch indicator for the sodium thiosulfate titration needs to be added at the right point, when most of the iodine has reacted, or else the blue colour will be very slow to disappear.
2) The starch solution needs to be freshly made or else it won't behave as expected.
3) The precipitate of copper(I) iodide makes seeing the colour of the solution quite hard.
4) The iodine produced in the reaction can evaporate from the solution, giving a false titration reading. The final figure for the percentage of copper would be too low as a result. It helps if the solution is kept cool.

\section*{More on Redox Titrations}

\section*{Practice Questions}

Q1 How can an iodine-sodium thiosulfate titration help you to work out the concentration of an oxidising agent?
Q2 How many moles of thiosulfate ions react with one mole of iodine molecules?
Q3 What is added during an iodine-sodium thiosulfate titration to make the end point easier to see?
Q4 Describe the colour change at the end point of the iodine-sodium thiosulfate titration.

\section*{Exam Questions}

Q1 \(10.0 \mathrm{~cm}^{3}\) of potassium iodate \((\mathrm{V})\) solution was reacted with excess acidified potassium iodide solution. All of the resulting solution was titrated with \(0.150 \mathrm{~mol} \mathrm{dm}^{-3}\) sodium thiosulfate solution.
It fully reacted with \(24.0 \mathrm{~cm}^{3}\) of the sodium thiosulfate solution.
a) Write an equation showing how iodine is formed in the reaction between iodate(\((\mathrm{V})\) ions and iodide ions in acidic solution.
[1 mark]
b) How many moles of thiosulfate ions were there in \(24.0 \mathrm{~cm}^{3}\) of the sodium thiosulfate solution?
c) In the titration, iodine reacted with sodium thiosulfate according to this equation:
\[
\mathrm{I}_{2(\mathrm{aq})}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\mathrm{aq})} \rightarrow 2 \mathrm{NaI}_{(\mathrm{aq})}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6(\mathrm{aq})}
\]

Calculate the number of moles of iodine that reacted with the sodium thiosulfate solution.
d) How many moles of iodate \((\mathrm{V})\) ions produce 1 mole of iodine from potassium iodide?
e) What was the concentration of the potassium iodate \((\mathrm{V})\) solution?

Q2 An \(18.0 \mathrm{~cm}^{3}\) sample of potassium manganate(VII) solution was reacted with an excess of acidified potassium iodide solution. The resulting solution was titrated with \(0.300 \mathrm{~mol} \mathrm{dm}^{-3}\) sodium thiosulfate solution. \(12.5 \mathrm{~cm}^{3}\) of sodium thiosulfate solution were needed to fully react with the iodine.

When they were mixed, the manganate(VII) ions reacted with the iodide ions according to this equation:
\[
2 \mathrm{MnO}_{4}^{-}{ }_{(\mathrm{aq})}+10 \mathrm{I}_{(\mathrm{aq})}^{-}+16 \mathrm{H}^{+} \rightarrow 5 \mathrm{I}_{2(\mathrm{aq})}+8 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})}+2 \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}
\]

During the titration, the iodine reacted with sodium thiosulfate according to this equation:
\[
\mathrm{I}_{2(\mathrm{aq})}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\mathrm{aq})} \rightarrow 2 \mathrm{NaI}_{(\mathrm{aq})}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6(\mathrm{aq})}
\]

Calculate the concentration of the potassium manganate(VII) solution.
Q3 A 4.20 g coin, made of a copper alloy, was dissolved in acid and the solution made up to \(250 \mathrm{~cm}^{3}\) with distilled water. \(25.0 \mathrm{~cm}^{3}\) of this solution was added to excess potassium iodide solution. The following reaction occurred:
\[
2 \mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+4 \mathrm{I}_{(\mathrm{aq})}^{-} \rightarrow 2 \mathrm{CuI}_{(\mathrm{s})}+\mathrm{I}_{2(\mathrm{aq})}
\]

The resulting solution was neutralised and then titrated with \(0.150 \mathrm{~mol} \mathrm{dm}^{-3}\) sodium thiosulfate.
The iodine and thiosulfate reacted according to this equation:
\[
\mathrm{I}_{2(\mathrm{aq})}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}{ }_{\text {(aq) }} \rightarrow 2 \mathrm{I}_{\text {(aq) }}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}{ }_{\text {(aq) }}^{2}
\]

The average titration result was \(19.3 \mathrm{~cm}^{3}\).
a) How many moles of iodine were present in the solution used in the titration?
b) How many moles of copper ions must have been in the \(25.0 \mathrm{~cm}^{3}\) of solution used for the titration?
c) What percentage of the coin, by mass, was copper?

\section*{Two vowels went out for dinner - they had an iodate...}

This might seem like quite a faff - you do a redox reaction to release iodine, titrate the iodine solution, do a sum to find the iodine concentration, write an equation, then do another sum to work out the concentration of something else.
The thing is, it does work, and you do have to know how. If you're rusty on the calculations, look back at pages 165-166.

\section*{Transition Metals}

The d-block can be found slap bang in the middle of the periodic table. It's here you'll find the transition metals. You'll also find the most precious metals in the world here. That's got to make it worth a look...

\section*{Transition Metals are Found in the d-Block}

The d-block is the block of elements in the middle of the periodic table. Most of the elements in the d-block are transition metals (or transition elements). You mainly need to know about the ones in the first row of the d-block. These are the elements from titanium to copper.

\section*{You Need to Know the Electronic Configurations of the Transition Metals}

Transition metals are d-block elements that can form one or more stable ions with incompletely filled d-orbitals.
A d subshell has \(\mathbf{5}\) orbitals so can hold \(\mathbf{1 0}\) electrons. So transition metals can form at least one ion that has between 1 and 9 electrons in its d-orbitals. All the period 4 d-block elements are transition metals apart from scandium and zinc (see below). The diagram below shows the 3 d and 4 s subshells of the period 4 transition metals:

\section*{When Ions are Formed, the s Electrons are Removed First}

When transition metals form positive ions, outer s electrons are removed first, then the d electrons.
Example: Titanium can form \(\mathrm{Ti}^{2+}\) ions and \(\mathrm{Ti}^{3+}\) ions. Give the electronic configurations for these two ions.
When titanium forms \(2+\) ions, it loses both its 4 s electrons.
\(\mathrm{Ti}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{2} 4 \mathrm{~s}^{2} \rightarrow \mathrm{Ti}^{2+}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{2}\)
To form \(3+\) ions, it loses both its 4 s electrons, and then a 3 d electron as well.
\(\mathrm{Ti}^{2+}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{2} \rightarrow \mathrm{Ti}^{3+}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{1}\)
- Titanium

E Titanium can also form 4+ = ions, with the electronic configuration \([\mathrm{Ar}]\).

\section*{Sc and Zn Aren't Transition Metals}
1) Scandium only forms one ion, \(\mathbf{S c}^{3+}\), which has an empty d subshell. Scandium has the electronic configuration [Ar]3d \({ }^{\mathbf{1}} \mathbf{4 s}^{\mathbf{2}}\), so when it loses three electrons to form \(\mathrm{Sc}^{3+}\), it ends up with the electronic configuration [Ar].
2) Zinc only forms one ion, \(\mathbf{Z n}^{\mathbf{2 +}}\), which has a full \(\mathbf{d}\) subshell. Zinc has the electronic configuration [Ar]3d \({ }^{\mathbf{1 0}} \mathbf{4 \mathbf { s } ^ { \mathbf { 2 } }}\). When it forms \(\mathrm{Zn}^{2+}\) it loses 2 electrons, both from the 4 s subshell. This means it keeps its full 3 d subshell.

\section*{Transition Metals}

\section*{Transition Metals have Variable Oxidation Numbers}

1）Most transition metals can form multiple stable ions．
In each ion，the transition metal is present with a different oxidation number． For example，vanadium has four stable oxidation numbers： vanadium（II） \(\mathrm{V}^{2+}\) ，vanadium（III） \(\mathrm{V}^{3+}\) ，vanadyI（IV） \(\mathrm{VO}^{2+}\) and vanadate（ V ） \(\mathrm{VO}_{2}^{+}\)．
2）To form a compound or a complex（see page 170）containing an ion with a certain oxidation number，the energy given out when the ion forms a compound or a complex needs to be greater than the energy taken to remove the outer electrons and form the ion（the ionisation energy）．
3）Transition metals form ions by losing electrons from both their \(\mathbf{4 s}\) and \(\mathbf{3 d}\) subshells． The \(\mathbf{4 s}\) and \(\mathbf{3 d}\) subshells are at similar energy levels，so it takes a similar amount of energy to remove an electron from the 4 s subshell as it does to remove an electron from the 3 d subshell．There is not a large increase between the ionisation energies of removing successive electrons either，so multiple electrons can be removed from these subshells，to form ions with different oxidation numbers．
4）The energy released when ions form a complex or compound increases with the ionic charge（see page 142）．Therefore，the increase in the energy required to remove outer electrons to form transition metal ions with higher oxidation numbers is usually counteracted by the increase in the energy released．

Priesh had many stable irons．

 The table on page 172 shows some common oxidation numbers of transition metals in the first row of the \(d\)－block． シハいいいいいいいいいいいいいいいいいいいいいいいい

Vanadium［Ar］4s \({ }^{2} 3 d^{3}\) ：There is no significant change between the energy required to remove each of the first 5 electrons－this corresponds to removing both electrons from the 4 s subshell and the three 3 d subshell electrons． There＇s a large jump between the 5th and 6th ionisation energies－after the 5 th ionisation，the 3d subshell of vanadium is empty，so for the 6th ionisation， an electron is removed from the inner， \(3 p\) subshell．

Calcium［Ar］4s \({ }^{2}\) ：Calcium isn＇t a transition metal and only forms one stable ion－ \(\mathrm{Ca}^{2+}\) ，which has a full outer shell of electrons．There is a significant rise between the second and third ionisation energies． This corresponds to the change in removing electrons from the outer \(4 s\) subshell，and an inner \(3 p\) subshell．

\section*{Practice Questions}

Q1 What is the definition of a transition metal？
Q2 Why doesn＇t chromium have 2 electrons in its 4 s subshell？
Q3 When vanadium forms an ion，which subshell does it lose its electrons from first？
Q4 Why is zinc not counted as a transition metal？

\section*{Exam Questions}

Q1 Manganese is a transition metal．It forms stable manganese（II）ions， \(\mathrm{Mn}^{2+}\) ，
and stable permanganate（VII）ions， \(\mathrm{MnO}_{4}{ }^{-}\)．With reference to the electronic configurations of these ions，explain why manganese shows variable oxidation numbers．
Q2 Iron and copper are two common transition metals．
a）Write the electronic configuration of an iron atom and a copper atom．
b）Explain what is unusual about the electronic configuration of copper among transition metals，and explain why this feature occurs．
c）Explain，in terms of iron＇s orbital and electronic configuration， what happens when \(\mathrm{Fe}^{2+}\) and \(\mathrm{Fe}^{3+}\) ions are formed．

\section*{Scram Sc and Zn－we don＇t take kindly to your types round these parts．．．}

As long as you＇re up to speed with your electronic configuration rules，these pages are a bit of a breeze．Chromium and copper do throw a couple of spanners in the works（those banterous scamps），so make sure you don＇t get complacent．

\section*{Complex Ions}

Transition metals are always forming complex ions．These aren＇t as complicated as they sound，though．Honest．

\section*{Complex lons are Metal lons Surrounded by Ligands}

Transition metals can form complex ions．E．g．iron forms a complex ion with water－\(\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\) ．

A complex ion is a metal ion surrounded by dative covalently（coordinately）bonded ligands．

ミ11
＝A dative covalent bond is a covalent bond in which both ב ＝electrons in the shared pair come from the same atom．

\section*{Ligands Form Bonds Using Lone Pairs of Electrons}

A ligand is an atom，ion or molecule that donates a pair of electrons to a central metal atom or ion．A ligand must have at least one lone pair of electrons， otherwise it won＇t have anything to form a dative covalent bond with．
1）Ligands with one lone pair are called monodentate－e．g． \(\mathrm{H}_{2} \mathrm{O}:,: \mathrm{NH}_{3^{\prime}}: \mathrm{Cl}^{-},: \mathrm{OH}^{-}\)．
2）Ligands with two lone pairs are called bidentate－e．g．1，2－diaminoethane． Bidentate ligands can each form two dative covalent bonds with a metal ion．
3）Ligands with more than two lone pairs are called multidentate－e．g．EDTA \({ }^{4-}\) has six lone pairs（so it＇s hexadentate）．It can form six dative bonds with a metal ion．

4）Haemoglobin is used to transport oxygen around the body． It＇s an iron（II）complex containing a multidentate ligand called a haem group．The haem group is made up of a ring containing 4 nitrogen atoms．This means it＇s able to form four dative covalent bonds to the iron（II）ion．There are two other ligands bonded to the iron（II）ion－a protein called globin and either oxygen or water．

In this complex，the nickel ion is bonded to three bidentate 1，2－diaminoethane （ \(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\) ）ligands． ，\111111111111111111111।
－1，2－diaminoethane is also called ethylenediamine and can be abbreviated to＇en＇．

\section*{Complex lons Have an Overall Charge or Total Oxidation Number}

The overall charge on the complex ion is its oxidation number．It＇s put outside the square brackets． You can use this to work out the oxidation number of the metal：
```

oxidation number of the metal ion = total oxidation number - sum of the charges of the ligands

```

E．g．\(\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}{ }_{\text {（aq）}}\) ：The total oxidation number is -4 and each \(\mathrm{CN}^{-}\)ligand has a charge of -1 ．
So in this complex，iron＇s oxidation number \(=-4-(6 \times-1)=+2\) ．

\section*{Complex lons Can Have Different Numbers of Ligands}

1）The coordination number is the number of dative covalent（coordinate）bonds formed with the central metal ion．
2）The usual coordination numbers are \(\mathbf{6}\) and 4．If the ligands are small，like \(\mathrm{H}_{2} \mathrm{O}\) or \(\mathrm{NH}_{3}, \mathbf{6}\) can fit around the central metal ion．But if the ligands are larger，like \(\mathrm{Cl}^{-}\)，only 4 can fit around the central metal ion．
3）The bonding electrons in the dative covalent bonds of a complex repel each other． This means that，in general，the ligands are positioned as far away from each other as possible． This causes complexes with different coordination numbers to have distinctive shapes．

\section*{Complexes with Six－Fold Coordination}

ミ11111111111111111， There＇s more about \(=\) the shapes of玉 molecules on pages 24 and 25.

Six－fold coordination means an octahedral shape．In octahedral complexes，the bond angles are all \(90^{\circ}\) ．

\section*{Complex lons}

\section*{Complexes With Four-Fold Coordination}

Four-fold coordination usually means a tetrahedral shape. E.g. the \(\left[\mathrm{CuCl}_{4}\right]^{2-}\) complex, which is yellow, and the \(\left[\mathrm{Co}(\mathrm{Cl})_{4}\right]^{2-}\) complex ion, which is deep blue.
The bond angles are \(109.5^{\circ}\).
, 11/,
- Make sure you learn the shapes of these complexes.

The d subshells mean you can't always use electron pair repulsion theory (see pages 24-25) to predict the shapes.

\(\left[\mathrm{CuCl}_{4}\right]^{2-}\)

\(\left[\mathrm{CoCl}_{4}\right]^{2-}\)

Occasionally, four-fold coordination results in a square planar shape. E.g. cis-platin (shown on the right). The bond angles are \(90^{\circ}\).

The Leow family were proud of their colour coordination.

\section*{Complex Ions Can Show Cis/Trans Isomerism}
\(\mathbf{C i s} /\) trans isomerism is a special case of \(\mathbf{E} / \mathbf{Z}\) isomerism (see page 85).
Square planar and octahedral complex ions that have at least two pairs of identical ligands show cis/trans isomerism.
Cis isomers have the same groups on the same side, trans have the same groups opposite each other. For example:

cis- \(\left[\mathrm{NiCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]\)
Cis-platin is a complex of platinum(II) with two chloride ions and two ammonia molecules in a square planar shape. It is used as an anti-cancer drug.
The two chloride ions are next to each other, so this complex is cis-platin. If they were opposite each other you would have trans-platin, which is toxic. It's therefore important that only the cis form of the complex is given to patients being treated for cancer.

\section*{Practice Questions}

Q1 What is meant by the term 'complex ion'?
Q2 Describe how a ligand, such as ammonia, bonds to a central metal ion.
Q3 Draw the shape of the complex ion \(\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\). Name the shape and state the size(s) of the bond angles.

\section*{Exam Question}

Q1 When concentrated hydrochloric acid is added to an aqueous solution of \(\mathrm{Cu}^{2+}{ }_{\text {(aq) }}\) a yellow solution is formed.
a) State the coordination number and shape of the \(\mathrm{Cu}^{2+}{ }_{(\text {aq })}\) complex ion in the initial solution. [2 marks]
b) State the coordination number, shape, bond angles and formula of the complex ion responsible for the yellow solution.
[4 marks]
c) Explain why the coordination number is different in the yellow solution than in the starting aqueous copper solution.
[2 marks]

\section*{Put your hands up - we've got you surrounded...}

You'll never get transition element ions floating around by themselves in a solution - they'll always be surrounded by other molecules. It's kind of like what'd happen if you put a dish of sweets in a room of eight (or eighteen) year-olds.

\section*{Complex Ions and Colour}

One property of transition metals is that they form coloured complexes. You're about to find out why...

\section*{Ligands Split the 3d Subshell into Two Energy Levels}
1) Normally the 3d orbitals of transition metal ions all have the same energy. But when ligands come along and bond to the ions, the 3d orbitals split into two different energy levels.
2) Electrons tend to occupy the lower orbitals (the ground state). To jump up to the higher orbitals (excited states) they need energy equal to the energy gap, \(\Delta E\).
 They get this energy from visible light.
3) The larger the energy gap, the higher the frequency of light that is absorbed.
4) The amount of energy (and so the frequency of the light) needed to make electrons jump depends upon the central metal ion, its oxidation number,
 the ligands and the coordination number - these affect the size of the energy gap \((\Delta E)\).

\section*{The Colours of Compounds are the Complement of Those That are Absorbed}
1) As you saw above, the splitting of the d-orbitals in transition metals by ligands causes some frequencies of light to be absorbed by the complexes.
2) The rest of the frequencies of light are transmitted (or reflected). These transmitted or reflected frequencies combine to make the complement of the colour of the absorbed frequencies - this is the colour you see. For example, \(\left[\mathbf{C u}\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right)_{\mathbf{6}}{ }^{\mathbf{1}}{ }^{2+}\right.\) ions absorb red light. The remaining frequencies combine to produce the complementary colour - in this case that's bright blue. So \(\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\) solution appears blue.
3) A colour wheel shows complimentary colours
- the complementary colours are opposite each other on the colour wheel.

4) If there are no 3 d electrons or the 3 d subshell is full, then no electrons will jump, so no energy will be absorbed. If there's no energy absorbed, the compound will look white or colourless.

\section*{The Colours of Aqueous Complexes Can Help to Identify Transition Metal Ions}

When a solid containing a transition metal ion is dissolved in water, the transition metal ion will form an aqueous complex in solution (the metal ion will be surrounded by water ligands).
The colour of this aqueous solution can help to identify the transition metal ion that is present.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Oxidation No. & +7 & +6 & +5 & +4 & +3 & +2 \\
\hline Titanium & & & & & \(\mathrm{Ti}^{3+}\) (purple) & \(\mathrm{Ti}^{2+}\) (violet) \\
\hline Vanadium & & & \(\mathrm{VO}_{2}{ }^{+}\)(yellow) & \(\mathrm{VO}^{2+}\) (blue) & \(\mathrm{V}^{3+}\) (green) & \(\mathrm{V}^{2+}\) (violet) \\
\hline Chromium & & \[
\begin{aligned}
& \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \\
& \text { (orange) }
\end{aligned}
\] & & & \(\mathrm{Cr}^{3+}\) (green) & \\
\hline Manganese & \[
\begin{gathered}
\mathrm{MnO}_{4}^{-} \\
\text {(purple) }
\end{gathered}
\] & \[
\begin{gathered}
\hline \mathrm{MnO}_{4}{ }^{2-} \\
\text { (green) } \\
\hline
\end{gathered}
\] & & & & \(\mathrm{Mn}^{2+}\) (pale pink) \\
\hline Iron & & & & & \(\mathrm{Fe}^{3+}\) (yellow) & \[
\begin{gathered}
\mathrm{Fe}^{2+} \\
\text { (pale green) }
\end{gathered}
\] \\
\hline Cobalt & & & & & & \(\mathrm{Co}^{2+}\) (pink) \\
\hline Nickel & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & & & \(\mathrm{Ni}^{2+}\) (green) \\
\hline Copper & & & & & & \begin{tabular}{l}
\(\mathrm{Cu}^{2+}\) \\
(pale blue)
\end{tabular} \\
\hline
\end{tabular}

\section*{Complex Ions and Colour}

\section*{Vanadium Forms Stable Ions with Different Oxidation Numbers}

1）You learnt on page 169 that one of the properties of transition metals is that they can exist in variable oxidation numbers．For example，vanadium can exist in four oxidation numbers in solution－ \(+2,+3,+4\) and +5 ．You can tell them apart by their colours，which are shown on the previous page．
2）When you switch between oxidation numbers，it＇s a redox reaction－ions are either oxidised（they lose electrons and their oxidation number increases）or reduced（they gain electrons and their oxidation number decreases）．
3）You can write ionic half－equations to show the reduction of ions or atoms．Each reaction also has its own reduction potential．Here are the ionic half－equations for the reduction reactions of the different vanadium ions：
\begin{tabular}{|c|c|c|}
\hline Oxidation Number of Vanadium & Reduction Half－Equation & Reduction Potential \(\left(E^{\ominus}\right)\) \\
\hline+5 & \(\mathrm{VO}_{2}{ }^{+}{ }_{(\mathrm{aq)}}+2 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \rightleftharpoons \mathrm{VO}^{2+}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\) & +1.00 V \\
\hline+4 & \(\mathrm{VO}^{2+}{ }_{(\mathrm{aq)})}+2 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \rightleftharpoons \mathrm{V}^{3+}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\) & +0.34 V \\
\hline+3 & \(\mathrm{~V}^{3+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \rightleftharpoons \mathrm{V}^{2+}{ }_{\text {（aq）}}\) & -0.26 V \\
\hline+2 & \(\mathrm{~V}^{2+}{ }_{(\mathrm{aqq})}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{V}_{(\mathrm{s})}\) & -1.18 V \\
\hline
\end{tabular}

4）You can use the reduction potentials to work out whether redox reactions involving transition metals are likely to happen． The method for this is the same as the one on page 158.

ミ゙111111111111111111111111111／
玉Reduction potentials is just another
＝name for electrode potentials．

Example：Use the table above to determine the colour change（s）observed when zinc metal is added to an acidified solution containing \(\mathrm{VO}^{2+}{ }_{\text {（aq）}}\) ions． \(\mathrm{Zn}^{2+}{ }_{\text {（aq）}}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Zn}_{\text {（s）}} E^{\ominus}=-0.76 \mathrm{~V}\)
First work out the cell potential for each of the reduction reactions of the vanadium ions by zinc：
\(2 \mathrm{VO}_{2}{ }^{+}{ }_{(\mathrm{aq})}+4 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{Zn}_{(\mathrm{s})} \rightleftharpoons 2 \mathrm{VO}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{Zn}^{2+}{ }_{(\mathrm{aq})} E^{\ominus}=+1.76 \mathrm{~V}\)
\(2 \mathrm{VO}^{2+}{ }_{(\mathrm{aq})}+4 \mathrm{H}^{+}{ }_{\text {（aq）}}+\mathrm{Zn}_{\text {（s）}} \rightleftharpoons 2 \mathrm{~V}^{3+}{ }_{\text {（aq）}}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{Zn}^{2+}{ }_{\text {（aq）}} \quad E^{\ominus}=+1.10 \mathrm{~V}\)
\(2 \mathrm{~V}^{3+}{ }_{(\mathrm{aq})}+\mathrm{Zn}_{(\mathrm{s})} \rightleftharpoons 2 \mathrm{~V}^{2+}{ }_{(\mathrm{aq})}+\mathrm{Zn}^{2+}{ }_{\text {（aq）}} \quad E^{\ominus}=+0.50 \mathrm{~V}\)
シ＇111111111111111111に
ミRedox reactions are only 三
＝feasible if \(E^{\theta}\) is positive．
＝111／

\(\mathrm{V}^{2+}{ }_{(\mathrm{aq})}+\mathrm{Zn}_{(\mathrm{s})} \rightleftharpoons \mathrm{V}_{(\mathrm{s})}+\mathrm{Zn}^{2+}{ }_{(\mathrm{aq})}\)
\(E^{\ominus}\) for the first three reactions is positive，so zinc metal is able to reduce vanadium（V）to vanadium（IV）， which will then be reduced to vanadium（III），which in turn will be reduced to vanadium（II）．
The reduction potential for the reaction of vanadium（II）with zinc is negative．
So under standard conditions，vanadium（II）won＇t be reduced by zinc to vanadium metal．
So the solution will change from yellow to blue to green to violet．ミ111111111111111111111111111111111111111 \begin{tabular}{l}
The mixture of yellow \(\mathrm{VO}_{2}^{+}{ }^{(a q)}\) ions and blue \\
\hline
\end{tabular}

\section*{Practice Questions}

Q1 Which subshell is split by the presence of ligands？
Q2 State three factors that can affect the frequency of light absorbed by a transition metal complex．
Q3 What colour are \(\mathrm{VO}^{2+}\) ions in solution？

\section*{Exam Questions}

Q1 a）Using a noble gas core，［Ar］，complete the electron arrangements for the following ions：
i） \(\mathrm{Cu}^{+}\)
ii） \(\mathrm{Cu}^{2+}\)
［2 marks］
b）Which one of the above ions has coloured compounds？Explain your answer．
［1 mark］
Q2＊Transition metal ions form a wide range of different colours when bonded to ligands．
Using your knowledge of 3d orbitals，explain how ligands cause transition metals to be coloured．
［6 marks］

\section*{Blue＇s not my complementary colour－it clashes with my hair．．．}

Finally，some real Chemistry，with pretty colours and everything．It only took you 173 pages to get there．Make sure you understand how the colours are made－there have to be electrons in the d－orbitals that are able to jump up from the lower energy \(d\)－orbitals to the higher energy d－orbitals．Otherwise you＇ll just have a colourless solution．Yawn．

\footnotetext{
＊The quality of your extended response will be assessed for this question．
}

\section*{Chromium}

Can't get enough of transition metals? Well, you're in luck, because it's time for the chemistry of chromium...

\section*{Chromium Ions Usually Exist in the +2, +3 or +6 Oxidation Numbers}
1) Chromium exists in compounds in many oxidation numbers. The +3 state is the most stable, followed by the +6 and then +2 .
2) Chromium forms two ions with oxygen in the +6 oxidation number - chromate(VI) ions, \(\mathrm{CrO}_{4}{ }^{2-}\), and dichromate(VI) ions, \(\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}\). These ions are good oxidising agents because they are easily reduced to \(\mathrm{Cr}^{3+}\).
3) When \(\mathbf{C r}^{\mathbf{3 +}}\) ions are surrounded by 6 water ligands they're violet. But the water ligands are usually substituted with impurities in the water, e.g. \(\mathrm{Cl}^{-}\). This makes the solution look green.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
Oxidation \\
number
\end{tabular} & \begin{tabular}{c}
Formula \\
of ion
\end{tabular} & \begin{tabular}{c}
Colour of ion \\
in water
\end{tabular} \\
\hline+6 & \(\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}{ }_{(\mathrm{aq})}\) & Orange \\
\hline+6 & \(\mathrm{CrO}_{4}{ }^{2-}{ }_{(\mathrm{aq})}\) & Yellow \\
\hline+3 & \(\mathrm{Cr}^{3+}{ }_{(\mathrm{aq})}\) & Green (Violet) \\
\hline+2 & \(\mathrm{Cr}^{2+}{ }_{(\mathrm{aq})}\) & Blue \\
\hline
\end{tabular}

\section*{Chromium lons can be Oxidised and Reduced}

Chromium has lots of different oxidation numbers and can take part in lots of redox reactions.
1) Dichromate(VI) ions can be reduced using a reducing agent such as
\[
\begin{aligned}
& \text { Oxidation no: }+6 \quad \mathrm{O}+2+3 \\
& \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}{ }_{(\mathrm{aq})}+14 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+3 \mathrm{Zn}_{(\mathrm{s})} \rightarrow 3 \mathrm{Zn}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{Cr}^{3+}{ }_{(\mathrm{aq})}+7 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} E^{\ominus}=+2.09 \mathrm{~V}
\end{aligned}
\] zinc and dilute acid.
2) Zinc will reduce \(\mathrm{Cr}^{3+}\) further to \(\mathrm{Cr}^{2+}\). You'll need to use an inert atmosphere - \(\mathrm{Cr}^{2+}\) is so unstable that it oxidises straight back to \(\mathrm{Cr}^{3+}\) in air.
3) You can oxidise \(\mathrm{Cr}^{3+}\) to
chromate (VI) ions with hydrogen peroxide in

Oxidation no:
\[
\stackrel{+3}{2 \mathrm{Cr}^{3+}}{ }_{(\mathrm{aq})}+10 \mathrm{OH}_{(\mathrm{aq)}}^{-}+3 \mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq})} \rightarrow \stackrel{+6}{2 \mathrm{CrO}_{4}^{2-}}{ }_{(\mathrm{aq})}^{2-}+8 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} E^{\ominus}=+1.08 \mathrm{~V}
\] an alkaline solution.
4) If you add some acid to this yellow solution, you form an orange solution that contains dichromate(VI) ions. This is a reversible reaction, so an equilibrium exists between chromate(VI) and dichromate(VI) ions.

\section*{Chromium Hydroxide is Amphoteric}
1) When you mix an aqueous solution of chromium(III) ions with aqueous sodium hydroxide \((\mathrm{NaOH})\) or aqueous ammonia \(\left(\mathrm{NH}_{3}\right)\) you get a chromium hydroxide precipitate \(-\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3(5)}\).
\[
\begin{aligned}
& {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}{ }_{(\text {aq) }}+3 \mathrm{OH}_{(\text {aq })}^{-} \rightarrow\left[\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{(s)}+3 \mathrm{H}_{2} \mathrm{O}_{(1)} \quad\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{\text {(aq) }}^{3+}+3 \mathrm{NH}_{3(\text { aq) }} \rightarrow\left[\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{(s)}+3 \mathrm{NH}_{4}^{+}{ }_{(a q)}\right.} \\
& \text { green solution grey-green precipitate } \\
& \text { green solution grey-green precipitate }
\end{aligned}
\]
2) Chromium hydroxide \(\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]\) is amphoteric. This means it can react with both acids and bases.
\[
\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}{ }_{(\text {aq })} \stackrel{+3 \mathrm{H}_{\text {(aq) }}^{+}}{<\text {With acid }}\left[\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{(\mathrm{s})} \xrightarrow[\text { With base }]{+3 \mathrm{OH}^{-}{ }_{\text {aq) }}}\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}{ }_{(\text {aq) }}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
\]
3) So if you add excess sodium hydroxide to a chromium hydroxide precipitate, the \(\mathrm{H}_{2} \mathrm{O}\) ligands deprotonate, and a solution containing \(\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}{ }_{(\text {aq) }}\) forms.
\(\underset{\text { grey-green precipitate }}{\left[\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{(\mathrm{s})}}+3 \mathrm{OH}^{-}{ }_{\text {(aq) }} \rightarrow \underset{\text { dark green solution }}{\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}}+3 \mathrm{H}_{2} \mathrm{O}_{(1)}\)
4) If you add acid to the chromium hydroxide precipitate, the \(\mathrm{OH}^{-}\)ligands protonate and a solution containing \(\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}{ }_{\text {aq) }}\) forms.
\[
\begin{aligned}
& {\left[\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{(s)}+3 \mathrm{H}^{+}{ }_{\text {aq) }}} \\
& \text { grey-green precipitate }
\end{aligned} \rightarrow\left[\begin{array}{cr}
{\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} 6^{3+}{ }^{3+}\right.} \\
\text { green solut }
\end{array}\right.
\]
5) The reactions above are NOT ligand exchanges (see page 176). Instead, they're acid-base reactions - the ligands are chemically modified by the acid or the alkali (by the addition or removal of an \(\mathrm{H}^{+}\)ion).
6) But, if you add excess ammonia to the chromium hydroxide precipitate, a ligand exchange reaction occurs.
\[
\underset{\text { grey-green precipitate }}{\left[\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{(s)}}+6 \mathrm{NH}_{3(\text { aq) }} \rightarrow \underset{\text { purple solution }}{\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}} \underset{\text { paq) }}{\text { gres }}+3 \mathrm{OH}_{(\text {aq) }}^{-}+3 \mathrm{H}_{2} \mathrm{O}_{(1)}
\]

\section*{Chromium}

\section*{You Can Prepare Transition Metal Complexes}

Making transition metal complexes can be as simple as adding a solution or solid containing your transition metal ion to a solution containing your ligand and giving it a mix. This is how you would prepare the complexes on page 177. It's not always that easy, however. Take the chromium complex chromium(II) ethanoate, \(\mathrm{Cr}_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\), for instance. To make it, you start off with sodium dichromate \((\mathrm{VI})\) solution. The reaction happens in two parts.
1) Orange sodium dichromate \((\mathrm{VI})\) is reduced with zinc in acid solution to first form a green solution containing \(\mathrm{Cr}^{3+}\) ions, and then to give a blue solution of \(\mathrm{Cr}^{2+}\) ions (like you saw on the previous page).
\[
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}{ }_{(\mathrm{aq})}+14 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+3 \mathrm{Zn}_{(\mathrm{s})} \rightarrow 3 \mathrm{Zn}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{Cr}^{3+}{ }_{(\mathrm{aq)}}+7 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad 2 \mathrm{Cr}_{(\mathrm{aq})}^{3+}+\mathrm{Zn}_{(\mathrm{s})} \rightarrow 2 \mathrm{Cr}^{2+}{ }_{(\mathrm{aq})}+\mathrm{Zn}^{2+}{ }_{(\mathrm{aq})}
\]
2) Sodium ethanoate is mixed with this solution and a red precipitate of chromium(II) ethanoate forms.
\[
2 \mathrm{Cr}^{2+}{ }_{(\mathrm{aq})}+4 \mathrm{CH}_{3} \mathrm{COO}_{(\mathrm{aq})}^{-}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow\left[\mathrm{Cr}_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{(\mathrm{s})}
\]
3) Unfortunately it's not that simple as \(\mathrm{Cr}^{2+}\) ions are very easily oxidised. You have to do the whole experiment in an inert atmosphere (such as nitrogen) to keep the air out and remove the oxygen from all the liquids in your experiment before using them (e.g. by bubbling nitrogen though them).
- Slowly add hydrochloric acid to a flask containing sodium dichromate(VI) solution and zinc mesh.
As well as reducing the dichromate \((\mathrm{VI})\) ions, some of the zinc metal will react with the acid to produce hydrogen gas, which can escape through a rubber tube into a beaker of water.
- As soon as you see the solution turn a clear blue colour, pinch the rubber tube shut so hydrogen can no longer escape from the flask.
- The build up of pressure in the flask will force the \(\mathrm{Cr}^{2+}\) solution through the open glass tube and into a flask of sodium ethanoate.
- As soon as the blue solution reacts with the sodium ethanoate, a red precipitate forms. Ta-da, you've made chromium(III) ethanoate.
- Filter off the precipitate and wash it using water, then ethanol, then ether (while still keeping the chromium(II) ethanoate in an inert atmosphere to stop it getting oxidised).

\section*{Practice Questions}

Q1 What colours are the +3 and +2 chromium aqua-ions?
Q2 Write an equation for the reaction between chromium(III) ions and hydrogen peroxide in an alkaline solution.

\section*{Exam Questions}

Q1 Potassium dichromate \((\mathrm{VI})\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)\) is a powerful oxidising agent in acidic solution.
When potassium dichromate(VI) is acidified and mixed with zinc powder in air, a colour change is seen.
a) Describe the colour change seen in the solution.
[1 mark]
b) Give the changes in oxidation number for Cr and Zn and write an ionic equation for the reaction.
[3 marks]
c) If the reaction is carried out in an inert atmosphere, a different result will occur. State how the result will differ and explain why.
[3 marks]
Q2 Chromium hydroxide, \(\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\), is an amphoteric complex.
a) Explain what is meant by the term 'amphoteric', and give equations that demonstrate the amphoteric behaviour of the chromium hydroxide complex.
[3 marks]
b) Write an equation for the reaction between chromium hydroxide and excess ammonia. Include any observations you would expect to see.
[2 marks]

\section*{What do you call a bird's mother? Crow-mum...}

Sorry, all these equations seem to be getting to my head a bit. Time for an emergency biscuit. First, have another look at the reactions of chromium hydroxide and make sure you know whether the ligands are being exchanged or modified.

\section*{Reactions of Ligands}

There are more substitutions on this page than the number of elephants you can fit in a mini.

\section*{Ligands can Exchange Places with One Another}

One ligand can be swapped for another ligand - this is ligand exchange. It usually causes a colour change.
1) If the ligands are of similar size, e.g. \(\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CN}^{-}\)or \(\mathrm{OH}^{-}\), then the coordination number of the complex ion doesn't change, and neither does the shape.
2) If a small, uncharged ligand (e.g. \(\mathrm{H}_{2} \mathrm{O}\)) is substituted for a large, charged ligand

Like ligands, a large, charged rugby player can also lead to a change in coordination. (e.g. \(\mathrm{Cl}^{-}\)), or vice versa, there's a change of coordination number and a change of shape.
3) Sometimes the substitution is only partial.
\[
\begin{aligned}
& {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}{ }_{(\mathrm{aq})}+4 \mathrm{NH}_{3(\mathrm{aq})} \rightleftharpoons} \\
& \begin{array}{l}
\text { octahedral } \\
\text { pale blue }
\end{array} \\
& \begin{array}{l}
{\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}} \\
\text { octahedral } \\
\text { deep blue }
\end{array} \\
& \text { d } 111111111111111 \mathrm{H}
\end{aligned}
\]

ㄴ11111111111111111n1111111111111111111111111111111/ This reaction only happens when you add an excess of ammonia - if you just add a bit, you get a blue precipitate of \(\left[\mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\) instead (see the next page).

As it's in solution and contains ligands that aren't water, you need to include all the water ligands when writing the formula of a complex like \(\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}\). But if you're writing out the formula of a precipitate, such as \(\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]\), you can leave out the water ligands and just write \(\mathrm{Cu}(\mathrm{OH})_{2}\).

\section*{Monoxide Poisoning Happens Because of Ligand Exchange}

The oxygen or water molecule in haemoglobin (see page 170) can be replaced in a ligand exchange reaction by carbon monoxide (CO), forming carboxyhaemoglobin. This is bad news because carbon monoxide forms strong dative covalent bonds (see page 23) with the iron ion and doesn't readily exchange with oxygen or water ligands, meaning the haemoglobin can't transport oxygen any more. This leads to carbon monoxide poisoning.

\section*{A Positive Entropy Change Makes a More Stable Complex}
1) When a ligand exchange reaction occurs, dative bonds are broken and formed.

The strength of the bonds being broken is often very similar to the strength of the new bonds being made. So the enthalpy change for a ligand exchange reaction is usually very small.
For example, the reaction substituting ammonia with ethane-1,2-diamine
in a nickel complex has a very small enthalpy change of reaction:
\[
\left[\begin{array}{l}
{\left[\mathrm{Ni}_{\mathrm{Ni}}\left(\mathrm{NH}_{3}\right)_{6}{ }^{2+}+3 \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right.} \\
\text { Break } 6 \text { coordinate bonds } \\
\text { between } \mathrm{Ni} \text { and } \mathrm{N} \text {. }
\end{array} \mathrm{Ni}^{\left[\mathrm{Ni}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right]^{2+}+6 \mathrm{NH}_{3} \quad \Delta H=-13 \mathrm{~kJ} \mathrm{~mol}^{-1}} \begin{array}{l}
\text { Form } 6 \text { coordinate bonds } \\
\text { between } \mathrm{Ni} \text { and } \mathrm{N} .
\end{array}\right.
\]
2) This is actually a reversible reaction, but the equilibrium lies so far to the right that it is thought of as being irreversible - \(\left[\mathrm{Ni}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right]^{2+}\) is much more stable than \(\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}\). This isn't accounted for by an enthalpy change. Instead, it's to do with the entropy change of the reaction:

When monodentate ligands are substituted with bidentate or multidentate ligands, the number of particles in solution increases - the more particles, the greater the entropy. Reactions that result in an increase in entropy are more likely to occur.
3) When the hexadentate ligand EDTA \({ }^{4-}\) replaces monodentate or bidentate ligands, the complex formed is a lot more stable.
\(\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+\mathrm{EDTA}^{4-} \rightarrow[\mathrm{Cr}(\text { EDTA })]^{-}+6 \mathrm{NH}_{3} 2\) particles \(\rightarrow 7\) particles

The enthall111111111111 5 The enthalpy change for this reaction is almost zero and the entropy change is big = and positive. This makes the free energy 三 change \((\triangle G=\triangle H-T \triangle S)\) negative, so \(\equiv\) the reaction is feasible (see page 152).

\section*{Reactions of Ligands}

\section*{Transition Element Hydroxides are Brightly Coloured Precipitates}
1) When you mix an aqueous solution of transition element ions with aqueous sodium hydroxide \((\mathrm{NaOH})\) or aqueous ammonia \(\left(\mathrm{NH}_{3}\right)\), the water ligands are deprotonated in an acid-base reaction and you get a coloured hydroxide precipitate.
2) You can reverse these reactions by adding an acid to the hydroxide precipitate -
(111111111111111111111/, A metal-aqua ion is a metal ion complex that only \(\bar{Z}\) contains water ligands. the hydroxide ligands will protonate and the precipitate will dissolve as the soluble metal-aqua ions are reformed.
3) In aqueous solutions, transition elements take the form \(\left[M\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{\mathrm{n+}}\). They can also be written as \(\mathrm{M}^{\mathrm{n+}}{ }_{(\text {aq, })^{\prime}}\) as long as the metal ion is only bonded to water. If it's bonded to anything else you need to write out the whole formula.
4) You need to know the equations for the following reactions, and the colours of the hydroxide precipitates:

In excess ammonia, copper(II) hydroxide undergoes a ligand exchange reaction: This goes from a
\(\left[\mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{(\mathrm{s})}+4 \mathrm{NH}_{3(\mathrm{aq)}} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{OH}_{(\mathrm{aq})}^{-} 4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l}}\) blue precipitate to a
deep blue solution.

\[
\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}{ }_{(\text {aq) }}+2 \mathrm{NH}_{3(\mathrm{aq})} \rightarrow\left[\mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{(\mathrm{s})}+2 \mathrm{NH}_{4}{ }_{(\mathrm{aq})}
\]
iron(IIII): \(\quad\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}{ }_{(\text {aq) }}+3 \mathrm{OH}^{-}{ }_{\text {(aq) }} \rightarrow\left[\mathrm{Fe}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{(\mathrm{s})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\)
\(\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}{ }_{(\text {aq) }}+3 \mathrm{NH}_{3(\mathrm{aq)}} \rightarrow\left[\mathrm{Fe}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{(\mathrm{s})}+3 \mathrm{NH}_{4}{ }^{+}{ }_{\text {(aq) }}\)
\(\begin{aligned} \text { cobalt(III): } & {\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}{ }_{\text {aqq }}+2 \mathrm{OH}^{-}{ }_{\text {(aq) }} \rightarrow\left[\mathrm{Co}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{\text {(s) }}+2 \mathrm{H}_{2} \mathrm{O}_{(\text {l })} } \\ & {\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}{ }_{\text {(aq) }}+2 \mathrm{NH}_{3(\text { aq) }} \rightarrow\left[\mathrm{Co}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{(\mathrm{s})}+2 \mathrm{NH}_{4}^{+}{ }_{\text {(aq) }} }\end{aligned}\)

In excess ammonia, cobalt(II) hydroxide undergoes a ligand exchange reaction:
\(\left[\mathrm{Co}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{(\mathrm{s})}+6 \mathrm{NH}_{3(\mathrm{aq})} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{OH}^{-}{ }_{(\mathrm{aq})} 4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\)
On standing, this is oxidised to form a brown solution containing \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}{ }_{(\text {aq })}\) ions. This goes from a pale green solution to a green precipitate, which darkens on standing (as the precipitate is oxidised by water and oxygen in the air to form iron(III) hydroxide).
 EHave a look at page 174 to see how chromium (II) reacts with sodium hydroxide and ammonia. F reacts with sodium hydroxide and ammonia.

\section*{Practice Questions}

This goes from a yellow solution to an orange precipitate, which darkens on standing.

This goes from a pale pink solution to a blue precipitate, which turns brown on standing.
The blue (or pink) precipitate dissolves to form a yellow-brown solution.
\(\qquad\) 1111
\(\qquad\)

Q1 Give an example of a ligand substitution reaction that involves a change of coordination number.
Q2 What do you see when ammonia solution is slowly added to a copper(II) sulfate solution until it's in excess?
Q3 Why does adding excess \(\mathrm{NH}_{3}\) give different results from adding excess NaOH to copper(II) sulfate solution?

\section*{Exam Questions}

Q1 When a solution of EDTA \({ }^{4}\) ions is added to an aqueous solution of \(\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}\) ions, a ligand substitution reaction occurs.
a) Write an equation for the reaction that takes place.
[1 mark]
b) The new complex that is formed is more stable than \(\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}\). Explain why.

Q2 Ammonia solution is added to a pale pink solution containing a hydrated transition metal complex. Initially, a blue precipitate is formed. When an excess of ammonia is added, the precipitate dissolves to form a yellow-brown solution.
a) Identify the transition metal complex present in the initial pale pink solution.
b) Write equations for both reactions, and state the type of reaction taking place each time.

\footnotetext{
Where do transition metals sell their shares? On the ligand exchange...
Ligands generally don't mind swapping with other ligands, so long as they're not too tightly attached to the central metal ion. They also won't fancy changing if it means forming fewer molecules and having less entropy. Fussy things...
}

\section*{Transition Metals and Catalysis}

As if you haven't seen enough evidence for the greatness of transition metals, here's more. They're darn good catalysts...

\section*{Transition Metals and their Compounds make Good Catalysts}

Transition metals and their compounds make good catalysts because they can change oxidation number by gaining or losing electrons within their d-orbitals. This means they can transfer electrons to speed up reactions.

Example: In the Contact Process, \(\mathrm{SO}_{2}\) is oxidised to \(\mathrm{SO}_{3}: \mathrm{SO}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}\).
Vanadium \((\mathrm{V})\) oxide is used as a catalyst as it can be reduced to vanadium(IV) oxide and oxidise \(\mathrm{SO}_{2}\). It's then oxidised back to vanadium \((\mathrm{V})\) oxide by oxygen ready to start all over again.

\footnotetext{
§ 11111111111111111111
This example uses a heterogeneous catalyst (see the
next page), but the
principle also applies to
}

Vanadium oxidises \(\mathrm{SO}_{2}\) to \(\mathrm{SO}_{3}\) and is reduced itself.
\(\mathrm{V}_{2} \mathrm{O}_{5}+\mathrm{SO}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{4}+\mathrm{SO}_{3}\)
vanadium \((\mathrm{V}) \rightarrow\) vanadium(IV)

The reduced catalyst is then oxidised by oxygen gas back to its original state.
\[
\mathrm{V}_{2} \mathrm{O}_{4}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{5}
\]
vanadium \((\mathrm{IV}) \rightarrow\) vanadium \((\mathrm{V})\)

\section*{Transition Metal Compounds are Good Homogeneous Catalysts}
1) Homogeneous catalysts are in the same physical state as the reactants. Usually a homogeneous catalyst is an aqueous catalyst for a reaction between two aqueous solutions.
2) Homogeneous catalysts work by combining with the reactants to form an intermediate species which then reacts to form the products and reform the catalyst.
3) The activation energy needed to form the intermediates (and to form the products from the intermediates) is lower than that needed to make the products directly from the reactants.
4) The catalyst is always reformed so it can carry on catalysing the reaction.

\section*{Example: Peroxodisulfate ions oxidising iodide ions.}

The redox reaction between iodide ions and peroxodisulfate \(\left(\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right)\) ions takes place annoyingly slowly because both ions are negatively charged. The ions repel each other, so it's unlikely they'll collide and react.
\[
\mathrm{S}_{2} \mathrm{O}_{8}^{2-}{ }_{(\mathrm{aq})}+2 \mathrm{I}_{(\mathrm{aq})}^{-} \rightarrow \mathrm{I}_{2(\mathrm{aq)}}+2 \mathrm{SO}_{4}^{2-}{ }_{(\mathrm{aq})}
\]

But if \(\mathrm{Fe}^{2+}\) ions are added, things really speed up because each stage of the reaction involves a positive and a negative ion, so there's no repulsion.
1) First, the \(\mathrm{Fe}^{2+}\) ions are oxidised to \(\mathrm{Fe}^{3+}\) ions by the \(\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\) ions.
2) The newly formed intermediate \(\mathrm{Fe}^{3+}\) ions now easily oxidise the \(I^{-}\)ions to iodine, and the catalyst is regenerated.
\[
\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}{ }_{(\mathrm{aq})}+2 \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \rightarrow 2 \mathrm{Fe}_{(\mathrm{aq})}^{3+}+2 \mathrm{SO}_{4}{ }^{2-}{ }_{(\mathrm{aq})}
\]
\[
\begin{aligned}
& 2 \mathrm{Fe}^{3+}{ }_{\text {(aq) }}+2 \mathrm{I}_{\text {(aq) }}^{-} \rightarrow \mathrm{I}_{2(\mathrm{aq)}}+2 \mathrm{Fe}^{2+}{ }_{(\text {aq) }} \quad \begin{array}{l}
\text { The } \mathrm{Fe}^{2+} \text { is a homogeneous } \\
\text { catalyst - it's in the same }
\end{array} \\
& \text { phase as the reactants. }
\end{aligned}
\]

\section*{Autocatalysis is when a Product Catalyses the Reaction}

Another example of a homogeneous catalyst is \(\mathrm{Mn}^{2+}\) in the reaction between \(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\) and \(\mathrm{MnO}_{4}^{-}\).
It's an autocatalysis reaction because \(\mathrm{Mn}^{2+}\) is a product of the reaction and acts as a catalyst for the reaction.
This means that as the reaction progresses and the amount of the product increases, the reaction speeds up.
ㄴ1111111111111111111111111111111111111/,
三 The reactant ions are both negatively charged "
玉 so repel each other and cause the rate of the uncatalysed reaction to be very slow.
\[
2 \mathrm{MnO}_{4}^{-}{ }_{(\mathrm{aq})}+16 \mathrm{H}_{(\mathrm{aq})}^{+}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}{ }_{(\mathrm{aq})}^{2} \rightarrow 2 \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+8 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+10 \mathrm{CO}_{2(\mathrm{~g})}
\]

1) \(\mathrm{Mn}^{2+}\) catalyses the reaction by first reacting with \(\mathrm{MnO}_{4}^{-}\)to form \(\mathbf{M n}^{3+}\) ions:
\[
\mathrm{MnO}_{4}^{-}{ }_{(\mathrm{aq})}+4 \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+8 \mathrm{H}_{(\mathrm{aq})}^{+} \rightarrow 5 \mathrm{Mn}^{3+}{ }_{(\mathrm{aq})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
\]
2) The newly formed \(\mathbf{M n}^{3+}\) ions then react with \(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\) ions to form carbon dioxide and re-form the \(\mathrm{Mn}^{2+}\) catalyst ions:
\[
2 \mathrm{Mn}^{3+}{ }_{(\mathrm{aq})}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}{ }_{(\mathrm{aq})} \rightarrow 2 \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{CO}_{2(\mathrm{~g})}
\]

\section*{Transition Metals and Catalysis}

\section*{Transition Metals and Their Compounds can be Heterogeneous Catalysts}

A heterogeneous catalyst is in a different phase from the reactants. Usually the reactants are gases or in solution and the catalyst is a solid - the reaction occurs on the surface of the catalyst. Transition metals make good heterogeneous catalysts because they can use their partially filled d-orbitals to make weak bonds with the reactant molecules.
Catalytic converters are used in cars to reduce emissions of nitrogen monoxide and carbon monoxide produced by internal combustion engines. They use a platinum or rhodium catalyst to convert these gases into nitrogen and carbon dioxide.
\[
2 \mathrm{NO}_{(\mathrm{g})}+2 \mathrm{CO}_{(\mathrm{g})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{CO}_{2(\mathrm{~g})}
\]

Here's how it works -

1) The reactant molecules are attracted to the surface of the solid
catalyst and stick to it surface of the solid
catalyst and stick to it this is called adsorption.
, \(11111111111111111111111111111111 /\)玉 Have a look at page 80 to see why carbon monoxide and nitrogen \# monoxide emissions can be a problem.

2) The surface of the catalyst
activates the molecules so
2) The surface of the catalyst
activates the molecules so they react more easily. In the reaction between nitrogen monoxide and carbon dioxide, the bonds between the reactants' atoms are weakened making them easier to break and reform as the products.

3) The product molecules leave the surface of the catalyst making way for fresh reactants to take their place.
This is called desorption.

\section*{Practice Questions}

Q1 What property of transition metals makes them good catalysts?
Q2 Why is the rate of the uncatalysed reaction between iodide and peroxodisulfate ions so slow?
Q3 What term describes the process when a product catalyses a reaction?
Q4 Which two transition metals are used in catalytic converters?

\section*{Exam Questions}

Q1 Transition metal compounds are used as both heterogeneous and homogeneous catalysts.
a) Explain the meaning of the terms 'heterogeneous' and 'homogeneous'.
b) How does the fact that a transition metal has partially filled d-orbitals help it act as a heterogeneous catalyst?
c) How does the fact that transition metals have variable oxidation numbers allow them to act as homogeneous catalysts?
[2 marks]
Q2 A student is measuring the rate of the reaction between \(\mathrm{MnO}_{4}{ }^{-}\)ions and \(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\) over time. She predicts that the rate will decrease with time, but discovers instead that the rate of reaction over the first five minutes increases. Explain the student's results with use of appropriate equations.

Q3 Catalytic converters use a platinum or rhodium catalyst to reduce emissions of carbon monoxide and nitrogen monoxide from internal combustion engines.
a) The first step in the catalysis reaction is the adsorption of nitrogen monoxide and carbon monoxide onto the surface of the catalyst. What is meant by the term 'adsorption'?
b) Explain how adsorption helps to catalyse the reaction.

\section*{Burmese cats are top of my cat list...}

Transition metals are able to do so many different things. And it's all down to those d-orbital electron thingies. Unfortunately that means there's a lot for you to remember. It's not even as if there's only one sort of catalyst to remember. There are two - homogeneous catalysts and heterogeneous catalysts... And you need to know both.

\section*{Reaction Rates}

Welcome，one and all to Kinetics．Your emergency exits are located here，here and here．Thank you．

\section*{The Reaction Rate Tells You How Fast Reactants are Converted to Products}

The reaction rate is the change in the amount of reactants or products per unit time（normally per second）．

\section*{There are Loads of Ways to Follow the Rate of a Reaction}

Although there are a lot of ways to follow reactions，not every method works for every reaction．You＇ve got to pick a property that changes as the reaction goes on．The following methods are all continuous monitoring methods of following the rate of reaction－continuous monitoring means measurements are taken over the duration of the reaction．

\section*{Gas volume}

If a gas is given off，you could collect it in a gas syringe and record how much you＇ve got at regular time intervals（e．g．every 15 seconds）． For example，this would work for the reaction between an acid and a carbonate in which carbon dioxide gas is given off．
To find the concentration of a reactant at each time point，use the ideal gas equation（page 61）to work out how many moles of gas you＇ve got，then use the molar ratio to work out the concentration of the reactant．

\section*{Loss of mass}

If a gas is given off，the system will lose mass．
You can measure this at regular intervals with a balance．
Use mole calculations to work out how much gas you＇ve lost，and therefore how many moles of reactants are left．

\section*{Colour change}

You can sometimes track the colour change of a reaction using a gadget called a colorimeter． A colorimeter measures absorbance（the amount of light absorbed by the solution）．
The more concentrated the colour of the solution，the higher the absorbance is．
For example，in the reaction between propanone and iodine，the brown colour fades．
So the absorbance of the solution will decrease．
You measure the change in absorbance like this：

1）Plot a calibration curve－a graph of known concentrations of the coloured solution（in this case \(\mathrm{I}_{2}\) ）plotted against absorbance．
2）During the experiment，take a small sample from your reaction solution at regular intervals and read the absorbance．
3）Use your calibration curve to convert the absorbance at each time point into a concentration．

\section*{Change in pH}

If the reaction produces or uses up \(\mathrm{H}^{+}\)ions，the pH of the solution will change．So you could measure the pH of the solution at regular intervals and calculate the concentration of \(\mathrm{H}^{+}\)．

\section*{Titration}

You can take small samples of a reaction at regular time intervals and titrate them using a standard solution．The rate can be found from measuring the change in
－1111111111111111に There＇s more about concentration of the products or reactant over time．

\section*{Electrical conductivity}

If the number of ions changes，so will the electrical conductivity．

\section*{Reaction Rates}

\section*{Work Out Reaction Rate from a Concentration－Time Graph}

1）By repeatedly taking measurements during a reaction（continuous monitoring）you can draw a graph of the amount of reactant or product（on the \(y\)－axis）against time（on the \(x\)－axis）．
2）The rate at any point in the reaction is given by the gradient（slope）at that point on the graph．
3）If the graph is a curve，you＇ll have to draw a tangent to the curve and find the gradient of that．

Example：Use the graph above to find the rate of reaction after 30 seconds．
\[
\text { Gradient }=\frac{\text { change in } y}{\text { change in } x}=\frac{-0.8}{60}=-\mathbf{0 . 0 1 3}
\]

So，the rate after 30 seconds is \(\mathbf{0 . 0 1 3} \mathbf{~ m o l ~ d m}^{\mathbf{- 3}} \mathbf{s}^{\mathbf{- 1}}\) ．
－ 11111111111111111111,
ミ Don＇t forget the units－三 you＇ve divided \(\mathrm{mol} \mathrm{dm}^{-3}\) 三
三by s，so it＇s mol dm \({ }^{-3} \mathrm{~s}^{-1}\) ．ミ

4）The sign of the gradient doesn＇t really matter－it＇s a negative gradient when you＇re measuring reactant concentration because the reactant decreases．If you measured the product concentration，it＇d be a positive gradient．

\section*{Practice Questions}

Q1 What is the definition of reaction rate？
Q2 Give an example of a reaction where gas volume can be measured to follow reaction rate．
Q3 For a straight line graph of concentration of reactants against time，how do you work out reaction rate？

\section*{Exam Question}

Q1 The reaction between iodine and propanone in acidic conditions was investigated．
\[
\mathrm{I}_{2(\mathrm{aq})}+\mathrm{CH}_{3} \mathrm{COCH}_{3(\mathrm{aq})} \xrightarrow{\mathrm{H}_{(\mathrm{aq})}^{+}}>\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{I}_{(\mathrm{aq})}+\mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{I}_{(\mathrm{aq})}^{-}
\]
a）Apart from colorimetry，suggest，with a reason， one method that could be used to follow the reaction rate．
b）Outline how the rate of reaction with respect to propanone， at any particular time，could be determined．
The following data was collected at \(25^{\circ} \mathrm{C}\) ．
\begin{tabular}{|l|c|c|c|c|c|}
\hline Time（s） & 0 & 10 & 20 & 30 & 40 \\
\hline Concentration of \(\mathrm{CH}_{3} \mathrm{COCH}_{3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)\) & 0.2 & 0.07 & 0.025 & 0.0098 & 0.0031 \\
\hline
\end{tabular}
c）Plot a graph，using the data provided．
From the graph，determine the rate of reaction at \(25^{\circ} \mathrm{C}\) after 15 seconds．

\section*{My concentration－time graph for chemistry revision has a negative gradient．．． \\ This kinetics topic really comes at you at a fast rate．．．I can＇t promise the jokes are going to get a whole lot better throughout the topic but I can promise it＇s gonna cover a lot of different stuff to do with reaction rates．So it＇s worth making sure you understand the gradient＝rate thing now，as well as how to find the gradient of different graphs．}

\section*{Orders of Reactions}

You might think the rate of a reaction will change if you change the concentration of the reactants．But this isn＇t always the case．．．Read on for some juicy information about the orders of reactions．Speaking of orders．．．can I order a pizza？

\section*{Orders Tell You How a Reactant＇s Concentration Affects the Rate}

1）The order of reaction with respect to a particular reactant tells you how the reactant＇s concentration affects the rate．

Where \([\mathrm{X}]\) is the concentration of a particular reactant：
－If \([X]\) changes and the rate stays the same，the order of reaction with respect to \(X\) is \(\mathbf{0}\) ． So if \([X]\) doubles，the rate will stay the same．If \([X]\) triples，the rate will stay the same．
－If the rate is proportional to \([\mathrm{X}]\) ，then the order of reaction with respect to X is 1 ． So if \([X]\) doubles，the rate will double．If \([X]\) triples，the rate will triple．
－If the rate is proportional to \([\mathrm{X}]^{2}\) ，then the order of reaction with respect to X is \(\mathbf{2}\) ． So if \([X]\) doubles，the rate will be \(2^{2}=4\) times faster． If \([X]\) triples，the rate will be \(3^{2}=9\) times faster．

No matter how hard Jane concentrated，she couldn＇t increase the rate of the meeting．

2）You can only find orders of reaction from experiments．You can＇t work them out from chemical equations．
3）The overall order of reaction is the sum of the orders of all the reactants．For example， if the reaction，\(A+B+C \rightarrow D\) is first order with respect to \(A\) and \(B\) and zero order with respect to \(C\) ，then the overall order of reaction is \(\mathbf{2}\) ．

\section*{The Shape of a Rate－Concentration Graph Tells You the Order}

You can use data from a concentration－time graph to construct a rate－concentration graph， which can tell you the reaction order．Here＇s how．．．

1）Find the gradient at various points on the graph．This will give you the rate at that particular concentration． With a straight－line graph，this is easy，but if it＇s a curve，you need to draw tangents and find their gradients．
2）Now plot each point on a new graph with the axes rate and concentration． Then draw a smooth line or curve through the points．The shape of the line will tell you the order of the reaction with respect to that reactant．

A horizontal line means changing the concentration doesn＇t change the rate，so it＇s order 0.

If it＇s a straight line through the origin，the rate is proportional to［X］， and it＇s order 1.

A curve means it＇s order 2. The rate will be proportional to \([\mathrm{X}]^{2}\) ．
El1111111111111111111111111111111111111 E In theory，a curve could mean a higher order ₹ than 2，but you won＇t be asked about them．

\section*{Orders of Reactions}

\section*{The Half-Life is the Time it takes for Half of the Reactant to be Used Up}

To work out the half-life (\(\mathrm{t}_{1 / 2}\)) of a reaction, plot a concentration-time graph. Then draw lines across from the \(y\)-axis at points where the concentration has halved and read off the time taken.

\section*{Example:}

The graph shows the decomposition of hydrogen peroxide:
\[
2 \mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq})} \rightarrow \mathrm{O}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}
\]
\(\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\) from 4 to \(2 \mathrm{~mol} \mathrm{dm}^{-3}=200 \mathrm{sec}\),
\(\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\) from 2 to \(1 \mathrm{~mol} \mathrm{dm}^{-3}=200 \mathrm{sec}\),
\(\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\) from 1 to \(0.5 \mathrm{~mol} \mathrm{dm}^{-3}=200 \mathrm{sec}\).

Half-lives are useful for identifying a first order reaction without having to draw a rate-concentration graph. This is because the half-life is always constant for a first order reaction.
For example, for this reaction, \(\mathrm{t}_{1 / 2}\) is constant - it always takes the same amount of time for the concentration to halve. The half-life is independent of the concentration and so the reaction must be first order.

V'111
Volume-time graphs can also be used in exactly the same way, e.g.
= the half-life is the time it takes the volume of reactant to half.

\section*{Practice Questions}

Q1 Sketch rate-concentration graphs for zero, first and second order reactions.
Q2 How does the half-life change with time in a first order reaction?

\section*{Exam Questions}

Q1 The table shows the results of an experiment on the decomposition of nitrogen \((\mathrm{V})\) oxide at constant temperature.
\[
2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Time \((\mathrm{s})\) & 0 & 50 & 100 & 150 & 200 & 250 & 300 \\
\hline\(\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]\left(\mathrm{mol} \mathrm{dm}^{-3}\right)\) & 2.5 & 1.66 & 1.14 & 0.76 & 0.5 & 0.33 & 0.22 \\
\hline
\end{tabular}
a) Plot a graph of these results.
b) From the graph, find the times for the concentration of \(\mathrm{N}_{2} \mathrm{O}_{5}\) to decrease:
i) to half its original concentration,
ii) from \(2.0 \mathrm{~mol} \mathrm{dm}^{-3}\) to \(1.0 \mathrm{~mol} \mathrm{dm}^{-3}\).
c) Giving a reason, deduce the order of this reaction.

Q2 A student measures the rate for the following reaction.
\[
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}
\]

The rate of reaction is found to be first order with respect to A and second order with respect to B .
a) What would be the change in the rate if the concentration of \(B\) was doubled
[1 mark] and the concentration of A was halved?
b) What is the overall order for the reaction?

\section*{Describe the link between concentration and rate, soldier - that's an order...}

There's quite a lot on this page, graphically speaking. And graphs are always great, easy marks. Just remember labelled axes, accurately plotted points and a smoooooth curve or a smoooooth line of best fit. If you do these things then all the other calculations will become a lot easier. And remember smoooooth - like a freshly licked lollipop.

\section*{The Initial Rates Method}

The initial rate is just what it sounds like－the rate of reaction right at the start of the reaction．They＇re not very imaginative these chemists，but they do love using experiments to calculate the orders of reactions，as you＇ll soon see．．．

\section*{Orders of Reaction can be Worked Out by the Initial Rates Method}

The initial rate of a reaction is the rate right at the start of the reaction．The initial rates method is a technique that lets you use the initial rate of an experiment to work out the orders of reaction．

In general the initial rates method is done by：
1）Carrying out separate experiments using different initial concentrations of one reactant．You should usually only change one of the concentrations at a time，keeping the rest constant．
 E For different techniques for continuous monitoring，have a look at page 180.

2）Then seeing how the change in initial concentrations affects the initial rates and figuring out the order for each reactant．（See page 186 for how to do this．）
You could do this by carrying out experiments using continuous monitoring techniques and drawing concentration－time or volume－time graphs．By calculating the gradient of the tangent at time \(=0\) ，you can find the initial rate． Or，you could carry out a clock reaction．．．

\section*{A Clock Reaction is an Example of the Initial Rates Method}

The method above involves lots of graph drawing and calculations．
Another，simpler，example of an initial rates method is a clock reaction．
1）In a clock reaction，you measure how the time taken for a set amount of product to form changes as you vary the concentration of one of the reactants．
2）As part of a clock reaction，there will be a sudden increase in the concentration of a certain product as a limiting reactant is used up．
3）There＇s usually an easily observable end point，such as a colour change，to tell you when the desired amount of product has formed．

A tanned gent．

4）The quicker the clock reaction finishes，the faster the initial rate of the reaction．
5）When carrying out a clock reaction you need to make the following assumptions：
－The concentration of each reactant doesn＇t change significantly over the time period of your clock reaction．
－The temperature stays constant．
－When the end point is seen，the reaction has not proceeded too far．

\section*{The Iodine Clock Reaction is a Well－Known Clock Reaction}

In an iodine clock reaction，the reaction you＇re monitoring is：
\[
\mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq})}+2 \mathrm{I}_{(\mathrm{aq})}^{-}+2 \mathrm{H}_{(\mathrm{aq})}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{I}_{2(\mathrm{aq)}}
\]

ミl11111111111111111111111111／ E The iodine clock is also known as 三 E the Harcourt－Esson Reaction． シルハ।ハ।

1）A small amount of sodium thiosulfate solution and starch are added to an excess of hydrogen peroxide and iodide ions in acid solution．（Starch is used as an indicator－it turns blue－black in the presence of iodine．）
2）The sodium thiosulfate that is added to the reaction mixture reacts instantaneously with any iodine that forms：
\[
2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}{ }_{(\mathrm{aq})}+\mathrm{I}_{2(\mathrm{aq)}} \rightarrow 2 \mathrm{I}_{(\mathrm{aq})}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}{ }_{(\mathrm{aq})}
\]

3）To begin with，all the iodine that forms in the first reaction is used up straight away in the second reaction． But once all the sodium thiosulfate is used up，any more iodine that forms will stay in solution，so the starch indicator will suddenly turn the solution blue－black．This is the end of the clock reaction．
4）Varying the iodide or hydrogen peroxide concentration，while keeping the others constant，will give different times for the colour change．
5）The time it takes for the reaction to occur along with the concentration of reactants allows you to calculate the initial rate with respect to iodide or hydrogen peroxide．

\section*{The Initial Rates Method}

\section*{Here＇s How to Carry Out the lodine Clock Reaction in the Lab．．．}

To find the order with respect to potassium iodide：
1）Rinse a clean pipette with sulfuric acid．Then，use this pipette to transfer a small amount of sulfuric acid，of known concentration（e．g． \(0.25 \mathrm{~mol} \mathrm{dm}^{-3}\) ），to a clean beaker．This beaker is your reaction vessel．
2）Using a clean pipette or measuring cylinder，add distilled water to the beaker containing the sulfuric acid．
3）Using a dropping pipette，add a few drops of starch solution to the same beaker．
4）Measure a known amount of potassium iodide solution of a known concentration，using either a pipette or a burette，rinsed with potassium iodide solution．Transfer this volume to the reaction vessel．
5）Next，using a pipette rinsed with sodium thiosulfate solution，or a clean measuring cylinder，add sodium thiosulfate to the reaction vessel．Swirl the contents of the beaker so all the solutions are evenly mixed．
6）Finally，rinse a pipette with hydrogen peroxide solution．Then，use the pipette to transfer hydrogen peroxide solution to the reaction vessel while stirring the contents and simultaneously start a stop watch．
7）Continue to stir，and stop the stop watch when the contents of the beaker turn from colourless to blue－black， this marks the end point．Record this time in a results table，along with the quantities of sulfuric acid，water， potassium iodide and sodium thiosulfate solutions you used in that experiment．
8）Repeat the experiment varying the volume of potassium iodide solution．Keep the volume of sulfuric acid， sodium thiosulfate and hydrogen peroxide constant and use varying amounts of distilled water in each experiment so the overall volume of the reaction mixture remains constant．

An approximation of the initial rate at each concentration can be found from the time it took to reach the end point．By comparing these initial rates you can find the reaction order with respect to potassium iodide．

ミ111111111111111111111111111／＝ E An example of how to work out orders of reaction from initial rates data is on page 186.

\section*{The Initial Rate of the lodination of Propanone can be Found by Titrating}

The rate of reaction for the iodine－propanone reaction can be followed by a continuous monitoring titrimetric method．

＝ 11111111111111111111111111111111
A titrimetric method uses titrations to
＝
\(=\)
Find out information about a reaction．
テノ।।।।।।।।।।।।।।।।।ノ।।।।।।।।।।।バ
You can monitor the reaction by taking samples at regular intervals．You first need to stop the reaction in each sample by adding sodium hydrogencarbonate to neutralise the acid．Then titrate each sample against sodium thiosulfate and starch to work out the concentration of the iodine．You＇ll need to carry out the experiment several times and in each experiment change the concentration of just one reactant．

\section*{Practice Questions}

Q1 How do you find the initial rate of reaction from a concentration－time graph？
Q2 Why is sodium hydrogen carbonate added to samples from the reaction between propanone and iodine？

\section*{Exam Questions}

Q1 A student carried out an iodine clock reaction：
\[
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq)}}+2 \mathrm{I}_{(\mathrm{aq})}^{-}+2 \mathrm{H}_{(\mathrm{aq})}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{I}_{2(\mathrm{aq})} \\
& 2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}{ }_{(\mathrm{aq})}+\mathrm{I}_{2(\mathrm{aq})} \rightarrow 2 \mathrm{I}_{(\mathrm{aq})}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}{ }_{(\mathrm{aq})}
\end{aligned}
\]
a）After some time，the starch indicator in solution turns blue－black．State why this change occurs．［1 mark］
b）The amount of sodium thiosulfate added to the reaction mixture was increased．
Explain what change this would have on the time it takes for the colour change to occur．
［1 mark］
Q2 Propanone can be reacted with iodine to form iodopropanone via an acid－catalysed reaction．Describe how you could use titration to investigate how the rate of reaction changes as the concentration of iodine varies．

\section*{The alarm clock reaction－the end point is a broken bedside table．．．}

I know experiments like these might not seem the most exciting in the world．But you＇ve got to learn them．
Besides，once upon a time they were thrilling．People would go crazy for a chemical colour change．Honest．．．

\section*{Rate Equations}

This is when it all gets a bit mathsy. You've just got to take a deep breath and dive in...

\section*{The Rate Equation links Reaction Rate to Reactant Concentrations}

Rate equations look ghastly, but all they really do is tell you how the rate is affected by the concentrations of reactants. For a general reaction: \(\mathbf{A}+\mathbf{B} \rightarrow \mathbf{C}+\mathbf{D}\), the rate equation is:
\begin{tabular}{|c|c|}
\hline Rate \(=k[A]^{m}[B]^{\text {n }}\) & \(\equiv\) The units of rate are三 normally mol \(\mathrm{dm}^{-3} \mathrm{~s}^{-1}\). \\
\hline
\end{tabular}
1) \(k\) is the rate constant - the bigger it is, the faster the reaction.
2) \(\mathbf{m}\) and \(\mathbf{n}\) are the orders of the reaction with respect to reactant \(A\) and reactant \(B\).
\(\mathbf{m}\) tells you how the concentration of reactant \(\mathbf{A}\) affects the rate and \(\mathbf{n}\) tells you the same for reactant \(\mathbf{B}\).
3) The overall order of the reaction is \(\mathbf{m}+\mathbf{n}\).

Example: The chemical equation below shows the acid-catalysed reaction between propanone and iodine.

The rate equation is: rate \(=k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3 \text { (aq) }}\right]^{1}\left[\mathrm{H}^{+}{ }_{\text {(aq) }}\right]^{1}\left[I_{2 \text { (aq) }}\right]^{0}\)
But \([X]^{1}\) is usually written as \([X]\), and \([X]^{0}\) equals 1 so is usually left out of the rate equation.
So you can simplify the rate equation to: rate \(=k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3(\text { aq })}\right]\left[\mathrm{H}^{+}{ }_{\text {(aq) }}\right]\),
ㄴ112
Think about the powers
¿ Spectator ions (ions that don't take part in the chemical
laws from maths.
reaction) are normally not included in rate equations.

\section*{You can use the Initial Rates Method to Work Out Orders of Reaction}
1) By using the initial rates method (see pages 184-185) to collect data about the initial rate of a reaction.
2) By comparing the initial rate of a reaction with varying concentrations of reactants, you can find the orders of reaction for reactants in a reaction.
3) Once you know the chemical equation for a reaction, along with the orders of reaction, you can write the rate equation.

\section*{Example:}

The table on the right shows the results of a series of initial rate experiments for the reaction:
\[
\mathrm{NO}_{(\mathrm{g})}+\mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}
\]

The experiments were carried out at a constant temperature.
Write down the rate equation for the reaction.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
Experiment \\
number
\end{tabular} & \begin{tabular}{c}
{\([\mathrm{NO}]\)} \\
\(\left(\mathrm{mol} \mathrm{dm}^{-3}\right)\)
\end{tabular} & \begin{tabular}{c}
{\([\mathrm{CO}]\)} \\
\(\left(\mathrm{mol} \mathrm{dm}^{-3}\right)\)
\end{tabular} & \begin{tabular}{c}
{\(\left[\mathrm{O}_{2}\right]\)} \\
\(\left(\mathrm{mol} \mathrm{dm}^{-3}\right)\)
\end{tabular} & \begin{tabular}{c}
Initial rate \\
\(\left(\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)\)
\end{tabular} \\
\hline 1 & \(2.0 \times 10^{-2}\) & \(1.0 \times 10^{-2}\) & \(1.0 \times 10^{-2}\) & 0.17 \\
\hline 2 & \(6.0 \times 10^{-2}\) & \(1.0 \times 10^{-2}\) & \(1.0 \times 10^{-2}\) & 1.53 \\
\hline 3 & \(2.0 \times 10^{-2}\) & \(2.0 \times 10^{-2}\) & \(1.0 \times 10^{-2}\) & 0.17 \\
\hline 4 & \(4.0 \times 10^{-2}\) & \(1.0 \times 10^{-2}\) & \(2.0 \times 10^{-2}\) & 0.68 \\
\hline
\end{tabular}
1) Look at experiments 1 and 2 - when [NO] triples (and all the other concentrations stay constant) the rate is nine times faster, and \(9=3^{2}\). So the reaction is second order with respect to NO.
2) Look at experiments 1 and 3 - when [CO] doubles (but all the other concentrations stay constant), the rate stays the same. So the reaction is zero order with respect to CO.
3) Look at experiments 1 and 4 - the rate of experiment 4 is four times faster than experiment 1 . The reaction is second order with respect to [NO], so the rate will quadruple when you double [NO]. But in experiment \(4,\left[\mathrm{O}_{2}\right]\) has also been doubled. As doubling \(\left[\mathrm{O}_{2}\right]\) hasn't had any additional effect on the rate, the reaction must be zero order with respect to \(\mathrm{O}_{2}\).
4) Now that you know the order with respect to each reactant you can write the rate equation: rate \(=k[N O]^{2}\).

\section*{Rate Equations}

\section*{You can Calculate the Rate Constant from the Orders and Rate of Reaction}

Once the rate and the orders of the reaction have been found by experiment, you can work out the rate constant, \(\boldsymbol{k}\). The rate constant is always the same for a certain reaction at a particular temperature - but if you increase the temperature, the rate constant's going to rise too. The units vary, so you have to work them out.
The example below shows you how.
Example: The reaction below was found to be second order with respect to NO and zero order with respect to CO and \(\mathrm{O}_{2}\). The rate is \(1.76 \times 10^{-3} \mathrm{~mol} \mathrm{dm} \mathrm{s}^{-3}\) when \(\left[\mathrm{NO}_{(\mathrm{g}}\right]=\left[\mathrm{CO}_{(\mathrm{g})}\right]=\left[\mathrm{O}_{2(\mathrm{~g})}\right]=2.00 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}\).
\[
\mathrm{NO}_{(\mathrm{g})}+\mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}
\]

Find the value of the rate constant.
First write out the rate equation: \(\quad\) Rate \(=k\left[\mathrm{NO}_{(\mathrm{g})}\right]^{2}\left[\mathrm{CO}_{(\mathrm{g})}\right]^{0}\left[\mathrm{O}_{2(\mathrm{~g})}\right]^{0}=k\left[\mathrm{NO}_{(\mathrm{g})}\right]^{2}\)
Next insert the concentration and the rate. Rearrange the equation and calculate the value of \(\boldsymbol{k}\) :
\[
\text { Rate }=k\left[\mathrm{NO}_{(\mathrm{g})}\right]^{2} \text {, so } 1.76 \times 10^{-3}=k \times\left(2.00 \times 10^{-3}\right)^{2} \longrightarrow k=\frac{1.76 \times 10^{-3}}{\left(2.00 \times 10^{-3}\right)^{2}}=440
\]

Find the units for \(k\) by putting the other units in the rate equation:
\[
\begin{gathered}
\text { Rate }=k\left[\mathrm{NO}_{(\mathrm{g})}\right]^{2}, \text { so } \mathrm{mol} \mathrm{dm} \\
-3 \mathrm{~s}^{-1}=k \times(\mathrm{mol} \mathrm{dm} \\
-3)^{2} \Longrightarrow k=\frac{\mathrm{moldm}}{} \mathrm{moldm}^{-3} \mathrm{~s}^{-1} \\
\left(\mathrm{moldm}^{-1}\right. \\
\text { So the answer is: } \quad k=440 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~m}^{-1}
\end{gathered}
\]

\section*{Practice Questions}

Q1 What does the size of the rate constant tell you about the reaction rate?
Q2 How do you find the overall order for a reaction?
Q3 How does the rate constant change with an increase in temperature?

\section*{Exam Questions}

Q1 The following reaction is second order with respect to NO and first order with respect to \(\mathrm{H}_{2}\).
\[
2 \mathrm{NO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{N}_{2(\mathrm{~g})}
\]
a) Write a rate equation for the reaction and state the overall order of the reaction.
[2 marks]
b) The rate of the reaction at \(800^{\circ} \mathrm{C}\) was determined to be \(0.0027 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\) when \(\left[\mathrm{H}_{2}\right]=0.0020 \mathrm{~mol} \mathrm{dm}^{-3}\) and \([\mathrm{NO}]=0.0040 \mathrm{~mol} \mathrm{dm}^{-3}\).
i) Calculate a value for the rate constant at \(800^{\circ} \mathrm{C}\), including units.
ii) Predict the effect on the rate constant of decreasing the temperature of the reaction to \(600^{\circ} \mathrm{C}\).

Q2 An experiment is carried out with reactants \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\). The initial rates method is used to find the orders of reaction with respect to each reactant. The table to the right shows the results obtained.
a) Give the order with respect to \(\mathrm{X}, \mathrm{Y}\) and Z . Explain your reasoning
[3 marks]
b) Give the initial rate if Experiment 2 was repeated, but the concentration of \(Z\) was tripled.
[1 mark]
c) Write the rate equation for the reaction investigated.
\begin{tabular}{|c|c|c|c|c|}
\hline Experiment & {\([\mathrm{X}]\)} & {\([\mathrm{Y}]\)} & {\([\mathrm{Z}]\)} & Initial rate \(\left(\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)\) \\
\hline 1 & 0.25 & 0.1 & 0.4 & \(1.30 \times 10^{-3}\) \\
\hline 2 & 0.5 & 0.1 & 0.4 & \(1.30 \times 10^{-3}\) \\
\hline 3 & 0.25 & 0.2 & 0.4 & \(5.20 \times 10^{-3}\) \\
\hline 4 & 0.25 & 0.2 & 0.8 & 0.0104 \\
\hline
\end{tabular}
(c)
[1 mark]

\section*{This kinetics joke is so good - it's a gag of the first order...}

Working with rate equations is actually pretty fun when you get the hang of it. No, really. And speaking of things that are fun can I recommend to you flying kites, peeling bananas, making models of your friends out of apples, the literary works of Jan Pieńkowski, counting spots on the carpet, the 1980s, goats, eating all the pies, darts... All fantastic fun.

\section*{The Rate-Determining Step}

You know when you're trying to get out of a room to go to lunch, but it takes ages because not everyone can get through the door at the same time? Well getting through that door is the rate determining step. Talking about lunch...

\section*{The Rate-Determining Step is the Slowest Step in a Multi-Step Reaction}

Reaction mechanisms can have one step or a series of steps.
In a series of steps, each step can have a different rate.
The overall rate is decided by the step with the slowest rate - the rate-determining step.
- Il111111111111111

三 Otherwise known as Z the rate-limiting step. l।111।11111111111। い1111111111111115

\section*{Reactants in the Rate Equation Affect the Rate}

The rate equation is handy for helping you work out the mechanism of a chemical reaction.
You need to be able to pick out which reactants from the chemical equation are involved in the rate-determining step. Here are the rules for doing this:
- If a reactant appears in the rate equation, it must affect the rate. So this reactant, or something derived from it, must be in the rate-determining step.
- If a reactant doesn't appear in the rate equation, then it isn't involved in the rate-determining step (and neither is anything derived from it).
Some important points to remember about rate-determining steps and mechanisms are:

1) The rate-determining step doesn't have to be the first step in a mechanism.
2) The reaction mechanism can't usually be predicted from just the chemical equation.

\section*{You Can Predict the Rate Equation from the Rate-Determining Step...}

The order of a reaction with respect to a reactant shows the number of molecules of that reactant which are involved in or before the rate-determining step.

So, if a reaction's second order with respect to \(X\), there'll be two molecules of \(X\) in the rate-determining step.

Example: The mechanism for the reaction between chlorine free radicals and ozone, \(\mathrm{O}_{3}\), consists of two steps:
\[
\begin{aligned}
& \mathrm{Cl}_{(\mathrm{g})}+\mathrm{O}_{3(\mathrm{~g})} \rightarrow \mathrm{ClO} \cdot{ }_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \text { - slow (rate-determining step) } \\
& \mathrm{ClO}_{(\mathrm{g})}+\mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{Cl}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \text { - fast }
\end{aligned}
\]

Predict the rate equation for this reaction.
\(\mathrm{Cl} \cdot\) and \(\mathrm{O}_{3}\) must both be in the rate equation, so the rate equation is of the form: rate \(=k[\mathrm{Cl} \cdot]^{\mathrm{m}}\left[\mathrm{O}_{3}\right]^{\mathrm{n}}\).
There's only one \(\mathrm{Cl} \cdot\) radical and one \(\mathrm{O}_{3}\) molecule in the rate-determining step,
so the orders, m and n , are both 1 . So the rate equation is rate \(=k[\mathrm{Cl} \cdot]\left[\mathrm{O}_{3}\right]\).

\section*{...And You Can Predict the Mechanism from the Rate Equation}

Knowing exactly which reactants are in the rate-determining step gives you an idea of the reaction mechanism.
For example, here are two possible mechanisms for the reaction: \(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}+\mathrm{OH}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{Br}^{-}\).
(1)

The actual rate equation was worked out by rate experiments:
\[
\text { rate }=k\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]
\]
\(\mathrm{OH}^{-}\)isn't in the rate equation, so it can't be involved in the reaction until after the rate-determining step. So, mechanism 2 is most likely to be correct - there is 1 molecule of \(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\) (and no molecules of \(\mathrm{OH}^{-}\)) in the rate determining step. This agrees with the rate equation.

— slow
 (rate-determining step)

\section*{The Rate-Determining Step}

\section*{Example - Propanone and lodine... again}

You've seen it before and it's back again. The reaction between propanone and iodine, catalysed by hydrogen ions.
The full equation for this reaction is...
\[
\mathrm{CH}_{3} \mathrm{COCH}_{3(\mathrm{aq)}}+\mathrm{I}_{2(\mathrm{aq)}} \xrightarrow{\mathrm{H}^{+}{ }_{(\mathrm{aq})}} \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{I}_{(\mathrm{aq)}}+\mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{I}_{(\mathrm{aq})}^{-}
\]

And the rate equation for the reaction is...
\[
\text { Rate }=k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{H}^{+}\right]
\]

So, using the rules from the previous page, here's what you can say about the reaction -
1) Propanone and \(\mathrm{H}^{+}\)are in the rate equation - so they, or something derived from them, must be in the rate-determining step.
2) lodine is not in the rate equation so it's not involved until after the rate determining step.
3) The order of reaction for both propanone and \(\mathrm{H}^{+}\)is \(\mathbf{1}\) - so the rate-determining step must use \(\mathbf{1}\) molecule of each.
4) \(\mathrm{H}^{+}\)is a catalyst - so it must be regenerated in another step.

And when you put all that together you could come up with a reaction mechanism like this...

\section*{Practice Questions}

Q1 Can catalysts appear in rate equations?
Q2 Knowing the order of reaction is important for suggesting a rate-determining step. Why?
Q3 In the reaction of iodine with propanone, why doesn't iodine appear in the rate equation?

\section*{Exam Questions}

Q1 For the reaction; \(\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{aq})} \rightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(\mathrm{qq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\), the rate equation is:
\[
\text { rate }=k\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{H}^{+}\right]
\]

What can you deduce about the role that \(\mathrm{H}^{+}\)plays in the reaction? Explain your answer.
Q2 Hydrogen reacts with iodine monochloride as in the equation; \(\mathrm{H}_{2(\mathrm{~g})}+2 \mathrm{ICl}_{(\mathrm{g})} \rightarrow \mathrm{I}_{2(\mathrm{~g})}+2 \mathrm{HCl}_{(\mathrm{g})}\). The rate equation for this reaction is: rate \(=k\left[\mathrm{H}_{2}\right][\mathrm{ICl}]\).
a) The mechanism for the reaction consists of two steps.

Identify the molecules that affect the rate-determining step. Justify your answer.
b) A chemist suggested the following mechanism for the reaction:
\[
\begin{array}{ll}
2 \mathrm{ICl}_{(\mathrm{g})} \rightarrow \mathrm{I}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} & \text { slow } \\
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HCl}_{(\mathrm{g})} & \text { fast }
\end{array}
\]

Suggest, with reasons, whether this mechanism is likely to be correct.

\section*{I found rate-determining step aerobics a bit on the slow side...}

These pages show you how rate equations, orders of reaction, and reaction mechanisms all tie together and how each actually means something in the grand scheme of A-Level Chemistry. It's all very profound. So get it all learnt, answer the questions and then you'll have plenty of time to practise the cha-cha-cha for your Strictly Come Dancing routine.

\section*{Halogenoalkanes and Reaction Mechanisms}
'Lean hog on a lake' is an anagram of halogenoalkane. A good thing to know...

\section*{Halogenoalkanes can be Hydrolysed by Hydroxide Ions}

There are three different types of halogenoalkane. They can all be hydrolysed (split) by heating them with sodium hydroxide - but they react using different mechanisms.
In primary halogenoalkanes, the
halogen is joined to a carbon
inth just one alkyl group attached.
Indary
halogen is joined to a carbon
with two alkyl groups attached. \begin{tabular}{c}
In tertiary halogenoalkanes, the \\
halogen is attached to a carbon with \\
three alkyl groups attached.
\end{tabular}

\section*{Halogenoalkanes Undergo Nucleophilic Substitution}

Nucleophilic substitution is when a nucleophile attacks another molecule and is swapped for one of the attached groups.
 Nucleophiles are electron pair donors - they're attracted to positive charge \(\equiv \mathrm{OH}^{-}\)and \(\mathrm{CN}^{-}\)are both nucleophiles.

The carbon-halogen bond in halogenoalkanes is generally polar - most halogens are much more electronegative than carbon, so they draw the electrons towards themselves. The carbon is partially positive, so it's easily attacked by nucleophiles.
\[
\mathrm{C}^{\delta+}-\mathrm{Br}^{\delta-}
\]

1) \(\mathrm{OH}^{-}\)is the nucleophile - it provides a pair of electrons for the \(\mathrm{C}^{\delta+}\).
2) The \(\mathrm{C}-\mathrm{Br}\) bond breaks heterolytically — both electrons from the bond are taken by \(\mathrm{Br}^{\text {. }}\)
3) \(\mathrm{Br}^{-}\)comes away as \(\mathrm{OH}^{-}\)bonds to the carbon.

There are two different types of mechanism for nucleophilic substitution - \(\mathbf{S}_{\mathrm{N}} \mathbf{1}\) and \(\mathbf{S}_{\mathrm{N}} \mathbf{2}\).
\(\mathrm{S}_{\mathrm{N}} 1\) reactions only involve 1 molecule or ion in the rate-determining step.
\(\mathrm{S}_{\mathrm{N}} 2\) reactions involve 2 molecules, 1 molecule and 1 ion, or 2 ions in the rate-determining step.
Primary halogenoalkanes only react by the \(\mathbf{S}_{\mathrm{N}} \mathbf{2}\) mechanism.
Secondary halogenoalkanes can react by both the \(S_{N} 1\) and \(S_{N} 2\) mechanisms.
Tertiary halogenoalkanes only react by the \(\mathbf{S}_{\mathrm{N}} \mathbf{1}\) mechanism.

\section*{The Rate Equation for an \(\boldsymbol{S}_{\mathbf{N}} \mathbf{2}\) Reaction Will Include Both Reactants}

The equation for the reaction of the primary halogenoalkane bromoethane with hydroxide ions is:
\[
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{Br}^{-} \quad \underset{ }{\sum} \text { As there is a single step, a transition state is formed. }
\]

This occurs via an \(\mathrm{S}_{\mathrm{N}} 2\) reaction with a single, rate-determining step.
The rate equation for the reaction is:
\[
\text { rate }=k\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}\right]\left[\mathrm{OH}^{-}\right]
\]

The rate equation shows that the rate is dependent on the concentration of both the reactants and the order with respect to each is 1 . So, one molecule of both \(\mathrm{OH}^{-}\)and \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}\) must be involved in the reaction in (or before) the rate-determining step, which fits with an \(\mathrm{S}_{\mathrm{N}} 2\) mechanism.

\section*{All one step}

\section*{Halogenoalkanes and Reaction Mechanisms}

\section*{The Rate Equation shows Tertiary Halogenoalkanes Use \(\mathbf{S}_{N} 1\)}

The equation for the reaction of the tertiary halogenoalkane 2-bromo-2-methylpropane with hydroxide ions looks similar to the reaction with bromoethane on the previous page:
\[
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}+\mathrm{OH}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{Br}
\]

But the rate equation for this reaction is different: rate \(=k\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]\)
The rate is only dependent on the concentration of the halogenoalkane. So the hydroxide ion is only involved in the reaction after the rate-determining step.

The reaction happens in two steps. In the first step, the halogen leaves the halogenoalkane. The nucleophile is then able to attack in the second step.

\section*{Practice Questions}

Q1 How many alkyl groups are attached to a tertiary halogenoalkane?
Q2 What is the role of the hydroxide ion in the hydrolysis of a halogenoalkane?
Q3 How many molecules/ions are involved in the rate determining step of an \(\mathrm{S}_{\mathrm{N}} 2\) reaction?
Q4 In which step does the nucleophile attack in an \(S_{N} 2\) reaction?

\section*{Exam Questions}

Q1 For the reaction between sodium hydroxide and 1-chloropropane:
\[
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{NaCl}
\]

Predict which one of the following is the correct rate equation.
A Rate \(=k\left[\mathrm{OH}^{-}\right]\)
B Rate \(=k\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right]\)
C Rate \(=k\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right]_{2}\)
D Rate \(=k\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right]\left[\mathrm{OH}^{-}\right]\)

Q2 The following equation shows the hydrolysis of 1-iodobutane by hydroxide ions:
\[
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{I}^{-}
\]
a) Is 1-iodobutane a primary, secondary or tertiary iodoalkane?
b) Write the rate equation for this reaction.
c) What type of mechanism is involved in this reaction?
d) Draw the mechanism of this reaction.

Q3 2-bromo-2-methylpentane is hydrolysed via a reaction with hydroxide ions.
a) Suggest a likely rate equation for the reaction.
b) Draw the mechanism of this reaction and label the rate determining step.

\section*{Way-hay!!! - It's the curly arrows...}

Whenever I talk to someone who's studied chemistry the one thing they've remembered is curly arrows. They have no idea how they work. But they know they exist. The thing is, they don't have an exam, but you do - so make sure you understand where the arrows are coming from and going to. Check back to your Year 1 stuff if you're unsure.

\section*{Activation Energy}

It＇s more maths on this page．But keep going，the end is in sight－even though it＇s over the page．

\section*{Use the Arrhenius Equation to Calculate the Activation Energy}

The Arrhenius equation（nasty－looking thing in the blue box）links the rate constant \((k)\) with activation energy （ \(E_{a^{\prime}}\) the minimum amount of kinetic energy particles need to react）and temperature（ \(T\) ）．This is probably the worst equation there is in A－Level Chemistry．But the good news is，you don＇t have to learn it－you＇ll be given it in the exam if you need it－so you just have to understand what it＇s showing you．Here it is：
\begin{tabular}{|c|c|}
\hline & \[
\begin{aligned}
& k=\text { rate constant } \\
& E_{\mathrm{a}}=\text { activation energy }(\mathrm{J}) \\
& T=\text { temperature }(\mathrm{K}) \\
& \mathrm{R}=\text { gas constant }\left(8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\
& \mathrm{A}=\text { another constant }
\end{aligned}
\] \\
\hline
\end{tabular}

1）As the activation energy，\(E_{a^{\prime}}\) gets bigger，\(k\) gets smaller．So，a large \(\boldsymbol{E}_{\mathrm{a}}\) will mean a slow rate． You can test this out by trying different numbers for \(E_{a}\) in the equation．．．ahh go on，be a devil．
2）The equation also shows that as the temperature rises，\(k\) increases．Try this one out too．

Putting the Arrhenius equation into logarithmic form makes it a bit easier to use．
\[
\ln k=\ln A-\frac{E_{\mathrm{a}}}{R T}=(\text { a constant })-\frac{E_{\mathrm{a}}}{R T}
\]

You can use this equation to create an Arrhenius plot by plotting \(\ln \boldsymbol{k}\) against \(\frac{\mathbf{1}}{\boldsymbol{T}}\) ．
This will produce a graph with a gradient of \(\frac{-\boldsymbol{E}_{\mathbf{a}}}{\boldsymbol{R}}\) ．And once you know the gradient，you can find activation energy．

Example：The graph on the right shows an Arrhenius plot for the decomposition of hydrogen iodide．
Calculate the activation energy for this reaction．
\(\mathrm{R}=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\) ．

The gradient，\(\frac{-E_{a}}{R}=\frac{-15}{0.0008}=-18750\)
So，\(E_{a}=-(-18750 \times 8.31)=155812.5 \mathrm{~J} \mathrm{~mol}^{-1} \approx 156 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
Example：The graph on the right shows an Arkenius plot for

ミ＇1111111111111111111111
There＇s a handy \(1 n^{\prime}\) button
シ on your calculator for this．
シ1111111

\section*{\(\frac{1}{T}\)}
（

\section*{To Calculate the Activation Energy，First Collect and Process the Data．．．}

Here＇s another example of how to work out the activation energy．
\[
\mathrm{S}_{2} \mathrm{O}_{8}^{2-}{ }_{(\mathrm{aq)}}+2 \mathrm{I}_{(\mathrm{aq)}}^{-} \rightarrow 2 \mathrm{SO}_{4}^{2-}{ }_{(\mathrm{aq})}+\mathrm{I}_{2(\mathrm{aq})}
\]

You can use the iodine－clock reaction to monitor when a fixed amount of \(\mathrm{I}_{2}\) has been made．The rate of the reaction is inversely proportional to the time taken（t） for the solution to change colour－a faster rate means a shorter time taken．

So，mathematically speaking，the rate is proportional to \(\mathbf{1} /\) time．This means that \(1 / \mathrm{t}\) can be used instead of \(k\) in the Arrhenius equation，which means you can calculate the activation energy．Hurrah！！
\begin{tabular}{|c|c|c|c|c|}
\hline Time， \(\mathbf{t}(\mathbf{s})\) & Temp， \(\boldsymbol{T}(\mathbf{K})\) & \(\mathbf{1 / t}\left(\mathbf{s}^{\mathbf{- 1}}\right)\) & \(\ln \mathbf{1 / t}\) & \(\mathbf{1 / T}\left(\mathbf{K}^{-1}\right)\) \\
\hline 204 & 303 & 0.0049 & -5.32 & 0.0033 \\
\hline 138 & 308 & 0.0072 & -4.93 & 0.00325 \\
\hline 115 & 312 & 0.0087 & -4.74 & 0.00321 \\
\hline 75 & 318 & 0.0133 & -4.32 & 0.00314 \\
\hline 55 & 323 & 0.0182 & -4.01 & 0.0031 \\
\hline
\end{tabular}

Here＇s some collected data for this reaction at different temperatures．The first two columns show the raw data and the other columns show the data that＇s needed to draw a graph of \(\ln (1 / t)\) against \(1 / T\) （see the next page）．

\section*{Activation Energy}

\section*{Then Draw an Arrhenius Plot to Find \(\mathbf{E}_{\mathbf{a}}\)}

Here's an Arrhenius plot of the data at the bottom of the last page. The graph will always show a straight line, which makes it easy to work out the gradient - and once you know the gradient, you can find \(E_{a}\).
\[
\begin{aligned}
& \text { The gradient of the line }=-6341=\frac{-E_{a}}{\mathrm{R}} \\
& \mathrm{R}=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \text { so... } \\
& E_{\mathrm{a}}=-(-6341 \times 8.31)=52700 \mathrm{~J} \mathrm{~mol}^{-1}=52.7 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \text { - اl1111111111111111111111111111111上 } \\
& \text { = To convert from } \mathrm{J} \mathrm{~mol}^{-1} \text { to } \mathrm{kJ} \mathrm{~mol}^{-1} \text { you }= \\
& \text { = need to divide your answer by } 1000 \text {. }
\end{aligned}
\]

Looking at the gradient, Steve decided the activation energy needed to walk up the mountain was too high.

\section*{Catalysts Lower the Activation Energy of a Reaction}

You can use catalysts to make chemical reactions happen faster. A catalyst increases the rate of a reaction by providing an alternative reaction pathway with a lower activation energy. The catalyst is chemically unchanged at the end of the reaction - they don't get used up. Catalysts can be classified into two different types:
(1) Homogeneous catalysts are in the same state as the reactant. So for example, if the reactants are gases, the catalyst must be a gas too. An example of homogeneous catalysis would be the \(\mathrm{H}^{+}{ }_{\text {aq }}\) catalysis of the iodination of propanone - all reactants are aqueous (dissolved in water).
(2) Heterogeneous catalysts are in a different physical state from the reactants:
 Physical state and phase \(=\)
- Solid heterogeneous catalys provide surfacer ther
- Solid heterogeneous catalysts provide a surface for the reaction to take place on. The catalyst is usually a mesh or a fine powder to increase the surface area.
Alternatively it might be spread over an inert support.
- Heterogeneous catalysts can be easily separated from the products and leftover reactants.
- Heterogeneous catalysts can be poisoned though. A poison is a substance that clings to the catalyst's surface more strongly than the reactant does, preventing the catalyst from getting involved in the reaction it's meant to be speeding up. For instance, sulfur can poison the iron catalyst used in the Haber process.

\section*{Practice Questions}

Q1 The Arrhenius equation can be written as \(\ln k=\) a constant \(-E_{\mathrm{a}} / \mathrm{R} T\). What do the terms \(k, T\) and R represent?
Q2 In an Arrhenius plot, where \(1 / T\) on the \(x\)-axis is plotted against \(\ln k\) on the \(y\)-axis, what will the gradient show?

\section*{Exam Questions}

Q1 The table gives values for the rate constant of the reaction between hydroxide ions and bromoethane at different temperatures
a) Complete the table and then plot a graph of \(\ln k(y\)-axis) against \(1 / T\) (\(x\)-axis).
b) Calculate the gradient of the straight line produced.
c) Using the Arrhenius equation, \(\ln k=\mathrm{a}\) constant \(-E_{\mathrm{a}} / \mathrm{R} T\), calculate the activation energy of the reaction. (\(\mathrm{R}=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\))
[4 marks]
[1 mark]
[2 marks]
\begin{tabular}{|c|c|c|c|}
\hline\(T(\mathrm{~K})\) & \(k\) & \(1 / T\left(\mathrm{~K}^{-1}\right)\) & \(\ln k\) \\
\hline 305 & 0.181 & 0.00328 & -1.709 \\
\hline 313 & 0.468 & & \\
\hline 323 & 1.34 & & \\
\hline 333 & 3.29 & 0.00300 & 1.191 \\
\hline 344 & 10.1 & & \\
\hline 353 & 22.7 & 0.00283 & 3.127 \\
\hline
\end{tabular}

Q2 State the major difference between homogeneous and heterogenous catalysts.
[1 mark]

\section*{Aaaaaaaaggggggggggggghhhhhhhhhhhh...}

The thing to remember here is you'll be given the Arrhenius equation in the exam if you need it. So concentrate on learning how to use it - which bits to put on an Arrhenius plot and what things to calculate to work out the \(E_{\mathrm{a}}\).

\section*{Optical Isomerism}

You know you were crying out for some organic chemistry？Well here you go．．．This time we＇re looking at what the spatial arrangement of atoms can tell us about the molecule．Can you think of anything more exciting？Thought not．．．

\section*{Optical Isomers are Mirror Images of Each Other}

1）Optical isomerism is a type of stereoisomerism．Stereoisomers have the same structural formula，but have their atoms arranged differently in space．
2）A chiral（or asymmetric）carbon atom（known as a chiral centre）is a carbon atom that has four different groups attached to it．It＇s possible to arrange the groups in two different ways around the carbon atom so that two different molecules are made－these molecules are called enantiomers or optical isomers．
3）The enantiomers are mirror images and no matter which way you turn them，they can＇t be superimposed．
4）You have to be able to draw optical isomers． But first you have to identify the chiral centre．． Look for any carbon atoms with four different groups attached．Here it＇s the carbon with the four groups \(\mathrm{H}, \mathrm{OH}, \mathrm{COOH}\) and \(\mathrm{CH}_{3}\) attached．

2）Drawing isomers：
Once you know the chiral centre，draw one enantiomer in a tetrahedral shape．Don＇t try to draw the full structure of each group－it gets confusing．Then draw a mirror image beside it．If there＇s more than one chiral centre，mirror each chiral centre one by one to get all the possible isomers．
＝【1111111111111111111।11।111， ＝Sometimes molecules can have 三三 more than one chiral centre．

 ミ11111111111111111111111111， EIf molecules can be superimposed，玉 they＇re achiral－and there＇s no optical isomerism． シノ1।11।111111111111111111バ

\section*{1）Locating any chiral centres：}

enantiomers of 2－hydroxypropanoic acid

\section*{Optical Isomers Rotate Plane－Polarised Light}

1）Normal light is made up of a range of different wavelengths and vibrates in all directions．
Monochromatic，plane－polarised light has a single wavelength and only vibrates in one direction．
2）Optical isomers are optically active－they rotate the plane of polarisation of plane－polarised monochromatic light．
3）One enantiomer rotates it in a clockwise direction， and the other rotates it in an anticlockwise direction．

Christmas is a time to embrace your choral centre．

\section*{A Racemic Mixture is a Mixture of Both Optical Isomers}

A racemic mixture（or racemate）contains equal quantities of each enantiomer of a chiral compound．
Racemic mixtures don＇t rotate plane polarised light－the two enantiomers cancel each other＇s light－rotating effect． Chemists often react two achiral things together and get a racemic mixture of a chiral product．
This is because when two molecules react there＇s often an equal chance of forming each of the enantiomers． Look at the reaction between butane and chlorine：

A chlorine atom replaces one of the \(\mathbf{H}\) atoms，to give 2－chlorobutane．
Either of the H atoms can be replaced，so the reaction produces a mixture of the two possible enantiomers． Each hydrogen has an equal chance of being replaced，so the two optical isomers are formed in equal amounts．

\section*{Optical Isomerism}

\section*{You Can Use Optical Activity to Work Out a Reaction Mechanism}

Optical activity can give you some insight into how the mechanism of a reaction works. For example, nucleophilic substitution reactions (see page 92) can take place by one of two mechanisms.

\section*{\(S_{N} 1\) mechanism}

ミ゙1111111111111111111111111/
= Have a look at pages
190-191 for a reminder on this.
If it's an \(S_{N} 1\) mechanism and you start with a single enantiomer reactant,
 the product will be a racemic mixture of two optical isomers of each other, so won't rotate plane-polarised light.

In step 1, a group breaks off, leaving a planar (flat) ion.
In step 2, the planar ion can be attacked by a nucleophile from either side - this results in two optical isomers.

\section*{\(S_{N} 2\) mechanism}

In an \(\mathrm{S}_{\mathrm{N}} 2\) mechanism, a single enantiomer reactant produces a single enantiomer product.

There's only one step in this mechanism - the nucleophile always attacks the opposite side to the leaving group, so only one product is produced. The product will rotate plane-polarised light differently to the reactant, the extent and direction of rotation occurs can be measured experimentally.

So if you know the optical activity of the reactant and products, you can sometimes work out the reaction mechanism.

\section*{Practice Questions}

Q1 What is meant by a chiral carbon atom?
Q2 What is a racemic mixture?
Q3 Which nucleophilic substitution reaction mechanism produces a racemic mixture?
Q4 Which nucleophilic substitution reaction mechanism has a single enantiomer as a product?

\section*{Exam Question}

Q1 The molecule 2-bromobutane displays optical isomerism.
a) Draw the structure of 2-bromobutane, and mark the chiral centre of the molecule on the diagram.
[1 mark]
A sample of a single, pure optical isomer of 2-bromobutane is dissolved in an ethanol and water solvent and mixed with dilute sodium hydroxide solution. This mixture is gently heated under reflux and a substitution reaction occurs. The product of the reaction is a racemic mixture of butan-2-ol.
b) Explain why the butan-2-ol solution produced will not rotate plane-polarised light.
c) Has the substitution reaction proceeded via an \(\mathrm{S}_{\mathrm{N}} 1\) mechanism or an \(\mathrm{S}_{\mathrm{N}} 2\) mechanism? Explain your answer.

\section*{Time for some quiet reflection...}

This optical isomer stuff's not all bad - you get to draw pretty little pictures of molecules. If you're having difficulty picturing them as 3D shapes, you could always make some models with matchsticks and some balls of coloured clay.

\section*{Aldehydes and Ketones}

The sun is shining outside，the birds are singing，flowers are in bloom．Alas，you have to stay in and learn about the properties and reactions of organic compounds．．．It＇s tough，but that＇s the life you＇ve chosen，my friend．

\section*{Aldehydes and Ketones Contain a Carbonyl Group}

Aldehydes and ketones are carbonyl compounds
－they contain the carbonyl functional group， \(\mathbf{C = O}\) ．

Aldehydes have their carbonyl group at the end of the carbon chain．
Their names end in－al．

methanal

ジ1111111111111111＝三＇R＇represents a carbon chain of any length． ーハい1।いいいいいいいいい小

Introducing the carbonyl group－ the coolest pop group in the charts．

Ketones have their carbonyl group in the middle of the carbon chain．Their names end in－one，and often have a number to show which carbon the carbonyl group is on．

\section*{Aldehydes and Ketones Don＇t Hydrogen Bond with Themselves．．．}

Aldehydes and ketones don＇t have a polar O－H bond，so they can＇t form hydrogen bonds with other aldehyde or ketone molecules．
This lack of hydrogen bonding means solutions of aldehydes and ketones have lower boiling points than their equivalent alcohols（which can form

 hydrogen bonds because they do have a polar \(\mathrm{O}-\mathrm{H}\) bond）．However，the molecules of aldehydes and ketones still bond with each other through London forces and permanent dipole－permanent dipole bonds．

\section*{．．．But Aldehydes and Ketones can Hydrogen Bond with Water}

1）Although aldehydes and ketones don＇t have polar－ OH groups，they do have a lone pair of electrons on the \(\mathbf{O}\) atom of the \(\mathrm{C}=\mathrm{O}\) group．
2）The oxygen can use its lone pairs to form hydrogen bonds with hydrogen atoms on water molecules．So small aldehydes and ketones will dissolve in water．
3）Large aldehydes and ketones have longer carbon chains which aren＇t able to form hydrogen bonds with water．When larger aldehydes or ketones are mixed with water，these hydrocarbon chains disrupt the hydrogen bonding between the water molecules， but aren＇t able to form hydrogen bonds themselves．
4）So if an aldehyde or ketone is large enough，the intermolecular forces
 （in this case London forces）between the aldehyde or ketone molecules，and the hydrogen bonding between water molecules will be stronger than the hydrogen bonds that could form between the aldehyde／ketone and water．So the compound won＇t dissolve．

\section*{Aldehydes and Ketones}

\section*{There are a Few Ways of Testing for Aldehydes}

Although aldehydes and ketones have similar physical properties, there are tests that let you distinguish between them.
They all work on the idea that an aldehyde can be easily oxidised to a carboxylic acid, but a ketone can't.
As an aldehyde is oxidised, another compound is reduced so a reagent is used that changes colour as it's reduced.

\section*{Tollens' Reagent}

Tollens' reagent is a colourless solution of silver nitrate dissolved in aqueous ammonia.
If it's heated in a test tube with an aldehyde, a silver mirror forms after a few minutes.
\[
\begin{aligned}
& 2 \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }_{(\mathrm{aq})}+\mathrm{RCHO}_{(\mathrm{aq})}+3 \mathrm{OH}_{(\mathrm{aq})}^{-} \rightarrow 2 \mathrm{Ag}_{(\mathrm{s})}+\mathrm{RCOO}_{(\mathrm{aq})}^{-}+4 \mathrm{NH}_{3(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
\]

\section*{Fehling's solution or Benedict's solution}

Fehling's solution is a blue solution of complexed copper(II) ions dissolved in sodium hydroxide.
If it's heated with an aldehyde, the copper(II) ions are reduced to a brick-red precipitate of copper(I) oxide.
\[
\underset{\text { blue }}{\mathrm{Cu}^{2+}} \underset{\text { baq) }}{\text { bluck-red }}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}{ }_{\text {br }} \quad \mathrm{RCHO}_{(\mathrm{aq)}}+2 \mathrm{Cu}^{2+}+5 \mathrm{OH}^{-} \rightarrow \mathrm{RCOO}_{(\text {(aq) }}^{-}+\mathrm{Cu}_{2} \mathrm{O}_{(\mathrm{s})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
\]

Benedict's solution is exactly the same as Fehling's solution except the copper(II) ions are dissolved in sodium carbonate instead. You still get a brick-red precipitate of copper(I) oxide though.

\section*{Acidified dichromate(VI) ions}

If you heat an aldehyde with acidified dichromate(VI) ions, you get a carboxylic acid.
The dichromate(VI) ions are the oxidising agent, [O].
Potassium dichromate(VI) with dilute sulfuric acid is often used. The solution turns orange to green as the dichromate(VI) ions are reduced.
Ketones won't oxidise with acidified dichromate(VI) ions.

\section*{Practice Questions}

Q1 Why do short chain aldehydes and ketones readily dissolve in water?
Q2 Describe how you'd use Tollens' reagent to test for the presence of aldehydes.
Q3 What would you see if you heated Fehling's solution with an aldehyde?
Q4 Describe the colour change seen when an aldehyde is heated with acidified dichromate(VI) ions.

\section*{Exam Question}

Q1 The skeletal formulae of three compounds are shown on the right.
a) Predict which compound has the highest boiling point.
b) Which compound(s) do not form silver precipitates when reacted with Tollens' reagent?
c) Compound \(B\) is heated with potassium dichromate(VI) and dilute sulfuric acid.

No colour changes occur. Explain why.
A

B

\section*{Silver mirror on the wall, who's the most 'aldehydey' of them all...}

Benedict Cumberbatch. What a guy. Unfortunately he's not the Benedict who the solution is named after. Better luck next time Cumberbatch... You don't have to be Sherlock Holmes to know you have to learn the tests for an aldehyde.

\section*{Reactions of Aldehydes and Ketones}

So I bet you were wondering 'I know how to distinguish between aldehydes and ketones and have learnt about their properties but what more reactions can they do?' Well, wonder no more my brave chemistry friend.

\section*{You can Reduce Aldehydes and Ketones Back to Alcohols}

Using a reducing agent \([\mathrm{H}]\) you can:
1) Reduce an aldehyde to a primary alcohol.

2) Reduce a ketone to a secondary alcohol.

For the reducing agent, you could use \(\mathbf{L i A l H}_{4}\) (lithium tetrahydridoaluminate(III) or lithium aluminium hydride) in dry ether - it's a very powerful reducing agent, which reacts violently with water, bursting into flames. Eeek.

\footnotetext{
き 111
These are nucleophilic addition reactions (see below) - the reducing agent supplies an \(\mathrm{H}^{-}\)that acts as a nucleophile and attacks the \(\delta+\) carbon.
}

Mr White went OTT with the \(\mathrm{LiAlH}_{4}\) again...

\section*{Hydrogen Cyanide will React with Carbonyls by Nucleophilic Addition}

Hydrogen cyanide reacts with carbonyl compounds to produce hydroxynitriles
(molecules with a CN and an OH group). It's a nucleophilic addition reaction
- a nucleophile attacks the molecule, and adds itself.

Hydrogen cyanide is a weak acid - it partially dissociates in water to form \(\mathrm{H}^{+}\)and \(\mathrm{CN}^{-}\)ions.
\[
\mathrm{HCN} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CN}^{-}
\]
1) The \(\mathrm{CN}^{-}\)ion attacks the slightly positive carbon atom and donates a pair of electrons to it. Both electrons from the double bond transfer to the oxygen.
2) \(\mathrm{H}^{+}\)(from either hydrogen cyanide or water) bonds to the oxygen to form the hydroxyl group (OH).

Hydrogen cyanide is a highly toxic gas. When this reaction is done in the laboratory, a solution of acidified potassium cyanide is used instead, to reduce the risk. Even so, the reaction should be done in a fume cupboard while wearing a lab coat, gloves and safety glasses.

Information about the optical activity of the hydroxynitrile can provide evidence for the reaction mechanism.

- The groups surrounding the carbonyl carbon in a ketone or aldehyde are planar. The nucleophile (\(\mathrm{CN}^{-}\)ion) can attack it from either side.
- When you react an aldehyde or asymmetric ketone with \(\mathrm{CN}^{-}\), you get a racemic mixture of two optical isomers. This is exactly what you'd expect from the mechanism - the carbonyl group gets attacked equally from each side, producing equal amounts of the two products, which are optical isomers.
- Because the product is present in a racemic mixture, you would expect the product to be optically inactive.

\section*{Reactions of Aldehydes and Ketones}

\section*{2，4－dinitrophenylhydrazine Tests for a Carbonyl Group}

2，4－dinitrophenylhydrazine（ \(2,4-\mathrm{DNPH}\) ）is dissolved in methanol and concentrated sulfuric acid．
The 2，4－dinitrophenylhydrazine reacts to form a bright orange precipitate if a carbonyl group is present．
This only happens with \(\mathbf{C}=\mathbf{O}\) groups，not with more complicated ones like -COOH ，so it only tests for aldehydes and ketones．

\section*{The Melting Point of the Precipitate Identifies the Carbonyl Compound}

The orange precipitate is a derivative of the carbonyl compound which can be purified by recrystallisation．Each different carbonyl compound gives a crystalline derivative with a different melting point．

ミV1111111111111111111111111।111111に玉 For details of how to do a recrystallisation，玉 ミ have a look at page 226. If you measure the melting point of the crystals and compare it to a table of known melting points of the possible derivatives，you can identify the carbonyl compound．

\section*{Some Carbonyls will React with lodine}

Carbonyls that contain a methyl carbonyl group react when heated with iodine in the presence of an alkali．If there＇s a methyl carbonyl group you＇ll get a yellow precipitate of triiodomethane \(\left(\mathrm{CHI}_{3}\right)\) and an antiseptic smell．
\[
\mathrm{RCOCH}_{3}+3 \mathrm{I}_{2}+4 \mathrm{OH}^{-} \rightarrow \mathrm{RCOO}^{-}+\mathrm{CHI}_{3}+3 \mathrm{I}^{-}+3 \mathrm{H}_{2} \mathrm{O}
\]

If something contains a methyl carbonyl group，it must be：

or
A ketone with at least one methyl group．

\section*{Practice Questions}

Q1 What are the reagents and conditions necessary to convert an aldehyde into an alcohol？
Q2 What are the reagents and conditions necessary to convert a carbonyl into a hydroxynitrile？
Q3 Which aldehyde will react with iodine in the presence of an alkali？

\section*{Exam Questions}

Q1 Substance Q reacts to give an orange precipitate with 2，4－dinitrophenylhydrazine．It produces a secondary alcohol when reduced．It reacts with iodine to give a yellow precipitate．The molecular formula of Q is \(\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}\) ．
a）Use the information to draw a possible structure for Q．Explain how each piece of information is useful．［4 marks］
b）Suggest and explain how the precipitate formed when Q reacts with 2，4－DNPH reagent could be used to confirm your suggested structure．
c）Draw the structure of the substance produced when Q reacts with \(\mathrm{LiAlH}_{4}\) in dry ether．
Q2 Propanone and propanal are isomers with the molecular formula \(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\) ．
a）Name the type of reaction that occurs when hydrogen cyanide reacts with carbonyl compounds．
b）Draw：i）the product obtained when hydrogen cyanide reacts with propanone．
ii）the mechanism of the reaction between HCN and propanone．
c）When propanal reacts with HCN the resulting product forms a racemic mixture．Give reasons why．

\section*{Spot the difference．．．}

If you can＇t remember which is aldehyde and which is ketone，this might help－＇a＇comes at one end of the alphabet， so CO is at the end of the molecule，＇\(k\)＇is in the middle of the alphabet，so the CO is in the middle．Just an idea．

\section*{Carboxylic Acids}

Carboxylic acids are more interesting than cardboard boxes－as you＇re about to discover．．．

\section*{Carboxylic Acids Contain－ COOH}

1）Carboxylic acids contain the carboxyl functional group－ COOH ．
2）To name a carboxylic acid，you find and name the longest alkane chain containing the -COOH group，take off the＇ e ＇and add＇－oic acid＇．

ethanoic acid

4－hydroxy－2－methylbutanoic acid

benzoic acid
 －A carboxyl group contains a carbonyl group and a hydroxyl group．

3）The carboxyl group is always at the end of the molecule and when naming it＇s more important than any other functional groups－so all the other functional groups in the molecule are numbered starting from this carbon．
4）Carboxylic acids are weak acids －in water they partially dissociate into carboxylate ions and \(\mathrm{H}^{+}\)ions．
シThis equilibrium lies to the left because most of the molecules don＇t dissociate．

\section*{Carboxylic Acids are Very Soluble}

1）Carboxylic acids molecules can form hydrogen bonds with each other． Because of this，carboxylic acids have relatively high boiling points．
2）The ability to form hydrogen bonds make small carboxylic acids very soluble in water，as they can form H bonds with the water molecules．
3）As with aldehydes and ketones（see page 196），the solubility of carboxylic acids decreases as the length of the carbon chain increases． The hydrocarbon chains can＇t form hydrogen bonds with water but， when mixed with water，disrupt the hydrogen bonds present between
 the water molecules．So，large carboxylic acids don＇t dissolve in water．

In pure，liquid carboxylic acids，dimers can also form．This is when a molecule hydrogen bonds with just one other molecule．This effectively increases the size of the molecule，increasing the intermolecular forces，and so the boiling point．

\section*{Carboxylic Acids Can Be Formed from Alcohols，Aldehydes and Nitriles}

\section*{Oxidation of Primary Alcohols and Aldehydes}
primary alcohol

You can make a carboxylic acid by oxidising a primary alcohol to an aldehyde，and then to a carboxylic acid．Often，acidified potassium dichromate is used \(\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{SO}_{4}\right)\) ．
aldehyde
carboxylic acid

\section*{Hydrolysis of Nitriles}

Carboxylic acids can also be made by hydrolysing a nitrile．You reflux the nitrile with dilute hydrochloric acid， and then distil off the carboxylic acid．
ミ11111111111111111111111111111111111に三 Look back at page 98 for more on distillation．末

\section*{Carboxylic Acids}

\section*{Carboxylic Acids React with Bases to Form Salts}
1) Carboxylic acids are neutralised by aqueous bases (alkalis) to form salts and water.
\[
\underset{\substack{\mathrm{CH}_{3} \mathrm{COOH} \\ \text { ethanoic acid }}}{\mathrm{CHOH}_{\text {sodium ethanoate }}} \rightarrow \underset{\substack{\mathrm{CH}_{3} \mathrm{COONa} \\ \text { soli }}}{\mathrm{H}_{2} \mathrm{O}}
\]
2) Carboxylic acids react with carbonates \(\left(\mathrm{CO}_{3}{ }^{2-}\right)\) or hydrogencarbonates \(\left(\mathrm{HCO}_{3}{ }^{-}\right)\) to form a salt, carbon dioxide and water.

い1111111111111111111111/, In these reactions, carbon dioxide fizzes out of the solution. This can be used as a test for carboxylic acids.
\[
\begin{aligned}
2 \mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})} & +\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{~s})}
\end{aligned} \rightarrow \underset{2 \mathrm{CH}_{3} \mathrm{COONa}_{(\mathrm{aq)}}}{ }+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})}
\]

\section*{Other Reactions You'll Need to Know}

It's quite hard to reduce a carboxylic acid, so you have to use a powerful reducing agent like \(\mathrm{LiAlH}_{4}\) in dry ether.
It reduces the carboxylic acid right down to an alcohol in one go - you can't get the reduction to stop at the aldehyde.

Mix a carboxylic acid with phosphorus(V) chloride (Phosphorous pentachloride) and you'll get an acyl chloride.

\section*{Practice Questions}

Q1 Draw the structure of ethanoic acid.
Q2 Explain the relatively high boiling points of carboxylic acids.
Q3 Describe two ways of preparing carboxylic acids.
Q4 How can you make an acyl chloride from a carboxylic acid?

\section*{Exam Questions}

Q1 A student is carrying out an experiment to synthesise propanoic acid from propan-1-ol.
a) Describe how the student could make propanoic acid from propan-1-ol.
b) The student wants to know whether the synthesis has been successful.

Describe a simple test tube reaction to distinguish between propan-1-ol and propanoic acid.
Give the reagent(s) and state the observations expected.
Q2 Methanoic acid, \(\mathrm{H}_{2} \mathrm{COOH}\), and pentanoic acid, \(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOH}\), are carboxylic acids.
a) Draw the structures of both compounds.
b) Explain why methanoic acid is more soluble in water than pentanoic acid.
c) Write a balanced equation for the reaction of 2-ethylpentanoic acid with phosphorous(V) chloride.

\section*{Alright, so maybe cardboard boxes do have the edge after all...}

So a few new reactions for you to get your head around here. When you think about it though, the reactions with bases and carbonates are just the same as they would be for any old acid. Also, learning the last section on forming acyl chlorides will be really useful for when we get on to their reactions later on. You'll have to wait for that treat though.

\section*{Esters}

Time to embrace another functional group．You＇ll like this one，some of the compounds smell of fruit．

\section*{Esters have the Functional Group－COO－}

The name of an ester is made up of two parts－the first bit comes from the alcohol，and the second bit from the carboxylic acid．

1）Look at the alkyl group that came from the alcohol．This is the first bit of the ester＇s name．

This is an ethyl group．

2）Now look at the part that came from the carboxylic acid．Swap its＇－oic acid＇ending for＇－oate＇to get the second bit of the name．

This came from ethanoic acid， so it is an ethanoate．

3）Put the two parts together． It＇s ethyl ethanoate \(\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\)

ミ111111111111111111111111111
ミThe name＇s written the opposite \(=\)
E way round from the formula．三

This goes for molecules with benzene rings too．If you react methanol with benzoic acid， and you get methyl benzoate， \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOCH}_{3}\) ．

If either of the carbon chains is branched you need to name the attached groups too．For an ester，number the carbons starting from the C atoms in the \(\mathrm{C}-\mathrm{O}-\mathrm{C}\) bond．

ethyl 2－methylbutanoate
\(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{COOCH}_{2} \mathrm{CH}_{3}\)

1－methylpropyl methanoate \(\mathrm{HCOOCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}\)

\section*{Esters can be Made From Alcohols and Carboxylic Acids}

1）If you heat a carboxylic acid with an alcohol in the presence of an acid catalyst，such as concentrated \(\mathrm{H}_{2} \mathrm{SO}_{4}\) or HCl ，you get an ester．The reaction is called esterification．
2）For example，to make ethyl ethanoate you reflux ethanoic acid with ethanol and concentrated sulfuric acid as the catalyst：N11111111111111111111111111111／
 You do this by distillation，collecting the liquid that comes off just below \(80^{\circ} \mathrm{C}\) ．
4）The product is then mixed with sodium carbonate solution to react with any carboxylic acid that might have snuck in．The ethyl ethanoate forms a layer on the top of the aqueous layer and can be easily separated using a separating funnel．
5）Ethyl ethanoate is often used as a solvent in chromatography and as a pineapple flavouring．

\section*{Esters can be Broken Up in Hydrolysis Reactions}

\section*{Acid Hydrolysis}

Acid hydrolysis splits the ester into an acid and an alcohol －it＇s just the reverse of the condensation reaction above． You have to reflux the ester with a dilute acid，such as hydrochloric or sulfuric．For example：

ethyl ethanoate
\l11111111111111111111111111／， As it＇s a reversible reaction，you need to use lots of water to push the equilibrium over to the right．
 \(+\mathrm{H}_{2} \mathrm{O}\)

ethanoic acid

ethanol

\section*{Esters}

\section*{Base Hydrolysis}

This time you have to reflux the ester with a dilute alkali, such as sodium hydroxide. You get a carboxylate ion and an alcohol. This reaction is irreversible For example:

ethyl ethanoate

ethanoate

ethanol

\section*{Polyesters Contain lots of Ester Links}
1) Diols contain two - OH functional groups and dicarboxylic acids contain \(2-\mathrm{COOH}\) functional groups.
2) Dicarboxylic acids and diols can react together to form long ester chains, called polyesters.

This reaction is known as a condensation polymerisation reaction.

Jeremy didn't know the chemistry behind his outfit - he just knew he looked good.

Example: Terylene \({ }^{\mathrm{TM}}\) (PET) — formed from benzene-1,4-dicarboxylic acid and ethane-1,2-diol.

Polyester fibres are strong, flexible and abrasion-resistant. Terylene \({ }^{\text {TM }}\) is used in clothes to keep them crease-free and make them last longer. Polyesters are also used in carpets. You can treat polyesters (by stretching and heat-treating them) to make them stronger. Treated Terylene \({ }^{T M}\) is used to make fizzy drink bottles and food containers.

\section*{Practice Questions}

Q1 Draw the structure of ethyl ethanoate.
Q2 Suggest the reactants necessary to form ethyl ethanoate via an esterification reaction.
Q3 Name the products formed when ethyl ethanoate undergoes acid hydrolysis.

\section*{Exam Questions}

Q1 Compound C, shown on the right, is found in raspberries.
a) Name compound C.
b) Draw and name the structures of the products formed when compound C is refluxed with dilute sulfuric acid. What kind of reaction is this?

[1 mark]
[5 marks]
Q2 1-methylethyl methanoate is an ester.
a) Draw the structure of this ester.
[1 mark]
b) Write an equation to show the formation of this ester from a suitable acid and an alcohol.
[3 marks]
c) Name the type of reaction that is taking place to form this ester.
[1 mark]

\section*{Carboxylic acid + alcohol produces ester - well, that's life...}

Those two ways of hydrolysing esters are just similar enough that it's easy to get in a muddle. Remember - hydrolysis in acidic conditions is reversible, and you get a carboxylic acid as well as an alcohol. Hydrolysis with a base is a one way reaction that gives you an alcohol and a carboxylate ion. Now we've got that sorted, I think it's time for a cuppa.

\section*{Acyl Chlorides}

Told you we＇d get on to acyl chlorides later．Can you imagine a better way to end the topic？OK，maybe ice cream．．．

\section*{Acyl Chlorides have the Functional Group－COCI}

Acyl（or acid）chlorides have the functional group \(\mathbf{C O C l}\)－their general formula is \(\mathbf{C}_{n} \mathbf{H}_{2 n-1} \mathbf{O C l}\) ．
All their names end in＇－oyl chloride＇．

\section*{Acyl Chlorides Easily Lose Their Chlorine}

Acyl chlorides react with．．．
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{A vigorous reaction with cold water， producing a carboxylic acid．} \\
\hline \begin{tabular}{l}
 \\
ethanoyl chloride
\end{tabular} & ethanoic acid \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{．．．CONCENTRATED \\ AMMONIA}

A violent reaction at room temperature，producing an amide．

ミ1111111111111111111111111111111， This irreversible reaction is a much easier，faster way to produce an
E／1 ester than esterification．ミ

\section*{Practice Questions}

Each time， \(\mathbf{C l}\) is substituted by an oxygen or nitrogen group and hydrogen chloride fumes are given off．

Q1 What is the organic product produced when cold water and an acyl chloride react together？
Q2 Name the products when an acyl chloride and an alcohol react．
Q3 Give the reagent（s）required to form an amide from an acyl chloride．

\section*{Exam Question}

Q1 2－methylbutanoyl chloride is an acyl chloride．
a）Draw the structure of 2－methylbutanoyl chloride．
b）2－methylbutanoyl chloride is reacted with compound X to give N －propyl 2－methylbutanamide．
i）Give the structure of compound X ．
［1 mark］
ii）Write a balance equation for the reaction．

\section*{Learn this page and you can become a real ace at acyl chloride reactions．．．}

Acyl chlorides love to react．I just stared at one once，and it lost it＇s chlorine right there and then．．．You might find it useful to learn the structure of the functional group and get to grips with their various reactions．And when I say useful， I mean really very important．Better get to it．Once you＇re done，congratulate yourself on finishing the topic unscathed．

\section*{Aromatic Compounds}

We begin this topic with a fantastical tale about the discovery of the magical rings of Benzene.
Our story opens in a shire where four hobbits are getting up to mischief... Actually no, that's something else...

\section*{Benzene has a Ring Of Carbon Atoms}

Benzene has the formula \(\mathbf{C}_{6} \mathbf{H}_{6}\). It has a cyclic structure, with its six carbon atoms joined together in a ring. There are two ways of representing it - the Kekulé model and the delocalised model.

\section*{The Kekulé Model Came First}
1) In 1865, the German chemist Friedrich August Kekulé proposed that benzene was made up of a planar (flat) ring of carbon atoms with alternating single and double bonds between them.
2) In Kekulés model, each carbon atom is also bonded to one hydrogen atom.
3) He later adapted the model to say that the benzene molecule was constantly flipping between two forms (isomers) by switching over the double and single bonds:

4) If the Kekulé model was correct, you'd expect benzene to have three bonds with the length of a \(\mathbf{C}-\mathbf{C}\) bond (154 pm) and three bonds with the length of a \(\mathbf{C}=\mathbf{C}\) bond (134 pm).
5) However \(\mathbf{X}\)-ray diffraction studies have shown that all the carbon-carbon bonds in benzene have the same length of 140 pm - i.e. they're between the length of a single bond and a double bond. So the Kekulé structure can't be completely right...

\section*{The Delocalised Model Replaced Kekulé's Model}

The bond-length observations are explained by a different model — the delocalised model.
1) In the delocalised model, each carbon atom forms three \(\sigma\)-bonds - one to a hydrogen atom, and one to each of its neighbouring carbon atoms. These bonds form due to head-on overlap of their atomic orbitals.
2) Each carbon atom then has one remaining p-orbital, containing one electron, which sticks out above and below the plane of the ring. These p-orbitals on each of the carbon atoms overlap sideways to form a ring of \(\pi\)-bonds that are delocalised around the carbon ring.
3) The delocalised \(\pi\)-bonds are made up of two ring-shaped clouds of electrons - one above and one below the plane of the six carbon atoms.
4) All the bonds in the ring are the same - so, they're all the same length.

5) The electrons in the rings are said to be delocalised because they don't belong to a specific carbon atom. They are represented as a circle inside the ring of carbons rather than as double or single bonds.

Gary woke up after the stag party to find himself in a delocalised orbit.

\section*{Aromatic Compounds}

\section*{Enthalpy Changes of Hydrogenation Give More Evidence for Delocalisation}
1) If you react an alkene with hydrogen gas, two atoms of hydrogen add across the double bond. This is called hydrogenation, and the enthalpy change of the reaction is the enthalpy change of hydrogenation.
2) Cyclohexene has one double bond. When it's hydrogenated, the enthalpy change is \(\mathbf{- 1 2 0} \mathbf{k J ~ m o l}^{\mathbf{- 1}}\). If benzene had three double bonds (as in the Kekule structure), you'd expect the enthalpy of hydrogenation to be (\(3 \times 120=\)) \(\mathbf{- 3 6 0} \mathbf{~ k J ~ m o l}^{\mathbf{- 1}}\).
3) But the experimental enthalpy of hydrogenation of benzene is \(\mathbf{- 2 0 8} \mathbf{~ k J ~ m o l}^{\mathbf{- 1}}\) - far less exothermic than expected.
4) Energy is put in to break bonds and released when bonds are made. So more energy must have been put in to break the bonds in benzene than would be needed to break the bonds in the Kekulé structure.

5) This difference indicates that benzene is more stable than the Kekulé structure would be. Benzene's resistance to reaction (see below) gives more evidence for it being more stable than the Kekulé structure suggests. The extra stability is thought to be due to the delocalised ring of electrons.

\section*{Alkenes usually like Addition Reactions, but Not Benzene}
1) Alkenes react easily with bromine water at room temperature.

This decolourises the brown bromine water. It's an electrophilic addition reaction - the bromine atoms are added across the double bond of the alkene (see page 86).

For example:

2) If the Kekule structure were correct, you'd expect a similar reaction between benzene and bromine. In fact, to make it happen you need hot benzene and ultraviolet light - and it's still a real struggle.
3) This difference between benzene and other alkenes is explained by the delocalised \(\pi\)-bonds in benzene. They spread out the negative charge and make the benzene ring very stable.
So benzene is unwilling to undergo addition reactions which would destroy the stable ring.
The reluctance of benzene to undergo addition reactions is more evidence supporting the delocalised model.
4) Also, in alkenes, the \(\pi\)-bond in the \(C=C\) double bond is an area of localised high electron density which strongly attracts electrophiles. In benzene, this attraction is reduced due to the negative charge being spread out.
5) So benzene prefers to react by electrophilic substitution (see pages 208-210).

\section*{Benzene Burns with a Smoky Flame}

Benzene is a hydrocarbon, so it burns in oxygen to give carbon dioxide and water:
\[
2 \mathrm{C}_{6} \mathrm{H}_{6}+15 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
\]

If you burn benzene in air, you get a very smoky flame - there's too little oxygen to burn the benzene completely. A lot of the carbon atoms stay as carbon and form particles of soot in the hot gas - making the flame smoke.

Ben didn't just think he was hot... He thought he was smoking hot.

\section*{Aromatic Compounds}

\section*{Aromatic Compounds are Derived from Benzene}
1) Compounds containing a benzene ring are called arenes or 'aromatic compounds'. There are two ways of naming arenes, but there's no easy rule to know which name to give them. Here are some examples:

chlorobenzene

nitrobenzene

1,3-dimethylbenzene
...others are named as compounds with a phenyl group \(\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\) attached.

phenol

phenylamine
2) If there's more than one functional group attached to the benzene ring you have to number the carbons to show where the groups are.
- If all the functional groups are the same, pick the group to start from that gives the smallest numbers when you count round.
- If the functional groups are different, start from whichever functional group gives the molecule its suffix (e.g. the -OH group for a phenol) and continue counting round the way that gives the smallest numbers.

\section*{Practice Questions}

Q1 Draw the Kekule and delocalised models of benzene.
Q2 Write an equation for the combustion of benzene in excess oxygen.

\section*{Exam Questions}

Q1 When cyclohexene reacts with hydrogen, one mole of \(\mathrm{H}_{2}\) adds across the double bond in one mole of cyclohexene. 120 kJ of energy is released.

Use the structures of the following molecules, along with the information above, to answer the following questions:

a) i) Predict the number of moles of \(\mathrm{H}_{2}\) that one mole of cyclohexa-1,3-diene will react with.
ii) Predict how much energy will be released during this reaction.
b) Look at the Kekule structure for benzene. Explain why this model would lead to the prediction that 360 kJ of energy would be released during the reaction between benzene and \(\mathrm{H}_{2}\).
c) One mole of benzene actually releases 208 kJ of energy when it reacts with hydrogen. Suggest how the delocalised model of benzene explains the difference between this number and the prediction of 360 kJ based on the Kekulé structure.
d) By referring to the structure and reactivity of benzene, outline two further pieces of evidence which support the delocalised structure as a better representation of benzene than the Kekulé structure.

Q2 A student takes two test tubes, each containing bromine water. He adds cyclohexene to one of the test tubes and benzene to the other. Describe and explain what the student will see.

\section*{Everyone needs a bit of stability in their life...}

The structure of benzene is bizarre - even top scientists struggled to find out what its molecular structure looked like. Make sure you can draw all the different representations of benzene given on these pages, including the ones showing the Cs and Hs. Yes, and don't forget there's a hydrogen at every point on the ring - it's easy to forget they're there.

\section*{Electrophilic Substitution Reactions}

Benzene is an alkene but it often doesn＇t behave like one－whenever this is the case，you can pretty much guarantee that our kooky friend Mr Delocalised Electron Ring is up to his old tricks again．．．

\section*{Arenes Undergo Electrophilic Substitution Reactions}

1）As you saw on page 206，benzene doesn＇t undergo electrophilic addition reactions as alkenes do．This is because addition reactions would break the very stable ring of delocalised \(\pi\)－bonds．
2）Instead，benzene takes part in electrophilic substitution reactions．
【リ1111111111111111111， Electrophiles are positively charged ions，or polar molecules，that are attracted to areas of negative charge． テノ।।।।।।।।।।ノ।।।।।।।।lハ

3）In these reactions，a hydrogen atom in benzene is substituted by an electrophile．
4）The mechanism has two steps－addition of the electrophile to form a positively charged intermediate， followed by loss of \(\mathbf{H}^{+}\)from the carbon atom attached to the electrophile．This reforms the delocalised ring．

\section*{Halogen Carriers Help to Make Good Electrophiles}

1）The delocalised \(\pi\)－bonds in benzene means that the charge density is spread out across the ring． This means that an electrophile has to have a pretty strong positive charge to be able to attack the benzene ring．Most compounds just aren＇t polarised enough－but some can be made into stronger electrophiles using a catalyst called a halogen carrier．
2）A halogen carrier accepts a lone pair of electrons from a halogen atom on an electrophile． As the lone pair of electrons is pulled away，the polarisation in the molecule increases and sometimes a carbocation forms．This makes the electrophile stronger．

Although \(\mathrm{R}^{+}\)gets shown as a free ion，it probably remains associated with \(\mathrm{AlCl}_{4}^{-}-\) this doesn＇t affect how \(\mathrm{R}^{+}\)reacts though．
 Halogen carriers can increase how electrophilic（how strongly something reacts as an electrophile）halogens，acyl chlorides and halogenoalkanes are．
シハ1।1111111।1111।

3）Halogen carriers include aluminium halides，iron halides and iron．

\section*{Halogen Carriers Help Halogens Substitute into the Benzene Ring}

1）Benzene will react with halogens（e．g． \(\mathrm{Br}_{2}\) ）at room temperature in the presence of a halogen carrier catalyst，e．g iron（III）bromide， \(\mathrm{FeBr}_{3}\) ．
2）The catalyst polarises the halogen，allowing one of the halogen atoms to act as an electrophile．
3）During the reaction，a halogen atom is substituted in place of a H atom－this is called halogenation．

\section*{Electrophilic Substitution Reactions}

\section*{Friedel-Crafts Reactions Form C-C Bonds}

Friedel-Crafts reactions are really useful for forming C-C bonds in organic synthesis. They are carried out by refluxing benzene with a halogen carrier and either a halogenoalkane or an acyl chloride. There are two types:

\section*{Friedel-Crafts Alkylation Puts an Alkyl Group on Benzene}

Friedel-Crafts alkylation puts any alkyl group onto a benzene ring using a halogenoalkane and a halogen carrier. The general reaction is:
\[
\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{R}-\mathrm{X} \xrightarrow[\text { Reflux }]{\mathrm{AlCl}_{3}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{R}+\mathrm{HX}
\]

Here's how the mechanism for the reaction works, using a chloroalkane and \(\mathrm{AlCl}_{3}\) as an example:
A carbocation is formed from the chloroalkane and \(\mathrm{AlCl}_{3}\).

The carbocation then reacts with benzene via electrophilic substitution:

1) The carbocation is the electrophile. It attracts the electrons in the delocalised ring to form a new C-C bond. The delocalised ring of electrons is broken and an unstable intermediate forms.

2) \(\mathrm{AlCl}_{4}^{-}\)reacts with the unstable intermediate to remove a hydrogen ion and the delocalised ring is reformed. An alkylbenzene and hydrogen chloride are made and the \(\mathrm{AlCl}_{3}\) catalyst is regenerated.

Friedel-Crafts alkylation can also occur with other electrophiles.
Electrophiles that are made up of alkyl chains containing \(\mathrm{OAICl}_{3}^{-}\)groups can be added to benzene rings to create alcohols.
Because the oxygen in the alkyl chain has a
lone pair of electrons, it can act as a nucleophile.

\section*{Friedel-Crafts Acylation Produces Phenylketones}

Friedel-Crafts acylation substitutes an acyl group for an H atom on benzene. You have to reflux benzene with an acyl chloride instead of a halogenoalkane. This produces phenylketones (unless \(\mathrm{R}=\mathrm{H}\), in which case an aldehyde called benzenecarbaldehyde, or benzaldehyde, is formed). The reactants need to be heated under reflux in a non-aqueous solvent (like dry ether) for the reaction to occur.

ミ The mechanism for this is the same as for
E The general reaction is: \(\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{RCOCl} \underset{\text { Reflux }}{\mathrm{AlCl}_{3}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COR}+\mathrm{HCl}\) the formation of a carbocation in Friedel-Crafts alkylation, except with an acyl chloride instead of a halogenoalkane.

Again, the carbocation is formed from the acyl chloride and \(\mathrm{AlCl}_{3}: \quad \mathrm{CH}_{3} \mathrm{COCl}+\mathrm{AlCl}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CO}^{+}+\mathrm{AlCl}_{4}^{-}\)

1) Electrons in the benzene ring are attracted to the positively charged carbocation. Two electrons from the benzene bond with the carbocation. This partially breaks the delocalised ring and gives it a positive charge.

2) The negatively charged \(\mathrm{AlCl}_{4}^{-}\)ion is attracted to the positively charged ring. One chloride ion breaks away from the aluminium chloride ion and bonds with the hydrogen ion. This removes the hydrogen from the ring forming HCl . It also reforms the catalyst.

\section*{Electrophilic Substitution Reactions}

\section*{Nitric Acid Acts as an Electrophile with a Sulfuric Acid Catalyst}

When you warm benzene with concentrated nitric acid and concentrated sulfuric acid, you get a nitration reaction and nitrobenzene is formed.
Sulfuric acid is a catalyst - it helps make the nitronium ion, \(\mathrm{NO}_{2}{ }^{+}\), which is the electrophile:
\[
\begin{aligned}
& \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{NO}_{3}^{+}+\mathrm{HSO}_{4}^{-} \\
& \mathrm{H}_{2} \mathrm{NO}_{3}^{+} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
\]

The \(\mathrm{NO}_{2}{ }^{+}\)electrophile then reacts with the benzene ring to form nitrobenzene:

If you only want one \(\mathrm{NO}_{2}\) group added (mononitration), you need to keep the temperature below \(\mathbf{5 5}{ }^{\circ} \mathbf{C}\).
Above this temperature you'll get lots of substitutions.

\section*{Practice Questions}

Q1 What type of reaction does benzene tend to undergo?
Q2 Describe the role of a halogen carrier in electrophilic substitution reactions.
Q3 Name two substances that are used as halogen carriers in substitution reactions of benzene.
Q4 Describe two ways of making C-C bonds with benzene.
Q5 What type of compounds are normally formed in Friedel-Crafts acylation reactions?
Q6 Which two acids are used in the production of nitrobenzene?

\section*{Exam Questions}

Q1 Two electrophilic substitution reactions of benzene are summarised in the diagram below:

a) i) Name product \(A\), the reagents B and C, and give the conditions, D.
ii) Write equations to show the formation of the electrophile in this reaction.
iii) Outline a mechanism for the reaction of benzene with the electrophile formed in ii).
b) i) Name product J .
ii) Name reagents E and F, and give the conditions, G, needed in the reaction to make J.

Q2 A halogen carrier, such as \(\mathrm{AlCl}_{3}\), is used as a catalyst in the reaction between benzene and ethanoyl chloride.
a) Describe the conditions needed for this reaction.
b) Explain why the halogen carrier is needed as a catalyst for this reaction to occur.
c) Draw the structure of the electrophile that attacks the benzene ring.

\section*{Shhhh... Don't disturb The Ring...}

Benzene really likes Mr Delocalised Electron Ring and it won't give him up for nobody, at least not without one heck of a fight. It'd much rather get tangled up in an electrophilic substitution reaction. I mean, those hydrogen atoms weren't good for much anyway, so it's not as if anyone's going to miss them. Anything not to bother The Ring.

\section*{Phenols}

Phenols are like benzene，but they have a hydroxyl group on the benzene ring．This changes their reactivity．

\section*{Phenols Have Benzene Rings with－OH Groups Attached}

Phenol has the formula \(\mathbf{C}_{6} \mathbf{H}_{5} \mathbf{O H}\) ．
Other phenol derivatives have various groups attached to the benzene ring：

\author{

}

\section*{Phenol is More Reactive than Benzene}

1）The -OH group means that phenol is more likely to undergo electrophilic substitution than benzene．
2）One of the lone pairs of electrons in a p－orbital of the oxygen atom overlaps with the delocalised \(\pi\)－bonds in the benzene ring．
3）So the lone pair of electrons from the oxygen atom is partially delocalised into the \(\pi\)－system．

4）This increases the electron density of the ring，making it more likely to be attacked by electrophiles．
Phenol is more reactive than benzene，so if you shake phenol with orange bromine water，it will react，decolourising it． The -OH group makes the ring very attractive to electrophiles， so substitution happens more than once．The product is called 2，4，6－tribromophenol－it＇s insoluble in water and precipitates out of the mixture．It smells of antiseptic．

\section*{You Can Synthesise Aspirin From Salicylic Acid}

The－ OH group in phenol can take part in esterification reactions，like an alcohol．For example， aspirin can be synthesised by an esterification reaction of salicylic acid（a phenol derivative）．

ふll।11।11।11।111， Ethanoic anhydride reacts a bit like an acyl chloride，but it＇s cheaper and safer．

salicylic acid
ethanoic anhydride
ミا1111111111111111111111111111111111二
－See page 202 for more on esterification．

\section*{Practice Questions}

Q1 What is the formula and structure of phenol？
Q2 Write a balanced equation for the reaction between phenol and bromine \(\left(\mathrm{Br}_{2}\right)\) ．

\section*{Exam Question}

Q1 a）Bromine water can be used to distinguish between benzene and phenol．
Describe what you would observe in each case and name any products formed．
b）Explain why phenol reacts differently from benzene．
c）Name the type of reaction that occurs between phenol and bromine．

\section*{Phenol Destination 4 －more compounds，more equations，more horror．．．}

The electrophilic substitution reactions of phenol are all pretty similar to benzene－phenol＇s just more reactive so the reaction conditions can be a bit milder．Make sure you can explain why phenol is more reactive than benzene．

\section*{Amines}

Another type of organic compound coming up．Amines all contain nitrogen．Luckily，they＇re not as mean as they sound．

\section*{Amines are Organic Derivatives of Ammonia}

If one or more of the hydrogens in ammonia \(\left(\mathrm{NH}_{3}\right)\) is replaced with an organic group，you get an amine．
Amines have the functional group－ \(\mathbf{N R}_{\mathbf{2}}\) where R is an alkyl group or \(\mathbf{H}\) ．
Amines can be primary，secondary or tertiary depending on how many alkyl groups the nitrogen atom is bonded to． If the nitrogen atom is bonded to four alkyl groups，you get a positively charged quaternary ammonium ion．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
 \\
methylamine （primary amine）
\end{tabular} & \begin{tabular}{l}
 \\
dimethylamine \\
（secondary amine）
\end{tabular} & \begin{tabular}{l}
 \\
trimethylamine \\
（tertiary amine） \\
ic amines
\end{tabular} & \begin{tabular}{l}
 \\
tetramethylamine ion （quaternary ammonium ion）
\end{tabular} & \begin{tabular}{l}
 \\
phenylamine （primary amine）
\(\qquad\) aromatic amine
\end{tabular} & \\
\hline
\end{tabular}

\section*{Aliphatic Amines Can Be Made From Halogenoalkanes．．．}

Amines can be made by heating a halogenoalkane with an excess of ethanolic ammonia．

The problem with this method is that you＇ll get a mixture of primary，secondary and tertiary amines， and quaternary ammonium salts．This is because the nitrogen atom in primary，secondary and tertiary amines has a lone pair of electrons，meaning it can act as a nucleophile．It can therefore take part in nucleophilic substitution reactions with any halogenoalkane in the reaction mixture（see page 214）， which causes more substituted amines to be produced，where more than one hydrogen is replaced．

\section*{．．．Or By Reducing a Nitrile}

You can reduce a nitrile to a primary amine by a number of different methods：
1）You can use lithium aluminium hydride（ \(\mathbf{L i A l H}_{4}\)－a strong reducing agent） in a non－aqueous solvent（such as dry ether），followed by some dilute acid．

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{リ111ノ।1ノ।} \\
\hline \multicolumn{3}{|l|}{＝ H\(]\) is just} \\
\hline \multicolumn{3}{|c|}{the reducing} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{二 it＇s LiAlH）＝} \\
\hline \multicolumn{3}{|l|}{テノ।} \\
\hline
\end{tabular}

2）This method is fine in the lab，but \(\mathrm{LiAlH}_{4}\) is too expensive for industrial use． In industry，nitriles are reduced using hydrogen gas with a metal catalyst，such as platinum or nickel，at high temperature and pressure．This is called catalytic hydrogenation．

Becky was reduced to tears by lithium aluminium hydride．

\section*{Aromatic Amines are Made by Reducing a Nitro Compound}

Aromatic nitro compounds，e．g．nitrobenzene， are reduced in two steps：
1）Heat a mixture of a nitro compound，tin metal and concentrated hydrochloric acid under reflux－this makes a salt．
2）To get the aromatic amine，add sodium hydroxide．

Topic 18 －Organic Chemistry III

\section*{Amines}

\section*{Amines Are Bases}
1) Amines act as weak bases because they accept protons. There's a lone pair of electrons on the nitrogen atom that can form a dative covalent (coordinate) bond with an \(\mathrm{H}^{+}\)ion.

2) The strength of the base depends on how available the nitrogen's lone pair of electrons is. The more available the lone pair is, the more likely the amine is to accept a proton, and the stronger a base it will be. A lone pair of electrons will be more available if its electron density is higher.

Primary aliphatic amines are stronger bases than ammonia, which is a stronger base than aromatic amines.
The benzene ring draws electrons towards itself and the nitrogen lone pair gets partially delocalised onto the ring so the electron density on the nitrogen decreases, making the lone pair much
less available. primary aromatic
amine (phenylamine) Greater availability of lone pair of electrons

3) The lone pair of electrons also means that amines are nucleophiles. They react with halogenoalkanes in a nucleophilic substitution reaction (see next page), or with acyl chlorides to form \(\mathbf{N}\)-substituted amides (p.215).
4) Amines are neutralised by acids to make ammonium salts. E.g. butylamine reacts with
\[
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{HCl} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+} \mathrm{Cl}^{-}
\] hydrochloric acid to form butylammonium chloride:

\section*{Small Amines Dissolve in Water to Form an Alkaline Solution}
1) Small amines are soluble in water as the amine group can form hydrogen bonds with the water molecules
2) The bigger the amine, the greater the London forces (see pages 30-31) between the amine molecules and the more energy it takes to overcome the London forces. The larger carbon chains in larger amines also disrupt the hydrogen bonding in water, but can't form hydrogen bonds with water themselves.
So large amines are less soluble in water than small ones.
3) When they dissolve, amines form alkaline solutions. Some of the amine molecules
 in the solution take a hydrogen ion from water, forming alkyl ammonium ions
\[
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-}
\] and hydroxide ions.

\section*{Amines will Form a Complex Ion With Copper(II) Ions}
1) In copper(II) sulfate solution, the \(\mathrm{Cu}^{2+}\) ions form \(\left[\mathbf{C u}\left(\mathbf{H}_{2} \mathbf{O}\right)_{6}\right]^{2+}\) complexes with water. This solution's blue.
2) If you add a small amount of butylamine solution to copper(II) sulfate solution you get a pale blue precipitate - the amine acts as a base (proton acceptor) and takes two \(\mathbf{H}^{+}\)ions from the complex.

This leaves a pale blue precipitate of copper hydroxide, \(\left[\mathrm{Cu}(\mathbf{O H})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\), which is insoluble.
3) Add more butylamine solution, and the precipitate dissolves to form a beautiful deep blue solution. Some of the ligands are replaced by butylamine molecules, which donate their lone pairs to form dative covalent bonds with the \(\mathrm{Cu}^{2+}\) ion. This forms soluble \(\left[\mathbf{C u}\left(\mathbf{C H}_{3}\left(\mathbf{C H}_{2}\right)_{3} \mathbf{N H}_{2}\right)_{4}\left(\mathbf{H}_{2} \mathbf{O}\right)_{2}\right]^{\mathbf{2 +}}\) complex ions.

4) The same set of reactions will happen with other amine molecules. For larger amines, the final product may change because the amine molecules just can't fit around the copper ion.

\section*{Amines}

\section*{Amines React with Halogenoalkanes in Nucleophilic Substitution Reactions}
1) As you saw on page 212, primary amines can be made from the reaction between ammonia and a halogenoalkane. It's a nucleophilic substitution reaction - the lone pair on the ammonia molecule is attracted to the \(\delta+\) carbon in the halogenoalkane and reacts with it to remove the halogen and form a primary amine.
2) The nitrogen atom in the primary amine that is formed has a lone pair of electrons, so it is also a nucleophile. In fact, primary, secondary and tertiary amines all have a lone pair of electrons on their nitrogen atom, so are able to react with halogenoalkanes in nucleophilic substitution reactions to form more substituted amines:

\section*{Amines Can Be Acylated to Form N-Substituted Amides}

When amines react with acyl chlorides, an \(\mathbf{H}\) atom on the amine is swapped for the acyl group,
RCO, to produce an \(\mathbf{N}\)-substituted amide (see the next page) and \(\mathbf{H C l}\). The HCl reacts with another
molecule of the amine to produce a salt. In the case of butylamine \(\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}\right)\), the reactions are:

The combined equation for this reaction is:
\[
\mathrm{CH}_{3} \mathrm{COCl}+2 \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CONHC}_{4} \mathrm{H}_{9}+\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{3}\right]^{+} \mathrm{Cl}
\]

To carry out this reaction, ethanoyl chloride is added to a三 concentrated aqueous solution of the amine. A violent reaction occurs, which produces a solid, white mixture of the products.
reaction you met on page 93.

\section*{Practice Questions}

Q1 Draw examples of a primary, secondary and tertiary amine, and a quaternary ammonium ion.
Q2 What conditions are needed to reduce nitrobenzene to phenylamine?
Q3 Explain why small amines dissolve in water but large ones don't.

\section*{Exam Questions}

Q1 Butylamine solution will react with ethanoyl chloride, \(\mathrm{CH}_{3} \mathrm{COCl}\), to form N -butylethanamide, \(\mathrm{CH}_{3} \mathrm{CONH}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)\).
a) Butylamine solution is alkaline. Explain why this is.
[2 marks]
b) Write balanced equations for the two stages of the reaction between butylamine and ethanoyl chloride. [2 marks]

Q2 a) Explain how methylamine, \(\mathrm{CH}_{3} \mathrm{NH}_{2}\), can act as a base.
b) Methylamine is a stronger base than ammonia, \(\mathrm{NH}_{3}\). However, phenylamine, \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\), is a weaker base than ammonia. Explain these differences in base strength.

Q3 Propylamine can be synthesised from propanenitrile, \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}\).
a) Suggest suitable reagents for its preparation in a laboratory.
b) What reagents and conditions are used in industry?

\section*{You've got to learn it - amine it might come up in your exam...}

Did you know that rotting fish smells so bad because the flesh releases diamines as it decomposes? But the real question is: is it fish that smells of amines or amines that smell of fish - it's one of those chicken or egg things that no one can answer. Well, enough philosophical pondering - we all know the answer to the meaning of life. It's 42.

\section*{Amides}

Some more nitrogen-containing organic compounds to keep you entertained. Amides look like carboxylic acids, but the -OH group is replaced by \(-\mathrm{NH}_{2}\) or -NHR . You need to be able to recognise them and know how they're made.

\section*{Amides are Carboxylic Acid Derivatives}

Amides contain the functional group - \(\mathrm{CONH}_{2}\).
The carbonyl group pulls electrons away from the rest of the \(-\mathrm{CONH}_{2}\) group, so amides behave differently from amines.
You get primary amides and \(\mathbf{N}\)-substituted amides depending on how many carbon atoms the nitrogen is bonded to.

primary amide

N -substituted amide

One of the hydrogens is replaced with an alkyl group.

\section*{You Name Amides Using the Suffix '-amide'}
1) Amides all have the suffix -amide. If the molecule is a primary amide, then the name is simply the stem of the carbon chain, followed by -amide.
2) \(\mathbf{N}\)-substituted amides also have a prefix to describe the alkyl chain that is attached directly to the nitrogen atom. The prefix has the general form \(\mathbf{N}\)-alkyl-.

Charlie was trying the new, protein-heavy hen-substituted diet.

\section*{Amides Can Be Made From Acyl Chlorides}

If you can react an acyl chloride with ammonia or a primary amine, you'll form an amide.
1) The reaction with concentrated ammonia at room temperature forms a primary amide:
2) The reaction with a primary amine at room temperature forms an \(\mathbf{N}\)-substituted amide:

ethanoyl chloride

\section*{Practice Questions}

Q1 Draw the general structures of a primary amide and an N -substituted amide, using \(R\) and \(R^{\prime}\) to represent any alkyl groups.
Q2 Give the reagents and conditions you could use to make a primary amide from an acyl chloride.

\section*{Exam Question}

Q1 An N-substituted amide is shown on the right.
a) Name the amide.

[1 mark]
b) The amide can be made through the reaction of an acyl chloride.

Name the acyl chloride, and give any other reagents and conditions needed for this reaction.

\section*{Ithink, therefore I amide...}
'Amine' and 'amide' might sound pretty similar, but that \(C=O\) group makes a world of difference. Check that you can tell the difference between them, and make sure you know how to make both primary and \(N\)-substituted amides.

\section*{Condensation Polymers}

You met addition polymerisation back on page 88．Now it＇s time for a second type－condensation polymerisation．

\section*{Condensation Polymers Include Polyesters，Polyamides and Polypeptides}

1）Condensation polymerisation usually involves two different types of monomers．
2）Each monomer has at least two functional groups．Each functional group reacts with a group on another monomer to form a link，creating polymer chains．
3）Each time a link is formed，a small molecule（often water）is lost－ that＇s why it＇s called condensation polymerisation．

\section*{Reactions Between Dicarboxylic Acids and Diamines Make Polyamides}

1）Carboxyl（ -COOH ）groups react with amino \(\left(-\mathrm{NH}_{2}\right)\) groups to form amide \((-\mathrm{CONH}-)\) links．
2）A water molecule is lost each time an amide link is formed－it＇s a condensation reaction．
3）The condensation polymer formed is a polyamide．

\section*{Proteins are Condensation Polymers of Amino Acids}

1）Amino acids are molecules that contain both an amine and a carboxylic acid group（see page 218）．
2）Amino acid monomers can react together in condensation polymerisation reactions to form proteins． The amino acid monomers are connected by amide links－in proteins these are called peptide links．
3）The amine group of one amino acid can react with the carboxylic acid group of another in a condensation reaction． \(\qquad\)
\(\qquad\)三Proteins are really

Lots of these reactions

 would happen to make a long protein chain．
vil111上
＝Condensation reactions can occur at either end of an amino acid，so you could also draw a reaction with the amine group of amino acid 1 reacting with the carboxylic acid group of amino acid 2.

4）You can break down（hydrolyse）a protein into its individual amino acids，but you need pretty harsh conditions． Hot aqueous \(\mathbf{6 ~ m o l ~ d m}{ }^{-3}\) hydrochloric acid is added，and the mixture is heated under reflux for 24 hours． This produces the ammonium salts of the amino acids．The final mixture is then neutralised using a base．
5）Once you＇ve hydrolysed a protein，you can use chromatography（see page 219） to identify the amino acid monomers that it was made from．

\section*{Reactions Between Dicarboxylic Acids and Diols Make Polyesters}

Carboxyl groups（ -COOH ）react with hydroxyl（ -OH ）groups to form ester links（－COO－）．
It＇s another condensation reaction，and the polymer formed is a polyester

\footnotetext{

}

\section*{Condensation Polymers}

\section*{Break the Amide or Ester Link to Find the Monomers of a Condensation Polymer}

You can find the formulae of the monomers used to make a condensation polymer by looking at its repeat unit.
1) First find the amide (\(\mathrm{HN}-\mathrm{CO}\)) or ester (CO-O) link. Break it down the middle.

2) Then add an H or an OH to both ends of both molecules to find the monomers.
(Always add Hs to O or N atoms, and OH groups to C atoms.)

\section*{Join the Monomer Functional Groups to Find a Condensation Polymer}

If you know the formulae of a pair of monomers that react together in a condensation polymerisation reaction, you can work out the repeat unit of the condensation polymer that they would form.

Example: A condensation polymer is made from 1,4-diaminobutane, \(\mathrm{H}_{2} \mathrm{~N}_{\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}_{2} \text {, and decanedioic acid, }}\), \(\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{COOH}\). Draw the repeat unit of the polymer that is formed.
1) Draw out the two monomer molecules next to each other.
2) Remove an OH from the dicarboxylic acid, and an H from the diamine - that gives you a water molecule.
3) Join the \(C\) and the \(N\) together to make an amide link.
4) Take another H and OH off the ends of your molecule, and there's your repeat unit.

If the monomer molecules are a dicarboxylic acid and a diol, then you take an \(\mathbf{H}\) atom from the diol and an - \(\mathbf{O H}\) group from the dicarboxylic acid, and form an ester link instead.

\section*{Practice Questions}

Q1 Why are polyamides and polyesters called 'condensation polymers'?
Q2 Which two types of molecules react together to make a polyamide?
Q3 What type of molecules react together to form a polypeptide?

\section*{Exam Questions}

Q1 The monomers shown on the right are used to make a polymer called poly(butylene succinate), or PBS.

a) Draw the repeat unit of the polymer made from these two monomers. (It is not necessary to draw the carbon chains out in full.)
b) Give a name for the type of link formed between the monomers.

Q2 The polyamide nylon \((6,6)\) is formed by the reaction between the monomers hexanedioic acid and 1,6-hexanediamine.
a) Draw the repeat unit for nylon \((6,6)\).
b) Explain why this is an example of condensation polymerisation.
[1 mark]

\section*{Conversation polymerisation - when someone just goes on and on and on...} If you need to work out a repeat unit for a polymer that's made up of two complicated looking monomers, don't worry. All that matters is finding the carboxylic acid group and the amine or alcohol group and linking them up. Then write down everything that comes in between just as it's been given to you, take off an -H and an -OH, and there you go.

\section*{Amino Acids}

Amino acids are often called the building blocks of life．They＇re like little plastic building bricks，but hurt less if you tread on one．Instead of putting them together to make houses and rockets，they＇re used to make all the proteins in your body．

\section*{Amino Acids have an Amino Group and a Carboxyl Group}

1）An amino acid has a basic amino group \(\left(\mathrm{NH}_{2}\right)\) and an acidic carboxyl group \((\mathrm{COOH})\) ．This makes them amphoteric－they＇ve got both acidic and basic properties．
2）2－amino acids are the type of amino acids that are found in nature．The amino group is positioned on carbon－2（the carboxyl group is always carbon－1）．

S11111111111111111111 －The \(R\) group is different玉 for different amino acids．

\section*{Amino Acids Can Exist As Zwitterions}

A zwitterion is an overall neutral molecule that has both a positive and a negative charge in different parts of the molecule．An amino acid can only exist as a zwitterion near its isoelectric point－this is the \(\mathbf{p H}\) where the overall charge on the amino acid is zero．It＇s different for different amino acids－it depends on their R group．

In conditions more acidic than the isoelectric point，the \(-\mathrm{NH}_{2}\) group is likely to be protonated．

low pH

At the isoelectric point，both the carboxyl group and the amino group are likely to be ionised－forming a zwitterion．

zwitterion

In conditions more basic than the isoelectric point，the -COOH group is likely to lose its proton．

high pH

In general，if the amino acid contains the same number of carboxyl groups as amino groups，it will exist as a zwitterion when it is dissolved in solution，and will have a pH of about 7 （it will be roughly neutral）．

\section*{Most 2－Amino Acids Are Chiral}

1）There are usually four different groups attached to carbon－2 of a 2－amino acid－ the carboxyl group，the amino group，a hydrogen atom and the R group．
This means that they are chiral molecules and have two optical isomers（see page 194）．
Example：Draw both possible enantiomers of the 2－amino acid alanine， \(\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}\) ．

1）First draw one isomer with the groups arranged in a tetrahedral shape around the chiral carbon．
2）Draw a mirror line next to the isomer．
3）Draw its mirror image next to it．

A choral protein．

E 112 mirror line \(\rightarrow\)
E See page 194 for more on drawing optical isomers．
ニル1111111111111111111111111111111111F
2）If plane－polarised，monochromatic light is shone through an aqueous solution that contains just one of the enantiomers of a 2 －amino acid， the plane of the light gets rotated because of the chiral carbon．
3）The exception to this is glycine where the \(\mathbf{R}\) group is a hydrogen atom． It has two H atoms attached to the central carbon，so it isn＇t chiral （it＇s achiral），and it won＇t rotate the plane of plane－polarised light．

\section*{Amino Acids}

\section*{Paper Chromatography can be used to Identify Unknown Amino Acids}

You can easily identify amino acids in a mixture using a simple paper (one-way) chromatography experiment.
1) Draw a pencil line near the bottom of a piece of chromatography paper and put a concentrated spot of the mixture you want to investigate on it.
2) Place the paper into a beaker containing a small amount of solvent, so that the solvent level is below the spot of mixture. Place a watch glass on top of the beaker to stop any solvent evaporating out.
3) Different substances have different solubilities in the solvent. As the solvent spreads up the paper, the different chemicals in the mixture move with it, but at different rates, so they separate out.
4) When the solvent's nearly reached the top, take the paper out and mark where the solvent has reached with a pencil. This is the solvent front.
5) Identify the positions of the spots of different chemicals on the paper. Some chemicals, such as amino acids, aren't coloured so you first have to make them visible. You can do this by spraying ninhydrin solution (a developing agent) on the paper to turn them purple. You can also dip
 the paper into a jar containing a few crystals of iodine. lodine sublimes from a solid straight to a gas, and the iodine gas causes the spots to turn brown. However you visualise your spots, you should circle their positions with a pencil.
6) You can work out the \(\boldsymbol{R}_{\mathrm{f}}\) values of the substances using this formula:
\(R_{\mathrm{f}}\) value \(=\frac{\mathrm{A}}{\mathrm{B}}=\frac{\text { distance travelled by spot }}{\text { distance travelled by solvent }}\)
There's more on
chromatography on
pages 236-237.
=ハ111111111111111
7) If you've done your experiment under standard conditions, you can use a table of known \(\boldsymbol{R}_{\mathrm{f}}\) values to identify the components of the mixture. Otherwise, you should repeat the experiment with a spot of a substance you think is in the mixture, alongside the mixture, to see if they have the same \(R_{\mathrm{f}}\) value.

Thin-layer chromatography can also be used to separate and identify amino acids.
The method is the same as for paper chromatography, but instead of chromatography paper, you use a plate covered in a thin layer of silica \(\left(\mathrm{SiO}_{2}\right)\) or alumina \(\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)\) as the stationary phase.

\section*{Practice Questions}

Q1 Draw the general structure of a 2-amino acid.
Q2 What is a zwitterion?

\section*{Exam Questions}

Q1 Glycine and cysteine, shown on the right, are two naturally occurring 2-amino acids.
a) One way of distinguishing between glycine and cysteine is to observe their effect on plane-polarised monochromatic light. Explain why this method works.

Glycine

Cysteine [2 marks]
b)* Explain how paper chromatography could be used to separate and identify a mixture of amino acids. [6 marks]

Q2 Amino acids are organic molecules that contain both a carboxyl group and an amino group.
a) Explain what is meant by the 'isoelectric point' of an amino acid.
[1 mark]
b) The 2-amino acid serine has the formula \(\mathrm{HOOCCH}\left(\mathrm{NH}_{2}\right) \mathrm{CH}_{2} \mathrm{OH}\).
i) Draw the displayed formula of serine.
ii) Draw the structure that serine will take in a solution with a high pH .

\section*{Twitterions - when amino acids get let loose on social media...}

Well, these pages aren't too bad. Another organic structure, a bit of drawing chiral molecules, and a nice experimental technique. Make sure you know how chromatography is used to separate and identify amino acids and you're away.

\footnotetext{
* The quality of your extended response
will be assessed for this question.
}

\section*{Grignard Reagents}

The whole of Organic Chemistry revolves around carbon compounds and how they react, but getting one carbon to react with another and form a new carbon-carbon bond is surprisingly hard. Fortunately, Grignard reagents let you do it.

\section*{Grignard Reagents Are Made by Reacting Halogenoalkanes With Magnesium}
1) Grignard (Grin-yard) reagents have the general formula \(\mathbf{R M g X}\), where \(R\) is an alkyl group and \(X\) is a halogen.
2) They're made by refluxing a halogenoalkane with magnesium in dry ether.

3) For example, refluxing bromoethane with magnesium in dry ether would create the following Grignard reagent:
\[
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{Mg} \xrightarrow{\text { dry ether }} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}
\]

\section*{Grignard Reagents React With Carbon Dioxide...}

You can make a carboxylic acid from a Grignard reagent in two steps.
1) First, bubble carbon dioxide gas through a Grignard reagent in dry ether. Then add a dilute acid, such as hydrochloric acid.
During the reaction, a new \(\mathbf{C}-\mathbf{C}\) bond forms between the carbon atom in carbon dioxide and the \(\mathrm{C}-\mathrm{Mg}\) carbon from
 the Grignard reagent. One of the \(\mathrm{C}=\mathrm{O}\) bonds in carbon dioxide is broken to form a - \(\mathrm{COO}^{-}\)group, which is protonated when the dilute acid is added to form -COOH .

Example: Butanoic acid can be synthesised from bromopropane in three steps. Give the reagents and conditions needed for each step, and the product formed at each stage of the synthesis.
\[
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} \xrightarrow[\text { dry ether }]{\mathrm{Mg}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{MgBr} \xrightarrow[\text { (2) dilute } \mathrm{HCl}]{\text { (1) } \mathrm{CO}_{2} \text {, dry ether }} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{MgBrCl}
\]

\section*{.And With Carbonyl Compounds}
1) Grignard reagents react with aldehydes and ketones to make alcohols. A new \(\mathbf{C}-\mathbf{C}\) bond forms between the \(\mathrm{C}-\mathrm{Mg}\) carbon atom from the Grignard reagent and the \(\mathrm{C}=\mathrm{O}\) carbon of the carbonyl. This causes the \(\mathrm{C}=\mathrm{O}\) bond to break and, when acid is added, an - OH group is formed.
2) Again, there are two steps to the reaction. First the carbonyl compound is added to the Grignard reagent in dry ether, and then dilute acid is added to the reaction mixture.

, Il11/, Е Reacting a Grignard reagent with an aldehyde will make a secondary = Z alcohol (unless it's methanal which makes a primary alcohol). Reacting =
a Grignard reagent with a ketone will make a tertiary alcohol.

\section*{Practice Questions}

Q1 Write the general formula of a Grignard reagent.
Q2 Give the reagents and conditions needed to make a Grignard reagent from a bromoalkane.
Q3 What type of organic product is formed when a Grignard reagent is reacted with carbon dioxide and then hydrolysed with dilute acid?

\section*{Exam Question}

Q1 a) Give the reagents and conditions needed to make the Grignard reagent, \(\mathbf{X}\).

\section*{X}
[1 mark]
b) Give the reagent and conditions needed to make the following compounds using Grignard reagent \(\mathbf{X}\) :
i) Hexan-2-ol
ii) Pentanoic acid
[1 mark]

\section*{You may not like Organic Chemistry, but you'll have to Grignard bear it...}

Grignard reagents are quite unstable, so you can't just get them out of a bottle. Instead, you need to know how they're made. Don't forget that the reactions are in dry ether except in the last step - otherwise the reaction won't work.

\section*{Organic Synthesis}

There are lots of organic compounds and reactions coming up. Don't panic. It's a summary of things you've met before.

\section*{Functional Groups are the Most Important Parts of a Molecule}

Functional groups are the parts of a molecule that are responsible for the way the molecule reacts. Substances are grouped into families called homologous series based on what functional groups they contain.
Here's a round-up of all the ones you've studied:
\begin{tabular}{|c|c|c|c|}
\hline Homologous series & Functional group & Properties & Typical reactions \\
\hline Alkane & C-C & Non-polar, unreactive. & Radical substitution \\
\hline Alkene & \(\mathrm{C}=\mathrm{C}\) & Non-polar, electron-rich double bond. & Electrophilic addition \\
\hline Aromatic compounds & \(\mathrm{C}_{6} \mathrm{H}_{5}{ }^{-}\) & Stable delocalised ring of electrons. & Electrophilic substitution \\
\hline \multirow[t]{2}{*}{Alcohol} & \multirow{2}{*}{\(\mathrm{C}-\mathrm{OH}\)} & Polar C-OH bond. & Nucleophilic substitution Dehydration/elimination \\
\hline & & Lone pair on oxygen can act as a nucleophile. & Esterification Nucleophilic substitution \\
\hline Halogenoalkane & C-X & Polar C-X bond. & Nucleophilic substitution Elimination \\
\hline Amine & \[
\begin{gathered}
\mathrm{C}-\mathrm{NH}_{2} / \\
\mathrm{C}-\mathrm{NR}_{2} \\
\hline
\end{gathered}
\] & Lone pair on nitrogen is basic and can act as a nucleophile. & Neutralisation Nucleophilic substitution \\
\hline Amide & \[
\begin{aligned}
& -\mathrm{CONH}_{2} / \\
& -\mathrm{CONHR}^{2}
\end{aligned}
\] & - & - \\
\hline Nitrile & \(\mathrm{C}-\mathrm{C} \equiv \mathrm{N}\) & Electron deficient carbon centre. & Reduction Hydrolysis \\
\hline Aldehyde/Ketone & \(\mathrm{C}=\mathrm{O}\) & Polar C=O bond. & Nucleophilic addition Reduction Aldehydes will oxidise. \\
\hline Carboxylic acid & \(-\mathrm{COOH}\) & Electron deficient carbon centre. & Neutralisation Esterification Reduction \\
\hline Ester & RCOOR \({ }^{\prime}\) & Electron deficient carbon centre. & Hydrolysis \\
\hline Acyl chloride & - COCl & Electron deficient carbon centre. & \begin{tabular}{l}
Nucleophilic addition-elimination Condensation (lose HCl) \\
Friedel-Crafts acylation
\end{tabular} \\
\hline
\end{tabular}

The functional groups in a molecule give you clues about its properties and reactions.
For example, a -COOH group will (usually) make the molecule acidic and mean it will form esters with alcohols.

\section*{Chemists Use Synthetic Routes to Get from One Compound to Another}
1) Chemists need to be able to make one compound from another. It's vital for things such as designing medicines.
2) It's not always possible to synthesise a desired product from a starting material in just one reaction.
3) A synthetic route shows how you get from one compound to another. It shows all the reactions with the intermediate products, and the reagents needed for each reaction.
Example: Starting with ethene, you can synthesise ethanamide in four steps. The synthetic route is:

If you're asked how to make one compound from another in the exam, make sure you include:
1) Any special procedures, such as refluxing.
2) The conditions needed, e.g. high temperature or pressure, or the presence of a catalyst.

3) Any safety precautions, e.g. do it in a fume cupboard.

\section*{Organic Synthesis}

\section*{Chemists Have to Carefully Plan a Synthetic Route}

When chemists plan the synthesis of a molecule there are some things they need to keep in mind:
1) Stereoisomers: Making the correct stereoisomer is important in the pharmaceutical industry because different stereoisomers might have different properties. Understanding the mechanism of a reaction lets chemists plan which stereoisomer will be produced (for example, see page 195). E.g. S 2 nucleophilic substitution can produce a single isomer product if a single isomer is used as the starting molecule.
2) Safety: To reduce the risks posed by any of the organic chemicals or reagents used in an organic synthesis method, safety measures must be considered. For example, reactions can be performed in fume hoods to remove toxic gases and electric mantles, water baths or sand baths can be used to heat solutions so there are no naked flames near flammable reagents.

\section*{Synthesis Routes for Making Aliphatic Compounds}

Here's a round-up of the reactions to convert between functional groups that you've covered in the A-Level course:

\section*{Organic Synthesis}

\section*{Synthesis Routes for Making Aromatic Compounds}

There aren't so many of these reactions to learn - so make sure you know all the itty-bitty details.
If you can't remember any of the reactions, look back to the relevant pages and take a quick peek over them.

\section*{Practice Questions}

Q1 What type of reactions do alkenes typically take part in?
Q2 What is shown in a synthetic route?
Q3 How do you make an alkene from an aldehyde?
Q4 How do you make phenylamine from benzene?

\section*{Exam Questions}

Q1 Ethyl methanoate is one of the compounds responsible for the smell of raspberries.
Outline, with reaction conditions, how it could be synthesised in the laboratory from methanol.
[2 marks]
Q2 How would you synthesise propanol starting with propane?
State the reaction conditions and reagents needed for each step.
[2 marks]
Q3 The diagram below shows a possible reaction pathway for the two-step synthesis of a ketone from a halogenoalkane.

a) Give the conditions needed to carry out Step 1.
b) Give the reagents and the conditions needed to carry out Step 2.

Q4 A chemist synthesises compound \(\mathbf{A}\) in three steps, starting from benzene. Given that, in the second step, a Grignard reagent is formed, suggest a synthesis route the chemist could have taken. Give the reagents and conditions, as well as the organic compounds formed, at each step of the synthesis.

A
[6 marks]

\section*{Big red buses are great at Organic Synthesis - they're Route Masters...}

There's loads of information here. Tons and tons of it. But you've covered pretty much all of it before, so it shouldn't be too hard to make sure it's firmly embedded in your head. If it's not, you know what to do - go back over it again. Then cover the diagrams up and try to draw them out from memory. Keep going until you can do it perfectly.

\section*{Practical Techniques}

You can't call yourself a chemist unless you know these practical techniques. Not unless your name's Boots.

\section*{Reactions Often Need to be Heated to Work}
1) Organic reactions are slow and the substances are usually flammable and volatile (they've got low boiling points). If you stick them in a beaker and heat them with a Bunsen burner they'll evaporate or catch fire before they have time to react.
2) You can reflux a reaction to get round this problem.
3) The mixture's heated in a flask fitted with a vertical Liebig condenser - so when the mixture boils, the vapours are condensed and recycled back into the flask. This stops reagents being lost from the flask, and gives them time to react.

\section*{Distillation Can Be Used to Make or Purify an Organic Liquid}

1) One problem with refluxing a reaction is that it can cause the desired product to react further. If this is the case you can carry out the reaction in a distillation apparatus instead.
2) The mixture is gently heated and substances evaporate out of the mixture in order of increasing boiling point.
3) If you know the boiling point of your pure product, you can use the thermometer to tell you when it's evaporating, and therefore when it's condensing.
4) If the product of a reaction has a lower boiling point than the starting materials then the reaction mixture can be heated so that the product evaporates from the reaction mixture as it forms. The starting materials will stay in the reaction mixture as long as the temperature is controlled.
- If a product and its impurities have different boiling points, then distillation can be used to separate them. You use the distillation apparatus shown above, but this time you're heating an impure product, instead of the reaction mixture.
- When the liquid you want boils (this is when the thermometer is at the boiling point of the liquid), you place a flask at the open end of the condenser ready to collect your product.
- When the thermometer shows the temperature is changing, put another flask at the end of the condenser because a different liquid is about to be delivered.

David had no need for distillation - he was pure class.

\section*{Steam Distillation Lowers the Boiling Point of an Organic Liquid}
1) Some organic liquids have high boiling points or decompose when they're heated. This means you can't purify them using the distillation technique shown above. Instead, if the product you're collecting is immiscible with water, you can use steam distillation.
2) In steam distillation, the presence of steam lowers the boiling point of the immiscible product, allowing it to be distilled out of the impure mixture below its boiling point, and before it decomposes.
3) Using the apparatus shown on the right, you heat water in a flask until it evaporates, and then allow it to pass, as steam, into a flask containing the impure organic mixture.
4) The steam lowers the boiling points of the compounds in
 the mixture, so they will evaporate at a lower temperature.
5) If the organic product you're trying to collect is less volatile than the components in the mixture you're separating it from, the organic product and the steam will evaporate out of the impure mixture together. You can then condense and collect them in a clean flask.
6) You can separate the organic product from water using a separating funnel (you may have to use the solvent extraction technique on the next page if the compound is slightly miscible with water).

\section*{Practical Techniques}

\section*{Solvent Extraction Removes Partially Soluble Compounds from Water}

You saw back on page 98 that if a product is insoluble in water then you can use separation to remove any impurities that do dissolve in water.
But, if your product and the impurities are both soluble in water, there's a
similar separation method called solvent extraction that you can use.
1) Add the impure compound to a separating funnel and add some water. Shake well.
2) Then add an organic solvent in which the product is more soluble than it is in water. Shake the separating funnel well. The product will dissolve into the organic solvent, leaving the impurities dissolved in the water.

3) You could also add a salt (such as NaCl) to the mixture. This will cause the organic product to move into the organic layer, as it will be less soluble in the very polar salt and water layer.
4) You can then open the tap and run each layer off into a separate container.
(In the example on the right, the impurities will be run off first, and the product collected second.)

\section*{Remove Other Impurities by Washing}

The product of a reaction can be contaminated with leftover reagents or unwanted side products.
You can remove some of these by washing the product (which in this case means adding another liquid and shaking).
For example, if one of your reactants was an organic acid, it might be dissolved as an impurity in the organic layer, along with your product. To remove it, you could add aqueous sodium hydrogencarbonate which will react with the acid to give \(\mathrm{CO}_{2}\) gas and a salt of the acid. The salt will then dissolve in the aqueous layer. The organic product will be left in the organic layer, and can be separated from the aqueous layer containing the reactant impurities using a separating funnel (as above).

\section*{Remove Water from a Purified Product by Drying it}
1) If you use separation to purify a product, the organic layer will end up containing trace amounts of water - so it has to be dried.
2) To do this, you add an anhydrous salt such as magnesium sulfate \(\left(\mathrm{MgSO}_{4}\right)\) or calcium chloride \(\left(\mathrm{CaCl}_{2}\right)\). The salt is used as a drying agent - it binds to any water present to become hydrated.
3) When you first add the salt to the organic layer it will clump together. You keep adding drying agent until it disperses evenly when you swirl the flask.
4) Finally, you filter the mixture to remove the solid drying agent - pop a piece of filter paper into a funnel that feeds into a flask and pour the mixture into the filter paper.

\section*{Practice Questions}

Q1 Why is refluxing needed in many organic reactions?
Q2 Draw the set-up that you could use to carry out a simple distillation.
Q3 How could you remove an organic acid from the organic layer in a separating funnel?

\section*{Exam Question}

Q1 A chemist synthesises phenylamine by refluxing nitrobenzene with tin and concentrated hydrochloric acid and then adding sodium hydroxide.
a) Phenylamine is immiscible with water and decomposes before it boils. Draw and label a diagram to show the distillation set-up the chemist should use to separate pure phenylamine from the impure mixture.
b) Describe a method that could be used to separate the condensed phenylamine from water after distillation, given that phenylamine is slightly soluble in water and also soluble in ether.

\section*{My organic compound isn't volatile - it's just highly strung...}

Scientists need to know why they do the things they do - that way they can plan new experiments to make new compounds. Learning the details of how experiments are carried out and how products are purified may not be the most interesting thing in the world, but you should get to try out some of these methods in practicals, which is a lot more fun.

\section*{More Practical Techniques}

Don't take your lab coat off or put down your safety specs just yet. There are more practical techniques coming up...

\section*{Gravity Filtration is Used to Remove a Solid From a Liquid}

Gravity filtration is normally used when you want to keep the liquid (the filtrate) and discard the solid. For example, it can be used to remove the solid drying agent from the organic layer of a liquid that has been purified by separation.
1) Place a piece of fluted filter paper in a funnel that feeds into a conical flask.
2) Gently pour the mixture to be separated into the filter paper. The solution will pass through the filter paper into the conical flask, and the solid will be trapped.
3) Rinse the solid left in the filter paper with a pure sample of the solvent present in the solution. This makes sure that all the soluble material has passed through the filter paper and has been collected in the conical flask.

\section*{Filtration Under Reduced Pressure is Used to Remove a Liquid From a Solid}

Filtration under reduced pressure is normally used when you want to keep the solid and discard the liquid (filtrate).
1) Place a piece of filter paper, slightly smaller than the diameter of the funnel, on the bottom of the Büchner funnel so that it lies flat and covers all the holes.
2) Wet the paper with a little solvent, so that it sticks to the bottom of the funnel, and doesn't slip around when you pour in your mixture.
3) Turn the vacuum on, and then pour your mixture into the funnel. As the flask is under reduced pressure, the liquid is sucked
 through the funnel into the flask, leaving the solid behind.
4) Rinse the solid with a little of the solvent that your mixture was in. This will wash off any of the original liquid from the mixture that stayed on your crystals (and also any soluble impurities), leaving you with a more pure solid.
5) Disconnect the vacuum line from the side-arm flask and then turn off the vacuum.
6) The solid will be a bit wet from the solvent, so leave it to dry completely.

\section*{Organic Solids can be Purified by Recrystallisation}

If the product of an organic reaction is a solid, then the simplest way of purifying it is a process called recrystallisation. First you dissolve your solid in a hot solvent to make a saturated solution. Then you let the solution cool. As the solution cools, the solubility of the product falls. When it reaches the point where it can't stay in solution, it starts to form crystals. Here's how it's done:
1) Very hot solvent is added to the impure solid until it just dissolves - it's important not to add too much solvent. This should give a saturated solution of the impure product.
2) Filter the solution while it's still hot by gravity filtration to remove any insoluble impurities.
3) This solution is left to cool down slowly. Crystals of the product form as it cools. The impurities stay in solution as they're present in much smaller amounts than the product, so take much longer to crystallise out.
4) The crystals are removed by filtration under reduced pressure (see above) and washed with ice-cold solvent. Then they are dried, leaving you with crystals of your product that are much purer than the original solid.

\section*{The Choice of Solvent for Recrystallisation is Very Important}
1) When you recrystallise a product, you must use an appropriate solvent for that particular substance. It will only work if the solid is very soluble in the hot solvent, but nearly insoluble when the solvent is cold.
2) If your product isn't soluble enough in the hot solvent you won't be able to dissolve it at all.
3) If your product is too soluble in the cold solvent, most of it will stay in the solution even after cooling. When you filter it, you'll lose most of your product, giving you a very low yield.

\section*{More Practical Techniques}

\section*{Measuring Boiling Point is a Good Way to Determine the Purity of a Liquid}

1）You can measure the purity of an organic，liquid product by looking at its boiling point．
2）If you＇ve got a reasonable volume of liquid，you can determine its boiling point using a distillation apparatus，like the one shown on page 224.
3）If you gently heat the liquid in the distillation apparatus，until it evaporates， you can read the temperature at which it is distilled，using the thermometer in the top of the apparatus．This temperature is the boiling point．

ミ゙いいいいいいいいいいいいいいいいい

You can then look up the boiling point of the substance in data books and compare it to your measurement．
5）If the sample contains impurities，then your measured boiling point will be higher than the recorded value．You may also find your product boils over a range of temperatures，rather than all evaporating at a single temperature．

\section*{Melting Points are Good Indicators of the Purity of an Organic Solid}

Pure substances have a specific melting point．If they＇re impure，the melting point＇s lowered．
If they＇re very impure，melting will occur across a wide range of temperatures．
1）You can use melting point apparatus to accurately determine the melting point of an organic solid．
2）Pack a small sample of the solid into a glass capillary tube and place it inside the heating element．
3）Increase the temperature until the sample turns from solid to liquid．
4）You usually measure a melting range，which is the range of temperatures from where the solid begins to melt to where it has melted completely．

5）You can look up the melting point of a substance in data books and compare it to your measurements．
6）Impurities in the sample will lower the melting point and broaden the melting range．

\section*{Practice Questions}

Q1 How could you separate a solid product from liquid impurities？And a liquid product from solid impurities？
Q2 Give two factors you should consider when choosing a solvent for recrystallisation．

\section*{Exam Questions}

Q1 Two samples of impure stearic acid melt at \(69^{\circ} \mathrm{C}\) and \(64{ }^{\circ} \mathrm{C}\) respectively．
Stearic acid dissolves in hot propanone but not in water．
a）Explain which sample is purer．
b）Suggest a method that could be used to purify the impure sample．
c）How could the sample from b）be tested for purity？
Q2 A scientist has produced some impure solid sodium ethanoate，which she wants to purify using recrystallisation． She begins by dissolving the impure sodium ethanoate in the minimum possible amount of hot solvent．
a）Explain why the scientist used the minimum possible amount of hot solvent．
［1 mark］
b）Outline the rest of the procedure that the scientist would need to follow to recrystallise the solid．
c）Describe the melting point range of the impure sodium ethanoate compared to the pure product．
Q3 A student is carrying out an experiment using the apparatus shown on the right． What type of experiment is she doing？
A reflux
B filtration under reduced pressure
C distillation
D recrystallisation

［1 mark］

\section*{I hope that everything＇s now crystal clear．．．}

Nobody wants loads of impurities in their reaction products．But now you＇re kitted out to get rid of them using these purification techniques．It doesn＇t even matter whether you have to purify a solid or a liquid－no excuses now．

\section*{Empirical and Molecular Formulae}

It's the end of the Topic - hurray!!! But it's full of maths - boooo. But you've seen it before in Year 1-hurray!!! I can't keep doing this - boooo. Oh go on then, one more - hurray!!! And don't forget to brush your teeth - ????

\section*{Empirical and Molecular Formulae Can Help Identify Organic Compounds}

You first met calculations to find empirical and molecular formulae in Topic 5. You can use empirical and molecular formulae, along with other data from, e.g. IR spectroscopy, to help you work out the structure of an unknown chemical. In case you're feeling a bit hazy about what these formulae are, here's a quick reminder...
1) The empirical formula gives just the smallest whole number ratio of atoms in a compound.
E.g. The empirical formula of ethane is \(\mathrm{CH}_{3}\).
2) The molecular formula gives the actual numbers of atoms in a molecule.

It's made up of a whole number of empirical units. E.g. The molecular formula of ethane is \(\mathrm{C}_{2} \mathrm{H}_{6}\).

\section*{Find Empirical and Molecular Formulae From Percentage Compositions}

You saw calculations like this all the way back on page 56. So, here's a reminder...

Example: A compound has a molecular mass of 88. It is found to have percentage composition 54.5\% carbon, \(9.1 \%\) hydrogen and \(36.4 \%\) oxygen by mass. Calculate its empirical and molecular formulae.

\section*{In 100 g of compound there are:}

11111111111111111 If you assume you've got 100 g of the compound, you can turn the \% straight into mass, and then work out the number of moles as normal.

\(\frac{54.5}{120}=4.54\) moles of \(C\)
\(\frac{9.1}{1.0}=9.1\) moles of H
\(\frac{36.4}{16.0}=2.275\) moles of O

Divide each number of moles by the smallest number - in this case it's 2.275.
O: \(\frac{4.54}{2.275}=2.00\)
\(\mathrm{H}: \frac{9.1}{2.275}=4.00\)
O: \(\frac{2.275}{2.275}=1.00\)

The ratio of \(\mathrm{C}: \mathrm{H}: \mathrm{O}=2: 4: 1\). So you know the empirical formula's got to be \(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\). The molecular mass of one empirical formula is \((2 \times 12.0)+(4 \times 1.0)+(1 \times 16.0)=44\). This is half the molecular mass of the compound, so the compound must contain two of the empirical formula and have the molecular formula \(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\).

\section*{Combustion Analysis Uses Information From Burning an Organic Compound}

When an organic compound containing carbon, hydrogen and oxygen combusts completely in oxygen, water and carbon dioxide are produced. All the carbon atoms in the carbon dioxide and all the hydrogen atoms in the water will have come from the organic compound. If you burn a known amount of the organic compound, you can use the amounts of water and carbon dioxide produced to help you work out its empirical formula.

Example: When 7.2 g of a carbonyl compound is burnt in excess oxygen, it produces 17.6 g of carbon dioxide and 7.2 g of water. Calculate the empirical formula for the carbonyl compound.

No. of moles of \(\mathrm{CO}_{2}=\frac{\text { mass }}{M}=\frac{17.6}{44.0}=0.40 \mathrm{moles}\)
1 mole of \(\mathrm{CO}_{2}\) contains 1 mole of C . So, 0.40 moles of \(\mathrm{CO}_{2}\) contains \(\mathbf{0 . 4 0}\) moles of C .
No. of moles \(\mathrm{H}_{2} \mathrm{O}=\frac{\text { mass }}{M}=\frac{7.2}{18.0}=0.40\) moles
1 mole of \(\mathrm{H}_{2} \mathrm{O}\) contains 2 moles of H . So, 0.40 moles of \(\mathrm{H}_{2} \mathrm{O}\) contain 0.80 moles of H .

Mass of \(C=\) no. of moles \(\times M=0.40 \times 12.0=4.8 \mathrm{~g}\)
Mass of \(\mathrm{H}=\) no. of moles \(\times \mathrm{M}=0.80 \times 1.0=0.80 \mathrm{~g}\)
Mass of \(\mathrm{O}=7.2-(4.8+0.80)=1.6 \mathrm{~g}\)
Number of moles of \(\mathrm{O}=\frac{\text { mass }}{M}=\frac{1.6}{16.0}=0.10\) moles

Molar Ratio \(=\mathrm{C}: \mathrm{H}: \mathrm{O}=0.40: 0.80: 0.10=4: 8: 1\) Empirical formula \(=\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\)
 Now work out the mass of carbon and hydrogen in the alcohol. The rest of the mass of the carbonyl must be oxygen - so work out that too. Once you know the mass of O , you can work out how many moles there are of it.

ミ11111111111111111111111111111111111 = When you know the number of moles of each element, you've got the molar ratio. Divide each number by the smallest.

\section*{Empirical and Molecular Formulae}

\section*{Combustion Analysis Data Might Be Given As Volumes}
1) Combustion reactions can happen between gases.
2) All gases at the same temperature and pressure have the same molar volume. This means you can use the ratio of the volumes of gases reacting together to calculate the molar ratios, and then work out the molecular formula of the organic compound that is combusting.

Example: \(30 \mathrm{~cm}^{3}\) of hydrocarbon X combusts completely with \(180 \mathrm{~cm}^{3}\) oxygen.
\(120 \mathrm{~cm}^{3}\) carbon dioxide is produced. What is the molecular formula of hydrocarbon X ?
- Using the volumes provided, the reaction equation can be written:
\[
30 \mathrm{X}+180 \mathrm{O}_{2} \rightarrow 120 \mathrm{CO}_{2}+? \mathrm{H}_{2} \mathrm{O}
\]
- This can be simplified by dividing everything by 30 :
\[
\mathrm{X}+6 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+\mathrm{nH}_{2} \mathrm{O}
\]
- 6 moles of oxygen reacts to form 4 moles of carbon dioxide and \(n\) moles of water. So any oxygen atoms (from \(\mathrm{O}_{2}\)) that don't end up in \(\mathrm{CO}_{2}\), must be in \(\mathrm{H}_{2} \mathrm{O}\). This means that \(\mathrm{n}=(6 \times 2)-(4 \times 2)=4\).
- So, the combustion equation is: \(X+6 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}\). You can use this to identify X .
- All the carbon atoms from \(X\) end up in carbon dioxide molecules, and all the hydrogen atoms from \(X\) end up in water, so the number of carbon atoms in X is 4 and the number of hydrogen atoms in X is 8 .
 This method is really handy because it gives you the molecular formula straight away, rather than the empirical formula (which in this example is \(\mathrm{CH}_{2}\)).

\section*{Practice Questions}

Q1 What's the difference between empirical and molecular formulae?
Q2 What's the empirical formula of ethane?
Q3 Where do the carbon atoms in carbon dioxide produced by burning an organic compound completely in oxygen come from?

\section*{Exam Questions}

Q1 A carbonyl compound contains only carbon, hydrogen and oxygen. When it is burnt in excess oxygen 0.100 g of the compound gives 0.228 g of carbon dioxide and 0.0930 g of water.
a) Calculate the empirical formula of this compound.
b) What percentage of the compound by mass is hydrogen?
c) If the molecular mass is 58.0 , what is the molecular formula?
d) When a sample of the compound is heated with Tollens' reagent, a silver mirror is formed. Predict, with reasoning, the structure of the molecule.

Q2 A common explosive contains \(37.0 \%\) carbon, \(2.2 \%\) hydrogen, \(18.5 \%\) nitrogen and \(42.3 \%\) oxygen, by mass. It has a molecular mass of 227 and can be made from benzene.
a) Calculate the empirical formula of the compound and hence its molecular formula.
b) Suggest a possible structure of the molecule.

Q3 A student was trying to identify an unknown hydrocarbon, X . When she combusted \(25 \mathrm{~cm}^{3}\) of X , completely with \(125 \mathrm{~cm}^{3}\) of oxygen, \(75 \mathrm{~cm}^{3}\) of carbon dioxide was produced.
a) Calculate the molecular formula of X .
b) The mass spectrum of \(X\) has an \(M\) peak at \(m / z=88\). What is the molecular formula of \(X\) ?

\section*{These pages contain the formulae for A-Level Chemistry success...}

These calculations aren't the only things you can use to work out the identity of an unknown molecule. Oh no. Coming up next there's loads more on analytical techniques. NMR and infrared spectroscopy, along with mass spectrometry, can really help to work out exactly what a certain substance is. Structure and all. Bet you can't wait.

\section*{High Resolution Mass Spectrometry}

You met mass spectrometry back in Year 1 of the course，but who said the fun had to stop there？Time for more．．．

\section*{Mass Spectrometry Can Help to Identify Compounds}

1）In a mass spectrometer，a molecular ion is formed when a molecule loses an electron．
2）The molecular ion produces a molecular ion peak on the mass spectrum of the compound．
3）For any compound，the mass／charge（ \(\mathrm{m} / \mathrm{z}\) ）value of the molecular ion peak will be the same as the molecular mass of the compound （assuming the ion has \(a+1\) charge，which it normally will have）．

\section*{High Resolution Mass Spectrometry Measures Masses Precisely}

1）Some mass spectrometers can measure atomic and molecular masses extremely accurately （to several decimal places）．These are known as high resolution mass spectrometers．
2）This can be useful for identifying compounds that appear to have the same \(\boldsymbol{M}_{\mathbf{r}}\) when they＇re rounded to the nearest whole number．
3）For example，propane \(\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)\) and ethanal \(\left(\mathrm{CH}_{3} \mathrm{CHO}\right)\) both have an \(M_{\mathrm{r}}\) of \(\mathbf{4 4}\) to the nearest whole number． But on a high resolution mass spectrum，propane has a molecular ion peak with \(\mathrm{m} / \mathrm{z}=\mathbf{4 4 . 0 6 2 4}\) and ethanal has a molecular ion peak with \(m / z=44.0302\) ．

Example：On a high resolution mass spectrum，a compound had a molecular ion peak of 98．0448．
What was its molecular formula？
A \(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{2}\)
B \(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}\)
C \(\quad \mathrm{C}_{7} \mathrm{H}_{14}\)
D \(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{2}\)

Use these precise atomic masses to work out your answer：
\({ }^{1} \mathrm{H}-1.0078 \quad{ }^{12} \mathrm{C}-12.0000 \quad{ }^{14} \mathrm{~N}-14.0064{ }^{16} \mathrm{O}-15.9990\)
1）Work out the precise molecular mass of each compound：
\(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{2}: M_{\mathrm{r}}=(5 \times 12.0000)+(10 \times 1.0078)+(2 \times 14.0064)=98.0908\)
\(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}: M_{\mathrm{r}}=(6 \times 12.0000)+(10 \times 1.0078)+15.9990=98.0770\)
\(\mathrm{C}_{7} \mathrm{H}_{14}: \quad M_{\mathrm{r}}=(7 \times 12.0000)+(14 \times 1.0078)=98.1092\)
\(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{2}: M_{\mathrm{r}}=(5 \times 12.0000)+(6 \times 1.0078)+(2 \times 15.9990)=98.0448\)

ミけ111111111111111111111 On a normal（low resolution） mass spectrum，all of these molecules would show up as having an \(M_{r}\) of 98 ．

2）So the answer is \(D, C_{5} \mathrm{H}_{6} \mathrm{O}_{2}\) ．

\section*{Practice Questions}

Q1 Explain how you could find the molecular mass of a compound by looking at its mass spectrum．
Q2 Why is high resolution mass spectrometry useful for when studying molecules with similar molecular masses？

\section*{Exam Questions}

Use the following precise atomic masses to answer the questions below：
\({ }^{1} \mathrm{H}-1.0078 \quad{ }^{12} \mathrm{C}-12.0000 \quad{ }^{14} \mathrm{~N}-14.0064 \quad{ }^{16} \mathrm{O}-15.9990\)
Q1 a）The high resolution mass spectrum of a compound has a molecular ion peak with \(m / z=74.0908\) ．
Which of the following could be the molecular formula of the compound？
A \(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}\)
B \(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\)
C \(\quad \mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2}\)
D \(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}\)
［1 mark］
b）Explain why low resolution mass spectrometry would not allow you to distinguish between the options given in part a）．
［1 mark］
Q2 A sample of an unknown hydrocarbon is injected into a high resolution mass spectrometer．It produces a molecular ion peak at \(m / z=56.0624\) ．Draw a possible structure for and name the unknown hydrocarbon．

\section*{I am highly resolved to improve my understanding of Chemistry．．．}

And you should be too if you want to ace your exams．This page is pretty easy．The only new bit is that stuff on high resolution mass spectrometry．But fear not－it＇s just like normal mass spectrometry，but with more decimal places．

\section*{NMR Spectroscopy}

NMR isn't the easiest of things, so ingest this information one piece at a time - a bit like eating a bar of chocolate.

\section*{NMR Gives You Information about the Structure of Molecules}

Nuclear magnetic resonance (NMR) spectroscopy is an analytical technique that you can use to work out the structure of an organic molecule. The way that NMR works is pretty complicated, but here are the basics:
1) A sample of a compound is placed in a strong magnetic field and exposed to a range of different frequencies of radio waves.
2) The nuclei of certain atoms within the molecule absorb energy from the radio waves.
3) The amount of energy that a nucleus absorbs at each frequency will depend on the environment that it's in - there's more about this further down the page.
4) The pattern of these absorptions gives you information about the positions of certain atoms within the molecule, and about how many atoms of that type the molecule contains.

Radiowaves.
5) You can piece these bits of information together to work out the structure of the molecule.

The two types of NMR spectroscopy you need to know about are carbon-13 NMR and high resolution proton NMR.

Carbon-13 (or \({ }^{13} \mathrm{C}\)) NMR gives you information about the number of carbon atoms that are in a molecule, and the environments that they are in.

High resolution proton NMR gives you information about the number of hydrogen atoms that are in a molecule, and the environments that they're in.

\section*{Nuclei in Different Environments Absorb Different Amounts of Energy}
1) A nucleus is partly shielded from the effects of external magnetic fields by its surrounding electrons.
2) Any other atoms and groups of atoms that are around a nucleus will also affect its amount of electron shielding. E.g. if a carbon atom bonds to a more electronegative atom (like oxygen) the amount of electron shielding around its nucleus will decrease.
3) This means that the nuclei in a molecule feel different magnetic fields depending on their environments. Nuclei in different environments will absorb different amounts of energy at different frequencies.
4) It's these differences in absorption of energy between environments that you're looking for in NMR spectroscopy.
5) An atom's environment depends on all the groups that it's connected to, going right along the molecule - not just the atoms it's actually bonded to. To be in the same environment, two atoms must be joined to exactly the same things.

Chloroethane has 2 carbon environments - its carbons are bonded to different atoms.

2-chloropropane has 2 carbon environments:
- 1 C in a CHCl group, bonded to \(\left(\mathrm{CH}_{3}\right)_{2}\)
- 2 Cs in \(\mathrm{CH}_{3}\) groups, bonded to \(\mathrm{CHCl}\left(\mathrm{CH}_{3}\right)\)

1-chlorobutane has 4 carbon environments. (The two carbons in \(\mathrm{CH}_{2}\) groups are different distances from the electronegative Cl atom - so their environments are different.)

\section*{Tetramethylsilane is Used as a Standard}

The diagram below shows a typical carbon-13 NMR spectrum. The peaks show the frequencies at which energy was absorbed by the carbon nuclei. Each peak represents one carbon environment - so this molecule has two.
1) The differences in absorption are measured relative to a standard substance - tetramethylsilane (TMS).
2) TMS produces a single absorption peak in both types of NMR because all its carbon and hydrogen nuclei are in the same environment.
3) It's chosen as a standard because the absorption peak is at a lower frequency than just about everything else.
4) This peak is given a value of \(\mathbf{0}\) and all the peaks in other substances are measured as chemical shifts relative to this.
Chemical shift is the difference in the radio frequency absorbed by the nuclei (hydrogen or carbon) in the molecule being analysed and that absorbed by the same nuclei in TMS. It's given the symbol \(\delta\) and is measured in parts per million, or ppm. A small amount of TMS is often added to samples to give a reference peak on the spectrum.

\section*{NMR Spectroscopy}

\section*{\({ }^{13} \mathrm{C}\) NMR Spectra Tell You About Carbon Environments}

It＇s very likely that you＇ll be given one or more carbon－13 NMR spectra to interpret in your exams．
Here＇s a step－by－step guide to interpreting them：

\section*{1）Count the Number of Carbon Environments}

First，count the number of peaks in the spectrum－this is the number of carbon environments in the molecule． If there＇s a peak at \(\boldsymbol{\delta}=\mathbf{0}\) ，don＇t count it－it＇s the reference peak from TMS．
The spectrum on the right has three peaks－so the molecule must have three different carbon environments． This doesn＇t necessarily mean it only has three carbons， as it could have more than one in the same environment． In fact the molecular formula of this molecule is \(\mathbf{C}_{5} \mathbf{H}_{\mathbf{1 0}} \mathbf{O}\) ， so it must have several carbons in the same environment．

\section*{2）Look Up the Chemical Shifts in a Shift Diagram}

In your exams you＇ll get a data sheet that will include a diagram a bit like the one below．The diagram shows the chemical shifts experienced by carbon nuclei in different environments．The boxes show the range of shift values a carbon in that environment could have，e．g． \(\mathbf{C =}=\mathbf{C}\) could have a shift value anywhere between \(115-140 \mathrm{ppm}\) ．

You need to match up the peaks in the spectrum with the chemical shifts in the diagram to work out which carbon environments they could represent． For example，the peak at \(\boldsymbol{\delta} \approx \mathbf{1 0}\) in the spectrum above represents a \(\mathbf{C} \mathbf{C}\) bond． The peak at \(\boldsymbol{\delta} \approx \mathbf{2 5}\) is also due to a \(\mathbf{C}-\mathbf{C}\) bond．The carbons causing this peak have a different chemical shift to those causing the first peak－so they must be in a slightly different environment．The peak at \(\boldsymbol{\delta} \approx \mathbf{2 1 0}\) is due to a \(\mathbf{C = O}\) group，but you don＇t know whether it could be an aldehyde or a ketone．

\footnotetext{
 Matching peaks to the groups that cause them isn＇t always straightforward，because the chemical shifts can overlap．For example，a peak at \(\delta \approx 40\) might be caused by
\(\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{Cl}, \mathrm{C}-\mathrm{N}\) or \(\mathrm{C}-\mathrm{Br}\) ．
}

\section*{3）Try Out Possible Structures}

An aldehyde with 5 carbons：

This doesn＇t work－it does have the right molecular formula \(\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}\right)\) ， but it also has five carbon environments．

So，the molecule analysed was pentan－3－one．

A ketone with five carbons：

This works．Pentan－3－one has three carbon environments －two \(\mathrm{CH}_{3}\) carbons，each bonded to \(\mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3}\) ， two \(\mathrm{CH}_{2}\) carbons，each bonded to \(\mathrm{CH}_{3}\) and \(\mathrm{COCH}_{2} \mathrm{CH}_{3}\) ， and one CO carbon bonded to \(\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\) ．It has the right molecular formula \(\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}\right)\) too．

ミ゙11に
＝It can＇t be pentan－2－one－that has 5 carbon environments．

\section*{NMR Spectroscopy}

\section*{Interpreting NMR Spectra Gets Easier with Practice}

Example：The diagram shows the carbon－13 NMR spectrum of an alcohol with the molecular formula \(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\) ． Analyse and interpret the spectrum to identify the structure of the alcohol．

1）Looking at the diagram on the previous page，the peak with a chemical shift of \(\delta \approx 65\) is likely to be due to a \(\mathrm{C}-\mathrm{O}\) bond． Remember，the alcohol doesn＇t contain any chlorine or bromine， so you know the peak can＇t be caused by \(\mathrm{C}-\mathrm{Cl}\) or \(\mathrm{C}-\mathrm{Br}\) bonds．
2）The two peaks around \(\delta \approx 20\) probably both represent carbons in \(\mathrm{C}-\mathrm{C}\) bonds，but with slightly different environments．
3）The spectrum has three peaks，so the alcohol must have three carbon environments．There are four carbons in the alcohol， so two of the carbons must be in the same environment．

4）Put together all the information you＇ve got so far，and try out some structures：

This has a C－O bond，and some \(\mathrm{C}-\mathrm{C}\) bonds，which is right．But all four carbons are in different environments．

Again，this has a \(\mathrm{C}-\mathrm{O}\) bond，and some \(\mathrm{C}-\mathrm{C}\) bonds．But the carbons are still all in different environments．

This molecule has a C－O bond and \(\mathrm{C}-\mathrm{C}\) bonds and two of the carbons are in the same environment． So this must be the correct structure．

You＇ll also need to be able to predict what the carbon－13 NMR spectrum of a molecule may look like．
This isn＇t as hard as it sounds－just identify the number of unique carbon environments，then use the
shift diagram in your data booklet to work out where the peaks of each carbon environment would appear．

\section*{Practice Questions}

Q1 What part of the electromagnetic spectrum does NMR spectroscopy use？
Q2 What is meant by chemical shift？What compound is used as a reference for chemical shifts？
Q3 How can you tell from a carbon－13 NMR spectrum how many carbon environments a molecule contains？
Q4 Which type of bond could a shift of \(\delta \approx 150\) correspond to？

\section*{Exam Questions}

Q1 The carbon－13 NMR spectrum shown on the right was

ふllllllllllllllllllllllllll三 For these questions，use the shift values from the diagram on page 232. テllllllllllll111111111111111た
produced by a compound with the molecular formula \(\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}\) ．
a）Explain why there is a peak at \(\boldsymbol{\delta}=0\) ．
b）The compound does not have the formula \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\) ． Explain how the spectrum shows this．
c）Suggest and explain，using evidence from the carbon－13 NMR spectrum，a possible structure for the compound．

Q2 Look at molecule X on the right．Which of the following statements is／are true？
1．The carbon－13 NMR spectrum of \(X\) has a peak in the region of 165－185．
2．Molecule \(X\) has three different carbon environments．
3．The carbon－ 13 NMR spectrum of \(X\) shows four peaks．
A 1， 2 and 3
B Only 1 and 2
C Only 1 and 3
D Only 3
［1 mark］

\section*{Why did the carbon peak？Because it saw the radio wave．．．}

The ideas behind NMR are difficult，but don＇t worry too much if you don＇t really understand them．The important thing is to know how to interpret a spectrum－that＇s what will get you marks in the exam．If you＇re having trouble，go over the examples and practice questions a few more times．You should have the＂ahh．．．I get it＂moment sooner or later．

\section*{Proton NMR Spectroscopy}

So, you know how to interpret carbon-13 NMR spectra - now it's time for some high resolution proton NMR spectra.

\section*{\({ }^{1}\) H NMR Spectra Tell You About Hydrogen Environments}

Interpreting proton (or \({ }^{1} \mathrm{H}\)) NMR spectra is similar to interpreting carbon-13 NMR spectra:
1) Each peak represents one hydrogen environment.
2) Look up the chemical shifts on a data diagram to identify possible environments. They're different from \({ }^{13} \mathrm{C}\) NMR,

For example, 1-chloropropane has 3 hydrogen environments. so make sure you're looking at the correct data diagram.

\section*{Spin-Spin Coupling Splits the Peaks in a Proton NMR Spectrum}
1) The big difference between carbon-13 NMR and proton NMR spectra is that the peaks in a proton NMR spectrum split according to how the hydrogen environments are arranged.
2) Only the peaks of hydrogens bonded to carbon atoms split. The peaks of, for example, -OH and -NH hydrogens are not split.
3) The splitting is caused by the influence of hydrogen atoms that are bonded to neighbouring (or adjacent) carbons - these are carbons one along in the carbon chain from the carbon the hydrogen's attached to. This effect is called spin-spin coupling.
4) Only hydrogen nuclei on adjacent carbon atoms affect each other.
5) These split peaks are called multiplets. They always split into one more than the number of hydrogens on the neighbouring carbon atoms - it's called the \(\mathbf{n}+\mathbf{1}\) rule. For example, if there are \(\mathbf{2}\) hydrogens on the adjacent carbon atoms, the peak will be split into \(2+1=3\).

The splitting of the peak for this H ...

..tells you about the hydrogens on this adjacent carbon.
\begin{tabular}{|c|c|}
\hline Type of Peak & \begin{tabular}{l}
Number of Hydrogens \\
on Adjacent Carbon(s)
\end{tabular} \\
\hline Singlet (not split) & 0 \\
\hline Doublet (split into two) & 1 \\
\hline Triplet (split into three) & 2 \\
\hline Quartet (split into four) & 3 \\
\hline
\end{tabular}
6) You need to consider the hydrogens on all the adjacent carbons - if a hydrogen is attached to a carbon in the middle of a carbon chain, there could be two neighbouring carbon atoms, each bonded to hydrogens. They'll all contribute to the splitting.
There are 6
hydrogen atoms on
carbons adjacent to
these hydrogens...

\section*{Proton NMR Spectroscopy}

\section*{Integration Traces Tell You the Ratio of Protons in Each Environment}

1）In \({ }^{1} \mathrm{H}\) NMR，the relative area under each peak tells you the relative number of H atoms in each environment．For example，if the area under two peaks is in the ratio \(2: 1\) ，there will be two H atoms in the first environment for every one in the second environment．
2）Areas can be shown using numbers above the peaks or with an integration trace． \(\qquad\)

\section*{Proton NMR Can Be Used to Work Out Structures}

Now it＇s time to put it all together．You＇ll have to use all the clues from integration traces or numbers above the peaks，chemical shift values and splitting patterns to work out what a molecule could be from a proton NMR spectrum．

Example：Look at the \({ }^{1} \mathrm{H}\) NMR spectrum of 1，1，2－trichloroethane：
The peak due to the blue hydrogens is split into two because there＇s one hydrogen on the adjacent carbon atom． The peak due to the red hydrogen is split into three because there are two
 hydrogens on the adjacent carbon atom．

\section*{Practice Questions}

Q1 What causes the peaks on a high resolution proton NMR spectrum to split？
Q2 What causes a triplet of peaks on a high resolution proton NMR spectrum？
Q3 What do the relative areas under each of the peaks on an NMR spectrum tell you？

\section*{Exam Questions}

Q1 The proton NMR spectrum below is for an organic compound．
Use the diagram of chemical shifts on page 234 to answer this question．
a）Explain the splitting patterns of the two peaks．［2 marks］
b）What is the likely environment of the protons with a shift of 3.6 ppm ？
［1 mark］
c）What is the likely environment of the protons with a shift of 1.3 ppm ？
［1 mark］

d）The molecular mass of the molecule is 64．5．Suggest a possible structure and explain your suggestion．［2 marks］
Q2 A sample of pure 3－chlorobut－1－ene was fed into a high resolution proton NMR spectroscopy machine．
a）Predict the number of peaks that will appear on the spectrum（excluding a TMS peak）．
b）Predict the chemical shifts and splitting patterns of each peak．

\section*{Never mind splitting peaks－this stuff＇s likely to cause splitting headaches．．．}

Is your head spinning yet？I know mine is．Round and round like a merry－go－round．It＇s a hard life when you＇re tied to a desk trying to get NMR spectroscopy firmly fixed in your head．You must be looking quite peaky by now．．．so go on， learn this stuff，take the dog around the block，then come back and see if you can still remember it all．

\section*{Chromatography}

You've probably tried chromatography with a spot of ink on a piece of filter paper - it's a classic experiment.

\section*{Chromatography is Good for Separating and Identifying Things}

Chromatography is used to separate stuff in a mixture - once it's separated out, you can often identify the components. There are quite a few different types of chromatography - but they all have the same basic set up:
- A mobile phase - where the molecules can move. This is always a liquid or a gas.
- A stationary phase - where the molecules can't move. This must be a solid, or a liquid on a solid support.

And they all use the same basic principle:
1) The mobile phase moves through or over the stationary phase.
2) The distance each substance moves up the plate depends on its solubility in the mobile phase and its retention by or adsorption to the stationary phase.
3) Components that are more soluble in the mobile phase will travel further up the plate, or faster through the column. It's these differences in solubility and retention by the stationary phase that separate out the different substances.

Claire was going through a bit of a stationery phase.

\section*{\(\boldsymbol{R}_{f}\) Values Help to Identify Components in a Mixture}
1) In one-way chromatography (or paper chromatography), a solvent such as ethanol (the mobile phase), moves over a piece of paper (the stationary phase).
2) You can work out what was in the mixture by calculating an \(\boldsymbol{R}_{\mathrm{f}}\) value for each spot on the paper and looking them up in a table of known values.
3) To work out \(R_{\mathrm{f}}\) values, just use this formula:
\[
R_{\mathrm{f}} \text { value }=\frac{\text { distance travelled by spot }}{\text { distance travelled by solvent }}
\]

4) \(\quad R_{\mathrm{f}}\) values are always the same no matter how big the paper is or how far the solvent travels - they're properties of the chemicals in the mixture and so can be used to identify those chemicals.
5) BUT if the composition of the paper, the solvent, or the temperature change even slightly, you'll get different \(\boldsymbol{R}_{\mathrm{f}}\) values.
6) It's hard to keep the conditions identical. So, if you suspect that a mixture contains, say, chlorophyll, it's best to put a spot of chlorophyll on the baseline of the same paper as the mixture and run them both at the same time.

\section*{HPLC is Done Under High Pressure}
1) In high-performance liquid chromatography (HPLC) the stationary phase is small particles of a solid packed into a column (or tube). This is often silica bonded to various hydrocarbons.
2) The liquid mobile phase is often a polar mixture such as methanol and water. It's forced through the column under high pressure, which is why it used to be called high-pressure liquid chromatography.
The mixture to be separated is injected into the stream of solvent and is carried through the column as a solution.
3) The mixture is separated because the different parts are attracted by different amounts to the solid, so they take different lengths of time to travel through the column.
4) As the liquid leaves the column, UV light is passed through it. The UV is absorbed by the parts of the mixture as they come through, and a UV detector measures the UV light absorbed by the mixture. A graph (called a chromatogram) is produced.

5) The chromatogram shows the retention times of the components of the mixture - this is the time taken for a substance to pass through the column and reach the detector. You can compare experimental retention times with those from reference books or databases to identify the different substances in the mixture.

\section*{Chromatography}

\section*{In Gas Chromatography the Mobile Phase is a Gas}
1) In gas chromatography (GC) the sample to be analysed is injected into a stream of gas, which carries it through a coiled column coated with a viscous liquid (such as an oil) or a solid.
2) The components of the mixture constantly dissolve in the oil or adsorb onto the solid, evaporate back into the gas and then redissolve as they travel through the column.
3) As with HPLC, the different components in the mixture can be identified by their time taken to travel through the column (their retention times).

\section*{Mass Spectrometry can be Combined with GC and HPLC}
1) Mass spectrometry is a technique used to identify substances from their mass/charge ratio (see page 100). It is very good at identifying unknown compounds, but would give confusing results from a mixture of substances.
2) Gas chromatography and HPLC, on the other hand, are both very good at separating a mixture into its individual components, but not so good at identifying those components.
3) If you put HPLC or GC and mass spectrometry together, you get an extremely useful analytical tool. For example:

Gas chromatography-mass spectrometry (or GC-MS for short) combines the benefits of gas chromatography and mass spectrometry to make a super analysis tool.
The sample is separated using gas chromatography, but instead of going to a detector, the separated components are fed into a mass spectrometer.
The spectrometer produces a mass spectrum for each component, which can be used to identify each one and show what the original sample consisted of.

ミ11111111111111111111111, HPLC and GC combined with \(=\) mass spectrometry are often used in forensics. Together, they can separate and detect trace amounts of illegal substances in samples, e.g. testing for drugs in blood samples of athletes.

\section*{Practice Questions}

Q1 Explain what is meant by the terms 'mobile phase' and 'stationary phase'.
Q2 State the formula used to calculate the \(R_{\mathrm{f}}\) value of a substance.

\section*{Exam Questions}

Q1 Look at this diagram of a chromatogram produced using one-way chromatography on a mixture of substances A and B.
a) Calculate the \(R_{\mathrm{f}}\) value of spot A.
b) Explain why substance A has moved further up the plate than substance B. [1 mark]

Q2 HPLC is a useful technique for separating mixtures.

a) Describe the key features of HPLC apparatus.
[3 marks]
b) Explain how the resulting chromatogram may be used to identify the components of the mixture.
[3 marks]
Q3 GC can be used to detect the presence and quantity of alcohol in the blood or urine samples of suspected drink-drivers.
a) What do the letters GC stand for?
[1 mark]
b) Explain how 'retention time' is used to identify ethanol in a sample of blood or urine.
[2 marks]

\section*{Cromer-tography - pictures from my holiday in Norfolk...}

Loads of techniques to learn here, and don't forget to check p. 219 to remind yourself about thin-layer chromatography and how to carry out a paper chromatography experiment. Good news is the theory behind all these different types of chromatography is the same. You've got a mobile phase, a stationary phase and a mixture that wants separating.

\section*{Combined Techniques}

Yes, I know, it's yet another page on spectra - but it's the last one (alright, two) I promise.

\section*{You Can Use Data From Several Spectra to Work Out a Structure}

All the spectroscopy techniques in this section will give clues to the identity of a mystery molecule, but you can be more certain about a structure (and avoid jumping to wrong conclusions) if you look at data from several different types of spectrum. Look back at pages 100-101 for a reminder about mass spectroscopy, and pages 102-103 for IR spectroscopy.

Example: The following spectra are all of the same molecule. Deduce the molecule's structure.

The mass spectrum tells you the molecule's got a relative mass of 44 and it's likely to contain a \(\mathrm{CH}_{3}\) group.

The IR spectrum strongly suggests a \(\mathbf{C}=\mathbf{O}\) bond in an aldehyde, ketone, ester, carboxylic acid, amide, acyl chloride or acid anhydride.
But since it doesn't also have a broad absorption between 2500 and 3300, the molecule can't be a carboxylic acid. And there is no peak between 3300 and 3500 , so it can't be an amide.
The high resolution proton NMR spectrum shows that there are hydrogen nuclei in 2 environments.
The peak at \(\delta \approx 9.5\) is due to a CHO group and the one at \(\delta \approx 2.5\) is probably the hydrogen atoms in \(\mathrm{COCH}_{3}\).
(You know that these can't be any other groups with similar chemical shifts thanks to the mass spectrum and \(\mathbb{R}\) spectrum.)
The area under the peaks is in the ratio \(1: 3\), which makes sense as there's 1 hydrogen in CHO and 3 in \(\mathrm{COCH}_{3}\).
The splitting pattern shows that the protons are on
 adjacent carbon atoms, so the group must be \(\mathrm{HCOCH}_{3}\).

The carbon- 13 NMR spectrum shows that the molecule has carbon nuclei in 2 different environments.

The peak at \(\delta=200\) corresponds to a carbon in a carbonyl group and the other peak is due to a C-C bond.

Putting all this together we have a molecule with a mass of 44,
which contains a \(\mathrm{CH}_{3}\) group, a \(\mathrm{C}=\mathrm{O}\) bond, and an \(\mathrm{HCOCH}_{3}\) group.
So, the structure of the molecule must be:

which is the aldehyde ethanal.

You probably could have worked the molecule's structure out without using all the spectra, but in more complex examples you might well need all of them, so it's good practice.

\section*{Combined Techniques}

\section*{Elemental Analysis also Helps to Work Out a Structure}
1) In elemental analysis, experiments determine the masses or percentage compositions of different elements in a compound.
2) This data can help you to work out the empirical and molecular formulae of a compound. See pages 56-57 and page 228 to remind yourself how to do this.
3) Knowing the molecular formula is useful in working out the structure of the compound from different spectra.

Jim has a good knowledge of specs.

Do you?

\section*{Practice Questions}

Q1 Which type of spectrum gives you the relative mass of a molecule?
Q2 Which spectrum can tell you how many different hydrogen environments there are in a molecule?
Q3 Which spectrum can tell you how many carbon environments are in a molecule?

\section*{Exam Questions}

Q1 The four spectra shown were produced by running different tests on samples of the same pure organic compound.
Use them to work out:
a) The molecular mass of the compound.
[1 mark]
b) The probable structure of the molecule. Explain your reasoning.
[6 marks]

Q2 The four spectra shown were produced by running different tests on samples of the same pure organic compound.
Use them to work out:
a) The molecular mass of the compound.
[1 mark]
b) The probable structure of the molecule.

Explain your reasoning.
[6 marks]

\section*{Spectral analysis - psychology for ghosts...}

So that's analysis done and dusted, you'll be pleased to hear. But before you celebrate reaching the final topic in the book, take a moment to check that you really know how to interpret all the different spectra. You might want to have a look back at page 221 if you're struggling to remember what all the different functional groups look like.

\section*{Planning Experiments}

As well as doing practical work in class, you can get asked about it in your exams too. Harsh I know, but that's how it goes. You need to be able to plan the perfect experiment and make improvements to ones other people have planned.

\section*{Make Sure You Plan Your Experiment Carefully}

It's really important to plan an experiment well if you want to get accurate and precise results. Here's how to go about it...
ハl111111111111111111111, Have a peek at page 248 to find out more about accurate and precise results.

1) Work out the aim of the experiment - what are you trying to find out?
2) Identify the independent, dependent and other variables (see below).
3) Decide what data to collect.
4) Select appropriate equipment which will give you accurate results.
5) Make a risk assessment and plan any safety precautions.
6) Write out a detailed method.
7) Carry out tests - to gather evidence to address the aim of your experiment.

\section*{Make it a Fair Test - Control your Variables}

You probably know this all off by heart but it's easy to get mixed up sometimes. So here's a quick recap:
Variable - A variable is a quantity that has the potential to change, e.g. mass. There are two types of variable commonly referred to in experiments:
- Independent variable - the thing that you change in an experiment.
- Dependent variable - the thing that you measure in an experiment.

As well as the independent and dependent variables, you need to think of all the other variables in your experiment and plan ways to keep each of those the same. For example, if you're investigating the effect of temperature on rate of reaction using the apparatus on the right, the variables will be:

\begin{tabular}{|c|c|}
\hline Independent variable & Temperature \\
\hline Dependent variable & Volume of g \\
\hline Other variables & E.g. concent of a catalyst \\
\hline
\end{tabular}

Experiments often involve collecting data and you need to decide what data to collect.
1) There are different types of data, so it helps to know what they are:
- Discrete - you get discrete data by counting. E.g. the number of bubbles produced in a reaction.
- Continuous - a continuous variable can have any value on a scale. For example, the volume of gas produced. You can never measure the exact value of a continuous variable.
- Categoric - a categoric variable has values that can be sorted into categories. For example, the colours of solutions might be blue, red and green.
2) You need to make sure the data you collect is appropriate for your experiment.

Example: A student suggests measuring the rate of the following reaction by observing how conductivity changes over the course of the reaction:
\(\mathrm{NaOH}_{(\mathrm{aq)}}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}_{(\mathrm{l})} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}_{(\mathrm{l})}+\mathrm{NaBr}_{\text {(aq) }}\)
Suggest what is wrong with the student's method, and how it could be improved.
You couldn't collect data about how the conductivity changes over the course of the reaction, because there are salts in both the reactants and the products.
Instead you could use a pH meter to measure how the pH changes
from basic (due to sodium hydroxide) to neutral.

\section*{Planning Experiments}

\section*{Choose Appropriate Equipment－Think about Size and Precision}

Selecting the right apparatus may sound easy but it＇s something you need to think carefully about．
1）The equipment has to be appropriate for the specific experiment．
For example，if you want to measure the volume of gas produced in a reaction，you need to make sure you use apparatus which will collect the gas，without letting any escape．

2）The equipment needs to be the right size．
For example，if you＇re using a gas syringe to collect a gas，it needs to be big enough to collect all the gas produced during the experiment，or the plunger will just fall out the end．
You might need to do some calculations to work out what size of syringe to use．
3）The equipment needs to be the right level of precision．
If you want to measure \(10 \mathrm{~cm}^{3}\) of a liquid，it will be more precise to use a measuring cylinder that is graduated to the nearest \(0.5 \mathrm{~cm}^{3}\) than to the nearest \(1 \mathrm{~cm}^{3}\) ．
A burette would be most precise though（they can measure to the nearest \(0.1 \mathrm{~cm}^{3}\) ）．

\section*{Risk Assessments Help You to Work Safely}

1）When you＇re planning an experiment，you need to carry out a risk assessment．To do this，you need to identify：
－All the dangers in the experiment，e．g．any hazardous compounds or naked flames．
－Who is at risk from these dangers．
－What can be done to reduce the risk，such as wearing goggles or working in a fume cupboard．
2）You need to make sure you＇re working ethically too．This is most important if there are other people or animals involved．You have to put their welfare first．

ご111111111111111111111
三 There＇s more about risks
ミ and hazards on page 62．＝

\section*{Methods Must be Clear and Detailed}

When writing or evaluating a method，you need to think about all of the things on these two pages．
The method must be clear and detailed enough for anyone to follow－it＇s important that other people can recreate your experiment and get the same results．Make sure your method includes：
1）All substances and quantities to be used．
2）How to control variables．
3）The exact apparatus needed（a diagram is usually helpful to show the set up）．
4）Any safety precautions that should be taken．
5）What data to collect and how to collect it．

\section*{Practice Questions}

Q1 Briefly outline the steps involved in planning an experiment．
Q2 What three things should you consider when choosing the best apparatus for your experiment？

\section*{Exam Question}

Q1 A student carries out an experiment to investigate how the rate of the following reaction changes
with the concentration of hydrochloric acid：\(\quad \mathrm{Mg}_{(\mathrm{s})}+2 \mathrm{HCl}_{\text {（aq）}} \rightarrow \mathrm{MgCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}\)
The student decides to measure how the pH changes over time using litmus paper．
Explain why this method of measuring pH is unsuitable，and suggest an alternative method．

\section*{Revision time－independent variable．Exam mark－dependent variable．．．}

I wouldn＇t advise you to investigate the effect of revision on exam marks．Just trust me－more revision＝better marks． But if you were to investigate it，there are all manner of variables that you＇d need to control．The amount of sleep you had the night before，how much coffee you drank in the morning，your level of panic on entering the exam hall．．．

\section*{Practical Techniques}

The way you carry out your experiment is important，so here＇s a nice round up of some of the techniques chemists use all the time．You＇ve probably met some of them before，which should hopefully make it all a bit easier．Hopefully．．．：－）

\section*{Results Should be Repeatable and Reproducible}

1）Repeatable means that if the same person does the experiment again using the same methods and equipment， they＇ll get the same results．Reproducible means that if someone else does the experiment，or a different method or piece of equipment is used，the results will still be the same．

2）To make sure your results can be consistently repeated and reproduced，you need to minimise any errors that might sneak into your data．This includes：
－using apparatus and techniques correctly，
－taking measurements correctly，
－repeating your experiments and calculating a mean．

\section*{Make Sure You Measure Substances Correctly}

The state（solid，liquid or gas）that your substance is in will determine how you decide to measure it．
1）You weigh solids using a balance．Here are a couple of things to look out for：
－Put the container you are weighing your substance into on the balance，and make sure the balance is set to exactly zero before you start weighing out your substance．
－If you need to transfer the solid into another container，make sure that it＇s all transferred．For example，if you＇re making up a standard solution you could wash any remaining solid into the new container using the solvent．Or，you could reweigh the weighing container after you＇ve transferred the solid so you can work out exactly how much you added to your experiment．

2）There are a few methods you might use to measure the volume of a liquid．Whichever method you use，always read the volume from the bottom of the meniscus（the curved upper surface of the liquid） when it＇s at eye level．

Pipettes are long，narrow tubes that are used to suck up an accurate volume of liquid and transfer it to another container．They are often calibrated to allow for the fact that the last drop of liquid stays in the pipette when the liquid is ejected．This reduces transfer errors．

Burettes measure from top to bottom（so when they are full，the scale reads zero）．They have a tap at the bottom which you can use to release the liquid into another container（you can even release it drop by drop）． To use a burette，take an initial reading，and once you＇ve released as much liquid as you want，take a final reading．The difference between the readings tells you how much liquid you used．

Volumetric flasks allow you to accurately measure a very specific volume of liquid． They come in various sizes（e．g． \(100 \mathrm{~cm}^{3}, 250 \mathrm{~cm}^{3}\) ）and there＇s a line on the neck that marks the volume that they measure．They＇re used to make accurate dilutions and standard solutions．To use them，first measure out and add the liquid or solid that is being diluted or dissolved．Rinse out the measuring vessel into the volumetric flask with a little solvent to make sure everything＇s been transferred．Then fill the flask with solvent to the bottom of the neck．Fill the neck drop by drop until the bottom of the meniscus is level with the line．
\[
\begin{aligned}
& \begin{array}{l}
\text { A standard solution is a solution with a precisely known concentration. } \\
\text { You can find out how they're made on page } 62 \text {. } \\
\text { F11 } \\
\text { S }
\end{array}
\end{aligned}
\]

3）Gases can be measured with a gas syringe．They should be measured at room temperature and pressure as the volume of a gas changes with temperature and pressure．Before you use the syringe，you should make sure it＇s completely sealed and that the plunger moves smoothly． think about how to minimise losses as you transfer it from the measuring equipment to the reaction container．

\section*{Practical Techniques}

\section*{Measure Temperature Accurately}

I'm sure you've heard this before, so I'll be quick... You can use a thermometer or a temperature probe to measure the temperature of a substance (a temperature probe is like a thermometer but it will always have a digital display).
- Make sure the bulb of your thermometer or temperature probe is completely submerged in any mixture you're measuring.
- Wait for the temperature to stabilise before you take an initial reading
- If you're using a thermometer with a scale, read off your measurement at eye level to make sure it's accurate.

\section*{Qualitative Tests Can be Harder to Reproduce}

Qualitative tests measure physical qualities (e.g. colour) while quantitative tests measure numerical data, (e.g. mass). So if you carried out a reaction and noticed that heat was produced, this would be a qualitative observation. If you measured the temperature change with a thermometer, this would be quantitative.
Qualitative tests can be harder to reproduce because they're often subjective (based on opinion), such as describing the colour or cloudiness of a solution. There are ways to reduce the subjectivity of qualitative results though.
For example:
- If you're looking for a colour change, put a white background behind your reaction container.
- If you're looking for a precipitate to form, mark an \(X\) on a piece of paper and place it under the reaction container. Your solution is 'cloudy' when you can no longer see the \(X\).

\section*{There are Specific Techniques for Synthesising Organic Compounds}

Synthesis is used to make one organic compound from another. There are a number of techniques that chemists use to help them make and purify their products:
1) Reflux - heating a reaction mixture in a flask fitted with a condenser so that any materials that evaporate, condense and drip back into the mixture.

EThese techniques are covered in more detail on pages 98-99.
=1111111111111111111111111/
) Distillation - gently heating a mixture so that the compounds evaporate off in order of increasing boiling point and can be collected separately. This can be done during a reaction to collect a product as it forms, or after the reaction is finished to purify the mixture.
3) Removing water soluble impurities - adding water to an organic mixture in a separating funnel. Any water soluble impurities move out of the organic layer and dissolve in the aqueous layer. The layers have different densities so are easy to separate.

\section*{Practice Questions}

Q1 Give three ways that you could ensure your experiment is repeatable and reproducible.
Q2 How would you measure out a desired quantity of a solid? And a gas?
Q3 How could you make the results of an experiment measuring time taken for a precipitate to form less subjective?

\section*{Exam Question}

Q1 A student dilutes a \(1 \mathrm{~mol} \mathrm{dm}^{-3}\) solution of sodium chloride to \(0.1 \mathrm{~mol} \mathrm{dm}^{-3}\) as follows:
He measures \(10 \mathrm{~cm}^{3}\) of \(1 \mathrm{~mol} \mathrm{dm}^{-3}\) sodium chloride solution in a pipette and puts this into a \(100 \mathrm{~cm}^{3}\) volumetric flask. He then tops up the volumetric flask with distilled water until the top of the meniscus is at \(100 \mathrm{~cm}^{3}\).
a) What has the student done incorrectly? What should he have done instead?
b) Which of the arrows in the diagram on the right indicates the level to which you should fill a volumetric flask?

\section*{Reflux, take it easy...}

It might seem like there's a lot to do to make sure your results are accurate, but you should get lots of practice in practicals. Before long you'll be measuring temperatures and volumes with your eyes shut (metaphorically speaking).

\section*{Presenting Results}

Once you＇ve collected the data from your experiment，it＇s not time to stop，put your feet up and have a cup of tea－ you＇ve got some presenting to do．Results tables need converting into graphs and other pretty pictures．

\section*{Organise Your Results in a Table}

It＇s a good idea to set up a table to record the results of your experiment in．When you draw a table，make sure you include enough rows and columns to record all of the data you need．You might also need to include a column for processing your data（e．g．working out an average）．

Make sure each column has a heading so you know what＇s going to be recorded where．

The units should be in the column heading，not the table itself．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
Temperature \\
\(\left({ }^{\circ} \mathbf{C}\right)\)
\end{tabular}} & \multirow{2}{*}{ Time（s）} & \multicolumn{3}{|c|}{ Volume of gas evolved \(\left(\mathbf{c m}^{3}\right)\)} & \multirow{2}{*}{\begin{tabular}{c}
Average volume of gas evolved \\
\(\left(\mathbf{c m}^{3}\right)\)
\end{tabular}} \\
\cline { 3 - 6 } & & Run 1 & Run 2 & Run 3 & \\
\hline \multirow{3}{*}{\(\mathbf{2 0}\)} & \(\mathbf{1 0}\) & 8.1 & 7.6 & 8.5 & \((8.1+7.6+8.5) \div 3=8.1\) \\
\cline { 2 - 6 } & \(\mathbf{2 0}\) & 17.7 & 19.0 & 20.1 & \((17.7+19.0+20.1) \div 3=18.9\) \\
\hline & \(\mathbf{3 0}\) & 28.5 & 29.9 & 30.0 & \((28.5+29.9+30.0) \div 3=29.5\) \\
\hline
\end{tabular}

You＇ll need to repeat each test at least three times to check your results are repeatable．

You can find the mean result by adding up the data from each repeat and dividing by the number of repeats．

\section*{Graphs：Scatter or Bar－Use the Best Type}

You＇ll often need to make a graph of your results．
Graphs make your data easier to understand－so long as you choose the right type．
Scatter plots are great for showing how two sets of continuous data are related（or correlated－see page 246）． Don＇t try to join all the points on a scatter plot－draw a straight or curved line of best fit to show the trend．

You should use a bar chart when one of your data sets is categoric．For example：

Water samples

Apple and blackberry was number one on Jane＇s pie chart

\section*{Whatever type of graph you make，} you＇ll ONLY get full marks if you：
－Choose a sensible scale－don＇t do a tiny graph in the corner of the paper，or massive axes where the data only takes up a tiny part of the graph．
－Label both axes－including units．
－Plot your points accurately－use a sharp pencil．

\footnotetext{
，ا111111111111111111111111111111111111／，

}

\section*{Presenting Results}

\section*{Don't Forget About Units}

Units are really important - 10 g is a bit different from 10 kg , so make sure you don't forget to add them to your tables and graphs. It's often a good idea to write down the units on each line of any calculations you do - it makes things less confusing, particularly if you need to convert between two different units.

Here are some useful examples:

Concentration can be measured in \(\mathrm{mol} \mathrm{dm}^{-3}\) and \(\mathrm{mol} \mathrm{cm}{ }^{-3}\).

Example: Write \(0.2 \mathrm{~mol} \mathrm{dm}^{-3}\) in \(\mathrm{mol} \mathrm{cm}^{-3}\).
To convert \(0.2 \mathrm{~mol} \mathrm{dm}^{-3}\) into \(\mathrm{mol} \mathrm{cm}^{-3}\) you divide by 1000 .
\(0.2 \mathrm{~mol} \mathrm{dm}^{-3} \div 1000=2 \times 10^{-4} \mathrm{~mol} \mathrm{~cm}^{-3}\)
マ111111111111111111111111111111=
Standard form is useful for writing very big or very small numbers.

Volume can be measured in \(\mathrm{m}^{3}, \mathrm{dm}^{3}\) and \(\mathrm{cm}^{3}\).

\(\div 1000\)

\(\div 1000\)

Example: Write \(6 \mathrm{dm}^{3}\) in \(\mathrm{m}^{3}\) and \(\mathrm{cm}^{3}\).
To convert \(6 \mathrm{dm}^{3}\) into \(\mathrm{m}^{3}\) you divide by 1000 . \(6 \mathrm{dm}^{3} \div 1000=0.006 \mathrm{~m}^{3}=6 \times 10^{-3} \mathrm{~m}^{3}\)
To convert \(6 \mathrm{dm}^{3}\) into \(\mathrm{cm}^{3}\) you multiply by 1000 . \(6 \mathrm{dm}^{3} \times 1000=6000 \mathrm{~cm}^{3}=6 \times 10^{3} \mathrm{~cm}^{3}\)

\section*{Round to the Lowest Number of Significant Figures}

You always need to be aware of significant figures when working with data.
1) The rule is the same for when doing calculations with the results from your experiment, or when doing calculations in the exam - you have to round your answer to the lowest number of significant figures (s.f.) given in the question.
2) It always helps to write down the number of significant figures you've rounded to after your answer - it shows you really know what you're talking about.
3) If you're converting between standard and ordinary form, you have to keep the same number of significant figures. For example, \(0.0060 \mathrm{~mol} \mathrm{dm}^{-3}\) is the same as \(6.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}\) - they're both given to 2 s.f..

Example: \(13.5 \mathrm{~cm}^{3}\) of a \(0.51 \mathrm{~mol} \mathrm{dm}^{-3}\) solution of sodium hydroxide reacts with \(1.5 \mathrm{~mol} \mathrm{dm}^{-3}\) hydrochloric acid. Calculate the volume of hydrochloric acid required to neutralise the sodium hydroxide

3 s.f.
No. of moles of NaOH : \(\left(13.5 \mathrm{~cm}^{3} \times 0.51 \mathrm{~mol} \mathrm{dm}^{-3}\right) \div 1000=6.885 \times 10^{-3} \mathrm{~mol}\) Volume of \(\mathrm{HCl}:\left(6.885 \times 10^{-3}\right) \mathrm{mol} \times 1000 \div 1.5 \mathrm{~mol} \mathrm{dm}^{-3}=4.59 \mathrm{~cm}^{3}=4.6 \mathrm{~cm}^{3}\left(2 \mathrm{~s} . \mathrm{f}_{\mathrm{o}}\right)\)

Final answer should be rounded to 2 s.f.

\section*{Practice Questions}

You don't need to round intermediate answers. Rounding too early will make your final answer less accurate.
\(\qquad\) EM111111111111111111111111玉 when you're doing calculations.

Q1 Why is it always a good idea to repeat your experiments?
Q2 How would you convert an answer from \(\mathrm{m}^{3}\) to \(\mathrm{dm}^{3}\) ?
Q3 How do you decide how many significant figures you should round your answer to?

\section*{Exam Question}

Q1 \(10 \mathrm{~cm}^{3}\) sodium hydroxide solution is titrated with \(0.50 \mathrm{~mol} \mathrm{dm}^{-3}\) hydrochloric acid to find its concentration. The titration is repeated three times and the volumes of hydrochloric acid used are: \(7.30 \mathrm{~cm}^{3}, 7.25 \mathrm{~cm}^{3}, 7.25 \mathrm{~cm}^{3}\).
a) What is the mean volume of hydrochloric acid recorded in \(\mathrm{dm}^{3}\) ?
[1 mark]
b) What is the concentration of hydrochloric acid in \(\mathrm{mol} \mathrm{cm}^{-3}\) ?
[1 mark]

\section*{Significant figures - a result of far too many cream cakes...}

When you draw graphs, always be careful to get your axes round the right way. The thing you've been changing (the independent variable) goes on the \(x\)-axis, and the thing you've been measuring (the dependent variable) is on the \(y\)-axis.

\section*{Analysing Results}

You're not quite finished yet... there's still time to look at your results and try and make sense of them. Graphs can help you to see patterns but don't try and read too much in to them - they won't tell you what grade you're going to get.

\section*{Watch Out For Anomalous Results}
1) Anomalous results are ones that don't fit in with the other values and are likely to be wrong.
2) They're often due to random errors, e.g. if a drop in a titration is too big and shoots past the end point, or if a syringe plunger gets stuck whilst collecting gas produced in a reaction.
3) When looking at results in tables or graphs, you always need to look to see if there are any anomalies - you need to ignore these results when calculating means or drawing lines of best fit.

Example: Calculate the mean volume from the results in the table below.
\begin{tabular}{|l|c|c|c|c|}
\hline Titration Number & 1 & 2 & 3 & 4 \\
\hline Titre Volume \(\left(\mathrm{cm}^{3}\right)\) & 15.20 & 15.30 & 15.25 & 15.50 \\
\hline
\end{tabular}

Titre 4 isn't concordant (doesn't match) the other results so you need to ignore it and just use the other three:
\(\frac{15.20+15.30+15.25}{3}=15.25 \mathrm{~cm}^{3}\)

\section*{Scatter Graphs Show The Relationship Between Variables}

Correlation describes the relationship between two variables - the independent one and the dependent one.
Data can show:
(1) Positive correlation

As one variable increases the other increases.

Positive
(2) Negative correlation As one variable increases the other decreases.

No correlation There is no relationship between the two variables.

\section*{Correlation Doesn't Mean Cause — Don't Jump to Conclusions}
1) Ideally, only two quantities would ever change in any experiment everything else would remain constant.
2) But in experiments or studies outside the lab, you can't usually control all the variables. So even if two variables are correlated, the change in one may not be causing the change in the other. Both changes might be caused by a third variable.

\section*{Example:}

Some studies have found a correlation between drinking chlorinated tap water and the risk of developing certain cancers. So some people argue that water shouldn't have chlorine added.
BUT it's hard to control all the variables between people who drink tap water and people who don't. It could be due to other lifestyle factors.
Or, the cancer risk could be affected by something else in tap water - or by whatever the non-tap water drinkers drink instead...

\section*{Analysing Results}

\section*{Don't Get Carried Away When Drawing Conclusions}

The data should always support the conclusion. This may sound obvious but it's easy to jump to conclusions.
Conclusions have to be specific - not make sweeping generalisations.

\section*{Example:}
1) The rate of an enzyme-controlled reaction was measured at \(10{ }^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}, 30^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}\) and \(60^{\circ} \mathrm{C}\). All other variables were kept constant, and the results are shown in the graph below.

2) A science magazine concluded from this data that this enzyme works best at \(40{ }^{\circ} \mathrm{C}\).
3) The data doesn't support this. The enzyme could work best at \(42^{\circ} \mathrm{C}\) or \(47{ }^{\circ} \mathrm{C}\) but you can't tell from the data because increases of \(10{ }^{\circ} \mathrm{C}\) at a time were used. The rate of reaction at in-between temperatures wasn't measured.
4) All you know is that it's faster at \(40{ }^{\circ} \mathrm{C}\) than at any of the other temperatures tested.
5) The experiment ONLY gives information about this particular enzyme-controlled reaction. You can't conclude that all enzyme-controlled reactions happen faster at a particular temperature - only this one. And you can't say for sure that doing the experiment at, say, a different constant pressure, wouldn't give a different optimum temperature.

\section*{Practice Questions}

Q1 How do you treat anomalous results when calculating averages? And when drawing lines of best fit?
Q2 What is negative correlation?

\section*{Exam Question}

Q1 A student carried out an investigation to study how the rate of a reaction changed with temperature. He plotted his results on the graph shown on the right.
a) Give the temperatures at which any anomalous results occurred.
[1 mark]
b) What type of correlation is there between temperature and rate of reaction?
[1 mark]
c) Which of the following statements are appropriate conclusions to draw from this experiment?

1. The rate of the reaction is highest at \(60^{\circ} \mathrm{C}\).
2. Increasing the temperature causes the rate of the reaction to increase.
3. Between \(5^{\circ} \mathrm{C}\) and \(60^{\circ} \mathrm{C}\), the rate of the reaction increased as temperature increased.
A Statements 1, 2 and 3.
B Statements 2 and 3 only.
C Statement 3 only.
D Statement 2 only.

\section*{Correlation Street - my favourite programme...}

Watch out for bias when you're reading about the results of scientific studies. People often tell you what they want you to know. So a bottled water company might say that studies have shown that chlorinated tap water can cause cancer, without mentioning any of the doubts in the results. After all, they want to persuade you to buy their drinks.

\section*{Evaluating Experiments}

So you've planned an experiment, collected your data (no less than three times, mind you) and put it all onto a lovely graph. Now it's time to sit back, relax and... work out everything you did wrong. That's science, I'm afraid.

\section*{You Need to Look Critically at Your Experiment}

There are a few terms that'll come in handy when you're evaluating how convincing your results are...
1) Valid results - Valid results answer the original question. For example, if you haven't controlled all the variables your results won't be valid, because you won't be testing just the thing you wanted to.
2) Accurate results - Accurate results are those that are really close to the true answer.
3) Precise results - These are results taken using sensitive instruments that measure in small increments, e.g. pH measured with a meter (pH 7.692) will be more precise than pH measured with paper (pH 7).
4) Reliable experiments - Reliable experiments are carried out correctly, using suitable equipment and with minimal errors. For example, an experiment measuring a temperature change would be set up to avoid any heat loss and temperature changes would be measured using a thermometer or temperature probe.

\section*{Uncertainty is the Amount of Error Your Measurements Might Have}
1) Any measurements you make will have uncertainty in them due to the limits to the precision of the equipment you used.
2) If you use a weighing scale that measures to the nearest 0.1 g , then the true weight of any substance you weigh could be up to 0.05 g more than or less than your reading. Your measurement has an uncertainty (or error) of \(\pm 0.05 \mathrm{~g}\) in either direction.
3) The \(\pm\) sign tells you the range in which the true value could lie. The range can also be called the margin of error.
4) For any piece of equipment you use, the uncertainty will be half the smallest increment the equipment can measure, in either direction.
5) If you're combining measurements, you'll need to combine their uncertainties. For example, if you're calculating a temperature change by measuring an initial and a final temperature, the total uncertainty for the temperature change will be the uncertainties for both measurements added together.

\section*{The Percentage Uncertainty in a Result Should be Calculated}
You can calculate the percentage uncertainty
of a measurement using this equation:

Example: A balance measures to the nearest 0.2 g , and is used to measure the mass of a substance.
The mass is zeroed so it reads 0.0 g . Then, 18.4 g of a solid are weighed. Calculate the percentage uncertainty.
The balance measures to the nearest 0.2 g , so each reading has an uncertainty of \(\pm 0.1 \mathrm{~g}\). There is an error of \(\pm 0.1 \mathrm{~g}\) associated with when the balance reads 0.0 g (when it's zeroed), and when the mass of solid has been weighed out. Therefore, there are two sources of error, so the total uncertainty is \(0.1 \times 2=0.2 \mathrm{~g}\).
So for this mass measurement, percentage uncertainty \(=\frac{0.2}{18.4} \times 100=1.1 \% \approx\) This stuff's really important so there are E This stuff's really important, so there are 三 more examples on pages 66 and 67.

\section*{You Can Minimise the Percentage Uncertainty}
1) One obvious way to reduce errors in your measurements is to use the most precise equipment available to you.
2) A bit of clever planning can also improve your results. If you measure out \(\mathbf{5} \mathbf{c m}^{\mathbf{3}}\) of liquid in a measuring cylinder that has increments of \(0.1 \mathrm{~cm}^{3}\) then the percentage uncertainty is \((0.05 \div 5) \times 100=\mathbf{1} \%\).
But if you measure \(\mathbf{1 0} \mathbf{~ c m}^{\mathbf{3}}\) of liquid in the same measuring cylinder the percentage uncertainty is \((0.05 \div 10) \times 100=\mathbf{0 . 5} \%\). Hey presto - you've just halved the percentage uncertainty. So the percentage uncertainty can be reduced by planning an experiment so you use a larger volume of liquid.
3) The general principle is that the smaller the measurement, the larger the percentage uncertainty.

\section*{Evaluating Experiments}

\section*{Errors Can Be Systematic or Random}
1) Systematic errors are the same every time you repeat the experiment. They may be caused by the set-up or equipment you used. For example, if the \(10.00 \mathrm{~cm}^{3}\) pipette you used to measure out a sample for titration actually only measured \(9.95 \mathrm{~cm}^{3}\), your sample would have been about \(0.05 \mathrm{~cm}^{3}\) too small every time you repeated the experiment.
2) Random errors vary - they're what make the results a bit different each time you repeat an experiment. The errors when you make a reading from a burette are random. You have to estimate or round the level when it's between two marks so sometimes your figure will be above the real one, and sometimes it will be below.
3) Repeating an experiment and finding the mean of your results helps to deal with random errors. The results that are a bit high will be cancelled

This should be a photo of a scientist. I don't know what happened it's a random error... out by the ones that are a bit low. But repeating your results won't get rid of any systematic errors, so your results won't get more accurate.

\section*{Think About How the Experiment Could Be Improved}

In your evaluation you need to think about anything that you could have done differently to improve your results. Here are some things to think about...
1) Whether your method gives you valid results.
- Will the data you collected answer the question your experiment aimed to answer?
- Did you control all your variables?
2) How you could improve the accuracy of your results.
- Was the apparatus you used on an appropriate scale for your measurements?
- Could you use more precise equipment to reduce the random errors and uncertainty of your results?
3) Whether your results are repeatable and reproducible.
- Did you repeat the experiment, and were the results you got similar?

EThere's more about repeatable and reproducible results on page 242.

\section*{Practice Questions}

Q1 What's the difference between the accuracy and precision of results?
Q2 What's the uncertainty of a single reading on a balance that reads to the nearest 0.1 g ?
Q3 How do you calculate percentage uncertainty?
Q4 Give two ways of reducing percentage uncertainty.
Q5 How can you reduce the random errors in your experiments?

\section*{Exam Question}

Q1 A student carried out an experiment to determine the temperature change in the reaction between citric acid and sodium bicarbonate using the following method:
1. Measure out \(25.0 \mathrm{~cm}^{3}\) of \(1.00 \mathrm{~mol} \mathrm{dm}^{-3}\) citric acid solution in a measuring cylinder and put it in a polystyrene cup.
2. Weigh out 2.10 g sodium bicarbonate and add it to the citric acid solution.
3. Place a thermometer in the solution and measure the temperature change over one minute.
a) The measuring cylinder the student uses measures to the nearest \(0.5 \mathrm{~cm}^{3}\). What is the percentage uncertainty of the student's measurement?
[1 mark]
b) The student's result is different to the documented value. How could you change the method to give a more accurate measurement for the change in temperature of the complete reaction?

\section*{Repeat your results: Your results, your results, your results, your results...}

So there you have it. All you need to know about planning, carrying out and analysing experiments. Watch out for errors creeping in to your experimental methods. It may not seem obvious that there's an error when you're taking a measurement that's zero (e.g. on a balance or a burette), so remember to include this when calculating errors.

\section*{Do Well In Your Exams}

Revision is really important when it comes to exams, but it's not the only thing that can help. Good exam technique and knowing what to expect in each exam can make a big difference to your mark, so you'd better check this out...

\section*{Make Sure You Know the Structure of Your Exams}

For A-Level Chemistry, you'll be sitting three papers. Knowing what's going to come up in each paper and how much time you'll have will be really useful when you are preparing for your exams, so here's what you'll be up against:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Paper } & Time & \begin{tabular}{c}
No. of \\
marks
\end{tabular} & \begin{tabular}{c}
\% of \\
total mark
\end{tabular} & Topics assessed & Paper details \\
\hline 1 & \begin{tabular}{c}
Advanced Inorganic \\
and Physical \\
Chemistry
\end{tabular} & \begin{tabular}{c}
1 hr \\
25 mins
\end{tabular} & 90 & 30 & \begin{tabular}{c}
\(1-5,8\) \\
and \(10-15\)
\end{tabular} & \begin{tabular}{c}
A mixture of multiple choice, \\
short answer, calculations and \\
extended writing questions.
\end{tabular} \\
\hline & \begin{tabular}{c}
Advanced Organic \\
and Physical \\
Chemistry
\end{tabular} & 45 hrins & 90 & 30 & \(2,3,5-7,9\) and & \begin{tabular}{c}
A mixture of multiple choice, \\
short answer, calculations and \\
extended writing questions.
\end{tabular} \\
\hline 3 & \begin{tabular}{c}
General and \\
Practical Principles \\
in Chemistry
\end{tabular} & \begin{tabular}{c}
2 hrs \\
30 mins
\end{tabular} & 120 & 40 & \begin{tabular}{c}
All topics, \\
including \\
Practical Skills.
\end{tabular} & \begin{tabular}{c}
A mixture of multiple choice, \\
short answer, calculations and \\
extended writing questions.
\end{tabular} \\
\hline
\end{tabular}
1) All three papers cover theory from both years of your course - this means you need to make sure you revise your Year 1 topics (1-10) as well as your Year 2 topics (11-19) for these exams.
2) Each paper will include some extended writing questions which are marked on the quality of the response, as well as their scientific content.

These questions will be shown by an
asterisk \(\left({ }^{*}\right)\) next to their number.
Your answer needs to:
- Have a clear and logical structure.
- Include the right scientific terms, spelt correctly.
- Include detailed information that's relevant to the question.

\section*{Some Questions Will Test Your Knowledge of Carrying Out Practicals}

Some of the marks in your A-Level Chemistry exams will focus on how to carry out experiments, analyse data and work scientifically. This means you will be given questions where you're asked to do things like comment on the design of experiments, make predictions, draw graphs, calculate percentage errors - basically, anything related to planning experiments or analysing results. These skills are covered in the Practical Skills section of this book on pages 240-249, and in the relevant topics.

\section*{Manage Your Time Sensibly}
1) How long you spend on each question is important in an exam - it could make all the difference to your grade.
2) The number of marks tells you roughly how long to spend on a question.

But some questions will require lots of work for a few marks while others will be quicker.
Example: 1) Define the term 'enthalpy change of neutralisation'.
(2 marks)
2) Compounds \(A\) and \(B\) are hydrocarbons with relative molecular masses of 78 and 58 respectively. In their \({ }^{1} \mathrm{H}\) NMR spectra, A has only one peak and \(B\) has two peaks. Draw a possible structure for each compound.
(2 marks)
Question 1 only requires you to write down a definition - if you can remember it this shouldn't take too long. Question 2 requires you to apply your knowledge of NMR spectra and draw the structure of two compounds - this may take you a lot longer, especially if you have to draw out a few structures before getting it right. So if time's running out, it makes sense to do questions like Q1 first and come back to Q2 if there's time at the end.
3) If you get stuck on a question for too long, it may be best to move on and come back to it later. If you skip any questions the first time round, don't forget to go back to do them.
4) You don't have to work through the paper in order - you might decide not to do all the multiple choice questions first, or leave questions on topics you find harder till the end.
Do Well In Your Exams

\section*{Do Well In Your Exams}

\section*{Make Sure You Read the Question}
1) It sounds obvious, but it's really important you read each question carefully, and give an answer that fits.
2) Command words in the question give you an idea of the kind of answer you should write. You'll find answering exam questions much easier if you understand exactly what they mean. Here's a summary of the common ones:
\begin{tabular}{|c|l|}
\hline Command word & \multicolumn{1}{c|}{ What to do } \\
\hline Give / Name / State & Give a brief one or two word answer, or a short sentence. \\
\hline Identify & Say what something is. \\
\hline Compare / Contrast & Look at the similarities and differences between two or more things. \\
\hline Explain & Give an explanation, including reasoning, for something. \\
\hline Predict & Use your scientific knowledge to work out what the answer might be. \\
\hline Describe & \begin{tabular}{l}
Write an account or a description of something, \\
e.g. an experiment, some observations or a chemical trend.
\end{tabular} \\
\hline Calculate & Work out the solution to a mathematical problem. \\
\hline Deduce / Determine & Use the information given in the question to work something out. \\
\hline Discuss & Explore and investigate a topic, as presented in the question. \\
\hline Sketch & Produce a rough drawing of a diagram or graph. \\
\hline
\end{tabular}

From the looks on his classmates' faces, Ivor deduced that he had gone a bit overboard when decorating his lucky exam hat.

\section*{Remember to Use the Data Booklet}

When you sit your exams, you'll be given a data booklet. It will contain lots of useful information, including:
- the characteristic infrared absorptions, \({ }^{13} \mathrm{C}\) NMR shifts and \({ }^{\mathbf{1}} \mathrm{H}\) NMR shifts of some common functional groups.
- some electronegativity information, including the Pauling electronegativity index.
- some useful scientific constants.
- the standard electrode potentials of some electrochemical half-cells.
- some information about the colours and \(\mathbf{p H}\) ranges of common indicators.
- a copy of the periodic table.
 Use a copy of the data booklet while you're revising. It will get you used to using it, and show you the facts you don't need to memorise.

\section*{Be Careful With Calculations}
1) In calculation questions you should always show your working you may get some marks for your method even if you get the answer wrong.
2) Don't round your answer until the very end. Some of the calculations in A-Level Chemistry can be quite long, and if you round too early you could introduce errors into your final answer.
3) Be careful with units. Lots of formulae require quantities to be in specific units (e.g. temperature in kelvin), so it's best to convert any numbers you're given into these before you start. And obviously, if the question tells you which units to give your answer in, don't throw away marks by giving it in different ones.
4) You should give your final answer to the correct number of significant figures. This is usually the same as the data with the lowest number of significant figures in the question - see page 245 for more on significant figures.
5) It can be easy to mistype numbers into your calculator when you're under pressure in an exam, so always double-check your calculations and make sure that your answer looks sensible.

\section*{l'd tell you another Chemistry joke, but l'm not sure it'd get a good reaction...}

The key to preparing for your exams is to practise, practise, practise. Get your hands on some practice papers and try to do each of them in the time allowed. This'll flag up any topics that you're a bit shaky on, so you can go back and revise.

\section*{Answers}

\section*{Topic 1 - Atomic Structure and the Periodic Table}

\section*{Page 5 - The Atom}

1 a) Similarity - They've all got the same number of protons/electrons [1 mark].
Difference - They all have different numbers of neutrons [1 mark].
b) 1 proton, 1 neutron (\(2-1\)), 1 electron [1 mark].
c) \({ }_{1}^{3} \mathrm{H}\) [1 mark]

2 a) i) Same number of electrons. \({ }^{32}\) S \(^{2-}\) has \(16+2=18\) electrons. \({ }^{40} \mathrm{Ar}\) has 18 electrons too [1 mark].
ii) Same number of protons. Each has 16 protons [1 mark].
iii) Same number of neutrons. \({ }^{40} \mathrm{Ar}\) has \(40-18=22\) neutrons. \({ }^{42} \mathrm{Ca}\) has \(42-20=22\) neutrons [1 mark].
b) A and C [1 mark]. They have the same number of protons but different numbers of neutrons [1 mark].
It doesn't matter that they have a different number of electrons because they are still the same element.
3 H has 1 proton, O has 8 protons and C has 6 protons, so the total number of protons in \(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}\) is \((3 \times 6)+(8 \times 1)+8=\mathbf{3 4}\). \(H\) has 1 electron, \(O\) has 8 electrons and \(C\) has 6 electrons, so the total number of electrons in \(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}\) is \((3 \times 6)+(8 \times 1)+8=\mathbf{3 4}\) [1 mark for correct numbers of protons and electrons].
For neutral molecules, the number of electrons is equal to the number of protons.
H has \(1-1=0\) neutrons, O has \(16-8=8\) neutrons and \(C\) has \(12-6=6\) neutrons.
So \(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}\) has \((3 \times 6)+(8 \times 0)+8=\mathbf{2 6}\) neutrons [1 mark].

\section*{Page 7 - Relative Mass}

1 a) First multiply each relative abundance by the relative mass \(120.8 \times 63=7610.4,54.0 \times 65=3510.0\)
Next add up the products: \(7610.4+3510.0=11120.4\) [1 mark] Now divide by the total abundance \((120.8+54.0=174.8)\)
\(A_{\mathrm{r}}(\mathrm{Cu})=\frac{11120.4}{174.8}=\mathbf{6 3 . 6}\) [1 mark]
You can check your answer by seeing if \(A_{r}(\mathrm{Cu})\) is in between 63 and 65 (the lowest and highest relative isotopic masses).
b) A sample of copper is a mixture of 2 isotopes in different abundances [1 mark]. The relative atomic mass is an average mass of these isotopes which isn't a whole number [1 mark].
2 You use pretty much the same method here as for question 1 a). \(93.1 \times 39=3630.9,0.120 \times 40=4.8,6.77 \times 41=277.57\) \(3630.9+4.8+277.57=3913.27\) [1 mark]
This time you divide by 100 because they're percentages.
\[
A_{\mathrm{r}}(\mathrm{~K})=\frac{3913.27}{100}=\mathbf{3 9 . 1}[\mathbf{1} \text { mark }]
\]

Again check your answer's between the lowest and highest relative isotopic masses, 39 and 41. \(A_{r}(K)\) is closer to 39 because most of the sample (\(93.1 \%\)) is made up of this isotope.

\section*{Page 9 - More on Relative Mass}

1 a)
\begin{tabular}{|c|c|c|}
\hline & \({ }^{16} \mathrm{O}\) & \({ }^{18} \mathrm{O}\) \\
\hline\({ }^{16} \mathrm{O}\) & \begin{tabular}{c}
\({ }^{16} \mathrm{O}-{ }^{16} \mathrm{O}: 0.98 \times 0.98\) \\
\(=\mathbf{0 . 9 6 0 4}\)
\end{tabular} & \begin{tabular}{c}
\({ }^{16} \mathrm{O}-{ }^{18} \mathrm{O}: 0.98 \times 0.02\) \\
\(=\mathbf{0 . 0 1 9 6}\)
\end{tabular} \\
\hline\({ }^{18} \mathrm{O}\) & \begin{tabular}{c}
\({ }^{18} \mathrm{O}-{ }^{16} \mathrm{O}: 0.02 \times 0.98\) \\
\(=\mathbf{0 . 0 1 9 6}\)
\end{tabular} & \begin{tabular}{c}
\({ }^{18} \mathrm{O}-{ }^{18} \mathrm{O}: 0.02 \times 0.02\) \\
\(=\mathbf{0 . 0 0 0 4}\)
\end{tabular} \\
\hline
\end{tabular}
[2 marks - 2 marks for a correct abundances for all molecules, 1 mark if three correct abundances]
\({ }^{16} \mathrm{O}-{ }^{18} \mathrm{O}\) and \({ }^{18} \mathrm{O}-{ }^{16} \mathrm{O}\) are the same, so the relative abundance is \(0.0196+0.0196=\mathbf{0 . 0 3 9 2}\) [1 mark].
b) Divide each by 0.0004 to get the simplified relative abundances.
\begin{tabular}{|c|c|c|}
\hline Molecule & \(M_{\mathrm{r}}\) & Relative Abundance \\
\hline\({ }^{16} \mathrm{O}-{ }^{16} \mathrm{O}\) & \(16+16=\mathbf{3 2}\) & \(0.9604 \div 0.0004=\mathbf{2 4 0 1}\) \\
\hline\({ }^{16} \mathrm{O}-{ }^{18} \mathrm{O}\) & \(16+18=\mathbf{3 4}\) & \(0.0392 \div 0.0004=\mathbf{9 8}\) \\
\hline\({ }^{18} \mathrm{O}-{ }^{18} \mathrm{O}\) & \(18+18=\mathbf{3 6}\) & \(0.0004 \div 0.0004=\mathbf{1}\) \\
\hline
\end{tabular}
[2 marks - 1 mark for correct relative abundances, 1 mark for correct relative molecular masses]
So the mass spectrum for the sample of \(\mathrm{O}_{2}\) will be:

[2 marks - 1 mark for correctly labelled axes, 1 mark for correctly drawn peaks at correct m/z values, with approximately correct heights]
a) \(\mathbf{1 0 0} \%-94.20 \%-0.012 \%=\mathbf{5 . 7 8 8} \%\) [1 mark]
b) \(39.1=((39 \times 94.20)+(40 \times 0.012)+(X \times 5.788)) \div 100\) [1 mark] \(39.1=(3674.28+(X \times 5.788)) \div 100\) \(3910-3674.28=X \times 5.788\). So, \(X=40.726 \ldots=41\) [1 mark]
3 a) 58 [1 mark]
b) E.g.
 [1 mark]

\section*{Page 11 - Electronic Structure}

1 a) \(K\) atom: \(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}\) or [Ar] \(4 s^{1}\) [1 mark] \(\mathrm{K}^{+}\)ion: \(1 \mathrm{~s}^{2} 2 s^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}\) or [Ar] [1 mark]
b) \(1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}\) [1 mark]

2 a) Germanium (\(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{2}\) or [Ar] 3d \({ }^{10} 4 s^{2} 4 p^{2}\)) [1 mark].
The \(4 p\) sub-shell is partly filled, so it must be a p block element.
b) \(\operatorname{Ar}\) (atom) [1 mark], \(\mathrm{K}^{+}\)(positive ion) [1 mark],
\(\mathrm{Cl}^{-}\)(negative ion) [1 mark].
You also could have suggested \(\mathrm{Ca}^{2+}, \mathrm{S}^{2-}\) or \(\mathrm{P}^{3-}\).
c) \(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{1} \quad[1\) mark]

\section*{Page 13 - Atomic Emission Spectra}

1 a) The movement of electrons/an electron [1 mark] from higher to lower energy levels [1 mark].
b) Line \(E\) (because it is at the highest frequency) [1 mark].
c) Because the energy levels get closer together with increasing energy [1 mark].

\section*{Answers}

2 a) Energy is released/emitted [1 mark].
b) The lines represent the frequencies of light that are emitted/ released when an electron drops from a higher energy level to a lower one [1 mark].
c) Emission spectra show that specific amounts of energy are emitted when electrons drop down from higher energy levels to lower energy levels [1 mark]. In-between amounts of energy are never emitted, which suggests that electrons only exist at very specific energy levels (they're discrete) [1 mark].
d) E.g. ionisation energy [1 mark]

\section*{Page 15 - Ionisation Energies}

1 a) \(\mathrm{C}_{(\mathrm{g})} \rightarrow \mathrm{C}_{(\mathrm{g})}^{+}+\mathrm{e}^{-}\)
Correct equation [1 mark]. Both state symbols showing gaseous state [1 mark].
b) First ionisation energy increases as nuclear charge increases [1 mark].
c) As the nuclear charge increases there is a stronger force of attraction between the nucleus and the electron [1 mark] and so more energy is required to remove the electron [1 mark].
2 a) Group 3 [1 mark]
There are three electrons removed before the first big jump in energy.
b) The electrons are being removed from an increasingly positive ion [1 mark] so there's less repulsion amongst the remaining electrons so they're held more strongly by the nucleus [1 mark].
c) When an electron is removed from a different shell there is a big increase in the energy required (since that shell is closer to the nucleus) [1 mark].
d) There are 3 shells [1 mark].

You can tell there are 3 shells because there are 2 big jumps in energy. There is always one more shell than big jumps.

\section*{Page 18 - Periodicity}
1 a) C [1 mark]
b) B [1 mark]
c) C [1 mark]

2 a) Si has a giant covalent lattice structure [1 mark] consisting of lots of very strong covalent bonds which require a lot of energy to break [1 mark].
b) Sulfur \(\left(\mathrm{S}_{8}\right)\) has more electrons than phosphorus \(\left(\mathrm{P}_{4}\right)\) [1 mark] which results in stronger London forces of attraction between molecules [1 mark].

\section*{Topic 2 - Bonding and Structure}

Page 21 - Ionic Bonding
1 a) Giant ionic lattice [1 mark].
b) Sodium chloride will have a high melting point [1 mark], because a lot of energy is required to overcome the strong electrostatic attraction between the positive and negative ions [1 mark].
c) Sodium bromide would have a lower melting point than sodium chloride [1 mark]. Bromide ions have one more electron shell than chloride ions, so have a larger ionic radius. This means the ions in sodium bromide can't pack as closely together as the ions in sodium chloride [1 mark]. lonic bonding gets weaker as the distance between the ions increases, so the ionic bonding in sodium bromide is weaker than in sodium chloride / less energy is required to break the ionic bonds in sodium bromide than sodium chloride [1 mark] (so the ionic melting point is lower).

2 a)

[2 marks - 1 mark for correct electron arrangement, 1 mark for correct charges]
b) In a solid, ions are held in place by strong ionic bonds [1 mark]. When molten, the ions are mobile [1 mark] and so carry charge (and hence electricity) through the substance [1 mark].
3 Sodium loses one (outer) electron to form \(\mathrm{Na}^{+}\)[1 mark]. Fluorine gains one electron to form \(\mathrm{F}^{-}\)[1 mark]. Electrostatic forces of attraction between oppositely charged ions forms an ionic lattice [1 mark].

4

\section*{Page 23 - Covalent Bonding}

1

Because Si is in the same group as \(C_{\text {, it will often form similar compounds. }}^{\text {, }}\)
2 a)

b)

c)

[2 marks - 1 mark for all bonds shown correctly, 1 mark for correct charges]

3 a) An N-N bond is longer than an \(\mathrm{N}=\mathrm{N}\) bond [1 mark] as there are four shared electrons in an \(\mathrm{N}=\mathrm{N}\) bond and only two shared electrons in an \(\mathrm{N}-\mathrm{N}\) bond, meaning the electron density between the two nitrogen atoms in the nitrogen double bond is greater than in the nitrogen single bond [1 mark]. This increases the strength of the electrostatic attraction between the positive nuceli and the negative electrons in the \(\mathrm{N}=\mathrm{N}\) bond, making the bond shorter [1 mark].
b)

[1 mark]
c) The bond enthalpy of the bond in \(\mathrm{N}_{2}\) would be larger than the bond enthalpy of a nitrogen single bond or a nitrogen double bond [1 mark]. The bond in \(\mathrm{N}_{2}\) is a nitrogen triple bond. There are six shared electrons in this bond, leading to a higher electron density than in \(\mathrm{N}-\mathrm{N}\) or \(\mathrm{N}=\mathrm{N}\) bonds (where there are two and four shared electrons respectively) [1 mark]. This means there's a stronger electrostatic attraction between the two nitrogen nuclei and the bonding electrons, so stronger covalent bonding [1 mark].

\section*{Answers}

\section*{Page 25 - Shapes of Molecules}

1 a) i)

shape: trigonal pyramidal [1 mark],
bond angle: \(107^{\circ}\) (accept between \(106^{\circ}\) and \(108^{\circ}\)) [1 mark].
ii) \(F\)

shape: trigonal planar [1 mark]
bond angle: \(120^{\circ}\) exactly [1 mark].
b) \(\mathrm{BCl}_{3}\) has three electron pairs only around B . [1 mark]
\(\mathrm{NCl}_{3}\) has four electron pairs around N [1 mark], including one lone pair. [1 mark]
2 Atom A: shape: trigonal planar, bond angle: \(120^{\circ}\) [1 mark]
Atom B: shape: tetrahedral, bond angle: \(109.5^{\circ}\) [1 mark]
Atom C: shape: non-linear/bent, bond angle: \(104.5^{\circ}\) [1 mark]

\section*{Page 27 - Giant Covalent and Metallic Structures}

1 a)

[1 mark]
Metallic bonding results from the attraction between positive metal ions and a sea of delocalised electrons between them [1 mark].
b) Calcium \(\left(\mathrm{Ca}^{2+}\right)\) has two delocalised electrons per atom, while potassium \(\left(\mathrm{K}^{+}\right)\)has only one delocalised electron per atom. So calcium has more delocalised electrons and therefore stronger metallic bonding [1 mark].
2 Silicon dioxide has a giant covalent lattice structure [1 mark] so, to melt it, lots of strong covalent bonds must be broken, which requires lots of energy/high temperatures [1 mark].
3 Graphite consists of sheets of carbon atoms, where each carbon atom is bonded to three others [1 mark]. This means that each atom has one free electron not involved in bonds, and it is these free electrons that allow graphite to conduct electricity [1 mark].
4 Copper is metallically bonded and so delocalised electrons are free to move (carry electric current) [1 mark]. Oxygen and sulfur form copper oxide/sulfide, fixing some electrons (as anions) [1 mark]. This prevents them from moving and carrying charge [1 mark].
5 a) Giant covalent [1 mark]
b) Any two from: high melting point / electrical non-conductor (insulator) / insoluble / good thermal conductor. [1 mark for each]

\section*{Page 29 - Electronegativity and Polarisation}

1 a) The ability of an atom to attract the bonding electrons in a covalent bond [1 mark].
b) Electronegativity increases across a period and decreases down a group [1 mark].
c) A [1 mark]

2 a)

ii)

[2 marks each - in each part, 1 mark for correct shape, 1 mark for correct partial charges]
b) The polar bonds in \(\mathrm{BCl}_{3}\) are arranged so that they cancel each other out, so the molecule has no overall dipole [1 mark]. \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) does have an overall dipole because the polar bonds are not orientated so they are pointing in opposite directions so they don't cancel each other out [1 mark].
To help you decide if the molecule's polar or not, imagine the atoms are having a tug of war with the electrons. If they're all pulling the same amount in different directions, the electrons aren't going to go anywhere.

\section*{Page 31 - Intermolecular Forces}

1 The boiling point of a substance depends on the energy needed to overcome the intermolecular forces between the molecules [1 mark]. Pentane is the most linear molecule so it has the greatest surface contact, and so has the strongest London forces. This gives it the highest boiling point [1 mark]. The surface contact of 2-methylbutane is less than that of pentane and that of 2,2-dimethylpropane is smaller still, meaning that these substances have weaker London forces and consequently lower boiling points [1 mark].
2 London forces/instantaneous dipole-induced dipole bonds and permanent dipole-permanent dipole bonds [1 mark].
3 NO has a higher boiling point. Both molecules have a similar number of electrons, so the strength of the London forces will be similar [1 mark]. NO is a polar molecule, so can also form permanent dipole-permanent dipole bonds. This means there are stronger intermolecular forces between molecules in NO than in \(\mathrm{N}_{2}\), which can only form London forces, so NO has a higher boiling point [1 mark].

\section*{Page 33 - Hydrogen Bonding}

1 a) Water contains hydrogen covalently bonded to oxygen, so it is able to form hydrogen bonds [1 mark]. These hydrogen bonds are stronger than the other types of intermolecular forces, so more energy is needed to break them [1 mark].
b)

\section*{[2 marks - 1 mark for correctly drawn molecules showing partial charges and lone pairs, 1 mark for at least 3 correctly drawn hydrogen bonds]}

2 a) i) Ammonia will have the higher boiling point [1 mark].
ii) Water will have the higher boiling point [1 mark].
iii) Propan-1-ol will have the higher boiling point [1 mark].
b) The molecules of ammonia, water and propan-1-ol can form hydrogen bonds [1 mark]. These are stronger/take more energy to overcome than the intermolecular forces between the molecules of the other compounds [1 mark].
3 Ethane-1,2-diol has stronger intermolecular forces because there are two alcohol groups, twice as many as in ethanol. Therefore ethane-1,2-diol can form twice as many hydrogen bonds as ethanol [1 mark].

\section*{Answers}

\section*{Page 35 - Solubility}

1 a) i) Hydrogen bonds [1 mark] form between the alcohol and water molecules [1 mark]. The (hydrogen) bonds between water molecules are stronger [1 mark] than bonds that would form between water and the halogenoalkane molecules [1 mark].
For the last two marks, you could also say that the halogenoalkanes do not contain strong enough dipoles to form hydrogen bonds with water.
ii)

[2 marks - 1 mark for the two substances with relevant \(\delta+\) and \(\delta\) - marked correctly, 1 mark for showing at least one correctly drawn hydrogen bond between propan-1-ol and a molecule of water]
b) \(\mathrm{K}^{+}\)ions are attracted to the \(\delta\) - ends of the water molecules [1 mark] and I- ions are attracted to the \(\delta+\) ends [1 mark]. This overcomes the ionic bonds in the lattice/the ions are pulled away from the lattice [1 mark], and surrounded by water molecules [1 mark], forming hydrated ions:

 [1 mark]
2 a) Try to dissolve the substance in water [1 mark] and hexane (or other non-polar solvent) [1 mark]. If \(X\) is non-polar, it is likely to dissolve in hexane, but not in water [1 mark].
Remember 'like dissolves like' - in other words, substances usually dissolve best in solvents that have similar intermolecular forces.
b) X and hexane have London forces/instantaneous dipole-induced dipole bonds between their molecules [1 mark] and form similar bonds with each other [1 mark]. Water has hydrogen bonds [1 mark] which are much stronger than the bonds it could form with a non-polar compound [1 mark].

\section*{Page 37 - Predicting Structures and Properties}

1 A = ionic [1 mark], B = simple molecular/covalent [1 mark], \(\mathrm{C}=\) metallic [1 mark], \(\mathrm{D}=\) giant covalent [1 mark].
2 lodine is a simple molecular substance [1 mark]. To melt or boil iodine, you only need to overcome the weak intermolecular forces holding the molecules together, which doesn't need much energy [1 mark]. Graphite is a giant covalent substance [1 mark]. Graphite will remain solid unless you can overcome the strong covalent bonds between atoms, which needs a lot of energy [1 mark].
3 B [1 mark]

\section*{Topic 3 - Redox I}

\section*{Page 39 - Oxidation Numbers}

\section*{Page 41 - Redox Reactions}

1 a) Oxidation is the loss of electrons [1 mark].
b) Oxygen is being reduced [1 mark]. \(\mathrm{O}_{2}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{O}^{2-}\) [1 mark]

2 a) An oxidising agent accepts electrons and gets reduced [1 mark].
b) \(2 \mathrm{In}+3 \mathrm{Cl}_{2} \rightarrow 2 \operatorname{lnCl}{ }_{3}\) [2 marks - \(\mathbf{1}\) mark for correct reactants and products, 1 mark for correct balancing]
To do this question, you'll have to write out the half-equation for the oxidation of \(\ln\) first. It's \(\ln \rightarrow \ln ^{3+}+3 e^{-}\).
3 In a disproportionation reaction, an element in a single species is simultaneously oxidised and reduced [1 mark]. In the reaction shown, oxygen has an oxidation state of -1 in \(\mathrm{H}_{2} \mathrm{O}_{2}\) /hydrogen peroxide [1 mark]. In the reactants, oxygen has an oxidation state of -2 in \(\mathrm{H}_{2} \mathrm{O}\) (it's been reduced) and an oxidation state of 0 in \(\mathrm{O}_{2}\) (it's been oxidised) [1 mark] (so oxygen's been both oxidised and reduced).
\(4 \quad \mathrm{VO}^{2+}+2 \mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{V}^{3+}+\mathrm{H}_{2} \mathrm{O}\) [1 mark]
\(\mathrm{Sn}^{2+} \rightarrow \mathrm{Sn}^{4+}+2 \mathrm{e}^{-}\)[1 mark]
\(2 \mathrm{VO}^{2+}+4 \mathrm{H}^{+}+\mathrm{Sn}^{2+} \rightarrow 2 \mathrm{~V}^{3+}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Sn}^{4+}\) [1 mark]

\section*{Topic 4 - Inorganic Chemistry and the Periodic Table}

\section*{Page 43 - Group 2}

1 a) B [1 mark]
b) Calcium [1 mark]. Barium has more electron shells than calcium, meaning that the outer electrons are further away from the nucleus and more shielded by inner shells [1 mark], reducing the strength of the attraction between the outer electrons and the nucleus [1 mark]. This makes it easier to remove outer electrons, resulting in barium having a lower combined first and second ionisation energy [1 mark].
c) \(\mathrm{Ca}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{CaCl}_{2(\mathrm{~s})}\) [1 mark]

2 a) \(\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}\)
[2 marks - 1 mark for correct reactants and products, 1 mark if equation correctly balanced]
b) \(\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-} / \mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}\)
[2 marks - 1 mark for correct reactants and products, 1 mark if equation correctly balanced]

\section*{Page 45 - Group 1 and 2 Compounds}

1 a) \(\mathrm{CaCO}_{3(\mathrm{~s})} \rightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}\)
[1 mark for correct equation, and 1 mark for state symbols]
b) Barium carbonate is more thermally stable [1 mark]. This is because barium has a larger ionic radius than calcium/has a lower charge density than calcium, so it has weaker polarising power [1 mark]. The weaker polarising power of the barium ion causes less distortion of the carbonate ion [1 mark] (making it more thermally stable).
You'd also get the marks if you used the reverse argument to explain why \(\mathrm{CaCO}_{3}\) is less thermally stable.
2 a) \(2 \mathrm{NaNO}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{NaNO}_{2(\mathrm{~s})}+\mathrm{O}_{2(\mathrm{~g})}\) [1 mark]
b) E.g. \(\mathrm{O}_{2}\) gas relights a glowing splint [1 mark].
c) magnesium nitrate, sodium nitrate, potassium nitrate [1 mark] Group 2 nitrates decompose more easily than Group 1 as they have \(a+2\) charge on their cations, compared to the \(1+\) charge on Group 1 cations. The greater the charge on the cation, the less stable the nitrate compound [1 mark]. The further down the group, the more stable the nitrate as the cations increase in size down the group, and the larger the cation, the less distortion to the nitrate anion [1 mark].
3 a) Energy is absorbed and electrons move to higher energy levels. [1 mark] Energy is released in the form of coloured light when the electrons fall back to the lower levels [1 mark].
b) caesium [1 mark]

\section*{Answers}

\section*{Page 47 - Halogens}

1 a) \(\mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{Br}_{2}\) [1 mark]
b) The boiling points of the halogens increase down the group [1 mark]. There is an increase in electron shells (and therefore electrons) the further down the group you go, and so the London forces also increase down the group [1 mark]. Larger London forces make it harder to overcome the intermolecular forces, and so melting and boiling points increase down the group [1 mark].
2 a) (potassium) iodide [1 mark]
b) brown [1 mark]

\section*{Page 49 - Reactions of Halogens}

1 a) \(2 \mathrm{OH}^{-}+\mathrm{Br}_{2} \rightarrow \mathrm{OBr}^{-}+\mathrm{Br}^{-}+\mathrm{H}_{2} \mathrm{O}\) [1 mark]
b) A disproportionation reaction [1 mark].
c) \(3 \mathrm{Br}_{2}+6 \mathrm{KOH} \rightarrow \mathrm{KBrO}_{3}+5 \mathrm{KBr}+3 \mathrm{H}_{2} \mathrm{O}\)
[2 marks - 1 mark for correct reactants and products, 1 mark if equation correctly balanced]

\section*{Page 51 - Reactions of Halides}

A [1 mark]
2 Sodium chloride - misty fumes [1 mark] \(\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaHSO}_{4}+\mathrm{HCl}[1\) mark] Sodium bromide - misty fumes [1 mark] \(\mathrm{NaBr}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaHSO}_{4}+\mathrm{HBr}[1\) mark] \(2 \mathrm{HBr}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Br}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}\) [1 mark] Orange/brown vapour [1 mark]
3 Potassium bromide reacts with sulfuric acid to produce hydrogen bromide, which is seen as misty fumes:
\(\mathrm{KBr}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{KHSO}_{4}+\mathrm{HBr}[1\) mark]
Bromide ions are a reducing agent, and are strong enough to reduce \(\mathrm{H}_{2} \mathrm{SO}_{4}\) as part of a redox reaction:
\(2 \mathrm{HBr}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Br}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}[1\) mark].
Potassium iodide reacts with sulfuric acid in a similar way:
\(\mathrm{KI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{KHSO}_{4}+\mathrm{HI}[1\) mark]
\(2 \mathrm{HI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{I}_{2}+\mathrm{SO}_{(\mathrm{g})}+2 \mathrm{H}_{2} \mathrm{O}\) [1 mark]
But iodide ions are a stronger reducing agent than bromide ions
[1 mark], so go onto reduce \(\mathrm{SO}_{2}\) to \(\mathrm{H}_{2} \mathrm{~S}\) :
\(6 \mathrm{HI}+\mathrm{SO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}\) [1 mark]

\section*{Page 53 - Tests for Ions}

1 Add dilute hydrochloric acid to the solution [1 mark] and then test to see whether the gas given off is carbon dioxide by bubbling it through limewater. If the limewater goes cloudy, the solution contains carbonates [1 mark].
2 a) C [1 mark]
b) \(\mathrm{Ba}^{2+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}^{2-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{BaSO}_{4(\mathrm{~s})}\) [2 marks - \(\mathbf{1}\) mark for correct equation, 1 mark for correct state symbols]
3 Add some sodium hydroxide to the solution in a test tube and gently heat the mixture [1 mark]. Test the gas produced with a damp piece of red litmus paper. If there's ammonia given off this means there are ammonium ions in the solution. If there's ammonia present, the paper will turn blue [1 mark].

\section*{Topic 5 - Formulae, Equations}

\section*{\& Amounts of Substances}

\section*{Page 55 - The Mole}
\(1 \quad \mathrm{M}\) of \(\mathrm{CaSO}_{4}=40.1+32.1+(4 \times 16.0)=136.2 \mathrm{~g} \mathrm{~mol}^{-1}\) number of moles \(=\frac{34.05}{136.2}=\mathbf{0 . 2 5 0 0}\) moles [1 mark]

2 M of \(\mathrm{CH}_{3} \mathrm{COOH}=(2 \times 12.0)+(4 \times 1.0)+(2 \times 16.0)\) \(=60.0 \mathrm{~g} \mathrm{~mol}^{-1}\)
mass \(=60.0 \times 0.360=\mathbf{2 1 . 6} \mathbf{g}[\mathbf{1}\) mark]
\(3 M\) of \(\mathrm{HCl}=1.0+35.5=36.5 \mathrm{~g} \mathrm{~mol}^{-1}\)
mass \(=0.100 \times 36.5=3.65 \mathrm{~g}[1\) mark]
volume of water in \(\mathrm{dm}^{3}=100 \div 1000=0.100 \mathrm{dm}^{3}\)
concentration \(=\frac{\text { mass }}{\text { volume }}=\frac{3.65}{0.100}=\mathbf{3 6 . 5} \mathbf{g ~ d m}^{\mathbf{- 3}}\) [1 \(\left.\mathbf{~ m a r k}\right]\)
4 number of moles \(=0.250 \times \frac{60.0}{1000}=0.0150\) moles [1 mark]
\(M\) of \(\mathrm{H}_{2} \mathrm{SO}_{4}=(2 \times 1.0)+32.1+(4 \times 16.0)=98.1 \mathrm{~g} \mathrm{~mol}^{-1}\)
mass \(=0.0150 \times 98.1=\mathbf{1 . 4 7} \mathbf{g}\) [1 mark]
\(5 \quad M\) of \(\mathrm{AgI}=107.9+126.9=234.8 \mathrm{~g} \mathrm{~mol}^{-1}\) number of moles \(=\frac{1.01}{234.8}=0.00430 \ldots \mathrm{~mol}\) [1 mark]
volume of nitric acid in \(\mathrm{dm}^{3}=15.0 \div 1000=0.0150 \mathrm{dm}^{3}\)
concentration \(=\frac{\text { moles }}{\text { volume }}=\frac{0.00430 \ldots}{0.0150}=\mathbf{0 . 2 8 7} \mathbf{~ m o l ~ d m}^{\mathbf{- 3}}\) [1 mark]

\section*{Page 57 - Empirical and Molecular Formulae}

1 The mass 'lost' during the experiment must have been oxygen. \(2.80-2.50=0.300 \mathrm{~g}\) oxygen was present in the oxide [1 mark]. Moles of \(\mathrm{Cu}=2.50 \div 63.5=0.0394\)
Moles of \(\mathrm{O}=0.300 \div 16.0=0.0188\) [1 mark]
Dividing both these values by the smaller one:
Ratio \(\mathrm{Cu}: \mathrm{O}=(0.0394 \div 0.0188):(0.0188 \div 0.0188)\)
\[
\text { = 2.09... : } 1 \text { [1 mark] }
\]

So, rounding off, empirical formula \(=\mathrm{Cu}_{2} \mathrm{O}\) [1 mark]
2 Assume you've got 100 g of the compound so you can turn the \% straight into mass.
No. of moles of \(C=\frac{92.3}{12.0}=7.69\) moles
No. of moles of \(\mathrm{H}=\frac{7.70}{1.00}=7.70\) moles [1 mark]
Divide both by the smallest number, in this case 7.69.
So ratio \(\mathrm{C}: \mathrm{H}=1: 1\)
So, the empirical formula \(=\mathrm{CH}\) [1 mark]
The empirical mass \(=12.0+1.0=13.0\)
No. of empirical units in molecule \(=\frac{78.0}{13.0}=6\)
So the molecular formula \(=\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{6}}\) [1 mark]
3 The magnesium is burning, so it's reacting with oxygen and the product is magnesium oxide.
First work out the number of moles of each element.
No. of moles \(\mathrm{Mg}=\frac{1.20}{24.0}=0.0500\) moles
Mass of O is everything that isn't \(\mathrm{Mg}: 2.00-1.20=0.800 \mathrm{~g}\)
No. of moles \(\mathrm{O}=\frac{0.800}{16.0}=0.0500\) moles [1 mark]
Ratio Mg : O = 0.0500: 0.0500
Divide both by the smallest number, in this case 0.0500 .
So ratio \(\mathrm{Mg}: \mathrm{O}=1: 1\)
So the empirical formula is MgO [1 mark]
4 First calculate the no. of moles of each product and then the mass of C and H :
No. of moles of \(\mathrm{CO}_{2}=\frac{33.0}{44.0}=0.0750\) moles
Mass of \(\mathrm{C}=0.750 \times 12.0=9.00 \mathrm{~g}\)
No. of moles of \(\mathrm{H}_{2} \mathrm{O}=\frac{10.8}{18.0}=0.600\) moles
0.600 moles \(\mathrm{H}_{2} \mathrm{O}=1.20\) moles H

Mass of \(\mathrm{H}=1.20 \times 1.0=1.20 \mathrm{~g}\) [1 mark]
Organic acids contain \(\mathrm{C}, \mathrm{H}\) and O , so the rest of the mass must be O.
Mass of \(\mathrm{O}=19.8-(9.00+1.20)=9.60 \mathrm{~g}\)
No. of moles of \(\mathrm{O}=\frac{9.60}{16.0}=0.600\) moles [1 mark]
Mole ratio \(=\mathrm{C}: \mathrm{H}: \mathrm{O}=0.750: 1.20: 0.600\)
Divide by smallest 1.25:2:1
The carbon part of the ratio isn't a whole number, so you have to multiply them all up until it is. As its fraction is \(1 / 4\), multiply them all by 4 .
So, mole ratio \(=\mathrm{C}: \mathrm{H}: \mathrm{O}=5: 8: 4\)
Empirical formula \(=\mathbf{C}_{5} \mathbf{H}_{8} \mathbf{O}_{\mathbf{4}}\) [1 mark]
Empirical mass \(=(12.0 \times 5)+(1.0 \times 8)+(16.0 \times 4)=132 \mathrm{~g}\)
This is the same as what we're told the molecular mass is,
so the molecular formula is also \(\mathrm{C}_{5} \mathbf{H}_{\mathbf{8}} \mathrm{O}_{\mathbf{4}}\) [1 mark].

\section*{Answers}

\section*{Page 59 - Chemical Equations}

1 On the LHS, you need 2 each of K and I, so use 2 KI
This makes the final equation:
\(2 \mathrm{KI}+\mathbf{P b}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{PbI}_{2}+2 \mathrm{KNO}_{3}[1\) mark]
In this equation, the \(\mathrm{NO}_{3}\) group remains unchanged, so it makes balancing much easier if you treat it as one indivisible lump.
2 The equation for the reaction is: \(\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{HCl} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}\)
\(M\) of \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}=(2 \times 12.0)+(5 \times 1.0)+(1 \times 35.5)=64.5 \mathrm{~g} \mathrm{~mol}^{-1}\) [1 mark]
Number of moles of \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}=\frac{258}{64.5}=4.00\) moles [1 mark]
From the equation, 1 mole \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}\) is made from 1 mole \(\mathrm{C}_{2} \mathrm{H}_{4}\) so, 4 moles \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}\) is made from 4 moles \(\mathrm{C}_{2} \mathrm{H}_{4}\) [1 mark].
\(M\) of \(\mathrm{C}_{2} \mathrm{H}_{4}=(2 \times 12.0)+(4 \times 1.0)=28.0 \mathrm{~g} \mathrm{~mol}^{-1}\)
so, the mass of 4 moles \(\mathrm{C}_{2} \mathrm{H}_{4}=4 \times 28.0=\mathbf{1 1 2} \mathbf{g}\) [1 mark]
\(3 \mathrm{Ag}_{(\mathrm{aq})}^{+}+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}_{(\mathrm{s})}\) [2 marks - 1 mark for correct equation, 1 mark for correct state symbols]
The question tells you that the reaction is a precipitation reaction, and that magnesium nitrate solution is formed. So the other product, silver chloride, must be the solid precipitate.

\section*{Page 61 - Calculations with Gases}

1 Moles of \(\mathrm{Cl}_{2}=\frac{1.28}{35.5 \times 2}=0.0180 \ldots\) moles [1 mark] Rearranging \(p V=n R T\) to find \(T\) gives \(T=\frac{p V}{n R}\).
So, \(\mathrm{T}=\frac{175 \times\left(98.6 \times 10^{-3}\right)}{0.0180 \times 8.314}=\mathbf{1 1 5} \mathrm{K}[1 \mathrm{mark}]\)
\(2 M\) of \(\mathrm{C}_{3} \mathrm{H}_{8}=(3 \times 12.0)+(8 \times 1.0)=44.0 \mathrm{~g} \mathrm{~mol}^{-1}\)
No. of moles of \(\mathrm{C}_{3} \mathrm{H}_{8}=\frac{88}{44.0}=2.0\) moles [1 mark]
At r.t.p. 1 mole of gas occupies \(24 \mathrm{dm}^{3}\), so 2.0 moles of gas occupies \(2.0 \times 24=\mathbf{4 8} \mathbf{~ d m}^{\mathbf{3}}\) [1 mark]
You could also use the equation \(p V=n R T\) to answer this question, where at r.t.p, \(T=293 \mathrm{~K}\), and \(p=101300 \mathrm{~Pa}\). In this case, your answer would be \(V=\frac{n R T}{p}=\frac{2.0 \times 8.31 \times 293}{101300}=0.048 \mathrm{~m}^{3}=48 \mathrm{dm}^{3}\).
3 Start by writing the balanced equation for the combustion of butane: \(\mathrm{C}_{4} \mathrm{H}_{10}+61 / 2 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}\) [1 mark]
So, moles of \(\mathrm{O}_{2}\) required \(=3.50 \times 10^{-2} \times 6.5=0.2275 \mathrm{~mol}\) At room temperature and pressure, 1 mole of gas occupies \(24 \mathrm{dm}^{3}\). So \(0.2275 \times 24=\mathbf{5 . 4 6} \mathbf{d m}^{\mathbf{3}}\) [1 mark].
\(4 \quad \mathrm{MgCO}_{3} \rightarrow \mathrm{MgO}+\mathrm{CO}_{2}\)
1 mole of \(\mathrm{MgCO}_{3}\) produces 1 mole of \(\mathrm{CO}_{2}\).
At r.t.p., \(6.00 \mathrm{dm}^{3}\) of \(\mathrm{CO}_{2}=6.00 \div 24.0=0.250 \mathrm{~mol}\) [1 mark].
So 0.250 mol of \(\mathrm{CO}_{2}\) is produced by 0.250 mol of \(\mathrm{MgCO}_{3}\).
\(M_{\mathrm{r}}\) of \(\mathrm{MgCO}_{3}=24.3+12.0+(3 \times 16.0)=84.3\)
0.250 mol of \(\mathrm{MgCO}_{3}=84.3 \times 0.250=\mathbf{2 1 . 1} \mathrm{g}\) [1 mark]

\section*{Page 63 - Acid-Base Titrations}
\(1 \quad\) Moles \(=\frac{\text { Concentration } \times \text { Volume }}{1000}=\frac{0.500 \times 200}{1000}=0.100 \mathrm{moles}\) [1 mark]
Mass \(=\) moles \(\times\) molar mass
\[
\begin{aligned}
& =0.100 \times[(3 \times 1.0)+14.0+32.1+(16.0 \times 3)] \\
& =0.100 \times 97.1=9.71 \mathrm{~g}[1 \text { mark }]
\end{aligned}
\]

2 A maximum of two marks can be awarded for structure and reasoning of the written response:
2 marks: The answer is constructed logically, and displays clear reasoning and links between points throughout.
1 mark: The answer is mostly logical, with some reasoning and links between points.
0 marks: The answer has no structure and no links between points.
Here are some points your answer may include:
Indicators change colour when the solution reaches a particular pH to mark an end point. They are used in acid/alkali titrations to mark the end point of the reaction. Indicators used in titrations need to change colour quickly over a very small pH range. A few drops of indicator solution are added to the analyte. The analyte/indicator solution can be placed on a white surface to make a colour change easy to see. Methyl orange and phenolphthalein are both good indicators for titrations as they quickly change colour when the solution turns from alkali to acid. Universal indicator is a poor indicator to use for titrations as its colour changes gradually over a wide pH range.
[4 marks - 4 marks if 6 points mentioned covering all areas of the question, 3 marks if 4-5 points covered, 2 marks if 2-3 points covered, 1 mark if 1 point covered]

Page 65 - Titration Calculations
1 First write down what you know:
\(\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}\)
\(25.4 \mathrm{~cm}^{3} \quad 14.6 \mathrm{~cm}^{3}\)
? \(\quad 0.500 \mathrm{~mol} \mathrm{dm}^{-3}\)
No. of moles of \(\mathrm{NaOH}=\frac{0.500 \times 14.6}{1000}=0.00730\) moles [1 mark]
From the equation, you know 1 mole of NaOH neutralises 1 mole of \(\mathrm{CH}_{3} \mathrm{COOH}\), so if you've used 0.00730 moles NaOH you must have neutralised 0.00730 moles \(\mathrm{CH}_{3} \mathrm{COOH}\) [1 mark].
Concentration of \(\mathrm{CH}_{3} \mathrm{COOH}=\frac{0.00730 \times 1000}{25.4}=\mathbf{0 . 2 8 7} \mathbf{~ m o l ~ d m}^{-\mathbf{3}}\) [1 mark]
2 First write down what you know again:
\(\mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}\) \(0.750 \mathrm{~g} \quad 0.250 \mathrm{~mol} \mathrm{dm}^{-3}\)
\(M\) of \(\mathrm{CaCO}_{3}=40.1+12.0+(3 \times 16.0)=100.1 \mathrm{~g} \mathrm{~mol}^{-1}\) [1 mark] No. of moles of \(\mathrm{CaCO}_{3}=\frac{0.750}{100.1}=7.49 \ldots \times 10^{-3}\) moles [1 mark]
From the equation, 1 mole \(\mathrm{CaCO}_{3}\) reacts with 1 mole \(\mathrm{H}_{2} \mathrm{SO}_{4}\)
so, \(7.49 \ldots \times 10^{-3}\) moles \(\mathrm{CaCO}_{3}\) reacts with \(7.49 \ldots \times 10^{-3}\) moles \(\mathrm{H}_{2} \mathrm{SO}_{4}\) [1 mark].
Volume needed is \(=\frac{\left(7.49 \ldots \times 10^{-3}\right) \times 1000}{0.250}=\mathbf{3 0 . 0} \mathbf{~ c m}^{\mathbf{3}}\) [1 \(\left.\mathbf{~ m a r k}\right]\)
3 a) \(\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}\) [1 mark]
b) Number of moles of \(\mathrm{HCl}=\frac{0.250 \times 17.1}{1000}\)
\(=4.275 \times 10^{-3}\) moles [1 mark]
From the equation in a), 2 moles HCl reacts with 1 mole \(\mathrm{Ca}(\mathrm{OH})_{2}\), so, \(4.275 \times 10^{-3}\) moles HCl reacts with \(2.1375 \times 10^{-3}\) moles \(\mathrm{Ca}(\mathrm{OH})_{2}\) [1 mark].
So concentration of \(\mathrm{Ca}(\mathrm{OH})_{2}\) solution \(=\)
\(\frac{\left(2.1375 \times 10^{-3}\right) \times 1000}{25.0}=\mathbf{0 . 0 8 5 5} \mathbf{~ m o l ~ d m}{ }^{\mathbf{3}}\) [1 mark].

\section*{Answers}

\section*{Page 67 - Uncertainty and Errors}

1 a) The titre is calculated by subtracting the initial volume from the final volume. Each of these has an uncertainty of \(0.05 \mathrm{~cm}^{3}\), so the total uncertainty is \(0.1 \mathrm{~cm}^{3}\).
percentage uncertainty \(=(0.1 \div 3.1) \times 100=\mathbf{3 . 2 3} \%\)
[2 marks - 1 mark for correct use of percentage uncertainty formula, 1 mark for using uncertainty of \(0.1 \mathbf{c m}^{3}\)]
b) The percentage uncertainty will decrease if the titres are larger [1 mark]. Using a less concentrated solution will result in larger titres [1 mark].
\(2 \%\) uncertainty in pipette \(=(0.06 \div 25.00) \times 100=0.24 \%[1\) mark] \(\%\) uncertainty in titre \(=(0.1 \div 19.25) \times 100=0.519 \ldots \%\) [1 mark] Total \% uncertainty \(=0.24+0.519 \ldots=0.759 \ldots \%\) [1 mark] So uncertainty of concentration \(=0.759 \ldots \%\) of 0.0770
\(=0.00058 \mathrm{~mol} \mathrm{dm}^{-3}\left(5.8 \times \mathbf{1 0}^{-4} \mathbf{~ m o l ~ d m}{ }^{-3}\right)\) [1 mark]

\section*{Page 69 - Atom Economy and Percentage Yield}

1 a) 2 is an addition reaction [1 mark]
b) For reaction 1: \% atom economy
\(=M_{r}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}\right) \div\left[M_{\mathrm{r}}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}\right)+M_{\mathrm{r}}\left(\mathrm{POCl}_{3}\right)+M_{\mathrm{r}}(\mathrm{HCl})\right] \times 100 \%\) [1 mark]
\(=[(2 \times 12.0)+(5 \times 1.0)+35.5] \div[(2 \times 12.0)+(5 \times 1.0)+35.5\)
\[
+31.0+16.0+(3 \times 35.5)+1.0+35.5] \times 100 \%
\]
\(=(64.5 \div 254.5) \times 100 \%=\mathbf{2 5 . 3} \%\) [1 mark]
c) The atom economy is \(100 \%\) because there is only one product (there are no by-products) [1 mark]
2 a) Number of moles \(=\) mass \(\div\) molar mass
Moles \(\mathrm{PCl}_{3}=0.275 \div 137.5=0.002\) moles
Chlorine is in excess, so there must be 0.002 moles of product
[1 mark]. Mass of \(\mathrm{PCl}_{5}=0.002 \times 208.5=\mathbf{0 . 4 1 7} \mathbf{g}\) [1 mark]
b) percentage yield \(=(0.198 \div 0.417) \times 100 \%=\mathbf{4 7 . 5} \%\) [1 mark]
c) Changing reaction conditions will have no effect on atom economy [1 mark]. Since the equation shows that there is only one product, the atom economy will always be 100\% [1 mark]. Atom economy is related to the type of reaction - addition, substitution, etc. - not to the quantities of products and reactants.

\section*{Topic 6 - Organic Chemistry I}

\section*{Page 71 - The Basics}

1 a)

butan-1-ol

> 1-bromobutane
[2 marks - 1 mark for each correct structure]
b) It tells you that the main functional group \((-\mathrm{OH})\) is attached to the first carbon in the chain [1 mark]. The number is necessary because the main functional group could be attached to the first or second carbon/butan-2-ol also exists [1 mark].
2 a) i) 1-chloro-2-methylpropane [1 mark]
Remember to put the substituents in alphabetical order
ii) 3-methylbut-1-ene [1 mark]
iii) 2,4-dibromo-but-1-ene [1 mark]
b) i) \(\mathrm{C}_{7} \mathrm{H}_{16}[1\) mark \(]\)
ii) \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}\) [1 mark]

\section*{Page 73 - Organic Reactions}

1 C [1 mark]
2 a) polymerisation [1 mark]
b) hydrolysis / substitution [1 mark]
c) substitution [1 mark]

\section*{Page 75 - Isomerism}

1 a) B [1 mark]
b) Isomers that have the same molecular formula but different structural formulae [1 mark].
2 a)

OR

b)

OR

3 a)

b) \(\mathrm{CH}_{3} \mathrm{COCH}_{3}\) [1 mark] and \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}\) [1 mark]

4 D [1 mark]

\section*{Page 77 - Alkanes}

1 a) Radical substitution [1 mark].
b) \(\mathrm{CH}_{4}+\mathrm{Br}_{2} \xrightarrow{\text { U.V. }} \mathrm{CH}_{3} \mathrm{Br}+\mathrm{HBr} \quad\) [1 mark]
c) \(\mathrm{Br} \bullet+\mathrm{CH}_{4} \rightarrow \mathrm{HBr}+\cdot \mathrm{CH}_{3} \quad\) [1 mark] \(\cdot \mathrm{CH}_{3}+\mathrm{Br}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Br}+\mathrm{Br} \bullet \quad\) [1 mark]
d) i) Two methyl radicals bond together to form an ethane molecule [1 mark]. The equation for the reaction is: \(\cdot \mathrm{CH}_{3}+\cdot \mathrm{CH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{3}\) [1 mark]
ii) termination step [1 mark]
e) tetrabromomethane [1 mark]

\section*{Page 79 - Crude Oil}

1 a) i) E.g. There's greater demand for smaller fractions for things such as motor fuels [1 mark]. / There's greater demand for alkenes to make petrochemicals/polymers [1 mark].
ii) E.g. \(\mathrm{C}_{12} \mathrm{H}_{26} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{10} \mathrm{H}_{22}\) [1 mark]. There are loads of possible answers - just make sure the C's and H's balance and there's an alkane and an alkene.
b) i) Any two from: Cycloalkanes / arenes / aromatic hydrocarbons / branched alkanes [2 marks - \(\mathbf{1}\) mark for each]
ii) They promote efficient combustion/reduce knocking (autoignition) [1 mark].

\section*{Page 81 - Fuels}

1 a) \(\mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}\) [2 marks - \(\mathbf{1}\) mark for reactants and products correct, 1 mark for correct balancing]
b) The products of incomplete combustion include carbon monoxide gas which is toxic [1 mark]. This is because it binds to haemoglobin in the blood, meaning less oxygen can be transported around the body and leading to oxygen deprivation [1 mark].
2 a) Sulfur dioxide and nitrogen oxides \(\left(\mathrm{NO}_{x}\right)\) [1 mark].
b) Catalytic converters convert nitrogen oxides into harmless gases, such as nitrogen and water vapour [1 mark].
3 E.g. Advantage: it's carbon neutral / can be made from waste that would otherwise go to landfill / is renewable [1 mark]. Disadvantage: engines would have to be converted to run off biodiesel / growing crops for biodiesel uses land that could otherwise be used to grow food [1 mark].

\section*{Page 82 - Alkenes}

1 a) E.g. Both bonds form when two atomic orbitals overlap / when the nuclei of two atoms form electrostatic attractions to a bonding pair of electrons [1 mark].
b) E.g. \(\sigma\)-bonds form when two atomic orbitals overlap directly between two nuclei, whereas \(\pi\)-bonds form when both lobes of two p-orbitals overlap side-on / in \(\sigma\)-bonds, the electron density lies directly between the two nuclei, whereas in \(\pi\)-bonds, the electron density lies above and below the molecular axis / \(\sigma\)-bonds have a higher bond enthalpy than \(\pi\)-bonds [1 mark].

\section*{Answers}

Page 85 - Stereoisomerism
1 a)

E-pent-2-ene [1 mark]

Z-pent-2-ene [1 mark]
b) \(\mathrm{E} / \mathrm{Z}\) isomers occur because atoms can't rotate about \(\mathrm{C}=\mathrm{C}\) double bonds [1 mark]. Alkenes contain \(\mathrm{C}=\mathrm{C}\) double bonds and alkanes don't, so alkenes can form E/Z isomers and alkanes can't [1 mark].

\section*{2 B [1 mark]}

3 a) i)

E-1-bromo-2-chloroethene [1 mark]

Z-1-bromo-2-chloroethene [1 mark]
ii)

E-1-bromo-2-chloroprop-1-ene [1 mark]

Z-1-bromo-2-chloroprop-1-ene [1 mark]
b) i) 1-bromo-2-chloroethene [1 mark] because there is a hydrogen atom / an identical group attached to the carbons on either side of the double bond [1 mark].
ii)

trans-1-bromo-2-chloroethene [1 mark]
cis-1-bromo-2-chloroethene [1 mark]

\section*{Page 87 - Reactions of Alkenes}

1 a) Shake the alkene with bromine water, and the solution goes from brown to colourless if a double bond is present [1 mark].
b) Electrophilic addition [1 mark].

[4 marks - 1 mark for correct partial charges on bromine molecule, 1 mark for correct curly arrows showing bromine attacking the \(\mathrm{C}=\mathrm{C}\) double bond and the \(\mathrm{Br}-\mathrm{Br}\) bond breaking heterolytically, 1 mark for structure of intermediate, 1 mark for curly arrow showing attack of \(\mathrm{Br}^{-}\)on the carbocation]
This reaction can go via a primary or a secondary carbocation. You'd get the marks for the mechanism for showing it going by either one.
c)

1-bromobutane [1 mark]
The major product will be 2-bromobutane [1 mark] since the formation of this product goes via the more stable carbocation intermediate [1 mark].

Page 89 - Polymers
1 a)

b)

2 a) E.g. Saves on landfill / Energy can be used to generate electricity [1 mark].
b) E.g. Toxic gases produced [1 mark]. Scrubbers can be used to remove these toxic gases / polymers that might burn to produce toxic gases can be separated out before incineration [1 mark].
3 A maximum of two marks can be awarded for structure and reasoning of the written response:
2 marks: The answer is constructed logically, and displays clear reasoning and links between points throughout.
1 mark: The answer is mostly logical, with some reasoning and links between points.
0 marks: The answer has no structure and no links between points. Here are some points your answer may include:
Chemists could use reactant molecules that are as safe and as environmentally friendly as possible. Chemists should aim to use as few materials as possible in the manufacture process (e.g. limit the use of solvents). Chemists should aim to use renewable raw materials wherever possible. Chemists should minimise energy usage (e.g. by using catalysts) during the manufacturing process. Chemists should minimise the amount of waste products made during the process, especially those which are hazardous to human health or the environment. Polymers should be made with a lifespan that is appropriate for their use. Chemists could create biodegradable polymers which, when disposed of, are less damaging to the environment.
[4 marks - 4 marks if 6 points covered, 3 marks if 4-5 points covered, 2 marks if 2-3 points covered, 1 mark if 1 point covered]

\section*{Page 91 - Halogenoalkanes}

1 a)

[1 mark] 2-iodo-2-methylpropane [1 mark]
b) Agl [1 mark]
c) The tertiary alcohol with formula \(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\) will be hydrolysed more slowly than 2-methyl-2-iodopropane under the same conditions [1 mark]. This is because \(\mathrm{C}-\mathrm{Cl}\) bonds are shorter so have a higher bond enthalpy that C-I bonds [1 mark], and are therefore harder to break than C-I bonds [1 mark] (resulting in a slower rate of hydrolysis).

\section*{Answers}

\section*{Page 93 - More on Halogenoalkanes}

1 a) \(\mathrm{CH}_{3} \mathrm{CHOHCH}_{3}\) [1 mark]
b) i) ethanolic ammonia [1 mark], warm [1 mark] ii) Step 1:

[2 marks - 1 mark for \(\mathrm{NH}_{3}\) attacking \(\delta+\) carbon, 1 mark for C-Br bond breaking]
Step 2:

[2 marks - 1 mark for correctly drawn intermediate, 1 mark for showing ammonia attacking a positive nitrogen centre]
c) \(\mathrm{CH}_{3} \mathrm{CHCH}_{2}\) [1 mark]

\section*{Page 95 - Alcohols}

secondary: e.g

tertiary:

b) E.g. React ethanol with sodium bromide (KBr) with a \(50 \%\) concentrated sulfuric acid catalyst [1 mark].
2 a) Elimination reaction OR dehydration reaction [1 mark].
b) C [1 mark]

\section*{Page 97 - Oxidation of Alcohols}

1 a) i) Propanoic acid \(\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right)\) [1 mark]
ii) \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O}\) [1 mark] \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\) [1 mark]
iii) Distillation. This is so aldehyde is removed immediately as it forms [1 mark].
If you don't get the aldehyde out quick-smart, it'll be a carboxylic acid before you know it.
b) i)

ii) 2-methylpropan-2-ol is a tertiary alcohol [1 mark].

2 D [1 mark]
3 React 2-methylpropan-1-ol \(\left(\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}\right)\) [1 mark] with a controlled amount of acidified potassium dichromate \((\mathrm{VI})\) and heat gently in distillation apparatus to distil off the aldehyde [1 mark].

\section*{Page 99 - Organic Techniques}

1 a) i) Reflux is continuous boiling/evaporation and condensation [1 mark]. It's done to prevent loss of volatile liquids while heating [1 mark].
ii) Unreacted hexan-1-ol [1 mark]
iii) Pour the reaction mixture into a separating funnel and add water [1 mark]. Shake the funnel and allow the layers to settle [1 mark]. To separate the layers, open the tap to run the lower layer out of the separating funnel into a container. Then, collect the upper layer in a separate container [1 mark].
b) i) The alkene product may dehydrate again to form a diene [1 mark].
ii) Carry out the experiment in a distillation apparatus [1 mark] so the singly dehydrated product is removed immediately from the reaction mixture and doesn't react a second time [1 mark].

\section*{Topic 7 - Modern Analytical Techniques I}

\section*{Page 101 - Mass Spectrometry}

1 a) 44 [1 mark]
b) \(X\) has a mass of 15. It is probably a methyl group/ \(/ \mathrm{CH}_{3}{ }^{+}\)[1 mark].

Y has a mass of 29. It is probably an ethyl group \(/ \mathrm{C}_{2} \mathrm{H}_{5}{ }^{+}\)[1 mark].
c)

d) If the compound was an alcohol, you would expect a peak with \(\mathrm{m} / \mathrm{z}\) ratio of 17 , caused by the OH fragment [1 mark].
2 a) 56 [1 mark]
b) \(\mathrm{CH}_{3} \mathrm{CHCH}^{+}\)[1 mark]
c) E.g. \(m / z=15\) [1 mark], \(\mathrm{CH}_{3}{ }^{+}\)[1 mark] or
\(m / z=28\) [1 mark], \(\mathrm{CH}_{3} \mathrm{CH}^{+}\)[1 mark].
3
 [1 mark], propan-1-ol [1 mark]
The mass spectrum could be for one of 2 isomers - propan-1-ol or propan-2-ol. The spectrum of propan-1-ol would produce a peak at \(m / z=31\), due to the fragment \(\mathrm{CH}_{2} \mathrm{OH}^{+}[1\) mark]. This would be absent from the spectrum of propan-2-ol [1 mark] (therefore the unknown alcohol is propan-1-ol).

\section*{Page 103 - Infrared Spectroscopy}

1 a) A [1 mark]
b) There is a broad peak in the region of \(3300-2500 \mathrm{~cm}^{-1}\), corresponding to an \(\mathrm{O}-\mathrm{H}\) stretch in a carboxylic acid [1 mark]. There is also a strong peak in the region of \(1725-1700 \mathrm{~cm}^{-1}\), corresponding to a \(\mathrm{C}=\mathrm{O}\) stretch in a carboxylic acid [1 mark].
2 a) A: O-H group in a carboxylic acid [1 mark].
\(\mathrm{B}: \mathrm{C}=\mathrm{O}\) as in an aldehyde, ketone or carboxylic acid [1 mark].
b) The spectrum suggests that the compound is a carboxylic acid, so it must be propanoic acid [1 mark] \(\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right)\) [1 mark].

\section*{Answers}

\section*{Topic 8 - Energetics I}

\section*{Page 105 - Enthalpy Changes}

1

[3 marks - \(\mathbf{1}\) mark for having reactants lower in energy than products, 1 mark for labelling activation energy correctly, 1 mark for labelling \(\Delta H\) correctly, with arrow pointing downwards]
For an exothermic reaction, the \(\Delta H\) arrow points downwards, but for an endothermic reaction it points upwards. The activation energy arrow always points upwards though.
2 a) \(\mathrm{CH}_{3} \mathrm{OH}_{(l)}+11 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}[1\) mark \(]\)
Make sure that only 1 mole of \(\mathrm{CH}_{3} \mathrm{OH}\) is combusted, as it says in the definition for \(\Delta_{\mathrm{c}} \mathrm{H}^{\circ}\).
b) \(\mathrm{C}_{(\mathrm{s})}+2 \mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{l})}[1\) mark \(]\)
c) Only 1 mole of \(\mathrm{C}_{3} \mathrm{H}_{8}\) should be shown according to the definition of \(\Delta_{c} H^{\circ}\) [1 mark].
You really need to know the definitions of the standard enthalpy changes off by heart. There are loads of nit-picky little details they could ask you questions about.
3 a) \(\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}\) [1 mark]
b) It has the same value because it is the same reaction [1 mark].
c) 1 tonne \(=1000000 \mathrm{~g}\)

1 mole of carbon is 12.0 g
so 1 tonne is \(1000000 \div 12.0=83333 \ldots\) moles [1 mark]
1 mole releases 393.5 kJ
so 1 tonne will release \(83333 \ldots \times 393.5=\mathbf{3 2} \mathbf{8 0 0} \mathbf{0 0 0} \mathbf{~ k J}\)
(\(32.8 \times 10^{7} \mathrm{~kJ}\)) [1 mark]
The final answer is rounded to 3 significant figures because the number with the fewest significant figures in the whole calculation is 12.0.

\section*{Page 107 - More on Enthalpy Changes}
\(1 \Delta T=25.8-19.0=6.80^{\circ} \mathrm{C}=6.80 \mathrm{~K}\)
\(m=25.0+25.0=50.0 \mathrm{~cm}^{3}\) of solution,
which has a mass of 50.0 g .
Assume density to be \(1.00 \mathrm{~g} \mathrm{~cm}^{-3}\).
Heat produced by reaction \(=m c \Delta T\)
\[
=50.0 \times 4.18 \times 6.80=1421.2 \mathrm{~J}[1 \text { mark] }
\]

No. of moles of \(\mathrm{HCl}=1 \times(25.0 \div 1000)=0.0250\)
No. of moles of \(\mathrm{NaOH}=1 \times(25.0 \div 1000)=0.0250\)
Therefore, no. of moles of water \(=0.0250\) [1 mark]
Producing 0.0250 mol of water takes 1421.2 J of heat, therefore producing 1 mol of water takes \(1421.2 \div 0.0250=56848 \mathrm{~J}\)
\[
\approx 56.8 \mathrm{~kJ}(3 \mathrm{s.f.})
\]

So the enthalpy change is \(\mathbf{- 5 6 . 8} \mathbf{~ k J ~ m o l}{ }^{\mathbf{- 1}}\) [1 mark]
You need the minus sign because it's exothermic.
2 No. of moles of \(\mathrm{CuSO}_{4}=0.200 \times(50.0 \div 1000)=0.0100 \mathrm{~mol}\) From the equation, 1 mole of \(\mathrm{CuSO}_{4}\) reacts with 1 mole of Zn . So, 0.0100 mol of \(\mathrm{CuSO}_{4}\) reacts with 0.0100 mol of \(\mathrm{Zn}[1\) mark]. Heat produced by reaction \(=m c \Delta T\)
\[
=50.0 \times 4.18 \times 2.00=418 \mathrm{~J} \quad[1 \text { mark }]
\]
0.0100 mol of zinc produces 418 J of heat, therefore 1 mol of zinc produces \(418 \div 0.0100=41800 \mathrm{~J}=41.8 \mathrm{~kJ}\) So the enthalpy change is \(\mathbf{- 4 1 . 8} \mathbf{~ k J ~ m o l}{ }^{-1}\) [1 mark].
You need the minus sign because it's exothermic.
It'd be dead easy to work out the heat produced by the reaction, breathe a sigh of relief and sail on to the next question. But you need to find out the enthalpy change when 1 mole of zinc reacts. It's always a good idea to reread the question and check you've actually answered it.

\section*{Page 109 - Hess's Law}
\(1 \quad \Delta_{\mathrm{r}} H^{\ominus}=\) sum of \(\Delta_{\mathrm{f}} H^{\ominus}\) (products) - sum of \(\Delta_{\mathrm{f}} H^{\ominus}\) (reactants)
[1 mark]
\(\Delta_{\mathrm{r}} H^{\ominus}=[0+(3 \times-602)]-[-1676+0]\)
\(\Delta_{\mathrm{r}} H^{\ominus}=\mathbf{- 1 3 0} \mathbf{~ k J ~ m o l}{ }^{-1}\) [1 mark]
Don't forget the units. It's a daft way to lose marks.
\(2 \Delta_{\mathrm{f}} H^{\ominus}=\Delta_{\mathrm{c}} H^{\ominus}\) (glucose) \(-2 \times \Delta_{\mathrm{c}} H^{\ominus}\) (ethanol) [1 mark]
\(\Delta_{\mathrm{f}} H^{\ominus}=[-2820]-[(2 \times-1367)]\)
\(\Delta_{\mathrm{f}} H^{\ominus}=-\mathbf{8 6} \mathrm{kJ} \mathrm{mol}^{-1}\) [1 mark]

\section*{Page 111 - Bond Enthalpy}

1 Sum of bond enthalpies of reactants \(=(4 \times 435)+(2 \times 498)\)
\[
=2736 \mathrm{~kJ} \mathrm{~mol}^{-1}
\]

Sum of bond enthalpies of products \(=(2 \times 805)+(4 \times 464)\)
\[
=3466 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { [1 mark] }
\]

Enthalpy change of reaction \(=2736+(-3466)\)
\[
=-730 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { [1 mark] }
\]

2 Sum of bond enthalpies of reactants \(=(1 / 2 \times 498)+436\)
\[
=685 \mathrm{~kJ} \mathrm{~mol}^{-1}
\]

Sum of bond enthalpies of products \(=(2 \times 460)\)
\[
=920 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { [1 mark] }
\]

Enthalpy change of formation \(=685-920\)
\[
=-235 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { [1 mark] }
\]

3 a) Sum of bond enthalpies of reactants \(=(4 \times 435)+243\)
\[
=1983 \mathrm{~kJ} \mathrm{~mol}^{-1}
\]

Sum of bond enthalpies of products \(=(3 \times 397)+432+E(\mathrm{C}-\mathrm{Cl})\)
\(=1623+E(\mathrm{C}-\mathrm{Cl}) \mathrm{kJ} \mathrm{mol}{ }^{-1}\) [1 mark]
\(-101=1983-(1623+E(\mathrm{C}-\mathrm{Cl}))\)
\(E(\mathrm{C}-\mathrm{Cl})=1983-1623+101=\mathbf{4 6 1} \mathbf{k J ~ m o l}^{\mathbf{1}}\) [1 mark]
b) The values differ because the data book value of \(\mathrm{C}-\mathrm{Cl}\) is an average of \(\mathrm{C}-\mathrm{Cl}\) bond energies in many molecules, while \(461 \mathrm{~kJ} \mathrm{~mol}^{-1}\) is the \(\mathrm{C}-\mathrm{Cl}\) bond energy in chloromethane [1 mark].

\section*{Topic 9 - Kinetics I}

\section*{Page 113 - Collision Theory}

1 Increasing the pressure will increase the rate of reaction [1 mark] because there will be more particles in a given volume, so they will collide more frequently and therefore are more likely to react [1 mark].
2 The particles in a liquid move freely and all of them are able to collide with the solid particles [1 mark]. Particles in solids just vibrate about fixed positions, so only those on the touching surfaces between the two solids will be able to react [1 mark].
3 a) X [1 mark] The \(X\) curve shows the same total number of molecules as the \(25^{\circ} \mathrm{C}\) curve, but more of them have lower energy.
b) The shape of the curve shows fewer molecules have the required activation energy [1 mark].

\section*{Answers}

\section*{Page 115 - Reaction Rates}

1 E.g.

[1 mark for tangent drawn at 3 mins]
rate of reaction \(=\) gradient of tangent at 3 mins gradient \(=\) change in \(y \div\) change in \(x\)
\[
\begin{aligned}
\text { e.g. } \quad & =(2.0-1.3) \div(3.4-1.0) \\
& =\mathbf{0 . 2 9}(\pm \mathbf{0 . 0 6}) \mathbf{~ m o l ~ d m}^{-\mathbf{3}} \mathbf{~ m i n}^{\mathbf{- 1}}
\end{aligned}
\]
[2 marks - 1 mark for answer within margin of error,

\section*{1 mark for units]}

Different people will draw slightly different tangents and pick different spots on the tangent so there's a margin of error in this answer.
\(0.29(\pm 0.06) \mathrm{mol} \mathrm{dm}^{-3} \mathrm{~min}^{-1}\) means any answer between
\(0.35 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~min}^{-1}\) and \(0.23 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~min}^{-1}\) is worth the mark.

\section*{Page 117 - Catalysts}

1 a) A [1 mark]
A catalyst only lowers activation energy. It doesn't affect the enthalpy change.
b) The catalyst lowers the activation energy [1 mark], meaning there are more particles with enough energy to react when they collide [1 mark]. So, in a certain amount of time, more particles react [1 mark].
c) The vanadium \((\mathrm{V})\) oxide catalyst is heterogenous because it's in a different physical state to the reactants [1 mark].

\section*{Topic 10 - Equilibrium I}

\section*{Page 119 - Dynamic Equilibrium}

1 a) At dynamic equilibrium, the rate of the forwards and backwards reactions are the same [1 mark] and the concentrations of the reactants and the products are constant [1 mark].
b) \(K_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}[1\) mark \(]\)

2 The reaction is heterogeneous so pure liquids / water should be excluded from the expression [1 mark]. The reactants and products are also the wrong way round / the reactants should be on the bottom of the expression and the products should be on the top [1 mark].
3 B [1 mark]

\section*{Page 121 - Le Chatelier's Principle}

1 a) i) There's no change as there's the same number of molecules/ moles of gas on each side of the equation [1 mark].
ii) Reducing temperature removes heat. The equilibrium shifts in the exothermic direction to release heat, so the position of equilibrium shifts left [1 mark].
iii) Removing nitrogen monoxide reduces its concentration. The equilibrium position shifts right to try and increase the nitrogen monoxide concentration again [1 mark].
2 For an exothermic reaction, a low temperature means a high yield [1 mark]. But a low temperature also means a slow reaction rate, so moderate temperatures are chosen as a compromise [1 mark].

\section*{Topic 11 - Equilibrium II}

Page 123 - Calculations Involving \(K_{C}\)
1 C [1 mark]

2
\(K_{\mathrm{c}}=\frac{\left[\mathrm{Cu}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}}[\mathbf{1}\) mark \(]=\frac{0.193}{(0.431)^{2}}=\mathbf{1 . 0 4} \mathbf{~ m o l}^{\mathbf{- 1}} \mathbf{d m}^{\mathbf{3}}\)
[2 marks - 1 mark for correct value of \(K_{c}, 1\) mark for correct units]
\(\left(\right.\) Units \(\left.=\left(\mathrm{mol} \mathrm{dm}{ }^{-3}\right) /\left(\mathrm{mol} \mathrm{dm}^{-3}\right)^{2}=1 / \mathrm{mol} \mathrm{dm}{ }^{-3}=\mathrm{mol}^{-1} \mathrm{dm}^{3}\right)\)
Don't forget, solids aren't included in the expression for the equilibrium constant.
3 a) i) mass \(\div M_{\mathrm{r}}=42.5 \div 46.0=\mathbf{0 . 9 2 3} \ldots\) [1 mark]
ii) moles of \(\mathrm{O}_{2}=\) mass \(\div M_{\mathrm{r}}=14.1 \div 32.0=0.440 \ldots\) [1 mark] moles of \(\mathrm{NO}=2 \times\) moles of \(\mathrm{O}_{2}=0.881 \ldots\) [1 mark] moles of \(\mathrm{NO}_{2}=0.923 \ldots-0.881 \ldots=\mathbf{0 . 0 4 2 7}\) [1 mark]
b) Concentration of \(\mathrm{O}_{2}=0.441 \div 22.8=0.0193 \ldots \mathrm{~mol} \mathrm{dm}^{-3}\) Concentration of \(\mathrm{NO}=0.881 \div 22.8=0.0386 \ldots \mathrm{~mol} \mathrm{dm}^{-3}\) Concentration of \(\mathrm{NO}_{2}=0.0427 \div 22.8=0.00187 \ldots \mathrm{~mol} \mathrm{dm}^{-3}\) \(K_{\mathrm{c}}=\frac{[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{NO}_{2}\right]^{2}}[1\) mark \(] \Rightarrow K_{\mathrm{c}}=\frac{(0.0386 \ldots)^{2} \times(0.0193 \ldots)}{(0.00187 \ldots)^{2} \quad[1 \text { mark] }}\) \(=8.23 \mathrm{~mol} \mathrm{dm}^{-3}\) [2 marks - 1 mark for correct value of \(K_{c}\), 1 mark for correct units]
\(\left(\right.\) Units \(\left.=\left(\mathrm{mol} \mathrm{dm}^{-3}\right)^{2} \times\left(\mathrm{mol} \mathrm{dm}{ }^{-3}\right) /\left(\mathrm{mol} \mathrm{dm}^{-3}\right)^{2}=\mathrm{mol} \mathrm{dm}^{-3}\right)\) You might get a slightly different answer depending on how you rounded your intermediate answers throughout this question. As long as your answer is between 8.16 and 8.23 , you'll still get the mark.

\section*{Page 125 - Gas Equilibria}

1 a) \(K_{\mathrm{p}}=\frac{p\left(\mathrm{SO}_{2}\right) p\left(\mathrm{Cl}_{2}\right)}{p\left(\mathrm{SO}_{2} \mathrm{Cl}_{2}\right)}\) [1 mark]
b) \(\mathrm{Cl}_{2}\) and \(\mathrm{SO}_{2}\) are produced in equal amounts so
\(p\left(\mathrm{Cl}_{2}\right)=p\left(\mathrm{SO}_{2}\right)=0.594\) atm [1 mark]
Total pressure \(=p\left(\mathrm{SO}_{2} \mathrm{Cl}_{2}\right)+p\left(\mathrm{Cl}_{2}\right)+p\left(\mathrm{SO}_{2}\right)\) so
\(p\left(\mathrm{SO}_{2} \mathrm{Cl}_{2}\right)=1.39-0.594-0.594=\mathbf{0 . 2 0 2} \mathbf{~ a t m}\) [1 mark]
c) \(K_{\mathrm{p}}=\frac{0.594 \times 0.594}{0.202}=\mathbf{1 . 7 5} \mathbf{~ a t m}\)
[2 marks - 1 mark for correct value of \(K_{p}\),
1 mark for correct units]
\((U\) nits \(=(\mathrm{atm} \times \mathrm{atm}) / \mathrm{atm}=\mathrm{atm})\)
2 a) \(p\left(\mathrm{O}_{2}\right)=1 / 2 \times 0.36=0.18 \mathrm{~atm}\) [1 mark]
b) \(p\left(\mathrm{NO}_{2}\right)=\) total pressure \(-p(\mathrm{NO})-p\left(\mathrm{O}_{2}\right)\)
\[
=0.98-0.36-0.18=\mathbf{0 . 4 4} \mathbf{~ a t m}[\mathbf{1} \text { mark] }
\]
c) \(K_{\mathrm{p}}=\frac{p\left(\mathrm{NO}_{2}\right)^{2}}{p(\mathrm{NO})^{2} p\left(\mathrm{O}_{2}\right)}\) [1 mark]
\(=\frac{0.44^{2}}{0.36^{2} \times 0.18}=\mathbf{8 . 3} \mathbf{~ a t m}^{\mathbf{- 1}}\left[\begin{array}{c}\text { [2 marks }-\mathbf{1} \text { mark for correct value } \\ \text { of } K_{\boldsymbol{p}}, \mathbf{1} \text { mark for correct units] }\end{array}\right.\)
(Units \(\left.=\mathrm{atm}^{2} /\left(\mathrm{atm}^{2} \times \mathrm{atm}\right)=\mathrm{atm}^{-1}\right)\)

\section*{Page 127 - Le Chatelier's Principle and Equilibrium Constants}

1 a) \(T_{2}\) is lower than \(T_{1}[1\) mark]. A decrease in temperature shifts the position of equilibrium in the exothermic direction, producing more product [1 mark]. More product (and less reactant) means \(K_{\mathrm{c}}\) increases [1 mark].
A negative \(\Delta H\) means the forward reaction is exothermic - it gives out heat.
b) A decrease in volume means an increase in pressure. This shifts the equilibrium position to the right where there are fewer moles of gas. The yield of ammonia increases [1 mark].
\(K_{c}\) is unchanged [1 mark].
2 a) \(K_{\mathrm{p}}=\frac{p(\mathrm{CO}) p\left(\mathrm{H}_{2}\right)^{3}}{p\left(\mathrm{CH}_{4}\right) p\left(\mathrm{H}_{2} \mathrm{O}\right)}\) [1 mark]
b) A [1 mark]

\section*{Answers}

\section*{Topic 12 - Acid-Base Equilibria}

\section*{Page 129 - Acids and Bases}

1 a) \(\mathrm{HCN} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CN}^{-} \mathrm{OR} \mathrm{HCN}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CN}^{-}\)[1 mark]
b) Strongly to the left [1 mark] as it is a weak acid so it is only partially dissociated [1 mark].
c) \(\mathrm{CN}^{-}\)[1 mark]

2 a) The enthalpy of neutralisation is the enthalpy change when solutions of an acid and a base react together, under standard conditions [1 mark], to produce 1 mole of water [1 mark].
b) He is incorrect/the values for the enthalpy change of neutralisation will be different [1 mark]. This is because nitric acid is a strong acid, so will fully dissociate in solution. Therefore, the value for the standard enthalpy change of neutralisation for the reaction of nitric acid and potassium hydroxide only includes the enthalpy of reaction between the \(\mathrm{H}^{+}\)and \(\mathrm{OH}^{-}\)ions \([1\) mark]. Ethanoic acid is a weak acid, so only dissociates slightly in solution. Therefore, the value for the enthalpy change of neutralisation for the reaction of ethanoic acid and potassium hydroxide includes the enthalpy of dissociation of the ethanoic acid, as well as enthalpy for the reaction of the \(\mathrm{H}^{+}\)and \(\mathrm{OH}^{-}\)ions [1 mark].

\section*{Page 131 - pH}

1 a) It's a strong monobasic acid, so \(\left[\mathrm{H}^{+}\right]=[\mathrm{HBr}]=0.32 \mathrm{~mol} \mathrm{dm}^{-3}\). \(\mathrm{pH}=-\log _{10} 0.32=\mathbf{0 . 4 9}\) [1 mark]
b) HF is a weaker acid than HCl , so will be less dissociated in solution. This means the concentration of hydrogen ions will be lower, so the pH will be higher [1 mark].
2 a) \(K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\) [1 mark]
b) \(K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HA}]} \quad\left[\mathrm{H}^{+}\right]=\sqrt{\left(5.60 \times 10^{-4}\right) \times 0.280}=0.0125 \ldots[1 \mathrm{mark}]\) \(\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]=-\log _{10}(0.0125 \ldots)=\mathbf{1 . 9 0}[1\) mark]
\(3 \quad\left[\mathrm{H}^{+}\right]=10^{-2.65}=2.23 \ldots \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}\) [1 mark]
\[
\begin{aligned}
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HX}]}[1 \text { mark }] & =\frac{\left(2.23 \ldots \times 10^{-3}\right)^{2}}{0.150} \\
& =\mathbf{3 . 3 4 \times \mathbf { 1 0 } ^ { - 5 } \mathbf { ~ m o l ~ d m }}{ }^{\mathbf{3}}[\mathbf{1} \text { mark }]
\end{aligned}
\]

\section*{Page 133 - The Ionic Product of Water}

1 a) Moles of \(\mathrm{NaOH}=2.50 \div 40.0=0.0625\) moles [1 mark]
1 mole of NaOH gives 1 mole of \(\mathrm{OH}^{-}\).
So \(\left[\mathrm{OH}^{-}\right]=[\mathrm{NaOH}]=\mathbf{0 . 0 6 2 5} \mathbf{~ m o l ~ d m}{ }^{\mathbf{3}}\) [1 mark].
b) \(K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]\)
\(\left[\mathrm{H}^{+}\right]=1 \times 10^{-14} \div 0.0625=1.60 \times 10^{-13}\) [1 mark]
\(\mathrm{pH}=-\log _{10}\left(1.60 \times 10^{-13}\right)=\mathbf{1 2 . 8 0}\) [1 mark]
\(2 \quad K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]\)
\(\left[\mathrm{OH}^{-}\right]=[\mathrm{NaOH}]=0.0370\)
\(\left[\mathrm{H}^{+}\right]=K_{\mathrm{w}} \div\left[\mathrm{OH}^{-}\right]=\left(1 \times 10^{-14}\right) \div 0.0370=2.70 \times 10^{-13}\) [1 mark] \(\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]=-\log _{10}\left(2.70 \times 10^{-13}\right)=\mathbf{1 2 . 5 7}[\mathbf{1}\) mark]
\(3 K_{\mathrm{a}}=10^{-\mathrm{p} K_{\mathrm{a}}}=10^{-4.20}=6.3 \times 10^{-5}\) [1 mark]
\(K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HA}]}\) so \(\left[\mathrm{H}^{+}\right]=\sqrt{K_{\mathrm{a}} \times[\mathrm{HA}]}\)
\(=\sqrt{\left(6.3 \times 10^{-5}\right) \times\left(1.60 \times 10^{-4}\right)}=\sqrt{1.0 \times 10^{-8}}\)
\(=1.0 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}\) [1 mark]
\(\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]=-\log _{10} 1.0 \times 10^{-4}=4.00\) [1 mark]

\section*{Page 135 - Experiments Involving pH}

1 a) E.g. pH meter / pH probe connected to a data logger [1 mark]
b) Substance \(A\) is a acidic, and \(\left[\mathrm{H}^{+}\right]=10^{-3.20}=0.00063 \mathrm{~mol} \mathrm{dm}^{-3}\) which means only a tiny fraction of the molecules in A dissociate [1 mark].
Substance B is alkali, so \(\left[\mathrm{H}^{+}\right]=10^{-13.80}=1.58 \ldots \times 10^{-14} \mathrm{~mol} \mathrm{dm}{ }^{-3}\). Since \(K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}\),
\(\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \div 1.58 \ldots \times 10^{-14}=0.63 \mathrm{~mol} \mathrm{dm}^{-3}\).
This means there's more dissociation in \(B\) than in \(A / a\) larger number of molecules dissociate in B than in A [1 mark]. Substance \(C\) is slightly acidic, so \(\left[\mathrm{H}^{+}\right]=10^{-6.80}\)
\[
=1.6 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3} .
\]

This means a tiny fraction of molecules dissociate in C [1 mark]. So, substance \(B\) dissociates the most in solution [1 mark].
2 a) Moles of benzoic acid in solution \(=1.22 \div 122=0.0100\) moles Concentration of benzoic acid solution \(=\frac{0.0100 \times 1000}{100}\)
\[
=0.100 \mathrm{~mol} \mathrm{dm}^{-3} \text { [1 mark] }
\]
\(\left[\mathrm{H}^{+}\right]=10^{-2.60}=0.00251 \ldots \mathrm{~mol} \mathrm{dm}{ }^{-3}\) [1 mark]
Assume that [HA] at equilibrium is 0.100 because only a very small amount of HA will dissociate [1 mark].
\(K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]}[\mathbf{1}\) mark \(]=\frac{(0.00251 \ldots)^{2}}{0.100}\)
\[
=6.309 \ldots \times 10^{-5}=6.31 \times \mathbf{1 0}^{-5} \mathbf{~ m o l ~ d m}{ }^{-3}[1 \text { mark] }
\]
b) \(\left[\mathrm{H}^{+}\right]=\sqrt{K_{\mathrm{a}}\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]}[1\) mark]
\[
\begin{aligned}
=\sqrt{\left(6.309 \ldots \times 10^{-5}\right) \times 0.0100}= & 7.94 \ldots \times 10^{-4} \\
= & 7.94 \times \mathbf{1 0}^{-4} \mathbf{~ m o l ~ d m}{ }^{-3}[\mathbf{1} \text { mark }]
\end{aligned}
\]
c) \(\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]=-\log \left(7.94 \ldots \times 10^{-4}\right)=3.1[1\) mark]
d) \(\left[\mathrm{H}^{+}\right]=\sqrt{\left(6.309 \ldots \times 10^{-5}\right) \times 1.00}=0.00794 \ldots \mathrm{~mol} \mathrm{dm}{ }^{-3}[1\) mark] So \(\mathrm{pH}=-\log (0.00794 \ldots)=2.1\) [1 mark]
e) The pH would be \((3.1+0.5=) 3.6\) [1 mark] since, as the solution is diluted by 10, the pH increases by 0.5 [1 mark].

\section*{Page 138 - Titration Curves and Indicators}

1 Nitric acid:

[1 mark]
Ethanoic acid:

[1 mark]
2 Thymol blue [1 mark]. It's a weak acid/strong base titration so the equivalence point is above pH 8 [1 mark].

\section*{Answers}

3 a) 9 (accept values in the range 8 -10) [1 mark]
b) \(15 \mathrm{~cm}^{3}\) [1 mark]
c) E.g. phenolphthalein [1 mark] because the pH range where it changes colour lies entirely on the vertical part of the titration curve [1 mark].
d)

\section*{[1 mark]}
e) The change in pH is gradual, so is difficult to see with an indicator [1 mark].
4 a) i) 8 (accept values in the range \(7-9\)) [1 mark]
ii) 3.5 (accept values in the range 3.0-4.0) [1 mark]
b) \(K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}[1\) mark \(]\)
c) It is reduced to half its original value, \(0.05 \mathrm{~mol} \mathrm{dm}^{-3}\) [1 mark].
d) At the half-equivalence point \(\mathrm{p} K_{\mathrm{a}}=\mathrm{pH}=3.5\) [1 mark]
so \(K_{\mathrm{a}}=10^{-3.5}=\mathbf{3 \times 1 0 ^ { - 4 }} \mathbf{~ m o l ~ d m}{ }^{\mathbf{3}}\) [1 mark - allow marks for correct method with value from 2a)ii) if answer is not 3.5]

\section*{Page 141 - Buffers}

1 a) \(K_{a}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]}[1\) mark \(]\)
\(\left[\mathrm{H}^{+}\right]=6.40 \times 10^{-5} \times \frac{0.400}{0.200}=0.000128 \mathrm{~mol} \mathrm{dm}{ }^{-3}\) [1 mark] \(\mathrm{pH}=-\log _{10}(0.000128)=3.892 \ldots=3.893\) [1 mark]
b) The buffer solution contains benzoic acid and benzoate ions in equilibrium: \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\)[1 mark]. Adding \(\mathrm{H}_{2} \mathrm{SO}_{4}\) increases the concentration of \(\mathrm{H}^{+}\)[1 mark]. The equilibrium shifts left to reduce concentration of \(\mathrm{H}^{+}\), so the pH will only change very slightly [1 mark].
2 a) \(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COO}^{-}\)[1 mark]
b) \(\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}\right]=\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COO}^{-}\right]\),
so \(\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}\right] \div\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COO}^{-}\right]=1\) and \(K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\). \(\mathrm{pH}=-\log _{10}\left(1.5 \times 10^{-5}\right)\) [1 mark] \(=4.8\) [1 mark]
If the concentrations of the weak acid and the salt of the weak acid are equal, they cancel from the \(K_{a}\) expression and the buffer \(p H=p K_{a}\).

\section*{Topic 13 - Energetics II}

\section*{Page 143 - Lattice Energy}

1 a)

[3 marks - 1 mark for correct enthalpy changes, 1 mark for formulae/state symbols, 1 mark for correct directions of arrows]
b) Lattice energy, \(\Delta H 6=-\Delta H 5-\Delta H 4-\Delta H 3-\Delta H 2+\Delta H 1\)
\[
\begin{aligned}
& =-(-325)-(+419)-(+89)-(+112)+(-394) \text { [1 mark] } \\
& =-\mathbf{6 8 9} \mathbf{~ k J ~ m o l}{ }^{-\mathbf{1}} \text { [1 mark] }
\end{aligned}
\]

[3 marks - 1 mark for correct enthalpy changes and correctly multiplying all the enthalpies, 1 mark for formulae/state symbols, 1 mark for correct directions of arrows]
b) Lattice energy, \(\Delta H 8\)
\[
\begin{aligned}
= & -\Delta H 7-\Delta H 6-\Delta H 5-\Delta H 4-\Delta H 3-\Delta H 2+\Delta H 1 \\
= & -3(-349)-(+2745)-(+1817)-(+578)-3(+122)-(+326) \\
& +(-706)[1 \text { mark] } \\
= & -\mathbf{5 4 9 1} \mathbf{~ k J ~ m o l}{ }^{-1} \text { [1 mark] }
\end{aligned}
\]

3 a)

[3 marks - 1 mark for correct enthalpy changes and correctly multiplying all the enthalpies, 1 mark for formulae/state symbols, 1 mark for correct directions of arrows]
b) Lattice energy, \(\Delta H 9\)
\(=-\Delta H 8-\Delta H 7-\Delta H 6-\Delta H 5-\Delta H 4-\Delta H 3-\Delta H 2+\Delta H 1\)
\(=-3(+844)-3(-141)-2(+2745)-2(+1817)-2(+578)\)
\(-3(+249)-2(+326)+(-1676)\) [1 mark]
\(=-15464 \mathrm{~kJ} \mathrm{~mol}^{-1}\) [1 mark]

\section*{Answers}

\section*{Page 145 - Polarisation}
\(1 \quad \mathrm{Al}^{3+}\) has a high charge/volume ratio (or a small radius AND a large positive charge) [1 mark], so it has a high polarising ability [1 mark] and can pull electron density away from \(\mathrm{Cl}^{-}\)[1 mark] to create a bond with mostly covalent characteristics [1 mark]. (Alternatively \(\mathrm{Cl}^{-}\)is relatively large [1 mark] and easily polarised [1 mark] so its electrons can be pulled away from \(\mathrm{Cl}^{-}\)[1 mark] to create a bond with mostly covalent characteristics [1 mark].)
2 a) Increasing covalent character: \(\mathrm{NaBr}, \mathrm{MgBr} 2_{2}, \mathrm{MgI}_{2}\) [1 mark]. Covalent character is greatest when cations are small and have large charge, which applies more to \(\mathrm{Mg}^{2+}\) than to \(\mathrm{Na}^{+}\)[1 mark], and when anions are large, which applies more to \(\mathrm{I}^{-}\)than to \(\mathrm{Br}^{-}\) [1 mark].
b) Experimental and theoretical lattice energies match well when a compound has a high degree of ionic character [1 mark]. Na has a higher degree of ionic character than \(\mathrm{Mgl}_{2}\) because \(\mathrm{Na}^{+}\)has a smaller charge density / smaller charge and isn't much smaller than \(\mathrm{Mg}^{2+}\) [1 mark].

\section*{Page 147 - Dissolving}

1 a)

[2 marks - 1 mark for a complete correct cycle,
1 mark for correctly labelled arrows]
b) \(\Delta H 3=-\Delta H 1+\Delta H 2\)
\[
\begin{aligned}
& =-(-960)+(-506)+(-464)\left[1 \text { mark] }=-10 \mathbf{~ k J ~ m o l}^{-1}\right. \\
& {[1 \text { mark] }}
\end{aligned}
\]

2 a)

[2 marks - 1 mark for complete, correct energy levels, 1 mark correctly labelled arrows]
b) \(-(-2258)+(-1579)+(2 \times-364)\left[\mathbf{1}\right.\) mark] \(=\mathbf{- 4 9} \mathbf{~ k J ~ m o l}{ }^{\mathbf{1}}\) [1 mark] Don't forget - you have to double the enthalpy of hydration for \(\mathrm{Cl}^{-}\) because there are two \(\mathrm{Cl}^{-}\)ions in \(\mathrm{CaCl}_{2}\).
3 By Hess's law:
Enthalpy change of solution \(\left(\mathrm{MgCl}_{2(\mathrm{~s})}\right)\)
\(=-\) lattice energy \(\left(\mathrm{MgCl}_{2(\mathrm{~s})}\right)+\) enthalpy of hydration \(\left(\mathrm{Mg}^{2+}{ }_{(\mathrm{g})}\right)\)
\(+\left[2 \times\right.\) enthalpy of hydration \(\left.\left(\mathrm{Cl}^{-}{ }_{(\mathrm{g})}\right)\right][1\) mark]
So enthalpy of hydration \(\left(\mathrm{Cl}^{-}{ }_{(\mathrm{g})}\right)\)
\(=\left[\right.\) enthalpy change of solution \(\left(\mathrm{MgCl}_{2(\mathrm{~s})}\right)+\) lattice energy \(\left(\mathrm{MgCl}_{2(\mathrm{~s})}\right)\)
- enthalpy of hydration \(\left.\left(\mathrm{Mg}^{2+}{ }_{(\mathrm{g})}\right)\right] \div 2\)
\(=[(-122)+(-2526)-(-1920)] \div 2\) [1 mark]
\(=-728 \div 2=\mathbf{- 3 6 4} \mathbf{~ k J ~ m o l}{ }^{\mathbf{1}}\) [1 mark]
\(4 \quad \mathrm{Ca}^{2+}\) will have a greater enthalpy of hydration [1 mark] because it is smaller and has a higher charge / has a higher charge density than \(\mathrm{K}^{+}\)[1 mark]. This means there is a stronger attraction between \(\mathrm{Ca}^{2+}\) and the water molecules, so more energy is released when bonds are formed between them [1 mark].

\section*{Page 149 - Entropy}

1 a) The reaction is not likely to be feasible [1 mark] because there are fewer moles of product than moles of reactants / there's a gas in the reactants and only a solid product, and therefore a decrease in entropy [1 mark].
Remember - more particles means more entropy.
There's \(11 / 2\) moles of reactants and only 1 mole of product.
b) \(\Delta S=26.9-[32.7+(1 / 2 \times 205)][1\) mark]

\section*{\(=-108 \mathrm{~J} \mathrm{~K}^{\mathbf{1}} \mathrm{mol}^{\mathbf{- 1}}\) [1 mark]}
c) The reaction is not likely to be feasible because \(\Delta S\) is negative/there is a decrease in entropy [1 mark].
2 a) \(\Delta S=48-70=\mathbf{- 2 2} \mathbf{~ J ~ K}^{\mathbf{1}} \mathbf{~ m o l}^{\mathbf{- 1}}\) [1 mark]
b) Despite the negative entropy change, the reaction might still be feasible because other factors such as enthalpy, temperature and kinetics also play a part in whether or not a reaction occurs [1 mark].

\section*{Page 151 - More on Entropy Change}

1 a) You would expect an increase in the entropy of the system [1 mark] because a solid is combining with a substance in solution to produce another solution, a liquid and a gas - this leads to an increase in disorder [1 mark]. There is also an increase in the number of molecules which will also lead to an increase in disorder [1 mark].
b) The reaction is endothermic, so the entropy change of the surroundings will be negative [1 mark]. However, if the entropy change of the system has a large enough positive value then this will override the negative entropy change of the surroundings and result in an overall positive entropy change [1 mark].
2 a) \(\Delta S_{\text {system }}=S_{\text {products }}-S_{\text {reactants }}[1\) mark]
\(=(2 \times 26.9)-((2 \times 32.7)+205)=53.8-270.4\) [1 mark]
\(=\mathbf{- 2 1 7} \mathbf{~ J ~ K}^{\mathbf{1}} \mathbf{~ m o l}^{\mathbf{1}}\) (3 s.f.) [1 mark, include units]
b) \(\Delta S_{\text {surroundings }}=-\Delta H / T=-(-1204000 \div 298)\) [1 mark]
\(=\mathbf{+ 4 0 4 0} \mathbf{~ J ~ K}^{\mathbf{- 1}} \mathbf{~ m o l}^{\mathbf{- 1}}\) (3 s.f.) [1 mark]
\(\Delta S_{\text {total }}=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }}=(-216.6)+4040.3\) [1 mark]
\(=+3824 \mathbf{~ J ~ K}^{\mathbf{- 1}} \mathbf{~ m o l}^{\mathbf{- 1}}\) (3 s.f.) [1 mark]
Page 153 - Free Energy
1 a) \(\Delta S=[214+(2 \times 69.9)]-[186+(2 \times 205)]\)
\(=-242.2 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\) [1 mark]
\(\Delta G=-730000-(298 \times-242.2)\)
\(\approx-658000 \mathbf{~ J ~ m o l}^{-1}\) (3 s.f.) (= \(\mathbf{- 6 5 8} \mathbf{~ k J ~ m o l}^{\mathbf{- 1}}\)) [1 mark]
b) The reaction is feasible at 298 K because \(\Delta \mathrm{G}\) is negative [1 mark].
c) \(T=\frac{\Delta H}{\Delta S}=-730000 \div-242.2=\mathbf{3 0 1 0} \mathbf{K}\) (3 s.f.) [1 mark]

2 a) \(\Delta G \cong-[8.31 \times 723] \times \ln (60)\)
\[
=-24600 \mathrm{~J} \mathrm{~mol}^{-1}(3 \mathrm{~s} . \mathrm{f} .)\left(=-246 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \text { [1 mark] }
\]
b) As \(\Delta G=\Delta H-T \Delta S\) [1 mark] and the change in entropy for the reaction is negative, an increase in temperature will result in a less negative value for the free energy change of reaction [1 mark].

\section*{Answers}

\section*{Topic 14 - Redox II}

\section*{Page 155 - Electrochemical Cells}

1 a) Get a strip each of zinc and iron metal. Clean the surfaces of the metals using a piece of emery paper (or sandpaper).
Clean any grease or oil from the electrodes using some propanone [1 mark]. Place each electrode into a beaker filled with a solution containing ions of that metal (e.g. \(\mathrm{ZnSO}_{4(\mathrm{aq})}\) and \(\mathrm{FeSO}_{4(\mathrm{aq})}\))
[1 mark]. Create a salt bridge to link the two solutions together by soaking a piece of filter paper in salt solution, e.g. \(\mathrm{KCl}_{(\mathrm{aq})}\) or \(\mathrm{KNO}_{3}\) (aq), and draping it between the two beakers. The ends of the filter paper should be immersed in the solutions [1 mark].
Connect the electrodes to a voltmeter, using crocodile clips and wires [1 mark].
b) wire - the external circuit voltmeter

[4 marks - 1 mark for complete circuit of wires and salt bridge, 1 mark for zinc electrode drawn on the left, 1 mark for a correct aqueous solution of ions in each half-cell, 1 mark for correct direction of electron flow]
2 a) The salt bridge completes the circuit [1 mark] and allows the salt ions to flow between the half-cells to balance the charges [1 mark].
b) E.g. Soak a piece of filter paper in a salt solution,
e.g. \(\mathrm{KNO}_{3(\mathrm{aq})}\) [1 mark].
c) silver [1 mark]

\section*{Page 157 - Electrode Potentials}

1 a) Iron [1 mark] as it has a more negative electrode potential/it loses electrons more easily than lead [1 mark].
b) Standard cell potential \(=-0.13-(-0.44)=+\mathbf{0 . 3 1} \mathrm{V}\) [1 mark]

2 a) \(+0.80 \mathrm{~V}-(-0.76 \mathrm{~V})=+\mathbf{1 . 5 6} \mathrm{V}[1\) mark]
b) The concentration of \(\mathrm{Zn}^{2+}\) ions or \(\mathrm{Ag}^{+}\)ions was not \(1.00 \mathrm{~mol} \mathrm{dm}^{-3}\) [1 mark]. The pressure wasn't 100 kPa [1 mark].

\section*{Page 159 - The Electrochemical Series}

1 a) \(\mathrm{Zn}_{(\mathrm{s})}+\mathrm{Ni}^{2+}{ }_{(\mathrm{aq})} \rightleftharpoons \mathrm{Zn}^{2+}{ }_{(\mathrm{aq})}+\mathrm{Ni}_{(\mathrm{s})}[1\) mark \(]\)
\(E^{\ominus} \stackrel{(s)}{=}(-0.25)-(-0.76) \stackrel{+0.51}{(\mathrm{~s})}\) [1 mark]
b) \(2 \mathrm{MnO}_{4}^{-}{ }_{(\mathrm{aq})}+16 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+5 \mathrm{Sn}^{2+}{ }_{(\mathrm{aq})} \rightleftharpoons\)
\(2 \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+8 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+5 \mathrm{Sn}^{4+}{ }_{(\mathrm{aq})}[1\) mark] \(E^{\ominus}=(+1.51)-(+0.14)=+\mathbf{1 . 3 7} \mathrm{V}\) [1 mark]
c) No reaction [1 mark]. Both reactants are in their oxidised form [1 mark].
\(2 \mathrm{KMnO}_{4}\) [1 mark] because it has a more positive/less negative electrode potential [1 mark].
3 a) \(\mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+\mathrm{Ni}_{(\mathrm{s})} \rightleftharpoons \mathrm{Cu}_{(\mathrm{s})}+\mathrm{Ni}^{2+}{ }_{(\mathrm{aq})}[\mathbf{1}\) mark]
b) If the copper solution was more dilute, the \(E^{\ominus}\) of the copper half-cell would be lower (the equilibrium would shift to the left/ the copper would lose electrons more easily), so the overall cell potential would be lower [1 mark].

\section*{Page 161 - Storage and Fuel Cells}

1 a) i) and ii)

[2 marks - 1 mark for labelling the sites of reduction and oxidation correctly, 1 mark for drawing the arrow showing the direction of electron flow correctly]
b) Positive electrode: \(\mathrm{H}_{2(\mathrm{~g})}+4 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}+4 \mathrm{e}^{-}\)[1 mark]

Negative electrode: \(\mathrm{O}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{ll})}+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}\)(aq) [1 mark]
c) It only allows the \(\mathrm{OH}^{-}\)across and not \(\mathrm{O}_{2}\) and \(\mathrm{H}_{2}\) gases [1 mark].

2 a) The PEM only allows \(\mathrm{H}^{+}\)ions across it [1 mark], forcing the electrons around the circuit to get to the cathode. This creates an electrical current [1 mark].
b) Anode reaction: \(\mathrm{H}_{2} \rightarrow 2 \mathrm{H}^{+}+2 \mathrm{e}^{-}\)[1 mark]

Cathode reaction: \(2 \mathrm{H}^{+}+1 / 2 \mathrm{O}_{2}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}\) [1 mark]

\section*{Page 164 - Redox Titrations}

1 a) \(15.0 \mathrm{~cm}^{3}\) of manganate(VII) solution contains:
\((15.0 \times 0.00900) \div 1000=1.35 \times 10^{-4}\) moles of manganate(VII)
ions [1 mark]
From the equation the number of moles of iron \(=5 \times\) the number of moles of manganate(VII). So the number of moles of iron \(=\) \(5 \times 1.35 \times 10^{-4}=\mathbf{6 . 7 5} \times \mathbf{1 0}^{-4}\) [1 mark]
b) In the tablet there will be \(250 \div 25.0=10\) times this amount
\[
=6.75 \times 10^{-3} \text { moles [1 mark] }
\]
c) 1 mole of iron has a mass of 55.8 g , so the tablet contains:
\(6.75 \times 10^{-3} \times 55.8=0.37665 \mathrm{~g}\) of iron [1 mark]
The percentage of iron in the tablet \(=(0.37665 \div 3.20) \times 100\)
\[
=11.8 \% \text { [1 mark] }
\]

2 a) A redox reaction [1 mark].
b) Number of moles \(=(\) concentration \(\times\) volume \() \div 1000\) \(=(0.500 \times 10.0) \div 1000\) [1 mark] \(=\mathbf{0 . 0 0 5 0 0}\) moles [1 mark]
c) Number of moles \(=(\) concentration \(\times\) volume \() \div 1000\) \(=(0.100 \times 20.0) \div 1000\) [1 mark] \(=\mathbf{0 . 0 0 2 0 0}\) moles [1 mark]
d) 1 mole of \(\mathrm{MnO}_{4}^{-}\)ions needs 5 moles of electrons to be reduced. So to reduce 0.00200 moles of \(\mathrm{MnO}_{4}^{-}\), you need \((0.00200 \times 5)=0.0100\) moles of electrons [1 mark]. The 0.00500 moles of tin ions must have lost 0.0100 moles of electrons as they were oxidised OR all of these electrons must have come from the tin ions [1 mark]. Each tin ion changed its oxidation number by \(0.01 \div 0.005=2\) [1 mark]. So, the oxidation number of the oxidised tin ions is \((+2)+2=+4\) [1 mark].

\section*{Page 167 - More on Redox Titrations}

1 a) \(\mathrm{IO}_{3}^{-}+5 \mathrm{I}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}\) [1 mark]
b) Number of moles \(=(\) concentration \(\times\) volume \() \div 1000\)

Number of moles of thiosulfate \(=(0.150 \times 24.0) \div 1000\)
\[
=3.60 \times 10^{-3}[1 \text { mark] }
\]
c) 2 moles of thiosulfate react with 1 mole of iodine, so there were \(\left(3.60 \times 10^{-3}\right) \div 2=\mathbf{1 . 8 0} \times \mathbf{1 0}^{\mathbf{- 3}}\) moles of iodine [\(\mathbf{1}\) mark]
d) \(1 / 3\) mole [1 mark]
e) There must be \(1.80 \times 10^{-3} \div 3=\mathbf{6 . 0 0} \times \mathbf{1 0}^{\mathbf{4}}\) moles of iodate \((\mathrm{V})\) in the solution [1 mark]. So concentration of potassium iodate (V) \(=\left(6.00 \times 10^{-4}\right) \div(10.0 \div 1000)=\mathbf{0 . 0 6 0 0} \mathbf{~ m o l ~ d m}{ }^{-3}\) [1 mark]

\section*{Answers}

2 Number of moles \(=(\) concentration \(\times\) volume \() \div 1000\) Number of moles of thiosulfate \(=(0.300 \times 12.5) \div 1000\)
\[
=3.75 \times 10^{-3} \text { [1 mark] }
\]

2 moles of thiosulfate react with 1 mole of iodine.
So there must have been \(\left(3.75 \times 10^{-3}\right) \div 2=1.875 \times 10^{-3}\) moles of iodine produced [1 mark]
2 moles of manganate(VII) ions produce 5 moles of iodine molecules, so there must have been
\(\left(1.875 \times 10^{-3}\right) \times(2 \div 5)=7.50 \times 10^{-4}\) moles of manganate \((\mathrm{VII})\) in the solution [1 mark]
Concentration of potassium manganate(VII)
\(=\left(7.50 \times 10^{-4}\right.\) moles \() \div(18.0 \div 1000)=\mathbf{0 . 0 4 1 7} \mathbf{~ m o l ~ d m}^{\mathbf{- 3}}\) [1 mark]
3 a) The number of moles of thiosulfate used \(=\)
\((19.3 \times 0.150) \div 1000=0.002895\) moles [1 mark]
From the iodine-thiosulfate equation, the number of moles of \(I_{2}=\) half the number of moles of thiosulfate, so in this case the number of moles of \(\mathrm{I}_{2}=0.002895 \div 2=0.0014475\)
\(=\mathbf{0 . 0 0 1 4 5}\) moles [1 mark]
b) From the equation, 2 copper ions produce 1 iodine molecule [1 mark], so the number of moles of copper ions
\(=0.0014475 \times 2=0.002895=\mathbf{0 . 0 0 2 9 0}\) moles \([\mathbf{1}\) mark]
c) In \(250 \mathrm{~cm}^{3}\) of the copper solution there are:
\((250 \div 25.0) \times 0.002895=0.02895\) moles of copper [1 mark]
1 mole of copper has a mass of 63.5 g , so in the alloy there are: \(0.02895 \times 63.5=1.8383 \ldots \mathrm{~g}\) of copper [1 mark]
\(\%\) of copper in alloy \(=(1.8383 \ldots \div 4.20) \times 100=43.8 \%\) [1 mark]

\section*{Topic 15 - Transition Metals}

\section*{Page 169 - Transition Metals}

1 Manganese has the electronic configuration \([\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{5}\) so its outer electrons are in the 4 s and 3 d subshells. These subshells are very close in energy [1 mark], so there is no great difference between removing electrons from the 4 s subshell (e.g. to make \(\mathrm{Mn}^{2+}\)) or from the 3d subshell (e.g. to make \(\mathrm{MnO}_{4}^{-}\)) [1 mark]. The energy released when manganese forms compounds or complexes containing manganese in variable oxidation numbers is greater than the energy required to remove these outer electrons [1 mark], (so manganese can exist with variable oxidation numbers).
2 a) Iron: \(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2}\) OR [Ar] \(3 d^{6} 4 s^{2}\) [1 mark] Copper: \(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{1}\) OR [Ar] 3d \({ }^{10} 4 s^{1}\) [1 mark]
b) Copper has only one 4 s electron [1 mark] because it is more stable with a full 3d subshell [1 mark].
c) Iron loses the 4 s electrons to form \(\mathrm{Fe}^{2+}\) [1 mark]. It loses the 4 s electrons and an electron from the 3d orbital containing 2 electrons to form \(\mathrm{Fe}^{3+}\) [1 mark].

\section*{Page 171 - Complex Ions}

1 a) Coordination number: 6 [1 mark]
Shape: octahedral [1 mark]
b) Coordination number: 4 [1 mark]

Shape: tetrahedral [1 mark]
Bond angles: \(109.5^{\circ}\) [1 mark]
Formula: \(\left[\mathrm{CuCl}_{4}\right]^{2-}\) [1 mark]
c) \(\mathrm{Cl}^{-}\)ligands are larger than water ligands [1 mark], so only \(4 \mathrm{Cl}^{-}\) ligands can fit around the \(\mathrm{Cu}^{2+}\) ion [1 mark].

\section*{Page 173 - Complex Ions and Colour}

1 a) i) \([\mathrm{Ar}] 3 \mathrm{~d}^{10} \quad\) [1 mark]
ii) \([\mathrm{Ar}] 3 \mathrm{~d}^{9} \quad\) [1 mark]
b) \(\mathrm{Cu}^{2+}\) because it has an incomplete d-subshell [1 mark].

2 A maximum of two marks can be awarded for structure and reasoning of the written response:
2 marks: The answer is constructed logically, and displays clear reasoning and links between points throughout.
1 mark: The answer is mostly logical, with some reasoning and links between points.
0 marks: The answer has no structure and no links between points. Here are some points your answer may include:
Normally, all the 3d orbitals have the same energy. When ligands form dative covalent bonds with a metal ion, the 3d electron orbitals split in energy. Electrons tend to occupy the lower orbitals and energy is required to move an electron from an lower 3d orbital to a higher one. The energy needed to make an electron jump from the lower 3d orbital to the higher 3d orbital is equal to a certain frequency of light. This frequency gets absorbed. All the other frequencies are transmitted and it is these frequencies that give the transition metal colour.
[4 marks - 4 marks if 6 points mentioned covering all areas of the question, 3 marks if 4-5 points covered, 2 marks if 2-3 points covered, 1 mark if 1 point covered]

\section*{Page 175 - Chromium}

1 a) The solution changes from orange to green [1 mark].
b) Cr is reduced from +6 to +3 [1 mark].

Zn is oxidised from 0 to +2 [1 mark].
\(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+3 \mathrm{Zn} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Zn}^{2+}[1\) mark \(]\)
c) The solution turns blue [1 mark] because the \(\mathrm{Cr}^{3+}\) is reduced
further to \(\mathrm{Cr}^{2+}\) [1 mark]. It is not oxidised back to \(\mathrm{Cr}^{3+}\) because it is in an inert atmosphere [1 mark].
2 a) Amphoteric means something can react with both an acid and a base [1 mark].
In acid: \(\left[\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{(\mathrm{s})}+3 \mathrm{H}^{+}{ }_{(\text {aq })} \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}{ }_{(\text {aq })}\) [1 mark] In base: \(\left[\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{(\mathrm{s})}+3 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow\)
\(\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]_{(\mathrm{aq})}^{3-}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\) [1 mark]
b) \(\left[\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{(\mathrm{s})}+6 \mathrm{NH}_{3(\mathrm{aq})} \rightarrow\)
\(\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}{ }_{(\mathrm{aq})}+3 \mathrm{OH}_{(\mathrm{aq})}^{-}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\) [1 mark \(]\)
The grey-green precipitate would dissolve to form a purple solution [1 mark].

\section*{Page 177 - Reactions of Ligands}

1 a) \(\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{EDTA}^{4-} \rightarrow[\mathrm{FeEDTA}]^{-}+6 \mathrm{H}_{2} \mathrm{O}\) [1 mark]
b) The formation of \([F e E D T A]^{-}\)results in an increase in entropy, because the number of particles increases from two to seven [1 mark].
2 a) \(\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}{ }_{(\text {aq })}[\mathbf{1}\) mark \(]\)
b) \(\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{NH}_{3(\mathrm{aq})} \rightarrow\)
\(\left[\mathrm{Co}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{(\mathrm{s})}+2 \mathrm{NH}_{4}{ }_{(\mathrm{aq})}[1\) mark]
This is an acid-base reaction [1 mark].
\(\left[\mathrm{Co}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{(\mathrm{s})}+6 \mathrm{NH}_{3(\mathrm{aq})} \rightarrow\)
\[
\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{OH}_{(\mathrm{aq})}^{-} 4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}[1 \text { mark }]
\]

This is a ligand exchange reaction [1 mark].

\section*{Page 179 - Transition Metals and Catalysts}

1 a) Heterogeneous means 'in a different phase from the reactants'. Homogeneous means 'in the same phase as the reactants' [1 mark].
b) The orbitals allow reactant molecules to make weak bonds to the catalyst [1 mark].
c) By changing oxidation state easily, transition metals can take in or give out electrons [1 mark] and so they can help transfer electrons from one reactant to another [1 mark].
You could also give an answer that describes a catalyst in terms of helping to oxidise and reduce.

\section*{Answers}

2 The overall equation for the reaction is:
\(2 \mathrm{MnO}_{4}^{-}{ }_{(\mathrm{aq})}+16 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}{ }_{(\mathrm{aq})} \rightarrow\)
\[
2 \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+8 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+10 \mathrm{CO}_{2(\mathrm{~g})}[1 \text { mark }] .
\]

This is slow to begin with, because the \(\mathrm{MnO}_{4}^{-}\)and \(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\) ions are both negatively charged, so repel each other and don't collide very frequently [1 mark]. The \(\mathrm{Mn}^{2+}\) product, however, is able to catalyse the reaction. It reduces \(\mathrm{MnO}_{4}^{-}\)to \(\mathrm{Mn}^{3+}\) : \(\mathrm{MnO}_{4}^{-}{ }_{(\mathrm{aq})}+4 \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+8 \mathrm{H}_{(\mathrm{aq})}^{+} \rightarrow 5 \mathrm{Mn}^{3+}{ }_{(\mathrm{aq})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\) [1 mark]. The \(\mathrm{Mn}^{3+}\) ions are reduced back to \(\mathrm{Mn}^{2+}\) by reaction with \(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\) :
\(2 \mathrm{Mn}^{3+}{ }_{(\mathrm{aq})}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}{ }_{(\mathrm{aq})} \rightarrow 2 \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{CO}_{2(\mathrm{~g})}[1\) mark \(]\).
This means the reaction is an autocatalysis reaction. As more \(\mathrm{Mn}^{2+}\) is produced, there is more catalyst available and so the reaction rate will increase [1 mark].
3 a) When molecules stick to the surface of a solid [1 mark].
b) The surface of the catalyst activates the molecules, weakening the bonds between the atoms in the reactants [1 mark], making them easier to break and reform as the products [1 mark].

\section*{Topic 16 - Kinetics II}

\section*{Page 181 - Reaction Rates}

1 a) E.g there is an increase in number of ions so follow the reaction by measuring electrical conductivity [1 mark].
b) Plot a graph of concentration of propanone against time [1 mark] and find out the rate at any time by working out the gradient of the graph at that time [1 mark].
c)

Rate after \(15 \mathrm{~s}=0.1 \div 25=\mathbf{0 . 0 0 4} \mathbf{~ m o l ~ d m}{ }^{\mathbf{- 3}} \mathbf{s}^{\mathbf{- 1}}\)
[3 marks - 1 mark for labelled axes the correct way round, 1 mark for points plotted accurately, smooth best-fit curve and a tangent drawn at \(15 \mathrm{~s}, 1\) mark for rate within range
\(0.004 \pm 0.001\) and correct units]

\section*{Page 183 - Orders of Reactions}

1 a)

[2 marks - 1 mark for \(\left[\mathrm{N}_{2} \mathrm{O}_{5}\right.\)] on \(y\)-axis, time on \(x\)-axis, and points plotted accurately, 1 mark for a smooth best-fit curve]
b) i) Time value \(=85 \mathrm{~s}\) [1 mark, allow \(85 \pm 2]\)
(Horizontal line from 1.25 on \(y\)-axis to curve and vertical line from curve to \(x\)-axis.)
ii) Time value difference \(=113(\pm 2)-28(\pm 2)=\mathbf{8 5} \mathbf{s}\) [1 mark, allow \(85 \pm 4\)]
(Vertical lines from curve at \(2.0 \mathrm{~mol} \mathrm{dm}^{-3}\) and \(1.0 \mathrm{~mol} \mathrm{dm}^{-3}\).)
c) Half life for \(0.625 \mathrm{~mol} \mathrm{dm}^{-1}\) from \(1.25 \mathrm{~mol} \mathrm{dm}^{-1}=170-85=85 \mathrm{~s}\) Half life for \(1.25 \mathrm{~mol} \mathrm{dm}^{-1}\) from \(2.5 \mathrm{~mol} \mathrm{dm}^{-1}=85-0=85 \mathrm{~s}\) So, the half lives remain constant and are independent of concentration so the order of reaction is 1 [1 mark].
2 a) The reaction rate would double [1 mark].
b) The overall order is 3 [1 mark].

\section*{Page 185 - The Initial Rates Method}

1 a) All the sodium thiosulfate that has been added has been used up so any more iodine that is formed will stay in solution turning the starch indicator blue-black [1 mark].
b) The time it would take for the colour change to occur would increase as there would be a greater amount of thiosulfate instantaneously removing iodine from solution meaning it would take longer for it to be used up [1 mark].
2 Take samples of the reaction mixture at regular intervals and stop the reaction using sodium hydrogen carbonate [1 mark]. Titrate the samples against sodium thiosulfate, using starch as the indicator, to calculate the concentration of iodine [1 mark]. Repeat the experiment several times changing the concentration of the iodine [1 mark].

\section*{Page 187-Rate Equations}

1 a) Rate \(=k\left[\mathrm{NO}_{(\mathrm{g})}\right]^{2}\left[\mathrm{H}_{2(\mathrm{~g})}\right][1\) mark \(]\)
Sum of individual orders \(=2+1=3\) rd order overall [1 mark].
b) i) \(0.0027=k \times(0.004)^{2} \times 0.002\) [1 mark]
\(k=0.0027 \div\left((0.004)^{2} \times 0.002\right)\)
\(k=84000 \mathbf{~ d m}^{6} \mathbf{~ m o l}^{-2} \mathbf{s}^{-1}\) (2 s.f.) [1 mark]
(Units: \(k=\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1} /\left[\left(\mathrm{mol} \mathrm{dm}^{-3}\right)^{2} \times\left(\mathrm{moldm}^{-3}\right)\right]\)
\(=\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}\))
ii) The rate constant would decrease [1 mark].

2 a) When \([\mathrm{X}]\) is doubled and \([\mathrm{Y}]\) and [Z] remain constant between experiment 1 and 2 , there is no change in the initial rate so the rate is zero order with respect to [X] [1 mark].
When \([\mathrm{Y}]\) is doubled and [X] and [Z\(]\) remain constant between experiment 1 and 3 , the initial rate quadruples so the rate is second order with respect to [Y] [1 mark].
When [Z] is doubled and [X] and [Y] remain constant between experiment 3 and 4 , the initial rate doubles so the rate is first order with respect to [Z] [1 mark].
b) \(1.30 \times 10^{-3} \times 3=\mathbf{3 . 9 0} \times \mathbf{1 0}^{\mathbf{- 3}} \mathbf{~ m o l ~ d m}{ }^{\mathbf{- 3}} \mathbf{s}^{\mathbf{- 1}}\) [1 mark]
c) rate \(=k[\mathrm{Z}][\mathrm{Y}]^{2}[1\) mark]

\section*{Page 189- The Rate-Determining Step}
\(1 \quad \mathrm{H}^{+}\)is acting as a catalyst [1 mark]. You know this because it is not one of the reactants in the chemical equation, but it does affect the rate of reaction/appear in the rate equation [1 mark].
2 a) If the molecule is in the rate equation, it must be involved in the reaction in or before the rate-determining step. The orders of the reaction tell you how many molecules of each reactant are involved up to the rate-determining step [1 mark]. So the rate-determining step is affected by one molecule of \(\mathrm{H}_{2}\) and one molecule of ICI [1 mark].
b) Incorrect [1 mark]. \(\mathrm{H}_{2}\) and ICl are both in the rate equation, so they must both be involved in the reaction in or before the rate-determining step. / The order of the reaction with respect to ICl is 1 , so there must be only one molecule of ICl in the rate-determining step [1 mark].

\section*{Answers}

\section*{Page 191 - Halogenoalkanes and \\ Reaction Mechanisms}

1 D [1 mark]
1-chloropropane is a primary halogenoalkane, which means it will react using an \(\mathrm{S}_{\mathrm{N}} 2\) mechanism. So both 1-chloropropane and sodium hydroxide must be in the rate equation, as the rate will depend on the concentration of both them.
2 a) 1-iodobutane is a primary iodoalkane [1 mark].
b) Rate \(=k\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I}\right]\left[\mathrm{OH}^{-}\right][1\) mark]
c) Mechanism is \(\mathrm{S}_{\mathrm{N}} 2\) [1 mark]
d)

[3 marks - 1 mark for each curly arrow, 1 mark for correct transition molecule]
3 a) Rate \(=k\left[\mathrm{CH}_{3} \mathrm{CBr}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{3} \mathrm{H}_{7}\right]\)
b) Step 1-

Rate determining step

Step 2

[3 marks - 1 mark for each correct step in the mechanism,
1 mark for correct identification of rate determining step]

\section*{Page 193 - Activation Energy}

1 a)
\begin{tabular}{|c|c|c|c|}
\hline\(T(\mathrm{~K})\) & \(k\) & \(1 / T\left(\mathrm{~K}^{-1}\right)\) & \(\ln k\) \\
\hline 305 & 0.181 & 0.00328 & -1.709 \\
\hline 313 & 0.468 & \(\mathbf{0 . 0 0 3 1 9}\) & \(\mathbf{- 0 . 7 5 9}\) \\
\hline 323 & 1.34 & \(\mathbf{0 . 0 0 3 1 0}\) & \(\mathbf{0 . 2 9 3}\) \\
\hline 333 & 3.29 & 0.00300 & 1.191 \\
\hline 344 & 10.1 & \(\mathbf{0 . 0 0 2 9 1}\) & \(\mathbf{2 . 3 1 3}\) \\
\hline 353 & 22.7 & 0.00283 & \(\mathbf{3 . 1 2 7}\) \\
\hline
\end{tabular}
[2 marks - 1 mark for all 1/T values, 1 mark for all In \(k\) values]

[2 marks - 1 mark for at least 5 accurate points, 1 mark for line of best fit]
b) Value \(=-10750 \pm 250\) [1 mark]
c) \(-E_{\mathrm{a}} / \mathrm{R}=-10750\) [1 mark].
\(E_{\mathrm{a}}=10750 \times 8.31=\mathbf{8 9} \mathbf{3 0 0} \mathbf{~ J ~ m o l}^{\mathbf{- 1}}\) OR \(\mathbf{8 9 . 3} \mathbf{~ k J ~ m o l}^{\mathbf{- 1}}\) [1 mark]
2 Homogeneous catalysts are in the same state as the reactants, homogeneous however, are in a different physical state than the reactants [1 mark].

\section*{Topic 17 - Organic Chemistry II}

\section*{Page 195 - Optical Isomerism}
a)

It doesn't really matter how you mark the chiral centre, as long as you've made it clear which carbon you've marked.
b) Since the butan-2-ol solution is a racemic mixture, it must contain equal amounts of both optical isomers. The two optical isomers will exactly cancel out each other's light-rotating effect [1 mark].
c) The reaction has proceeded via an \(S_{N} 1\) mechanism [1 mark]. You know this because the original solution contained a single optical isomer, but the product is a racemic mixture [1 mark].

\section*{Page 197 - Aldehydes and Ketones}

1 a) C [1 mark]
b) B and C [1 mark]
c) Compound B is a ketone and is therefore not oxidised by acidified dichromate \((\mathrm{VI})\) ions and no colour change occurs [1 mark].

\section*{Page 199 - Reactions of Aldehydes and Ketones}

1 a) E.g.

The reaction with 2,4-DNPH tells you that the molecule contains a carbonyl group [1 mark]. The reduction to a secondary alcohol tells you it must be a ketone [1 mark]. The result of the reaction with iodine tells you that the molecule contains a methyl carbonyl group [1 mark].
b) You can measure the melting point of the precipitate formed with 2,4-DNPH [1 mark]. Each carbonyl compound gives a precipitate with a specific melting point which can be looked up in tables [1 mark].
c) E.g.

2 a) Nucleophilic addition [1 mark]
b) i)

ii)

[4 marks - 1 mark for correct structures, 1 mark for each correct curly arrow]
c) Depending on which side the \(\mathrm{CN}^{-}\)attacks from, one of two optical isomers is formed [1 mark]. Because the groups around the \(\mathrm{C}=\mathrm{O}\) bond are planar, there is an equal chance that the \(\mathrm{CN}^{-}\) will attack from either direction [1 mark], meaning an equal amount of each optical isomer, i.e. a racemic mixture, will form [1 mark].

\section*{Page 201 - Carboxylic Acids}

1 a) Reflux [1 mark] propan-1-ol with acidified potassium dichromate(VI) [1 mark].
b) Add a carbonate/hydrogencarbonate [1 mark]. Propan-1-ol will show no reaction, but propanoic acid will produce bubbles of carbon dioxide [1 mark].

\section*{Answers}

2 a)

b) Pentanoic acid has a longer carbon chain than methanoic acid [1 mark]. This means the chain is more likely to get in the way of the hydrogen bonds forming between pentanoic acid and water. The energy released from formation of the water-acid hydrogen bonds for pentanoic acid is less than that for methanoic acid. This leads to less energy to compensate for the breaking of water-water hydrogen bonds and therefore a reduction in solubility [1 mark].
c) \(\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}+\mathrm{PCl}_{5} \rightarrow \mathrm{C}_{7} \mathrm{H}_{14} \mathrm{OCl}+\mathrm{POCl}_{3}+\mathrm{HCl}[1\) mark]

\section*{Page 203 - Esters}

1 a) 2-methylpropyl ethanoate [1 mark]
b)

[1 mark] Ethanoic acid [1 mark]
\(\mathrm{H} H \quad \mathrm{H}\)

[1 mark] 2-methylpropan-1-ol [1 mark]
This is an acid hydrolysis reaction [1 mark].
2 a)

b) \(\mathrm{HCOOH}+\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OH} \stackrel{\mathrm{H}^{+}}{\rightleftharpoons} \mathrm{HCOOCH}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}\) [1 mark for correct reactants, 1 mark for correct products, 1 mark for reversible reaction]
c) An esterification reaction [1 mark].

\section*{Page 204 - Acyl Chlorides}

1 a)

[1 mark]
b) i)

[1 mark]
ii) \(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{OCl}+\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N} \rightarrow \mathrm{C}_{5} \mathrm{H}_{9} \mathrm{ONHC}_{3} \mathrm{H}_{7}+\mathrm{HCl}\) [1 mark]

\section*{Topic 18 - Organic Chemistry III}

\section*{Page 207 - Aromatic Compounds}

1 a) i) 2 moles [\(\mathbf{1}\) mark]
ii) \(2 \times 120=\mathbf{2 4 0} \mathbf{k J}\) [1 mark]
b) You would expect 3 moles of \(\mathrm{H}_{2}\) to react with a molecule with the Kekulé structure. Each mole should release 120 kJ , so there should be \(3 \times 120=360 \mathrm{~kJ}\) released in the reaction [1 mark].
c) The delocalisation of electrons makes benzene more stable (it lowers the energy of the molecule) [1 mark] and so it releases less energy when it reacts [1 mark].
d) E.g. The Kekulé structure cannot explain why the bonds between carbons in benzene are all the same length [1 mark], since \(\mathrm{C}=\mathrm{C}\) double bonds are shorter than single bonds [1 mark]. The benzene molecule represented by the Kekulé structure should react in the same way as alkenes [1 mark] (i.e. by electrophilic addition), but benzene is actually much less reactive [1 mark] (and tends to react via electrophilic substitution).
| 2 Cyclohexene would decolourise the brown bromine water, benzene would not [1 mark]. This is because bromine water reacts in an electrophilic addition reaction with cyclohexene, due to the localised electrons in the double bond [1 mark], to form a colourless dibromocycloalkane, leaving a clear solution. Benzene has a ring of delocalised \(\pi\)-bonds which spreads out the negative charge and makes it very stable, so it doesn't react with bromine water and the solution stays brown [1 mark].

\section*{Page 210 - Electrophilic Substitution Reactions}

1 a) i) A: Nitrobenzene [1 mark]
\(B+C\) : Concentrated nitric acid [1 mark] and concentrated sulfuric acid [1 mark] D: Warm, not more than \(55^{\circ} \mathrm{C}\) [1 mark]
When you're asked to name a compound, write the name, not the formula.
ii) \(\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{NO}_{3}^{+}+\mathrm{HSO}_{4}^{-}\)[1 mark]
\(\mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}\) [1 mark]
iii)

[2 marks - 1 mark for each step]
b) i) J: Bromobenzene [1 mark]
ii) \(\mathrm{E}+\mathrm{F}\) : Bromine [1 mark] and \(\mathrm{FeBr}_{3}\) [1 mark] G: Room temperature [1 mark]
2 a) Conditions: non-aqueous solvent (e.g. dry ether), reflux [1 mark]
b) The acyl chloride molecule isn't polarised enough/isn't a strong enough electrophile to attack the benzene [1 mark]. The halogen carrier makes the acyl chloride electrophile stronger [1 mark].
c) \(\mathrm{H}_{3} \mathrm{C}-\mathrm{C}^{+} \mathrm{O}\)

\section*{[1 mark]}

\section*{Page 211 - Phenols}

1 a) With benzene, there will be no reaction but with phenol a reaction will occur which decolourises the brown bromine water and forms a precipitate [1 mark]. The product from the reaction with phenol is 2,4,6-tribromophenol [1 mark].
b) Electrons from one of oxygen's p-orbitals overlap with the benzene ring's delocalised system, increasing its electron density [1 mark]. This makes the ring more likely to be attacked by electrophiles [1 mark].
c) Electrophilic substitution [1 mark].

\section*{Page 214 - Amines}

1 a) The amine molecules remove protons \(/ \mathrm{H}^{+} / \mathrm{H}\) ions from the water molecules [1 mark]. This gives alkyl ammonium ions and hydroxide ions, which make the solution alkaline [1 mark].
b) \(\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CONH}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)+\mathrm{HCl}\) [1 mark] \(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}+\mathrm{HCl} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{3}^{+}+\mathrm{Cl}^{-}\)[1 mark]
2 a) The lone pair of electrons on the nitrogen atom can accept protons \(/ \mathrm{H}^{+}\)ions, or it can donate a lone pair of electrons [1 mark].
b) Methylamine is stronger, as the methyl group/ \(\mathrm{CH}_{3}\) pushes electrons onto/increases electron density on the nitrogen, making the lone pair more available [1 mark]. Phenylamine is weaker, as the nitrogen lone pair is less available - nitrogen's electron density is decreased as it's partially delocalised around the benzene ring [1 mark].
3 a) \(\mathrm{LiAlH}_{4}\) and a non-aqueous solvent (e.g. dry ether), followed by dilute acid [1 mark].
b) Hydrogen gas [1 mark], metal catalyst such as platinum or nickel and high temperature and pressure [1 mark].

\section*{Page 215 - Amides}

1 a) N-propylbutanamide [1 mark]
b) Butanoyl chloride [1 mark], propan-1-amine \(\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)\) [1 mark], room temperature [1 mark].

\section*{Answers}

Page 217 - Condensation Polymers
1 a) E.g.

[2 marks - 1 mark for ester link correct, 1 mark for rest of structure correct]
The oxygen atom at the right-hand end of the repeat unit could just as easily go on the left-hand end instead. As long as you have it there, it doesn't really matter which side it's on.
b) ester link [1 mark]

2 a) E.g.

[2 marks - 1 mark for amide link correct, 1 mark for rest of structure correct]
b) For each link formed, one small molecule (water) is eliminated [1 mark].

\section*{Page 219 - Amino Acids}

1 a) Cysteine is chiral but glycine isn't [1 mark]. So a mixture containing just one enantiomer of cysteine will rotate the plane of plane-polarised light, but glycine won't [1 mark].
b) A maximum of two marks can be awarded for structure and reasoning of the written response:
2 marks: The answer is constructed logically, and displays clear reasoning and links between points throughout.
1 mark: The answer is mostly logical, with some reasoning and links between points.
0 marks: The answer has no structure and no links between points. Here are some points your answer may include:
Draw a line near the bottom of a piece of chromatography paper, and put a spot of the amino acid mixture on it. Put the paper into a beaker containing a small amount of solvent that lies below the level of the spot of mixture. Put a watch glass on the beaker and leave until the solvent has nearly reached the top of the paper, then remove the paper and mark the distance the solvent has moved. Each amino acid will have a different solubility in the solvent, so as the solvent spreads up the paper the different amino acids will separate out. Leave the paper to dry and spray with ninhydrin (to reveal location of spots), then measure how far the solvent front and the spots have travelled. Calculate the \(R_{\mathrm{f}}\) values of the amino acid spots using the equation \(R_{\mathrm{f}}\) value \(=\frac{\text { distance travelled by spot }}{\text { distance travelled by solvent }}\) and compare to a table of known amino acid \(R_{\mathrm{f}}\) values [1 mark].
[4 marks - 4 marks if 6 points mentioned covering all areas of the question, 3 marks if 4-5 points covered, 2 marks if 2-3 points covered, 1 mark if 1 point covered]
2 a) An amino acid's isoelectric point is the pH where its average overall charge is zero [1 mark].
b) i)

It might seem a bit obvious to say this, but if you've drawn these out in more detail - like drawing the \(\mathrm{NH}_{2}\) group out with all its bonds shown - you'd get the mark.

\section*{Page 220 - Grignard Reagents}

1 a) 1-bromobutane, magnesium, dry ether [1 mark]
b) i) Ethanal and dry ether [1 mark], then dilute HCl [1 mark].
ii) \(\mathrm{CO}_{2}\) and dry ether [1 mark], then dilute HCl [1 mark].

\section*{Page 223 - Organic Synthesis}

1 E.g. Step 1: The methanol is refluxed with \(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\) and acid to form methanoic acid [1 mark].
Step 2: The methanoic acid is heated with ethanol using an acid catalyst to make ethyl methanoate [1 mark].
2 E.g. Step 1: React propane with bromine in the presence of UV light to form bromopropane [1 mark].
Step 2: Bromopropane is then refluxed with aqueous sodium hydroxide solution to form propanol [1 mark].
3 a) Heat under reflux [1 mark].
b) \(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} /\) potassium dichromate and \(\mathrm{H}_{2} \mathrm{SO}_{4}\) /sulfuric acid [1 mark], reflux [1 mark].
4 E.g. Step 1:

[2 marks - 1 mark for reagents, 1 mark for product] Step 2:

[2 marks - 1 mark for reagents, 1 mark for product]
Step 3:

[2 marks - 1 mark for reagents at each stage]

\section*{Page 225 - Practical Techniques}

1 a)

[3 marks - 1 mark showing steam distillation apparatus, 1 mark for a correct set-up, 1 mark for correct labels]
b) Put the mixture in a separating funnel and add ether [1 mark]. Add some salt (e.g. NaCl) to the mixture, as this makes the aqueous layer very polar, ensuring that all the phenylamine is dissolved in the ether layer [1 mark]. Put a stopper on the funnel, and shake it, then remove the stopper and let the mixture settle into layers [1 mark]. Open the tap and run each layer off into a separate container [1 mark].

\section*{Page 227 - More Practical Techniques}

1 a) The purer sample will have the higher melting point, so the sample that melts at \(69^{\circ} \mathrm{C}\) is purer [1 mark].
b) E.g. recrystallisation in propanone [1 mark].
c) E.g. the purity could be checked by measuring the melting point and comparing it against the known melting point of stearic acid [1 mark].
2 a) The scientist used the minimum possible amount of hot solvent to make sure that the solution would be saturated [1 mark].
b) Filter the hot solution through a heated funnel to remove any insoluble impurities [1 mark]. Leave the solution to cool down slowly until crystals of the product have formed [1 mark]. Filter the mixture under reduced pressure [1 mark]. Wash the crystals with ice-cold solvent [1 mark]. Leave the crystals to dry [1 mark].
c) The melting point range of the impure product will be lower and broader than that of the pure product [1 mark].

\section*{Answers}

\section*{Page 229 - Empirical and Molecular Formulae}

1 a) 0.100 g of the carbonyl gives 0.228 g of \(\mathrm{CO}_{2}\).
\(0.228 \div 44.0=0.00518\) moles of \(\mathrm{CO}_{2}\).
1 mole of \(\mathrm{CO}_{2}\) contains 1 mole of carbon, so 0.100 g of the carbonyl must contain 0.00518 moles of C [1 mark].
0.100 g of the carbonyl makes 0.0930 g of \(\mathrm{H}_{2} \mathrm{O}\).
\(0.0930 \div 18.0=0.00517\) moles of \(\mathrm{H}_{2} \mathrm{O}\).
1 mole of \(\mathrm{H}_{2} \mathrm{O}\) contains 2 moles of H , so 0.100 g of the carbonyl must contain \(2 \times 0.00517=0.0103\) moles of H [1 mark].
0.00518 moles of C has a mass of \(0.00518 \times 12.0=0.0622 \mathrm{~g}\) 0.0103 moles of H has a mass of \(0.0103 \times 1.0=0.0103 \mathrm{~g}\) \(0.0622+0.0103=0.0725 \mathrm{~g}\)
So 0.100 g of the compound contains \(0.100-0.0725=0.0275 \mathrm{~g}\) of O [1 mark].
0.0275 g of \(\mathrm{O}=0.0275 \div 16.0=0.00172\) moles

So the mole ratio is \(\mathrm{C}=0.00518, \mathrm{H}=0.0103, \mathrm{O}=0.00172\)
Divide by the smallest \((0.00172)\) : The ratio of \(\mathrm{C}: \mathrm{H}: \mathrm{O}\) is \(3: 6: 1\). So the empirical formula \(=\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\) [1 mark].
b) Mass of empirical formula: \((3 \times 12.0)+6.0+16.0=58.0\) [1 mark] So by mass, hydrogen is \((6.0 \div 58.0) \times 100=\mathbf{1 0 . 3} \%\) [1 mark]
c) Molecular formula is the same as the empirical formula as they have the same mass [1 mark].
d) The carbonyl reacts with Tollens' reagent to form a silver mirror, so it must be an aldehyde. So, the structure is:

\section*{[1 mark]}

2 a) To get the mole ratio, divide each \% by atomic mass:
\(C: 37.0 \div 12.0=3.08\)
\(\mathrm{H}: 2.2 \div 1.0=2.2\)
\(\mathrm{N}: 18.5 \div 14.0=1.32\)
O: \(42.3 \div 16.0=2.64 \quad\) [1 mark]

Then divide by the smallest (1.32):
The ratio of \(\mathrm{C}: \mathrm{H}: \mathrm{N}: \mathrm{O}\) is \(2.33: 1.67: 1: 2\) [1 mark]
Multiply by 3 to get whole numbers: \(\mathrm{C}: \mathrm{H}: \mathrm{N}: \mathrm{O}=7: 5: 3: 6\)
So the empirical formula \(=\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}\) [1 mark]
The molecular mass \(=227\)
The empirical mass \(=(7 \times \mathrm{C})+(5 \times \mathrm{H})+(3 \times \mathrm{N})+(6 \times \mathrm{O})\)
\(=(7 \times 12.0)+(5 \times 1.0)+(3 \times 14.0)+(6 \times 16.0)=227\)
The empirical formula is the same as the molecular formula as they have the same mass [1 mark].
b) E.g.

[1 mark, allow different placing of groups around ring]
3 a) \(25 \mathrm{X}_{(\mathrm{g})}+125 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 75 \mathrm{CO}_{2(\mathrm{~g})}+? \mathrm{H}_{2} \mathrm{O}\)
Dividing by 25 gives: \(\mathrm{X}_{(\mathrm{g})}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+\mathrm{nH}_{2} \mathrm{O}\)
5 moles of \(\mathrm{O}_{2}\) reacts to give 3 moles of \(\mathrm{CO}_{2}\) and \(n\) moles of \(\mathrm{H}_{2} \mathrm{O}\), so \(\mathrm{n}=(5 \times 2)-(3 \times 2)=4\).
\(\mathrm{X}_{(\mathrm{g})}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}\) [1 mark]
All the C atoms in \(\mathrm{CO}_{2}\) come from \(X\), so \(X\) contains 3 C atoms. All the H atoms in \(\mathrm{H}_{2} \mathrm{O}\) come from X , so X contains \((4 \times 2)=8 \mathrm{H}\) atoms. The molecular formula of X is \(\mathrm{C}_{3} \mathbf{H}_{\mathbf{8}}\) [1 mark].
b) The empirical mass is \((3 \times 12.0)+(8 \times 1.0)=44\) [1 mark]. The mass spectrum of \(X\) has an \(M\) peak at \(m / z=88\), so the molecular mass of \(X\) is 88 . So \(X\) contains \(88 \div 44=2\) empirical units. The molecular formula of X is \(\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{1 6}}\) [1 mark].

\section*{Topic 19 - Modern Analytical Techniques II}

Page 230 - High Resolution Mass Spectrometry
1 a) C [1 mark]
The relative molecular mass of the compound \(=\) the \(\mathrm{m} / \mathrm{z}\) value of the molecular ion, so calculate the precise \(M_{r}\) of each possible molecular formula:
A: \((3 \times 12.0000)+(6 \times 1.0078)+(2 \times 15.9990)=74.0448\)
B: \((4 \times 12.0000)+(10 \times 1.0078)+15.9990=74.077\)
\(C:(3 \times 12.0000)+(10 \times 1.0078)+(2 \times 14.0064)=74.0908\)
D: \((2 \times 12.0000)+(6 \times 1.0078)+(2 \times 14.0064)+15.9990\) \(=74.0586\)
b) The four options given in part a) all have the same \(M_{r}\) to the nearest whole number, so their molecular ions would all have the same \(\mathrm{m} / \mathrm{z}\) value on a low resolution mass spectrum [1 mark].

[2 marks - 1 mark for correct structure, 1 mark for correct name] Answering questions like this can involve a bit of trial and error. Here, there was a big clue in the question - it's a hydrocarbon, so it only contains H and \(C\) atoms. There are actually two other hydrocarbons with the formula \(\mathrm{C}_{4} \mathrm{H}_{8^{\prime}}\) so well done if you thought of cyclobutane or methylcyclopropane.

\section*{Page 233 - NMR Spectroscopy}

1 a) The peak at \(\delta=0\) is produced by the reference compound, tetramethylsilane/TMS [1 mark].
b) All three carbon atoms in the molecule \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\) are in different environments [1 mark]. There are only two peaks on the carbon-13 NMR spectrum shown [1 mark].
The \({ }^{13} \mathrm{C}\) NMR spectrum of \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\) would have three peaks because this molecule has three carbon environments.
c) The peak at \(\delta \approx 25\) represents carbons in C-C bonds [1 mark]. The peak at \(\delta \approx 40\) represents a carbon in a C -N bond [1 mark]. The spectrum has two peaks, so the molecule must have two carbon environments [1 mark].
So the structure of the molecule must be:

\section*{[1 mark]}

The two carbon environments are \(\mathrm{CH}_{3}-\mathrm{CH}\left(\mathrm{NH}_{2}\right)-\mathrm{CH}_{3}\) and \(\mathrm{CH}\left(\mathrm{NH}_{2}\right)-\left(\mathrm{CH}_{3}\right)_{2}\).
2
C [1 mark]

\section*{Page 235 - Proton NMR Spectroscopy}

1 a) The quartet at 3.6 ppm is caused by 3 protons on the adjacent carbon. The \(n+1\) rule tells you that 3 protons give \(3+1=4\) peaks [1 mark].
Similarly the triplet at 1.3 ppm is due to 2 adjacent protons giving \(2+1=3\) peaks [1 mark].
b) \(\mathrm{A} \mathrm{CH}_{2}\) group adjacent to a halogen or oxygen (in an alcohol, ether or ester) or a \(\mathrm{CH}_{2}\) group adjacent to a nitrogen (in an amine or amide) [1 mark].
c) \(\mathrm{ACH}_{3}\) group [1 mark].
d) \(\mathrm{CH}_{2}\) added to \(\mathrm{CH}_{3}\) gives a mass of 29 , which leaves a mass of \(64.5-29=35.5\) for the rest of the molecule. This is the relative atomic mass of chlorine [1 mark], so a likely structure is \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}\) [1 mark].
2 a) 4 [1 mark]
With questions like this, it really helps to draw out the structure of the molecule you're dealing with. That way you can clearly see how many different \(H\) environments there are.
Here's the structure of 3-chlorobut-1-ene:

b) There will be a doublet with a chemical shift of \(\delta \approx 4.5-6.5 \mathrm{ppm}\) (corresponding to the H in the alkene environment) [1 mark], a quartet with a chemical shift of \(\delta \approx 4.5-6.5 \mathrm{ppm}\) (corresponding to the other H in the alkene environment) [1 mark], a quintet with a chemical shift of \(\delta \approx 2.0-4.0 \mathrm{ppm}\) (corresponding to the H in the halogen environment) [1 mark] and a doublet with a chemical shift of \(\delta \approx\) \(0.2-1.9 \mathrm{ppm}\) (corresponding to the H in the alkane environment) [1 mark].

\section*{Answers}

\section*{Page 237 - Chromatography}

1 a) \(R_{\mathrm{f}}\) value \(=\frac{\text { Distance travelled by spot }}{\text { Distance travelled by solvent }}[\mathbf{1} \mathbf{~ m a r k}]\) \(R_{\mathrm{f}}\) value of spot \(\mathrm{A}=7 \div 8=0.875\) [1 mark]
The \(R_{\mathrm{f}}\) value has no units, because it's a ratio.
b) Substance A has moved further up the plate because it's less strongly adsorbed onto the surface / more soluble in the solvent than substance B [1 mark].
2 a) E.g. the stationary phase consists of small solid particles packed in a tube [\(\mathbf{1}\) mark]. The sample is injected into a stream of high pressure liquid - this is the mobile phase [1 mark]. The detector monitors the output from the tube [1 mark].
b) The chromatogram shows a peak for each component of the mixture [1 mark]. UV light is passed through the liquid leaving the tube and the detector measures the absorbance [1 mark]. From these, the retention time can be seen and compared to reference books or databases to identify the substances [1 mark].
3 a) Gas chromatography [1 mark]
b) Different substances have different retention times [1 mark]. The retention time of substances in the sample is compared against that for ethanol [1 mark].

\section*{Page 239 - Combined Techniques}

1 a) Relative mass of molecule \(=73\) [1 mark]
You can tell this from the mass spectrum - the \(m / z\) value of the molecular ion is 73 .
b) Structure of the molecule:

\section*{[1 mark]}

Explanation: [Award 1 mark each for the following pieces of reasoning, up to a total of 5 marks]:
The infrared spectrum of the molecule shows a strong absorbance at about \(3200 \mathrm{~cm}^{-1}\), which suggests that the molecule contains an amine or amide group.
It also has a trough at about \(1700 \mathrm{~cm}^{-1}\), which suggests that the molecule contains a \(\mathrm{C}=\mathrm{O}\) group.
The \({ }^{13} \mathrm{C}\) NMR spectrum tells you that the molecule has three carbon environments.
One of the \({ }^{13} \mathrm{C}\) NMR peaks has a chemical shift of about 170, which corresponds to a carbonyl group in an amide.
The \({ }^{1} \mathrm{H}\) NMR spectrum has a quartet at \(\delta \approx 2\), and a triplet
at \(\delta \approx 1\) - to give this splitting pattern the molecule must contain a \(\mathrm{CH}_{2} \mathrm{CH}_{3}\) group.
The \({ }^{1} \mathrm{H}\) NMR spectrum has a singlet at \(\delta \approx 6\), corresponding to H atoms in an amine or amide group.
The mass spectrum shows a peak at \(m / z=15\) which corresponds to a \(\mathrm{CH}_{3}{ }^{+}\)group.
The mass spectrum shows a peak at \(m / z=29\) which corresponds to a \(\mathrm{CH}_{2} \mathrm{CH}_{3}+\) group.
The mass spectrum shows a peak at \(m / z=44\) which corresponds to a \(\mathrm{CONH}_{2}{ }^{+}\)group.
2 a) Relative mass of molecule \(=60\) [1 mark]
You can tell this from the mass spectrum - the \(m / z\) value of the molecular ion is 60 .
b) Structure of the molecule:

[1 mark]

Explanation: [Award 1 mark each for the following pieces of reasoning, up to a total of 5 marks]:
The \({ }^{13} \mathrm{C}\) NMR spectrum tells you that the molecule has three carbon environments.
One of the \({ }^{13} \mathrm{C}\) NMR peaks has a chemical shift of 60 - which corresponds to a C-O group.
The infrared spectrum of the molecule has a trough at about \(3300 \mathrm{~cm}^{-1}\), which suggests that the molecule contains an alcoholic OH group.
It also has a trough at about \(1200 \mathrm{~cm}^{-1}\), which suggests that the molecule also contains a C-O group.
The mass spectrum shows a peak at \(m / z=15\) which corresponds to a \(\mathrm{CH}_{3}{ }^{+}\)group.
The mass spectrum shows a peak at \(m / z=17\) which corresponds to an \(\mathrm{OH}^{+}\)group.
The mass spectrum shows a peak at \(m / z=29\) which corresponds to a \(\mathrm{C}_{2} \mathrm{H}_{5}{ }^{+}\)group.
The mass spectrum shows a peak at \(m / z=31\) which corresponds to a \(\mathrm{CH}_{2} \mathrm{OH}^{+}\)group.
The mass spectrum shows a peak at \(m / z=43\) which corresponds to a \(\mathrm{C}_{3} \mathrm{H}_{7}^{+}\)group.
The \({ }^{1} \mathrm{H}\) NMR spectrum has 4 peaks, showing that the molecule has 4 proton environments.
The \({ }^{1} \mathrm{H}\) NMR spectrum has a singlet at \(\delta \approx 2\), corresponding to H atoms in an OH group.
The \({ }^{1} \mathrm{H}\) NMR spectrum has a sextet with an integration trace of 2 at \(\delta \approx 1.5\), a triplet with an integration trace of 2 at \(\delta \approx 3.5\), and a triplet with an integration trace of 3 at \(\delta \approx 0.5\) - to give this splitting pattern the molecule must contain a \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\) group.

\section*{Practical Skills}

\section*{Page 241 - Planning Experiments}

1 Using litmus paper is not a particularly accurate method of measuring pH / not very sensitive equipment [1 mark]. It would be better to use a pH meter [1 mark].

\section*{Page 243 - Practical Techniques}

1 a) The student measured the level of the liquid from the top of the meniscus, when he should have measured it from the bottom [1 mark].
b) B [1 mark].

\section*{Page 245 - Presenting Results}

1 a) mean volume \(=\frac{7.30+7.25+7.25}{3}=7.26666 \ldots \mathrm{~cm}^{3}\)

b) \(0.50 \div 1000=\mathbf{0 . 0 0 0 5 0} \mathbf{~ m o l ~ c m}{ }^{\mathbf{3}}\) or \(\mathbf{5 . 0} \times \mathbf{1 0}^{-\mathbf{4}} \mathbf{~ m o l ~ c m}^{-\mathbf{3}}\) [1 mark]

\section*{Page 247 - Analysing Results}

1 a) \(15{ }^{\circ} \mathrm{C}\) and \(25^{\circ} \mathrm{C}\) [1 mark].
b) Positive correlation [1 mark].
c) C [1 mark]

\section*{Page 249 - Evaluating Experiments}

1 a) The volumetric flask reads to the nearest \(0.5 \mathrm{~cm}^{3}\), so the uncertainty is \(\pm 0.25 \mathrm{~cm}^{3}\).
percentage error \(=\frac{\text { uncertainty }}{\text { reading }} \times 100=\frac{0.25}{25} \times 100=\mathbf{1 . 0} \%\) [1 mark]
b) E.g. The student should add the thermometer to the citric acid solution and allow it to stabilise before adding the sodium bicarbonate to give an accurate value for the initial temperature [1 mark]. The student should then measure the temperature change until the solution stops reacting to give a valid result for the temperature change of the entire reaction [1 mark].

\section*{A}
acid dissociation constant, \(K_{\text {a }}\) 130, 131, 133, 134, 137, 140
acid-base titrations 63-65, 136-138, 162
acidic buffers 139
acidic hydrogen-oxygen fuel cell 161 acids 128-131
activation energy 104, 112, 113, 192, 193
acyl chlorides 201, 204, 215
addition polymers 88
addition reactions \(72,86-88\)
adsorption 116, 179
alcohols 33, 34, 81, 90, 92, 94-97, 198
aldehydes 96, 196-199
alkaline buffers 139
alkaline hydrogen-oxygen fuel cell 160
alkanes 31, 76-80, 86
alkenes 82, 86-88, 95
amides 204, 215
amines 93, 212-214
amino acids 216, 218, 219
amphoteric behaviour 174, 218
anhydrous salts 99, 225
anion-exchange membranes 160
anodes 154
anomalous results 246
aromatic compounds 205-211, 223
Arrhenius equation 192, 193
atom economy 68, 69
atomic emission spectra 12,13
atomic orbitals 10,82
atomic (proton) number 4, 5
autocatalysis 178
Avogadro constant 54

\section*{B}
balancing equations 58
bar charts 244
bases 128, 129, 132
batteries 160, 161
Benedict's solution 96, 197
benzene 205-210
bidentate ligands 170
biofuels 81
boiling point determination 99, 227
bond angles \(24,25,170,171\)
bond enthalpy 22, 110, 111
bond fission 76
bonding pairs 24
Born-Haber cycles 142, 143
Brønsted-Lowry acids and bases 128
Büchner funnels 226
buffers 139-141
burettes 63, 136, 242

\section*{C}

Cahn-Ingold-Prelog rules 84
calorimetry 106, 107, 109
carbon-13 NMR 231-233, 238
carboxylic acids 96, 200-204
catalysts 113, 116, 117, 119, 178, 179, 193
catalytic converters 80, 179
catalytic cracking 79
cathodes 154
cell potentials 154, 156, 158, 159, 173
chain isomers 74
chemical formulae 39
chirality 194, 195, 218
chromatography 219, 236, 237
chromium 174, 175
cis-platin 171
cis-trans isomerism 85, 171
clock reactions 184, 185
collision theory 112, 113
colorimetry 180
combustion analysis 228, 229
combustion reactions 80
complex ions 170-172, 175-177, 213
concentrations 55
concentration-time graphs 180-183
condensation polymerisation 203, 216, 217
conjugate acid/base pairs 128, 139
coordination numbers 170, 171
correlation 246
covalent bonding 22, 23
cracking 78, 79
crude oil 78, 79
curly arrows 72
cycloalkanes 76, 79

\section*{D}
data loggers 134
dative covalent bonding 23, 170
d-block 168
dehydration reactions 95
delocalised model (of benzene) 205
dependent variables 240
desorption 116, 179
dilution (of acids and bases) 135
dipoles 28-30
diprotic acids 130
displacement reactions 46, 47, 59
displayed formulae 70
disproportionation reactions 40, 48, 49, 158
distillation 96, 98, 224, 243
dot-and-cross diagrams 20, 22, 23
double bonds 22, 82, 83
drying agents 99, 225
dynamic equilibrium 118, 126

\section*{E}
\(E_{\text {cell }} 154,156,158,159,173\)
electrochemical cells 154-157, 160, 161
electrochemical series 158
electrode potentials 156-159, 173
electron configurations 10, 11, 16, 168
electron pair repulsion theory 24,25
electron shells (energy levels) 10, 11, 13
electronegativity 28,145
electrons 4, 10, 11
electrophiles 73, 86, 208
electrophilic addition reactions 86, 87, 206
electrophilic substitution reactions 208-211
elimination reactions 72, 93, 95
EMF 154
emission spectra 12, 13
empirical formulae 56, 57, 70, 228
enantiomers 194, 195
endothermic reactions 104
energy storage cells 160
enthalpy change of
hydration 146, 147
solution 146
enthalpy changes 104-111, 146
enthalpy level diagrams 104
entropy 148-151, 159, 176
equilibrium constant, \(K_{c}\) 118, 119, 122, 123, 126, 127, 152, 153, 159
equilibrium constant, \(K_{p}\) 124-127
equivalence points 136
errors 66, 242, 248, 249
esterification reactions 202, 211
esters 202-204
exothermic reactions 104
\(\mathrm{E} / \mathrm{Z}\) isomerism 83-85

\section*{F}

Fehling's solution 96, 197
filtration under reduced pressure 226
fission 76
flame tests 45
fluted filter paper 226
fractional distillation 78
fragmentation patterns 100
free energy 152, 153
Friedel-Crafts reactions 209
fuel cells 160, 161
fuels 80,81
functional group isomers 74

\section*{Index}

\section*{G}
gas chromatography 237
general formulae 70
giant covalent lattice structures 26, 36
giant ionic lattice structures 20, 36, 142
giant metallic lattice structures 27, 36 graphene 26
graphite 26
graphs 244
gravity filtration 226
Grignard reagents 220
Group 1 44, 45
Group 2 42-45

\section*{H}
haemoglobin 80, 170, 176
half-cells 154-156
half-equations 40
half-equivalence point 137
half-lives 183
halides 46, 47, 50, 51
halogen carriers 208, 209
halogenation 208
halogenoalkanes 35, 76, 77, 90-94, 190, 191
halogens 46-49
hazards 62, 241
Henderson-Hasselbalch equation 141
Hess's law 108, 109
heterogeneous catalysts 116, 179
heterogeneous equilibria 119, 122, 125
heterolytic fission 76
high-performance liquid chromatography (HPLC) 236
high-resolution mass spectrometry 230
homogeneous catalysts 116,178
homogeneous equilibria 118, 122
homologous series 70, 71, 221
homolytic fission 76
hydration 34, 146, 147
hydrocarbons 76, 78-80, 82
hydrogen bonding 32, 33, 196
hydrogen halides 50, 87
hydrogenation 86, 206, 212
hydrogen-oxygen fuel cells 160, 161
hydrogen-rich fuels 161
hydrolysis reactions 72, 90, 91, 190, 202, 203

\section*{I}
ideal gas equation 61
incomplete combustion 80
independent variables 240
indicators 63, 136-138
infrared (IR) spectroscopy 102, 103, 238
initial rates method 184-186
initial rates of reaction 115, 184, 185
instantaneous dipole-induced dipole bonding 30
integration traces 235
intermolecular forces 30-33
iodine clock reaction 184, 185
iodine-sodium thiosulfate titrations 165, 166
ionic bonding 19-21
ionic equations 58
ionic lattices 20, 142
ionic product of water 132, 133
ionic radii 19, 20, 147
ionisation energies \(14,15,17,42\)
ions 4, 19-21, 52, 53
isoelectric point 218
isoelectronic ions 20
isomers 74, 75, 83-85
isotopes 5-7
isotopic abundances 6-8
IUPAC 70

\section*{K}
\(K_{\mathrm{a}}\) (acid dissociation constant)
130, 131, 133, 134, 137, 140
\(K_{\mathrm{c}}\) (equilibrium constant)
118, 119, 122, 123, 126, 127, 152, 153, 159
Kekulé model (of benzene) 205
ketones 96, 97, 196, 198
\(K_{\mathrm{p}}\) (equilibrium constant for gases) 124-127
\(K_{w}\) (ionic product of water) 132, 133

\section*{L}
lattice energies 142-144
Le Chatelier's principle 120, 126-128
Liebig condenser 98
ligand exchange reactions 174, 176, 177
ligands 170, 176
London forces 30, 31
lone pairs 24

\section*{M}
margin of error 248
Markownikoff's rule 87
mass (nucleon) number 4
mass spectrometry 7-9, 100, 101, 230, 237, 238
Maxwell-Boltzmann distributions 112, 113, 117
mean bond enthalpies 110, 111
mechanisms 72, 86, 87, 92,
93, 188-191, 198, 208
melting point apparatus 227
metallic bonding 27
molar gas volumes 60
molar masses 54
mole fractions 124
molecular formulae 56, 57, 70, 228
molecular ion peak 9, 100
molecular shapes 24, 25
moles 54, 55
monodentate ligands 170
monomers 88, 217
monoprotic acids 130
multidentate ligands 170
\(\mathrm{m} / \mathrm{z}\) value 7,100

\section*{N}
n + 1 rule 234
neutralisation reactions 63, 129, 136, 137
neutrons 4
nitriles 92, 200, 212
nitrobenzene 210, 212
NMR spectroscopy 231-235, 238
nomenclature 70, 71, 202
non-polar solvents 34, 35
N-substituted amides 204, 214, 215
nuclear symbols 4
nucleophiles 73, 92
nucleophilic addition reactions 198
nucleophilic substitution reactions
92, 93, 190, 195, 214

\section*{0}
optical activity 194, 195, 198
optical isomerism 194
orbitals 10, 82
orders of reaction 182, 184, 186, 188 organic synthesis 221-223
oxidation \(40,72,96,97,154\)
oxidation numbers 38-40, 169, 170
oxidising agents 40,162

\section*{Index}

\section*{P}
paper chromatography 219, 236
partial pressures 124, 125, 127
Pauling scale 28, 145
peer review 2
peptide links 216
percentage composition 56, 228
percentage errors 66, 67, 248
percentage uncertainty 66, 67, 248
percentage yields 68, 69
periodicity 16-18
permanent dipole-permanent dipole bonds 31
pH 130-141
pH charts 138
pH meters 134
pH probes 134
pH scale 130
phenols 211
photochemical reactions 76
pi (\(\pi\)-) bonds 82
pie charts 244
pipettes 242
\(\mathrm{p} K_{\mathrm{a}}\) 133, 137
\(\mathrm{p} K_{\mathrm{w}} 133\)
plane-polarised light 194
polar bonds 28, 29
polar molecules 29, 31
polar solvents 34
polarisation 144, 145
pollutants 80
polyamides 216
polyesters 203, 216
polymer electrolyte membrane 161
polymerisation reactions 72, 88, 203, 216
polymers 88, 89, 216, 217
polyprotic acids 130
positional isomers 74
precipitation reactions 59
principal quantum numbers 10
proteins 216
proton NMR 234, 235, 238
protons 4

\section*{Q}
qualitative tests 243
quantitative tests 243
quantum shells 10, 12, 13

\section*{R}
racemic mixture 194, 195, 198
radical substitution reactions 76, 77
radicals 73, 76, 77
random errors 66, 246, 249
rate-concentration graphs 182
rate constant, \(k\) 186, 187, 192, 193
rate-determining step 188-191
rate equations 186, 188, 189
rates of reactions 113-115, 180-189
reaction profile diagrams 104, 112, 116
recrystallisation 226
redox reactions 40, 41, 154, 163-166
redox titrations 162, 163, 165, 166
reducing agents 40, 162
reduction 40, 72, 154, 198
reduction potentials 173
reflux 96, 98, 224, 243
reforming 79
relative atomic mass, \(A_{r} 6\)
relative formula mass 6
relative isotopic mass 6-8
relative molecular mass, \(M_{r} 6\)
repeat units (of polymers) 88, 217
reversible reactions 118
\(R_{\mathrm{f}}\) values 219, 236
risk assessments 62, 241

\section*{S}
salt bridges 154
scatter plots 244, 246
separation 98, 225
shapes of molecules 24, 25
shielding (of electrons) 14, 17
sigma (\(\sigma\)-) bonds 82
significant figures 245
simple molecular structures 30,33, 36
skeletal formulae 70
\(\mathrm{S}_{\mathrm{N}} 1\) reactions 190, 191, 195
\(\mathrm{S}_{\mathrm{N}} 2\) reactions 190, 195
solubility 34,35
solvent extraction 225
spin-pairing 10
spin-spin coupling 234
standard conditions 105
standard electrode potentials 156-158
standard enthalpy change of
combustion 105, 108
formation 105, 108
neutralisation 105, 129
reaction 105, 110
standard hydrogen electrode 156
standard solutions 62
state symbols 59
steam distillation 224
stereoisomers 83-85, 194
storage cells 160, 161
structural formulae 70
structural isomers 74
substitution reactions 72, 92-94, 208-211
synthetic routes 221-223
systematic errors 66, 249

\section*{T}
tangents 114, 181
tests for
aldehydes 96, 197
alkenes 86
ammonium ions 53
carbonates 52
carbonyls 199
halide ions 51
sulfates 52
theoretical lattice energies 144
theoretical yield 68
thermal cracking 78
thermal stability 44
thin-layer chromatography 219
titrations
acid-base 63-65, 136-138, 162
calculations 64, 65, 163-166
curves 136, 137, 140
iodine-sodium thiosulfate 165, 166
redox 162-166
TMS 231
Tollens' reagent 197
transition metal complexes 170-172, 175-177
transition metals 168, 169, 172, 173, 177-179

\section*{U}
uncertainty \(66,67,248,249\)
units of rate constant 187

\section*{V}
vanadium 173
variables 240, 246
volumetric flasks 62, 242

\section*{W}
washing 225

\section*{Y}
yield 68

\section*{Z}
zwitterions 218
The Periodic Table
0
\begin{tabular}{|c|}
\hline \\
\hline N \\
\hline \multirow[b]{2}{*}{\(\bullet\)} \\
\hline \\
\hline \\
\hline 10 \\
\hline \\
\hline \(\checkmark\) \\
\hline \\
\hline \(\cdots\) \\
\hline
\end{tabular}
m
\begin{tabular}{|c|}
\hline \multirow{3}{*}{ouno} \\
\hline \\
\hline \\
\hline
\end{tabular}

Elements with atomic numbers 112-116 have been reported but not fully authenticated
\begin{tabular}{|c|c|}
\hline & N \\
\hline & \\
\hline & \\
\hline & \[
0
\] \\
\hline \[
\stackrel{\leftrightarrow}{\circ} \text { 옫 }
\] & \\
\hline & \[
0
\] \\
\hline & \[
0
\] \\
\hline & CE \\
\hline \[
\mid \text { N. }
\] & \\
\hline & \\
\hline
\end{tabular}

\section*{* Lanthanides}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
40.1 \\
Ca \\
calcium 20
\end{tabular} & \[
\underset{\substack{\text { scandium } \\ 21}}{45.0}
\] & \[
\begin{gathered}
47.9 \\
\prod_{\text {titanium }}^{22}
\end{gathered}
\] & & \[
\underset{\substack{\text { chromium } \\ \text { Cr }}}{52.0}
\] & \[
\underset{\substack{\text { manganese } \\ 25}}{54.9}
\] & \[
\begin{gathered}
55.8 \\
\text { Fe } \\
\text { iron } \\
26 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
58.9 \\
cobalt 27
\end{tabular} & \[
\begin{gathered}
58.7 \\
\underset{\text { nickel }}{\mathrm{Ni}} \\
28
\end{gathered}
\] & \begin{tabular}{l}
63.5 \\
Cu \\
copper 29
\end{tabular} & \[
\begin{gathered}
65.4 \\
Z_{\text {zinc }} \mathrm{n} \\
30
\end{gathered}
\] \\
\hline \[
\begin{gathered}
85.5 \\
\mathrm{Rb}_{\text {rubidium }}^{37}
\end{gathered}
\] & \[
\begin{gathered}
87.6 \\
\text { strontium } \\
38 \\
\hline
\end{gathered}
\] & \[
\mathbf{Y}_{\substack{\text { yttrium } \\ 39}}^{88.9}
\] & \[
\begin{array}{|c|}
\hline 91.2 \\
\sum_{\text {zirconium }} \\
40
\end{array}
\] & \begin{tabular}{l}
92.9 \\
Nb \\
niobium \\
41
\end{tabular} & 95.9
\(\mathrm{MO}_{\text {molybdenum }} \mathrm{M2}\) & & & \[
\begin{gathered}
102.9 \\
\text { Rhodium } \\
45 \\
\hline
\end{gathered}
\] & & \begin{tabular}{l}
107.9 \\
Ag \\
silver 47
\end{tabular} & \[
\begin{gathered}
112.4 \\
\text { Cadmium } \\
\text { cad } \\
\hline
\end{gathered}
\] \\
\hline \[
\begin{gathered}
\text { Caesium } \\
55 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
137.3 \\
Ba \\
barium \\
56
\end{tabular} & \[
\begin{gathered}
138.9 \\
\begin{array}{c}
\text { Lanthanum } \\
57
\end{array} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
178.5 \\
\text { Hafnium } \\
72 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
180.9 \\
\text { Tantalum } \\
73 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
183.8 \\
\text { tungsten } \\
74 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
186.2 \\
\text { Re } \\
\text { rhenium } \\
75 \\
\hline
\end{gathered}
\] & \[
\underset{\substack{\text { osmium } \\ 76}}{ }
\] & & \[
\underset{\substack{\text { platinum } \\ 78}}{195.1}
\] & \begin{tabular}{l}
197.0 \\
Au \\
gold \\
79
\end{tabular} & \\
\hline \[
\begin{gathered}
{[223]} \\
\text { Fr rrium } \\
87 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Ra } \\
\text { radium } \\
88
\end{gathered}
\] & \[
\begin{gathered}
\text { AC } \dagger \\
\text { actinium } \\
89
\end{gathered}
\] & \begin{tabular}{l}
\[
R f
\] \\
therfordium 104
\end{tabular} & \[
\begin{gathered}
{[262]} \\
\mathrm{c} \text { dubnium } \\
105
\end{gathered}
\] & \[
\begin{gathered}
{[266]} \\
\mathbf{S} \text { seaborgium } \\
106
\end{gathered}
\] & \begin{tabular}{l}
Bh \\
bohrium 107
\end{tabular} & \[
\begin{gathered}
\text { HS } \\
\text { hassium } \\
108
\end{gathered}
\] & \[
\underset{\substack{\text { meitnerium } \\ 109}}{\mathbf{2} \mathbf{M}}
\] & & & \\
\hline
\end{tabular}

\section*{CGP}

\section*{The new A-Levels are seriously tough.u}

But don't worry - CGP have come to the rescue with this fantastic all-in-one book!
- Short, sharp revision notes for every topic... No pointless rambling, just the relevant info
- Exam-style questions to test your skills...

Of course - all with detailed answers included
- \(100 \%\) matched to the new A-Level course...

Perfect for both years of Edexcel A-Level Chemistry

If you can find a better revision guide from anyone else, we'll eat our hats -
```


[^0]:    \III11111111111111111111111111111111111111,
    £ Generally, ions with a high charge density (they have
    三 a large charge spread over a small area) form stronger ionic bonds than ions with a low charge density (they have a small charge spread out over a large area).
    

[^1]:    ミ1111111111111111111111111111
    You can balance diatomic
    Emolecules in equations using $1 / 2$＇s．末
    

[^2]:    * The quality of your extended response will be assessed for this question. Www.ebook3000.com

[^3]:    * The quality of your extended response

[^4]:    ご11111111111111111／
    －There＇s loads more
    Z about distillation and ב reflux on page 98 ．
    

[^5]:    $=$
    $=$
    $=$
    $=$
    $=$

