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“This exceptional volume by two pioneers in the field covers every essential aspect
of atmospheric modeling.”

- John Seinfeld, California Institute of Technology

“An impressive and comprehensive description of the theoretical underpinning and
practical application of atmospheric chemistry modeling. Soon to be a classic
reference for graduate students and researchers in the field.”

- Colette L. Heald, Massachusetts Institute of Technology

“Brasseur and Jacob, both world leaders in modeling atmospheric chemistry, have
written a thoroughly engaging textbook. The breadth and depth of the material
covered in the book is impressive, but a major strength of the book is the ability of
the authors to present often complex information in an accessible way. I have no
doubt that this book will help educate future generations of scientists and be a
reference point for researchers worldwide. It will certainly become a well-thumbed
volume on my bookshelf.

- Paul Palmer, University of Edinburgh

“This excellent book provides a comprehensive introduction and reference to
modeling of atmospheric chemistry from two of the pioneering authorities in the
field. From the historical motivations through to modern-day approaches, the
atmospheric physical, chemical and radiative components of the model framework
are described. What makes this book particularly relevant and timely is the
discussion of the methods for integrating observations and models that are at the
forefront of current scientific advancement.”

- David P. Edwards, National Center for Atmospheric Research
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Preface

Modern science dealing with complex dynamical systems increasingly makes use of
mathematical models to formalize the description of interactive processes and predict
responses to perturbations. Models have become fundamental tools in many discip-
lines of natural sciences, engineering, and social sciences. They describe the essential
aspects of a system using mathematical concepts and languages and they can in this
manner provide powerful approximations of reality. They are used to analyze
observations, understand relationships, test hypotheses, and project future evolution.
Disagreements between models and observations often lead to important advances in
theoretical understanding. Models also play a critical role in the development of
policy options and in decision-making.

In atmospheric science, mathematical models have long been central tools for
weather prediction and climate research. They are now also used extensively to
describe the chemistry of the atmosphere. The corresponding model equations
describe the factors controlling atmospheric concentrations of chemical species as
a function of emissions, transport, chemistry, and deposition. Chemical species are
often coupled through intricate mechanisms, and the corresponding differential
equations are then also coupled. Simulation of aerosol particles needs to account in
addition for microphysical processes governing particle size and composition, as
well as interactions with the hydrological cycle through cloud formation. The
difficulty of modeling atmospheric composition is compounded by the need to
resolve a continuum of temporal and spatial scales stretching over many orders of
magnitude from microseconds to many years, from local to global, and involving
coupling of transport and chemistry on all scales.

Mathematical modeling of atmospheric chemistry is thus a formidable scientific
and computational challenge. It integrates elements of meteorology, radiative trans-
fer, physical chemistry, and biogeochemistry. Solving the large systems of coupled
nonlinear partial differential equations that characterize the atmospheric evolution of
chemical species requires advanced numerical algorithms and pushes the limits of
supercomputing resources.

The purpose of this book is to provide insight into the methods used in models of
atmospheric chemistry. The book is designed for graduate students and professionals
in atmospheric chemistry, but also more broadly for researchers interested in atmos-
pheric models, numerical methods, and optimization theory.

The book is divided into three parts. The first part presents background mater-
ial. Chapter 1 introduces the reader to the concept of model and provides a
historical perspective on the development of atmospheric and climate models,
leading to the development of atmospheric chemistry models. It reviews the

xiii
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different types of atmospheric chemistry models and highlights their role as
components of observing systems.
Fundamentals of atmospheric dynamics and chemistry are presented in Chapters 2

and 3. Chapter 2 describes the vertical structure of the atmosphere, defines key
parameters that characterize the dry and the wet atmosphere, and introduces the
concept of static stability and geostrophic balance. It goes on to describe the general
circulation of the atmosphere. Chapter 3 provides a summary survey of the chemical
processes relevant to the atmosphere as well as the microphysical processes control-
ling the evolution of aerosol particles. Chapter 4 presents the fundamental mathemat-
ical equations on which atmospheric models are based and gives an introduction to
the numerical methods used to solve these equations.
The second part of this book focuses on the formulation of model processes and

reviews the numerical algorithms used to solve the model equations. Chapter 5
covers the formulation of radiative transfer, chemical kinetics, and aerosol micro-
physics. Chapter 6 reviews numerical methods to solve the stiff systems of nonlinear
ordinary differential equations that describe atmospheric chemistry mechanisms.
Chapter 7 presents numerical algorithms used to solve the advection equation
describing transport by resolved winds. The formulation of small-scale (parameter-
ized) transport processes including turbulent mixing, organized convection, plumes,
and boundary layer dynamics is addressed in Chapter 8. Chapter 9 reviews formula-
tions of emissions to the atmosphere, deposition to the surface, and two-way
coupling between the atmosphere and surface reservoirs.
The third part of this book deals with the role of models as components of the

atmospheric observing system. Chapter 10 focuses on model evaluation and presents
different metrics for this purpose. It illustrates the importance of models for the
interpretation of observational data. Chapter 11 covers fundamental concepts of
inverse modeling and data assimilation. It shows how chemical transport models
can be integrated with atmospheric observations through optimization theory to
provide best estimates of the chemical state of the system and of the driving
variables.
At the end of the volume, the reader will find several appendices with numerical

values of physical constants and other quantities, unit conversions, and a list of
important chemical reactions with corresponding rate constants. Some basic math-
ematical definitions and relations are also provided.
Over the years, both of us have benefited from numerous discussions with our

colleagues, students, and postdoctoral fellows. Several of them have contributed to
this book by reviewing chapters, making suggestions, and providing scientific
material. We are deeply indebted to them. We would like to thank in particular
Helen Amos, Alexander Archibald, Jerome Barre, Mary Barth, Cathy Clerbaux, Jim
Crawford, Louisa Emmons, Rolando Garcia, Paul Ginoux, Claire Granier, Alex
Guenther, Colette Heald, Jan Kazil, Patrick Kim, Douglas Kinnison, Monika
Kopacz, Jean-François Lamarque, Peter Lauritzen, Sasha Madronich, Daniel Marsh,
Iain Murray, Vincent-Henri Peuch, Philip Rasch, Brian Ridley, Anne Smith, Piotr
Smolarkiewicz, Alex Turner, Xuexi Tie, Stacy Walters, Kevin Wecht, Christine
Wiedinmyer, Lin Zhang, and Peter Zoogman. We would like also to acknowledge
Sebastian Eastham, Emilie Ehretsmann, Natasha Goss, Lu Hu, Rajesh Kumar, Eloise

xiv Preface
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Marais, Jost Müsse, Elke Lord, Barbara Petruzzi, Jianxiong Sheng, and Natalia
Sudarchikova for their technical assistance during the preparation of the manuscript.
A substantial fraction of this volume was written by one of us (G. P. B) at the
National Center for Atmospheric Research, which is sponsored by the US National
Science Foundation.
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Symbols

The symbols used in the different chapters of this book are listed below with their
corresponding units in the MKSA system. When no units are given, the quantity is
either dimensionless or has no intrinsic dimensions. Appendix B gives further
information on units, prefixes, and conversion factors. In some cases, when no
confusion exists, the same symbols are used to characterize different variables.
Scalars are represented as italics (alphabet letters) or as regular font (Greek and
other symbols). Vectors and matrices are represented by lowercase and uppercase
bold fonts, respectively.

A
a Earth’s radius [m]
A Surface area density of atmospheric particles [m2 m–3]
A Averaging kernel matrix

B
B Blackbody radiative emission flux [W m–2]
Bλ Spectral density of blackbody emission flux (Planck function) [Wm–2 nm–1]

C
c One-dimensional constant flow velocity [m s–1]
c Speed of light in vacuum [m s–1]
c* Phase velocity of a wave [m s–1]
cg* Group velocity of a wave [m s–1]
cp Specific heat at constant pressure [J K–1 kg–1]
cv Specific heat at constant volume [J K–1 kg–1]
Cc Slip correction factor
CD Drag coefficient
Ci Mole fraction or molar mixing ratio of species i
CRMSE Centered root-mean-square-error

D
d Displacement height [m]
D Divergence of the flow [s–1]
Da Damköhler number
Dd Detrainment rate associated with downdrafts in convective systems

[kg m–3 s–1]
Di Molecular diffusion coefficient for species i [m2 s–1]
Dp Particle diameter [m]

xvi
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Du Detrainment rate associated with updrafts in convective systems [kg m–3 s–1]
DOFS Degrees of freedom for signal

E
e Water vapor partial pressure [Pa]
es Saturation water vapor pressure [Pa]
e Eigenvector
E Emission flux [kg m–2 s–1]
E Eliassen–Palm Flux [components Eφ and Ez in kg s–2]
E Matrix of eigenvectors arranged by columns
E(k) Spectral distribution of turbulent energy for a given wavenumber k [m3 s–2]
Ea Activation energy [J mol–1]
Ed Entrainment rate associated with downdraft in convective systems

[kg m–3 s–1]
Eu Entrainment rate associated with updraft in convective systems [kg m–3 s–1]

F
f Coriolis factor [s–1]
fA Fractional area of a model grid cell experiencing precipitation
fA Fractional area of land suitable for saltation
fi,I Fraction of soluble compound i partitioned in ice water
fi,L Fraction of soluble compound i partitioned in liquid water
F Mass flux [kg m–2 s–1]
F Radiative flux [W m–2]
F Air mass factor
F Force vector with its three components Fx, Fy, and Fz [N]
F Forward model
FD,i Deposition flux of species i [kg m–2 s–1]
Fλ Spectral density of the radiative flux [W m–2 nm–1]

G
g Vector of gravitational acceleration [m s–2]
g Amplitude of gravitational acceleration [m s–2]
g Amplification function in numerical methods
g Asymmetry factor
g Gain factor
G Green function
G Gravity wave drag [m s–2]
G Gain matrix
Gm Grade of model m

H
h Mixing depth [m]
H Atmospheric scale height [m]
H Effective (constant) scale height [m]
Hi Dimensionless Henry’s law constant for species i

xvii Symbols
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I
i Unit vector in the zonal (x) direction
I Light intensity [W m–2]
I Identity matrix
IAB Segregation ratio for chemical compounds A and B
Ii Condensation growth rate of species i [m3 s–1]

J
j Unit vector in the meridional (y) direction
j Radiative source term [Wm–2 sr–1 nm–1 m–1]
J Radiative source function [Wm–2 sr–1 nm–1]
J Photodissociation (photolysis) frequency [s–1]
J Cost function
J Jacobian matrix
Ji,j Coagulation rate between particles i and j [m–3 s–1]
J0 Nucleation rate [m–3 s–1]

K
k Unit vector in the vertical (z) direction
k Wavenumber [m–1]
k Boltzmann’s constant (1.38 � 10–23 J K–1)
k von Karman’s constant (0.35)
k Chemical rate constant [first order: s–1; second order: cm3 s–1; third order:

cm6 s–2]
kext Mass extinction cross-section [m2 kg–1]
kG,i Conductance for vertical transfer of species i in the gas phase [m s–1]
kW,i Conductance for vertical transfer of species i in the water

phase [m s–1]
K Eddy diffusion coefficient [m2 s–1]
K Equilibrium constant
K Henry’s law constant [M atm–1]
K* Effective Henry’s law constant [M atm–1]
K Eddy diffusion tensor
K Jacobian matrix (Chapter 11)
Ka Acid dissociation constant
Km Eddy viscosity coefficient [m2 s–1]
Kn Knudsen number
Ki Air–sea exchange velocity for species i [m s–1]
Kθ Eddy diffusivity of heat [m2 s–1]

L
l Mixing length [m]
l i Loss rate constant or loss coefficient of species i [s–1]
L Characteristic length [m]
L Liquid water content [kg water/kg air]
L Monin–Obukhov length [m]
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L Lagrange function
Li Loss rate of species i [m–3 s–1]
Lvap Latent heat of vaporization of liquid water [J kg–1]
Lλ Spectral density of the radiance at wavelength λ [W m–2 sr–1 nm–1]

M
m Mean molecular mass of air (4.81 � 10–26 kg)
m Refraction index
m Wavenumber
Ma Molar mass of air (28.97 � 10–3 kg mol–1)
Md Mean vertical downdraft convective flux of air [kg m–2 s–1]
Me Mean subsidence flux compensating for convective fluxes [kg m–2 s–1]
Mi Molar mass of species i [kg mol–1]
Mk Moment of order k for a given aerosol distribution
Mu Mean vertical updraft convective flux of air [kg m–2 s–1]
Mw Molar mass of water (18.01 � 10–3 kg mol–1)
MAD Mean absolute deviation
MAE Mean absolute error
MFB Mean fractional bias
MFE Mean fractional error
MNAE Mean normalized absolute error
MNB Mean normalized bias

N
n Unit outward vector normal to a surface
na Number density for air [m–3]
ni Number density for species i [m–3]
nN Particle number size distribution function [m–4]
nS Particle surface distribution function [m2 m–4]
nV Particle volume distribution function [m3 m–4]
N A Avogadro number (6.022 � 1023 molecules per mole)
NMB Normalized mean bias

P
p Pressure [Pa]
pd Pressure of dry air [Pa]
pi Production rate of species i [kg m–3 s–1]
ps Surface pressure [Pa]
P Phase function for scattered radiation
P Ertel potential vorticity [m2 s–2 K kg–1]
P Probability density function
P Steric factor
Pe Péclet number
Pi Production rate of species i [m–3 s–1]
Pm
l Associated Legendre polynomial

Pr Prandtl number
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Q
q Specific humidity [kg water vapor/kg of air]
q Diabatic heating expressed in K day–1

q Actinic flux [photons m–2 s–1]
qk Water concentration in hydrometeor of type k
qλ Photon flux density [photons m–2 s–1 nm–1]
Q Diabatic heating rate [J kg–1 s–1 or W m–3]
Qabs Absorption efficiency
Qext Extinction efficiency
Qs Saltation flux [kg m–1 s–1]
Qscat Scattering efficiency

R
r Geometric distance from the center of the Earth
r Position vector
r Particle radius [m]
rw Mass mixing ratio of water vapor [kg kg–1]
r Pearson correlation coefficient
R Gas constant for air [J K–1 kg–1]
R Universal gas constant (8.3143 J K–1 mol–1)
R2 Coefficient of determination
RA Aerodynamic resistance [s m–1]
RB,i Boundary resistance for species i [s m–1]
RC,i Surface resistance for species i [s m–1]
Rd Gas constant for dry air (287 J K–1 kg–1)
Re Reynolds number
RH Relative humidity [percent]
Ri Richardson number
Ri Total resistance to dry deposition of species i [s m–1]
RMSE Root mean square error
Rw Gas constant for water vapor (461.5 J K–1 kg–1)

S
si Source rate of species i (in mass) [kg m–3 s–1]
S Solar energy flux [W m–2] or solar constant (approx. 1368 W m–2)
S Error covariance matrix
S0 Error correlation matrix
Sa Aggregation error covariance matrix
SA Prior error covariance matrix
SI Instrument error covariance matrix
SM Forward model error covariance matrix
SO Observational error covariance matrix
SR Representation error covariance matrix
Ŝ Posterior error covariance matrix
Sci Schmidt number for species i
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T
t Time [s]
t Student’s variable for the t-test
T Transmission of radiation
T Absolute temperature [K]
TE Effective temperature of the Earth [K]
TKE Turbulent kinetic energy [m2 s–1]
Ts Effective temperature of the Sun
Tv Virtual temperature [K]

U
u Zonal component of wind velocity [m s–1]
u Path length [kg m–2]
u* Friction velocity [m s–1]
u* Residual zonal wind velocity [m s–1]
uA Anti-diffusion velocity [m s–1]
ug Zonal component of the geostrophic wind [m s–1]
u10 Wind velocity 10 m above the surface [m s–1]

V
v Meridional component of wind velocity [m s–1]
v* Residual meridional wind velocity [m s–1]
v Wind velocity vector in Earth’s rotating frame [m s–1]
vg Meridional component of the geostrophic wind [m s–1]
vi Mean thermal velocity [m s–1]
V Molar volume [m3 mol–1]
V Aerosol volume density [m3 m–3]
V Wind velocity in inertial frame [m s–1]
VT Translational Earth’s rotation velocity [m s–1]

W
w Vertical component of wind velocity [m s–1]
w* Residual vertical wind velocity [m s–1]
w* Convective velocity scale [m s–1]
wD,i Surface deposition velocity of species i [m s–1]
ws Terminal settling velocity [m s–1]

X
x Geometric distance in the zonal direction [m]
x State vector (often refers to the true value)
x̂ Optimal estimate of state vector
xA Prior estimate of state vector

Y
y Geometric distance in the meridional direction [m]
y Observation vector
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Z
z Geometric altitude [m]
z0,m Aerodynamic roughness length [m]
Z Log pressure altitude [m]
Z Potential vorticity [s–1 m–1]
ZAB Collision frequency for molecules A and B [s–1]

α
α Albedo
α Aerosol particle size parameter
α Mass accommodation coefficient
α Courant number
αT Thermal diffusion factor

β
β Fourier number
βext Aerosol extinction coefficient [m–1]
βabs Aerosol absorption coefficient [m–1]
βscat Aerosol scattering coefficient [m–1]
βi,j Coagulation coefficient for particles i and j [m3 s–1]

γ
γ Reactive uptake coefficient for heterogeneous chemical process
γ Regularization factor
γc Coefficient for non-local turbulent transfer
Γ Actual atmospheric lapse rate [K m–1]
Γ Mean age of air [s]
Γd Dry adiabatic lapse rate [K m–1]
Γw Wet adiabatic lapse rate [K m–1]
Γϖ Aggregation matrix

δ
δ Dirac function
ΔH Enthalpy of dissolution [J mol–1]

ε
εA Quantum efficiency (or yield) for the photolysis of molecule A
εO Observational error vector
εa Aggregation error vector
εA Prior estimate error vector
εI Instrument error vector
εM Forward model error vector
εR Representation error vector

ζ
ζ Relative vorticity of the flow [s–1]
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η
η Step mountain coordinate (eta coordinate)

θ
θ Zenithal direction [radians]
θ Potential temperature [K]
θv Virtual potential temperature [K]

λ
λ Longitude [radians]
λ Wavelength [m]
λ Mean free path of air molecules [m]
λ Lyapunov exponent [s–1]
λi Eigenvalue associated with eigenvector ei
Λ Leaf area index (LAI) [m2 m–2]

μ
μ Cosine of zenithal direction (θ)
μ Molecular dynamic viscosity coefficient [Pa s or kg m–1 s–1]
μi Mass mixing ratio of species i [kg kg–1]
μw Mass mixing ratio of water vapor [kg kg–1]

ν
ν Kinematic viscosity [m2 s–1]
ν Asselin-filter parameter
ν Frequency [Hz]
νion Ion-neutral collision frequency [s–1]

π
π 3.14159

ρ
ρa Mass density of air [kg m–3]
ρd Mass density of dry air [kg m–3]
ρi Mass density of species i [kg m–3]
ρp Mass density of particles or drops [kg m–3]
ρw Mass density of water vapor [kg m–3]

σ
σ Stefan-Boltzmann constant (5.67 � 10–8 W m–2 K–4)
σ Standard deviation
σ Normalized pressure coordinate (sigma coordinate)
~σ Pseudo density in isentropic coordinates
σA Absorption cross-section for molecule A [m2]
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τ
τ Optical depth
τ Lifetime [s]
τ Stress tensor
τi,j Element of the stress tensor

φ
φ Latitude [radians]
φ Azimuthal direction
ϕ Radial basis function
Φ Geopotential [m2 s–2]
Φ∞ Solar flux at the top of the atmosphere [W m–2]
Φk Basis function in the spectral element method
Φλ Spectral density of solar flux [W m–2 nm–1]

χ
χ Solar zenith angle
χ Velocity potential

ψ
Ψ Generic mathematical function or variable
Ψ Streamfunction of the flow
Ψ Montgomery function (isentropic coordinate system) [J kg–1 or m2 s–2]

ω
ω “Vertical” velocity in the pressure coordinate system [Pa s–1]
ω Single scattering albedo
Ω Angular Earth rotation period (7.292 � 10–5 rad s–1)
Ω Column concentration [molecules m–2]
Ωs Slant column concentration [molecules m–2]
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1 The Concept of Model

1.1 Introduction

This book describes the foundations of mathematical models for atmospheric
chemistry. Atmospheric chemistry is the science that focuses on understanding the
factors controlling the chemical composition of the Earth’s atmosphere. Atmospheric
chemistry investigates not only chemical processes but also the dynamical processes
that drive atmospheric transport, the radiative processes that drive photochemistry
and climate forcing, the evolution of aerosol particles and their interactions with
clouds, and the exchange with surface reservoirs, including biogeochemical cycling.
It is a highly interdisciplinary science.

Atmospheric chemistry is a young and rapidly growing science, motivated by the
societal need to understand and predict human perturbations to atmospheric com-
position. These perturbations have increased greatly over the past century due to
population growth, industrialization, and energy demand. They are responsible for a
range of environmental problems including degradation of air quality, damage to
ecosystems, depletion of stratospheric ozone, and climate change. Quantifying the
link between human activities and their atmospheric effects is essential to the
development of sound environmental policy.

The three pillars of atmospheric chemistry research are laboratory studies, atmos-
pheric measurements, and models. Laboratory studies uncover and quantify the
fundamental chemical processes expected to proceed in the atmosphere. Atmos-
pheric measurements probe the actual system in all of its complexity. Models
simulate atmospheric composition using mathematical expressions of the driving
physical and chemical processes as informed by the laboratory studies. They can be
tested with atmospheric measurements to evaluate and improve current knowledge,
and they can be used to make future projections for various scenarios. Models
represent a quantitative statement of our current knowledge of atmospheric compos-
ition. As such, they are fundamental tools for environmental policy.

Atmospheric chemistry modeling has seen rapid improvement over the past
decades, driven by computing resources, improved observations, and demand from
policymakers. Thirty years ago, models were so simplified in their treatments of
chemistry and transport that they represented little more than conceptual exercises.
Today, state-of-science chemical transport models provide realistic descriptions of
the 3-D transport and chemical evolution of the atmosphere. Although uncertainties
remain large, these models are used extensively to interpret atmospheric observations
and to make projections for the future. The state of the science is advancing rapidly,
and atmospheric chemists 30 years from now may well scoff at the crude nature of
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present-day models. Nevertheless, we are now at a point where models can provide a
credible, process-based mathematical representation of the atmosphere to serve the
needs of science and policy. It is with this perspective of a mature yet evolving state
of science that this book endeavors to describe the concepts and algorithms that
provide the foundations of atmospheric chemistry models.
This chapter is intended to introduce the reader to the notion and utility of models,

and to provide a broad historical perspective on the development of atmospheric
chemistry models. It starts with general definitions and properties of mathematical
models. It then covers the genesis and evolution of meteorological models, climate
models, and finally atmospheric chemistry models, leading to the current state of
science. It describes conceptually different types of atmospheric chemistry models
and the value of these models as part of atmospheric observing systems. It finishes
with a brief overview of the computational hardware that has played a crucial role in
the progress of atmospheric modeling.

1.2 What is a Model?

A model is a simplified representation of a complex system that enables inference of
the behavior of that system. The Webster New Collegiate Dictionary defines a model
as a description or analogy used to help visualize something that cannot be directly
observed, or as a system of postulates, data, and inferences presented as a mathemat-
ical description of an entity or state of affairs. The Larousse Dictionary defines a
model as a formalized structure used to account for an ensemble of phenomena
between which certain relations exist. Models are abstractions of reality, and are
often associated with the concept of metaphor (Lakoff and Johnson, 1980). Humans
constantly create models of the world around them. They observe, analyze, isolate
key information, identify variables, establish the relationships between them, and
anticipate how these variables will evolve in various scenarios.
One can distinguish between cognitive, mathematical, statistical, and laboratory

models (Müller and von Storch, 2004). Cognitive models convey ideas and test
simple hypotheses without pretending to simulate reality. For example, the Daisy-
world model proposed by Lovelock (1989) illustrates the stability of climate through
the insolation–vegetation–albedo feedback. This model calculates the changes in the
geographical extent of imaginary white and black daisies covering a hypothetical
planet in response to changes in the incoming solar energy. It shows that the
biosphere can act as a planetary thermostat. Such apparently fanciful models can
powerfully illustrate concepts. More formal mathematical models attempt to repre-
sent the complex intricacies of real-world systems, and describe the behavior of
observed quantities on the basis of known physical, chemical, and biological laws
expressed through mathematical equations. They can be tested by comparison to
observations and provide predictions of events yet to be experienced. Examples are
meteorological models used to perform daily weather forecasts. Statistical models
describe the behavior of variables in terms of their observed statistical relationships
with other variables, and use these relationships to interpolate or extrapolate
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behavior. They are empirical in nature, as opposed to the physically based mathemat-
ical models. Laboratory models are physical replicas of a system, at a reduced or
enlarged geometric scale, used to perform controlled experiments. They mimic the
response of the real system to an applied perturbation, and results can be extrapolated
to the actual system through appropriate scaling laws.

In his 1846 book Kosmos, German scientist Alexander von Humboldt
(1769–1859, see Figure 1.1) states that the structure of the universe can be reduced
to a problem of mechanics, and reinforces the view presented in 1825 by Pierre-
Simon Laplace (1749–1827, see Figure 1.1). In the introduction of his Essai
Philosophique sur les Probabilités (Philosophical Essay on Probabilities), Laplace
explains that the present state of the Universe should be viewed as the consequence
of its past state and the cause of the state that will follow. Once the state of a
system is known and the dynamical laws affecting this system are established, all
past and future states of the system can be rigorously determined. This concept,
which applies to many aspects of the natural sciences, is extremely powerful
because it gives humanity the tools to monitor, understand, and predict the evolu-
tion of the Universe.

Although von Humboldt does not refer explicitly to the concept of model, he
attempts to describe the functioning of the world by isolating different causes,
combining them in known ways, and asking whether they reinforce or neutralize
each other. He states that, “by suppressing details that distract, and by considering
only large masses, one rationalizes what cannot be understood through our senses.”
This effectively defines models as idealizations of complex systems designed to
achieve understanding. Models isolate the system from its environment, simplify the
relationships between variables, and make assumptions to neglect certain internal
variables and external influences (Walliser, 2002). They are not fully objective tools
because they emphasize the essential or focal aspects of a system as conceived by
their authors. They are not universal because they include assumptions and

(a) (b)

Figure 1.1 Prussian naturalist and explorer Alexander von Humboldt (a) and French mathematician and astronomer
Pierre-Simon, Marquis de Laplace (b).
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simplifications that may be acceptable for some specific applications but not others.
Indeed, the success of a model is largely the product of the skills and imagination of
the authors.
During the twentieth century, models started to become central tools for address-

ing scientific questions and predicting the evolution of phenomena such as economic
cycles, population growth, and climate change. They are extensively used today in
many disciplines and for many practical applications of societal benefit, weather
forecasting being a classic example. As computing power increases and knowledge
grows, models are becoming increasingly elaborate and can unify different elements
of a complex system to describe their interactions. In the case of Earth science, this is
symbolized by the vision of a “virtual Earth” model to describe the evolution of
the planet, accounting for the interactions between the atmosphere, ocean, land,
biosphere, cryosphere, lithosphere, and coupling this natural system to human influ-
ences. Humans in this “virtual Earth” would not be regarded as external factors but
as actors through whom environmental feedbacks operate.

1.3 Mathematical Models

Mathematical models strip the complexity of a system by identifying the essential
driving variables and describing the evolution of these variables with equations
based on physical laws or empirical knowledge. They provide a quantitative state-
ment of our knowledge of the system that can be compared to observations. Models
of natural systems are often expressed as mathematical applications of the known
laws that govern these systems. As stated by Gershenfeld (1999), mathematical
models can be rather general or more specific, they can be guided by first principles
(physical laws) or by empirical information, they can be analytic or numerical,
deterministic or stochastic, continuous or discrete, quantitative or qualitative. Choos-
ing the best model for a particular problem is part of a modeler’s skill.
Digital computers in the 1950s ushered in the modern era for mathematical

models by enabling rapid numerical computation. Computing power has since been
doubling steadily every two years (“Moore’s law”) and the scope and complexity of
models has grown in concert. This has required in turn a strong effort to continu-
ously improve the physical underpinnings and input information for the models.
Otherwise we have “garbage in, garbage out.” Sophisticated models enabled by
high-performance computing can extract information from a system that is too
complex to be fully understood or quantifiable by human examination. By combin-
ing a large amount of information, these models point to system behavior that may
not have been anticipated from simple considerations. From this point of view,
models generate knowledge. In several fields of science and technology, computer
simulations have become a leading knowledge producer. In fact, this approach,
which does not belong either to the theoretical nor to the observational domains, is
regarded as a new form of scientific practice, a “third way” in scientific method-
ology complementing theoretical reasoning and experimental methods (Kaufmann
and Smarr, 1993).
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For a model to be useful it must show some success at reproducing past observa-
tions and predicting future observations. By definition, a model will always have
some error that reflects the assumptions and approximations involved in its develop-
ment. The question is not whether a model has error, but whether the error is small
enough for the model to be useful. As the saying goes, “all models are wrong, but
some are useful.” A crucial task is to quantify the error statistics of the model, which
can be done through error propagation analyses and/or comparison with observa-
tions. The choice of observational data sets and statistics to compare to the model is
an important part of the modeler’s skill, as is the interpretation of the resulting
comparisons. Discrepancies with observations may be deemed acceptable, and used
to compile model error statistics, but they may also point to important flaws in the
founding assumptions or implementation of the model. The modeler must be able to
recognize the latter as it holds the key to advancing knowledge. Some dose of
humility is needed because the observations cannot sample all the possible realiza-
tions of a complex system. As a result, the error statistics of the model can never be
characterized fully.

Many mathematical models are based on differential equations that describe the
evolution in space and time of the variables of interest. These are often conservation
equations, generalizing Newton’s second law that the acceleration of an object is
proportional to the force applied to that object. Atmospheric chemistry models are
based on the continuity equation that describes mass conservation for chemical
species. Consider an ensemble of chemical species (i = 1, . . . n) with mole fractions
(commonly called mixing ratios) assembled in a vector C = (C1, . . . Cn)

T. The
continuity equation for species i in a fixed (Eulerian) frame of reference is given by

∂Ci

∂t
¼ �v•—Ci þ Pi Cð Þ � Li Cð Þ i ¼ 1; . . . nð Þ (1.1)

Here, v is the 3-D wind vector, and Pi and Li are total production and loss rates for
species i that may include contributions from chemical reactions (coupling to other
species), emissions, and deposition. The local change in mixing ratio with time
(∂Ci=∂t) is expressed as the sum of transport in minus transport out (flux
divergence term v•—Ci) and net local production (Pi – Li). Similar conservation
equations are found in other branches of science. For example, replacing Ci with
momentum yields the Navier–Stokes equation that forms the basis for models of
fluid dynamics.

A system is said to be deterministic if it is uniquely and entirely predictable once
initial conditions are specified. It is stochastic if randomness is present so that only
probabilities can be predicted. Systems obeying the laws of classical mechanics are
generally deterministic. The two-body problem (e.g., a satellite orbiting a planet or a
planet orbiting the Sun), described by Newton’s laws and universal gravitation, is a
simple example of a deterministic system. An analytic solution of the associated
differential equations can be derived with no random element. All trajectories
derived with different initial conditions converge toward the same subspace called
an attractor. By contrast, when trajectories starting from slightly different initial
conditions diverge from each other at a sufficiently fast rate, the system is said to be
chaotic. Meteorological models are a classic example. They are deterministic but
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exhibit chaotic behavior due to nonlinearity of the Navier–Stokes equation. This
chaotic behavior is called turbulence. Chaotic systems evolve in a manner that is
exceedingly dependent on the precise choice of initial conditions. Since initial
conditions in a complex system such as the weather can never be exactly defined,
the model results are effectively stochastic and multiple simulations (ensembles)
need to be conducted to obtain model output statistics.

1.4 Meteorological Models

The basic ideas that led to the development of meteorological forecast models
were formulated about a century ago. American meteorologist Cleveland Abbe
(1838–1916) first proposed a mathematical approach in a 1901 paper entitled “The
physical basis of long-range weather forecasting.”A few years later, in 1904, in a paper
entitled “Das Problem von der Wettervorhersage betrachtet vom Standpunkte der
Mechanik und der Physik” (The problem of weather prediction from the standpoint of
mechanics and physics), Norwegian meteorologist Vilhelm Bjerknes (1862–1951)
argued that weather forecasting should be based on the well-established laws of physics
and should therefore be regarded as a deterministic problem (see Figure 1.2). He wrote:

If it is true, as every scientist believes, that subsequent atmospheric states develop
from the preceding ones according to physical law, then it is apparent that the
necessary and sufficient conditions for the rational solution of forecasting problems
are the following:

1. A sufficiently accurate knowledge of the state of the atmosphere at the
initial time;

2. A sufficiently accurate knowledge of the laws according to which one state of
the atmosphere develops from another.

(a) (b)

Figure 1.2 Norwegian meteorologist Vilhelm Bjerknes (a), and American meteorologist Cleveland Abbe (b).
Source: Wikimedia Commons.

6 The Concept of Model

002
22 Jun 2017 at 16:44:58, subject to the Cambridge Core terms of use, available



Bjerknes reiterated his concept in a 1914 paper entitled “Die Meteorologie als
exakte Wissenschaft” (Meteorology as an exact science). He used the medical terms
“diagnostics” and “prognostics” to describe the two steps shown. He suggested that
the evolution of seven meteorological variables (pressure, temperature, the three
wind components, air density, and water vapor content) could be predicted from the
seven equations expressing the conservation of air mass and water vapor mass
(continuity equations), the conservation of energy (thermodynamic equation, which
relates the temperature of air to heating and cooling processes), as well as Newton’s
law of motion (three components of the Navier–Stokes equation), and the ideal gas
law (which relates pressure to air density and temperature). Bjerknes realized that
these equations could not be solved analytically, and instead introduced graphical
methods to be used for operational weather forecasts.

During World War I, Lewis Fry Richardson (1881–1951; see Figure 1.3), who was
attached to the French Army as an ambulance driver, attempted during his free time
to create a numerical weather forecast model using Bjerknes’ principles. He used a
numerical algorithm to integrate by hand a simplified form of the meteorological
equations, but the results were not satisfying. The failure of his method was later
attributed to insufficient knowledge of the initial weather conditions, and to instabil-
ities in the numerical algorithm resulting from an excessively long time step of six
hours. Richardson noted that the number of arithmetic operations needed to solve the
meteorological equations numerically was so high that it would be impossible for a
single operator to advance the computation faster than the weather advances. He
proposed then to divide the geographic area for which prediction was to be per-
formed into several spatial domains, and to assemble for each of these domains a
team of people who would perform computations in parallel with the other teams,
and, when needed, communicate their information between teams. His fantasy led
him to propose the construction of a “forecast factory” in a large theater hall
(Figure 1.3), where a large number of teams would perform coordinated computa-
tions. This construction was a precursor vision of modern massively parallel
supercomputers. The methodology used by Richardson to solve numerically the

(a) (b) (c)

Figure 1.3 British meteorologist Lewis Fry Richardson (b), the map grid he used to make his numerical weather forecast
(c), and an artist’s view of a theater hall (a) imagined by Richardson to become a “forecast factory.”
Panel (a) reproduced with permission from “Le guide des cités” by François Schuiten and Benoît Peeters,
© Copyright Casterman.
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meteorological equations was published in 1922 in the landmark book Weather
Prediction by Numerical Process.
The first computer model of the atmosphere was developed in the early 1950s by

John von Neumann (1903–1957) and Jule Charney (1917–1981), using the Elec-
tronic Numerical Integrator and Computer (ENIAC). The computation took place at
about the same pace as the real evolution of the weather, and so results were not
useful for weather forecasting. However, the model showed success in reproducing
the large-scale features of atmospheric flow. Another major success of early models
was the first simulation of cyclogenesis (cyclone formation) in 1956 by Norman
Phillips at the Massachusetts Institute of Technology (MIT). Today, with powerful
computers, meteorological models provide weather predictions with a high degree of
success over a few days and some success up to ten days. Beyond this limit, chaos
takes over and the accuracy of the prediction decreases drastically (Figure 1.4). As
shown by Edward Lorenz (1917–2008), lack of forecasting predictability beyond
two weeks is an unavoidable consequence of imperfect knowledge of the initial state
and exponential growth of model instabilities with time (Lorenz, 1963, 1982).
Increasing computer power will not relax this limitation. Lorenz’s finding clouded
the optimistic view of forecasting presented earlier by Bjerknes. Predictions on
longer timescales are still of great value but must be viewed as stochastic, simulating
(with a proper ensemble) the statistics of weather rather than any prediction of
specific realization at a given time. The statistics of weather define the climate, and
such long-range statistical weather prediction is called climate modeling,
Meteorological models include a so-called dynamical core that solves Bjerknes’

seven equations at a spatial and temporal resolution often determined by available
computing power. Smaller-scale turbulent features are represented through some-
what empirical parameterizations. Progress in meteorological models over the past

Figure 1.4 Qualitative representation of the predictability of weather, seasonal to interannual variability (El Nino –
Southern Oscillation) and climate (natural variations and anthropogenic influences). Adapted from
US Dept. of Energy, 2008.
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decades has resulted from better characterization of the initial state, improvements in
the formulation of physical processes, more effective numerical algorithms, and
higher resolution enabled by increases in computer power. Today, atmospheric
models may be used as assimilation tools, to help integrate observational data into
a coherent theoretical framework; as diagnostic tools, to assist in the interpretation of
observations and in the identification of important atmospheric processes; and as
prognostic tools, to project the future evolution of the atmosphere on timescales of
weather or climate.

Data assimilation plays a central role in weather forecasting because it helps to
better define the initial state for the forecasts. Observations alone cannot define that
state because they are not continuous and are affected by measurement errors. The
meteorological model provides a continuous description of the initial state, but with
model errors. Data assimilation blends the information from the model state with the
information from the observations, weighted by their respective errors, to achieve an
improved definition of the state. Early approaches simply nudged the model toward
the observations by adding a non-physical term to the meteorological equations,
relaxing the difference between model and observations. Optimal estimation algo-
rithms based on Bayes’ theorem were developed in the 1960s and provide a sounder
foundation for data assimilation. They define a most likely state through minimiza-
tion of an error-weighted least-squares cost function including information from the
model state and from observations. Current operational forecast models use
advanced methods to assimilate observations of a range of meteorological variables
collected from diverse platforms and at different times. Four-dimensional variational
data assimilation (4DVAR) methods ingest all observations within a time window to
numerically optimize the 3-D state at the initial time of that window.

1.5 Climate Models

The climate represents the long-term statistics of weather, involving not only the
atmosphere but also the surface compartments of the Earth system (atmosphere,
oceans, land, cryosphere). It is a particularly complex system to investigate and to
model. The evolution of key variables in the different compartments can be
described by partial differential equations that represent fundamental physical laws.
Solution of the equations involves spatial scales from millimeters (below which
turbulence dissipates) to global, and temporal scales from milliseconds to centuries
or longer. The finer scales need to be parameterized in order to focus on the evolution
of the larger scales. Because of the previously described chaos in the solution to the
equations of motion, climate model simulations are effectively stochastic. Ensembles
of climate simulations conducted over the same time horizon but with slightly
modified initial conditions provide statistics of model results that attempt to repro-
duce observed climate statistics.

The first climate models can be traced back to the French mathematician Joseph
Fourier (1768–1830, see Figure 1.5), who investigated the processes that have
maintained the mean Earth’s temperature at a relatively constant value during its
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history. In 1896, the Swedish scientist Svante Arrhenius (1859–1927; see Figure 1.5)
made the first estimate of the changes in surface temperature to be expected from an
increase in the atmospheric concentration of CO2. He did so by using measurements
of infrared radiation emitted by the full Moon at different viewing angles to deduce
the sensitivity of absorption to the CO2 amount along the optical path, and then using
the result in an energy balance equation for the Earth.
In 1938, Guy S. Callendar (1898–1964; see Figure 1.5) used a simple radiative

balance model to conclude that a doubling in atmospheric CO2 would warm the
Earth surface by 2 �C on average, with considerably more warming at the poles. In
the following decades, more detailed calculations were performed by 1-D (vertical)
radiative–convective models allowing for vertical transport of heat as well as absorp-
tion and emission of radiation. Increasing computing power in the 1950s and 1960s
paved the way for 3-D atmospheric climate models, called general circulation
models (GCMs) for their focus on describing the general circulation of the
atmosphere. Early GCMs were developed by Norman Phillips at MIT, Joseph
Smagorinsky and Syukuro Manabe at the Geophysical Fluid Dynamics Laboratory
(GFDL) in Princeton, Yale Mintz and Akio Arakawa at the University of California
at Los Angeles (UCLA), and Warren Washington and Akira Kasahara at the National
Center for Atmospheric Research (NCAR).
Climate models today have become extremely complex and account for coupling

between the atmosphere, the ocean, the land, and the cryosphere. The Intergovern-
mental Panel on Climate Change (IPCC) uses these models to inform decision-
makers about the climate implications of different scenarios of future economic
development. Several state-of-science climate models worldwide contribute to the
IPCC assessments, and yield a range of climate responses to a given perturbation.
Attempts to identify a “best” model tend to be futile because each model has its
strengths and weaknesses, and ability to reproduce present-day climate is not
necessarily a gauge of how well the model can predict future climate. The IPCC
uses instead the range of climate responses from the different models for a given

(a) (b) (c)

Figure 1.5 French mathematician and physicist Jean Baptiste Joseph Fourier (a), Swedish chemist Svante August
Arrhenius (b), and British scientist Guy Stewart Callendar (c). Source of panel (c): G. S. Callendar Archive,
University of East Anglia.
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scenario as a “wisdom of crowds” statistical ensemble to assess confidence in
predictions of climate change.

1.6 Atmospheric Chemistry Models

Interest in developing chemical models for the atmosphere can be traced to the early
twentieth century with the first observational inference by Fabry and Buisson (1913)
of an ozone layer at high altitude. Subsequent ground-based measurements of the
near-horizon solar spectrum in the 1920s established that this ozone layer was
present a few tens of kilometers above the surface. Its origin was first explained in
1929 by British geophysicist Sydney Chapman (1888–1970; see Figure 1.6) as a
natural consequence of the exposure of molecular oxygen (O2) to ultraviolet (UV)
radiation, producing oxygen atoms (O) that go on to combine with O2 to produce
ozone (O3). Chapman’s model produced an ozone maximum a few tens of kilometers
above the surface, consistent with observations. It introduced several important new

(a) (b) (c) (d)

(e) (f) (g)

Figure 1.6 From the top left to the bottom right ((a)–(g)): Sydney Chapman (Courtesy of the University Corporation for
Atmospheric Research), Sir David Bates (Courtesy of Queen’s University Belfast), Baron Marcel Nicolet,
Paul Crutzen (Courtesy of Tyler Prize for Environmental Achievement), Mario Molina, (Tyler Prize for
Environmental Achievement), Frank Sherwood (Sherry) Rowland (Tyler Prize for Environmental
Achievement), and Susan Solomon.
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concepts, including the interaction of radiation with chemistry (photochemistry) and
the chemical cycling of short-lived species (oxygen atom and ozone), the usefulness
of dynamical steady-state assumptions applied to short-lived species, and the nega-
tive feedback of ozone on itself through absorption of UV radiation.
By the 1940s and 1950s, attention had turned to the ionized upper atmosphere due

to interest in the propagation of radio waves and the origin of the aurora. Models
were developed to simulate the chemical composition of this region, and some were
1-D (vertical) to address conceptual issues of coupling between chemistry and
transport. In 1950, British and Belgian scientists Sir David Bates (1916–1994) and
Baron Marcel Nicolet (1912–1996) (Figure 1.6), who were studying radiative emis-
sions (airglow) in the upper atmosphere, deduced from their photochemical model
that hydrogen species produced by the photolysis of water vapor could destroy large
amounts of ozone in the mesosphere (50–80 km). Such catalysis by hydrogen oxide
radicals was found to also represent a significant sink for ozone in the stratosphere,
adding to the ozone loss in the Chapman mechanism. The late 1960s and early 1970s
saw the discoveries of additional catalytic cycles for ozone loss involving nitrogen
oxide radicals (NOx � NO + NO2) and chlorine radicals (ClOx � Cl + ClO) origin-
ating from biogenic nitrous oxide (N2O) and industrial chlorofluorocarbons (CFCs),
respectively. The NOx-catalyzed cycle was found to be the dominant ozone-loss
process in the natural stratosphere and this finally enabled a successful quantitative
simulation of stratospheric ozone. The discovery of a CFC-driven ozone-loss cycle
triggered environmental concern over depletion of the ozone layer. This work led to
the awarding of the 1995 Nobel Prize in Chemistry to Dutch scientist Paul Crutzen,
Mexican scientist Mario Molina, and American scientist Sherwood Rowland
(Figure 1.6).
By the 1970s it was thought that our understanding of stratospheric ozone was

mature, and global models coupling chemistry and transport began to be developed.
These models were mostly two-dimensional (latitude–altitude), assuming uniformity
in the longitudinal direction. Early three-dimensional models were also developed by
Derek Cunnold at MIT and Michael Schlesinger and Yale Mintz at UCLA. A shock
to the research community came in 1985 with the observational discovery of the
Antarctic ozone hole, which had not been predicted by any of the models. This
prompted intense research in the late 1980s and early 1990s to understand its origin.
American scientist Susan Solomon (Figure 1.6) discovered that formation of polar
stratospheric clouds (PSCs) under the very cold conditions of the wintertime Antarc-
tic stratosphere enabled surface reactions regenerating chlorine radicals from their
reservoirs, thus driving very fast ozone loss. The Antarctic ozone hole was a
spectacular lesson in the failure of apparently well-established models when exposed
to previously untested environments. Since then there have been no fundamental
challenges to our understanding of stratospheric ozone, but continual improvement
of models has led to a better understanding of ozone trends.
Rising interest in climate change in the 1980s and 1990s led the global atmos-

pheric chemistry community to turn its attention to the troposphere, where most of
the greenhouse gases and aerosol particles reside. In 1971, Hiram (Chip) Levy of the
Harvard–Smithsonian Center for Astrophysics (Figure 1.7) used a radiative transfer
model to show that sufficient UV-B radiation penetrates into the troposphere to
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produce the hydroxyl radical OH, a strong radical oxidant that drives the removal of
methane, carbon monoxide (CO), and many other important atmospheric gases. This
upended the view of the global troposphere as chemically inert with respect to
oxidation. As recently as 1970, a review of atmospheric chemistry in Science
magazine had stated that “The chemistry of the troposphere is mainly that of a large
number of atmospheric constituents and of their reactions with molecular oxygen . . .
Methane and CO are chemically quite inert in the troposphere” (Cadle and Allen,
1970). Levy showed not only that fast oxidation by the OH radical takes place in the
troposphere, but also that it drives intricate radical-propagated reaction chains. These
chains provide the foundation for much of the current understanding of tropospheric
oxidant chemistry.

Early global 3-D models of tropospheric chemistry were developed in the 1980s
by Hiram Levy (by then at GFDL), Michael Prather (Harvard), and Peter Zimmer-
mann (Max-Planck Institute for Chemistry in Mainz). Simulating the troposphere
presented modelers with a new range of challenges. Transport is far more complex in
the troposphere than in the stratosphere, and is closely coupled to the hydrological
cycle through wet convection, scavenging, and clouds. Natural and anthropogenic
emissions release a wide range of reactive chemicals that interact with transport on
all scales and lead to a variety of chemical regimes. The surface also provides a sink
through wet and dry deposition. The environmental issues in the troposphere are
diverse and require versatility in models to simulate greenhouse gases, aerosols,
oxidants, various pollutants, and deposition. Present-day global models of tropo-
spheric chemistry typically include over 100 coupled species and a horizontal
resolution of the order of tens to hundreds km. A number of issues remain today at
the frontier of model capabilities, including aerosol microphysics, hydrocarbon
oxidation mechanisms, formation of organic aerosols, coupling with the hydrological
cycle, and boundary layer turbulent processes.

As the global atmospheric chemistry community gradually worked its way down
from the upper atmosphere to the troposphere, a completely independent community
with roots in engineering was working on the development of urban and regional air

(a) (b) (c)

Figure 1.7 (a) Hiram (Chip) Levy, (b) Arie Haagen-Smit, and (c) John Seinfeld.
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pollution models. Attention to air pollution modeling began in the 1950s. Prior to
that, the sources of pollution were considered obvious (smokestacks and chimneys,
industry, sewage, etc.) and their impacts immediate. Emergence of the Los Angeles
smog in the 1940s shook this concept. The smog was characterized by decreased
visibility and harmful effects on health and vegetation, but neither the causes nor the
actual agents could be readily identified. The breakthrough came in the 1950s when
Caltech chemist Arie Haagen-Smit (1900–1977, see Figure 1.7) showed that NOx

and volatile organic compounds (VOCs) emitted by vehicles could react in the
atmosphere in the presence of solar radiation to produce ozone, a strong oxidant
and toxic agent in surface air. This ozone production in surface air involved a totally
different mechanism than in the stratosphere. Ozone was promptly demonstrated to
be the principal toxic agent in Los Angeles smog. This introduced a new concept in
air pollution; the pollution was worst not at the point of emission, but after atmos-
pheric reaction some distance downwind. Additional toxicity and suppression of
visibility was attributed to fine aerosol particles, also produced photochemically
during transport in the atmosphere downwind from pollution sources. Similar mech-
anisms were found subsequently to be responsible for smog in other major cities of
the world.
The discovery of photochemically generated ozone and aerosol pollutants in urban

air spurred the development of air pollution models to describe the coupling of
transport and chemistry. Initial efforts in the 1950s and 1960s focused on tracking the
chemical evolution in transported air parcels (simple Lagrangian models) and
describing the diffusion of chemically reactive plumes (Gaussian plume models).
Three-dimensional air pollution models of the urban environment began to be
developed in the 1970s. John Seinfeld of Caltech (Figure 1.7) was a pioneer with
his development of airshed models for the Los Angeles Basin and of the underlying
algorithms to simulate ozone and aerosols. By the 1970s, it also became apparent
that long-range transport of ozone and aerosols caused significant pollution on the
regional scale, and this together with concern over acid rain led in the 1980s and
1990s to development of 3-D regional models extending over domains of the order
of 1000 km.
A major development over the past decade has been the convergence of the global

atmospheric chemistry and air pollution modeling communities. This convergence
has been spurred by issues of common interest: intercontinental transport of air
pollution, climate forcing by aerosols and tropospheric ozone, and application of
satellite observations to understanding of air pollution. Addressing these issues
requires global models with fine resolution over the regions of interest. A new
scientific front has emerged in bridging the scales of atmospheric chemistry models
from urban to global.
Atmospheric chemistry modeling today is a vibrant field, with many challenges

facing the research community when it comes to addressing issues of pressing
environmental concern. We have discussed some of those challenges involving the
representations of processes and the bridging across scales. There are a number of
others. One is the development of whole-atmosphere models (from the surface to
outer space) to study the response of climate to solar forcing and the response of the
upper atmosphere to climate change. Another is the coupling of atmospheric
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chemistry to biogeochemical processes in surface reservoirs, which is emerging as a
critical issue for modeling the nitrogen cycle and the fate of persistent pollutants such
as mercury. Yet another challenge is the development of powerful chemical data
assimilation tools to successfully manage the massive flow of atmospheric compos-
ition data from satellites. These tools are necessary for exploiting the data to test and
improve current understanding of atmospheric processes, constrain surface fluxes
through inverse modeling, and increase the capability of forecasts for both weather
and air quality. Finally, a grand challenge is to integrate atmospheric chemistry into
Earth System Models (ESMs) that attempt to fully couple the physics, chemistry, and
biology in the different reservoirs of the Earth in order to diagnose interactions and
feedbacks. Inclusion of atmospheric chemistry into ESMs has been lagging, largely
because of the computational costs associated with the numerical integration of large
chemical and aerosol mechanisms. Developing efficient and reliable algorithms is an
important task for the future.

1.7 Types of Atmospheric Chemistry Models

The general objective of atmospheric chemistry models is to simulate the evolution
of n interacting chemicals in the atmosphere. This is done by solving a coupled
system of continuity equations, which in a fixed frame of reference can be written in
the general form of equation (1.1). The solution of (1.1) depends on meteorological
variables through the 3-D wind vector v, generally including parameterizations to
account for fine-scale turbulent contributions to the flux divergence term v•—Ci. The
local production and loss terms Pi and Li may also depend on meteorological
variables.

Many atmospheric chemistry models do not generate their own meteorological
environment and instead use 3-D time-dependent data (including winds, humidity,
temperature, etc.) generated by an external meteorological model. These are called
“offline” models. The meteorological input data must define a mass-conserving
airflow with consistent values for the different variables affecting transport, Pi, and
Li. By contrast, “online” atmospheric chemistry models are integrated into the parent
meteorological model so that the chemical continuity equations are solved together
with the meteorological equations for conservation of air mass, momentum, heat, and
water. Online models have the advantage that they fully couple chemical transport
with dynamics and with the hydrological cycle. They avoid the need for high-
resolution meteorological archives, and they are not subject to time-averaging
errors associated with the use of offline meteorological fields. They are not neces-
sarily much more computer-intensive, since the cost of simulating many coupled
chemical variables is often larger than the cost of the meteorological simulation. But
they are far more complex to operate and interpret than offline models. The term
chemical transport model (CTM) usually refers to offline 3-D models in the jargon of
the atmospheric chemistry community. Here we will use the CTM terminology to
refer to atmospheric chemistry models in general, since the methods are usually
common to all models.
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The meteorological model used to drive an atmospheric chemistry model can either
be “free-running” or include assimilation of meteorological data. Data assimilation
allows a meteorological model to simulate a specific observed meteorological year.
A free-running model without data assimilation generates an ensemble of possible
meteorological years, but not an actual observed year. Use of assimilated meteoro-
logical data is necessary to compare an atmospheric chemistry model to observations
for a particular year. With a free-running meteorological model only climatological
statistics can be compared. However, one advantage of using a free-running meteoro-
logical model is that winds and other meteorological variables are physically consist-
ent. Data assimilation applies a non-physical correction to the model meteorology that
can cause unrealistic behavior of non-assimilated variables called “data shock.” For
example, stratospheric models using assimilated meteorological data tend to suffer
from excessive vertical transport because the assimilation of horizontal wind obser-
vations generates spurious vertical flow to enforce mass conservation. Advanced data
assimilation schemes attempt to minimize these data shocks.
Another distinction can be made between Eulerian and Lagrangian models

(Figure 1.8). A Eulerian model solves the continuity equations in a geographically

(a) (b)

(c) (d)

Figure 1.8 Global atmospheric distribution of trace species concentrations computed using Eulerian and Lagragian
model representations. Concentrations are represented by colors (high values in blue, low values in orange).
The Eulerian framework uses a fixed computational grid (b) while the Lagrangian framework uses an
ensemble of points moving with the airflow (c). The figure also shows portraits of the Swiss mathematician
and physicist Leonhard Paul Euler (1707–1783, a) and of the French mathematician Joseph Louis, Comte de
Lagrange (1736–1813, d).
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fixed frame of reference, while a Lagrangian model uses a frame of reference that
moves with the atmospheric flow. The continuity equation as written in (1.1),
including partial differentiation with respect to time and space, describes the evolu-
tion of concentrations in a fixed frame of reference and represents the Eulerian
approach. Finite-difference approximations of the partial derivatives produce solu-
tions on a fixed grid of points representing the model domain. By contrast, the
Lagrangian approach solves the continuity equations for points moving with the
flow; for these points we can rewrite (1.1) as

dCi

dt
¼ Pi Cð Þ � Li Cð Þ (1.2)

where d/dt = ∂/∂t + v•— is the total derivative. From a mathematical standpoint, the
Lagrangian approach reduces the continuity equation to a 1-D ordinary differential
equation applied to points (0-D packets of mass) moving with the flow. The trajec-
tory of each point still needs to be computed. The Eulerian approach is generally
preferred in 3-D models because it guarantees a well-defined concentration field over
the whole domain. In addition, Eulerian models deal better with nonlinear chemistry
and mass conservation. On the other hand, Lagrangian models often have lower
numerical transport errors and are better suited for tracking the transport of pollution
plumes, as a large number of points can be released at the location of the pollution
source. They are also generally the better choice for describing the source influence
function contributing to observations made at a particular location (receptor-oriented
modeling). In that case, a large number of points can be released at the location of the
observations and transported backward in time in the Lagrangian framework.

We gave in Section 1.6 a brief history of the growing complexity of atmospheric
chemistry models leading to the current generation of global 3-D models. At the
other end of the complication spectrum, 0-D models remain attractive as simple tools
for improving our understanding of processes. These models solve the continuity
equation as dCi/dt = Pi(C) – Li(C), without consideration of spatial dimensions. They
are called box models and are often appropriate to compute chemical steady-state
concentrations of short-lived species, for which the effect of transport is negligible,
or to compute the global budgets of long-lived chemical species for which uniform
mixing within the domain can be assumed. Other simple models frequently used in
atmospheric research include Gaussian plume models to simulate the fate of chem-
icals emitted from a point source and mixing with the surrounding background and
1-D models to simulate vertical mixing of chemicals in the atmospheric boundary
layer (lowest few kilometers) assuming horizontal uniformity. Two-dimensional
models (latitude–altitude) are also still used for stratospheric applications where
longitudinal concentration gradients are generally small.

1.8 Models as Components of Observing Systems

The usefulness of a model is often evaluated by its ability to reproduce observations,
but this can be misleading for two reasons. First, the observations themselves have
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errors, and models can in fact help to identify bad observations by demonstrating
their inconsistency with independent knowledge. Second, the observations sample
only a small domain of the space simulated by the model and may not be particularly
relevant for testing the model predictions of interest. It is important to evaluate the
model in the context of the problem to which it is applied. It is also important to
establish whether the goal of the evaluation is to diagnose errors in the model physics
or in the data used as input to the model.
A broad class of modeling applications involves the use of observations to

quantify the variables driving the system (state variables) when these variables
cannot be directly observed. Here, the observations probe the manifestations of the
system (observation variables) while the model physics provide a prediction of the
observation variables as a function of the state variables. Inverting the model then
yields a prediction of the state variables for given values of the observational
variables. One can think of this as fitting the model to observations in order to infer
values for the state variables. Because of errors in the model and in the observations,
the best that can be achieved in this manner is an optimal estimate for the state
variables. Such an analysis is called inverse modeling and requires careful consider-
ation of errors in the model, errors in the observations, and compatibility of results
with prior knowledge. Model and observations are inseparable partners in inverse
modeling. Having a very precise model is useless if the observations are not precise;
having very precise observations is useless if the model is not precise.
This partnership between models and observations leads to the concept of observ-

ing system as the concerted combination of models and observations to address
targeted monitoring or scientific goals. This concept has gained momentum with the
dramatic growth in atmospheric observations, in particular from satellites generating
massive amounts of data that are complicated to interpret. A model provides a
continuous field of concentrations that can serve as a common platform for examin-
ing the complementarity and consistency of observations taken from different instru-
ments at different locations, on different schedules, and for different species. Formal
integration of the model and observational data can take the form of chemical data
assimilation to produce optimized fields of concentrations, or inverse modeling to
optimize state variables that are not directly observed.
Following on this concept of an observing system integrating observations and

models, one may use models to compare the value of different observational data sets
for addressing a particular problem, and to propose new observations that would be
of particular value for that problem. Observing system simulation experiments
(OSSEs) are now commonly conducted to quantify the benefit of a new source of
observations (as from a proposed satellite) for addressing a quantifiable monitoring
or scientific objective. Observing system simulation experiments use a CTM to
generate a “true” synthetic atmosphere to be sampled by the ensemble of existing
and proposed observing instruments. Pseudo-observations are made of that atmos-
phere along the instrument sampling paths and sampling schedules, with random
error added following the instrument specifications. A second independent CTM is
then used to invert these pseudo-observations and assess their value toward meeting
the objective. A well-designed OSSE can tell us whether a proposed instrument will
add significant information to the existing observing system.
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1.9 High-Performance Computing

Modeling of atmospheric chemistry is a grand computational challenge. It requires
solution of a large system of coupled 4-D partial differential equations (1.1). Relevant
temporal and spatial scales range over many orders of magnitude. Atmospheric
chemistry modeling is a prime application of high-performance computing, which
describes mathematical or logical operations performed on supercomputers that are at
the frontline of processing capacity and many orders of magnitude more powerful than
desktop computers. The early supercomputers developed in the 1960s and 1970s by
Seymour Cray spurred the development of weather and climate models. An important
breakthrough in the 1980s was the development of vector processors able to run
mathematical operations on multiple data elements simultaneously. The costs of these
specialized vector platforms were still relatively high, so that in the 1990s the computer
industry turned to developing high-performance machines based on mass-produced,
less expensive components. This was accomplished through architectures that include
a large number of scalar micro-processing elements operating in massively parallel
architectures. Box 1.1 defines some of the relevant computing terminology.

Box 1.1 High-Performance Computing Terminology

Basic arithmetic operations are performed by processing elements or processors. Each processing
element may have its own local memory, or can share a memory with other processors. The speed
at which data transfer between memory and processor takes place is called the memory bandwidth.
Computers with slow shared-memory bandwidth rely on small, fast-access local memories that hold
data temporarily and are called cache memory. A computational node is a collection of processors
with their shared memories. If data from a processor on one node can access directly a memory
area in another node, the system is said to have shared memory. If messages have to be exchanged
across the network to share data between nodes, the computer is said to have distributed memory.
A cluster is a collection of nodes linked by a local high-speed network. When applications are
performed in parallel, individual nodes are responsible only for a fraction of the calculations. Central
to fully exploiting massively parallel architectures is the ability to divide and synchronize the
computational burden effectively among the individual processors and nodes. The efficiency of the
multi-node computation depends on the optimal use of the different processors, the memory
bandwidth, and the bandwidth of the connection between nodes.
The effective use of supercomputers requires advanced programming. Fortran remains the language

of choice because Fortran compilers generate faster code than other languages. Programming for
parallel architectures may use the Message Passing Interface (MPI) protocol for loosely connected
clusters with distributed memory and/or the Open Multi-Processing (openMP) protocol for shared-
memory nodes. Massively parallel architectures require the use of distributed memory. Grid computing
refers to a network of loosely coupled, heterogeneous, and geographically dispersed computers, offering
a flexible and inexpensive resource to access a large number of processors or large amounts of data.

(Adapted in part from Washington and Parkinson, 2005)
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The speed of a computer is measured by the number of floating point operations
performed per second (called Flops). The peak performance of the Cray-1 installed
in the 1970s at the Los Alamos National Laboratory (New Mexico) was 250 mega-
flops (106 flops), while the performance of the Cray-2 installed in 1985 at the
Lawrence Livermore National Laboratory (California) was 3.9 gigaflops (109 flops).
The Earth Simulator introduced in Yokohama (Japan) in 2002, the largest computer
in the world until 2004, provided 36 teraflops (1012 flops). This machine included
5120 vector processors distributed among 640 nodes. It was surpassed in 2004 by the
IBM Blue Gene platform at the Lawrence Livermore National Laboratory with a
performance that reached nearly 500 teraflops at the end of 2007. The performance
of leading-edge supercomputers exceeded tens of petaflops (1015 flops) in 2015, and
is predicted to be close to exaflops (1018 flops) by 2018. Enabling models to scale
efficiently on such powerful platforms is a major engineering challenge.
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2 Atmospheric Structure and Dynamics

2.1 Introduction

The atmosphere surrounding the Earth is a thin layer of gases retained by gravity
(Figure 2.1). Table 2.1 lists the most abundant atmospheric gases. Concentrations
are expressed as mole fractions, commonly called mixing ratios. The principal
constituents are molecular nitrogen (N2), molecular oxygen (O2), and argon (Ar).
Their mixing ratios are controlled by interactions with geochemical reservoirs
below the Earth’s surface on very long timescales. Water vapor is present at highly
variable mixing ratios (10–6–10–2 mol mol–1), determined by evaporation from
the Earth’s surface and precipitation. In addition to these major constituents, the
atmosphere contains a very large number of trace gases with mixing ratios lower
than 10–3 mol mol–1, including carbon dioxide (CO2), methane (CH4), ozone (O3),
and many others. It also contains solid and liquid aerosol particles, typically
0.01–10 μm in size and present at concentrations of 101–104 particles cm–3. These
trace gases and aerosol particles do not contribute significantly to atmospheric
mass, but are of central interest for environmental issues and for atmospheric
reactivity.

The mean atmospheric pressure at the Earth’s surface is 984 hPa, which combined
with the Earth’s radius of 6378 km yields a total mass for the atmosphere of
5.14 � 1018 kg. As we will see, atmospheric pressure decreases quasi-exponentially
with height: 50% of total atmospheric mass is found below 5.6 km altitude and 90%
below 16 km. Atmospheric pressures are sufficiently low for the ideal gas law to be
obeyed within 1% under all conditions. The global mean surface air temperature is
288 K, and the corresponding air density is 1.2 kg m–3 or 2.5� 1019 molecules cm–3;
air density also decreases quasi-exponentially with height.

Figure 2.1 The Earth’s atmosphere seen from space, with the Sun just below the horizon. Air molecules scatter solar
radiation far more efficiently in the blue than in the red. The red sunset color represents solar radiation
transmitted through the lower atmosphere. The blue color represents solar radiation scattered by the upper
atmosphere. Cloud structures are visible in the lowest layers.
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We present in this chapter a general overview of the structure and dynamics of the
atmosphere to serve as a foundation for atmospheric chemistry models. More
detailed considerations on atmospheric physics and dynamics can be found in
meteorological textbooks such as Gill (1982), Pedlosky (1987), Andrews et al.
(1987), Zdunkowski and Bott (2003), Green (2004), Vallis (2006), Martin (2006),
Mak (2011), Holton and Hakim (2013).

2.2 Global Energy Budget

The main source of energy for the Earth system is solar radiation. The Sun emits
radiation as a blackbody of effective temperature TS = 5800 K. The corresponding
blackbody energy flux is F ¼ σT 4

S where σ = 5.67 � 10–8 W m–2 K–4 is the Stefan-
Boltzmann constant. This radiation extends over all wavelengths but peaks in the
visible at 0.5 μm. The solar energy flux intercepted by the Earth’s disk (surface
perpendicular to the incoming radiation) is 1365 W m–2. This quantity is called the
solar constant and is denoted S. Thus, the mean solar radiation flux received by the
terrestrial sphere is S/4 = 341 W m–2. A fraction α = 30% of this energy is reflected
back to space by clouds and the Earth’s surface; this is called the planetary albedo.
The remaining energy is absorbed by the Earth–atmosphere system. This energy
input is compensated by blackbody emission of radiation by the Earth at an effective
temperature TE. At steady state, the balance between solar heating and terrestrial
cooling is given by

1� αð ÞS
4

¼ σT 4
E (2.1)

The mean effective temperature deduced from this equation is TE = 255 K. It is the
temperature of the Earth that would be deduced by an observer in space from
measurement of the emitted terrestrial radiation. The corresponding wavelengths of

Table 2.1 Mixing ratios of gases in dry aira

Gas Mixing ratio (mol mol–1)

Nitrogen (N2) 0.78
Oxygen (O2) 0.21
Argon (Ar) 0.0093
Carbon dioxide (CO2) 400 � 10–6

Neon (Ne) 18 � 10–6

Ozone (O3) 0.01–10 � 10–6

Helium (He) 5.2 � 10–6

Methane (CH4) 1.8 � 10–6

Krypton (Kr) 1.1 � 10–6

Hydrogen (H2) 500 � 10–9

Nitrous oxide (N2O) 330 � 10–9

aexcluding water vapor
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terrestrial emission are in the infrared (IR), peaking at 10 μm. The effective tempera-
ture is 33 K lower than the observed mean surface temperature, because most of the
terrestrial radiation emitted to space originates from the atmosphere aloft where
clouds and greenhouse gases such as water vapor and CO2 absorb IR radiation
emitted from below and re-emit it at a colder temperature. This is the essence of
the greenhouse effect.

Figure 2.2 presents a more detailed description of the energy exchanges in the
atmosphere. Of the energy emitted by the Earth’s surface (396Wm–2), only 40 W m–

2 is directly radiated to space, while the difference (356Wm–2) is absorbed by
atmospheric constituents. Thus, the global heat budget of the atmosphere must
include the energy inputs resulting from (1) the absorption of infrared radiation by
clouds and greenhouse gases (356Wm–2), (2) the latent heat released in the atmos-
phere by condensation of water (80 W m–2), (3) the sensible heat from vertical
transport of air heated by the surface (17 W m–2), and (4) the absorption of solar
radiation by clouds, aerosols, and atmospheric gases (78Wm–2). Of this total
atmospheric heat input (532 W m–2), 199 W m–2 is radiated to space by greenhouse
gases and clouds, while 333 W m–2 is radiated to the surface and absorbed. This
greenhouse heating of the surface (333 W m–2) is larger than the heating from direct
solar radiation (161 W m–2). At the top of the atmosphere, the incoming solar energy
of 341 W m–2 is balanced by the reflected solar radiation of 102 W m–2 (correspond-
ing to a planetary albedo of 0.30 with 23Wm–2 reflected by the surface and 79Wm–2

by clouds, aerosols and atmospheric gases) and by the IR terrestrial emission of
239 W m–2. Note that the system as described here for the 2000–2004 period is

Figure 2.2 Global annual mean energy budget of the Earth for the 2000–2004 period. Units are W m–2. From Trenberth
et al. (2009). Copyright © American Meteorological Society, used with permission.
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slightly out of balance because of anthropogenic greenhouse gases: A net energy per
unit area of 0.9 W m–2 is absorbed by the surface, producing a gradual warming.

2.3 Vertical Structure of the Atmosphere

Figure 2.3 shows the mean vertical profile of atmospheric temperature. Atmospheric
scientists partition the atmosphere vertically on the basis of this thermal structure.
The lowest layer, called the troposphere, is characterized by a gradual decrease of
temperature with height due to solar heating of the surface. It typically extends to
16–18 km in the tropics and to 8–12 km at higher latitudes. It accounts for 85% of
total atmospheric mass. Heating of the surface allows buoyant motions, called
convection, to transport heat and chemicals to high altitude. During this rise the
water cools and condenses, leading to the formation of clouds. The process of
condensation releases heat, providing additional buoyancy to the rising air parcels
that can result in thunderstorms extending to the top of the troposphere. The mean
decrease of temperature with altitude (called the lapse rate) in the troposphere is
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6.5 K km–1, reflecting the combined influences of radiation, convection, and the
latent heat release from water condensation.

The top of the troposphere, defined by a temperature minimum (190–230 K), is
called the tropopause. The layer above, called the stratosphere, is characterized by
increasing temperatures with height to reach a maximum of about 270 K at the
stratopause located at 50 km altitude. This warming is due to the absorption of solar
UV radiation by ozone. A situation in which the temperature increases with altitude
is called an inversion. Because heavier air is overlain by lighter air, vertical motions
are strongly suppressed. The stratosphere is therefore very stable against vertical
motions. Exchange of air with the troposphere is restricted, and vertical transport
within the stratosphere is very slow. The residence time of tropospheric air against
transport to the stratosphere is 5–10 years, and the residence time of air in the
stratosphere ranges from a year to a decade. In summer, the zonal (longitudinal)
mean temperature distribution in the stratosphere is determined primarily by radia-
tive processes (solar heating by ozone absorption and terrestrial cooling by CO2,
water vapor, and ozone emission to space). In winter, radiation is weaker and the
radiative equilibrium is perturbed by the propagation of planetary waves. This
generates a large-scale meridional (latitudinal) circulation, called the Brewer–
Dobson circulation, transporting air from low to higher latitudes.

The mesosphere extends from 50 km to the mesopause located at approximately
90–100 km altitude, where the mean temperature is about 160K (120K at the
summer pole, which is the lowest temperature in the atmosphere). In this layer,
where little ozone is available to absorb solar radiation, but where radiative cooling
by CO2 is still effective, the temperature decreases again with height. Turbulence is
frequent and often results from the dissipation of vertically propagating gravity
waves (see Section 2.11), when the amplitude of these waves becomes so large that
the atmosphere becomes thermally unstable.

The thermosphere above 100 km is characterized by a dramatic increase in
temperature with height resulting primarily from the absorption of strong UV
radiation by molecular oxygen O2, molecular nitrogen N2, and atomic oxygen
O. Collisions become rare so that a stable population of ions can be sustained,
producing a plasma (ionized gas). The temperature above 200 km reaches asymptotic
values of typically 500 to 2000K, depending on the level of solar activity
(Figure 2.4). This asymptotic behavior reflects the small heat content and the high
heat conductivity of this low air density region. The corresponding altitude is called
the thermopause and varies from 250 to 500 km altitude. Atmospheric pressure is
sufficiently low above 100 km that vertical transport of atmospheric species occurs
primarily by molecular diffusion. This process tends to separate with height the
different chemical species according to their respective mass. As a result, the relative
abundance of light species like atomic oxygen, helium, and hydrogen increases with
height relative to species like molecular nitrogen and oxygen. Molecular nitrogen
dominates up to 180 km, while the prevailing constituent between 180 and about
700 km is atomic oxygen. Helium is the most abundant constituent between 700 km
and 1700 km, and atomic hydrogen at higher altitudes. Above the thermopause,
atoms follow ballistic trajectories because of the rarity of collisions. In this region of
the atmosphere, light atoms (hydrogen) can overcome the forces of gravity and
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escape to space if their velocity is larger than a threshold value (escape velocity).
At that point the atmosphere effectively merges with outer space.
Air motions below 100 km are dominated by gravity and pressure forces,

following the laws of hydrodynamics. Above 100 km, where ionization produces a
plasma, the flow is affected by electromagnetic forces, and more complex equations
from magneto-hydrodynamics must be applied. Aeronomy is the branch of science
that describes the behavior of upper atmospheric phenomena (with emphasis on
ionization and dissociation processes), while meteorology refers to the study of the
lower levels of the atmosphere (with emphasis on dynamical and physical pro-
cesses). The aeronomy literature has its own classification of atmospheric layers
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atmosphere layers. Adapted from Banks and Kockarts (1973).

26 Atmospheric Structure and Dynamics

003
22 Jun 2017 at 16:45:27, subject to the Cambridge Core terms of use, available



(see e.g., Prölss, 2004). For example, it refers to the troposphere as the lower
atmosphere, to the stratosphere and mesosphere as the middle atmosphere, and to
the thermosphere as the upper atmosphere. It defines the homosphere below 100 km
as the region where vertical mixing is sufficiently intense to maintain constant the
relative abundance of inert gases, and the heterosphere above 100 km as the region
where gravitational settling becomes sufficiently important for the relative concen-
tration of heavy gases to decrease more rapidly than that of lighter ones. The atmos-
pheric region above 1700 km is often called the geocorona. It produces an intense glow
resulting from the fluorescence of hydrogen excited by the solar Lyman-α radiation at
122 nm. In another nomenclature, one distinguishes between the barosphere, where air
molecules are bound to the Earth by gravitational forces, and the exosphere in which
the air density is so small that collisions can be neglected. The lower boundary of the
exosphere, called the exobase, is located at 400–1000 km. Aeronomers refer to the
ionosphere as the atmospheric region where ionization of molecules and atoms by
extreme UV radiation (less than 100 nm) and energetic particle precipitation is a
dominant process. Different ionospheric layers are distinguished: the D-region below
90 km altitude, the E-region between 90 and 170 km, the F-region between 170 and
1000 km, and the plasmasphere above 1000 km altitude. The region in which the
magnetic field of the Earth controls the motions of charged particles is called the
magnetosphere. Its shape is determined by the extent of the Earth’s internal magnetic
field, the solar wind plasma, and the interplanetary magnetic field.

2.4 Temperature, Pressure, and Density:
The Equation of State

The state of the atmosphere is described by pressure p [Pa], temperature T [K], and
chemical composition. Atmospheric pressure is sufficiently low that the ideal gas law
is obeyed within 1% under all conditions. The equation of state can therefore be
expressed as

pV ¼ RT (2.2)

where V [m3 mol–1] represents the molar volume of air, andR ¼ 8:3143 J K�1 mol�1

is the universal gas constant. When expressed as a function of the number density
na ¼ N A=V [molecules m–3], where N A ¼ 6:022 � 1023 molecules mol–1 is
Avogadro’s number, this expression becomes

p ¼ nakT (2.3)

where k ¼ R=N A ¼ 1:38066� 10�23 J K‒1 is Boltzmann’s constant.
The equation of state can also be expressed as a function of the mass density of air

ρa ¼ naMa=N A½kg m�3�
p ¼ ρaRT (2.4)

where R ¼ R=Ma is the specific gas constant for air andMa [kg mol–1] is the molar
mass of air.
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The molar mass of air is the weighted average of the mass of its components

Ma ¼
X
i

CiMi (2.5)

where Ci and Mi are respectively the mole fraction (commonly called molar or
volume mixing ratio) and the molar mass of constituent i. Since dry air can be
closely approximated as a mixture of nitrogen N2 (with CN2 = 0.78), oxygen O2 (with
CO2 = 0.21) and argon Ar (with CAr = 0.01), the molar mass for dry air is
Md = 28.97 � 10–3 kg mol–1. Water vapor, which can account for up to a few
percent of air in the lower troposphere, will make air slightly lighter.

2.5 Atmospheric Humidity

Because of the high variability of water vapor in air, meteorologists like to use
separate equations of state for dry air and water vapor. This is legitimate following
Dalton’s law, which states that the total pressure of a mixture of gases is the sum of
the partial pressures of its individual components. The equation of state for dry air is
given by

pd ¼ ρdRdT (2.6)

where the specific gas constant for dry air is Rd ¼ R=Md ¼ 8:314=
ð28:97 � 10�3Þ ¼ 287 J K�1 kg�1. A similar equation can also be applied to
water vapor (or any chemical constituent). The partial pressure of water vapor is
commonly noted e and the equation of state is expressed by

e ¼ ρwRwT (2.7)

where ρw is the water vapor mass density [kg m–3] and Rw ¼ R=Mw ¼
8:314=ð18:01 � 10�3Þ ¼ 461:6 J K�1 kg�1 is the specific gas constant for water
vapor with a molar mass Mw of 18.01 � 10–3 kg mol–1. Note that the total air
pressure is p = pd + e. The volume mixing ratio Cw and mass mixing ratio μw of water
vapor are expressed by

Cw ¼ nw
na

¼ e

p
(2.8)

and

μw ¼ ρw
ρa

¼ Mw

Ma

e

p
¼ 0:622 Cw (2.9)

where nw and na are the number densities [molecules m–3] of water and moist (total)
air, respectively, Mw = 18.01 � 10–3 kg mol–1 is the molar mass of water, and Ma is
the molar mass of moist air: Ma = (1 – Cw)Md + CwMw. Meteorologists convention-
ally call μw the specific humidity (and write it q). They instead define the water vapor
mass mixing ratio rw as the ratio between the water vapor density ρw and the dry air
density ρd, where ρd = ρa – ρw:
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rw ¼ ρw
ρd

¼ ρw
ρa � ρw

¼ μw
1� μw

(2.10)

The equation of state (2.6) for dry air can be applied to moist air if the temperature T
is replaced by the virtual temperature Tv , the temperature at which dry air has the
same pressure and density as moist air. Thus one writes

p ¼ ρaRdTv (2.11)

From the above equations, it follows that

ρa ¼
p

RdTv
¼ p� e

RdT
þ e

RwT

or

Tv ¼ T

1� e

p
1� Rd

Rw

� � (2.12)

with Rd/Rw =Mw/Md = 18/28.97 = 0.621. A good approximation to this expression is
provided by

Tv � 1þ 0:61 rwð ÞT (2.13)

Phase transitions of atmospheric water play a crucial role in meteorology. The
relative humidity RH [percent] is expressed by

RH ¼ 100
e

es
(2.14)

where es is the saturation pressure at which water vapor is in equilibrium with the
condensed phase (liquid or ice). For a saturated atmosphere (e = es), condensation
and evaporation are in balance. One shows easily that the water mass mixing ratio
rsatw corresponding to saturation is

rsatw ¼ 0:622
es

p� es
’ 0:622

es
p

(2.15)

Its value is inversely proportional to the total pressure and is a function of
temperature because the saturation pressure es varies with temperature (see later).
An atmosphere with e < es is called subsaturated while one with e > es is called
supersaturated. A supersaturated atmosphere leads to cloud formation, contingent
on the presence of suitable aerosol particles to provide pre-existing surfaces for
condensation and overcome the energy barrier from surface tension. These particles
are called cloud condensation nuclei (CCN) for liquid-water clouds and ice nuclei
(IN) for ice clouds. Water-soluble particles greater than 0.1 μm in size are adequate
CCN, and are sufficiently plentiful that liquid cloud formation takes place at
supersaturations of a fraction of a percent. Ice nuclei are solid particles such as
dust that provide templates for ice formation and are present at much lower
concentrations than CCN. Because of the paucity of IN, clouds may remain liquid
or mixed ice–liquid at temperatures as low as –40 �C; one then refers to the
metastable liquid phase as supercooled.
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Phase equilibrium for water is defined by the phase diagram in Figure 2.5. Lines
on this diagram represent equilibria between two phases. Equilibrium between vapor
and condensed phases is expressed by the Clausius–Clapeyron equation

des
dT

¼ es
L

RwT2 (2.16)

where L represents the latent heat of vaporization or sublimation [J kg–1]. Integration
between a reference temperature T0 and temperature T yields

es Tð Þ ¼ es T0ð Þ exp L

Rw

1

T0
� 1

T

� �� �
(2.17)

where L can be approximated as constant. For vaporization of liquid water, L has
a value of 2.50 � 106 J kg–1 at 0 �C and varies with temperature TC (in degrees
Celsius) as (Rogers and Yau, 1989):

L Tð Þ ¼ 2500:79� 2:36418 TC þ 0:00158927 T2
C � 0:0000614342 T3

C

� �� 103

(2.18)

For sublimation at 0 �C, L is 2.83 � 106 J kg–1. Latent heat is released to the
atmosphere (warming) when clouds condense from the gas phase; conversely, latent
heat is absorbed from the atmosphere (cooling) when clouds evaporate.
The thin line in the phase diagram of Figure 2.5 represents the metastable phase

equilibrium between water vapor and liquid water at temperatures below 0 �C. This
equilibrium is relevant to the atmosphere because of supercooling of liquid clouds.
When ice crystals do form in such clouds, the water vapor at equilibrium with the ice
is lower than that at equilibrium with the supercooled liquid; thus, the liquid cloud

Figure 2.5 Phase diagram for water describing the stable phases present at equilibrium as a function of water vapor
pressure and temperature. The thin line represents the metastable equilibrium between gas and liquid
below 0 �C. Reproduced from Jacob (1999).
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droplets evaporate, transferring their water to the ice crystals. This transfer of water
can also take place by collision between the supercooled liquid cloud droplets and
the ice crystals (riming). In either case, the resulting rapid growth of the ice crystals
promotes precipitation. The heat release associated with the conversion from liquid
to ice also adds to the buoyancy of air parcels, fostering further rise and additional
condensation and precipitation. Such precipitation formation in mixed-phase clouds
is known as the Bergeron process.

2.6 Atmospheric Stability

2.6.1 The Hydrostatic Approximation

The vertical variation of atmospheric pressure can be deduced from hydrostatic
equilibrium,

dp

dz
¼ �ρa zð Þg (2.19)

which expresses that the downward gravitational force acting on a fluid parcel is
balanced by an upward force exerted by the vertical pressure gradient that charac-
terizes the fluid. Here g = 9.81 m s–2 is the acceleration of gravity, ρa [kg m–3] the
mass density of air, p [Pa] the atmospheric pressure, and z [m] is the altitude above
the surface, often referred to as the geometric altitude. Equation (2.19) assumes that
the fluid parcel is in vertical equilibrium between the gravitational and pressure-
gradient forces, or more broadly that any vertical acceleration of the air parcel due to
buoyancy is small compared to the acceleration of gravity. This is called the
hydrostatic approximation. It is a good approximation for global models, but not
for small-scale models attempting to resolve strong convective motions.

Because the atmosphere is thin relative to the Earth’s radius (6378 km), g can be
treated as constant with altitude. From the ideal gas law, we can rewrite equation
(2.19) as

dp

p
¼ � dz

H zð Þ (2.20)

where

H zð Þ ¼ RT zð Þ
g

¼ kT zð Þ
mg

(2.21)

is a characteristic length scale for the decrease in pressure with altitude z and is called
the atmospheric scale height. Its value is 8 � 1 km in the troposphere and strato-
sphere. Here k = 1.38 � 10–23 J K–1 is Boltzmann’s constant, m ¼ Ma=N A is the
mean molecular mass of air (28.97 � 10–3/6.022 � 1023 kg = 4.81 � 10–26 kg), and
R = 287 J K–1 kg–1 is the specific gas constant for air. By integrating (2.20), one finds
the vertical dependence of atmospheric pressure
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p zð Þ ¼ p 0ð Þ exp
ðz

0

�dz0

H z0ð Þ (2.22)

where p(0) is the surface pressure. Approximating H as constant yields the simple
expression

p zð Þ � p 0ð Þ exp �z

H

� 	
(2.23)

which states that the air pressure decreases exponentially with altitude. Equation
(2.23) is called the barometric law.
The hydrodynamic equations of the atmosphere are often expressed by using the

pressure p rather than the altitude z as the vertical coordinate. It is then convenient to
define the log-pressure altitude Z

Z ¼ �H ln
p

p0

� �
(2.24)

as the vertical coordinate. HereH is a constant “effective” scale height (specified to
be 7 km) and p0 is a reference pressure (specified to be 1000 hPa). Thus Z depends
solely on p. It is also convenient to introduce the geopotential Φ as the work required
for raising a unit mass of air from sea level to geometric altitude z:

Φ ¼
ðz

0

gdz (2.25)

where g includes dependences on altitude and latitude, the latter due to the non-
sphericity of the Earth (Section 2.7). g at Earth’s surface varies from 9.76 to
9.83 m s–2. The hydrostatic law relates Φ to dΦ ¼ ðRT=H Þ dZ. The geopotential
height is defined as Φ/go, where go = 9.81 m s–2 is a constant called the standard
gravity. Movement along a surface of uniform geopotential height involves no
change in potential energy, i.e., no conversion between potential and kinetic energy.
Meteorological weather conditions aloft are often represented as contour maps of
geopotential heights at a given pressure. As we will see in Section 2.7, air motions
tend to follow contour lines of geopotential heights, so this type of map is very
useful.

2.6.2 Adiabatic Lapse Rate and Stability

Meteorologists use the concept of air parcel as a body of air sufficiently small to be
defined by a single state (p, T), yet sufficiently large to preserve its identity during
transport over some distance of interest. Applying the laws of thermodynamics to
such an idealized air parcel gives valuable insight into atmospheric motions. The
temperature of an air parcel changes as its pressure changes. A less variable measure
of the heat content of an air parcel is the potential temperature θ [K]:

θ ¼ T
p0
p

� �κ
(2.26)
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where p0 = 1000 hPa is the reference pressure, κ = R/cp = 0.286, and
cp = 1005 J K–1 kg–1 is the specific heat of dry air at constant pressure. The
potential temperature is the temperature that an air parcel (p, T) would reach if it
were brought adiabatically (without external input or loss of energy) to the refer-
ence pressure p0. Under adiabatic conditions we have dθ/dz = 0. One can show
from a simple thermodynamic cycle analysis that under these adiabatic conditions
the temperature must decrease linearly with altitude

Γd ¼ � dT

dz
¼ g

cp
¼ 9:8 K km�1 (2.27)

where Γd is called the dry adiabatic lapse rate. “Dry” refers to an air parcel sub-
saturated with respect to water vapor; in the case of a saturated air parcel, latent heat
release/loss during cloud condensation/evaporation complicates the analysis. The
case of a saturated air parcel is discussed next.

An atmosphere left to evolve without exchanging energy with its surroundings
will eventually achieve an adiabatic lapse rate due to the motion of air parcels up and
down. Input or output of energy will force the actual lapse rate Γ = –dT/dz to differ
from the adiabatic lapse rate. In the stratosphere, for example, absorption of solar
radiation by ozone causes the temperature to increase with altitude, a situation called
a temperature inversion. The value of Γ relative to Γd diagnoses the stability of an air
parcel relative to vertical motions (Figure 2.6).

Consider an air parcel located initially at an altitude z in an atmosphere with
temperature T(z) and lapse rate Γ. Let us apply an elemental push upward to this air
parcel so that its altitude increases by δz. This motion takes place adiabatically so that
the new temperature of the air parcel is T 0(z + δz) = T(z) – Γd δz. The temperature of

Dry adiabatic 
lapse rate Γd 

Unstable

z

z + δz

Temperature T

Stable

Altitude z

Actual 
lapse rate

Actual 
lapse rate

T’

TT

Figure 2.6 Schematic representation of the vertical temperature profile corresponding to a dry adiabatic lapse rate
(9.8 K km–1 in black) and two hypothetical actual lapse rates (stable conditions in blue and unstable
conditions in red). If an air parcel moves upwards under adiabatic conditions (green arrow), it will
experience a buoyancy force that opposes the displacement if the temperature of the parcel T0 is lower than
the temperature T of the local environment (T0 < T). In this case, the buoyancy force will restore the air
parcel to its original position (stable conditions). If T0 > T, the buoyancy force reinforces the displacement
and drives the parcel further away from its original position (unstable conditions).
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the surrounding air at that altitude is T(z + δz) = T(z) – Γδz. If Γ > Γd, then the air
parcel at z + δz is warmer and hence lighter than the surrounding air; it is therefore
accelerated upward by buoyancy, amplifying the initial upward displacement.
A similar reasoning can be made if the air parcel is initially pushed downward; at
altitude z – δz it will be colder than its surroundings and buoyancy will accelerate the
downward motion. Thus an atmosphere with Γ > Γd is said to be unstable with
respect to vertical motions. Rapid convective vertical mixing takes place in such an
atmosphere. If on the contrary the lapse rate is smaller than the adiabatic lapse rate
such that Γ < Γd, an air parcel displaced adiabatically toward higher altitude will
become colder and denser than the surrounding air. As a result, it will return to its
original level; the atmosphere is said to be stable. If Γ = Γd, the air parcel will
continue its upward or downward motion with no acceleration, and the atmosphere is
said to be neutral.
If air is saturated with water vapor, the stability conditions are modified: Ascending

motion results in water condensation, which releases heat within the air parcel even
under the adiabatic assumption. Similarly, in such an atmosphere, downward motion
results in water evaporation and hence internal cooling. There results a decrease in
stability. The lapse rate for saturated air parcels moving adiabatically up or down,
called the wet (or moist or saturated) adiabatic lapse rate Γw, can be derived from the
energy balance equation and the Clausius–Clapeyron equation

Γw ¼ � dT

dz
¼ g

cp

1þ Lrw
RT


 �
1þ L2rw

cpRwT2

� 	 (2.28)

Γw is smaller than the dry adiabatic lapse rate Γd. Its value depends on the water
vapor condensation rate, which is determined by the water vapor mass mixing ratio
rw under the saturated conditions of the air parcel. Since rw under these conditions is
a strong function of temperature (Clausius–Clapeyron equation), it follows that Γw
depends strongly on temperature. It typically ranges from 2 to 8 K km–1. Under
saturated conditions, stability requires that Γ < Γw. Buoyant motions in clouds occur
when Γ > Γw and are referred to as wet convection. The atmosphere is said to be
conditionally unstable if Γw < Γ < Γd. Such an atmosphere is stable unless sufficient
water vapor is supplied to it to make it saturated, in which case it becomes unstable
(Figure 2.7).
Unstable conditions in the atmosphere can be triggered by solar heating of the

ground. The heat is communicated by conduction from the ground to the overlying
atmosphere, leading to Γ > Γd. Under such conditions, rapid vertical motions
maintain an effective adiabatic lapse rate for the atmosphere, so that Γ > Γd is not
practically observed. In fact, observation of Γ = Γd is generally a reliable diagnostic
of an unstable atmosphere; the unstable lapse rate continually re-adjusts to Γd
through the motion of air parcels up and down. Conversely, cooling of the ground
at night produces a stable atmosphere (Γ < Γd). Particularly stable conditions are
encountered when the temperature increases with height and produces a temperature
inversion. In the troposphere, such an inversion often occurs during compressional
heating associated with large-scale descent of air (a process called subsidence) or
when the ground is particularly cold. In the stratosphere, the temperature increases
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with height due to the absorption of solar UV radiation by ozone. Thus the whole
stratosphere is characterized by an inversion.

Buoyant convection as described above is the principal driver for vertical transport
of trace constituents in the troposphere. Because it is driven by local temperature
gradients, it occurs at scales too small to be resolved by regional or global atmospheric
models. It therefore needs to be parameterized by using the model-scale information
on temperature gradients andwater vapor to estimate the resultingmodel-scale vertical
motions. Such convective parameterizations rely on approximation of the actual
physics and often include empirical or adjustable coefficients to better reproduce
observations. They are crucial to the representation of vertical motions and cloud
formation in atmospheric models. See Chapter 8 for further discussion.

2.7 Geostrophic Balance

We now turn to the forces driving horizontal motions in the atmosphere. Horizontal
pressure gradients resulting from differential heating produce motions directed from
high- to low-pressure areas. A complication is that the Earth is a rotating sphere,
where different points have different translational velocities in a fixed frame of
reference. The useful frame of reference for us is one that rotates with the sphere,
since we measure all air motions with respect to this frame of reference. From the
perspective of this rotating frame of reference, any motion taking place in the fixed
frame of reference (such as driven by a pressure-gradient force) will be deflected due
to the rotation. The deflection accelerates the air parcel away from its original
direction and thus behaves as a fictitious force, called the Coriolis force. The Coriolis
force operates in three dimensions but is negligible in the vertical relative to the

Absolutely
stable

Temperature T

Absolutely
unstable

Altitude z

Conditionally
stable

Γd (9.8 K km–1)
Dry adiaba�c 

lapse rate
Γw

Wet adiaba�c 
lapse rate

Figure 2.7 Effect of atmospheric humidity on the static stability of the atmosphere. The solid lines represent the dry
(Γd) and wet (Γw) adiabatic lapse rates. As the actual lapse rate increases, the atmosphere evolves from a
state of absolute stability to a state of conditional stability (shaded region for which saturated parcels are
unstable but unsaturated parcels are not) and to a state of absolute instability.
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acceleration of gravity. It is of critical importance for large-scale motions in the
horizontal direction.
To understand the Coriolis effect, consider that the translational Earth’s rotation

velocity VT (directed eastward)

VT ¼ a Ω cosφ (2.29)

decreases with increasing latitude φ. With an Earth’s radius a = 6378 km and an
angular rotation velocity Ω = 7.292 � 10–5 rad s–1 (or 2 π rad d–1), the velocity VT is
1672 km h–1 at the Equator and 836 km h–1 at 60� latitude. If we consider an air
parcel that is displaced poleward in the northern hemisphere, starting from latitude
φ1, the conservation of angular momentum in the absence of external forces requires
that the product ρa V(φ) a cos φ remain constant at its initial value ρa VT(φ1) a cos φ1
during the displacement of the parcel. Here, V is the absolute eastward velocity of the
air parcel in the fixed frame of reference, and ρa is the air density. Since VT(φ)
decreases with latitude φ, this condition can only be fulfilled if, for an observer
located at the Earth’s surface, the air parcel acquires a gradually increasing eastward
velocity. For the same reason, an air parcel moving toward the Equator in the
northern hemisphere will be displaced westward (see Figure 2.8).
The same Coriolis effect also applies to motions in the longitudinal direction. In that

case it can be understood in terms of the centrifugal force exerted on air parcels in the
rotating frame of reference of the Earth. An air parcel at rest at a given latitude is
subject to a centrifugal acceleration V 2

T=a that would make it drift toward the Equator
were it not for the oblate geometry of the Earth (Figure 2.9). The resultant force of
gravity (oriented toward the center of the Earth) and reaction (oriented normal to the
surface) exactly cancels the centrifugal force, as shown in Figure 2.9. This should not
be surprising considering that the oblate geometry is actually a consequence of the
centrifugal force applied to the solid Earth. Consider now an eastward motion applied
to the air parcel so that V> VT. This motion increases the centrifugal force and deflects
the air parcel equatorward. Conversely, a westward motion with V < VTweakens the
centrifugal force and deflects the air parcel poleward. In both cases the deflection is to
the right in the northern hemisphere and to the left in the southern hemisphere.
In summary, for an observer on the rotating Earth, air parcels moving horizontally

are subject to a Coriolis force that is perpendicular to the direction of motion and
proportional to the parcel’s velocity; this force deflects air parcels to the right in the
northern hemisphere and to the left in the southern hemisphere. It can be shown that
the corresponding Coriolis acceleration is

dv
dt

� �
Coriolis

¼ �2 Ω � v½ � (2.30)

where v represents the velocity vector in the rotating frame of reference and Ω is the
Earth angular velocity vector directed from the south to the north pole. When
expressed in Cartesian coordinates and considering the zonal and meridional wind
components (u, v), the Coriolis acceleration becomes

du

dt

� �
Coriolis

¼ f v (2.31)
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Figure 2.8 Trajectory of an object (such as an air parcel) directed from the north pole toward the Equator at 90� W.
(a) Case of a non-rotating planet. (b) Deflection of the trajectory toward the right due to the rotation of the
Earth. The arrival point at the Equator is displaced to the west of the original target point. Reproduced with
permission from Lutgens et al. (2013). Copyright © Pearson Education, Inc.

Figure 2.9 Equilibrium of forces for an air parcel at rest in the frame of reference of the rotating Earth. The
centrifugal force is directed away from the axis of rotation, gravity is directed toward the center of the Earth,
and the reaction force is perpendicular to the surface. The centrifugal force would cause the air parcel to
drift toward the Equator if the Earth were a perfect sphere. The oblate geometry of the Earth (greatly
exaggerated for the purpose of this figure) results in equilibrium in the triangle of forces. Reproduced
from Jacob (1999).
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dv

dt

� �
Coriolis

¼ �f u (2.32)

where f = 2Ω sin φ is theCoriolis parameter. It is positive in the northern hemisphere and
negative in the southernhemisphere. Its amplitude increaseswith latitude.Thus, theCoriolis
acceleration, which is zero at the Equator, increases with latitude andwith the velocity of
the flow. Its effect is substantial for large-scale motions (~1000 km, the synoptic scale).
For an observer attached to the rotating Earth, the large-scale motions in the

extratropical atmosphere can be represented by a balance between the Coriolis and
the pressure-gradient forces, called the geostrophic approximation:

2 Ω� v½ � ¼ � 1

ρa
—p (2.33)

or in a Cartesian projection (x and y being the geometric distances in the zonal and
meridional directions, respectively)

f v ¼ 1

ρa

∂p
∂x

(2.34)

f u ¼ � 1

ρa

∂p
∂y

(2.35)

From (2.33) we see that the geostrophic motions on a horizontal surface are parallel
to the isobars (lines of constant pressure). In the northern hemisphere ( f > 0), air
parcels rotate clockwise around high pressure (anti-cyclonic) cells, and counter-
clockwise around low pressure (cyclonic) cells (see Figure 2.10). The situation is
reversed in the southern hemisphere ( f < 0).
When formulated using pressure rather than geometric altitude as the vertical

coordinate, the geostrophic balance takes the form:

f v ¼ ∂Φ
∂x

(2.36)

High Low

Coriolis
force

Pressure
gradient
force

Resul�ng
force

Northern hemisphere

Flow

Flow

Figure 2.10 Flow of air in the northern hemisphere between anti-cyclonic (high) and cyclonic (low) regions. The motion
originally directed from the high- to low-pressure cells is deflected to the right by the Coriolis force.
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f u ¼ � ∂Φ
∂y

(2.37)

where Φ is the geopotential. Thus, on isobaric surfaces, the geostrophic motions
follow the contours of the geopotential fields. Replacing dΦ ¼ ðRT=H ÞdZ yields
the thermal wind equations

f
∂v
∂Z

¼ R

H
∂T
∂x

(2.38)

f
∂u
∂Z

¼ � R

H
∂T
∂y

(2.39)

These show that the vertical shear in the horizontal (constant pressure level) wind
field is proportional to the horizontal temperature gradient. In both hemispheres, the
zonal wind component u increases with height when temperature decreases with
latitude and decreases with height when temperature increases with latitude
(Figure 2.11). The strong decrease of temperature with latitude in the troposphere
produces intense subtropical jet streams, seen in Figure 2.11 as westerly wind
maxima centered at about 40� latitude and 10 km altitude.

Figure 2.11 Zonal mean temperature (a) and zonal wind velocity (b) as a function of latitude and altitude for January,
from the COSPAR International Reference Atmosphere (CIRA). Reprinted with permission from Shepherd
(2003), Copyright © American Chemical Society.
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Near the surface, the geostrophic flow is modified by friction resulting from the
loss of momentum as the flow encounters obstacles (vegetation, ocean waves,
buildings, etc.). The friction force is directed in the direction opposite to the flow
(slowdown of the wind), effectively weakening the Coriolis force. This deflects the
flow toward areas of low pressure (or low geopotential areas on isobaric surfaces), as
shown in Figure 2.12.

2.8 Barotropic and Baroclinic Atmospheres

A barotropic atmosphere is one in which changes in air density are driven solely by
changes in pressure. It is a good approximation in the tropics, where horizontal
temperature gradients are small. In a barotropic atmosphere, isobaric (uniform pres-
sure) surfaces coincide with isopycnic (uniform air density) surfaces. From the ideal
gas law, they must also coincide with isothermal (uniform temperature) and isentropic
(uniform potential temperature) surfaces. Since there is no temperature gradient on
isobaric surfaces, the geostrophic wind is independent of height (see (2.38) and
(2.39)). Under adiabatic conditions (dθ/dt = 0), air parcels remain on isentropic
surfaces, and since no pressure gradient exists along these surfaces to drive atmos-
pheric motions, no potential energy is available for conversion into kinetic energy.
Outside the tropics, where meridional temperature gradients are large

(Figure 2.11), the temperature varies along the isobars, and the atmosphere is said
to be baroclinic. Isobars and isentropes do not coincide. In this case, pressure
gradients can drive adiabatic displacement along isentropic surfaces. Conversion of
potential energy into kinetic energy becomes possible. Temperature gradients along

Low High

Low

Surface

N

Aloft

High

Figure 2.12 Winds around low- and high-pressure cells in the northern hemisphere. Geostrophic balance dominates
aloft and the flow is directed along isobaric lines. Near the surface, friction deflects the flow toward
low pressure. Reproduced from Ahrens (2000), Copyright © Cengage Learning EMEA.
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isobars cause vertical shear in the geostrophic wind (see thermal wind equation),
leading to a strong jet stream in the upper troposphere as discussed in Section 2.7.
The axis of the jet stream is located in the 30�–60� latitudinal band characterized by a
pronounced meridional temperature gradient separating cold and dense air of polar
origin from warmer, less dense tropical air. In the presence of strong velocity shears,
the jet stream may be unstable with respect to small perturbations, and disturbances
may amplify, producing the so-called baroclinic instability.

Figure 2.13 illustrates baroclinic instability. The meridional gradient in tempera-
ture causes the isentropic surfaces (isentropes) to slope upward with increasing
latitude. A poleward motion at constant altitude or with an upward slope shallower
than the isentropes produces an unstable atmosphere even though the isentropes
imply a vertically stable atmosphere (∂θ/∂z > 0). Despite the stable conditions,
potential energy from the flow can be converted into kinetic energy. Baroclinic
instabilities drive the development of mid-latitude cyclones and associated frontal
systems.

2.9 General Circulation of the Troposphere

Solar heating of the Earth must be balanced on a global basis by emission of
terrestrial radiation to space. Both of these terms are a strong function of latitude
(Figure 2.14). On an annual mean basis, the tropics receive much higher solar
radiation than higher latitudes. Terrestrial emission to space peaks at about 20�

latitude and drops at higher latitudes. On balance, the tropics have a surplus of
radiative energy and the high latitudes have a deficit. Energy balance requires that

Latitude

Altitude z

Pole  �� Equator

θ0 + δθ

θ0+ 2δθ 

θ0

θ0+ 3δθ 

Figure 2.13 Baroclinic instability illustrated by parcel trajectories in the latitude–altitude plane with respect to isentropic
surfaces. The isentropes slope upward and poleward. For quasi-horizontal parcel trajectories with slopes
shallower than those of the background isentropes (solid arrows), unstable conditions arise even though the
background atmosphere is stable (∂θ/∂z > 0). By contrast, trajectories with slopes steeper than the
isentropes (dashed arrows) are suppressed by stability.
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heat be transported from the tropics to the poles by atmospheric and oceanic motions.
The general circulation of the atmosphere refers to the global wind systems that
carry out this transport of energy.
In the absence of planetary rotation, the latitudinal gradient in surface heating

would drive hemispheric circulation cells with upward motion in the tropics, high-
altitude poleward flow, subsidence over the poles, and return equatorward flow near
the surface (Figure 2.15, (a)). Planetary rotation complicates this simple picture due to
the Coriolis force acting on air parcels as they travel meridionally. The poleward flow
is deflected to the east and the equatorward flow is deflected to the west. The high-
altitude poleward flow originating from the Equator becomes fully zonal at a latitude
of about 30� and at that point no further meridional transport takes place. Thus the
meridional circulation cells only extend from the Equator to 30� (Figure 2.15, (b)).
These are called the Hadley cells after George Hadley (1685–1768), who first recog-
nized the effect of planetary rotation on the general circulation of the atmosphere.
Convergence between the southern and northern cells near the Equator defines the
intertropical convergence zone (ITCZ) as a band of persistent precipitation. The ITCZ
moves seasonally with solar declination, which is the angle between the Sun’s rays
and the equatorial plane of the Earth. Solar declination varies from +23� on June 21
to –23� onDecember 22. This defines the wet seasons of the tropics. Subsidence at 30�

produces hot and dry conditions over land; the major deserts of the world are in that
latitudinal band. Deflection to the west of the return equatorward flow near the surface
produces the persistent tropical easterlies known as the trade winds.
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Figure 2.14 Annual mean balance between average net shortwave solar and longwave terrestrial radiation as
a function of latitude. Reproduced with permission from Pidwirny (2006).
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Poleward of 30�, the movement of air masses is considerably modified by the
Earth’s rotation as the Coriolis force becomes stronger. The Coriolis force imposes a
strong circumpolar flow, so that air travels zonally around the Earth on a timescale of
weeks. The mid-latitude troposphere is strongly baroclinic, resulting in dynamical
instabilities that spawnmid-latitude cyclones (Section 2.8). In the extratropics, most of
the meridional heat exchange takes place by wave systems manifested by traveling
weather disturbances (cyclones, anticyclones, and associated fronts between warm
and cold air masses). The polar regions are characterized by cold and dry air with small
weather disturbances and rare precipitation. Meridional mixing of air within a hemi-
sphere takes place on a timescale of about three months, while mixing of air between
the two hemispheres across the ITCZ takes place on a timescale of one year. The ITCZ
is a major dynamical barrier for atmospheric mixing because of the weak thermal
contrast across the Equator. Many long-lived gases such as CO2 are well-mixed within
each hemisphere, but feature an interhemispheric gradient maintained by the ITCZ.

The general circulation of the atmosphere is further influenced by the geographic
distribution of continents and oceans. In the tropics, differences in surface heating
between warm continents and cooler oceans drive zonal asymmetries in the circula-
tion. Deep tropical convection takes place over the continents and the western
equatorial Pacific (the warm pool, where sea surface temperatures are the highest
in the world). Subsidence prevails over most of the tropical oceans, particularly
where ocean currents maintain relatively cold surface temperatures (East Pacific,
South Atlantic). Seasonal variations in land heating and cooling produce monsoon
circulations, as illustrated in Figure 2.16 for South Asia. During winter the cold
continental surface air flows toward the ocean, producing dry conditions over land.

(a)
(b)

Figure 2.15 General circulation of the atmosphere. (a): Expected circulation in the absence of planetary rotation.
(b): Circulation of the rotating troposphere. The Hadley cells feature rising air in the tropics and sinking air in
the subtropics. The higher-latitude meridional cells are mainly conceptual as most of the meridional
transport in the extratropics is driven by waves traveling longitudinally. From NASA, courtesy Barbara
Summey, NASA Goddard VisAnalysis Laboratory; and from Lutgens and Tarbuck (2000).
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During summer the moist ocean air flows over the heated land, resulting in heavy
convective precipitation. Yet another effect of land on the general circulation is
friction and topography. Thus the extensive land masses at northern mid-latitudes
promote weather disturbances and meridional flow, facilitating the transport of heat
to the Arctic.
Figure 2.17 illustrates the mean climatological distributions of surface pressure

and winds in January and July. The seasonal shift of the ITCZ is apparent. Easterly
trade winds prevail on both sides of the ITCZ. The subtropics are characterized by
semi-permanent anti-cyclonic conditions that reflect the downwelling branches of
the Hadley cells. Mid-latitude westerlies develop on the poleward side of these
subtropical anti-cyclones and are far more steady in the southern hemisphere than
in the north due to lack of ocean–land contrast. Meridional pressure gradients (shown
by the isobars) are generally stronger in winter than summer, due to the greater
meridional heating gradients, and this results in stronger winds.
Figure 2.18 shows global climatological distributions of precipitation in January

and July. The band of intense precipitation near the Equator corresponds to the ITCZ.
Seasonal shift in the ITCZ drives the wet and dry seasons in the tropics; in January
the northern tropics are dry while the southern tropics are wet, and this is reversed in
July. Subtropics are dry while mid-latitudes generally experience moderate precipi-
tation in all seasons. Prominent storm tracks off the east coasts of Asia and North
America play an important role in transport from northern mid-latitudes to the Arctic.
Different modes of interannual climatic variability are superimposed on this mean

climatological description of the atmospheric circulation. The dominant mode in the
tropics is the El Niño–Southern Oscillation (ENSO), a pattern of reversing ocean
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Figure 2.16 Surface circulation in Southeast Asia during northern winter (a) and summer (b), featuring the
seasonal monsoons. The seasonal shift in the ITCZ is a consequence of the monsoon. Reproduced
with permission from Lutgens et al. (2013), Copyright © Pearson Education, Inc.
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temperatures between the eastern and western tropical Pacific that takes place every
3–8 years (Figure 2.19). During the normal cold phase of ENSO (also called La
Niña), sea surface temperatures are cold in the eastern Pacific and warm in the
western Pacific. There results strong subsidence and dry conditions in the east, and
deep convection and wet conditions in the west. During the warm phase (also called
El Niño), warm waters move from the western to the central and eastern Pacific,
modifying considerably the tropical circulation with droughts over Oceania,

(a)

(b)

Figure 2.17 Climatological mean surface pressures (hPa) and winds in January (a) and July (b). The location of the
intertropical convergence zone (ITCZ) is indicated. Major centers of high (H) and low (L) pressure are
also shown.Reproduced from Lutgens and Tarbuck (2000).
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Figure 2.18 Precipitation rates [mm day–1] in January (a) and in July (b), averaged between 1988 and 1996, based on
data from the Global Precipitation Climatology Project (GPCP). From Xie and Arkin (1997), copyright ©
American Meteorological Society, used with permission.

(a)

(b)

Figure 2.19 El Niño–Southern Oscillation (ENSO) mode of climatic variability, featuring La Niña conditions (cold phase,
(a)) and El Niño conditions (warm phase, (b)). Reproduced with permission from Cunningham and
Cunningham (2010).
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precipitation over eastern South America, and weakened trade winds. Beyond the
Pacific, ENSO affects the climate of other regions of the world through complex
teleconnections.

At higher latitudes, the major mode of interannual climate variability is the Arctic
Oscillation (AO), characterized by changing meridional pressure gradients between
northern mid-latitudes and the Arctic. The North Atlantic Oscillation (NAO) is a
regional manifestation of the AO (Figure 2.20) and its phase is measured by the
pressure difference between the Azores high and the Icelandic low (positive phase
when the pressure difference is large, negative phase when it is small). In the positive
phase of the AO/NAO, high pressure at northern mid-latitudes pushes the jet stream
northward, maintains strong surface westerlies, and restricts exchange of air with the
Arctic. This leads to relatively warm and wet conditions in northern Europe and
Alaska, and dry conditions in the eastern USA and Mediterranean region. In the
negative phase of the AO/NAO there is more meandering of the jet stream and cold
Arctic air can penetrate deep into northern mid-latitudes.

2.10 Planetary Boundary Layer

The planetary boundary layer (PBL) is the layer of the atmosphere that interacts with
the surface on a timescale of a day or less (Figure 2.21). It typically extends up to
1–3 km above the surface. The air above the PBL is called the free troposphere. The
free troposphere has a general slow sinking motion, balancing the few locations
where deep convection or frontal lifting injects PBL air to high altitudes. The

NAO positive modeNAO negative mode

Jet stream

Jet stream

“Blocking”

Figure 2.20 Schematic representation of the main dynamical patterns over the North Atlantic during negative and
positive phases of the North Atlantic Oscillation. From the National Oceanic and Atmospheric Administration
NOAA (www.climate.gov).
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compressional heating from this sinking air produces a semi-permanent subsidence
inversion (Section 2.6.2) that caps the PBL and sharply restricts mixing between the
PBL and the free troposphere.
PBL dynamics plays an important role in determining the fate of chemicals emitted at

the surface and the resulting concentrations in surface air. Verticalmixing driven by solar
heating of the surface can drive large diurnal cycles of concentrations within the PBL.
Venting of the PBL to the free troposphere is critical for global dispersal of chemicals.
Vertical mixing within the PBL is driven by turbulent eddies. These eddies are

generated at the surface by the action of the wind on rough surface elements
(mechanical turbulence) and by buoyancy (buoyant turbulence). Over land, sensible
heating of the surface during the day generates buoyant plumes that may rise up to
the base of the subsidence inversion. Conversely, nighttime cooling of the land
surface produces stable conditions that dampen the mechanical turbulence. Over
the oceans, the large heat capacity of the ocean minimizes this diurnal cycle of
heating and cooling and the PBL remains neutral throughout the day.
Figure 2.21 shows the diurnal evolution of the PBL structure over land. At night,

mechanical turbulence usually maintains a shallow, well-mixed layer typically
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Figure 2.21 Diurnal evolution of the planetary boundary layer (PBL) over land (a) and implications for chemical
concentrations in surface air (b).
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10–100 m deep called the surface layer. Above that altitude, the atmosphere is stable
because of surface cooling; this is the residual layer. After sunrise, surface heating
erodes the stable residual layer from below, producing an unstable mixed layer
that grows over the morning hours to eventually reach the full depth of the PBL.
Clouds may develop in the upper part; these are the familiar fair-weather cumuli
and the corresponding layer is called the convective cloud layer (CCL). The CCL
tends to have moderate stability due to the latent heat release from cloud condensa-
tion, resulting in some separation from the mixed layer. The depth of the mixed
layer (excluding any CCL) is called the mixing depth. Suppression of surface
heating at sunset causes rapid collapse of the mixed layer and the nighttime condi-
tions return.

The diurnal variation of PBL structure has important implications for the diurnal
evolution of chemical concentrations in surface air, as shown in Figure 2.21. An inert
chemical continuously emitted at the surface will accumulate in surface air over the
course of the night, leading to high concentrations. During morning the concen-
tration will decrease as growth of the mixed layer causes dilution. By contrast, a
chemical originating in the free troposphere and removed by deposition to the
surface will be depleted in surface air over the course of the night, and replenished
during morning by entrainment from aloft as the mixed layer grows.

Over the ocean there is no diurnal cycle of surface heating and cooling, and neutral
conditions prevail where vertical mixing is driven by mechanical turbulence. The
mixed layer is called the marine boundary layer (MBL) and typically extends to
about 1 km altitude with no diurnal variation. It is often capped by a shallow cloud
layer, either cumulus clouds or stratus, capped in turn by the subsidence inversion.

Entrainment of air from the free troposphere into the PBL and ventilation of PBL
air to the free troposphere are important processes for atmospheric chemistry,
connecting the surface to the global atmosphere. Ventilation generally takes place
by weather events, such as frontal systems or deep convective updrafts that force
boundary layer air to the free troposphere. Entrainment, by contrast, generally takes
place as a slow, steady process involving the large-scale sinking of the atmosphere to
compensate for the convective updrafts. Typical downward entrainment velocities at
the top of the PBL are of the order of 0.1–1 cm s–1, and this replaces the PBL air on a
timescale of days to a week.

2.11 Middle Atmosphere Dynamics

Vertical motions in the stratosphere are strongly suppressed by the temperature
inversion resulting from absorption of solar UV radiation by ozone. A first approxi-
mation of the thermal structure of the stratosphere can be made by assuming
radiative equilibrium conditions, where the heating rate from UV absorption by
ozone and O2 is balanced by the cooling rate from emission of IR terrestrial radiation
by CO2, water vapor, and ozone. The resulting temperatures increase with latitude
from the winter to the summer pole (Figure 2.11). Based on the thermal wind
equation, the zonal wind is easterly in the summer hemisphere and westerly in the
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winter hemisphere. The polar stratosphere in winter features strong zonal winds that
form a polar vortex, isolating it from lower latitudes.
Departure from radiative equilibrium conditions is induced by the dissipation of

upward propagating waves generated at the Earth’s surface. Wave breaking occurs
when the amplitude of the wave becomes sufficiently large to render the disturbance
unstable. This dissipation process tends to mix the medium through which the wave
is propagating. Further, the momentum deposited by these waves as they break
produces a torque that tends to decelerate the zonal wind and generate a meridional
circulation. The resulting mean meridional temperature distribution arises from a
balance between the net radiative heating/cooling described previously and the
adiabatic heating/cooling associated by the compression/expansion of air produced
by the wave-generated vertical motions.
Different types of waves are observed in the middle atmosphere. Rossby waves are

planetary-scale disturbances in the zonal atmospheric flow that owe their existence to
the latitudinal variation of the Coriolis effect. A familiar example is the meandering
jet stream. These waves are generated by baroclinic instability and the forcing action
of zonally asymmetric heating and topography. Upward wave propagation to the
middle atmosphere is possible only when the wind is westerly (during winter) and
for the longest waves with wavenumber 1–3 (“wavenumber” is the number of
complete wave cycles along the longitude around the entire Earth). Shorter Rossby
waves are confined to the troposphere, where they contribute to the formation of
weather systems. Rossby wave breaking in the stratosphere takes place in a relatively
large “surf zone” characterized by intense quasi-horizontal mixing of chemical
species. The mean circulation produced by dissipation of the waves in the winter
hemisphere is directed from the Equator to the pole (Figure 2.22) and is called the
Brewer–Dobson circulation since it was inferred from observations of water vapor
(by Alan Brewer) and of ozone (by Gordon Dobson) in the lower stratosphere.
Occasional large amplification of Rossby waves in the northern hemisphere disrupts
the stratospheric circulation and causes sudden warming events in the Arctic strato-
sphere that disrupt the polar vortex.
The change of sign in the Coriolis parameter at the Equator leads to a specific class

of planetary-scale waves. Kelvin waves propagate eastward in the equatorial zone,
which acts as a waveguide, and are trapped in the vicinity of the Equator. Their
vertical wavelength is typically 10 km and their wavenumber 1 to 3. Mixed Rossby–
gravity waves are also trapped waves, but with vertical wavelengths of 4–8 km in the
vertical and wavenumber 3–5. They propagate westward.
Gravity waves are generated by local disturbances in the flow over mountain ranges

or in relation toweather (frontal systems, convective storms). As thesewaves propagate
upwards into progressively more rarified air, their amplitude increases until nonlinear
effects cause thewaves to break and to transfermomentum to themean flow, predomin-
antly in the mesosphere. This drives the mesosphere away from radiative equilibrium
and generates a meridional flow directed from the summer to the winter hemisphere.
The associated upwelling in the summer high latitudes leads to strong adiabatic cooling
and explains the presence of a very cold summer mesopause (Figure 2.11).
Atmospheric tides are global-scale waves produced by the release of latent heat in

the troposphere and the absorption of solar radiation by ozone and water vapor. They
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propagate upwards and break primarily in the lower thermosphere. Migrating tides
are Sun-synchronous and so propagate westward with the apparent motion of the
Sun. Since solar forcing is nearly a square wave that is rich in harmonics, waves with
periods shorter than 24 hours (e.g., semi-diurnal wave) also are observed. Non-
migrating tides produced by the release of latent heat in the troposphere do not
follow the motion of the Sun. They may be stationary, or propagate westward or
eastward.

Oscillations in the tropical zonal winds, including the quasi-biennial oscillation
(QBO with a period of 22 to 34 months) in the lower stratosphere and the semi-
annual oscillation (SAO) near the stratopause, are the result of interactions between
dissipating waves and the mean flow. The QBO is the major cause of interannual
variance of the zonal wind in the equatorial stratosphere. The amplitude of the
easterly phase is about twice as strong as that of the westerly phase. The momentum
source that produces the oscillation in the zonal wind is provided by the dissipation
of Kelvin and mixed Rossby–gravity waves. The Arctic Oscillation (AO), an oscil-
lation in temperature and pressure between the Arctic and mid-latitudes discussed in
Section 2.9, extends to the stratosphere, where it affects the strength of the polar
vortex with associated effects on stratospheric ozone.
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Figure 2.22 Schematic representation of the upward propagation of planetary waves in the winter middle atmosphere
(thick black lines) and of gravity waves (thin black lines). The meridional circulation resulting from the
dissipation of these waves in the stratosphere and mesosphere is shown by the large arrow. The circulation
is directed from the tropics to the pole in the winter stratosphere and from the summer to the winter
pole in the mesosphere. Radiative equilibrium prevails in the summer stratosphere. The position of the jets
near the tropopause (dotted line) is shown. Personal communication from Richard Rood, University of
Michigan.
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Observations of long-lived tracers in the stratosphere have highlighted the exist-
ence of dynamical barriers (Figure 2.23) hindering the exchange of air between
different atmospheric regions. The mid-latitude stratosphere is fairly isolated from
tropical influences through a barrier against meridional transport situated at 20�–30�

latitude. The resulting upward motion confined to the tropical stratosphere is called
the tropical pipe. The polar vortex is another dynamical barrier that separates the
polar from the mid-latitude stratosphere. The photochemically produced Antarctic
ozone hole is sustained as long as the polar vortex remains present, but disappears
when the vortex breaks down and strong mixing of air masses takes place.
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3 Chemical Processes in the Atmosphere

3.1 Introduction

Atmospheric chemistry models simulate the concentrations of chemical species as
determined by emissions, transport, chemical production and loss, and deposition.
Chemical production and loss are computed for an ensemble of reactions described
by kinetic equations and often involve coupling between species. The ensemble of
reactions is the chemical mechanism of the model. The purpose of this chapter is to
give a primer of important atmospheric chemical processes as a basis for understand-
ing the construction of atmospheric chemistry models. Model equations will be
introduced in Chapter 4 and a more in-depth formulation of the kinetic equations
will be presented in Chapter 5. Numerical methods for solving complex chemical
mechanisms (chemical solvers) are presented in Chapter 6. Emission processes,
including global emission budgets for major species, are described in Chapter 9.
A sample chemical mechanism is given in Appendix D.
The major components of the atmosphere are molecular nitrogen (N2), molecular

oxygen (O2), argon (Ar), and water vapor (H2O). Argon has no chemical reactivity, but
N2, O2, and H2O react in the atmosphere to drive chemical processes. Many other
species present in trace amounts also contribute to drive chemical processes as described
in this chapter. A species directly emitted to the atmosphere is called primary, while a
species chemically produced within the atmosphere is called secondary.
Fast chemistry generally involves radical-assisted reaction chains. Radicals are

chemical species with unfilled electron orbitals. An orbital can contain two electrons,
and having filled orbitals lowers the internal energy of an atom or molecule. An atom
or molecule with an odd number of electrons has high reactivity due to its unfilled
orbital. Reaction of a radical (odd number of electrons) with a non-radical (even
number of electrons) necessarily produces a radical (since the sum of electrons in the
product species is odd), thus propagating a chain reaction. Radicals originate in the
atmosphere from cleavage of non-radicals, usually by solar radiation (photolysis).
Energetic input from solar radiation is thus critical to driving the chemistry of the
atmosphere. The ensemble of chemical reactions enabled by solar radiation is called
photochemistry, and chemical mechanisms in models are often called photochemical
mechanisms.
Our intent here is to give a compact summary of major processes relevant to

atmospheric chemistry. Detailed presentations of chemical and aerosol processes
in the atmosphere can be found, for example, in the books by Warneck (1999),
Brasseur et al. (1999, 2003), Finlayson-Pitts and Pitts (2000), and Seinfeld and
Pandis (2006).
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3.2 Oxygen Species and Stratospheric Ozone

Molecular oxygen is photolyzed in the atmosphere by solar UV radiation:

O2 þ hv λ < 242nmð Þ ! Oþ O (3.1)

where the reaction threshold of 242 nm corresponds to the minimum energy required
to dissociate the molecule. The oxygen atoms combine with O2 by a three-body
reaction to produce ozone (O3):

Oþ O2 þM ! O3 þM (3.2)

The third body M is an inert molecule such as N2 or O2 that collides with the
excited O3* product of the collision of O and O2 and takes up its internal energy, thus
allowing stabilization of O3* to ground-state O3. The internal energy of the excited
M* eventually dissipates as heat. A third body is needed for any reaction where two
reactants combine to form a single product. It is standard practice to include M in the
expression of a three-body reaction as it may play a limiting role in the kinetics. See
Chapter 5 for discussion of the kinetics of three-body reactions.

Reaction (3.1) is the main source of ozone in the stratosphere. Solar radiation of
wavelength shorter than 242 nm is efficiently absorbed by both O2 and O3 as it
propagates down through the atmosphere, so the rate of (3.1) becomes negligible
below 20 km altitude. Production of ozone in the troposphere takes place by a
different mechanism, described in Section 3.6.

Ozone is loosely bound and is photolyzed rapidly in daytime:

O3 þ hv λ < 1180nmð Þ ! Oþ O2 (3.3)

The principal bands for absorption of solar radiation by ozone are the Hartley
(200–290 nm), Huggins (310–400 nm) and Chappuis (400–850 nm) bands. Radi-
ation of wavelengths longer than 320 nm produces the O atom in its electronically
ground state (3P). Radiation of shorter wavelengths produces the O atom in its
electronically excited 1D state (Figure 3.1):

O3 þ hv λ < 320nmð Þ ! O 1D
� �þ O2 (3.4)

Radiation at wavelengths shorter than 234 nm can produce an even more excited
state of the O atom (1S). Standard chemical notation omits mention of the spectro-
scopic state when the species is in its ground state (here O(3P) � O) and retains it
when the species is in an excited state (O(1D), O(1S)). Deactivation of excited

Excited atoms 104.9O(1D)

O(3P)

O3

O2

DH, (298 K)
kcal mol–1

59.6

34.1

0

Increasing
stability

Ground state atoms

Ozone

Oxygen molecules

Figure 3.1 Enthalpy of formation [kcal mol–1] of gas-phase oxygen species.
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species occurs by collision with other molecules, a very rapid process in the lower
atmosphere. The O(1D) atom is thus deactivated to the ground state:

O 1D
� �þM ! OþM (3.5)

A small fraction of O(1D) can also react with non-radical species to produce radicals and
initiate radical-assisted reaction chains. This will be discussed in Sections 3.3 and 3.4.
The ground-state oxygen atom produced by (3.3) recombines with O2 by (3.2) to

regenerate ozone. It can also react with ozone to form two O2 molecules:

Oþ O3 ! O2 þ O2 (3.6)

Reactions (3.1), (3.2), (3.3), and (3.6) comprise the Chapman mechanism for
stratospheric ozone, originally proposed by Sydney Chapman in 1930. Reactions
(3.2) and (3.3) interconvert O and ozone. The lifetime of O against loss by (3.2) is
less than a second in the stratosphere and troposphere, so that O and ozone are in
photochemical equilibrium during daytime with [O]/[O3] � 1. It follows that
reaction (3.3) is not a true sink for ozone because O atoms will immediately return
ozone by (3.2). Nor is (3.2) a true source of ozone if the reactant O atoms originated
from ozone photolysis by (3.3). Ozone concentration is thus actually controlled
by production in (3.1) and loss through (3.6). Accounting is aided by defining an
“odd oxygen” family Ox � Oþ O3ð Þ produced by (3.1), lost by (3.6), and
unaffected by (3.2) and (3.3). Since[O]/[O3] � 1, the budget of ozone is actually
that of Ox. The general concept of chemical families is important for atmospheric
chemistry modeling and is described further in Box 3.1.

Box 3.1 Chemical Families

The concept of “chemical family” is central to atmospheric chemistry. It enables convenient
accounting of the budgets of species cycling rapidly with each other. It is nothing more than an
accounting device; it does not imply any similarity in the chemical properties of different members
of the family. Consider an ensemble of species A1; . . . Anf g cycling with each other by chemical
reactions. If this cycling is sufficiently fast, then a chemical equilibrium is established defining
concentration ratios Ai½ �= Aj

� �
. Consider now a chemical family Ax representing the ensemble of

these species: Ax � A1 þ . . .þ An such that Ax½ � ¼ Pn
i¼1

Ai½ �. Writing Ai½ � ¼ Ax½ � Ai½ �= Ax½ �ð Þ,
we see that the budget of Ai can be defined from the budget of the family Ax and the chemical
partitioning Ai½ �= Ax½ � within the family. In the case where Ai is the dominant member of the family
such that Ai½ �= Ax½ � � 1, the budget of Ai is solely defined by that of Ax. The chemical family is a
useful accounting tool if the lifetime of Ax is longer than that of any individual family member, so
that Ax is a more conserved quantity in the atmosphere. It is most useful when the family members
are in equilibrium so that chemical partitioning within the family can be easily derived.
In the case of the Chapman mechanism described in Section 3.2, there is rapid cycling between

O and ozone so that it is useful to group them into a chemical family. That chemical family is
commonly called odd oxygen: Ox � O3 þ O. The terminology “odd” simply refers to ozone and
O having an odd number of O atoms. Since O½ �= O3½ � <<1, the ozone budget is well approximated
by the Ox budget. The budget of the O atom is defined by that of Ox together with the
O½ �= Ox½ � � O½ �= O3½ � ratio from chemical equilibrium.
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Following on the above, we can qualitatively explain the distribution of ozone in
the stratosphere in terms of the odd oxygen budget. The source of odd oxygen from
O2 photolysis (3.1) peaks at about 40 km altitude, reflecting opposite trends in O2

number density, which decreases with altitude, and the UV photon flux, which
increases with altitude. The maximum ozone number density occurs at a somewhat
lower altitude (Figure 3.2) because the sink of odd oxygen from reaction (3.6)
increases with altitude as the O atom concentration increases (the O loss rate from
(3.2) has a quadratic pressure dependence). The lifetime of odd oxygen in the upper
stratosphere is less than a day, sufficiently short that the ozone concentration is
determined by the local chemical steady state between production and loss of odd
oxygen. Below 30 km, the lifetime of odd oxygen is sufficiently long that the
distribution of ozone is affected by transport on a global scale. Coupling of chemistry
and transport results in a minimum ozone column in the tropical stratosphere
(Figure 3.3), as the Brewer–Dobson circulation carries low-ozone air from the
troposphere upward (see Figure 2.23). Box 3.2 gives historical milestones in the
development of our knowledge of stratospheric ozone.

3.3 Hydrogen Oxide Radicals

The importance of hydrogen oxide radicals for atmospheric chemistry was first
recognized in studies of the middle atmosphere in the 1950s. The hydroxy radical
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Figure 3.2 Typical vertical profile of atmospheric ozone measured by ozonesonde. About 90% of total atmospheric
ozone is located in the stratosphere. The origin of the “smog” ozone near the surface is discussed in
Section 3.6. Source: www.esrl.noaa.gov.
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Figure 3.3 Total ozone columns measured by the Global Ozone Monitoring Experiment (GOME) satellite instrument in
June 2002. The column concentration is expressed in Dobson units (DU), where 1 DU is defined as 0.01 mm
of pure ozone at standard conditions of temperature and pressure: 1 DU = 2.69 � 1016 molecules cm–2.

Box 3.2 Historical Milestones in our Understanding of Stratospheric Ozone

The First Steps

• 1839: Christian Friedrich Schönbein (Basel, Switzerland) identifies a particular odor following
electric discharges in air. He calls this “property” ozone from the Greek word οζειν (to smell),
and recognizes that it represents a gas.

• 1845: Jean-Charles de Marignac and Auguste de la Rive (Geneva, Switzerland) suggest that this
gas is produced by a transformation of oxygen.

• 1863: Jean-Louis Soret (Geneva, Switzerland) determines experimentally that ozone is made of
three oxygen atoms.

The First Observations

• 1853: Schönbein detects ozone in the atmosphere.

• 1858: André Houzeau measures atmospheric ozone in Rouen, France.

• 1877–1907: Albert Levy conducts systematic observations of ozone at Parc Montsouris in the
outskirts of Paris.

Laboratory Investigations and Spectroscopic Observations

• Starting in the 1870s, the spectroscopic properties of ozone are investigated and are used to observe
ozone in the atmosphere. Important contributions are due to Alfred Cornu (1878), J. Chappuis (1880),
Walter N. Hartley (1880/1881), William Huggins (1890), A. Fowler and R. J. Strutt (1917), Charles
Fabry and Henri Buisson (1913–1920), Gordon M. B. Dobson (1920s), and F. W. P. Götz (1924).
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Box 3.2
Figure 1

Christian F. Schoenbein, Gordon M. B. Dobson (from the Royal Meteorological Society), Harold
Johnston (courtesy of Denis Galloway, UC Berkeley), Joseph Farman in his office, late 1980s
(courtesy of the British Library).
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OH is produced by reaction of water vapor with the electronically excited oxygen
atom O(1D) originating from photolysis of ozone:

O 1D
� �þH2O ! OHþ OH (3.7)

Box 3.2 (cont.)

• 1920: Fabry and Buisson make the first quantitative observation of the ozone column abundance.

• 1920s: Dobson develops a spectrophotometer that remains one of the most accurate instruments
to measure the ozone column.

• 1929: Götz uses Dobson’s instrument in Spitzbergen to infer the vertical profile of ozone.

Photochemical Theories

• 1930: Sydney Chapman presents the first photochemical theory of ozone formation and
destruction.

• 1950s: Arie Haagen-Smit discovers that urban ozone is formed from the by-products of fuel
combustion.

• 1950: David Bates and Marcel Nicolet show that hydrogen radicals produced by photolysis of
water vapor destroy ozone efficiently in the mesosphere.

• 1964: John Hampson demonstrates the importance of hydrogen radicals for the chemistry of
ozone in the stratosphere.

• 1970: Paul Crutzen shows that the largest ozone destruction mechanism in the stratosphere is
due to a catalytic cycle involving nitrogen oxides, thus reconciling theory and observations of
stratospheric ozone abundances.

• 1971: Harold Johnston suggests that the nitrogen oxides released by a planned fleet of high-
altitude supersonic aircraft could destroy considerable amounts of ozone in the stratosphere.

• 1974: Richard Stolarski and Ralph Cicerone report that a similar cycle with chlorine atoms could
also efficiently destroy ozone. Steven Wofsy shows that bromine atoms could also catalytically
destroy ozone.

• 1974: Mario Molina and Sherwood Rowland establish that the major source of stratospheric
chlorine is provided by industrially manufactured chlorofluorocarbons.

Polar Ozone

• 1985: Joseph Farman and colleagues from the British Antarctic Survey observe very low ozone
columns at the Antarctic station of Halley Bay during the austral spring, confirming earlier
observations by S. Chubachi at the polar station of Syowa.

• 1986: Susan Solomon (NOAA) shows that chlorine activation on the surface of particles in
polar stratospheric clouds explains the presence of a springtime ozone hole in the Antarctic.

• 1987: Luisa and Mario Molina show that formation and photolysis of the ClO dimer can account
for most of the springtime ozone loss in Antarctica.

• 1995: Crutzen, Molina, and Rowland are awarded the Nobel Prize in Chemistry for their
discoveries on the chemistry of ozone.
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Hydroxyl reacts with ozone to produce the hydroperoxy radical HO2, which goes on
to react with ozone and return OH, leading to a catalytic cycle for ozone loss:

O3 þ OH ! HO2 þ O2 (3.8)

O3 þ HO2 ! OHþ 2O2 (3.9)

Hydrogen oxide radicals can also react with the oxygen atom O, producing the
hydrogen atom and leading to additional catalytic cycles for odd oxygen (and hence
ozone) loss. We define the hydrogen oxides radical family as HOx �
Hþ OHþ HO2 and refer to the associated catalytic cycles destroying odd oxygen
as HOx-catalyzed ozone loss.

Hydroxyl is of most interest in atmospheric chemistry for its role as a strong
oxidant. This role came to the fore in the 1970s with the realization that sufficient
solar radiation in the 300–320 nm wavelength region penetrates the troposphere
to produce O(1D). The resulting OH is the main agent for oxidizing reduced gases
emitted from the surface. The most important reduced gases on a global scale are
carbon monoxide (CO) and methane (CH4), which have large emission fluxes.
Oxidation of CO proceeds by:

COþ OH�!O2 CO2 þ HO2 (3.10)

where O2 above the reaction sign indicates a species that participates in the overall
reaction but does not limit the kinetics. In this case, H produced by conversion of CO
to CO2 reacts rapidly with O2 to produce HO2. Oxidation of methane proceeds by:

CH4 þ OH�!O2 CH3O2 þ H2O (3.11)

where CH3O2 is the methylperoxy radical and should be viewed as an additional
component of HOx since it goes on to cycle with the other components. This
chemistry will be discussed in Section 3.5. The atmospheric lifetimes of CO and
methane against oxidation by OH are two months and ten years, respectively.

Conversion between HOx radicals takes place sufficiently rapidly that photochem-
ical equilibrium can be assumed in the daytime (except in the upper mesosphere and
thermosphere, where collisions are infrequent). Production of HOx is mostly by
reaction (3.7). Loss of HOx can take place by various pathways, the dominant one
in the troposphere being the formation of hydrogen peroxide (H2O2):

HO2 þ HO2 þM ! H2O2 þM (3.12)

This loss is terminal if H2O2 is removed by deposition or is converted to water, as by
reaction with OH:

H2O2 þ OH ! HO2 þ H2O (3.13)

However, it is temporary if H2O2 is instead recycled to HOx radicals by photolysis:

H2O2 þ hv ! OHþ OH (3.14)

Thus H2O2 and other peroxides should be viewed as reservoirs for HOx. It can be
convenient to define a hydrogen oxides family HOy � HOxþ peroxides to account
for the exchange between HOx and its reservoirs.
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3.4 Nitrogen Oxide Radicals

Nitrogen oxide radicals NOx � NOþ NO2ð Þ are of central importance for atmos-
pheric chemistry. They are emitted to the troposphere by combustion, lightning, and
microbial processes in soils. The largest source is combustion. A typical combustor
mixes fuel and air at very high flame temperatures (about 2000 K). At these
temperatures, O2 from the air thermally dissociates to O atoms, which react with
N2 from the air to drive a catalytic cycle for formation of nitric oxide (NO) known as
the Zel’dovich mechanism:

N2 þ O ! NOþ N (3.15)

Nþ O2 ! NOþ O (3.16)

The NOx generated in this manner is called thermal NOx. The Zel’dovich mechan-
ism is not efficient at low flame temperatures such as from open fires, but production
of NO still takes place in those cases by oxidation of nitrogen present in the fuel. The
NOx generated in that manner is called fuel NOx.
In the stratosphere, the main source of NOx is the oxidation by O(1D) of nitrous

oxide (N2O), a long-lived gas emitted by microbial activity in soils:

O 1D
� �þ N2O ! NO þ NO (3.17)

A dominant sink for NO in both the troposphere and stratosphere is reaction with
ozone to form nitrogen dioxide (NO2):

NOþ O3 ! NO2 þ O2 (3.18)

In the daytime, NO2 is photolyzed on a timescale of a minute to return NO:

NO2 þ hv λ < 400 nmð Þ�!O2 NOþ O3 (3.19)

The reaction cycle (3.18) + (3.19) has no effect on atmospheric composition; it is
called a null cycle. However, it forces photochemical equilibrium between NO and
NO2 in the daytime.
Alternate reaction cycles for NO and NO2 lead to production or loss of ozone. In

the stratosphere, NO2 can be converted back to NO by reaction with atomic oxygen:

NO2 þ O ! NOþ O2 (3.20)

The reaction cycle (3.18) + (3.20) is a major catalytic sink for stratospheric ozone.
The rate of ozone destruction is set by the rate of reaction (3.20), which competes
with (3.19). Reaction (3.20) is called the rate-limiting step for ozone loss. It is
unimportant in the troposphere, where oxygen atom concentrations are low.
In the troposphere, however, ozone concentrations are sufficiently low that peroxy
radicals can compete for reaction with NO. The reaction

HO2 þ NO ! OHþ NO2 (3.21)

followed by (3.19) provides an important source of tropospheric ozone. The rate of
ozone production is determined by the rate of (3.21) as the rate-limiting step. Similar

62 Chemical Processes in the Atmosphere

004
22 Jun 2017 at 16:46:00, subject to the Cambridge Core terms of use, available



mechanisms in which NO reacts with methyl peroxy (CH3O2) and other organic
peroxy radicals (RO2) lead to additional ozone production. This is discussed in
Section 3.5.

Loss of NOx takes place on a timescale of one day. It involves primarily the
conversion of NO2 to nitric acid (HNO3). In the daytime, this conversion is by
oxidation by OH:

NO2 þ OHþM ! HNO3 þM (3.22)

At night it takes place by oxidation by ozone, forming dinitrogen pentoxide (N2O5)
that hydrolyzes to HNO3 in aqueous aerosol particles:

NO2 þ O3 ! NO3 þ O2 (3.23)

NO2 þ NO3 þM ! N2O5 þM (3.24)

N2O5 þ H2O����!aerosol
2HNO3 (3.25)

In the daytime, the nitrate radical (NO3) has a lifetime of less than a minute against
photolysis back to NO2. Thus loss of NOx by (3.23)–(3.25) can operate only at night.

In the troposphere, the dominant sink of HNO3 is deposition, including scaven-
ging by precipitation (wet deposition) and direct reaction at the surface (dry depos-
ition). In the stratosphere, however, deposition does not take place and HNO3 is
instead recycled to NOx on a timescale of weeks through photolysis and reaction
with OH:

HNO3 þ hv ! NO2 þ OH (3.26)

HNO3 þ OH ! NO3 þ H2O (3.27)

NO3 þ hv ! NO2 þ O (3.28)

Thus HNO3 serves as a reservoir for NOx and the concentration of NOx is deter-
mined by photochemical equilibrium with HNO3. Similarly to HOx and HOy, it is
useful to define a chemical family NOy as the sum of NOx and its reservoirs. Loss of
NOy from the stratosphere is mainly by transport to the troposphere followed by
HNO3 deposition.

The short lifetime of NOx in the troposphere, combined with the rapid removal of
HNO3 by deposition, results in strong concentration gradients between combustion
source regions and the remote oceans (Figure 3.4). However, a low background NOx

concentration is sustained in the remote troposphere and plays a critical role for
ozone and OH generation following (3.21). A major source of this background NOx

is the long-range transport and decomposition of the peroxyacetylnitrate reservoir
(PAN, formula CH3C Oð ÞO2NO2). PAN is produced by reaction of NO2 with
peroxyacetyl radicals CH3C Oð ÞO2 originating from the oxidation of various organic
species (Section 3.5):

CH3C Oð ÞO2þNO2 þM Ð CH3C Oð ÞO2NO2 þM (3.29)

The main sink of PAN is thermal decomposition to the original reactants. The
lifetime of PAN is one hour at 295 K but months at 250 K. PAN produced in NOx

source regions and lifted to high altitudes can be transported on global scales,
eventually decomposing to deliver NOx to the remote troposphere. Other organic
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nitrates can be similarly produced from the oxidation of organic species in the
presence of NOx, and this is discussed in Section 3.5. PAN is the most important
because of its high yield and its wide range of atmospheric lifetimes enabling both
long-range transport in cold air masses and quick release of NOx when these air
masses warm up (as from subsidence).

3.5 Volatile Organic Compounds and Carbon Monoxide

Atmospheric chemists refer to the ensemble of organic species present in the gas
phase as volatile organic compounds (VOCs). VOCs are emitted by biogenic,
combustion, and industrial processes, mainly as hydrocarbons (CxHy). Atmospheric
oxidation of hydrocarbons produces a cascade of oxygenated VOC species eventu-
ally leading to CO and CO2. The longest-lived VOC is methane, with a lifetime of
ten years against oxidation by OH. Other VOCs have considerably shorter lifetimes.
Isoprene, the dominant VOC emitted by vegetation, has a lifetime of only about one
hour during summer daytime. Thus the VOCs are largely confined to the tropo-
sphere, and the short-lived non-methane VOCs influence mostly their region of
emission. VOC chemistry involves a succession of steps as carbon is oxidized from
its most reduced state –4 (hydrocarbons) to its most oxidized state +4 (CO2). This
chemistry is responsible for much of the complexity in chemical mechanisms of the
troposphere. Only general rules will be presented here. Box 3.3 gives nomenclature
for major VOCs.
The main sink for most VOCs is oxidation by OH. Additional oxidants including

ozone, NO3, and halogen atoms can be important for some species. Photolysis is an

Figure 3.4 Global annual mean distribution of the tropospheric NO2 column [10
16 molecules cm–2] observed from

2005 to 2008 by the Ozone Monitoring Instrument (OMI) on the National Aeronautics and Space
Administration (NASA) Aura satellite. Source: Bas Mijling, Folkert Boersma, and Ronald van der A (KNMI).
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Box 3.3 Nomenclature of Major Atmospheric VOCs (Common Names in Parentheses)

Alkanes (CnH2n+2)
CH4 methane
C2H6 or CH3-CH3 ethane
C3H8 or CH3-CH2-CH3 propane
C4H10 (2 isomers) butane
C5H12 (3 isomers) pentane

Alkenes (CnH2n)
C2H4 or CH2=CH2 ethene (ethylene)
C3H6 or CH2=CHCH3 propene

Alkynes (CnH2n–2)
C2H2 or CH�CH ethyne (acetylene)

Aromatics (benzene ring)
C6H6 benzene
C6H5CH3 methylbenzene (toluene)
C6H4(CH3)2 (3 isomers) dimethylbenzene (xylene)

Dienes (two C=C bonds)
C5H8 or CH2=C(CH3)CH=CH2 2-methyl-1,3-butadiene (isoprene)

Terpenes (multiple isoprene units)
C10H16 (many isomers) monoterpenes (α-pinene, β-pinene. . .)
C15H24 (many isomers) sesquiterpenes (β-caryophyllene, α-humulene. . .)

Alcohols (hydroxy function –OH)
CH3OH methanol
CH3CH2OH ethanol

Aldehydes (terminal carbonyl function –CHO)
CH2O methanal (formaldehyde)
CH3CHO ethanal (acetaldehyde)

Ketones (internal carbonyl function –C(O)–)
CH3COCH3 propanone (acetone)
CH3COCH2CH3 butanone (methylethylketone, MEK)

Dicarbonyls (two carbonyl functions)
CHOCHO glyoxal
CH3C(O)CHO methylglyoxal

Carboxylic acids (carboxylic function –C(O)OH)
HCOOH methanoic acid (formic acid)
CH3COOH ethanoic acid (acetic acid)
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additional sink for carbonyl and peroxide species. VOCs with relatively low vapor
pressures (called semivolatile) can partition into the aerosol and cloud phases with
subsequent removal by deposition. They can also directly deposit to surfaces.
Oxidation of VOCs by OH can take place by abstraction of an H atom, as in

the case of methane with (3.11), or by addition at an unsaturated bond as in
ethylene:

CH2 ¼ CH2 þ OH�!O2 CH2 OHð ÞCH2OO (3.30)

In both cases the oxidation produces an organic radical, R, that subsequently adds
oxygen to produce an organic peroxy radical RO2. The RO2 radicals react with NO in
a manner analogous to HO2 in (3.21):

RO2 þ NO ! ROþ NO2 (3.31)

This produces ozone from subsequent photolysis of NO2 as discussed in Section 3.4.
When NOx concentrations are low, RO2 radicals can react instead with HO2 to form
organic peroxides:

RO2 þ HO2 ! ROOHþ O2 (3.32)

This does not produce ozone and instead provides a sink for HOx radicals, analogous
to the formation of H2O2 from the self-reaction of HO2 radicals as given by (3.12).
Additional minor sinks for RO2 radicals include permutation reactions with other
RO2 radicals and isomerization. An atmosphere where RO2 radicals react dominantly
with NO is said to be in the high-NOx regime; oxidation of VOCs in that regime is a
source of ozone. An atmosphere where RO2 radicals do not react dominantly with
NO is said to be in the low-NOx regime; VOC oxidation in that regime tends to
scavenge HOx radicals.
The oxy radicals RO produced by (3.31) can be oxidized by O2, decompose, or

isomerize. The organic peroxides ROOH produced by (3.32) can be oxidized by OH
or photolyze. These reactions generally produce carbonyl species including alde-
hydes and ketones (Box 3.3). The carbonyls further react with OH or photolyze,
leading to production of multifunctional compounds and to breakage of chains
producing simpler compounds. Successive oxidation steps ultimately lead to CO
and on to CO2, where carbon is in its highest oxidation state. Figure 3.5 gives a
general schematic of the oxidation cascade.

Box 3.3 (cont.)

Organic peroxides (peroxide function –OO–)
CH3OOH methylhydroperoxide

Organic nitrates (nitrate function –ONO2)
CH3ONO2 methylnitrate

Peroxyacyl nitrates (peroxyacyl function –C(O)OONO2)
CH3C(O)OONO2 nitroethaneperoxoate (peroxyacetylnitrate, PAN)
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We described in Section 3.4 the formation of PAN by reaction (3.29) as a reservoir
for NOx in the troposphere. More generally, RO2 radicals can react with NO2 to form
peroxynitrates,

RO2 þ NO2 þM Ð RO2NO2 þM (3.33)

but most of these peroxynitrates have lifetimes of less than a minute against thermal
decomposition and therefore are not effective NOx reservoirs. Peroxyacylnitrates RC
(O)OONO2 are an exception and PAN is the most abundant of these peroxyacylni-
trates. The peroxyacetyl radical CH3C(O)OO that serves as precursor of PAN
originates mainly from oxidation of acetaldehyde and from photolysis of acetone
and methylglyoxal:

CH3CHOþ OH�!O2 CH3C Oð ÞOOþ H2O (3.34)

CH3C Oð ÞCH3 þ hv�!O2 CH3C Oð ÞOOþ CH3 (3.35)

CH3C Oð ÞCHOþ hv�!O2 CH3C Oð ÞOOþ CHO (3.36)

Another class of organic nitrates is produced as a minor branch in the oxidation of
RO2 by NO:

RO2 þ NOþM ! RONO2 þM (3.37)

These tend to be much more stable than the peroxynitrates. They may undergo
further oxidation by OH, photolysis, fractionation into aerosol, or deposition. The
organic nitrate yield by (3.37) in competition with (3.31) generally increases with the
size of R. Organic nitrate formation can be a significant sink for NOx in regions with
large biogenic VOC emissions.

Generalized oxidation
sequence of hydrocarbons

RH

NO

NO

RORONO2

R’CHO

ROOH

OH, O2, NO3

OH

OHO2, heat
OH

CO2+ H2O

hv hv

ROO·
HO2

O2

OH, O3, NO3

R·

Figure 3.5 Generic oxidation scheme for a hydrocarbon RH.
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Carbon monoxide is a general intermediate in the oxidation of VOCs to CO2. It is
also directly emitted by incomplete combustion, with particularly large emissions
from open fires where the combustion process is uncontrolled and inefficient. Carbon
monoxide has a mean lifetime of two months against oxidation by OH, its main sink.
Figure 3.6 shows the global distribution of CO observed by satellite. Concentrations
are highest over tropical regions during the burning season, and are also relatively
high over northern mid-latitude continents. The lifetime of CO is sufficiently long to
allow transport on intercontinental scales (Chapter 2), making CO a useful tracer for
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Figure 3.6 Global distribution of the tropospheric carbon monoxide (CO) column in March (a) and September (b) 2012,
as observed by the MOPITT instrument aboard the National Aeronautics and Space Administration (NASA)
Terra satellite. Courtesy of David Edwards, National Center for Atmospheric Research (NCAR).
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long-range transport of combustion plumes. Figure 3.6 shows that the northern
hemispheric background of CO is elevated relative to the south because of combus-
tion influence, and has a seasonality driven by the sink from photochemical
oxidation by OH. The southern hemispheric background is mostly contributed by
the global source from the oxidation of methane.

3.6 Tropospheric Ozone

Ozone is produced in the troposphere by photochemical oxidation of VOCs and CO
in the presence of NOx, In the simplest case of CO, this involves a sequence of
reactions (3.10), (3.21), and (3.19):

COþ OH�!O2 CO2 þ HO2

HO2 þ NO ! OHþ NO2

NO2 þ hv�!O2 NO þ O3

Net : COþ 2O2 ! CO2 þ O3

In the case of VOCs, the reaction sequence is similar but with RO2 radicals reacting
with NO following (3.31). The HOx and NOx radicals serve as catalysts for the
oxidation of VOCs and CO by O2, and ozone is produced in the process.

The above mechanism provides the dominant source of ozone in the troposphere
(Table 3.1). Transport from the stratosphere is an additional minor source. The
dominant sink of tropospheric ozone is photochemical loss, including photolysis in
the presence of water vapor and reactions with HOx radicals:

O3 þ hv λ < 320nmð Þ ! O 1D
� �þ O2

O 1D
� �þ H2O ! OHþ OH

O3 þ OH ! HO2 þ O2

O3 þ HO2 ! OHþ 2O2

There is also a minor sink from deposition to the surface. The lifetime of ozone
ranges from a few days in the boundary layer to months in the dry upper troposphere.

Table 3.1 Global present-day budget of tropospheric ozone

Best estimate, Tg O3 a
–1

Sources
Tropospheric chemical production 4500
Transport from stratosphere 500

Sinks
Tropospheric chemical loss 4000
Deposition 1000

Estimates based on Wu et al. (2007)
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This difference in lifetime results in a general pattern of net ozone production in the
upper troposphere, balanced by net loss in the lower troposphere, driving a gradient
of increasing ozone concentrations with altitude.
The rate of ozone production depends on the supply of NOx, VOCs, and CO in a

manner controlled by the cycling of HOx radicals and competition with HOx sinks. In
most of the troposphere, the dominant HOx sink is the conversion of peroxy radicals
to peroxides following (3.12) and (3.32). In that regime OH radicals mainly react
with VOCs or CO, and whether ozone production takes place depends on competi-
tion for the peroxy radicals between reaction with NO (producing ozone) and
production of peroxides. Thus the ozone production rate increases linearly with the
NOx concentration but does not depend on the concentrations of VOCs and CO. This
is called the NOx-limited regime.
A different regime for ozone production applies when UV radiation is low (as in

winter) or when NOx concentrations are very high. In that case the dominant HOx

sink becomes the formation of nitric acid by reaction (3.22). There is no longer
competition for peroxy radicals, because the low UV radiation suppresses peroxide
formation by (3.12), which has a quadratic dependence on peroxy radical concen-
trations. Instead, the competition is for OH between reactions with VOCs and CO

Figure 3.7 Ozone isopleths diagram showing the dependence of ozone concentration on NOx and VOC concentrations for
a simple box model calculation. NOx- and VOC-limited regimes are indicated. This representation is often
referred to as the Empirical Kinetic Modeling Approach or EKMA diagram. The NOx-limited regions are typical
of locations downwind of urban and suburban areas, whereas the VOC-limited regions are typical of highly
polluted urban areas. Source: National Research Council (1991).

70 Chemical Processes in the Atmosphere

004
22 Jun 2017 at 16:46:00, subject to the Cambridge Core terms of use, available



(producing ozone) and reaction with NO2 to produce nitric acid. Thus the ozone
production rate increases linearly with the VOCs and CO concentrations but
inversely with the NOx concentration. This is called the VOC-limited or NOx-
saturated regime.

Figure 3.7 shows a simple box model calculation of ozone isopleths (lines of
constant mixing ratios) calculated as a function of NOx and VOC concentrations
using a standard chemical mechanism. The NOx- and VOC-limited regimes identi-
fied on the diagram illustrate the different dependences of ozone production on NOx

and VOCs. The nonlinear dependences and transitions between regimes are readily
apparent.

Figure 3.8 shows the global distribution of tropospheric ozone columns observed
from satellite. The July data feature elevated ozone at northern mid-latitudes, reflect-
ing high NOx emissions and strong UV radiation. The lifetime of ozone is suffi-
ciently long to allow transport on intercontinental scales. The October data feature
elevated ozone downwind of South America and Africa, reflecting NOx emissions
from biomass burning during that time of year (end of dry season in the southern
tropics). Ozone concentrations peak downwind of the source continents due to
sustained production in the continental plume.
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Figure 3.8 Tropospheric ozone column (Dobson units) derived from satellite observations by subtracting the
stratospheric column measured by the Microwave Limb Sounder (MLS) from the total column measured
by the Ozone Monitoring Instrument (OMI). Monthly mean values are shown for October 2004 (top)
and July 2005 (bottom). Plumes are streaming from Africa and South America (ozone produced by
precursors released from biomass burning in the tropics during the dry season) in October and from
North America, Europe and China (summertime ozone formation from anthropogenic precursors) in July.
From The National Aeronautics and Space Administration (NASA).
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3.7 Halogen Radicals

Natural sources of atmospheric halogens include the marine biosphere, sea salt,
and volcanoes. The marine biosphere emits a wide range of organohalogen gases,
the simplest being methyl chloride, bromide, and iodide (CH3Cl, CH3Br, CH3I).
Since the 1950s, industrial sources have released to the atmosphere a number of
long-lived organohalogens including chlorofluorocarbons and bromine-containing
halons (anthropogenic sources of iodine are thought to be negligibly small).
These long-lived compounds are transported to the stratosphere, where strong
radiation triggers their photolysis to release halogen atoms, which destroy ozone
through the catalytic cycle:

Xþ O3 ! XOþ O2 (3.38)

XOþ O ! Xþ O2 (3.39)

where X � F, Cl, Br, or I. One commonly defines the radical family XOx � Xþ XO
as the catalyst for ozone loss. Termination of the catalytic loss cycle requires
conversion of the radicals to non-radical reservoirs including X2, XONO2, HOX,
and HX:

XOþ XO ! X2 þ O2 (3.40)

XOþ NO2 þM ! XONO2 þM (3.41)

XOþ HO2 ! HOXþ O2 (3.42)

Xþ CH4 ! HXþ CH3 (3.43)

There are also significant cross-halogen reactions, such as between XO and another
halogen oxide YO:

XOþ YO ! XYþ O2 (3.44)

These non-radical reservoirs can be recycled to the radicals by photolysis (for X2,
XY, XONO2, HOX), thermolysis (XONO2), hydrolysis (XONO2), or reaction with
OH (HX). In the troposphere they can also be removed by deposition, representing
a terminal sink. One generally refers to the chemical family Xy (total inorganic X)
as the sum of XOx and the inorganic non-radical reservoirs (for example,
Bry � Br þ BrOþ inorganic non-radical reservoirs).
Halogen radicals are of interest as sinks of stratospheric and tropospheric ozone,

and as oxidants for various species. Their concentrations are determined by the
abundance of Xy and by the partitioning of Xy between radical and non-radical
forms, i.e., the XOx=Xy ratio. A major factor in the efficacy of halogen radical
chemistry is the stability of the non-radical reservoir HX against oxidation by OH.
This stability greatly decreases in the order HF > HCl > HBr > HI. Thus Fy in the
atmosphere is almost entirely present as HF and there is no significant fluorine
radical chemistry. At the other end, iodine in the atmosphere is present principally
in radical form. Iodine and bromine are particularly efficient at destroying ozone but
have much weaker sources than chlorine.
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Chlorine radical concentrations are particularly high in the Antarctic lower strato-
sphere in spring, where they drive near-total ozone depletion (Figure 3.9). This
involves unique chemistry taking place on polar stratospheric cloud (PSC) particles
that form under the very cold conditions of the Antarctic stratosphere in winter and
early spring. The PSCs consist of liquid supercooled ternary solutions (H2SO4–HNO3–
H2O or STS), solid nitric acid trihydrate (HNO3–3H2O or NAT), and ice crystals. Their
formation takes place below a temperature threshold of about 189K for ice particles,
192K for STS, and 196K for NAT. Polar stratospheric cloud surfaces enable fast
conversion of non-radical chlorine reservoirs to chlorine radicals by

ClONO2 þ HCl�!PSC Cl2 þ HNO3 (3.45)

Cl2 þ hv ! 2Cl (3.46)

Clþ O3 ! ClOþ O2 (3.47)

This converts most of Cly in Antarctic spring to ClO, as shown in Figure 3.9. High
ClO concentrations are found in a ring around Antarctica in winter, filling in over the
pole in spring, because a minimum of radiation is needed to photolyze Cl2 and other
weakly bound chlorine non-radical reservoirs.

High concentrations of ClO prime the Antarctic springtime stratosphere for rapid
ozone destruction. However, the O atom concentration remains very low because of
weak solar radiation, so that the ClOx-catalyzed radical mechanism involving
(3.38) + (3.39) is very slow. A different mechanism operates involving formation
of the ClO dimer followed by photolysis:
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Figure 3.9 ClO and ozone concentrations in the Antarctic lower stratosphere in winter–spring 1992. Data from the
Microwave Limb Sounder (MLS) on the National Aeronautics and Space Administration (NASA) Upper
Atmosphere Research satellite (UARS). Source: Waters et al. (1993).
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ClOþ ClOþM ! Cl2O2 þM (3.48)

Cl2O2 þ hv ! ClOOþ Cl (3.49)

ClOOþM ! Clþ O2 þM (3.50)

The Cl atoms react again with ozone by (3.47), yielding a catalytic cycle for ozone
destruction. The rate-limiting step for this cycle is (3.48), which is quadratic in ClO
concentrations. Near-total ozone depletion can thus take place in a matter of weeks.
A similar mechanism takes place in the Arctic stratosphere in winter–spring but is
much less pronounced because Arctic temperatures are on average 10 K warmer
(limiting PSC formation) and the polar vortex is considerably more perturbed by
planetary-scale waves as discussed in Section 2.11.

3.8 Sulfur Species

Sulfate is a major component of atmospheric aerosol and an important contributor
(as sulfuric acid) to acid deposition. It is produced in the atmosphere by oxidation of
sulfur gases emitted from anthropogenic sources (mainly combustion and metal-
lurgy), the marine biosphere, and volcanoes. Anthropogenic and volcanic emissions
are mainly as SO2. Biogenic emission is mostly as dimethylsulfide (CH3)2S, com-
monly called DMS. There is also a small anthropogenic and marine source of
carbonyl sulfide (COS), which is of interest because COS has a long enough
atmospheric lifetime to be transported to the stratosphere, where it provides a
background source of sulfate aerosol. Figure 3.10 shows the global distribution of
SO2 columns measured by satellite. The anthropogenic source is particularly large
over China, reflecting coal combustion with limited emission controls.

Figure 3.10 Annual mean SO2 vertical columns from the Scanning Imaging Absorption spectrometer for Atmospheric
chartography (SCIAMACHY) satellite instrument for 2006. The South Atlantic Anomaly (SAA) is subject to
excessive measurement noise. From Lee et al. (2009).
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The oxidation state of sulfur ranges from –2 in DMS to +6 in sulfate. The DMS is
oxidized in the marine boundary layer by OH, NO3, and halogen radicals to produce
a cascade of sulfur species eventually leading to SO2 as a major product. The COS is
converted to SO2 following oxidation by OH, and also in the stratosphere following
oxidation by O(1D) and photolysis. And SO2 is oxidized by OH to produce sulfuric
acid (H2SO4) in the gas phase:

SO2 þ OHþM ! HSO3 þM (3.51)

HSO3 þ O2 ! SO3 þ HO2 (3.52)

SO3 þ H2OþM ! H2SO4 þM (3.53)

Sulfuric acid has an extremely low vapor pressure over H2SO4–H2O solutions and
therefore condenses immediately, either on existing particles or by forming new
particles.

The lifetime of SO2 against gas-phase oxidation by OH is of the order of a week.
In the lower troposphere, more rapid oxidation of SO2 can take place in the aqueous
phase in clouds. This involves dissolution of SO2 into cloud water, followed by acid–
base dissociation of sulfurous acid (SO2•H2O) to bisulfite (HSO3

–) and sulfite
(SO3

2–):

SO2 gð Þ Ð SO2•H2O aqð Þ (3.54)

SO2•H2O aqð Þ Ð HSO3
� þ Hþ pK1 ¼ 1:9ð Þ (3.55)

HSO3
� Ð SO3

2� þ Hþ pK2 ¼ 7:2ð Þ (3.56)

The ions can then be oxidized rapidly in the aqueous-phase. Major oxidants are H2O2

and ozone, both dissolved from the gas phase:

HSO3
� þ H2O2 aqð Þ þ Hþ ! SO4

2� þ H2Oþ 2Hþ (3.57)

SO3
2� þ O3 aqð Þ ! SO4

2� þ O2 (3.58)

Oxidation by H2O2 is acid-catalyzed and therefore remains fast even as the cloud
droplets become acidified. Oxidation of SO3

2– by O3(aq) is extremely fast but is
limited by the supply of SO3

2– and shuts down as cloud droplets are acidified below
pH 5. Other aqueous-phase SO2 oxidants can be important in winter or in highly
polluted conditions when H2O2 concentrations are low. Competition between gas-
phase and aqueous-phase oxidation of SO2 has important implications for aerosol
formation because gas-phase H2SO4 is a major precursor for nucleation of new
aerosol particles.

3.9 Aerosol Particles

The atmosphere contains suspended condensed particles ranging in size from
~0.001 μm (molecular cluster) to ~100 μm (small raindrop). Atmospheric chemists
commonly refer to the ensemble of particles of a certain type as an aerosol (for
example, sulfate aerosol) and to an ensemble of particles of different types as aerosols.
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The ensemble of particles in the atmosphere is often called the atmospheric aerosol.
This terminology has force of usage but departs from the dictionary definition of an
aerosol as a suspension of dispersed particles in a gas (by that definition, the atmos-
phere itself would be an aerosol). Referring to aerosol particles removes the ambigu-
ity. The air quality community refers to aerosols as particulate matter and uses the
acronym PM to denote the aerosol mass concentration per unit volume of air. For
example, PM2.5 denotes the mass concentration [μg m–3] of particles less than 2.5 μm
in diameter. Aerosols are removed efficiently by precipitation and thus have atmos-
pheric lifetimes of the order of a week, leading to large regional gradients.

3.9.1 Size Distribution

An aerosol particle is characterized by its shape, size, phase(s), and chemical
composition. Liquid particles are spherical but solid particles can be of any shape.
There is a continuous distribution of particle sizes. For the purpose of characterizing
this distribution the particles are conventionally assumed to be spherical. Such an
assumption is obviously incorrect for solid particles but can be viewed as an
operational approximation where the solid particles behave as equivalent spheres
for the purpose of sizing measurements or microphysical dynamics. An aerosol
composed of particles of a single size is called monodisperse, while an aerosol
composed of particles of multiple sizes is called polydisperse. Aerosols produced
in the laboratory under carefully controlled conditions can be close to monodisperse.
Aerosols in the atmosphere are polydisperse.
The aerosol size distribution can be characterized by the number size distribution

function nN(r) [particles cm
–3 μm–1]

nN rð Þ ¼ dN

dr
(3.59)

such that nN rð Þdr represents the number of particles per cm3 of air in the radius size
range r; r þ dr½ �, and N is the total particle number concentration. Other related
measures of the aerosol size distribution are the surface area size distribution
function

nS rð Þ ¼ 4πr2nN rð Þ (3.60)

and the volume size distribution function

nV rð Þ ¼ 4

3
πr3nN rð Þ (3.61)

Plots of the aerosol size distribution generally use a log scale to account for the variation
of particle sizes over typically five orders of magnitude, from 10–3 to 102 μm:

nN log rð Þ ¼ dN

d log rð Þ ¼ ln 10ð Þr nN rð Þ (3.62)

such that nN log rð Þd log rð Þ represents the number concentration of particles in the
size range log r; log r þ d log rð Þ½ Þ�. Similar expressions apply for nS log rð Þ and
nV log rð Þ.
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The integrals of these distributions yield the total aerosol number concentration N,
surface concentration S, and volume concentration V:

N ¼
ð∞

�∞

nN log rð Þd log r (3.63)

S ¼
ð∞

�∞

nS log rð Þd log r ¼ 4π
ð∞

�∞

r2nN log rð Þd log r (3.64)

V ¼
ð∞

�∞

nV log rð Þd log r ¼ 4π
3

ð∞

�∞

r3nN log rð Þd log r (3.65)

Figure 3.11 shows the number, surface, and volume size distributions for a generic
aerosol. There are three distinct modes, called the Aitken mode (diameter < 0.1 μm),
the accumulation mode (0.1–1 μm) and the coarse mode (>1 μm). The Aitken mode
is made up of freshly nucleated particles, which grow rapidly by gas condensation and
coagulation to the accumulation mode. Further growth of accumulation mode par-
ticles above 1 μm is slow. The coarse mode is mostly composed of primary particles
emitted mechanically from the Earth’s surface, such as soil dust, sea salt, and pollen.

We see from Figure 3.11 that the number, surface, and volume size distributions
for a given aerosol are very different, reflecting the r2 and r3 weighting of the surface

Aitken Accumula�on Coarse

Number

Surface

Volume

Figure 3.11 Idealized size distributions for an aerosol population by number, surface, and volume. From Seinfeld and
Pandis (2006).

77 3.9 Aerosol Particles

004
22 Jun 2017 at 16:46:00, subject to the Cambridge Core terms of use, available



and volume size distributions over five orders of magnitude in r. Thus the Aitken
particles dominate the number size distribution but are unimportant for volume. The
coarse particles contribute an insignificant number but make a major contribution to
volume. Accumulation particles are important for all measures of the size distribu-
tion and especially for the surface size distribution, which is most relevant for aerosol
optical properties.

3.9.2 Chemical Composition

The aerosol chemical composition is commonly classified following dominant
aerosol types as (1) sulfate, (2) nitrate, (3) organic carbon (OC), (4) black carbon
(BC), (5) soil dust, and (6) sea salt. There are other minor constituents, such as trace
metals and pollen. Sulfate and nitrate are often associated with ammonium and one
refers to sulfate–nitrate–ammonium (SNA) aerosol as the coupled thermodynamic
system. Organic carbon and black carbon are sometimes grouped as carbonaceous
aerosol. They are directly emitted by incomplete combustion, and OC also has an
important secondary source from condensation of semivolatile organic compounds
(SVOCs; Section 3.5). Figure 3.12 shows the mass concentrations of different
aerosol types at surface sites in the United States. SNA and OC dominate. BC makes
little contribution to mass but is of great interest because of its light-absorbing
properties and effects on health. Figure 3.13 shows illustrative results from a global

Figure 3.12 Annual mean chemical composition of PM2.5 at selected sites in the USA in 2013. Values are from the
Chemical Speciation Network of the US Environmental Protection Agency. Figure produced by Eloïse Marais,
Harvard University, used with permission.
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model simulation of different aerosol types, highlighting the dominance of different
types in different regions.

We previously saw how sulfuric and nitric acids are produced in the atmosphere
by oxidation of SO2 and NOx, respectively. Ammonia has natural biogenic sources
and also a large anthropogenic source from agriculture. Sulfuric acid has very low
vapor pressure over H2SO4–H2O solutions and condenses immediately under all
atmospheric conditions, including in the stratosphere, to produce concentrated sul-
furic acid particles. Ammonia partitions into this aerosol following acid–base titra-
tion to produce ammonium bisulfate (NH4HSO4) and ammonium sulfate
((NH4)2SO4) aerosol depending on the ammonia to sulfuric acid ratio:

H2SO4 að Þ þ NH3 gð Þ ! NH4HSO4 að Þ (3.66)

NH4HSO4 að Þ þ NH3 gð Þ ! NH4ð Þ2SO4 að Þ (3.67)

Letovicite ((NH4)3H(SO4)2) can also be produced. Here (g) denotes the gas phase
and (a) the aerosol phase, which may be solid or aqueous depending on relative
humidity. In aqueous aerosol the ammonium-sulfate salts dissociate to NH4

+, SO4
2–,

andH+. The thermodynamic driving force for reactions (3.66) and (3.67) is so large that
complete titration of sulfuric acid is achieved if ammonia is in excess. In that case, the
excess ammonia may go on to combine with nitric acid and form nitrate aerosol:

NH3 gð ÞþHNO3 gð Þ Ð NH4NO3 að Þ (3.68)

with an equilibrium constant that increases with decreasing temperature and with
increasing relative humidity. Again, the ammonium nitrate aerosol may be solid or
aqueous (NH4

+, NO3
–), depending on relative humidity.

Figure 3.13 Portrait of global aerosols produced by a simulation of the NASA Goddard Earth Observing System
Model (GEOS) version-5 at a spatial resolution of 10 km. The figure highlights the relative abundance in
different regions of the world of dust (red) lifted from arid soils, sea salt (blue) embedded in fronts and
cyclones, smoke (green) from tropical wildfires, and sulfate particles (white) from fossil fuel and volcanic
emissions. It also shows the influence of transport of aerosols by the atmospheric circulation. From W. Putman,
National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC): www.nasa.gov.
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Organic carbon (OC) aerosol includes a very large number of species. Its compos-
ition is highly variable and not well understood. The traditional approach in models
is to distinguish between primary organic aerosol (POA) directly emitted by com-
bustion and secondary organic aerosol (SOA) formed in the atmosphere. SOA is
formed from the atmospheric oxidation of VOCs, resulting in products with chemical
functionalities (such as hydroxy, peroxy, carbonyl, carboxylic, and nitrate groups)
that enable their uptake by pre-existing organic or aqueous aerosol. This uptake may
be reversible or irreversible, in the latter case through subsequent oxidation or
oligomerization in the aerosol.

3.9.3 Mixing State, Hygroscopicity, and Activation

Individual particles have compositions that reflect their origin and atmospheric
history. Particles may originate as a specific aerosol type, such as sulfate or BC,
but subsequent mixing with other aerosol types takes place as they age in the
atmosphere. The degree of mixing is important for characterizing aerosol properties.
It is convenient in models to consider two limiting cases: external and internal
mixing. An external mixture is one in which different aerosol types do not mix, so
that individual particles are of a single type; this is usually appropriate close to the
source. An internal mixture is one in which all particles have the same composition;
this is usually appropriate in a remote air mass. Aerosols in the atmosphere gradually
evolve from an external to an internal mixture through particle coagulation, gas
uptake, and cloud processing. Internal mixing usually assumes that the different
chemical constituents are well-mixed within individual particles, but that does not
hold if the particles are not fully liquid. For example, a common configuration for
BC-sulfate internal mixing is for BC to form a solid core embedded within the
aqueous sulfate solution. This core–shell model has important implications for
calculating the optical properties of BC.
The hygroscopicity of an aerosol refers to its thermodynamic capacity for taking

up water at a given relative humidity (RH). By Raoult’s law, an aerosol particle
behaving as an ideal aqueous solution has a water molar content xH2O = RH/100,
where RH is expressed as a percentage. Such dissolution of the aerosol requires from
precipitation equilibrium that xH2O be sufficiently high (i.e., that RH be sufficiently
high). Sulfuric acid is aqueous at all RH because its condensation takes place as a
H2SO4–H2O binary mixture. Other aerosols are dry at thermodynamic equilibrium in
a low-RH atmosphere and become aqueous when the RH exceeds the level required
by precipitation equilibrium. This RH level is called the deliquescence relative
humidity (DRH); it represents a sharp particle transition from non-aqueous (usually
solid) aerosol to aqueous. It is 40% for NH4HSO4, 62% for NH4NO3, 75% for NaCl,
and 80% for (NH4)2SO4. Additional water condenses as the RH continues to
increase. Starting from high RH, a decrease in RH will similarly result in a sharp
conversion of the aerosol from aqueous to non-aqueous. However, if the non-
aqueous state involves crystallization (as in the case of SNA and sea salt particles)
it may be retarded by the energy barrier for crystal formation. In that case, the
crystallization relative humidity (CRH) is lower than the DRH, and for
CRH < RH < DRH the aqueous phase is metastable.
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Another important property of aerosol particles is their ability to serve as cloud
condensation nuclei (CCN) for activation of cloud droplets under supersaturated
conditions (RH > 100%). This involves overcoming the surface tension for growth
of the gas–droplet interface. Particles larger than 0.1 μm and at least partly wettable
are effective CCN at typical atmospheric supersaturations (100% < RH < 101%).
Models often distinguish between hydrophobic particles as non-wettable and hydro-
philic particles as wettable. For example, freshly emitted BC is typically hydropho-
bic and thus an ineffective CCN, but becomes hydrophilic in the atmosphere on a
timescale of a day as it ages and mixes with other aerosol types.

3.9.4 Optical Properties

Aerosol particles interfere with the propagation of radiation by scattering and
absorption. The resulting attenuation of radiation along a path through the atmos-
phere is described by Beer’s law:

I ¼ Io exp �τ½ � (3.69)

where Io is the incident radiation, I is the transmitted radiation through the path, and
τ is the optical path. One can express this optical path as τ = βext L where L [m] is the
physical path length and βext [m

–1] is an extinction coefficient characteristic of the
aerosol. The extinction coefficient is the sum of a scattering coefficient βscat [m

–1]
and an absorption coefficient βabs [m–1]. For a monodisperse population of
spherical particles of radius r with number density N [m–3], the extinction coefficient
is a function of the dimensionless extinction efficiency Qext (defined as the
probability that a photon incident on the particle will be absorbed or scattered), as
given by

βext ¼ QextNπr2 (3.70)

The extinction efficiency of a particle can be viewed as the sum of a scattering
efficiency Qscat and an absorption efficiency Qabs. The single-scattering albedo ω is
defined as the ratio

ω ¼ Qscat

Qext
¼ Qscat

Qscat þ Qabs
(3.71)

and measures the relative contributions of scattering and absorption to extinction.
Absorption depends on the chemical properties of the molecule, while scattering
depends on the particle size parameter

α ¼ 2πr
λ

(3.72)

Scattering is most efficient for particles of radius equal to the radiation wave-
length (α = 2π). Since most of the aerosol particle area is typically in the 0.1–1 μm
size range, we see that aerosols are efficient scatterers of solar radiation. See
Figure 5.8 in Section 5.2.4 for dependences of Qscat and Qabs on particle size and
refractive index.
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The aerosol optical depth in the atmospheric column is defined as the optical path
for radiation propagating vertically from the top of the atmosphere to the surface. It is
given by

τ λð Þ ¼
ð∞

0

βext λ; zð Þdz (3.73)

Here again, the total optical depth can be expressed as the sum of two terms that
account for absorption and scattering: τ = τscat + τabs. Figure 3.14 shows the global
distribution of the total aerosol optical depth in the visible light as measured from
space in different seasons. Elevated values are due to desert dust, biomass burning,
anthropogenic pollution, and sea salt.
The detailed calculation of the radiative effects of aerosols is complicated. One

distinguishes between three regimes: (1) the Rayleigh scattering regime in which the
particles are much smaller than the wavelength of the incident radiation (α � 1), (2)
the Mie scattering regime in which the size of the particles is of the same order of
magnitude as the wavelength (α � 1), and (3) the geometric scattering regime, in
which the particles are much larger than the wavelength (α � 1). For small particles
(Rayleigh regime), one can show that the scattering efficiency varies as λ–4, while the
absorption efficiency varies as λ–1. Thus, light at shorter (bluer) wavelengths is
scattered more effectively than light at longer (redder) wavelengths. White light
passing through a layer of small aerosol particles becomes redder as it propagates
toward an observer.

September-October-NovemberJune-July-August

December-January-February March-April-May

0 0.1 0.2 0.3 0.4
Aerosol optical depth

0.5 0.6 0.7 0.8 0.9 1.0

Figure 3.14 Average column-integrated aerosol optical depth at λ = 558 nm measured by the Multi-angle Imaging
Spectro-Radiometer (MISR) satellite instrument from December 2001 to November 2002. Source: National
Aeronautics and Space Administration/GSFC/LaRC/JPL, MISR Team.
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4 Model Equations and Numerical
Approaches

4.1 Introduction

Atmospheric chemistry focuses on understanding the factors that control the concen-
trations of chemical species in the atmosphere. These factors include processes of
emissions, transport, chemical production and loss, and deposition. Here we present
the general mathematical foundations for atmospheric chemistry and the correspond-
ing model frameworks.
We begin in Section 4.2 by introducing the continuity equation, which is the

fundamental mass conservation equation for atmospheric chemistry. The continuity
equation expresses how the concentration of a chemical species changes with time in
response to a sum of individual forcing terms describing emissions, transport,
chemistry, and deposition. The continuity equation for aerosols also includes terms
to describe microphysical growth of particles; this is presented in Section 4.3. The
continuity equation is a differential equation in space and time, and its integration
solves for the evolution of chemical concentrations as controlled by the ensemble of
driving processes. Analysis of timescales over which the individual processes oper-
ate can be very useful to identify dominant terms; this is presented in Section 4.4.
Computing transport terms requires solving the conservation equations for atmos-
pheric dynamics that serve as foundations for meteorological models. These equa-
tions are presented in Section 4.5.
The continuity equations for atmospheric chemistry cannot be solved exactly

(except for highly idealized problems) because of the complexity of the flow and
because of chemical coupling between species. Numerical methods are needed
that provide the foundations for atmospheric chemistry models. We present in this
chapter the general frameworks for these methods as implemented in models
including different coordinate systems, dimensionality, and grid geometries
(Sections 4.6–4.7), as well as different approaches including Eulerian, Lagrangian,
and statistical (Sections 4.8–4.13). Standard modeling strategies of operator splitting,
numerical filtering, and remapping are presented in Sections 4.14–4.16. This chapter
sets the stage for the following chapters where specific numerical algorithms will be
presented to compute chemistry (Chapters 5 and 6), transport (Chapters 7 and 8), and
emission and deposition (Chapter 9).

84

005
22 Jun 2017 at 16:45:29, subject to the Cambridge Core terms of use, available



4.2 Continuity Equation for Chemical Species

4.2.1 Eulerian and Lagrangian Formulations

The continuity equation expresses mass conservation within an elemental volume of
fluid. For a chemical species i with concentration measured by its mass density ρi [kg
of species i per m3 of air], the continuity equation is expressed in an Eulerian
framework (Chapter 1) as

∂ρi
∂t

þ —� ρivð Þ ¼ si (4.1)

where v = (u, v, w)T is the wind velocity vector,—� ρivð Þ is the flux divergence (flux
out of the volume minus flux in), which represents the transport term, and si is
the net local source of the species, which represents the local term. Equation (4.1)
is the Eulerian flux form of the continuity equation. The transport term includes
contributions from advection, which describes the flow by large-scale winds
resolved on the scale of the model, and turbulence, which is not resolved on
the model scale and must be represented stochastically. The turbulent component
of the transport term is separated further into turbulent mixing, which is effect-
ively random on the model scale, and convection, which has organized vertical
structure on the model scale. The local term si includes contributions from
chemistry, emissions, and wet and dry deposition. Surface exchange by emissions
and dry deposition represents a flux boundary condition for the continuity equa-
tion but in a gridded model environment it is treated as a local term for the lowest
model level.

Equation (4.1) can be applied to air itself as a conservation equation for the air
density ρa. In that case there is no local term since changes in air density are driven
solely by transport. Thus

∂ρa
∂t

þ —� ρavð Þ ¼ 0 (4.2)

Replacing the mass mixing ratio μi = ρi/ρa into (4.1) and expanding the derivative of
the product, we obtain

μi
∂ρa
∂t

þ ρa
∂μi
∂t

þ μi—� ρavð Þ þ ρav�—μi ¼ si (4.3)

Replacing (4.2) into (4.3) then yields

∂μi
∂t

þ v�—μi ¼
si
ρa

(4.4)

This is the Eulerian advective form of the continuity equation, expressing the
concentration in terms of mixing ratio rather than density. The local term si/ρa
is now in mixing ratio units. The velocity vector v is outside of the gradient
operator because compression of air (—�v 6¼ 0) does not change the
mixing ratio.
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Introducing now the total derivative for an air parcel moving with the flow:

dμi
dt

¼ ∂μi
∂t

þ ∂μi
∂x

dx

dt
þ ∂μi

∂y
dy

dt
þ ∂μi

∂z
dz

dt
¼ ∂μi

∂t
þ u

∂μi
∂x

þ v
∂μi
∂y

þ w
∂μi
∂z

¼ ∂μi
∂t

þ v�—μi
(4.5)

we obtain

dμi
dt

¼ si
ρa

(4.6)

which is the Lagrangian form of the continuity equation, based on a frame of
reference moving with the flow. The total derivative (4.5) is sometimes called the
Lagrangian derivative. For an air parcel moving with the flow, transport does not
change the mixing ratio and the only change is from the local term si/ρa. The
Lagrangian form needs to be expressed as mixing ratio so that it is not affected by
compression of air as the air parcel moves.
Atmospheric chemists often express the continuity equation in terms of the

number density ni [molecules cm–3] and the volume (or molar) mixing ratio Ci =
ni/na (where na is the air number density). These are related to the mass density
by ρi ¼ ni Mi=N Að Þ where Mi is the molecular mass of species i and N A is
Avogadro’s number, and to the mass mixing ratio by μi = Ci(Mi/Ma) where Ma

is the molecular mass of air. The Eulerian flux form of the continuity equation
is then

∂ni
∂t

þ —� nivð Þ ¼ si (4.7)

where si is now in units of [molecules cm–3 s–1]. The Eulerian advective form is

∂Ci

∂t
þ v�—Ci ¼ si

na
(4.8)

and the Lagrangian form is

dCi

dt
¼ si

na
(4.9)

The transport and local terms involve a number of different processes operating in
the model environment. The continuity equation is thus usefully represented for
model purposes as a sum of terms describing the different processes for which the
model provides independent formulations. For example, the Eulerian form may be
decomposed as

∂ρi
∂t

¼ ∂ρi
∂t

� �
adv

þ ∂ρi
∂t

� �
mix

þ ∂ρi
∂t

� �
conv

þ ∂ρi
∂t

� �
scav

þ ∂ρi
∂t

� �
chem

þ ∂ρi
∂t

� �
em

þ ∂ρi
∂t

� �
dep

(4.10)

where the terms on the right-hand side represent successively the contributions of
advection, turbulent mixing, convection, wet scavenging by precipitation, chemistry,
emissions, and dry deposition. We describe the formulations for each of these terms
in the following subsections. The Lagrangian form using the total derivative may be
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similarly decomposed but without the transport terms; a separate algorithm is needed
to describe the Lagrangian transport of air parcels and this is also described below.

4.2.2 Advection

Advection describes transport by the wind resolved on the model scale. The wind
velocity vector v is then a spatial and temporal average over the model grid and time
step. The corresponding mass flux is Fi ¼ Fx

i ;F
y
i ;F

z
i

� �T ¼ ρiv ¼ ρi u; v;wð ÞT . Con-
sider an elemental volume dV = dx dy dz centered at (x, y, z), and a wind velocity
component u in the x-direction. The corresponding mass flux for species i is Fx

i ¼ ρiu
[kg m–2 s–1]. The flow rate into the volume (kg s–1) is Fx

i x� dx=2ð Þdy dz and the
flow rate out of the volume is Fx

i xþ dx=2ð Þdy dz (Figure 4.1). The change per unit
time in the concentration ρi within the volume is then given by

∂ρi
∂t

� �
adv

¼ Fx
i x� dx=2ð Þ � Fx

i xþ dx=2ð Þ� �
dy dz

dx dy dz
¼ � ∂Fx

i

∂x
¼ � ∂ ρiuð Þ

∂x
(4.11)

By adding similar contributions for the y and z directions (with wind components v
and w, respectively), we obtain

∂ρi
∂t

� �
adv

¼ � ∂Fx
i

∂x
� ∂Fy

i

∂y
� ∂Fz

i

∂z
¼ � ∂ ρiuð Þ

∂x
� ∂ ρivð Þ

∂y
� ∂ ρiwð Þ

∂z
(4.12)

or

∂ρi
∂t

� �
adv

¼ �—�Fi ¼ �—� ρivð Þ (4.13)

which is the Eulerian flux form used in (4.1). It applies only to the model-resolved
winds for which we have actual information on v. Smaller-scale motions are
described by turbulence parameterizations presented next. Numerical methods for
computing advection are presented in Chapter 7.

4.2.3 Turbulent Mixing

Fluctuating wind patterns that are not resolved on the grid scale of the model are
called turbulence. By definition, the turbulent component of the wind has a mean

dV

Fi
x (x+dx/2)Fi

x (x–dx/2)

dz

dx dy

x+dx/ 2x–dx/ 2Area dA=dy dz

Figure 4.1 Flux F xi of species i in the x-direction through an elemental volume dV.
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value of zero when averaged over the model grid and time step. It can still cause
significant chemical transport in the presence of a chemical gradient. Consider as
analogy a commuter train operating at the morning rush hour between the city and
the suburbs. The train is full as it travels from the suburbs to the city, and empty as
it travels from the city back to the suburbs. The net motion of the train is zero, yet
there is a net flow of commuters from the suburbs to the city. In the same way, a
back-and-forth wind operating in a uniform chemical gradient will cause a net
down-gradient flux from the region of high concentration to the region of low
concentration. The flux is proportional to the gradient. This proportionality, called
Fick’s law of diffusion, is the foundation of transport by molecular diffusion.
Therefore, a simple parameterization of small-scale turbulent transport (where
“small-scale” is relative to the model grid) is to treat it as a diffusive process.
Diffusive transport results in mixing and we refer to the parameterization as
turbulent mixing.
The corresponding equation for the change in species concentration as a result of

turbulent mixing is

∂ρi
∂t

� �
mix

¼ —� K ρa—
ρi
ρa

� 	� 	
(4.14)

where K is an empirical tensor describing the 3-D turbulent diffusion. The elements
of that tensor are the turbulent diffusion coefficients. K is generally taken to be a
diagonal matrix with diagonal elements Kx, Ky, Kz describing turbulent diffusion in
the horizontal (x, y) and vertical (z) directions. The term �K ρa— ρi=ρað Þ is the
turbulent diffusion flux by analogy with Fick’s law, and the right-hand side of
(4.14) expresses the flux divergence as derived previously for the advection term.
The concentration gradient — ρi=ρað Þ must be expressed in terms of mixing ratio to
account for compressibility of air; a concentration gradient driven solely by air
density changes does not drive a turbulent flux.
Turbulent diffusion is not a mechanistic description of turbulence; it is simply a

parameterization that has some physical basis and describes relatively well the effect
of small-scale turbulence on a chemical concentration field. It allows for consistent
treatment of turbulent transport for all chemical species, because the turbulent
diffusion coefficients are generally taken to be the same for all species; this is known
as the similarity assumption for turbulence. Models often apply a turbulent mixing
parameterization in the planetary boundary layer below ~2 km altitude, where the
turbulence tends to be small in scale. Turbulent mixing is particularly important in
the vertical direction, where mean winds are weak but strong turbulent motions can
be generated by surface roughness or by buoyancy.
Numerical methods for computing turbulent diffusion as formulated by (4.14) are

presented in Chapter 8. The formulation introduces a second-order derivative in the
continuity equations that dampens local concentration gradients. In fact, introducing
a diffusion term tends to stabilize the numerical solution of the continuity equation
by reducing the magnitude of local gradients. This stabilization effect is discussed in
Chapter 7.
Turbulent diffusion should not be confused with molecular diffusion, which is an

actual physical process describing the random motion of molecules. Vertical
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turbulent diffusion coefficients in the planetary boundary layer are typically in the
range 104–106 cm2 s–1, whereas the molecular diffusion coefficient is of the order of
10–1 cm2 s–1. Under these conditions, molecular diffusion is completely negligible
relative to turbulent mixing. The molecular diffusion coefficient varies as the inverse
of atmospheric pressure (lower pressure means longer mean free paths for mol-
ecules), so that at sufficiently high altitudes molecular diffusion becomes relevant for
atmospheric motions. In the thermosphere above 90 km altitude, molecular diffusion
is a major process for vertical transport of chemical species and a corresponding term
must be added to the continuity equation (Chapman and Cowling, 1970; Banks and
Kockarts, 1973).

4.2.4 Convection

Convection refers to buoyant vertical motion of sufficiently large scale to have grid-
resolved vertical structure while still remaining subgrid on the horizontal scale. It is
generally associated with cloud formation (wet convection), since water vapor
condensation in a rising air parcel provides a local source of heat that accelerates
the rise by buoyancy. Thunderstorms are a dramatic example and represent deep
wet convection. Fair-weather cumuli are a more placid example and represent
shallow wet convection. Dry convection refers to vertical buoyant motion not
involving cloud formation, and is in general smaller in vertical extent than wet
convection.

A wet convective system involves a cloud updraft, typically ~1 km in horizontal
scale, that drives rapid upward transport from the base to the top of the convectively
unstable column. This transport typically takes place on timescales of less than one
hour, with updraft velocities of the order of 1–10 m s–1. Models with sub-kilometer
horizontal resolution can describe convective updrafts as advection; these are called
cloud-resolving models or large-eddy simulation (LES) models. They are limited
computationally to small domains, typically of the order of 100 km. Larger-domain
models cannot resolve convective updrafts and these must therefore be parameter-
ized. As part of the parameterization, the updraft must be balanced on the horizontal
grid scale by large-scale subsidence so that there is no net vertical air motion on the
model grid. This subsidence is typically modeled by grid-scale sinking of the
convective outflow. Additional processes in convective transport parameterizations
include entrainment into the updraft, detrainment from the updraft, and subgrid-scale
downdrafts. Figure 4.2 shows a general schematic of wet convective transport
identifying the individual processes. Different types of convective transport para-
meterizations are described in Section 8.7.

4.2.5 Wet Scavenging

Aerosols and water-soluble gases are efficiently scavenged by precipitation. One
generally distinguishes in meteorological models between convective precipitation
initiated by subgrid convection and large-scale or stratiform precipitation resolved
by grid-scale motions. Scavenging takes place below the cloud through uptake by
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precipitation (below-cloud scavenging or washout) and within the cloud through
uptake by cloud droplets and ice crystals followed by precipitation (in-cloud
scavenging or rainout). These processes are represented with varying degrees of
complexity in models. They are generally first-order loss processes, with rates
proportional to the concentration of the species being scavenged. However,
in some cases the scavenging may be complicated by nonlinear chemistry;
for example, scavenging of SO2 by cloud droplets is contingent on the supply of
oxidants (Section 3.8). In coupled aerosol–climate models, the aerosols may affect
the precipitation resulting in nonlinear scavenging. Evaporation of precipitation
below the cloud releases the water-soluble species to the atmosphere, in which
case the effect of scavenging is downward transport in the atmosphere rather than
deposition. Scavenging efficiencies are in general very different for liquid and solid
precipitation, and the retention efficiency upon cloud freezing (riming) may be very
uncertain. Figure 4.3 illustrates the physical processes involved. Details about
the formulation of wet scavenging in chemical transport models are presented in
Section 8.8.

4.2.6 Chemistry

Concentrations of chemical species change as a result of chemical production or loss
in a manner determined by the rate laws for the elementary reactions. For example, if
a molecule XY is photolyzed by solar radiation into fragments X and Y, the loss rate
for XY and the corresponding production rate for X and Y is proportional to the
concentration of XY, and the proportionality factor is the photolysis frequency JXY
[expressed in s–1]. JXY depends on the actinic photon flux (flux integrated over

Convective cloud
(0.1–100 km)

Model
vertical
levels

Model horizontal grid scale

Detrainment

Entrainment

Downdraft
Updraft

Large-scale
subsidence

Figure 4.2 Wet convective transport processes.
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4π solid angle, i.e., photons coming from all directions), on the absorption cross-
section measuring the probability that a photon intercepted by molecule XY will be
absorbed, and on the quantum yield measuring the probability that photon absorp-
tion will result in photolysis. As another example, if two chemical species A and
B react to form product species C and D, the rate of destruction of A and B (equal
to the rate of formation of C and D) is proportional to the collision frequency
and to the probability that collision will result in reaction. The rate of reaction is
kA+B[A][B] where kA+B is the reaction rate constant (also called rate coefficient) and
[A] and [B] are in units of density so that their product is proportional to the
collision frequency.

In the general case, the chemical tendency equation for species i takes the
form

∂ρi
∂t

� �
chem

¼
X
j6¼i

J j ρj þ
X
k 6¼i

kjþk ρjρk

" #
� J i þ

X
j

kiþj ρj

 !
ρi (4.15)

where the indices j and k refer to other species that produce or react with i. Equation
(4.15) can be written more concisely as

∂ρi
∂t

� �
chem

¼ pi � ℓiρi (4.16)

where pi [kg m–3 s–1] and ℓi [s
–1] represent the overall production rate and loss rate

constant of species i, summing over all individual processes. If pi and ℓi are inde-
pendent of the density ρi, equation (4.16) is linear and has a simple exponential
solution. However, pi and ℓi may depend on ρi due to coupling with other species in
the chemical mechanism. One then needs to solve equation (4.16) as part of a system
of coupled equations, one for each species in the mechanism. Numerical methods for
this purpose are presented in Chapter 6.

INFLOW

CLOUD

ENTRAINMENT

OUTFLOW

In-cloud scavenging (rainout)
cold cloud: ice precipitation

Mixed cloud: ice precipitation (riming)

Warm cloud: liquid precipitation

Below-cloud scavenging (washout)
Gas/aerosol release upon evaporation

Figure 4.3 Wet scavenging processes.
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4.2.7 Surface Exchange

Exchange with the surface by emission and deposition represents a vertical flux
boundary condition to the continuity equation, with flux F given by

Fi ¼ Ei � Di (4.17)

where Ei is the emission flux of species i generally provided as external input to the
model, and Di is the deposition flux which is generally first-order dependent on the
atmospheric concentration:

Di ¼ wD, i zð Þ ρi zð Þ (4.18)

Here, wD,i [m s–1] is the deposition velocity of species i determining the deposition
flux, Di is often called the dry deposition flux, and wD,i the dry deposition velocity, to
distinguish them from wet deposition which operates by precipitation through the
atmospheric column (Section 4.2.5), wD,i is called a “velocity” because of its
dimensions. If calculated at the actual surface (z = 0), wD,i depends solely on the
chemical properties of i for uptake or reaction at the surface. In practice, however,
the model does not resolve the concentration at the actual surface. The deposition
flux must be calculated from knowledge of the concentration ρi(z1) at the lowest
model level z1, and in that case the calculation of wD,i(z1) must account for turbulent
transfer between z1 and the surface. Model representation of emission and deposition
processes is described in Chapter 9.
The surface flux boundary condition to the continuity equation is practically

implemented in chemical transport models as a tendency term in the lowest model
level. In an Eulerian model with a lowest model layer of thickness Δz, this is
expressed as

∂ρi
∂t

� �
em

¼ Ei

Δz
(4.19)

and

∂ρi
∂t

� �
dep

¼ �wD, i z1ð Þ ρi z1ð Þ
Δz

(4.20)

In a Lagrangian model this is expressed as source and sink terms for particles
brought in sufficiently close contact with the surface. Emissions injected aloft such
as from smokestacks, buoyant fires, aircraft, lightning, or volcanoes are handled by
applying the tendency terms to the corresponding model levels. In the case of
gravitational settling of very large particles, the deposition velocity represents an
actual downward settling velocity that needs to be applied to all model levels. Again,
this is readily done as a tendency term following the above formulation.

4.2.8 Green Function for Lagrangian Transport

Lagrangian models track the transport of individual air parcels within which local
source and sink terms operate to describe chemistry, emissions, and deposition. Wind
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information to describe the transport of the individual parcels is provided as
input, typically from a gridded meteorological data set. Subgrid turbulence must
be described by an additional stochastic (probabilistic) motion applied to the air
parcels.

Consider a Lagrangian model from which we wish to obtain a 3-D field of
mixing ratios μi(r, t) for a specified set of points r = (x, y, z)T at time t. This can
be derived as the superimposition of mixing ratios produced by an ensemble of
pulses applied at points r0 and times t0 < t, with local source/sink terms applied
over the [t0, t] trajectory. We define the Green function G r; t; r0; t0ð Þ as the
normalized time-evolving spatial distribution of the species mixing ratio at points
r and time t resulting from the injection of a pulse at location r0 and time t0. From
an Eulerian perspective, the Green function is the solution of the continuity
equation (4.4) in which the source rate si/ρa is replaced by a Dirac function in
space and time:

∂G r; t; r0; t0ð Þ
∂t

þ v�—G r; t; r0; t0ð Þ ¼ δ3 r� r0ð Þ δ t � t0ð Þ (4.21)

and v includes turbulent components that can be described using the turbulent
diffusion and convective parameterizations of Sections 4.2.3 and 4.2.4. The Green
function as defined here represents the transition probability density that a parcel
initially located at point r0 at time t0 will move to point r at time t. It is also
sometimes called an influence function. It has the unit of inverse volume.

For an inert chemical (no local sources or sinks), the Green function provides a
solution to the evolution of the mixing ratio over time [0, t], starting from initial
conditions defined over the model domain V:

μ r; tð Þ ¼
ð
V
G r; t; r0; 0ð Þ μ r0; 0ð Þ d3r0 (4.22)

The formulation can be readily extended to include a local source pi(r0, t0) and linear
loss rate constant ℓi [s

–1]. We then have

μ r; tð Þ ¼ ÐVG r; t; r0; 0ð Þ μ r0; 0ð Þ exp �ℓit½ �d3r0

þ
ðt
0

ð
V

G r; t; r0; t0ð Þ pi r0; t0ð Þ exp �ℓi t � t0ð Þ½ �d3r0dt0 (4.23)

where pi and ℓi are applied over each trajectory arriving at point r at time t. Nonlinear
chemistry cannot be accommodated in this framework because individual trajectories
do not interact.

The Green function provides a general statement of source–receptor relationships
and is used in a wide range of atmospheric chemistry applications. It is of specific
use in receptor-oriented problems where we seek the contributions from a 2-D or
3-D source field to concentrations at a particular time and location. This forms the
basis for simple inversion techniques relating observed atmospheric concentrations
to surface fluxes (Enting, 2000). Approaches using a Green function are also used to
characterize the transport history of air parcels. In the case of a single source at
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location r0 affecting the entire modeling domain, we can express the mixing ratio
anywhere in the domain with a Green function in unit of inverse time:

μ r; r0; tð Þ ¼
ðt
0
G r; t; r0; t0ð Þ μ r0; t � t0ð Þ dt0 (4.24)

The first moment of this Green function,

Γ r; r0ð Þ ¼
ð∞
0
t G r; t; r0; t0ð Þ dt (4.25)

defines the mean age of air for transport from r0 to r. It has been used in particular to
characterize transport times in the stratosphere for air originating at the tropical
tropopause (Hall and Plumb, 1994).

4.2.9 Initial and Boundary Conditions

The Eulerian form of the continuity equation is a 4-D partial differential equation
(PDE) in time and space, and solution requires specification of initial and spatial
boundary conditions. The Lagrangian form expressed for a moving air parcel is a
1-D ordinary differential equation (ODE) in time, but spatial boundary conditions are
still needed to describe the flow of air parcels.
Initial conditions describe the chemical concentrations over the 3-D domain at the

beginning of the simulation and account therefore for the former evolution of these
variables. They can be provided by a previous simulation using the same model, by a
simulation from another model, by assimilated observations (Chapter 11), or by
some mean climatological state. Initial conditions are often not well characterized
and may not be consistent for the different species described in the model. The model
simulation then carries that legacy of inconsistency during the initial phase of the
simulation. Good practice is to initialize the model by conducting a simulation for
some time period prior to the period of interest, sufficiently long that the inconsist-
ency of initial conditions is dissipated. This is called spinning up the model. The
length of the spin-up period depends on the characteristic timescales over which the
species of interest respond. These timescales are discussed in Section 4.4.
Vertical boundary conditions are defined by imposed fluxes or concentrations at

the boundaries of the domain. The lower boundary is usually the Earth’s surface, so
that emission and dry deposition fluxes are appropriate boundary conditions. The dry
deposition flux is usually computed on the basis of the concentration at the lowest
model level with a specified deposition velocity, as given by (4.18). We show in
Chapter 9 that this represents in fact a zero-concentration boundary condition at the
surface, and can be made into a two-way exchange when the surface concentration is
not zero. Further discussion of surface boundary conditions is presented in Chapter 9.
A pure advection problem in which the model domain extends to the top of the
atmosphere would require no other boundary condition since the continuity equation
is first-order in space. Representation of vertical transport as turbulent diffusion
(4.14) makes the continuity equation second-order in space and requires an add-
itional boundary condition. Also and in practice, models operate over a limited
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vertical domain and there is some inflow through the top into the model domain.
Therefore an upper flux boundary condition at the model top is needed. The model
top may be sufficiently high that a zero-flux boundary condition is acceptable, or
concentrations may be imposed at the model top based on information from obser-
vations or another model.

Lateral boundary conditions depend on whether the model is global or of limited
domain. In a global model, the lateral boundary conditions are periodic as concen-
trations at longitude λ and latitude φ must be reproduced at (λ + 2π, φ + 2π). In a
limited-domain model, lateral boundary conditions must be provided as fluxes or
concentrations at the edges of the domain. Lateral boundary conditions are actually
needed only for the upwind boundary of the domain, but since the wind varies in
direction one needs in practice to prescribe boundary conditions at all edges of the
domain. The superfluous boundary conditions at the downwind edges may lead to
model noise if allowed to propagate into the model domain. It is standard to specify
lateral boundary conditions as concentrations just outside the model domain, to be
entrained into the model domain by the wind at the model boundaries. This ensures
that only the upwind boundary conditions propagate into the model at any
given time.

4.3 Continuity Equation for Aerosols

The continuity equation can be applied to different size classes and chemical
components of aerosols in the same way as for gases. The transport terms are the
same, since the particles are sufficiently small that they are advected by the wind in
the same way as gases, except that one should add a sink term from gravitational
settling in the case of very large particles (>10 μm in the troposphere, > 1 μm in the
stratosphere). The chemical term in the continuity equation is of the same form as for
gases if we only simulate the total mass concentrations of aerosol chemical compon-
ents (without regard to their size distributions).

If we are interested in describing the evolution of the aerosol size distribution,
however, we need to introduce additional terms in the continuity equation to account
for aerosol nucleation, condensational growth, coagulation, and cloud interactions.
This ensemble of processes is called aerosol microphysics. For accounting purposes
it is more convenient to use volume rather than radius as the independent variable to
characterize the aerosol size distribution. We thus define a volume distribution
function nN(V) such that nN(V) dV represents the number concentration of particles
in the volume range [V, V + dV]. The relationship between nN(V) and nV(r) defined in
Chapter 3 can be derived by equaling the number of particles in the volume range [V,
V + dV] with that in the equivalent size range [r, r + dr]:

nN Vð Þ dV ¼ nN rð Þ dr ) nN Vð Þ ¼ dr

dV
nN rð Þ ¼ 1

4πr2
nN rð Þ (4.26)

The local evolution of the aerosol size distribution can be written as
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∂nN Vð Þ
∂t

¼ ∂nN Vð Þ
∂t

� �
nucleation

þ ∂nN Vð Þ
∂t

� �
condensation=evaporation

þ ∂nN Vð Þ
∂t

� �
coagulation

(4.27)

where nucleation describes the formation of new particles from the gas phase,
condensation/evaporation describes the exchange of mass between the gas phase
and the particles, and coagulation describes the formation of larger particles from the
collision of smaller particles by Brownian diffusion. Representation of aerosol–cloud
interactions may require additional terms.
The nucleation term is dependent on the supersaturation of species in the gas

phase and on the stability of successively larger molecular clusters formed from these
gas-phase molecules. Nucleation acts as a source of new particles at the low end of
the size distribution (~10–3 μm). The condensation/evaporation term can be calcu-
lated from knowledge of the condensation growth rate I(V) = dV/dt of particles of
volume V. Consider a volume element [V, V + dV]. The particles growing into that
volume element over time dt are those that were in the volume element [V, V – I(V)
dt]; their number concentration is nN(V) I(V) dt. Similarly, the number concentration
of particles growing out of the volume element is n(V + dV) I(V + dV) dt. Thus the
change in the volume distribution function is

∂nN Vð Þ
∂t

� �
condensation=evaporation

¼ � ∂ I Vð ÞnN Vð Þð Þ
∂V

(4.28)

The coagulation term is defined by the frequency of collisions between particles
(collision usually results in coagulation). We characterize the collision frequency by
a coagulation coefficient β(V, V0) [m3 particle–1s–1] representing the rate constant at
which particles of volume V collide with particles of volume V0. In this manner, the
rate of production of particles of volume (V + V0) by collision of particles of volume
V and V0 is given by β(V, V0) nN(V) nN(V0) (dV)2. To determine the change with time
in the number concentration of particles in the volume element [V, V + dV] due to
coagulation processes we consider collisions with particles over the entire range of
the size distribution and account for both production and loss of particles out of the
volume element:

∂nN Vð Þ
∂t

� �
coagulation

¼ 1

2

ðV
0

β V 0;V � V 0ð Þ nN V 0ð Þ nN V � V 0ð Þ dV 0

� nN Vð Þ
ð∞
0

β V ;V 0ð Þ nN V 0ð Þ dV 0
(4.29)

where the ½ coefficient on the first term of the right-hand side is to avoid double-
counting. Physical formulations for I(V), β(V, V0), and aerosol nucleation are
presented by Seinfeld and Pandis (2006).
Standard numerical algorithms for aerosol microphysics approximate the size

distribution by a series of square functions called sections or “bins.” These are called
sectional models. Accurate representation of aerosol microphysics generally requires
more than 30 bins for each chemical component of the aerosol, so including multiple
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components can become computationally cumbersome. An alternative is to make
some assumption about the shape of the size distribution and track the evolution of
the low-order moments of that distribution. See Section 5.6 for additional infor-
mation on the methods used in aerosol models.

4.4 Atmospheric Lifetime and Characteristic Timescales

4.4.1 Atmospheric Lifetime

The atmospheric lifetime of a chemical species is defined as the average time that the
species remains in the atmosphere before it is removed by one of its sinks. The term
residence time is equivalently used, most often when the sink involves deposition
to the surface. If a species i has a local mass concentration ρi [kg m–3] and loss rate
Li [kg m–3 s–1], the local atmospheric lifetime is given by

τi ¼ ρi
Li

(4.30)

We are often interested in the mean atmospheric lifetime τi averaged over some
atmospheric domain V and time period T. This is obtained by summation of the
concentrations and loss rates:

τi ¼

Ð
T

Ð
V

ρi dv dtÐ
T

Ð
V

Li dv dt
(4.31)

For example, the global mean atmospheric lifetime is defined by summing over the
whole atmosphere and a full annual cycle.

The atmospheric lifetime of a species is a very useful thing to know because
it characterizes the spatial and temporal variability of its concentration. A species
with a short lifetime will have strong concentration gradients defined by fluctuations
of its sources and sinks, while a species with a long lifetime will be well mixed.
A species with a short lifetime will respond rapidly to changes in sources or sinks,
while a species with a long lifetime will respond more slowly.

The loss rate of a species is usually proportional to its concentration (first-order
loss). We then write Li = li ρi, where li [s

–1] is a loss rate coefficient, and derive τi = 1/li.
If there is no compensating production, the evolution of the concentration is
expressed by

dρi
dt

þ li ρi ¼ 0 (4.32)

with solution

ρi tð Þ ¼ ρi 0ð Þ exp �li t½ � ¼ ρi 0ð Þ exp �t=τi½ � (4.33)

Thus we see that τi defines a characteristic e-folding timescale for decay: ρi(τ) = ρi(0)/e
= 0.37 ρi(0). τi is sometimes called the e-folding lifetime to distinguish it from
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the half-life t1/2 used in the radiochemistry literature to describe 50% loss of an
initial amount of radioactive material. For a first-order loss, τ and t1/2 are related by
τ = t1/2/ln2 = 1.44 t1/2.
Different processes can contribute to the removal of a species from the atmos-

phere, including chemical loss, transport, wet scavenging, and surface uptake, as
described by the different terms in the continuity equation (Section 4.2). If several
processes contribute to the sink and all are first-order, the overall loss coefficient li is
the sum of the loss coefficients for the individual processes. Thus we have

li ¼
X
q

li,q (4.34)

where li,q is the loss coefficient associated with process q. One can similarly define a
lifetime τi,q = 1/li,q associated with process q. The overall lifetime τ resulting from all
loss processes is

1

τi
¼
X
q

1

τi,q
(4.35)

Thus the loss coefficients for individual processes add in series while the corres-
ponding atmospheric lifetimes add in parallel.
We now examine the formulation of lifetimes for individual processes. Consider

first the chemical loss of species i by reaction with species j with a rate constant k.
The corresponding chemical lifetime is

τchem ¼ 1

k ρj
(4.36)

For a more general case where species i reacts with several species j (rate constants kj)
and also photolyzes with a photolysis frequency J, the chemical lifetime is given
by

τchem ¼ 1

J þPj kj ρj
(4.37)

Chemical lifetimes in the atmosphere range from less than a second for highly
reactive radicals to practically infinite for noble gases.
Consider now the timescales for transport of species i. For one-dimensional

advection along direction x with a velocity u, the continuity equation is

∂ρi
∂t

þ ∂ u ρið Þ
∂x

¼ 0 (4.38)

Let us view advection as representing a sink for species i, such as ventilation from a
source region. In that case we can define a loss coefficient associated with advection
as per (4.30): ladv = ∂(u ρi)/∂x / ρi. We approximate the divergence term as ∂(u ρi)/∂x
� u ρi/D, where D represents a characteristic distance over which the transport flux
varies. The lifetime associated with advection is then given by

τadv ¼ D

u
(4.39)
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For a source region of dimension D, (4.39) defines the lifetime against ventilation
out of the source region by the mean wind. In a more general case, advection acts as
both a source and a sink for the concentration at a given location. τadv in (4.39) can
be viewed more generally and usefully as a transport timescale for species i to be
transported over a distance D.

For small-scale turbulent mixing parameterized with a turbulent diffusion coeffi-
cient K, the continuity equation is

∂ρi
∂t

� ∂
∂x

K
∂ρi
∂x

� �
¼ 0 (4.40)

Again one can make an order-of-magnitude approximation of the diffusion term as
Kρi/D

2, and the corresponding mixing timescale is

τmix ¼ D2

K
(4.41)

Transport timescales can be derived from knowledge of the atmospheric circulation
and also from observations of chemical tracers. Typical values for the troposphere
are given in Figure 4.4. Horizontal transport is fastest in the longitudinal direction
because of strong winds; thus air can circumnavigate the world in a given latitudinal
band on a timescale of a month. Meridional mixing within a hemisphere takes longer,
on a timescale of about three months, and exchange across hemispheres requires the

(a)

(b)
Stratopause

Tropopause

Surface

Figure 4.4 Typical time constants associated with global atmospheric transport. From Jacob (1999).
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order of a year because of the lack of a strong thermal forcing gradient across the
Equator. Vertical transport in the troposphere is driven largely by buoyant mixing
with characteristic timescales of a day for mixing of the planetary boundary layer
(PBL, surface to 1–3 km) and a month for the full troposphere. Tropospheric air has a
residence time of 5–10 years against transport to the stratosphere, while stratospheric
air has on average a residence time of 1–2 years against transport to the troposphere.
The lifetime of species i against dry deposition (surface uptake) for a well-mixed

atmospheric layer extending from the surface to altitude h is expressed as a function
of the deposition velocity wD,i by

τdep ¼ h

wD, i
(4.42)

For a gas removed efficiently at the surface, wD,i is of the order of 1 cm s–1 so that the
lifetime against dry deposition in the PBL is of the order of a day.
The lifetime of water-soluble gases and aerosols against wet scavenging can be

roughly estimated from the frequency of precipitation. It is typically of the order of a
week in the lower troposphere, longer in the upper troposphere. The estimate is
complicated by the coupling between atmospheric transport and precipitation and by
differences in scavenging efficiencies for different forms of precipitation.

4.4.2 Relaxation Timescales in Response to a Perturbation

An important application of the concept of atmospheric lifetime is to determine the
time required for the atmosphere to relax in response to a perturbation. Consider a
species i initially at steady state to which an instantaneous perturbation Δρi(0) is
applied at time t = 0. If the loss is linear with coefficient li, then the perturbation
decays as Δρi(t) = Δρi(0)exp[–lit] and the corresponding timescale is defined by the
species lifetime τi = 1/li. The situation is more complicated if the loss is nonlinear due
to chemical coupling between species. To analyze the behavior of a nonlinear
coupled system, let us consider the general kinetics equation

dρ
dt

¼ A ρð Þ (4.43)

in which ρ (ρ1, ρ2, . . . ρN)
T represents the concentration vector for N chemical species

and A(ρ) is an N � N matrix operator containing the kinetic expressions for the
chemical production and destruction rates of each species. If a small perturbation Δρ
is applied to the system, the response of the perturbed state is determined by the
linearized equation (Prather, 2007)

d ρþ Δρð Þ
dt

¼ A ρþ Δρð Þ ¼ A ρð Þ þ J ΔρþO Δρ2
� �

(4.44)

where the (N � N) Jacobian matrix J of operator A is the first term in the Taylor
expansion of A(ρ + Δρ). We neglect the higher-order terms O Δρ2ð Þ in what follows.
If the perturbation is an eigenvector of J with eigenvalue λ (Box 4.1), then

dΔρ
dt

¼ J ρð ÞΔρ¼ λΔρ (4.45)
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and the solution is

Δρ tð Þ ¼ Δρ 0ð Þ exp λtð Þ (4.46)

If the N species are linearly independent, then J has full rank with N linearly
independent eigenvectors aj each with an eigenvalue λj (j = 1, N). In the general
case, an initial perturbation Δρ 0ð Þ can be decomposed on the basis of eigenvectors
with coefficients αj:

Δρ 0ð Þ ¼
XN
j¼1

αjaj (4.47)

Box 4.1 Eigenvalues and Eigenvectors

The vector a = (a1, . . .aN)
T is an eigenvector of the square matrix A (N � N) if it satisfies the

equation

Aa ¼ λa

for some scalar λ called an eigenvalue of A. A non-degenerate matrix (determinant |A| 6¼ 0) has N
linearly independent eigenvectors forming a base and N eigenvalues (one for each eigenvector).
The above equation can be rearranged as

A� λIð Þa ¼ 0

where I is the identity matrix. The equation must have an infinite number of solutions since any
scalar multiplier of a is a solution. It follows that the matrix A – λI must be degenerate, so that its
determinant must be zero:

A� λIj j ¼ 0

When expanded, this equation takes the form of a polynomial equation of Nth degree in λ. The N
roots of this equation are the eigenvalues of the system. Replacing in A a = λ a then yields the
corresponding eigenvector for each eigenvalue.
As an illustrative example, consider the matrix A ¼ 2 1

1 2

� 	

The eigenvalues are the roots of
2� λ 1
1 2� λ





 



 ¼ 0 or

λ2 � 4 λ þ 3 ¼ 0

The roots of this quadratic equation are λ = 1 and λ = 3.

The eigenvectors a ¼ a1
a2

� 	
are obtained by solving the linear equation

2 1
1 2

� 	
a1
a2

� 	
¼ λ

a1
a2

� 	
for the two values of λ. We find

1
�1

� 	
for λ = 1 and

1
1

� 	
for λ = 3.
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so that the time evolution of the perturbation is given by

Δρ tð Þ ¼
XN
j¼1

αjaje
λj t (4.48)

We see that the eigenvalues define the characteristic timescales for the responses to
the perturbation, and the eigenvectors define the modes over which the timescales
apply. If all eigenvalues have negative real components, then Δρ will relax back to
steady state over a suite of timescales [–1/λ1, . . .‒1/λN] that define the characteristic
timescales of the system. This can be used in particular to identify the longest
timescale for response. If any of the eigenvalues has a positive real component then
an initial perturbation to that mode will grow exponentially with time and the system
is unstable (it is explosive). If any of the eigenvalues has a non-zero imaginary
component then a perturbation to that mode will induce an oscillation that may grow
or decay depending on the sign of the real component. Eigenvalues for realistic
mechanisms used in atmospheric chemistry models are all real and negative, so that
the mechanisms are stable against perturbations. This should not be surprising as
chemical systems generally follow Le Chatelier’s principle (“any perturbation to
equilibrium prompts an opposing response to restore equilibrium”). Oscillatory or
unstable chemical behavior may occasionally occur under unusual conditions but
these tend to be rapidly dissipated by model mixing.

4.5 Conservation Equations for Atmospheric Dynamics

Solution of the chemical continuity equation (4.1) requires information on winds and
turbulence to compute the transport terms. This information must be provided by a
meteorological model. We discussed in Chapter 1 how chemical transport models can
operate either “online,” integrated within the meteorological model, or “offline,” using
archived output from the meteorological model. Here we describe the conservation
equations for atmospheric dynamics that form the basis of meteorological models.
The dynamical properties of the atmosphere are determined by the fundamental

principles of mass, momentum, and energy conservation. Mass cannot be created nor
destroyed, momentum can be changed only through the application of a force, and
internal energy can be altered only through the existence of a heat source or sink, or by
performance of work. The properties are described at any spatial location and time by
six dependent variables: the pressure p [Pa], the density ρa [kg m–3], the absolute
temperature T [K], and the wind vector v [m s–1] with its three components (u, v, andw).
Pressure, density, and temperature are related by the ideal gas law:

p ¼ ρaRT (4.49)

where R is the gas constant (287 J kg–1 K–1). Solving the dynamical system requires
five additional equations. These describe the evolution of mass, momentum (in the
three spatial directions), and energy for the compressible fluid.
Since the Earth is rotating around its north–south axis, the most appropriate

reference frame to describe air motions for an observer located on the Earth is not
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an inertial frame attached to the center of the planet, but rather a rotating coordinate
system attached to the surface of the Earth. The geometric coordinates used in this
case are denoted (x, y, z). Variables x and y represent geometric distances along
parallels and meridians, respectively. Variable z is the geometric altitude. When
spherical coordinates are used, the equations are expressed as a function of longitude
λ and latitude φ rather than longitudinal and meridional distances x and y. We have

∂
∂x

¼ 1

r cosφ
∂
∂λ

(4.50)

∂
∂y

¼ 1

r

∂
∂φ

(4.51)

∂
∂z

¼ ∂
∂r

(4.52)

where r represents the geometric distance from the center of the Earth. The three wind
components, and specifically the curvilinear velocities along a latitude circle (u) and
along a meridian (v), and the linear velocity along the vertical (w) are expressed as

u ¼ r cosφ
dλ
dt

(4.53)

v ¼ r
dφ
dt

(4.54)

w ¼ dr

dt
(4.55)

The total derivative of a quantity Ψ is expressed as

dΨ
dt

¼ ∂Ψ
∂t

þ v�—Ψ (4.56)

In local geometric coordinates (x, y, z), the total derivative is written as

dΨ
dt

¼ ∂Ψ
∂t

þ u
∂Ψ
∂x

þ v
∂Ψ
∂y

þ w
∂Ψ
∂z

(4.57)

In spherical coordinates (λ, φ, z), an equivalent formulation of the total derivative is

dΨ
dt

¼ ∂Ψ
∂t

þ u

r cosφ
∂Ψ
∂λ

þ v

r

∂Ψ
∂φ

þ w
∂Ψ
∂z

(4.58)

In many applications, the thickness of the atmosphere z is assumed to be small
compared to the Earth’s radius a. In this shallow atmosphere approximation, one
assumes z � a and r = a. For models extending to the upper atmosphere, this
approximation may not be valid.

4.5.1 Mass

Mass conservation for air is expressed by the continuity equation. In flux form, it is
written as

∂ρa
∂t

þ —� ρavð Þ ¼ 0 (4.59)

103 4.5 Conservation Equations for Atmospheric Dynamics

005
22 Jun 2017 at 16:45:29, subject to the Cambridge Core terms of use, available



This equation can be expanded as

∂ρa
∂t

þ v�—ρa þ ρa—�v ¼ 0 (4.60)

with the sum of the first two terms being equal to the total derivative of ρa. Thuswewrite

dρa
dt

þ ρa—�v ¼ 0 (4.61)

which shows that the change in the density of a fluid parcel is proportional to the
velocity divergence. Under the shallow atmosphere approximation, (4.59) and (4.61)
are expressed in spherical coordinates as

∂ρa
∂t

þ 1

a cosφ
∂ ρauð Þ
∂λ

þ ∂ ρav cosφð Þ
∂φ

� 	
þ ∂ ρawð Þ

∂z
¼ 0 (4.62)

and

dρa
dt

þ ρa
a cosφ

∂u
∂λ

þ ∂ v cosφð Þ
∂φ

� 	
þ ρa

∂w
∂z

¼ 0 (4.63)

If the fluid is incompressible (dρa/dt = 0), the continuity equation (4.61) becomes
simply —�v ¼ 0. The velocity field is said to be non-divergent and the fluid density is
conserved along the flow. Air is compressible and consequently this condition is not
verified in the atmosphere.

4.5.2 Momentum

Newton’s second law applied to a continuum medium (i.e., with infinitely divisible
fluid parcels) states that the acceleration of a small fluid element results from (1) body
forces f that affect the whole fluid element (gravity, and electromagnetic forces if the
fluid is ionized) and (2) stress forces that act on the surface of the fluid element and
represent interactions with the rest of the fluid. These stress forces are expressed as the
gradient of a second-order stress tensor σ. The balance of momentum in an inertial
frame of reference (attached to the center of the Earth) is therefore provided by the
differential equation (McWilliams, 2006; Neufeld and Hernandez-Garcia, 2010):

ρa
dV
dt

¼ f þ — � σ (4.64)

where ρa is the mass density of the fluid and V is the velocity in the inertial frame of
reference. The only body force considered here is gravity ( f = ρa ga). Further, one distin-
guishes between an isotropic term (diagonal elements of the stress tensor representing the
pressure of the fluid: σii = –p) and an anisotropic component expressed by a tensor τ that
accounts for interactions (viscosity) between the different fluid layers that move relative
to each other. The resulting equation, known as the Cauchy momentum equation, is

ρa
dV

dt
¼ f � —pþ—�τ (4.65)

To solve this vector equation, an expression must relate the stress terms to the
velocity of the flow. In the hypothesis of a Newtonian flow, the stress τ is assumed
to be proportional to the gradient of the velocity perpendicular to the shear. The
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proportionality coefficient μ [Pa s or kg m–1 s–1] is known as the dynamic viscosity
and is a scalar when the fluid is isotropic (otherwise, it is a tensor). If the fluid is
incompressible with a constant scalar viscosity μ, the elements τi, j of the stress tensor
are expressed as

τi, j ¼ μ
∂vi
∂xj

þ ∂vj
∂xi

� 	
(4.66)

if xj is the j
th spatial coordinate and vi is the fluid’s velocity in the direction of axis i.

The stress tensor is therefore related to the velocity vector by (Neufeld and
Hernandez-Garcia, 2010):

τ ¼ μ —�Vþ —�VT
� �

(4.67)

The assumption of incompressibility —�V ¼ 0ð Þ is appropriate for compressible
fluids such as air if the velocity of the flow corresponds to Mach numbers smaller
than about 0.3. Under this assumption, one obtains the Navier–Stokes equation
written here in an inertial frame of reference:

ρa
∂V
∂t

þ V�—ð ÞV
� 	

¼ f � —pþ μ—2V (4.68)

In the more general case of the compressible flows encountered in the atmosphere,
the friction term takes a more complicated form, and the Navier-Stokes equation
becomes

ρa
∂V
∂t

þ V•—Vð Þ
� 	

¼ f � —pþ μ —2Vþ 1

3
— —•Vð Þ

� �
with the viscosity μ assumed to have a constant value.

Here, we have expressed the material (total) derivative as the sum of the local
acceleration ∂V=∂t and the convective acceleration V�—ð ÞV. This equation provides
the three components of the velocity field V(r, t) at a given point in space r and time
t, and is used in fluid dynamics to address many different questions at various scales.
The convective acceleration produced by spatial gradients in the velocity introduces
a nonlinear component in the equation that can be the source of chaotic behavior
known as turbulence (Box 4.2). The viscosity term operates as a linear diffusion term
for momentum. The solution of this equation requires that appropriate conditions be
prescribed at the boundary of the domain. The traditional condition adopted in many
fluid dynamics problems is zero flow across solid boundaries and zero fluid velocity
at the boundaries (“no-slip” condition).

For the rotating Earth, the velocity Vof an air parcel at a location r and expressed
in an inertial frame is equal to its velocity v relative to the Earth (the velocity that is
measured by an observer located on the Earth) plus the velocity owing to the rotation
of the Earth:

V ¼ vþ Ω� r½ � (4.69)

whereΩ is the Earth’s angular velocity vector (directed from the south to the north pole
and with an amplitude of 7.292� 10–5 s–1). We deduce that the absolute acceleration is

dV
dt

¼ dv
dt

þ 2 Ω� v½ � þ Ω� Ω� r½ �½ � (4.70)
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Box 4.2 The Navier–Stokes Equation, the Reynolds Number, and Turbulent Flows

The nature of fluid flow can be assessed by comparing the importance of the inertial (or convective)
term v�—ð Þv with the viscosity (diffusive) term ν—2v in the Navier–Stokes equation (4.68). Here
ν = μ/ρa represents the kinematic viscosity [m

2 s–1]. To address this question, we define reduced
quantities

v0 ¼ v=U t0 ¼ tU=L x0i ¼ xi=L p0 ¼ p=ρU2 ƒ0 ¼ ƒL=U2

where L and U are characteristic length and velocity scales, and apply this transformation to the
Navier–Stokes equation. Omitting the prime signs for clarity, we obtain the non-dimensional
equation

∂v
∂t

þ v�—ð Þv ¼ � 1
ρa
—pþ 1

ρa
f þ 1

Re
—2v

where

Re ¼ v � —ð Þv
ν—2v

� U2=L

νU=L2
¼ UL

ν

is the dimensionless Reynolds number, a measure of the ratio between the inertial force U(U/L) and
viscous forces (νU/L2). Parameter ν = μ/ρ [m2 s–1] denotes the kinematic viscosity with a value of
1.5� 10–5 m2 s–1 at 20 �C. Reynolds (1883) showed that as the value of Re increases, the motions
become progressively more complex with a gradual transition from laminar to turbulent conditions.
For low Reynolds numbers (less than 10), the steady-state flow results from a balance between
pressure gradient and viscous forces. For larger Reynolds numbers, the nonlinear inertial term
becomes dominant and chaotic eddies, vortices, and other instabilities are produced. Under this
turbulent regime, viscosity is too small to dissipate the large-scale motions and the kinetic energy
of the flow “cascades” progressively to smaller scales that are eventually dissipated by viscosity
when their size becomes sufficiently small.
Atmospheric flows are characterized by very large Reynolds numbers. For a typical length scale

of 1 km and a fluid velocity of 10 m s–1, the Reynolds number is 7 � 108. The atmosphere can
therefore be treated as a frictionless medium (inviscid fluid), prone to multi-scale turbulent
motions. This is illustrated in Box 4.2 Figure 1 (b) with large-scale turbulence in the Jovian
atmosphere. The solution of the momentum equation in this turbulent regime is very sensitive to
small perturbations and to inaccuracies in the initial and boundary conditions, so that the
predictability of the flow (i.e., weather) is limited to a few days. When describing small-scale
motions such as those encountered at the interface between two fluid elements, the Reynolds
number is considerably smaller; viscous dissipation leads to mixing between adjacent fluid
elements, and the full Navier–Stokes equation needs to be considered. An example of turbulent
mixing of initially separated chemical tracers is shown in Box 4.2 Figure 1 (a).
Deterministic representation of turbulent flow requires a direct numerical simulation (DNS)

method in which the whole range of spatial and temporal scales is resolved with a ~1 mm-
resolution grid and very small time steps. An alternative approach commonly adopted for PBL
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Here 2[Ω � v] is the Coriolis acceleration, and [Ω � [Ω � r]] = –Ω2 R is the
centripetal acceleration where R is the position vector perpendicular from the Earth’s
axis of rotation (Figure 4.5). When expressed relative to the rotating Earth, the
Navier–Stokes equation (also called the equation of motion) becomes

∂v
∂t

þ v�—ð Þv ¼ �2 Ω� v½ � � 1

ρa
—pþ gþ Fdiss (4.71)

where g = ga + Ω2R is the apparent gravitational acceleration (gravitational acceler-
ation corrected by the centripetal force) and Fdiss denotes the dissipation term resulting

turbulence is the LES method in which large-scale eddy motions are resolved explicitly while the
effects of small-scale eddies are parameterized. If we separate the small-scale, rapidly fluctuating
components (eddy term denoted by prime) of the dependent variables (velocity, pressure, and
density) from their large-scale, slowly varying components (mean term denoted by overbar) and
ignore the Coriolis term, the three components of the Reynolds averaged Navier–Stokes (RANS)
equation are written under the assumption of incompressibility as

∂v i
∂t

þ
X
j¼1, 2, 3

v j
∂v i
∂xj

¼ � 1
ρa

∂p
∂xi

þ F i þ ν
∂2v i
∂x2i

�
X
j¼1, 2, 3

∂v0j v
0
i

∂xj

where F i represents the components of the acceleration resulting from gravity and other body
forces. The symmetric tensor v0j v

0
i , called the Reynolds stress, characterizes the action of turbulent

motions on the large-scale flow. To solve the equation, a “closure relation” that relates this eddy
term to the mean flow must be specified. See Chapter 8 for more details.

(a) (b)

Box 4.2
Figure 1

(a): Concentration of two initially separated tracers mixing and reacting in an isotropic turbulent
flow of a wind tunnel. The distribution is derived by the 512 � 512 � 1024 grid point direct numerical
simulation (DNS) of de Bruyn Kops et al. (2001). The image shows the wide range of length scales
involved in the turbulent mixing process. See www.efluids.com/efluids/pages/gallery.htm. (b):
Large-scale turbulent flow on Jupiter with irregular motions and the presence of vortices. From the
National Aeronautics and Space Administration (NASA).
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from viscosity. In most atmospheric applications, the effect of molecular viscosity
can be ignored and the corresponding equation, in which term Fdiss is neglected, is
referred to as the Euler equation. As we proceed, we will keep in the momentum
equation a term F (vector with three components Fλ, Fφ, and Fz) to account for any
possible momentum dissipation.
When expressed in spherical coordinates (λ, φ, z), the three components of the

equation of motion become

du

dt
¼ 2Ωþ u

r cosφ

� 	
v sinφ� w cosφð Þ � 1

ρa r cosφ

� 	
∂p
∂λ

þ Fλ (4.72)

dv

dt
¼ � uw

r
� 2Ωþ u

cosφ

� 	
u sinφ� 1

ρa r

� 	
∂p
∂φ

þ Fφ (4.73)

dw

dt
¼ u2 þ v2

r
þ 2Ω u cosφ� g � 1

ρa

∂p
∂z

þ Fz (4.74)

It is important to note in the last equation (vertical projection of the momentum
equation) that two terms (pressure gradient and gravity) are dominant, and this
equation is often replaced by the hydrostatic approximation (see Section 2.6.1):

1

ρa

∂p
∂z

þ g ¼ 0 (4.75)

r

�

i

j

k

X

Y

Z

λ

Ω

Figure 4.5 Coordinate systems: Inertial frame attached to the center of the Earth and rotating frame attached
to the Earth’s surface. A point in the atmosphere is determined by its longitude λ, its latitude φ,
and the distance r from the center of the Earth. The altitude z is given by r – a, if a is the Earth’s radius.
The Earth rotation rate is Ω. From Brasseur and Solomon (2005).
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When neglecting the smaller terms and adopting the shallow atmosphere assumption
(with r = a), we obtain

du

dt
¼ f þ u tanφ

a

� �
v� 1

ρa a cosφ

� 	
∂p
∂λ

þ Fλ (4.76)

dv

dt
¼ f þ u tanφ

a

� �
u� 1

ρaa

� 	
∂p
∂φ

þ Fφ (4.77)

where f = 2 Ω sin φ is the Coriolis factor, and a is the Earth’s radius. The so-called
metric terms in (4.72) to (4.74), uw/r, [u2 + v2]/r, uv (tan φ)/r, u2 (tan φ)/r, arise from
the spherical coordinate system. A scale analysis shows that these terms can be
neglected when applied to mid-latitude systems. In this case, the equation for large-
scale quasi-horizontal flows is expressed in the vector form

dvh
dt

¼ � 1

ρa
—hp� f k � vh½ � þ F (4.78)

where vh (u,v) represents the horizontal wind vector (i.e., wind along a surface of
equal geometric height),

vh ¼ uiþ vj (4.79)

F(Fλ, Fφ) is again the friction force, and —h the horizontal gradient operator:

—h ¼ i
1

a cosφ

� 	
∂
∂λ

þ j
1

a

� 	
∂
∂φ

(4.80)

Here, i, j, and k are the unity vectors in the zonal (x), meridional (y), and vertical (z)
directions.

By applying the k� —h�½ � and —� vector operators on the horizontal equations of
motion, one obtains the vorticity and divergence equations, which are often used in
atmospheric general circulation and weather prediction models as a replacement for
the momentum equations. These are expressed by

∂ζ
∂t

¼ �vh�—h ζþ fð Þ � w
∂ζ
∂z

� ζþ fð Þ—h�vh þ k� —hw� ∂vh
∂z

� �
þ k� —hp� —h

1

ρa

� �
þ k� —h � F½ �

(4.81)

and

∂D
∂t

¼�vh• vh•—hð Þvhf g�—h• f k�vh½ ��—hw•
∂vh
∂z

�w
∂D
∂z

�—h•
1

ρa
—hp

� 	
þ—h•F

(4.82)

where the vertical projection of the curl of the horizontal velocity

ζ ¼ k• —h � vh½ � ¼ ∂v
∂x

� ∂u
∂y

(4.83)

is called the relative vorticity and
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D ¼ —h•vh ¼ ∂u
∂x

þ ∂v
∂y

(4.84)

is the horizontal divergence. If we define the absolute vorticity as

η ¼ ζþ f (4.85)

and note that the Coriolis parameter f is a function of latitude only, the rate of change
of the absolute vorticity at a given point of the atmosphere is given by

∂η
∂t

¼�vh�—hη�w
∂η
∂z

� η—h�vh � k� —hw� ∂vh
∂z

� �
þ k� —hp�—h

1

ρa

� �
þ k� —h �F½ �

(4.86)

The first two terms on the right-hand side of the equation represent the horizontal and
vertical advection of the absolute vorticity, respectively. The third term, called the
vortex stretching term, describes the stretching or compression of vortex tubes in the
vertical direction that results from a non-zero horizontal convergence or divergence
of the flow. The fourth term, known as the tilting term, describes how the horizontal
variations in the vertical velocity tend to tilt the horizontal components of the
absolute vorticity vector toward the vertical direction. The fifth term, called the
solenoid term, describes the effect of barocliniticity on the vertical component of
the vorticity, and the last term represents the effects of friction.
Simpler forms of the vorticity equation ignore the smallest terms in the equation

on the basis of a scale analysis or as a result of specific assumptions. For example, if
one assumes that the fluid is incompressible (divergence of the velocity is equal to
zero) and barotropic (no horizontal variation of the temperature, no vertical variation
of wind velocities, so that surfaces of equal pressure coincide with surfaces of equal
density; see Section 2.8), and if one neglects friction forces, one obtains the
following equation

dη
dt

¼ ∂η
∂t

þ vh�—hη ¼ �η—h�vh (4.87)

which states that the rate of change of absolute vorticity following an air parcel is
proportional to the convergence of the horizontal velocity. The first computer
weather forecast by Charney et al. (1950) was based on the barotropic vorticity
equation. Such models suffer from some severe restrictions (such as their inability to
correctly generate cyclones), so that later models have been expressed by conserving
the baroclinic terms in the governing equations.
Large-scale flows in the extratropics can also be represented by the quasi-

geostrophic vorticity equation. This equation is established by decomposing the
horizontal wind velocity vh into a geostrophic component vg (see Section 2.7 for
its definition) and a remaining ageostrophic component vag of smaller amplitude.
The actual wind in the momentum equation is approximated by its geostrophic
component, except in the case of the divergence term. This exception (which
explains why the approximation is known as the quasi-geostrophic approximation)
is justified by the fact that the divergence of the geostrophic wind velocity is equal to
zero and that, without accounting for the non-zero divergence of the ageostrophic
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wind component, no vertical wind could be generated. The resulting equation for the
quasi-geostrophic relative vorticity, in which friction is ignored, is

∂ζg
∂t

þ vg�—hζg þ β vg ¼ �f 0—h�vag (4.88)

or, if the fluid is assumed to be incompressible,

∂ζg
∂t

þ vg�—hζg þ β vg ¼ f 0
∂w
∂z

(4.89)

These two equations are based on the mid-latitude beta-plane approximation in
which the Coriolis parameter f = f0 + βy is assumed to vary linearly with the
geometric distance y measured along a meridian, and f0 = 2 Ω sin φ0 denotes the
value of parameter f at a point of reference at latitude φ0 where y = 0.

Following Helmholtz’s theorem, the horizontal wind vector vh can be deduced from
the vorticity and divergence by noting that it can be separated into two components

vh ¼ k � —hΨ½ � þ —hχ (4.90)

where Ψ is the streamfunction (which represents the nondivergent part of the flow
whose value is constant along a streamline that follows the flow) and χ is the velocity
potential (a scalar function whose gradient equals the velocity of an irrotational
flow). It is straightforward to show that these scalar terms are related to the vorticity ζ
and divergence D by

ζ ¼ —2
h Ψ (4.91)

D ¼ —2
h χ (4.92)

where the “horizontal” Laplacian operator is defined in spherical coordinates as

—2
h ¼

1

a2 cosφ

� 	
∂
∂φ

cosφ
∂
∂φ

� 	
þ 1

a2 cos 2φ

� 	
∂2

∂λ2
(4.93)

By combining relations (4.91) and (4.92) with the vorticity and divergence equations
(4.81) and (4.82), one derives easily the two components of the horizontal wind
velocity from the calculated streamfunction and velocity potential. The vertical wind
component is obtained from the continuity equation. The potential vorticity, a
conserved quantity in the absence of dissipative processes, is often used to diagnose
atmospheric transport (see Box 4.3).

In the upper atmosphere, above approximately 100 km altitude, molecular viscos-
ity (as measured by the viscosity coefficient μ) must be taken into account. Collisions
between neutral particles and ions, whose motions are sensitive to electromagnetic
fields, also affect the winds, especially at high latitudes. The effect of this ion drag is
often assumed to be proportional to the difference between the neutral and ion winds.
Thus, if vion represents the ion velocity (bulk motions and gyromotions generated by
the electromagnetic fields) and νion the ion-neutral collision frequency [s–1], the
momentum equation (4.71) becomes

dv
dt

¼ �2 Ω� v½ � � 1

ρa
—pþ gþ μ

ρa

∂2v
∂z2

þ vion v� vionð Þ (4.94)
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where, as above, v is the neutral wind velocity, Ω the angular velocity of the Earth
rotation vector, p the total pressure, and z the altitude.

4.5.3 Energy

The equation of energy is an expression of the first law of thermodynamics. It states
that the energy supplied to an air parcel produces an increase in its internal energy
(cvT) or induces work by expansion. Thus per unit time, the energy conservation is
expressed as

Box 4.3 Relative, Absolute, and Potential Vorticity

The relative vorticity ζ defined in (4.83) is a measure of the spin of a fluid parcel relative to
coordinates attached to the Earth. The absolute vorticity ζ + f is the sum of the spin of the fluid
and the planetary vorticity (represented here by the Coriolis parameter f ). It is not a conserved
quantity since, even in the absence of dissipation, its tendency is proportional to the divergence of
the motion field.
In the case of an incompressible fluid and in the absence of dissipative forces, the integration of

the continuity equation over a height h separating two free surfaces of a fluid (often referred to as
the depth of the fluid), shows that the potential vorticity

Z ¼ ζþ fð Þ
h

¼ η
h

is conserved following the motion of a fluid parcel. This property implies that the relative vorticity
must adjust in response to changes in the planetary vorticity (as the parcel is displaced in latitude)
and to changes in the depth of the fluid.
For a compressible fluid such as air, it is possible to derive a similar conservation principle for the

Ertel potential vorticity [m2 s–2 K kg–1]

P ¼ 1
ρa

2Ωþ —� v½ ��—θ

where ρa is the air density, Ω is the angular velocity vector of the Earth’s rotation, v the three-
dimensional velocity field, and θ the potential temperature. Neglecting some minor terms, P is
expressed in spherical coordinates as

P ¼ 1
ρa

� ∂v
∂z

∂θ
a cosφ∂λ

þ ∂u
∂z

∂θ
a∂φ

þ 2Ω sinφþ ∂v
a cosφ∂λ

� ∂ u cosφð Þ
a cosφ∂φ

� 	
∂θ
∂z

� �
where a is the Earth’s radius. In the absence of friction and heat sources or sinks, the Ertel potential
vorticity P is a materially conservative property. As a result, P is often used to diagnose transport
processes in the atmosphere since, over relatively short timescales during which diabatic and other
dissipative processes can be neglected, this quantity is an excellent tracer of fluid motion. It has
become accepted to define 1.0 � 10�6 m2 s�1 K kg�1 as one potential vorticity unit (1 PVU).
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cv
dT

dt
þ p

d

dt

1

ρa

� 	
¼ Q (4.95)

where Q [J kg–1 s–1] is the diabatic heating term and cv [J K
–1 kg–1] the specific heat at

constant volume. Diabatic heating/cooling may be driven by the absorption/emission of
radiative energy by atmospheric gases, or by condensation/evaporation of water vapor.
The value of cv for air at 0 �C is 717.5 J kg–1 K–1. The second term in this expression
accounts for the work done upon a unit mass of air by compression or expansion of the
volume. The reciprocal density 1/ρa is termed the specific volume [m3 kg–1].When using
the ideal gas approximation, this energy conservation can be expressed as

cp
dT

dt
� 1

ρa

� 	
dp

dt
¼ Q (4.96)

where cp [J K
–1 kg–1] is the specific heat at constant pressure (cp = cv + R where R is

the gas constant). Its value at 0 �C is thus 717.5 + 287 = 1004.5 J K–1 kg–1. The
second term expresses compression heating or expansion cooling associated with
adiabatic processes taking place in the compressible fluid.

Making use of the hydrostatic equation (4.75), the energy equation becomes

dT

dt
þ w

RT

cpH
¼ Q

cp
(4.97)

where H is the scale height. In spherical coordinates,

∂T
∂t

þ u

r cos φ
∂T
∂λ

þ v

r

∂T
∂φ

þ w
∂T
∂z

þ RT

cpH

� �
¼ Q

cp
(4.98)

In the absence of significant diabatic processes (Q = 0) and horizontal temperature
gradients, the vertical temperature profile is obtained from

∂T
∂z

þ RT

cpH
¼ 0 (4.99)

It is often useful to introduce the potential temperature θ, defined in Chapter 2,

θ ¼ T
p0
p

� � R
cp

(4.100)

whose vertical gradient ∂θ/∂z = 0 under adiabatic conditions. θ is a better marker of
diabatic processes and atmospheric heat transport than the absolute temperature T. In
this case, the energy equation takes the form

dθ
dt

¼ p0
p

� � R
cp Q

cp
(4.101)

where the ratio R/cp = 0.285. This equation shows that, in the absence of diabatic
processes, the potential temperature of an air parcel is a conserved quantity along the
motion of the fluid. In spherical coordinates (4.101) becomes

∂θ
∂t

þ u

r cosφ
∂θ
∂λ

þ v

r

∂θ
∂φ

þ w
∂θ
∂z

¼ p0
p

� � R
cp Q

cp
(4.102)
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When heating and cooling are produced by radiative absorption and emission, the
value of the net heating rate Q is derived from the divergence of the radiative flux
calculated at each point of the atmosphere after spectral integration. See Chapter 5
for more details.
In the upper atmosphere, additional processes affect the energy budget and must

be accounted for in the energy conservation equation. In the thermosphere, heat
transport by conduction becomes important. Diabatic heating that must be con-
sidered explicitly includes absorption of shortwave solar radiation, chemical heating
resulting from collisional deactivation of energetically excited species, and chemical
heating from exothermic reactions. Joule heating, which arises from the dissipation
of electric currents in the ionosphere, represents another important effect, especially
during geomagnetic storms. Infrared emissions of atomic oxygen and nitric oxide are
important cooling processes.

4.5.4 Primitive and Non-Hydrostatic Equations

Meteorological models are based on the equations presented in the previous sections.
If, in these equations, one separates the horizontal and vertical components of the
velocity vector (v = vh + wk), and assumes that the atmosphere is frictionless, the
non-hydrostatic equations needed to derive the dependent variables vh (u,v), w, p, ρ
and T are

1

ρa

dρa
dt

¼ � —hvh þ ∂w
∂z

� 	
continuity equation (4.103)

dvh
dt

¼ �RT

p
—hp� f k � vh½ � horizontal projection of the momentum equation

(4.104)

dw

dt
¼ �RT

p

∂p
∂z

� g vertical projection of the momentum equation (4.105)

cp
dT

dt
� RT

p

dp

dt
¼ Q thermodynamic equation (4.106)

p ¼ ρaRT equation of state (4.107)

This system of equations describes air motions in a dry atmosphere over a wide range
of scales, including the propagation of planetary waves, inertia-gravity waves, and
even acoustic (sound) waves. An additional equation expressing the mass conser-
vation of water vapor is added to fully describe a moist atmosphere:

∂ ρaμwð Þ
∂t

þ —h� ρaμwvhð Þ þ ∂ ρaμwwð Þ
∂z

¼ ρa E � Cð Þ

where μw is the mass mixing ratio of water vapor (usually referred to as specific
humidity and denoted q in the meteorological literature). The source and sink terms
E and C account for the evaporation and condensation processes and represent the
influence of physical processes on the dynamics of the atmosphere.
With the exception of the equation of state, which is a diagnostic relation that

relates the pressure, density, and temperature, all other equations are prognostic
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equations that can be integrated forward in time and predict the evolution of
atmospheric variables if the initial meteorological situation is known.

When the vertical acceleration dw/dt can be neglected in comparison with other
terms, the differential equation for the vertical velocity (4.105) is replaced by the
diagnostic hydrostatic balance approximation (4.75). The resulting equations are
referred to as the primitive equations because they are very close to the original
system established in 1904 by Vilhelm Bjerknes, and on which numerical weather
predictions were first attempted.

One of the difficulties encountered in the early integration of the dynamical
equations was the generation of large-amplitude, fast-propagating waves (acoustic
and gravity waves) of no meteorological significance that resulted from a lack of
momentum balance in the adopted initial conditions. This issue explains why Lewis
Fry Richardson failed in his attempt to provide a successful numerical weather
forecast in the late 1910s: high-frequency acoustic waves generated large time
derivatives in the numerical method that masked the time derivatives associated
with the actual weather signal (see Section 1.4). Thirty years later, in 1950, Jule
Charney, Agnar Fjörtoft, and John von Neumann solved the hydrostatic equations of
motions by imposing an additional quasi-geostrophic approximation. This configur-
ation leads to the elimination of acoustic and gravity waves, but retains larger
patterns such as the Rossby (planetary) waves and mesoscale weather systems.
Quasi-geostrophic models, known also as filtered-equation models, do not require
that initial conditions be perfectly balanced.

The geostrophic approximation adopted in the early models is now regarded as
inaccurate and unnecessarily restrictive; in addition, it is invalid in the tropics and
therefore must be reserved for examining simple scientific questions in the extra-
tropics. Many global models of the atmosphere are based on the primitive equations
using the hydrostatic approximation, which is convenient for treating motions at
horizontal scales larger than about 10 km. A disadvantage of the hydrostatic models
is that they cannot be applied to simulate small-scale processes such as convection,
storms, or mountain waves, which are characterized by large vertical accelerations.
High-resolution weather prediction and even global atmospheric models are increas-
ingly based on non-hydrostatic equations in which the full vertical momentum
equation (4.105) is retained.

Non-hydrostatic models are considerably more complex and computationally
more demanding than the hydrostatic models. In addition, they generate fast-
propagating acoustic waves, whose propagation depends on the compressibility of
the fluid. These waves must be eliminated in order to avoid the use of prohibitively
small time steps to solve the equations. This can be achieved by adopting an
incompressibility assumption (dρa/dt = 0), which is appropriate for shallow atmos-
pheric circulations (vertical depth of the motion considerably smaller than the typical
horizontal scale of the circulation). In this case, the continuity equation reduces to the
prognostic equation

—h�vh þ ∂w=∂z ¼ 0

(non-divergent wind). Equations for shallow layers are often considered as proto-
types for the primitive equations, and used to test numerical methods.
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Another approach to filter acoustic waves, not limited to shallow flows, is to
assume that the air density varies with height (denoted ρ0(z)), but does not change
locally with time ∂ρa=∂t ¼ 0ð Þ. In this case, the continuity equation (4.103) for fully
compressible (elastic) air is replaced by the diagnostic anelastic continuity equation

—h� ρ0vh þ ∂ ρ0wð Þ=∂zð Þ ¼ 0

.This particular approximation has been widely adopted for non-hydrostatic atmos-
pheric models.
Finally, in the Boussinesq approximation, which also eliminates acoustic waves,

the variables representing density and pressure in the equations of motions are
separated into a reference state in hydrostatic balance, and small perturbations from
this basic state. In the resulting equations, these perturbations are neglected, except in
the buoyancy (gravity) term of the momentum equation.

4.6 Vertical Coordinates

So far we have expressed the equations for chemical continuity and atmospheric
dynamics using the geometric altitude z [m] as vertical coordinate. This is the
obvious choice for vertical coordinate but generally not the best. Other vertical
coordinates can be used that are single-valued, monotonic functions of z. This is
the case, for example, of the atmospheric pressure p (under the hydrostatic approxi-
mation). The following rule (Kasahara, 1974) allows us to transform the equations to
arbitrary coordinates η(λ, φ, z, t) defined as a function of longitude λ, latitude φ,
altitude z, and time t. For any dependent variable Ψ(λ, φ, z, t), we write (Lauritzen
et al., 2011):

∂Ψ
∂s

� �
z

¼ ∂Ψ
∂s

� �
η

þ ∂Ψ
∂η

∂η
∂s

� �
z

(4.108)

where s can be λ, φ, or t. We deduce that

—zΨ ¼ —ηΨþ ∂Ψ
∂η

—zη (4.109)

Similarly

—ηΨ ¼ —zΨþ ∂Ψ
∂z

—ηz (4.110)

The total derivative of Ψ is expressed as

dΨ
dt

¼ ∂Ψ
∂t

� �
η

þ vη�—η
� �

Ψþ dη
dt

∂Ψ
∂η

(4.111)

where vη is the projection of the velocity on a η-surface, η• ¼ dη=dt is the “vertical”
velocity in the η coordinate system, and —η is the “horizontal” gradient calculated on
a surface of constant η. The total derivative dΨ/dt is a property of the fluid and is
therefore independent of the coordinate system.
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Different vertical coordinates that can be considered besides the geometric altitude
include (1) pressure coordinates, particularly attractive in the case of hydrostatic
models, (2) terrain-following coordinates in which the application of lower boundary
conditions is facilitated, (3) hybrid terrain-following variants that are terrain-
following in the lowest levels of the atmosphere and pressure-following earlier,
and (4) isentropic coordinates that approximate Lagrangian coordinates when
diabatic processes are weak. We review these different coordinate systems next.

4.6.1 Pressure Coordinate System

Meteorologists often use atmospheric pressure to express the vertical variations of
the dependent variables. This is the pressure or isobaric coordinate system. It is the
most universally used coordinate in dynamical models since, under hydrostatic
assumptions, the forms of some of the dynamical equations become particularly
simple. Already at the beginning of the twentieth century, Vilhelm Bjerknes was
establishing his synoptic charts on isobaric surfaces, and today meteorological
variables (temperature, geopotential, etc.) are often represented as a function of
atmospheric pressure. The relation between pressure and altitude is expressed by
the hydrostatic approximation

dp ¼ �ρa g dz (4.112)

and the vertical velocity ω in the pressure coordinate system is defined as

ω ¼ dp

dt
(4.113)

For any arbitrary vertical coordinate η, the “horizontal” gradient —ηΨ of a function Ψ
is related to the horizontal gradient of this function —z Ψ expressed in the geometric
coordinate framework z by (see (4.110))

—zΨ ¼ —ηΨ� ∂Ψ
∂z

—η z (4.114)

We deduce when η = p and when applying the hydrostatic approximation that

—z p ¼ � ∂p
∂z

—p z ¼ ρa g —p z (4.115)

since —p p = 0. The continuity equation expressed in pressure coordinates takes a
particularly elegant expression. Separating in the continuity equation (4.59) the
contributions provided by the horizontal (vz) and vertical (w) winds

∂ρa
∂t

þ —z� ρavzð Þ þ ∂ ρawð Þ
∂z

¼ 0 (4.116)

and using the hydrostatic equilibrium relation to replace ρa by (–1/g ∂p/∂z) we find
the remarkable result

—p�vp þ ∂ω
∂p

¼ 0 (4.117)
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where vp (u, v) is the “horizontal” wind (components along isobaric surfaces) and
ω = dp/dt is the previously defined vertical velocity in the pressure coordinate
system. This form of the continuity equation contains no reference to the air density
and is purely diagnostic (no time derivative). Its simplicity is one of the advantages
of the pressure coordinate system. In spherical coordinates, the continuity equation is
written as

1

a cos φ
∂u
∂λ

þ ∂ v cosφð Þ
∂φ

� �
þ ∂ω

∂p
¼ 0 (4.118)

By integrating (4.117), we find the isobaric tendency equation that provides the
vertical velocity ω at any pressure level p by integrating the isobaric divergence of
the horizontal wind:

ω ¼ �
ðp
0

—p�vp dp (4.119)

In pressure coordinates, the state of the atmosphere is often represented by the
geopotential Φ on isobaric surfaces (rather than the pressure on equal altitude levels).
We note that

dΦ ¼ gdz ¼ � 1

ρa
dp ¼ �RT

dp

p
¼ RT

Hg
dz (4.120)

In pressure coordinates, the momentum equation is expressed as

dv
dt

¼ �2 Ω� v½ � � —pΦþ gþ F (4.121)

or in spherical coordinates

du

dt
¼ f þ u tanφ

a

� 	
vþ 1

a cosφ

� 	
∂Φ
∂λ

þ Fλ (4.122)

dv

dt
¼ � f þ u tanφ

a

� 	
uþ ∂Φ

a∂φ
þ Fφ (4.123)

where u and v represent here the wind along isobaric surfaces.
The general form of the energy equation

dθ
dt

¼ p0
p

� � R
cp Q

cp
(4.124)

remains unchanged in pressure coordinates. In this and in the momentum equation,
the total derivative of a function Ψ under the shallow atmosphere approximation is
expressed as

dΨ
dt

¼ ∂Ψ
∂t

� �
p

þ vp�—pΨþ ω
∂Ψ
∂p

(4.125)

where vp(u, v) represents the “horizontal” velocity vector on an isobaric surface.
In spherical coordinates, this expression becomes
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dΨ
dt

¼ ∂Ψ
∂t

� �
p

þ u

a cosφ
∂Ψ
∂λ

þ v

a

∂Ψ
∂φ

þ ω
∂Ψ
∂p

(4.126)

Here, the derivatives ∂/∂λ and ∂/∂φ are calculated along isobaric surfaces rather than
along a constant altitude surface.

4.6.2 Log-Pressure Altitude Coordinate System

The dynamical equations can also be simplified in the log-pressure coordinate
system by defining a log-pressure altitude (Chapter 2)

Z ¼ �H ln
p

p0

� 	
(4.127)

where H is a constant effective scale height. This vertical coordinate is often used for
stratospheric models. We have

dZ

H
¼ dz

H zð Þ (4.128)

where H(z) = kT/mg is the atmospheric scale height (m). The total time derivative of
function Ψ is now expressed as

dΨ
dt

¼ ∂Ψ
∂t

� �
Z

þ vZ �—ZΨþ 1

ρ0

∂ ρ0Ψð Þ
∂Z

(4.129)

or

dΨ
dt

¼ ∂Ψ
∂t

� �
Z

þ u

a cosφ
∂Ψ
∂λ

þ v

a

∂Ψ
∂φ

þ 1

ρ0

∂ ρ0Ψð Þ
∂Z

(4.130)

where vz is the wind vector on a constant pressure–altitude surface and

ρ0 Zð Þ ¼ ρ0 0ð Þexp � Z

H

� 	
(4.131)

Components u and v stand here for the wind components along isobaric surfaces or
equivalently for given pressure altitude (Z) surfaces. By choosing H to be equal to
7 km, the value of Z (which corresponds to a given pressure level) is approximately
equal to the value of the geometric altitude z.

When the log-pressure representation is used, the hydrostatic equation takes the
form

∂Φ
∂Z

¼ RT

H
(4.132)

and the continuity equation becomes

1

a cosφ
∂u
∂λ

þ ∂ v cosφð Þ
∂φ

� 	
þ 1

ρ0

∂ ρ0wð Þ
∂Z

¼ 0 (4.133)

Newton’s second law is expressed as in (4.122) and (4.123).
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4.6.3 Terrain-Following Coordinate Systems

A difficulty in using geometric height or pressure as the vertical coordinate is the
treatment of surface topography. To address this issue, one can introduce a normal-
ized pressure coordinate (commonly called sigma coordinate)

σ ¼ p� ptop
ps � ptop

(4.134)

where ps is the pressure at the Earth’s surface (which varies with the topography)
and ptop is the pressure at the highest level of the model. The sigma coordinate
is illustrated in Figure 4.6. The value of σ varies from zero at the top of the
model (p = ptop) to unity at the surface (p = ps), where a simple boundary
condition dσ/dt = 0 is applied. In the original definition of the sigma coordinate
by Phillips (1957), the top of the model was assumed to be the top of the
atmosphere (ptop = 0) with therefore σ = p/ps. The advantage of the sigma
coordinate system is that it conforms to the natural terrain and therefore eliminates
the problem of intersection with the ground when the terrain is not flat. It is
particularly well suited for the boundary layer.
In the sigma coordinate system, the total derivative of a function Ψ is expressed as

dΨ
dt

¼ ∂Ψ
∂t

� �
σ

þ vσ�—σΨþ dσ
dt

∂Ψ
∂σ

(4.135)

where vσ is the “horizontal” velocity along a sigma surface and dσ/dt is the vertical
velocity. Alternatively, we can write

Figure 4.6 Sigma coordinate levels above a region with variable topography. Courtesy of Martin Schultz,
Forschungszentrum Jülich.
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dΨ
dt

¼ ∂Ψ
∂t

� �
σ

þ u

a cosφ
∂Ψ
∂λ

þ v

a

∂Ψ
∂φ

þ dσ
dt

∂Ψ
∂σ

(4.136)

where the derivatives ∂Ψ/∂λ and ∂Ψ/∂φ are taken along a constant sigma surface.
If π = ps – ptop, the horizontal equations of motion become

dv

dt
¼ �f k � v½ � � —σΦþ σ —σ ln π

∂Φ
∂σ

þ F (4.137)

the hydrostatic equation

∂Φ
∂σ

¼ � π R T

ptop þ π σ
¼ � π R θ

ptop þ π σ
� �

p0=pð Þ R
cp

(4.138)

the continuity equation

∂π
∂t

þ —σ� πvσð Þ þ ∂
∂σ

π
dσ
dt

� 	
¼ 0 (4.139)

and the thermodynamic energy equation

∂θ
∂t

þ vσ�—σθþ dσ
dt

∂θ
∂σ

¼ p0
p

� 	 R
cp Q

cp
(4.140)

Even though sigma surfaces do not intersect the ground, the use of the sigma
coordinate system requires some precautions. Large errors can occur in calculating
pressure gradients in regions of complex topography because the constant-sigma
surfaces are steeply sloped. To address this problem, Mesinger (1984) introduced the
step-mountain coordinate, commonly called eta coordinate, as

η ¼ p� ptop
ps � ptop

pref zsð Þ � ptop
pref 0ð Þ � ptop

¼ σ
pref zsð Þ � ptop
pref 0ð Þ � ptop

(4.141)

where pref (z) is a reference pressure defined as a function of the geometric height z
(e.g., pressure in the standard atmosphere with pref (0) = 1013 hPa), and zs is the local
terrain elevation. The scaling factor applied to the sigma coordinate ensures that the
η surfaces are quasi horizontal.

The influence of topography on the mean flow decreases with altitude, so that the
sigma-coordinate system is less desirable in the upper troposphere and above the
tropopause. Models frequently use hybrid σ–p coordinate systems (Figure 4.7) that
follow terrain in the lower troposphere and transition gradually to follow pressure in
the stratosphere. The pressure pk at model vertical level k (k = 1, K) is given by

pk ¼ Akp0 þ Bkps (4.142)

where coefficients Ak and Bk have values that depend only on k. Parameter p0 is chosen
to be equal to the pressure at sea level (1013 hPa). The surface pressure ps varies along
the topography of the Earth’s surface andmay also varywith time. At the surface (k = 1),
A1 = 0 andB1 =1, while at the top of themodel domain (k=K and pK= ptop), one imposes
AK = ptop/p0 and BK = 0. The value ofBk (equal to the value of σ at the surface) decreases
with height, typically down to zero in the upper troposphere or in the stratosphere.
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4.6.4 Isentropic Coordinate System

In models that focus on the middle atmosphere, the vertical coordinate is sometimes
chosen to be the potential temperature θ (Figure 4.8). The advantage is that, under
adiabatic conditions, the flow follows isentropic surfaces and is therefore simple to
analyze. In this isentropic coordinate system, the total derivative of a function Ψ is
written as

dΨ
dt

¼ ∂Ψ
∂t

� �
θ
þ vθ�—θΨþ dθ

dt

∂Ψ
∂θ

(4.143)

where vθ (u,v) is the “horizontal” wind vector on an isentropic surface, and in
spherical coordinates

dΨ
dt

¼ ∂Ψ
∂t

� �
θ

þ u

a cosφ
∂Ψ
∂λ

þ v

a

∂Ψ
∂φ

þ dθ
dt

∂Ψ
∂θ

(4.144)

In this case the “vertical velocity” dθ/dt is directly proportional to the net diabatic
heating rate Q. The “horizontal” momentum equations are expressed as

du

dt
¼ f þ u tanφ

a

� 	
v� 1

a cosφ

� 	
∂Ψ
∂λ

þ Fλ (4.145)

dv

dt
¼ � f þ u tanφ

a

� 	
u� ∂Ψ

a∂φ
þ Fφ (4.146)

where Ψ = cpT + Φ is now the Montgomery streamfunction.

Figure 4.7 Representation of a hybrid sigma–pressure vertical coordinate system with coefficients Ak = [0.0, 0.0,
0.0, 0.02, 0.1, 0.15, 0.18, 0.16, 0.14, 0.1, 0.05] and Bk = [1.0, 0.95, 0.90, 0.80, 0.70, 0.45, 0.25, 0.12, 0.04,
0.01, 0.0, 0.0]. Courtesy of Martin Schultz, Forschungszentrum Jülich.
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The hydrostatic relation takes the form

∂Ψ
∂φ

¼ cp
T

θ
(4.147)

and the continuity equation is written as

∂~σ
∂t

þ 1

a cosφ
∂ ~σ uð Þ
∂λ

þ ∂ ~σ v cos φð Þ
∂φ

� 	
þ ∂ ~σ dθ=dtð Þ

∂θ
¼ 0 (4.148)

where

~σ¼ � 1

g

∂p
∂θ

(4.149)

is the pseudo-density.
Air motions under diabatic conditions are “horizontal” in the isentropic coordinate

system. The surfaces of constant species mixing ratio (isopleths) tend to align
themselves with the isentropic surfaces and the 3-D advection becomes essentially
a 2-D problem. Isentropic coordinates are therefore convenient to analyze tracer
motions over timescales of 1–2 weeks since air parcels remain close to their isen-
tropes over such a period of time. Numerical noise is also reduced.

Although attractive for the stratosphere, the isentropic coordinate system is prob-
lematic in the lower troposphere because the flow is diabatic, θ is not a monotonous
declining function of z, and the isentropes intersect the Earth’s surface (see
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Figure 4.8 Isentropic coordinate system. From the National Oceanic and Atmospheric Administration (NOAA).
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Figure 4.8). A hybrid system with isentropic coordinate above the boundary layer
and sigma coordinate near the Earth’s surface is sometimes adopted.

4.7 Lower-Dimensional Models

The computational cost of a model can be decreased considerably by reducing its
dimensionality. Although a 3-D representation of the atmosphere is most realistic and
often necessary, there are many cases where simpler 2-D (zonal mean), 1-D(column),
and 0-D (box) models can provide valuable insights (Figure 4.9). We discuss here the
foundations of these lower-dimensional models and their applications.

4.7.1 Two-Dimensional Models

Global 2-D (latitude–altitude) models of the middle and upper atmosphere have been
used extensively to simulate the meridional distribution of ozone and other chemical
species. The motivation for their use is that zonal (longitudinal) gradients are
generally weak, so that resolving the longitudinal dimension would add little infor-
mation. In 2-D models the dependent variables Ψ such as concentrations, tempera-
ture, wind velocity, etc. are separated according to their zonally averaged value

Ψ̅ φ; z; tð Þ ¼ 1

2π

ð2π
0

Ψ λ;φ; z; tð Þ dλ (4.150)

and the departure Ψ0(λ, φ, z, t) from this mean value. Thus

Ψ λ;φ; z; tð Þ ¼ Ψ̅ φ; z; tð Þ þ Ψ0 λ;φ; z; tð Þ (4.151)

By introducing this type of variable separation into the equations presented in
Sections 4.5 and 4.6, we obtain the following continuity equation

1

a cosφ
∂ v cosφð Þ

∂φ
þ 1

ρ0

∂ρ0w
∂Z

¼ 0 (4.152)

Box (0-D)

Column (1-D)

2-D 3-D

Figure 4.9 Conceptual representation of 0-D, 1-D, 2-D, and 3-D models. From Irina Sokolik, personal communication.
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the zonal mean momentum equation

∂u
∂t

� v f � 1

cosφ

� 	
∂ u cosφð Þ

a∂φ

 �
þw

∂u
∂Z

¼� 1

a2 cosφ

∂ u0v0 cos 2φ
� �

a∂φ
� 1

ρ0

∂ ρ0u0v0
� �
∂Z

(4.153)

the zonal mean thermodynamic equation

∂θ
∂t

þ v
∂θ
a∂φ

þ w
∂θ
∂Z

¼ � 1

cosφ

∂ v0θ
0
cosφ

� �
a∂φ

� 1

ρ0

∂ ρ0w0θ0
� �

∂Z
þ p0

p

� � R
cp Q

cp
(4.154)

and the zonal mean continuity equation for chemical species

∂μ
∂t

þ v
∂μ
a∂φ

þ w
∂μ
∂Z

¼ � 1

cos φ

∂ v0μ0 cosφ
� �

a∂φ
� 1

ρ0

∂ ρ0w0μ0
� �
∂Z

þ S (4.155)

Here, ρ0(Z) is a standard vertical profile of the air density, Z the log-pressure
altitude, a the Earth’s radius, f the Coriolis factor, Q the net heating rate, and S the
chemical source term. The correlation (eddy) terms such as u0v0 or v0θ0 represent the
effects of atmospheric waves on the zonal mean quantities. Closure relations express-
ing the eddy terms as a function of the mean quantities must be added to this system.
In most cases, the eddy terms are parameterized as a function of empirical eddy
diffusion coefficients. One can show that, for steady and conservative waves, the
eddy flux divergence and the zonal mean advection terms cancel (non-transport
theorem), so that errors in the specified eddy diffusion coefficients can have a large
effect on the solution of the system, and specifically on the calculated distribution of
chemical species.

To avoid the numerical problems associated with the quasi eddy-mean flow
cancellation (small difference between two relatively large terms), it is useful to
introduce the transformed Eulerian mean (TEM) velocities v* and w* (Boyd, 1976;
Andrews and McIntyre, 1976):

v∗ ¼ v � 1

ρ0

∂
∂Z

ρ0v0θ
0

∂θ=∂Z

( )
(4.156)

w∗ ¼ w þ 1

a

∂
∂φ

v0θ
0

cos φ

∂θ=∂Z

( )
(4.157)

It can be shown that, in the presence of conservative and steady waves,
the TEM meridional velocity components are equal to zero. The quasi-
compensation between large zonal mean and eddy terms that characterizes
the classic Eulerian mean equations is therefore replaced by the concept of
residual velocities that describes a meridional residual circulation. In the
TEM framework, the continuity, momentum, and thermodynamic equations are
expressed as

1

a cosφ
∂ v∗ cosφð Þ

∂φ
þ 1

ρ0

∂ ρ0w
∗ð Þ

∂Z
¼ 0 (4.158)
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∂u
∂t

� v∗ f � 1

a cosφ
∂ u cos φð Þ

∂φ

 �
þ w∗ ∂u

∂Z
¼ Gu (4.159)

∂θ
∂t

þ v∗

a

∂θ
∂φ

þ w∗ ∂θ
∂Z

¼ q þ Gθ (4.160)

where

q ¼ p0
p

� � R
cp Q

cp
(4.161)

represents the diabatic heating term expressed in K per unit time. With the TEM
transformation, all eddy contributions are included in the forcing terms Gu and Gθ.
Wave momentum forcing is assumed to be proportional to the divergence of the
Eliassen–Palm (EP) flux E

Gu ¼ 1

ρ0a cosφ
—�E (4.162)

For planetary waves under quasi-geostrophic scaling, the meridional and vertical
components of this vector are proportional to the eddy momentum and heat fluxes,
respectively. With a good approximation,

Eφ ¼ �ρ0 a cosφ u0v0 (4.163)

Ez ¼ ρ0 a cosφ f
v0θ0

∂θ=∂Z
(4.164)

The divergence is regarded as the wave stress that accelerates or decelerates the mean
flow. It vanishes when the waves are steady and conservative. The contribution of
eddies to the mean temperature tendency is given by

Gθ ¼ � 1

ρ0

∂
∂Z

ρ0 v0θ0
∂θ=a∂φ

∂θ=∂Z
þ w0θ0

� 	 �
(4.165)

This term vanishes exactly for steady and conservative waves (Andrews and
McIntyre, 1978), and is otherwise generally small and often ignored. In this case,
to a good approximation, the vertical TEM velocity is directly proportional to the
diabatic heating rate

w∗ ¼ q

∂θ=∂Z
(4.166)

In the presence of gravity waves, the eddy term reduces to

Gθ ¼ � 1

ρ0

∂
∂Z

ρ0w0θ0
� �

(4.167)

Finally, the zonally averaged continuity equation for chemical species is written in
the TEM framework as

∂μ
∂t

þ v∗

a

∂μ
∂φ

þ w∗ ∂μ
∂Z

¼ S þ Gμ (4.168)
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where

Gμ ¼ � 1

a cosφ

∂ v0μ0∗ cosφ
� �

∂φ
� 1

ρ0

∂ ρ0w0μ0∗
� �

∂Z
(4.169)

where the net eddy flux components v0μ0
∗
and w0μ0

∗
in the TEM framework are

expressed as a function of the zonally average eddy mass and heat fluxes by (Garcia
and Solomon, 1983; Andrews et al. 1987)

v0μ0∗ ¼ v0μ0 � v0θ0

∂θ=∂Z

∂μ
∂Z

w0μ0∗ ¼ w0μ0 � v0θ0

∂θ=∂Z

∂μ
a∂φ

Again, the term Gμ vanishes if the waves are steady and conservative, and the tracer
has no sources/sinks. Otherwise, it is generally small, and accounts for chemical eddy
transport, i.e., the net meridional and vertical transport that occurs when reactive
gases displaced by atmospheric waves encounter different photochemical environ-
ments. In this case, the eddy correlations v0μ0∗ and w0μ0∗ must be parameterized by
closure relations, for example by diffusion terms

v0μ0∗ ¼ � Kyy
∂μ
a∂φ

þ Kyz
∂μ
∂Z

 �
(4.170)

w0μ0
∗ ¼ � Kzy

∂μ
a∂φ

þ Kzz
∂μ
∂Z

 �
(4.171)

where the coefficients Kij can be expressed as a function of the chemical lifetimes of
the trace gases and of the time needed for an air parcel to move through a dynamical
disturbance.

4.7.2 One-Dimensional Models

One-dimensional (1-D) models are valuable conceptual tools for vertical transport
and chemistry in an atmospheric column. Uniformity is assumed in the horizontal
plane; in other words, horizontal flux divergence is assumed to be negligible. Vertical
transport is computed using an eddy (turbulent) diffusion parameterization. One-
dimensional models may be designed for limited domains (such as the continental
boundary layer over a source region) or for the global domain (vertical transport and
chemistry in the atmospheric column). By averaging the continuity equation and
denoting horizontal means as brackets h i, we obtain the following equation for the
density ρih i of a chemical species i:

∂ ρih i
∂t

þ ∂ ρ0iw
0� �

∂z
¼ sih i (4.172)

where the net vertical flux ρ0iw
0� �

is parameterized as

ρ0iw
0 ¼ �Kz ρa

∂ ρih i=ρað Þ
∂z

(4.173)
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Here, ρa is the mean air density and Kz is the vertical eddy diffusion coefficient.
This coefficient accounts for the effects of motions at all scales. The vertical flux is
assumed to be proportional to the vertical gradient in the mean mixing ratio. Values
of Kz are specified as input. In 1-D models for the boundary layer, semi-empirical
formulations of Kz are available as a function of the surface fluxes of momentum and
heat that force a diurnal cycle of mixed layer growth and decay (see Seinfeld and
Pandis, 2006). In global 1-D models, empirical values of Kz are derived from
observations of chemical tracers (see, for example, Liu et al., 1982).
In the thermosphere, vertical exchanges are dominated by molecular diffusion

rather than eddy mixing. The 1-D continuity equation is then formulated in terms of
the zonally and meridionally averaged number density hnii as

∂ nih i
∂t

þ ∂ Φih i
∂z

¼ sih i (4.174)

Here the vertical flux hΦii is expressed as

Φih i ¼ �Di
∂ nih i
∂z

þ 1þ αTð Þ nih i
Th i

∂ Th i
∂z

þ nih i
Hih i

� �
(4.175)

where Di is the molecular diffusion coefficient, αT is the thermal diffusion factor
(–0.40 for helium, –0.25 for hydrogen, 0 for heavier species) and Hi = kT/mig is the
scale height of species i with molecular or atomic mass mi. The other symbols have
their usual meaning. An approximate expression for the molecular diffusion coeffi-
cient [here in cm2 s–1] is provided by Banks and Kockarts (1973):

Di ¼ 1:53�1018 1

mi
þ 1

m

� �1
2 T

1
2

na
(4.176)

where mi and the mean molecular mass m are expressed in atomic mass units (amu),
the total air number density na is expressed in [molecules cm–3], and T is in [K]. The
value of the molecular diffusion coefficient increases rapidly with height as the air
density decreases, which can lead to some numerical difficulties when solving the
continuity equations.

4.7.3 Zero-Dimensional Models

Zero-dimensional models do not account for the effects of transport so that the
continuity equations collapse to ordinary differential equations of the form dρi/dt =
si.. Computing the chemical evolution of an ensemble of coupled species involves
solving a system of coupled ODEs. Such models have three general classes of
applications:

• Global box models for long-lived and therefore well-mixed species, such as CO2

or methane, where long-term trends in total atmospheric mass can be computed
from a balance between sources and sinks.

• Chemical evolution of an ensemble of short-lived species (such as a family of
radicals) where the chemical source and sink terms are much larger than the
transport terms. This is particularly useful to interpret field observations of radical
chemistry. The concentrations of radicals are assumed to be in chemical steady
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state, while concentrations of longer-lived species are specified from observations
or from climatology. Diurnal variation forced by photochemistry can be incorpor-
ated in the steady-state assumption by using periodic boundary conditions over the
24-hour diurnal cycle (Figure 4.10).

• Diagnostic studies to understand the nonlinear evolution of a chemical system.
This is done, for example, to interpret the results of laboratory chamber experi-
ments, or to understand the cascade of oxidation products resulting from the
atmospheric oxidation of hydrocarbons.

4.8 Numerical Frameworks for Eulerian Models

Eulerian models derive the concentrations of chemical species at fixed locations on
the Earth’s sphere by numerical solution of the Eulerian chemical continuity equa-
tions (Section 4.2). Here, we present the general numerical frameworks used to solve
these equations, including finite difference, finite volume, spectral, and finite element
methods. In the finite difference method, each unknown function is described by its

(a) (b)

Figure 4.10 Diurnal evolution of nitrogen species calculated by a zero-dimensional box model for May 10 at 65� N
at 20 km (a) and 40 km (b). From Brasseur and Solomon (2005).
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values at a set of discrete grid points, while in the finite volume method, the
functions are represented by their value averaged over specified intervals called grid
cells or gridboxes. In the spectral and finite element methods, the functions are
expanded by a linear combination of orthogonal basis functions, and the coefficients
appearing in these expansions become the unknowns. We use the generic symbol Ψ
to represent non-negative scalar functions, which can be viewed as the concentration
(density or mixing ratio) of chemical species.

4.8.1 Finite Difference (Grid Point) Methods

In the finite difference method, the partial derivatives in space ∂Ψ/∂x and time ∂Ψ/∂t
of a function Ψ(x, t) are approximated by finite difference analogs ΔΨ/Δx and ΔΨ/Δt
in which the increments Δ are finite rather than infinitesimal. In this approach, a
differential equation is replaced by a system of algebraic equations that can be solved
by numerical methods. The solution of the system is obtained at a finite number (J)
of grid points: x1, x2, . . ., xj–1, xj, xj+1, . . . xJ for discrete time levels t1, t2, . . . tn–1,
tn, . . . For simplicity, we first assume that the dependent variable Ψ is a function of
variable x only (1-D problem) and we consider that the points are uniformly spaced, so
that the distanceΔx between points is constant. The finite difference forms are the same
when the independent variable is time; in this case Δt represents the model time step.
The spatial resolution associated with a 1-D grid of constant spacing Δx can be

estimated by noting that, if one decomposes function Ψ(x) into several sinusoids of
varying amplitudes, wavelengths, and phases (Fourier analysis), the smallest resolv-
able wavelength is λmin = 2 Δx. The resolution of the model is therefore twice the
grid spacing. The maximum resolvable wavenumber is kmax = 2π/λmin = π/Δx.
Processes that occur at scales smaller than λmin are referred to as unresolved or
subgrid-scale processes; they are usually parameterized in terms of the resolved
model variables (see Chapter 8).
To derive finite difference approximations to the derivatives of a function Ψ(x) at

point xj, we expand the function as a Taylor series around that point:

Ψ xjþΔx
� �¼Ψ xj

� �þΔx
∂Ψ
∂x

� 	
xj

þΔx2

2!

∂2Ψ
∂x2

� 	
xj

þΔx3

3!

∂3Ψ
∂x3

� 	
xj

þΔx4

4!

∂4Ψ
∂x4

� 	
xj

þ . . .

(4.177)

Similarly, we can write

Ψ xj�Δx
� �¼Ψ xj

� ��Δx
∂Ψ
∂x

� 	
xj

þΔx2

2!

∂2Ψ
∂x2

� 	
xj

�Δx3

3!

∂3Ψ
∂x3

� 	
xj

þΔx4

4!

∂4Ψ
∂x4

� 	
xj

� . . .

(4.178)

Function Ψ(x) takes the values Ψj–1, Ψj, and Ψj+1 at points xj–1 = xj – Δx, xj, and xj+1 =
xj + Δx, respectively. An approximate value of the first-order derivative ∂Ψ=∂x at
point xj is derived from (4.177):

∂Ψ
∂x

� 	
xj

¼ Ψjþ1 � Ψj

Δx
þ O Δxð Þ (4.179)
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The scheme is referred to as a forward difference scheme because the derivative is
approximated by using information at points xj and xj + Δx. The error made by
adopting this approximation, called the truncation error, is

O Δxð Þ ¼ �Δx
2!

∂2Ψ
∂x2

� 	
xj

� Δx2

3!

∂3Ψ
∂x3

� 	
xj

� Δx3

4!

∂4Ψ
∂x4

� 	
xj

� . . . (4.180)

From (4.178), one derives the backward scheme that uses information at points xj
and xj – Δx

∂Ψ
∂x

� 	
xj

¼ Ψj � Ψj�1

Δx
þ O Δxð Þ (4.181)

with the truncation error

O Δxð Þ ¼ Δx
2!

∂2Ψ
∂x2

� 	
xj

� Δx2

3!

∂3Ψ
∂x3

� 	
xj

þ Δx3

4!

∂4Ψ
∂x4

� 	
xj

� . . . (4.182)

These two algorithms are said to be first-order accurate because the largest term in
the truncation error is proportional to Δx. By subtracting (4.178) from (4.177) we
obtain

Ψjþ1 � Ψj�1 ¼ 2Δx
∂Ψ
∂x

� 	
xj

þ 2Δx3

3!

∂3Ψ
∂x3

� 	
xj

þ 2Δx5

5!

∂5Ψ
∂x5

� 	
xj

þ . . . (4.183)

One deduces a second-order approximation (or central scheme) for the first deriva-
tive at point xj

∂Ψ
∂x

� 	
xj

¼ Ψjþ1 � Ψj�1

2Δx
þ O Δx2

� �
(4.184)

with the largest-magnitude term in the truncation error

O Δx2
� � ¼ �Δx2

3!

∂3Ψ
∂x3

� 	
xj

� Δx4

5!

∂5Ψ
∂x5

� 	
xj

(4.185)

being proportional to Δx2. Higher-order approximations to the derivative can similarly
be obtained by addition and subtraction of the Taylor expansions to cancel error terms
to higher order (Table 4.1). For example, if one multiplies the centered difference
(4.183) obtained for a spacing Δx by a factor 4/3 and the similar expression derived for
a grid spacing of 2Δx by a factor of 1/3, and if one substracts the two expressions, the
second-order error disappears; one obtains the fourth-order accurate scheme

∂Ψ
∂x

� 	
xj

¼ 4

3

Ψjþ1 � Ψj�1

2Δx

� 	
� 1

3

Ψjþ2 � Ψj�2

4Δx

� 	
þ O Δx4

� �
(4.186)

Figure 4.11 shows a graphical representation of the first derivative for a continu-
ous function Ψ(x) at point xj as the slope of the tangent to the function at that
particular point (point B). It is approximated by the chords AB, BC, and AC in the
case of the backward, forward, and central difference approximations, respectively.
Higher order formulations involve more than two grid points around point B.
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Table 4.1 Numerical approximations to the partial derivative ∂Ψ=∂x

Approximation Order Expression

Forward 1 Ψjþ1 � Ψj

Δx

2
�3Ψj þ 4Ψjþ1 � Ψjþ2

2Δx

3
�2Ψj�1 � 3Ψj þ 6Ψjþ1 � Ψjþ2

6Δx

4
�3Ψj�1 � 10Ψj þ 18Ψjþ1 � 6Ψjþ2 þ Ψjþ3

12Δx

Backward 1
Ψj � Ψj�1

Δx

2
Ψj�2 � 4Ψj�1 þ 3Ψj

2Δx

3
Ψj�2 � 6 Ψj�1 þ 3Ψj þ 2Ψjþ1

6Δx

4
�Ψj�3 þ 6Ψj�2 � 18Ψj�1 þ 10Ψj þ 3Ψjþ1

12Δx

Centered 2
Ψjþ1 � Ψj�1

2Δx

4
Ψj�2 � 8Ψj�1 þ 8Ψjþ1 � Ψjþ2

12Δx

A
Y(x)

d Y/dx

Dx Dx

xx–Dx
xj–1

x+Dx
xj+1

x
xj

B

C

Figure 4.11 Finite difference approximation to derivative dΨ/dx: forward, backward, and central approximations to slope
of tangent at point B.
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By adding equations (4.178) and (4.177), we find the following expression

Ψjþ1 þ Ψj�1 ¼ 2Ψj þ Δx2
∂2Ψ
∂x2

� 	
xj

þ Δx4

12

∂4Ψ
∂x4

� 	
xj

þ . . . (4.187)

from which we deduce a second-order accurate expression for the second derivative
at point xj

∂2Ψ
∂x2

� 	
xj

¼ Ψjþ1 þ Ψj�1 � 2Ψj

Δx2
þ O Δx2

� �
(4.188)

Approximations for the second derivative are summarized in Table 4.2.

Ordinary Differential Equations (ODEs)

To illustrate the use of the finite-difference method, we consider a system of initial-
value ODEs that describes the evolution with time t of a vector valued function Ψ(t):

dΨ
dt

¼ F Ψ; tð Þ (4.189)

with an initial condition Ψ(t0) = Ψ0. The specified forcing function F is dependent
on function Ψ and time t. In atmospheric problems, such equations describe the
rate of changes in different physical quantities (mass, energy, momentum, concen-
tration of chemical species, etc.) in response to known forcing factors.

From the first-order forward approximation of the derivative, and with F evaluated
at time tn, we approximate (4.189) by

Ψnþ1 �Ψn

Δt
¼ F Ψn; tnð Þ (4.190)

where Ψn denotes an estimate of function Ψ at time tn and where the time interval
Δt = tn+1 – tn is the time step of the numerical method. From the knowledge of Ψ at
time tn, we obtain the solution for Ψ at time tn+1 as

Ψnþ1 ¼ Ψn þ Δt Fn (4.191)

where Fn stands for F Ψn; tnð Þ. This is the explicit Euler forward method. It is called
“explicit” because the right-hand side depends solely on the known value of Ψ at
time tn. Thus Ψ

n+1 is readily calculated, and one can march in this manner forward
from time step to time step.

Table 4.2 Numerical approximations to the partial derivative ∂2Ψ=∂x2

Approximation Order Expression

Centered 2 Ψjþ1 � 2Ψj þ Ψj�1

Δx2

Centered 4
�Ψj�2 þ 16Ψj�1 � 30Ψj þ 16Ψjþ1 � Ψjþ2

12Δx2
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An alternative approximation to (4.189) is to evaluate F at time tn+1. This is the
implicit Euler backward algorithm:

Ψnþ1 ¼ Ψn þ Δt Fnþ1 (4.192)

This algebraic equation is more difficult to solve since F is expressed as a function of
the unknown solution at time tn+1. In this latter case, the solution Ψn+1 is generally
determined by adopting a functional iteration process. In the Newton iterative
procedure, for example, one solves a linearized version of the system

G Ψnþ1
� � ¼ Ψnþ1 �Ψn � Δt Fnþ1 ¼ 0 (4.193)

leading to the iterative relations

JΔΨnþ1
rð Þ ¼ �G Ψnþ1

rð Þ
� �

Ψnþ1
rþ1ð Þ ¼ Ψnþ1

rð Þ þ ΔΨnþ1
rð Þ

with an initial guess, e.g., Ψnþ1
0ð Þ ¼ Ψn. In these expressions,

J ¼ ∂G
∂Ψ

¼ I� Δt
∂F
∂Ψ

(4.194)

is the Jacobian matrix of G, I is the identity matrix, and (r) is the iteration index. The
iteration is interrupted when the absolute value of the correction |ΔΨnþ1

rð Þ | becomes
smaller than a user-prescribed tolerance.
A second-order algorithm is the implicit trapezoidal scheme

Ψnþ1 ¼ Ψn þ Δt
2

Fnþ1 þ Fn
� �

(4.195)

The three algorithms presented above are single-step methods because the value of
function Ψ at time tn+1 is calculated only as a function of Ψ at the previous time tn.
Higher-order multi-step methods provide the solution Ψn+1 at time tn+1 by using
information from s previous steps tn, tn–1, tn–2, . . ., tn–s+1:

Ψnþ1 ¼
Xs�1

j¼0

ajΨ
n�j þ Δt

Xs�1

j¼�1

bj F
n�j (4.196)

The choice of coefficients a0, a1, . . ., as–1 and b–1, b0, b1, . . ., bs–1 defines the
particular algorithm. If b–1 = 0, the method is explicit; otherwise, it is implicit. For
s = 1 (single-step method) and a0 = 1, the algorithm is a single-step Euler method
(explicit if b0 = 1 and b–1 = 0, and implicit if b0 = 0 and b–1 = 1). For b–1 = b0 = 0.5,
one obtains the single-step trapezoidal method.
An example of a two-step algorithm (s = 2) is the leapfrog method

Ψnþ1 ¼ Ψn�1 þ 2Δt Fn (4.197)

in which all parameters in expression (4.196) are chosen to be zero except a1 = 1 and
b0 = 2. This explicit method is second-order accurate. A difficulty in the leapfrog
algorithm is that the solutions obtained on the even time levels n, n + 2, n + 4, . . .,
and odd time levels n + 1, n + 3, n + 5, . . . are only weakly coupled (Figure 4.12).
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This can lead to the appearance of a “computational mode” that gradually amplifies
when treating nonlinear problems. The computational mode can be damped by
applying a second-order time filter (see Section 4.15). Another corrective approach
is to periodically apply over the course of the integration another algorithm, produ-
cing a permutation between the evolution at the odd and even time levels.

A classic multi-step algorithm is the explicit Adams–Bashforth method, in which
the coefficients of expression (4.196) are defined as a0 = 1, and a1, a2, . . ., as–1 = 0.
A value of zero is imposed for coefficient b–1, defining the explicit nature of the
method. Coefficients b0, b1, . . ., bs–1 are chosen so that the method has order s. For
s = 1, the algorithm is the explicit Euler method. The two- and three-step Adams–
Bashforth algorithms are expressed by

Ψnþ1 ¼ Ψn þ Δt
2

3 Fn � Fn�1
� �

(4.198)

and

Ψnþ1 ¼ Ψn þ Δt
12

23 Fn � 16 Fn�1 þ 5 Fn�2
� �

(4.199)

respectively.
The Adams–Moulton method is an implicit multi-step algorithm. The values adopted

for coefficients aj are the same as in the Adams–Bashforth method (all values of ai equal
to zero, except a0 = 1). In this implicit case, the restriction on b–1 is removed, and the
values of coefficients bj are chosen so that themethod reaches order s + 1. The algorithm
for s = 1 is the trapezoidal rule. For s = 2 and s = 3, it is expressed respectively as

Ψnþ1 ¼ Ψn þ Δt
12

5 Fnþ1 þ 8 Fn � Fn�1
� �

(4.200)

Ψnþ1 ¼ Ψn þ Δt
24

9 Fnþ1 þ 19 Fn � 5 Fn�1 þ Fn�2
� �

(4.201)

Finally, the implicit backward differentiation formula (BDF) method, also called
Gear’s method, is defined by setting all coefficients b0, b1, . . ., bs–1 = 0 and specifying
a non-zero value only for b–1. The resulting algorithm is generally written in the form

Ψnþ1 ¼
Xs�1

j¼0

ajΨ
n�j þ Δt b�1 F

nþ1 (4.202)

For example, the two- and three-step BDFs are

Ψnþ1 ¼ 4

3
Ψn � 1

3
Ψn�1 þ 2

3
Δt Fnþ1 (4.203)

tn–1 tn+1

tn+2

tn+3

tn+4 ttntn–2

Figure 4.12 The leapfrog method. Numerical integration of the solution at tn–1, tn+1, tn+3, . . . time levels (in yellow)
and tn–2, tn, tn+2, . . . time levels (in red).
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Ψnþ1 ¼ 18

11
Ψn � 9

11
Ψn�1 þ 2

11
Ψn�2 þ 6

11
Δt Fnþ1 (4.204)

Higher-order expressions are provided in Section 6.4.3.
The choice of a particular algorithm to solve ODEs is determined first by the

requirement that the method provide stable solutions for relatively large time steps.
Accuracy is another important requirement. In the case of nonlinear initial value
problems, no general numerical analysis is available for assessing the conditions
under which a specific algorithm provides stable solutions. We consider therefore a
simple prototype linear problem

dΨ
dt

¼ β Ψ (4.205)

for which different numerical schemes can be evaluated relative to a known analytic
solution. The analysis of this linear problem provides guidance for the choice of
integration algorithms to be adopted for more complex nonlinear problems. To keep
our analysis simple, we assume that Ψ(t) is a non-negative scalar function, and we
examine the numerical stability of different algorithms discussed above by assuming
that solutionΨn+1 at time tn+1 is expressed as a function of the solutionΨ

n at time tn by

Ψnþ1 ¼ R zð Þ Ψn (4.206)

where function R(z) is the so-called stability function and z = βΔt is a complex
variable [z = (λ, ω) = λ + i ω]. The real part of R(z) determines the amplitude of the
solution as time evolves. We consider here a problem whose solution decays with
time, and assume therefore that λ < 0. Thus, in our discussion, only the left half of
the complex plane with its axes x = λΔt and y = ωΔt is of particular interest. The
imaginary part of R(z) provides information on the phase of the solution, and is of
relevance when treating fluid dynamical equations such as, for example, the momen-
tum or the transport equation. When considering chemical kinetics equations, vari-
able z = (λ, 0) is real, and R(z) is therefore a real function.
The stability function R(z) associated with different algorithms is generally

expressed as the ratio between two polynomials. This function approximates its
analytic analog (exact solution of the prototype equation)

R zð Þ ¼ ez (4.207)

A numerical method is said to be A-stable if the amplitude of the stability function
|R(z)| 	 1 for �∞ 	 λ 	 0. The area of stability covers therefore the entire left-half
area of the complex plane for which λ 	 0. An A-stable integration algorithm is
stable for any value of the time step Δt. Any other type of stability introduces
restrictions on z and therefore on the time step. The A-stability condition is met for
the implicit (backward) Euler and the trapezoidal methods. The amplification func-
tions of these two algorithms are

RðzÞ ¼ 1

ð1� zÞ and RðzÞ ¼ 1þ z=2

1� z=2
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respectively. It is not met in the case of the explicit (forward) Euler method, for
which

R zð Þ ¼ 1þ z

In this case, the stability region in the complex plane is limited to a circle of radius
1 centered around point (λ = –1, ω = 0). In the case of a chemical kinetics equation
(i.e., z is a real variable), the method is unstable unless time steps are smaller than
1/λ. For a coupled system of several chemical species, the time step must be smaller
than the lifetime of the shortest-lived species. This makes it inapplicable for stiff
chemical kinetics systems of ODEs, as is typical of atmospheric chemistry problems,
where the lifetimes of different species in the system vary over many orders of
magnitude. The Adams–Bashforth and Adams–Moulton methods are not A-stable
either. The one- and two-step BDF (Gear’s) methods are A-stable, but the A-stability
property is lost when the order of accuracy of the method becomes higher than 2 (this
limit is called Dahlquist’s second barrier). The values of z that spoil the A-stability
conditions, however, are located only in a shallow area left of the imaginary axis in
the complex domain (Durran, 2010). Gear’s method is stable for accuracy orders up
to 6 if z is real and negative. This algorithm is therefore particularly appropriate for
treating stiff chemical kinetics systems. See Chapter 6 for further discussion.

A-stability may not be a sufficient condition for properly treating systems in which
different components decay at very different rates. One introduces therefore the
concept of L-stability: a method is said to be L-stable in the context of the prototype
equation adopted here, if it is A-stable and, in addition, if |R(z)| ! 0 for large time
steps (Δt ! ∞). L-stable algorithms are particularly useful for treating stiff systems.
By adopting relatively large time steps, L-stable methods retain the slowly varying
contributions of the solution (which are generally of most interest), while ignoring its
rapidly decaying components (which are generally of little or no interest). The
implicit Euler method is L-stable since |R(z)| tends to zero for large time steps. On
the contrary, the trapezoidal algorithm, which is A-stable, is not L-stable. Since no
multi-step method is A-stable for orders higher than 2, stricto sensu only low-order
BDF (Gear’s) algorithms are L-stable.

A simple geometric interpretation of the numerical methods for ODEs presented
above can be provided by integrating the scalar version of (4.189) over a time step
Δt = tn+1 – tn:

Ψ tnþ1ð Þ ¼ Ψ tnð Þ þ
ðtnþ1

tn

F Ψ; tð Þ dt (4.208)

This equation does not suffer any approximation, so the accuracy of the solution is
determined by the algorithm adopted to evaluate the integral of function F over a
time step Δt. Different approaches are illustrated in Figure 4.13. In the simplest of
them, the function F is approximated by a constant value over the time interval, equal
to its value at time tn or at time tn+1. These approximations correspond to the first-
order accurate explicit Euler forward and the implicit Euler backward methods,
respectively. If function F is approximated by a linear function coincident with the
value of F at times tn and tn+1, the accuracy of the method is improved and
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corresponds to the second-order trapezoidal rule. Finally, if the integration is per-
formed over an interval 2 Δt from time tn–1 to tn+1 and if function F is approximated
over this interval by the value of F at time tn, the method is also second-order
accurate and corresponds to the leapfrog algorithm.
More accurate quadrature algorithms can be implemented to calculate the integral

of function F(Ψ, t). We can write, for example,

Ψnþ1 ¼ Ψn þ Δt
Xs
j¼1

bjF Ψ tn þ cjΔt
� �

; tn þ cjΔt
� �

(4.209)

where cj < 1 denotes nodes within the interval Δt, and bj weights used for the quad-
rature. The values of Ψ tn þ cjΔt

� �
are not known, but they can be estimated

numerically by a series of s preliminary calculations called stages. In the case of
the s-stage explicit scheme, one computes sequentially the following quantities

Φj ¼ Ψn þ Δt
Xj�1

k¼1

aj,kF Φk ; tn þ ckΔtð Þ (4.210)

for j = 2, 3, . . ., s and with Φ1 = Ψn. Parameters s and aj,k are specific to a particular
scheme. The solution at time tn+1 is then approximated by

Ψnþ1 ¼ Ψn þ Δt
Xs
j¼1

bjF Φj; tn þ cjΔt
� �

(4.211)

When considering implicit s-stage schemes, the upper bound (j – 1) of the summa-
tion in expression (4.210) is replaced by a value equal or larger than j, for example by
parameter s. Runge–Kutta and Rosenbrock methods are examples of multi-stage
approaches and are discussed in Chapter 6.

Figure 4.13 Geometric interpretation of numerical integration algorithms for ordinary differential equations: (a) Euler
forward; (b) Euler backward; (c) trapezoidal and (d) leapfrog methods. Personal communication of Paul
Ullrich, University of California Davis.
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Partial Differential Equations (PDEs)

We now illustrate the use of finite difference methods in the case of partial differen-
tial equations. We consider here the 1-D linear advection equation

∂Ψ
∂t

þ c
∂Ψ
∂x

¼ 0 (4.212)

where the scalar field Ψ(x, t) represents, for example, the mixing ratio of a chemical
species and c a constant velocity of the flow in the x direction. The initial condition is
provided by a specified function of space x: Ψ(x, 0) = Ψ0(x). As will be shown in
Section 7.3, the explicit forward in time, centered in space (FTCS) Euler solution

Ψnþ1
i � Ψn

i

Δt
þ c

Ψn
iþ1 � Ψn

i�1

2Δx
¼ 0 (4.213)

is unstable for any time step. Here, Ψn
i represents the value of function Ψ(x, t) at

discrete time tn and geometric location xi. Other numerical algorithms that are at least
conditionally stable (stable for a sufficiently small value of the time step) are
presented in Chapter 7.

In the case of the combined 1-D advection–diffusion equation (with K represent-
ing a diffusion coefficient):

∂Ψ
∂t

þ c
∂Ψ
∂x

� K
∂2Ψ
∂x2

¼ 0 (4.214)

the solution provided by the FTCS Euler forward scheme

Ψnþ1
i � Ψn

i

Δt
þ c

Ψn
iþ1 � Ψn

i�1

2Δx
� K

Ψn
iþ1 � 2Ψn

i þ Ψn
i�1

Δx2
¼ 0 (4.215)

is stable for sufficiently small time steps through the addition of the diffusion term.
The Lax–Wendroff numerical scheme makes use of this property when applied to the
pure advection equation: A numerical diffusion term proportional to the chosen time
step is added to the FTCS scheme (see Section 7.3).

If an implicit time stepping scheme is adopted for the advection–diffusion equation

Ψnþ1
i � Ψn

i

Δt
þ c

Ψnþ1
iþ1 � Ψnþ1

i�1

2Δx
� K

Ψnþ1
iþ1 � 2Ψnþ1

i þ Ψnþ1
i�1

Δx2
¼ 0 (4.216)

the solution is unconditionally stable (stable for all values of the velocity c and the
diffusivity K). The system, however, is more difficult to solve. By rearranging the
terms, (4.216) can be written as

αiΨ
nþ1
i�1 þ βiΨ

nþ1
i þ γiΨ

nþ1
iþ1 ¼ Ψn

i i ¼ 1; 2; . . . ; Ið Þ (4.217)

where

αi ¼ � c

2Δx
þ K

Δx2

� 	
Δt (4.218)

βi ¼ 1þ 2KΔt
Δx2

(4.219)
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γi ¼
c

2Δx
� K

Δx2

� 	
Δt (4.220)

The system of I equations, whose matrix is tridiagonal, can be solved for each time
tn+1 by a matrix decomposition and back-substitution method (Box 4.4). The
approach described here can be generalized to more than one spatial dimension.
Again, linear algebraic equations are derived and can be solved either directly in the
explicit case or through more complex methods when an implicit algorithm is used.
A more detailed description of the methods used to solve the transport equations is
given in Chapter 7.
The fluid dynamics equations, specifically the momentum equation, include non-

linear terms of the form u ∂u/∂x. The corresponding equation, expressed here along
spatial dimension x,

∂u
∂t

þ u
∂u
∂x

¼ 0 (4.221)

produces interactions between atmospheric waves. As a result, new wave modes are
generated, including waves shorter than can be explicitly represented by the model
grid. The energy of these short waves is then folded back into longer waves, so that
wave energy tends to spuriously accumulate in the spectral region near the cut-off
wavelength. This process, called aliasing, can be a source of nonlinear numerical

Box 4.4 Tridiagonal Matrix Algorithm

The Thomas algorithm, a simple form of Gaussian elimination, can be used to solve the tridiagonal
system of equations that arises from the discretization of the 1-D diffusion equation

αiΨi�1 þ βiΨi þ γiΨiþ1 ¼ δi i ¼ 1; 2; . . . ; nð Þ
where α1 = 0 and γn = 0. If we first define the modified coefficients

γ01 ¼
γ1
β1

δ01 ¼
δ1
β 1

γ01 ¼
γi

βi � γ0i�1αi
i ¼ 2; . . . ; n� 1ð Þ

δ01 ¼
δi � δ0i�1αi
βi � γ0i�1αi

i ¼ 2; . . . ; n� 1ð Þ

the solution is obtained by back substitution

Ψn ¼ δ0n
Ψi�1 ¼ δ0i�1 � γ0i�1Ψi i ¼ n; n� 1; . . . ; 2ð Þ
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instability in dynamical models. Short waves can be eliminated by a filtering process
(see Section 4.15).

4.8.2 Finite Volume (Grid Cell) Methods

The finite volume method provides another approach for solving PDEs. It is particu-
larly well suited for applications in which mass and energy conservation is a critical
consideration. In this method, the prognostic quantities are not defined on discrete
nodes i (grid points), but are instead expressed as averages across specified finite
control volumes. These control volumes correspond to the specified grid cells of the
model. In the simple 1-D formulation, where the volume of cell i is replaced by the
size of the spatial mesh Δxi = xi+½ – xi–½, the average hΨi (t)i of a variable Ψ over cell
i is given by

Ψi tð Þh i ¼ 1

Δxi

ð
Δxi

Ψ x; tð Þ dx (4.222)

Consider, for example, a 1-D version of the continuity equation (similar to (4.1) but
for a single geometrical dimension x, and for no chemical source):

∂Ψ
∂t

þ ∂F
∂x

¼ 0 (4.223)

where Ψ represents the mass or number density of a chemical species and F its flux
in the x direction. The value of Ψ at time tn+1 = tn + Δt is obtained from the value at
time tn by

Ψ x; tnþ1ð Þ ¼ Ψ x; tnð Þ �
ð
Δt

∂F
∂x

dt (4.224)

The equation for the average of Ψ over grid cell i (denoted hΨii) is

Ψi tnþ1ð Þh i ¼ Ψi tnð Þh i � 1

Δxi

ð
Δxi

dx

ð
Δt

∂F
∂x

dt (4.225)

or, after integration over Δxi

Ψi tnþ1ð Þh i ¼ Ψi tnð Þh i � 1

Δxi

ð
Δt

Fiþ1=2 � Fi�1=2

� �
dt (4.226)

The time derivative of this last expression is

d Ψih i
dt

¼ �Fiþ1=2 � Fi�1=2

Δxi
(4.227)

where the value of flux F is estimated at both edges of grid cell i. Note that no
approximation has been made to derive expression (4.227).

If (4.223) represents the continuity equation for density Ψ and the flux F = Ψ u is
expressed as the product of this density by the velocity u in the x direction, (4.227)
can be rewritten as
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d Ψih i
dt

¼ Ψi�1=2 ui�1=2 � Ψiþ1=2 uiþ1=2

Δxi
(4.228)

If the velocities are prescribed at the edges of the grid cells, and the corresponding
values of Ψ are constructed by interpolation of the mean values in the neighboring
cells, then (4.228) can be expressed as

d Ψih i
dt

¼ 1

2Δxi
ui�1=2 Ψi�1h i þ Ψih ið Þ � uiþ1=2 Ψiþ1h i þ Ψih ið Þ� �

(4.229)

This first-order differential equation can easily be integrated numerically (see
example in Section 4.8.1).
An important advantage of this method (compared to the finite difference method)

is that it does not require a structured geometry, but can easily be applied to different
types of grids (see Section 4.8.3). Consider the more general case of the hyperbolic
problem

∂Ψ
∂t

þ —�F ¼ 0 (4.230)

where the flux vector F has components in all spatial dimensions. The spatial domain
under consideration can be subdivided into finite volumes Vi, and the equation can be
integrated over the volume of a cell ið

V i

∂Ψ
∂t

dV þ
ð
V i

—�F dV ¼ 0 (4.231)

Noting that the first term is equal to Vi dhΨii/dt and applying the divergence (Stokes)
theorem to the second term, we find

d Ψih i
dt

þ 1

V i

ð
Si

F�nð ÞdS ¼ 0 (4.232)

Here, the integral is taken along the walls Si of cell i and represents the material
flowing across the boundaries of the cell; n is the unit vector perpendicular to wall
element dS. Again, the values of F at the edge of the cell can be constructed by
interpolation of average values in neighboring cells. As can be deduced from the
equations, the finite volume method conserves the transported variables easily even
for coarse grids: What is lost in one cell is gained by a neighboring cell. This
approach is therefore well adapted to treat the advective transport of tracers on
complex grids (see Chapter 7).

4.8.3 Model Grids

Different types of grids can be adopted to solve the finite difference or finite volume
approximations to the model equations. The choice of grid must balance consider-
ations regarding the nature of the problem to be solved, the need for accuracy and
stability, and the computational resources at hand. Another important consideration
in chemical transport models using offline meteorological fields is to ensure
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consistency with the grid of the parent meteorological model and thus to avoid
interpolation errors.

Vertical Discretization

We first consider the vertical discretization of the continuity equation for scalar
quantity Ψ (here again a mass or number density), and write, for example, for the
vertical component

∂Ψ
∂t

� �vert
¼ � ∂ Ψ wð Þ

∂z
(4.233)

where z is the vertical coordinate adopted in the model (not necessarily the geometric
altitude). If quantity Ψ and the vertical wind component w are defined on the same
discrete levels (j – 1, j, j + 1), (4.233) can be approximated as

∂Ψ
∂t

� �vert
j

¼ �Ψjþ1wjþ1 � Ψj�1 wj�1

2Δz
(4.234)

If, on the other hand, the vertical layers are staggered (Box 4.5) as shown in
Figure 4.14, and if quantity Ψ is defined at levels j – 1, j, and j + 1, while the

Box 4.5 Grid Staggering

When applying a numerical algorithm to solve a system of differential equations, all unknown
variables are not necessarily defined at the same grid points. In a staggered grid model, the different
dependent variables are provided on different grid points, usually offset by half the grid size (see, for
example, Figure 4.14 in the case of vertical grid staggering). Staggered grids are often adopted
because the accuracy of the calculated spatial derivatives is improved. Further, the short wavelength
components of the solution are often more accurately represented (Durran, 2010). In an unstaggered
grid, the derivative Gi at location xi of a function Ψ is often calculated across a 2Δx interval

Gi ¼ dΨ
dx

� �
i

� Ψiþ1 � Ψi�1ð Þ
2Δx

while, in a staggered grid, it can be derived across a single Δx interval

Gi ¼ dΨ
dx

� �
i

� Ψiþ1=2 � Ψi�1=2

� �
Δx

In the latter case, the derivative G is calculated on one grid (i – 1, i, i + 1) while function Ψ is
defined on the other grid (i – 1/2, i + 1/2). Staggered grids have the advantage of effectively
halving the grid size, so that the truncation errors are reduced. A standard configuration is to define
wind components on one grid and other dependent variables such as pressure, temperature,
concentrations, etc. on the other grid. The utility of this can directly be seen in the finite-volume
approximation (4.229) of the advection equation. Since the effective grid size is smaller than the
nominal size Δx, the time step Δt adopted for integrating the equations must be correspondingly
reduced to maintain the stability of the solution.
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vertical wind component w is specified at levels, j – ½ and j + ½, the tendency
resulting from the vertical component of the flux convergence is approximated by

∂Ψ
∂t

� �vert
j

¼ � Ψ wð Þjþ1=2 � Ψ wð Þj�1=2

Δz
(4.235)

or, if function Ψ is linearly interpolated,

∂Ψ
∂t

� �vert
j

¼ � Ψj þ Ψjþ1

� �
wjþ1=2 � Ψj þ Ψj�1

� �
wj�1=2

2Δz
(4.236)

In general circulation models of the atmosphere, if the temperature and the vertical
component of the wind are defined on intermediate levels between the geopotential
and the horizontal wind components, the vertical staggering refers to the so-called
Charney–Philips grid. If the geopotential, the temperature, and the horizontal wind
components are provided on the same levels, while only the vertical wind component
is defined on intermediate levels, the staggering is referred to as the Lorenz grid.

Horizontal Discretization

As the PDEs of the model are transformed into their finite difference or finite volume
analogs, the variables at each level of the model have to be defined on a finite number
of grid points or grid cells. Here again, different approaches can be used. The
simplest of them is to define all variables on the same grid points and implement
the discretization procedure accordingly. Such a grid is called A-grid by Arakawa
and Lamb (1977). Despite its simplicity, it is little used because it often produces

T, u, v, Ψ

T, u, v ,Ψ

w, K 

w, K 

j+3/2

j+1

j+1/2

j

j–1/2

j–1

j–3/2

Δzj

T, u, v, Ψ

Figure 4.14 Example of a staggered vertical grid: temperature T, horizontal wind components (u, v), and function
Ψ (e.g., trace species density ρi) are derived at the center of the cell (midpoint level) while the vertical
wind component w and the eddy diffusion coefficient K are derived at the edge of the cell (interface level).
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noise in the numerical solution of the equations. Alternate staggered configurations
are shown in Figure 4.15. The C-grid is often adopted in atmospheric models
because it is readily adapted to the finite-volume solution (4.229) of the continuity
equation. A more detailed discussion of the different staggered grids is provided by
Arakawa and Lamb (1977) and by Haltiner and Williams (1980).

Grid Geometries

The longitude–latitude grid is frequently adopted to represent the horizontal distri-
bution of atmospheric variables (Figure 4.16). It has the advantage of being orthog-
onal so that the finite difference or finite volume approximations of the PDEs can be
easily derived. A disadvantage is that the geometric spacing in longitude Δx = a Δλ
cos φ decreases gradually from the Equator to the pole. (Here λ represents the
longitude, φ the latitude, and a the Earth’s radius). As discussed in Section 4.7.1,
the time step Δt to be adopted in the model to ensure stability of the integration
method is often bounded by the smallest geometric grid spacing. In the case of the
advection equation, the time step applied in Eulerian schemes must be chosen in
most cases to be smaller than the so-called Courant number, which is proportional to
the grid size Δx (see Chapter 7 for definition and for examples). Thus, the existence
of singular points at the poles introduces severe limitations on the adopted time step
and leads to low computational performance.

Different approaches have been proposed to avoid the pole problem. The most
straightforward is to apply either spatial or Fourier filters to eliminate the smaller-
scale features (noise) appearing in the solutions near the poles. A second approach is
to reduce the number of points in the longitudinal direction and hence to increase the
longitudinal grid spacing in the vicinity of the poles. In Figure 4.17, a reduced grid is
compared to a regular longitude–latitude grid. A third solution is to apply in the polar
regions some backup algorithm that is not constrained by the Courant criteria (e.g.,
semi-Lagrangian methods, see Section 7.8).

A-grid

u v

u v u v

u vu v

u

uu

u

vv

v

vC-grid

B-grid

D-grid

y
y

y y

Figure 4.15 Unstaggered grid (A) and different staggered grids (B, C, and D) in two dimensions, using the Arakawa
and Lamb (1977) classification. ψ is a scalar simulated by the model, for example chemical concentration;
u and v are the zonal and meridional components of the wind velocity.
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Other types of grids have been proposed to address the pole problem of the
longitude–latitude grids. An increasingly frequent approach adopted in conjunction
with finite volume methods (see Section 4.8.2) and referred to as “tiling” is to cover
the surface of the sphere by some geometric shapes with no overlaps and no gaps. In
the Voronoi tessellation approach, the surface of the Earth is partitioned into closed
regions around pre-defined points, called seeds or generators of the grid. By
definition, a Voronoi cell for a given seed includes all geometric points that are

Figure 4.16 Latitude–longitude grid with representation of model levels and grid cells.

(a) (b)

Figure 4.17 (a): Latitude–longitude grid. The convergence of the longitudinal lines toward the poles reduces
gradually the geographical distances in the longitudinal direction, which in turn limits the time step
required to solve the partial differential equations. (b): Reduced grid in which the number of longitudes
per circle of latitude decreases as one approaches the poles. From Washington et al. (2009).
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closer to that particular point than to any other seed points in the model domain. The
seed points can be specified so that the cells cover rather homogeneous areas of the
surface (such as uniform ecosystems). They can also be chosen to have regular
polygonal shapes (Figures 4.18 and 4.19). The icosahedral grid, for example, is
characterized by a relatively uniform spatial resolution without any singularity. The
grid elements can be triangular or hexagonal (with in this particular case 12 pen-
tagonal cells). The cubed sphere grid also allows a relatively uniform resolution. In
this approach, the existence of eight special “corner points” and plane boundaries
requires special treatment. The Yin–Yang grid is the combination of two distinct
longitude–latitude grid systems with mutually orthogonal axes and partial overlap
(contact region). The advantage of homogeneous and highly isotropic model grids is
that the spatial density of model results is relatively uniform, so that the data can be
efficiently archived, analyzed, and remapped to other grid structures.

The choice of grid resolution in a model must be adapted to the scales of the
processes that one wishes to resolve. Because of computational limitations, the use
of a very high-resolution grid system covering the entire model domain may not be
feasible; using a grid with fine resolution in areas that are presumed to be of interest,
with coarser resolution elsewhere, may be an appropriate approach to address a given

(a) (b) (c)

Figure 4.18 Examples of grids: icosahedral triangular (a), icosahedral hexagonal (b) and cubed sphere (c). Source: David
Donofrio, Lawrence Berkeley National Laboratory (a and b).

Figure 4.19 The Yin–Yang grid system. Reproduced From Qaddouri (2008).
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problem. Mesh refinement provides high resolution in selected areas of the model
domain by embedding a higher resolution grid that resolves small-scale processes into
a coarser grid that captures the large-scale features (Hubbard, 2002). A succession of
nested grids (zoom capability) can be implemented to derive increasingly high-
resolution features as one approaches a given point of the domain. The nesting can
be one-way, with the coarser grid providing dynamic boundary conditions to the finer
grid but no reverse effect of the finer grid on the coarser grid. It can be two-way, with
full exchange of information between the two grids. Two-way nesting is far more
difficult to implement because of numerical noise at the interface between grids.
Figure 4.20 (a and b) shows two different approaches used in the development of
multi-resolution models. Unstructured grids (Figure 4.20, c) in which the grid meshes
(often triangles or tetrahedra) are distributed as irregular patterns, can also be adopted
to enhance the spatial resolution in specified areas. They are often used in oceanic
models. The location of the region of interest may also change with time, as in the case
of the long-range transport of a pollution plume. A solution is to use a dynamic
adaptive grid, in which the location of the nodes is constantly modified during the
model integration to achieve high spatial resolution in areas where the gradients in the
calculated fields are large (Odman et al., 1997; Srivastava et al., 2000). Adaptative
grids used in atmospheric dynamical modeling (e.g., Dietachmayer and Droegemeier,
1992; Skamarock and Klemp, 1993) can also be adopted in chemical transport models
to better represent the effects of multi-scale sources (Tomlin et al., 1997; Box 4.6).

(a) (b)

(c)

Figure 4.20 Model grids using (a) a cubed sphere with successive zooming capabilities for the Western USA; (b) a
icosahedral system with a stretched grid and gradual zooming capability, and (c) an unstructured grid used
here for tsunami simulations. From the National Center for Atmospheric Research (NCAR).
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Box 4.6 Dynamically Adaptive Grids in Chemical Transport Models (Srivastava et al., 2000;
Odman et al., 2002; Garcia-Menendez et al., 2010)

Large-scale models with limited spatial resolution may need to resolve small-scale processes in regions
of high concentrations and strong concentration gradients. Static nested grids can provide high
resolution over specific regions of interest (such as an urban center) but do not adjust to changing
locations of these regions (as for long-range transport of a pollution plume). In the dynamic grid
adaptation method, the grid resolution changes automatically at each time step to capture and follow
small-scale features of interest such as plumes or frontal boundaries. The overall structure of the grid
and the total number of grid points are fixed, but the locations of the grid points evolve through the
simulation according to a user-defined weight function that determines in which areas grid nodes
must be clustered. At a given grid point j, the weight function wj can be expressed, for example, by

wj ¼
X
k

αk —2nk
� �

j

where k is an index for the chemical species, nk is the concentration, and —2 is the Laplacian
operator which measures the curvature in the concentration field. Resolution requirements of
different species can be accounted through the choice of the different coefficients αk (Odman et al.,
2002). The new spatial position Pnewi of grid point i in a horizontal plane is calculated from

Pnewi ¼
X4
j¼1

wjPj
.X4

j¼1

wj

where vector Pj (j = 1 to 4) represents the original position (before movement) of the centroids of the
four grid cells that share grid point i (see Box 4.6 Figure 1, left panel). After the repositioning of the
grid points, the concentration must be interpolated on the displaced grid nodes, and other parameters
such as the emissions and meteorological variables must be redistributed on the adapted grid.
The two panels in Box 4.6 Figure 1 on the right show the spatial distribution of concentrations

originating from a point source as simulated by a standard air quality model (CMAQ) at 1.33 km
horizontal resolution (middle panel) and by the same model, but with a dynamically adapted grid
(right panel). Sharper gradients with higher concentration peaks are obtained when the model grid
is dynamically adapted.

Box 4.6
Figure 1

Development of a dynamically adaptive grid to represent the evolution of a plume. Sources: M. T. Odman,
private communication; Steyn and Rao (2010).
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Consistency Between Vertical and Horizontal Resolutions

To adequately resolve sloping features in atmospheric models including fronts and
slantwise convective systems, and correctly represent the 3-D transport of chemical
species associated with such dynamical systems, the grid increments in the vertical
and horizontal directions should not be specified independently. Rather, the ratio
between vertical and horizontal grid point spacings should be of the order of
typically 0.005–0.02 m m–1 for an appropriate representation of mesoscale features
(Warner, 2011). Thus, for a horizontal resolution of 100 km, typical of global models,
the spacing between model layers should be of the order of 0.5–2 km. For a
horizontal resolution of only 10 km, as often adopted in regional (limited-area)
models, the vertical spacing should be reduced to 50–200 m. The lack of consistency
between horizontal and vertical resolution in dynamical models can generate spuri-
ous waves during the simulation and thus undesired noisy fields.

4.9 Spectral Methods

An alternative approach to the finite difference and finite volume algorithms for global
models is the spectral method developed by Orszag (1970) and Eliasen et al. (1970),
and implemented for the first time by Bourke (1974). In this method, the horizontal
distribution of the atmospheric variables is represented by a finite expansion of periodic
functions (waves), called basis functions. The orthogonality of these functions (see
Box 4.10) allows the derivation of coupled ODEs for the expansion coefficients, which
vary with time and height. This method has been important for climate modeling but is
rarely used in chemical transport models because chemical concentrations are strongly
affected by local forcing processes that cannot be easily described by waves. In
addition, spectral transport algorithms can produce negative concentrations.
To introduce the spectral method, we first consider a function Ψ(x) defined on the

spatial interval [–π, +π]. By applying a Fourier transform and assuming that the
function repeats itself with a period 2π, we can write

Ψ xð Þ ¼ a0 þ
X∞
k¼1

ak cos kxð Þ þ bk sin kxð Þð Þ (4.237)

where k represents the wavenumber. Expansion coefficients ak and bk are given by
the following integrals over the [–π, +π] interval

a0 ¼ 1

2π

ðπ
�π

Ψ xð Þ dx (4.238)

ak ¼ 1

π

ðπ
�π

Ψ xð Þ cos kxð Þ dx (4.239)

bk ¼ 1

π

ðπ
�π

Ψ xð Þ sin kxð Þ dx (4.240)
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Function Ψ(x) may also be expressed as the sum of sine or cosine functions of
different amplitudes dk, wavenumbers k, and phases φk (Box 4.7):

Ψ xð Þ ¼
X∞
0

dk sin kxþ φkð Þ (4.241)

The component with the lowest frequency is called the fundamental, and any higher-
frequency parts are referred to as harmonic components.

An equivalent, but often more convenient, form of the Fourier series is given by

Ψ xð Þ ¼
X∞
k¼�∞

cke
ikx (4.242)

with

ck ¼ 1

2π

ðπ
�π

Ψ xð Þ e�ikx dx (4.243)

This coefficient ck is related to ak and bk in (4.237) by

ck ¼ 1

2
ak � ibkð Þ for k > 0 (4.244)

Box 4.7 An Example of Fourier Decomposition

We present here a simple illustration of the spectral decomposition method. A function y(t) equal to
1 on interval [0, 0.5] and to –1 on interval [0.5, 1], as shown in Box 4.7 Figure 1, can be
approximated by

y tð Þ¼ 4
π
sin 2πtð Þþ 4

3π
sin 6πtð Þþ 4

5π
sin 10πtð Þþ . . .¼

X∞
k¼1

4
kπ

sin 2kπtð Þ for k¼ 1,3,5, :::

The Fourier coefficients with an even numbered index disappear in this particular case.

Box 4.7
Figure 1

Fourier decomposition of a square function ys. The fundamental y1 = 3/π sin 2πt, and the two
harmonics y3 = 4/(3π) sin 6πt and y5 = 4/(5π)sin (10πt) are shown together with the sum
y0 = y1 + y2 + y3 (dotted line). Reproduced with permission From Cruse (2006).
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ck ¼ 1

2
a kj j þ ib kj j
� �

for k < 0 (4.245)

with c0 = a0. In practical applications, the number of terms retained in the Fourier
series is necessarily limited. A truncation is therefore applied when index k reaches a
specified value K, and function Ψ(x) is now approximated as

Ψ xð Þ � a0 þ
XK
k¼1

ak cos kxð Þ þ bk sin kxð Þð Þ (4.246)

or

Ψ xð Þ �
XK
k¼�K

cke
ikx (4.247)

Accuracy increases for higher values of K but so do computing costs.
The calculation of an approximation for the spatial derivative is straightforward:

dΨ xð Þ
dx

�
XK
k¼1

αk cos kxð Þ þ βk sin kxð Þð Þ (4.248)

or

dΨ xð Þ
dx

�
XK
k¼�K

γke
ikx (4.249)

with coefficients

αk ¼ k bk , βk ¼ �k ak , γk ¼ ik ck (4.250)

The calculation of the derivatives of a function is thus easy to perform once the
Fourier expansion coefficients of the function have been derived. Fast Fourier
transform (FFT) algorithms are routinely used in general circulation models to
transfer information between the grid space and the spectral space (see Appendix E).
To solve PDEs such as the advection–diffusion equation (Box 4.8), the solution is

approximated by an expansion such as (in one dimension)

Box 4.8 Fourier Transform of the Advection–Diffusion Equation

In the case of the 1-D advection–diffusion equation

∂Ψ
∂t

þ c
∂Ψ
∂x

� D
∂2Ψ
∂x2

¼ 0

with the solution approximated by (4.251), we obtain the differential equations

dak
dt

þ ik cak þ k2Dak ¼ 0 k ¼ 0; Kð Þ

which are solved by an appropriate finite difference algorithm.
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Ψ x; tð Þ �
XK
k¼0

ak tð Þ eikx (4.251)

in which the coefficients ak are only a function of time t. When expression (4.251)
is introduced in a PDE, one obtains for each value of k an ODE for ak that is
solved by a classic finite difference method. The algorithm requires that K
differential equations be solved consecutively, which is usually computationally
less expensive than solving the equation by a finite difference method at J grid
points. Indeed, in most applications where function Ψ(x, t) is relatively smooth, the
value of K can be considerably smaller than the value of J. When function Ψ(x)
contains discontinuities or if too few terms are included in the Fourier series (too
small value of K), the solution provided by the spectral decomposition method is
characterized by large overshoots and undershoots (Box 4.9), and can produce
undesired negative values. This is why the spectral approach does not provide
satisfying results when applied to the transport of atmospheric species with strong
gradients.

Application of the spectral method to the sphere can be done by expanding
the functional forms Ψ(λ, μ, t) of the different variables as a function of longitude
λ [0, 2π] and sine of latitude μ [–1, 1]) using normalized spherical harmonics
Ym
n λ; μð Þ (see Figure 4.21):

Ψ λ; μ; tð Þ ¼
XM

m¼�M

XN mð Þ

n¼ mj j
amn tð Þ Ym

n λ; μð Þ (4.252)

where amn tð Þ are the spectral coefficients, which are the unknowns to be determined
as a function of time t. The choice of parametersM and N(m) define the truncation of

Box 4.9 Gibbs Phenomenon

The Gibbs phenomenon, named after J. Willard Gibbs, describes the peculiar manner in which the
Fourier series of a piecewise continuously differentiable periodic function behaves at a jump
discontinuity. The use of truncated series instead of infinite Fourier series leads to overshooting and
undershooting of the true function. This effect can be illustrated by considering a step function
whose value Ψ(x) is –1 for –π < x < 0 and 1 for 0 < x < π. This function can be expressed by
the infinite series of periodic functions

Ψ xð Þ ¼ 4
π

sin xð Þ þ 1
3
sin 3xð Þ þ 1

5
sin 5xð Þ þ . . .

� 	
If the function Ψ(x) is approximated by only the first term in the series, the maximum and

minimum values of Ψ are 
4/π (or 
1.27), instead of 1 and –1, respectively. This misrepresen-
tation of the field with overshoot and undershoot is called the Gibbs phenomenon. This effect
decreases when more terms are included in the truncated series, and is less acute when the field
contains no discontinuities.
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the expansion, and are discussed below. The spherical harmonics are the eigenfunc-
tions of the Laplace operator on the sphere that verify the relation

—2Ym
n λ; μð Þ ¼ � n nþ 1ð Þ

a2
Ym
n λ; μð Þ (4.253)

They are expressed as a combination of sines and cosines (or equivalently by
complex exponentials) to represent the periodic variations in the zonal direction,
and by real associated Legendre functions of the first kind Pm

n μð Þ (see Box 4.11) to
account for the variations in the meridional direction. Thus,

Ym
n λ; μð Þ ¼ Pm

n μð Þeimλ (4.254)

Here, index m represents the zonal wavenumber; its highest value M specifies the
number of waves retained in the zonal direction. Index n – |m| is called the
meridional nodal number.
The type of truncation to be adopted for expression (4.252) is determined by the

relation between the number of waves allowed in the zonal and the meridional
directions. If N is chosen to be equal to M, the truncation is said to be triangular.
If it is such that N = M + |m|, it is called rhomboidal (Figure 4.22). Triangular

(a) (b) (c)

Figure 4.21 Representation of the characteristics of three spherical harmonics with total wavenumber n = 6. (a): zonal
wavenumber m = 0, (b): m = 3 and (c): m = 6. From Williamson and Laprise (1998).
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Figure 4.22 Rhomboidal (a) and triangular (b) truncations.
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truncation is the universal choice for high-resolution models, while rhomboidal
truncation is often adopted in the case of low-resolution atmospheric models.

We have seen that chemical concentrations are better described in the physical grid
space than in the spectral space. Pseudo-spectral models allow certain processes to
be treated on a physical grid while others are treated by the spectral method. In this
approach, the governing equations are solved in the physical space by applying, for
example, the finite difference method. The spatial derivatives, however, are calcu-
lated analytically after converting the physical quantities from the physical space to
the spectral space. Rapid forward and inverse transforms of different variables
between the physical and spectral space are thus required at each time step, and
can be performed very efficiently by the FFT technique (see Appendix E). The
aliasing problem arising from nonlinear terms in the transform process is avoided if
the number of grid points in the physical grid is equal to 3M + 1 in the zonal
direction. The number of points in the meridional direction must be (3M +1)/2 for the
triangular truncation and 5N/2 for the rhomboidal truncation. A transformed grid that
is often adopted is the Gaussian grid with grid points equally spaced along the
longitudes, but not along the latitudes; their location in the meridional direction is
defined by the roots μm (m = 1, M) of

P0
M μð Þ ¼ 0 (4.255)

The Gaussian grid has no grid point at the pole. In a reduced Gaussian grid, the
number of grid points in the zonal direction decreases toward the poles, which keeps
the zonal distance between grid points approximately constant across the sphere.

One often wishes to characterize the spatial resolution of a spectral global model
in terms of grid spacing L rather than by the highest wavenumber M. The definition
of grid spacing that is equivalent to a given spectral resolution is not straightforward.
Laprise (1992) suggests four possible approaches, whose corresponding grid spacing
estimates differ by about a factor of 2. One simple approach is to calculate the
average distance between grid points on the Gaussian grid (or equivalently the
spacing L1 [km] between longitudinal grid points at the Equator). With the triangular
truncation, the equivalent grid spacing is

L1 ¼ 2πa
3M þ 1

� 13500 km

M
(4.256)

where a (6378 km) represents the Earth’s radius and M is again the largest wave-
number in the zonal direction. A second measure L2 is half of the shortest resolved
zonal wave at the Equator:

L2 ¼ πa
M

� 20000 km

M
(4.257)

A third approach assumes that an equal area of the Earth’s surface is assigned to
every piece of information contained in the spherical series, with (M+1)2 real
coefficients in the case of a triangular truncation. This yields an area resolution
4πa2/(M + 1)2, corresponding to a length L3

L3 ¼ 2
ffiffiffi
π

p
a

M þ 1
� 22600 km

M þ 1
(4.258)
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The fourth definition is based on (4.253) that expresses the spherical harmonics
Ym
n λ; μð Þ as the eigenfunctions of the Laplace operator on the sphere. By equating the

eigenvalue of the highest resolved mode with the corresponding eigenvalue of
Fourier modes in Cartesian geometry, Laprise (1992) deduces a fourth possible
expression L4 for the spatial resolution:

L4 ¼
ffiffiffi
2

p
πa

M
� 28000 km

M
(4.259)

For example, the spatial resolution representative of a model with a T63 truncation is
1.8 degrees or 210 km along a latitude circle. It is 1.1 degrees or 125 km for a model
with a T106 truncation.
Spectral methods have several advantages: The derivatives are accurately deter-

mined because they are calculated analytically with no related numerical diffusion.
The method does not produce aliasing of the quadratic nonlinear terms and hence no
nonlinear numerical instability, the use of staggered grids is avoided, and there is no
pole problem. There are also disadvantages: the calculation of nonlinear terms is
computationally expensive and the number of arithmetic operations increases faster
with spatial resolution than in grid point models. Therefore, spectral methods are not
well suited for implementation in massively parallel computing architectures. Spec-
tral methods are also unsuitable for regional models where boundary conditions must

Box 4.10 Orthogonal Functions

Two functions Ψn and Ψm are said to be orthogonal if the integral of their product is zero. Thus, if
δnm is the Kronecker delta (equal to zero ifm 6¼ n and one if n = m) and A is a normalization constantð

x

Ψn xð ÞΨm xð Þ dx ¼ A δnm

For example, when representing function Ψ(x) by a series of elementary trigonometric functions as
in (4.248),

Ψ xð Þ � a0 þ
XK
k¼1

ak cos kxð Þ þ bk sin kxð Þð Þ

the orthogonal relationships areð
x

cos nxð Þ sin mxð Þ dx ¼ 0

ð
x

cos nxð Þ cos mxð Þ dx ¼ 0 if m 6¼ n

ð
x

sin nxð Þ sin mxð Þ dx ¼ 0 if m 6¼ n
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Box. 4.11 Associated Legendre Polynomials of the First Kind

Associated Legendre polynomials of degree n and order m are real functions of x and solution of the
Legendre equation

d
dx

1� x2
� � dPmn xð Þ

dx

� �
þ n nþ 1ð Þ � m2

1� x2ð Þ
� �

Pmn xð Þ ¼ 0 8x 2 �1;þ1½ �

They can be expressed analytically by

Pmn xð Þ ¼ 1� x2ð Þm2
2nn!

dnþm

dxnþm
x2 � 1
� �n

The first polynomials of degree n(0 to 5) for m = 0 are (Box 4.11 Figure 1)

P0 xð Þ ¼ 1 P1 xð Þ ¼ x P2 xð Þ ¼ 1
2
3x2 � 1
� �

P3 xð Þ ¼ 1
2
5x3 � x
� �

P4 xð Þ ¼ 1
8
35x4 � 30x2 þ 3
� �

P5 xð Þ ¼ 1
8
63x5 � 70x3 þ 15x
� �

To satisfy the condition of orthonormality, the Legendre functions must obey

1
2

ðþ1

�1

Pmn xð Þ� �2
dx ¼ 1

and the normalized Legendre function is then expressed by

Pmn xð Þ ¼ 2nþ 1ð Þ n� mð Þ!
nþ mð Þ!

� �1
2 1� x2ð Þm2

2nn!
dnþm

dxnþm
x2 � 1
� �n

Box 4.11
Figure 1

First Legendre polynomials of degrees 1 to 5 displayed as a function of x. Copyright 2010 J. Maddock,
P. A. Bristow, H. Holin, X. Zhang, B. Lalande, J. Råde, G. Sewani and T. van den Berg.
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be specified at the edges of the modeling domain. Other disadvantages include non-
conservation of mass and energy (Warner, 2011), spurious waves in the vicinity of
large discontinuities (Gibbs phenomenon, see Box 4.9), and occurrence of negative
values for the dependent variables.

4.10 Finite Element Method

The finite element method (Courant, 1943) is, to a certain extent, analogous to the
spectral method. In this numerical technique, the solution of the partial differential
equations is also expressed by a finite sum of spatially varying basis functions, but
rather than being global as in the spectral method, they are expressed by low-order
polynomials that are different from zero only in localized regions. Again, the PDEs
are transformed into ordinary differential equations that are numerically integrated
by standard techniques. To describe the method, we consider the PDE (in the 1-D
space)

L Ψ½ � ¼ F xð Þ (4.260)

to be solved over the model domain [a,b] with specified boundary conditions Ψ(a)
and Ψ(b). Here, L represents a differential operator. For example, in the case of the
linear 1-D advection equation with a velocity u, this operator can be expressed by
∂/∂t + u ∂/∂x, and F(x) = 0. In the finite element method, the solution Ψ(x, t) of the
PDE is approximated by a finite series of specified basis orthogonal functions Φk(x)
that are non-zero only in a small part of the total domain called finite element (see
below and Figure 4.23):

Ψ x; tð Þ ¼
XK
k¼1

ak tð Þ Φk xð Þ (4.261)

The unknown coefficients ak are a function of time t. As in the case of the spectral
method, an advantage of this formulation is that the space derivative can be calcu-
lated exactly from the known basis functions.
The error resulting from the fact that the approximation in (4.261) retains only

K terms is

Figure 4.23 Example of four basis functions in a finite element j as a function of the spatial dimension x. Personal
communication of Paul Ullrich, University of California Davis.
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eK ¼ L
XK
k¼1

ak tð Þ Φk xð Þ
" #

� F xð Þ (4.262)

In the algorithm introduced by Galerkin, the residual eK is required to be orthogonal
to each basis function Φj(x), so that for all values of j = 1, K

ðb
a

eKΦj xð Þ dx ¼ 0 (4.263)

By substitution, we derive a system of K algebraic equations for the unknown
coefficients ak(t)

ðb
a

Φj xð Þ L
XK
k¼1

ak tð Þ Φk xð Þ
" #

dx�
ðb
a

Φj xð ÞF xð Þ dx ¼ 0 j ¼ 1; . . .Kð Þ (4.264)

This system of K coupled ordinary equations can be solved to obtain the coefficients
ak(t). For this purpose, the time derivatives included in operator L are usually
approximated by finite differences. The basis functions inside each element are often
expressed by a piecewise linear function called Chapeau function (Figure 4.24, a)

xj–1 xj+1xj

xxj–2 xj–1 xj+1 xj+2 xj+3xj0

(a)

(b)

Figure 4.24 (a) Chapeau function for finite element j. (b) Linear combination of basis functions (black line) to define
a piecewise (in green) linear function that approximates the solution Ψ(x).
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equal to unity at the jth node and zero to all other nodes. Its mathematical formula-
tion is

Φj xð Þ ¼ x� j� 1ð Þ Δx
Δx

for j� 1ð Þ Δx < x < jΔx (4.265)

Φj xð Þ ¼ jþ 1ð Þ Δx� x

Δx
for jΔx < x < jþ 1ð ÞΔx (4.266)

Φj xð Þ ¼ 0 elsewhere: (4.267)

An approximation of the true function is provided by a linear combination of the
Chapeau functions (Figure 4.24, b). Higher-order shapes (polynomial, curvilinear
elements) can also be adopted as basis functions.
Contrary to the spectral method that describes the physical quantities by expansion

functions over the entire domain, the finite-element method represents the fields for
individual elements by a combination of a small number of basis functions
(Figure 4.24, b). Much of the computation is thus local to a single element. In this
case, the accuracy is not anymore achieved by using a large number of basis
functions but by increasing the number of elements inside the entire model domain.
These elements can be made smaller where a high-resolution formulation is required.
The finite element technique is attractive for complex grid geometries including
unstructured meshes or when the desired precision varies over the entire domain. It
has been developed and often applied for aeronautic or civil engineering applica-
tions, but is not often used in chemical transport modeling. It could become an
attractive approach for unstructured or adaptive grids. An application of the method
to the 1-D advection equation is given in Section 7.8. The spectral element method
(Canuto et al., 1984; Patera, 1984), which is used in some modern atmospheric
general circulation models (Fournier et al., 2004), is a high-order finite element
technique that combines the geometric flexibility of finite elements with the high
accuracy of spectral methods.

4.11 Lagrangian Approaches

The methods described in the previous sections are Eulerian since the dependent
variables are calculated relative to a numerical grid attached to the rotating Earth. In
the Lagrangian approach, the dependent variables such as chemical concentrations
are calculated following the trajectory of infinitesimally small air parcels (called
particles) displaced by air motions. Different types of Lagrangian models have been
developed (Figure 4.25) and we give here a brief overview.

4.11.1 Models for Single Trajectories

The simplest Lagrangian models are trajectory models that track the time evolution
of a single particle along its trajectory (or of an ensemble of neighboring particles to
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account for errors in airflow). Particles are assumed to retain their identity during
their displacement. They transport physical quantities such as momentum, energy
(i.e., potential temperature), water vapor, or chemicals. Trajectory models are simple
and useful, for example, to track the fate of a pollution plume, or to determine the
sources contributing to concentrations observed at a receptor site.

The Lagrangian trajectory of a particle located at r(t) with three spatial compon-
ents (x, y, z) is derived by integrating

dr tð Þ
dt

¼ v r tð Þð Þ (4.268)

in which v(u, v, w) is the velocity vector along the particle trajectory. If the wind field
v(r(t)) and the initial position of the particle are known, the trajectory is completely

Figure 4.25 Schematic representation illustrating different Lagrangian model formulations. (a) Trajectory of a single
air particle that retains its identity as it moves along a single line determined by the mean wind velocity;
turbulent mixing is neglected. This formulation is appropriate when the flow is laminar. (b) Trajectories
of multiple particles aggregated in a small volume (box). Each individual particle is displaced along the flow.
The deformation of the box provides information on the dispersion of the particles resulting from
inhomogenieties in the flow. (c) Gaussian puff advected by the wind and affected by turbulent dispersion
(see Section 4.12). (d) Particle dispersion model for a large number of individual particles with random
wind velocities (turbulence) generated by a stochastic (Markov) process. From Lin (2012).
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determined. The “zero acceleration solution,” which is computationally inexpensive
but only first-order accurate, provides the position of the particle at time t + Δt as a
function of the particle at time t

r t þ Δtð Þ ¼ r tð Þ þ Δt v r tð Þð Þ (4.269)

where Δt is the integration time step. A second-order accurate solution is obtained
from the so-called “constant acceleration solution” or Pettersen’s scheme

r t þ Δtð Þ ¼ r tð Þ þ Δt
2

v r tð Þð Þ þ v r t þ Δtð Þð Þ½ � (4.270)

This implicit expression is solved by an iterative method. Expressions with higher-
order approximations can also be used. One constructs in this manner forward
trajectories or, if the sign of the time interval is reversed, backward trajectories.
Wind vectors used to construct the trajectory are typically interpolated from an
archive of assimilated meteorological data available on a fixed grid and time interval.
Errors on the calculated trajectories arise from the truncation in the finite difference
scheme, the quality of the wind fields, the interpolation of the winds, poor know-
ledge of the unmeasured vertical wind component, and the starting position of the
trajectory (Stohl, 1998). Back trajectories constructed to analyze the history of an air
parcel are often useful only for a few days, beyond which the errors grow too large,
especially if the backward-moving particles encounter convective situations with
large unresolved vertical motions.
Local sources and sinks may affect the chemical variables transported along

trajectories. The change in mixing ratio μi of a species i along a trajectory is obtained
by integrating the Lagrangian form of the continuity equation:

dμi
dt

¼ Si (4.271)

Here, Si [expressed for example in ppm s–1] represents the net source rate of species
i. As the particle is transported from departure point A at time tA to arrival point B at
time tB, the change in mixing ratio is obtained by integration along the trajectory

μi rB; tBð Þ ¼ μi rA; tAð Þ þ
ðB
A

Sidt (4.272)

Si may include a source term from emission or chemical production, available as
input on the same grid and time interval as the winds; and a sink from first-order loss.
The source term must be interpolated in the same way as the winds, and its value
along the trajectory between points A and B is often estimated at the midpoint or as
the average between values at A and B. The first-order loss is applied as an exponen-
tial decay along the trajectory.

4.11.2 Stochastic Models

Lagrangian stochastic (LS) models, also called Lagrangian particle dispersion
models (LPDMs), simulate the transport and dispersion of chemicals by calculating
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the random trajectories of an ensemble of particles in the turbulent flow. In the
zeroth-order formulation, the displacement of particles is treated as a Markov chain,
where the probabilities of future states do not depend on the path by which
the present state was achieved. The position r of each particle is determined by a
sequence of random increments. The change in the three components (x, y, z) of the
position r of a fluid element is derived from the stochastic differential equations

dx ¼ αxdt þ σxdξx dy ¼ αydt þ σydξy dz ¼ αzdt þ σzdξz (4.273)

where the terms with αx, αy, and αz represent the deterministic motions and the terms
with σx, σy, and σz represent the stochastic component. Components dξx, dξy, and dξz
are uncorrelated, and chosen so that their mean values equal zero and their variances
equal dt. One can show (Boughton et al., 1987; Sportisse, 2010) that the mean
concentration obtained from the stochastic equations satisfies the Eulerian
advection–diffusion equation if

αx ¼ u þ ∂Kx

∂x
αy ¼ v þ ∂Ky

∂y
αz ¼ w þ ∂Kz

∂z
(4.274)

and

σx ¼
ffiffiffiffiffiffiffiffi
2Kx

p
σy ¼

ffiffiffiffiffiffiffiffi
2Ky

p
σz ¼

ffiffiffiffiffiffiffiffi
2Kz

p
(4.275)

where v u; v;wð Þ is the 3-D field of the mean (resolved) wind velocity and (Kx, Ky,
Kz) are the diffusion coefficients for the three directions. Under these conditions, the
particle position evolves over time step Δt as

x tþΔtð Þ ¼ x tð Þ þ u þ ∂Kx

∂x

� �
Δt þ ffiffiffiffiffiffiffiffi

2Kx
p

Δξx

y t þ Δtð Þ ¼ y tð Þ þ v þ ∂Ky

∂y

� �
Δt þ ffiffiffiffiffiffiffiffi

2Ky
p

Δξy

z t þ Δtð Þ ¼ z tð Þ þ w þ ∂Kz

∂z

� �
Δt þ ffiffiffiffiffiffiffiffi

2Kz
p

Δξz

(4.276)

The three components Δξx, Δξy, Δξz, known as the Wiener–Lévy process in the
theory of Brownian motion, are stochastic components with mean values equal to
zero and variances equal to Δt.

In the first-order method, the particle path is derived by a sequence of random
increments applied to the turbulent velocity v0 (rather than the position) of the
particle. The turbulent motions are represented again by a Markov process and the
variation in the wind velocity by a stochastic differential equation established by
Langevin (1908) to describe Brownian motion (Thomson, 1987):

du ¼ axdt þ bx,xdξx þ bx,ydξy þ bx, zdξz

dv ¼ aydt þ by,xdξx þ by,ydξy þ by, zdξz

dw ¼ azdt þ bz,xdξx þ bz,ydξy þ bz, zdξz

(4.277)

The deterministic part of the acceleration is defined by vector a = (ax, ay, az)
T and the

random component is defined by the 3 � 3 matrix B = (bij). In most cases, only the
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diagonal components of B (bxx, byy, bzz) are retained. In these relations, the terms dξx,
dξy and dξz denote again the spatial components of a Gaussian white noise with an
average of zero and a variance of dt. Expressions for these terms are available for
different types of turbulence (see Wilson and Sawford, 1996).
For a stationary and horizontally homogeneous turbulent flow with a constant

mean wind u directed in the x-direction v ¼ w ¼ 0ð Þ and a constant air density,
Luhar (2012) writes the following Langevin equations for the three components of
the velocity

du ¼ � u� u

TLx
dt þ 2σ2u

TLx

� 	1=2

dξx tð Þ

dv ¼ � v

TLy
dt þ 2σ2v

TLy

� 	1=2

dξy tð Þ

dw ¼ � v

TLz
þ 1

2
1þ w2

σ2w

� 	
∂σ2w
∂z

� �
dt þ 2σ2w

TLz

� 	1=2

dξz tð Þ

(4.278)

where σ2u,σ
2
v and σ2w denote the variances of the three spatial components of the wind

velocity. The Lagrangian timescales in the three spatial directions are

TLx ¼ 2σ2u
3ε

TLy ¼ 2σ2v
3ε

TLz ¼ 2σ2w
3ε

(4.279)

Here, ε denotes the turbulent kinetic energy dissipation rate. For homogeneous
turbulence in the vertical direction, ∂σ2w=∂z ¼ 0. In atmospheric boundary layer
problems, the mean horizontal wind velocity is usually large relative to turbulent
fluctuations, and the Langevin equation is written only for the vertical wind com-
ponent (Stohl, 2005).
Once the velocity components have been calculated, the position (x(t), y(t), z(t)) of

the particle is obtained by integration of

dx ¼ u dt dy ¼ v dt dz ¼ w dt (4.280)

Lagrangian models can be run forward or backward in time. In the forward mode,
particles released at one or more source locations are transported by the fluid motions
through the model domain. In the backward mode, particles released at a receptor
point are used to determine the upwind influences at that point (Figure 4.26).
A frequent application of the backward mode is to determine the surface flux
footprint contributing to the atmospheric concentration at a given location.

4.11.3 Global and Regional Three-Dimensional Lagrangian Models

The Lagrangian formalism can be applied for calculating the spatial distribution and
temporal evolution of chemical composition in global or regional atmospheric
domains. In these models, one follows the displacement and dispersion of a large
number of particles (typically 106 or more). The particles maintain their integrity as
the model integration proceeds, so that particles of different origins in the spatial
domain never mix and the chemical species that they carry are not allowed to react.
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Accounting for chemical reactions is often done on an Eulerian grid interpolated
from the Lagrangian particle information.

Lagrangian models have several advantages over their Eulerian counterparts.
There is no numerical diffusion so that sharp gradients are preserved. The effective
resolution in regions of particular interest can be readily enhanced by increasing the
density of particles. The numerical integration of the trajectory equations is stable
and the time step is therefore not limited by the Courant–Friedrichs–Lewy (CFL)
criterion (see Section 7.3). The independence of calculations along individual trajec-
tories is particularly attractive for massively parallel computing architectures.

Lagrangian formulations also have several disadvantages. The lack of mixing
between air parcels generates spurious small-scale features that would be
smoothed in the real atmosphere by turbulent mixing. Not accounting for mixing
is problematic for simulating nonlinear chemistry and aerosol processes where
mixing can greatly affect rates. Lagrangian models also generally cannot provide
uniformly dense coverage of a given 3-D domain; depending on shear in the flow,
particles may cluster in some regions of the domain while leaving other regions
unsampled.

Backward

Forward

Receptor

Source

Figure 4.26 Lagrangian receptor model to determine the sources (“footprint”) of chemical concentrations
measured at a receptor point at a given time. A large number of Lagrangian particles are released at
the receptor point and observation time, and are then tracked back in time. They diverge as a result
of random turbulence, wind shear, and convection. A surface footprint for the observations can
be determined from the statistics of the particles reaching the surface at all backward times.
Adapted from Lin et al. (2003).
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4.11.4 Semi-Lagrangian Models

A semi-Lagrangian approach is often adopted in global models. Here, the concen-
trations are calculated at fixed points on an Eulerian grid. The transport over a time
step Δt = tn+1 – tn is calculated by initiating back trajectories over time Δt from the
location of each gridpoint at time tn+1. The location of the departure point, i.e., the
location of the corresponding particle at the previous time tn, is derived by integrat-
ing the trajectory backward in time. The departure point does not in general
correspond to a gridpoint, and thus the mixing ratio at that departure point is derived
by interpolating the values from neighboring grid points at time tn. A great advantage
of semi-Lagrangian methods is that they are computationally stable for any time step.
Chemical reactions are computed on the model grid, allowing for mixing and non-
linear processes. However, interpolation of the concentration field compromises
mass conservation and this requires correction at every time step. Semi-Lagrangian
algorithms have been combined with finite volume Eulerian methods (Lin and Rood,
1996) to overcome Courant number limitations. More details on semi-Lagrangian
methods are provided in Section 7.8.

4.12 Atmospheric Plume Models

The atmospheric dispersion and chemical evolution of a plume originating at a
source point r0 can be represented by Gaussian plume models. Such models have
the computational economy of trajectory models while accounting for small-scale
eddy motions (turbulent diffusion) and allowing for nonlinear chemistry.
If the plume is transported in the x-direction by the prevailing wind velocity u

(assumed here to be constant) and is dispersed by turbulent motions in the perpen-
dicular (y, z) plane, the continuity equation for the density ρ(x, y, z, t) [kg m–3] of a
given species can be expressed in an Eulerian framework by

∂ρ
∂t

þ u
∂ρ
∂x

¼ Ky
∂2ρ
∂y2

þ Kz
∂2ρ
∂z2

(4.281)

where Ky and Kz [m
2 s–1] are eddy mixing coefficients in the y and z directions,

respectively, for which semi-empirical formulations are available (Pasquill, 1971;
Seinfeld and Pandis, 2006). This simplified expression ignores chemical transform-
ations. It assumes that the air density is uniform and that eddy mixing in the direction
x of the wind can be neglected relative to the advection (this is called the slender
plume approximation). The source rate of the species at point r0 is expressed as a
boundary condition (see below).
An alternative approach to the above dispersion equation is to use a Lagrangian

formulation. In this formulation, the density ρ r; tð Þ at point r and time t is determined
by an ensemble of individual particles released at points r0 and previous times t0, and
displaced by a randomly varying wind velocity to reach point r at time t. The
variations in the wind velocity account for all scales of motion including the
small-scale turbulent features. One can then write
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ρ r; tð Þ ¼
ðt
0

dt0
ð
V

s r0; t0ð Þ G r; t; r0; t0ð Þ dr0 (4.282)

where s r0; t0ð Þ [kg m–3 s–1] is the source term. The Green function G(r, t; r0, t0)
defines the probability that a particle released at point r0 at time t0 reaches
point r at time t. It is assumed here that the initial concentration is zero but
the formulation can easily be generalized (see Section 4.2.8). In most applica-
tions, turbulence is considered to be stationary and homogeneous, and the
probability distribution of the velocity is assumed to be Gaussian. When con-
sidering a point source, the source s is equal to zero at all points r0 except at a
single point r0¼ r0.

We now consider two specific applications: the Gaussian plume model, in which
the point emission is constant in time, and the puff model, in which a given mass of
material is released instantaneously. The two are related in that a Gaussian plume can
be viewed as a superimposition of elementary puffs released continuously in time,
but the assumption of constant emission enables a straightforward analytical solution
in the Gaussian plume model, while the puff model can be generalized to variable
winds and emissions.

4.12.1 Gaussian Plume Models

Let’s assume that the species under consideration is emitted with a constant source
rate Q [kg s–1] at a single point located at r0 with coordinates x0 = 0, y0 = 0 and at
height z0 = He above the surface, so that

s x; y; zð Þ ¼ Q δ xð Þ δ yð Þ δ z� Heð Þ (4.283)

Here, He [m] denotes the effective source height (which may account for buoyancy
in the case of a heated source). The Dirac delta function δ(ξ) is equal to 1 for ξ = 0
and zero elsewhere, and has unit of m–1. With the assumptions mentioned above and
for steady-state conditions (∂ρ=∂t ¼ 0), the Eulerian advection–diffusion form of the
continuity equation takes the form

u
∂ρ
∂x

¼ Ky
∂2ρ
∂y2

þ Kz
∂2ρ
∂z2

(4.284)

with the following boundary conditions

ρ 0; y; zð Þ ¼ Q

u
δ yð Þ δ z� Heð Þ

ρ x; y; zð Þ ¼ 0 for y ! 
∞ and z ! ∞
(4.285)

An additional condition at the surface (z = 0) must be provided. One can assume total
reflection (no uptake), or total or partial absorption (uptake). In the first case, the
condition at the surface (zero flux) is written

Kz
dρ
dz

x; y; 0ð Þ ¼ 0 (4.286)
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It requires that the vertical gradient in the concentration be zero at the surface. The
analytical solution of (4.284) can be found by separation of variables

ρ x; y; zð Þ ¼ Q

u
Φ x; yð ÞΨ x; zð Þ (4.287)

If, in addition, we replace the independent variable x by

ry xð Þ ¼ 1

u

ðx
0

Ky x0ð Þdx0 rz xð Þ ¼ 1

u

ðx
0

Kz x
0ð Þdx0 (4.288)

the PDEs for the dependent variables Φ(ry, y) and Ψ(rz, z) are expressed by

∂Φ
∂ry

¼ ∂2Φ
∂y2

(4.289)

for the domain 0 	 ry < ∞ and �∞ < y < ∞ with the boundary conditions

Φ 0; yð Þ ¼ δ yð Þ Φ ∞; yð Þ ¼ 0 Φ ry;
∞
� � ¼ 0 (4.290)

and by

∂Ψ
∂rz

¼ ∂2Ψ
∂z2

(4.291)

for the domain 0 	 rz < ∞ and 0 	 z < ∞ with the boundary conditions

Ψ 0; yð Þ ¼ δ z� Heð Þ Ψ ∞; zð Þ ¼ 0 Ψ rz;∞ð Þ ¼ 0 and
∂Ψ
∂z

rz; 0ð Þ ¼ 0

(4.292)

The corresponding solution is

Φ ry; y
� � ¼ 1

4πry
� �1=2 e�y2=4ry (4.293)

and

Ψ rz; zð Þ ¼ 1

4πrzð Þ1=2
exp � z� Heð Þ2

4rz

 !
þ exp � zþ Heð Þ2

4rz

 !" #
(4.294)

and the spatial distribution of the concentration is therefore

ρ x; y; zð Þ ¼ Q

4πu ryrz
� �1=2 exp � y2

4ry

� 	
exp � z�Heð Þ2

4rz

 !
þ exp � zþHeð Þ2

4rz

 !" #
(4.295)

Quantities ry and rz are provided by (4.288). If the eddy diffusion coefficients are
uniform, we have

ry xð Þ ¼ Kyx

u
rz xð Þ ¼ Kzx

u
(4.296)
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The solution of the advection–diffusion equation is then expressed as a function of
the eddy diffusion coefficients by

ρ x; y; zð Þ ¼ Q

4πx KyKz

� �1=2 exp � u y2

4Kyx

� 	
exp � u z� Heð Þ2

4Kzx

 !"

þ exp � u zþ Heð Þ2
4Kzx

 !#
(4.297)

If we adopt a Lagrangian point of view and derive the concentration field by
considering the displacement of an ensemble of fluid particles continuously emitted
at point (0, 0, He) at a constant rate Q, the application of relation (4.282) with a
Gaussian probability distribution function for the particles leads to the following
expression for the concentration at t ! ∞

ρ x; y; zð Þ ¼ Q

2πuσyσz
exp � y2

2σ2y

 !
exp � z� Heð Þ2

2σ2z

 !
þ exp � zþ Heð Þ2

2σ2z

 !" #
(4.298)

where σy(x) and σz(x) denote the standard deviations of the particle distribution in
the y and z direction, respectively (see Figure 4.27). Transport down to the surface

Winddirection

z

y

h

He

Plumecenterline

x

Concentration
profiles

sz sy

Figure 4.27 Gaussian plume released by a continuous point source (here a stack located at point x = 0; y = 0; z = h).
The wind direction is aligned with the x-direction. The concentration distribution resulting from the
dispersion in the y, z plane is shown at two downwind locations. Reproduced from Stockie (2011).
Copyright © 2011 Society for Industrial and Applied Mathematics.
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(σz = He) occurs at a distance xD = u He
2/2Kz. Beyond that distance, the effect of the

surface becomes important.
The Eulerian and Lagrangian formulations lead to equivalent results if

σ2y xð Þ ¼ 2 ry xð Þ ¼ 2

u

ðx
0

Ky x0ð Þdx0 and σ2z xð Þ ¼ 2 rz xð Þ ¼ 2

u

ðx
0

Kz x
0ð Þdx0

(4.299)

If Ky and Kz are uniform,

σ2y xð Þ ¼ 2Kyx

u
and σ2z xð Þ ¼ 2Kzx

u
(4.300)

The standard deviations σy(x) and σz(x) vary therefore as the square root of the
downwind distance x. Experimental studies show, however, that the exponent of
this power law relationship is generally higher than 0.5. More elaborate empirical
relations have therefore been established to express the standard deviations as a
function of micrometeorological parameters and atmospheric stability (Pasquill,
1971).
The formulation presented here for a continuous point source can be generalized

to more complex situations (Lin and Hildemann, 1996) involving, for example,
multiple point sources, line sources (e.g., roads), the presence of an inversion layer
aloft, absorbing rather than reflecting surfaces, and the addition of chemical and
scavenging processes.

4.12.2 Puff Models

We now consider the time evolution of a puff of mass QP [kg] instantaneously
released at time t = 0 and at a given point (0, 0, He) in the atmosphere and subject to
advection (constant wind speed u) in the x-direction and dispersion (constant eddy
diffusion coefficients Kx, Ky, Kz) in the three spatial directions. We assume again total
reflection of the material at the surface. The advection–diffusion equation to be
solved is

∂ρ
∂t

þ u
∂ρ
∂x

¼ Kx
∂2ρ
∂x2

þ Ky
∂2ρ
∂y2

þ Kz
∂2ρ
∂z2

(4.301)

for the source defined by

ρ 0; y; z; tð Þ ¼ QP

u
δ yð Þ δ z� Heð Þ δ tð Þ (4.302)

The solution for the mean distribution of the concentration is

ρ x; y; z; tð Þ ¼ QP

2πð Þ3=2σxσyσz
exp � x� utð Þ2

2σ2x
� y2

2σ2y

 !

exp � z� Heð Þ2
2σ2z

 !
þ exp � zþ Heð Þ2

2σ2z

 !" #
(4.303)
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where the standard deviations σx, σy, and σz measure the dispersion of the puff
relative to its center of mass located at x = ut. They are related to the eddy diffusion
coefficients by

σx xð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
2Kxt

p
σy xð Þ ¼ ffiffiffiffiffiffiffiffiffiffi

2Kyt
p

σz xð Þ ¼
ffiffiffiffiffiffiffiffiffi
2Kzt

p
(4.304)

The solution is readily generalized to the evolution of a plume from a time-dependent
point source in a variable 3-D wind. In that case we can view the plume as resulting
from a continuous suite of puffs emitted sequentially. If we consider N puffs i = 1, N
of mass qiΔt [kg] emitted successively at time ti = iΔt and advected by a 3-D wind
field from source point (0, 0, He) to position xi(t), yi(t), zi(t) at time t, the mean
concentration field is given by

ρ x; y; z; tð Þ ¼ 1

2πð Þ3=2
XN
i¼1

qiΔt
σxσyσz

exp � x� xi tð Þð Þ2
2σ2x

� y� yi tð Þð Þ2
2σ2y

 !

� exp � z� zi tð Þ � Heð Þ2
2σ2z

 !
þ exp � z� zi tð Þ þ Heð Þ2

2σ2z

 !" # (4.305)

4.13 Statistical Models

Physical models such as the Eulerian, Lagrangian, and Gaussian plume models
presented in the previous sections simulate the behavior of chemical species on the
basis of conservation equations that capture the effects of chemical and transport
processes in the atmosphere. Statistical models offer an alternative approach that
does not require a physical representation of the chemical and dynamical processes
involved. Such models are typically based on empirical relationships between
variables established from a large number of previously observed situations. Some-
times the relationships are established from a highly detailed but computationally
unaffordable physical model. Once the statistical model has been constructed, it can
be applied to conditions within a certain range of validity (typically the ranges of the
input variables used to construct the model). Statistical models are often used to
explore relationships between an output variable and different candidate input
variables, to parameterize a physical model for faster computation, or to make
forecasts on the basis of observations of the present state. In the latter case, the
present value of the output variable is often a useful input variable for the forecast
model. We describe here two types of statistical models: multiple linear regression
models and artificial neural networks.

4.13.1 Multiple Linear Regression Models

Multiple linear (or multilinear) regression models specify a linear relation between
one dependent (output) variable noted y and P independent (input, predictor, or
explanatory) variables denoted xp (p =1, P). Consider a set of N successive
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observations i of the dependent and independent variables (yi and xi, p for i = 1, N).
We write the linear expression

yi ¼ b0 þ b1xi, 1 þ b2xi, 2 þ . . .þ bPxi,P þ ei (4.306)

where ei is a residual error term, and bi are unknown parameters to be derived from
the ensemble of observations. Errors are assumed to follow a normal distribution
with a zero mean value and a variance σ2.
Equation (4.306) can be rewritten in matrix form

y ¼ Xbþ e (4.307)

where y = (y1, y2, . . . yN)
T is the N-dimensional response vector, b = (b0, b1, . . . bP)

T

is the P + 1 dimensional slope vector, and e = (e1, e2, . . . eN)
T the N-dimensional

error vector. The N � (P + 1) matrix

X ¼
1 x11 x12 . . . x1P
1 x21 x22 . . . x2P
..
. ..

. ..
. ..

.

1 xN1 xN2 . . . xNP

0BBB@
1CCCA

is called the design matrix.
In the presence of error, design of a reliable multilinear model requires that the

number of independent observations available be much larger than the number of
unknown parameters bi (N � (P + 1)). In the ordinary least squares method, optimal
values bb for the parameters are derived by minimizing a cost function J(b) defined as
the sum of the square differences between the observed values and their correspond-
ing model values

J bð Þ ¼
XN
i¼1

e2i ¼
XN
i¼1

yi � b0 � b1xi, 1 � b2xi, 2 � . . .� bPxi,Pð Þ2 (4.308)

Solving dJ(b)/db = 0 yields the P + 1 “normal equations”

XN
i¼1

XP
p¼0

xijxipbbp ¼XN
i¼1

xijyi j ¼ 0, . . . ,P (4.309)

or in matrix notation

XTX
� �bb¼XTy (4.310)

The solution bb¼ XTX
� ��1

XTy (4.311)

is unique, provided that the N rows of matrix X are linearly independent. Here XTX
and (XT X)–1 are (P + 1) � (P + 1) symmetric matrices and XTy a P + 1 dimensional
vector. The fitted values of the predicted quantity are then

by¼X bb¼X XTX
� ��1

XTy (4.312)

The success of the fitting model is commonly measured by the coefficient of multiple
determination R2 (more often called R-squared coefficient) defined as the ratio
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between the variance of the fitted values by to the variance of the observed values y.
Since var yð Þ ¼ var byð Þ þ var eð Þ,

R2 ¼ var byð Þ
var yð Þ ¼ 1� var eð Þ

var yð Þ (4.313)

More explicitly,

R2 ¼ 1�
PN
i¼1

yi �byið Þ2

PN
i¼1

yi � yð Þ2
(4.314)

where

y ¼ 1

N

XN
i¼1

yi (4.315)

is the mean value of the observed data. The R2 coefficient, whose value varies
between 0 and 1, represents the fraction of the variance that is explained by the
multilinear model. Some caution is needed in interpreting R2 as the quality of the fit
because R2 will tend to increase as more predictor variables are added without
actually increasing the predictive capability of the model. Adjusted coefficients of
determination are used to address this problem (see Appendix E).

4.13.2 Artificial Neural Networks

Artificial neural networks are inspired by the functioning and learning ability of
biological neural systems. They do not require assumptions on the relationships
between input and output variables, which is an advantage over the multiple linear
regression approach. The method can be applied to any smooth nonlinear relation-
ships that exist between the variables. The artificial neural network is trained by
using observational data to adjust its internal parameters until a usefully predictive
input–output mapping is achieved. The predictive power can be continually
improved through the ingestion of more observational data.

An artificial neural network (Figure 4.28) consists of layered interconnected nodes
(or neurons) including an input layer, one or more successive “hidden layers,” and an
output layer. The input layer plays no computational role; it only supplies data to the
first hidden layer. The output layer provides the solution. Neurons are connected to all
nodes belonging to the upstream and downstream neighboring layers. The number of
hidden layers is determined by the complexity of the problem. In the feed-forward
network considered here, information flows only in one direction from the input to the
output layer. More complex architectures include possible feedbacks between layers.

Each node is characterized by a set of numerical inputs xi that conveys information
from other upstream nodes with specific weights. The total input signal yj to node j
from all upstream nodes i is given by

yj ¼
XN
i¼1

wi, jxi (4.316)
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where xi is the output signal of node i and wi,j is the weight of the signal flowing from
node i to node j. A second element is an activation or transfer function F that
transforms the weighted input yj into a numerical output xj. The logistic function is
frequently adopted:

xj ¼ F yj

� �
¼ 1

1þ exp �yj

� � (4.317)

The output is then passed to the next downstream hidden layer until one reaches
eventually the output layer.
The optimal values of the individual weights wi,j are determined by training the

system with observations. Training is the process by which one determines a
combination of weights that leads to a minimum error of the output variables. This
process is equivalent to the derivation of the intercept and slope coefficients in the
linear regression method described in the previous section. Different mathematical
algorithms are available to determine the conditions under which the error is minimal
(see, e.g., Bishop, 1995). Most of them adopt some form of gradient-descent
approach in which the value of the weight parameters of the models, initially small
and random, are gradually modified along a steepest-gradient direction of the error
function until an absolute minimum value is reached.

4.14 Operator Splitting

The continuity equations for chemical species consist of a sum of terms describing
different processes for which the model provides independent formulations, as

Input

Hidden

Output

Figure 4.28 Typical artificial neural network with interconnected neurons (or nodes) including an input layer, a “hidden”
layer, and an output layer. The network must be trained; from a set of M known training patterns available
from observations, it learns how the input X represented by a [M � K] matrix relates to the output Y
represented by a [M � J] matrix. Here, K denotes the number of input nodes (and variables) and J the
number of output nodes (and variables). In the figure, K = 3 and J = 2.
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described for example by (4.10). These processes are occurring simultaneously.
Ideally, the numerical algorithm used to solve the equations should account for this
simultaneous coupling. This is not practical in 3-D models because of the multi-
dimensionality of the problem and because the numerical algorithms best suited to
treat each of the terms are very different. It is therefore often advantageous to solve
for the different terms individually and sequentially over a given time step Δt. This
approach is called operator splitting. It enables software modularity, algorithms
tailored to each operator, and better performance. For example, a stiff integrator
can be employed to integrate the chemical equations, while a flux scheme can be
adopted to integrate the transport equations.

To describe the method, we consider a simple form of the continuity equation for a
variable Ψ that represents, for example, the concentration of a chemical species. We
assume that this variable is affected by two distinct atmospheric processes (such as
transport and chemistry), represented by linear operators A and B. Thus we write

∂Ψ
∂t

¼ A Ψþ B Ψ (4.318)

To apply the operator splitting method over a time interval Δt, we first update the
value of Ψ from time tn to time tn+1 = tn + Δt by calculating at each model grid point
(i, j, k) an intermediate value (Ψ*) resulting from the application of operator A over
the time interval [0, Δt]:

∂Ψ
∂t

∗

¼ A Ψ� with Ψ� 0ð Þ ¼ Ψn over 0;Δt½ � (4.319)

The resulting value of Ψ* at time Δt is then used as the initial condition for the
second step involving operator B:

∂Ψ��

∂t
¼ B Ψ�� with Ψ�� 0ð Þ ¼ Ψ� Δtð Þ over 0;Δt½ � (4.320)

The value of Ψn+1 at time tn+1 is thus given by the calculated value of Ψ** at time Δt.
In the scheme presented above and referred to here as an A–B scheme, the

integration is initiated by applying operator A followed by operator B. If we reverse
the order of the successive integration (B–A scheme), the solution will be somewhat
different. Ideally the order should not matter, but in fact it does, and this represents
the operator splitting error (Box 4.12).

When one of the two operators (say, B) is stiff, the A–B scheme described above
can be slightly modified to avoid transient disturbances (Sportisse, 2000). In this
case, rather than imposing an initial condition to the second substep that accounts for
the calculation of the first substep, one prefers to add a source term during the second
substep and replace (4.320) by

∂Ψ��

∂t
¼ B Ψ�� þ Ψ� Δtð Þ � Ψn

Δt
with Ψ�� 0ð Þ ¼ Ψn on 0;Δt½ �

(4.321)

This scheme represents an explicit integration with the non-stiff operator A and an
implicit integration with the stiff operator B.
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The algorithm described above is first-order accurate (on global error, see
Box 4.12) with respect to the splitting time Δt. The splitting error can be reduced
by adopting a symmetric splitting scheme. One option, which is computationally
expensive, is to calculate at each time step the average between the solutions derived
for different possible orderings of the operators. When only two operators A and B
are considered, the solution is simply the average between the values calculated by
the A–B and B–A schemes:

Box 4.12 Characterization of Operator Splitting Errors (Sportisse, 2010)

Assume that the continuity equation includes two linear terms representing two distinct processes

dΨ=dt ¼ A1Ψþ A2Ψ

whereΨ represents a vector of dimension n (e.g., species concentrations) and A1 and A2 are n� n
matrices. If the solution at time tn is known, then the analytical (true) solution at time tn+1 =
tn + Δ t is

Ψtrue tnþ1ð Þ ¼ exp A1 þ A2ð ÞΔt½ � Ψ tnð Þ
Adopting a splitting method, the equation is solved over the splitting time interval Δt by treating
the two processes A1 and A2 sequentially:

dΨ�

dt
¼ A1Ψ

� with Ψ� ¼ Ψ tnð Þ as initial condition
dΨ��

dt
¼ A2Ψ

�� with Ψ�� ¼ Ψ� tnþ1ð Þ as initial condition

We find

Ψsplitting tnþ1ð Þ ¼ exp A2Δt½ � exp A1Δt½ � Ψ tnð Þ
The local error e (error made during one single time step Δt) due to the splitting process is

e Δtð Þ ¼ Ψtrue tnþ1ð Þ �Ψsplitting tnþ1ð Þ
¼ exp A1 þ A2ð ÞΔt½ � � exp A2Δt½ � exp A1Δt½ �f g Ψ tnð Þ

which is zero only if the two matrices commute (A1 A2 = A2 A1). If the exponentials are
approximated to the second-order as

exp A;Δ; t½ � ¼ Iþ AΔtþ 1
2
A2Δt2 þ O Δt3

� �
where I is the identity matrix, it is easy to show that the local splitting error is of order O(Δt2) if
the two processes do not commute. By summing over the entire integration time, one finds that
the global splitting error associated with the above algorithm is of the order O(Δt), and the method
is therefore said to be a first-order method.
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Ψnþ1 ¼ 1

2
Ψnþ1

A�B þ Ψnþ1
B�A

� �
(4.322)

The local error associated with the solution is fourth-order.
A more efficient approach introduced by Strang (1968) and presented here in the

simple case of two operators A and B is to integrate the equations as a symmetric
sequence of operators A–B–A. The integration is performed first for operator A over
the time interval [0, Δt/2], then for operator B over the full interval [0, Δt] and finally
for operator A again over the interval [0, Δt/2]. Thus

∂Ψ
∂t

∗

¼ A Ψ� with Ψ� 0ð Þ ¼ Ψn on 0;
Δt
2

� �
(4.323)

∂Ψ��

∂t
¼ B Ψ�� with Ψ�� 0ð Þ ¼ Ψ� Δt

2

� 	
on 0;Δt½ � (4.324)

∂Ψ
∂t

�
¼ A Ψ� with Ψ� 0ð Þ ¼ Ψ�� Δtð Þ on 0;

Δt
2

� �
(4.325)

This Strang approach can be generalized to a larger number of operators. For
example, advection (A), diffusion (D), and chemical (C) in the sequence
AΔt=2DΔt=2CΔtDΔt=2AΔt=2 where the subscript denotes the time interval over which
the integration is performed.

Strang splitting leads to a second-order approximation. There is no operator
splitting error if the operators commute, but this is not generally the case in
atmospheric applications. For example, advection commutes with diffusion only if
either the wind or diffusion fields do not vary in space. Diffusion commutes with
chemistry only if the chemical source term is linear in concentration and independent
of the spatial variable (Lanser and Verwer, 1998).

The computational cost of solving the 3-D transport equation on a grid of N points
is generally proportional to N3, but decreases to about 3N if the problem is reduced to
a set of three 1-D equations by operator splitting. In the case of pure advection,
where the flux divergence is written as

—� Ψ vð Þ ¼ ∂ Ψ uð Þ
∂x

þ ∂ Ψ vð Þ
∂y

þ ∂ Ψ wð Þ
∂z

(4.326)

the 3-D advection equation can be solved by three sequential 1-D operators applied
to the 3-D concentration field represented by vector Ψ:

Ψ 1ð Þ ¼ Ax Ψnð Þ (4.327)

Ψ 2ð Þ ¼ Ay Ψ 1ð Þ
� �

(4.328)

Ψnþ1 ¼ Az Ψ 2ð Þ
� �

(4.329)

Here the advection operators Ax, Ay, Az solve the corresponding 1-D advection
equations. For Ax, for example, the advection equation is

∂Ψ
∂t

¼ �u
∂Ψ
∂x

(4.330)
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and Ax(Ψ
n) solves this equation over the time interval [tn, tm+1]. Numerical methods

for solving the 1-D advection equation are presented in Chapter 7. A side advantage
of splitting 3-D advection into 1-D operators is that it allows the use of different time
steps in different directions to address CFL criterion limitations. With stronger winds
in the x-direction than in the y-direction, and weak winds in the z direction, one can
use for example the following arrangement of operators:

Ψnþ1 ¼ Ax,Δt=4Ay,Δt=2Ax,Δt=4Az,ΔtAx,Δt=4Ay,Δt=2Ax,Δt=4 Ψnð Þ (4.331)

Diffusive transport over a model time step can also be decomposed into three
different operators, one in each direction. Here, numerical stability requires that an
implicit approach be adopted (Section 8.6). Each direction can be treated completely
separately, as in the advection case. However, it is usually preferable to adopt an
alternating direction implicit (ADI) method in which, during a third of the time step,
diffusion is solved implicitly in one direction and explicitly in the other two direc-
tions. Consider the simplest case of a constant diffusion coefficient K and constant
air density. The diffusion term takes the form

K —2Ψ ¼ K
∂2Ψ
∂x2

þ ∂2Ψ
∂y2

þ ∂2Ψ
∂z2

� 	
The ADI method updates the value of the 3-D gridded fieldΨ fromΨn toΨn+1 over a
time step Δt = tn+1 – tn with the sequence

Ψ 1ð Þ ¼ Ψn þ γ
3

Dx Ψ 1ð Þ
� �

þ Dy Ψnð Þ þ Dz Ψ
nð Þ

h i
(4.332)

Ψ 2ð Þ ¼ Ψ 1ð Þ þ γ
3

Dx Ψ 1ð Þ
� �

þ Dy Ψ 2ð Þ
� �

þ Dz Ψ 1ð Þ
� �h i

(4.333)

Ψnþ1 ¼ Ψn þ γ
3

Dx Ψ 2ð Þ
� �

þ Dy Ψ 2ð Þ
� �

þ Dz Ψnþ1
� �h i

(4.334)

where

γ ¼ KΔt (4.335)

and Dx applied to grid point Ψi,j,k is

Dx Ψi, j,k
� � ¼ Ψiþ1, j,k � 2Ψi, j,k þ Ψi�1, j,k

Δx2
(4.336)

with equivalent forms for Dy and Dz. The ADI method is easily generalized to cases
in which the diffusion coefficient is variable.

4.15 Filtering

Meteorological models tend to produce undesirable noise caused by dispersion errors
in the numerical integration of the dynamical equations. This noise affects the
atmospheric distributions of chemical species transported by the model. In order to
keep model simulations numerically stable, some form of dissipation may need to be
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introduced (Jablonowski and Williamson, 2011). Numerical diffusion in solving the
advection equation in Eulerian models (Chapter 7) often serves as an implicit filter to
damp undesired noise. Filters are explicit if they are implemented by the addition of
terms in the governing equations or if they are applied a posteriori as a correction to
the calculated fields. Here we describe explicit filters that damp the noisy small-scale
waves with wavelengths L of the order of (2–4) Δx without reducing substantially the
amplitude of the better-resolved scales.

As we will see, numerical filters generally involve the application of a diffusion
term to the solutions of the dynamical equations in order to damp small-scale
features. Aside from ensuring numerical stability, an additional purpose of this
damping is to mimic turbulence-related processes that are unresolved by the model
grid. The introduction of a numerical filter as diffusion operator can thus be based on
physical as well as numerical considerations.

4.15.1 Diffusive Filters

A diffusive filter involves the addition of a diffusion term to the dynamical
equations as

∂Ψ
∂t

� �
diff

¼ �1ð Þqþ1K2q —2qΨ q ¼ 1, 2, 3, . . . (4.337)

where q is a positive integer, 2q the order of the diffusion, and K2q the adopted
diffusion coefficient [with units m2q s–1]. Setting q = 1 corresponds to the second-
order diffusion previously introduced in Section 4.2.3 to parameterize subgrid
turbulent mixing. It is also often applied as an artificial sponge in the upper layers
of dynamical models to avoid spurious reflection of waves at the top boundary.
Second-order filters are not very scale-selective and may negatively impact the well-
resolved waves produced by the model. More scale-selective hyper-diffusion
schemes with higher values of q can be used. The fourth-order hyper-diffusion
scheme with q = 2, called bi-harmonic diffusion or super-viscosity, is often adopted.
The chosen value of the diffusion coefficient is somewhat arbitrary and is often
regarded as a tuning parameter of the model; it has to be as small as possible to avoid
dissipation of well-resolved physical waves, and large enough to ensure numerical
stability of the computed solution.

4.15.2 Digital Spatial Filters

Digital spatial filters are local filters that take into account only neighboring grid
points. A widely used digital filter is the linear Shapiro filter (Shapiro, 1970; 1975)
that is based on constant-coefficient grid point operators of order m. The order of the
filter determines the width of the numerical stencil (i.e., the number of neighboring
grid points involved in the filtering operator). The Shapiro filter eliminates short
waves from the calculated fields and thus functions equivalently to the addition of
a diffusion term in the dynamical equations. In the 1-D case, we consider a function
Ψ(x) defined over the interval (–∞ < x < +∞) with values Ψi at discrete points
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xi = iΔx. The smoothed value {Ψi} at point xi using a first-order Shapiro filter is the
weighted average between the unsmoothed value Ψi at point xi with weight (1 – S)
and the two adjacent unsmoothed values at points xi–1 and xi+1 with weight S/2.
Thus,

Ψif g ¼ 1� Sð ÞΨi þ S
Ψi�1 þ Ψiþ1

2
(4.338)

or equivalently,

Ψif g ¼ Ψi þ S
Ψi�1 þ Ψiþ1 � 2Ψi

2
(4.339)

where S is the so-called smoothing element. We note three important properties of
this filtering operator: (1) it is symmetric in space; (2) it involves only three values of
x (the filter is local); and (3) over a large number of points, the averages of the
smoothed values approach the averages of the unsmoothed values.
To derive the properties of the filter, we express at grid point xi = iΔx the Fourier

component of functions Ψ and {Ψ} for wavenumber k [m–1] corresponding to
wavelength L = 2π/k, as

Ψk xj
� � ¼ Ak exp ikxi½ � (4.340)

and

Ψk xið Þf g ¼ Akf g exp ikxi½ � (4.341)

The response function g(k) = {Ak}/Ak of the filter is

g kð Þj j ¼ 1� 2S sin 2 kΔx
2

� 	
¼ 1� 2S sin 2 πΔx

L

� 	
(4.342)

The value of S must be chosen so that the response function is positive and smaller
than 1. This requires 0 	 S 	 ½. In most applications, the value S = ½ is adopted,
and the first-order filter operator is expressed by

Ψif g ¼ Ψi�1 þ 2Ψi þ Ψiþ1

4
(4.343)

with the corresponding response function

g kð Þj j ¼ 1� sin2
kΔx
2

� 	
¼ cos2

kΔx
2

� 	
(4.344)

The filter can be applied more than once to achieve greater smoothing of the solution.
One can also use higher-order filters whose amplitude response are provided by

g kð Þj j ¼ 1� sin2m
kΔx
2

� 	
(4.345)

where the order of the filter m is an integer multiple of 2. Define the difference
operator δ as

δΨi ¼ Ψiþ1=2 � Ψi�1=2 (4.346)
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with, for example,

δ2Ψi ¼ δ δΨið Þ ¼ δΨiþ1=2 � δΨi�1=2 ¼ Ψiþ1 � 2Ψi þ Ψi�1 (4.347)

The filter operators of orders 1, 2, 4, . . ., m are defined successively as

Ψif g 1ð Þ ¼ 1þ δ
2

� 	2
" #

Ψi (4.348)

Ψif g 2ð Þ ¼ 1þ δ2

4

� �
1� δ2

4

� �
Ψi (4.349)

Ψif g 4ð Þ ¼ 1þ δ4

16

� �
1� δ4

16

� �
Ψi (4.350)

. . .. . ..

Ψif g mð Þ ¼ 1þ δ
2

� 	m� �
1� δ

2

� 	m� �
Ψi (4.351)

For example, the filter operators of orders 1 and 2 are

Ψif g 1ð Þ ¼ 1

4
Ψi�1 þ 2Ψi þ Ψi�1½ � (4.352)

Ψif g 2ð Þ ¼ 1

16
�Ψi�2 þ 4Ψi�1 þ 10Ψi þ 4Ψi�1 � Ψi�2½ � (4.353)

Shapiro filters totally eliminate the shortest resolvable wave corresponding to two
grid cells (L = 2Δx), and damp to a lesser extent the amplitude of the other small-
scale resolvable waves (L = 3Δx and 4Δx).

Figure 4.29 shows the response function of the Shapiro filter for different orders
m after 1 and 1000 applications, respectively. It highlights the cumulative charac-
ter of the filtering operation, specifically in the case of the low-order filters, which

Figure 4.29 Response function for 1-D Shapiro filters of order 2, 3, 4, 8, and 16 with S = ½ after (a) one application and
(b) 1000 applications. Reproduced from Jablonowski and Williamson (2011).
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strongly damp relatively large waves (up to the 12Δx wave in the case of a
second-order filter with 1000 applications). The order-8 filter is often adopted
since, after a large number of applications, it effectively eliminates all waves with
wavelengths less than 4Δx, but preserves almost entirely the waves with wave-
lengths larger than 6Δx.
If the first-order Shapiro filter is applied twice in sequence with smoothing factors

S equal to +½ and –½, respectively, we find an intermediate value

Ψif g ¼ 1

2
Ψi þ Ψi�1 þ Ψiþ1

4
(4.354)

and a final filtered value

Ψif gf g ¼ 3

2
Ψif g � Ψi�1f g þ Ψiþ1f g

4
(4.355)

The resulting response function of the two-stage operator is

g kð Þj j ¼ 1þ cos kΔxð Þ
2

3� cos kΔxð Þ
2

(4.356)

This particular filter, referred to as the Shuman filter (Shuman, 1957), is very
effective for attenuating short waves while preserving large waves: the L = 2Δx
wave is totally eliminated and the amplitude of the response function is equal to 0.75
for L = 4Δx and 0.98 for L = 8Δx. The effect of the filter is very small for
wavelengths L > 8Δx.
A 2-D function Ψ(x, y) can be filtered by applying the 1-D Shapiro operator

successively in directions x and y (with the corresponding indices i and j). The
resulting operator involves nine discrete points:

Ψi, j
� �x,y ¼ Ψi, j þ S

2
1� Sð Þ Ψi�1, j þ Ψi, jþ1 þ Ψiþ1, j þ Ψi, j�1 � 4Ψi, j

� �
þ S2

4
Ψi�1, jþ1 þ Ψiþ1, jþ1 þ Ψiþ1, j�1 þ Ψi�1, j�1 � 4Ψi, j
� � (4.357)

with a response function

g k; hð Þj j ¼ 1� 2S 1� sin2
kxΔx
2

� 	� 	� �
1� 2S 1� sin2

kyΔy
2

� 	� 	� �
(4.358)

Here kx and ky represent the wavenumbers in the x and y directions, respectively. An
alternative is to define the 2-D smoothing function as

Ψi, j
� �x,y ¼ 1

2
Ψi, j
� �x þ Ψi, j

� �y� �
(4.359)

which results in a five-point operator

Ψi, j
� �x,y ¼ Ψi, j þ S

4
Ψi�1, j þ Ψi, jþ1 þ Ψiþ1, j þ Ψi, j�1 � 4Ψi, j
� �

(4.360)

with a response function

g k; hð Þj j ¼ 1� S sin2
kΔt
2

� 	
þ sin2

hΔt
2

� 	� 	
(4.361)
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In the preceding discussion, we have assumed that the spatial domain is infinite
and we have therefore ignored the influence of the domain boundaries. This is not of
concern if the domain is periodic, as in global model applications. For limited
domains, values of the field Ψ imposed at the boundaries may strongly influence
the filtered function inside the domain, especially if the filtering is repeated a large
number of times. For a simple three-point operator in one direction, the influence of
the boundary propagates to the interior of the domain by one grid point from both
ends at each application of the filtering process. Shapiro (1970) discusses the
boundary effects in detail and shows that, for example, a successful filtering proced-
ure with periodic boundaries may result in the spurious growth of undesired waves
inside the domain if fixed conditions are imposed at the boundaries. Some adjust-
ments in the filtering procedure can be applied to limit the influence of the boundary
conditions.

4.15.3 Spectral Filters

Spectral filters are commonly used in global longitude–latitude grid point models to
damp noise in the vicinity of the pole where convergence of the meridians reduces
the longitudinal spacing Δx between grid points. This reduced spacing can lead to
violation of the CFL criterion and numerical instability (see Chapter 7). Short waves
resulting from such numerical instability are damped or eliminated by applying a 1-D
Fourier filter in the zonal direction. The grid data are first transformed into the
spectral space via Fourier transform, and the resulting Fourier coefficients am
corresponding to dimensionless wavenumber m are modified to become

amf g ¼ F mð Þ am (4.362)

with F(m) being the so-called response function. In practical applications, the Fourier
filter is applied only poleward of a cut-off latitude φc, and the strength of the filter is
gradually enhanced toward the pole. This can be accomplished by increasing the
number of wavenumbers m affected by the filtering process and by choosing a
response function whose value decreases with latitude. Figure 4.30 shows two
examples of response functions; the first one expressed by

F mð Þ ¼ min 1:0;
cosφ
cos φc

� 	2q 1

sin 2 mΔλ=2ð Þ

" #
(4.363)

corresponds to a strong filter and the second one

F mð Þ ¼ min 1:0;
cosφ
cosφc

� 	
1

sin mΔλ=2ð Þ
� �

(4.364)

to a weaker filter. Here, φ denotes latitude and Δλ the angular longitudinal resolution.
The positive integer parameter q can be chosen to modify the strength of the filter.

In the final step of the filtering process, the fields are converted back into the grid
point space by an inverse Fourier transform. The advantage of the Fourier filter is
that it can be made very scale-selective and dependent on latitude; the drawback is
that all data along latitude rings are needed. The use of local spectral filters has been

183 4.15 Filtering

005
22 Jun 2017 at 16:45:29, subject to the Cambridge Core terms of use, available



proposed for models that utilize local spectral methods like the discontinuous
Galerkin approach or the spectral element method (Section 4.10). See Vandeven
(1991) and Boyd (1998) for more details.

4.15.4 Time-Smoothing Filters

In certain cases, it is appropriate to apply a slight time smoothing to the solution of a
differential equation. In the Robert–Asselin filter (Robert, 1969; Asselin, 1972), the
solution Ψn at time tn is replaced by

Ψnf g ¼ Ψn þ ν Ψn�1
� �� 2Ψn þ Ψnþ1
� �

(4.365)

and the high frequencies in the solution are damped. Note that the value of the
function Ψ at time tn–1 is replaced by its already filtered value. Such a filter with a
parameter ν of the order of 1% is often applied when the leapfrog advection scheme
is used, since it removes the odd–even checkerboard pattern generated by that
numerical algorithm.

4.16 Interpolation and Remapping

Models quantify the values of variables at discrete locations (grid points in Eulerian
models, location of individual particles in Lagrangian models) and discrete time
steps. One often needs model information intermediate between these discrete points.
If the value of a function F(r) is known for a sequence of N + 1 selected values ri of
the independent variable r, the process by which one estimates the value of this

Figure 4.30 Response function of a strong Fourier filter with q = 1 (solid line) and a weaker (dashed line) filter
represented as a function of the dimensionless zonal wavenumber at latitudes of 45�, 60�, and 85�,
respectively. The cut-off latitude is assumed to be 40�. Reproduced from Jablonowski and
Williamson (2011).
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function for intermediate values is called interpolation. Interpolation methods may
be used for comparing model results to observations. They may also be used to
convert model variables to a different grid, a procedure known as regridding. Yet
another application is for converting between a Lagrangian particle field and an
Eulerian grid, as is done in semi-Lagrangian transport schemes (Chapter 7) or for
treating nonlinear chemistry in an otherwise Lagrangian modeling framework.

The interpolation process consists of determining a function Ψ(r) called inter-
polant whose value is strictly equal to the true function F(r) for specified values ri of
the independent variable r, and approximates this function in the intervals between
the different nodes ri. Thus, we impose at N + 1 points

Ψ rið Þ ¼ F rið Þ  Fi i ¼ 0;Nð Þ (4.366)

The interpolation error e(r) at point r is defined as the difference between the true
function F(r) and the interpolating function Ψ(r)

e rð Þ ¼ F rð Þ � Ψ rð Þ (4.367)

The fitting process adopted for the interpolation often consists of minimizing the
mean squared error.

Interpolation schemes must model F(r) by some plausible functional form. In 1-D
problems, for example, the function F(x) is approximated by polynomials passing
through the nodes where the value of the function is known. In global polynomial
interpolation, a single polynomial Ψ(M)(x) of degree M passing throughM + 1 points
is defined for the entire domain under consideration. In piecewise methods, a
different polynomial function is defined in each of the M specified intervals [xi, xi+1]
covering the entire domain. Conditions are imposed at the breakpoints xi between
intervals to ensure continuity and smoothness of the resulting interpolant.

4.16.1 Global Polynomial Interpolation

If we know the value of a function F(x) at M + 1 distinct points (x0, x1, . . ., xM) in a
specified domain [a, b], we can define a single polynomial Ψ(M)(x) of degree M

Ψ Mð Þ xð Þ ¼ c0 þ c1xþ c2x
2 þ . . .þ cMx

M (4.368)

that approximates F(x) and passes through all these points. The M + 1 coefficients ci
(i = 0, . . ., M) are determined by expressing that the polynomial verifies the known
values Fi of the function at each point xi:

c0 þ c1xi þ c2x
2
i þ . . .þ cMx

M
i ¼ Fi (4.369)

We solve therefore the system of M + 1 equations

1 x0 x20 . . . xM0
1 x1 x21 . . . xM1
..
. ..

. ..
. ..

.

1 xM x2M . . . xMM

0BBB@
1CCCA

c0
c1
..
.

cM

0BBB@
1CCCA ¼

F0

F1

..

.

FM

0BBB@
1CCCA (4.370)
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where the square matrix of dimension M + 1 is referred to as the Vandermonde
matrix. This matrix is nonsingular if all points xi are distinct. The solution of this
system can be obtained by standard techniques such as the LU decomposition (see
Box 6.2). This technique, however, is computationally expensive since it requires of
the order of M3 operations. More efficient numerical methods requiring only O(M2)
operations are available (Press et al., 2007). Vandermonde matrices are notoriously
ill-conditioned, so the method should be used only if the data points are well-spaced
and the values of the function well-behaved. The Newton or Lagrange interpolations
described below are often preferred.

Newton interpolation

A polynomial of degree M can be expressed by the Newton expression

Ψ Mð Þ
i xð Þ ¼ a0 þ a1 x� x0ð Þ þ a2 x� x0ð Þ x� x1ð Þ þ . . .

þ aM x� x0ð Þ x� x1ð Þ . . . x� xM�1ð Þ (4.371)

or equivalently

Ψ Mð Þ xð Þ ¼
XM
k¼0

ak φk�1 xð Þ (4.372)

with

φj xð Þ ¼
Yj
i¼0

x� xið Þ (4.373)

and φ–1(x) = 1. The coefficients ai, called divided differences, are computed from

a0 ¼ F x0ð Þ a1 ¼ F x1; x0½ � a2 ¼ F x2; x1; x0½ � aM ¼ F xM ; xM�1; . . . ; x1; x0½ �
(4.374)

where the bracket functions are defined by

F xi; xj
� � ¼ F xið Þ � F xj

� �
xi � xj
� � (4.375)

F xi; xj; xk
� � ¼ F xi; xj

� �� F xj; xk
� �

xi � xkð Þ (4.376)

. . .. . ..

F xM ; xM�1; . . . ; x1; x0½ � ¼ F xM ; xM�1; . . . ; x1½ � � F xM�1; . . . ; x1; x0½ �
xM � x0ð Þ (4.377)

An illustrative example (M = 2) is given by the quadratic interpolation polynomial
Ψ(2)(x),

Ψ 2ð Þ xð Þ ¼ a0 þ a1 x� x0ð Þ þ a2 x� x0ð Þ x� x1ð Þ (4.378)

whose value is equal to F0, F1, and F2 at the three points x0, x1, and x2, respectively.
By application of (4.374), one finds

a0 ¼ F0 a1 ¼ F1 �F0ð Þ
x1 � x0ð Þ a2 ¼ 1

x2 � x0ð Þ
F2 �F1ð Þ
x2 � x1ð Þ � F1 �F0ð Þ

x1 � x0ð Þ
� �

(4.379)
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An advantage of the method is that the Newton interpolation algorithm can be
expressed as a recursive process since

Ψ Mþ1ð Þ xð Þ ¼ Ψ Mð Þ xð Þ þ aMþ1 φM xð Þ (4.380)

if

φM xð Þ ¼
YM
j¼0

x� xj
� �

(4.381)

and

aMþ1 ¼
F xMþ1ð Þ � Ψ Mð Þ xMþ1ð Þ� �

φM xMþ1ð Þ (4.382)

Thus, one can easily calculate Ψ(M+1)(x) without having to re-compute all coefficients
if the polynomial Ψ(M)(x) is known.

Lagrange interpolation

In the Lagrange formulation, one expresses the interpolation function by

Ψ Mð Þ xð Þ ¼
XM
i¼0

Li xð Þ Fi (4.383)

where

Li xð Þ ¼
YM
j ¼ 0
j 6¼ i

x� xj
� �
xi � xj
� � (4.384)

In this expression, each of theM + 1 terms is of degree M and is equal to zero at each
node xj except at one of them (denoted xi), where it is equal to Fi. For example, if the
value of the function F is known at three points x0, x1, and x2, (M = 2), the functional
form of the second-order polynomial given by the Lagrange formula is

Ψ 2ð Þ xð Þ ¼ x� x1ð Þ x� x2ð Þ
x0 � x1ð Þ x0 � x2ð ÞF0 þ x� x0ð Þ x� x2ð Þ

x1 � x0ð Þ x1 � x2ð ÞF1 þ x� x0ð Þ x� x1ð Þ
x2 � x0ð Þ x2 � x1ð ÞF2

(4.385)

The Lagrange formulation is not recursive.
As shown by Figure 4.31, the use of a single interpolating polynomial Ψ(M)(x) for

the global domain captures broad features, but often produces excessive variations
(oscillatory artifacts) in the intervals between data points and specifically in the first
and last intervals of the domain (Runge’s phenomenon). Very inaccurate approxima-
tions can be found if the interpolant Ψ(M)(x) is used to extrapolate data beyond the
limits of the data point domain. High-order polynomial interpolation is often ill-
conditioned as small changes in the data lead to large differences in the values
derived in the interval between nodes (overfitting). Finally, the errors resulting from
local outliers (e.g., measurement error at a given station) propagate to the entire
polynomial domain.
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Rational function interpolation

It is often preferable to approximate the true function F(x) that passes through M +
1 points by a rational function R(x) that is the quotient of two polynomials, one of
degree n and the second of degree m, with n + m = M:

Ψ xð Þ ¼ p xð Þ
q xð Þ ¼

p0 þ p1xþ p2x
2 þ . . .þ pnx

n

q0 þ q1xþ q2x2 þ . . .þ qmxm
(4.386)

The use of rational polynomials often leads to much better approximations than
the use of ordinary polynomials, especially for a large number of nodes. The main
drawback is that there is no control over the occurrence of poles (zero denominator)
in the domain of interpolation. This problem can be avoided by using rational
polynomials of higher degrees and, for example, by making the degree of the
numerator and the denominator equal toM. An example is the barycentric interpolant

Ψ xð Þ ¼
PM
i¼0

wi Fi

x� xið ÞPM
i¼0

wi

x� xið Þ
(4.387)

If the weights w0, w1, . . ., wN are chosen as

wi ¼
YM
j ¼ 0
j 6¼ i

1

xi � xj
(4.388)

Figure 4.31 Comparison of different interpolation methods: piecewise linear, global polynomial, piecewise spline,
and piecewise cubic Hermite. Reproduced From Moler (2004).
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the existence of poles is avoided. An alternative solution, that also prevents poles, is
to simply specify (Press et al., 2007)

wi ¼ �1ð Þi i ¼ 0;Mð Þ (4.389)

4.16.2 Piecewise Interpolation

Rather than defining a single interpolation function for the entire domain of interest
[x0, xN], it is often preferable to define a different interpolation function for each
individual interval [xi, xi+1], and express that the junction of these functions and
potentially of their derivatives is continuous at each breakpoint (or partition point) xi
in the domain. To describe such piecewise interpolation algorithms, we consider
again a 1-D function F(x) representing a physical quantity whose values Fi = F(xi)
are known at the data points xi. We wish to estimate the value of this function at an
arbitrary point x located between two of these partition points. The most desirable
methods provide piecewise polynomial functions with a high degree of smoothness
at the nodes where they connect.

The simplest piecewise interpolation method, called nearest-neighbor interpol-
ation, is to approximate the function at point x by the value Fi corresponding to the
closest point xi. The method can be generalized in the 2-D case, leading to a mosaic
of cells called a Voronoi diagram. In each cell i, the value of the interpolant is
constant and equal to the value of the function at the data point ri. The resulting
interpolant is a discontinuous function, which does not fulfill the requirement of
smoothness at the junction between intervals.

A better method is piecewise linear interpolation in which the value of the
function between partition points xi and xi+1 is approximated (1-D case) by

Ψ 1ð Þ
i xð Þ ¼ Fi þ Fiþ1 � Fi

xiþ1 � xi
x� xið Þ (4.390)

This linear interpolation is commonly applied in models of atmospheric composition
and is often implemented in more than one dimension. Consider, for example, a
function F(x, y) of two independent variables x and y whose values Fi,j are known at
selected points (xi, yj). If we define the reduced variables

s ¼ x� xi
xiþ1 � xi

t ¼ y� yj
yjþ1 � yj

(4.391)

whose values range between 0 and 1, the bilinear interpolation function Ψ(x, y) at an
unsampled point (x, y) is given by

Ψ x; yð Þ ¼ 1� sð Þ 1� tð ÞFi, j þ s 1� tð ÞFiþ1, j þ t 1� sð ÞFi, jþ1 þ s t Fiþ1, jþ1

(4.392)

Linear interpolation is characterized by discontinuities in the derivatives of the inter-
polant at the boundaries of the intervals, which is a major disadvantage of the method
(see Figure 4.31 for the 1-D case) The difficulty can be addressed by considering
higher-order piecewise interpolation methods, for example cubic interpolation algo-
rithms. A frequently used algorithm based on cubic Hermite basis functions (Fritsch
and Carlson, 1980) provides a monotone interpolant (no overshoots or undershoots).
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In 2-D problems, a bicubic interpolation is performed by applying successively a 1-D
cubic interpolation procedure in each direction. The resulting interpolated surface is
smoother than the surfaces obtained by the bilinear interpolation.
The error resulting from the approximation by a polynomial function depends on

the size of the intervals between nodes xi, the location of the selected intermediate
point x, and the properties of function F(x). In the case of a simple linear inter-
polation, the error can be derived by expanding F(x) in Taylor series about xi,
evaluating the first derivative of F(x) at point xi, and expressing the interpolant
Ψ(1)(x) as a linear function taking the known values Fi and Fi+1 at points xi and xi+1.
Here, the superscript (1) refers to the order of the interpolant. The resulting error is

e 1ð Þ xð Þ ¼ F xð Þ � Ψ 1ð Þ xð Þ ¼ 1

2
x� xið Þ x� xiþ1ð Þ d

2F

dx2
(4.393)

where the second derivative is calculated at a point within the interval [xi, xi+1]. If Δx
represents the length of this interval, the maximum error, which occurs at the
midpoint xm, is given by

max e 1ð Þ xð Þ

 

 ¼ Δxð Þ2
8

d2F

dx2






x¼xm

(4.394)

For a piecewise polynomial interpolation of degree M, the error is proportional to the
(M + 1)th derivative of F

e Mð Þ xð Þ ¼ F xð Þ � Ψ Mð Þ xð Þ ¼ φM xð Þ 1

M þ 1ð Þ!
dMþ1F

dxMþ1
(4.395)

where φn is given by (4.381).

Polynomial spline interpolation

Consider a domain [x0, xN] split into N intervals [xi, xi+1]. Spline piecewise inter-
polation is provided by a set of N polynomial pieces of degree p defined on each
interval, so that the adjacent polynomial pieces and their p – 1 derivatives are
continuous a junction points xi. In the cubic spline method, which is often adopted,
we express the interpolant in each interval by a cubic polynomial

Ψi xð Þ ¼ ai þ bi x � xið Þ þ ci x � xið Þ2 þ di x � xið Þ3 i ¼ 0; . . . ;N � 1ð Þ
(4.396)

The 4N unknown coefficients ai, bi, ci, and di are determined as follows (Figure 4.32).
First, we require that the polynomial matches the values Fi of the data at each
breakpoint xi (2N conditions)

Ψi�1 xið Þ ¼ Ψi xið Þ ¼ Fi i ¼ 1; . . . ;N � 1ð Þ (4.397)

Ψ0 x0ð Þ ¼ F0 and ΨN�1 xNð Þ ¼ FN (4.398)

Second, to make the interpolation as smooth as possible, we request that the first
and second derivatives of Ψ(x) be continuous at each breakpoint xi (2N – 2
conditions):
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Ψ0
i�1 xið Þ ¼ Ψ0

i xið Þ and Ψ
00
i�1 xið Þ ¼ Ψ

00
i xið Þ i ¼ 1; . . . ;N � 1ð Þ (4.399)

Third, we must add two conditions required to solve the system of 4N unknowns.
A standard choice, referred to as natural boundary conditions, is to impose that the
second derivative of the interpolant is zero at both endpoints x0 and xN of the domain

Ψ
00
0 x0ð Þ ¼ 0 and Ψ

00
N�1 xNð Þ ¼ 0 (4.400)

An alternative is to prescribe the slope of the spline function at each boundary if the
first derivative of the original function F(x) is known at both endpoints:

Ψ0
0 x0ð Þ ¼ F 0 x0ð Þ and Ψ0

N�1 xNð Þ ¼ F 0 xNð Þ (4.401)

The 4N coefficients ai, bi, ci, and di are then derived by applying these conditions to
polynomial (4.396) and to its first and second derivatives, respectively. The solution
of the resulting system requires that a tridiagonal system of equations be solved,
which is performed through only O(N) operations (see Box 4.4). The cubic spline
interpolation method is therefore computationally efficient. Further, the interpolation
function is relatively smooth (Figure 4.31) since its first and second derivatives are
continuous functions. The bicubic spline algorithm generalizes the method to two
dimensions.

The spline interpolation has the advantage of capturing both broad and detailed
features, but in some cases it may be smoother than wished; it also has occasionally
the tendency to oscillate. Experience shows that the use of spline polynomials of a
degree higher than three seldom yields any real advantage.

4.16.3 Distance-Weighted Interpolation

In distance-weighted interpolation, we express the interpolant by a linear combin-
ation of radial basis functions ϕ(|r – ri|), called influence functions. These functions
express the degree to which a data point situated at location ri influences its
surroundings. They are expressed as a function of the radial distance d(r, ri) = |r – ri|.
We write therefore

Ψ rð Þ ¼
XN
i¼0

wi rð Þ Fi ¼
PN
i¼0

Fi ϕ d r; rið Þð Þ
PN
i¼0

ϕ d r; rið Þð Þ
(4.402)

Ψ0(x) Ψ1(x) Ψi–1(x) Ψi+1(x) ΨN–2(x) ΨN–1(x)Ψi(x)

F0

a=x0 x1 x2 xi–1 xi+1 xN–2 xN–1 xN=bxi

F1 F2 Fi–1 Fi+1 FN–2 FN–1 FNFi

Ψ1(x) Ψi–1(

x2 xi–1

F2 FiF –1ii

Figure 4.32 Spline functions Ψi(x) defined in each interval [xi, xi+1] of the entire domain [x0, xN]. The value of the
“true” function F(x) and of the spline function are equal to Fi at nodes xi. In the cubic spline method,
continuity of the first and second derivatives is also imposed at the nodes.
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The weights wi(r) at location r of a given sampling point i are thus given by

wi rð Þ ¼ ϕ d r; rið Þð ÞPN
i¼0

ϕ d r; rið Þð Þ
(4.403)

In general, only the data points ri located close to the target point r are taken into
consideration when applying (4.402). A variety of forms are used for the radial basis
function ϕ d r; rið Þð Þ to describe the decrease in the influence of a data point with
distance d from the point. An example is the Gaussian form

ϕ d r; rið Þð Þ ¼ exp � d r; rið Þð Þ2
c

" #
(4.404)

where c is an adjustable parameter. In the inverse distance weighting (IDW) method
(Shepard, 1968), the radial basis function is

ϕ d r; rið Þð Þ ¼ 1

r� rij jp (4.405)

where the choice of the power parameter p (typically 1–20) defines the smoothness
of the solution.
Distance-weighted methods using radial basis functions are simple to implement

and computationally inexpensive. A disadvantage is that errors cannot be character-
ized. Another issue is that the interpolant is sensitive to the sampling configuration.
When adopting weighting functions that are purely radial, observations clustered in
particular directions (and often providing redundant information) carry an artificially
large weight. This can be corrected by multiplying the radial basis function ϕ by an
anisotropy correction factor that is a function of the angles between every pair of
stations relative to the unsampled point r.

4.16.4 Kriging

The methods of interpolation discussed above are often qualified as deterministic
because the variation of the physical quantity, described by a single “true” function
F(r), is approximated by a single interpolation function Ψ(r). An alternative
approach is to assume that F(r) is a random field with several possible realizations
among an ensemble of distributions that verify the known data Fi = F(ri) at
N points ri. The stochastic method introduced by South African mining engineer
D. G. Krige (1951) and formalized by French mathematician G. Matheron (1962)
is commonly used to interpolate spatially distributed geophysical data (Cressie,
1993). It provides the mean and variance of the ensemble of possible realizations
at every point within a defined region. Rather than expressing weights as a
function of the distance between sampled and unsampled data points as in the
IDW method, the kriging approach accounts for the spatial correlation between data
points.
We express again the interpolant Ψ(r) that approximates F(r) at any unsampled

point r by a linear combination
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Ψ rð Þ ¼
XN
i¼1

wi rð Þ Fi (4.406)

where the weights wi(r) must be determined from the assumed probabilistic behavior
of the random field. Several variants of the kriging method have been developed. We
present here the ordinary kriging method, which is the most widely used.

The method assumes that, for each pair of variables F(ri) and F(rj), a covariance
exists that depends only on the separation vector d = rj – ri. The difference between
variables F(r) and F(r + d) is treated as a stationary unbiased variable with mean

F rþ dð Þ � F rð Þ ¼ 0 (4.407)

and variance

var F rþ dð Þ � F rð Þ½ � ¼ F rþ dð Þ � F rð Þ½ �2 ¼ 2γ dð Þ (4.408)

Function γ(d) is called the semi-variance function; it is determined experimentally as
a function of the norm of the separation distance d between different data points in
the domain by

γ dð Þ ¼ 1

2N

XN
1

F rið Þ � F ri þ dð Þ½ �2 (4.409)

When displayed graphically (Figure 4.33), function γ(d) constitutes a so-called semi-
variogram or simply variogram. The experimental data are fitted by an analytical
curve, from which values γ(i, j) of the semi-variance for each pair of points (i, j) are
determined. As shown below, the values of γ(i, j) will be used to derive the weights
needed to calculate the interpolant.

γ(d)

d

C(d)

Ψ(x)

x

Normally distributed 
confidence intervals

1

(a) (b)

0

–1

–2
–1 –0.5 0 0.5 1

Kriging
Spline

Figure 4.33 (a) Typical variogram γ(d) and equivalent covariance function C(d) (covariogram) as a function of the
distance d between data points. One can show that γ(d) = C(0) – C(d), where C(0) = Var (F(x)). The semi-
variance increases with the distance d, while the covariance function decreases. From Gentile et al. (2012).
(b) Graphical illustration of 1-D data interpolation by kriging and spline methods. The open squares indicate
the location of the data. The kriging interpolation is shown in red, and corresponds to the means of the
normally distributed confidence intervals shown in gray. The spline interpolation polynomials are shown by
the blue dashed line. Source: Wikimedia Commons.
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The weights wi are determined by imposing conditions. First, we express that the
estimate Ψ(r) must be unbiased (mean of the difference between the true function
and the interpolant equal to zero)

Ψ rð Þ � F rð Þ ¼ 0 or
XN
i¼1

wiFi

� �� m ¼
XN
i¼1

wimð Þ � m ¼ 0 (4.410)

where m is the mean of F(r). This implies that the sum of the weights is equal to 1:

XN
i¼1

wi ¼ 1 (4.411)

Second, we minimize the mean square error between the true and interpolant
functions, subject to the unbiased condition, by minimizing

G w; μð Þ ¼ F rð Þ � Ψ rð Þ½ �2 � 2 μ
XN
i¼1

wi � 1ð Þ

¼ F rð Þ �
XN
1

wiFi

" #2
� 2 μ

XN
i¼1

wi � 1ð Þ
(4.412)

where μ is a so-called Lagrange multiplier (a parameter used in optimization theory
to find the local maxima and minima of a function subject to equality constraints).
This is achieved by equating to zero the partial derivative of G with respect to wi and
μ. After some algebraic manipulations, one obtains the following linear system

XN
i¼1

wiγ k; ið Þ � μ ¼ γ 0; kð Þ for k ¼ 1, . . . ,N

XN
i¼1

wi ¼ 1

(4.413)

or, in matrix form,

γ 1; 1ð Þ γ 1; 2ð Þ :::: γ 1;Nð Þ � 1
γ 2; 1ð Þ γ 2; 2ð Þ :::: γ 2;Nð Þ � 1
:::: :::: :::: :::: :::

γ N ; 1ð Þ γ N ; 2ð Þ :::: γ N ;Nð Þ � 1
1 1 :::: 1 0

0BBBB@
1CCCCA �

w1

w2

..

.

wN

μ

0BBBBB@

1CCCCCA ¼

γ 0; 1ð Þ
γ 0; 2ð Þ
..
.

γ 0;Nð Þ
1

0BBBBB@

1CCCCCA (4.414)

Here, index 0 refers to the unsampled position r where we seek an estimate of the
interpolant Ψ. The solution of the system provides the value for an unsampled point r
of the optimal weights wi and the Lagrangian multiplier μ. The variance for ordinary
kriging

σ2 ¼ Var F rð Þ½ � �
XN
i¼1

wi rð Þ γ 0; ið Þ þ μ (4.415)

is a measure of the interpolation error.
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The kriging method has the advantage of providing an approximation of the true
function that is based on a spatial statistical analysis of the data, and therefore
automatically accounts for the possible clustering between data points. Its strength
stems from the use of the semi-variance γ rather than geometric distances. It is
particularly suited for situations in which data are sparse. A drawback of the method
is its complexity and computational burden. Finally, the assumption of stationarity is
not always valid. The ordinary kriging method is illustrated by Figure 4.33b.

4.16.5 Correction for Local Effects

Some corrections in the interpolation process may be introduced to account for local
effects. We examine here two different approaches that address this issue, taking as
an example the interpolation of chemical concentrations measured by a network of
monitoring stations.

Innovation kriging (IK) method

The mapping of chemical concentrations by the ordinary kriging method described
in the previous section accounts exclusively for observations at monitoring stations.
The interpolation can potentially be improved, and specifically account for small-
scale patterns such as chemical plumes, by including additional information from a
chemical transport model. In the IK method (Blond et al., 2003), this is performed by
replacing (4.406) with

Ψ rð Þ ¼ M rð Þ þ
XN
i¼1

wi rð Þ Fi � M rið Þ½ � (4.416)

where Fi denotes the chemical concentration field observed at N stations located at
points ri, andM(r) is a first guess (prior) of the interpolated field provided by the model
(background value). The correction term applied to this prior estimate of the field

Hi  H rið Þ ¼ Fi � M rið Þ (4.417)

is called the increment or innovation. Again, the weight functions wi need to be
determined by optimization. If the spatial resolution of the model is sufficiently high,
the prior estimateM(r) may exhibit detailed patterns not seen by themonitoring stations.

In the IK technique, the weighting functions wi are determined by applying the
ordinary kriging procedure to the innovation Hi rather than to the observations Fi.
The system resulting from the optimization process is similar to system (4.413), but
with the covariances applying to the innovation Hi rather than to the observed
concentrations Fi. Figure 4.34 illustrates how the IK method can outperform the
ordinary kriging technique by providing model information on small-scale features
undamped by the observations.

Local empirical corrections

Another approach to account for local influences missing from the original inter-
polation process is to use additional statistical information related to some identified
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forcing factor. Consider for example the mapping of surface ozone pollution in an
urban area. Ozone may be locally titrated by conversion to NO2 near emission
hotspots of nitric oxide (NO) following reaction (3.18). This titration is important
to characterize for population exposure but occurs at scales ~1 km that cannot be
properly captured by the ozone observation network. Instead, one can establish an
empirical statistical relationship between ozone concentrations and some relevant
parameter for which finer mapping is available, such as land use or population density
(Figure 4.35), and use this relationship to estimate smaller-scale features. The empir-
ical relationship is first used to “detrend” the original observational data (remove the
actual contribution of the small-scale forcing factors on the observed concentrations).
The detrended values are then interpolated through one of the methods described
above. The local influence is then reintroduced by a “retrending” procedure based on
the empirical relationship. Results shown in Figure 4.35 for NO2 and ozone highlight
the importance of the local empirical correction in densely populated areas.

4.16.6 Conservative Remapping

Data available in one coordinate system must often be transformed to a different
coordinate system. The transfer process is generally based on the interpolation of
the physical quantities from a source grid to a target or destination grid, an operation

(b)(a)

Figure 4.34 Production of a map of surface ozone mixing ratios [ppbv] in the vicinity of Paris based on surface
observations at several monitoring stations on July 17, 1999. The measured mixing ratios at these stations
are indicated next to the black dots. (a): Analysis by the ordinary kriging method based on the information
provided only by the monitoring stations. (b): Analysis by the innovation kriging method in which data from
the observing stations are combined with prior information from a chemical transport model. The model
predicts the presence of an ozone plume downwind of Paris with a maximum concentration of 115 ppbv.
The maps produced by the two techniques are very different, which highlights in this case the importance of
the prior information provided by the model. From Blond et al. (2003).
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(a)

(b)

(c)

Figure 4.35 Empirical correction applied to improve air quality estimates in Belgium. (a): Trend functions for NO2 and O3:
average maximum one-hour concentration values as a function of land-use parameter β (here for weekday
summer values between 2001 and 2006). Factor β represents a weighted and normalized sum of land-use
indicators including, for example, urban fabric, industrial areas, road and rail networks, arable land,
agricultural areas, forests, wetlands, etc. (b): Annual mean NO2 surface concentration for year 2006 obtained
by the ordinary kriging interpolation method (right) and adjusted to account for the local effects of land use
(left). The small circles on the map indicate the location of the monitoring stations. (c): Same, but for
surface ozone. From Janssen et al. (2008).
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called remapping or regridding. A simple conservative area-weighted method is
to use interpolation weights provided by the fractional overlap between source
and destination grid cells (Figure 4.36). We denote by Ai the area of source grid cell
i, by Ak the area of target grid cell k, and by Ai,k the overlap between the two.
By definition,

Ak ¼
XNk

i¼1

Ai,k (4.418)

where Nk is the number of cells i that fall within the destination grid cell k.
If Fi(r) is an intensive variable in a source grid cell i (i.e., a quantity whose value

is independent of the size of the grid cell), and r is the spatial coordinate for
the source grid, the mean value Ψk of the variable in the destination grid cell k is
given by

Ψk ¼ 1

Ak

XNk

i¼1

ð
Ai,k

Fi dA (4.419)

If we assume that the mean value of Fi is the same for the entire source grid cell and
for the overlapping area with destination grid cell k, so that

Ak

Ai

Destination 
cell k

Source
cell i

Source
and
destination
cells

Ak
Ai,k

Figure 4.36 Schematic representation of remapping from a source grid (rectangular, in blue) to a destination grid
(Mercator projection, in green). The stippled area Ai,k represents the overlap between source grid cell i
(area Ai) and destination cell k (area Ak).
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F i ¼ 1

Ai

ð
Ai

Fi dA ¼ 1

Ai,k

ð
Ai,k

Fi dA (4.420)

then we can compute Ψk simply as

Ψk ¼ 1

Ak

XNk

i¼1

Ai,k F i (4.421)

If Fi is an extensive variable (i.e., a quantity whose value is proportional to the grid
cell area), then cumulative values must be used in the transformation and the mean
quantity for the destination grid cell k is given by

Ψk ¼
XNk

i¼1

Ai,k F i

Ai

� 	
(4.422)

The above expressions represent a first-order area-weighted scheme that is generally
good enough when a single remapping operation needs to be done. The calculation
of overlapping area Ai,k is not always straightforward when the source and destin-
ation grids use different geographic projections. This problem can be addressed by
dividing the source grid cell into a large number of mini-cells with area Am such that
Am � Ak. The mini-cells are attributed to point geographical locations and one just
needs to count the number Ni,k of mini-cells that fall within destination cell k to
derive

Ai,k � Ni,kAm (4.423)

The first-order remapping method discussed above can be improved by expanding
Fi(r) as a Taylor series around the centroid ri of source cell i

Fi rð Þ ¼ Fi þ —iF� r� rið Þ (4.424)

where —iF represents the spatial gradient of F in cell i, and

ri ¼ 1

Ai

ð
Ai

r dA (4.425)

The regridded field is now second-order accurate if —iF is at least a first-order
approximation of the gradient, as may be derived from the difference between
adjacent grid cells. We then obtain

Ψk ¼ 1

Ak

XNk

i¼1

AiF i þ
ð
Aik

—iF� r� rið Þ dA

0B@
1CA (4.426)

The integral on the right-hand side can be approximated in simple ways. The second-
order remapping scheme is useful to reduce error involved in repeated interconver-
sions between a source grid and destination grid. When a large number of back-and-
forth remappings between the two grids are performed, the signature of the coarse
grid on the fine grid becomes visible in the case of the first-order interpolation. The
second-order remapping retains better the shape of the original function.
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Remapping the three components of the wind velocities between two atmospheric
grids requires special attention. The components of the wind velocities are related to
each other by the continuity equation for air, and errors introduced in the inter-
polation process may therefore lead to the violation of mass conservation. The
problem is addressed by multiplying the wind velocity components on the source
grid by the local air concentration (or pressure), and by applying the conservative
interpolation procedure to the resulting mass flux. The interpolated field on the
destination grid is then divided by the air concentration (or pressure) to derive the
interpolated wind velocity.
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5 Formulations of Radiative, Chemical,
and Aerosol Rates

5.1 Introduction

We saw in Chapter 4 how the continuity equations for reactive chemical species in
the atmosphere include chemical production and loss terms determined by kinetic
rate laws. Similarly, we saw that the continuity equations for aerosols include
formation and growth terms determined by microphysical properties. Here we
present the formulations of these different terms.

We begin in Section 5.2 with the equations of radiative transfer that govern the
propagation of radiation in the atmosphere. This determines the rates of photolysis
reactions, which play a particularly important role in driving atmospheric chemistry
as described in Chapter 3. We go on to present the general formulations of chemical
kinetics in atmospheric models including gas-phase reactions (Section 5.3), reactions
in aerosol particles and clouds (Section 5.4), and the design of chemical mechanisms
(Section 5.5). In Section 5.6 we describe the computation of aerosol microphysical
processes as needed to model the evolution of aerosol size distributions.

5.2 Radiative Transfer

Radiative transfer describes the propagation of radiation in the atmosphere.
Radiation is energy propagated by electromagnetic waves. These waves represent
oscillating electric and magnetic fields traveling at the speed of light. The oscillations
are characterized by their frequency ν [Hz] or wavelength λ [m]. Frequency ν and
wavelength λ are related by

λν ¼ c (5.1)

where c = 3.00 � 108 m s–1 is the speed of light in vacuum. The radiation is
quantized as photons with energy hν [J], where h is the Planck constant (6.63 �
10–34 J s). The intensity of radiation that propagates through the atmosphere is
affected by emission, absorption, and scattering processes. We refer to the radiation
spectrum as the distribution of energy contributed by photons of different wave-
lengths. Solar radiation is mainly in the ultraviolet (UV, λ < 0.4 μm), the visible
(Vis, 0.4 < λ < 0.7 μm), and the shortwave infrared (SWIR, 0.7 < λ < 3 μm).
Radiation emitted by the Earth and its atmosphere is mainly in the 5–20 μm range,
called terrestrial IR (TIR). Solar radiation is sometimes called shortwave and terres-
trial radiation longwave.
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We present in this section the basic theory of radiative transfer to describe the
photon flux in the atmosphere as governed by emission, scattering, and absorption of
radiation. We will refer to the spectral distribution of a physical quantity (such as the
photon flux F) as the spectral density of this quantity or its monochromatic
value, expressed by the derivative versus wavelength (Fλ = dF/dλ) or versus
frequency (Fν = dF/dν). It is common practice in the spectroscopy literature to
express radiative quantities as a function of wavelengths in the UV–Vis region of
the spectrum, and as a function of frequencies or of wavenumbers (1/λ) in the IR. For
consistency in the presentation we will express radiative quantities as a function of
wavelength throughout. Conversion to frequency or wavenumber is straightforward.

5.2.1 Definitions

Radiance

The radiation field can be described by the spectral density Lλ of the radiance (also
called the intensity). The radiance is defined as the amount of energy d4E [J] in
wavelength interval dλ [nm] traversing horizontal surface dS [m2] during a time
interval dt [s] in solid angle dΩ [sr] inclined at an angle θ relative to the vertical
(Figure 5.1). Thus, for a pencil of light propagating in the direction Ω defined by
angle θ, the spectral density of the radiance is defined by

Figure 5.1 (a) Geometry of a pencil of light propagating in a solid angle dΩ and traversing a horizontal surface
dS at a zenith angle θ. (b) Coordinates of point P defined as distance r from origin O, azimuthal angle φ,
and zenith angle θ.
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Lλ ¼ d4E

dλ dt dS dΩ cos θ
(5.2)

and has units of W m–2 sr–1 nm–1, where wavelength λ is in nm.

Beer–Lambert law

A pencil of radiation traversing an optically active medium such as air is affected by
its interaction with that medium. The Beer–Lambert law states that the attenuation of
the radiance traversing an infinitesimally thin layer is proportional to the density of
the medium, the thickness ds of the layer, and the radiance of the light. In the absence
of radiative emission by the medium, we have

dLλ λ; sð Þ ¼ �βext λ; sð Þ Lλ λ; sð Þ ds (5.3)

where βext(λ, s) [m
–1] is the extinction or attenuation coefficient. βext(λ, s) is a property

of the medium. It can be assumed to be proportional to the mass density ρ(s) [kg m–3]
or (for a gas) the number density n(s) [molecules cm–3] of the medium, the proportion-
ality coefficient being the wavelength-dependent mass extinction cross-section kext
[m2 kg–1] or the molecular extinction cross-section σext [cm

2 molecule–1]:

βext λ; sð Þ ¼ kext λ; sð Þ ρ sð Þ ¼ σext λ; sð Þ n sð Þ (5.4)

Integration of expression (5.3) between geometrical points s0 and s yields

Lλ λ; sð Þ ¼ Lλ λ; s0ð Þ exp �
ðs
s0

βext λ; s
0ð Þ ds0

24 35 (5.5)

The optical depth at wavelength λ between geometrical points s0 and s is given by

τ λ; s0; sð Þ ¼
ðs
s0

βext λ; s
0ð Þ ds0 ¼

ðs
s0

kext λ; s
0ð Þ ρ s0ð Þds0 ¼

ðs
s0

σext λ; s
0ð Þ n s0ð Þds0 (5.6)

and the corresponding transmission function T between s0 and s is

T λ; s0; sð Þ ¼ exp �τ λ; s0; sð Þ½ � (5.7)

Following standard atmospheric chemistry usage, we define the optical depth at
altitude z as the extinction in the vertical direction

τ λ; zð Þ ¼
ð∞
z

βext λ; zð Þ dz (5.8)

The extinction along an inclined direction is then referred to as the slant optical
depth or optical path.

Extinction includes processes of absorption (conversion of radiation to other
forms of energy, such as heat) and scattering (change in the direction of the incident
radiation). The extinction coefficients and optical depths are often separated into
additive absorption (abs) and scattering (scat) components:

βext ¼ βabs þ βscat (5.9)
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and

τ ¼ τabs þ τscat (5.10)

The ratio between the scattering extinction and the total extinction is called the single
scattering albedo ω λð Þ:

ω λð Þ ¼ βscat λð Þ
βscat λð Þ þ βabs λð Þ (5.11)

Finally, in an absorbing atmosphere, it is customary to express the transmission as a
function of the path length [kg m–2] between geometric points s0 and s

u s0; sð Þ ¼
ðs
s0

ρabs s
0ð Þ ds0 (5.12)

where ρabs [kg m–3] is the mass density of the absorber. If kabs(λ, u) [m
2 kg–1] is the

mass absorption cross-section,

T λ; uð Þ ¼ exp �
ð
u

kabs λ; uð Þ du
24 35 (5.13)

or, if we assume a homogeneous atmosphere where kabs is only dependent on
wavelength λ and not on pressure or temperature,

T λ; s0; sð Þ ¼ exp �kabs λð Þ u s0; sð Þ½ � (5.14)

Radiative transfer equation

In addition to being attenuated by its interaction with matter, the energy of a pencil of
light can be strengthened as a result of local radiative emission by the material, or
through scattering of radiation from all directions into that pencil of light. These two
processes lead to an increase in the local radiance expressed as

dLλ λ; sð Þ ¼ j λ; sð Þ ds (5.15)

Here, j(λ, s) is a radiative source term from emission or scattering that can be
assumed proportional to the extinction (j(λ, s) ~ βext(λ, s)) since the same processes
are involved. Defining the source function as J(λ, s) = j(λ, s)/βext(λ, s), we obtain a
simple form of the radiative transfer equation

dLλ λ; sð Þ
βext λ; sð Þ ds ¼ �Lλ λ; sð Þ þ J λ; sð Þ (5.16)

A general expression for the radiative equation in a 3-D inhomogeneous atmospheric
medium is given by Liou (2002):

1

βext rð Þ Ω • —ð ÞLλ λ; r;Ωð Þ ¼ �Lλ λ; r;Ωð Þ þ J λ; r;Ωð Þ (5.17)

where Lλ(λ, r, Ω) and J(λ, r, Ω) represent respectively the monochromatic radiance
and source function in the direction defined by the vector Ω (see Figure 5.1) and at
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the location defined by the vector r. In many applications, it can be assumed that
radiative quantities and atmospheric parameters vary only with altitude (plane-
parallel atmosphere). In this case, if the vertical optical depth rather than the
geometric altitude is adopted as the independent variable

dτ ¼ �βext dz ¼ βext cos θð Þds
the radiative transfer equation takes the form

μ
dLλ λ; τ; μ;φð Þ

dτ
¼ �Lλ λ; τ; μ;φð Þ þ J λ; τ; μ;φð Þ (5.18)

where μ = cos(θ). The first term on the right-hand side of this equation accounts for the
attenuation of light following the Beer–Lambert law, while the second term J repre-
sents the radiative source term (local emission or light scattered from other directions).

The radiance [W m–2 sr–1] at a point r of the atmosphere and for a direction Ω is
given by the spectral integration of Lλ

L r;Ωð Þ ¼
ð∞
0

Lλ λ; r;Ωð Þ dλ (5.19)

The spectral density of the irradiance Fλ(λ, r, Ω) [W m–2 nm–1] at point r is defined
as the energy flux density traversing a surface of unit area perpendicular to direction
Ω integrated over all directions Ω0 of the incoming pencils of light. It is thus
provided by the integration over all directions of the normal component of the
monochromatic radiance

Fλ λ; r;Ωð Þ ¼
ð
4π

Lλ λ; r;Ω0ð Þ cos Ω;Ω0ð Þ dΩ0 (5.20)

This quantity is used to describe the exchanges of radiative energy in the atmosphere
and hence to quantify its thermal budget. In a plane-parallel atmosphere with
horizontal surface as reference, the spectral density of the irradiance is calculated
as a function of altitude z by

Fλ λ; zð Þ ¼
ð2π
0

dφ
ð1
�1

μ Lλ λ; z; μ;φð Þ dμ (5.21)

where φ is the azimuthal angle (Figure 5.1). One often defines the upward and
downward fluxes, Fλ"(λ, z) and Fλ#(λ, z) as

F"
λ λ; zð Þ ¼

ð2π
0

dφ
ð0
�1

μ Lλ λ; z; μ;φð Þ dμ μ > 0ð Þ (5.22)

F#
λ λ; zð Þ ¼ �

ð2π
0

dφ
ð1
0

μ Lλ λ; z; μ;φð Þ dμ μ < 0ð Þ (5.23)

with the net irradiance density being Fλ(λ, z) = Fλ"(λ, z) – Fλ#(λ, z). The irradiance
[W m–2] is obtained by integrating Fλ over the entire electromagnetic spectrum
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F zð Þ ¼
ð∞
0

Fλ λ; zð Þ dλ (5.24)

The diabatic heating Q in units of [W m–3] resulting from the absorption of radiation
(radiative energy absorbed and converted into thermal energy) is the divergence of
the irradiance

Q rð Þ ¼ �— • F (5.25)

In a plane-parallel atmosphere, the diabatic heating rate can be expressed in units of
[K s–1] as

Q~ zð Þ ¼ � 1

ρa cp

dF zð Þ
dz

(5.26)

In models using isobaric coordinates, the heating rate Q(p) is expressed as a function
of atmospheric pressure p by;

Q~ pð Þ ¼ g

cp

dF pð Þ
dp

(5.27)

Here, cp [J K–1 kg–1] is the specific heat at constant pressure, ρa [kg m–3] the air
density, and g the gravitational acceleration.
The radiance measures the photon flux from a particular direction, and the

irradiance measures the photon flux through a horizontal surface. The irradiance
is relevant to atmospheric heating, as expressed by (5.26). However, photolysis
of molecules is determined by the flux of photons originating from all directions.
This is measured by the actinic flux, whose spectral density or actinic flux density
[W m–2 nm–1] is the integral of the monochromatic radiance over all solid angles

Φλ λ; rð Þ ¼
ð
4π

Lλ λ; r;Ωð Þ dΩ (5.28)

The photolysis of atmospheric molecules occurs regardless of the direction of the
incident photon and is therefore dependent on the actinic flux rather than the
irradiance. For a plane-parallel atmosphere, the actinic flux density at altitude z is
given by integration over all zenithal and azimuthal directions μ and φ in spherical
coordinates:

Φλ λ; zð Þ ¼
ð2π
0

dφ
ð1
�1

Lλ λ; z; μ;φð Þ dμ (5.29)

The actinic flux density is commonly expressed as a photon flux density qλ(λ, z)
[photons m–2 s–1 nm–1]:

qλ λ; zð Þ ¼ Φλ λ; zð Þ
hν

¼ Φλ λ; zð Þλ
hc

(5.30)

At altitude z, the actinic flux q(Δλ, z) for a wavelength interval Δλ [photons m–2 s–1]
is obtained by spectral integration of the spectral density qλ over this interval:

210 Radiative, Chemical, and Aerosol Rates

006
22 Jun 2017 at 16:46:53, subject to the Cambridge Core terms of use, available



q Δλ; zð Þ ¼
ð
Δλ

qλ λ; zð Þ dλ (5.31)

Atmospheric chemistry models typically use spectrally integrated actinic fluxes with
wavelength intervals Δλ ~ 1–10 nm to calculate photolysis frequencies.

5.2.2 Blackbody Radiation

A blackbody is an idealized physical body that absorbs all incident electromagnetic
radiation. All blackbodies at a given temperature emit radiation with the same
spectrum. The laws of blackbody emission are fundamental for understanding
radiative transfer in the atmosphere.

Planck’s law

Planck’s law describes the spectral density of radiative emission for a blackbody at
temperature T [K] under thermodynamic equilibrium. It assumes that photons are
distributed with frequency ν according to Boltzmann statistics. Under these condi-
tions, the spectral density Bν [W m–2 Hz–1] of the blackbody radiance is given by the
Planck function

Bν ν; Tð Þ ¼ 2hν3

c2
1

ehν=kT � 1
(5.32)

where k is the Boltzmann constant (1.38 � 10–23 J K–1). One can also express the
Planck function for the spectral density Bλ [W m–2 nm–1] as a function of
wavelength:

Bλ λ; Tð Þ ¼ 2hc2

λ5
1

ehc=λkT � 1
(5.33)

Stefan–Boltzmann law

Integration of the spectral density Bλ over all wavelengths yields the total radiance

B Tð Þ ¼
ð∞
0

Bλ λ; Tð Þ dλ ¼
ð∞
0

2hc2

λ5
1

ehc=λkT � 1
dλ ¼ bT4 (5.34)

where b = 2π4 k4/(15 c2h3). The blackbody emission flux F [W m�2] is obtained by
performing a hemispheric integration of the radiance and, since the blackbody
radiance is isotropic, we write

F Tð Þ ¼ B Tð Þ
ð2π
0

dφ
ðþ1

0

μdμ ¼ πB Tð Þ ¼ σT 4

The flux varies therefore with the fourth power of the absolute temperature. This
expression represents the Stefan–Boltzmann law, and the proportional factor σ =
2π5 k4/(15 c2h3) = 5.67�10�8 Wm�2 K�4 denotes the Stefan–Boltzmann constant.
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Wien’s displacement law

By differentiating Bλ(λ, T) with respect to λ, we find that the maximum wavelength
of emission λmax is inversely proportional to the blackbody temperature:

λmax ¼ hc

5kT
¼ 2897 K μm½ �

T
(5.35)

The mean temperature of the Sun is 5800 K, so solar radiation peaks in the visible at
0.5 μm. The mean surface temperature of the Earth is 288 K, so terrestrial emission is
in the infrared peaking at approximately 10 μm. There is almost no overlap between
the solar and terrestrial radiation spectra so that these two types of radiation can be
treated separately (see Figure 5.2).

Kirchhoff’s law

Under thermodynamic equilibrium, the emissivity of a body at a given wavelength
(defined as the ratio of the monochromatic emitting intensity to the value given by
the Planck function) is equal to its absorptivity (defined as the ratio of the mono-
chromatic absorbed intensity to the value of the Planck function). In the case of a
blackbody, the values of the emissivity and absorptivity are equal to 1. Kirchhoff’s

Figure 5.2 Blackbody spectra at 5800 K and 253 K, corresponding to the effective temperatures of the Sun and
the Earth.
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law implies that we can compute the emission flux density of any object simply by
knowing its surface temperature and its absorption spectrum.

5.2.3 Extra-Terrestrial Solar Spectrum

The spectrum of radiation emitted by the Sun can be approximated as that of
a blackbody at a temperature T = 5800 K. The spectral density of the solar flux
[W m–2 nm–1] traversing a surface perpendicular to the direction of the solar beam at
the top of the Earth’s atmosphere can then be expressed by

Φ∞,λ λ; Tð Þ ¼ βRπBλ λ; Tð Þ (5.36)

where the dilution factor

βR ¼ RSun

d

� �2
(5.37)

accounts for the distance between the Sun and the Earth (d = 1.471 � 108 km at
the perihelion and 1.521 � 108 km at the aphelion). Here RSun is the solar radius
(6.96 � 105 km). The total solar flux at the top of the Earth’s atmosphere,

Φ∞ Tð Þ ¼ βRσT
4 (5.38)

is equal to 1380 W m–2 and is called the solar constant.
The observed solar spectrum deviates from the theoretical blackbody curve because it

includes contributions from different solar layers at different temperatures. The extra-
terrestrial (top of the atmosphere) spectral density of the solarflux is shown inFigure 5.3.
Also shown is the spectral irradiance at the surface, which is weaker than at the top of the
atmosphere because of atmospheric scattering and absorption. Absorption by ozone,
water vapor, and CO2 is responsible for well-defined bands in the spectrum where

Figure 5.3 Spectral density of the solar irradiance spectrum at the top of the atmosphere and at sea level over the
range 250–2500 nm. The 5800 K blackbody spectrum (thin black line) is shown for comparison. Absorption
features by several radiatively active gases are indicated. Source: Robert A Rodhe, Wikimedia Commons.

213 5.2 Radiative Transfer

006
22 Jun 2017 at 16:46:53, subject to the Cambridge Core terms of use, available



surface radiation is strongly depleted. A more detailed solar spectrum in the UV region
(λ < 400 nm), where sufficient energy is available to dissociate molecules and initiate
photochemistry, is shown in Figure 5.4.Radiation in that region of the spectrum interacts
strongly with the Earth’s atmosphere through absorption by molecular oxygen and
ozone, and through scattering by air molecules. For wavelengths shorter than 300 nm,
the radiation reaching the Earth’s surface is orders ofmagnitude lower than that at the top
of the atmosphere.

SUSIM & SOLSTICE Solar Spectra for 29 March 1992
(a)

(b)
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Figure 5.4 Solar irradiance spectra at the top of the atmosphere at 119–420 nm (a) and at different altitudes
at 200–350 nm (b). The top panel (from Woods et al., 1996) shows the Lyman-alpha line at 121 nm from
solar H atoms. The bottom line illustrates the strong absorption of radiation at wavelengths shorter than
300 nm by oxygen and ozone in the Earth’s atmosphere.
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5.2.4 Penetration of Solar Radiation in the Atmosphere

Transfer of radiation in the Earth’s atmosphere is sensitive to absorption and
scattering by atmospheric molecules, aerosol particles, clouds, and the surface. We
examine these different processes here.

Absorption only

We first consider the simple case in which absorption plays the dominant role, with
scattering assumed to be negligible. This assumption is often used in the middle and
upper atmosphere, where scattering is weak because the atmosphere is thin and there
are no clouds. The direct incoming solar beam then represents the dominant com-
ponent of solar radiation. The actinic flux density qλ(λ; z, θ0) at altitude z and for a
given solar zenith angle θ0 is proportional to the radiance associated with that beam.
From the Beer–Lambert law, we have

qλ λ; z; θ0ð Þ ¼ qλ,∞ λð Þ exp �σabs λð Þ
ð∞
s

n s0ð Þ ds0
24 35

¼ qλ,∞ λð Þ exp �F z; θ0ð Þ σabs λð Þ
ð∞
z

n z0ð Þ dz0
24 35

¼ qλ,∞ λð Þ exp �F z; θ0ð Þ τabs λ; zð Þ½ �

(5.39)

where qλ,∞(λ) is the spectral density of the solar actinic flux at the top of the
atmosphere. The exponential attenuation describes the absorption of the solar beam
by an absorber with number density n and wavelength-dependent absorption cross-
section σabs. The air mass factor F z; θ0ð Þ, defined as the ratio of the slant column
density to the vertical column density,

F z; θ0ð Þ ¼

ð∞
s

n s0ð Þ ds0

ð∞
z

n z0ð Þ dz0
(5.40)

accounts for the influence of the solar inclination. If we neglect the effect of the
Earth’s curvature and assume a plane-parallel atmosphere, the air mass factor is
simply

F z; θ0ð Þ ¼ sec θ0 (5.41)

This approximation is generally acceptable if the solar zenith angle θ0 is less than
75�. Otherwise, a more complex approach must be adopted to account for the Earth’s
sphericity (see Smith and Smith, 1972; Brasseur and Solomon, 2005).

When several absorbers i are contributing to the attenuation of radiation, the total
optical depth is the sum of the optical depth associated with the individual species:

τabs λ; zð Þ ¼
X
i

τabs, i λ; zð Þ (5.42)
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In the middle and upper atmosphere, the optical depth is due primarily to the
absorption by ozone and molecular oxygen, so that

τabs λ; zð Þ ¼ τabs,O3 λ; zð Þ þ τabs,O2 λ; zð Þ (5.43)

The spectral distributions of the absorption cross-sections for O2 and O3 are shown in
Figures 5.5 and 5.6. Spectral regions of importance are listed in Table 5.1.

Figure 5.5 Absorption cross-section [cm2 molecule–1] of molecular oxygen between 50 and 250 nm featuring the
Schumann–Runge continuum (130–170 nm), the Schumann–Runge bands (175–205 nm), and the Herzberg
continuum (200–242 nm). Note the weak absorption cross-section at the wavelength corresponding to
the intense solar Lyman-α line. At wavelengths shorter than 102.6 nm, absorption of radiation leads to
photo-ionization of O2.

Figure 5.6 Absorption cross-section [cm molecule–1] of ozone between 180 and 750 nm with the Hartley band (200–310 nm),
the temperature-dependent Huggins bands (310–400 nm) and the weak Chappuis bands (beyond 400 nm).
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Absorption and scattering

Radiation is scattered by air molecules, aerosols, and clouds. Scattering refers to a
change in the direction of incident radiation without loss of energy. The scattering
properties of a medium are characterized by the efficiency with which the incoming
radiation is scattered (scattering efficiency, defined next) and by the distribution of
angles of the scattered radiation relative to the incident beam (scattering phase function,
also defined below). The theory of Lorenz (1890) and Mie (1908) describes the inter-
action between a plane electromagnetic wave and a spherical particle based on the
Maxwell equations. Scattering by a sphere is uniform over all azimuth angles so that
the scattering phase function is characterized by a single angleΘ [0�, 180�] relative to the
incident beam. The scattering properties are determined by the particle size parameter

α ¼ π Dp

λ

introduced in Section 3.9.4 whereDp is the particle diameter, and on the refraction index
mr defined as the ratio of the speed of light in vacuum to that in the scattering medium.
The size parameter determines the scattering regime (Figure 5.7). The refraction index is
commonly expressed as a complex number to account for both scattering and absorption:

m ¼ mr � i mi (5.44)

where the imaginary component mi is a measure of the absorption efficiency. Both mr

and mi are wavelength-dependent.

Scattering by air molecules

Scattering of light by air molecules is described by the Rayleigh theory, which can be
viewed as the asymptotic case of the Lorenz–Mie theory for a size parameter α � 1.
Under these assumptions, the scattering cross-section [cm2 molecule–1] is found to be

Table 5.1 Spectral regions for atmospheric absorption by O2 and O3

Wavelength Atmospheric absorbers

121.6 nm Solar Lyman-α line, absorbed by O2 in the mesosphere. No absorption by O3.
130–175 nm O2 Schumann–Runge continuum. Absorption by O2 in the thermosphere.
175–205 nm O2 Schumann–Runge bands. Absorption by O2 in the mesosphere and

upper stratosphere. Effect of O3 can be neglected in the mesosphere, but is
important in the stratosphere.

200–242 nm O2 Herzberg continuum. Absorption of O2 in the stratosphere and weak
absorption in the mesosphere. Absorption by the O3 Hartley band is also
important (see below).

200–310 nm O3 Hartley band. Absorption by O3 in the stratosphere leading to
formation of the O(1D) atom.

310–400 nm O3 Huggins bands. Absorption by O3 in the stratosphere and troposphere
leading to formation of the O(3P) atom.

400–850 nm O3 Chappuis bands. Weak absorption by O3 in the troposphere with little
attenuation all the way to the surface.
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σscat λð Þ ¼ 8π3

3λ4n2a
mr � 1ð Þ2f δð Þ (5.45)

where na is the air number density and mr is the real part of the refractive index of air.
In this limit there is no dependence on particle size. The correction factor

f δð Þ ¼ 6þ 3δ
6� 7δ

accounts for the anisotropy of non-spherical molecules with the anisotropy factor for
air molecules being δ = 0.035. The factor mr – 1 is approximately proportional to the
air density na so that the dependence of the scattering cross-section on air density
largely cancels. The dominant feature of the Rayleigh scattering cross-section as
described by (5.45) is the λ–4 dependence.

Scattering by aerosols and cloud droplets

Atmospheric scattering due to very large particles such as cloud droplets (α � 1) is
described by the laws of geometric optics, which can be regarded as another asymp-
totic approximation of the electromagnetic theory. In this formulation, the direction of
propagation of light rays is modified by local reflection and refraction processes. The
case of smaller aerosol particles is more complex as particle dimensions are typically
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Figure 5.7 Different scattering regimes as a function of radiation wavelength and particle radius. Reproduced
from Petty (2006).
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of the same order of magnitude as the radiation wavelength. The Lorenz–Mie theory of
light applied to spherical aerosol particles with diameter Dp provides general analytical
expressions for the scattering and absorption efficiencies

Qscat ¼
4σscat
π D2

p

(5.46)

and

Qabs ¼
4σabs
π D2

p

(5.47)

defined as the ratio of the scattering (σscat) and absorption (σabs) cross-sections to the
geometric cross-section πD2

p/4, as a function of size parameter α. For example, the
scattering efficiency is expressed by the following expansion

Qscat ¼ c1α 1þ c2αþ c3α
2 þ . . .

� �
(5.48)

where the coefficients ci are provided by the theory as a function of the refraction
index. When considering the scattering of visible light by molecules (α ~ 10–3), the
dominant contribution is provided by the first-order term

c1 ¼ 8

3

m2
r � 1

m2
r þ 2

� �2

(5.49)

and describes Rayleigh scattering presented earlier.
For aerosol and cloud particles, the dependence of scattering efficiency on particle

size becomes important, while the dependence on wavelength is less pronounced
than for air molecules. The extinction efficiency Qext is defined as

Qext ¼ Qscat þ Qabs (5.50)

Values of Qscat and Qabs as a function of size parameter α are presented in Figure 5.8
for different values of the refraction index. Scattering is most efficient when the
particle radius is equal to the wavelength of incident radiation (α = 2π). It is

Size parameter

Qs Qa

Size parameter

(a) (b)

m=1.33-0.003i

m=1.33-0.03i
m=1.33-0.01i

m=1.33-0.1i

m=1.33-0.003i

m=1.33-0.03i
m=1.33-0.01i

m=1.33-0.1i

Figure 5.8 Scattering (a) and absorption (b) efficiencies as a function of the aerosol size parameter α for various
amounts of absorption (imaginary part of the refraction index m). From Frank Evans, University of Colorado,
personal communication.
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inefficient for very small particles (α � 1). For very large particles (α � 1), Qscat

approaches a diffraction limit. The scattering coefficient for a given aerosol size
distribution is obtained by integration of the particle cross-sections over the size
distribution weighted by the scattering efficiency:

βscat ¼
π
4

ð∞
0

D2
p Qscat Dp

� 	
nN Dp

� 	
dDp (5.51)

A similar equation applies to compute βabs.

Source function and phase function

When the effects of both absorption and scattering on the solar radiance are taken
into account and local emissions are ignored, the source term J that appears in the
radiative transfer equation ((5.18) for a plane-parallel atmosphere) must account
for light scattered from the direction of the Sun (μ0, φ0) and from all other
directions (μ0, φ0). The source term J can be expressed as

J λ; τ; μ;φð Þ ¼ ω λð Þ
4π

P λ; μ;φ; μ0;φ0ð Þ Φλ λ;∞ð Þ exp � τ λ; zð Þ
μ0

� �
þω λð Þ

4π

ð2π
0

dφ0
ð1
�1

P λ; μ;φ; μ0;φ0ð Þ Lλ λ; τ; μ0;φ0ð Þ dμ0
(5.52)

where ω(λ) = βscat/βext is again the single scattering albedo. The first term on the
right-hand side of (5.52) represents the single scattering of the direct solar radiation
(whose irradiance at the top of the atmosphere is Φλ(λ, ∞)), and the second term
accounts for multiple scattering. The phase function P(λ, μ, φ, μ0, φ0) defines the
probability density that a photon originating from direction (μ0, φ0) is scattered in
direction (μ, φ). For spherical particles, the phase function depends only on the
scattering angle Θ between the direction of the incident and the scattered radiation. It
is often expressed as a function of parameter μs = cos Θ, which is related to the
azimuthal and zenithal directions by

μs ¼ cosΘ ¼ μμ0 þ 1� μ2
� 	1=2

1� μ02
� 	1=2

cos φ� φ0ð Þ (5.53)

The phase function P is normalized so that

1

4π

ð2π
0

dφ
ðπ
0

P Θð Þ sinΘ dΘ ¼ 1

4π

ð2π
0

dφ
ð1
�1

P μsð Þ dμs ¼ 1 (5.54)

For isotropic scattering, P is constant and equal to 1. The non-isotropy of the
scattering process can be expressed by the asymmetry factor

g ¼
ð1
�1

P μsð Þ μs dμs (5.55)

Its value is equal to 1 if all the light is scattered forward, –1 if it is entirely scattered
backward, and 0 if scattering is isotropic. The angular distribution of the scattered
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energy, and hence the asymmetry factor, can be derived from theory. In the most
general case, it varies with the value of the size parameter α and with the degree of
polarization of light. Light emitted by the Sun is unpolarized, but becomes partially
polarized after scattering with molecules and particles in the atmosphere.

For scattering of unpolarized light by gas molecules, Rayleigh’s theory applies
(α � 1), and the phase function is found to be

P Θð Þ ¼ 3

4
1þ cos 2Θ
� 	

(5.56)

or equivalently

P μsð Þ ¼ 3

4
1þ μ2s
� 	

(5.57)

In the presence of spherical aerosol particles (α ~ 1), the Lorenz–Mie theory applies
and the phase function takes on a complicated form. Derivation is presented in
radiative transfer textbooks such as Liou (2002). The phase function is then often
described for modeling purposes in terms of associated Legendre polynomials, or
more simply by the asymmetry factor. For an ensemble of particles characterized by
a size distribution nN(Dp), the mean phase function P(μs) is derived by averaging the
size-dependent phase function P Dp;Θ

� 	
or P Dp; μs

� 	
and weighting it by the

scattering efficiency Qscat

P μsð Þ ¼

Ð∞
0
D2

p Qscat Dp

� 	
P Dp,μs
� 	

nN Dp

� 	
dDpÐ∞

0
D2

p Qscat Dp

� 	
nN Dp

� 	
dDp

(5.58)
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Figure 5.9 (a) Schematic representation of light scattered by particles of different sizes. (b) Scattering phase function
derived from the Lorenz–Mie theory as a function of the scattering angle Θ for different values of the
particle size parameter α. In the case of Rayleigh scattering (α� 1), the same amount of light is scattered
in the forward and backward directions. Mie scattering tends to favor scattering in the forward direction,
especially in the case of large particles. From deepocean.net (a) and Frank Evans, University of Colorado,
personal communication (b).
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Sample phase functions P Dp;Θ
� 	

calculated by the Lorenz–Mie theory are shown
in Figure 5.9. Scattering by large particles is characterized by a strong forward
component with a value for the asymmetry factor of about 0.8.

Solution of the radiative transfer equation

The solution of the radiative transfer equation (5.18) for the upward radiance at a
vertical level corresponding to an optical depth of τ is

Lλ λ;τ;μ;φð Þ¼ Lλ λ;τs;μ;φð Þexp �τs� τ
μ

� �
þ
ðτ
0

J λ;τ0;μ;φð Þexp �τ0 � τ
μ

� �
dτ0

μ
μ> 0ð Þ

(5.59)
where τs is the optical depth at the surface. For the downward radiance

Lλ λ;τ;μ;φð Þ¼ Lλ λ;0;μ;φð Þexp � τ
�μ

� �
þ
ðτ
0

J λ;τ0;μ;φð Þexp �τ� τ0

�μ

� �
dτ0

�μ
μ< 0ð Þ

(5.60)

Finally, for μ = 0, the horizontal radiance is

Lλ λ;τ;μ¼ 0;φð Þ¼ J λ;τ;μ¼ 0;φð Þ (5.61)

Different numerical methods are available to obtain approximate solutions to the
integro-differential radiative transfer equation in an absorbing and scattering atmosphere.
These include, for example, iterative Gauss, successive order, discrete ordinate, two-
stream, andMonte-Carlomethods. See Lenoble (1977) and Liou (2002) for more details.
In the successive order method, the solution is obtained by solving iteratively

(n = 0, 1, . . .)

μ
dL nþ1ð Þ

λ τ;μ;φð Þ
dτ

¼�L nþ1ð Þ
λ τ;μ;φð Þþω λð Þ

4π

ð2π
0

dφ0
ð1
�1

P λ;μ;φ;μ0;φ0ð ÞL nð Þ
λ λ;τ;μ0;φ0ð Þdμ0

(5.62)

with the zeroth order radiance given by the Beer–Lambert law applied to the
incoming direct solar flux

L 0ð Þ
λ λ;τ;μ;φð Þ¼Φλ λ;∞ð Þexp �τ λ;zð Þ

μ0

� �
δ μ�μ0ð Þ δ φ�φ0ð Þ (5.63)

Here, δ(x – x0) represents the Dirac function, which is equal to one for x = x0 and zero
otherwise. The final radiance is the sum of the different components

Lλ ¼
X∞
0

L nð Þ
λ (5.64)

In the discrete ordinates method (Chandrasekhar, 1950; Stamnes et al., 1988), the
radiance is expanded as a Fourier series about the cosine of the azimuthal angle,

Lλ λ;τ;μ;φð Þ¼
XN
m¼0

Lmλ λ;τ;μð Þcos mφð Þ (5.65)
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while the phase function is expanded into associated Legendre polynomials:

P λ; μ;φ; μ0;φ0ð Þ ¼
XN
m¼0

2� δ 0� mð Þ½ �
XN
l¼m

2l þ 1ð ÞPm
l μð ÞPm

l μ0ð Þ
 !

cos m φ� φ0ð Þ½ �

(5.66)

The radiative transfer equation (5.18) in three variables (τ, μ, φ) is replaced by
N + 1 uncoupled integro-differential equations for Lm(τ, μ) (m = 0, 1, 2, . . . N) in two
variables (τ; μ). The integration over μ is replaced by an accurate Gaussian quadra-
ture formula at 2N + 1 values of μi (i = –N, . . ., –1, 0, 1, . . ., N), chosen to be the 2N
roots of the Legendre polynomial P2N(μ).

In the two-stream method, the phase function (5.66) is expanded in terms of
Legendre polynomials, with only the two first terms of the expansion being
retained (N = 1). The radiative transfer equation for hemispherically averaged
radiances in a plane-parallel atmosphere is approximated by replacing the inte-
grals over the zenith angles that characterize the source function J (see (5.52))
by a Gaussian summation with only two quadrature points, corresponding to
ascending and descending directions, respectively. The diffuse radiance is there-
fore divided into an upward-propagating and a downward-propagating compo-
nent, and two coupled equations, one for each stream, must be solved. In the
Eddington method, both the phase function and the radiance are expanded in
terms of Legendre polynomials and only the two first terms of this expansion are
retained, with P μ; μ0ð Þ ¼ 1þ 3gμμ0

L λ; τ; μð Þ ¼ L0 λ; τð Þ þ L1 λ; τð Þμ �1 � μ � 1ð Þ (5.67)

Here g is the asymmetry factor (see 5.55). Coefficients L0 and L1 are derived
by solving two coupled differential equations established by inserting the above
expression into the azimuthally averaged transfer equation for diffuse radiation.
The two-stream and Eddington approximations provide computationally efficient
methods and are commonly used. They are inaccurate in the presence of clouds,
where photons are repeatedly scattered by cloud droplets in a predominantly forward
direction. The delta-Eddington approximation addresses this issue by adjusting the
phase function to account for the strong forward contribution in the multiple
scattering process (Joseph et al., 1976). In this case, the phase function for the
fraction of the scattered light that resides in the forward peak is expressed by a
delta function.

Albedo

Radiation reflected by the surface must be included in radiance calculations through
a lower boundary condition of the type

Lλ μ > 0;φ; z ¼ 0ð Þ ¼ A Lλ μ < 0;φ; z ¼ 0ð Þ (5.68)

where the surface albedo A varies with surface type (Figure 5.10), wavelength, and
the incident and reflected zenith and azimuthal angles. It is frequently assumed that
the albedo is isotropic (the surface is then called Lambertian) but this is often not
precise enough for retrieval of atmospheric parameters such as aerosol optical depth
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from satellite measurements of solar backscatter. In those cases one needs to describe
the full angular dependence of the surface albedo, known as the bidirectional
reflectance distribution function (BRDF).

5.2.5 Emission and Absorption of Terrestrial Radiation

In the infrared, at wavelengths larger than approximately 3.5 μm, the radiation field is
determined primarily by radiative emission from the Earth’s surface and the atmos-
phere. The contribution of solar radiation is small, and scattering by air molecules can
be neglected. Because of the limited overlap between solar (shortwave) and terrestrial
(longwave) radiation, a clear distinction can be made in the approach that is adopted to
solve the radiative transfer equation. In the case of longwave radiation, the spatial
distribution of the radiance is derived by integrating the radiative transfer equation
(5.18) in which the source function is represented by the Planck function Bλ(λ, T). This
formulation requires that collisions be sufficiently frequent so that the energy levels of
the molecules are populated according to the Boltzmann distribution, a condition
called local thermodynamic equilibrium (LTE). Local thermodynamic equilibrium is
met in the lower atmosphere but breaks down above 60–90 km altitude, depending on
the spectral band. In the limit of no scattering and for LTE conditions, radiative transfer
is described by Schwarzschild’s equation

μ
dLλ λ; τ; μ;φð Þ

dτ
¼ Lλ λ; τ; μ;φð Þ � B λ; T τð Þð Þ (5.69)

Assuming azimuthal symmetry (no dependence of the radiance on angle φ), and
providing the boundary conditions Lλ(λ, zsurface, μ > 0) = Bλ(λ, Ts) at the surface and
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Figure 5.10 Land surface albedo at 470 nm. Data based on observations by the Moderate Resolution Imaging
Spectroradiometer (MODIS) in June 2001. Areas where no data are available are shown in gray. Image
from MODIS Atmosphere support group incl. E. Moody, NASA Goddard Space Flight Center and C. Schaaf,
Boston University and National Aeronautics and Space Administration (NASA).
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Lλ(λ, ∞, μ < 0) = 0 at the top of the atmosphere, the upward and downward
components of the radiance at altitude z and for the zenith direction μ are obtained
by integration of (5.69)

Lλ λ; z; μð Þ ¼ Bλ λ; Tsð Þ T λ; z; 0; μð Þ þ
ðz
0

Bλ λ; z0ð Þ∂T λ; z0; z; μð Þ
∂z0

dz0 μ > 0ð Þ

(5.70)

and

Lλ λ; z; μð Þ ¼ �
ð∞
z

Bλ λ; z0ð Þ∂T λ; z0; z; μð Þ
∂z0

dz0 μ < 0ð Þ (5.71)

Here Ts represents the temperature at the Earth’s surface and

T λ; z0; z; μð Þ ¼ exp �
ðz
z0

βabs λ; ζð Þ dζ
μ

24 35 (5.72)

denotes the transmission function between altitudes z0 and z for an inclination μ and
wavelength λ. As stated in Section 5.2, βabs(λ, z) represents the absorption coefficient
[m–1] proportional to the concentration of the absorbers and to their wavelength-
dependent absorption cross-sections. The transmission function T was previously
introduced in equation (5.7).

Absorption of radiation by molecules in the IR involves transitions between
vibrational and rotational energy levels of the molecule, in contrast to absorption
in the UV which involves transitions between electronic levels. Vibrational
transitions generally require λ < 20 μm, while rotational transitions require λ >

20 μm. Combined vibrational–rotational transitions create fine structure in the
absorption spectrum. The radiation emitted by the Earth is mainly in the wave-
length range λ < 20 μm, so that absorption by molecules generally involves
vibrational transitions. Molecules absorbing in that range reduce the flux of
terrestrial radiation escaping to space and are called greenhouse gases.
A selection rule of quantum mechanics is that vibrational transitions are allowed
only if they change the dipole moment of the molecule. All molecules with an
asymmetric distribution of charge (H2O, O3, N2O, CO, chlorofluorocarbons) or
the ability to acquire a distribution of charge by stretching or flexing (CO2, CH4)
are greenhouse gases. Homonuclear diatomic molecules and single atoms (N2, O2,
Ar) are not greenhouse gases. A peculiarity of the Earth’s atmosphere is that the
dominant constituents are not greenhouse gases. Figure 5.11 shows the atmos-
pheric absorption of terrestrial radiation in the IR from 1 to 16 μm. The strongest
bands are the 15 μm and 4.3 μm CO2 bands, the 9.6 μm ozone band, the 6.3 μm
water band, the 7.66 μm methane band, the 7.78 μm and 17 μm N2O bands, and
the 4.67 μm CO band.

Calculation of the IR radiance by (5.70) and (5.71) requires quantitative know-
ledge of the absorption spectra for the different radiatively active trace gases.
Detailed radiative transfer models calculate the radiance under different conditions
and derive the corresponding atmospheric heating rates. Line-by-line models with
very high spectral resolution can account for individual absorption lines. Absorption
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lines have an extremely narrow natural width determined by the uncertainty
principle of quantum mechanics, but are broadened in the atmosphere by thermal
motions of the molecules (pressure-independent Doppler broadening) and also in
the lower atmosphere by collisions between molecules (pressure-dependent colli-
sional broadening). Line-by-line models are too computationally costly for applica-
tion in atmospheric models, and parameterizations must be developed. Narrow-
band and broad-band models have been developed to simplify the calculation of the
mean transmittance over specified spectral intervals. Some of these models assume
that the same line repeats itself periodically as a function of wavenumber (e.g.,
regular model of Elsasser, 1938), while others assume a particular statistical
distribution of the line positions and intensities within each spectral interval (e.g.,
random model of Goody, 1952).
The correlated k-distribution method (Goody et al., 1989; Fu and Liou, 1992) is a

computationally efficient algorithm used to calculate the average transmission TΔν

over a given frequency (or wavenumber) interval Δν without having to perform a
tedious spectral integration that accounts for the complexity of the rapidly varying
absorption coefficient k(ν) inside this interval. This is accomplished by replacing the
spectral integration required for the calculation of the mean transmission (expressed
here for the case of a homogeneous atmosphere, see (5.13)

Figure 5.11 Vertical atmospheric transmission (absorption) of infrared radiation from the surface to the top of the
atmosphere represented as a function of wavelength (1–16 μm) for different radiatively active gases.
The different absorption bands and an aggregate spectrum are represented. Adapted from Shaw (1953).
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TΔν uð Þ ¼ 1

Δν

ð
Δν

exp �k νð Þ u½ � dν (5.73)

by an integration in the k space

TΔν uð Þ ¼
ð∞
0

exp �k νð Þ u½ �f kð Þdk (5.74)

Here the function f(k)dk represents the fraction of the interval Δν in which the
mass absorption cross-section k(ν) has a value between k and k + dk. According
to this expression, f(k) is the inverse Laplace transform of the transmission
function. If

g kð Þ ¼
ðk
0

f k0ð Þ dk0 (5.75)

represents the cumulative probability distribution, which is a monotonically increas-
ing smooth function, (5.74) can be expressed as

TΔν uð Þ ¼
ð1
0

exp �k gð Þ u½ � dg (5.76)

Since k(g) is also a smoothly varying function, the mean transmission over a
spectral interval Δν can be estimated by using a simple and efficient numerical
quadrature (with a small number of k-intervals) to calculate the integral. Liou
(2002) and Goody (1995) discuss the method in the more realistic case of a non-
homogeneous atmosphere in which parameter k varies with temperature and
pressure.

5.3 Gas Phase Chemistry

5.3.1 Photolysis

When a photon absorbed by a molecule exceeds in energy one of the chemical bonds of
that molecule, it can cause cleavage of the bond and break the molecule into two
fragments. This process is called photolysis. For example, molecular oxygen has a
chemical bond between its O atoms corresponding to the energy of a 242 nm photon. It
follows that only photons of greater energy (shorter wavelength) can drive O2 photolysis:

O2 þ hν λ � 242 nmð Þ ! Oþ O (5.77)

The rate at which O2 is photolyzed is given by

d O2½ �
dt

¼ �JO2 O2½ � (5.78)

where JO2 is the photolysis frequency [generally expressed in s
–1]. In the general case

of photolysis of a molecule A, we have
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d A½ �
dt

¼ �JA A½ � (5.79)

The photolysis frequency of A is derived by spectral integration of the product of
three quantities: the wavelength-dependent absorption cross-section σA(λ), the quan-
tum yield εA(λ) and the local solar actinic flux qλ

JA zð Þ ¼
ðλmax

0

εA λð Þ σA λð Þ qλ zð Þ dλ (5.80)

where λmax is the wavelength corresponding to the energy threshold for dissociation
of the molecule. The absorption cross-section [cm2 molecule–1], called σabs in
Section 5.2, represents the ability of a molecule to absorb a photon at a particular
wavelength, and the quantum yield represents the probability that this absorption will
lead to photolysis.
Numerical integration of (5.80) over spectral intervals Δλ is straightforward when the

absorption spectrum is a continuum. In certain cases, however, the absorption spectrum
exhibits complex structures of discrete bands with many narrow spectral lines. Examples
are theSchumann–Rungebands (175–205 nm) ofmolecular oxygen and several bands of
nitric oxide (e.g., the δ-bands) in the same spectral area. In this case, rather than reducing
by several orders of magnitude the size of the spectral interval used in the numerical
integration, parameterizations are adopted to use effective values of the absorption cross-
section averaged over large spectral intervals (see Box 5.1).

Box 5.1 Photolysis in the Schumann–Runge Bands

The Schumann–Runge bands (175–205 nm) feature high-frequency variations in the absorption
cross-sections of molecular oxygen (see Figure 5.5). These high-frequency variations complicate the
calculation of photolysis rates by numerical integration over the wavelength spectrum. Accounting
for the Schumann–Runge bands is important for computing photolysis frequencies in the upper
stratosphere and mesosphere. Scattering is negligible at those altitudes so that the actinic flux is
defined by attenuation of the direct beam by O2 and O3. The photolysis frequency of a molecule
A at altitude z can be calculated as:

JA z; θ0ð Þ ¼
X
k

σA Δλkð Þ qk,∞ Δλkð Þ fTO2 Δλk; z; θ0ð Þ fTO3 Δλk; z; θ0ð Þ

where σA (Δλk) is the mean absorption cross-section over the wavelength interval Δλk, qk,∞(Δλk) =Ð
Δλk qλ,∞(λ) dλ is the mean top-of-atmosphere actinic flux over that interval, fTO2 and fTO3 are

the effective O2 and O3 transmission functions from the top of the atmosphere averaged over Δλk,
and θ0 is the solar zenith angle. We have assumed a quantum yield of unity for simplicity of
notation. The effective O2 transmission function fTO2 is defined by

fTO2 Δλk; z; θ0ð Þ ¼
Ð
Δλk

qλ,∞ λð Þ TO2 λ; z; θ0ð Þ dλÐ
Δλk

qλ,∞ λð Þ dλ

where TO2 is the actual transmission function accounting for the fine absorption structure.
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5.3.2 Elementary Chemical Kinetics

Gas-phase chemical reactions can be classified for kinetic purposes as unimolecular,
bimolecular, and termolecular (or three-body). A unimolecular reaction involves the
dissociation of a molecule by photons (photolysis) or heat (thermolysis). It has the
general form

Aþ hν ! Cþ D photolysisð Þ (5.81)

AþM ! Cþ DþM thermolysisð Þ (5.82)

For A 	 O2, the photolysis frequency is given by

JO2 z; θ0ð Þ ¼
X
k

σSRBO2 Δλk ; z; θ0ð Þ qk,∞ Δλkð Þ fTO2 Δλk; z; θ0ð Þ fTO3 Δλk; z; θ0ð Þ

where the effective O2 cross-section for wavelength interval Δλk is defined as

σSRBO2 Δλk; z; θ0ð Þ ¼
Ð
Δλk

σO2 λð Þ qλ,∞ λð Þ fTO2 Δλk; z; θ0ð Þ dλÐ
Δλk

qλ,∞ λð Þ fTO2 Δλk; z; θ0ð Þ dλ
Rather than performing a computationally expensive line-by-line calculation of the effective parameters
σSRBO2 and

fTO2 , these parameters can be fitted as a function of the O2 slant column density

N ¼ sec θ0

ð∞
z

n O2ð Þ dz

(see e.g., Kockarts, 1994).
Gijs et al. (1997) adopt the following expression

ln σSRBO2 Nð Þ� � ¼ A Nð Þ T Nð Þ � 220 K½ � þ B Nð Þ
where T(N) is the temperature [K] at the altitude where the column is equal to N. Coefficients A and
B are expressed as a function of N, using Chebyshev polynomial fits. The effective transmission is
then derived by noting that

d fTO2 Nð Þ

 �

dN
¼ �σSRBO2 Nð Þ

Other methods to parameterize these effective coefficients have been developed by Fang et al.
(1974), Minschwaner et al. (1993), Zhu et al. (1999), and others. Minschwaner and Siskind (1993)
have derived fast methods to calculate the photolysis frequency of nitric oxide using a similar
approach. Chabrillat and Kockarts (1997) propose a parameterization for the calculation of
photolysis frequencies in the spectral range close to the Lyman (121 nm), where both the solar
flux and the O2 absorption cross-section vary rapidly over a narrow spectral interval.
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where A is the reactant and C and D are its dissociation products. M is an inert
molecule, such as N2 or O2, that transfers energy to the reactant by collision. The rate
of reaction is given by

� d A½ �
dt

¼ d C½ �
dt

¼ d D½ �
dt

¼ k A½ � (5.83)

where k is a rate constant (equivalently called rate coefficient) for the reaction,
usually given in [s–1]. For photolysis reactions, k is the photolysis frequency and the
J notation of (5.79) is commonly used.
A bimolecular reaction has the general form

Aþ B ! Cþ D (5.84)

and the rate of reaction is given by

� d A½ �
dt

¼ � d B½ �
dt

¼ d C½ �
dt

¼ d D½ �
dt

¼ k A½ � B½ � (5.85)

where the rate constant k is usually given in units of [cm3 molecule–1 s–1]. The
reaction rate k[A][B] is proportional to the number of collisions ZAB per unit time
between A and B. This collision frequency can be derived from the gas kinetics
theory; it is proportional to the collision cross-section π(rA + rB)

2 and the thermal
velocity

vth ¼ 8kT

π
1

mA
þ 1

mB

� �� �1
2

(5.86)

if r and m are the molecular radii and masses of A and B. Thus

ZAB ¼ π rA þ rBð Þ2vth A½ � B½ � (5.87)

Reaction of A and B involves formation of an activated complex AB* that breaks
down either to the original reactants A and B or to the products C and D. The
minimum energy needed to form the activated complex is called the activation
energy Ea [J mol–1]. Gas kinetics theory shows that the fraction of collisions with
an energy larger than Ea is proportional to exp[–Ea/RT], so that the reaction rate
coefficient can be written

k Tð Þ ¼ P π rA þ rBð Þ2 8kT

π
1

mA
þ 1

mB

� �� �1
2

exp
�Ea

RT

� �
(5.88)

where the steric factor P accounts for processes that are not included in the simple
collision theory. This last equation provides a justification for the empirical Arrhe-
nius equation (Figure 5.12)

k Tð Þ ¼ A exp
�Ea

RT

� �
(5.89)

Here, R is again the gas constant equal to 8.314 J mol–1 K–1 and A is the so-called
pre-exponential factor. We see from (5.88) that A varies with the square root of the
temperature T, but this weak dependence is often ignored. If the enthalpy ΔH of the

230 Radiative, Chemical, and Aerosol Rates

006
22 Jun 2017 at 16:46:53, subject to the Cambridge Core terms of use, available



reaction (difference between the enthalpy of formation of the products C and D and
of the reactants A and B) is negative, the reaction is said to be exothermic and may
proceed at a rapid rate. Otherwise the reaction is said to be endothermic and much
less likely to occur at a rapid rate.

A three-body reaction describes the combination of two reactants A and B to form
a single product AB, and requires an inert third body (M) to stabilize the product.
The reactants collide to form a product AB* that is internally excited due to
conversion of the kinetic energy of the colliding molecules:

k1ð Þ; Aþ B ! AB
 (5.90)

The excited product AB* either decomposes

k2ð Þ; AB
 ! Aþ B (5.91)

or is thermally stabilized by collision with M (in the atmosphere, M is usually N2

or O2):

k3ð Þ; AB
 þM ! ABþM
 (5.92)

where the asterisk describes the addition of internal energy to M. This internal energy
is eventually dissipated as heat. Thus, the overall reaction is written

Aþ BþM ! ABþM (5.93)

Although M has no net stoichiometric effect in the overall reaction, it is important to
include it in the notation of the reaction because it can play a kinetic role. The rate of
the overall reaction is given by

� d A½ �
dt

¼ � d B½ �
dt

¼ d AB½ �
dt

¼ k3 AB

½ � M½ � (5.94)

where [M] is effectively the air density [molecules cm–3]. AB* has a very short
lifetime and is therefore lost as rapidly as it is produced; this defines a quasi-steady
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Product
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Figure 5.12 Energy transfer along a reaction path. The activation energy is the minimum amount of energy needed
for colliding species to react. The heat of reaction is the potential energy difference between the reactants
and products. The reaction is said to be exothermic if heat is released by the reaction. Otherwise, it is
said to be endothermic, and heat must be absorbed from the environment.
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state (as opposed to true steady state, since the concentration of AB* is still changing
with time). The corresponding steady-state expression is

k1 A½ � B½ � ¼ k2 þ k3 M½ �ð Þ AB
½ � (5.95)

Replacing into (5.94), we obtain

� d A½ �
dt

¼ � d B½ �
dt

¼ d AB½ �
dt

¼ k1k3 A½ � B½ � M½ �
k2 þ k3 M½ � ¼ k A½ � B½ � (5.96)

with

k ¼ k1k3 M½ �
k2 þ k3 M½ � (5.97)

which is the Lindemann–Hinshelwood rate expression for a three-body reaction. In
the low-pressure limit [M] � k2/k3, we have k ! (k1k3/k2)[M] so that the rate
depends linearly on the air density. In the high-pressure limit [M] � k2/k3, we have
k ! k1; the rate is then independent of the air density, as [M] is sufficiently high to
ensure that AB* stabilizes by reaction (5.92) rather than decomposes by reaction
(5.91).
A standard formulation for the rate expression of a three-body reaction is

k ¼ ko M½ �
1þ ko M½ �

k∞

F (5.98)

Here, ko = k1k3/k2 is the low-pressure rate constant, k∞ = k1 is the high-pressure rate
constant, and F is a correction factor for the transition regime between low-pressure
and high-pressure limits. The Lindemann–Hinshelwood rate expression has F = 1.
More accurate is the Troe expression:

logF ¼ logFC

1þ log
ko M½ �
k∞

� �2 (5.99)

where FC is the broadening factor. Kinetic data for three-body reactions are com-
monly reported as FC, ko, and k∞, with temperature dependences for ko and k∞.

5.4 Chemical Mechanisms

As we saw in Chapter 4, the chemical operator of an atmospheric model solves the
chemical evolution equation

dni
dt

¼ Pi � ℓini (5.100)

for an ensemble of species. Here ni is the number density [molecules cm–3] of the ith
species,Pi is theproduction rate [molecules cm3 s–1] representing the sumof contributions
fromall reactionsproducing i, and ℓini [molecules cm–3 s–1] is the loss rate representing the
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sum of contributions from all reactions consuming i. If Pi and ℓi are constants, then the
solution to (5.100) is a simple exponential approach to the steady state Pi/ℓi:

ni tð Þ ¼ ni 0ð Þ exp �ℓit½ � þ Pi

ℓi
1� exp �ℓit½ �ð Þ (5.101)

The problem is more complicated if Pi and ℓi depend on the concentrations of
other species that are themselves coupled to species i. This is frequently the case
in atmospheric chemistry because of catalytic cycles, reaction chains, and
common dependences on oxidant concentrations. One must then solve (5.100)
for the ensemble of coupled species as a system of coupled ordinary differential
equations (ODEs). Computational methods for this purpose are described in
Chapter 6.

Here, we discuss the general task of defining the ensemble of coupled species
and reactions that need to be taken into account in a chemical transport model to
address a particular problem. This collection of reactions represents the chemical
mechanism of the model. It includes not only the species of direct interest to the
problem but also the precursors and reactants for these species, which themselves
may have precursors and reactants. The mechanism must represent a closed system
where the concentrations of all species can be computed. Box 5.2 gives an example
of a simple mechanism.

Box 5.2 A Simple Mechanism for Tropospheric Ozone Formation

We describe here an simple mechanism for production of ozone from oxidation of hydrocarbons in the
presence of NOx (see Chapter 3). The mechanism includes just nine coupled reacting species: O3, OH, HO2,
RO2, RH, HCHO, CO, NO, NO2. Emissions of NOx and RH complete the closure. No closure is needed for
species that are only products (such as H2, ROOH, H2O2, HNO3). Although this mechanism is considerably
oversimplified relative to mechanisms used in research models, it serves to illustrate some of the ideas
presented in the text. Comments on individual reactions (1–3 and 7) are listed following the mechanism.

1: O3þhνþ H2O ! 2OHþ O2
2: RHþ OH!O2 RO2þH2O
3: RO2 þ NO!O2 HCHOþ HO2þNO2
4: HO2 þ NO ! OHþ NO2
5: NO2 þ hν!O2 NOþ O3
6: NOþ O3 ! NO2þO2
7: HCHOþ hν!O2 HO2 þ COþ 0:5H2
8: HCHOþ OH!O2 COþ HO2þH2O
9: COþ OH!O2 CO2þHO2
10: RO2þHO2 ! ROOHþ O2
11: HO2þHO2 ! H2O2þO2
12: NO2 þ OHþ M ! HNO3 þ M

1. This reaction convolves four elementary reactions: (1a) O3 + hν ! O(1D) + O2, (1b) O(
1D) +

M! O(3P) + M, (1c) O(3P) + O2 + M! O3 + M, (1d) O(1D) + H2O! 2 OH. O(3P) and O(1D)
have lifetimes of much less than a second and can be assumed to be at steady state through the
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The list of possible reactions involving atmospheric species is exceedingly large,
but only a small fraction is sufficiently fast to need to be taken into account. Placing
limits on the size of the chemical mechanism is essential for computational tractabil-
ity of the model. The computational cost is mainly driven by the number of coupled
species and the stiffness of the system. If a species plays a significant role in the
chemical mechanism, but is not coupled to the others, it should be separated from the
coupled system and its chemical evolution calculated independently.
A number of compilations of reactions of atmospheric relevance are available in

the literature. Many of these reactions have large uncertainties in their rate coeffi-
cients and products, reflecting the difficulty of laboratory measurements of reaction
kinetics. A particular challenge is the chemistry of organic species, which involves a
very large number of species and a cascade of oxidation products including radicals
with varying functionalities and volatility. Most of the reaction rate constants have
never been actually measured except for the smallest organic compounds, and must
instead be inferred by analogy with reactions of similar species. To limit the size of
the mechanism as well as to reflect the limitations in our chemical knowledge, large
organic compounds are typically lumped into classes of species with the same
functionality or volatility, and the evolution of a particular class is represented by a
single surrogate or lumped species.

Box 5.2 (cont.)

above reactions. Thus the overall rate of reaction (1) is computed in the mechanism as –d[O3]/
dt = k1[O3] = (k1ak1d[O3][H2O])/(k1b[M] + k1d[H2O]).

2. RH in this reaction represents a lumped hydrocarbon accounting for the overall reactivity of
hydrocarbons RHi with elementary rate coefficients ki for oxidation by OH. Thus [RH] = Σ [RHi]
and k2 = (Σ ki[RHi])/Σ[RHi]. The RH + OH reaction produces the R radical, which immediately
adds O2 to produce the lumped organic peroxy radical RO2. Thus, O2 is involved in the
stoichiometry of the reaction although it does not control the rate; customary practice is then to
put it on top of the reaction bar.

3. This reaction is not stoichiometrically balanced and does not conserve carbon. The reaction
RO2 + NO actually produces RO and NO2, but we assume that RO immediately adds O2 to
produce HCHO and HO2. This is based on analogy with the fate of CH3O2 and CH3O produced
from methane oxidation. It is obviously a very crude treatment, as higher RO radicals may react
by various pathways to produce a range of oxygenated organic compounds. However, we may
not have the information needed for the RO species of interest, and/or accounting for the full
suite of compounds would greatly increase the number of species in the mechanism. An
important attribute of the formulation of reaction (3) is that it conserves radicals through the
formation of HO2.

7. This reaction represents the sum of two branches for HCHO photolysis, with an assumed
50:50 branching ratio: (7a) HCHO + hν ! H + CHO and (7b) HCHO + hν ! CO + H2. H and
CHO both rapidly add O2 to yield HO2 and CO.
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The choice of species to be included in the coupled chemical mechanism must
balance chemical completeness and computational feasibility. Although experience
and chemical intuition are important in the construction of a chemical mechanism,
one can also use objective considerations. Consider for example the construction
of a chemical mechanism to compute OH radical concentrations in the troposphere.
Tropospheric OH has a concentration ~106 molecules cm–3 and a lifetime ~1 s, so
that the important reactions controlling OH concentrations must have rates
~104–106 molecules cm–3 s–1. Species for which total production rates (Pi) and
loss rates (ℓini) are orders of magnitude lower under the conditions of interest will
not play a significant role in OH chemistry, either directly or indirectly, and can
thus be decoupled or eliminated from the mechanism. Starting from a large
ensemble of candidate species, it is thus possible to construct objectively a reduced
mechanism. Calculations of Pi and ℓini can be made locally in a chemical transport
model so that reduced mechanisms adapted to the local conditions can be selected
(Santillana et al., 2010).

5.5 Multiphase and Heterogeneous Chemistry

So far we have discussed reactions involving the gas phase. Liquid and solid phases
in the forms of aerosols and clouds enable a different type of chemistry. Chemical
species partition between the gas and the condensed phase, and reactions can take
place at the surface or in the bulk of the condensed phase (Figure 5.13). Standard
usage is to refer to this chemistry as multiphase or heterogeneous. Some authors
make a distinction between multiphase chemistry as involving reactions in the bulk
condensed phase, and heterogeneous chemistry as involving surface reactions, but
atmospheric chemistry literature tends to use these two terms interchangeably.

A(g) A(g)s A(aq)s A(aq)

B(aq)

Diffusion

Surface 
reaction

Aqueous
react ion

GAS LIQUID

Interfacial
equilibrium

B(aq)s

Diffusion

Diffusion

Figure 5.13 General schematic for uptake of a chemical species A by an aqueous aerosol particle with subsequent
reaction to produce non-volatile species B. Chemical reactions are indicated by solid arrows and molecular
diffusion by dashed arrows. The s subscript indicates surface species with properties possibly different
from the bulk.
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We see from Figure 5.13 that heterogeneous chemistry involves a combination of
molecular diffusion, interfacial equilibrium, and chemical reaction. We examine here
how these processes determine the rate of the overall reaction.

5.5.1 Gas–Particle Equilibrium

Chemical species in the atmosphere partition between the gas and particle phases in a
manner determined by their free energies in each phase. Equilibrium partitioning
always holds at the gas–particle interface, and extends to the bulk gas and particle
phases in the absence of mass transfer limitations (Figure 5.13). Mass transfer
limitations will be discussed in Section 5.5.2. For liquid particles, the timescale to
achieve gas–particle bulk equilibrium is typically less than a few minutes.
Gas–particle equilibrium for a species X is described by

X gð Þ⇄X að Þ (5.102)

where X(g) and X(a) denote the species in the gas and aerosol phases, respectively.
The general form of the equilibrium constant is

K ¼ X að Þ½ �
px

(5.103)

where px is the partial pressure of X and [X(a)] is the concentration in the particle
phase. Different measures of concentration are used depending on the type of
particle phase.

Aqueous particles

When the particle phase is an aqueous solution (aqueous aerosol or cloud), the
equilibrium expression (5.103) is called Henry’s law and the equilibrium constant
K is called the Henry’s law constant. [X(a)] (commonly written [X(aq)]) is the molar
concentration (or molarity) of the species in solution. In the atmospheric chemistry
literature, K is commonly given in units of [M atm–1] where M denotes moles per
liter of solution. The Henry’s law constant varies with temperature T [K] according to
the van’t Hoff law

K Tð Þ ¼ K Toð Þ exp �ΔH
R

1

T
� 1

To

� �� �
(5.104)

where To is the reference temperature commonly taken as 298 K, ΔH is the enthalpy
of dissolution [J mol–1] at that reference temperature, and R = 8.314 J K–1 mol–1 is
the ideal gas constant. ΔH is always negative for a gas-to-aqueous transition so that K
increases with decreasing temperature. Table 5.2 lists the Henry’s law constants for
selected species. Dependences on temperature are strong; a typical value ΔH/R =
–5900 K implies a doubling of K for every 10 K temperature decrease.
Fast dissociation or complexation of the species in the aqueous phase can increase

the actual solubility beyond the physical solubility specified by Henry’s law. Con-
sider for example the dissolution and dissociation of an acid HA:
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HA gð Þ⇄HA aqð Þ (5.105)

HA aqð Þ⇄Hþ þ A� (5.106)

with acid dissociation constant Ka [M]:

Ka ¼ Hþ½ � A�½ �
HA aqð Þ½ � (5.107)

To account for the dissociation of HA in the aqueous phase, we define the effective
Henry’s law constant K* [M atm–1] as

K
 ¼ HA aqð Þ½ � þ A�½ �
pHA

¼ K 1þ Ka

Hþ½ �
� �

(5.108)

Similar expressions can be derived for other dissociation and complexation
processes.

The dimensionless partitioning coefficient f of an atmospheric species X between
the aqueous phase and the gas phase can be defined by the concentration ratio in the
two phases, referenced in both cases to the volume of air. By making use of the ideal
gas law we obtain:

f Xð Þ ¼ nX aqð Þ
nX gð Þ ¼ L K R T (5.109)

Here, nX(aq) and nX(g) are the concentrations of X in the aqueous and gas phases,
respectively, both in units of molecules per cm3 of air. L is the atmospheric liquid
water content [cm3 liquid water per cm3 of air]. K in (5.109) should be replaced by
K* if X(aq) dissociates or complexes. With K in units of [M atm–1], the ideal gas
constant is R = 0.08205 atm M–1 K–1. Liquid water contents are typically in the

Table 5.2 Henry’s law constants K for selected speciesa

Species
K(298 K)
[M atm–1]

ΔH/ R
[K]

K*
[M atm–1]

O3 1.1 (–2) –2400 1.8(–2)
CH3OOH 3.1 (2) –5200 9.5(2)
SO2 1.2(0) –3150 1.6(3)
CH2O 1.7 (0) –3200 1.4(4)
HCOOH 8.9 (3) –6100 2.2(5)
H2O2 8.3 (4) –7400 4.1(5)
NH3 7.4(1) –3400 9.2(8)
HNO3 2.1 (5) –8700 4.3(11)

a Read 1.1(–2) as 1.1 � 10–2. Effective Henry’s law constants K* are calculated at
T = 280 K and pH = 4.5, including complexation with water for dissolved CH2O, acid
dissociation for dissolved SO2, HCOOH, and HNO3, and protonation for NH3. Data are
from the Jacob (1986, 2000) compilations.
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range 10–9–10–11 for aqueous aerosol under non-cloud conditions, so that f � 1 for
all species in Table 5.2 except for NH3 (if aerosol pH is low) and HNO3 (if aerosol
pH is high). Gas–aerosol equilibrium of NH3 and HNO3 is discussed in Section 3.9.
By contrast, application of (5.109) to a precipitating cloud with liquid water content
L ~ 1 � 10–6 and typical pH range 4–5 yields f � 1 for HNO3, NH3, H2O2, and
HCOOH, and f ~ 1 for CH2O. We conclude that HNO3, NH3, H2O2, and HCOOH are
efficiently scavenged by rain, CH2O is partly scavenged, and SO2, CH3OOH, and O3

are not efficiently scavenged. SO2 can be efficiently scavenged only if it oxidizes
rapidly to sulfate in the aqueous phase (see Section 3.8). In-cloud partitioning is
discussed further in Section 8.8 as a driver of wet deposition.

Organic particles

Gas–particle equilibrium involving non-aqueous solutions is harder to quantify
because of uncertainty in the composition of the particle phase. Formation of organic
aerosol is thought to involve at least in part an equilibrium partitioning between
semi-volatile organic vapors and the organic phase of the aerosol:

K ¼ X að Þ½ �
CO X gð Þ½ � (5.110)

where [X(g)] and [X(a)] are the gas- and particle-phase concentrations of X, and CO

is the concentration of pre-existing organic aerosol, all in units of mass per volume of
air. Nonlinearity in gas–particle partitioning arises because condensation of
X contributes to CO. An alternative way to express the same equilibrium is with
respect to the volatility of the species, CX* = 1/K in units of mass per volume of air.
The partitioning coefficient between the particle and the gas phases is then given by
f = CO/CX*. As in the case of aqueous-phase partitioning, f can range over many
orders of magnitude depending on the species; most species will be in a limiting
regime of near-total fractionation in the gas phase (f � 1) or in the particle phase
(f� 1), with some species switching between regimes depending on CO. Because of
the very large number and poor characterization of the species contributing to
organic aerosol formation, an effective modeling approach can be to partition the
ensemble of organic species into order-of-magnitude volatility classes Ci* that are
transported independently in the model as their total (gas + particle) concentration Ci.
Gas–particle partitioning is then diagnosed locally by

CO ¼
X
i

f iCi with f i ¼
CO

Ci
 (5.111)

The solution to CO must be obtained iteratively. This is known as the volatility basis
set (VBS) approach (Donahue et al., 2006).

Solid particles

Equilibrium between the gas phase and solid particles is in general poorly under-
stood, with the important exception of H2SO4–HNO3–NH3 aerosol for which well-
established bulk thermodynamics apply (Martin, 2000). For example, in the simple
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case of dry ammonium nitrate (NH4NO3) aerosol, equilibrium can be expressed by a
temperature-dependent equilibrium constant for condensation:

KNH4NO3 ¼ pNH3 pHNO3 (5.112)

If NH3 and HNO3 concentrations are sufficiently low that the product pNH3 pHNO3 is
less than KNH4NO3, then no NH4NO3 aerosol forms. If pNH3 pHNO3 is greater than
KNH4NO3, then NH3 and HNO3 are in excess and condense to produce NH4NO3

aerosol. This condensation decreases pNH3 and pHNO3 until equilibrium (5.112) is
met, at which point the aerosol is in equilibrium with the gas phase. In this manner,
knowledge of KNH4NO3 constrains how much NH4NO3 aerosol will form given
initial concentrations of NH3 and HNO3.

Different equilibrium formulations apply in the case of a gas adsorbing heteroge-
neously onto a solid aerosol surface, for example HNO3 adsorbing on dry dust. One
can then describe the uptake in terms of a number of available condensation sites on
the aerosol surface, with kinetic expressions to compute adsorption/desorption rates
at these sites. A simple model for monolayer uptake is the Langmuir isotherm:

θ ¼ K 0pX
1þ K 0pX

(5.113)

where θ is the fraction of occupied condensation sites, and the equilibrium constant
K0 is the ratio of the adsorption and desorption rate constants.

5.5.2 Mass Transfer Limitations

Achievement of gas–particle thermodynamic equilibrium as described in Section
5.5.1 may be limited by mass transfer in the gas and particles phases. The uptake rate
of a gas-phase species by an aerosol can be expressed in a general form by

dng
dt

� �
in

¼ �kTAng (5.114)

where ng is the number density in the bulk gas phase [molecules per cm3 of air],
equivalent to n(g) in Section 5.5.1, A is the aerosol surface area concentration [cm2 per
cm3 of air], and kT is a mass transfer rate coefficient [cm s–1] that depends on the thermal
velocity of molecules, the probability that collision will result in uptake, and any
limitations from molecular diffusion. The rate of volatilization from the aerosol surface
to the gas phase is proportional to the surface concentration ns in the aerosol phase

dng
dt

� �
out

¼ kTA
ns
K

(5.115)

whereK is the thermodynamic equilibrium constant between the gas and particle phases,
with units for ns and K chosen so that Kns has units of [molecules per cm

3 of air]. The
mass transfer rate constant kT is the same for uptake and for volatilization so that steady
state [dng/dt]in + [dng/dt]out = 0 yields ns = K ng. The net rate of transfer at the interface is

dng
dt

¼ �kTA ng � ns
K

h i
(5.116)

239 5.5 Multiphase and Heterogeneous Chemistry

006
22 Jun 2017 at 16:46:53, subject to the Cambridge Core terms of use, available



and vanishes to zero at equilibrium. The form of kT depends on the Knudsen number
Kn = λ/a, where a is the aerosol particle radius and λ is the mean free path for
molecules in the gas phase. The mean free path for air is λ = 0.068 μm at standard
conditions of temperature and pressure (STP: 273 K, 1 atm) and varies inversely with
pressure. In the limit Kn � 1, the gas-phase concentration in the immediate vicinity
of the particle is the same as in the bulk, since the particle does not interfere with the
random motion of the gas molecules. This is called the free molecular regime. From
the kinetic theory of gases, we then have

kT ¼ vα
4

(5.117)

where v = (8kT/πm)1/2 is the mean thermal velocity of molecules, α is the mass
accommodation coefficient representing the probability that a gas molecule
impacting the surface is absorbed in the bulk, k is the Boltzmann constant, and m
is the molecular mass. α generally increases with the solubility of the gas and
decreases with increasing temperature. It can approach unity for a highly soluble
gas at low temperature, but may be several orders of magnitude lower for a gas of
low solubility.
The mass transfer limitation takes on a different form in the limit Kn � 1. Under

those conditions, gas molecules in the immediate vicinity of the surface undergo a
large number of collisions with the surface before being able to escape the influence
of the surface and migrate to the bulk. Thus, the gas concentration at the interface is
controlled by local equilibrium with the aerosol, and transport between the surface
and the bulk gas phase is controlled by molecular diffusion. This is called
the continuum regime. A steady-state concentration gradient is established between
the particle surface and the bulk gas phase, in contrast to the free molecular regime
where there is no such gradient (Figure 5.14). Assuming a spherical aerosol, the gas-
phase diffusion equation in spherical coordinates is

Dg—2ng rð Þ ¼ Dg
1

r2
d

dr
r2
dng rð Þ
dr

� �
¼ 0 (5.118)

where Dg is the molecular diffusion coefficient and r is the distance from the center
of the particle. Solving for the flux F at the gas–particle interface, we obtain

Kn << 1: Continuum (diffusion-limited) regime
Kn >> 1: Free molecular (collision-limited) regime

ng

ng(∞)

ns/K

bulk

GASPARTICLE

a r0
Distance from center of particle

Figure 5.14 Gas-phase concentration gradient in the vicinity of an aerosol particle of radius a.
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F ¼ �Dg
dn

dr

����
r¼a

¼ Dg

a
ng ∞ð Þ � ns

K

h i
(5.119)

where ng(∞) is the bulk gas-phase concentration far away from the surface (ng in
(5.116)). Thus, in the continuum regime,

kT ¼ Dg

a
(5.120)

Mass transfer in the continuum regime is not dependent on the mass accommodation
coefficient α; this is because gas molecules trapped in the immediate vicinity of the
surface collide many times with the surface and thus eventually become incorporated
in the bulk aerosol phase even if α is low. By contrast, mass transfer in the free
molecular regime is not dependent on the particle radius a, because the particles are
too small to affect the motion of molecules.

The free molecular regime generally applies to stratospheric aerosols where a ~
0.1 μm and λ ~ 1 μm. The continuum regime generally applies to tropospheric clouds
where a ~ 10 μm and λ ~ 0.1 μm. Tropospheric aerosols are often in the transition
regime since a ~ λ ~ 0.1–1 μm. Exact solution of mass transfer for the transition
regime is complicated. Schwartz (1986) showed that the solution can be approxi-
mated to within 10% by harmonic addition of the mass transfer rate coefficients for
the free molecular and continuum regimes as two conductances operating in series:

kT ¼ a

Dg
þ 4

vα

� ��1

(5.121)

Equation (5.121) can be applied in the general case to calculations of gas–aerosol
mass transfer. Unless in the free molecular regime, one should integrate over
the aerosol size distribution in order to resolve the dependence of kT on
the particle radius a.

The volatilization component of the gas–aerosol transfer flux was expressed in
(5.115) as a function of the surface concentration ns. This is not in general a known
quantity and we would like to relate it to the bulk aerosol phase concentration, which
is more easily measured or modeled. The mixing timescale for a particle of radius a
is given by τmix ¼ a2=π2Da, where Da is the molecular diffusion coefficient in the
aerosol phase. For a liquid aqueous phase Da ~ 10–4 cm2 s–1 and thus for a particle
with a ~ 1 μm we have τmix ~ 10–5 s. This is in general sufficiently short to ensure
complete mixing of the aerosol phase so that the surface concentration equals the
bulk concentration. There are a few exceptions where the diffusion equation needs to
be solved in the aerosol phase (Jacob, 2000).

5.5.3 Reactive Uptake Probability

Detailed treatment of heterogeneous chemistry in atmospheric models requires
solution of the chemical evolution equations in the aerosol phase coupled to the
gas phase through mass transfer. A simplified treatment is possible when the
heterogeneous chemistry of interest can be reduced to a first-order chemical loss in
the aerosol phase for a species transferred from the gas phase. Since the mass transfer
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processes are themselves first-order, the combined process can be encapsulated in a
first-order loss equation. For this purpose, we define the reactive uptake coefficient γ
as the probability that a molecule impacting the particle surface will undergo
irreversible reaction rather than volatilization back to the gas phase. The rate of loss
for the species from the gas phase can then be represented by (5.121) but with γ
replacing α in the formulation of kT:

kT ¼ a

Dg
þ 4

vγ

� ��1

(5.122)

The reactive uptake coefficient γ combines the processes of interfacial equilibrium,
aerosol-phase diffusion, and reaction (Figure 5.15). It is a particularly helpful
formulation because results from laboratory experiments can often be reported as
γ. One can also relate γ to the actual chemical rate coefficient for loss in the aerosol
phase. If the loss is a surface reaction, then γ simply compounds the mass accom-
modation α by the probability that the molecule will react on the surface [rate
coefficient kS in unit of s–1] versus desorb [rate coefficient kD in unit of s–1]. Thus,

γ ¼ α kS
kS þ kD

(5.123)

If the loss is a first-order reaction taking place in the bulk of a liquid aerosol phase
[effective rate coefficient kC in unit of s–1], then the effect of diffusion in the aerosol
phase needs to be considered. Solution of the diffusion equation for a spherical
particle with a zero-flux boundary condition at the particle center yields

γ ¼ 1

α
þ v

4KRT DakCð Þ1=2f qð Þ

" #�1

(5.124)

where

f qð Þ ¼ coth q� 1

q
(5.125)

and q = a(kC/Da)
1/2 is a dimensionless number called the diffuso-reactive parameter

(Schwartz and Freiberg, 1981). f(q) represents a sphericity correction for the limita-
tion of uptake by diffusion in the aerosol phase and is a monotonously increasing
function of q. Limits are f(q) ! q/3 for q ! 0 and f(q) ! 1 for q ! ∞.
It is important to recognize the sphericity correction when applying γ values

measured in the laboratory to atmospheric aerosols, because the geometry used in

A(g)bulk A(g)surface A(a)surface A(a)bulk B(a)bulk
Diffusion ReactionDiffusionEquilibrium

Dg K kcDa

γ

GAS AEROSOL

Figure 5.15 The reactive uptake probability γ convolves processes of gas–aerosol interfacial equilibrium, aerosol-phase
diffusion, and reaction.
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the laboratory is different from that in the atmosphere. The laboratory measurements
are often for a bulk liquid phase with planar surface (a ! ∞ ) q ! ∞), so that the
effective γ for an aerosol will be lower than the laboratory-reported value. Physically,
this is because the small size of the aerosol particles does not allow diffusion of the
dissolved gas into an infinite bulk but instead forces re-volatilization to the gas
phase. A proper treatment requires that one relate γ measured in the laboratory to kC,
which is the fundamental variable, and then apply (5.124) (with integration over the
aerosol size distribution) for the actual atmospheric aerosol conditions. This is
generally ignored in atmospheric models under the assumption that uncertainties in
kC trump other uncertainties, so that only order-of-magnitude estimates of γ are
possible in any case.

5.6 Aerosol Microphysics

The size distribution of aerosol particles evolves continuously in the atmosphere as a
result of microphysical processes including particle nucleation, gas condensation,
coagulation, activation to cloud droplets, and sedimentation. These processes are
computationally challenging to represent in models because of the wide ranges of
particle sizes, compositions, and morphologies that need to be resolved (Chapter 3).
Processes of nucleation and aerosol–cloud interactions are also highly nonlinear, so
that averaging in models can cause large errors.

Because of these difficulties, a common practice in chemical transport models is to
simulate only the total mass concentrations of the different aerosol components
(sulfate, nitrate, organic carbon, black carbon, dust, sea salt, etc.), integrating over
all sizes or across fixed size ranges with no transfer between ranges. As pointed
out in Section 4.3, the continuity equations for the aerosol components are then of
the same form as for gases. The models must still assume a size distribution for the
different aerosol components in order to compute radiative effects, heterogeneous
chemical rates, and deposition rates. A log-normal size distribution is often assumed
for the dry number size distribution function nN (Chapter 3):

nN logDp

� 	 ¼ N0

2πð Þ1=2 log σg
exp � 1

2

log Dp=Dm

� 	
log σg

� �2
" #

(5.126)

Here Dp is the dry particle diameter, Dm is the median dry diameter, and σg is the
geometric standard deviation characterizing the variance in log(Dp/Dm). Different
values of Dm and σg are usually adopted for different chemical components of the
aerosol on the basis of observations. Aerosol surface area and mass size distributions
are deduced from the moments of the number size distribution function as described
in Chapter 3. The aerosol size distribution is expressed in terms of dry sizes because
aerosol water is highly fluctuating as a function of the local relative humidity. The
contribution from aerosol water is derived by applying component-specific, multi-
plicative hygroscopic growth factors to the size distributions as a function of local
relative humidity. See Martin et al. (2003) for an example of such an approach.
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Assumption of fixed aerosol size distributions can be a large source of model error,
for example in describing precipitation scavenging which is a strong function of
particle size. Accurate computation of the time-evolving size distribution is also
critical for addressing aerosol radiative effects, aerosol–cloud interactions, and air
quality impacts. This requires solving the continuity equation for aerosols (Section
4.3) with terms describing the different aerosol microphysical processes forcing
changes in the local size distribution. Here we present standard rate expressions
and model formulations for this purpose.
Figure 5.16 is a schematic representation of the different processes included in

models of the aerosol size distribution. It shows the multimodal distribution of the
aerosol as previously described in Chapter 3 with a nucleation mode (particle
diameter less than 0.01 μm), Aitken nuclei mode (0.01–0.1 μm), accumulation mode
(0.1–1 μm), and coarse mode (larger than 1 μm). The nucleation and Aitken nuclei
modes dominate the number density but represent a very small fraction of the mass
density. They are formed by nucleation, grow by gas condensation, and are lost by
coagulation. The accumulation mode is produced from the smaller modes by coagu-
lation and gas-condensation. Growth of particles beyond 1 μm is slow because gas
condensation adds little mass and Brownian diffusion decreases, slowing down
coagulation. This results in “accumulation” in the 0.1–1 μm range. The accumulation
mode generally dominates the total aerosol surface area and makes a major contri-
bution to total aerosol mass. Accumulation mode particles are also efficient cloud

Emissions of gaseous precursors Emissions of primary particles

In-cloud
reactions

Heterogeneous reactions

Homogeneous
reactions
(OH, O3, NO3)

In-cloud
reactions

Evaporation

Activation and
hydroscopic growth

Activation
and
scavenging

Coalescence

Wet deposition

1010.1

Particle diameter

Dry deposition

0.010.001

Gas molecules P A R T I C L E S Cloud drops

Nucleation

Condensation

Coagulation

Coagulation

Figure 5.16 Schematic representation of the microphysical processes that determine the evolution of aerosol particles
from their formation through nucleation to their activation and conversion into cloud droplets. Particle
diameter is in units of μm. Major aerosol modes are highlighted, including (in order of increasing size) the
nucleation, Aitken, accumulation, and coarse modes. Reproduced from Heintzenberg et al. (2003).
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condensation nuclei (CCN) and drive formation of cloud droplets under supersatur-
ated conditions. Particles in the coarse mode tend to be directly emitted to the
atmosphere as dust or sea salt, and are removed relatively rapidly by precipitation
scavenging and sedimentation.

In the following discussion, we express the particle number distribution nN as a
function of the particle volume (V) and omit the subscript N in the notation. The size
distribution is thus noted n(V). We saw in Section 4.3 how the continuity equation
could be applied to model the evolution of the aerosol size distribution in response to
microphysical processes. We also saw how the local evolution in response to these
processes could be described by separating the contributing terms:

∂n Vð Þ
∂t

¼ ∂n Vð Þ
∂t

� �
nucleation

þ ∂n Vð Þ
∂t

� �
condensation=evaporation

þ ∂n Vð Þ
∂t

� �
coagulation

(5.127)

Here we give formulations for these individual terms and describe their practical
computation in models. The formulations are taken from Seinfeld and Pandis (2006),
to which the reader is referred for a detailed presentation of aerosol microphysical
processes.

5.6.1 Formulation of Aerosol Processes

Nucleation

Formation of new particles in the atmosphere is driven by clustering of molecules
from the gas phase. Cluster formation requires very large supersaturations and takes
place in a highly localized manner (nucleation bursts) when such supersaturations are
achieved (and then relaxed through the nucleation process). Achievement of large
supersaturations requires gas mixtures with very low vapor pressure. Binary nucleation
can take place in the atmosphere from H2SO4–H2O mixtures, as H2SO4 has very low
pressures over H2SO4–H2O solutions at all relative humidities of atmospheric rele-
vance. Ternary nucleation involves a third component gas, typically ammonia (H2SO4–
NH3–H2O mixture), for which the H2SO4 vapor pressure is even lower. See Chapter 3
for H2SO4 production mechanisms. The possible role of organic molecules in contrib-
uting to nucleation is a topic of current research.

The critical step in nucleation is the formation of thermodynamically stable
clusters that then grow rapidly by subsequent gas condensation. Clustering of
molecules must overcome a nucleation barrier that can be expressed thermodynamic-
ally by the surface tension of the growing clusters, or at a molecular level in terms of
the internal energy of successive clusters. In the continuity equation for aerosols,
nucleation behaves as a flux boundary condition populating the bottom of the size
distribution (the nucleation mode). If we assume that the size of particles produced
by the nucleation process corresponds to a volume V0, and if J0 represents the
nucleation rate, we write

∂n Vð Þ
∂t

� �
nucleation

¼ J 0 δ V ;V 0ð Þ (5.128)
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See Seinfeld and Pandis (2006) for formulations of nucleation rates. The nucleation
rate is a very strong function of the partial pressures of the nucleating gases, varying
over orders of magnitude in response to relatively small changes in partial pressure.
This nonlinear behavior is difficult to capture in models.

Condensation/evaporation

Gas condensation on existing particles causes these particles to grow. In Section 4.3
we expressed the corresponding term in the continuity equation for aerosols as

∂n Vð Þ
∂t

� �
condensation=evaporation

¼ � ∂ I Vð Þn Vð Þð Þ
∂V

(5.129)

where I(V) = dV/dt is the condensation growth rate. Equation (5.129) is called the
condensation equation. It is mathematically similar to the advection equation and
numerical algorithms face the same difficulties, discussed in Chapter 7. Numerical
diffusion associated with the algorithm can lead to erroneous damping of the peak
values of the distribution. Numerical dispersion leads to wakes around peak values,
particularly near fronts in the size distribution (Seigneur et al., 1986).
The condensation growth rate for species i is proportional to the difference

between the bulk vapor pressure pi (far from the particle) and the equilibrium vapor
pressure peq,i. It is expressed by (Seinfeld and Pandis, 2006):

I i Vð Þ ¼ 2π Dg Vð Þ mi

RT

6V

π

� �1=3

f Kn; αð Þ pi � peq, i

h i
(5.130)

where Dg(V) [cm
2 s–1] is the Brownian diffusion coefficient for the particle, and mi

[kg mol–1] is the molecular mass of species i. Function f(Kn, α) is a correction factor
for the non-continuum regime (Section 5.5.2) that depends on the Knudsen number
Kn and the mass accommodation coefficient α.

Coagulation

Coagulation is the process by which two particles that collide by Brownian motion
stick together to form a new, larger particle. It shifts the size distribution toward
larger sizes and reduces the number of smaller particles.
The coagulation rate Ji,j [m

–3 s–1] resulting from the collisions between two
particles i and j is proportional to the number density Ni and Nj [m

–3] of these
two particles:

J i, j ¼ βi, jN iN j (5.131)

where βi,j [m
3 s–1] is the binary coagulation coefficient. In the continuum regime with

Kn� 1 (particle diameter considerably larger than the mean free path), βi,j is given by

βi, j ¼ 2π Di þ Dj

� 	
Dp, i þ Dp, j
� 	

(5.132)

where Dp,i is the diameter of particle i and Di is the Brownian diffusion coefficient
given by the Stokes–Einstein formula
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Di ¼ kT

3π μ Dp, i
(5.133)

where μ is the viscosity of air. Thus, in this case,

βi, j ¼
2kT

3μ

Dp, i þ Dp, j
� 	

Dp, iDp, j
(5.134)

In the free molecular regime with Kn � 1 (very small particles with diameters
considerably smaller than the mean free path), the coagulation coefficient
becomes

βi, j ¼
π
4

Dp, i þ Dp, j
� 	2

v2i þ v2j


 �1=2
(5.135)

where vi = (8kT/πmp,i)
1/2 is the mean thermal velocity with mp,i the mass of particle i.

In the transition regime, one generally adopts the continuum regime formula with a
correction factor (Seinfeld and Pandis, 2006). Coagulation is most effective when the
sizes of the two particles that collide are very different (i.e., collision between a small
particle with high thermal velocity and a large particle that provides a large area for
collision).

The rate of change in the aerosol size distribution resulting from coagulation is
given by

∂n Vð Þ
∂t

� �
coagulation

¼ 1

2

ðV�V 0

V 0

β V � V 0;V 0ð Þ n V � V 0ð Þ n V 0ð Þ dV 0

�n Vð Þ
ð∞
V 0

β V ;V 0ð Þ n V 0ð ÞdV 0 (5.136)

where V0 denotes the volume of the smallest particles considered in the size
distribution (associated typically with nucleation, cf. (5.128)). Factor ½ is introduced
to avoid double counting.

5.6.2 Representation of the Size Distribution

Computation of the microphysical terms in the continuity equation for aerosols
requires that the size distribution be approximated with a limited number of
parameters. This is illustrated in Figure 5.17 with discrete, spline, sectional,
modal, and monodisperse approximations. The discrete representation provides
a fine resolution of the size distribution function with a value for each discrete
size. The spline defines a single continuous size distribution function over the
whole size range. The sectional representation partitions the size distribution into
discrete size intervals called “bins,” with fixed values of the distribution functions
within these intervals. The modal representation superimposes several continuous
functions covering different ranges of the size distribution, one for each mode.
The monodisperse representation assigns a single size to each mode. We elaborate
here on the most popular methods.
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Sectional method

In the sectional method (Gelbard et al., 1980; Adams and Seinfeld, 2002), the
aerosol size domain is divided into a discrete number of bins K within which the
size distribution functions are assumed to be constant. Thus the size distribution
function is represented by K parameters Nk(k = 1, K) representing the number
concentration of particles in bin k bounded by volumes [Vk, Vk+1]:

Nk ¼
ðVkþ1

Vk

n Vð Þ dV k ¼ 1;Kð Þ (5.137)

Applying the continuity equation (5.127) to these parameters yields a system of K
coupled ODEs:

dN 1

dt
¼ �N1

XK
j¼1

β1, jN j


 �
� p1 þ γ1ð ÞN 1 þ γ2N 2 þ J

dNk

dt
¼ 1

2

Xk�1

j¼1

βj,k�jN jNk�j


 �
� Nk

XK
j¼1

βk, jN j


 �
þ pk�1Nk�1

� pk þ γkð ÞNk þ γkþ1Nkþ1 k ¼ 2;Kð Þ

(5.138)

Nucleation (J) provides a source of particles to the smallest bin (k = 1). Condensation
growth (p) and evaporation (γ) provide source/sink terms for adjacent bins. Coagu-
lation couples the whole size distribution. This system of coupled ODEs is math-
ematically equivalent to the system representing chemical production/loss terms for
different species in a chemical mechanism. Numerical algorithms for solving such
systems are presented in Chapter 6.

Discrete

Spline

Sectional

Modal

Monodisperse

Figure 5.17 Numerical approximations of the aerosol size distribution function. From Whitby et al. (1991).
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Moments and modal

The detailed aerosol size distribution generally contains more information than
required to address a specific problem. Rather than calculating its time evolution by
solving the conventional continuity equation (5.127), it is often sufficient and com-
putationally more efficient to estimate the low-order moments of the size distribution
(Friedlander, 1977). The moment of order k is defined by

Mk ¼
ð∞
0

Dk
p n Dp

� 	
dDp (5.139)

where n(Dp) dDp represents the number of particles (assumed to be spherical) per
unit volume of air in the diameter size range [Dp, Dp + dDp]. The evolution equations
for moment Mk of the aerosol distribution (called moment dynamics equations or
MDEs) are derived by starting from the aerosol continuity equation (5.127) with n
(Dp) as the independent variable, multiplying each term by Dk

p, and integrating each
term over all particle diameters (Whitby and McMurry, 1997). The equations can be
solved if all terms can be expressed with only moments as the dependent variables.
This requires either an assumption on the mathematical form of the size distribution
(see modal method below) or approximations to the terms (closure relations) to force
them to be expressed in terms of moments. The latter approach describes the method
of moments (MOM) and makes no a-priori assumptions on the form of the size
distribution. However, there may be large errors associated with the closure relations.

In the modal method (Whitby, 1978), the aerosol size distribution is specified as
the superimposition of a limited number K of functional forms, each representing a
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Figure 5.18 Modal distributions of different aerosol components (sulfate, black carbon, organic matter, sea salt, dust).
The aerosol size distribution for each component is represented by the number concentrations in seven
log-normal modes. The smallest (nucleation) mode is exclusively sulfate. r is particle radius. Based on
the model of Stier et al. (2005). From Stier and Feichter, personal communication.
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particular aerosol mode. For example, a given mode may be defined by a log-normal
size distribution with imposed median diameter Dm,k and geometric standard devi-
ation σg,k (5.126). The contribution of each mode to the overall size distribution is
then defined by the number concentration of particles in that mode. Figure 5.18 gives
an example. The microphysical terms of the continuity equation are integrated over
each mode and transfer particles between modes. The evolution of the aerosol size
distribution can be calculated using low-order moments by noting that these
moments characterize the parameters of the distribution. For example, a log-normal
distribution is fully defined by its first three moments (k = 0, 1, 2 in (5.139))
characterizing the total number of particles, the mean diameter, and the standard
deviation of the distribution. The modal method is computationally much faster than
the sectional method but relies on the suitability of decomposing the actual aerosol
size distribution along specified modes.
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6 Numerical Methods for Chemical Systems

6.1 Introduction

Solving the 3-D continuity equations for chemical species in atmospheric models
requires splitting of the transport and chemistry operators. We present in this chapter
an overview of numerical methods for the chemistry operator, which solves the
evolution of the system driven by chemical kinetics independently of transport.
Complexity arises from the large number of coupled species in standard mechanisms
for atmospheric chemistry, with time constants ranging over many orders of magni-
tude. The associated computational requirements are very high and this is a major
challenge for the inclusion of atmospheric chemistry in Earth system models.

For a chemical mechanism involving K chemically interacting species, the task
of the chemistry operator is to solve the following initial value problem over
time step Δt,

dψ
dt

¼ s ψ; tð Þ (6.1)

where ψ = (ψ1, ψ2, . . ., ψK)
T is the vector of concentrations for the K species with

known initial value ψ(to), and s is a vector of chemical production and loss rates.
Each component of s is a sum of terms describing the rates of individual reactions.
Equation (6.1) describes a system of coupled ordinary differential equations (ODEs)
with time as the only coordinate. There is no spatial dependence since the chemical
evolution is a function of local concentrations only. Although we refer to solution of
(6.1) as the “chemistry operator,” s may also include non-chemical terms such as
emission, precipitation scavenging, and dry deposition rates. Any local process
independent of transport (and hence with no spatial dependence) can be included
in the chemistry operator. When solving for aerosol microphysics, ψ may represent
particle concentrations of different sizes with s including particle formation and
growth terms (Section 4.3).

Nonlinearity arises in (6.1) because the rates of bimolecular and three-body
reactions involve products of concentrations. This nonlinearity can be highlighted
by rewriting (6.1) as:

dψ

dt
¼ Aψþ

XK
i¼1

ψTQiψ
� �

eiþf (6.2)

Here A is a (K � K) diagonal matrix of unimolecular reaction rate coefficients in the
mechanism, Qi is a (K � K) upper triangular matrix of bimolecular and three-body
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rate coefficients for reactions producing or consuming species i, ei is the ith column
of the identity matrix of dimension K (zeros except for 1 in row i), and
f = (f1, f2, . . ., fK)

T is an independent forcing term. Nonlinearity is introduced by
ΨTQiΨ, which is a summation of terms of form qijkΨjΨk producing or consuming
species i. The form qijkΨjΨk applies to both bimolecular and three-body reaction rates
since the concentration of the “third body” in a three-body reaction is not computed
from the mechanism but is instead independently specified (see Chapter 5).
The general approach for obtaining ψ(to + Δt) from knowledge of ψ(to) is to use

a finite difference approximation of the temporal derivative in (6.1). Differences lie
in the way that s(ψ, t) is estimated. Fast ODE solvers use explicit methods where s is
calculated on the basis of the known concentrations at to and previous time steps. In
these solvers, as we will see, the time step must be smaller than the shortest time
constant in the system in order to maintain stability. This is a major obstacle for
atmospheric chemistry applications because radical species central to the chemical
mechanisms have very short lifetimes. The systems of ODEs describing atmospheric
chemistry mechanisms are stiff (Box 6.1), that is, the time constants for the different

Box 6.1 Stiff Systems of Equations

A system of first-order differential equations in time

dψi

dt
¼ si t;ψð Þ i ¼ 1; 2; :::Kð Þ (I)

is said to be stiff if the timescales for change of the dependent variables ψi range over many orders
of magnitude. We saw in Section 4.4 that the characteristic timescales of the system are defined by
the inverses of the eigenvalues λi of the Jacobian matrix J = ∂s/∂ψ where s = (s1, . . . sK)

T and
ψ = (ψ1, . . . ψK)

T. Stability of the solution requires that the real component of the eigenvalues be
negative and this is always met in relevant mechanisms for atmospheric chemistry (with only
transient exceptions). Thus

Re λið Þ < 0 for i ¼ 1, 2, :::K (II)

We define the stiffness ratio R as

R ¼ max Re λið Þj j
min Re λið Þj j >> 1 (III)

A simple example of a stiff system is given by (Press et al., 2007):

du
dt
¼ 998 uþ 1998 v

dv
dt
¼ �999 u� 1999 v (IV)

with the initial conditions u(0) = 1 and v(0) = 0. The two eigenvalues of this system are –1 and
–1000, corresponding to characteristic timescales of 1 and 0.001, and a stiffness ratio of 103. The
analytical solution is:
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Box 6.1
Figure 1

Solution of stiff system (IV) for the range 0 < t < 0.02 and three values of the time step Δt.
The exact analytical solution for u is compared to numerical solutions by fully implicit and explicit
methods and for different time steps.
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species coupled through the mechanism vary over many orders of magnitude. The
stiffness is defined by the stiffness ratio R = τL/τS where τL and τS are the longest and
shortest time constants in the system, corresponding roughly to the longest and
shortest lifetimes of species in the mechanism (see Section 4.4). Solution with an
explicit solver requires time steps Δt ~ τS, but we are generally interested in solutions
over timescales ~τL. Thus the number of time steps required with an explicit solver is
of order R. A typical mechanism for atmospheric chemistry may have stiffness
R ~ 108, making for a formidable computational problem on a 3-D model grid.
An alternate approach is to use an implicit solver, where s in (6.1) is estimated

on the basis of the unknown concentrations at time to + Δt. The system of coupled
ODEs then becomes a system of K coupled algebraic equations to solve for
ψ(to + Δt). Implicit methods have far less severe restrictions on size of time step
to remain stable. However, they require computationally expensive constructions
to obtain the solution of the system of equations. High-order implicit solvers such
as Rosenbrock and Gear are often used as standards of accuracy in 3-D models.
Other algorithms provide a compromise between accuracy and computational
performance.
The choice of a particular numerical algorithm for the chemistry operator depends

on several considerations including stability, positivity, accuracy, mass conservation,
and computational efficiency of the method (Zhang et al., 2011). Positivity of the
solution is essential for stability as otherwise the kinetics equations immediately
diverge. This condition can severely restrict the size of the time step. Mass conser-
vation is essential if quantitative tracking of chemical budgets is needed. Some slack
in accuracy is often considered acceptable because the kinetics equations have stable
solutions (Section 4.4) so that inaccuracies will dampen rather than grow. Computa-
tional efficiency may be of no concern for a box model but critically important for
a 3-D model.

Box 6.1 (cont.)

u tð Þ ¼ 2e�t � e�1000t

v tð Þ ¼ �e�t þ e�1000t (V)

Box 6.1 Figure 1 shows the exact solution for u for t 2 [0, 0.02] as well as numerical solutions
by fully explicit and implicit algorithms with different time steps. u increases from 1 to 2 over the
first characteristic timescale of 0.001, and then declines on the much longer timescale of 1 (not
shown in the figure). The implicit algorithm is stable for all time steps and provides accurate
solution of the asymptotic behavior for the first characteristic timescale, though not of the transient
behavior. The explicit algorithm is stable when Δt = 0.001 but incurs oscillatory behavior at longer
time steps that becomes undamped for Δt = 0.002. Even though the e–1000t term becomes rapidly
negligible as t increases, the explicit solution still requires a time step of less than 0.002 throughout
the integration. This is burdensome if we are interested in computing the solution over long times
(t � 1) in order to capture the second characteristic timescale of the system.
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6.2 General Considerations

6.2.1 Fully Explicit Equation

The simplest method to solve (6.1) is the single step forward Euler or fully explicit
algorithm:

ψnþ1 ¼ ψn þ Δt s tn;ψ
nð Þ (6.3)

where n is a time index, tn = t0 + n Δt (n = 0, 1, 2, . . .) is the discretized time
level, Δt is the integration time step, and ψn and ψn+1 are approximations to the
solution ψ(t) at time levels tn and tn+1, respectively. The source term s(tn, ψ

n),
also noted sn, is evaluated at time tn for the known approximation ψn. This
method, which is first-order accurate, is called fully explicit because the
unknown ψn+1 is represented strictly as a function of the known quantities at
previous time tn. It is mass-conserving but positivity is not guaranteed. Equation
(6.3) is a single step algorithm because only time levels tn and tn+1 are involved.
Higher-order multi-step fully explicit schemes that express ψn+1 as a function
of the solution at previous time levels tn, tn–1, tn–2, etc. are described in
Section 6.2.3.

The explicit algorithm is appealingly simple but suffers from severe stability
restrictions, as can be illustrated with a trivial example. Consider a single
chemical species subject only to a linear loss. The corresponding differential
equation is

dψ
dt

¼ �ℓψ (6.4)

with loss coefficient ℓ assumed to be constant. Applying the forward Euler algorithm,
we have

ψnþ1 ¼ ψn 1� ℓΔtð Þ (6.5)

which is an approximation to the exact analytic solution

ψ tnþ1ð Þ ¼ ψ tnð Þ exp �ℓΔt½ � (6.6)

Stability requires that ⃒ψn+1/ψn⃒ < 1 as the integration proceeds. Equation (6.5)
meets this stability criterion if

Δt <
2

ℓ
(6.7)

Positivity of the solution requires the more stringent criterion

Δt <
1

ℓ
(6.8)

Thus the time step for a system of several chemical species must be smaller than the
chemical lifetime of the fastest reacting species.
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6.2.2 Fully Implicit Equation

The constraint on the time step associated with fully explicit methods can be
overcome by using the backward Euler or fully implicit algorithm. In this case, the
solution to (6.1) is approximated by

ψnþ1 ¼ ψn þ Δt s tnþ1;ψ
nþ1

� �
(6.9)

in which the source term s is evaluated at time tn+1 and is therefore expressed as a
function of the unknown quantity ψn+1. The fully implicit algorithm ensures the
positivity of the solution and also conserves mass. The resulting system of algebraic
equations in ψn+1 requires numerical solution except in trivial cases.
In the simple linear example (6.4), the backward Euler scheme leads to

ψnþ1 ¼ ψn

1þ ℓ Δtð Þ (6.10)

We have ⃒ψn+1/ψn⃒ < 1 for any positive value of Δt, thus the numerical scheme is
unconditionally stable. The ratio tends to zero for large values of Δt, mirroring the
analytic solution. The algorithm is first-order accurate; the error in the solution can
be estimated by comparing the analytic solution exp [–ℓ Δt] with the approximation
1/(1 + ℓ Δt).
Table 6.1 shows the solution of (6.4) for t = 2, when ℓ is chosen to be 1 and the

initial value is ψ(0) = 1. The exact (analytic) solution is compared to the approximate
solution derived with the fully explicit and fully implicit algorithms for different
values of the time step Δt. As expected, for both algorithms, the accuracy of the
solution decreases as the time step increases. Although the implicit algorithm has the
advantage of stability, that does not make it any more accurate.
A simple approach to solve implicit equation (6.9) is to linearize the source term s

around the solution ψ at time tn:

s tnþ1;ψ
nþ1

� � ¼ s tn;ψ
nð Þ þ J ψnþ1 � ψn

� �
(6.11)

where J = ∂s/∂ψ is the Jacobian matrix of partial derivatives estimated for ψ = ψn

with elements Ji,j = ∂si/∂ψj. Using (6.11) in (6.9) we obtain

Table 6.1 Solution of equation dψ/dt = –ψ at time t = 2 with ψ(0) = 1

Solution at time t = 2

Time step Exact Fully explicit Fully implicit

0.0001 0.1353 0.1353 0.1353
0.001 0.1353 0.1352 0.1355
0.01 0.1353 0.1340 0.1367
0.1 0.1353 0.1216 0.1486
1.0 0.1353 0.0000 0.2500
2.0 0.1353 –1.0000 0.3333
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ψnþ1 ¼ ψn þ Δt I� JΔt½ ��1s tn;ψ
nð Þ (6.12)

in which I is the identity matrix. Applying this approach involves solving a matrix
system of equations. This linearization method, when applied to an implicit equation,
is called the semi-implicit Euler method. It is usually but not unconditionally stable.
Other methods to solve implicit equations are discussed in Section 6.4.

6.2.3 Improving Accuracy

Both the Euler forward and backward methods are asymmetrical since the time
derivatives are evaluated in one case at the beginning of the time interval and in
the other case at the end of the interval. They are therefore only first-order accurate in
Δt. Figure 6.1 illustrates the difference between the forward and backward methods,
highlighting the errors incurred in the first-order approximation.

The accuracy of the solution ψn+1 can be improved by making the solver more
symmetric relative to time levels tn and tn+1. This can be done by taking the average
of s between time levels tn and tn+1, which is equivalent to adopting a time-centered
derivative:

ψnþ1 ¼ ψn þ Δt
2

s tn;ψ
nð Þ þ s tnþ1;ψ

nþ1
� �� �

(6.13)

Equation (6.13) defines the Crank–Nicholson scheme. This semi-implicit algorithm
is second-order accurate. Numerical solution is required as in the backward Euler
fully implicit scheme. The solution is not guaranteed to be positive.

It is also possible to increase accuracy in the framework of an explicit algo-
rithm by using predictor-corrector methods. In such a method, the prediction step
derives a first estimate of the solution (un+1) at time tn+1 from the forward Euler
equation:

unþ1 ¼ ψn þ k1Δt (6.14)

A

B2

B

B1

Dt

Y(t )

0

Sn+1

Sn

tn tn +1 t

Figure 6.1 Determination of ψ(t) at time level tn+1 from its known value at time tn. The tangent A–B1 is proportional
to the source term s at time tn+1, while the tangent A–B2 is proportional to the source term at time tn.
Points B1 and B2 represent approximations to the true solution B obtained by the implicit and explicit
Euler algorithms, respectively. The respective errors are defined by the distances B–B1 and B–B2.
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where the slope k1 = s(tn, ψ
n) is calculated at time level tn. The solution is improved

by applying a correction step in which the slope is replaced by the average of k1 at
time tn and an estimate k2 = s(tn+1, u

n+1) at time tn+1:

ψnþ1 ¼ ψn þ 1

2
k1 þ k2ð ÞΔt (6.15)

It can be shown that if the third derivative of the solution is a continuous function,
this improved Euler method is a second-order scheme. The choice of the time step Δt
remains constrained by the stability criteria of explicit methods.
In the midpoint method, the solution ψn+1 is derived from a Euler formula in which

s is estimated at an intermediate time level tn+1/2 = tn + Δt/2. In this algorithm, the
first step is to derive an estimate un+1/2 of the solution at midpoint of interval Δt

unþ1=2 ¼ ψn þ k1
Δt
2

(6.16)

with again k1 = s(tn, ψ
n). In the second step, the solution is computed using the entire

time interval

ψnþ1 ¼ ψn þ k2Δt (6.17)

where k2 = s(tn+1/2, u
n+1/2) is an estimate of the source term at the midpoint between

time levels tn and tn+1. Due to its symmetrical nature, the midpoint method is second-
order accurate.
The accuracy of the solution can also be improved by applying an s-stage Runge–

Kutta method defined by

ψnþ1 ¼ ψn þ Δt
Xs
i¼1

bi ki (6.18)

where

ki ¼ s t þ ciΔt;ψ
n þ Δt

Xs
j¼1

ai, j kj

 !
(6.19)

with bi(i = 1, . . . s) and ai,j(i, j = 1, . . . s) chosen to meet desired accuracy and
stability conditions, and ci = Σj ai,j. If all coefficients ai,j 6¼ 0, the method is fully
implicit and numerically highly stable. Most applications, however, are based on the
explicit Runge–Kutta method in which coefficients ai,j = 0 for j ≥ i. The method is
less robust than the implicit version but is easier to apply. In the case of the classic
explicit fourth-order Runge–Kutta method, for example, the solution at time tn+1 is
provided by

ψnþ1 ¼ ψn þ Δt
6

k1 þ 2k2 þ 2k3 þ k4½ � (6.20)

where

• k1 = s(tn, ψ
n) represents the source term at time level tn,

• k2 = s(tn + Δt/2, ψn + k1 Δt/2) denotes a first estimate of the source term at the
midpoint of the interval [tn, tn+1],
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• k3 = s(tn + Δt/2, ψn + k2 Δt/2) represents an improved estimate of the source term
at the midpoint, and

• k4 = s(tn+1, ψ
n + k3 Δt) estimates the source term at time level tn+1, using the value

of k3 calculated at the midpoint.

Explicit Runge–Kutta methods are more stable than the forward Euler algorithm.
They are usually implemented with an adaptive step size procedure to meet a user-
required error tolerance. As in other explicit methods, the time step is constrained
by the shortest lifetime in the system and this can make implementation for
atmospheric problems impractical. Implicit Runge–Kutta methods (Hairer et al.,
2002) are characterized by high stability, but the resulting system of equations is
difficult to solve. The diagonally implicit Runge–Kutta method (DIRK), in which
ai,j = 0 for j > i, but the diagonal elements aii 6¼ 0, is simpler to implement than the
fully implicit case. The RADAU5 solver, introduced by Hairer et al. (1993) and
implemented in some chemical models, is a one-step implicit Runge–Kutta method
that is fifth-order accurate.

Linear multi-step algorithms, which retain the information from several previous
time steps (tn, tn–1, tn–2, etc.), also provide solutions with higher order of accuracy.
They can be expressed either by an explicit expression

ψnþ1 ¼ ψn þ Δt
Xs�1

j¼0

bj s tn�j;ψ
n�j

� �
(6.21)

or by an implicit expression

ψnþ1 ¼ ψn þ Δt
Xs�2

j¼�1

bj s tn�j;ψ
n�j

� �
(6.22)

where bj are constant coefficients and s corresponds to the order of the method.
When combined, these two relations represent a multi-step predictor-corrector
scheme. In this case, function s(tn+1, ψ

n+1) appearing in the correction step (6.22)
is estimated by using the values of ψn+1 derived by the prediction step (6.21). An
example is the Adams–Bashforth–Moulton scheme. For a value s = 3, for example,
the prediction step is

unþ1 ¼ ψn þ Δt
12

23 s tn;ψ
nð Þ � 16 s tn�1;ψ

n�1
� �þ 5 s tn�2;ψ

n�2
� �� �

(6.23)

and the correction step is

ψnþ1 ¼ ψn þ Δt
12

5 s tnþ1; u
nþ1

� �þ 8 s tn;ψ
nð Þ � s tn�1;ψ

n�1
� �� �

(6.24)

Even though (6.22) is an implicit expression, the introduction of a predictor-corrector
approach transforms the scheme into a fully explicit scheme with the associated
stability requirements.

Accuracy can also be improved by applying the extrapolation method
introduced by Lewis Fry Richardson. This method allows the construction
of high-order solutions by applying the same algorithm with decreasing
time steps. It is based on asymptotic expansion of the truncation error in
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h-powers, where h is the time step. The approximate solution ψn+1(h) at
time tn+1 derived with some numerical algorithm Lh and time step h can be
expressed as

Lh ψnf g ¼ ψnþ1 hð Þ ¼ ψ tnþ1ð Þ þ Em ψð Þhm þO hmþ1
� �

(6.25)

where ψ(tn+1) represents the true solution at time tn+1. Index m represents the order of
the scheme, while Em ψð Þhm and O hmþ1

� �
are the errors associated with algorithm Lh

of order hm and hm+1, respectively. When the same algorithm is applied with smaller
time steps h/k (k = 1,2,3, . . .), we write similarly

Lh=k ψnf g ¼ ψnþ1 h=kð Þ ¼ ψ tnþ1ð Þ þ Em ψð Þ h

k

� �m
þO hmþ1

� �
(6.26)

Combining (6.25) and (6.26) yields Richardson’s recurrence formula that provides a
higher-order approximation

ψnþ1 ¼ km ψnþ1 h=kð Þ � ψnþ1 hð Þ
km � 1

(6.27)

If, for example, k = 2 and if ψn+1(h) and ψn+1(h/2) are the numerical solutions
obtained by a first-order algorithm (m = 1) with time steps h and h/2, respectively, the
accuracy of the solution is improved by using

ψnþ1 ¼ 2 ψnþ1 h=2ð Þ � ψnþ1 hð Þ (6.28)

Examples of extrapolation methods are given in Sections 6.3.1 and 6.3.3.

6.2.4 Explicit Versus Implicit Solvers

The comparison between fully explicit and fully implicit methods highlights the
advantages and disadvantages of both approaches (Sandu et al., 1997b). Fully
explicit equations are usually simple to solve, but stability and positivity consid-
erations may constrain the integration time steps to prohibitively small values.
Fully implicit methods are unconditionally stable and positive, so that the time
step can be large, limited by accuracy requirements. However, they require
solution of a system of algebraic equations at each time step, involving in general
the construction and inversion of a Jacobian matrix. This can be computationally
costly. Methods have been developed to reduce the stiffness of chemical systems
by separating species between short-lived and long-lived and solving for each
group separately, with an implicit method used for the short-lived subset only
(Gong and Cho, 1993). However, separation is often difficult because atmos-
pheric chemical mechanisms typically involve a continuum of lifetimes and the
lifetimes vary with the local conditions. Adaptive separation can be done locally
within a model simulation by calculating species lifetimes before applying the
chemistry operator (Santillana et al., 2010), but this involves substantial computa-
tional overhead.
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6.3 Explicit Solvers

We first present several explicit algorithms that use various methods to relax the require-
ment for short time steps while keeping the computational advantage of the explicit
solution. We rewrite the system of equations to separate production and loss terms as

dψ
dt

¼ p t;ψð Þ � L t;ψð Þψ (6.29)

where the vector p and diagonal matrix L are functions of the unknown concen-
trations ψ. We denote pnk as the production pk(tn, ψ

n) and ℓnk as the loss coefficient
ℓk(tn, ψ

n) for species k at time tn. The loss rate of species k is generally a linear
function of its concentration, hence the utility of separating out the loss coefficient.

6.3.1 Exponential Approximation

The exponential method, one of the earliest methods used to treat chemical processes
in atmospheric models, is motivated by the form of (6.29), which has a trivial
exponential solution if p and L are constant. Assuming that p and L can be
approximated as constant over the time step Δt, we obtain the following explicit
expression for each species k:

ψnþ1
k ¼ ψn

k exp �ℓnkΔt
� �þ 1� exp �ℓnkΔt

� �� � pnk
ℓnk

(6.30)

The solution provided by this first-order algorithm is positive for any integration time
step, and the algorithm does not require any matrix manipulation. However, the
method does not conserve mass and it requires small time steps to be accurate. The
accuracy can be improved by considering the implicit form of the exponential
approximation

ψnþ1
k ¼ ψn

k exp �ℓnþ1
k Δt

� �þ 1� exp �ℓnþ1
k Δt

� �� � pnþ1
k

ℓnþ1
k

(6.31)

This equation can be easily solved by an iteration procedure, starting from an initial
iterate ψnþ1

k (0) = ψn
k . The number of iterations required to ensure a given level of

accuracy may be different for the different chemical species within the system.
An extrapolated form of the exponential approximation proposed by Jay et al.

(1995) provides a second-order accurate algorithm. Omitting index k, we compute a
first estimate of the solution at time tn+1 following (6.30)

ψnþ1
Δt ¼ ψn exp �ℓnΔt½ � þ 1� exp �ℓnΔt½ �ð Þ p

n

ℓn
(6.32)

A second estimate of ψn+1 is derived by a two-step integration using time step Δt/2

ψnþ1=2 ¼ ψn exp �ℓn
Δt
2

� �
þ 1� exp �ℓn

Δt
2

� �� 	
pn

ℓn
(6.33)
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ψnþ1
Δt=2 ¼ ψnþ1=2 exp �ℓnþ1=2 Δt

2

� �
þ 1� exp �ℓnþ1=2 Δt

2

� �� 	
pnþ1=2

ℓnþ1=2
(6.34)

The solution at time tn+1 is then given by the extrapolation relation (6.28):

ψnþ1 ¼ 2ψnþ1
Δt=2 � ψnþ1

Δt (6.35)

6.3.2 Quasi Steady-State Approximation

The computation of exponential functions in the algorithms described in Section
6.3.1 requires substantial amounts of computer time. In a scheme proposed by
Hesstvedt et al. (1978), called Quasi Steady State Approximation (QSSA), classifica-
tion of species by lifetime reduces the number of exponential functions. The species
are separated according to their e-folding time (chemical lifetime τk = 1/ℓk), and
different algorithms are applied:

• For long-lived species with τk > 100 Δt, a fully explicit Euler forward algorithm:

ψnþ1
k ¼ ψn

kþΔt pnk � ℓnk ψ
n
k

� �
(6.36)

• For intermediate-lived species with 0.1 Δt < τk < 100 Δt, an exponential
approximation:

ψnþ1
k ¼ ψn

k exp �ℓnΔt½ � þ 1� exp �ℓnΔt½ �ð Þ pnk
ℓnk

(6.37)

• For short-lived species with τk < 0.1 Δt, a steady-state value:

ψnþ1
k ¼ pnk

ℓnk
(6.38)

This method is more efficient than the pure exponential solver. Its accuracy is highly
dependent on the choice of the integration time step.

6.3.3 Extrapolation Technique (ET)

As described in Section 6.2.3, the extrapolation method combines the solutions
obtained by a low-order algorithm with different time steps using Richardson’s
recurrence formula. In the extrapolation technique proposed by Dabdub and Sein-
feld (1995), also called ET solver, the numerical algorithm is a predictor-corrector
scheme. The predictor, which calculates a first estimate ψk* of the solution at time
tn+1, is provided by the explicit exponential formula (6.30)

ψ∗
k ¼ ψn

k exp �ℓnΔt½ � þ 1� exp �ℓnΔt½ �ð Þ pnk
ℓnk

(6.39)

The formula for the corrector is chosen according to the lifetime τk = 1/ℓk of chemical
species k.

• For long-lived species (τk > 100 Δt), one adopts the trapezoidal rule

ψnþ1
k ¼ ψn

k þ
Δt
2

pnk � ℓnkψ
n
k þ p∗k � ℓ∗k ψ

∗
k

� �
(6.40)
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• For intermediate species (0.1 Δt < τk < 100 Δt), the corrector uses an exponential
form

ψnþ1
k ¼ Z∗

k þ ψ∗
k � Z∗

k

� �
exp � 1

ℓnk
þ 1

ℓ∗k

� 	
Δt
2

� �
(6.41)

where Z�
k is defined as

Z∗
k ¼ 1

4
pnk þ p∗k
� � 1

ℓnk
þ 1

ℓ∗k

� 	
(6.42)

• For short-lived species (τk < 0.1 Δt)

ψnþ1
k ¼ Z�

k (6.43)

The correctors can be iterated until the relative difference between successive
approximations becomes smaller than a user-imposed tolerance.

6.3.4 CHEMEQ Solver

In the CHEMEQ solver proposed by Young and Boris (1977) and as implemented by
Saylor and Ford (1995), a distinction is made again between chemical species
according to their lifetime τk = 1/ℓk. The corrector formulas are derived from the
implicit trapezoidal rule, but applied in an explicit way.

• For long-lived species (τk > 5 Δt), we use:
Predictor:

ψ∗
k ¼ ψn

k þ Δt pnk � ℓnk ψ
n
k

� �
(6.44)

Corrector:

ψnþ1
k ¼ ψn

k þ
Δt
2

pnk � ℓnkψ
n
k þ p∗k � ℓ∗k ψ

∗
k

� �
(6.45)

• For intermediate species (0.2 Δt < τk < 5 Δt) we use the more accurate asymptotic
integration formula:

Predictor:

ψ∗
k ¼ 2τnk � Δt

� �
ψn
k þ 2Δt pnk τ

n
k

2τnk þ Δt
(6.46)

Corrector:

ψnþ1
k ¼ τnk þ τ∗k � Δt

� �
ψn
k þ Δt

2 pnk þ p∗k
� �

τnk þ τ∗k
� �

τnk þ τ∗k þ Δt
(6.47)

• For short-lived species (τk < 0.2 Δt), steady state is assumed:

ψnþ1
k ¼ pnk

ℓnk
(6.48)

Iterations on the corrector are performed until convergence is reached.
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6.3.5 TWOSTEP method

The TWOSTEP method (Verwer, 1994) is based on the second-order backward
differentiation formula (see Table 4.2):

3ψnþ1 � 4ψn þ ψn�1

2Δt
¼ snþ1 (6.49)

or

ψnþ1 ¼ yn þ 2

3
Δt snþ1 (6.50)

with

yn ¼ 4

3
ψn � 1

3
ψn�1 (6.51)

Again sn+1 represents the source term s(tn+1, ψ
n+1). This algorithm is a two-step

method. The solution at time tn+1 is expressed as a function of the solutions ψn and
ψn–1 at times tn and tn–1. When the source term is replaced by the rate of production p
and the loss coefficient matrix L, the solution becomes

ψnþ1 ¼ Iþ 2

3
Δt Lnþ1

� 	�1

yn þ 2

3
Δt pnþ1

� 	
(6.52)

with I being the identity matrix. The value of ψn+1 can be obtained by applying an
iterative procedure provided, for example, by the Jacobi or Gauss–Seidel method
(see Box 6.2).
The TWOSTEP method is second-order accurate and does not require matrix

manipulation. The solution is always positive and approaches its steady-state value
for large time steps. Mass is not fully conserved by the Jacobi and Gauss–Seidel
iterative procedures (Box 6.2).

Box 6.2 Solutions of Linear Algebraic Equations: LU Decomposition,
Jacobi and Gauss–Seidel Iteration

Different numerical methods are available to solve a system of N linear equations

Ay ¼ b (I)

In the LU decomposition method, matrix A with elements ai,j is decomposed into the product of two
matrices L and U

A ¼ L U (II)

where L, the lower triangular matrix, includes non-zero elements li,j only on the diagonal and
below, and U, the upper triangular matrix, includes non-zero elements ui,j only on the diagonal and
above. If A, L, and U are 3 � 3 matrices, equation (II) is written
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a1, 1 a1, 2 a1, 3
a2, 1 a2, 2 a2, 3
a3, 1 a3, 2 a3, 3

0
@

1
A ¼

l1, 1 0 0
l2, 1 l2, 2 0
l3, 1 l3, 2 l3, 3

0
@

1
A u1, 1 u1, 2 u1, 3

0 u2, 2 u2, 3
0 0 u3, 3

0
@

1
A

System (I) becomes

Ay ¼ LUð Þy ¼ L Uyð Þ ¼ b (III)

Its solution is found by solving sequentially the two triangular systems

Lz ¼ b and Uy ¼ z (IV)

first by forward substitution

z1 ¼ b1
l1, 1

and zi ¼ 1
li, i

bi �
Xi�1

j¼1

li, j zj

" #
i ¼ 2; 3; . . . ; Nð Þ

and then by back-substitution

yN ¼
bN
uN,N

and yi ¼
1
ui, i

bi �
XN
j¼iþ1

ui, j yj

" #
i ¼ N � 1; N � 2; . . . ; 1ð Þ

The decomposition of matrix A into triangular matrices L and U is performed by deriving the values of li,j
and ui,j from the N2 equations of system (II). Since this system includes N2 + N unknowns, N of them can
be specified: For example, the diagonal elements in one of the triangular matrices can be set equal to 1.
The Jacobi and Gauss–Seidel methods can be described as follows (Press et al., 2007). We first

split matrix A into its diagonal part D, its lower triangle L part (with zeros on the diagonal) and its
upper triangle U part (also with zeros on the diagonal). Thus, we write

A ¼ L þ D þ U (V)

In the Jacobi iteration method, we write for iteration step (r + 1)

Dy rþ1ð Þ ¼ � Lþ Uð Þy rð Þ þ b (VI)

y rþ1ð Þ ¼ y rð Þ � D�1 Ay rð Þ � b
h i

(VII)

The value of y(r+1) can easily be derived since D is a diagonal matrix. The method converges slowly
and is most effective when matrices A are dominated by diagonal terms.
In the Gauss–Seidel method, iteration (r + 1) is expressed by

Lþ Dð Þy rþ1ð Þ ¼ �U y rð Þ þ b (VII)

or

y rþ1ð Þ ¼ y rð Þ � Lþ Dð Þ�1 Ay rð Þ � b
h i

(VIII)

267 6.3 Explicit Solvers

007
22 Jun 2017 at 16:46:49, subject to the Cambridge Core terms of use, available



6.4 Implicit Solvers

We now examine a few frequently used implicit integrators. As indicated earlier,
implicit solvers are robust for solving stiff systems. They require, however, compu-
tationally expensive matrix manipulations. Information on the stability of these
methods is provided in Appendix E.

6.4.1 Backward Euler

In the backward Euler method,

ψnþ1 ¼ ψn þ s tnþ1;ψ
nþ1

� �
Δt (6.53)

the solution ψn+1 is obtained by determining the roots of the K-valued vector function

g ψnþ1
� � ¼ ψnþ1 � ψn � s tnþ1;ψ

nþ1
� �

Δt ¼ 0 (6.54)

where K is the number of species in the system. Solution can be obtained with the
Newton–Raphson iteration method. In this case, function g(ψn+1) at iteration (r + 1)
is developed as a Taylor series about a previous estimate of the solution ψnþ1

rð Þ at
iteration (r). Thus

g ψnþ1
rþ1ð Þ


 �
¼ g ψnþ1

rð Þ

 �

þ J ψnþ1
rþ1ð Þ � ψnþ1

rð Þ

 �

þ . . . (6.55)

Here J is the Jacobian matrix whose elements are given by Ji,j = ∂gi/∂ψj. Neglecting
the higher-order terms, the value ψnþ1

rþ1ð Þ for which g(ψnþ1
rþ1ð Þ) = 0 is derived by

ψnþ1
rþ1ð Þ ¼ ψnþ1

rð Þ � J�1 g ψnþ1
rð Þ


 �
(6.56)

with ψnþ1
0ð Þ = ψn as the initial iterate. The iteration proceeds until convergence is

reached to within a user-prescribed tolerance. The Newton–Raphson iteration con-
serves mass when the analytic form of the Jacobian matrix is used and recalculated
for each iteration; this property may be lost, however, when approximations for the
Jacobian are used.
The backward Euler method requires repeated construction and inversion of the

Jacobian matrix. Inversion can be sped up by noting that the matrix is usually sparse
(matrix with many zero elements) as many pairs of chemical species are not directly
coupled. Various methods exist for computationally efficient inversion of sparse
matrices (see, for example, Press et al., 2007). In cases when the interactions between

Box 6.2 (cont.)

This method leads to an algorithm in which the updated values for the individual components of
vector y are used to derive the solutions of the next components of the same vector. In the
successive over-relaxation method, these iterations can be accelerated by multiplying the correction
vector [A y(r) – b] in (VII) by an over-relaxation parameter whose value is generally chosen to be
between 1 and 2. In this range of values, the method is convergent.
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groups of species are weak, the Jacobian matrix can be broken into smaller matrices
enablingmore efficient solution (Hertel et al., 1993; Sandilands andMcConnell, 1997).

In another approach proposed by Shimazaki (1985), the chemical source term s is
linearized as follows:

s ¼ p� Lψ (6.57)

where p is a vector of production rates and L is a diagonal matrix of loss rate
coefficients. We then write

ψnþ1 ¼ ψn þ Δt p tnþ1;ψ
nþ1

� �� L tnþ1;ψ
nþ1

� �
ψnþ1

� �
(6.58)

The solution can be obtained by applying an iterative procedure:

ψnþ1
rþ1ð Þ ¼ Iþ Δt Lnþ1

rð Þ
h i�1

ψn þ Δt pnþ1
rð Þ

h i
(6.59)

if pn+1 = p(tn+1, ψ
n+1), Ln+1 = L(tn+1, ψ

n+1). I denotes the identity matrix, and (r)
represents the iteration index (r = 0, 1, 2, . . .). The initial iteration uses ψnþ1

0ð Þ = ψn.
Convergence restrictions on the adopted time step Δt depend on the functional forms
of vector p and matrix L. Convergence may be difficult when the chemical coupling
between the different species included in the system is strong. Linearization affects
mass conservation but the situation is improved when the quadratic terms such as
k ψ1 ψ2 are linearized as k(ψnþ1

1 ψn
2 + ψn

1 ψnþ1
2 )/2 and linear terms such as k ψ are

expressed as k(ψn+1 + ψn)/2 (Ramaroson et al., 1992).
A particularly useful feature of the backward Euler method (6.53) is its flexibility

in the choice of chemical constraints applied to the system of coupled species. This
makes it attractive for analysis of chemical mechanisms using box models where
computational requirements are not a concern. The functions g(ψn+1) that are used to
define the solution system do not necessarily need to be finite difference forms of the
chemical kinetic equations. They can be any constraint that we choose. For example,
steady-state solution of the system is obtained by using

g ψnþ1
� � ¼ pnþ1 � Lnþ1ψnþ1 ¼ 0 (6.60)

Individual constraints can also be applied to any particular species or groups of
species. For example, we might want to impose conservation of the sum ψT of
concentrations for a family of species j = 1, . . . q:

gk ψnþ1
� � ¼ ψT �

Xq
j¼1

ψnþ1
j ¼ 0 (6.61)

Here, (6.61) replaces the kinetic equation for one chosen member of the chemical
family. This allows chemical cycling within the family while holding constant the total
concentration of the family (see Box 3.1). For example, one may impose a fixed
concentration of NOx � NO + NO2 in the model while allowing the individual
concentrations of NO and NO2 to change. This is done by replacing the kinetic equation
for NO2 by the NOx mass conservation equation ([NO] + [NO2] = [NOx], where [NOx]
is imposed). The chemical kinetic equation is retained for NO. Other potentially useful
constraints that can be expressed by the form gk(ψ

n+1) = 0 include chemical equilibria
between species, charge balance for aqueous-phase ion chemistry, etc.
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6.4.2 Rosenbrock Solvers

The Rosenbrock methods (Rosenbrock, 1963), which can be regarded as a general-
ization of the Runge–Kutta methods, are non-iterative implicit algorithms that are
particularly well adapted to stiff systems. If we apply only one Newton–Raphson
iteration to the full implicit algorithm with ψn being the initial iterate, we obtain

ψnþ1 ¼ ψn þ k Δt (6.62)

and solve

k ¼ s ψnð Þ þ J k Δt (6.63)

where J is the Jacobian matrix of the chemical source function s. The idea behind the
Rosenbrock methods (Hairer and Wanner, 1996) is to derive stable integration
formulas that generalize expressions (6.62) and (6.63) and use s stages to achieve
a high order of accuracy (i.e., high-order method). An s-stage Rosenbrock method
applied to an autonomous problem dψ/dt = s(ψ) seeks a solution of the form

ψnþ1 ¼ ψn þ Δt
Xs
i¼1

bi ki (6.64)

with s linear equations

k1 ¼ s ψnð Þ þ J Δtγ11k1½ �

ki ¼ s ψn þ Δt
Xi�1

j¼1

αijkj

 !
þ J Δt

Xi
j¼1

γijkj

" #
for 2 � i � s

(6.65)

that can be rearranged as

I� Δt J γii½ �ki ¼ s ψn þ Δt
Xi�1

j¼1

αijkj

 !
þ J Δt

Xi�1

j¼1

γijkj

" #
(6.66)

where I is again the identity matrix. The method-specific coefficients bi, αij, and γij
are fixed constants independent of the problem, chosen to obtain a desired order of
accuracy and to ensure stability for stiff problems. Equation (6.66) can be solved
successively for k1, k2, . . ., ks, using, for example, an LU decomposition process or,
when possible, by a suitable sparse matrix procedure. A comprehensive treatment of
the Rosenbrock methods is provided by Hairer and Wanner (1996). See also Rosen-
brock (1963) and Press et al. (2007).
For a non-autonomous system dψ/dt = s(t, ψ), the definition of ki in expression

(6.65) is changed to

ki ¼ s tn þ αiΔt;ψ
n þ Δt

Xi�1

j¼1

αijkj

 !
þ γiJ Δtð Þ2 þ J Δt

Xi
j¼1

γijkj

" #

αi ¼
Xi�1

j¼1

αij and γi ¼
Xi
j¼1

γij

The Rosenbrock solvers are one-step algorithms. Like fully implicit methods, they
conserve mass during the integration if the true analytic form of the Jacobian is used.
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Positivity of the solution is not guaranteed. The Rosenbrock solvers, like the
Runge–Kutta solvers, form successive results that approximate the solution at
intermediate time levels. A disadvantage of the Rosenbrock solvers is that they
require an evaluation of the Jacobian at each time step, several matrix vector
multiplications, and the resolution of a linear system. The cost of the method,
however, can be reduced (Sandu et al., 1997a) by keeping the Jacobian
unchanged during several time steps of the integration, and by approximating
the Jacobian by a matrix of higher sparsity (this option will not preserve mass
conservation).

An example of a Rosenbrock method is the second-order ROS2 solver (s = 2):

ψnþ1 ¼ ψn þ 1

2
k1Δt þ 1

2
k2Δt (6.67)

with

k1 ¼ s ψnð Þ þ γ J k1Δt½ Þ �
k2 ¼ s ψn þ k1Δtð Þ þ J �2γk1Δt þ γk2Δtð Þ½ � (6.68)

To maximize stability, the value γ ¼ 1þ 1=
ffiffiffi
2

p
is recommended (Verwer et al.,

1999).
Another Rosenbrock algorithm that is accurate for stiff systems is the RODAS3

solver (Sandu et al., 1997a) for which s = 4. The solution is given by

ψnþ1 ¼ ψn þ 5

6
k1Δt � 1

6
k2Δt � 1

6
k3Δt þ 1

2
k4Δt (6.69)

with

k1 ¼ s ψnð Þþ1

2
Jk1Δt

� �

k2 ¼ s ψnð ÞþJk1Δtþ1

2
Jk2Δt

� �

k3 ¼ s ψnþk1Δtð Þ�1

4
Jk1Δt�1

4
Jk2Δtþ1

2
Jk3Δt

� �

k4 ¼ s ψnþ3

4
k1Δt�1

4
k2Δtþ1

2
k3Δt

� 	
þ 1

12
Jk1Δtþ 1

12
Jk2Δt�2

3
Jk3Δtþ1

2
Jk4Δt

� �
(6.70)

Verwer et al. (1999), who compared ROS2 and RODAS3, suggest that the second
algorithm is less stable when using large fixed time steps, and that, in general, the
first method performs with higher stability for nonlinear atmospheric kinetics
problems.

6.4.3 Gear Solver

Most of the algorithms discussed in previous sections are single-step methods, in
which the solution ψn+1 at time tn+1 is calculated as a function of the solution ψn

at time tn. In a multi-step method, the solution ψn+1 is derived as a function of
the solutions ψn, ψn–1, ψn–2, . . . at previous time levels tn, tn–1, tn–2, . . ..
A general formulation for a multi-step algorithm of order s is given by Byrne
and Hindmarsh (1975):

271 6.4 Implicit Solvers

007
22 Jun 2017 at 16:46:49, subject to the Cambridge Core terms of use, available



ψnþ1 ¼
Xs
k¼0

αkψ
n�k þ Δt

Xs
k¼�1

γks tn�k ;ψ
n�k

� �
(6.71)

where αk and γk are method-specific constants selected to ensure stability. Single-step
methods correspond to the particular case of s = 0 and α0 = 1.
Different explicit and implicit multi-step methods are available to solve ordinary

differential equations, and are briefly discussed in Chapter 4. A widely used multi-
step method that is particularly well adapted to stiff problems is the implicit Gear’s
solver (Gear, 1971), also called backward differentiation formulae (BDF). Here s can
be as high as 6, only γ–1 is non-zero among the γ coefficients, and αk is selected by
stability and accuracy considerations. Thus, we write the BDF

ψnþ1 ¼
Xs
k¼0

αkψ
n�k þ Δt γ s tnþ1;ψ

nþ1
� �

(6.72)

The specific expressions used in the Gear’s algorithm for different orders (1 to 6) are
the following:

Order 1 : ψnþ1 ¼ ψn þ Δt s tnþ1;ψnþ1ð Þ
Order 2 : ψnþ1 ¼ 4

3
ψn � 1

3
ψn�1 þ 2

3
Δt s tnþ1;ψ

nþ1
� �

Order 3 : ψnþ1 ¼ 18

11
ψn � 9

11
ψn�1 þ 2

11
ψn�2 þ 6

11
Δt s tnþ1;ψ

nþ1
� �

Order 4 : ψnþ1 ¼ 48

25
ψn � 36

25
ψn�1 þ 16

25
ψn�2 � 3

25
ψn�3 þ 12

25
Δt s tnþ1;ψ

nþ1
� �

Order 5 : ψnþ1 ¼ 300

137
ψn � 300

137
ψn�1 þ 200

137
ψn�2 � 75

137
ψn�3 þ 12

137
ψn�4

þ 60

137
Δt s tnþ1;ψ

nþ1
� �

Order 6 : ψnþ1 ¼ 360

147
ψn � 450

147
ψn�1 þ 400

147
ψn�2 � 225

147
ψn�3

þ 72

147
ψn�4 � 10

147
ψn�5 þ 60

147
Δt s tnþ1;ψ

nþ1
� �

This algorithm is very robust, accurate, and, in most cases, stable up to order 6
(see Section 4.8.1). It requires, however, as in the case of the backward Euler
algorithm, the resolution of a nonlinear algebraic system. In the Livermore Solver
for Ordinary Differential Equations (LSODE) (Hindmarsh, 1977), the solution to
(6.72) or equivalently to

g ψnþ1
� � ¼ ψnþ1 þ

Xs
k¼0

αkψ
n�k þ Δt γ s tnþ1;ψ

nþ1
� � ¼ 0

is found by applying a Newton-Raphson iterative procedure

g ψnþ1
rþ1ð Þ


 �
¼ g ψnþ1

rð Þ

 �

þ ∂g
∂ψnþ1

� �
rð Þ

ψnþ1
rþ1ð Þ � ψnþ1

rð Þ

 �

¼ 0

where r represents an iteration index and ψnþ1
0ð Þ ¼ ψn. This leads to the linear

algebraic system
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I� Δt γ Jð Þ ψnþ1
rþ1ð Þ � ψnþ1

rð Þ

 �

¼ �ψnþ1
rð Þ þ Δt γ s tnþ1;ψ

nþ1
rð Þ


 �
þ
Xs
k¼0

αkψ
n�k

(6.73)

that is solved by using, for example, an LU decomposition technique (see Box 6.2).
The Jacobian matrix J = ∂s/∂ψ, which appears in the predictor matrix (I�Δt γ J) is
usually sparse, so that computationally efficient sparse-matrix techniques can be
applied to solve the system. The Jacobian should in principle be re-evaluated at each
step of the iteration. In most practical applications, however, it is calculated only at
the start of the iteration, or occasionally re-evaluated as the iteration proceeds. Gear’s
method offers a strategy to keep the solution error below a user-specified tolerance,
by varying the order of the backward differentiation scheme and, when appropriate,
by reducing the time step according to the intermediate results of the computation.
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7 Numerical Methods for Advection

7.1 Introduction

The distribution of chemical species in the atmosphere is affected by air motions
ranging from the global circulation down to the millimeter scale, at which point
molecular diffusion takes over to dissipate kinetic energy. Air motions conserve the
mixing ratios of the transported species since the air molecules are transported in
the same way as the species. A plume of an inert chemical species transported in the
atmosphere may stretch and filament, but it retains its initial mixing ratio until
the filaments have become thin enough for molecular diffusion to dissipate gradients.

Representing this conservative transport in an atmospheric model is a major
challenge because models cannot resolve the full range of spatial and temporal scales
involved. Even if they could, chaotic behavior in solving the equation of motion
would prevent a deterministic representation of the flow. Assimilation of meteoro-
logical observations can force model winds to approximate the real atmosphere, but
only on the large scales of the observational network and at the cost of small-scale
numerical noise introduced by the assimilation process.

From a model perspective, it is useful to distinguish between transport by the
resolved large-scale winds, which can be simulated deterministically; and transport
by the unresolved small-scale winds, which must be represented stochastically. The
distinction between large-scale and small-scale is defined by the resolution of the
model. Transport by resolved winds is commonly called advection, while transport
by unresolved winds is called eddy flow, turbulence, or (in the vertical) convection.
This chapter focuses on the numerical schemes used to solve the advection problem.
Schemes for smaller-scale unresolved transport are presented in Chapter 8.

Numerical methods should preserve the properties of the continuous partial
differential equations (PDEs) that they attempt to approximate. Desirable properties
of numerical methods for advection are listed by Rasch and Williamson (1990a),
Williamson (1992), and Lauritzen et al. (2011). They include:

1. Accuracy. The solution must be close to the true state.
2. Stability. The solution must not diverge away from the true state.
3. Monotonicity. The solution should not generate spurious maxima or minima in

mixing ratios. Since initial conditions for mixing ratios are positive, monotonicity
implies positivity of the solution.

4. Conservation. In the absence of sources and sinks, total mass must be conserved
during advection. The algorithm should also conserve the second moment (vari-
ance) of the advected quantity.
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5. Transportivity. Transport should be downwind only.
6. Locality. The solution at a given point must not be controlled by the concen-

trations far away from that point.
7. Correlativity. Relationships between species in the flow must be preserved.
8. Flexibility. An advection scheme is most useful if it can be implemented on

different grids and at different resolutions; this makes it in particular applicable
for adaptive grids.

9. Efficiency. A more computationally efficient algorithm facilitates simulations with
higher resolution, over longer periods, and/or involving a larger number of
transported species.

In Chapters 1 and 4 we drew a distinction between Eulerian and Lagrangian
models for atmospheric transport (Figure 7.1). A Eulerian model solves the advec-
tion equation on a fixed reference grid, while a Lagrangian model tracks particles as
they are transported in the atmosphere. Both have advantages and disadvantages.
A Eulerian model provides a complete solution over the atmospheric domain with
regular spatial resolution, but is subject to numerical noise and to stability con-
straints. A Lagrangian model has no limitations from numerical diffusion or stability,
but it has uneven spatial resolution and cannot easily handle nonlinear chemistry.
Eulerian and Lagrangian approaches are sometimes combined to benefit from the
advantages of each, as in semi-Lagrangian advection schemes.
We focus this chapter on the basic approaches to solve the advection equation,

including description of some classic schemes. The schemes used in current models

Figure 7.1 Eulerian and Lagrangian perspectives. In the Eulerian representation (a), the observer is located at fixed
points (model grid points) and tracks the change in the calculated state variable ψ (e.g., mixing ratio C)
as air parcels move by. In the Lagrangian representation (b), the observer tracks the change in the
variable ψ in individual air parcels as they move with the flow. Reproduced from Lin (2012).
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of atmospheric composition are based on these classic schemes, but often include
refinements that we cannot present in detail.

Section 7.2 presents different forms of the advection equation. Section 7.3 reviews
finite difference methods used to solve the advection equation in a Eulerian frame-
work, while Section 7.4 focuses on finite volume methods. Flux-corrected methods
introduced to preserve the monotonicity of the solution are discussed in Section 7.5.
Selected advanced Eulerian numerical methods are presented in Section 7.6.
Sections 7.7 and 7.8 describe the methods used in Lagrangian and semi-Lagrangian
models.

7.2 The Advection Equation

An atmospheric species transported in a model is commonly called a tracer. The
atmospheric advection of a tracer i is determined by its local mass density ρi and by
the wind field v. The corresponding mass flux Fi is the product

Fi ¼ ρiv (7.1)

As shown in Chapter 4, the local rate of change in the density due to advective
transport is the divergence —•Fi of this flux. This defines the continuity equation for
an inert tracer (no local sources or sinks):

∂ρi
∂t

þ —• ρivð Þ ¼ 0 (7.2)

Equation (7.2) is the Eulerian flux form of the advection equation, previously
discussed in Chapter 4. Transport in a Eulerian model is often expressed in terms
of mass fluxes across grid cell interfaces. This can be expressed by integration over a
finite volume Vc (usually a model grid cell) of the advection equation (7.2):

1

Vc

∂
∂t

ð
Vc

ρidV þ 1

Vc

ð
Vc

—• ρivð ÞdV ¼ 0 (7.3)

The first term in this integral equation represents the time evolution of the mean
density hρii of tracer i in the finite volume Vc. The second term can be transformed by
applying the divergence (or Gauss–Ostrogradsky) theorem (see Appendix E), which
states the equivalence between the volume integral over Vc, and the surface integral
over the closed boundary of volume Vc. Equation (7.3) then becomes:

∂ ρih i
∂t

þ 1

Vc

ð
Sc

Fi•n dS ¼ 0 (7.4)

where Fi represents the flux vector of tracer i across surface Sc of the boundary of the
cell and n is a unit outward vector normal to the cell boundary. This expression states
that the change of the mean density inside the finite cell is determining by the net flux
of material in and out of the cell. Equations (7.2) and (7.4) are often called conserva-
tive forms of the advection equation.
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When applied to a 2-D (e.g., horizontal) model, (7.4) becomes

∂ ρih i
∂t

þ 1

Ac

ð
Lc

Fi •n dl ¼ 0 (7.5)

where the integral is now calculated along the boundary line Lc of the 2-D cell with
area Ac. Figure 7.2 illustrates the different elements needed to solve (7.5) in the case
of a 2-D hexagonal grid cell. Finally, in the case of a 1-D problem (along direction x),
the expression becomes

∂ ρih i
∂t

þ 1

Δx
Fr
i � Fl

i

� � ¼ 0 (7.6)

where Δx represents the size of the 1-D grid cell. Fr
i and F

l
i are the tracer fluxes at the

right and left edges of the cell (positive rightward). As stated in Chapter 4, these
expressions constitute the basis for finite volume methods; they are particularly
suitable when solving the equations on complex or irregular grids.
When expressed in terms of mass mixing ratio μi ¼ ρi=ρa where ρa is the density

of air, the continuity equation becomes (advective form):

∂μi
∂t

þ v •—μi ¼ 0 (7.7)

or dμi
dt

¼ 0 (7.8)

where the total derivative operator (derivative along the flow) is expressed by:

d

dt
¼ ∂

∂t
þ v •— (7.9)

These forms were previously derived in Chapter 4. Equation (7.8) specifies the
invariance of the mixing ratio along flow trajectories. By contrast, tracer densities
ρi along flow trajectories may change because air is a compressible fluid (see

Lc

Ac

·ρiÒ

n

Fi

Figure 7.2 Formulation of tracer advection using (7.5) in the case of a 2-D hexagonal grid cell with surface Ac and
boundaries Lc. The flux Fi across a particular side of the hexagon is schematically represented. Unit vector
n is normal (outward) to the cell boundary and hρii is the average density of tracer i in the cell.
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example below). Equation (7.7) is the Eulerian advective form of the advection
equation, while (7.8) is the Lagrangian form.

Solution of the advection equation in 3-D models involves operator splitting along
individual dimensions. Thus, the 1-D advection equation is solved successively in
the three dimensions to obtain the 3-D solution. We will focus our discussion in the
following sections on the 1-D problem as it is most relevant for model applications.
In this case, the flux-form advection equation (7.2) becomes:

∂ρi x; tð Þ
∂t

þ ∂
∂x

u x; tð Þρi x; tð Þ½ � ¼ 0 (7.10)

and the advective-form equation (7.7) becomes:

∂μi x; tð Þ
∂t

þ u x; tð Þ ∂μi x; tð Þ
∂x

¼ 0 (7.11)

where u(x, t) denotes the 1-D wind velocity. Rewriting the flux-form equation
(7.10) as

∂ρi x; tð Þ
∂t

þ u x; tð Þ ∂ρi x; tð Þ
∂x

¼ �ρi x; tð Þ ∂u x; tð Þ
∂x

(7.12)

shows that it is identical to the advective form (7.11), but with an additional term
ρi ∂u/∂x that describes the compressibility of the flow. This term acts as a source of ρi
when u(x, t) decreases with x (compression) and as a sink when u(x, t) increases with
x (expansion). If the wind velocity is constant in space and time (u(x, t) = c), the flux
form of the advection equation is simply

∂ρi x; tð Þ
∂t

þ c
∂ρi x; tð Þ

∂x
¼ 0 (7.13)

Thus the advection equation applies identically to density and mixing ratio in an
incompressible flow.

Figure 7.3 shows the solution of the 1-D advection equation for the two cases of a
constant and a spatially variable wind velocity. For a constant velocity, the advection
of both the density and the mixing ratio is represented by a simple translation
(without deformation) of the initial function in the direction of the velocity. If the
velocity decreases with space, the initial distribution of both quantities is distorted as
the material is advected. The value of the maximum mixing ratio is unchanged, but
the maximum value of the density is enhanced. Advection can thus modify extrema
of tracer densities in a diverging flow.

In many applications, tracers are not only advected but are also diluted by
turbulent diffusion. The 1-D advection–diffusion equation is given by:

∂ρi x; tð Þ
∂t

þ c
∂ρi x; tð Þ

∂x
� K

∂2ρi x; tð Þ
∂x2

¼ 0 (7.14)

where K [m2 s–1] is a diffusion coefficient. The relative importance of advection
versus diffusion is measured by the dimensionless Péclet number Pe:

Pe ¼ c L

K
(7.15)
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where L is a characteristic length for the advection. The Péclet number can be
regarded as a measure of the ratio of the diffusive timescale to the advective
timescale. For conditions typical of horizontal flow with a wind velocity
c ~10 m s–1, a characteristic length L for long-range transport ~1000 km and an
eddy diffusion coefficient K of 105 m2 s–1, the Péclet number is ~100 and the
transport is thus dominated by advection. For vertical transport in the boundary
layer with a typical vertical velocity c ~0.01 m s–1, a characteristic length L of 100 m,
and an eddy diffusion coefficient of 100 m2 s–1, the Péclet number is equal to 10–2

and diffusion becomes dominant. The solution of the transport equation for a boxcar
function (shock front) subject to simultaneous advection and diffusion under a Péclet
number of approximately 1 is shown schematically in Figure 7.4. Note the gradual
deformation of the shape of the function under the influence of diffusion. The area
under the curve, however, is conserved.
When considering a discretized form of the advection–diffusion equation, one

often introduces the numerical Péclet number as:

Pe ¼ c Δx
K

(7.16)

where Δx represents the grid size of the model. The numerical Péclet number measures
the relative importance of advection and turbulent diffusion at the smallest spatial scale

Space

Space

Space

Space

q(x)

u(x)

q(x)

u(x)

Conserved quantity
Pure advection

Figure 7.3 One-dimensional advection in the x-direction of a scalar function, noted here q(x, t), for a constant velocity u
(left) and a spatially varying velocity u(x) (right). The initial distribution of the function is represented
by the solid line. On the left panel, this initial function (density or mixing ratio) is translated in the direction
of the constant velocity u. On the right panel, the dotted curve (labeled pure advection) corresponds to a
case where the term –q ∂u/∂x is omitted and is therefore representative of the advection of a tracer mixing
ratio. In this case, the spatial distribution of the function is modified, but the maximum value of the
function is unchanged. The dashed curve is obtained by including the term –q ∂u/∂x and is therefore
representative of the advection of a tracer density. In this case, the area under the curve is maintained
during the advection process, but the maximum value of the function is not preserved. From C. P.
Dullemond with permission.
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resolved by the model. The advection–diffusion equation is either parabolic (diffusion-
dominated) or hyperbolic (advection-dominated), depending on the Péclet number.
Numerical algorithms treating atmospheric diffusion are discussed in Chapter 8.

7.3 Elementary Finite Difference Methods

We examine here the fundamental properties of several advection algorithms applied
to the simple 1-D advection equation (along direction x), with a constant velocity c
(taken to be positive) and fixed grid spacing Δx. Generalization to variable wind
velocity and grid spacing is presented in Section 7.3.5. As in the previous chapters
dealing with numerical algorithms, we represent the field of the transported quantity
by the generic mathematical symbol Ψ. The advection of a non-negative scalar
function Ψ is described by the first-order hyperbolic PDE:

∂Ψ
∂t

þ c
∂Ψ
∂x

¼ 0 (7.17)

To solve this equation, initial and boundary conditions must be specified. The initial
condition can be expressed as

t = t0

t = t1

t = t2

ρ

ρ

ρ

x

x

x

c t2

c t1

Figure 7.4 Solution of the 1-D advection–diffusion equation for a Péclet number of the order of 1. The initial
function at time t = t0 is represented by a boxcar function. The gradual displacement of the function
is due to the advection term and deformation (spread) of the shape of the function is caused by the
diffusion term. Adapted from Slingerland and Kump (2011).
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Ψ x; 0ð Þ ¼ G xð Þ (7.18)

where G(x) represents the spatial distribution of the tracer distribution at t = 0. The
resulting analytic solution is simply the translation without any change in shape of
function G(x) in the x-direction at a velocity c. Thus,

Ψ x; tð Þ ¼ G x� ctð Þ (7.19)

When the spatial domain, rather than being infinite, extends from x = a to x = b, a
condition must be specified at one boundary of the domain. An advection problem
(hyperbolic equation) is well-posed if a boundary condition on the value of Ψ
(Dirichlet condition) is imposed at the inflow boundary. If c > 0, the condition must
be expressed at x = a:

Ψ a; tð Þ ¼ Ha tð Þ (7.20)

while if c < 0 the condition must be applied at x = b:

Ψ b; tð Þ ¼ Hb tð Þ (7.21)

A periodic boundary condition, such as on a sphere, can be imposed as

Ψ b; tð Þ ¼ Ψ a; tð Þ (7.22)

In this case, the mass that flows out of the domain at boundary x = b flows back into
the domain at boundary x = a.
Function Ψ(x, t) can be represented in an unbounded or periodic domain as a

Fourier series with components (harmonics) characterized by their wavenumbers
k [m–1] corresponding to wavelengths L ¼ 2π=k:

Ψ x; tð Þ ¼
X∞
k¼�∞

Ak tð Þeikx (7.23)

In order to analyze the fundamental properties of different elementary algorithms, we
assume that the problem is periodic in space and consider that a single harmonic (k)
of function Ψ(x, t) at grid point xj ¼ j Δx and time t takes the value

Ψk xj; t
� � ¼ Ak tð Þeik jΔx (7.24)

Here, Δx represents the grid spacing, assumed to be uniform, and j is the grid index.
The advection equation becomes:

∂Ψk

∂t
þ c i k Ψk ¼ 0 (7.25)

In this idealized case, the advection velocity c can be interpreted as the phase
speed of the wave defined by Ψk. Because c is constant, the phase speed is
independent of wavenumber k. Therefore all waves propagate at the same speed.
Accurate numerical algorithms have to preserve this property as much as possible.
In this particular case, the group speed cg, which is indicative of the rate at which
the energy propagates, is equal to c and is independent of the wavenumber k. This
analytic form of the advection equation will later be compared to the forms
provided by numerical analogs.
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7.3.1 Methods Using Centered Space Differences

When adopting a uniform grid spacing Δx, the space derivative ∂Ψ/∂x can be
approximated by a centered space difference to yield the second-order accurate
expression:

∂Ψ
∂x

¼ Ψjþ1 � Ψj�1

2Δx
þ O Δx2

� �
(7.26)

where O(Δx2) is the truncation error. For a wave with wavenumber k, the finite
difference expression can be written as

Ψjþ1 � Ψj�1

2Δx
¼ ik sin k Δxð Þ

k Δx
Aeik jΔx (7.27)

Under these conditions, the approximate form of the advection equation

∂Ψ
∂t

þ c ik sin k Δxð Þ
k Δx

� �
Ψ ¼ 0 (7.28)

can be compared with the exact analytic equation (7.25). When centered finite
differences are used to approximate space derivatives, the phase velocity c* associ-
ated with the numerical solution

c� ¼ c
sin kΔxð Þ
kΔx

� �
(7.29)

varies with wavenumber k, while the true phase velocity c is independent of k
(see Figure 7.5). Thus, even though all wavenumber components that characterize
function Ψ should move at exactly the same speed, the shorter wavelengths are
trailing the longer waves. As a result, the different Fourier components of the
advected function are displaced along axis x at different velocities and the numer-
ical solution is distorted. This property that arises from the space differencing is
named numerical dispersion and leads to phase errors. In space-centered approxi-
mations, the shortest wavelength that can be resolved by the model (L = 2Δx or
kΔx = π) does not move at all since its phase speed is zero (see Figure 7.5). For
long waves (small values of kΔx), the phase speed c* provided by the numerical
scheme approaches the true value of c. Figure 7.5 also shows the variation of the
group velocity c�g,

c�g ¼
d k cð Þ
dk

¼ c cos kΔxð Þ (7.30)

for the centered difference scheme. For wavelengths between 4Δx and 2Δx, the group
velocity c�g is negative. This means that energy can propagate upstream, which is an
undesirable property of the scheme.

When the space derivative is approximated by a fourth-order scheme over a grid
with constant spacing,

∂Ψ
∂x

¼ Ψj�2 � 8Ψj�1 þ 8Ψjþ1 � Ψjþ2

12 Δx
þ O Δx4

� �
(7.31)
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the phase velocity c* becomes:

c� ¼ c
4

3

sin kΔxð Þ
kΔx

� 1

3

sin 2kΔxð Þ
2kΔxð Þ

� �
(7.32)

This improves over the second-order scheme, as shown in Figure 7.5, but still fails
for wavelengths close to L = 2Δx.

Euler Forward Scheme (FTCS)

A simple numerical method to solve (7.17) is the Euler forward scheme, which
approximates the time derivative by a forward difference and the space derivative by
a centered difference:

Ψnþ1
j � Ψn

j

Δt
¼ �c

Ψn
jþ1 � Ψn

j�1

2 Δx
(7.33)

where Δt is the time step and Δx the grid spacing (both assumed to be constant), and
n and j are the indices referring to time and space, respectively, with

tn ¼ n Δt and xj ¼ j Δx

This algorithm, which is also referred to as the FTCS method (forward-in-time,
centered-in-space), is first-order accurate in time and second-order accurate in space.
Its solution,

Ψnþ1
j ¼ Ψn

j �
α
2

Ψn
jþ1 � Ψn

j�1

� �
(7.34)
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Figure 7.5 Ratios between the phase velocity c* associated with the numerical solution and the true phase velocity c as
a function of kΔx for the second-order and fourth-order space derivatives. Here k refers to the wavenumber
of the different Fourier components of the signal and Δx to the grid spacing. The corresponding
wavelengths L for three particular waves are indicated. The graph highlights the lag in the advection of
the waves relative to the advective motion. This effect is more pronounced for the shortest wavelengths.
The ratio between the group velocity cg resulting from the algorithm and the true group velocity c is
also shown in the case of the second-order derivative.
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where

α ¼ c
Δt
Δx

(7.35)

is the Courant number, can be easily computed because the algorithm is explicit (the
solution Ψnþ1

j at time tn+1 for each point xj is derived directly from quantities that are
already known at time tn). The method is also one-step because only one calculation
is required to advance the integration from time level tn to the new time level tn+1. It
is a two-level scheme since only two time levels (tn and tn+1) are involved in the
calculation.

An important consideration when assessing an algorithm is its stability. To address
this, we apply the von Neumann’s stability analysis presented in Box 7.1. For the
FTCS algorithm, the amplification coefficient g(k) as a function of wavenumber k is:

g kð Þ ¼ 1� iα sin kΔxð Þ (7.36)

The amplification factor,

g kð Þj j ¼ 1þ α2 sin 2 kΔxð Þ� 	1
2 (7.37)

is greater than one for all values of the wavenumber k. As a result, any numerical
error produced by the algorithm grows exponentially with time. As highlighted in
Box 7.1, the Euler FTCS algorithm is thus unconditionally unstable and must be
rejected.

However, the FTCS method can become conditionally stable if a numerical
diffusion term is added to the right-hand side of the advective equation, with
diffusion coefficient K:

K
∂2Ψ
∂x2

� K

Δx2
Ψn

jþ1 � 2Ψn
j þ Ψn

j�1

� �
(7.38)

In this case, the discretized equation becomes:

Ψn
jþ1 ¼ Ψn

j �
α
2

Ψn
jþ1 � Ψn

j�1

� �
þ β Ψn

jþ1 � 2Ψn
j þ Ψn

j�1

� �
(7.39)

Here α is again the Courant number, and

β ¼ K
Δt
Δx2

(7.40)

is the so-called Fourier number. The amplification coefficient for wavenumber k
derived from the von Neumann’s analysis becomes

g kð Þ ¼ 1þ 2β cos kΔxð Þ � 1½ � � iα sin kΔxð Þ (7.41)

with the corresponding amplitude (Figure 7.6)

g kð Þj j ¼ 1� 2β 1� cos kΔxð Þ½ �ð Þ2 þ α2 sin 2 kΔxð Þ
h i1

2
(7.42)

and phase

tanΦ kð Þ ¼ �α sin kΔxð Þ
1� 2β 1� cos kΔxð Þ½ � (7.43)
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Box 7.1 The von Neumann Stability Analysis

The von Neumann analysis provides a methodology for assessing the stability of numerical
algorithms. It applies to linear PDEs with periodic boundary conditions. We first consider the
analytic solution of the advection equation by noting that any function Ψ can be expressed as the
superposition of an infinite number of waves. We perform therefore a discrete Fourier transform of
functionΨ, which is advected in the x-direction with a positive and constant velocity c. Consider the
advection of a single wave harmonic with wavenumber k. At time t, this harmonic is expressed by:

Ψk x; tð Þ ¼ a eik x�ctð Þ

After a time interval Δt corresponding to a displacement of the wave over a distance cΔt, function
Ψ takes the form:

Ψk x; t þ Δtð Þ ¼ a eik x�c tþΔtð Þ½ � ¼ Ψk x; tð Þe�ikcΔt

The amplification coefficient or gain g(k) for harmonic k is the complex function defined as the ratio
between function Ψk after and before the advection step. Thus,

g kð Þ ¼ Ψk t þ Δtð Þ
Ψk tð Þ ¼ e�ikcΔt

with a modulus (also called amplitude and here amplification factor)

g kð Þj j ¼ ½g kð Þ�g� kð Þ�½ ¼ 1

and a phase

φ kð Þ ¼ �kcΔt

Here g* is the complex conjugate of g. The amplification factor |g(k)| represents the relative change
in the amplitude of the harmonic of wavenumber k after one computational time step.
These relations highlight two properties that should be reproduced as closely as possible when

numerical approximations to the exact solution are sought: (1) the amplitude of all wave harmonics
is unchanged during an advection process, and (2) the phase of harmonics k varies according to
φ ¼ �α kΔx, where α is the Courant number and Δx the grid spacing of the model. If, for
example, the value of g(k) resulting from the use of a numerical approximation is less than 1, the
amplitude of the wave is reduced by advection. Conversely, if it is larger than 1, the amplitude of
the wave grows and the method becomes rapidly unstable. Thus, the numerical stability of an
algorithm for advection requires that g kð Þj j � 1 for all waves resolved by the model. Similarly,
errors on the phase cause waves of a spectrum to lag the displacement of other waves, leading to
numerical dispersion.
To apply the von Neumann analysis to a numerical algorithm, let us assume that the advection

equation (7.17) is approximated by the FTCS algorithm (centered difference scheme for the space
derivative):

Ψnþ1
j ¼ Ψn

j �
α
2

Ψn
jþ1 � Ψn

j�1

� �
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Necessary and sufficient conditions for the stability of this scheme are

0 � β � 1

2
and α2 � 2β (7.44)

Thus, the FTCS method can be used if a small diffusion term is added to the
advection equation and the time step is sufficiently short.

Lax Scheme

In the Lax method (Lax, 1954), the term Ψn
j used in the FTCS scheme is replaced by ½

Ψn
jþ1 þ Ψn

j�1

� �
, and the approximate form of the advection equation becomes:

where α is the Courant number. We apply a discrete Fourier transform and consider a single
harmonic with wavenumber k:

Ψn
j kð Þ ¼ eikxj

It results from the above FTCS formulation that:

Ψnþ1
j ¼ eikxj � α

2
eik xjþΔxð Þ � eik xj�Δxð Þh i

¼ eikxj 1� α
2

eikΔx � e�ikΔx
� �h i

¼ Ψn
j 1� iα sin kΔxð Þ½ �

The transfer function based on the FTCS algorithm is therefore:

g kð Þ ¼ Ψnþ1
j

Ψn
j
¼ 1� i α sin kΔxð Þ

Its amplitude is given by

g kð Þj j ¼ Re g kð Þ½ �ð Þ2 þ Im g kð Þ½ �ð Þ2
h i1

2 ¼ 1þ α2 sin 2 kΔxð Þ� 	1
2

and the phase Φ(k) associated with this particular algorithm is derived from:

tanΦ kð Þ ¼ Im g kð Þ½ �
Re g kð Þ½ � ¼ �α sin kΔxð Þ

A comparison of these expressions with the values derived from the analytic solution shows
that the FTCS scheme is unconditionally unstable since the modulus of the transfer function is larger
than one for all values of wavenumber k, even for very small time steps. The phase error E(k) is
given by:

E kð Þ ¼ Φ kð Þ � φ kð Þ ¼ Φ kð Þ þ α kΔx

The von Neumann analysis is adopted in this chapter to assess the stability conditions of different
numerical schemes. It is a necessary and sufficient condition for stability in the case of linear finite
difference equations with constant coefficients. It is a necessary but not sufficient stability condition
for nonlinear equations.
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Ψnþ1
j ¼ 1

2
Ψn

jþ1 þ Ψn
j�1

� �
� α

Ψn
jþ1 � Ψn

j�1

2
(7.45)

When applying the von Neumann stability analysis, we obtain the amplification
coefficient:

g kð Þ ¼ cos kΔxð Þ � i α sin kΔxð Þ (7.46)

whose amplitude

g kð Þj j ¼ cos2 kΔxð Þ þ α2sin2 kΔxð Þ� 	1
2 (7.47)

remains less than or equal to unity for Courant numbers α � 1.
This stability condition α � 1, which applies to many Eulerian schemes, is called

the Courant–Friedrichs–Lewy (CFL) criterion. Over a time step Δt, the displacement
of tracer should never exceed a distance larger than the grid spacing Δx. When a
longitude–latitude grid is adopted in the model, this condition imposes severe
limitations in the vicinity of the pole where the grid spacing in the longitudinal
direction becomes very small. This is often circumvented by the application of
numerical filters (see Section 7.10) or by the use of a reduced grid (see Section
4.7.3). The CFL condition also requires that increases in the spatial resolution of a
model be accompanied by a proportional decrease in the value of the time step.
The stabilization of the solution in the Lax scheme can be understood by rearran-

ging (7.45) as

Ψnþ1
j � Ψn

j

Δt
¼ �c

Ψn
jþ1 � Ψn

j�1

2Δx
þ Δx2

2Δt

Ψn
jþ1 � 2Ψn

j þ Ψn
j�1

Δx2

� �
(7.48)

which is the FTCS form of equation

∂Ψ
∂t

¼ �c
∂Ψ
∂x

þ Δx2

2Δt
∂2Ψ
∂x2

(7.49)
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Figure 7.6 Amplification factor |g(k)| as a function of kΔx when the advection equation is approximated by the
FTCS algorithm for a constant velocity c and the Courant number equal to 0.5. Parameter β = kΔt/Δx2

represents the effect of added diffusion to the advection equation. The case with β = 0 corresponds
to pure advection and is unconditionally unstable (amplification factor > 1). When diffusion is added,
the solution is stable (|g(k)| < 1) for β < 0.5, but becomes unstable for larger values of β.
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Thus, the Lax scheme stabilizes the FTCS solution by adding a numerical diffusion
term to the advection equation with diffusion coefficient Δx2/2Δt. Because of this
numerical diffusion, a disturbance at grid point j propagates not only to downwind
grid point ( j + 1), but also to upwind point (j – 1). There results a transportivity error.

Lax–Wendroff Scheme

The Lax–Wendroff scheme (Lax and Wendroff, 1960, 1964), also called the Leith
(1965) or Crowley (1968) scheme, is designed to provide the minimum amount of
added numerical diffusion required to provide stability to the FTCS solution. The
value of advected function Ψ at time level n + 1 and at grid point j is derived from:

Ψnþ1
j ¼ Ψn

j � α Ψnþ1=2
jþ1=2 � Ψnþ1=2

j�1=2

� �
(7.50)

where the value of Ψ at half time level (n + ½) and at half grid point ( j + ½) is
estimated using the Lax scheme:

Ψnþ1=2
jþ1=2 ¼ 1

2
Ψn

jþ1 þ Ψn
j

� �
� α

2
Ψn

jþ1 � Ψn
j

� �
(7.51)

The resulting approximation to the advection equation:

Ψnþ1
j ¼ Ψn

j �
α
2

Ψn
jþ1 � Ψn

j�1

� �
þ α2

2
Ψn

jþ1 � 2Ψn
j þ Ψn

j�1

� �
(7.52)

is second-order accurate in time even though it involves only two time levels. Here
again, the third term in the right-hand side of the equation can be viewed as a
diffusion term added to the FTCS scheme. In contrast to the Lax method, the
effective diffusion coefficient c2Δt/2 is proportional to the time step Δt, so that
numerical diffusion can be reduced by adopting smaller time steps.

The amplification coefficient is:

g kð Þ ¼ 1� i α sin kΔxð Þ � α2 1� cos kΔxð Þ½ � (7.53)

with amplification factor

g kð Þj j ¼ 1� 4α2 1� α2
� 	

sin4 kΔx=2ð Þ
 �1=2
(7.54)

The stability criterion is again satisfied for α� 1. Some amplitude dampening occurs in
the solution for all α < 1, but it is weak for wavelengths that are large compared to the
grid spacing Δx. For the smallest wave that can be resolved by the grid (L = 2Δx or
equivalently kΔx = π), the amplification coefficient is as low as zero for α2 = 0.5 so the
wave disappears. However, for a wave with L= 4Δx, the dissipation is already consider-
ably smaller; in this case the minimum amplification coefficient is 0.8 for α2 = 0.5.

The phase Φ(k) associated with wavenumber k (see Box 7.2) is deduced from

tanΦ kð Þ ¼ �α sin kΔxð Þ
1� α2 1� cos kΔxð Þð Þ (7.55)

An important consideration is the nature of the phase errors produced by second-
order algorithms such as the Lax–Wendroff scheme. If one applies a Taylor
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expansion to the trigonometric functions appearing in (7.55), one can show that the
phase error for wavenumber k is given by

E kð Þ ¼ � arctan
α sin kΔxð Þ

1� α2 1� cos kΔxð Þð Þ
� �

þ α kΔxð Þ � α kΔxð Þ3 α
6

1� αð Þ (7.56)

where the trigonometric functions have been approximated using Taylor expansions.
The resulting lag per unit time in the deplacement δx kð Þ ¼ E kð Þ=k of the waves
increases with the square of their wavenumber k since

d

dt
δx kð Þ � E kð Þ

kΔt
¼ c

E kð Þ
αðkΔxÞ∞ kΔxð Þ2 (7.57)

The propagation of the waves is therefore fastest for the shortest wavelengths (and
thus for wavelengths that approach the grid size Δx), which generates ripples in the
advected signal. This type of behavior, shown here in the case of the Lax–Wendroff
algorithm, is common to all second-order schemes and, as stated by Godunov’s
theorem, the monotone behavior of a numerical solution cannot be assured for linear
finite difference methods with more than first-order accuracy. This theorem introduces
a major limitation in the development of numerical schemes that treat advection.

Implicit Schemes

The implicit or Euler backward-in-time, centered-in-space (BTCS)

Ψnþ1
j � Ψn

j

Δt
¼ �c

Ψnþ1
jþ1 � Ψnþ1

j�1

2Δx
(7.58)

with the recursive expression

Ψnþ1
j ¼ Ψn

j �
α
2

Ψnþ1
jþ1 � Ψnþ1

j�1

� �
(7.59)

is first-order accurate in time and second-order in space. The amplification coeffi-
cient derived from the von Neumann analysis is:

g kð Þ ¼ 1

1þ iα sin kΔxð Þ (7.60)

The resulting amplification factor

g kð Þj j ¼ 1

1þ α2 sin 2 kΔxð Þ
� 1

2

(7.61)

is smaller than unity for any value of the Courant number. The method is therefore
unconditionally stable, allowing for the adoption of any arbitrary time step Δt, which
is a great advantage. The solution, however, cannot be retrieved as easily as in the
case of explicit schemes. In the implicit case, a system of J algebraic equations (if J is
the number of grid points that are not associated with boundary conditions) must be
solved, which is computationally expensive. In the 1-D case, the system of equations
is tridiagonal and can be solved efficiently with the Thomas algorithm (see Box 4.4).
Another limitation of the method is that it has limited accuracy, with the shortest
wavelengths being more rapidly attenuated that the longer wavelengths.
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Accuracy of the solution can be improved by combining the FTCS and BTCS
approaches. The Crank–Nicholson algorithm, written as

Ψnþ1
j � Ψn

j

Δt
¼ �c

Ψnþ1
jþ1 � Ψnþ1

j�1 þ Ψn
jþ1 � Ψn

j�1

4Δx
(7.62)

is second-order accurate in time and space. It is implicit because it includes
terms evaluated at time tn+1 on the right-hand side. The amplification coefficient
is given by

g kð Þ ¼ 1þ iα sin kΔx=2ð Þ
1� iα sin kΔx=2ð Þ (7.63)

and the amplification factor is equal to 1 for all wavenumbers and all Courant
numbers:

g kð Þj j ¼ 1 (7.64)

The algorithm is thus unconditionally stable.

Matsuno Scheme

The Matsuno scheme is a two-step explicit–implicit algorithm that is first-order
accurate in time and second-order accurate in space. The first step is to predict an
intermediate value Ψ�

j of the transported quantity at time level n + 1 by using a
simple FTCS (Euler forward) approach:

Ψ�
j � Ψn

j

Δt
¼ �c

Ψn
jþ1 � Ψn

j�1

2Δx
(7.65)

The predicted values are then substituted into the space derivative term, and a
correction step is applied:

Ψnþ1
j � Ψn

j

Δt
¼ �c

Ψ�
jþ1 � Ψ�

j�1

2Δx
(7.66)

By eliminating the intermediate terms Ψ*, one derives after some manipulations:

Ψnþ1
j ¼ Ψn

j �
α
2

Ψn
jþ1 � Ψn

j�1

� �
þ α

2

� �2
Ψn

jþ2 � 2Ψn
j þ Ψn

j�2

� �
(7.67)

This explicit expression approximates an advection equation with an additional
diffusion term that approaches zero for very small Δt:

∂Ψ
∂t

þ c
∂Ψ
∂x

� c2Δt
4

∂2Ψ
∂x2

¼ 0 (7.68)

The amplification coefficient is:

g kð Þ ¼ 1� i α sin kΔxð Þ � α2 sin 2 kΔxð Þ (7.69)

with corresponding amplification factor:

g kð Þj j ¼ 1� α2 sin 2 kΔxð Þ þ α4 sin 4 kΔxð Þ� 	1
2 (7.70)
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Even though this scheme bears some resemblance to implicit schemes, it is stable for
the usual Courant condition (α � 1) of the explicit method rather than the condition
that applies to implicit methods (unconditional stability).
If, in the Matsuno scheme, the correction step is replaced by

Ψnþ1
j � Ψn

j

Δt
¼ �c

Ψ�
jþ1 � Ψ�

j�1 þ Ψn
jþ1 � Ψn

j�1

4Δx
(7.71)

in which the space derivative term is calculated as the average between the intermediate
estimates and the estimates at time tn, we obtain theHeun scheme (see Table 7.1), which
is second-order accurate in space and time like theCrank–Nicholson algorithmdescribed
earlier. Themethod is unconditionally unstable unless a small diffusion term is artificially
added to the advection equation. In this case, the scheme becomes conditionally stable.
If, in the Heun scheme, the predictor step is a leapfrog algorithm (see Section 7.3.3), we
obtain the method proposed by Kurihara (1965), which is second-order accurate in
space and time, stable for the Courant condition, and free of numerical diffusion. Unlike
the leapfrog method, it is not subject to drift, but it does not provide the exact solution
for α = 1.
Figures 7.7 and 7.8 show the amplification factors |g| as a function of parameters

k Δx and c Δt/Δx for several of the algorithms described above.
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Figure 7.7 Amplification factor for different numerical methods as a function of parameter k Δx for a Courant
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Fourth-Order in Space Method

The algorithms discussed so far use low-order explicit or implicit forms of the
finite difference equations. These algorithms can be extended to higher-order
formulations. For example, the forward-in-time implicit form of the fourth-order
approximation

Ψnþ1
j � Ψn

j

Δt
¼ �c

Ψnþ1
j�2 � 8 Ψnþ1

j�1 þ 8 Ψnþ1
jþ1 � Ψnþ1

jþ2

12Δx
(7.72)

is unconditionally stable. The matrix corresponding to this system is a banded matrix
with five terms that can be inverted with a fast method (Press et al., 2007).

7.3.2 Methods Using Space-Uncentered Differences

In the algorithms discussed previously, the space derivative ∂Ψ/∂x is approximated
by a second-order accurate centered difference. An alternative approach is to adopt a
first-order accurate backward-in-space finite difference,

∂Ψ
∂x

¼ Ψj � Ψj�1

Δx
þ O Δxð Þ (7.73)

When introduced in the 1-D advection equation (7.17) together with a forward in
time derivative, one obtains the upstream (or upwind differencing) method (Courant
et al., 1952; Godunov, 1959). Consistent with physical considerations, this algorithm
provides a solution that depends on the behavior of Ψ in the direction from which the
flow emanates, and not from the function downstream. Thus, for c > 0, we write a
forward-in-time, backward-in-space (FTBS) expression:

Ψnþ1
j � Ψn

j

Δt
¼ �c

Ψn
j � Ψn

j�1

Δx
for c > 0 (7.74)

or equivalently:

Ψnþ1
j ¼ 1� αð ÞΨn

j þ αΨn
j�1 for α > 0 (7.75)

For c < 0, the advection equation is approximated by a forward-in-time, forward-in-
space (FTFS) expression:

Ψnþ1
j � Ψn

j

Δt
¼ �c

Ψn
jþ1 � Ψn

j

Δx
for c < 0 (7.76)

or

Ψnþ1
j ¼ 1þ αð ÞΨn

j � αΨn
jþ1 for α < 0 (7.77)

The amplification coefficient (for c > 0) is:

g kð Þ ¼ 1� α 1� cos kΔxð Þ½ � � iα sin kΔxð Þ (7.78)

with amplitude

g kð Þj j ¼ 1þ 2α α� 1ð Þ 1� cos kΔxð Þ½ �ð Þ12 (7.79)
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The amplitude remains below unity as long as the Courant condition (α � 1) is
verified. The phase Φ(k) is given by:

tanΦ ¼ �α sin kΔxð Þ
1� α 1� cos kΔxð Þð Þ (7.80)

At the stability limit, when α = 1, the amplitude |g(k)| = 1 and the phaseΦ =�k Δx. In
this case, the solution provided by the upstream scheme is exact. In the general case
with α < 1, the solution is dampened (numerical diffusion) with the highest wave-
numbers (or smallest wavelengths) more rapidly attenuated than the lower wave-
numbers. This explains why the sharp corners of the square waves in Figures 7.10
and 7.12 are rounded by the upstream method.
The upstream method is monotonic and sign-preserving, but it is only first-order

accurate in space and time and suffers therefore from numerical diffusion. This point
can be intuitively understood by noting that the algorithm expressions (7.74) and
(7.76) approximate to second-order in Δx and Δt the advection–diffusion equation:

∂Ψ
∂t

þ c
∂Ψ
∂x

¼ ∂
∂x

K
∂Ψ
∂x

� �
(7.81)

with diffusion coefficient K ¼ 0:5 c Δx� c2Δtð Þ ¼ 0:5 c Δx 1� αð Þ.
Uncentered methods other than the upstream scheme have been proposed to

reduce excessive numerical diffusion. For example, the approximation proposed by
Warming and Beam (1976)

Ψnþ1
j ¼ Ψn

j � α Ψn
j � Ψn

j�1

� �
� α

2
1� αð Þ Ψn

j � 2Ψn
j�1 þ Ψn

j�2

� �
(7.82)

is second-order accurate in time and space and is stable for 0� α � 2. It is equivalent
to a Lax–Wendroff scheme in which the centered space differences are replaced by
backward differences.
The Quadratic Upstream Interpolation for Convective Kinematics (QUICK)

scheme of Leonard (1979) employs four points to approximate the first-order space
derivative. For a constant wind velocity c ≥ 0 and grid spacing Δx, the advection
equation (7.17) is first discretized as a centered-in-space, time-forward explicit
scheme:

Ψnþ1
j ¼ Ψn

j � α Ψn
jþ1=2 � Ψn

j�1=2

� �
(7.83)

where the values of the advected quantity at the left (j – 1/2) and right (j + 1/2) edges
of cell j are determined by a quadratic interpolation. One derives, for example:

Ψjþ1=2 ¼ 1

2
Ψj þ Ψjþ1

� 	� 1

8
Ψj�1 � 2Ψj þ Ψjþ1

� 	
(7.84)

so that

Ψnþ1
j ¼ Ψn

j �
α
8

Ψn
j�2 � 7Ψn

j�1 þ 3Ψn
j þ 3Ψn

jþ1

� �
(7.85)

The scheme is second-order accurate in space, but it is unstable unless some
dissipation is added to the advection equation. Other formulations of the QUICK
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scheme (i.e., explicit, implicit, or semi-implicit approaches) are available (Chen and
Falconer, 1992). A more elaborate algorithm, called QUICKEST, also proposed
by Leonard (1979), is third-order accurate in time and space, and is stable for
pure advection if α � 1. In that scheme, the value of the function at the right edge
is given by:

Ψjþ1=2 ¼ 1

2
Ψj þ Ψjþ1

� 	� α
2

Ψjþ1 � Ψj

� 	� 1

8
1� α2
� �

Ψj�1 � 2Ψj þ Ψjþ1

� 	
(7.86)

The QUICK and QUICKEST schemes often generate overshoots and undershoots.
They can therefore produce negative solutions. This problem is addressable by
imposing flux-limiters in the integration scheme (see Section 7.5).

Finally, the algorithm proposed by Farrow and Stevens (1994), which can be
regarded as an adaptation of the QUICK scheme, is expressed as a predictor-
corrector integration scheme

Ψnþ1=2
j ¼ Ψn

j �
α
4

Ψn
jþ1 � Ψn

j�1

� �
(7.87)

Ψnþ1
j ¼ Ψn

j �
α
2

Ψnþ1=2
jþ1 � Ψnþ1=2

j�1 � 1

4
Ψnþ1=2

jþ1 � 3Ψnþ1=2
j þ 3Ψnþ1=2

j�1 � Ψnþ1=2
j�2

� �� �
(7.88)

It is third-order accurate in space and second-order in time. A von Neumann
stability analysis indicates that it is stable for Courant numbers smaller than
approximately 0.6.

7.3.3 Multilevel Algorithms

In the numerical schemes discussed in previous sections, the time derivatives are
approximated by a two-level forward difference. We now consider methods in which
information from several earlier time levels are used to calculate the value of
function Ψ at time tn+1.

The regular leapfrog method (Courant et al., 1928), which is second-order
accurate in time, is based on a centered-in-time and centered-in-space (CTCS)
approximation of the advection equation:

Ψnþ1
j � Ψn�1

j

2Δt
¼ �c

Ψn
jþ1 � Ψn

j�1

2Δx
(7.89)

or

Ψnþ1
j ¼ Ψn�1

j � α Ψn
jþ1 � Ψn

j�1

� �
(7.90)

In this three-level algorithm, the solution “leapfrogs” from time level (n – 1) to time
level (n + 1) over the time level (n) at which the space derivative term is computed.

The von Neumann stability analysis provides a quadratic equation for the amplifi-
cation coefficient, whose two roots are:

g kð Þ ¼ � 1� α2 sin 2 kΔxð Þ� 	1=2 � i α sin kΔxð Þ (7.91)
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If |α sin (k Δx)| > 1, the square root term is completely imaginary, and the modulus
|g(k)| for one of the two roots is larger than 1, indicating instability. If |α sin (k Δx)� 1|,
which is verified for all wavenumbers when |α| � 1 (CFL condition), the modulus
is unity:

g kð Þj j ¼ 1� α2 sin 2 kΔxð Þ� 	þ α sin kΔxð Þ½ �2
n o1=2

¼ 1 (7.92)

and the phase shifts for the two roots (�) are respectively

Φþ ¼ �sin�1
�
α sin kΔxð Þ

�
and Φ� ¼ πþ sin�1

�
α sin kΔxð Þ

�
(7.93)

For Courant stable conditions, the amplitude of all waves is preserved, not dissi-
pated. This represents the major advantage of the method. When α = 1, the method
provides the exact solution (correct amplitude and phase). If α < 1, computational
dispersion occurs as phase errors, particularly for short waves, and leads to some
spurious numerical oscillations.
Expression (7.91) with a � sign shows that the leapfrog algorithm generates two

solutions with different amplification functions. One of them, called the physical
mode, represents the meaningful solution, while the second one, referred to as the
computational mode, is a mathematical artifact without any physical reality. This
second solution propagates in the direction opposite to the flow and changes sign for
every time step; it generates therefore noise that needs to be filtered with an
appropriate method (see Section 4.15.4). The effect of the computational mode is
visible in Figure 7.9, which shows the advection of a cosine-shaped function.
Undesired oscillations with negative values of the function are produced upwind
from large spatial gradients. The computational mode is most strongly excited when
the initial conditions are characterized by sharp gradients.
The leapfrog algorithm tends to decouple odd and even grid points. Although, in

principle, the solutions at these two types of grid point should not diverge, in practice
they often do so as time progresses, causing checkerboarding of the solution.
The problem can be addressed by adding a small dissipative term, by discarding

–250.0 150.0 250.050.0–50.0–150.0
–2.0

4.0

2.0

0.0

Figure 7.9 Advection by the leapfrog scheme of a cosine-shaped function with a half-width resolution of 12Δx.
The uniform grid is composed of 500 cells. The Courant number adopted in this example is 0.5. The solution
is shown after 1600 time steps Δt. From Smolarkiewicz (2006).
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the solutions at one of the two types of grid points, or by switching occasionally to an
alternate advection scheme for just one time step.

Different improved leapfrog schemes have been proposed (Kim, 2003). The
upwind leapfrog scheme introduced by Iserles (1986),

Ψnþ1
j � Ψn

j

� �
þ Ψn

j�1 � Ψn�1
j�1

� �
2Δt

¼ �c
Ψn

j � Ψn
j�1

� �
Δx

(7.94)

or

Ψnþ1
j ¼ Ψn�1

j�1 þ 1� 2αð Þ Ψn
j � Ψn

j�1

� �
(7.95)

is characterized by a considerably lower phase error than the regular leapfrog
scheme. Accuracy can be increased by adopting a fourth-order accurate spatial
discretization:

Ψnþ1
j � Ψn�1

j

2Δt
¼ �c

Ψn
j�2 � 8 Ψn

j�1 þ 8 Ψn
jþ1 � Ψn

jþ2

12Δx
(7.96)

for which the von Neumann stability analysis leads to:

g kð Þ ¼ �i
α
6

8 sin kΔxð Þ � sin 2kΔxð Þ½ �

� 1� α
6
8 sin kΔxð Þ � sin 2kΔxð Þ½ �

h i2� �1=2

(7.97)

One derives easily that the scheme is stable if

α <
6

8 sin kΔxð Þ � sin 2kΔxð Þ (7.98)

For α < 0.73, the scheme is stable for all harmonics. The use of higher orders for the
calculation of the time derivative also improves the accuracy of the solution. For
example, the four-level algorithm:

Ψnþ1
j ¼ Ψn�2

j�1 þ 2 1� 3αð Þ Ψn
j � Ψn�1

j�1

� �
þ 1� 2αð Þ 1� 3αð Þ

1þ α
Ψn

j�1 � Ψn�1
j

� �
(7.99)

is very accurate and leads to exact solutions when α = 1/2 or α = 1/3. However, it is
unstable for α > 1/2.

Higher-order multi-stage methods are more accurate, but have the disadvantage of
generating a larger number of computational modes. An interesting case is the third-
order Adams–Bashforth scheme (see 4.197)):

Ψnþ1
j ¼ Ψn

j �
α
24

23 Ψn
jþ1 � Ψn

j�1

� �
� 16 Ψn�1

jþ1 � Ψn�1
j�1

� �
þ 5 Ψn�1

jþ1 � Ψn�2
j�1

� �h i
(7.100)

because the two undesired computational modes that are produced in this case are
strongly damped if |α| < 0.72. No filtering is required in most applications and this
makes the algorithm particularly attractive, even though the solution is not positive
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definite. For higher values of |α|, the amplitude of one of the computational modes
becomes larger than 1, and the scheme becomes unstable.

7.3.4 Performance of Elementary Finite Difference Algorithms

Table 7.1 summarizes the properties of the different algorithms presented previously.
Figure 7.10 shows a comparison for the 1-D advection of an initial square function
with constant wind speed. The instability of the Euler forward algorithm is mani-
fested in the large oscillations. The upstream algorithm preserves sign and is free of

Table 7.1 Elementary algorithms for solving the 1-D advection equation

Method Algorithm Stability Accuracy Remarks

Euler
Forward

Ψnþ1
j ¼ Ψn

j � α=2
�
Ψn

jþ1 � Ψn
j�1

�
Unconditionally
unstable

Δt, Δx2

Lax Ψnþ1
j ¼1=2

�
Ψn

jþ1þΨn
j�1

��α=2
�
Ψn

jþ1�Ψn
j�1

�
Stable for α < 1 Δt, Δx2 Diffusive

Leapfrog Ψnþ1
j ¼ Ψn�1

j � α
�
Ψn

jþ1 � Ψn
j�1

�
Stable for α < 1 Δt2, Δx2 Dispersive

Lax–
Wendroff

Ψnþ1
j ¼ Ψn

j � α=2
�
Ψn

jþ1 � Ψn
j�1

�
þα2=2

�
Ψn

jþ1 � 2Ψn
j þ Ψn

j�1

� Stable for α < 1 Δt2, Δx2

Implicit Ψnþ1
j ¼ Ψn

j � α=2
�
Ψnþ1

jþ1 � Ψnþ1
j�1

�
Unconditionally
stable

Δt, Δx2

Crank–
Nicholson

Ψnþ1
j ¼ Ψn

j � α=4
��
Ψn

jþ1 � Ψn
j�1

�
þ�Ψnþ1

jþ1 � Ψnþ1
j�1

�	 Unconditionally
stable

Δt2, Δx2

Matsuno Ψnþ1
j ¼ Ψn

j � α=2ðΨn
jþ1 � Ψn

j�1Þ
þα2=4ðΨn

jþ2 � 2Ψn
j þ Ψn

j�2Þ
Stable for α < 1 Δt, Δx2 Diffusive

Heun Ψnþ1
j ¼ Ψn

j � α=2ðΨn
jþ1 � Ψn

j�1Þ
þα2=8ðΨn

jþ2 � 2Ψn
j þ Ψn

j�2Þ
Unconditionally
unstable

Δt2, Δx2

Kurihara Ψnþ1
j ¼ Ψn

j � α=4½ðΨn�1
jþ1 � Ψn�1

j�1 Þ
þðΨn

jþ1 � Ψn
j�1Þ�

þα2=4ðΨn
jþ2 � 2Ψn

j � Ψn
j�2Þ

Stable for α < 1 Δt2, Δx2 Not
diffusive

Fourth-order
(implicit)

Ψnþ1
j ¼ Ψn

j � α=12½Ψnþ1
j�2 � 8Ψnþ1

j�1

þ8Ψnþ1
jþ1 � Ψnþ1

jþ2 �
Unconditionally
stable

Δt, Δx4

Upstream
(α > 0)

Ψnþ1
j ¼ Ψn

j � αðΨn
j � Ψn

j�1Þ Stable for α < 1 Δt, Δx Monotonic
diffusive

Upstream
(α < 0)

Ψnþ1
j ¼ Ψn

j � α
�
Ψn

jþ1 � Ψn
j

�
Stable for α < 1 Δt, Δx Monotonic

diffusive
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oscillations (negligible phase lag), but it is very diffusive. The Lax and Matsuno
algorithms are also very diffusive. The leapfrog algorithm is not diffusive and
conserves the concentration variance but it produces oscillations with undesirable
negative values. The Lax–Wendroff method is slightly diffusive and produces small
unwanted oscillations with negative values. Filters are generally applied to avoid
unphysical negative values, but such filters may destroy the conservation properties
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x

Figure 7.10 Comparison between exact analytic (red) and numerical (black) solutions of the 1-D advection equation
for a square function. The velocity c is constant. The different numerical algorithms are labeled in the
panels. The original square function is centered at x = 20 and the adopted Courant number is equal to
0.5. The periodic boundary condition for the advected field is zero at x = 0 and x = 100. The results are
shown after 40 time steps. The Euler forward algorithm is unstable (note the different scale used for the
y-axis).
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of the numerical algorithms. The stencils associated with some of the algorithms are
shown in Figure 7.11. Finally, Figure 7.12 shows the performance of different
algorithms in the case of the diagonal advection of a square wave in a 2-D domain.
Again, one notes the strong numerical diffusion associated with the upwind scheme
and the presence of large oscillations in the case of the leapfrog scheme. The
multidimensional definite advection transport algorithm (MPDATA) (Smolarkiewicz,
1984; see Section 7.6) provides positive definite solutions, but with large overshoots.
The Lax–Wendroff scheme with flux limiters (see Section 7.5) performs best and the
QUICKEST algorithms exhibit significant oscillations (Gross et al., 1999).
In summary, first-order methods such as the upstream algorithm are characterized

by numerical diffusion in the solution and, as a result, tend to reduce the amplitude of
peaks and to smooth spatial gradients that are present in the initial tracer distribu-
tions. High wavenumber components are also eliminated. Dispersion, which is
common to the simple high-order methods described above, tends to distort the
solution since it causes all waves, and specifically the small waves, to lag the true

n+1

n

n–1

j–1 j j+1 j–1 j j+1

n

n+1

n–1

FTCS Implicit

UpstreamLax

n+1

n

n–1

j–1 j j+1 j–1 j j+1

n

n+1

n–1

j–2 j+2 j+2j–2

Regular leapfrog Upwind leapfrog

Matsuno Fourth-order leapfrog

(a)

(b)

Figure 7.11 Stencils describing several numerical algorithms for the approximate solution of the 1-D advection equation.
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solution. Numerical diffusion is generally viewed as a lesser evil because it merely
causes loss of information, while dispersion generates spurious information.

7.3.5 Generalization to Variable Wind Speed and Grid Size

The previous discussion has highlighted some fundamental properties of different
Eulerian algorithms. In practical applications, the wind in the x-direction may not
be uniform (c is replaced by u(x, t)), and the discretization interval Δxj may vary

Figure 7.12 Two-dimensional advection of a square wave of width 20Δx and initial concentration = 1 advected
over 50 grid cells in each coordinate direction for a Courant number of 0.25. (a) Exact solution; (b) first-order
upstream; (c) leapfrog; (d) QUICKEST; (e) Lax–Wendroff with flux limiters, (f) MPDATA. Reproduced from
Gross et al. (1999) with permission from the American Society of Civil Engineers (ASCE).
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along the spatial dimension x. In that case, the space derivative in the conservative
1-D flux-form equation:

∂Ψ
∂t

þ ∂ uΨð Þ
∂x

¼ 0 (7.101)

is replaced by its second-order centered finite-difference approximation:

∂ uΨð Þ
∂x

¼ Aj�1 uΨð Þj�1 þ Bj uΨð Þj þ Cjþ1 uΨð Þjþ1 (7.102)

where

Aj ¼ Δxjþ1 � 2Δxj
Δxj Δxj þ Δxjþ1

� � Bj ¼ Δxjþ1 � Δxj
ΔxjΔxjþ1

Cj ¼ Δxj
Δxj Δxj þ Δxjþ1

� �
and Δxj ¼ xj � xj�1,Δxjþ1 ¼ xjþ1 � xj. This center-difference scheme can be applied
in the case of explicit, implicit, or Crank–Nicholson algorithms.

7.3.6 Mass Conservation

If we integrate the 1-D advection equation (7.17) over the spatial interval [A, B] and
between time levels tn and tn+1, we find the conservation expression

ðB
A

Ψdx

24 35nþ1

¼
ðB
A

Ψdx

24 35n

þ c ΨA � ΨB½ � (7.103)

where we have again assumed c to be fixed. Condition (7.103) must be met for tracer
mass to be conserved with ΨA and ΨB representing boundary conditions. In the
simple case of the FCTS scheme, it is easy to evaluate the left-hand side of this
integral relation:

Δx
XjB
j¼jA

Ψnþ1
j

" #
¼ Δx

XjB
j¼jA

Ψn
j � c

Δt
2Δx

Ψn
jþ1 � Ψn

j�1

� �� 
(7.104)

or

Δx
XjB
j¼jA

Ψnþ1
j

" #
¼ Δx

XjB
j¼jA

Ψn
j

" #
þ cΔt Ψn

jA�1=2 � Ψn
jBþ1=2

� �
(7.105)

if

Ψn
jA�1=2 ¼ Ψn

jA�1 þ Ψn
jA

� �
=2 and Ψn

jBþ1=2 ¼ Ψn
jBþ1 þ Ψn

jB

� �
=2

Thus, under the conditions adopted here, the accumulation of the conservative tracer
Ψ in the domain [A, B] is proportional to the net flux (c Ψ) at the boundaries A and
B. The finite-difference analog has preserved the integral expressed by the con-
tinuum equation (7.103). If the fluxes across the external boundaries are zero or if the
domain is periodic with ΨA = ΨB, mass is fully conserved in the domain. If the
constant velocity c is replaced by a velocity u(x, t) that varies with space and time,
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tracer conservation will be generally obtained if one considers the finite difference
analog of the flux-form equation (7.2) but not its advective form (7.7).

7.3.7 Multidimensional Cases

The 1-D advection problem can be generalized to multiple spatial dimensions. In a
2-D Cartesian space (x, y), the flux-conservative form of the advection equation is
expressed by

∂Ψ
∂t

þ ∂ uΨð Þ
∂x

þ ∂ vΨð Þ
∂y

¼ 0 (7.106)

where u and v are the velocities of the wind components in the x and y directions,
respectively. If we assume constant grid spacing, the discretization leads to the
following expression

Ψnþ1
i, j � Ψn

i, j

Δt
þ uΨð Þiþ1, j � uΨð Þi�1, j

2Δx
þ vΨð Þi, jþ1 � vΨð Þi, j�1

2Δy
¼ 0 (7.107)

where Δx and Δy are the grid spacings in the x and y directions, and the indices i and
j refer to these two directions respectively. If the differences in space are estimated at
time tn (explicit method), the algorithm is unconditionally unstable, but it can be
made stable by adding numerical diffusion as in the 1-D case. If estimated at time
tn+1 (implicit method), the algorithm is unconditionally stable. Expression (7.107)
can be extended to three dimensions and solved for variable grid spacing. A Crank–
Nicholson form of (7.107) can also be easily derived. The matrix of the system
becomes rapidly very large and is not banded as in the 1-D case. Three-dimensional
advection in practical applications is usually performed by operator splitting, with
successive numerical solution of the 1-D advection equation over each dimension for
individual time steps.

7.3.8 Boundary Conditions

The resolution of hyperbolic equations such as the advection equation applied to a
limited spatial domain requires that a condition be imposed at the boundary through
which material flows into the domain. In the 1-D case with a domain [a, b], the
condition must be specified at point x = a if the velocity is positive (c > 0) and at
x = b in the opposite situation (c < 0). In some cases, the numerical algorithm
requires that an additional condition be provided at the outflow boundary. By
applying such a condition without precaution, the problem becomes ill-posed, and
the algorithm may provide unstable solutions. This is the case when centered
differences are used to represent space derivatives. Consider a 1-D flow on a domain
[a, b] with a positive constant velocity c and an inflow boundary condition
Ψ a; tð Þ ¼ H tð Þ at location x = a. We approximate the spatial derivative by the
leapfrog (CTCS) scheme (j = 1, J):

Ψnþ1
j ¼ Ψn�1

j � α Ψn
jþ1 � Ψn

j�1

� �
(7.108)
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At grid point j = 1, the solution is easily calculated:

Ψnþ1
1 ¼ Ψn�1

1 � α Ψn
2 � Ψn

0

� �
(7.109)

since Ψn
0 ¼ H tnð Þ is specified. The calculation of the solution at grid point j = J,

Ψnþ1
J ¼ Ψn�1

J � α Ψn
Jþ1 � Ψn

J�1

� �
(7.110)

is not straightforward because, in a well-posed problem, no value should be imposed
at point J + 1. If a value is nevertheless imposed at this outflow boundary, e.g.,
Ψn

Jþ1 ¼ Ψn
J or Ψ

n
Jþ1 ¼ 0, the scheme will produce unrealistic (unphysical) reflections

that propagate upstream. An illustration is provided by Figure 7.13 that shows the
advection of a bell-shaped function by a leapfrog scheme with Ψ = 0 at both limits of
the domain. As the signal reaches the downwind boundary, spurious wave reflections
(saw-toothed artifacts) are produced and propagate upstream. This is generalizable to
multidimensional problems: Spurious reflections often occur at the lateral boundaries
of a limited-domain nested model driven by boundary conditions from a larger-
domain model. Even if the imposed boundary conditions verify the analytic solution
of the advection equation, some reflections are to be expected since the numerical
solution is slightly different.
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Figure 7.13 Advection of a bell-shaped function (arbitrary units) by a leapfrog scheme over a domain of 1000 km with a
Courant number of 0.1 (c = 20 m s–1, Δt = 50 s, Δx = 10 km) and boundary conditions of zero at the
edges of the domain. Initial condition (a), solution after six hours (b), after eight hours (c) and after ten
hours (d). From P. Termonia, Royal Meteorological Institute of Belgium.
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In practical atmospheric applications, the sign of the wind velocity and hence the
direction of the flow at the boundary of the domain frequently change as the model
simulation proceeds. It is therefore difficult to identify the boundary at which a
condition should be specified. This problem is usually addressed by imposing some
conditions along the entire boundary of the model domain (ill-posed condition),
while adding in the equations a relaxation term that damps the high-frequency signal
produced at the downwind boundaries. In this case, the original advection equation is
modified as (Davies, 1983):

∂Ψ
∂t

þ c
∂Ψ
∂x

¼ �λ xð Þ Ψ� eΨÞ
�

(7.111)

where the relaxation coefficient λ(x) is different from zero only in the boundary
zones (a few grid cells near the inflow and outflow boundaries, called buffer zones)
and eΨ is an externally specified field chosen to be close to the expected solution. The
value of λ(x) and the width of the relaxation zone (typically 2Δx to 6Δx) need to be
optimized to avoid the reflection of waves while minimizing perturbation to the
solution. To ensure stability, the relaxation term should be estimated at time tn+1.
An alternative damping scheme is to add a diffusion term to the advection equation:

∂Ψ
∂t

þ c
∂Ψ
∂x

¼ ∂
∂x

K xð Þ ∂Ψ
∂x

� 
(7.112)

where the diffusion coefficient K(x) is non-zero only near the boundary zones.
Davies (1983) discusses the stability conditions for this approach.

7.4 Elementary Finite Volume Methods

In finite volume approaches, rather than considering the values of function Ψ at
specified points of a model grid, one calculates the average of this function over
defined grid cells. The grid points are now viewed as the centers of grid cells, often
called gridboxes. The cell boundaries are called cell edges, walls, or interfaces.

7.4.1 One-Dimensional Formulation

In the 1-D problem (x-direction), the location of the cell center is noted xj, while the
locations of the cell interfaces are noted xj–1/2 (left side) and xj+1/2 (right side). For
each grid cell ( j) (whose size is assumed here to be constant and equal to Δx):

xjþ1=2 ¼ 1

2
xj þ xjþ1

� �
(7.113)

except at the left ( j = 1) and right ( j = N) boundaries of the model, where we adopt

x1=2 ¼ x1 � x2 � x1ð Þ
2

xNþ1=2 ¼ xN þ xN � xN�1ð Þ
2

(7.114)

The average value Ψj of the variable distribution ψ(x, t) inside the cell is

Ψj ¼ 1

Δx

ðxjþ1=2

xj�1=2

ψ x; tð Þ dx (7.115)
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If ψ(x, t) is a tracer concentration, then Ψj is the mean tracer concentration and Ψj Δx
the tracer mass in grid cell ( j).
The exact (analytic) solution of the 1-D advection equation with fixed wind

velocity c, when integrated over a time period Δt, is

ψ x; t þ Δtð Þ ¼ ψ x� cΔt; tð Þ (7.116)

or, when the integral form is considered instead,

1

Δx

ðxjþ1=2

xj�1=2

ψ x; t þ Δtð Þ dx ¼ 1

Δx

ðxjþ1=2

xj�1=2

ψ x� cΔt; tð Þ dx (7.117)

Recognizing that the first term in (7.117) is equal to Ψnþ1
j , and defining x0 ¼ x� cΔt,

one can write:

Ψnþ1
j ¼ 1

Δx

ðxjþ1=2�cΔt

xj�1=2�cΔt

ψ x0; tð Þ dx0 (7.118)

Splitting this integral into different contributing parts, one writes equivalently:

Ψnþ1
j ¼ 1

Δx

ðxjþ1=2

xj�1=2

ψ x0; tð Þ dx0 þ 1

Δx

ðxj�1=2

xj�1=2�cΔt

ψ x0; tð Þ dx0 � 1

Δx

ðxjþ1=2

xjþ1=2�cΔt

ψ x0; tð Þ dx0

(7.119)

or

Ψnþ1
j ¼ Ψn

j þ
1

Δx

ðxj�1=2

xj�1=2�cΔt

ψ x0; tð Þ dx0 � 1

Δx

ðxjþ1=2

xjþ1=2�cΔt

ψ x0; tð Þ dx0 (7.120)

The mean tracer concentration in grid cell j at time tn+1 is thus obtained by adding the
mean value of the tracer concentration that enters grid cell ( j) to the existing mean
value in that cell at time tn and removing the mean value that is transported
downstream from cell ( j) to cell ( j + 1). In this expression, the mass leaving the
upwind donor cell equals the mass entering the neighboring downwind receptor cell.
The finite volume method is therefore perfectly mass-conserving, which is its main
advantage.
If Fnþ1=2

j�1=2 and Fnþ1=2
jþ1=2 represent the mean fluxes through the left and right interfaces

of grid cell j, respectively, averaged over time Δt ¼ tnþ1 � tn, we write equivalently
to (7.120):

Ψnþ1
j ¼ Ψn

j �
Δt
Δx

Fnþ1=2
jþ1=2 � Fnþ1=2

j�1=2

� �
(7.121)

For the period Δt during which the subgrid function ψ(x) is assumed to remain
unchanged, donor cell ( j – 1) transfers a mass to receptor cell ( j):

Fnþ1=2
j�1=2 Δt ¼

ðxj�1=2

xj�1=2�cΔt

ψ xð Þ dx (7.122)
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where the interval [xj–1/2 – cΔt, xj–1/2] corresponds to the shaded area in cell ( j – 1)
(Figure 7.14). Similarly, the mass transferred from donor grid cell j to receptor grid
cell (j + 1) is

Fnþ1=2
jþ1=2 Δt ¼

ðxjþ1=2

xjþ1=2�cΔt

ψ xð Þ dx (7.123)

Different implementations of the finite volume method (i.e., different assumptions
for the subgrid distribution of ψ(x) inside each cell) lead to different estimates of the
fluxes at the interfaces of the grid cells. The simplest assumption is that ψ(x) is
uniform inside each cell, so that the state Ψj at the grid center is identical to the state
everywhere in the grid. This is the donor cell method. If the subgrid function ψ(x) is
assumed to vary linearly with position x inside each grid cell, the algorithm is called
piecewise linear. If ψ(x) is a second-order polynomial the algorithm is called
quadratic or piecewise parabolic; see examples in Figure 7.15.

Donor-cell algorithm

In the simple donor-cell scheme with c> 0, the subgrid function ψ(x) is uniform inside
each cell, and the mass Fj–1/2 Δt advected from cell ( j – 1) to cell ( j) over a time period
Δt is equal to Ψj�1 cΔt ¼ Ψj�1 αΔx, Simultaneously, a mass equal to Fjþ1=2Δt ¼
Ψj cΔt ¼ Ψj αΔx is displaced from cell (j) to cell ( j + 1). From (7.121), we find:

Ψnþ1
j ¼ Ψn

j � α Ψn
j � Ψn

j�1

� �
¼ Ψn

j�1αþ Ψn
j 1� αð Þ (7.124)

Similarly, if c < 0, we have

Ψnþ1
j ¼ Ψn

j � α Ψn
jþ1 � Ψn

j

� �
¼ Ψn

j 1� αð Þ � Ψn
jþ1α (7.125)

As shown by Figure 7.14 displayed for c > 0, term Ψn
j�1 α Δx accounts for the mass

transferred from the donor grid cell during the time step Δt, while term Ψj (1 – α) Δx

Ψj

Ψj–1

Ψj+1

cΔtcΔt

αΔx αΔx(1– α) Δx

x

c

xj+1/2xj–1/2

Figure 7.14 Representation of the donor-cell scheme in one dimension x. During time step Δt, the shaded area in cell
j is transported in the x-direction to cell j + 1.
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represents the mass that remains in cell j during this time period. The addition of
these two terms represents the resulting mass in gridbox ( j) at time tn+1. This
expression, derived in the simple case where ψ(x) is assumed uniform, is identical
to the upstream formula (7.74). The method is first-order accurate and is therefore
characterized by large numerical diffusion.

Piecewise linear algorithm

In the case of the piecewise linear approach, we write for xj�1=2 < x < xjþ1=2:

ψ xð Þ ¼ Ψj þ bj x� xj
� �

(7.126)

where Ψj denotes the value of linear function ψ(x) at the center of the cell (also the
mean value of ψ(x) in the cell), and bj is the slope of the function inside the cell.
For a fixed velocity c > 0 and an equally spaced grid, the flux at the left cell
interface is:

Fnþ1=2
j�1=2 ¼ c

Δt

ðtnþ1

tn

ψ xj�1=2; t
� �

dt ¼ c

Δt

ðtnþ1

tn

Ψn
j�1 þ bnj�1 xj�1=2 � xj�1 � c t � tnð Þ� �

dt

(7.127)

or

Fnþ1=2
j�1=2 ¼ c Ψn

j�1 þ
1

2
bnj�1 Δx� cΔtð Þ

� �
(7.128)

Similarly, for c < 0, one finds

Fnþ1=2
j�1=2 ¼ c Ψn

j �
1

2
bnj Δxþ cΔtð Þ

� �
(7.129)

From expression (7.119), one can easily deduce that the average value of subgrid
function ψ(x) in cell (j) at time tn+1 is given by:

Ψnþ1
j ¼ Ψn

j � α Ψn
j � Ψn

j�1

� �
� α

2
bnj � bnj�1

� �
1� αð ÞΔx (7.130)

if c > 0, and

(a) (b) (c)

c

c c
x1 x2 x3 x4

x1 x2 x3 x4 x1 x2 x3 x4

Figure 7.15 Representation of the spatial distribution of a tracer within four grid cells: zeroth-, first-, and second-order
polynomials.
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Ψnþ1
j ¼ Ψn

j � α Ψn
jþ1 � Ψn

j

� �
þ α

2
bnjþ1 � bnj

� �
1þ αð ÞΔx (7.131)

if c < 0. This algorithm can be viewed as an extension of the donor-cell scheme with
a correction term that disappears if the slope of function ψ(x) is equal to zero.

The value of bj is expressed as a function of the values of function Ψ at the center
of adjacent cells. Different options are: (1) centered slope or Fromm method, (2)
upwind slope or Beam–Warming method, and (3) downwind slope (equivalent to the
Lax–Wendroff algorithm). The values of the bj coefficients are respectively

bj ¼ Ψjþ1 � Ψj�1

2Δx
, bj ¼ Ψj � Ψj�1

Δx
, bj ¼ Ψjþ1 � Ψj

Δx

The resulting algorithm for c > 0 is in the case of the Fromm scheme (which is
upwind biased)

Ψnþ1
j ¼Ψn

j �
α
4

Ψn
jþ1þ3Ψn

j �5Ψn
j�1þΨn

j�2

� �
þα2

4
Ψn

jþ1�Ψn
j �Ψn

j�1þΨn
j�2

� �
(7.132)

In the case of the Beam–Warming scheme (also upwind biased), it is (see also
expression 7.82)

Ψnþ1
j ¼ Ψn

j �
α
2

3Ψn
j � 4Ψn

j�1 þ Ψn
j�2

� �
þ α2

2
Ψn

j � 2Ψn
j�1 þ Ψn

j�2

� �
(7.133)

and, in the case of the Lax–Wendroff scheme, we find the three-point stencil
(spatially centered) expression that is identical to (7.52)

Ψnþ1
j ¼ Ψn

j �
α
2

Ψn
jþ1 � Ψn

j�1

� �
þ α2

2
Ψn

jþ1 � 2Ψn
j þ Ψn

j�1

� �
(7.134)

Figure 7.19 in Section 7.5 shows the numerical solution for advection of a step
function obtained with the second-order accurate Fromm and Beam–Warming
methods. The solution from the Lax–Wendroff algorithm was previously shown in
Figure 7.10. In all three cases, the solution is not monotonic.

Other implementations of the finite volume method with specific subgrid distribu-
tions of function ψ(x) (e.g., the algorithms of Russell and Lerner, 1981; Colella and
Woodward, 1984; Prather, 1986) are discussed in Section 7.5.

7.4.2 Two-Dimensional Formulation

When extended to two dimensions (see Figure 7.16), the finite volume algorithm is
expressed as:

Ψnþ1
i, j ¼ Ψn

i, j �
Δt
Δx

Fnþ1=2
iþ1=2, j � Fnþ1=2

i�1=2, j

� �
� Δt
Δy

Gnþ1=2
i, jþ1=2 � Gnþ1=2

i, j�1=2

� �
(7.135)

where F and G represent the mean fluxes in the x- and y-direction respectively. The
challenge in defining accurate algorithms is to properly formulate the fluxes at the
interfaces as a function of the dependent variables in the neighboring cells.

Another approach is to solve the discretized form (7.6) for the mean density hρij
inside grid cell j (Dukowicz and Baumgardner, 2000; Lipscomb and Ringler, 2005;
Miura, 2007; Skamarock and Menchaca, 2010):

ρh inþ1
j ¼ ρh inj �

Δt
Aj

X
Lc Fnþ1=2

j n
� �

(7.136)
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Here, Aj is the area of the cell, Fj the mass flux across the interfaces of the cell, n a
unit vector perpendicular to the cell boundaries, and Lc the length of each cell edge.
The sum applies to all cell edges. The flux can be estimated through a remapping
algorithm, as depicted in Figure 7.17 for a hexagonal cell where the fluid velocity v
at one point of each cell boundary (e.g., center of the cell edge) is projected
backward to define the upstream flux-area Am (shaded parallelogram). The mean
density in area Am is derived by a polynomial fit using the mean densities in the
neighboring cells at time level tn. The flux Fj is then derived from the mass contained
in area Am that is displaced across the cell edge over a time interval Δt with velocity
v. The mass originating from all neighborhood cells is remapped onto cell j and
provides the mean density in this cell at time level tn+1. The accuracy of the scheme

Wind direction

G i,j –1/2

G i,j +1/2

F i +1/2,jF i –1/2,j (i,j )

Figure 7.16 Representation of orthogonal flux components F (in the x-direction) and G (in the y-direction) across cell
interfaces in two dimensions. The flux form adopted for the algorithm ensures mass conservation.

Lc

Aj

·ρjÒ

n

V

Am

–VΔt

Figure 7.17 Schematic representation of the 2-D remapping algorithm of Miura (2007) in the case of a hexagonal cell.
The shaded region represents the mass advected through the cell boundary over a time step Δt. Redrawn
from Skamarock and Menchaca (2010).
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depends on the order of the polynomial that is adopted. In the incremental remapping
of Dukowicz and Baumgardner (2000) and of Lipscomb and Ringler (2005),
all endpoints on the grid are tracked back, so that the upstream flux area is a polygon.
The method bears some similarities with semi-Lagrangian schemes discussed in
Section 7.8.

7.5 Preserving Monotonicity: Flux-Corrected Transport

As stated in Section 7.4, the solutions provided by high-order accurate algorithms are
not monotonic. Preserving monotonicity in the solution of the advection equation is
an important requirement for chemical transport models. The generation of new
extrema or “ripples” in the vicinity of steep gradients (including shocks and discon-
tinuities of the solution) is unacceptable in most applications. Correction techniques
have therefore been proposed to eliminate these unphysical maxima or minima
caused by numerical dispersion in high-order algorithms.

One-dimensional flux-corrected advection algorithms are based on the finite
volume approximation equation (7.121)

Ψnþ1
j ¼ Ψn

j �
Δt
Δx

Fnþ1=2
jþ1=2 � Fnþ1=2

j�1=2

� �
in which Fnþ1=2

j�1=2 and Fnþ1=2
jþ1=2 are again the flux averaged over the adopted time step at

the edge of grid cell (j). The presence of spurious oscillations in the solution is avoided
by preventing the total variation (TV) in the discrete representation of the solution

TV ¼
X
j

Ψj � Ψj�1

�� ��
from increasing as the integration proceeds. This is accomplished by limiting the
amplitude of the upstream and downstream fluxes, so that the following condition:X

j

Ψnþ1
j � Ψnþ1

j�1

��� ��� �X
j

Ψn
j � Ψn

j�1

��� ��� (7.137)

is fulfilled (total variation diminishing or TVD condition). An increase in the total
variation (TV) is a measure of the formation of oscillations in the solution.

Fluxes can be limited in the discrete form of the advection equation by specifying
the fluxes at each edge of the finite volume cells [here for (j – 1/2)] as

Fj�1=2 ¼ FL
j�1=2 � Φ rj�1=2

� �
FL
j�1=2 � FH

j�1=2

h i
(7.138)

where FL
j�1=2 andF

H
j�1=2 represent the fluxes calculated by a low-order and a high-

order method, respectively. The flux limiter functions Φ(rj–1/2) are expressed as a
function of parameter rj–1/2 defined as

rj�1=2 ¼
Ψj�1 � Ψj�2

Ψj � Ψj�1
for c > 0 (7.139)
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rj�1=2 ¼
Ψjþ1 � Ψj

Ψj � Ψj�1
for c < 0 (7.140)

Similar expressions can be established for the flux at the other edge ( j + 1/2) of the
cell. One can show that, to fulfill the TVD condition, the flux limiter function must
be chosen such

r � Φ rð Þ � 2r for 0 � r � 1

1 � Φ rð Þ � r for 1 � r � 2

1 � Φ rð Þ � 2 for r > 2

In practical terms, the solution can be made monotonic by adopting for the Φ(r) a
value close to zero in the vicinity of sharp gradients (low-order method) and a value
close to 1–2 (higher-order method) in regions where the solution is expected to be
smooth.
To illustrate the flux limiter method, we consider the linear piecewise scheme

discussed in Section 7.4. In this particular case, the flux at the left interface of a grid
cell (j) can be expressed by (7.128) and (7.129) or

Fnþ1=2
j�1=2 ¼ c Ψn

j�1 þ
1

2
1� αð Þ bnj�1Δx

� �
for c > 0 (7.141)

Fnþ1=2
j�1=2 ¼ c Ψn

j �
1

2
1þ αð Þ bnj Δx

� �
for c < 0 (7.142)

A flux limiter required to preserve monotonicity is introduced by adjusting the
second term in expression (7.142). This is accomplished by replacing bj–1 Δx and
bj Δx in equations (7.141–7.142) by Φ(rj–1/2) (Ψj – Ψj–1) The concept of flux limiter
is therefore similar to the concept of slope limiter, which is sometimes used to
characterize the flux-corrected transport. The resulting “corrected flux” is therefore

Fnþ1=2
j�1=2 ¼ c Ψn

j�1 þ
1

2
1� αð Þ Φ rnj�1=2

� �
Ψn

j � Ψn
j�1

� �� �
for c > 0 (7.143)

Fnþ1=2
j�1=2 ¼ c Ψn

j �
1

2
1þ αð Þ Φ rnj�1=2

� �
Ψn

j � Ψn
j�1

� �� �
for c < 0 (7.144)

with rj–1/2 defined by expressions (7.139) or (7.140), depending on the sign of the
wind velocity c. By adjusting all indices in the above expression, one finds the value
of the corrected flux at the right edge of cell (j), and the solution Ψnþ1

j at time tn+1 is
derived by applying (7.121) with an appropriate choice for the limiter Φ(r). Note that
the choice of Φ(r) = 0 and Φ(r) = 1 for all values of r, corresponds the donor cell and
Lax–Wendroff algorithms, respectively. Similarly, the choice Φ(r) = r and
Φ(r) = (1 + r)/2 corresponds respectively to the Beam–Warming and the Fromm
schemes discussed in Section 7.4. None of these four limiters satisfy the TVD
condition, and as a result the corresponding schemes do not provide monotonic
solutions.
Several formulations for flux limiters that satisfy the TVD condition and hence

lead to monotonic solutions have been proposed (Roe, 1986). The following
expressions
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Φ rð Þ ¼ max 0; min 1; rð Þ½ �
define the minmod method,

Φ rð Þ ¼ max 0; min 2r; 1ð Þ; min r; 2ð Þ½ �
the superbee method, and

Φ rð Þ ¼ r þ ��r��
1þ ��r��

the van Leer algorithm. Figure 7.18 shows as a function of parameter r the values of
the three limiters Φ(r), as well as the domain in which the TVD condition is met.
Figure 7.19 shows how the application of a minmod and superbee flux correction
improves the solution. Several other limiters have been proposed to enforce mono-
tonicity of the solution.

An interesting numerical method that overcomes the excessive diffusion of the
upstream algorithm and provides monotonic solutions is the flux-corrected scheme
developed by van Leer (1977, 1979). To describe this algorithm, we start again from
the finite volume expression

Ψnþ1
j ¼ Ψn

j �
Δt
Δx

Fjþ1=2 � Fj�1=2

� �
(7.145)

where Ψj applies to the center of cell j and Fj+1/2 and Fj–1/2 are the time-averaged flux
across boundaries j + ½ and j – ½, respectively. We assume here that the wind field is
not uniform, and Fj+1/2 is therefore computed as the product of the velocity uj+1/2 by
an estimate of Ψ at the grid cell boundary. This estimate is obtained from a Taylor’s
series expansion on the gridded Ψ field:

Fnþ1=2
j�1=2 ¼ unj�1=2 Ψn

j�1 þ
1

2
1� unj�1=2

Δt
Δx

� 
Δn
j�1Ψ

� �
for unj�1=2 > 0 (7.146)

Fnþ1=2
j�1=2 ¼ unj�1=2 Ψn

j �
1

2
1þ unj�1=2

Δt
Δx

� 
Δn
j Ψ

� �
for unj�1=2 < 0 (7.147)

Superbee limiter Minmod limiter van Leer limiter

r r r

f(
r)

f(
r)

f(
r)

Figure 7.18 Flux/slope limiter functions (blue curve) for the superbee, minmod and van Leer algorithms
superimposed on the regions (shaded) in which the TVD condition is met. Courtesy of Graham W. Griffiths.
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where Δn
j Ψ/Δx corresponds to the slope bj of the subgrid function ψ(x). Van Leer

proposes for Δn
jΨ an expression that limits the flux at the edge of the grid cells (see

also Allen et al., 1991):

Δn
j Ψ ¼ 2

Ψn
j � Ψn

j�1

� �
Ψn

jþ1 � Ψn
j

� �
Ψn

jþ1 � Ψn
j�1

� � (7.148)

if (Ψj – Ψj–1) (Ψj+1 – Ψj) > 0, and by Δn
j Ψ ¼ 0 otherwise. The algorithm is easily

extended to two dimensions by using expression (7.135) rather than (7.145) as the

x x

Ψ
(x
)

Ψ
(x
)

Ψ
(x
)

Minmod Superbee

Beam–Warming Lax–Wendroff

Donor cell Fromm

Figure 7.19 Advection of a sharp discontinuity (step function) using six different algorithms: the first-order diffusive
donor-cell scheme; the second-order non-monotonic Fromm and Beam–Warming algorithms; and the
flux-corrected minmod and superbee methods. The results are obtained after 300 time steps with Δt = 0.1
over a grid of 100 points with a spacing Δx = 1. From C. P. Dullemond with permission.
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initial step. Although considerably less diffusive than the upstream scheme, this
algorithm still contains scale-dependent diffusion. Once the spatial distribution of the
transported quantity has diffused to a preferred shape, the diffusion decreases
considerably.

7.6 Advanced Eulerian Methods

Several advanced schemes for solving the advection equation have been developed
with the purpose of avoiding the spurious oscillations found in high-order methods
and the excessive numerical diffusion characteristic of low-order methods. They can
be viewed as an extension of some of the fundamental methods discussed in the
previous sections.

The MPDATA Scheme of Smolarkiewicz

TheMultidimensional Definite Advection Transport Algorithm (MPDATA) proposed
by Smolarkiewicz (1983, 1984) focuses on compensating the first-order error of the
upstream scheme by reducing the implicit numerical diffusion. Starting from the
upstream scheme:

Ψ�
j ¼ Ψn

j � α Ψn
j � Ψj�1

� �
(7.149)

which provides a first guess Ψ�
j for the solution at time tn+1, the algorithm uses a

second step in which the velocity c is replaced by a compensatory “anti-diffusion
velocity” uA defined as

uA ¼ Kvisc

Ψ
∂Ψ
∂x

for Ψ > 0 and uA ¼ 0 for Ψ ¼ 0 (7.150)

with Kvisc ¼ 0:5 cΔx� c2Δtð Þ ¼ 0:5 cΔx 1� αð Þ. Here, the ratio (1/Ψ) ∂Ψ/∂x is
calculated iteratively using the latest estimate Ψnþ1

j of the solution (Ψ�
j at the first

iterative step). The value of the anti-diffusion velocity at half mesh point j + ½ is
therefore

uA ¼ Kvisc

Ψ
∂Ψ
∂x

¼ 2Kvisc

Δx

Ψnþ1
jþ1 � Ψnþ1

j

Ψnþ1
jþ1 þ Ψnþ1

j þ ε

 !
(7.151)

where ε is a small value that ensures that uA is equal to zero when Ψ�
j and Ψ�

jþ1 are
equal to zero. The “anti-diffusion” step becomes:

Ψnþ1
j ¼ Ψ�

j �
Δt
2Δx

uAjþ1=2 þ juAjþ1=2j
� �

Ψ�
j þ uAjþ1=2 � juAjþ1=2j

� �
Ψ�

jþ1

h i
þ Δt
2Δx

uAjþ1=2 þ juAjþ1=2j
� �

Ψ�
j þ uAjþ1=2 � juAjþ1=2j

� �
Ψ�

j�1

h i (7.152)

Several iterations can be performed to improve accuracy.
This simple and computationally efficient algorithm is positive definite (if the

initial condition is positive) with considerably less implicit diffusion than in the
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upstream method (Figure 7.20). It is stable under the CFL condition. It does not
preserve monotonicity of the transported quantities and, in general, the solutions are
not free from small oscillations. The algorithm can easily be extended to multiple
dimensions, with an anti-diffusion pseudo velocity defined in each direction.
Smolarkiewicz (2006) expanded his MPDATA algorithm to arbitrary finite volume
frameworks.

The SHASTA Scheme of Boris and Book

The Sharp and Smooth Transport Algorithm (SHASTA) proposed by Boris and
Book (1973) is an Eulerian finite difference algorithm that makes use of the flux-
corrected transport (FCT) technique described in Section 7.5. It ensures monotoni-
city of the solution, conserves mass, and handles steep gradients and shocks particu-
larly well. The scheme includes an advection step followed by a corrective step that
reduces the effect of the diffusion produced by the first step. We consider here the
1-D case and assume a variable velocity u(x).
Advection step. The SHASTA algorithm first defines fluid elements formed by

connecting linearly adjacent values (Ψj and Ψj+1 in Figure 7.21). Each resulting
trapezoidal element is displaced by the distance u Δt. Since the wind velocity u(x)
is variable in space, the advection is not a simple translation of the initial element;
contraction or dilatation along x can take place. We assume a Courant number less
than 0.5, so that the function at grid point j can never be advected further than the grid
cell boundaries. After the displacement of the function is completed, the displaced
elements are interpolated back onto the original Eulerian grid (see Figure 7.21).
In their algorithm, Boris and Book (1973) prescribe the wind velocities at the grid

points xj–1, xj, xj+1, and at the intermediate time level tn+1/2. They deduce at each grid
point j a first approximate value for the function Ψ and time level tn+1:

(a)

–250 –150 –50 50 150 250

4.0

0.0

2.0

–2.0

(b)

–250 –150 –50 50 150 250

4.0

0.0

2.0

–2.0

Figure 7.20 Comparison between two advection algorithms applied to a cosine-shaped function (resolved with
12 intervals). (a) first-order upwind scheme; (b) second-order accurate Smolarkiewicz scheme in which
the numerical diffusion that characterizes the upwind scheme is compensated by the introduction of an
“anti-diffusion” velocity. As in Figure 7.9, the adopted grid is uniform with 500 cells. The Courant number
is 0.5 and the solution is shown after 1600 time steps. From Smolarkiewicz (2006).
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Ψ�
j ¼

1

2
Q2

� Ψn
j�1 � Ψn

j

� �
þ 1

2
Q2

þ Ψn
jþ1 � Ψn

j

� �
þ Q� þ Qþ
� �

Ψn
j (7.153)

where

Q� ¼
1

2
þ unþ1=2

j
Δt
Δx

1� Δt
Δx

unþ1=2
j�1 � unþ1=2

j

� � (7.154)

and

Qþ ¼
1

2
� unþ1=2

j
Δt
Δx

1þ Δt
Δx

unþ1=2
jþ1 � unþ1=2

j

� � (7.155)

For a uniform velocity c, the displacement of the trapezoid corresponds to a transla-
tion without deformation, and expression (7.153) becomes

Ψ�
j ¼ Ψn

j �
α
2

Ψn
jþ1 � Ψn

j�1

� �
þ 1

8
þ α2

2

� 
Ψn

jþ1 � 2Ψn
j þ Ψn

j�1

� �
(7.156)

with α = c Δt/Δx. This expression includes a two-sided differencing expression that
approximates the advection, and a diffusion approximation where the diffusion
coefficient is the sum of an independent term (1/8) and a velocity-dependent term
(α2/2). This second term is smaller since c Δt/Δx is chosen to be less than 0.5.
Without the velocity-independent diffusivity, (7.156) is identical to the Lax–
Wendroff algorithm. Following the von Neumann analysis, the amplification coeffi-
cient associated with the advective step is

g kð Þ ¼ 1þ 1

4
þ α2

� 
1� cos kΔxð Þ½ � � iαsin kΔxð Þ (7.157)

Δx

x x xj j+1 j j+1 j j+1

Ψ Ψ Ψ
(a) (b) (c)

t = 0 t = Δt

Ψj Ψj+1

Figure 7.21 Advection of a fluid element. (a) Initial condition. (b) Location and shape of the fluid element after the
advection step. During a time step Δt the two boundaries of the fluid element at location j and j + 1 are
displaced by a distance uj Δt and uj+1 Δt, respectively. Here, the wind velocities are provided at the
intermediate time tn+1/2.. At the end of the advection step, the fluid element is deformed if the velocity u(x)
is not uniform. (c) Interpolation of the fluid element onto the grid. The light orange fraction remains in cell j
while the darker orange fraction goes into cell j + 1. Adapted from Boris and Book (1973).
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and the corresponding amplification factor is

g kð Þj j ¼ 1� 1

4
1� cos kΔxð Þð Þ

� 2
� α2

2
1� 2α2
� �

1� cos kΔxð Þð Þ2
� �( )1=2

(7.158)

The value of this factor is smaller than one for all wave harmonics if the Courant
number is less than 0.5.
Correction (anti-diffusion) step. Assuming that the diffusivity in (7.156) is only

weakly velocity-dependent (α 	 0.5), a second step is applied to remove the
excessive diffusion produced by the advection step. Thus, we write:

Ψnþ1
j ¼ Ψ�

j �
1

8
Ψ�

jþ1 � 2Ψ�
j þ Ψ�

j�1

� �
(7.159)

where Ψ�
j is the approximation for the transported function derived by the first

(advective) step. This can be rewritten as

Ψnþ1
j ¼ Ψ�

j � f jþ1=2 � f j�1=2

� �
(7.160)

where

f j�1=2 ¼ � 1

8
Ψ�

j�1 � Ψ�
j

� �
(7.161)

represents the amount of material (“flux”) crossing the boundaries of grid cell j during
the time step Δt. The amplification coefficient associated with the anti-diffusion step

g kð Þ ¼ 1þ 1

4
1� cos kΔxð Þð Þ (7.162)

is real, so that the anti-diffusion step does not affect the phase properties of the solution.
The overall amplification factor for the two consecutive steps is:

jg kð Þj ¼
(

1� 1

16
1� cos kΔxð Þð Þ2

� 2

� α2

2
1� 2α2
� �

1� cos kΔxð Þð Þ2 1þ 1

4
1� cos kΔxð Þð Þ

� 2
)1=2

(7.163)

in which the velocity-dependent (or α-dependent) term is generally small. Again, the
method is stable when the amplification factor is less than or equal to 1.
The anti-diffusion correction step can introduce spurious extrema and negative

values, which can again be avoided by applying an FCT constraint. The monotoni-
city of the solution is indeed preserved if the anti-diffusion flux f never produces
values for Ψ at any grid point j that are larger than the values at the neighboring
points. This is achieved if, rather than using (7.161), the value of the flux is replaced
by the following FCT condition:

f jþ1=2¼ sign Δjþ1=2

� �
max 0;min Δj�1=2sign Δjþ1=2

� �
;
1

8
jΔjþ1=2j;Δjþ3=2sign Δjþ1=2

� �� �� �
(7.164)
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where

Δjþ1=2 ¼ Ψj�1 � Ψj (7.165)

The FCT step can be improved by replacing the factor 1/8 in (7.164) with a factor
that accounts for the velocity dependence of the diffusivity. Further improvements to
the SHASTA method that lead to more accurate solutions have been introduced by
Boris and Book (1976).

The Piecewise Parabolic Method

In their piecewise parabolic method (PPM), Colella and Woodward (1984) assume
that the subgrid distribution ψ(x) of the tracer concentration inside cell j can be
represented by a quadratic function:

ψ xð Þ ¼ ψj�1=2 þ y xð Þ ψjþ1=2 � ψj�1=2 þ dj 1� y xð Þð Þ
h i

(7.166)

where y = (x – xj–1/2)/Δx. Coefficients ψj�1=2 and ψjþ1=2 are the values of ψ(x) at the
boundaries xj–1/2 and xj+1/2 of cell j, and

dj ¼ 6 Ψn
j �

1

2
ψjþ1=2 þ ψj�1=2

� �� �
(7.167)

where Ψn
j is the mean concentration in grid cell j at time tn. For constant spacing Δx,

it can be shown through interpolation from Ψn
j in nearby zones that the value of ψ(x)

at for example xj+1/2 can usually be expressed as:

ψjþ1=2 ¼
7

12
Ψn

j þ Ψn
jþ1

� �
� 1

12
Ψn

jþ2 þ Ψn
j�1

� �
(7.168)

When the grid cells are unequally spaced, the expressions for ψjþ1=2 and ψj�1=2 are
more complicated. Colella and Woodward (1984) propose a slightly modified inter-
polation procedure in the presence of sharp discontinuities (shocks) to ensure
that these discontinuities remain sharp during the advection step. The effect of
this “steepening” process (Carpenter et al., 1990) is shown in Figure 7.22. Large
discontinuities can still produce oscillations in the post-shock flow. In this case, it is
advised to introduce some dissipation in the neighborhood of the shock. This can be
achieved, for example, by flattening the interpolation profile in the vicinity of the
discontinuity, which is equivalent to reducing locally the order of the method. In this
case, coefficient ψjþ1=2 can be replaced, for example, by

ψflat
jþ1=2 ¼ Ψjf j þ ψjþ1=2 1� f j

� �
(7.169)

where fj 2 [0, 1] is an adjustable factor. Far away from discontinuities or if the shock
profile is sufficiently broad, coefficient fj should be set to zero.

The solution at time tn+1 is obtained by:

Ψnþ1
j ¼ Ψn

j � α anjþ1=2 � anj�1=2

� �
(7.170)

where, for example,
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anjþ1=2 ¼ ψjþ1=2 �
α
2

ψjþ1=2 � ψj�1=2 � 1� 2α
3

� 
dj

� �
(7.171)

Other algorithms for rendering the PPM shape-preserving are presented by Colella
and Sekora (2008).

The Crowley–Tremback–Bott Scheme

To improve the accuracy of the first-order upstream method, Crowley (1968), Trem-
back et al. (1987), and Bott (1989a, 1989b) have also proposed to represent the
transported quantity within each grid cell j by a polynomial ψj, l of order l (with l
assumed to be an even integer number). Thus, at time level n, we write

ψn
j, ℓ yð Þ ¼

Xℓ
k¼0

anj,ky
k (7.172)

where y = (x – xj)/Δx is a dimensionless variable such that –½ � y � ½. We assume
again that the grid spacing Δx is uniform. Coefficients anj,k are determined from the
requirement that the value of ψn

j, ℓ yð Þ agree with the value of Ψn
j at grid points

3
(a)

(b)

2
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Y
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0

2

1

0
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~
X

PPM without steepening

PPM with steepening

Figure 7.22 Advection of a square function using the piecewise parabolic method (PPM) (Carpenter et al., 1990)
without steepening (a) and with steepening (b). The spatial domain extends over 40 Δx with cyclic
boundary conditions. The Courant number α = 0.5. The numerical solution is shown after 1000 time
steps (12.5 revolutions). From Müller (1992). Copyright © American Meteorological Society, used
with permission.
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(i = j – ℓ/2, . . . , j, . . .j + ℓ/2), and that the area covered by ψn
j, ℓ yð Þ in grid cell j equals

Ψn
j Δx. Thus, the coefficients anj,k are expressed as a function of the values of

Ψj, Ψj+1, . . . at the (ℓ + 1) neighboring points. Table 7.2 provides the values of the
coefficients derived for second-order and fourth-order polynomials, while Tremback
et al. (1987) also considers higher order schemes.

As before, the solution for grid cell j at time tn+1 is provided by the finite-volume
approximation:

Ψnþ1
j ¼ Ψn

j �
Δt
Δx

Fjþ1=2 � Fj�1=2

� �
In the Crowley–Tremback–Bott scheme, the fluxes Fj+1/2 and Fj–1/2 at the right and
left boundaries of grid cell j are estimated from (7.122) and (7.123) in which ψj (y, t)
is replaced by its polynomial approximation (7.172) of order ℓ.

In the more general case where the velocity u in the x-direction is spatially
variable, (7.123) is replaced by (see Bott, 1989a, 1989b; Chlond, 1994)

Fjþ1=2 ¼
Δt
Δx

Iþjþ1=2 � I�jþ1=2

� �
(7.173)

where

Iþjþ1=2 ¼
ð1=2

1=2�αþ

ψj z; tð Þdz and I�jþ1=2 ¼
ð1=2�αþ

�1=2

ψj z; tð Þdz

are area integrals in which

z ¼ y� xj
� �

=Δx

αþ ¼ αþjþ1=2 ¼ max 0;unjþ1=2Δt=Δx
� �

and α� ¼ α�jþ1=2 ¼ max 0;unjþ1=2Δt=Δx
� �

Table 7.2 Coefficients aj,k for the l = 2 and l = 4 versions of the Bott’s area preserving flux
form algorithm (after Bott, 1989a and Chlond, 1994)

ℓ = 2 ℓ = 4

aj, 0 � 1

24
Ψjþ1 � 26Ψj þ Ψj�1

� 	 1

1920
9Ψjþ2�116Ψjþ1þ2134Ψj�116Ψj�1þ9Ψj�2

� 	
aj, 1

1

2
Ψjþ1 � Ψj�1

� 	 1

48
�5Ψjþ2 þ 34Ψjþ1 � 34Ψj�1 þ 5Ψj�2

� 	
aj, 2

1

2
Ψjþ1 � 2Ψj þ Ψj�1

� 	 1

48
�3Ψjþ2 þ 36Ψjþ1 � 66Ψj þ 36Ψj�1 � 3Ψj�2

� 	
aj, 3 –

1

12
Ψjþ2 � 2Ψjþ1 þ 2Ψj�1 � Ψj�2

� 	
aj, 4 –

1

12
Ψjþ2 � 4Ψjþ1 þ 6Ψj � 4Ψj�1 þ Ψj�2

� 	
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Again, function ψj (z, t) can be approximated by an area-preserving polynomial
(7.172). Substitution of this polynomial into the above expressions yields the
following expressions for integrals Iþjþ1=2 and I�jþ1=2:

Iþ
jþ1=2, ℓ

¼
Xℓ
k¼0

aj,k
1� 1� 2αþð Þkþ1

k þ 1ð Þ2kþ1 (7.174)

and

I�
jþ1=2, ℓ

¼
Xℓ
k¼0

aj,k �1ð Þk 1� 1� 2α�ð Þkþ1

k þ 1ð Þ2kþ1 (7.175)

This polynomial fitting method is not exempt from localized unphysical oscillations
near sharp spatial gradients. To address the problem, Bott (1989a, 1989b) introduces
nonlinear flux limiters and imposes that the total amount of outflow from gridbox j
during a time step Δt be limited to Ψn

j Δx/Δt. In addition, the flux Fj+1/2 is set to zero
if it does not have the same sign as the velocity uj+1/2. These two conditions are
fulfilled if, rather than using (7.173), the flux Fj+1/2 is expressed as

Fjþ1=2 ¼ Δx
Δt

βjþ1=2
~Iþ
jþ1=2, ℓ

� βjþ3=2
~I�
jþ1=2, ℓ

� �
(7.176)

where

~Iþ
jþ1=2, ℓ

¼ max Iþ
jþ1=2, ℓ

; 0
� �

, ~I�
jþ1=2, ℓ

¼ max I�
jþ1=2, ℓ

; 0
� �

and

βjþ1=2 ¼ min 1;
Ψn

j

max ~Iþ
jþ1=2, ℓ

þ ~I�
jþ1=2, ℓ

; ε
� �

8<:
9=;

Here ε is a small value added to avoid numerical unstable situations if
~Iþ
jþ1=2, ℓ

þ ~I�
jþ1=2, ℓ

¼ 0.
Spatial functional distributions other than polynomials have been used to inter-

polate the dependent variables between grid points. Spalding (1972), for example,
uses an exponential fitting technique, which prevents the spurious oscillations
associated with the Bott scheme near sharp gradients, and ensures positivity of the
solution. The method, however, is diffusive and computationally expensive. Chlond
(1994) uses a hybrid scheme in which the polynomial and exponential interpolation
methods are combined. A switch is used so that the polynomial scheme is applied in
regions where the distribution of the transported quantity is smooth, and the expo-
nential fitting technique is applied near sharp gradients.

The Prather Scheme

The algorithm presented by Prather (1986) is an extension of the Russell and Lerner
scheme in which the advected function inside a grid cell is represented by a second-
order polynomial. In each grid cell, we represent the 3-D (x, y, z) distribution of the
tracer mixing ratio ψ by
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ψ x; y; zð Þ ¼ a0 þ axxþ axxx
2 þ ayyþ ayyy

2 þ azzþ azzz
2 þ axyxyþ ayzxyþ axzxz

(7.177)

within a rectangular gridbox of volume V = Δx Δy Δz with 0 � x � Δx, 0 � y � Δy,
and 0 � z � Δz. The same function can also be expressed by a linear combination of
orthogonal second-order polynomials Kk:

ψ x; y; zð Þ ¼ m0K0 þ mxKx þ myKy þ myyKyy þ mzKz þ mzzKzz

þmxyKxy þ myzKyz þ mxzKxz (7.178)

where mk are moment coefficients. By definition, the orthogonal functions satisfy the
conditions: ð

V

KiKj dV ¼ 1 i 6¼ jð Þ (7.179)

where dV = dx dy dz. Prather (1986) provides ten orthogonal polynomials that apply
to the algorithm in three dimensions:

K0 ¼ 1

Kx xð Þ ¼ x� Δx
2

Kxx xð Þ ¼ x2 � xΔxþ Δxð Þ2
6

Ky yð Þ ¼ y� Δy
2

Kyy yð Þ ¼ y2 � yΔyþ Δyð Þ2
6

Kz zð Þ ¼ z� Δz
2

Kzz zð Þ ¼ z2 � zΔzþ Δzð Þ2
6

Kxy x; yð Þ ¼ x� Δx
2

� 
y� Δy

2

� 
Kyz y; zð Þ ¼ y� Δy

2

� 
z� Δz

2

� 
Kxz x; zð Þ ¼ x� Δx

2

� 
z� Δz

2

� 
with appropriate normalization factors. He also provides linear expressions that
relate coefficients ak and mk. An upstream method is used to transport simultaneously
the zeroth-order (mass), first-order (slope), and second-order (curvature) moments of
the tracer distribution in each grid cell. The moments Si are defined by

S0 ¼
ð
V

ψ x; y; zð ÞK0dV ¼ m0V (7.180)

Sx ¼ 6

Δx

ð
V

ψ x; y; zð ÞKx xð ÞdV ¼ mxVΔx
2

(7.181)

Sxx ¼ 30

Δxð Þ2
ð
V

ψ x; y; zð ÞKxx xð ÞdV ¼ mxxV Δxð Þ2
6

(7.182)

Sxy ¼ 36

ΔxΔy

ð
V

ψ x; y; zð ÞKxy x; yð ÞdV ¼ mxyVΔxΔy
4

(7.183)

Parallel expressions are derived for Sy, Syy, Sxy, Sz, Szz, and Sxz.
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To illustrate the method, we consider a 2-D problem and assume that the velocity
c > 0 of the flow is uniform and directed in the x-direction. The distribution of the
tracer mixing ratio inside a 2-D gridbox is expressed by

ψ x; yð Þ ¼ m0K0 þ mxKx xð Þ þ mxxKxx xð Þ þ myKy yð Þ þ myyKyy yð Þ þ mxyKxy x; yð Þ
(7.184)

Within a cell j of volume V, we define the sub-volume VR of the fluid that will be
removed from this cell and added to the neighboring cell j + 1 over a time step Δt
(Figure 7.23):

VR ¼ cΔtΔyΔz (7.185)

The volume VL of the fluid remaining in the original cell j is

VL ¼ Δx� cΔtð ÞΔyΔz (7.186)

The method involves two consecutive steps:

First step: Decomposition of the moments Sk for each grid cell into sub-moments
SRK and SLK associated with the fraction of the tracer that is advected to the
downwind grid cell and the fraction of the tracer that remains in the grid cell
during time step Δt. We have

SR0 ¼ α S0 þ 1� αð ÞSx þ 1� αð Þ 1� 2αð ÞSxx½ �
SRx ¼ α2 Sx þ 3 1� αð ÞSxx½ � SRy ¼ α Sy þ 1� αð ÞSxy

� 	
SRxx ¼ α3Sxx SRyy ¼ αSyy SRxy ¼ α2Sxy

cΔtcΔt

αΔx αΔx(1–α) Δx

xj–1/2 xj+1/2 x

c

SR

Grid cell j 

Grid cell j-1 
Grid cell j+1 

SL

(a)
(b)

1

0

Figure 7.23 (a) Advection along direction x of moments during a time step Δt from grid cell j to j + 1 after
decomposition of moment S into sub-moments SL, which remains in gridbox j, and SR, which is transferred
from gridbox j to adjacent downwind gridbox j + 1. Coefficient α = VR/(VR + VL) = cΔt/Δx is the
Courant number. (b) Comparison of the distribution of a tracer advected across 200 gridboxes by the basic
upstream scheme (0), the first-order moments method (1) and the second-order moments method (2).
Note the presence of overshoots and undershoots in the second-order scheme. Positivity is ensured
by placing limits on the high-order moments (curve 2 + L). From Prather (1986).
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where the Courant number α = cΔt/Δx = VR/V is assumed to be smaller than 1. The
fraction of the tracer remaining in the cell j during time step Δt is located in the sub-
box of volume VL extending from bounds xj–1/2 to xj+1/2 – cΔt. The corresponding
sub-moments SLK are:

SL0 ¼ 1� αð Þ S0 � αSx � α 1� 2αð ÞSxx½ �
SLx ¼ 1� αð Þ2 Sx � 3αSxx½ � SLy ¼ 1� αð Þ Sy � αSxy

� 	
SLxx ¼ 1� αð Þ3Sxx SLyy ¼ 1� αð ÞSyy SLxy ¼ 1� αð Þ2Sxy

Second step: Advection step and reconstruction of the moments for the complete
grid cell. The advection is performed by transporting moments SRK from grid
cell j to adjacent cell j + 1, while maintaining moments SLK in their original
box. For time tn+1, the moments for the entire gridbox j can be reconstructed
by calculating the updated moments:

S0 ¼ SR0 þ SL0
Sx ¼ αSRx þ 1� αð ÞSLx þ 3 1� αð ÞSR0 � αSL0

� 	
Sxx ¼ α2SRxx þ 1� αð Þ2SLxx þ 5 α 1� αð Þ SRx � SLx

� �þ 1� 2αð Þ 1� αð ÞSR0 � αSL0
� 	
 �

Sy ¼ SRy þ SLy Syy ¼ SRyy þ SLyy

Sxy ¼ αSRxy þ 1� αð ÞSLxy þ 3 1� αð ÞSRy � αSLy
h i

From these new moments derived on the full grid cell, one derives the coefficients mk

using (7.180)–(7.183), and from there the spatial distribution of the tracer mixing
ratio inside the grid cell.

The Prather method is less diffusive than the slope scheme (Figure 7.23b), but it
adds to the computational and memory requirements because at each time step ten
moments must be computed and stored for each grid cell in the 3-D case. As with other
high-order methods, the scheme produces overshoots and undershoots that can lead to
negative solutions. Placing a limit on the magnitude of the higher-order moments can
ensure positivity of the solution (Figure 7.23b). The scheme is absolutely stable for
Courant numbers ranging from 0.2764 to 0.7236 (Prather, 1986), but is marginally
unstable over the rest of the domain [0, 1]. Phase errors are extremely small.

7.7 Lagrangian Methods

Lagrangian advection methods divide the atmosphere into a large number of air parcels
and follow the displacement of their centroids as a function of time. Tracer mixing
ratios are conserved in these displacements. The trajectory of the centroid is determined
from the wind velocity at the centroid location. Because the wind velocities are
generally provided at the discrete points where observations are performed or at the
grid points of an Eulerian meteorological model, their values must be interpolated at the
location of each centroid. Although the motion of the air parcels does not follow any
grid, model results can still be provided at regularly spaced grid points by interpolation
from the randomly located air parcels situated in the vicinity of these grid points.
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In the general case of a multidimensional model with variable wind velocity
v(r, t), where r is the parcel location, the parcel trajectories are calculated from:

dr tð Þ
dt

¼ v r tð Þ; tð Þ (7.187)

A second-order accurate solution of this differential equation is obtained by solving,
for example, the implicit expression (4.270):

r t þ Δtð Þ ¼ r tð Þ þ 1

2
Δt v r tð Þ; tð Þ þ v r t þ Δtð Þ; t þ Δtð Þ½ � (7.188)

where r(t) is the location of the air parcel at time t (departure point) and r (t + Δt) is
the position of the parcel at time t + Δt (arrival point). This implicit equation can be
solved by an iteration and interpolation procedure (Kida, 1983; Stohl, 1998).
The use of computationally expensive iterative implicit methods can be avoided if

the position vector r(t) is expanded by a Taylor series in which terms of order higher
than (Δt)2 are neglected:

r t þ Δtð Þ ¼ r tð Þ þ dr
dt

� 
t

Δt þ 1

2

d2r
dt2

� 
t

Δtð Þ2 þ O Δtð Þ3
h i

� r tð Þ þ vΔt þ 1

2
γ Δtð Þ2

(7.189)

Here, the wind velocity v = (dr/dt)t and the acceleration γ = (dv/dt)t = (d2r/dt2)t are
calculated at the departure point (time level t). The acceleration γ is easily obtained
from the spatial variation of the velocity field if the local rate of change in the
velocity Δv/Δt can be neglected over the time interval Δt. Thus:

γ¼ dv
dt

¼ ∂v
∂t

þ v•—v � v•—v (7.190)

In the above equations, a random wind velocity v0 is often added to the mean wind
velocity v to account for small-scale turbulent motions. An example of a simulation
produced over a period of three weeks by a Lagrangian particle dispersion model
following a volcanic eruption is shown in Figure 7.24.
In global Lagrangian models, the position of an air parcel is often defined by its

longitude λ, latitude φ, and altitude z (or pressure p). Thus, after a time step Δt, an air
parcel originally located at point [λ(t), φ(t), z(t)] is displaced to a new point whose
position [λ(t + Δt), φ(t + Δt), z(t + Δt)] is derived from

λ t þ Δtð Þ ¼ λ tð Þ þ ΔxΔy
a2 sin φþ Δφð Þ � sin φð Þ½ � (7.191)

φ t þ Δtð Þ ¼ φ tð Þ þ Δy
a

(7.192)

z t þ Δtð Þ ¼ z tð Þ þ Δz (7.193)

where a is the Earth’s radius. The geometric displacements Δx, Δy, and Δz are
expressed as a function of the components (u, v, w) of the wind velocity v and the
components (γx, γy, γz) of the wind acceleration γ by

Δx ¼ uΔt þ 1

2
γx Δtð Þ2 Δy ¼ vΔt þ 1

2
γy Δtð Þ2 Δz ¼ wΔt þ 1

2
γz Δtð Þ2 (7.194)
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Figure 7.24 Simulation for the period May 10–21, 2010 of the vertically integrated concentration [mg m–2] of
atmospheric ash resulting from the eruption of the Eyjafjalljokull volcano in southern Iceland. Transport was
simulated using the Lagrangian particle dispersion model FLEXPART (Stohl et al., 1998), which traces the
displacement of a large number of particles by the mean winds to which random motions representing
turbulence and convection are superimposed. The model is driven by assimilated meteorological data on a
0.18
�0.18
 grid with 91 levels in the vertical. Reproduced from Papayannis et al. (2012).
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From (7.190), the three components of the acceleration (γx, γy, γz) are expressed by

γx ¼
u

a cosφ
∂u
∂λ

þ v

a

∂u
∂φ

þ w
∂u
∂z

(7.195)

γy ¼
u

a cosφ
∂v
∂λ

þ v

a

∂v
∂φ

þ w
∂v
∂z

(7.196)

γz ¼
u

a cos φ
∂w
∂λ

þ v

a

∂w
∂φ

þ w
∂w
∂z

(7.197)

Lagrangian methods have several advantages over Eulerian methods. First, since
all tracers follow the same trajectory, a single calculation of the air parcel
displacement can be used to immediately infer the transport of all tracers. Second,
the stability of the algorithm is not constrained by the value of the Courant
number as in the explicit Eulerian methods, so the adopted time step is limited
by accuracy rather than by stability considerations. Other desirable requirements
are met: during the parcel displacement, mass is conserved and the sign of the
transported function is maintained. Thus, unless interpolation procedures are not
carefully performed, the method also guarantees monotonicity, transportivity and
locality of the solution.
The Lagrangian methods also have several disadvantages. First, inaccuracies in

the interpolation of the wind velocities lead to errors in the calculation of the parcel
trajectories, and these errors can accumulate as the time integration proceeds.
Second, the initially uniform distribution of air parcels may become highly irregular
over time as a result of errors in the wind interpolation. As a result, the tracer
concentration may become under-determined in certain parts of the domain while
being over-determined in others. Third, Lagrangian transport does not allow for
mixing between air parcels even when they are closely located. As a result, contrary
to the Eulerian algorithms that often produce excessive diffusion, Lagrangian
methods require that some diffusive mixing be added to account for interactions
between air parcels. This is critical in particular for the treatment of nonlinear
chemistry and aerosol microphysics.

7.8 Semi-Lagrangian Methods

Semi-Lagrangian transport (SLT) methods combine important advantages of the
Lagrangian and Eulerian methods. The upstream SLT method (Figure 7.25) consists
of using Lagrangian back-trajectories to relate concentrations on a regular Eulerian
grid at the end of a model time step to the concentrations at the beginning of the time
step. We first consider a version of the SLT scheme in which points in the atmosphere
with given tracer mixing ratios are displaced with the flow during a model time step
to reach locations coincident with the model grid points. We then consider a finite
volume version of the SLT scheme in which volumes of air are displaced with the
flow (with no mass transfer through their boundaries) to reach at the end of the model
time step a volume of air that is coincident with a model grid cell.
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7.8.1 Grid Point Based SLT Schemes

During a time step Δt = tn+1 – tn, one determines the backward trajectory of the
atmospheric points that reach the different Eulerian grid points of the model at time
level tn+1. The trajectories are calculated using interpolated gridded velocities.
Consider an arrival point A at time tn+1 on the Eulerian grid (Figure 7.25). The
location rD of the upwind departure point D at time tn is determined by backward
integration of (7.187). For example, we write the equation

rD ¼ rA � Δt
2

vD þ vA½ � (7.198)

which has to be solved iteratively since the velocity vD depends on the location of the
departure point, which is not known a priori. In general, the departure points do not
coincide with model grid points. The tracer mixing ratio at departure point D and
time level tn is determined by the interpolation of the surrounding values of the
mixing ratio at the closest regular Eulerian grid points. For an inert tracer, the mixing
ratio μ remains constant along the trajectory between D and A. Thus:

μ rA; tnþ1ð Þ ¼ μ rD; tnð Þ (7.199)

The starting point of the backward trajectory can be derived by replacing the 3-D
advection problem with three successive 1-D problems (Seibert and Morariu, 1991).
For the advection along the x-axis, the trajectory is determined by integrating

Figure 7.25 Schematic representation of the semi-Lagrangian method in two dimensions. A parcel located at the
arrival point A at time level tn+1 was located at the departure point D at time level tn. The value of a
conserved quantity such as the mixing ratio of a passive tracer is unchanged as the parcel is displaced from
point D to point A during the time step. The value of the quantity at the departure point D is derived
by interpolation from the neighboring grid points at time tn. In the finite volume version of the SLT scheme,
one considers the displacement of a given volume of air (a surface in two dimensions) from its departure
position (blue area) to its arrival position (gray area) coincident with a Eulerian grid cell of the model.
Reproduced with permission from Peter Hjort Lauritzen (personal communication), National Center for
Atmospheric Research.
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dx

dt
¼ u xð Þ (7.200)

between the departure point xD and the arrival point (coincident with grid point
xA = xj; see Figure 7.26). Thus, ðxj

xD

dx

u xð Þ ¼
ðtnþΔt

tn

dt (7.201)

Approximating the wind along the trajectory by

u xð Þ ¼ u xj
� �þ x� xj

� � ∂u
∂x

(7.202)

(7.201) can be solved analytically and the departure point xD is found to be

xD ¼ xj � 1� exp �Δt
∂u
∂x

� � �
u xj
� � ∂u

∂x

� �1

(7.203)

where the partial derivative ∂u=∂x is numerically calculated as

∂u
∂x

¼ ujþ1 � uj
� �
xjþ1 � x
� � for uj � 0 and

∂u
∂x

¼ uj � uj�1

� �
xj � xj�1

� � for uj > 0 (7.204)

In the simple 1-D case in which the wind velocity u = c is constant and positive (see
Figure 7.26), the departure point is given by

c D t

cDt

Dx

DD'

M

xDxj-(L+1) xA= xjxj – 1xj-L x

A

tn

tn+1

tn+1/2

t

Figure 7.26 Representation of the semi-Lagrangian scheme in the 1-D case for a variable wind speed c(x, t). The
trajectory is represented by the curve DA (in red). The arrival point A at time tn+1 is coincident with grid
point xj of the Eulerian model grid. The location of the departure point D is derived from a back-trajectory
calculation and is not coincident with a model grid point. It is located between grid points xj–(L+1) and xj–L.
(In this figure, L = 2, but it could be larger for longer time steps). By approximating the variable wind
velocity by its value at the midpoint M (or by the average between the wind speeds at the departure
and arrival points), the curve DA (in red) can be approximated by the straight line D0A (in blue),
and the departure point D by point D0. The approximation can be improved by iteration.
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xD ¼ xA � cΔt (7.205)

and the mixing ratio at the departure point D is provided for example by a linear
interpolation between the values at the closest grid points (indices m – 1 = j – (L + 1)
and m = j – L in Figure 7.26)

μ xD; tnð Þ ¼ μ xj� Lþ1ð Þ; tn
� �þ xD � xj� Lþ1ð Þ

� �
Δx

μ xj�L; tn
� �� μ xj� Lþ1ð Þ; tn

� �� 	
(7.206)

When the Courant number α = cΔt/Δx is smaller than 1, the departure point D is
located between grid point xj–1 and the arrival point xj (A), and it is straightforward to
show that

μ xj; tnþ1

� � ¼ μ xj�1; tn
� �þ Δx� cΔtð Þ

Δx
μ xj; tn
� �� μ xj�1; tn

� �� 	
(7.207)

because the mixing ratio remains constant during the displacement of the parcel.
Adopting the more classic notation, we write

μnþ1
j ¼ α μnj�1 þ 1� αð Þ μnj (7.208)

More generally, if the Courant number α has a ceiling (smallest larger integer) of L,
such that α0 = L – α is positive and smaller than unity, then the departure point D is
located in the grid cell [j – L, j – L + 1]. The interpolation formula (7.208) then
becomes:

μnþ1
j ¼ α0 μnj�L þ 1� α0ð Þ μnj�Lþ1 (7.209)

Numerical approximation (7.209) is equivalent to expression (7.75) that describes
the notoriously dissipative Eulerian upstream method. Thus, if one uses a linear
interpolation as implemented here, the semi-Lagrangian method is excessively
diffusive. By using higher-order interpolation schemes, the intensity of the diffusion
can be considerably reduced. Cubic spline functions (Bermejo, 1990) or biquadratic
polynomials (Lauritzen et al., 2010) are often adopted. Williamson and Rasch (1989)
and Rasch and Williamson (1990b) examine several possible interpolators and assess
their ability to preserve the shape of the advected fields. Accurate interpolation
schemes add to the computational costs of the method.

Non-interpolating semi-Lagrangian schemes have also been developed (see, e.g.,
Ritchie, 1986). In this case, the vector that defines the back-trajectory is decomposed
in the sum of a vector that reaches the grid pointG closest to the departure pointD and
a residual vector pointing from this grid point to the departure point D. To determine
the value of the transported function at grid point G, no interpolation is needed. The
transport along the second vector is performed using a classic Eulerian method, for
which the Courant number is always smaller than 1. The overall advection for a given
time step is thus always stable, but the advection for the second substep has the
dispersive/diffusive properties of the Eulerian scheme that is adopted.

As in the case of the pure Lagrangian methods, SLT algorithms are stable for
relatively large time steps. The stability condition is provided by the Lipschitz
criterion (trajectories may not cross each other), which is considerably less severe
than the CFL condition. To illustrate the performance of the semi-Lagrangian
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method, Figure 7.27 shows the evolution of a “slotted” cylinder after six revolutions
of solid-body rotation at uniform angular velocity about the center of the domain
(Staniforth and Côté, 1991). The adopted Courant number of 4.2 is considerably
larger than required for the stability of Eulerian schemes. For the same accuracy, the
SLT method is more computationally efficient than Eulerian methods.
A major disadvantage of SLT grid point schemes is that they do not conserve

mass. Numerical adjustment is necessary and different methods can be used for this
purpose (Rasch and Williamson, 1990b; see also Section 7.9). The simplest is to
compare the total mass Mi(tn+1) of tracer i at time tn+1 over the model domain to
the total mass Mi(tn) at time tn, and apply a uniform multiplicative correction
Mi(tn)/Mi(tn+1). to the mixing ratios at tn+1.

7.8.2 Finite Volume Based SLT Schemes

To avoid the artificial mass correction process required by SLT grid point schemes,
conservative finite volume SLT schemes have been developed (Nair and

(a)

(b)

Figure 7.27 Advection (solid-body rotation) of a “slotted” cylinder using a semi-Lagrangian method with a constant
uniform angular velocity about the center of the domain. The adopted Courant number is 4.2. A cubic-spline
interpolator is adopted: (a) shows the initial condition and (b) the shape of the cylinder after six revolutions.
From Staniforth and Côté (1991). Copyright © American Meteorological Society, used with permission.
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Machenhauer, 2002; Nair et al. 2003; Zerroukat et al., 2002, 2007; Lauritzen et al.,
2006). Rather than transporting the tracer mixing ratio at specific points in the model
domain, these schemes advect variable finite volume elements that contain a speci-
fied mass of the tracer. By this process, the total mass (or the averaged mass density)
of the tracer in the “departure” volume is equal to its mass in the “arrival” volume,
ensuring mass conservation. In a 2-D formulation, the conservation of the total mass
inside a Lagrangian grid cell of area A that moves and is distorted with the fluid
motion is expressed as:

∂
∂t

ð
A tð Þ

ρdA ¼ 0 or equivalently

ð
A tð Þ

ρdA ¼
ð

A tþΔtð Þ

ρdA (7.210)

After discretization in time, we have

ρnþ1
j

D E
Anþ1
j ¼ ρnj

D E
An
j (7.211)

where An
j and Anþ1

j are the surface areas of the cell j at the departure and arrival time
levels, respectively, and

ρj
D E

¼ 1

Aj

ð
Aj

ρj dA (7.212)

is the mean density in grid cell j. The surface Anþ1
j at time tn+1 coincides with a

Eulerian grid cell of the model. The value of the mean density hρnj i in the departure
area An

j is derived by interpolation of the solution at time tn. The solution at time tn+1
is obtained by a remapping process. The method is illustrated in Figure 7.28 in a 1-D
configuration. In this simple case, one defines the mean density of a tracer in a grid
cell of size Δx:

ρj
D E

¼ 1

Δxj

ð
Δxj

ρj xð Þdx (7.213)

The solution at the arrival time tn+1 is

ρnþ1
j

D E
¼

ρnj
D E

ΔxDj

Δxj
(7.214)

If the wind velocity u varies as a function of space and time, the size of the gridbox
(noted Δx at the arrival location) varies during the back-trajectory step and becomes
ΔxD 6¼ Δx at the departure location.

Flux-form finite volume SLT schemes are conservative for tracer transport if the
winds originate from a general circulation model (GCM) where the exact same
scheme was applied to solve the Navier–Stokes equation for momentum. This
requirement can be achieved in online GCM simulations of chemical tracers, but is
generally not achievable in offline chemical transport models (CTMs) (Jöckel et al.,
2001; Horowitz et al., 2003). This problem in offline CTMs often results from
inconsistencies between the advection scheme and the surface pressure tendency
provided by the dynamical model. A mass fixer is often applied to alleviate this
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problem (Horowitz et al., 2003), but may violate monotonicity requirements and
generate non-physical transport.

7.9 Spectral, Finite Element, and Spectral Element Methods

The spectral method is widely used to solve the dynamical equations in GCMs. In
this approach, the fields such as the temperature or the winds are represented by a
series of continuous basis functions such as spherical harmonics in the horizontal
plane (see Chapter 4) and by a finite difference formulation in the vertical direction.
Spectral methods have also been used in these models to represent the advection
of moisture. To illustrate the methodology, we consider again the 1-D case in the
x-direction and we approximate the solution of the advection equation by the
expansion

ψ x; tð Þ �
XK
k¼1

αk tð ÞΦk xð Þ (7.215)

in which Φk(x) represents a set of orthogonal functions (e.g., elementary trigonomet-
ric functions) and ak are unknown coefficients that depend on time t. Expression
(7.215) is introduced in the advection equation (7.17), leading to a system of K
differential equations for the coefficients ak(t) that can be solved by standard

tn

tn+1

tn+1/2

ΔxjΔxj
D

Dj + 1/2

<pj
n+1>

Dj – 1/2

xj – 1/2 xj + 1/2A'B'

AB

Figure 7.28 Schematic representation of the 1-D finite volume mass conserving Lagrangian method of Lin and Rood
(1996). The “volume” Δx at the arrival time tn+1 is represented by the grid cell AB, and its value Δx

D

at departure time tn is represented by the distance A0B0. If the wind velocity u is not constant in space,
the displacements at the cell interfaces Dj+1/2 and Dj–1/2 for points A0 and B0 are not equal and Δx is
different from ΔxD (Lin and Rood, 1996). Copyright © American Meteorological Society, used with
permission.
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methods. When spherical geometry is used, the solution is instead expressed as a
function of spherical harmonics (see equation (4.252)).

With the proper choice of parameters, the spectral method provides accurate and
stable results and can be mass-conservative. However, it is not shape-preserving
(monotonic, positive definite); overshoots and undershoots can be produced (see
Box 4.7). Negative values of the transported fields can be eliminated by using
appropriate filtering and filling schemes, but these corrupt the correlations between
tracers which is critical for nonlinear chemistry. In addition, the algorithm does not
satisfy the criterion of locality. Because of these limitations, spectral methods are
generally not well suited for chemical applications.

In the finite element method, the solution ψ(x, t) is also provided by expansion
(7.215), but with the basis functions Φk(x) defined only on a small region of space
[A, B] called finite elements (see Section 4.10). In the Galerkin approach, the
coefficients ak are derived by requiring that the error arising from representing
function ψ(x, t) by expansion (7.215),

eK ¼ ∂
∂t

XK
k¼1

ak tð Þ Φk xð Þ þ c
∂
∂x

XK
k¼1

ak tð Þ Φk xð Þ (7.216)

be orthogonal to the basis functions. This condition is expressed by the integral over
the domain [A, B]:

ðB
A

eK Φi xð Þdx ¼ 0 (7.217)

for all values of i 2 [0, K]. If in (7.217) one replaces the error eK by expression
(7.216), one obtains the system of K-coupled ODEs:

XK
k¼1

∂ak tð Þ
∂t

ðB
A

Φi xð ÞΦk xð Þdxþ c
XK
k¼1

ak

ðB
A

Φi xð Þ ∂Φk xð Þ
∂x

dx ¼ 0 i ¼ 1; . . .Kð Þ

(7.218)

which is solved to obtain the coefficients ak(t). For this purpose, the time derivatives
are usually approximated by finite differences.

The spectral element method (Patera, 1984) is a finite element technique in which a
high-degree spectral method is applied within each element. As discussed by Nair et al.
(2011), the spectral element method combines the geometric flexibility of the traditional
finite element methods with the high accuracy, rapid convergence, and weak numerical
dispersion and dissipation of the classical spectral methods. It is not inherently conser-
vative, but can be engineered to ensure a user-required level of mass conservation.

Although finite element and spectral element methods have so far mainly been
used for engineering applications, they are now emerging as promising methods for
atmospheric problems. Their local domain decomposition property makes them
particularly well suited for massively parallel computer architectures, and they can
be easily applied when the model domain is geometrically complex or when grid
refinement is needed in specified atmospheric regions.
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7.10 Numerical Fixers and Filters

An important requirement for the numerical method applied to solve the advection
equation is that the solution be positive and that mass be conserved. This is not
always the case, and if so one can apply a-posteriori corrections to restore these
desired properties. Jablonowski and Williamson (2011) provide an extensive review
of the use of fixers and filters in atmospheric models.
Fixers. Negative values in the transported variables (e.g., tracer mixing ratio) can

be eliminated by introducing “numerical fixers” that borrow mass from surrounding
(or downstream) grid points. Rasch and Williamson (1990a) describe a possible
implementation of local and global fixers. When a negative value is encountered
during a point-by-point scan of the calculated quantities on each horizontal surface,
the immediate neighboring points are examined, and if sufficient mass is available to
“fill the hole,” the negative value is set to zero and the values at the neighboring
points are reduced proportionally. If there is not sufficient mass available, no action
is taken. The application of this local filling method does conserve mass, but may not
eliminate all negative values. In a second step, a global filter is applied in which the
remaining negative values are set to zero; this violates mass conservation but a
renormalization can be applied by scaling to the global masses in the domain, as
described in Section 7.8.1 to enforce mass conservation in SLT schemes. This filling
process produces diffusion and does not ensure monotonicity of the corrected fields;
it can also be computationally expensive.
Filters. In several of the algorithms described previously, short waves may grow

excessively in the solution of the advection equation, producing undesired noise and
even catastrophic instability. These waves can be eliminated by appropriate smoothing
or filtering. One option is to add a small diffusive term in the advection equation,
which will smooth the solution and suppress high wavenumbers. In spectral models,
numerical noise can easily be suppressed by omitting wavenumbers larger than a
specified value and highlighting only the scales of interest. Spectral filtering can also
be used in grid point models by applying a Fourier transform to the solution, which
eliminates the high frequencies in the signal, and applying an inverse Fourier trans-
form. Such filtering is often applied in polar regions where the meridians converge and
a longitudinal grid point spacing becomes so small that, without filtering, the solution
would become unstable. Finally, numerical filters such as the linear Shapiro filter
presented in Section 4.15.2 are often applied to eliminate two-grid interval waves
completely while having little effect on longer waves (Shapiro, 1971). Other high-
frequency filters have been developed by Asselin (1972) and Forester (1977).

7.11 Concluding Remarks

In this chapter we have reviewed different numerical algorithms used to approximate
the solution of the linear advection equation. No existing method fully addresses
modelers’ requirements. The examination of simple numerical schemes reveals that

336 Numerical Methods for Advection

008
22 Jun 2017 at 16:46:58, subject to the Cambridge Core terms of use, available



high-order algorithms are generally not monotonic and occasionally produce
undesired negative values. Low-order algorithms such as the upstream method pre-
serve the sign of the solution, but are excessively diffusive. Thus, practical applica-
tions must adopt more elaborate schemes that address some of the drawbacks that
characterize the simple methods. Modern schemes are often upstream-based Eulerian
finite volume methods that are mass conservative, positive definite, and possess good
phase-error characteristics. They may use adaptive time steps to meet CFL stability
requirements or semi-Lagrangian options to get around these requirements. Specific,
often complex nonlinear algorithms are developed to reduce the numerical diffusion
that characterizes upstream methods. These complex schemes can yield significant
improvement in accuracy, but often with enhanced computational costs.

Finite volume Eulerian methods, in which a subgrid distribution of the transported
quantity is specified, provide highly accurate solutions and are popular in global
CTMs. In many respects, they are superior to classic grid point methods. Computa-
tional cost depends on the user tolerance for numerical diffusion. The Prather scheme
is regarded as a reference among Eulerian models. It produces accurate solutions with
little diffusion. However, it has large computing time and storage requirements. Avan
Leer scheme may enable higher grid resolution, compensating for the lower accuracy.

Lagrangian methods are popular for source-oriented and receptor-oriented trans-
port problems in which one is concerned with transport from a point source or
transport contributing to concentrations at a receptor point. However, they do not
provide the regular full-domain solution achievable by Eulerian methods and cannot
properly represent nonlinear chemistry or aerosol microphysics. Semi-Lagrangian
methods are very popular in global CTMs because their numerical stability is not as
severely constrained by choice of time step as in the case of Eulerian schemes. They
are sometimes used as a back-up scheme in cases where the regular Eulerian solver
violates the CFL criterion.

In summary, there is no single advection scheme that is universally best. The
choice of scheme depends on the type of problem being solved, the tolerance for
different kinds of error, and the computational demands. For any scheme, it is
important to verify that basic criteria of stability and mass conservation are met.
The material in this chapter should enable readers to understand the issues associated
with different advection schemes and to make informed choices in selecting appro-
priate schemes for their applications.
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8 Parameterization of Subgrid-Scale Processes

8.1 Introduction

Meteorological variables affecting chemical concentrations vary on all scales down
to the millimeter Kolmogorov scale, below which turbulence dissipates by molecu-
lar diffusion (Kolmogorov, 1941a, 1941b). The smallest scales cannot be repre-
sented deterministically in atmospheric models and must be parameterized in
some way.
Processes that usually require parameterization include near-surface turbulence

driving surface fluxes, turbulent eddies in the planetary boundary layer (PBL), and
deep convective transport in updrafts and downdrafts (Figure 8.1). Clouds offer a
vivid illustration of the variability of atmospheric motions on small scales and their
link to large-scale effects (Figure 8.2). Parameterization of cloud processes is of
importance in chemical transport models not only because of their dynamical role,
but also because of their effect on radiation, precipitation scavenging, aqueous-phase
chemistry, and aerosol modification.

Convective transport
by deep cumulus

Convective transport
by shallow cumulus

Wet
deposition

Mass
outflowPlume rise
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Dx ~ 10–100 km
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Dry
deposition

Figure 8.1 Schematic representation of subgrid physical processes affecting atmospheric transport. Courtesy of
S. Freitas, INPE, CPTEC, Brazil.
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Direct numerical simulations (DNS) provide a deterministic representation of
chemical behavior in turbulent flows, with no need for parameterization, by solving
the Navier–Stokes (momentum) and continuity equations on an extremely fine grid
down to the dissipative Kolmogorov scales. This allows explicit simulation of small
eddies but the simulation domains are very limited. The computational burden can be
reduced by applying a low-pass filter to the Navier–Stokes and continuity equations,
retaining only the larger eddies. In the large-eddy simulation (LES) method, intro-
duced in 1963 by Joseph Smagorinsky for atmospheric flows, the effects of the
unresolved smaller scales on large eddies are parameterized by a subgrid model. This
provides a practical approach for studying processes on the scale of the PBL with
sub-kilometer horizontal resolution. Another method, called Reynolds decompos-
ition, expresses model variables as the sums of time-averaged and fluctuating values,
and solves the corresponding Navier–Stokes and continuity equations for the time-
averaged values resolved by the model. Covariance between the fluctuating values
appears in the resulting equations and must be parameterized to provide “closure.” In
statistical methods, momentum and chemical concentrations are treated as random
variables defined by coupled probability density functions (PDFs). The momentum
PDFs may be sampled stochastically at individual time steps, and the resulting concen-
tration PDFs are constructed from a large ensemble of random realizations of the flow.

Here we refer to subgrid-scale processes (or simply subgrid processes) as the
ensemble of processes driven by transport on scales smaller than the spatial/temporal
resolution of the model. Although “grid” has an Eulerian connotation, consideration
of subgrid processes equally applies in Lagrangian models for scales that are not
explicitly resolved. These subgrid processes affect the larger-scale composition of

Figure 8.2 Observation of clouds from aircraft provides a vivid illustration of the wide range of scales of atmospheric
variability. This photograph shows cirrus clouds in the upper troposphere, the anvil of a cumulonimbus
associated with deep convection, and shallow cumulus clouds at the top of the boundary layer.
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the atmosphere and must therefore be parameterized. The parameterizations may be
based on empirical information from atmospheric observations or on the analysis of
results from finer-scale models. The type of parameterization adopted depends on the
resolution of the model, as this defines the scales that are explicitly resolved. As
model resolution increases, the subgrid parameterizations must usually be revised.
This chapter presents general approaches to parameterization of subgrid processes

in chemical transport models. Section 8.2 presents the Reynolds decomposition and
averaging procedure. We then discuss methods to describe chemical covariances
(Section 8.3), and present closure relations that relate eddy terms to mean quantities,
including turbulent diffusion formulations (Section 8.4). Stochastic statistical
approaches are discussed in Section 8.5. Numerical algorithms to solve the diffusion
equation are presented in Section 8.6. We apply these concepts to the PBL (Section
8.7) and further discuss parameterizations of deep convection (Section 8.8), wet
scavenging (Section 8.9), lightning (Section 8.10), gravity wave breaking (Section
8.11), mass transfer through dynamical barriers (Section 8.12), and long-lived free
tropospheric plumes (Section 8.13). Gaussian plume models for boundary layer point
sources were presented in Section 4.12. Near-surface turbulence driving mass trans-
fer between the atmosphere and the surface (dry deposition, two-way exchange) is
covered in Chapter 9.

8.2 Reynolds Decomposition: Mean and Eddy Components

Fluid motions are categorized as either smooth, steady laminar flows or irregular,
fluctuating turbulent flows (Figure 8.3). The regime associated with fluid motions is
characterized by the dimensionless Reynolds number Re, defined as the ratio between
the nonlinear field acceleration v � —ð Þv that generates turbulence in the Navier–
Stokes equation (see Section 4.5.2 and Box 4.2) and the viscosity term v—2v
that tends to suppress it. Here ν denotes the kinematic viscosity of the fluid
(1.3 � 10–5 m2 s–1 for dry air at 1 atm and 273 K) and v the velocity of the flow.
Thus, we write from dimensional considerations

Re ¼ U2=L

νU=L2
¼ UL

ν
(8.1)

where U and L represent characteristic velocity and length scales of the flow,
respectively. The characteristic velocity scale can be taken as a mean or typical wind

Laminar Turbulent(a) (b)

Figure 8.3 Schematic representation of laminar (a) and turbulent (b) flows between two fixed boundaries.
Reproduced from W. Aeschbach-Hertig, Inst. Fuer Umweltphysik, University of Heidelberg.
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speed, and the characteristic length scale can be taken as the distance of interest over
which that wind speed varies. The transition between laminar and turbulent flow
gradually takes place for Reynolds numbers of the order of 103 to 104. For a wind
velocity of 10 m s–1 and a length scale of 1000 m the Reynolds number is of the
order of 109, well into the turbulent regime. This can be generalized to any atmos-
pherically relevant values of U and L: atmospheric flow is turbulent under all
conditions, even when it is dynamically stable.

Turbulence can be generated mechanically by wind shear, and amplified or
suppressed by buoyancy. The dimensionless gradient Richardson number, which
expresses the ratio between the buoyant suppression and mechanical generation of
turbulence, provides an indicator of the dynamical stability of the flow:

Ri ¼ g=θ
� �

∂θ=∂z

∂u=∂zð Þ2 (8.2)

Here u is the mean wind speed, θ the mean potential temperature, g the acceleration
of gravity, and z the height. The sign of the gradient Richardson number is deter-
mined by the atmospheric lapse rate. A positive value of Ri, associated with a
positive vertical gradient in the mean potential temperature, corresponds to a stably
stratified atmosphere. A negative value of Ri characterizes an unstable layer with the
presence of convective motions. The case for which Ri = 0 corresponds to neutral
stratification. Theory shows that, even in the presence of a mean wind shear,
turbulence is suppressed if Ri exceeds a critical value Rc of about 0.25.

In Reynolds decomposition, resolved (or mean) and unresolved (or turbulent)
processes are separated by expressing the model variables (such as temperature,
wind velocity, humidity, chemical concentrations) as the sum of a slowly varying
mean value Ψ and a rapid fluctuation Ψ0 around this mean. Thus,

Ψ ¼ Ψ þ Ψ0 (8.3)

Component Ψ0, called the eddy term, is associated with the irregular and stochastic
nature of the motions around a mean state (Figure 8.4). By definition, its mean value
is equal to zero (Ψ0 ¼ 0).

The mean term represents for example an average at a given point of the atmos-
phere over a time period T:

Ψ Tð Þ ¼ 1

T

ð
T
Ψ tð Þ dt (8.4)

The deviation Ψ0 tð Þ captures the rapid fluctuations around the mean value Ψ. These
fluctuations are characterized by various timescales or frequencies ν. The corres-
ponding spectrum ~Ψ vð Þ can be derived by a Fourier transform

~Ψ vð Þ ¼
ðþ∞

�∞

Ψ0 tð Þe�2πivt dt (8.5)

Similarly, we can define the mean value of function Ψ(x) over a given spatial
length L and derive a spectrum of the turbulent component Ψ0 xð Þ as a function
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of wavenumber k = 2π/λ, where λ is the wavelength in radians on the spherical
Earth:

~Ψ kð Þ ¼
ðþ∞

�∞

Ψ0 xð Þe�ikx dx (8.6)

Turbulent motions are often described by the mean turbulent kinetic energy of the
flow per unit mass [TKE in m2 s–2]:

TKE ¼ 1

2
u02 þ v02 þ w02
� �

(8.7)

where u0, v0, and w0 represent the fluctuations of the three wind components
(u, v, w).
The spectrum of atmospheric variability to be described by eddy terms may

range from mesoscale weather patterns not resolved by global models down to the
millimeter scale resolved only by the DNS approach. The largest turbulent
elements receive their energy from the mean flow. Through a cascade process
(Richardson, 1922), this energy propagates to smaller scales and is eventually
dissipated by viscosity as heat. An example of the spectral distribution E(k) of
the turbulent energy covering the scales from 10m to 0.1 mm is shown in
Figure 8.5. In the so-called inertial subrange, characterized by isotropic turbu-
lence (no dominant direction), the energy decreases with increasing wavenumber
according to Kolmogorov–Obukhov’s –5/3 law (Kolmogorov, 1941a, 1941b;
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Figure 8.4 Time series of wind velocity measured at a fixed location in a turbulent boundary layer for 90 seconds.
The Reynolds number was 2 � 107. Fluctuations occur over a range of timescales. Data recorded by
B. Dhruva of Yale University and reproduced from Ecke (2005).
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Obukhov, 1941). The total specific turbulent kinetic energy is derived by inte-
grating E(k) over all wavenumbers k:

TKE ¼
ð∞
0

E kð Þ dk (8.8)

The flux of quantity Ψ associated with the atmospheric flow of velocity v is
expressed as

vΨ ¼ v þ v0ð Þ Ψ þ Ψ0� �
(8.9)

or

vΨ ¼ vΨ þ v0Ψ þ vΨ0 þ v0Ψ0 (8.10)

Its average, for example, over a model grid cell, is given by

vΨ ¼ vΨ þ v0Ψ0 (8.11)

since by definition v0 ¼ 0 and Ψ0 ¼ 0. The first term on the right-hand side of (8.11)
is the flux associated with the resolved circulation (product of the mean values). The
second term is the eddy flux arising from the covariance between the fluctuations of v
and Ψ.

When the Eulerian form of the continuity equation for the density ρi of chemical
species i is considered (Section 4.2),

∂ρi
∂t

þ — � ρivð Þ ¼ si (8.12)
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Figure 8.5 Turbulence energy spectrum E(k) showing the cascade of energy from larger to smaller scales (smaller
to larger wavenumbers k) with different spectral regions characterizing energy input, energy cascade,
and dissipation. In a large portion of the spectrum, the turbulent kinetic energy spectrum varies as k–5/3

(Kolmogorov, 1941a,1941b). Reproduced from W. Aeschbach-Hertig. Institute für Umweltphysik, University
of Heidelberg, Germany.
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the separation between spatially resolved and unresolved transport is expressed by:

∂ ρi þ ρ0i
� �

∂t
þ — � ρi þ ρ0i

� �
v þ v0ð Þ� � ¼ si þ s0i (8.13)

By taking the average of each term and noting that ρ0i ¼ 0, s0i ¼ 0, and v0 ¼ 0, the
continuity equation for the mean concentration ρi becomes

∂ρi
∂t

þ — � ρivð Þ þ — � ρ0iv0
� � ¼ si (8.14)

The transport terms that appear in the continuity equation account for contribu-
tions by the mean (resolved) circulation and by the eddy (unresolved) motions.
The eddy transport term must be parameterized in some way (Section 8.4). In the
vertical direction, the eddy flux is generally much larger than the resolved flux
because mechanical and buoyant turbulence dominate the motion. In the horizontal
direction, the eddy flux is generally less important. In 2-D altitude–latitude models
with no zonal resolution, often used for the stratosphere, the eddy terms account for
the meridional transport associated with large-scale planetary wave disturbances,
and the contributions of the mean and eddy transport terms tend to be equally
important.
When expressed in terms of mass mixing ratio μi = ρi/ρa, for species i, the

continuity equation (8.14) becomes (see (4.8)):

∂ ρaμið Þ
∂t

þ — � ρaμivð Þ ¼ si (8.15)

Here again ρa represents the air density [kg m–3]. If we apply the Reynolds decom-
position for variables ρa, μi, v, and si, equation (8.15) becomes

∂ ρa þ ρ0a
� �

μi þ μ0i
� �� �

∂t
þ — � ρa þ ρ0a

� �
μi þ μ0i
� �

v þ v0ð Þ� � ¼ si þ s0i (8.16)

By taking the average of each term, we obtain:

∂ ρaμið Þ
∂t

þ ∂ ρ0aμ
0
i

� �
∂t

þ — � ρa μiv þ μ0iv0
� �þ ρ0aμ

0
i v þ ρ0av0 μi þ ρ0aμ

0
iv

0� � ¼ si (8.17)

Ignoring the fluctuations of the air density (ρ0 = 0), (8.17) becomes:

∂ ρaμið Þ
∂t

þ — � ρa vμi þ v0μ0i
� �� � ¼ si (8.18)

Making use of the continuity equation for the mean air density, one deduces that

∂μi

∂t
þ v—μi þ

1

ρa
— � ρav0μ0i
� � ¼ si

ρa
� Si (8.19)

If the air density can be assumed to be constant over the entire spatial domain under
consideration, as often assumed in boundary layer problems, (8.19) becomes

∂μi

∂t
þ v—μi þ — � μ0iv0

� � ¼ Si (8.20)
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which shows that, in the absence of chemical reactions, the local change of mixing
ratio is affected by the divergence of the eddy flux density μ0iv0. When chemical
reactions are taken into account, the mean source term s includes covariance terms
that measure the correlation between the fluctuations in the concentrations of the
different reactive species, as further discussed in Section 8.3.

The assumption of constant air density is often inadequate. To address this
problem, the Reynolds decomposition procedure can be replaced by the so-called
Favre decomposition (Hesselberg, 1926; Favre, 1958a, 1958b; Van Mieghem,
1973):

Ψ ¼ Ψ̂ þ Ψ
00

(8.21)

in which Ψ̂ represents the density-weighted average over a volume V:

Ψ̂ ¼
Ð
Vρa Ψ dVÐ
Vρa dV

¼ ρaΨ
ρa

(8.22)

and Ψ
00
is the departure from this average. Note that Ψ̂

00
¼ 0 but Ψ

00 6¼ 0. Applying a
Favre averaging procedure, the continuity equation takes the exact form (Kramm and
Meixner, 2000)

∂μ̂i

∂t
þ v̂—μ̂i þ

1

ρa
— � ρav

00μ00
h i

¼ Si (8.23)

This equation avoids assumptions about the fluctuation of air density. Like the
averaging procedure based on the Reynolds decomposition, the Favre decomposition
term representing the eddy flux must be parameterized. In what follows we will use
the standard notation for the Reynolds decomposition but the equations can also be
applied to the Favre averaging procedure.

8.3 Chemical Covariance

Subgrid variability affects the local chemical terms in the continuity equation
through covariances between concentrations of reacting species. This can be import-
ant for modeling the evolution of chemical and aerosol plumes. It can be addressed
by application of Reynolds decomposition to the chemical variables. For the simple
case of a single reaction A + B! C, the mean chemical production rate s for species
C is

s ¼ kAB ρA ρB ¼ kAB ρAρB þ ρ0Aρ
0
B

� �þ ρAk
0
ABρ

0
B þ ρBk

0
ABρ

0
A þ k0ABρ

0
Aρ

0
B (8.24)

where ρA and ρB represent the density of chemical species A and B, respectively. The
variation in the reaction rate constant kAB generally results from fluctuations in
temperature and can then be expressed by

k0AB ¼ ∂kAB
∂T

T 0 (8.25)
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The term ρ0Aρ
0
B represents the chemical covariance between the concentrations of

A and B, while the terms k0ABρ
0
B and k0ABρ

0
A account for the covariance between

species concentration and temperature. The last term k0ABρ
0
Aρ

0
B is the third-order

moment of the fluctuations in concentrations and temperature.
If we ignore the variability in the rate constant kAB that results from eddy

variations in the temperature (k0AB = 0), the mean source term is expressed by the
simpler relation

s ¼ kABρAρB ¼ kAB ρAρB þ ρ0Aρ
0
B

� �
(8.26)

The mean chemical source rate is therefore the sum of a resolved source term that can
be explicitly calculated from the mean concentrations and an unresolved chemical
covariance term whose value must be parameterized in some way. If chemical
species A and B have a common origin the covariance term is usually positive. If
they have different origins it is often negative.
The segregation ratio (or intensity of segregation) provides an estimate of the

degree of mixing for A and B (Brodkey, 1981):

IAB ¼ ρ0A ρ0B
ρA ρB

(8.27)

Avalue of IAB equal to zero implies that the reactants are well-mixed so that chemical
evolution can be computed from the grid mean concentrations. A value of –1 (anti-
correlation) indicates that the reactants are fully segregated and the mean source term
s is then equal to 0. From (8.26) and (8.27) one finds

s ¼ kAB ρA ρB ¼ kAB 1þ IABð Þ ρA ρB (8.28)

This expression suggests that, in theory, the effects of turbulence on chemical
reactions can be accounted for by replacing the rate constants kAB by effective rate
constants kAB,eff = kAB (1 + IAB) (Vinuesa and Vilà-Guerau de Arellano, 2005).
However, inferring the value of IAB and its variability is not straightforward, so this
approach cannot be easily implemented.
The effect of turbulent fluctuations on a chemical reaction rate can be described by

the Damköhler number (Damköhler, 1940, 1947):

Da ¼ τturb
τchem

(8.29)

which represents the ratio between the timescale τturb associated with turbulence in
the flow and the timescale τchem associated with chemical evolution. Different
formulations are available to estimate the turbulence timescale. For example, in the
convective atmospheric boundary layer, the time constant for transport in buoyant
eddies can be expressed as the ratio between the mixed layer depth h and the
convective velocity scale w* defined as

w∗ ¼
gh θ0vw0
� �

surf

θv

264
375
1=3

(8.30)
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For typical daytime values h = 1000 m and w* = 1–2 m s–1 (Stull, 1988), the
turbulent timescale is of the order of 10–15 minutes. It is considerably longer in
a stable atmosphere such as at night. In the slow chemistry limit, in which the
chemical timescale is long in comparison with the turbulent timescale (Da � 1),
the chemical species are well mixed and the concentrations can be approximated by
their mean values. The chemical covariance terms can be ignored. In the opposite
situation, referred to as fast chemistry limit (Da � 1), chemical transformation is
limited by the rate at which turbulence brings reactants together. In this case, the
covariance between the fluctuating components of the concentrations is large in
comparison to the product of the mean concentrations and must be estimated from
closure relations.

8.4 Closure Relations

In order to solve the continuity equations including eddy contributions that arise
from Reynolds decomposition, closure relations that relate the eddy flux and covar-
iance terms to mean quantities must be formulated. These closure relations are
effectively parameterizations. Different formulations are possible. Local closure
schemes express unknown eddy quantities at a given model grid point as a function
of known mean quantities or their derivatives at that grid point. Non-local closure
schemes relate the unknown eddy quantities at a grid point to known mean quantities
at other grid points. In first-order closure, the mean quantities are the only dependent
variables solved by the continuity equations. In higher-order closure, additional
equations for the higher moments are solved together with the equations for the
mean quantities. For example, in second-order closure schemes, prognostic equa-
tions are expressed for covariance terms such as Ψ0

mΨ
0
n and closure formulations

must then be adopted for the third moments Ψ0
kΨ

0
mΨ

0
n .

8.4.1 First-Order Closure

A simple first-order closure relation assumes that the eddy flux μ0iv0 of species i is
proportional to the gradient of the mean mixing ratio μi. This amounts to assuming
analogy of turbulent mixing and molecular diffusion (Fick’s law):

μ0iv0 ¼ �K—μi (8.31)

Such parameterization of turbulent mixing as molecular diffusion is grounded in the
observed near-Gaussian dilution of plumes emanating from point sources. It is a
good assumption when eddy scales are small relative to the model grid scale. The
turbulent (or eddy) diffusion matrix K has elements Kij that describe turbulent
diffusion in the three spatial directions (x, y, z). These elements Kij are called
turbulent diffusion coefficients and are derived from empirical relations. One gener-
ally ignores the off-diagonal terms Kxy, Kyz, etc. that allow for the existence of
counter-gradient fluxes, and retain only the diagonal terms Kxx, Kyy, and Kzz.
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We pointed out above that turbulent mixing is generally most important in the
vertical direction where mean winds are slow. If only the vertical direction is
considered, the eddy flux of species i is written

μ0iw0 ¼ �Kz
∂μi

∂z
(8.32)

If we neglect inhomogeneities in air density (ρ0a = 0), we have

ρ0iw0 ¼ �Kz ρa
∂
∂z

ρi
ρa

� 	
(8.33)

Here Kz is the vertical turbulent (or eddy) diffusion coefficient. The same value of Kz

is assumed to apply to all chemical species, and is often derived from turbulent
diffusion of momentum or specific heat: This is the so-called similarity assumption.
Kz depends on the intensity of turbulence. Standard semi-empirical formulations of
Kz for the PBL are presented in Section 8.7. The Kz formalism is also used in
conceptual 1-D (vertical) models of the global atmosphere, in which case Kz values
are chosen to fit observed gradients of atmospheric tracers (Liu et al., 1984). Values
of Kz in the boundary layer are of the order of 100 m2 s–1 in the daytime (unstable
atmosphere) and 0.1 m2 s–1 at night (stable atmosphere). Values in the free tropo-
sphere are of the order of 10 m2 s–1 and values in the stratosphere are of the order of
0.1–1 m2 s–1. The time constant that describes diffusive transport over a length scale
L is L2/2Kz, by analogy with Einstein’s equation for molecular diffusion. For
example, a 1-km thick daytime boundary layer with Kz = 100 m2 s–1 mixes vertically
on a timescale of 5 � 103 s or 1.5 hours. This timescale is much longer than the
transport time h/w* in buoyant updrafts introduced in Section 8.3. Thus species
emitted at the surface can be injected rapidly to the top of the boundary layer in
buoyant updrafts, but thorough vertical mixing of the boundary layer takes a
longer time.

8.4.2 Higher-Order Closures

The first-order closure formalism has the advantage of being computationally
expedient. It is not suited to strongly convective environments, where the transport
is mostly accomplished by the largest eddies (Wyngaard, 1982; Vilà-Guerau de
Arellano, 1992) instead of the small eddies assumed in the turbulent diffusion
closure. One can address this problem by using higher-order closure approaches.
This adds other equations (Stull, 1988; Garratt, 1994; Stensrud, 2007) that
describe the evolution of higher order moments (e.g., eddy fluxes, covariances,
turbulent kinetic energy). The equations for the mean and turbulent components
are established by applying Reynolds decomposition to the dependent variables in
the different prognostic equations (continuity, momentum, energy). Equations for
the mean quantities are obtained by averaging all terms in the equations. Equations
for the turbulent components are obtained by subtracting the equations for the
mean quantities from the governing equations. From there, predictive equations
can be established for the different eddy fluxes and covariances. Box 8.1 gives an
example.
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Box 8.1 Second-Order Closure Equations for the Turbulent Flow, Eddy Fluxes,
and Covariances of Chemical Species

The governing equations that describe the interactions between chemistry and turbulent mixing of
species include second moments such as eddy fluxes w0μ0 or chemical covariance μ0mμ0n . The
derivation of the equations for such quantities requires long algebraic manipulations. We consider
here a simplified case assuming horizontal homogeneity (no derivative along horizontal directions)
and no air subsidence (mean vertical wind component equals zero). We start by writing the vertical
projection of the momentum equation in which we assume that the friction term is proportional to
the Laplacian of the velocity

∂w
∂t

þ w
∂w
∂z

¼ �g� 1
ρa

∂p
∂z

þ ν
∂2w
∂z2

Here ν stands for the kinematic viscosity coefficient. We now apply the Reynolds decomposition
with

ρa ¼ ρa þ ρ0a w ¼ w þ w0 p ¼ p þ p0

If we assume that the atmospheric mean state follows hydrostatic equilibrium conditions and if we
further neglect density variations ρ0a=ρa � 1

� �
in the inertia term ∂w/∂t but retain it in the

gravity term (Boussinesq approximation), we find the turbulent momentum equation

∂w0

∂t
þ w

∂w0

∂z
¼ θ0v

θv

� 	
g� 1

ρa

∂p0

∂z
þ ν

∂2w0

∂z2
� ∂w0w0

∂z

In this equation, we have replaced the density variations by virtual potential temperature variations
ρ0a=ρa ¼ θ0v=θv
� �

as deduced from the equation of state. The virtual potential temperature
(potential temperature that accounts for the buoyancy effects related to humidity – see Section 2.4)
is related to the value of the potential temperature θ by θv = θ (1 + 0.61 rw) if rw represents the
water vapor mixing ratio by mass.
We now consider the simplified continuity equation for the mixing ratio μ that includes a

molecular diffusion term

∂μ
∂t

þ w
∂μ
∂z

¼ D
∂2μ
∂z2

þ S

where D represents the diffusion coefficient. If we apply again a Reynolds decomposition with

μ ¼ μ þ μ0 w ¼ w þ w0 S ¼ S þ S0

we obtain the following equation

∂μ
∂t

þ ∂μ0

∂t
þ w0 ∂μ

∂z
þ w0 ∂μ

0

∂z
¼ D

∂2μ
∂z2

þ D
∂2μ0

∂z2
þ S þ S0

in which subsidence has been ignored and the mean vertical velocity w ¼ 0
Applying the averaging operator to each term of the equation, noting that, by continuity,

∂w0=∂z ¼ 0, we find the equation for the mean mixing ratio
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Box 8.1 (cont.)

∂μ
∂t

þ ∂μ0w0

∂z
¼ D

∂2μ
∂z2

þ S

where the second term reflects the effect of turbulence on the vertical distribution of the mean mixing
ratio. In this expression, molecular diffusion is often neglected because it is much smaller than the
eddy flux term. By subtraction, we obtain the equation for the eddy component of the mixing ratio

∂μ0

∂t
þ w0 ∂μ

∂z
þ w0 ∂μ

0

∂z
¼ D

∂2μ0

∂z2
þ ∂w0μ0

∂z
þs0

We then derive the equation for the mean vertical eddy flux w0μ0of the tracer mixing ratio by
multiplying the momentum perturbation equation by μ0 and the tracer perturbation equation by
w0. We then take the Reynolds average of both equations and add them together. After some
manipulations that include the transformation of the turbulent flux divergence term into its flux
form, we derive the equation for vertical turbulent tracer flux:

∂w0μ0

∂t
¼ �w02 ∂μ

∂z
� ∂w02μ0

∂z
þ μ0θ0 v

g

θv
� μ0

ρa

∂p0

∂z
� F þ Rw0μ0

The terms on the right side of the equation represent the flux source/sink terms associated
with the vertical gradient in the mean mixing ratio, the vertical turbulent transport of the
flux, the buoyant production, the pressure covariance, tracer flux dissipation, and chemical
transformations. The dissipation term F must be parameterized. For a chemical scheme that
includes N photolysis reactions and M second-order reactions, the chemical term can be
expressed as

Rw0μ ¼ sign
XN
i¼1

Ji w0μ0i þ sign
XM
n,m

knm μm w0μ0n
� �þ μn w0μ0m

� �þ w0μ0mμ0n
� �

with m < n in the second summation. Factor sign is equal to +1 if the reaction constitutes a
production and to –1 if it is a loss. J and k represent photolysis coefficients and reaction rate
constants, respectively.
The chemical covariance μ0mμ0 n that appears in the source term of the continuity equation for

reactive species can be derived from a covariance budget equation (Garratt, 1994; Verver et al.,
1997)

∂μ0mμ0 n
∂t

¼ �μ0mw0 ∂μn

∂z
� μ0nw0 ∂μm

∂z
� ∂μ0mμ0nw0

∂z
� 2D

X3
k¼1

∂μ0m
∂xk

� 	
∂μ0n
∂xk

� 	
þ Rmn

Here, the first two terms on the right-hand side of the equation represent the production of
chemical covariance by the concentration gradients, the third term accounts for the vertical
turbulent transport of the second moment, and the fourth term represents the dissipation by
molecular diffusion. The last term accounts for the chemical influence on the covariances. For
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Second-order closure formulations include predictive equations for covariances
between wind components, wind and temperature, wind and humidity, and wind and
chemical concentrations. Triple correlation terms appear in the equations and lead to
a new closure problem. In principle, additional differential equations can be written
to describe the evolution of third moments, but in this case fourth-order moments
will appear. In most practical applications, the system is closed either by neglecting
these high-order moments or by introducing diagnostic expressions that include
adjustable empirical parameters.

8.5 Stochastic Representation of Turbulent Reacting Flows

An alternative approach to treat turbulence is through stochastic methods (Pope,
2000). In this case, the flow velocity v(r, t) = (v1, v2, v3)

T and the vector of concen-
trations for N interacting chemical species Ψ(r, t) = (Ψ1, . . ., ΨN)

T at location r are
viewed as random variables with respect to time t. Their dynamical behavior is fully
described by a joint velocity-composition PDF, denoted here pv,Ψ, that describes the
likelihood for the continuous random variables v and Ψ to take given values.
Specifically, the probability that the random velocity v and the random chemical
concentration Ψ fall into the infinitesimal intervals [u, u + du] and [ϕ, ϕ + dϕ],
respectively is given by

Pr u < v r; tð Þ < uþ duð Þ and ϕ < Ψ r; tð Þ < ϕþ dϕð Þ½ � ¼ pv,Ψ u;ϕ; r; tð Þ du dϕ

(8.34)

In this section the expected (mean) value of a random quantity X (v, Ψ) is denoted by
brackets:

X v;Ψð Þh i ¼
ðþ∞

�∞

du
ðþ∞

�∞

X pv,Ψ u;ϕ; r; tð Þ dϕ (8.35)

and the fluctuating component is denoted by a prime: X0 =X – hXi.

example, if k denotes the rate constant of a reaction between two species m and n, the
corresponding loss term is

Rmn ¼ �k μmμ0mμ0n þ μnμ0mμ0n þ μmμ0
2
n þ μnμ0

2
m þ μ02mμ0n þ μ0mμ0

2
n

h i
Additional moments including the wind variance w02 , the concentration variance μ02i , and the
covariance μ0iθ

0
v between species concentrations and the virtual temperature are provided by Stull

(1988) and Garratt (1994). The triple correlation terms that appear in the second-order equations
must be determined by higher-order closure equations or empirical closure expressions (Verver
et al., 1997).
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The evolution of the turbulent field at a fixed point of the flow is simulated by
solving a transport equation for the joint PDF. Fox (2003) provides details on the
derivation of this equation. In short, the equation can be established by equating two
independent expressions for the expected value of the total derivative of an arbitrary
scalar function F(v, Ψ):

dF

dt


 �
¼ ∂ Fh i

∂t
þ
X3
i¼1

∂ viFh i
∂xi

(8.36)

and

dF

dt


 �
¼
X3
i¼1

∂F
∂vi

dvi
dt


 �
þ
XN
n¼1

∂F
∂Ψn

dΨn

dt


 �
(8.37)

The total derivatives of the fluid velocity components (i = 1, 3) and the concentration
components (n = 1, N) that appear in (8.37) are substituted by expressions derived
from the Navier–Stokes and continuity equations, respectively

dvi
dt

¼ ∂vi
∂t

þ
X3
j¼1

vj
∂vi
∂xj

¼ ν
X3
j¼1

∂2vi
∂x2j

� 1

ρa

∂p
∂xi

þ gi i ¼ 1; 3ð Þ (8.38)

dΨn

dt
¼ ∂Ψn

∂t
þ
X3
j¼1

vj
∂Ψn

∂xj
¼ Dn

X3
j¼1

∂2Ψn

∂x2j
þ Sn Ψð Þ n ¼ 1;Nð Þ (8.39)

where ν [m2 s–1] is the kinematic viscosity coefficient and Dn [m
2 s–1] is a molecular

diffusion coefficient. Quantity gi denotes the gravitational acceleration and ρa the air
density. The expected values of the different terms appearing in expressions (8.38)
and (8.39) are expressed as a function of the joint PDF, applying (8.35) for the
different variables. Noting that the equality between (8.36) and (8.37) must hold for
any arbitrary choice of scalar function F, one derives the following transport equation
(Fox, 2003; Cassiani et al., 2010)

∂pv,Ψ
∂t

þ
X3
i¼1

ui
∂pv,Ψ
∂xi

¼ �
X3
i¼1

∂
∂ui

pv,Ψ Ai u;ϕjh i� � �
XN
n¼1

∂
∂ϕn

pv,Ψ Bi u;ϕjh i� �
(8.40)

where the conditional fluxes are

Ai u;ϕjh i ¼ ν
X3
j¼1

∂2vi
∂x2j

� 1

ρa

∂p0

∂xi

 !
v r; tð Þ ¼ u;Ψ r; tð Þ ¼ ϕj

* +
� 1

ρa

∂ ph i
∂xi

þ gi

(8.41)

and

Bi u;ϕjh i ¼ Dn

X3
j¼1

∂2Ψn

∂x2j
v r; tð Þ ¼ u;Ψ r; tð Þ¼ϕj

* +
þ Sn ϕð Þ (8.42)

The first terms in (8.40) refer successively to the local rate of change of the
joint PDF and to its transport in the geometric space (xi). The first term on

356 Parameterization of Subgrid-Scale Processes

009
23 Jun 2017 at 02:26:24, subject to the Cambridge Core terms of use, available



the right-hand side of the equation accounts for the effects of viscous stress,
pressure fluctuations and gravity, and the second term for the transport by
molecular fluxes in the composition space and for chemical sources. Terms that
require multiple-point information (gradient and Laplacian terms) are not closed,
and closure expressions based on empirical information or DNS data must be
added to the system.

The numerical solution of the transport equation (8.40) provides the value of the
joint PDF at a specified point r and time t, from which mean physical quantities can
be derived by integration over velocities and concentrations following (8.35). An
advantage of the stochastic method over the classic Reynolds decomposition method
is that it provides not only the mean values of the velocity and concentrations, but
also the full PDF from which to compute higher moments of these quantities,
including the covariances between fluctuating quantities. In particular, no closure
assumption is needed to treat the chemical source term involving products of
concentrations.

Solution of (8.40) is computationally burdensome and more economical methods
are usually adopted. A common approach is to consider a simpler composition PDF
obtained by integrating the joint velocity-composition PDF over the entire velocity
phase space:

pΨ ϕ; r; tð Þ ¼
ðþ∞

�∞

pv,Ψ u;ϕ; r; tð Þ du (8.43)

In this case, one assumes that the stochastic wind fields are provided by an external
turbulence model. The transport equation for the composition PDF is derived by
integrating (8.40) over the entire velocity phase space (see Fox, 2003 for a complete
derivation). One finds:

∂pΨ
∂t

þ
X3
i¼1

vih i ∂pΨ
∂xi

¼ �
X3
i¼1

∂
∂xi

pΨ v0ijϕ
� � � �

XN
n¼1

∂
∂ϕn

pΨ Dn—2Ψ0
n

� �
ϕj� � �

�
XN
n¼1

∂
∂ϕn

pΨ Dn—2 Ψnh i þ Sn ϕð Þ� �� � (8.44)

The terms on the left-hand side of (8.44) represent again the time evolution of the
PDF and its advection by the mean wind field vih i in the spatial space xi (sometimes
referred to as macro-mixing). The terms on the right-hand side include the effect of
unresolved concentration-conditioned velocity fluctuations (meso-mixing) and the
transport in the composition space due to molecular mixing (micro-mixing). Again,
the chemical term involves only single-point information, and is described in a
closed form. One usually assumes that the term related to the concentration-
conditioned velocity v0ijϕ

� 
can be parameterized by

pΨ v0ijΨ r; tð Þ¼ϕ
�  ¼ �K

∂pΨ
∂xi

(8.45)

where K is an eddy diffusion coefficient, supposed here to be isotropic. Similarly, the
conditional term Dn—2Ψ0

n

� �
ϕj� 

that accounts for the dissipation of the
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concentration fluctuations by molecular diffusion is also unclosed, and can be
parameterized by a linear dissipation toward the mean concentration state Ψnh i.
It has been shown (Valiño, 1998) that the solution of the transport equation for the

composition PDF (8.44) is equivalent to the solution provided by an ensemble of M
stochastic partial differential equations (PDEs)

dΨ mð Þ
n

dt
¼ �

X3
i¼1

vih i ∂Ψ
mð Þ
n

∂xi
þ
X3
i¼1

∂
∂xi

K
∂Ψ mð Þ

n

∂xi

� 	

þ 2Kð Þ1=2
X3
i¼1

∂Ψ mð Þ
n

∂xi

dξ mð Þ
i

dt
þ S mð Þ

n Ψð Þ � Ψ mð Þ
n � Ψnh i� �
Tmix

(8.46)

where m denotes one of the M possible realizations and Tmix a mixing timescale. The
two first terms on the right-hand side of this equation represent the effects of the
large-scale advection and of mixing by eddy diffusion. The third term introduces the
effects of random motions with dξi denoting the random increment of an uncorrel-
ated Wiener process with a zero average and a variance equal to dt (see Section
4.11.2). The fourth term evaluates the chemical sources and sinks; it implicitly
accounts for the effects of fluctuations (chemical eddies) on the reaction rates. The
last term introduces a relaxation toward the mean concentration. The average of the
concentration field as well as the covariances are obtained from the ensemble of
solutions in the M different realizations.
Stochastic model modules, if inserted into a coarser chemical transport modeling

system, provide an approach to simulate the influence of chemical and dynamical
subgrid processes on large-scale dynamics and chemistry, including, for example, the
dispersion of reactive plumes in the PBL and the effects of subgrid heterogeneities in
surface emissions. The formulation discussed above is Eulerian because the PDFs
are calculated at fixed points in space. The evolution of fluid particle properties in
turbulent reacting flows can also be simulated by Lagrangian stochastic models (see
Section 4.11.2) in which the flow is represented by a large number of particles, each
being characterized by its own position, velocity, and chemical composition. These
different properties evolve according to stochastic Lagrangian model equations, and
each sampled particle is assumed to be representative of a different realization of
the flow.

8.6 Numerical Solution of the Diffusion Equation

Diffusion equations are often used in atmospheric models to parameterize the effects
of small-scale turbulence. They must be solved numerically except in idealized cases
(see Box 8.2). Here, we first consider numerical methods adopted to solve the 1-D
diffusion equation

∂Ψ
∂t

¼ ∂
∂x

K
∂Ψ
∂x

� �
(8.47)

which is frequently encountered in chemical transport models.
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8.6.1 Explicit Schemes for the 1-D Diffusion Equation

If the diffusion coefficient K is constant, the partial differential parabolic equation
written now as

∂Ψ
∂t

¼ K
∂2Ψ
∂x2

(8.48)

can be approximated by the forward-in-time, centered-in-space (FTCS) scheme:

Ψnþ1
j � Ψn

j

Δt
¼ K

Δx2
Ψn

j�1 � 2Ψn
j þ Ψn

jþ1

� �
(8.49)

Box 8.2 Analytic Solution for the 1-D Diffusion Equation

Consider the 1-D diffusion equation for an inert tracer concentration Ψ(x, t)

∂Ψ=∂t ¼ K∂2Ψ=∂x2

where K is a constant diffusion coefficient. We assume at the initial time (t = 0) that the entire
mass of the tracer is concentrated at the spatial origin (x = 0). Thus, the initial value of the
concentration is Ψ(x, 0) = S δ(x) where δ(x) is the Dirac function (this function equals zero
everywhere except at x = 0 and its integral value is 1). For an infinite space with Ψ = 0 for
x ! 	 ∞, the analytic solution is the Gaussian expression

Ψ x; tð Þ ¼ S= 4π K tð Þ1=2
n o

exp � x2= 4 K tð Þ� �� �
This expression provides the basis for Gaussian plume models. The plume dilutes with a variance
σ2 = 2 K t that increases linearly with time t. See Box 8.2 Figure 1 and Section 4.12.1.

X

2σ

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
–15 –10 –5 0 5 10 15

Increasing
�me

Ψ

Box 8.2
Figure 1

Dilution of a plume.
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where, as in previous chapters, Δx and Δt represent the grid interval and the
time step, respectively. This expression is easy to solve due to its explicit nature.
It is, however, only first-order accurate in time. Following von Neumann’s
stability analysis considered in Chapter 7, in which the evolution of a wave with
wavenumber k is examined, the amplification factor |g(k)| associated with the FTCS
method is

g kð Þj j ¼ 1� 2β 1� cos kΔxð Þð Þ (8.50)

For the method to be stable, this quantity must be less than 1 for any value of k.
This is achieved if the dimensionless parameter

β ¼ K
Δt
Δx2

(8.51)

is less than ½. Thus, to ensure stability of the solution, the integration time step Δt
must be smaller than Δx2/2K. This timescale characterizes the diffusion of air parcels
across the grid cell width Δx. However, even though this criterion guarantees
stability, it may not be sufficient to ensure a correct simulation of the shortest
resolved waves, and specifically the 2Δx wave mode. Durran (2010) shows that a
more appropriate condition is

0 
 β 
 1

4
(8.52)

In the explicit Richardson scheme, the time derivative in the FTCS scheme is
replaced by a centered difference:

Ψnþ1
j � Ψn�1

j

2Δt
¼ K

Δx2
Ψn

j�1 � 2Ψn
j þ Ψn

jþ1

h i
(8.53)

This scheme is second-order accurate in time but is unconditionally unstable.
Unconditional stability, however, can be achieved by splitting the 2Ψn

j term into
Ψnþ1

j þ Ψn�1
j . The resulting DuFort–Frankel algorithm is:

Ψnþ1
j � Ψn�1

j

2Δt
¼ K

Δx2
Ψn

j�1 � Ψnþ1
j þ Ψn�1

j

� �
þ Ψn

jþ1

h i
(8.54)

Although the scheme appears implicit, the solution Ψnþ1
j is easily derived if the

dependent variables are known at the two previous time steps tn and tn–1:

Ψnþ1
j ¼ 2β

1þ 2β
Ψn

j�1 þ Ψn
jþ1

� �
þ 1� 2β
1þ 2β

Ψn�1
j (8.55)

The amplification factor is:

g kð Þj j ¼ 2β cos kΔxð Þ 	 1� 4β2 sin 2 kΔxð Þ� �0:5
1þ 2β

(8.56)

In spite of its unconditional stability, the DuFort–Frankel scheme does not correctly
damp the short-wavelength components of the solution when implemented with
an excessively large time step. It is therefore recommended to adopt a value of
β smaller than ½.
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Accuracy of the solution can be improved by considering a weighted time
derivative over three time levels tn–1, tn, and tn+1, and a more elaborate formulation
of the space derivative:

1þ γð ÞΨ
nþ1
j � Ψn

j

Δt
� γ

Ψn
j � Ψn�1

j

Δt

¼ K

Δx2
1� θð Þ Ψn

j�1 � 2Ψn
j þ Ψn

jþ1

� �
þ θ Ψn�1

j�1 � 2Ψn�1
j þ Ψn�1

jþ1

� �h i
(8.57)

where γ and θ are adjustable parameters. For θ = 0, this expression corresponds to the
explicit FTCS scheme if γ = 0, to the Richardson scheme if γ = ½, and to the DuFort–
Frankel scheme if γ = –½ + β. Stability conditions vary with the value of parameter γ:
the stability limit for β varies from about 0.35 to 0.5 when γ increases from 0 to 6.
The stencils corresponding to different explicit algorithms are shown in Figure 8.6.

If, as is often the case in atmospheric applications, the diffusion coefficient K is
not a constant parameter, but depends on the spatial variable x, a more general form
of the diffusion equation (8.47) must be considered. In this case, the explicit FTCS
algorithm, for example, takes the form

Ψnþ1
j � Ψn

j

Δt
¼ 1

Δx
K xð Þ ∂Ψ

∂x

� �n
jþ1=2

� K xð Þ ∂Ψ
∂x

� �n
j�1=2

( )
(8.58)

or

Ψnþ1
j � Ψn

j

Δt
¼ 1

Δx2
Kjþ1=2 Ψn

jþ1 � Ψn
j

� �
� Kj�1=2 Ψn

j � Ψn
j�1

� �h i
(8.59)

Index j + ½ corresponds to the point located at equal distance between grid-points xj
and xj+1. If the value of K is not known at such intermediate locations but only at the
grid points, one can use a simple interpolation as Kj+1/2 = (Kj + Kj+1)/2. This scheme
is stable only if

n+1

n

n – 1

n+1

n

n – 1

j – 2 j – 1 j j+1 j+2 j – 2 j – 1 j j+1 j+2

FTCS

Richardson Three-level scheme

DuFort–Frankel

Figure 8.6 Stencils for different explicit schemes to approximate the 1-D diffusion equation. Indices j and n refer to the
spatial and temporal dimensions, respectively.
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Δt 
 min
Δx2

2Kjþ1=2

� 	
(8.60)

for all values of j. However, as indicated above, a step twice as small should be
preferred to ensure a proper treatment of the shortest resolved waves. If both the
diffusion coefficient and the grid spacing vary in space, we approximate the diffusion
term by a second-order finite difference expression:

∂
∂x

K xð Þ ∂Ψ
∂x

� �n
j

� 2

Δxjþ1 þ Δxj
Kjþ1=2

Ψjþ1 � Ψj

Δxjþ1

� 	
� Kj�1=2

Ψj � Ψj�1

Δxj

� 	� �n
(8.61)

or

∂
∂x

K
∂Ψ
∂x

� �n
j

� AjΨ
n
j�1 þ BjΨ

n
j�1 þ CjΨ

n
j�1 (8.62)

where

Aj ¼ 2
Kj�1=2

Δxj Δxj þ Δxjþ1

� � Bj ¼ �2

Kj�1=2

Δxj
þ Kjþ1=2

Δxjþ1

Δxj þ Δxjþ1
Cj ¼ 2

Kjþ1=2

Δxjþ1 Δxj þ Δxjþ1

� �
with

Δxj ¼ xj � xj�1, Δxjþ1 ¼ xjþ1 � xj and Δxj þ Δxjþ1 ¼ xjþ1 � xj�1:

8.6.2 Implicit Schemes for the 1-D Diffusion Equation

The implicit form of the FTCS scheme

Ψnþ1
j � Ψn

j

Δt
¼ K

Δx2
Ψnþ1

j�1 � 2Ψnþ1
j þ Ψnþ1

jþ1

� �
(8.63)

provides solutions that are unconditionally stable because the amplification factor

g kð Þj j ¼ 1

1þ 2β 1� cos kΔxð Þð Þ (8.64)

is less than 1 for all values of β. The errors on the solution can, however, be
substantial for large values of the time step because this algorithm is only first-order
accurate in time.
Expression (8.63) represents a tridiagonal system of J – 1 linear equations:

�βΨnþ1
j�1 þ 1þ 2βð ÞΨnþ1

j � βΨnþ1
jþ1 ¼ Ψn

j j ¼ 1; J � 1ð Þ (8.65)

The solution requires that boundary conditions be specified for j = 0 and j = J. The
Thomas algorithm, often adopted to solve tridiagonal systems, is given in Box 4.4.
The accuracy of the fully implicit FTCS algorithm can be improved by using a

combination of spatial derivatives at time tn and tn+1:

Ψnþ1
j � Ψn

j

Δt
¼ K

2Δx2
Ψnþ1

j�1 � 2Ψnþ1
j þ Ψnþ1

jþ1

� �
þ Ψn

j�1 � 2Ψn
j þ Ψn

jþ1

� �h i
(8.66)

362 Parameterization of Subgrid-Scale Processes

009
23 Jun 2017 at 02:26:24, subject to the Cambridge Core terms of use, available



This algorithm, called the Crank–Nicholson scheme, is unconditionally stable since
the associated amplification factor

g kð Þj j ¼ 1� 2β sin 2 kΔx=2ð Þ
1þ 2β sin 2 kΔx=2ð Þ (8.67)

is always less than or equal to 1. It is second-order accurate in time and space. As in
the fully implicit method, a system of linear equations involving a tridiagonal matrix
must be solved.

A general approach is to consider a weighted time differencing over three time
levels together with a combination of implicit and explicit approximations for the
space derivatives:

1þ γð ÞΨ
nþ1
j � Ψn

j

Δt
� γ

Ψn
j � Ψn�1

j

Δt

¼ K

Δx2
θ Ψnþ1

j�1 � 2Ψnþ1
j þ Ψnþ1

jþ1

� �
þ 1� θð Þ Ψn

j�1 � 2Ψn
j þ Ψn

jþ1

� �h i
(8.68)

where γ and θ are again adjustable parameters. The Crank–Nicholson scheme
corresponds to the case where γ = 0 and θ = 1/2. For γ = 1/2 and θ = 1, one obtains
the following three-level scheme:

3

2

Ψnþ1
j � Ψn

j

Δt
� 1

2

Ψn
j � Ψn�1

j

Δt
¼ K

Δx2
Ψnþ1

j�1 � 2Ψnþ1
j þ Ψnþ1

jþ1

h i
(8.69)

which is second-order accurate in space and time, and is unconditionally stable.
Figure 8.7 gives schematic representations of the different implicit schemes.

If the diffusion coefficient K varies in space, expressions similar to (8.58) can
easily be established for the fully implicit and for the Crank–Nicholson schemes; in
both cases, they lead to a tridiagonal system of linear equations. These algorithms are
usually stable for any value of time step Δt. More elaborate and accurate forms can
be adopted for the discretization of the second derivative in space (see Table 4.2). In

n+1

n

n – 1

n+1

n

n – 1

j – 2 j – 1 j j+1 j+2 j – 2 j – 1 j j+1 j+2

FTCS

Three-level scheme (q π 1)Three-level scheme (q = 1)

Figure 8.7 Stencils for different implicit schemes to approximate the 1-D diffusion equation. Indices j and n refer to the
spatial and temporal dimensions, respectively.
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this case, the matrix associated with the system of linear equations may not be
tridiagonal anymore. Techniques to solve this system, such as the Gauss elimination
algorithm, are often prohibitively expensive.

8.6.3 Numerical Algorithms for the Multidimensional Diffusion Equation

The explicit FTCS method described earlier can easily be generalized to more than
one dimension. However, because of the constraints on the adopted time step,
implicit methods are often preferred. Again, a system of coupled algebraic equations
can easily be established, but the matrix of this system, although sparse, is no longer
tridiagonal.
An alternative to the fully implicit approach is to apply operator splitting and treat

the problem as a succession of 1-D problems. In the popular alternating-direction
implicit (ADI) method, the time step is divided into sub-steps at which a different
dimension is treated implicitly (Figure 8.8). For example, in the 2-D case, the
diffusion equation expressed as

∂Ψ
∂t

¼ ∂
∂x

Kx
∂Ψ
∂x

� �
þ ∂
∂y

Ky
∂Ψ
∂y

� �
(8.70)

is integrated from time tn to tn+1 by considering the following sequence

Ψ� � Ψn

Δt
¼ 1

2

∂
∂x

Kx
∂Ψ
∂x

� �� ��
þ 1

2

∂
∂y

Ky
∂Ψ
∂y

� �� �n

(8.71)

Ψnþ1 � Ψ�

Δt
¼ 1

2

∂
∂x

Kx
∂Ψ
∂x

� �� ��
þ 1

2

∂
∂y

Ky
∂Ψ
∂y

� �� �nþ1

(8.72)

where Ψ* is an intermediate value for function Ψ. Assuming constant diffusion
coefficients and defining

βx ¼ Kx
Δt
Δx2

(8.73)

and

βy ¼ Ky
Δt
Δy2

(8.74)

j –1 j – 1j jj+1
k – 1k – 1

kkn

*
*

k+1

n+1

k+1

j+1

Figure 8.8 Stencil representing the two successive steps in the 2-D alternating direction method.
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the resulting algebraic equations are:

� βx
2
Ψ�

j�1,k þ 1þ βxð ÞΨ�
j,k �

βx
2
Ψ�

jþ1,k ¼
βy
2
Ψn

j,k�1 þ 1� βy
� �

Ψn
j,k þ

βy
2
Ψn

j,kþ1

j ¼ 1; J � 1ð Þ
(8.75)

� βy
2
Ψnþ1

j,k�1 þ 1þ βy
� �

Ψnþ1
j,k � βy

2
Ψnþ1

j,kþ1 ¼
βx
2
Ψ�

j�1,k þ 1� βxð ÞΨ�
j,k þ

βx
2
Ψ�

jþ1,k

k ¼ 1;K � 1ð Þ
(8.76)

where j and k are the indices referring to the spatial discretization in the x- and
y-direction, respectively. Each step requires solving an implicit equation in
one dimension; the first step is solved for parameter k fixed and the second step
for parameter j fixed. This approach requires that at each time step two
tridiagonal systems be solved; it is thus computationally efficient. The von
Neumann stability analysis can be applied for each step and for the steps
combined to yield:

g kð Þj j ¼ 1� 2βx sin
2 kΔx=2ð Þ

1þ 2βy sin 2 kΔy=2ð Þ

" #
1� 2βy sin

2 kΔy=2ð Þ
1þ 2βx sin 2 kΔx=2ð Þ

" #
(8.77)

This method is unconditionally stable because the amplification factor is always
less than or equal to 1. It is second-order accurate in space and time. We close by
noting that diffusive schemes, as those discussed above, are not necessarily used to

Box 8.3 Numerical Diffusion in Atmospheric Models

In addition to the diffusion parameterization used to describe atmospheric turbulence, spurious
numerical diffusion may be produced in Eulerian models by the adopted advection schemes (see
Chapter 7) and by the use of numerical filters, which are often applied to avoid numerical instability
when solving the transport or dynamical equations. This additional (unphysical) diffusion leads to
excessive mixing and can be reduced by using a higher-order advection scheme and a finer grid to
resolve spatial gradients. Numerical diffusion is a particular problem at dynamical barriers through
which physical transport is restricted (see Section 8.12). In Lagrangian models, on the other hand,
air parcels moving with the flow are considered to be isolated from other air parcels, and no mixing
occurs. Without an appropriate parameterization to account for mixing processes between
neighboring air parcels, Lagrangian models may overestimate spatial gradients and produce
unrealistic small-scale structures (Collins et al., 1997; McKenna et al., 2002). To account for
small-scale mixing processes in a Lagrangian model, an expression can be added that brings the
mixing ratio μi of a given air parcel closer to the background mixing ratio μ i . Collins et al. (1997)
use a relaxation term d μ i � μið Þ where the degree of exchange d is considerably faster in the
troposphere than in the stratosphere. The background mixing ratio in a given area is defined as the
average for all air parcels located within that area. In an alternate approach, McKenna et al. (2002)
entirely mix two air parcels when their spatial separation is smaller than a given threshold value.
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represent physical processes, but rather to stabilize algorithms adopted for solving
the advection equation. Further, unwanted numerical diffusion can be produced by
low-order advection schemes (see Box 8.3).

8.7 Planetary Boundary Layer Processes

Section 2.10 presented an overview of the factors controlling the structure and
vertical mixing of the PBL. The PBL is defined as the lower part of the atmosphere,
typically 1–3 km in depth, that exchanges air with the surface on a daily basis. As
discussed in Section 2.10, one can distinguish between three regimes to describe
boundary layer dynamics, depending on the sensible heat flux at the surface: (1) a
convectively unstable regime where heating of the surface drives strong buoyant
motions, typical of land during daytime; (2) a convectively stable PBL where cooling
of the surface suppresses buoyant motions, typical of land at night, and characterized
by stratification of the atmosphere; (3) a neutral regime with little sensible heating of
the surface, typical of marine conditions. Different formulations of turbulence must
be considered for these three regimes.
Cumulus or stratus clouds are often present in the upper part of the PBL. Their

formation is determined by evaporation of water from the surface (latent heat flux)
and eventual condensation as air parcels rise. Cloud formation affects the dynamics
of the PBL through both latent heat release and radiative effects. Clouds at night
decrease nighttime stability both by suppressing radiative cooling of the surface and
by radiative cooling at cloud top.
In this section we present approaches of varying complexity to describe vertical

turbulence in the PBL and its implications for the concentrations and transport of
chemical species. The simplest approach, often sufficient for rough estimates, is to
use a box model for the convectively unstable or neutral mixed layer assuming
vertically uniform concentrations through the mixing depth. Consider a horizontally
uniform atmosphere with a time-varying mixing depth h(t) through which the
atmosphere is assumed to be vertically well mixed. The budget of a chemical species
i is defined by the mass conservation equation

dρi
dt

¼ Fi 0ð Þ � Fi hð Þ
h

þ si (8.78)

where ρi is the mass concentration, Fi (0) is the net surface flux from emission and/or
deposition, Fi (h) is the entrainment flux at the top of the mixed layer, and si is the net
chemical source term. Here and elsewhere, we define vertical fluxes as positive
upward. As the mixed layer grows in the morning, the entrainment flux is given by

Fi hð Þ ¼ ρi � ρbð Þ dh
dt

(8.79)

where ρb is the background concentration entrained from above the mixed layer,
which can represent free tropospheric air or residual boundary layer air from the
previous day. When the mixing depth decreases, as in the evening, air is removed
from the box and Fi(h) = 0.

366 Parameterization of Subgrid-Scale Processes

009
23 Jun 2017 at 02:26:24, subject to the Cambridge Core terms of use, available



From a more fundamental perspective, the governing equations for the mean
winds, temperature, and species concentrations in the PBL can be obtained by
applying the Reynolds decomposition described in Section 8.2 to the momentum,
energy, and continuity equations (Stull, 1988; Garratt, 1994). The continuity equa-
tion (8.19) for the mean mixing ratio of species i in Cartesian coordinates is:

Box 8.4 Vertical Flux Gradients in the Mixed Layer

Consider a chemical species i in the well-mixed convective boundary layer (mixed layer) with no in-
situ production or loss, no horizontal gradient, and a constant surface flux. Assume that the mixed
layer extends to the PBL top capped by a subsidence inversion, as under clear-sky daytime
conditions, so that the vertical flux across the mixed layer top is zero. Further, assume that the
change in air density with altitude can be neglected. The 1-D (vertical) continuity equation in
Eulerian form for the chemical species is

∂ρi
∂t

¼ � ∂Fz
∂z

where ρi is the density and Fz is the vertical flux. Since the surface flux is constant and the
atmosphere is well-mixed, the mass mixing ratio μi must change at the same rate at all altitudes:
∂μi/∂t = α where α is a constant. If the air density ρa is fixed, then ∂ρi/∂t = α ρa is a constant
too. It follows that ∂Fz/∂z is a constant and hence that the magnitude of the chemical flux varies
linearly with altitude with a boundary condition Fz = 0 at the top of the mixed layer.
This result is somewhat counter-intuitive, as one might have expected the flux to be uniform with

altitude in a well-mixed layer. However, that would hold only if the concentrations were constant,
which cannot be the case since the flux at the top of the mixed layer is zero. This linear variation of
the flux with altitude is important for interpreting vertical flux measurements from aircraft (Box 8.4
Figure 1), as these measurements will underestimate the surface flux in a predictable manner.
Meteorologists refer to the surface layer as the lowest part of the atmosphere where the vertical
fluxes are within 10% of their surface values. We see that this surface layer extends to 10% of the
mixing depth; for a typical 1-km daytime mixing depth the surface layer is 100 m deep.

PBL top

Flux (Fz)

z

Surface Fz(0)

Box 8.4
Figure 1

Surface flux measurements from aircraft. The aircraft makes vertical eddy flux measurements
(Section 10.2.4) on successive horizontal flight legs in the mixed layer at different altitudes, under
conditions when the mixed layer extends to the PBL top (daytime, clear-sky). The line fitted to the
flux measurements at different altitudes is extrapolated to the surface to derive the surface flux Fz(0).
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∂μi

∂t
þ u

∂μi

∂x
þ v

∂μi

∂y
þ w

∂μi

∂z
¼ si � ∂

∂x
μ0iu0 �

∂
∂y

μ0iv0 �
∂
∂z

μ0iw0 (8.80)

Again, the eddy terms must be parameterized by assuming, for example, that the
local turbulent flux is proportional to the local gradient in the mean mixing ratio (see
Section 8.4.1). This assumption requires that the scale of the turbulence be smaller
than the characteristic spatial scale of the flow, a condition that is not met when the
size of the eddies is of the same order as the vertical extent of the boundary layer.
In LES models, the largest eddies that contribute most of turbulent transport are
explicitly resolved, while the dissipative processes produced by the smaller eddies
are parameterized. When applied to the atmospheric boundary layer, these models
have a horizontal resolution of typically a few hundred meters.
Box 8.5 illustrates LES modeling with an application to marine boundary layer

chemistry. These models can provide information on the chemical segregation of
species within the mixed layer and the implications for chemical reaction rates. As
discussed in Section 8.3, the fate of an atmospheric species emitted at the surface and
reacting in the mixed layer is characterized by its Damköhler number, which is the
ratio between the integral timescale of turbulence (mixing) and the timescale for
chemical loss. Under convectively unstable conditions, a chemical species released
at the surface may have much higher concentrations in buoyant rising plumes
(updrafts) than outside (see Box 8.5). While in an updraft, the species does not
mix with other species present outside the updraft. As a result of this segregation,
reaction rates may be very different than in a well-mixed atmosphere (Section 8.3).
A classic example for the continental mixed layer is that of isoprene, a major
biogenic hydrocarbon emitted by vegetation with a mean lifetime of less than one
hour against oxidation by the OH radical. The mean lifetime of isoprene is shorter
than the typical timescale for overturning of the mixed layer, so that one would
expect a strong vertical gradient of concentrations. In fact, isoprene in updrafts may
be sufficiently concentrated to deplete OH and thus reach the top of the mixed layer
with minimal chemical loss.

Box 8.5 LES Simulation of the Marine Boundary Layer

An LES performed by Kazil et al. (2011) illustrates the complexity of PBL processes with the
example of sulfate particle formation from oceanic dimethylsulfide (DMS). The model accounts for
the coupling between dynamical, chemical, aerosol, and cloud processes (Grell et al., 2005). Its
resolution is 300 m in the horizontal and 30 m in the vertical. The figure shows an instantaneous
cross-section of a 60-km South Pacific domain with three cloudy regions: a decaying convective
zone in the west, a broad active convective cell in the center, and a localized convective updraft in
the east. DMS is uniformly emitted from the surface and has a lifetime of hours against oxidation by
OH to produce SO2. It is rapidly transported in the localized updrafts of the convective cells. OH
concentrations are particularly high at cloud tops because of scattered radiation, resulting in fast
DMS oxidation and SO2 production. SO2 produced near cloud top is oxidized by OH in the gas phase
to produce gaseous sulfuric acid [H2SO4(g)] and in clouds to produce aqueous sulfate. H2SO4(g)
initiates nucleation of new particles as shown in the upper part of the PBL around cloud tops.
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DMS , ppt

OH, cm-3

SO2, ppt 

H2SO4(g), cm-3

Nuclea�on rate, cm-3s-1

Box 8.5 Large-scale eddy simulation in the ocean boundary layer.
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Lagrangian stochastic models are often used to simulate the transport and disper-
sion of trace species in the PBL (Thomson and Wilson, 2012). In the simplest of
these models, the path of air particles is calculated by a sequence of random
increments in position (random walk). In more sophisticated formulations that draw
on the idea of Brownian motions and represent turbulent motions by a Markov chain
process, the trajectory of air particles is obtained by integrating a sequence of random
increments in velocity (see Section 4.11.2 for more details). Stochastic time-inverted
Lagrangian transport (STILT) models are used to derive surface sources and sinks of
trace species from atmospheric concentration data at a receptor location (Lin et al.,
2003). Lagrangian approaches are particularly effective at dealing with such
receptor-oriented problems.

8.7.1 Mean Atmospheric Wind Velocity and Temperature

The solution to the continuity equation (8.80) requires that the advection terms be
either specified from a meteorological analysis or calculated from the Navier–Stokes
equations. The mean wind velocity v u; v;wÞð is derived from the momentum
equation to which the Reynolds decomposition and averaging is applied:

∂u
∂t

þ u
∂u
∂x

þ v
∂u
∂y

þ w
∂u
∂z

¼ �f vg � v
� �� ∂

∂x
u0u0 � ∂

∂y
u0v0 � ∂

∂z
u0w0 þ Fx (8.81)

∂v
∂t

þ u
∂v
∂x

þ v
∂v
∂y

þ w
∂v
∂z

¼ þf ug � u
� �� ∂

∂x
u0v0 � ∂

∂y
v0v0 � ∂

∂z
v0w0 þ Fy (8.82)

Here Fx and Fy represent the influence of viscous stress and can generally be
neglected in comparison to other terms in the equations. The geostrophic compon-
ents of the winds ug and vg are related to the pressure gradients by

vg ¼ 1

f ρα

∂p
∂x

(8.83)

ug ¼ � 1

f ρα

∂p
∂y

(8.84)

Here, f denotes the Coriolis parameter [s–1]. Assuming steady-state and horizontal
homogeneity with no significant subsidence in (8.81) and (8.82), the deviation of the
wind from its geostrophic value in the extra-tropical boundary layer is proportional
to the turbulent momentum flux divergence (Holton, 1992):

f v � vg
� � ¼ ∂u0w0

∂z
(8.85)

f u � ug
� � ¼ � ∂v0w0

∂z
(8.86)

The Reynolds decomposition can also be applied to the energy conservation equation
to derive the mean potential temperature θ:

∂θ
∂t

þ u
∂θ
∂x

þ v
∂θ
∂y

þw
∂θ
∂z

¼ 1

ρCp
Q � LvE
� �� ∂

∂x
u0θ0 � ∂

∂y
v0θ0 � ∂

∂z
w0θ0 þFθ (8.87)
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where Q represents the net radiative heating rate, Lv (2.5 � 106 J kg–1 at 273 K) the
latent heat associated with gas–liquid water phase change, E the mass of water vapor
produced by evaporation by unit volume and unit time, Cp = 1004.67 J kg–1 K–1 the
specific heat for moist air at constant pressure, and Fθ the effect of thermal diffusivity
(often neglected).

8.7.2 Boundary Layer Turbulence Closure

The closure relation required to solve the continuity equation for chemical species i
in the boundary layer is often represented by a first-order local diffusion formulation:

μ0iw0 ¼ �Kz
∂μi

∂z
(8.88)

where Kz is an eddy diffusion coefficient. The resulting equation becomes

∂μi

∂t
þ u

∂μi

∂x
þ v

∂μi

∂y
¼ Si þ Kz

∂μi

∂z

� 	
(8.89)

Similar local closure relations for the turbulent momentum and heat fluxes are
expressed by

u0w0 ¼ �Km
∂u
∂z

v0w0 ¼ �Km
∂v
∂z

θ0w0 ¼ �Kθ
∂θ
∂z

(8.90)

where Km is the eddy viscosity coefficient and Kθ is the eddy diffusivity of heat.
Simple formulations for Km and Kθ have been developed as a function of the wind
shear, atmospheric stability, and PBL height (see e.g., Holtslag and Boville, 1993).

Prandtl (1925) introduced the concept of mixing length l in a neutral buoyancy
environment by considering an air parcel that moves upwards by a distance z0 from a
reference level z in a field where the mean mixing ratio and wind velocity increase
linearly with height. If no mixing occurs, the mixing ratio in the air parcel is conserved
during its motion and differs from its value in the surrounding environment by a value

μ0 ¼ � ∂μ
∂z

� 	
z0 (8.91)

Similarly, we write

u0 ¼ � ∂u
∂z

� 	
z0 (8.92)

For the parcel to move upwards, it must have a turbulent velocity w0. We assume that
w0 is proportional to the horizontal fluctuation u0 so that

w0 ¼ c
∂u
∂z

���� ����z0 (8.93)

where c is a proportionality constant. The resulting mean eddy flux is

μ0w0 ¼ �c z02
∂u
∂z

���� ���� ∂μ
∂z

� 	
(8.94)
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Let us define the mixing length l [m] as

l2 ¼ cz02 (8.95)

where z02 is the variance of the displacement distance. The mixing length measures
the ability of the turbulence to mix air parcels. Its value varies with the size of the
eddies, so that the overall (mean) mixing length should be provided by an integration
over the spectrum of all eddy sizes. Typical values of the mean mixing length in the
boundary layer range between 500 m and 1 km (Stull, 1988). It is often assumed that
the mixing length varies with altitude as l = k z, where k is the von Karman constant
taken to be 0.35. From (8.94) and (8.95) together with (8.88), one defines an eddy
diffusion coefficient [m2 s–1]:

Kz ¼ l2
∂u
∂z

���� ���� (8.96)

In this formulation, the value of Kz increases with the vertical wind shear (a measure
of the intensity of the turbulence) and the mixing length (a measure of the mixing
produced by turbulence), but is not a function of the static stability of the layer. Other
formulations include a dependence of the eddy diffusion coefficient on the gradient
Richardson number Ri as given by (8.2). For example (Blackadar, 1979, Stull, 1988):

Kz ¼ 1:1
Rc� Ri

Ri

� �
l2

∂u
∂z

���� ���� for
∂θv
∂z

> 0

Kz ¼ 1� 18Ri½ ��1=2 l2
∂u
∂z

���� ���� for
∂θv
∂z

< 0 (8.97)

with
l ¼ k z for z < 200m and l ¼ 70m for z > 200m

It is assumed that, in the convectively stable situation in which the vertical gradient of
θv is positive, turbulence is generated only if Ri becomes smaller than a critical value
Rc equal to about 0.25. Idealized vertical profiles of the mean wind components in the
boundary layer can be derived by introducing the empirical closure relations in the
simplified momentum equations (8.85) and (8.86), as shown in Box 8.6. The local
approach is best suited when eddies are smaller than the length scale for turbulence, as
can be usually assumed for neutral or stable conditions. It underestimates vertical
transport under convectively unstable conditions when large eddies of the dimension
of the mixed layer become important. In this case, vertical transport has a non-local
character and the eddy diffusion parameterization is inadequate. This can be corrected
with a non-local term added to the eddy diffusion parameterization (Deardorff, 1966,
1972; Troen and Mahrt, 1986; Holtslag and Boville, 1993):

μ0iw0 ¼ �Kz
∂μi

∂z
� γc

� �
(8.98)

where γc reflects the contribution of non-local turbulent transport. To better account
for the entrainment of air from the free troposphere into the mixed layer, Hong et al.
(2006) include an additional flux component as:

μ0iw0 ¼ �Kz
∂μi

∂z
� γc

� �
þ w0μ0i
� �

h

z

h

� �3
(8.99)
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where h is the depth of the mixed layer (mixing depth) and � w0μ0ið Þh is the
entrainment flux at level z = h. The entrainment flux is commonly computed as
we Δμi, where Δμi is the mixing ratio difference across the top of the mixed layer
(between the mixed layer and the free troposphere above), and we is an entrainment

Box 8.6 Mean Horizontal Wind in the Boundary Layer: The Ekman Spiral

We consider the simplified momentum equations (8.85) and (8.86), and assume that the
geostrophic wind is directed along the x-axis (vg = 0). We express the eddy fluxes of momentum
by the first-order closure relations (8.90) in which Km is assumed to be constant

f v ¼ �Km
∂2u
∂z2

and f u � ug
� � ¼ Km

∂2v
∂z2

with the adopted boundary conditions

u ¼ 0 and v ¼ 0 at z ¼ 0, u ¼ ug and v ¼ 0 as z ! ∞:

The solution is given by (Ekman, 1905):

u ¼ ug 1� exp �γzð Þ cos γzð Þ½ �
v ¼ ug exp �γzð Þ sin γzð Þ

where γ = [f/(2Km)]
1/2. The wind vector turns with height as a spiral, diminishing in amplitude

toward the surface where it is directed 45 degrees to the left of the geostrophic wind vector aloft.
Whereas the geostrophic wind follows isobars, the wind in the boundary layer tilts toward the
direction of low pressure. It becomes parallel to the geostrophic wind at the altitude h = π/γ. This
height is often used as an estimate of the depth of the boundary layer.

Geostrophic wind

H
ei

gh
t

(500–1000 m)

Ek
m

an

Spira
l

Box 8.6
Figure 1

Idealized vertical structure of the horizontal wind velocity (Ekman spiral) in the atmospheric
boundary layer.
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velocity derived from observations for a species or other variable such as heat for
which the flux is known. A value of 0.5 cm s–1 is typical for we.
Different formulations have been introduced to express parameters Kz and γc as a

function of other atmospheric quantities. Holtslag and Boville (1993) and Hong et al.
(2006) express the eddy diffusion in the mixed layer as

Kz ¼ k zws 1� z

h

� �2
(8.100)

where k is the von Karman constant, z the geometric height above the surface, h the
mixing depth, and ws the mixed layer velocity scale dependent on stability (Stull,
1988). Kz is of the order of 100 m2 s–1 in the daytime convective mixed layer,
0.1–1 m2 s–1 under stable nighttime conditions, and 10 m s–2 under neutral condi-
tions such as over the oceans for both day and night. The correction γc to the local
gradient is given by

γc ¼ b
F 0ð Þ
hws

(8.101)

where F(0) is the surface flux. The value of the dimensionless proportionality factor
b is about 6.5 (Troen and Mahrt, 1986).

8.7.3 Surface Layer

The lowest part of the mixed layer is called the surface layer. It is commonly defined
as the vertical extent of the atmosphere for which vertical fluxes of conserved
quantities are within 10% of their surface values (Box 8.4). It is typically
10–100 m in depth. Eddy sizes in the surface layer are constrained by the proximity
to the surface. Mechanical eddies driven by surface roughness are typically more
important than buoyant eddies driven by surface heating. Understanding the dynam-
ics of the surface layer is of critical importance as it determines the rate at which
chemicals are removed by dry deposition (see Chapter 9).
Parameterizations of atmospheric turbulence in the surface layer are generally

based on the similarity theory developed by Monin and Obukhov (1954), which uses
scaling arguments to provide relationships between dimensionless quantities.
A central parameter is the friction velocity u∗ [m s–1] that characterizes the surface
momentum flux and is defined by

u2∗ ¼ u0w0� �2
surf þ v0w0� �2

surf

h i1=2
(8.102)

Its value is typically ~10% of the 10-m wind speed and increases with surface
roughness. One also defines a potential temperature scale θ∗ and mixing ratio scale
μ∗ as

w0θ0v ¼ �u∗θ∗ and w0μ0 ¼ �u∗μ∗ (8.103)

Another key parameter in similarity theory is the Monin–Obukhov length L [m],
defined as
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L ¼ � u3∗
k g

θv

ðw0θ0vÞsurf
(8.104)

where g is the gravitational acceleration, k is the von Karman constant, θv is the mean
virtual potential temperature, and ðw0θ0vÞsurf [K m s–1] the sensible heat flux at the
surface. |L| represents the height above the surface at which buoyant production/
suppression of turbulence by surface heating/cooling equals mechanical production
of turbulence by wind shear. For a neutral boundary layer (as over the ocean),
|L| ! ∞ because the sensible heat flux is negligible and all turbulence is generated
mechanically. In a nighttime stable atmosphere over land, L is positive (typically
~100 m) as turbulence is generated mechanically and suppressed by buoyancy. In a
daytime unstable atmosphere, L is negative (typically ~ –100 m). For z < |L|,
turbulence is mostly mechanical; for z > |L| it is mostly determined by buoyancy.
If we assume neutral stability of the surface layer and adopt a coordinate system in

which the wind is aligned with the x-direction, one deduces from a dimensional
analysis that the vertical wind shear ∂u=∂z is proportional to the friction velocity
(Stull, 1988). Thus,

∂u
∂z

¼ u∗
k z

(8.105)

By integration over height z, one obtains a logarithmic relation for the vertical profile
of the mean wind velocity:

u zð Þ ¼ u∗
k

ln
z

z0,m

� �
(8.106)

Parameter z0,m [m], the aerodynamic roughness length, is the height at which the
mean wind vanishes. Its value varies with the height of the physical elements that
generate the surface drag (trees, ocean waves, etc.). It is typically ~3% of the height
of these elements and ranges from ~10–5 m for smooth ice surfaces to ~1 m for a tall
forest canopy.

Under buoyant conditions where neutral stability cannot be assumed, one replaces
(8.105) by an expression written in term of a dimensionless wind shear:

Φm ¼ k z

u∗

∂u
∂z

(8.107)

Empirical values of Φm commonly used in models and going back to Businger et al.
(1971) and Dyer (1974) are

Φm ¼ 1þ βm
z

L

Φm ¼ 1

Φm ¼ 1� γm
z

L

� ��1=4

for
z

L
> 0 stableð Þ

for
z

L
¼ 0 neutralð Þ

for
z

L
< 0 unstableð Þ

(8.108)

with βm = 4.7 and γm = 15.0.
Expression (8.107) can be integrated to yield the vertical profile of the mean wind

velocity in the surface layer:
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u zð Þ ¼ u∗
k

ln
z

z0,m

� 	
� Ψm

� �
(8.109)

where the correction term Ψm is

Ψm zð Þ ¼
ðz
z0,m

1� Φm z0ð Þ½ � dz
0

z0
(8.110)

When adopting the empirical expressions (8.108), the correction term Ψm for the
mean wind velocity is

Ψm ¼ �βm
z� z0,mð Þ

L
Ψm ¼ 0

Ψm ¼ 2 ln
1þ x

1þ x0

� �
þ ln

1þ x2

1þ x20

� �
� 2 tan �1 xð Þ þ 2 tan �1 x0ð Þ

for
z

L
> 0 stableð Þ

for
z

L
¼ 0 neutralð Þ

for
z

L
< 0 unstableð Þ

(8.111)

where

x ¼ 1

Φm zð Þ ¼ 1� γm
z

L

h i1=4
and x0 ¼ 1

Φm z0ð Þ ¼ 1� γm
z0,m
L

h i1=4
(8.112)

Under this formalism, the correction factor Ψm and the wind velocity (Figure 8.9) are
equal to zero at z = z0,m in all situations. In the stable case, Φm > 1 and Ψm < 0, while
in the unstable case, 0 < Φm < 1 and Ψm > 0. When z� z0,m one can assume x0 � 1
in the above expressions.
Finally, by combining relation (8.102) written in the 1-D case (x-direction) with

equation (8.107) and the eddy diffusion formulation for the momentum flux (see
equation (8.90))

u0w0 ¼ �Km
∂u
∂z

(8.113)

Figure 8.9 Variation with height of the mean wind velocity in the surface layer for different static stability
conditions. The wind scale is linear and the altitude scale is logarithmic. Reproduced from Wallace and
Hobbs (2006), based on Ahrens (2000) and Stull (1988).
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one derives an expression for the momentum eddy diffusion coefficient Km:

Km zð Þ ¼ k zu�
Φm

(8.114)

Relationships similar to (8.107) can be obtained for the virtual potential temperature
and mixing ratio gradients, respectively:

Φh ¼ k z

θ�

∂θv
∂z

and Φμ ¼ k z

μ�

∂μ
∂z

(8.115)

Empirical expressions for Φh are available from Businger et al. (1971):

Φh ¼ Pr þ βh
z

L
for

z

L
> 0 stableð Þ

Φh ¼ Pr for
z

L
¼ 0 neutralð Þ

Φh ¼ Pr 1� γh
z

L

� ��1=2
for

z

L
< 0 unstableð Þ

(8.116)

where the Prandtl number Pr = Km/Kh represents the ratio between the eddy diffusion
coefficients for momentum and heat. Businger et al. (1971) estimate βh = 4.7, γh = 9.0
and Pr� 0.74 for a von Karman constant k = 0.35. Hogstrom (1988) derives βh = 7.8,
γh = 11.6 and Pr � 0.95 for k = 0.4. It is generally assumed that the dimensionless
gradients for the virtual potential temperature and chemical mixing ratios are equal,
i.e., Φμ � Φh. The vertical profiles of the potential virtual temperature and species
mixing ratio in the surface layer are obtained by integration of (8.115) with (8.116):

θv zð Þ ¼ θv z0,hð Þ þ Pr
θ�
k

ln
z

z0,h

� 	
� Ψh

� �
(8.117)

μ zð Þ ¼ μ z0,μ
� �þ Pr

μ�
k

ln
z

z0,μ

� 	
� Ψμ

� �
(8.118)

where

Ψh zð Þ ¼
ðz
z0,h

1� Φh z0ð Þ½ � dz
0

z0
and Ψμ zð Þ ¼

ðz
z0,μ

1� Φμ z0ð Þ� � dz0
z0

(8.119)

Here, z0,h, and z0,μ are the roughness lengths for the virtual potential temperature and
species mixing ratio, and are generally much smaller than z0,m.

The vertical eddy diffusion coefficient for heat and chemical species is given by

Kh ¼ w0θ0v
∂θ=∂z

¼ u�θ�
∂θ=∂z

¼ k zu�
Φh

� Kμ ¼ k z u�
Φμ

(8.120)

Over regions where roughness elements are packed together, (e.g., forest canopies,
urban centers), the altitude above the ground at which the mean wind vanishes is
shifted by a displacement height d, and expressions (8.109), (8.117), and (8.118) are
replaced by:

u zð Þ ¼ u�
k

ln
z� d

z0

� 	
� Ψm

z� d

L

� 	� �
(8.121)
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θv zð Þ ¼ θv z0ð Þ þ Pr
θ�
k

ln
z� d

z0

� 	
� Ψh

z� d

L

� 	� �
(8.122)

μ zð Þ ¼ μ z0ð Þ þ Pr
μ�
k

ln
z� d

z0

� 	
� Ψμ

z� d

L

� 	� �
(8.123)

Values of d are typically of the order of 65–75% of the height of the roughness
elements and define the effective surface.

8.8 Deep Convection

Deep convective motions occur in the troposphere when surface heating and latent
heat release are sufficiently strong that rising air parcels can pierce through the top of
the planetary boundary layer (Chapter 2). Continued latent heat release as water
condenses then produces intense updrafts. Vertical winds typically reach 10 m s–1.
The updrafts form large cumulonimbus clouds (Figure 8.10) with intense rainfall.
Eventually they encounter a sufficiently stable layer (which could be the tropopause)
to stop their ascent. They can also be weakened by entraining free tropospheric air.
Outflow from convective updrafts forms an anvil where air is released to the
surrounding atmosphere.
Deep convection is particularly important as a mechanism for vertical transport

in the tropics and mid-latitudes during summer, when strong surface heating
occurs. Air parcels in convective updrafts are transported from the boundary layer
to the upper troposphere in less than one hour. Air can be entrained into the updraft
at all levels in the convective column, broadening and diluting the updraft.
Detrainment (outflow) from the updraft mostly takes place in the anvil near the
top of the cloud. Rapid downdrafts can take place as precipitation evaporates to
cool sinking air parcels, bringing free tropospheric air down to the ground. Outside
the convective cells, a slow downward flow (subsidence) compensates for the
net upward flow occurring inside the cells. Water-soluble gases and aerosols are
efficiently scavenged in the precipitating updrafts, suppressing their release in
the outflow. Scavenging is considered in Section 8.9. Particularly strong updrafts
generate lightning due to separation of electrical charge between the cloud and
the ground. The resulting production of nitrogen oxides (NOx) is discussed in
Section 8.10.
Convective motions can be simulated explicitly in cloud-resolving models that use

a LES with horizontal resolution of less than 1 km. In coarser-resolution models
they must be parameterized. The parameterization must recognize the organized
nature of deep convection across levels in the model horizontal grid. An eddy
diffusion parameterization would be physically incorrect because it assumes that
turbulence involves scales much smaller than the model vertical grid, whereas deep
convection involves rapid unidirectional upward transport across a number of verti-
cal grid levels. Observed vertical profiles of chemical mixing ratios near convective
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cells often feature a “C-shape” for species originating in the boundary layer and
discharged in the convective outflow, bypassing the intermediate levels. This cannot
be reproduced by an eddy diffusion parameterization, which can only produce a
monotonic down-gradient change of concentrations with altitude.

Parameterization of convection is a major area of research in atmospheric
dynamics and many different schemes are used in meteorological models. Online
chemical transport models apply the same convective transport equations to
chemical and meteorological variables, including scavenging for water-soluble

(a)

(b)

Overshooting top

Anvil

Mammatus

Shelf cloud

Gust front

Cold
downdrafts

Warm moist
updrafts

Mammatus

Supercell thunderstorm

Flanking line

Wall cloud Heavy rain

Figure 8.10 (a) Schematic representation of a deep convective system. Courtesy of Cameron Douglas Craig.
(b) Photograph of a thunderstorm cell with an updraft reaching the upper troposphere.
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species for which analogy with scavenging of condensed water is commonly
used. Offline chemical transport models must have their own convective transport
module to replicate the convective motions from the parent meteorological model.
This is preferably done by using archived convective mass fluxes provided by the
meteorological model.
A standard assumption in convective parameterizations is that the net updraft in the

subgrid convective cell is compensated by subsidence in the non-convective fraction
of the grid cell, so that there is no net vertical motion of air on the grid scale. The non-
convective subsiding fraction is assumed to represent the bulk of the grid cell. The
change of the average mass density of species i inside a grid cell is given by:

∂ρi
∂t

� �
conv

¼ ∂ ρaμið Þ
∂t

¼ � ∂
∂z

Mu μi,u � μi

� �þMd μi,d � μi

� �� �
(8.124)

where ρa(z) denotes the mean air density, which varies with altitude z, while Mu(z)
and Md (z) represent the vertical fluxes [kgm

–2 s–1] of air in the updrafts and down-
drafts summed over the gridbox. These two fluxes are assumed to be positive when
directed upwards; thus Mu is positive and Md is negative. The differences
μi,u zð Þ � μi zð Þ and μi,d zð Þ � μi zð Þ are the excess mass mixing ratios of chemical i
inside the drafts relative to the atmospheric background (grid cell mean) mixing
ratio μi. An equivalent form of (8.124) is

∂ ρaμið Þ
∂t

¼ � ∂
∂z

Muμi,u þMdμi,d þMeμi

� �
(8.125)

where Me = – (Mu + Md) represents the subsidence flux on the grid scale.
If Eu(z) and Du(z) [kg m–3 s–1] represent the rates of entrainment into and detrain-

ment from the updrafts in the convective system, the mass flux of air Mu varies with
height according to

∂Mu zð Þ
∂z

¼ Eu zð Þ � Du zð Þ (8.126)

with Mu = Mb at the base (altitude zb) and Mu = 0 at the top of the convective cloud
system. Similarly for the downdraft, we write

∂Md zð Þ
∂z

¼ Ed zð Þ � Dd zð Þ (8.127)

withMd = 0 at the top of the convective cloud system. Figure 8.11 shows an example
of entrainment and detrainment of air derived by a simple convective parameteriza-
tion (Mari et al., 2000). There is large entrainment at cloud base and large detrain-
ment from the updraft at the top of the convective column.
In the absence of chemical or physical transformations occurring in the clouds, the

mixing ratio of species i in the updraft (u) and in the downdraft (d) are given by

∂ Mu μi,u
� �

∂z
¼ Eu zð Þ μi zð Þ � Du zð Þ μi,u zð Þ (8.128)

∂ Md μi,d
� �

∂z
¼ Ed zð Þ μi zð Þ � Dd zð Þ μi,d zð Þ (8.129)
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We thus see that knowledge of the vertical distribution of entrainment and detrain-
ment rates, as well as of the mean mixing ratio μi(z) in the grid cells, allows us to
calculate the mixing ratios μi,u(z) and μi,d(z) inside the updrafts and downdrafts,
and from there to calculate the tendency in μi(z) associated with convection for the
whole grid column.

From a numerical perspective, the clouds inside a model grid column are treated as
a 1-D (vertical) system and the above equations are discretized as a function of
altitude (Figure 8.12). Updraft and downdraft pipes extend from the bottom to the
top of the convective system. They are isolated from the gridboxes through which
they extend vertically, and exchange mass with those gridboxes only through

(a)

(b)

Figure 8.11 (a) Schematic representation of updraft, downdraft, and compensating subsidence in a model grid column.
(b) Entrainment (solid curve) and detrainment (dashed curve) fluxes derived from a mesoscale model. The
arrow shows the detrainment in the anvil of the cloud. From Mari et al. (2000).
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entrainment and detrainment. There can be several updraft and downdraft pipes
within a grid column, representing convective systems of different vertical extent.
A downdraft pipe may be associated with each updraft pipe and represents in general
a small fraction of the corresponding updraft flux. Chemical mass fluxes through
each pipe are calculated as a balance between updraft (or downdraft) and entrain-
ment/detrainment terms. The fluxes at the base of each updraft pipe, and at the top of
each downdraft pipe, are initialized by entraining air from the grid cell. Mean
concentrations in individual grid cells are modified by convection through entrain-
ment, detrainment, and large-scale subsidence as follows:

∂ρi zð Þ
∂t

� �k
conv

¼ �Ek�1=2
u μk�1=2

i þ Dkþ1=2
u μkþ1=2

i,u � Ekþ1=2
d μkþ1=2

i þ Dk�1=2
d μk�1=2

i,d

� 1

Δz
Meμið Þkþ1=2 � Meμið Þk�1=2

h i
(8.130)

where the fluxes (E, D, and M) are defined at the edges of the grid cell (k – ½, k + ½,
etc.), while the mean mixing ratio is calculated at its center (k – 1, k, k + 1). Using an
upstream scheme,

Me μið Þkþ1=2 ¼ Mkþ1=2
e μ

kþ1

i
if Mkþ1=2

e < 0

Me μið Þkþ1=2 ¼ Mkþ1=2
e μk

i if Mkþ1=2
e > 0 (8.131)

the flux divergence associated with the subsidence flow is:

Me μið Þkþ1=2 � Me μið Þk�1=2 ¼Mkþ1=2
e μkþ1

i �Mk�1=2
e μk

i if Me < 0 (8.132)

Scavenging of water-soluble species is done by adding a loss term to the updraft
mass balance equation (8.128):

∂ Mu μi,u
� �

∂z
¼ Eu zð Þ μi zð Þ � Du zð Þμi,u zð Þ � kiMu μi,u

w
(8.133)

Updraft Downdraft

k – 1

k – 1/2

k

k + 1/2

k + 1
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k + 1/2
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k – 1/2

Me
k – 1/2Mu
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Figure 8.12 Discretization of the tendency equation that accounts for the effect of convection on the budget of species i
and on the mean mixing ratio noted here μki at level k of a model. Processes include the updraft Mu, the
downdraft Md, the compensating subsidence flux Me , and the entrainment E and detrainment D associated
with the updrafts (u) and downdrafts (d), respectively.
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where w is the updraft velocity and ki is a first-order loss constant [s
–1] describing the

scavenging. Further discussion of scavenging is presented in the next section.

8.9 Wet Deposition

Wet deposition is a general term to describe the removal of gases and particles by
precipitation. Scavenging refers to the process by which wet deposition takes place.
One refers to large-scale scavenging or convective scavenging depending on whether
the precipitation in the meteorological model results from grid-scale motion of water
vapor or from a subgrid convective parameterization. The distinction is important
because convective scavenging must be applied to the subgrid convective updrafts,
thus requiring coupling of convective transport and scavenging (8.133). By contrast,
large-scale scavenging can be decoupled from grid-scale transport through operator
splitting. Note that large-scale precipitation is still often subgrid (even though it is
diagnosed from grid-scale motion), in which case its scavenging affects only the
precipitating fraction of the grid cell.

It is also important to distinguish between in-cloud scavenging followed by
precipitation (a process called rainout), and below-cloud scavenging by precipitation
(called washout). Rainout and washout involve different physical processes. In-cloud
scavenging followed by evaporation of precipitation below the cloud can release
species at lower altitudes, resulting in downward motion rather than actual depos-
ition. Cirrus precipitation is an important example of this effective downward motion
(Lawrence and Crutzen, 1998).

The reader is referred to Seinfeld and Pandis (2006) for a detailed description of
scavenging mechanisms for aerosols and gases. Here we limit our attention to the
practical implementation of scavenging in chemical transport models. This typically
involves consideration of three processes: (1) scavenging in convective updrafts
associated with convective precipitation, (2) rainout and washout applied to large-
scale precipitation and to convective anvils (convective precipitation outside the
updraft), and (3) partial or total release below cloud as precipitation evaporates.
Items (2) and (3) can be treated within the same algorithm, but (1) requires a separate
algorithm.

8.9.1 Scavenging in Convective Updrafts

Scavenging in convective updrafts must be computed as part of the convective
transport algorithm to prevent soluble species from being detrained at the top of
the cloud without having experienced scavenging. It must be applied as air rises in
the updraft from one model vertical level to the next in order to properly account for
entrainment and detrainment fluxes at different levels. It must allow for different
phases of cloud condensate, often ranging from 100% liquid at the bottom (warm
cloud) to 100% solid at the top (cold cloud). There is typically an intermediate stage,
with temperatures ranging from about –10 C to –40 C, at which the cloud contains
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both liquid and solid condensate (mixed cloud). In the mixed cloud, liquid cloud
droplets will freeze upon contact with ice crystals (riming), and the resulting
production of large ice crystals drives precipitation formation.
Let us consider the most general case of a mixed cloud, where both liquid and ice

condensate are present. Warm and cold clouds can be treated as limiting cases. The
scavenging rate constant ki [s

–1] for species i in the updraft (8.133) is expressed as

ki ¼ εif i,L þ f i, I
� �

k (8.134)

where k [s–1] is the rate constant for conversion of cloudwater to precipitation and is
typically 10–3 – 10–2 s–1 (Kain and Fritsch, 1990); fi,L and fi,I are the fractions of the
species in the air parcel present in the liquid and ice water respectively; and εi 
 1 is
the retention efficiency of the species as liquid water is converted to precipitation.
For a warm cloud, εi = 1 because freezing does not take place. For a mixed cloud, εi
accounts for exclusion from the ice matrix as droplets freeze, and is highly dependent
on species type as well as on the freezing mechanism and rate (Stuart and Jacobson,
2006). As air is lifted in the updraft from one model level to the next, the fraction Fi

of species i scavenged from the updraft is computed as:

Fi ¼ 1� exp � kiΔz
w

� 	
(8.135)

where Δz is the distance between level midpoints and w is the updraft velocity, which
may be provided by the meteorological model or need to be assumed (typically
5–10 m s–1).
In the case of aerosol particles, the fraction incorporated in the condensed phase

depends on aerosol and cloud microphysics in a complex way. It is sometimes
assumed that ki � k, meaning that all aerosol is in the condensed phase. A distinction
is often made between hydrophobic and hygroscopic aerosol, and more sophisticated
treatments can be used in models that resolve the aerosol size distribution (Seinfeld
and Pandis, 2006).
In the case of gases and for a warm cloud, the fraction fi,L present in the liquid phase

is determined by the effective Henry’s law constant K�
i [M atm–1] (see Section 5.5.1):

f i,L ¼ K�
i LRT

1þ K�
i LRT

(8.136)

where L is the cloud liquid water content [m3 water per m3 air], T is the temperature
[K], and R ¼ 0:08205 atm M�1 K�1 is the ideal gas constant. For a typical
precipitating cloud with L ~ 1 � 10–6, gases with K�

i � 104 M atm–1 are efficiently
scavenged ( fi,L ! 1) while gases with K�

i � 104 M atm–1 are not scavenged
( fi,L ! 0). Gases can also be taken up by ice crystals in mixed or cold clouds. The
fraction fi,I present in the ice phase can be estimated from a surface coverage model
(such as a Langmuir isotherm) or a co-condensation model (Mari et al., 2000).

8.9.2 Rainout and Washout

Scavenging outside convective updrafts, including in-cloud scavenging (rainout) and
below-cloud scavenging (washout), can be treated as a first-order loss process in the
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precipitating column. For each grid column the meteorological model must provide
information on the vertical distribution of precipitation rates. Let Pj represent the
precipitation rate [cm water s–1] through the bottom of model level j. One must apply
rainout to the in-cloud levels where new precipitation forms (Pj > Pj + 1) and
washout to the below-cloud levels where precipitation evaporates (Pj 
 Pj +1). We
start the scavenging calculation at the top of each precipitating column and progress
downward level by level, applying rainout or washout/reevaporation as appropriate.

Rainout can be computed similarly to scavenging in the convective updrafts
described in Section 8.9.1. The fraction Fi of species i scavenged from a grid cell
over a time step Δt is given by

Fi ¼ f A 1� exp �kiΔt½ �ð Þ (8.137)

where fA is the areal fraction of the grid cell experiencing precipitation and ki [s
–1] is

a first-order rainout rate constant. From knowledge of the rainout rate constant k of
the condensed water in the cloud, we can calculate ki in the same manner as in the
case of convective updrafts (8.134). Values of fA and k may be supplied as part of the
hydrological information from the driving meteorological model. If not, they need to
be estimated, and classic parameterizations for this purpose are available from Giorgi
and Chameides (1986) and Balkanski et al. (1993). Accounting for fA < 1 when
precipitation is subgrid in scale is important because scavenging of water-soluble
species from a precipitating column is highly efficient. Assuming fA = 1 would lead
to an overestimate of scavenging.

Washout involves the below-cloud uptake of aerosol particles and gases by
hydrometeors (raindrops or ice crystals). For aerosol particles and highly soluble
gases, washout is a kinetic process limited by mass transfer (collision rates for
particles, molecular diffusion for soluble gases). The scavenged fraction Fi of species
i for a grid cell experiencing washout over a time step Δt is given by:

Fi ¼ fA 1� exp �k0i
Pj
fA
Δt

� �� 	
(8.138)

where ki0 [cm
–1] is a first-order washout rate constant, typically ~1 cm–1 for aerosol

particles and highly soluble gases. Parameterizations for ki0 are given for example by
Feng (2007, 2009) for scavenging of aerosol particles by rain and snowfall, and by
Levine and Schwartz (1982) for scavenging of highly soluble gases by rain. Evapor-
ation of precipitation below cloud will not release these species to the surrounding air
if the hydrometeors simply shrink; evaporation must be complete. In the case of
partial evaporation, one must make an assumption about the fraction of hydrometeors
that shrink and the fraction that evaporate entirely. A 50/50 assumption is often made.

For moderately soluble gases where washout is not limited by mass transfer, we
can assume equilibrium between the hydrometeors and the surrounding air within the
precipitating fraction of the grid cell. In that case, the fraction of species i that is
incorporated in the liquid or ice can be calculated using fi,L and fi,I as given in Section
8.9.1 for the case of convective updrafts. In particular, fi,L is given by:

f i,L ¼ K�
i LPRT

1þ K�
i LPRT

(8.139)
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where LP is the rainwater content of the precipitating fraction of the grid cell
defined as the volume of precipitation to which a unit volume of air is exposed over
timestep Δt:

LP ¼ PjΔt
fAΔz

(8.140)

This equilibrium treatment allows for evaporative release of gases below cloud level
to respond directly to the downward decrease of Pj from level to level. Let mj

represent the mass of a species i in grid cell j and Δmj+1 represent the mass scavenged
into the grid cell through the top over time Δt by precipitation overhead. The mass
Δmj transported out through the bottom of the grid cell by precipitation over time Δt
is then given by:

Δmj ¼ f i f Amj þ Δmjþ1

� �
(8.141)

8.10 Lightning and NOx Production

Deep convective storms with strong updrafts generate lightning as a result of
electrical charge separation between the cloud and the surface. Heating in the
lightning bolt produces a plasma with temperatures exceeding 106 K. This leads to
the production of nitric oxide (NO) from air molecules, initiated by thermolysis of O2

(Zel’dovich mechanism):

O2 ⇄ Oþ O
Oþ N2 ⇄ NOþ N
Nþ O2 ⇄ NOþ O

Net : N2 þ O2 ⇄ 2NO (8.142)

Estimates for the global source of NOx from lightning range from 1 to 20 Tg N a–1

(Schumann and Huntrieser, 2007), which can be compared to a global NOx source
from fossil fuel combustion of about 30 Tg N a–1. Lightning releases NOx in the
upper troposphere, where it is particularly efficient for producing ozone and OH. As
such, it plays a major role in determining tropospheric oxidant levels.
Figure 8.13 shows the global climatological distribution of lightning observed

from space. Lightning mainly occurs over land where intense heating of the ground
leads to strong convective updrafts. Lightning NOx is mostly released in the detrain-
ment zone at the top of the updraft (Ott et al., 2010). Active nonlinear chemistry
producing ozone takes place in this detrainment ozone as lightning NOx interacts
with water vapor and VOCs injected in the updraft.
The standard way to represent the lightning source of NOx in models is as part of

the parameterization for convective transport, thus ensuring that the association
between lightning NOx and convective outflow driving nonlinear chemistry is
captured. The lightning flash rate in the convective column is parameterized on the
basis of the strength and/or depth of the convection, and a NOx yield per flash is
assumed that may vary depending on the energy of the flash. Some models distin-
guish between cloud-to-ground and intra-cloud flashes in that regard.
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Figure 8.13 Climatological distribution of lightning flashes [flashes km–2 a–1] for different seasons based on observations by the Optical Transient Detector (OTD).
From Christian et al. (2003).
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Different model parameterizations have been proposed to compute lightning flash
rates in deep convection. Cloud-resolving models use the convective updraft velocity
as the best predictor variable, but this variable is generally not available in coarser-
resolution models. A common parameterization for global models is that of Price and
Rind (1992), which expresses the flash frequency F [flashes per minute] as a steep
function of the cloud top height H [km], with separate expressions for continental (c)
and maritime (m) convection:

Fc ¼ 3:44� 10�5H4:9 Fm ¼ 6:4� 10�4H1:73 (8.143)

Other parameterizations relate lightning flash frequency to deep convective mass
fluxes (Allen et al., 2000) or to convective precipitation (Meijer et al., 2001). None
of these parameterizations have much success in reproducing lightning observations
(Murray et al., 2012). Models for the present-day atmosphere can constrain the
distribution of lightning flash frequencies with satellite and ground-based observa-
tions, and apply these locally or regionally to the deep convective updrafts simulated
by the model (Sauvage et al., 2007; Murray et al., 2012). This offers a more realistic
representation of present-day lightning but it cannot be used to simulate past or
future climates.
Estimates of NOx yields from lightning flashes span a wide range from 30 to

1000 moles per flash (Price et al., 1997; Théry et al., 2000; Schumann and
Huntrieser, 2007). Yields depend on the energy of the flash, but this is very poorly
constrained. The general practice in atmospheric models is to adjust the global
lightning NOx source to a value that is compatible with observed atmospheric
concentrations of reactive nitrogen oxides (NOy, including NOx and its oxidation
products) and tropospheric ozone. This leads to a global source in the range
2–8 Tg N a–1 (Solomon et al., 2007). The implied NOx yields per flash are in
the range 200–500 moles, consistent with atmospheric observations (Murray et al.,
2012).

8.11 Gravity Waves

Gravity waves are oscillations that develop in stably stratified air when air parcels are
displaced vertically, for example by mountain ranges or by neighboring thunder-
storms. Their horizontal wavelengths are typically ~10–100 km. The vertical propa-
gation of these waves depends on the vertical profile of the mean horizontal wind
speed; waves are absorbed at a critical level where the phase speed c of the wave is
equal to the mean wind speed u. As the waves propagate vertically, their amplitude
increases as the inverse of the air density. The perturbation of temperature in the
mesosphere or lower thermosphere becomes so large that the air becomes convec-
tively unstable and the waves break (Figure 8.14, a). The momentum transported by
the wave from lower atmospheric levels is transferred to the mean flow, which leads
to an attenuation of the zonal flow and triggers a meridional circulation directed
from the summer to the winter hemisphere (Figure 8.14, b). Vertical mixing also
takes place.
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Gravity waves cannot be explicitly represented at the grid resolution of global
models and their effects must therefore be parameterized. Different formulations
have been proposed (Lindzen, 1981; Medvedev and Klaassen, 1995; Hines, 1997a,
1997b). In a very simple approach, Lindzen (1981) derives the gravity wave drag (G)
and vertical eddy diffusion coefficient (Kz) from the following expressions:

G ¼ �k u� cð Þ3
2HN

(8.144)

Kz ¼ k u� cð Þ
2HN3 (8.145)

where k is the horizontal wavenumber of the wave, H is the atmospheric scale height,
and N is the Brunt–Väisälä frequency (N2 = g ∂lnθ/∂z if θ is the potential temperature
and z the altitude). In most parameterizations, rather than considering the propaga-
tion of a single gravity wave, a spectrum of waves with different phase velocities is
considered.

8.12 Dynamical Barriers

As discussed in Chapter 2, dynamical barriers in the atmosphere limit the rate at
which mass is exchanged between different atmospheric regions. Transport across
these barriers often involves subgrid processes. An important case is the tropopause,
where a strong inversion severely restricts transport. Long-lived species penetrate the

(a)
(b)

Figure 8.14 (a) Two-dimensional model of the potential temperature field (isentropes) perturbed by a prescribed
gravity wave source located at the triangle along the x-axis. The figure shows the propagation of the gravity
wave after 160 minutes of model integration, i.e., at a mature stage of wave breaking. Reproduced from
Prusa et al. (1996). Copyright © American Meteorological Society, used with permission. (b) Global
distribution of wind acceleration [m s–1 d–1] in the upper atmosphere as driven by gravity wave breaking
above 70 km altitude. The resulting global mean meridional circulation, schematically represented by
arrows, is characterized by upward (downward) motions in the summer (winter) hemisphere.
Reproduced from Brasseur and Solomon (2005).
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stratosphere in regions of tropical upwelling. Water vapor is trapped during this
transport by condensation and precipitation at the cold temperatures of the tropo-
pause. Downward transport across the tropopause occurs mostly as small-scale
tongues of air (tropopause folds) that form in connection with meteorological
disturbances. These tongues may eventually mix in the troposphere. Diffusive
numerical transport schemes can lead to spurious fluxes across the tropopause
because vertical gradients are particularly large.
Dynamical barriers also restrict meridional transport in the stratosphere. The sub-

tropical barrier isolates tropical rising air (the tropical pipe) from mid-latitude influ-
ences. A second barrier arises from the two polar vortices that isolate polar regions
from lower latitudes. Transport through these barriers involves dynamical disturb-
ances at scales that are generally unresolved by models. For example, narrow
filaments are stripped away from the polar vortex in response to planetary wave
breaking events. These very thin structures are stretched around the vortex before
they mix with the surrounding air masses.
The need to resolve dynamical barriers has motivated the development of Lagran-

gian models of stratospheric transport (Fairlie et al., 1999). These Lagrangian
models describe the deformation and dissipation of the filaments on the basis of
the flow divergence (McKenna et al. 2002). Comparisons to observations show that
the Lagrangian models are far more effective than their Eulerian counterparts in
generating and preserving the filamentary structures.

8.13 Free Tropospheric Plumes

The free troposphere, ranging from the top of the boundary layer (~2 km) to the
tropopause, is on average a convectively stable environment. Observations show that
chemical plumes injected into the free troposphere by convection, volcanoes, or
stratospheric intrusions can retain their identity as well-defined layers for a week or
more as they are transported on intercontinental scales. Vertical soundings of the free
troposphere often reveal the presence of distinct chemical layers, typically ~1 km
thick and stretching horizontally in filaments spread over ~1,000 km (Thouret et al.,
2000; Heald et al., 2003). Global Eulerian models have great difficulty in reprodu-
cing such layered structures in the free troposphere. The plumes dissipate much too
quickly, even when they are sufficiently thick that they should be resolved at the
model grid scale. This problem is very different in nature from the turbulent diffusion
of boundary layer plumes emitted from point sources, typically simulated with a
Gaussian plume or puff model (Section 4.12). Boundary layer plumes dissipate on a
timescale of hours, but free tropospheric layers persist for considerably longer
because of the convectively stable environment.
Figure 8.15 from Rastigejev et al. (2010) illustrates the problem. It shows the

transport over nine days of an inert chemical in a 2-D (horizontal) model of the free
troposphere over the Pacific. The model has 2�2.5 horizontal resolution. The
chemical is released uniformly at t = 0 over a 12�15 domain, resolved by 6 � 6
grid squares. Transport is solely by advection, computed with a second-order
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accurate piecewise parabolic scheme. The advection equation should perfectly con-
serve the mixing ratio in the plume, but the model plume is instead rapidly dissi-
pated. The bottom panel of Figure 8.15 shows the decay of the maximum mixing
ratio in the plume with time. After two days the maximum mixing ratio has dropped
to 40% of the initial value; after one week it is less than 10%. As shown in
Figure 8.15, this fast numerical decay of the plume is caused by the strong variability
of the atmospheric flow. A simulation using the same model with uniform flow
shows only 10% dissipation in two weeks, reflecting the high-order accuracy of the
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Figure 8.15 Free tropospheric advection of a chemically inert plume in a 2-D version of the GEOS-Chem chemical
transport model with 2�2.5 horizontal resolution. The plume is released at time t = 0 as a uniform
layer over a 12�15 domain. (a) Shows the evolution of plume mixing ratios over nine days in a variable
atmospheric flow at 4 km altitude from the NASA GEOS meteorological data assimilation. (b) Shows the
decay of peak mixing ratios in the plume for the atmospheric flow of the left panel, for a uniform flow, and
for a uniform flow with convergent–divergent perturbation applied between 125 and 200 h. From
Rastigejev et al. (2010).
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advection scheme. Introducing a convergent–divergent pattern in this uniform flow
causes a sharp increase in plume dissipation.
Plume dissipation in variable flow as illustrated by Figure 8.15 is due to diver-

gence of the wind, causing stretching of the plume. The divergence is measured by
the Lyapunov exponent λ, defined as the exponential rate at which nearby trajectories
diverge from each other: λ ¼ ∂u=∂x where u is the wind speed in the direction x of
the flow. In the absence of molecular diffusion, the continuity equation prescribes
that the chemical concentration within the plume should remain constant in time
even with stretching. However, numerical diffusion in the advection algorithm
causes the plume to decay rapidly when stretched. We represent the numerical
diffusion by a diffusivity D normal to the flow. In this conceptual 2-D example the
diffusion is taken to be horizontal; but the same argument applies to diffusion in the
vertical. To estimate the rate of decay, we need to know the characteristic length scale
over which the concentration decays at the edge of the plume. This length scale rb is
determined by a balance between diffusion and stretching. Intuitively, if the plume
is very thick, stretching dominates and the plume filaments; conversely, if the plume
is very thin, diffusion dominates and the plume thickens. There is an equilibrium
thickness for which diffusion and stretching are in balance. The rate constant for
diffusion is eD=r2b, while the rate constant for stretching is λ. Balance between
diffusion and stretching thus implies

rb ¼
ffiffiffiffi
D

λ

r
(8.146)

If we assume that the mixing ratio μ of the chemical species is uniform in the plume
and zero in the surrounding background, then the rate of decay of μ is given by the
diffusive outflux through the boundary, namely

V
dμ
dt

¼ �DS
μ
rb

(8.147)

where V and S are the volume and surface area of the plume. Now V/S = W, the
width of the plume in the direction perpendicular to the stretching direction of the
flow. Hence the mixing ratio in the plume decays exponentially as μ � exp �αt½ �,
with

α ¼
ffiffiffiffiffiffi
Dλ

p

W
(8.148)

This implies the following physical picture for the decay of an initially thick plume
in stretched flow. The thickness of the plume decreases in time due to the stretching
of the flow until W = rb, at which point stretching and diffusion precisely match so
that the plume thickness does not decrease further but the mixing ratio continues to
decay. ReplacingW = rb in (8.148) implies α = λ, so that the decay rate is equal to the
Lyapunov exponent of the flow (Chella and Ottino, 1984; Balkovsky and Fouxon,
1999). The decay rate of a stretched plume thus approaches a limit that is independ-
ent of the numerical diffusion.
We can now understand the numerical decay of the plume shown in Figure 8.15.

Under a uniform flow the characteristic timescale for plume decay is
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τu ¼ W 2

D
(8.149)

where W is the width of the plume. On the other hand, in a divergent flow this decay
timescale is

τd ¼ Wffiffiffiffiffiffi
Dλ

p (8.150)

where λ is the Lyapunov exponent of the flow. We see that τu > τd when
W > D=λð Þ1=2 ¼ rb. A plume thicker than rb decays faster than a simple estimate
from numerical diffusion would suggest. Ultimately the plume decays at a rate that is
determined by the Lyapunov exponent.

Let us consider the consequences for the sensitivity of plume decay to grid
resolution. A straightforward analysis demonstrates that the numerical diffusivity
near sharp boundaries is D ~ uΔx where Δx is the grid spacing (Rastigejev et al.,
2010). This is the case even with a higher-order advection algorithm, as the higher
order of accuracy is contingent on adequate resolution of gradients on the grid scale,
which fails when the boundaries are sharp (i.e., when the plume is resolved by only a
few grid cells).

With D ~ uΔx we find

rbe ffiffiffiffiffiffiffiffiffiffiffiffiffi
uΔx=λ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uΔx=—u

p
(8.151)

Thus the length scale rb is roughly the geometric mean of the grid spacing Δx and
the length scale u=—u over which the velocity field varies. The length scale below
which numerical diffusion is important is not the grid resolution but a much larger
(flow-dependent) length scale. For the flow field in Figure 8.15, which varies over
~104 km and with horizontal grid resolution ~100 km, this crossover scale is
~1000 km.

These arguments imply that the decay rate of a plume with initial width W > rb is
initially set by numerical diffusion. Ultimately, the plume will be stretched so that
W = rb, at which point the decay rate approaches the Lyapunov exponent of the flow.
Increasing the grid resolution of the model delays the attainment of this regime, but
only moderately so as rb ~ Δx1/2. Improving resolution of plumes by a factor of
2 would require a factor of 4 increase in grid resolution. The situation is in fact
worse because stretching of the flow increases as the grid resolution increases and
smaller eddies are resolved (Wild and Prather, 2006). Numerical tests by Rastigejev
et al. (2010) indicate that rb ~ Δx1/4 because of this effect. Increasing the resolution
of plumes by a factor of 2 would thus require a factor of 8 increase in grid
resolution.

Lagrangian models perform much better than Eulerian models in preserving
plumes during long-range transport. As discussed in Section 8.12, Lagrangian
models have been used in the stratosphere to improve the simulation of transport
across dynamical barriers. However, Eulerian models are generally preferred in
global applications for several reasons, including better representation of area
sources, ability to describe nonlinear chemistry and aerosol evolution, and complete-
ness and smoothness of the solution. One possible approach is to use embedded
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Lagrangian plumes within the Eulerian framework, as is sometimes done in regional
air quality models to describe Gaussian plumes originating from point sources
(Section 4.12). Another approach is to use an adaptive grid model where localized
increases in grid resolution are triggered by strong concentration gradients (Box 4.6).
These approaches have yet to be implemented in global models.
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9 Surface Fluxes

9.1 Introduction

Solving the continuity equation for the concentrations of atmospheric species
requires boundary conditions at the Earth’s surface. The surface can act either as a
source or a sink. The boundary condition can be expressed as a vertical flux or as a
concentration. The surface flux is called an emission when upward and a deposition
when downward. Direct deposition of gas molecules and aerosol particles to the
surface is called dry deposition, to distinguish it from wet deposition driven by
precipitation scavenging (Chapter 8). Many species can be both emitted and dry
deposited, and the difference between the two represents the net surface flux.

Emission processes include volatilization of gases from the surface, mechanical lifting
of particles by wind action, and forced injection of volatile and particulate material
from combustion and volcanoes. Injection may take place at significant altitudes above
the surface (smokestacks, volcanoes, large fires, aircraft) and this is implemented in
atmospheric models as sources at the corresponding vertical model levels.

Dry deposition of gases may involve absorption by liquid surfaces or adsorption to
solid surfaces. Dry deposition of particles involves sticking to surfaces by diffusion,
interception, and impaction. Very large particles are also removed by gravitational
settling. Fog deposition is a special case of particle deposition in which fog droplets
containing dissolved gases and particles are removed by settling or impaction
on surfaces.

Emission and dry deposition may be coupled through surface processes. In the
simplest such case, deposited gases and particles may be temporarily stocked at the
surface and then re-emitted. There may also be biogeochemical, transport, and other
processes that take place within the surface reservoir, causing the re-emitted species
to be different from that deposited or to be re-emitted in a new location. Accounting
for these processes requires that the atmospheric model be coupled to a model for the
surface reservoir that tracks the material deposited, its transformations and transport,
and the eventual emission. Coupled models for the atmosphere and surface reservoirs
are called Earth system models, global biogeochemical models, or multimedia
models, with the preferred terminology depending on their level of detail. Earth
system models couple atmosphere and surface reservoirs in a global 3-D dynamical
framework; global biogeochemical models generally have simpler (or absent) repre-
sentations of transport; and multimedia models are often regional in scale and
empirically based. Coupled models must still use a surface boundary condition for
their atmospheric component, and the computations of emission and dry deposition
follow the same approaches as atmosphere-only models.
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In this chapter we first discuss the different processes emitting material to the
atmosphere and their representation in models (Section 9.2). We then discuss the
representation of dry deposition as a one-way uptake by the surface (Section 9.3).
Finally, we discuss two-way exchange in which the surface provides both a source
and a sink (Section 9.4).

9.2 Emission

Emissions in atmospheric models are usually provided by bottom-up emission
inventories that calculate emissions from knowledge of the underlying processes.
In these inventories, the emission flux Ei of species i is computed in general form as:

Ei ¼ A� Fi � Si (9.1)

where A is the activity rate for the process driving the emission, Fi is an emission
factor for species i that measures the amount of emission per unit of activity, and Si is
a scaling factor to account for local meteorological variables, surface properties, and
other effects not included in the specifications of A and Fi. For example, emission of
SO2 from coal combustion may be computed as the product of an annual coal
combustion rate (A), the amount of SO2 emitted per unit mass of coal burned (Fi),
and a seasonal scaling factor to account for changing power demand (Si). Emission
of ammonia from livestock manure may be computed as the product of the number
of heads of livestock (A), a mean rate of ammonia emitted per head (Fi), and a
temperature-dependent scaling factor (Si). Scaling factors are often calculated within
the atmospheric model at individual time steps to yield time-dependent emissions
consistent with the local model environment.
The bottom-up approach provides a consistent framework to quantify emissions

guided by our best knowledge of the driving processes. A given process may emit
many different species, but the activity rate A is common to all. Information on A is
obtained from socioeconomic, ecological, or other geographical databases. Emission
factors Fi for the different species emitted by a given activity are typically estimated
from field or laboratory experiments. Scaling factors Si adjust the emissions to
account for information that is not resolved in the activity rate databases, or for
conditions in which emission factors differ from the base case Fi.
Bottom-up emission inventories give the total emission of a species as the sum of

contributions from different activities. This enables atmospheric chemistry models to
determine the contributions of different source types to atmospheric concentrations
and to make future projections. For example, a bottom-up inventory for NOx

emissions with sector information for power plants and vehicles can be used to
separate the contributions of these two source types to ozone pollution. Projections
of future activity rates from a socioeconomic model can be used through the bottom-
up approach to project future emissions and from there future atmospheric
concentrations.
A defining feature of a bottom-up emission inventory is that it is not directly

constrained by observed atmospheric concentrations. As a result, an atmospheric
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model simulation driven by bottom-up emissions may simulate atmospheric concen-
trations that disagree with observations. Analysis of this disagreement may point to
errors in the bottom-up emission estimates and the need to improve these estimates.
We refer to atmospheric observations as providing top-down constraints on
emissions.

Top-down constraints from atmospheric observations can be used to optimize
emissions in two different ways. The first is to use observed surface air concen-
trations as boundary conditions for the atmospheric model. This completely
ignores bottom-up information on emissions, and is often done in the case of
long-lived gases for which atmospheric concentrations are known better than
emissions. The emissions can then be diagnosed from the atmospheric model
implicitly by mass balance (i.e., to balance the loss computed by the model).
The second, more general way to use top-down information from atmospheric
observations is to apply correction factors to the bottom-up emissions in order to
match the observations. This can be done by statistical optimization using various
inverse modeling methods (see Chapter 11). Top-down correction factors applied
to the bottom-up inventories improve by design the simulation of observed
atmospheric concentrations, but can be difficult to interpret in terms of the
underlying processes because they are statistical fits with no intrinsic physical
meaning. Ultimately, the best use of top-down constraints is to guide improve-
ments in the bottom-up inventories.

We describe here standard methods to produce bottom-up emission inventories for
different processes. Table 9.1 gives global emission estimates for selected species,
with contributing processes broadly classified as terrestrial biogenic, open fires,
oceanic, anthropogenic, volcanic, lightning, and mechanical. This classification
follows standard practice in the atmospheric chemistry literature, but there are
ambiguities and inconsistencies that need to be recognized. For example, terrestrial
biogenic emissions associated with agriculture are classified as anthropogenic, but
those affected by inadvertent human influence (such as nitrogen deposition) are

Table 9.1 Global emissions to the atmosphere (Tg a–1)

Species
Terrestrial
biogenic

Open
fires

Ocean
biogenic Anthropogenic Volcanic Lightning Mechanical Total

NOx (as N) 11 7 – 32 – 5 – 55
CO 80 460 20 610 – – – 1170
Methane 190 50 – 290 – – – 530
Isoprene 520 – – – – – – 520
SO2 (as S) – 1 – 57 10 – – 68
Ammonia 3 6 8 45 – – – 62
Blackcarbon (asC) – 11 – 7 – – – 18
Dust – – – – – – 1500 1500
Sea salt – – – – – – 5000 5000

Typical estimates for circa 2015. Dash indicates a zero or negligible source.
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generally not. Open fires are generally not classified as anthropogenic, although most
are set by humans. Oceanic emissions are often biogenic, but are separated from
terrestrial biogenic emissions because they are derived by different bottom-up
methods. The following subsections cover terrestrial biogenic, open fire, volcanic,
anthropogenic, and mechanical emissions in order. Oceanic emissions are generally
computed as a two-way exchange process (Section 9.4). Lightning is coupled to deep
convection and was covered in Section 8.10.

9.2.1 Terrestrial Biogenic Emissions

Biological organisms emit a wide range of volatile compounds through growth,
metabolism, and decay. Photosynthesis and respiration are dominant processes.
Photosynthesis converts CO2 to molecular oxygen and releases volatile organic by-
products. Respiration is either aerobic, in which molecular oxygen is converted to
CO2, or anaerobic, in which another oxidant such as nitrate or sulfate is used to
oxidize organic carbon. Biogeochemical carbon models provide estimates of photo-
synthesis and respiration rates, as well as related quantities such as net primary
productivity (NPP). They also differentiate between autotrophic respiration by green
plants and heterotrophic respiration by decomposers. Box 9.1 gives a summary of
the major processes and rates.
Carbon fluxes are often used as activity rates in (9.1) to estimate the terrestrial

biogenic emissions of other species with emission factors. Deriving emission factors
for individual species requires field or laboratory measurements that must then be
extrapolated to produce regional and global estimates. Meteorological variables such
as light, temperature, and soil moisture often have a large effect on emissions and are
applied in the model as local scaling factors.
We present here three basic algorithms to compute the terrestrial biogenic emis-

sions of methane, nonmethane volatile organic compounds (NMVOCs), and NOx in
atmospheric models. Emissions of other species generally follow algorithms of
similar structure.
Methane. The main natural source of methane is wetlands, where bacteria reduce

organic carbon to methane under anaerobic conditions. Some of that methane is
oxidized as it rises to the surface and encounters aerobic waters, while the rest
escapes to the atmosphere. A simple formulation (Kaplan, 2002) expresses the
methane emission rate [E, gCH4 m–2 d–1] in a given model grid square as a
function of wetland fractional extent [W, m2 m–2], heterotrophic carbon respiration
[R, gC m–2 d–1], and an emission factor [F, gCH4 gC

–1] dependent on temperature (T)
and the depth of the water table (D):

E ¼ W � R� F T ;Dð Þ (9.2)

This formulation can be applied in models using gridded wetland and water table
data available from satellites (Bloom et al., 2010). More advanced formulations
derive methane emissions from a full biogeochemical model (Figure 9.1; Riley et al.,
2011) or account for seasonal variation in the pool of organic carbon reducible to
methane (Bloom et al., 2012).
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Box 9.1 Terrestrial Carbon Cycle

Biogeochemical models of the terrestrial carbon cycle describe the flow of carbon as it is captured
from the atmosphere by photosynthesis, transferred through different ecosystem pools, and
eventually respired back to the atmosphere. The rate of photosynthesis by green plants is called
the gross primary productivity (GPP). Some of the carbon fixed by green plants is respired by the
plants themselves; this is called autotrophic respiration. The rest is transferred to other ecosystem
pools through litter fall and plant mortality. The amount of carbon that is fixed by green plants and
not autotrophically respired is the NPP. It represents the net source of carbon to the ecosystem from
green plants. Most of that carbon is eventually consumed by decomposers (bacteria and other biota)
through heterotrophic respiration. The net amount of carbon delivered to the ecosystem by green
plants (NPP) and not consumed by decomposers is called the net ecosystem productivity (NEP). It
represents the net accumulation of carbon in the undisturbed ecosystem. Disturbances such as fires,
erosion, and harvest provide an additional sink for that carbon. The net accumulation of carbon
after all these disturbances have been taken into account is called the net biome production (NBP).
Box 9.1 Figure 1 gives current global estimates of these different carbon fluxes. Half of the

carbon fixed by green plants (GPP) is transferred to other ecosystem pools (NPP) while the rest is
autotrophically respired. Eighty percent of the transferred carbon is respired by decomposers and
the remaining 20% accumulates in the undisturbed ecosystem (NEP). Fires, erosion, and harvest
balance most of the NEP. The residual NBP is 1.4 Pg C a–1, just 1% of the GPP. The NBP represents
the global build-up of terrestrial carbon, so that the terrestrial biosphere is not in steady state. This
is of fundamental importance for our understanding of anthropogenic perturbation to the carbon
cycle because it balances a significant part of the current fossil fuel source of CO2 (6.4 Pg C a

–1).
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Global flows in the terrestrial carbon cycle.
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Nonmethane volatile organic compounds. Terrestrial plants are the largest global
source of NMVOCs (Guenther et al., 2006). Major species emitted by plants include
isoprene, terpenes, sesquiterpenes, alkenes, carbonyls, and alcohols. They may be
emitted as by-products of photosynthesis, as responses to injury, and from metabol-
ism and decay. Emission fluxes depend on plant type, life stage (phenology), and
foliage density; on radiative and meteorological variables within the canopy; and on
external perturbations such as cutting, air pollution, and insect infestation.
A standard measure of foliage density is the leaf area index (LAI; m2 leaf per m2

of land surface, counting only one side of the leaf). NMVOC flux measurements can
be made at the leaf or plant level using chamber devices, at the canopy level from
towers extending above the canopy top, and at the landscape level from aircraft. Flux
measurements from towers and aircraft are generally made by eddy correlation, i.e.,
E ¼ w0C0 where w0 and C0 are the turbulent (residual) components from fast collo-
cated measurements of vertical wind velocity and atmospheric concentrations. The
measured fluxes, including their environmental dependences, are then extrapolated
to produce regional and global emission inventories. The extrapolation is done with
varying detail depending on the information available. It generally resolves different
plant functional types (PFTs). A simple PFT classification might resolve only
deciduous trees, evergreen trees, shrubs, and grasses. A more elaborate classification
might resolve deciduous trees into tropical and temperate, broadleaf and fineleaf, etc.
The most advanced bottom-up emission inventories have been developed for

isoprene (CH2=C(CH3)–CH=CH2), which is the dominant NMVOC emitted by
vegetation globally and accounts alone for about half of the global NMVOC source
(Guenther et al., 2006). Isoprene is produced in the chloroplasts of plants and is
released to the atmosphere through leaf stomata. Emission only takes place in
daytime when the stomata are open. Canopy emission fluxes depend on plant
species, foliage density, leaf age, temperature, photosynthetically active radiation
(PAR), and water stress. This is commonly represented in bottom-up emission
models by multiplying base emissions Eo tabulated for each PFT under standard
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Figure 9.1 Annual emission of methane from wetlands (Riley et al., 2011).
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conditions with an ensemble of scaling factors describing the sensitivity to local
environmental variables. In the MEGAN emission model (Guenther et al., 2012), the
canopy emission flux E for a given PFT is given as

E ¼ Eo � CCE � Λ� γPAR � γT � γAGE � γSM (9.3)

where Eo is the base emission per unit area of Earth surface under standard conditions,
Λ is the LAI, and the dimensionless scaling factors γ describe the sensitivity to above-
canopy radiation (PAR), surface air temperature (T), leaf age distribution (AGE), and
soil moisture (SM). The coefficient CCE enforces E = Eo under standard conditions,
which for MEGAN are defined as T = 303K, PAR = 1000 μmol photons m–2 s–1,
Λ = 5 m2 m–2, a leaf age distribution of 80% mature, 10% growing, and 10%
senescing, and a volumetric soil moisture of 0.3 m3 m–3. The total isoprene emission
flux for a given model gridsquare is obtained by summing the contributions from all
PFTs in that gridsquare. Bottom-up emission inventories for other species generally
follow the same kind of algorithms as for isoprene, but with less sophistication.

Figure 9.2 shows the MEGAN base emissions Eo under standard conditions
for Europe and for Central/North America. Values are high for tropical forests, the
southeastern USA, and boreal forests, reflecting PFTs with strong potential for
isoprene emission. Values are low in the US Midwest where crops are poor isoprene
emitters. Figure 9.3 shows as examples of scaling factors the dependences of
isoprene emission on air temperature (γT) and LAI (Λ � γPAR), taken from Guenther
et al. (2006). Emission depends both on the instantaneous temperature and on the
temperature for the past ten days. The dependence on LAI would be linear were it not
for canopy light extinction measured by γPAR. Because of this extinction, there is a
saturation effect limited by the penetration of light in the canopy.

Combining base emissions and scaling factors through (9.3) yields the global mean
distributions of isoprene emission in Figure 9.4. Emissions are highest in tropical
forests because of elevated temperature, LAI, and PAR. Emissions at northern mid-
latitudes show strong seasonality driven by phenology and temperature.

Nitrogen oxides. Nitrogen is essential to life and has an active biogeochemical
cycle in terrestrial ecosystems. Specialized bacteria present in all ecosystems convert
atmospheric nitrogen (N2) to ammonia, a process called biofixation, and the resulting
fixed nitrogen then cycles through the ecosystem. Fixed nitrogen can also be directly
delivered to the ecosystem by fertilizer application or by deposition of atmospheric
ammonia and nitrate. Biological processes that cycle nitrogen within the ecosystem
include assimilation (conversion of inorganic nitrogen to biological material),
mineralization (conversion of organic nitrogen to inorganic forms), nitrification
(aerobic microbial oxidation of ammonium to nitrite and on to nitrate), and
denitrification (anaerobic microbial reduction of nitrate to N2). Volatile N2O and
NO are generated as by-products of nitrification and denitrification.

Emission fluxes of ammonia, N2O, and NO from the terrestrial biosphere are of
great interest for atmospheric chemistry. They are determined by the biogeochemical
cycling of nitrogen. In turn, the deposition of ammonia and nitrate is an important
source of nitrogen to the terrestrial biosphere. Ideally, the emissions would be
computed in a coupled atmosphere–land model tracking the chemical cycling of
nitrogen in the atmospheric and terrestrial reservoirs. Simpler parameterizations are
generally used in atmospheric models in which emission is computed as a function of
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soil nitrogen availability, temperature, and soil moisture. For example, Hudman et al.
(2012) parameterize the soil emission Ei of NO for different biomes i as the product
of functions describing respectively the dependences on soil nitrogen enrichment
(N), temperature (T), soil moisture measured by the fraction of water-filled pore
space (θ), and time since the last precipitation event (l ):

Ei ¼ f 1, i Nð Þ � f 2 Tð Þ � f 3 θð Þ � f 4 lð Þ (9.4)

(a)

(b)

Figure 9.2 Base isoprene emission Eo [μg m
–2 h–1] under standard conditions in (a) Central/North America and

(b) Europe. From A. Guenther and C. Wiedinmeyer, NCAR, personal communication.
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Here, N includes contributions from fertilizer input and atmospheric deposition (thus
coupling emissions to deposition). The temperature function is a measure of micro-
bial activity. The soil moisture function peaks for θ = 0.2–0.3; at lower values of θ
bacterial activity is limited by water availability, while at higher values the clogging
of soil pores leads to anaerobic conditions where emission of N2O and N2 dominates
over emission of NO. The pulsing function f4 describes the observed surge of
emissions upon precipitation after an extended dry period (dry season), when
water-stressed bacteria reactivate to mobilize excess nitrogen.

Figure 9.5 shows the global annual soil emissions of NO computed by Hudman
et al. (2012) from (9.4). Emissions are high in agricultural areas of northern
mid-latitudes, reflecting the heavy use of fertilizer. Dry grasslands in South America
and Africa also have high emissions, largely driven by the pulsing at the end of the
dry season. Some of the soil emissions of NO may be oxidized to NO2 within the
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canopy, and this NO2 may then deposit to leaves, thus limiting export to the above-
canopy atmosphere. However, the leaves may also be a source of NO2. These canopy
effects are very poorly understood and often not included in models.

9.2.2 Open Fires

Open fire emissions include contributions from wildfires, prescribed fires, land
clearing, and agricultural management. These emissions are often labeled in the
literature as biomass burning, but that leaves ambiguity as to whether biofuels are
included. Most fires are set by humans, although some wildfires are triggered by
lightning. Even when set by humans, fires are not generally classified as “anthropo-
genic” in emission inventories because they may have happened anyway even
without human intervention. In fact, human intervention may be to suppress wildfires.

Figure 9.4 Global distribution of isoprene emission in January and July. From Guenther et al. (2012).

Figure 9.5 Annual emission of NO from soils. From Hudman et al. (2012).
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Fires emit mostly CO2, CO, and H2O, but also many other trace species. Emissions
depend on the type of vegetation, the vegetation density, and the fire intensity. Fire
information is usually available from satellites and ground surveys as area burned ak
over a time periodΔt for a vegetation type k. From there, one can compute the emission
rate Ei,k of species i from the fire as the product of the area burned per unit time dak/dt,
the fuel load Γk [kg biomass m–2], the fraction of fuel combusted or burning efficiency
βk, and an emission factor Fi,k [g species emitted per kg fuel burned]:

Ei,k ¼ Fi,k � βk � Γk � dak
dt

(9.5)

The burning efficiency depends on the fire intensity and on meteorological
conditions, and also varies between different ecosystem components. Emission factors
are determined from laboratory fire experiments or from sampling of fire plumes,
generally using CO2 as the normalization factor. They can be very different between
successive flaming and smoldering stages of a fire. For example, NOx emission factors
are much higher in the flaming stage while CO emission factors are much higher in the
smoldering stage. The different stages of a fire are generally not resolved in models
because of lack of detailed temporal information. In most cases, models use mean
emission factors compiled from data for different vegetation types (Table 9.2).

Figure 9.6 shows an inventory of CO emissions from open fires in September
2000. September is the end of the dry season in the southern tropics, and fire activity
is particularly intense there. Most tropical fires are from agricultural management,
in particular savanna burning. There is also a contribution from land clearing. Fires
at northern mid-latitudes include contributions from wildfires (as in Siberia and
Canada), prescribed burning (e.g., the southeast USA), and agricultural waste
burning (e.g., West Asia).

Plumes from large fires are buoyant due to the heat released by combustion and can
thus be lofted to the free troposphere above the PBL. This lofting is important to
recognize in models because it affects the subsequent transport and chemistry of the
fire plumes, and allows smoke particles to reach the free troposphere without being

Table 9.2 Emission factors for open fires

Chemical
species

Savanna and
grassland

Tropical
forest

Extra-tropical
forest

Crop
residue

Pasture
maintenance

CO2 1686 1643 1509 1585 1548
CO 63 93 122 102 135
CH4 1.9 5.1 5.68 5.82 8.71
NMVOCs 12.4 26 27 25.7 44.8
H2 1.7 3.36 2.03 2.59 –
NOx 3.9 2.55 1.12 3.11 0.75
N2O – – 0.38 – –
Organic
aerosol

2.62 4.71 9.1 2.3 9.64

Black carbon 0.37 0.52 0.56 0.75 0.91

Emission factors [g kg�1] for species emitted from combustion of different types of biomass. NOx is given
as NO. From the review of Akagi et al. (2011).
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scavenged by precipitation. The height reached by the plume is determined by the fire
size and intensity, and by the thermodynamic stability of the background atmosphere.
Latent heat release can increase the height reached by the plume and lead to the
formation of deep convective clouds, a process called pyroconvection. A standard
plume-rise formulation used in atmospheric models is that of Freitas et al. (2007).
Figure 9.7 illustrates its application to a boreal fire in central Canada (large fire size and
intensity) and a grassland fire in Texas (small fire size and intensity). The boreal fire
plume rises to 3 km altitude while the grassland fire plume remains in the PBL.

9.2.3 Volcanoes

Volcanoes play a fundamental role in the cycling of elements on geologic timescales
by transferring material from the lithosphere to the atmosphere. On the shorter
perspective of atmospheric sources and sinks, volcanoes are of most interest as
sources of ash and sulfur gases (mainly SO2 and H2S). Volcanoes often release
material in the free troposphere. Large volcanic eruptions inject material into the
lower stratosphere, and the resulting long-lived sulfate aerosol has important impli-
cations for climate and for stratospheric ozone.
Volcanic emissions can be non-eruptive or eruptive. Non-eruptive emissions are

released at the volcano mouth while eruptive emissions are injected to higher
altitude. Eruptive emissions are usually brief and variable, although some volcanoes
can be in continuous eruption for many years. Worldwide databases of volcanic
eruptions are available with eruption dates and strengths measured by the logarithmic
volcanic explosivity index (VEI). The VEI is an integer measure that ranges from 0
(non-explosive) to 8 (colossal). Volcanic emissions and injection heights are com-
monly assigned in models as a function of VEI or using direct observations. Satellite
observations have greatly increased the ability to map volcanic SO2 emissions
(Schnetzler et al., 2007; Figure 9.8).

Figure 9.6 Emission of CO from open fires in September 2000. Source: ECCAD database (Granier et al., 2011;
Lamarque et al., 2010).
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Figure 9.7 Plume rise from a large boreal forest fire in Canada (a and b) and from a small grassland fire in Texas (c and
d). The left panels show the plume rise inferred from aerosol retrievals by the MISR satellite instrument.
The right panels show results from the 1-D plume rise model of Freitas et al. (2007), where the point
of zero vertical velocity marks the top of the plume. From Val Martin et al. (2012).

Figure 9.8 SO2 plume from the Kasatochi volcanic eruption in the Aleutians observed by the OMI satellite instrument on
August 8, 2008. From Wang et al. (2013).
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9.2.4 Anthropogenic Emissions

Anthropogenic emissions span a wide range of processes of which combustion,
industrial leaks, and agricultural activities are the most important. The “anthropo-
genic” label in the literature can be ambiguous and inconsistent. For example, some
anthropogenic inventories include prescribed and agricultural fires while others do
not. Anthropogenic inventories typically include emissions of ammonia from agri-
cultural fertilizer, but may not include emissions of NOx from the same process.
Regional inventories may include emissions from aircraft in airports but not in the
air. They may include ship emissions in ports but not at sea. Because of definitional
problems such as these, care is needed when using anthropogenic emission inven-
tories. It is important to ascertain which sources are included.
Anthropogenic emissions are usually better quantified than other emissions

because activity rates are available as economic data and emission factors are
documented for air quality management purposes. Emission inventories commonly
distinguish between area sources and point sources. Area sources include vehicles
and other individually small sources for which emissions are distributed over the
activity area with best estimates of emission factors. Point sources are concentrated
discharges from localized sources such as power plants. These emissions are often
released by smokestacks hundreds of meters above the surface, and height infor-
mation may be provided in the inventory. Large point sources may have continuous
emission monitoring devices installed in their stacks to comply with air quality
regulations, in which case the emissions are particularly well quantified.
Anthropogenic emission inventories are produced by various groups and agencies

to serve air quality management and climate modeling needs. They may cover the
whole world or limited geographical domains. Regulatory models used for air quality
management typically construct their own highly detailed emission inventories over
regional domains separating individual sources and with temporal resolution as fine
as hourly. At the other end, many inventories are available only as gridded annual
totals. In such cases, temporal information on emissions (diurnal, weekday/weekend,
seasonal, interannual) needs to be independently provided using scaling factors.
Figure 9.9 shows as an example a global inventory of NOx anthropogenic emissions in

2008. Emissions aremainly from fossil fuel combustion and peak in the densely populated
regions of developed countries. Emissions over the oceans are from ships and aircraft.

9.2.5 Mechanical Emissions: Sea Salt and Dust

Wind stress on the Earth’s surface causes mechanical emission of aerosol particles
including sea salt, mineral dust, pollen, and plant debris. Sea salt and dust are dominant
components of the coarse-mode (supermicron) aerosol over ocean and land, respect-
ively, and generally make important contributions to total aerosol mass concentrations
and optical depth. Pollen and plant debris have more localized influences.

Sea Salt Aerosol

Emission of sea salt particles is mostly driven by the entrainment of air into seawater
les rise and burst at the sea surface,
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injecting particles into the air. The emission flux is a strong function of wind speed.
A commonly used emission parameterization is that of Monahan et al. (1986),
modified by Gong (2003) to better fit observations, and by Jaeglé et al. (2011) to
include dependence on sea surface temperature (SST):

dE

dr
¼ 1:373 u3:4110 r �A 1þ 0:057r3:45

� �� 101:607 exp �B2½ � � g TCð Þ (9.6)

with

A ¼ 4:7 1þ 30rð Þ�0:017r�1:44

B ¼ 1� 2:31 log r
g TCð Þ ¼ 0:3þ 0:1TC þ 0:0076T 2

C þ 0:00021T 3
C

(9.7)

Here, dE/dr is the emission flux size distribution function [particles m–2 s–1 μm–1] at
80% relative humidity (RH), r is the particle radius [μm] at 80% RH (about twice the
dry radius), u10 [m s–1] is the wind speed at 10 m above the surface, and TC [�C] is
the SST. Figure 9.10 shows the resulting number size distribution of the emitted
particles, featuring a peak at 0.1 μm consistent with observations (Gong, 2003). The
dependence of emissions on SST reflects the strong sensitivity of seawater viscosity
to temperature: Warmer waters are less viscous, allowing for faster rise of small
bubbles and hence a larger particle source.

Figure 9.11 shows the global mass flux of sea salt aerosol computed from (9.6)
using assimilated meteorological data. Emission is highest at southern mid-latitudes
where winds are strongest, though this maximum is mitigated by cold SSTs. Warm
waters of the tropics have higher emission than would be computed solely from a
wind speed dependence.

Mineral Dust

Mineral dust is emitted by sandblasting of soils, a process called saltation. Wind lifts
large sand particles (diameter Ds > 50 μm) that travel over only short horizontal

y gravity. As the sand particles fall, they

Figure 9.9 Anthropogenic NOx emissions from the MACCity inventory at 0.5� x 0.5� resolution for the year 2008.
Courtesy: C. Granier, Centre National de la Recherche Scientifique (CNRS).
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eject dust particles of diameter Dd small enough to be transported over long distances
in the atmosphere. These fine particles are classified as clay (Dd < 2 μm) and silt
(2 < Dd < 50 μm).
Experimental data show that the dust emission flux is proportional to the horizon-

tal saltation flux from the transport of sand particles (Gillette, 1979). Over bare soils,
the saltation flux Q [kg m�1 s�1] can be expressed as a function of the friction
velocity u∗[m s�1] (defined in Chapter 8) and a threshold friction velocity u�t by

Q Dsð Þ ¼ cρa u
3
�

g
1þ u�t Dsð Þ

u�

� �
1� u2�t Dsð Þ

u2�

 !
S (9.8)

Here ρa is the air density [kg m�3], g is the acceleration of gravity [m s�2], S
a preference source term, and c a constant of proportionality derived from wind-
tunnel experiments and typically taken to be c = 2.61. The preference source term S
accounts for accumulated erodible sediments in a given grid square due, for example,
to topography or run-off areas; Ginoux et al. (2001) assume that large amounts of
sediments accumulate primarily in valleys and depressions and adopt the empirical
formulation

6
9

17

Figure 9.10 Emission flux size distribution function computed with the Gong (2003) parameterization for three different
wind speeds (6, 9, 17 m s–1) and compared to the parameterizations of Monahan et al. (1986) and Vignati
et al. (2001). The original Monahan et al. (1986) parameterization features an increase in emission with
decreasing radius below 0.1 μm that is inconsistent with observations. Adapted from Gong (2003).

Figure 9.11 Annual mean mass emission flux of sea salt aerosol. From Jaeglé et al. (2011).
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S ¼ zmax � z

zmax � zmin

� �5

(9.9)

where z denotes the mean altitude of the model grid cell under consideration, while zmin
and zmax represent the maximum and minimum elevations in the surrounding 10� � 10�

area (typical size of a hydrological basin). The threshold friction velocity u∗t is a
function of the sand particle diameterDs, and represents the capacity of the soil to resist
wind erosion. Its value is determined by factors such as soil texture, soil moisture, and
the presence of vegetation and other roughness elements (Xi and Sokolik, 2015). In the
case of dry soils, u∗t has a value of about 0.2 m s�1 for Ds = 100 μm.

The emission flux of dust particles resulting from the bombardment of saltating
particles (sand grains) of size Ds is calculated by assuming that the flux of dust
[kg m�2 s�1] corresponding to a particle size bin i (i = 1, I) of increment ΔDi and
mean diameter Di, is given by

Ê Di;ΔDi;Dsð Þ ¼ α Di;ΔDi;Dsð ÞQ Dsð Þ (9.10)

The sandblast efficiency α [m�1] can be derived from theoretical considerations
(Shao, 2004) or from wind tunnel experiments. The dust emission from size bin Di is
then given by integrating Ê(Di, ΔDi, Ds) between the lower and upper limits d1 and
d2 of the size of the saltating particles

E Di;ΔDið Þ ¼
ðd2
d1

Ê Di;ΔDi;Dsð Þp Dsð ÞdDs

Here p(Ds) is the size distribution of the sand particles (often assumed to be a
composite of log-normal distributions). The total emission rate of dust is obtained
by summing the emission for all I bins:

E ¼
XI
i¼1

E Di;ΔDið Þ

Darmenova et al. (2009) review different physical parameterizations adopted in dust
emission models.

The above formulation requires detailed information on soil characteristics that may
not be available. Simpler formulations are used in global models (Ginoux et al., 2001;
Zender et al., 2003). Ginoux et al. (2001, 2012) compute the dust emission flux as:

E ¼ S f A u210 u10 � u10, tð Þ for u10 > u10, t

¼ 0 for u10 < u10, t
(9.11)

Here, u10 denotes the 10 m wind speed, u10,t is a threshold, fA is the fractional area of
land suitable for saltation, and S is an adjustable global scaling factor to match dust
observations. Dust emission in this formulation has a cubic dependence on wind speed,
and is therefore controlled by gusty conditions that are poorly resolved in atmospheric
models. The scaling factor S is intended to correct for this effect and varies with the
model grid resolution. Global models typically choose S to yield a global dust emission
of about 1500 Tg a–1 as this is found to provide a good fit to observations.

Figure 9.12 shows the global distribution of natural and anthropogenic dust
emissions estimated by Ginoux et al. (2012). Natural emission is dominated
globally by the Sahara and also has substantial contributions from the Middle East,
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the Gobi desert, and the North American West. There are large anthropogenic dust
emissions from dry and eroded agricultural areas.

9.3 One-Way Dry Deposition

Dry deposition or surface uptake is the process by which gases and particles are
transferred from the atmosphere to the Earth’s surface. It is a major sink for many
atmospheric species. Except for very large particles, it does not take place by gravity,
which is negligibly slow. It takes place instead by turbulent transfer to the surface
followed by surface uptake. One-way deposition as described here assumes that the
deposition is irreversible so that the surface is a terminal sink. Generalization to two-
way exchange is presented in Section 9.4.

9.3.1 Dry Deposition Velocity

The dry deposition sink for a species i is computed as the dry deposition flux FD,i

[molecules cm–2 s–1] applied to the lowest altitude z1 resolved by the model (lowest
model grid point). Proper physical description requires that the dry deposition flux
computed at z1 represent the flux at the actual surface. This holds if z1 is within the
surface layer (Section 8.7.3), typically 50–100 m deep, where vertical fluxes can be
assumed uniform. FD,i depends on the number density ni(z1) at altitude z1, the
efficiency of vertical transfer from altitude z1 to the surface, and the efficiency of
loss at the surface. If the loss rate at the surface has a first-order dependence on the
surface number density ni(0), as is usually the case, then the deposition flux has a
first-order dependence on ni(z1):

FD, i ¼ �wD, i z1ð Þni z1ð Þ (9.12)

Here, wD,i(z1) is the dry deposition velocity [cm s–1] of species i at altitude z1. It is
called a “velocity” because of its units, but it describes in fact a turbulent process and
not a simple one-way flow. One-way gravitational settling is important only for very

Figure 9.12 Annual mean dust emission from natural and anthropogenic sources. From Ginoux et al. (2012).
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large aerosol particles and is covered in Section 9.3.8. The flux is defined as positive
when upward, thus the dry deposition flux in (9.12) is negative.

Conservation of the vertical flux in the air column below z1 is an important
assumption in the computation of dry deposition using (9.12). Aside from z1 being
in the surface layer, it requires that the atmospheric lifetime of the depositing species
against chemical loss be long relative to the timescale for turbulent transfer from z1 to
the surface. The latter timescale is of the order of minutes for z1 in the range
10–100 m. Shorter-lived species require finer vertical resolution near the surface to
compute dry deposition, although one might be able to assume in those cases that dry
deposition is negligible relative to chemical loss.

9.3.2 Momentum Deposition to a Flat Rough Surface

Insight into the deposition of chemical species can be gained from similarity to
deposition of momentum, Consider the simple case of momentum deposition to a flat
rough surface (Figure 9.13). Momentum is transported to the surface by turbulence.
Turbulent eddies in the surface layer are sufficiently small that an eddy diffusion
parameterization is adequate (Section 8.7.3). Let ρau be the mean scalar horizontal
momentum where ρa is the air density and u is the mean horizontal wind speed.
The momentum deposition flux Fm is related to the vertical gradient of the horizontal
momentum by:

Fm ¼ �Kz
dρau
dz

� �Kzρa
du

dz
(9.13)

where we neglect the small variation of ρa with altitude. The eddy diffusion coeffi-
cient Kz has units [cm

2 s–1] and needs to be empirically specified. Dimensionality
considerations are helpful here. Kz can be viewed as the product of a length scale
[cm] and a velocity scale [cm s–1]. We expect Kz to increase with distance from the
surface as eddies become less restricted by the surface boundary. Thus z is an
appropriate length scale. We also expect Kz to increase as the momentum deposition
flux increases, and this can be expressed in terms of the friction velocity u* =
(|Fm|/ρa)

1/2 introduced in Section 8.7.3. Therefore:

Kz ¼ ku�z (9.14)

Figure 9.13 Log law for the horizontal wind speed over a flat rough surface.
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where k = 0.35 is the von Karman constant. Replacing (9.14) and the definition of the
friction velocity into (9.13), we get:

du ¼ u�
k

dz

z
(9.15)

and by integration,

u ¼ u�
k

ln zþ c (9.16)

where c is an integration constant. We see from the form of (9.16) that the mean wind
speed must die out (u = 0) at some distance above the surface called the roughness
height for momentum z0,m. Applying this boundary condition to (9.16) we obtain the
log law for the wind (equation (8.106)):

u ¼ u�
k

ln
z

z0,m
(9.17)

Field observations show that this relationship is generally well obeyed. Plots of ln z
vs. u from experimental data can be fitted to a straight line, and the values of u* and
z0,m can be derived from the slope and intercept. The thin layer [0, z0,m] close to the
surface is viewed as a quasi-laminar boundary layer in which molecular diffusion
plays an important role.

9.3.3 Big-Leaf Model for Dry Deposition

The formulation of momentum deposition to a flat rough surface (Section 9.3.2)
provides a simple basis for parameterizing deposition of chemical species to a
complex canopy. This parameterization is called the big-leaf model or resistance-
in-series model (Hicks et al., 1987). Figure 9.14 gives a schematic. From the
atmospheric perspective, the canopy is modeled as a flat rough surface based at a
displacement height d above the ground (Section 8.7.3). Depositing species are
delivered to the surface by turbulent and quasi-laminar transfer (Section 9.3.2) and
penetrate into the surface medium, where they are eventually removed. Think of the
“big leaf” as a porous medium above which the airflow follows atmospheric
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Figure 9.14 Schematic of the big-leaf model for one-way dry deposition. Vertical axis is not to scale.
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dynamics for deposition to a flat rough surface (Section 9.3.2), and below which
some combination of surface processes leads to the actual uptake. Vertical transport
to the big-leaf surface takes place by atmospheric turbulence down to altitude d + z0,m,
and final transport to the surface through the quasi-laminar boundary layer is
facilitated by molecular diffusion. The log law for the wind (9.17) needs to be
adjusted for the displacement height (Section 8.7.3):

u ¼ u�
k

ln
z� d

z0,m

� �
(9.18)

where the altitude z is relative to the actual Earth surface below the canopy. Typically
d is about 2/3 of the canopy height, z0,m is about 1/30 of the canopy height, and u* is
about 1/10 of the wind speed. Assuming similarity between turbulent transport of
chemicals and momentum, a similar log law applies to the vertical concentration
profile of species i, but with a non-zero concentration as boundary condition at
altitude d + z0,c:

ni zð Þ � ni d þ z0,cð Þ ¼ u�
k

ln
z� d

z0,c

� �
(9.19)

Here, z0,c is the roughness height for depositing species (assumed to be the same
for all species) and d + z0,c is the effective height of the big-leaf surface. The quasi-
laminar boundary layer is thus defined as the layer [d + z0,m, d + z0,c], from the point
where the wind dies out down to the effective surface. In one-way deposition the
surface is a terminal sink for the depositing species, and this is enforced by a
boundary condition ni,o = 0 within the big-leaf medium (Figure 9.14).

Downward vertical transfer in the [z1, d + z0,m] column takes place by turbulence;
thus we write for that column:

FD, i ¼ �Kz zð Þ na zð Þ dCi zð Þ
dz

� �Kz zð Þ dni zð Þ
dz

(9.20)

where Ci is the mixing ratio of species i. The turbulent flux is proportional to the
mixing ratio gradient in the eddy diffusion formulation, but we can neglect the
vertical dependence of the air density na within the surface layer and write the flux
as proportional to the number density gradient. Integration of equation (9.20) yields

FD, i ¼ � ni z1ð Þ � ni d þ z0,mð ÞÐz1
dþz0,m

dz

Kz zð Þ
¼ � ni z1ð Þ � ni d þ z0,mð Þ

RA
(9.21)

where RA [s cm–1] is the aerodynamic resistance to deposition:

RA ¼
ðz1

dþz0,m

dz

Kz zð Þ (9.22)

The term “resistance” reflects the analogy with electrical circuits, taking
ni(z1) – ni(d + z0,m) as the analog of a difference in potential and FD,i as the analog
of a current intensity.
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Following on the analogy with electrical circuits, we can define a quasi-laminar
boundary layer resistance RB,i [s cm–1] (commonly called boundary resistance) to
describe vertical transport through the quasi-laminar boundary layer:

FD, i¼� ni d þ z0,mð Þ � ni d þ z0,cð Þ
RB, i

(9.23)

and a surface resistance RC,i [s cm
–1] to describe the uptake at the surface:

FD, i¼� ni d þ z0,cð Þ
RC, i

(9.24)

where ni(d + z0,c) is the concentration in contact with the surface. We combine (9.21),
(9.23), and (9.24) to eliminate ni(d + z0,m) and ni(d + z0,c), and obtain:

FD, i¼� ni z1ð Þ
RA þ RB, i þ RC, i

¼ � ni z1ð Þ
Ri

(9.25)

where Ri = RA + RB,i + RC,i [s cm
–1] is the total resistance to dry deposition and is the

inverse of the dry deposition velocity (9.12). Thus:

wD, i¼ 1

Ri
¼ 1

RA þ RB, i þ RC, i
(9.26)

We see by analogy to Ohm’s law that Ri is the sum of three resistances in series
describing resistance to turbulent transport through the surface layer (RA), resistance
to diffusion through the quasi-laminar boundary layer (RB,i), and resistance to surface
uptake (RC,i), as illustrated in Figure 9.14. By calculating the individual resistances
we can derive the dry deposition velocity, and by comparing the magnitudes of the
individual resistances we can determine the process limiting dry deposition. In the
following subsections we describe the calculation of the individual resistances.

9.3.4 Aerodynamic Resistance

Equation (9.22) expresses RA as a function of the eddy diffusion coefficient Kz. For
flow over a flat rough surface, we have Kz = ku*z (Section 9.3.2), and correcting for
the displacement height yields Kz = ku*(z – d). Replacing into (9.22):

RA ¼
ðz1

dþz0,m

dz

ku� z� dð Þ ¼
1

ku�
ln

z1 � d

z0,m

� �
(9.27)

This expression applies for neutral buoyancy conditions when the log law for the
wind holds. The atmosphere can be assumed neutral when mechanical turbulence
dominates over buoyant turbulence, that is when z1 � |L| where L is the Monin–
Obukhov length (Section 8.7.3). When this condition is not satisfied, a stability
correction factor Ψm must be introduced in the formulation of the vertical wind
profile as given in Section 8.7.3 (see also expression (9.18)):

u ¼ u∗
k

ln
z� d

z0,m

� �
� Ψm

z� d

L

� �� �
(9.28)
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and the expression for the aerodynamic resistance becomes:

RA ¼ 1

k u�
ln

z1 � d

z0,m

� �
� Ψm

z1 � dð Þ
L

� �� �
(9.29)

Correction formulas are generally applicable up to z � |L|. At higher altitudes,
the parameterization of turbulence becomes more complicated as buoyant plumes
dominate and the surface layer assumption of uniformity of vertical fluxes may
not be valid. Values of |L| generally exceed 100 m so that a lowest model level
z1 < 100 m is adequate. Very unstable conditions can have smaller values of |L|,
but the aerodynamic resistance in the [|L|, z1] column is then negligibly small and
RA in (9.29) can be calculated by replacing z1 with |L|. Very stable conditions at
night can lead to ground-based inversions and very small positive values of L. In
that case the aerodynamic resistance computed at z1 > L is very large, deposition
is restricted to the shallow layer [0, L], and the concentration at z1 is decoupled
from that in surface air. It may be best from the model perspective to ignore
deposition under such conditions as it operates only on a small atmospheric mass.
One should not expect then for the model to be able to reproduce surface
observations.

9.3.5 Quasi-Laminar Boundary Layer Resistance

The quasi-laminar boundary layer resistance (boundary resistance) RB,i in the big-
leaf model measures the resistance to transfer from the zero-momentum point at
altitude d + z0,m to the big-leaf surface at altitude d + z0,c. Even though turbulence
technically dies out at d + z0,m in the eddy diffusion parameterization for momentum,
there is in reality still some turbulence to carry species down to the surface. A first
estimate of RB,i can thus be made from (9.27):

RB, i ¼
ðdþz0,m

dþz0,c

dz

ku� z� dð Þ ¼
1

ku�
ln

z0,m
z0,c

� �
(9.30)

Molecular diffusion also plays a significant role in the thin quasi-laminar bound-
ary layer, and the corresponding rate depends on the molecular diffusion coefficient
Di. This can be accounted for by the semi-empirical correction of Hicks et al. (1987):

RB, i ¼ 1

ku�
ln

z0,m
z0,c

� �
Sci
Pr

� �2=3

(9.31)

where the Schmidt number Sci = ν/Di is the ratio between the kinematic viscosity of
air (ν = 0.15 cm2 s–1 at standard temperature and pressure) and the molecular
diffusion coefficient Di. The Prandtl number Pr is the ratio of the kinematic viscosity
to the thermal diffusivity of air (Pr = 0.72 at standard temperature and pressure). The
term ln(z0,m/z0,c) is roughly 2 for vegetated canopies and 1 for bare surfaces and
water. The boundary resistance computed in this manner is a very crude approxima-
tion, but is of little importance for computing the deposition velocity for gases since
comparison of (9.31) to (9.27) indicates that RA 	 RB,i.
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In the case of aerosol particles, the molecular diffusion coefficient must be
replaced by the Brownian diffusion coefficient describing the random motion of
particles. The Brownian diffusion coefficient is inversely dependent on particle size.
For particles larger than ~0.1 μm, Brownian diffusion is very small, but transfer to
the surface is then facilitated by interception (when particles carried by the airflow
hit the surface) and inertial impaction (when particles deviate from the airflow as it
curves around surface elements). There is detailed theory for these aerosol processes
(Slinn, 1982; Seinfeld and Pandis, 2006) though practical application is limited by
complexity of the canopy. Interception and impaction are generally the limiting
factors for dry deposition of >0.1 μm aerosol particles, but the corresponding
resistance is generally referred to as surface resistance in the literature. Thus for
aerosol particles of diameter Dp the deposition velocity is typically computed as
wD(Dp) = 1/(RA + RC(Dp)) where the surface resistance RC(Dp) accounts for Brown-
ian diffusion, interception, and impaction. Seinfeld and Pandis (2006) give a detailed
discussion of these processes. The parameterization for RC(Dp) by Zhang et al.
(2001) is frequently used in models.

9.3.6 Surface Resistance

The surface resistance RC,i in the big-leaf model describes the physical and chemical
uptake taking place on the ensemble of canopy surfaces. For aerosol particles,
collision with surfaces takes place by Brownian diffusion, interception, and impac-
tion (Section 9.3.5). For gases, the uptake involves surface adsorption or absorption
followed by chemical reaction. Deposition of gases can take place to the stomata
(open pores) of leaves, within which gases diffuse to eventually react in the leaf
mesophyll. It can also take place to the waxy surfaces of leaves, called cuticles, and
to the ground and other surfaces.
The overall surface resistance is commonly decomposed into processes represent-

ing uptake by different canopy elements and parameterized as an ensemble of
resistances in parallel and in series. Figure 9.15 from Wesely and Hicks (2000)
shows a standard scheme. In that scheme, uptake by the canopy takes place in
parallel to the canopy leaves, the lower canopy, and the ground. Uptake by canopy
leaves takes place in parallel to the stomata and to the cuticles, and uptake by the
stomata is described by two resistances in series representing diffusion through the
stomata and reaction at the mesophyll. Uptake to the lower canopy and to the ground
involves aerodynamic resistance to transfer through the canopy. The overall surface
resistance RC,i is computed from this network of resistances by adding resistances in
series, and adding conductances (inverses of resistances) in parallel, as one would do
for electrical resistances. Wesely and Hicks (2000) and other literature provide
estimates of each resistance in Figure 9.15 for different canopy types, gas chemical
properties (e.g., effective Henry’s law constant, oxidant potential), and meteoro-
logical variables.
Table 9.3 gives surface resistances for SO2 and ozone computed with the Wesely

and Hicks (2000) model for a deciduous forest in summer (full canopy) and winter
(no leaf canopy), during day and night. SO2 and ozone are commonly used as
reference species for dry deposition because relatively large observational databases
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Figure 9.15 Surface resistance model from Wesely and Hicks (2000) separating contributions from vegetation, lower
canopy, and the ground. The leaf mesophyll, lower canopy vegetation, and ground all have their own
internal concentrations (ni,M, ni,LC, ni,GR) as boundary conditions instead of the single concentration ni,o given
in Figure 9.14. For one-way deposition these boundary conditions are all set to zero. Adapted from Wesely
and Hicks (2000).

Table 9.3 Surface resistances RC,i (s cm
–1) for a deciduous forest canopy

Species Day Night

SO2 summer 1.3 10
winter 9.8 10

O3 summer 1.1 9.5
winter 6.1 30
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are available for both. Uptake of SO2 is driven by its effective water solubility while
uptake of ozone is driven by its reactivity as an oxidant. Uptake is particularly
efficient at the leaf stomata, where water-soluble gases dissolve in the leaf water and
oxidants react with unsaturated organic compounds. The overall surface resistances
for SO2 and ozone are much smaller in summer than in winter and much smaller in
daytime than at night, reflecting the importance of the stomata, which are open only
during daytime.
An illustrative back-of-the-envelope estimate of the surface resistance can be

made for deposition of a highly water-soluble or reactive species to a leafy canopy
in the daytime. In that case, leaves account for most of the total depositing surface in
the canopy and reaction at the mesophyll is fast (RM,i � 0 in Figure 9.15). Thus
RC,i � RS,i, where RS,i is the stomatal resistance for the whole leaf canopy. Measure-
ments of the stomatal resistance Rs,w for water vapor exchange per unit area of leaf
indicate a typical value of 2 s cm–1. The corresponding stomatal resistance Rs,i for
species i per unit area of leaf scales to that of water by the inverse ratio of molecular
diffusion coefficients, and the molecular diffusion coefficients are in turn inversely
proportional to the square root of the molecular weights. Thus we have:

RC, i � Rs,w

Λ
Mi

Mw

� �1=2

(9.32)

where Λ is the LAI introduced in Section 9.2.1, and Mi and Mw are the molecular
weights of species i and water vapor, respectively. Taking ozone as an example and a
typical mid-latitudes forest LAI of 3, we obtain RC,O3 = 1.1 s cm–1, which is the
value in Table 9.3.

9.3.7 Factors Controlling the Dry Deposition Velocity

The deposition velocity of a gas as described by the resistance-in-series model (9.26)
can be limited by aerodynamic transfer if RA	 RC,i or by surface uptake if RA � RC,i.
It is never limited by transfer in the quasi-laminar boundary layer because
RA 	 RB,i in all cases. Whether aerodynamic transfer or surface uptake is limiting
depends on species properties, canopy properties, and atmospheric stability. Gases
with weak surface reactivity have low deposition velocities generally limited by the
surface resistance. At the other extreme, strong acids like HNO3 have zero surface
resistance and their deposition velocity is always limited by aerodynamic transfer.
Aerosol particles have highly variable deposition velocities depending on their size
and on the canopy structure. Deposition velocities are smallest for particles in the
0.1–1 μm range. Smaller particles are efficiently removed by Brownian diffusion,
while larger particles are efficiently removed by inertial impaction.
Deposition velocities over land vary strongly between day and night as driven

both by atmospheric stability and by surface resistance (Table 9.3). This is illustrated
in Figure 9.16 with measured ozone deposition velocities above a forest canopy. The
deposition velocity is low at night when the atmosphere is stable and the stomata are
closed. It increases rapidly at sunrise when the stomata start to open, and peaks in
midday when the stomata are most open and the atmosphere is unstable. A mean
afternoon decline in dry deposition is often observed due to increasing cloudiness
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resulting in partial stomatal closure. Also shown in Figure 9.16 are model values
computed with a standard big-leaf resistance-in-series scheme and including vari-
ability driven by temperature and solar radiation.

Figure 9.17 illustrates the geographical and seasonal variations in ozone dry
deposition velocity as calculated from a global model. Values are much lower over
ocean than over land because ozone is poorly soluble in water. Values are also much
lower in winter than in summer due to the absence of a leaf canopy and the
suppression of deposition by snow.

9.3.8 Gravitational Settling

Gravitational settling is an important contributor to the deposition velocity in surface
air only for aerosol particles larger than about 10 μm. The gravitational settling
velocity near the Earth’s surface is of the order of 1 cm s–1 for a 10 μm particle and
0.01 cm s–1 for a 1 μm particle. Gravitational settling is more important in the free
troposphere and stratosphere, where vertical motions are otherwise slow and the
settling velocity is higher than in surface air because of lower atmospheric pressure.
Because of this, it is important to add gravitational settling as a term in the continuity
equation for particles larger than about 1 μm (Chapter 4). Here we present equations
for the gravitational settling velocity of particles that are applicable both for comput-
ing deposition at the surface and vertical motion through the atmosphere.

The settling velocity w of a particle of mass mp is determined by equilibrium
between gravity and drag:

mp
dw

dt
¼ mpg � Fdrag (9.33)

The drag is given by:

Fdrag ¼ 1

2
CD ap ρa w

2 (9.34)

Figure 9.16 Diurnal variation of the ozone dry deposition velocity over a pine forest in North Carolina, April 15 to
May 15, 1996. Mean observations and standard errors from Finkelstein et al. (2000) are compared to mean
values from the GEOS-Chem model using a resistance-in-series parameterization. Model standard deviations
describing day-to-day variability are also shown. From Katherine Travis, Harvard, personal communication.
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where ap is the projected area of the particle normal to the flow, ρa is the air
density, and CD is an empirical drag coefficient. For spherical aerosol particles
(ap = π D2

p/4):

Fdrag ¼ 1

8
π CD ρa D

2
p w

2 (9.35)

where Dp is the particle diameter. For particles that are not very large relative to the
mean free path of air molecules (λ = 0.065 μm at 298 K and 1 atm, but λ = 0.42 μm at
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Figure 9.17 Monthly mean ozone deposition velocity [cm s–1] in January and July calculated in the model of Lamarque
et al. (2010).
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215 K and 100 hPa in the lower stratosphere), a dimensionless slip-correction factor
Cc must be introduced to account for non-continuum effects:

Fdrag ¼
π CD ρa D

2
p w

2

8 Cc
(9.36)

with

Cc Dp

� � ¼ 1þ 2λ
Dp

1:257þ 0:4 exp �0:55
Dp

λ

� �� �
(9.37)

This correction factor decreases the drag and therefore increases the settling velocity.
The mean free path is computed as

λ ¼ 2μ

p 8Ma=πRTð Þ1=2
(9.38)

where p is the atmospheric pressure, Ma is the molecular weight of air, R is the
ideal gas constant, T is the absolute temperature [K], and μ is the dynamic viscosity
[kg m–1 s–1] given by

μ ¼ μo
To þ 120

T þ 120

� �
T

To

� �3=2

(9.39)

where To = 298 K and μo = 1.8 � 10–5 kg m–1 s–1.
The terminal settling velocity ws of a particle, obtained from equilibrium between

gravity and drag (dw/dt = 0 in (9.33) is given by

ws ¼ 4

3

g ρpCcDp

CD ρa

� �1
2

(9.40)

where ρp is the mass density of the particle. The drag is a function of the Reynolds
number Re:

Re ¼ w Dp

ν
¼ w Dp

μ=ρa
(9.41)

For near-surface conditions (1 atm and 298 K), the Reynolds number is less than 0.1
for Dp smaller than 20 μm. Under low Reynolds numbers (Re < 0.1), the drag
coefficient can be expressed as CD = 24/Re, and ws is then given by

ws ¼
ρp D

2
p g Cc

18μ
(9.42)

At higher Reynolds numbers the following equations for the drag apply:

CD ¼ 24

Re
1þ 3

16
Reþ 9

160
Re2 ln 2Reð Þ

� �
0:1 < Re < 2

CD ¼ 24

Re
1þ 0:15Re0:687
� 	

2 < Re < 500

(9.43)

The terminal settling velocity must then be calculated iteratively using (9.40) and
(9.43) to account for the dependence of CD on Re, and hence ws.
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Figure 9.18 shows typical gravitational settling velocities as a function of particle
size and compares these velocities to measurements of particle dry deposition
velocity to a grass surface. Gravitational settling accounts for 10% of the overall
deposition velocity for 1 μm particles and 20% for 10 μm particles (typical of fog).
Even though the gravitational settling velocity increases by two orders of magnitude
from 1 to 10 μm, removal by inertial impaction also becomes more efficient. Gravi-
tational settling dominates deposition for particles larger than 30 μm (for context, the
diameter of a small raindrop is 100 μm).

9.4 Two-Way Surface Flux

The one-way deposition model described in Section 9.3 assumes that the surface is a
terminal sink for depositing species. This assumption is expressed in the big-leaf
model by the boundary condition of a zero concentration in the surface reservoir
(Figure 9.14 and equation (9.24)). Consider instead as boundary concentration a non-
zero concentration ni,o in the surface reservoir. Equation (9.24) then becomes

FD, i¼� ni d þ z0,cð Þ � ni,o
RC, i

(9.44)

Combining (9.21), (9.23), and (9.44) yields:

FD, i¼� wD, i ni z1ð Þ � ni,o½ � (9.45)

We see that a non-zero concentration within the surface reservoir (called a compen-
sation point) implies a surface emission flux wD,i ni,o offsetting the deposition flux –
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Figure 9.18 Curve A: Gravitational settling velocity of aerosol particles as a function of particle diameter.
Curve B: Deposition velocity of aerosol particles onto a grass surface. From Hobbs (2000).
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wD,i ni(z1). The emission is subject to the same resistances to transfer as deposition.
wD,i is then called a transfer velocity, exchange velocity, or piston velocity rather than
a deposition velocity.

Proper representation of the non-zero compensation point in an atmospheric
model depends on the nature of the source that maintains this compensation point.
If the source is atmospheric deposition, this means that reaction within the surface
reservoir is not sufficiently fast for the surface to be a terminal sink; re-emission to
the atmosphere is a competing pathway. In that case, ni,o is dependent on ni(z1), and a
relationship between the two must be specified. This may be as simple as assuming a
fixed proportionality, e.g., ni,o = sKni(z1) where K is an equilibrium constant between
the surface reservoir and the atmosphere (such as Henry’s law for an air–water
interface) and s is a saturation ratio. Or it may be as complex as a full biogeochemical
model for the surface reservoir in which the gross deposition flux –wD,ini(z1) is an
input and the surface emission flux wD,ini,o is an output. The atmospheric model must
then be coupled to the biogeochemical model.

Frequently, however, the compensation point can be considered to be independent
of atmospheric deposition. This occurs when production within the surface reservoir
dominates over the supply from atmospheric deposition. In such cases, the gross
deposition flux –wD,i ni(z1) and the surface emission flux wD,i ni,o are decoupled: the
gross deposition flux is determined by the atmospheric concentration while the
emission flux is not, so they are best computed and diagnosed as separate quantities.
The surface concentration ni,o may be specified from observations or computed with
a biogeochemical model for the surface reservoir. The gross deposition flux is the
relevant sink to the surface from the perspective of the atmospheric budget, and the
surface emission flux is the relevant source.

In the calculation of two-way exchange by (9.45), the same exchange velocity wD,i

is used to compute gross deposition –wD,ini(z1) and surface emission wD,ini,o. This
reflects the conservation of the vertical flux between z1 and the point in the surface
reservoir where the concentration ni,o is specified. The resistance-in-series model
described in Section 9.3 for one-way deposition can thus be adapted to two-way
exchange simply by specifying a non-zero ni,o at the surface reservoir endpoint. For
example, the formulation of RC,i in Figure 9.15 includes three surface reservoir
endpoints: inside the leaf mesophyll, at the lower canopy surface, and at the ground
surface. In the one-way deposition model, concentrations at these endpoints are
taken to be zero. Two-way exchange can be simulated by substituting non-zero
values. A non-zero concentration is often specified in the leaf mesophyll to represent
emission from leaves.

A common application of two-way surface exchange is the two-film model for the
air–sea interface (Liss, 1973). In this case, the two-way exchange problem is
relatively well posed. A single endpoint concentration ni,o in the bulk near-surface
seawater can be specified from ship observations or from an ocean biogeochemistry
model. The air–sea equilibrium is characterized by Henry’s law. Transfer across the
air–sea interface can be characterized by two resistances in series, one for the
gas phase and one for the water phase. The two-film model as generally formulated
in the literature follows standard conventions from the oceanography community.
Thus vertical transfer in the gas and water phases is measured by conductances kG,I
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and kW,i that are the inverse of resistances, and the Henry’s law equilibrium constant
Hi is defined as the dimensionless ratio of air to water concentrations (in contrast,
atmospheric chemists generally define the Henry’s law constant as the ratio of water
to air concentrations in units of M atm–1).
Figure 9.19 is a schematic of the two-film model. Conservation of the vertical flux

Fi is assumed between the lowest atmospheric model point z1 and the bulk water
phase where a concentration ni,o is specified:

Fi ¼ kG, i nG, i 0ð Þ � nG, i z1ð Þ½ � ¼ kW , i ni,o � nW , i 0ð Þ½ � (9.46)

where nG,i and nW,i refer to the concentrations in the gas and water phases respect-
ively. Application of the effective Henry’s law constant Hi = nG,i(0)/nW,i(0) at the air–
sea interface allows us to express the flux in terms of bulk concentrations only:

Fi ¼ Ki Hi ni,o � nG, i z1ð Þ½ � (9.47)

where Ki [cm s–1] is the air–sea exchange velocity obtained by adding the gas-phase
and water-phase conductances in parallel:

1

Ki
¼ 1

kG, i
þ Hi

kW , i
(9.48)

The marine atmosphere has near-neutral stability with a roughness height deter-
mined by wind-driven waves. It follows that turbulent mass transfer can be para-
meterized as a function of wind speed only, and the wind at 10-m height (u10) is used
for that purpose. Molecular diffusion at the interface depends on the Schmidt number
Sci, which is different in the air and water phases. Johnson (2010) gives a detailed
review of different parameterizations for kG,I and kW,i, shown in Figure 9.20 as a
function of wind speed. A simple expression for kG,I is that of Duce et al. (1991):

kG, i ¼ u10
770þ 45Mi

1=3
(9.49)

where kG,I andu10 have the same units [m s–1] andMi is themolecularweight in [gmol–1].
On the water side, the parameterization of Nightingale et al. (2000) is often used:

kW , i ¼ 0:222 u210 þ 0:333 u10
� � ScW , i

600

� �0:5
(9.50)

ni,o

GAS
WATER

Conductance kW,i

Conductance kG,i

nW,i(0)

nG,i(0)

nG,i(z1)

Figure 9.19 Two-film model for air–sea exchange.
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where kW,i is in units of [cm h–1], u10 is in units of [m s–1], and the Schmidt number in
water (ScW,I) has been normalized to that of CO2 (ScW,CO2 = 600).

We see from (9.48) that the overall exchange velocity Ki can be limited by
transfer either in the gas or in the water phase depending on the relative
magnitudes of Hi and kW,i/kG,i. Table 9.4 gives values of Hi for a few species
in pure water at 298K; Johnson (2010) gives an exhaustive list. Values for
seawater are typically 20% lower than for pure water. Assuming as an example
a typical wind speed u10 = 5 m s–1 and the molecular diffusion properties of CO2,
we derive from (9.49) and (9.50) kG,i = 0.6 cm s–1 and kW,i = 0.002 cm s–1.
For highly water-soluble species with Hi < 10–3, such as H2O2, the exchange

(a) (b)

Figure 9.20 Gas-phase and water-phase conductances in the two-film model for air–sea exchange as a function of 10-m
wind speed. (a) Different parameterizations of kG,I for air–sea exchange of O2 and CHI3. (b) Different
parameterizations of kW,i for a species with Schmidt number in water ScW,I = 660. Different
parameterizations can differ by more than a factor of 2 for a given wind speed and this reflects current
uncertainty. Adapted from Johnson (2010).

Table 9.4 Freshwater Henry’s law constants expressed as dimensionless gas/water
concentration ratios

Species Henry’s law constant Hi (dimensionless)

O2 3.2 �101

CO2 1.2 � 100

Dimethylsulfide 8.2 � 10–2

Acetone 1.4 � 10–3

H2O2 4.6 � 10–6
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velocity is limited by transfer in the gas phase and Ki � kG,i. For sparingly
water-soluble species with Hi > 10 such as CO2, the exchange velocity is
limited by transfer in the water phase and Ki � kW,i/Hi. Gases of intermediate
solubility such as methanol or acetone are in a transition regime where exchange
is limited by transfer in both the gas and water phases. Hi increases with
temperature for all gases, so that the ocean may be a net sink for gases
of intermediate solubility at low temperatures and a net source at high
temperatures.
Figure 9.21 from Fischer et al. (2012) illustrates the two-film model with the net

air–sea flux of acetone computed with a global atmospheric model. A fixed sea-
water acetone concentration of 15 nM is assumed. Acetone in the atmosphere has
continental sources (anthropogenic, terrestrial biogenic) and atmospheric sinks
(photolysis, oxidation). Net acetone air–sea fluxes are downward at northern mid-
latitudes due to relatively high atmospheric concentrations and cold ocean tempera-
tures. They are upward in the tropics due to warm ocean temperatures. They are
close to zero at southern mid-latitudes where atmospheric acetone is mostly
controlled by a balance between oceanic emission and deposition. On a global
scale, there is a close balance in that model between emission of acetone from the
ocean (80 Tg a–1) and deposition to the ocean (82 Tg a–1). Even though the ocean
is a net sink for acetone, ocean emission accounts for about half of the global
acetone source of 150 Tg a–1 and thus plays an important role in controlling
atmospheric concentrations.

Figure 9.21 Annual mean net air–sea fluxes of acetone calculated with a global chemical transport model assuming
a fixed surface ocean acetone concentration of 15 nM. Circles indicate ship observations. From Fischer
et al. (2012).
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10 Atmospheric Observations and Model
Evaluation

10.1 Introduction

Atmospheric chemistry models try to provide a physically based approximation to
real-world behavior that serves to understand the real world and from there to predict
future changes. The approximation comes with some error – by definition, a model is
not perfect. As the saying goes, “All models are wrong, but some are useful.” To
make a model useful, it is critical to quantify its error. From there we may find that
the error is acceptably small for the application of interest. Alternatively we may find
that the error is too large and this then provides motivation for improving the model
and often advancing scientific knowledge.
Quantifying model error requires reference to truth. Truth is elusive. Observations

of atmospheric composition are our best resource. But they are sparse and have their
own errors. Model error can never be fully characterized, but it can be estimated
through statistical comparisons to observations. This chapter reviews simple metrics
for this purpose, and also discusses the use of models as tools to interpret atmos-
pheric observations in terms of processes. Formal approaches for error characteriza-
tion and model optimization are presented in Chapter 11.
Different terms are used in the literature to describe the testing of models by

comparison to observations. The word validation is often used but implies an
exercise in legitimation to demonstrate that the model is true (valid) within certain
error bounds. This may be appropriate terminology for regulatory models, where
conclusions from the model have to hold in a court of law, but less so for research
models. The term verification is sometimes used for operational applications (such as
to verify a model forecast), but is inadequate for research applications where we may
be more interested in falsifying the model, i.e., find out where the model is wrong so
that we may improve it. We prefer here to adopt the term evaluation, which implies a
broad assessment of model results, considering possible positive and negative
outcomes, to understand the value of the model. Model evaluation offers the
possibility of identifying unexplained behavior and from there advancing
knowledge.
There are four types of model error. The first is error in our understanding of the

physics as expressed by the model equations. The second is error in model param-
eters such as reaction rate constants or emissions that are input to the model
equations. The third is numerical error in our approximate methods for solving the
equations. The fourth is error in model implementation due to incorrect coding
(bugs!). From an atmospheric chemist’s perspective, the first two errors are the most
interesting because addressing them deepens our understanding of the physical
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system. But the other two are important to recognize. Numerical error can be
estimated by conducting simulations for different grid resolutions and time steps,
by using different numerical solvers, or by comparing to analytical solutions for
simple ideal cases (see Chapters 6 and 7). Bugs should of course be hunted down,
and are often revealed by comparisons to other models. A complex 3-D model is
probably never bug-free, but over time we can hope that the bugs that remain have
little impact (and are therefore hard to detect!).

Consider a situation where the model departs from observations more than we
deem acceptable, and we have established that this is not due to numerical, imple-
mentation, or measurement errors. We are then left with the task of improving the
model physics or improving model parameters. Usually the first reach (because it is
easiest) is to adjust the model parameters. These parameters have error ranges that
can generally be estimated from the literature, such as uncertainty in rate constants.
Adjusting model parameters within their error ranges is a perfectly legitimate
exercise, and in fact the optimization of selected model parameters (called state
variables) is the objective of inverse modeling, described in Chapter 11.

Adjustment of model parameters is often done in a simple way by constraining the
model to match observations. This is called model calibration or tuning. A danger is
that by ascribing all model error to the choice of some parameters we may be missing
the opportunity to diagnose error in other parameters or in model physics – the
familiar story of the drunk at night who looks for his missing keys under the
lamppost because that’s where the light is. Model tuning may lead to the model
getting the right result for the wrong reasons. To avoid this situation it is important to
evaluate the model for a wide range of species, conditions, and statistics. Ad hoc
model tuning of multiple parameters by trial and error to fit a limited number of
observations is poor practice and may lead to the model behaving like a house of
cards – precariously fitting the observations available (“don’t change a thing!”) but
ready to collapse when new observations or objective improvements to model
parameters are brought in.

This brings up the importance of using a large ensemble of observations for model
evaluation. Using observations taken in a wide range of dynamical and chemical
environments can test model behavior over different conditions, building confidence
in the capability of the model to simulate changes and make predictions. Using
observations of chemically coupled species is particularly useful for revealing errors
in the model chemistry. For example, a model that simulates sulfate aerosol with no
bias but overestimates the precursor SO2 may be producing sulfate with incorrect
kinetics. Examining the relationship between two species with common emissions
can help to separate emission errors from dynamical errors, as the latter will tend to
affect both species similarly.

Research models used in atmospheric chemistry are generally versatile – they are
intended to be applicable to a wide range of problems. The choice of application
dictates such things as model domain and resolution, chemical mechanism, emission
inventories, etc. It also defines the error tolerance. For some applications, we may be
satisfied with a factor of 2 uncertainty; for other applications the tolerance may be
much less. It is important to establish the error tolerance as it will affect the
conclusions to be drawn from model evaluation. It is also important to identify what
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ensemble of observations can best evaluate the model for the particular application.
These observations may not have been taken yet, which then calls for an experi-
mental program as companion to the model study. The experimental program may
take the form of a field campaign targeted at providing the observations needed for
model evaluation. Such field campaigns involve tight partnership between experi-
menters and modelers, including, for example, the use of model forecasts to guide
the day-to-day collection of observations in a way that can best test the model.
The concept of partnership between model and observations can be expanded

by viewing the model as an integral part of the atmospheric observing system
needed to answer a particular question. The observing system may include
measurements from diverse platforms including ground-based sites, aircraft, and
satellites. The model provides a common platform to integrate information from
instruments measuring different species and operating on platforms with different
measurement locations and schedules. Model evaluation with the ensemble of
observations provides a check on the consistency of observations and enables
constraints from multiple platforms. This can be formally done through data
assimilation, as discussed in Chapter 11.
This chapter presents basic elements for carrying out model evaluation. Section

10.2 gives a primer on experimental methods and platforms. Error characterization
for measurements and models is presented in Section 10.3, followed by general
approaches to model evaluation in Section 10.4. Section 10.5 gives elementary
statistical metrics. Statistical significance of differences is covered in Section 10.6.
Section 10.7 discusses the use of models as tools to interpret atmospheric
observations.

10.2 Atmospheric Observations

Measurements of atmospheric concentrations and fluxes are the main sources of data
used to evaluate atmospheric chemistry models. Measurements are made in situ,
when the instrument probes air from its vicinity, or remotely, when the instrument
records a spectroscopic signal integrated over an atmospheric line of sight. Measure-
ments are made routinely as part of long-term monitoring programs or intensively as
part of field campaigns. Long-term monitoring programs may involve surface net-
works, sondes, commercial aircraft, or satellites. They are typically for a limited suite
of species and provide information on short-term variability (events), long-term
trends, and spatial patterns. They are particularly useful for long-term statistics and
can be compared to the corresponding model statistics. Field campaigns typically
provide a broader array of measurements deployed at specific locations of interest
and for limited time. They generally focus on improving understanding of specific
processes and are often geared to test model simulations of these processes. In such
cases the models play a critical role in designing the field campaign and in interpret-
ing the observations.
General methods for measuring concentrations include spectroscopy, mass spec-

trometry, chromatography, wet chemistry, and filters. Spectroscopic methods observe

438 Atmospheric Observations and Model Evaluation

011
23 Jun 2017 at 02:26:26, subject to the Cambridge Core terms of use, available



the interaction of atmospheric gases or particles with electromagnetic radiation. This
radiation may be generated with a laser (active methods) or originate naturally from
solar or terrestrial emission (passive methods). Mass spectrometry involves the
ionization of an atmospheric sample followed by deflection of the ions in an imposed
electromagnetic field. The angle of deflection is determined by the ratio of the
electric charge to the mass of the ion. Chromatography involves the flow of an
atmospheric sample through a narrow retention column in which individual species
are separated by their different flow rates. Individual species are identified by their
retention time in the column and their concentrations are measured by a detector at
the exit of the column. Wet chemistry methods involve the capture of atmospheric
gases and particles in a liquid sample, either by bubbling or spraying, followed by
chemical analysis of the sample. Filter methods collect atmospheric samples through
a porous filter, sometimes chemically treated. The filter is then analyzed by optical
methods, gravimetric methods, or liquid-phase extraction followed by wet chemistry
methods. Table 10.1 gives an overview of widely used measurement methods for
different atmospheric species, and the following subsections provide additional
information on specific methods and measurement platforms. More detailed infor-
mation can be found, for example, in Finlayson-Pitts and Pitts (2000), Baron and
Willeke (2005), Farmer and Jimenez (2010) and Burrows et al. (2011).

10.2.1 In-Situ Observations of Gases

Mass spectrometry (MS). In this method, the chemical species present in air samples
are ionized, then an electromagnetic field is applied that separates ions according to
their charge-to-mass ratios. The detection of specific lines in the mass spectrum
provides quantitative information on the chemical composition of the air injected in
the instrument. If the chemical species to be measured is selectively ionized by
charge transfer of injected positive or negative ions, the instrument is called a
chemical ionization mass spectrometer (CIMS). For example, acids such as
H2SO4, HNO3, or HCl can be ionized by charge transfer of reagent SF6

–. Charge
transfer from positive water ions (H+H2O) is called proton transfer reaction–mass
spectrometry (PTR-MS) and provides a method to measure the atmospheric abun-
dance of a wide range of organic species.

Gas chromatography (GC). In this method, air samples are injected in a narrow
tube (GC column), and the chemical species are separated as they flow through the
column and interact differently with the material in the column (Figure 10.1). The
species are identified by their retention time in the column, and their concentrations
are determined by a detector in the output stream (such as mass spectrometer, flame
ionization, electron capture, thermo-ionic detectors). This technique is commonly
used to measure organic species. If the detector is a mass spectrometer, the method is
referred to as GC-MS.

Electrochemical ozonesondes. These small, lightweight balloon-borne instru-
ments are routinely used to measure the vertical profile of ozone. The device contains
electrodes immersed in an aqueous solution of potassium iodide (KI). When ozone
enters the sensor, iodine molecules (I2) are formed:
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Table 10.1 In-situ and remote sensing methods for measurements of atmospheric composition

Species In-situ methods Remote sensing methods

H2O Frost point hygrometer
Lyman alpha absorption
Tunable diode laser

IR spectroscopy
Microwave spectroscopy
Raman lidar
Filter radiometry

CO2 Gas chromatography
IR gas correlation

IR spectroscopy
Filter radiometry

CO Gas correlation
Chemical conversion
Differential absorption

IR spectroscopy
Gas correlation radiometry

CH4 Gas chromatography
Tunable diode laser
Differential absorption
Gas correlation

IR spectroscopy
Filter radiometry

VOCs Gas chromatography
PTR-MS
Chemical ionization mass spectrometry

IR spectroscopy

O3 UV absorption
Chemiluminescence
Electrochemical sondes

UV/Vis spectroscopy
IR spectroscopy
Microwave spectroscopy
Lidar

N2O Gas chromatography
Tunable diode laser
Differential absorption

IR spectroscopy
Radiometry

NO Chemiluminescence IR spectroscopy
NO2 Photolysis and chemiluminescence

Laser-induced fluorescence
UV/Vis spectroscopy
IR spectroscopy

HNO3 Tunable diode laser
Ion chromatography
Filter and wet chemistry

IR spectroscopy
Filter radiometry

N2O5 Cavity ringdown IR spectroscopy
HCl, HF Tunable diode laser IR spectroscopy
Cl, ClO Resonance fluorescence Microwave spectroscopy
OCS Tunable diode laser IR spectroscopy
SO2 Ion chromatography

Chemiluminescence
UV spectroscopy
IR spectroscopy

DMS, CS2, H2S Gas chromatography
OH Resonance fluorescence

Laser-induced fluorescence
Chemical ionization mass spectrometry
Radioisotope chemistry

Lidar
UV spectroscopy
DOAS
Far-IR spectroscopy

HO2, RO2 Radical amplifier
Laser-induced fluorescence

Far-IR spectroscopy

CH2O Gas chromatography
Tunable diode laser
Wet chemical methods
Laser-induced fluorescence

UV and IR spectroscopy
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2 KIþ O3 þ H2O ! I2 þ O2 þ 2 KOH (10.1)

The conversion of iodine into iodide at the cathode of the instrument produces a
weak electrical current proportional to the mass flow rate of ozone through the cell.
By measuring this current and the rate at which air enters the cell, ozone concen-
trations can be derived. The Brewer–Mast (BM) ozonesonde operates with a single
electrochemical cell that includes electrodes between which a small electrical poten-
tial is applied to prevent current flow in the cell unless free iodine is present. The
ozonesonde referred to as electrochemical concentration cell (ECC) is made of two
separate cells each containing slightly different concentrations of a KI solution, and
connected by an ion bridge. No external electrical power is required since the driving
electromagnetic force is provided by the difference in the KI concentrations. The
instrument must be calibrated and temperature corrections must be applied.

Table 10.1 (cont.)

Species In-situ methods Remote sensing methods

H2O2 High-performance liquid chromatography
Chemical ionization mass spectrometry

Far-IR spectroscopy

O2, N2, H2,
Ar, Ne, He

Mass spectroscopy

Aerosol Filters
Optical particle counters
Condensation nuclei counters
Cascade impactors
Differential mobility analyzers
Mass spectrometry
Electron microscopy

Lidar
UV/Vis/IR spectroscopy

Modified from Mankin et al. 1999 and James Crawford (personal communication).
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Figure 10.1 (a) Schematic representation of a gas chromatograph. Reproduced with permission from Lagzi et al. (2013).
(b) Example of a chromatogram for a mixture of hydrocarbons as a function of the respective chemical
species retention time [minutes] in the GC column, showing the intensity of peaks and their chemical
identification.
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Tunable-diode laser spectroscopy. Many methods to derive the concentrations of
chemical species, either in the laboratory or in the atmosphere, are based on the
analysis of the spectral signature resulting from the interaction of the species with
radiation. In tunable-diode laser (TDL) spectroscopy, the light source is provided
by a TDL whose emission wavelength is adjusted to match a characteristic absorp-
tion line of the target gas in the path of the laser beam. The gas concentration is
derived from the measurement of the light intensity detected, for example, by a
photodiode.
Resonance fluorescence. This method is based on the measurement of resonance

radiation scattered by gas molecules that are irradiated in an instrument at a wave-
length corresponding to a particular electronic transition for the gas. The induced
fluorescence spectrum is analyzed to deduce the gas concentration. The concen-
tration of OH, for example, can be derived from the laser-induced fluorescence (LIF)
associated with the A2Σ+ (v0=0) ! X2Π (v00=0) electronic transition near 308 nm.
Chemiluminescence. The detection of nitric oxide (NO) is based on reaction with

ozone present in excess in a reaction chamber:

NOþ O3 ! NO2 þ O2 þ hν (10.2)

The radiative emission produced by this reaction covers a broad spectrum
(600–3000 nm with a maximum intensity around 1200 nm) and can be detected by
a sensitive photoelectric device. Its intensity is proportional to the concentration of
NO. In the presence of a mixture of NO and NO2, a measurement of the total NOx

concentration can be achieved by converting NO2 to NO on a catalytic surface
upstream of the reaction chamber. Similarly, a measurement of total reactive nitrogen
oxides (NOy, including NOx and its oxidation products) can be made by catalytic
reduction to NO followed by measurement of the NO concentration by
chemiluminescence.

10.2.2 In-Situ Observations of Aerosols

In-situ sampling of aerosols is generally performed through an inlet that transports
the particles to a collector or detector. In the ideal case, inlets should draw the totality
of the particles in a specified size range. In reality this is not the case because
particles deviate from the inlet airflow. Much effort has been devoted to the design of
efficient isokinetic inlets that minimize this effect. The problem is particularly
difficult in the case of aircraft sampling because of the fast and complex airflow
surrounding the fuselage.
Total aerosol concentration. The total aerosol mass concentration can be deter-

mined by collecting particles on a filter and weighing the filter under controlled
temperature and humidity conditions. Another technique is the β-gauge that meas-
ures the attenuation of β-radiation through a particle-laden filter. The attenuation,
caused by electron scattering in the filter media, is proportional to the total number of
atomic electrons, and provides therefore information on the total mass density of the
sample. Aerosol number concentrations can be measured by growing particles by
condensation in a supersaturated environment until they are large enough to be
detected optically. This is the approach used in condensation nuclei (CN) counters.
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Aerosol size distribution. The most common instrument used for counting and
sizing particles is the optical particle counter. This instrument measures the amount
of light scattered by individual particles as they flow through a tightly focused beam
of light. The scattered light is directed to a photodetector. The size of the particles can
be derived from the resulting electrical signal on the basis of a calibration curve.
Differential mobility analyzers use an electric field to separate particles according to
their mobility, which is a function of particle size. In the cascade impactor, the
aerosol size distribution is measured by injecting air into a device containing a
cascade of plates (impactors) around which the airflow is deviated. The largest
particles do not follow the curvilinear air streamlines passing around the first
impactor and, instead, hit the detection plate. This process, which involves increas-
ingly narrowing nozzles, is repeated several times to extract from the beam the
gradually smaller particles (see Figure 10.2).

Aerosol particles

Collection plate

Collection plate

Collection plate

Vacuum pump

Stage n

Stage 1

Stage 2
...

Filter

Figure 10.2 Schematic representation of a cascade impactor device. The airflow is accelerated as the gas passes through
several gradually narrowing nozzles. Smaller particles remain in the flow, while larger particle with higher
inertia hit the collection plates. Increasingly smaller particles are trapped by subsequent collection plates.
Reproduced with permission from Lagzi et al. (2013).
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Aerosol composition. The chemical composition of the aerosol can be determined
by collecting particles on filters and subsequently analyzing the filter substrate. This
analysis can be done by aqueous or organic extraction, in which the chemical species
of interest are dissolved. The composition of the liquid sample is then determined by
various techniques. Particles on the filter can also be heated and volatilized, and the
resulting gases analyzed by gas chromatography or other methods (see Section
10.2.1).
Electron microscopy provides information on particle morphology and elemental

composition. In this method, particles collected on a filter are irradiated by electrons
under vacuum conditions. The X-ray energy spectrum produced by the interactions
of electrons with the particles provides information on the elemental composition of
the particles. A limitation is that this method will evaporate any aerosol water and
other semi-volatile species.
Mass spectrometry is increasingly used to determine the chemical composition of

individual particles. This enables high-frequency measurements of aerosol compos-
ition and provides size distribution information for particles with different chemical
signatures.

10.2.3 Remote Sensing

Remote sensing instruments are based on the collection of spectroscopic data along a
selected atmospheric line of sight. The spectra are interpreted in terms of the species
concentration integrated over the line of sight, with different levels of spatial
resolution depending on the instrument and the species observed. Remote sensing
can be performed from the ground, aircraft, and satellites, and can use either passive
or active data collection methods.
Passive remote sensing. In passive methods, the radiation source is external to the

instrument and is provided by the Sun, another star, the Moon, or the Earth and its
atmosphere (infrared). A detector such as a spectrometer or a radiometer captures the
electromagnetic radiation from the radiation source after it has propagated through
the atmosphere along an optical path. The intensity, spectral distribution, and
polarization of the measured radiation provide information on atmospheric concen-
trations over the optical path. Dobson spectrophotometers (Figure 10.3) were
developed in the mid-1920s by G. M. B. Dobson to investigate atmospheric circula-
tion by measuring changes in atmospheric ozone, they are now deployed globally to
verify observations from satellites. The instrument derives total column and vertical
profiles of ozone by measuring the direct UV radiation from the Sun, the Moon, or
the zenith sky for different wavelength pairs. The total ozone column is derived from
the contrast in atmospheric absorption between 305.5 nm (strong ozone absorption)
and 325.4 nm (minimal ozone absorption). The vertical profile is measured using the
311.4 and 332.4 nm wavelength pair at high solar zenith angles. The measurement is
based on the Umkehr effect (Götz et al., 1934), which describes the reversal (Umkehr
in German) of the curve that represents the log-intensity ratio of the scattered light as
a function of the solar zenith angle. This reversal, which is observed for a solar zenith
angle of approximately 88 degrees when the wavelengths are 311.4 and 332.4 nm,
results from the existence of an ozone maximum in the stratosphere.
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Instruments based on passive differential optical absorption spectroscopy (DOAS)
measure the concentrations of gases along the light path by application of the Beer–
Lambert law (see Section 5.2.4). When the Sun is used as the light source and the
broad spectral signal associated with atmospheric scattering is removed from the
observed spectrum, the remaining signal has spectral signatures representing absorp-
tion lines of atmospheric molecules. Difference between online and offline wave-
lengths measures the concentration of the absorber. Active DOAS systems using
their own light source can measure the integrated concentrations of chemical species
along the light path between the instrument and a reflector that may be located
several hundreds of meters away. The multi-axis differential optical absorption
spectroscopy (Max-DOAS) measurement technique (Hönninger et al., 2004)
retrieves vertical profile information by combining measurements of scattered sun-
light from multiple viewing directions. This retrieval requires a detailed radiative
transfer model. Ground-based Max-DOAS instruments are highly sensitive to
absorbers in the lowest few kilometers of the atmosphere.

Filter radiometers, often used for spacecraft observations, measure the radiative
emission of the atmosphere or the transmitted solar radiation within a particular
spectral band determined by a wavelength selection device (filter). The detectors are
often cooled to limit the interferences from the radiation emitted by the instrument
itself. Figure 10.4 shows a cross-section of the ozone mixing ratio in the upper
troposphere and lower stratosphere measured by a spaceborne multi-channel limb
scanning infrared radiometer. In the gas-filter correlation radiometry (GFCR)

M2 P2 L2

Wavelength
adjustment Q2

Photomultiplier tube
Cobalt filter

Slit S5 Slit S2 Slit S1 L1 P1 M1

WedgesSlit S3
Slit S4

Long/short (S2,S3/S3,S4)
selector

S4 shutter

Collecting
lenses

Rotating
selector wheel

Wavelength
adjustment Q1

Figure 10.3 Schematic representation of the Dobson ultraviolet spectrophotometer for the measurement of ozone.
Entering radiation from the Sun, the Moon, or the zenith sky is reflected by a right-angle prism and falls on
slit S1. The beam is then decomposed by a first spectroscope (lens L1, prism P1, and mirror M1), which
reflects the radiation back to the focal plane of the instrument. Fixed slits S2, S3, and S4 isolate the
different nearby wavelengths. A second spectroscope with reversed dispersion (lens L1 and mirror M2 and
prism P2) recombines the light onto a photomultiplier. A chopper alternatively allows radiation at the two
wavelengths to reach the detector. The ozone column is determined from the measurement at two or more
pairs of wavelengths. Reproduced from Komhyr and Evans (2008).

445 10.2 Atmospheric Observations

011
23 Jun 2017 at 02:26:26, subject to the Cambridge Core terms of use, available



method, the incoming radiation passes through a so-called correlation cell that is
filled by the target gas and acts as a spectral filter. The difference between the signal
recorded from a broadband detector and the signal emerging from the correlation cell
characterizes the amount of the target gas in the atmosphere.
Fourier transform infrared (FTIR) spectroscopy measures the thermal IR radi-

ation emitted by the Earth’s surface and atmosphere with aMichelson interferometer,
in which the incoming radiation is split into two beams by a half-transparent mirror.
The first beam is directed to and reflected by a fixed flat mirror, while the second one
is reflected by another flat mirror that is continuously moving along the axis of the
incoming beam. As the two beams recombine, their phase shifts produce interference
patterns. The resulting signal, called an interferogram, recorded as a function of the
position of the moving mirror, represents the Fourier transform of the atmospheric
spectrum. From there, the spectrum can be derived with high resolution. Almost all
molecules have an IR spectrum from vibrational–rotational transitions and FTIR
spectroscopy is therefore a versatile tool to detect a wide range of species
(Table 10.1). The main limitation is interference from high-concentration species
such as H2O and CO2. In satellite applications, limited vertical profile information
can be obtained in nadir (downlooking) observations by exploiting known vertical
gradients in temperature, and further vertical resolution can be obtained in limb
observations at different angles.
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Figure 10.4 Cross-section of the ozone mixing ratio [ppbv] measured by the 26-channel High Resolution Dynamics Limb
Sounder (HIRDLS) at 20�–70�N on November 5, 2007. The data show the intrusion of ozone-rich air
masses in the vicinity of the jet stream (thin full lines) and gradual dilution as the air penetrates
further into the troposphere. This ozone pattern is associated with the presence of a double tropopause
(black dots) at mid-latitudes. Courtesy of W. Randel and J. Gille, NCAR.
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Microwave instruments. Sensors operating in the microwave wavelength range of
0.1 to 10 cm (3–300 GHz) measure thermal emission from molecules to derive
information on atmospheric parameters and chemical composition, particularly in the
upper atmosphere (Kunzi et al., 2011). In this method, the observed shape of spectral
lines emitted by the chemical species is fitted with the shape calculated for a
specified vertical distribution of the emitter.

Active remote sensing. The most common active remote sensing technique is the
light detection and ranging instrument, known as lidar (Figure 10.5), which emits a
coherent light beam (often pulses at a given wavelength) to the atmosphere. A small
fraction of the light is scattered by atmospheric molecules or aerosol particles back to
the receiver, and the vertical distribution of the scatter can be derived by timing the
return. This allows for much higher vertical resolution than passive methods. Differ-
ent lidar devices account for different types of scattering processes: Rayleigh, Mie, or
Raman (see Section 5.2.4). The first two processes do not change the frequency of
the incident photon except by a possible Doppler shift. In the third process (Raman
lidar), the wavelength of the scattered radiation is slightly shifted as a result of
energy exchanges between the incident radiation and atmospheric molecules. Meas-
urement of the spectral shift allows identification of the scattering species and
determination of its vertical profile.
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Figure 10.5 Schematic representation of a lidar system. The light produced by a laser beam directed upward is scattered
by atmospheric molecules or particles. Backscattered photons are collected by a telescope and the intensity
measured by a detector. Reproduced with permission from Lagzi et al. (2013).
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If two pulses at different wavelengths are produced, e.g., by frequency multipli-
cation of the laser output, the intensities of the two return signals are differently
affected by the absorption of atmospheric species. The method, called differential
absorption lidar (DIAL), allows the measurement of the vertical profile of ozone.
Measurements made by an airborne DIAL instrument shown in Figure 10.6 highlight
the complex distribution of ozone and aerosols in the troposphere, including small-
scale features.

10.2.4 Measurement of Surface Fluxes

The vertical surface flux Fz of a chemical species can be determined directly by the
eddy correlation method, in which the species number density n and the vertical
wind velocity w are measured concurrently at the same location:

Fz ¼ wn (10.3)

Here, the measurements need to be made within the surface layer (lowest ~50 m of
the atmosphere) for the flux to be representative of the surface (see Box 8.4). The
usual platform is a tower extending ~10 m above the surface or canopy top.
A useful flux measurement must temporally average the instantaneous flux wn
over a representative collection of turbulent eddies, as represented by the aver-
aging overbar in (10.3). The averaging time is typically about one hour. w and n
can be decomposed as the sums of their time-average and fluctuating components
(Section 8.2):

Fz ¼ w þ w0ð Þ n þ n0ð Þ ¼ w n þ w0n0 (10.4)

The first term w n on the right-hand side is the mean advective flux representing the
contribution from the mean vertical wind, and the second term w0n0 is the eddy
correlation flux representing the contribution from turbulent eddies. The mean
vertical wind close to the surface is near zero, so that the mean advective flux is
generally much smaller than the eddy correlation flux.
Eddy correlation flux measurements must resolve eddies of all sizes, making a

significant contribution to the mean flux. This requires fast instrumentation with a
measurement frequency of 1–10 Hz. Such instrumentation is often not available. If a
fast measurement of the vertical velocity is available, an alternative is to use the eddy
accumulation method. In this method, air is collected in two different storage
reservoirs, one for upward flow and one for downward flow. The collected air is
then analyzed and the flux is computed from the difference in mass between the
reservoirs.
Another approach to estimate the vertical flux that does not require high-speed

instrumentation is the flux-gradient method. As shown in Section 9.3, vertical
transport in the surface layer can usually be parameterized as an eddy diffusion
process in which the vertical flux Fz ¼ �Kz∂n=∂z is proportional to the mean
vertical gradient in concentration and the eddy diffusion coefficient is Kz = ku*z.
The friction velocity u* can be inferred from the slope of a ln z vs. u plot by
assuming the log law for the wind (Section 9.3.2). Alternatively, if the surface flux
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Figure 10.6 DIAL measurements of ozone mixing ratios [ppbv] (a) and aerosol scattering ratio at 591 nm (b) along
a NASA DC-8 flight on July 8, 2008 from Cold Lake, Alberta, Canada to Thule, Greenland. The measurements
were made during the ARCTAS field campaign. Data from J. W. Hair, NASA Lidar Applications Group,

ence.larc.nasa.gov).
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Fz,Ψ of a reference variable Ψ is known, one can use the similarity assumption to
infer the flux of any species i by comparing the mean vertical gradients:

Fz, i ¼ Fz,Ψ
∂n=∂z

∂Ψ =∂z
(10.5)

Here, Ψmay represent sensible heat, water vapor, or any chemical variable for which
the surface flux can be measured by eddy correlation or is otherwise known. The
similarity assumption operates in both directions, so that it is possible to infer the
flux of a species for which the surface is a sink (Fz,i < 0) from the flux of a variable
for which the surface is a source (Fz,Ψ > 0) or vice versa.

10.2.5 Observation Platforms

Atmospheric measurements are conducted from a wide range of platforms including
ground-based stations, vehicles, ships, balloons, aircraft, and satellites (Figure 10.7).
These different platforms have advantages and disadvantages that often make them
complementary (Table 10.2). Some can carry extensive payloads to measure a wide
range of species while others are more limited. Addressing a particular scientific
problem may call for a carefully designed observing system involving an ensemble
of platforms each with a different role to play. Such an observing system must

(a) (b)

(c) (d)

Figure 10.7 Platforms for measuring atmospheric composition. (a) Surface station installed for a field campaign in Texas
(University of Houston); (b) NASA unmanned Global Hawk aircraft during the Airborne Tropical Tropopause
Experiment (ATTREX) in California (2014); (c) instrumentation aboard a C-130 aircraft during the Front Range
Air Pollution & Photochemistry Experiment in Colorado (FRAPPE) (2014); (d) constellation of satellites called
the A-Train flying in formation (NASA).
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generally include models to place into context the measurements taken from different
platforms with different payloads, schedules, and locations. Figure 10.8 gives some
general considerations for the design of such an observing system. We elaborate
below on the roles of surface sites, aircraft, and satellites.

Surface sites provide local data, generally with very high accuracy and extended
temporal coverage. They provide the basis for analyzing long-term trends in atmos-
pheric chemistry as well as interannual, seasonal, and diurnal variations. Some
stations record the concentrations of an ensemble of species, and the observed
relationships between species can then provide constraints on their sources and
chemical evolution. Other measurements that may be taken at surface sites include
total columns (such as from a Dobson spectrophotometer or FTIR instrument),
vertical profiles (lidar, ozonesondes), and surface fluxes (eddy correlation). Although
one generally regards surface sites as serving monitoring purposes (often involving
networks of similarly configured sites), they are also often used in field campaigns
and provide temporal continuity.

Table 10.2 Advantages and disadvantages of observation platforms for atmospheric composition

Surface sites Vehicles, ships Balloons Aircraft Satellites

Temporal coverage Good Limited Limited Limited Good
Horizontal coverage Limited Good Poor Good Good
Vertical resolution Poor Poor Good Good Limited
Payload Good Good Limited Good Limited

Satellite calibration and validation
Retrieval /algorithm development

Model error evaluation
Data assimilation

Diagnostic modeling studies
Correlative information

Small-scale structure and processes

Broad spatial coverage for key atmospheric
Constituents (aerosols, ozone, precursors)
Daytime coverage (geostationary orbit)
Limited temporal coverage (low Earth orbit)
Limited vertical resolution

Comprehensive in-situ atmospheric composition
Passive and active remote sensing
Continuous day/night observation
Limited spatial coverage

Source–receptor relationships for pollution
Inverse modeling for emissions
Aerosol radiative forcing
Detailed chemical processing
OSSEs

Comprehensive in-situ
atmospheric composition
Passive and active remote sensing
Detailed vertical structure
Limited temporal and spatial coverage

Figure 10.8 Observing system for atmospheric composition illustrating some applications of such a system and the role
of different observing system components (ground based, aircraft, satellites, models).
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Aircraft provide vertical coverage, and horizontal coverage beyond what ground-
based stations allow. Large research aircraft with comprehensive payloads allow
detailed measurements of atmospheric composition with great flexibility in oper-
ations. Observations by research aircraft provide information for relatively short
periods of time (typically 1–2 months, the practical length of a field campaign).
A few commercial long-range aircraft with automated instrumentation provide
routine data along their flight routes at cruising altitude (upper troposphere/lower
stratosphere) as well as vertical profiles during take-off and landing. Remotely
piloted aircraft offer the possibility of long-endurance flights with small payloads.
Vertical ranges of most aircraft do not extend above 12 km altitude but some
specialized aircraft can operate up to 20 km altitude. In-situ measurements at higher
altitudes require balloons.
Satellites provide global continuous coverage to varying degrees depending on

their observation schedule, orbit track, cross-track sampling, and viewing geometry.
Typical horizontal pixel resolution is of the order of 10 km for nadir view.
Figure 10.9 illustrates different viewing strategies for satellites in low Earth orbit
(LEO), 500–2000 km above the surface and with an orbital period of 1–2 hours.
Solar backscatter instruments detect solar radiation backscattered by the Earth
surface and its atmosphere. They generally provide information on total atmos-
pheric columns with little or no vertical resolution. Thermal IR/microwave instru-
ments detect radiation emitted by the Earth’s surface and its atmosphere, and can
operate either in nadir or limb mode. Nadir viewing affords better horizontal
resolution and vertical penetration, but detection of the lower troposphere is limited
by the need for thermal contrast with the surface. Limb viewing can achieve
vertical resolution of order 1 km with horizontal resolution of order 100 km, but
has little sensitivity below the upper troposphere due to interference by clouds and
water vapor in the line of sight. Lidar instruments can achieve high vertical
resolution but have no cross-track capability so their horizontal coverage is very

Thermal
IR/microwave

ATMOSPHERE

Lidar
backscatter

Nadir

Limb

Solar
occultation

SOLID
EARTH

Solar backscatter

Figure 10.9 Observing strategies for atmospheric composition from low Earth orbit. Distances are not to scale.
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limited. Solar occultation instruments detect the direct radiation from the Sun
passing through the atmosphere as the satellite experiences sunrise and sunset over
its orbital period. The strong signal from the Sun enables detection of species for
which other methods would not achieve sufficient signal, with high vertical reso-
lution down to cloud level. However, the measurements are sparse (twice per orbit)
and the geographical coverage is limited.

Figure 10.10 shows different possible orbits for satellite observations. Observa-
tions of atmospheric composition have so far mainly been from LEO. The polar Sun-
synchronous orbit is the most common and provides global observations at the same
local time of day everywhere. Cross-track viewing can achieve global daily cover-
age. Inclined orbits provide a higher frequency of observations at low latitudes but
sacrifice high latitudes. Geostationary orbits, where the satellite is in an equatorial
plane 36 000 km away from the Earth with a 24-hour orbiting period, provide
continuous data over a limited geographical domain (up to 1/3 of Earth’s surface,
though smaller domains are typically used); spatial resolution is limited poleward of
60� latitude. Other orbits that have been proposed for measurements of atmospheric
composition include the Molniya orbit (high-latitude observations several times per
day), the Lagrange L1 orbit (continuous global view of the sunlit Earth), and the
Lagrange L2 orbit (continuous solar occultation).

The determination of atmospheric concentrations from space is considerably more
complex than for in-situ observations. Retrievals of concentrations from the radiance
spectra must account for interferences from the surface and clouds. In the case of gas
retrievals, they must also account for interferences from aerosols and from other
gases. In the case of aerosol retrievals, they must also account for variations in
aerosol optical properties. The retrieval is generally underconstrained, which means
that external prior information on atmospheric composition must be assumed. The
prior information often comes from models, which may lead to an incestuous
relationship between the satellite observations and the models that they are supposed

Polar LEO
200–2000 km

Inclined LEO
200–2000 km

Molniya
40000 km (apogee)

Geostationary
36000 km

L1
1.5 million km

L2
1.5 million km

SUN
150 million km

Figure 10.10 Satellite orbits and their distances from earth. Distances are not to scale.
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to evaluate. This will be discussed further in Chapter 11 in the context of inverse
modeling and data assimilation.

10.3 Characterization of Errors

10.3.1 Errors in Observations

Observations are characterized by systematic and random errors (Taylor, 1996;
Hughes and Hase, 2010). Systematic errors are consistent biases that repeat them-
selves every time the measurement is made by the same instrument under identical
conditions. They cause the measured quantity to be shifted away from its true value
due to factors that reproducibly affect the measurement, such as inaccurate calibra-
tion of the instrument or, when the measurement is indirect, inaccuracy in the
retrieval model. The magnitude of the systematic error determines the accuracy of
a measurement. Random errors are caused by factors that affect the measurements
erratically, such as photon counting noise. They determine the precision of the
measurement. The best estimate of a measured value is the mean of individual
measurements, and the random error is the distribution around this mean. When
the random error distribution is near Gaussian it can be characterized by its standard
deviation (see Appendix E).
The derivation of atmospheric quantities from remote sensing observations

requires that a retrieval calculation be performed (see example in Box 11.5).
The retrieval involves inversion of a radiative transfer model to infer the atmos-
pheric concentrations of interest from the radiances measured by the instrument.
The model represents the physics of the measurement and often requires prior
information to provide the best statistical fit to the observed radiances, accounting
for errors in the measurements and the model. The instrument sensitivity may
have a dependence on altitude, so that the retrieved concentration profiles reflect
different altitude weightings and dependences on the prior information. Satellite
observations have complicated error budgets with contributions from the meas-
ured radiances and the retrieval model, and including smoothing as well as
random errors. Errors on vertical profiles are usually correlated across different
altitudes, so that the error statistics must be represented by an error covariance
matrix (see Chapter 11).

10.3.2 Errors in Models

Error in complex models is difficult to characterize. Chemical transport models
provide a continuous 3-D simulation of atmospheric composition evolving with
time, but accurate observations to evaluate the model are sparse and do not cover
the full range of conditions over which the model is to be applied. Statistical metrics
for comparing models to observations, and from there estimating model error, are
presented in Section 10.5. Model error characterization for purposes of inverse
modeling can be done with the residual error variance method that lumps model
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and instrument error into an overall observational error (Box 11.2). We discuss here
some more specific approaches for estimating model error.

Model errors originate from four sources: (1) the model equations and underlying
scientific understanding; (2) the model parameters input to these equations; (3) the
numerical approximations in solving the equations; and (4) coding errors. Coding
errors are generally revealed by computational failure of the model under some
conditions or by unexpected model behavior. Detailed output diagnostics are import-
ant for detecting coding errors, including statistical distributions that allow detection
of anomalies. Benchmarking of successive model versions is essential to detect
coding errors introduced during a version update. Model output should always make
sense to the modeler in terms of the underlying processes. If it does not, then a bug is
probably lurking and must be chased without complacency.

Errors in the numerical approximations used to solve the equations are discussed
in Chapters 6 and 7. Ideally, the numerical approximations should be benchmarked
against exact analytical solutions, but such analytical solutions are available only in
idealized cases that are generally not relevant to the atmosphere. For example,
numerical advection of a given shape in a uniform flow can be compared to the
shape-preserving analytical solution, but this greatly underestimates the error in the
divergent flow typical of the atmosphere (Section 8.13). In the absence of an exact
calibration standard, one can still estimate numerical errors by conducting model
sensitivity simulations using objectively better, higher-order numerical methods. For
example, one can compare a fast chemical solver of relatively low accuracy used in
standard simulations to a more accurate solver applied to the same chemical
mechanism.

Errors caused by model grid resolution can be estimated by conducting sensitivity
simulations at finer resolution. Extrapolation is possible with Aitken’s convergence
method (Wild and Prather, 2006). Let Co be the exact solution at infinitely fine
resolution for a model variable of interest and C(h) the solution computed with the
model at grid resolution h. We can write

Co ¼ C hð Þ þ C h=2ð Þ � C hð Þ½ � þ C h=4ð Þ � C h=2ð Þ½ � þ C h=8ð Þ � C h=4ð Þ½ � þ :::

(10.6)

Assume now that the model converges geometrically to the exact solution as the grid
resolution increases, with a scale-independent geometric convergence factor k < 1
such that

k ¼ C h=4ð Þ � C h=2ð Þ
C h=2ð Þ � C hð Þ ¼ C h=8ð Þ � C h=4ð Þ

C h=4ð Þ � C h=2ð Þ ¼
::: (10.7)

Replacing into (10.6) we obtain the error estimate

C hð Þ � Co ¼ C hð Þ � C h=2ð Þ½ � 1þ k þ k2 þ :::
� � ¼ C hð Þ � C h=2ð Þ½ �

1� k
(10.8)

We can calculate a value for k from (10.7) by conducting simulations at three
different resolutions h, h/2, h/4, and we can further check the quality of the geometric
convergence assumption by conducting a fourth simulation at resolution h/8. The
assumption of a scale-independent geometric factor is unlikely to hold down to
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infinitely small resolutions. However, if k is sufficiently small, the first terms in the
series may provide a good approximation of the error.
Errors due to model input parameters can be estimated in principle by conducting

an ensemble of simulations where these different parameters are varied over their
ranges of uncertainty, using for example a Monte Carlo method. This can be
practically done for chemical mechanisms where error estimates for individual
chemical rate constants are available from compilations of kinetic data. Errors in
other model parameters, such as winds or emissions, are not as well quantified, and a
Monte Carlo analysis over the full range of parameter space in a 3-D model would be
impractical anyway. Errors can be estimated in a limited way by conducting sensi-
tivity simulations with different meteorological fields, emission inventories, etc.
Model error may be dominated by a small number of parameters, and it is part of
the modeler’s skill to recognize which model parameters are important and to focus
error characterization accordingly.
Errors in the model formulations of chemical and physical processes can be

estimated to the extent that there are objectively better or equally valid formulations
to apply. For example, we can estimate the error associated with using a reduced
chemical mechanism for faster computation by conducting a sensitivity simulation
with the complete mechanism. Errors associated with subgrid parameterizations of
processes (Chapter 8) can be estimated by comparing different choices of parame-
terizations, or by conducting a test simulation at high resolution where subgrid
parameterization is not needed. For example, it is useful to assess the sensitivity of
model results to the choice of boundary layer mixing and convective transport
parameterizations.
We discussed in Chapter 4 the noise in climate models caused by chaos in the

solution to the Navier–Stokes equation for momentum. There is no such chaos in the
solution to the chemical continuity equations under practical atmospheric conditions.
In fact, numerical errors in the solutions to chemical systems tend to dissipate with
time following Le Chatelier’s principle. Offline chemical transport models driven by
input meteorological variables thus do not show the chaotic behavior found in
climate models. However, in the case of an online chemical transport model built
within a free-running climate model, the chemical concentrations develop noise
driven by the noise in meteorological variables. This noise has physical basis in
the internal variability of climate and needs to be characterized in the model for
comparison to observations. This can be done by conducting a number of simulation
years and/or by repeating the model simulations a number of times with slightly
different initial meteorological conditions or physical parameters. From this ensem-
ble of realizations we can construct probability density functions (PDFs) of concen-
trations to compare to the corresponding multi-year PDFs in long-term observations.
Such a statistical comparison is called a climatological evaluation, with the PDFs
representing the climatologies of the model and of the observations.
Intercomparisons of different models provide yet another way of estimating model

error. This is done regularly in community assessments to determine how well
different state-of-science models can reproduce specific aspects of atmospheric
composition, or to estimate errors associated with future projections. It involves
the comparison of simulations conducted with different models for the same
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conditions. For example, Figure 10.11 shows predicted surface concentrations of
particle matter (PM10) forecast for the same day by five different regional air quality
models using the same chemical and meteorological initial and boundary conditions.
On this particular day, several models show the formation of a dust layer over the
Sahara and two of them predict an intense transport of dust particles toward eastern

(a)

(c)

(e)

(d)

(b)

(f)

Figure 10.11 Simulated surface concentration [μg m–3] of particulate matter (PM10) on September 1, 2015, 20 UTC by
five regional models (a–e) contributing to a multi-model ensemble prediction system for regional air
pollution in Europe. Two of these models clearly show an intrusion of dust-rich air from the Sahara toward
Southern and Eastern Europe with high dust concentrations extending from the Baltic to the Black Sea.
Other models do not reproduce such a strong intrusion. The average of the six models involved in this air
quality prediction is shown in (f) and is compared with observations (small color dots). The ensemble
simulation is in rather good agreement with the data in the western and northern parts of Europe, but with
the lack of measurements in Eastern Europe no conclusion can be drawn regarding the intensity of the
Saharan dust intrusion. The color scale is identical for all graphs. From the Copernicus Atmosphere
Monitoring Service (CAMS) coordinated by ECMWF and supported by the European Commission.
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Europe. Other models do not capture this event and predict low concentrations of
particles in most areas of Europe. The differences between these projections show
the impact of the choices made in these different model formulations. In the absence
of better information, a “wisdom of crowds” assumption is often made that the
average of the different models (also shown) is better than any single model.

10.4 General Considerations for Model Evaluation

10.4.1 Selection of Observations

Model evaluation generally relies on the one-to-one comparison of observations to
model values sampled at the same location and time. It is important to recognize that
simulated and observed fields may not be exactly comparable. The model may
simulate a spatial average over a grid cell while the observations are from a particular
location that may not reflect the grid cell average. This is called representation error
and is discussed in Chapter 11 in the context of inverse modeling. Spatial inter-
polation of the observations (see Section 4.16) may help to reduce representation
error, but the error is often not random. For example, sites from surface pollution
networks are often concentrated in urban areas or in the vicinity of point sources,
introducing bias when comparing to a coarse-resolution model that simulates the
broader regional atmosphere. It may be necessary to exclude such sites from the
comparison as non-representative.
Representation error applies to temporal variability as well. Time series meas-

ured at surface sites or from aircraft often show high-frequency anomalies such as
spikes driven by concentrated plumes or local meteorological conditions. The
model may not be designed to capture these anomalies, either because of grid
averaging or because of temporal averaging of the input data. In addition, small
transport errors may cause the model to slightly misplace plumes in a way that
may not be relevant for general model evaluation but weighs heavily in model
comparison statistics. Such statistical outliers in the distribution of observations
can be illuminating in terms of understanding processes, and often deserve atten-
tion on a case-by-case basis. However, they should be excluded from a general
model evaluation data set.
Surface air observations over land often show a large diurnal cycle driven by

suppressed vertical mixing in the shallow stratified surface layer at night. Nighttime
concentrations may thus be very low for species taken up by the surface, and very
high for species emitted at the surface. Coarse-resolution models typically cannot
capture this nighttime stratification, which may not be relevant for broader model
evaluation since it affects only a small volume of atmosphere and may be viewed
again as a representation error. In such cases, the nighttime values must be excluded
from the statistical data used for model evaluation and the focus must be on
simulating daytime values, when the surface measurements are more representative
of a deep mixed layer that can be captured by the model.
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10.4.2 Use of Satellite Observations

Satellites provide observations with coarse spatial resolution in the vertical (nadir
view) or in the horizontal (limb view) and the model fields must be correspondingly
averaged for comparison. A difficulty is that the satellite retrievals make assumptions
about the atmosphere (prior information) that may be inconsistent with the model
atmosphere. In that case, a straight comparison between model and observed fields
can be very misleading. It is essential to re-process the model or observed fields to
simulate what the satellite would see if it was observing the model atmosphere, rather
than the true atmosphere with the assumed prior information. In the case of an
optimal estimate satellite retrieval for gases (Rodgers, 2000; Chapter 11), the satellite
reports vertical concentration profiles as

bx ¼ Axþ I�Að ÞxA (10.9)

where the vector bx of dimension n is the retrieved profile consisting of concentrations
at n vertical levels, x is the true vertical profile, xA is the prior estimate, A is the
averaging kernel matrix (see Chapter 11), and I is the identity matrix. The satellite
data set provides not only bx but also A and xA. One can then compare the observa-
tions bx to the corresponding model fields bxM computed as

bxM ¼ AxMþ I�Að ÞxA (10.10)

where xM is the actual model vertical profile (which would be the true profile if the
model were perfect). It is important to recognize that the prior term (I – A)xA is
common to bxM and bx, and may give the illusion of better agreement between model
and observations than is actually the case. See Zhang et al. (2010) for methods to
address this issue.

As another example, the column concentration Ω of a gas reported by a solar
backscatter instrument is often retrieved as

Ω ¼ Ωs

F
(10.11)

where Ωs is the slant column measured by the satellite along its line of sight, and
F is the air mass factor (AMF) that converts the slant column to the actual vertical
column. The AMF was introduced in Section 5.2.4 for a non-scattering atmos-
phere. In that case, it was a simple geometric conversion factor. For the actual
case of a scattering atmosphere, the AMF must be computed with a radiative
transfer model that accounts for the scattering properties of the surface and the
atmosphere, and for the assumed relative vertical concentration profile (shape
factor) of the gas being measured (Palmer et al., 2001). The shape factor assumed
in the retrieval may be inconsistent with that in the model, and this then biases
the comparison of model and observed Ω. The satellite data set generally includes
not only Ω but also the corresponding Ωs (or AMF, from which Ωs can be
obtained). For the purpose of model evaluation one must discard the reported
Ω, recompute the AMF by using the local shape factor from the model, and apply
it to the measured slant column Ωs. See González Abad et al. (2015) for simple
methods to do this.
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As yet another example, satellite data for aerosol optical depth (AOD) are generally
retrieved from nadir measurements of the top-of-atmosphere reflectance from the
Earth’s surface and its atmosphere. The aerosol contribution to this reflectance, from
which the AOD is derived, is obtained with a radiative transfer model including
assumed aerosol size distributions and refractive indices. These assumed aerosol
characteristics are generally different from those simulated locally in the chemical
transport model and used to compute the model AOD. One-to-one comparison of
model to observed AODs is still valid inasmuch as the AOD is a physical diagnostic
quantity. The comparison is difficult to interpret, however, because differences in
AODs may be attributable to model errors in either aerosol mass concentrations or
aerosol optical properties, and the assumed aerosol optical properties in the satellite
retrieval are also subject to error. This is a problem in particular for data assimilation,
as there are multiple ways to correct a model-observation difference in AODs.

10.4.3 Preliminary Evaluation and Temporal Scales

Section 10.5 presents different statistical metrics for evaluating the ability of a model
to fit large observational data sets. A first step in model evaluation should be to
visually inspect the simulated and observed fields for any prominent features that
need to be better understood. This visual inspection should encompass as many of
the variables as possible, for different spatial domains and temporal scales, as the
different perspectives can provide unique information in the driving processes and
the ability of the model to simulate them. For example, examination of mean vertical
profiles in an aircraft data set offers quick information on the ability of the model to
simulate boundary layer mixing, planetary boundary layer (PBL) depth, ventilation
to the free troposphere, and any large-scale free tropospheric bias. A large contrast in
observations over land and ocean may point to the need for separate statistical
evaluation of both. An inability of the model to pick up this contrast may call into
question the simulation of transport or chemical loss. For time series of large data
sets it can be insightful to identify dominant patterns in the observations using
empirical orthogonal functions (EOFs) and diagnose the ability of the model to
reproduce these patterns. Calculation of EOFs is described in Appendix E.
We elaborate here on the consideration of different timescales when comparing

model to observations. These timescales can be usefully separated as intra-day (diur-
nal), day-to-day (synoptic), seasonal, and interannual (or long-term trends). Concen-
trations at surface sites often show large diurnal variations due to mixed layer growth
and decay, surface sources and sinks, and photochemistry. Comparison of mean
diurnal variations between model and observations can test the model representation
of these processes. An example is given in Figure 10.12 for the marine boundary layer.
Model evaluation on a day-to-day scale is useful to assess the capability of the

model to account for synoptic-scale variations in chemistry, boundary layer dynam-
ics, and the advection of different air masses. Figure 10.13 shows the complexity of
the day-to-day variation of species concentrations at the surface. In this particular
example, which compares calculated and measured concentrations of carbon mon-
oxide (CO) and ozone, the model slightly underestimates the mixing ratio of both
species (mean bias) as well as the amplitude of the fluctuations. Further analysis
would quantify these differences and assess the overall skill of the model.
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Figure 10.12 Mean diurnal cycle of reactive gaseous mercury (RGM) in surface air over the Pacific. Observations from ship
cruises (black lines, interquartile range in shading) are compared to model results with two different
mechanisms for photochemical oxidation of elemental mercury (Hg0) to RGM. The model with halogen
oxidants (red line) features a steeper morning rise than the model with oxidation by OH (blue line) and
is more consistent with observations. Reproduced with permission from Holmes et al. (2009).

(a) (b)

Figure 10.13 Time evolution of the surface mixing ratios [ppbv] of carbon monoxide (a) and ozone (b) in Shangdianzi,
close to Beijing, China in January 2010. The values (red line) provided by the coupled meteorological and
chemical regional model (WRF-Chem) are compared with surface measurements (black line). The
comparison suggests that the model captures most high-pollution events (high CO concentrations) when the
direction of the winds favors transport from pollution sources in the urban and industrial regions of China.
During these events, ozone concentrations are generally low, presumably as a result of ozone titration by
high concentrations of nitrogen oxides (not shown). During periods characterized by clean air, the model
underestimates background carbon monoxide and ozone. Variations associated with diurnal variations in the
height of the boundary layer are clearly visible in the ozone signal. Results provided by Idir Bouarar, Max
Planck Institute for Meteorology (MPI-M). Measurements are from the Global Atmospheric Watch (GAW).
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Seasonal variations provide information on influences from different climato-
logical regimes, photochemistry, and emissions. Plotting simulated and observed
mean seasonal cycles can provide a quick revealing analysis of simulation bias.
Seasonal amplitude is generally much larger than interannual amplitude for species
with lifetimes less than a few months, so that one can usefully compare seasonal
cycles in models and observations from different years. As an example, Figure 10.14
compares the seasonal variation of simulated ozone with ozonesonde data for
different latitudes and altitudes.
Finally, comparison of observed and simulated interannual variability and long-

term trends in species concentrations indicates how well the model accounts for
climate modes and trends in emissions. As an example, Figure 10.15 compares
simulated and observed multi-year records of NO2 column in Europe and east China,
testing the ability of emission inventories used in models to reproduce the trend of
NOx emissions in each region.

Figure 10.14 Annual cycle of the ozone mixing ratio [ppbv] at three atmospheric levels (750 hPa, 500 hPa, and 250 hPa)
averaged over four latitude bands (90–30� S, 30� S-eq, eq-30� N, 30–90� N). Comparison of multi-year
climatological ozonesonde measurements (Logan, 1999; Thompson et al., 2003) with three model
simulations by the 3-D chemical transport model of Wild (2007). The differences between the BASE and the
IIASA cases result from differences in the emissions of ozone precursors; the differences between the IIASA
and ACCENT cases reflect differences in meteorology, model resolution, and the lightning source of NOx.
Reproduced with permission from Wild (2007).
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10.4.4 Aerosol Metrics

Aerosol concentrations are characterized in observations by a range of metrics
including total mass concentrations for different species, total number concentra-
tions, condensation nuclei (CN) and cloud condensation nuclei (CCN) number
concentrations, size distributions (sometimes including speciation), hygroscopicity,
aerosol optical depth (AOD), and absorbing aerosol optical depth (AAOD). Single-
particle measurements provide additional information on particle phase and on the
degree of internal mixing of different aerosol species. All of these measurements are
relevant for model evaluation and provide different perspectives on aerosol sources
and properties.

Many chemical transport models do not resolve aerosol microphysics and
simulate only the speciated aerosol mass concentrations, treating individual aero-
sol species as chemicals in the model equations and ignoring the microphysical

(a)

(b)

Figure 10.15 Comparison of calculated and observed seasonal evolution of the NO2 column [cm
–2] for Europe (a) and

East Asia (b). The black line represents retrievals from the GOME-2 and SCIAMACHY instruments. The
numerical simulations are provided by two different models (TM5 and MOZART) with no data assimilation
(blue and yellow lines) and by the ECMWF weather forecasting system with coupled chemistry and data
assimilation (red line). There is good agreement between model results and observations in Europe, but not
in East Asia, specifically during wintertime. Reproduced with permission from Eskes et al. (2015).
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terms. These “mass-only” models can be compared directly to measurements of
aerosol mass concentrations to evaluate the simulation of aerosol sources, chemis-
try, and loss by scavenging. They often assume fixed aerosol size distributions and
optical properties for the purpose of simulating heterogeneous chemistry, aerosol
radiative effects, and scavenging efficiencies. These can be compared to observa-
tions as part of the evaluation of model parameters. The simulation of radiative
effects can be evaluated with measurements of AOD and AAOD, as illustrated in
Figure 10.16.
Models including aerosol microphysics predict the number and size distributions

of different aerosol species in addition to their mass. They can simulate the degree of
mixing between different aerosol species and interactions with clouds. Such models
can be evaluated with the full range of aerosol observations listed above to lend
insight into particle nucleation, aerosol optical properties, chemical processes, and
cloud effects. Figure 10.17 gives an example of model evaluation with observed size
distributions.

10.4.5 Scatterplots

Comparison of model results to a large ensemble of observations requires statistical
metrics to diagnose the significance and extent of discrepancies. A first quantitative
evaluation can be made by plotting the N values simulated by the model and denoted
Mi(i = 1, N) as a function of the observed values Oi(i = 1, N) at corresponding
locations and times. The resulting scatterplot (Box 10.1) is characterized by a cloud
of points, from which a regression line

bM ¼ aþ bO (10.12)

Figure 10.16 Aerosol optical depths over the Southeast USA in August–September 2013. The figure compares a
mass-only aerosol simulation with the GEOS-Chem global model (background grid) to observations
from the ground-based AERONET network (circles). Observations are highest in the western part of
the region, which the model attributes to a dominant biogenic organic aerosol source. From
Kim et al. (2015).
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Box 10.1 Construction of Scatterplots

A scatterplot is a diagram that displays in Cartesian coordinates a collection of N points that represent
pairs of data (xi, yi). It allows easy examination of different features in the (x, y) relationship including
correlations, curvature in the relationship, clustering of points, presence of outliers, etc. A statistical
relationship between the two quantities can be established using a best-fit procedure. Details are
provided in Appendix E. This relationship is commonly expressed by a linear function:

~y ¼ aþ bx

whose intercept a and slope b are determined by applying a linear regression method (method of
least squares). The reduced major axis (RMA) regression is most appropriate to account for errors in
both variables (see Appendix E).
The strength and direction of the linear relationship between the two variables are expressed by

the Pearson correlation coefficient (r) defined by (10.27) and further discussed in Appendix E. When
one quantity increases together with the other quantity, the correlation is positive and r > 0. In
the opposite case, it is negative with r < 0.The value of r ϵ [–1, +1] measures the dispersion of
the data points around the regression line. If all the points fall exactly on the line then |r| = 1.
When the values are not linked at all and the data points are fully dispersed in the graph, r is close
to zero and the data are not significantly correlated. The fraction of the variance in y that is
explained by the statistical model is called the coefficient of determination R2 (see Appendix E). In
the case of a linear regression, R2 = r2. Box 10.1 Figure 1 shows an example of a scatterplot with
the corresponding regression line and coefficient of determination. The statistical significance of the
correlation coefficient is discussed in Box 10.2.
Scatterplots are useful to analyze relationships between different chemical species in the

atmosphere. Box 10.1 Figure 2, for example, shows the relationship between the observed
concentrations of methane and CO2 measured over southwestern Pennsylvania, color-coded by
SO2 concentrations. The diagram differentiates between air masses that are representative of the
boundary layer in an urban environment and those that are characteristic of the free troposphere.
Some air parcels with high methane concentrations originate from an area where extraction of
natural gas from shale rock layers (“fracking”) is taking place.
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Box 10.1
Figure 1

Scatterplot between two arbitrary variables x and y with the regression line and the corresponding
coefficient of determination R2 deduced from the different data points.
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can be derived. Here bM represents a “statistical model” with coefficients a and b
derived from the known values of Mi and Oi by an ordinary regression method or, if
both variables are subject to uncertainties, by a reduced major axis (RMA) regression
method (see Appendix E for more details). The departure of a from zero provides
information on model offset (absolute bias) and the departure of b from unity
provides information on relative bias, assuming that the linear model is correct.
Linear regression software packages provide standard errors on a and b, but these
generally assume that the linear model is correct and thus will underestimate actual
errors. A better estimate of errors on a and b is obtained by jackknife or bootstrap
resampling where regression coefficients are computed for different subsets of the
data to yield a spread of a and b values from which the errors can be characterized.
The use of scatterplots for analyzing model results is illustrated in Figure 10.18. The

panels compare the ensemble predictions of seven regional models for surface NO2

and ozone concentrations for two different days in Europe with concentrations
measured at different monitoring stations. An inspection of the data suggests that
the model produces a weak summertime ozone episode with concentration values
(typically 100–150 μg m–3) fairly consistent with the observed values. Discrepancies
with observations are worse for NO2, which is strongly influenced by local pollution

Box 10.1 (cont.)

When quantity y depends on several variables x1, x2, . . . the simple regression model must be
replaced by a multiple regression approach. A linear relationship between three variables, for
example, is represented by a regression plane in a 3-D space. Finally, in some situations, the linear
regression model does not provide an adequate statistical model to represent the relationship
between variables, and a nonlinear regression method must be applied to derive, for example, the
regression coefficients of a degree-n polynomial or of other mathematical expressions.

Box 10.1
Figure 2

Relationship between methane and CO2 concentrations measured by aircraft over southwest Pennsylvania
and color-coded by SO2 concentrations. Figure provided by X. Ren and R. Dickerson, University of Maryland.
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sources. The scatterplots show that the NO2 concentration values provided by the
model ensemble are lower than the concentrations observed at the surface. In addition,
the dispersion of the points around the 1:1 line is substantial and hence the correlation
coefficient is low. In the case of ozone, the agreement between model and observations
is considerably better, and the points are relatively close to the 1:1 line. The model
ensemble, however, slightly overestimates the ozone concentrations in areas where the
measured values are low and underestimates them where the observed values are high.
More elaborate measures of model skill are discussed in the next sections.

10.5 Measures of Model Skill

Model skill is generally measured by the ability of the model to match observations
of relevance to the problem of interest. In the case of operational models, such as

Figure 10.17 Comparison of the GEOS-Chem global model simulation with full aerosol microphysics to aerosol number
size distributions measured at sites in Europe. The focus of comparison is to evaluate different model
treatments of secondary organic aerosol (SOA). The BASE simulations assume SOA to be mainly biogenic,
while the XSOA simulations include an additional anthropogenic source. The SURF simulations assume SOA
formation to be kinetically limited by uptake to aerosol surfaces (irreversible uptake), while the MASS
simulations assume SOA to be thermodynamically partitioned between the gas and pre-existing aerosol
(reversible uptake). Results show that the best simulation is generally achieved for irreversible uptake
including additional anthropogenic SOA. That simulation avoids in particular the overestimate in ultrafine
aerosol concentrations, as the additional SOA promotes condensational growth of ultrafine aerosol to
larger sizes. Reproduced with permission from D’Andrea et al. (2013).
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used for air quality forecasts, the ability to match observations is the ultimate goal
and is often measured as a model score.

10.5.1 Basic Metrics

Different statistical metrics for paired comparisons of model to observed values are
used to test the skill of chemical transport models. Metrics allow a general
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Figure 10.18 (a–b) Prediction of the NO2 concentration on October 3, 2014 (a) and the ozone (b) concentrations on June
10, 2014 [μg m–3] from the regional daily forecast for Europe based on the median ensemble of seven
European chemistry transport models produced in the frame of the EU-MACC projects (Monitoring
Atmospheric Composition and Climate, 2009–2015). (c–d) Measurements of NO2 (c) and ozone (d)
concentrations at European monitoring stations. (e–f) Scatterplots representing the calculated concentrations
as a function of the measured values. Courtesy of Virginie Marecal, Meteo-France.
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assessment of the confidence in model analyses and forecasts. Consider N paired
model and observed quantities Mi and Oi, whose averages are respectively:

M ¼ 1

N

XN
i¼1

Mi and O ¼ 1

N

XN
i¼1

Oi (10.13)

and standard deviations are:

σM ¼ 1

N

XN
i¼1

Mi �M
� �2" #1

2

and σO ¼ 1

N

XN
i¼1

Oi � O
� �2" #1

2

(10.14)

The ensemble N includes data collected at different sites and/or at different times.
Individual points included in the ensemble should be independent so that each paired
comparison provides independent information. Observations from nearby sites may
be strongly correlated and thus not provide independent information. Spatial and
temporal scales over which the observations are significantly correlated can be
determined with an autocorrelogram that plots the correlation coefficient vs. the
spatial or temporal separation between data points.

As pointed out in Section 10.4, data outliers require careful consideration because
they may weigh heavily in the statistical results. Model fields are generally well-
behaved, and any unexplained outliers should be scrutinized as they may reveal basic
model errors. Observational outliers are common and may reflect instrumental error
or unusual conditions that the model is not intended to represent; if so, they should
be screened from the comparison. A standard way to detect outliers is to plot the data
against the normal (or log-normal) distribution, revealing extrema that depart from
the distribution. These extrema should be discarded if it can be reasonably ascer-
tained that they are not part of the population for which model evaluation is desired
or feasible.

Two basic measures of model skill are often adopted: the mean bias (BIAS)

BIAS ¼ 1

N

XN
i¼1

Mi � Oið Þ ¼ M � O (10.15)

that represents the difference between the mean model and observed quantities, and
the root mean squared error (RMSE):

RMSE ¼ 1

N

XN
i¼1

Mi � Oið Þ2
" #1

2

(10.16)

that represents the spread of the individual errors. These two metrics are expressed in
the same units as Mi and Oi. The systematic root mean square error (RMSES)
describes the bias between observed data points Oi and the linear least square fit to
the observations bMi ¼ aþ bOi (see (10.12) and Box 10.1). In a scatterplot, it is
determined by the square of the distance between the linear regression line and the
1:1 line:
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RMSES ¼ 1

N

XN
i¼1

bM i � Oi

� �2
" #1

2

(10.17)

The unsystematic root mean square error (RMSEU):

RMSEU ¼ 1

N

XN
i¼1

Mi � bMi

� �2
" #1

2

(10.18)

is derived as a function of the distance between the data points Mi and the linear
regression line bM i. It represents the scatter of the data about the best-fit line, and
can thus be regarded as a measure of model precision. A successful model is
characterized by a low value of RMSES and a value of RMSEU close to RMSE
because:

RMSE2 ¼ RMSE2
S þ RMSE2

U (10.19)

Measures such as the mean absolute error (MAE):

MAE ¼ 1

N

XN
i¼1

Mi � Oij j (10.20)

and the mean absolute deviation (MAD):

MAD ¼ 1

N

XN
i¼1

Oi � O
�� �� (10.21)

involving absolute values of the differences are sometimes preferred to measures
based on squared differences because they are less sensitive to high values. The
mean normalized bias (MNB):

MNB ¼ 1

N

XN
i¼1

Mi � Oi

Oi

� �
(10.22)

and the mean normalized absolute error (MNAE):

MNAE ¼ 1

N

XN
i¼1

Mi � Oij j
Oi

� �
(10.23)

may be appropriate scoring measures when the data cover an extended range of
values to avoid overemphasizing the high tail of the distribution. The MNB has the
disadvantage, however, of being asymmetric with respect to under- and overesti-
mation. For example, when the model overestimates the measured value, the MNB
can increase to values much larger than unity; however, when it underestimates the
observation its value is limited to –1. This issue is addressed by introducing the
mean fractional bias (MFB):

MFB ¼ 2

N

XN
i¼1

Mi � Oi

Mi þ Oi

	 

(10.24)
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which varies in the range [–2, +2] and is complemented by the mean fractional
error (MFE):

MFE ¼ 2

N

XN
i¼1

Mi � Oij j
Mi þ Oi

	 

(10.25)

A problem with the last four metrics is that they tend to overemphasize low values
where relative errors may be large but of little relevance to the problem of interest.
This can be corrected by taking the ratios of the sums, instead of the sums of the
ratios. For example, instead of the MNB, one can use the normalized mean bias
(NMB) for more robust statistics:

NMB ¼
PN
i¼1

Mi � Oið Þ
PN
i¼1

Oi

(10.26)

Other dimensionless indices of agreement have been proposed for measuring
model skill and are listed in Table 10.3. Willmott et al. (2012) and Chai and Draxler
(2014) discuss the advantages and disadvantages of different indices.

The Pearson correlation coefficient

r ¼
PN
i¼1

Mi �M
� �

Oi � O
� �

PN
i¼1

Mi �M
� �2	 
1

2 PN
i¼1

Oi � O
� �2	 
1

2

(10.27)

is the covariance between model and observed values normalized to the variances. It
provides different information from the above metrics in that it characterizes the
extent to which patterns in the observations are matched by the patterns in the model.
Its value may range from –1 to +1. Avalue of +1 indicates a perfect match. A positive
value indicates the level of skill with a statistical significance that depends on sample
size (Box 10.2 and Section 10.6). Values of r near zero imply that the variability in
the observations is controlled by processes that the model does not capture. A model
that is able to capture the observed means but not the observed variability (non-
significant r) may be getting the mean right for the wrong reasons. Negative values
of r imply large model errors in the simulation of processes.

Binary prediction of atmospheric events. A model prediction of a specific event
such as an air pollution episode at a given location (e.g., concentration of pollutants
exceeding a regulatory threshold) can be evaluated as a binary variable by distin-
guishing four possible situations: (1) the event is predicted and observed; (2) the
event is not predicted and not observed; (3) the event is predicted but not observed;
and (4) the event is not predicted but is observed. Cases (1) and (2) are successful
predictions (hits), while cases (3) and (4) are failures (misses). Consider a sample of
N predictions covering a certain period of time and with each prediction having an
outcome yy, nn, yn, or ny. The first letter is the prediction of whether the event occurs
(y for yes, n for no) and the second letter indicates whether the event is observed.
We have N = yy + nn + yn + ny. The skill of the model for binary prediction (event or
no event) can be measured by the fraction of correct predictions (PC):
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PC ¼ yyþ nn

N
(10.28)

This is a lenient metric because the PC will be high when events are rare even if the
model has no skill at predicting the events. The fraction of observed events that were
correctly predicted (called probability of detection or POD) is

Table 10.3 Indices of agreement proposed by different authors to assess model performance

Author Index of agreement

Willmott (1981) d1 ¼ 1�
PN
i¼1

Mi � Oið Þ2

PN
i¼1

Mi � O
�� ��þ Oi � O

�� ��� �2

Willmott et al. (1985) d2 ¼ 1�
PN
i¼1

Mi � Oij j
PN
i¼1

Mi � O
�� ��þ Oi � O

�� ��� �

Willmott et al. (2012) d3 ¼ 1�
PN
i¼1

Mi � Oij j

2
PN
i¼1

Oi � O
�� �� if

XN
i¼1

Mi � Oij j � 2
XN
i¼1

Oi � O
�� ��

d3 ¼
2
PN
i¼1

Oi � O
�� ��

PN
i¼1

Mi � Oij ji
� 1 if

XN
i¼1

Mi � Oij ji > 2
XN
i¼1

Oi � O
�� ��

Nash and Sutcliffe (1970) d4 ¼ 1�
PN
i¼1

Mi � Oið Þ2

PN
i¼1

Oi � O
� �2

Legates and McCabe (1999) d6 ¼ 1�
PN
i¼1

Mi � Oij j
PN
i¼1

Oi � O
�� ��

Watterson (1996) d7 ¼ 2

π
sin �1 1� ðRMSEÞ2

σ2M þ σ2O þ M � O
� �2

" #

Mielke and Berry (2001) d8 ¼ 1� MAE

1
N2

PN
i¼1

PN
j¼1

Mj � Oi

�� ��
Douglass et al. (1999) d9 ¼ 1� 1

3

M � O
�� ��

σO
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Box 10.2 Statistical Significance of the Correlation Coefficient

The Pearson correlation coefficient r(x, y) characterizes the strength of a linear relationship between
two variables x and y. Whether the correlation is meaningful or not depends on the size of the
sample that is being examined. A statistical test must determine the significance of the correlation
coefficient for a given probability level.
The correlation of a population is said to be significant if the correlation coefficient ρ(x, y) of the

entire population is different from zero. This is different from the correlation r(x, y) that can be
determined for a sample of that population. We apply here the “null hypothesis” in which we
assume that there is no correlation between x and y [ρ(x, y) = 0], and that, if the value r(x, y)
measured from a sample of limited size n is different from zero, it is due to sampling errors (the
size of the sample is too small). If this hypothesis is verified for a given probability, the correlation
is not significant. If, however, the null hypothesis is rejected by the statistical test, the correlation is
regarded as significant at a certain level of confidence defined by the probability that the population
is correlated. The risk factor is the complementary probability that the population is in fact not
correlated
Significance of a correlation at a certain level of confidence can be diagnosed by Student’s t-test.

For a given correlation coefficient r and sample size n we compute

t ¼ r

ffiffiffiffiffiffiffiffiffiffiffi
n� 2
1� r2

r
and compare it to the corresponding critical value from a statistical table (Appendix E). The
correlation is significant if t exceeds the critical value. A confidence level of 95% corresponding to a
risk factor of 5% (p < 0.05) is commonly used and Box 10.2 Figure 1 gives the corresponding
threshold value of r for different sample sizes.
As an illustration, consider a sample of ten data points with a calculated r = 0.6. We derive from

the above formula a value of t = 2.12. For a risk factor of 5% (confidence level of 95%), the table
of Appendix E provides for t a critical value of 2.31. In this case, the null hypothesis of zero
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Box 10.2
Figure 1

Minimum absolute value of the Pearson correlation coefficient for significant correlation at the 95%
confidence level, as a function of sample size. Reproduced from Wikipedia.
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POD ¼ yy

yyþ ny
(10.29)

The fraction of predicted events that did not occur (called false alarm ratio or FAR) is

FAR ¼ yn

yyþ yn
(10.30)

The critical success index, also called the threat score (TS) is defined by

TS ¼ yy

yyþ ynþ ny
(10.31)

Some of the predictions may be successful by chance. To correct for this, one defines
the equitable threat score (ETS)

ETS ¼ yy� α
yyþ ynþ ny� α

(10.32)

in which α is the number of events that would be predicted by chance,

α ¼ yyþ ynð Þ yyþ nyð Þ (10.33)

and is subtracted from the number of hits. The ETS is always lower than 1 and is
negative if the prediction by chance is better than the actual prediction.
Grading models. When comparing different models, it is useful to attribute to each

of them a grade for their ability to correctly simulate atmospheric observations. In the
approach adopted by Douglass et al. (1999), the grade gm,j by which a model m
represents the observed concentration of a particular species j is given by

gm, j ¼ 1� 1

ng

Mm, j � Oj

�� ��
σj

(10.34)

Here, the overbars indicate mean values, σj denotes the standard deviation in the
observations, and ng is a scaling factor. If this factor is taken to be equal to 3, the
grade gm,j is equal to zero when model m is 3σj apart from the mean observed value.
When N chemical species are considered for evaluating model skill, and hence N

diagnostics are performed, they can be combined to derive for a given model m a
single overall grade Gm (Waugh and Eyring, 2008):

Gm ¼

PN
j¼1

wj gm, j

PN
j¼1

wj

(10.35)

Box 10.2 (cont.)

correlation cannot be rejected, and the correlation coefficient derived from the sample is
therefore not significant. If, however, we consider 52 data points with a measured r of only 0.3,
the calculated value of t is 2.24, which is above the critical value of 2.01 found in the table,
and the correlation is significant.
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where wj denotes a weight assigned to the diagnostic for species j as a measure of its
importance.

When an ensemble of Kmodels are used to calculate a given field j, a best estimate
of the predicted concentration can be derived as:

bM j ¼
PK
m¼1

GmMm, j

PK
m¼1

Gm

(10.36)

where Gm acts as a weight that favors the solutions obtained by the models with the
best grades. The variance weighted by the model scores is given by:

bσ2
j ¼

PK
m¼1

Gm

PK
m¼1

Gm

� �2

� PK
m¼1

G2
m

XK
m¼1

Gm Mm, j � bMj

� �2
(10.37)

10.5.2 The Taylor Diagram

Taylor (2001) proposed a concise graphical method for representing on a single
figure several statistical indicators that describe the degree of agreement between
model results and observations. The Taylor diagram indicates how model and
observed patterns compare in terms of their correlation, their RMS differences, and
the ratio of their variances.

Pattern similarities between the calculated and observed fields Mi and Oi can be
quantified by the Pearson correlation coefficient r (10.27). However, this does not
provide information about the relative amplitude of the two quantities. It is therefore
useful to introduce the centered root mean square error (CRMSE):

CRMSE ¼ 1

N

XN
i¼1

Mi �M
� �� Oi � O

� �� 2( )1=2

(10.38)

This quantity tends to zero when the patterns of the two fields and the associated
amplitudes are similar. However, the CRMSE does not indicate if the error is due to a
difference in the phase or in the amplitude of the signals. An additional comparison
of the two fields is their standard deviations σO and σM defined by (10.14). The
Taylor diagram is constructed by recognizing that the four statistical quantities (r,
CRMSE, σM and σO) are related by

CRMSEð Þ2 ¼ σ2M þ σ2O � 2 σM σO r (10.39)

Figure 10.19 illustrates the Taylor diagram. The red arrows are a geometric
representation of (10.39). The polar graph provides a rapid quantification of the four
statistical parameters for any point on the diagram. The standard deviations of the
observed field O and the model field M are represented by the radial distances from
the origin; the point representative of the observations, called reference point, is
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located on the x-axis, with the abscissa equal to the corresponding standard deviation
σO. The radial distance between the origin and the location of the test point, which
characterizes the simulated field, is equal to the standard deviation σM of the
calculated field. The correlation coefficient r between the observed and calculated
fields is shown by the azimuthal position on the diagram. The distance between the
reference and test points is the CRMSE.
An alternate form of the Taylor diagram is often used in which CRMSE and σM are

normalized to the standard deviation σO of the observed field. This allows the
representation of multiple data sets having different concentrations and/or units.
Figure 10.20 gives an example in which comparison statistics for multiple species
are shown on a single diagram. The normalized reference point is 1 on the x-axis.
Taylor (2001) and Brunner et al. (2003) propose different expressions to quantify

the skill score of a model. These expressions assume that for a given variance, the
score increases monotonically with increasing correlation. Further, for a given
correlation, the score increases as the variance produced by the model approaches
the variance associated with the observation. The resultant expressions for the model
skill S take the form

S ¼ 4 1þ rð Þn
σM
σO

þ σO
σM

� �2

þ 1þ r0ð Þn
(10.40)
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Figure 10.19 Taylor diagram summarizing the statistical comparison of a test data set (model M) to a reference data set
(observations O). The observed standard deviation σO is plotted on the right horizontal axis. The model
standard deviation σM is plotted as the dotted lines with values given on the left horizontal axis. The CRMSE
is given by the dashed lines and the correlation coefficient r by the solid lines. The statistical fit between
model and observations is given by the test point on the diagram. The reference point on the diagram
indicates a perfect model. Knowledge of σM and r is sufficient to define the location of the test point, and
from there the CRMSE is determined by the distance between the reference point and the test point.
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where r0 is the maximum attainable correlation. This model-dependent parameter,
which must be estimated, accounts for the fact that the model is not expected to
reproduce the details of the noise in the data (unforced variability). The value of
exponent n is chosen according to the weight given on a good correlation versus a
small RMS error. Isolines for skill scores based on such expressions can be repre-
sented on the Taylor diagram.

10.5.3 The Target Diagram

The Taylor diagram does not provide information on the mean bias (BIAS) between
model and observed quantities. The Target diagram (Jolliff et al., 2009; Thunis
et al., 2012; Figure 10.21) provides this missing information in addition to summary
information about the pattern statistics, thus yielding a broader overview of their
relative contribution to the total RMSE. Again, the values of the statistical indicators
are normalized to the standard deviation of the observations σO. Using Cartesian
coordinates, the value of CRMSE/σO is displayed on the x-axis and the value of
BIAS/σO on the y-axis. One can show that:

RMSEð Þ2 ¼ BIASð Þ2 þ CRMSEð Þ2 (10.41)

so that the distance between the origin and any data point displayed on the diagram
represents the total RMSE normalized by σO and is therefore viewed as the target
indicator.

Figure 10.20 Taylor diagram for a comparison of chemical transport model results to aircraft observations of ozone, NOx,
isoprene, and formaldehyde (CH2O) in the Southeast USA mixed layer in summer 2013. The different
symbols describe model simulations at different horizontal grid resolutions (0.25� � 0.3125�, 2� � 2.5�,
4� � 5�). The radial coordinate is the normalized standard deviation σM/σO. The angular coordinate is the
Pearson correlation coefficient. The open circle represents the observations (reference point of Figure 10.19).
The normalized CRMSE is shown as solid lines. The figure shows that the best model simulation is for ozone.
Correlation improves when the resolution increases from 4� � 5� to 2� � 2.5� but then decreases at
0.25� � 0.3125� because fine-scale features are more difficult to capture by the model than broad
synoptic-scale features. From Yu et al. (2016).
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Markers may be added within the diagram to better evaluate the model results. In
Figure 10.21, the outermost circle corresponds to RMSE/σO = 1, so for all points
inside this contour, the model data are positively correlated with observational data.
A second contour corresponds to a higher performance, here RMSE/σO = 0.7. All
points that represent successful model calculations are expected to appear inside this
second contour. A third contour (dashed line) can be added to characterize the
threshold of observational uncertainties; no meaningful improvement in the model-
data agreement is obtained as the points displayed inside this circle approach the
origin (target) of the diagram. Finally, the x-axis of the Target diagram is used to
provide information on standard deviations: If the model standard deviation is larger
than the observed one, the points are plotted on the left side of the diagram (negative
abscissa); in the opposite case, they are plotted on the right side (positive abscissa).
A weakness of the Target diagram is that it does not provide explicit information
about the correlation coefficient.

10.6 Significance in the Difference Between Two Data Sets

An important question in the comparison of two data sets (such as model vs.
observations) is whether differences between the two data sets are real or the result

Figure 10.21 Schematic representation of the Target diagram.
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of random noise. The statistical significance of a difference expresses the likelihood
that it is real as opposed to random. Consider here the comparison between two sets
of sampled data (X1, X2) of sizes (n1, n2) with distributions defined by the population
means (X 1, X 2) and unbiased estimators of their variance (σ1, σ2) (see Appendix E).
The Student’s t-test provides a statistical method to estimate the likelihood that
the difference between the means of two distributions is significant (Figure 10.22).
It assumes that the distribution of the populations is normal (Gaussian). In the
student t-test, the t-variable is given by

t ¼ X 1 � X 2

σT
1

n1
þ 1

n2

	 
1=2 (10.42)

where σT is the pooled standard deviation of the two samples

σ2T ¼ n1 � 1ð Þσ21 þ n2 � 1ð Þσ22
n1 þ n2 � 2

(10.43)

The value of t computed from (10.42) is compared to the critical value tc
provided by a statistical table for a given value of the number of degrees
of freedom (n1 + n2 – 2) and for a user-specified risk factor p (Appendix E).
If t exceeds tc, the difference between the averages of the two distributions is
considered to be significant at the specified risk level p. If p is chosen to be
equal to 5%, the confidence level that the samples differ from each other is

X1 X2

(a) (b)

Figure 10.22 (a) Example of two distributions for random variables X 1 (green) and X 2 (blue). The mean values are
identical for the cases characterized by high (top) and low (bottom) variability, but the overlap between the
distributions is very different in the two cases. The significance of the difference between the averages of X 1
and X 2 is highest in the low-variability case (bottom panel with little overlap between distributions).
(b) Application of Student’s t-test to derive the significance of the differences in the mesospheric ozone
concentrations calculated by a chemistry-climate model for high and low solar activity, respectively
(July conditions). Statistical significance larger than 90% (99%) is indicated by light (dark) gray
shading. Reproduced from Schmidt et al. (2006). Copyright © American Meteorological Society, used
with permission.
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equal to 95%. Atmospheric maps showing the spatial distribution of differences
between two fields usually highlight the areas where the results are statistically
significant at a specified confidence level, and where they are not. Figure 10.22
gives an example. It is conventional in the literature to qualify a statistically
significant result as confident, highly confident, and very highly confident if the
adopted level of confidence is equal to 95%, 99%, and 99.9%, respectively.

10.7 Using Models to Interpret Observations

The model evaluation metrics described in Section 10.5 are intended to summarize
the ability of a model to reproduce large ensembles of observations. They should be
supplemented by more ad-hoc comparisons of temporal and spatial patterns, includ-
ing relationships between species and with meteorological variables, as described in
Section 10.4. Combination of these procedures is essential for establishing confi-
dence in the model as a tool to interpret present-day atmospheric behavior and to
make future projections. It provides the foundation for using the model to derive
chemical budgets, conduct source–receptor analyses, infer source attribution from
sensitivity simulations, etc. In this evaluation perspective, the observations are a
given, and the task of the model is to reproduce them within a certain error tolerance.
Here, we briefly discuss a different use of the model as a tool to explain the
variability in the observations and from there to understand the processes that drive
this variability. This involves a somewhat different perspective in model evaluation.
The general scientific approach for understanding the behavior of a complex system

is to observe its variability and interpret it in terms of the driving variables. This
interpretation requires a model as simplification of the system. The model may be very
simple and/or qualitative, and indeed such simple models (even mental models) are
often presented in observational papers as a first analysis of the data. However, simple
models may be flawed by omission of important processes that are not always
apparent. For complex problems in atmospheric chemistry, such as those coupling
chemistry and transport, access to a 3-D model is usually required for successful
interpretation. Here the purpose of the model is to distill the phenomena driving the
observed variability through sensitivity simulations and/or through model simplifica-
tions to highlight the essential variables. The focus is on interpreting observations to
gain scientific understanding, and the model is a tool for addressing that objective.
Interpreting observed correlations between species is an important example. These

correlations can point to common sources or source regions, as in the methane vs.
CO2 relationships shown in Box 10.1 Figure 2. Changes in the relationships between
different air masses provide insights into atmospheric processes or cause-to-effect
connections. Quantitatively interpreting the correlations in terms of constraints on
processes is, however, fraught with pitfalls because the factors driving the correl-
ations are often not intuitive or easy to isolate. Simulation of the relationships with a
3-D model including a comprehensive treatment of processes can illuminate the
interpretation of the observed relationships and in this manner advance knowledge.
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We illustrate this point here with the interpretation of observed correlations of
acetylene (C2H2) with CO, as presented by Xiao et al. (2007; Figure 10.23). Both
C2H2 and CO are emitted almost exclusively by combustion, and both are removed
from the atmosphere by oxidation by OH with mean lifetimes of ten days and two
months, respectively. Observations taken from aircraft campaigns around the world
consistently show strong correlations between C2H2 and CO, from source regions to
the most remote air masses. We would like to extract the constraints that these
correlations provide for improving our understanding of emissions, atmospheric
transport, and OH concentrations.

Figure 10.23 shows aircraft observations of the C2H2–CO relationship over the
Pacific just off the China coast (boundary layer outflow), in the more remote west
tropical Pacific, and in the very remote south tropical Pacific. The top panel shows
the linear relationships ([C2H2] vs. [CO]) and the bottom panel shows the log–log
relationships (log[C2H2] vs. log[CO]). Also shown in the figure are the correlations
simulated by a global 3-D model. We see that the model reproduces the correlations
but there is significant bias in the slopes. We can then use the model to understand
the meaning of the correlations and the factors driving the slopes.

Let us first examine the linear correlations (top row). The correlation in the fresh
Chinese outflow (top left panel) reflects the dilution of polluted Chinese air masses
with background air. The transport time since emission is much shorter than the
lifetimes of either C2H2 or CO. The C2H2:CO slope therefore reflects the Chinese

Figure 10.23 Relationships between acetylene (C2H2) and CO concentrations over the western Pacific. Aircraft observations
for different regions (in black) are compared to results from the GEOS-Chem global 3-D chemical
transport model (in red). The top row shows linear relationships and the bottom row shows log–log
relationships. Reduced-major-axis (RMA) regression lines are shown with coefficient of determination
(R2) in parentheses. Errors on the regression lines are determined with the bootstrap method. Note the
differences in scales between panels. Adapted from Xiao et al. (2007). Observations are from D. R. Blake
(University of California – Irvine) and G. W. Sachse (NASA).
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emission ratio, providing a useful test of emission inventories. However, we find that
the model slope of 4.7 is lower than the Chinese emission ratio used in the model
(6.2), because the dilution takes place with non-zero background air. Thus, one
cannot interpret the observed slope (4.0) as the emission ratio without accounting
for this background correction. The marine air in which the outflow is diluting may
further be different from the continental background air where the initial dilution
took place. The best estimate of the emission ratio can be made by adjusting the
emissions in the model to reproduce the observed slope.
The importance of characterizing the background is even more apparent in the

correlations over the more remote west tropical Pacific (top row, middle panel). Here,
the correlations are just as strong as in the fresh Chinese outflow, and the slopes are
larger than in the fresh outflow, both in the observations and the model. This is
counter-intuitive since one would expect chemical loss of C2H2 to decrease the slope,
and we can turn to the model to explain this result. We find in the model that the
higher slope is because the dilution is now taking place with tropical background air
containing very low C2H2. In that case the C2H2–CO correlation is determined by the
mixing between mid-latitude and tropical air masses, and provides little information
on either emissions or chemistry. The south tropical Pacific (top row, right panel)
shows lower slopes because all air masses in that case have experienced considerable
chemical aging – note the differences in scale between panels. One could use the
correlations over the south tropical Pacific to provide constraints on chemistry (and
hence on OH concentrations), but separating chemical influence from emissions and
transport is not straightforward.
Correlating the logarithms of concentrations offers a means to remove the influ-

ence of emissions. McKeen et al. (1996) proposed a simple Lagrangian mixing
model for this purpose. Consider two species i and j in an aging air parcel receiving
no fresh emission inputs and diluting at a constant rate in a uniform background. The
evolution of the mixing ratio Ci of species i in that air parcel is given by

dCi

dt
¼ �LiCi � Kd Ci � Ci,bð Þ (10.44)

Here, Li = ki[OH] is the first-order chemical loss frequency [s–1] where ki is the
rate constant for reaction with OH, Kd [s

–1] is a dilution rate constant, and Ci,b is the
background mixing ratio. The chemical lifetime of species i is τi = 1/Li. A similar
equation holds for species j. Let us assume that [OH], Kd, Ci,b, and Cj,b are constant,
and let β = dln Cj/dln Ci denote the slope of the log–log relationship. Simple
analytical solutions for β are available in three limiting cases:

1: β � Li
Lj

¼ τj
τi

chemical loss fast relative to dilution

2: β � Kd þ Li
Kd þ Lj

negligibly low background

3: β � 1 fast dilution relative to chemical loss

(10.45)

These limiting expressions are useful for interpreting correlations when the proper
conditions apply. The case of the C2H2–CO correlation is problematic because both
species have relatively long chemical lifetimes and non-negligible backgrounds.
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Ehhalt et al. (1998) proposed an alternate simple Eulerian model in which dilution
with background air is represented as an eddy diffusive process. Assuming the
diffusion to take place in one dimension x with eddy diffusion coefficient Kx, we have

∂Ci

∂t
¼ �LiCi þ Kx

∂2Ci

∂x2
(10.46)

The steady-state solution Ci(x) subject to boundary conditions Ci(0) at the point of
origin and Ci(∞) ! 0 is given by

Ci xð Þ ¼ Ci 0ð Þ exp � xffiffiffiffiffiffiffiffiffiffiffiffi
Kx=Li

p" #
(10.47)

and one then finds β ¼ ffiffiffiffiffiffiffiffiffi
τj=τi

p
. Ehhalt et al. (1998) show that this model is most

realistic when chemical loss and dilution take place at comparable rates, whereas a
situation where chemical loss is faster than dilution will tend toward the first limiting
case of the Lagrangian mixing model β � τj/τi.

Figure 10.23 (bottom panel) applies these ideas to the C2H2–CO relationship by
examining the log–log correlation in the observations and the model. In this case,
τCO/τC2H2 = 3–3.5 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τCO=τC2H2

p ¼ 1:7� 1:9, where the variability reflects the
temperature dependence of the rate constants. We find β � 1 in the fresh Asian
outflow off the China coast, indicating that the correlation is driven by dilution; this
confirms that the slope of the linear relationship provides a measure of the emission
ratio. For the more remote regions, we find that the slope exceeds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τCO=τC2H2

p
,

indicating that the correlation mostly reflects chemical loss. This means then that
simulation of the log–log slope provides a test of model [OH]. Sensitivity simula-
tions presented by Xiao et al. (2007) to fit the observed slopes imply that tropical OH
concentrations in the model are 50% too high.

This relatively simple example illustrates how observed correlations between
species can provide constraints on emissions, mixing, chemistry, and other pro-
cesses, but interpretation is often not obvious and mistakes can easily be made.
Simulation of observed relationships with a 3-D model, complemented by model
sensitivity studies, can thus be a powerful tool to advance knowledge. It is particu-
larly satisfying if knowledge gained from the complex 3-D model can be distilled
into a simpler model illuminating the fundamental processes driving the observed
relationships. As the saying goes, “no model should be more complicated than it
needs to be.” But starting from a complicated model can provide the best guide to
judicious simplification.
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11 Inverse Modeling for Atmospheric Chemistry

11.1 Introduction

Inverse modeling is a formal approach for using observations of a physical system to
better quantify the variables driving that system. This is generally done by statistically
optimizing the estimates of the variables given all the observational and other
information at hand. We call the variables that we wish to optimize the state variables
and assemble them into a state vector x. We similarly assemble the observations into
an observation vector y. Our understanding of the relationship between x and y is
described by a model F of the physical system called the forward model:

y ¼ F x; pð Þ þ εO (11.1)

Here, p is a parameter vector including all model variables that we do not seek to
optimize as part of the inversion, and εΟ is an observational error vector including
contributions from errors in the measurements, in the forward model, and in the
model parameters. The forward model predicts the effect (y) as a function of the
cause (x), usually through equations describing the physics of the system. By
inversion of the model we can quantify the cause (x) from observations of the effect
(y). In the presence of error (εO 6¼ 0), the solution is a best estimate of x with some
statistical error. This solution for x is called the optimal estimate, the posterior
estimate, or the retrieval. The choice of state vector (that is, which model variables
to include in x versus in p) is totally up to us. It depends on which variables we wish
to optimize, what information is contained in the observations, and what computa-
tional costs are associated with the inversion.

Because of the uncertainty in deriving x from y, we have to consider other
constraints on the value of x that may help to reduce the error on the optimal
estimate. These constraints are called the prior information. A standard constraint
is the prior estimate xA, representing our best estimate of x before the observations
are made. It has some error εA. The optimal estimate must then weigh the relative
information from the observations y and the prior estimate xA, and this is done by
considering the error statistics of εO and εA. Inverse modeling allows a formal
analysis of the relative importance of the observations versus the prior information
in determining the optimal estimate. As such, it informs us whether an observing
system is effective for constraining x.

Inverse modeling has three main applications in atmospheric chemistry, summar-
ized in Table 11.1:

1. Remote sensing of atmospheric composition. Here we use radiance spectra
measured by remote sensing to retrieve vertical concentration profiles. The
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measured radiances at different wavelengths represent the observation vector y,
and the concentrations on a vertical grid represent the state vector x. The forward
model F is a radiative transfer model (Chapter 5) that calculates y as a function of
x and of additional parameters p that may include surface emissivity, tempera-
tures, spectroscopic data, etc. The prior estimate xA is provided by previous
observations of the same or similar scenes, by knowledge of climatological mean
concentrations, or by a chemical transport model.

2. Top-down constraints on surface fluxes. Here we use measured atmospheric
concentrations (observation vector y) to constrain surface fluxes (state vector x).
The forward model F is a chemical transport model (CTM) that solves the
chemical continuity equations to calculate y as a function of x. The parameter
vector p includes meteorological variables, chemical variables such as rate
coefficients, and any characteristics of the surface flux such as diurnal variabil-
ity that are simulated in the CTM but not optimized as part of the state vector.
The information on x from the observations is called a top-down constraint on
the surface fluxes. The prior estimate xA is an inventory based on our know-
ledge of the processes determining the surface fluxes (such as fuel combustion
statistics, land cover data bases, etc.) and is called a bottom-up constraint.
See Section 9.2 for discussion of bottom-up and top-down constraints on
surface fluxes.

3. Chemical data assimilation. Here we construct a gridded 3-D field of concen-
trations x, usually time-dependent, on the basis of measurements y of these
concentrations or related quantities at various locations and times. Such a
construction may be useful to initialize chemical forecasts, to assess the con-
sistency of measurements from different platforms, or to map the concentra-
tions of non-measured species on the basis of measurements of related species.
We refer to this class of inverse modeling as data assimilation. The corres-
ponding state vectors are usually very large. In the time-dependent problem, the
prior estimate is an atmospheric forecast model that evolves x(t) from a
previously optimized state at time to to a forecast state at the next assimilation
time step to + h. The forecast model is usually a weather prediction model
including simulation of the chemical variables to be assimilated. The forward
model F can be a simple mapping operator of observations at time to + h to the
model grid, a chemical model relating the observed variables to the state
variables, or the forecasting model itself.

Table 11.1 Applications of inverse modeling in atmospheric chemistry

Application State vector Observations Forward model Prior estimate

Remote sensing Vertical
concentration profile

Radiance spectra Radiative transfer
model

Climatological
profile

Top-down
constraints

Surface fluxes Atmospheric
concentrations

Chemical transport
model

Bottom-up
inventory

Data assimilation Gridded
concentration field

Atmospheric
concentrations

Mapping operator Forecast
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Proper consideration of errors is crucial in inverse modeling. Let us examine what
happens if we ignore errors. We linearize the forward model y = F(x, p) around the
prior estimate xA taken as best guess:

y ¼ F xA; pð Þ þK x� xAð Þ þΟ x� xAð Þ2
� �

(11.2)

where K ¼ —xF ¼ ∂y=∂x is the Jacobian matrix of the forward model with
elements kij ¼ ∂yi=∂xj evaluated at x = xA. The notation O((x – xA)

2) groups
higher-order terms (quadratic and above) taken to be negligibly small. Let n and m
represent the dimensions of x and y, respectively. Assume that the observations
are independent such that m = n observations constrain x uniquely. The
Jacobian matrix is then an n � n matrix of full rank and hence invertible. We
obtain for x:

x ¼ xA þK�1 y� F xA; pð Þð Þ (11.3)

If F is nonlinear, the solution (11.3) must be iterated with recalculation of
the Jacobian at successive guesses for x until satisfactory convergence is
achieved.

Now what happens if we make additional observations, such that m > n? In the
absence of error these observations must necessarily be redundant. But we know
from experience that strong constraints on an atmospheric system typically require
a very large number of measurements, m � n. This is due to errors in the
measurements and in the forward model, described by the observational error
vector ε0 in (11.1). Thus (11.3) is not applicable in practice; successful inversion
requires adequate characterization of the observational error εΟ and consideration
of prior information. A standard approach to do this is to use Bayes’ theorem,
described in Section 11.2.

The chapter is organized as follows. Section 11.2 presents Bayes’ theorem and
shows how it provides a basis for inverse modeling. Section 11.3 applies Bayes’
theorem to a simple scalar optimization problem in order to build intuition for the
rest of the chapter. Section 11.4 introduces important vector-matrix tools for
inverse modeling, including error covariance matrices, probability density
functions (PDFs) for vectors, Jacobian matrices, and adjoints. Section 11.5 pre-
sents the fundamental analytical method for solving the inverse problem, Section
11.6 presents the adjoint-based method, Section 11.7 presents Markov Chain
Monte Carlo (MCMC) methods, and Section 11.8 presents other optimization
methods. Section 11.9 discusses means to enforce positivity in the solution to
the inverse problem. Section 11.10 gives an overview of variational methods used
in chemical data assimilation. Observation system simulation experiments
(OSSEs) to evaluate the merits of a proposed observing system are described in
Section 11.11. Inverse modeling has applications across many areas of the natural
and social sciences, and a major source of confusion in the literature is the use of
different terminologies and notations reflecting this diverse heritage. Here we will
follow to a large extent the terminology and notation of Rodgers (2000), which we
consider to be a model of elegance.
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11.2 Bayes’ Theorem

Bayes’ theorem is the general foundation of inverse modeling. Consider a pair of
vectors x and y. Let P(x), P(y), P(x, y) represent the corresponding PDFs, so that the
probability of x being in the range [x, x + dx] is P(x) dx, the probability of y being in
the range [y, y + dy] is P(y) dy, and the probability of (x, y) being in the range
([x, x + dx], [y, y + dy]) is P(x, y) dx dy. Let P(y|x) represent the conditional PDF of
y when x has a known value. We can write P(x, y) dx dy equivalently as

P x; yð Þ dx dy ¼ P xð Þ dxP yjxð Þ dy (11.4)

or

P x; yð Þ dx dy ¼ P yð Þ dyP xjyð Þ dx (11.5)

Eliminating P(x, y), we obtain Bayes’ theorem:

P xjyð Þ ¼ P yjxð ÞP xð Þ
P yð Þ (11.6)

This theorem formalizes the inverse problem posed in Section 11.1. Here:

• P(x|y) is the posterior PDF for the state vector x given the observations y, and
defines the solution to the inverse problem.

• P(x) is the prior PDF of the state vector x before the measurements are made, i.e.,
the PDF of xA defined by the error statistics for εA.

• P(y|x) is the PDF of the observation vector y given the true value of x and
accounting for errors in the measurements and in the forward model, as defined
by the error statistics for εΟ (11.1).

• P(y) is the PDF of y for all possible values of x.

The optimal estimate for x is defined by the maximum of P(x|y), corresponding to

—xP xjyð Þ ¼ 0 (11.7)

where —x is the gradient operator in the state vector space operating on all state
vector elements. From (11.6) we have

—xP xjyð Þ ¼ 1

P yð Þ—x P yjxð ÞP xð Þ½ � (11.8)

since P(y) is independent of x. It follows that the optimal estimation given by (11.7)
can be rewritten as

—x P yjxð ÞP xð Þ½ � ¼ 0 (11.9)

This defines the Bayesian optimal estimate solution to the inverse problem. P(y) does
not contribute to the solution and does not appear in (11.9). Indeed, P(y) can be
viewed simply as a normalizing factor in equation (11.6) to ensure that the integral of
P(x|y) over all possible values of x is unity. We ignore it in what follows.
Inverse modeling using Bayes’ theorem as described here is an example of a

regularization method where prior information is used to constrain the fitting of
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x to y. Here the constraint is the prior PDF of x. This is the most commonly used
constraint in inverse modeling, but others may also be used. Some methods ignore
prior information and fit x to match y using least-squares or some other norm
minimization. Other regularization methods enforce different prior constraints on
the solution, such as positivity, smoothness, or patterns. Examples are Tikhonov
regularizations and geostatistical methods. These are covered in Section 11.7.

11.3 A Simple Scalar Example

Here we apply Bayes’ theorem to solve a simple inverse problem using scalars. This
allows us to introduce concepts, terminology, and equations that will be useful for
understanding the solution of the more general problem involving vectors.

Consider in this example a single source releasing a species X to the atmosphere
with an emission rate x (Figure 11.1). We have a prior estimate xA � σA for x, where
σ2A is the prior error variance defined by

σA
2 ¼ E εA � E εA½ �ð Þ2

h i
¼ E ε2A

� �
(11.10)

Here εA is the error on our prior estimate, and E[ ] is the expected value operator
representing the expected mean value of the bracketed quantity for an infinitely large
number of realizations. E[εA] is the mean value of the error, called the mean bias.
The prior estimate xA is unbiased by definition so E[εA] = 0. This is an important
point. You may think of the prior estimate as “biased” because it differs from the true
value; however, before we make observations, it is equally likely to be too high or
too low.

We now make a single measurement of the concentration of X downwind from the
source. The measured concentration is y = yT + εI, where yT is the true concentration
and εI is the instrument error. We use a CTM as forward model F to relate yT to x:

yT ¼ F xð Þ þ εM þ εR (11.11)

Here, εM describes the forward model error in reproducing the true concentration yT
given the true emission rate x. This error includes contributions from model param-
eters such as winds, model physics, and model numerics. There is in addition a
representation error εR reflecting the mismatch between the model resolution and the
measurement location (Figure 11.2). Representation error is caused by the numerical

Prior emission xA

Forward model
y = F(x)

Measured
concentra�on y

Wind

Figure 11.1 Simple example of inverse modeling. A point source emits a species X with an estimated prior emission
rate xA. We seek to improve this estimate by measuring the concentration y of X at a point downwind,
and using a CTM as forward model to relate x to y.
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discretization of the model equations so that the model provides simulated concen-
trations only on a discrete spatial grid and at discrete time steps, which may not
correspond to the exact location of the measurement. Thus the model is not repre-
sentative of the measurement, and even with interpolation some error is incurred.
Representation error is not intrinsically a forward model error because it could in
principle be corrected by adjusting the location and timing of the measurement.
Summing the errors, the measured concentration y is related to the true value of x by

y ¼ F xð Þ þ εI þ εR þ εM ¼ F xð Þ þ εO (11.12)

where εO = εI + εR + εM is the observational error which includes instrument,
representation, and forward model errors. This terminology might at first seem
strange, as we are used to opposing observations to models. A very important
conceptual point in inverse modeling is that instrument and model errors are inher-
ently coupled when attempting to estimate x from y. Having a very precise instrument
is useless if the model is poor or mismatched; in turn, having a very precise model is
useless if the instrument is poor. Instrument and model must be viewed as inseparable
partners of the observing system by which we seek to gain knowledge of x.
The instrument, representation, and model errors are uncorrelated so that their

variances are additive:

σ2O ¼ σ2I þ σ2R þ σ2M (11.13)

Let us assume for now that the observational error is unbiased so that
bO ¼ E εO½ � ¼ 0; we will examine the implications of bO 6¼ 0 later. Let us further
assume that the prior and observational errors are normally distributed. Finally, let us
assume that the forward model is linear so that F(x) = kx where k is the model
parameter; again, we will examine the implications of nonlinearity later.
We now have all the elements needed for application of Bayes’ theorem to obtain

an optimal estimate bx of x given y. The prior PDF for x is given by

P xð Þ ¼ 1

σA
ffiffiffiffiffi
2π

p exp � x� xAð Þ2
2σ2A

" #
(11.14)

and the conditional PDF for the observation y given the true value of x is given by

P yjxð Þ ¼ 1

σO
ffiffiffiffiffi
2π

p exp � y� kxð Þ2
2σ2O

" #
(11.15)

F(x(t))

Time     

y

F(x(t+Dt))

t’t t+Dt

Figure 11.2 Representation error. The forward model computes concentrations as gridbox averages over discrete time
steps Δt. The measurement is at a specific location within the gridbox and at an intermediate time t0.
Interpolation in space and time is necessary to compare the measurement to the model, and the
associated error is called the representation error.
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Applying Bayes’ theorem (11.6) and ignoring the normalizing terms that are inde-
pendent of x, we obtain:

P xjyð Þ / exp � x� xAð Þ2
2σ2A

� y� kxð Þ2
2σ2O

" #
(11.16)

where / is the proportionality symbol. Finding the maximum value for P(x|y) is
equivalent to finding the minimum for the cost function J(x):

J xð Þ ¼ x� xAð Þ2
σ2A

þ y� kxð Þ2
σ2O

(11.17)

which is a least-squares sum weighted by error variances and is called a χ2 cost
function.

The optimal estimate bx is the solution to ∂J=∂x ¼ 0:

dJ

dx
¼ 2

x� xAð Þ
σ2A

þ 2k
kx� yð Þ
σ2O

¼ 0 (11.18)

This yields

bx ¼ xA þ g y� kxAð Þ (11.19)

where g is a gain factor given by

g ¼ kσ2A
k2σ2A þ σ2O

(11.20)

In (11.19), the second term on the right-hand side represents the correction to the
prior estimate on the basis of the measurement y. The gain factor is the sensitivity of
the optimal estimate to the observation: g ¼ ∂bx=∂y. We see from (11.20) that the gain
factor depends on the relative magnitudes of σA and σO/k. If σA � σO /k, then g ! 0
and bx ! xA; the measurement is useless because the observational error is too large.
If by contrast σA � σO /k, then g ! 1=k and bx ! y=k; the measurement is so precise
that it constrains the solution without recourse to prior information.

We can also express the optimal estimate bx in terms of its proximity to the true
solution x. Replacing (11.12) with F(x) = kx into (11.19) we obtain

bx ¼ axþ 1� að ÞxA þ gεO (11.21)

or equivalently bx ¼ xþ 1� að Þ xA � xð Þ þ gεO (11.22)

where a is the averaging kernel defined as

a ¼ gk ¼ σ2A
σ2A þ σO=kð Þ2 (11.23)

The averaging kernel describes the relative weights of the prior estimate xA and the
true value x in contributing to the optimal estimate. It represents the sensitivity
of the optimal estimate to the true state: a ¼ ∂bx=∂x. The gain factor is now applied
to the observational error in the third term on the right-hand side.
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We see that the averaging kernel simply weighs the error variances in state space
σ2A and (σO /k)2. In the limit σA � σO /k, we have a ! 1 and the prior estimate does
not contribute to the solution. However, our ability to approach the true solution is
still limited by the term gεO with variance (gσO)

2. We call (1 – a)(xA – x) the
smoothing error since it regularizes the solution by limiting our ability to depart
from the prior estimate, and we call gεO the observational error in state space.
Manipulating the PDF of the optimal estimate as given by (11.16) and replacing y

using (11.19) yields a Gaussian form P xjyð Þ / exp � x� bxð Þ2=2bσ2
h i

where bσ2 is the

harmonic sum of σ2A and (σO/k)
2:

1bσ2
¼ 1

σ2A
þ 1

σO=kð Þ2 (11.24)

Here bσ2 is the error variance on the optimal estimate, called the posterior error
variance. It is always less than the prior and observational error variances, and tends
toward one of the two in the limiting cases that we described.
Before the measurement the error variance on x was σ2A; after the measurement it

is bσ2. The amount of information from the measurement can be quantified as the
relative error variance reduction σ2A � bσ2

� �
=σ2A. We find from (11.23) and (11.24)

that this quantity is equal to the averaging kernel:

σ2A � bσ2

σ2A
¼ a (11.25)

The role of the prior estimate in obtaining the optimal solution deserves some
discussion. Sometimes an inverse method will be described as “not needing prior
information.” But that means either that any prior information is very poor compared
to what can be achieved from the observing system, or that the method is suboptimal.
In our example, not using prior information will yield as solution y/k with error
variance σ2O; but since σ2O > bσ2 this is not as good a solution as bx. Using prior
information can lead to confusion about the actual contribution of the measurement
to the reported solution bx. Knowledge of averaging kernels is important to avoid such
confusion.
We have assumed in the above a linear forward model y = F(x) = kx. If the forward

model is not linear, we can still calculate an optimal estimate bx as the minimum of the
cost function (11.17), where we replace kx by the nonlinear form F(x). We then have

J xð Þ ¼ x� xAð Þ2
σ2A

þ y� F xð Þð Þ2
σ2O

(11.26)

and the optimal estimate is given by solving dJ/dx = 0:

dJ

dx
¼ 2

x� xAð Þ
σ2A

þ 2
∂F
∂x

F xð Þ � yð Þ
σ2O

¼ 0 (11.27)

The error on this optimal estimate is not Gaussian though, so (11.24) does not apply.
And although we can still define an averaging kernel a ¼ ∂bx=∂x, this averaging
kernel cannot be expressed analytically anymore as a ratio of error variances; it may
instead need to be calculated numerically. Obtaining error statistics on the optimal

494 Inverse Modeling for Atmospheric Chemistry

012
23 Jun 2017 at 02:26:28, subject to the Cambridge Core terms of use, available



estimate is thus far more difficult. An alternative is to linearize the forward model
around xA as ko ¼ ∂F=∂xjxA and solve for the corresponding minimum of the cost
function as in the linear case (11.18):

dJ

dx
¼ 2

x� xAð Þ
σ2A

þ 2ko
kox� yð Þ2

σ2O
¼ 0 (11.28)

This yields an initial guess x1 for bx on which we iterate by recalculating
k1 ¼ ∂F=∂xjx1 , solving (11.28) using k1, obtaining a next guess x2, and so on until
convergence. This preserves the ability for analytical characterization of observing
system errors.

We have assumed in our analysis that the errors are unbiased. The prior error εA is
indeed unbiased because xA is our best prior estimate of x; even though xA is biased
its error is not. Another way of stating this is that we don’t know that xA is biased
until after making the measurement. However, the observational error could be
biased if the instrument is inaccurate or if there are systematic errors in some aspect
of the forward model. In that case we must rewrite (11.12) as

y ¼ F xð Þ þ bO þ ε0O (11.29)

where bO = E[εO] is the observation bias and ε0O is the residual random error such that
E[ε0O] = 0. The optimal estimate can be derived as above by replacing y with y – bO,
and we see in this manner that the bias will be propagated through the equations to
cause a corresponding bias in the solution. For a linear model F(x) = kx, the
analytical solution given by (11.19) will be biased by gbO.

So far we have limited ourselves to one single measurement. We can reduce the
error on the optimal estimate by making m independent measurements yi, each
adding a term to the cost function J(x) in (11.17). Assuming for illustrative
purpose the same observational error variance and the same linear forward model
parameter k for each measurement, and further assuming that the successive
measurements are not only independent but uncorrelated, we have the following
expression for J(x):

J xð Þ ¼ x� xAð Þ2
σ2A

þ
Xm
i¼1

yi � kxð Þ2
σ2O

¼ x� xAð Þ2
σ2A

þ yi � kxð Þ2
σ2O=m

(11.30)

where the overbar denotes the average value and σ2O=m is the variance of the error on

yi � kxð Þ2 . By taking m measurements, we have reduced the observational error
variance on the average value by m; this is the central limit theorem. By increasing
m, we could thus approach the true solution: m ! ∞ ) bx ! yi=k and bσ ! 0. How-
ever, this works only if (1) the observational error has an expected value of zero (no
mean bias), and (2) the m observations are independent and identically distributed
(IID), meaning that they all sample the same PDF in an uncorrelated way.

With regard to (1), systematic error (mean bias) will not be reduced by increasing
the number of measurements and will still propagate to affect the solution as
discussed here. As the number of observations increases and the importance of the
random error component decreases, the effect of bias on the solution increases in
relative importance. With regard to (2), instrumental errors (as from photon
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counting) may be uncorrelated; however, forward model errors rarely are. In our
example, two successive measurements at a site may sample the same air mass and
thus be subject to the same model transport error in the CTM used as forward model.
It is thus important to determine the error correlation between the different observa-
tions. This error correlation can best be described by assembling the measurements
into a vector and constructing the observational error covariance matrix (Section
11.4.1). Dealing with error correlations, and more generally dealing with a multi-
component state vector, requires that we switch to a vector-matrix formalism for the
inverse problem. This vector-matrix formalism is central to any practical application
of inverse modeling and we introduce the relevant mathematical tools in the next
section.
One last word about bias before we move on. Bias in the observing system is the

bane of inverse modeling. As we saw, it propagates through the inverse model to
bias the solution. Random error in the observing system can be beaten down by
making many measurements, but bias is irreducible. Inversions sometimes include
a prior estimate for the pattern of the bias (for example, latitude-dependent bias in
a satellite retrieval) and optimize it as part of the inversion. But for this we need to
know that a bias is there and what form it has, and we generally are not that well
informed. Minimizing bias in the observing system through independent calibra-
tion is a crucial prelude to inverse modeling. Bias in the instrument can be
determined by analysis of known standards or by comparison with highly accurate
independent measurements (for example, validation of satellite observations with
vertical aircraft profiles during the satellite overpass). Bias in the forward model
can be determined by applying the model to conditions where the state is known,
though this is easier said than done. See Chapter 10 for discussion on quantifying
errors in models. In the rest of this chapter, and unless otherwise noted, we will
assume that errors are random.

11.4 Vector-Matrix Tools

Consider the general problem of a state vector x of dimension n with prior estimate
xA and associated error εA, for which we seek an optimal estimate bx on the basis of
an ensemble of observations assembled into an observation vector y of dimension m.
y is related to x by the forward model F:

y ¼ F xð Þ þ εO (11.31)

where εO is the observational error vector as in (11.1). We have omitted the model
parameters p in the expression for F to simplify notation. Inverse analysis requires
definition of error statistics and PDFs for vectors. The error statistics are expressed as
error covariance matrices, and the PDFs are constructed in a manner that accounts
for covariance between vector elements. Solution of the inverse problem may
involve construction of the Jacobian matrix and the adjoint of the forward model.
We describe here these different objects. Their application to solving the inverse
problem will be presented in the following sections.

496 Inverse Modeling for Atmospheric Chemistry

012
23 Jun 2017 at 02:26:28, subject to the Cambridge Core terms of use, available



11.4.1 Error Covariance Matrix

The error covariance matrix for a vector is the analogue of the error variance for
a scalar. Consider an n-dimensional vector that we estimate as x + ε, where x =
(x1, . . . xn)

T is the true value and ε = (ε1, . . . εn)
T is the error vector representing the

errors on the individual components of x. The error covariance matrix S for x has as
diagonal elements (sii) the error variances of the individual components of x, and as
off-diagonal elements (sij) the error covariances between components of x:

sii ¼ var εið Þ ¼ E ε2i
� �

(11.32)

sij ¼ cov εi; εj
� � ¼ E εi εj

� � ¼ r εi; εj
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var εið Þvar εj
� �q

(11.33)

where r εi; εj
� �

is Pearson’s correlation coefficient between εi and εj:

r εi; εj
� � ¼ cov εi; εj

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var εið Þvar εj

� �q (11.34)

The error covariance matrix is thus constructed as:

S ¼
var ε1ð Þ . . . cov ε1; εnð Þ

..

. . .
. ..

.

cov ε1; εnð Þ � � � var εnð Þ

0B@
1CA (11.35)

and can be represented in compact form as S ¼ E εεT½ �. It is symmetric since the
covariance operator is commutative: cov εi; εj

� � ¼ cov εj; εi
� �

. The covariance struc-
ture is often derived from error correlation coefficients, as expressed by the error
correlation matrix S0:

S0 ¼
1 . . . r ε1; εnð Þ
..
. . .

. ..
.

r ε1; εnð Þ � � � 1

0B@
1CA (11.36)

The error covariance matrix is then constructed from the error correlation matrix by
multiplying the terms by the error variances of the corresponding elements (square
roots for the off-diagonal terms).

Eigenanalysis of an error covariance matrix can be useful for identifying the
dominant error patterns. The matrix has full rank n, since otherwise would imply
that an element (or combination of elements) is perfectly known. It therefore has n
orthonormal eigenvectors ei with eigenvalues λI, and can be decomposed along its
eigenvectors as follows:

S ¼
Xn
i¼1

λi ei e
T
i ¼ EΛET (11.37)

where E is the matrix of eigenvectors arranged by columns and Λ is the diagonal
matrix of eigenvalues:

Λ ¼
λ1 . . . 0

..

. . .
. ..

.

0 � � � λn

0B@
1CA (11.38)
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In the base for x defined by the eigenvectors, eigenvector ei has a value of 1 for
its ith element and a value of zero for all its other elements; we then see from
(11.37) that the error covariance matrix in that base is Λ. The eigenvalue λi thus
represents the error variance associated with the error pattern ei. Eigendecompo-
sition of S and ranking of eigenvalues identifies the dominant orthogonal error
patterns and their contributions to the overall error. Box 11.1 gives an example.
The eigenvalues of an error covariance matrix are all positive since they repre-
sent error variances. It follows that any error covariance matrix S is positive
definite, a condition defined by the property that xTSx ≥ 0 for any vector x of
real numbers.
Bayesian solution to the inverse problem requires construction of the prior error

covariance matrix SA ¼ εAεTA
� �

and of the observational error covariance matrix
SO ¼ εOεTO

� �
as input to the problem. The observational error vector εO is the sum of

the instrument error vector εI, the representation error vector εR, and the forward
model error vector εM, in the same way as for the scalar problem (11.12). These
errors are generally uncorrelated so that SO is the sum of the instrument error

Box 11.1 Eigendecomposition of an Error Covariance Matrix

To illustrate the eigendecomposition of an error covariance matrix, consider the matrix S:

S ¼
2 �1 0:3 0:5

�1 2 �0:2 �0:5
0:3 �0:2 1 �0:2
0:5 �0:5 �0:2 1

2664
3775 (11.39)

Its eigenvectors and eigenvalues are

e1 e2 e3 e4

E ¼
0:67 �0:24 0:64 �0:28

�0:67 �0:15 0:71 0:15
0:12 �0:78 �0:17 0:59
0:29 0:56 0:23 0:74

2664
3775

eigenvalues 3:3 1:2 1:0 0:5

(11.40)

The four eigenvectors define four orthogonal error patterns with error variances given by the
eigenvalues. The total error variance is 3.3 + 1.2 + 1.0 + 0.5 = 6.0. The first error pattern defined
by e1 contributes an error variance of 3.3, more than half of the total error variance. This error pattern
is dominated by the first two elements 1 and 2, as would be expected since they contribute most of
the error variance in the diagonal of S. The error pattern has opposite dependences for elements
1 and 2, as would be expected from the negative error correlation between the two
(r ¼ s12=

ffiffiffiffiffiffiffiffiffi
s11s22

p ¼ �0:5). The second error pattern as defined by e2 amounts to 20% of the
total error variance and accounts for the error patterns associated with elements 3 and 4, again with
opposite dependences reflecting their negative error covariance. The third and fourth error patterns are
less straightforward to interpret but account together for only 25% of the total error variance.
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covariance matrix SI ¼ εIεTI
� �

, the representation error covariance matrix
SR ¼ εRεTR

� �
, and the forward model error covariance matrix SM ¼ εMεTM

� �
:

SO ¼ SI þ SR þ SM (11.41)

Note the similarity to the addition of variances in the scalar problem (11.13).
It is generally difficult to go beyond rough estimates in specifying the error

covariance matrices SA and SO. Box 11.2 gives some simple construction proced-
ures. Particular uncertainty applies to constructing the off-diagonal terms (covariance
structure). Simple assumptions are usually made, such as an error correlation length
scale that relates adjacent vector elements and populates the off-diagonals nearest to
the diagonal, producing a band matrix (Box 11.2). However, there is no guarantee
that such an ad-hoc construction will yield a bona fide error covariance matrix, as the
assumed error correlations between different elements may not be consistent across
the whole vector. This problem is more likely to arise if the covariance structure is
extensive. The validity of the construction can be checked by computing the
eigenvalues and verifying that they are all positive. If they are not then the matrix
needs to be corrected.

Box 11.2 Construction of Prior and Observational Error Covariance Matrices

Accurate knowledge of the prior and observational error covariance matrices SA and SO is in general
not available and rough estimates are often used. It is good practice in those cases to repeat the
inversion with a range of estimates of SA and SO – for example, changing their magnitudes by a
factor of 2 – to assess the implied uncertainty on inversion results.
Estimating SA often relies on expert judgment regarding the quality of the prior information. In

the absence of better knowledge, simple estimates are often used. For example, one might assume
a uniform 50% error on the individual components of xA with no error correlation between the
components. In that case, SA is a diagonal matrix with elements 0.25x2A, i . Error correlation between
adjacent components of xA is often approximated by an e-folding length scale, populating the off-
diagonals of SA adjacent to the diagonal and with a cut-off beyond which the off-diagonal terms
are zero. This produces a band matrix where the presence of a large population of zero elements
(sparse matrix) allows the use of fast algorithms for matrix inversion. For example, let us assume
50% error on the individual components of xA, an error correlation coefficient r = 0.5 for adjacent
components, and zero error correlation for non-adjacent components. The resulting prior error
covariance matrix is given by

S ¼

0:25x2A, 1 0:125xA, 1xA, 2 0 � � � 0

0:125xA, 1xA, 2 0:25x2A, 2 0:125xA, 2xA, 3 0 ..
.

0 . .
. . .

.

..

.

0

0BBBBBBB@

1CCCCCCCA (11.42)

The observational error covariance matrix SO can be constructed by adding the contributions from
the instrument error (SI), representation error (SR), and forward model error (SM) estimated
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Box 11.2 (cont.)

independently. SI is typically a diagonal matrix that can be obtained from knowledge of the
instrument precision relative to calibration standards. SR can be constructed from knowledge of the
subgrid variability of observations and can also in general be assumed diagonal. Construction of SM
is more difficult as calibration data for the forward model are generally not available. An estimate
can be made by comparing different independent forward models.
An alternate approach for constructing SO is the residual error method (Heald et al., 2004). In

this method, we conduct a forward model simulation using the prior estimate of the state vector,
compare to observations, and subtract the mean bias to obtain the observational error:

εO ¼ y� F xAð Þ � y� F xAð Þ (11.43)

where the averaging can be done over the ensemble of observations or just a subset (for example,
the observation time series at a given location). Here we assume that the systematic component of
the error in y – F(xA) is due to error in the state vector x to be corrected through the inversion,
while the random component is the observational error. The statistics of εO are then used to
construct SO. An example is shown in Box 11.2 Figure 1. The assumption that the systematic error is
due solely to x may not be correct, as there may also be bias in the observing system; however, it is
consistent with the premise of the inverse analysis that errors be random. From independent
knowledge of SI and SR one can infer the forward model error covariance matrix as SM = SO – SI – SR,
and from there diagnose the dominant terms contributing to the observational error.

Box 11.2
Figure 1

Diagonal terms of the observational error covariance matrix constructed for an inversion of carbon
monoxide (CO) sources in East Asia in March–April 2001 using MOPITT satellite observations of CO
columns and a CTM as forward model. The daily observations are averaged over 2	 � 2.5	 CTM
grid squares and compared to the CTM simulation using the prior estimate of sources, producing a
time series of CTM-MOPITT differences in each grid square. The mean of that time series is
subtracted and the residual difference defines the observational error for that grid square. The
resulting error variance is normalized to the mean CO column for the grid square, thus defining a
relative error expressed as percentage. The off-diagonal terms of the observational error covariance
matrix are derived from an estimated 180-km error correlation length scale. From Heald et al. (2004).
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11.4.2 Gaussian Probability Density Function for Vectors

Application of Bayes’ theorem to the vector-matrix formalism requires formulation
of PDFs for vectors. We derive here the general Gaussian PDF formulation for a
vector x of dimension n with expected value E[x] and error covariance matrix S. If
the errors xi – E[xi] for the individual elements of x are uncorrelated (i.e., if S is
diagonal), then the PDF of the vector is simply the product of the PDFs for the
individual elements. This simple solution can be obtained by projecting x on the
basis of eigenvectors ei of S with i = [1, . . . n]. The error variances in that base
are the eigenvalues λi of S (see derivation in Section 11.4.1). Let z = ET (x – E[x]) be
the value of x – E[x] projected on the eigenvector basis, where E is the matrix of
eigenvectors arranged by columns. The PDF of z is then

P zð Þ ¼
Y
i

1

2πλið Þ1=2
exp � z2i

2λi

	 
" #
¼ 1

2πð Þn=2Qi λ
1=2
i

exp �
X
i

z2i
2λi

" #
(11.44)

which can be rewritten as

P zð Þ ¼ 1

2πð Þn=2 Sj j1=2
exp � 1

2
zTΛ�1z

	 

(11.45)

Here |S| is the determinant of S, equal to the product of its eigenvalues:

Sj j ¼
Y
i

λi (11.46)

and Λ is the diagonal matrix of eigenvalues (11.38). Replacing z in (11.45), we
obtain:

P xð Þ ¼ 1

2πð Þn=2 Sj j1=2
exp � 1

2
x� E x½ �ð ÞTEΛ�1ET x� E x½ �ð Þ

	 

(11.47)

Recall the matrix spectral decomposition S = EΛET (11.37). A matrix and its inverse
have the same eigenvectors and inverse eigenvalues so that S–1 = EΛ–1ET. Replacing
into (11.47) we obtain the general PDF expression for the vector x:

P xð Þ ¼ 1

2πð Þn=2 Sj j1=2
exp � 1

2
x� E x½ �ð ÞTS�1 x� E x½ �ð Þ

	 

(11.48)

11.4.3 Jacobian Matrix

The Jacobian matrix is the derivative of the forward model. We denote it K in this
chapter to avoid confusion with the standard notation for the cost function (J). The
Jacobian gives the local sensitivity of the observation variables y to the state
variables x as described by the forward model:

K ¼ —xF ¼ ∂y
∂x

(11.49)

with individual elements kij ¼ ∂yi=∂xj. It is used in inverse modeling to compute the
minimum of the Bayesian cost function (see (11.27) for application to the simple
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scalar problem). It is also used in the analytical solution to the inverse problem as a
linearization of the forward model (see (11.28) for application to the simple scalar
problem). If the forward model is linear, then K does not depend on x and fully
describes the forward model for the purpose of the inversion. If the forward model is
nonlinear, then K needs to be calculated initially for the prior estimate xA, represent-
ing the best initial guess for x, and then re-calculated as needed for updated values of
x during iterative convergence to the solution.
Construction of the Jacobian matrix may be done analytically if the forward model

is simple, as for example in a 0-D chemical model where the evolution of concen-
trations for the n different species is determined by first-order kinetic rate expres-
sions. If the forward model is complicated, such as a 3-D CTM, then the Jacobian
must be constructed numerically. This can be done column by column if the
dimension of the state vector is not so large as to make it computationally prohibi-
tive. The task involves first conducting a base forward model calculation using
the prior estimate xA over the observation period, and then successively perturbing
the individual elements xi of the state vector by small increments Δxi to calculate the
resulting perturbation Δy. This yields the sensitivity vector Δy=Δxi 
 ∂y=∂xi, which
is the ith column of the Jacobian. A total of n + 1 forward model calculations are
required to fully construct the Jacobian matrix.
If the observations are sparse and the state vector is large, such as in a receptor-

oriented problem where we wish to determine the sensitivity of concentrations at a
few selected locations to a large array of surface fluxes, then a more effective way
to construct the Jacobian is row by row using the adjoint of the forward model; this
is described below. If both the state vector and the observation vector are large,
then one can bypass the calculation of the Jacobian matrix in the minimization of
the cost function by using the adjoint of the forward model; this will be described
in Section 11.6.

11.4.4 Adjoint

The adjoint of a forward model is the transpose KT of its Jacobian matrix (Section
11.4.3). It turns out to be very useful in inverse modeling applications for atmos-
pheric chemistry where observed concentrations are used to constrain a state vector
of emissions or concentrations at previous times. In that case, the adjoint model
does not necessarily involve explicit construction of KT, but instead the application
of KT to vectors called adjoint forcings. We will discuss this in Section 11.6. The
adjoint model can also be useful for numerical construction of the Jacobian matrix
when dim(y) � dim(x). As we will see, by using the adjoint we can construct the
Jacobian matrix row by row, instead of column by column, and the number of model
simulations needed for that purpose is dim(y) rather than dim(x). A common appli-
cation is in receptor-oriented problems where we seek, for example, to determine the
sensitivity of the model concentration at a particular point to the ensemble of
concentrations or emissions at previous times over the 3-D model domain. In that
example, dim(y) = 1 but dim(x) can be very large, and a single pass of the adjoint
model delivers the full vector of sensitivities. Box 11.3 illustrates the construction of
the adjoint in a simple case.
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To understand how the adjoint works, consider a CTM discretized over time steps
[t0, . . . ti, . . . tp]. Let y(p) represent the vector of gridded concentrations of dimension
m at time tp. We wish to determine its sensitivity to some state vector x(0) of
dimension n at time t0. For example, x could be the gridded emissions. The
corresponding Jacobian matrix is Κ ¼ ∂y pð Þ=∂x 0ð Þ. By the chain rule,

K ¼ ∂y pð Þ
∂x 0ð Þ

¼ ∂y pð Þ
∂y p�1ð Þ

∂y p�1ð Þ
∂y p�2ð Þ

:::
∂y 1ð Þ
∂y 0ð Þ

∂y 0ð Þ
∂x 0ð Þ

(11.50)

where the right-hand side is a product of matrices. The adjoint model applies the
transpose:

KT ¼ ∂y pð Þ
∂y p�1ð Þ

∂y p�1ð Þ
∂y p�2ð Þ

. . .
∂y 1ð Þ
∂y 0ð Þ

∂y 0ð Þ
∂x 0ð Þ

 !T
¼ ∂y 0ð Þ

∂x 0ð Þ

� �T ∂y 1ð Þ
∂y 0ð Þ

 !T
:::

∂y p�1ð Þ
∂y p�2ð Þ

 !T
∂y pð Þ
∂y p�1ð Þ

 !T
(11.51)

where we have made use of the property that the transpose of a product of matrices is
equal to the product of the transposed matrices in reverse order: (AB)T = BTAT.

Consider now the application of KT as expressed by (11.51) to a unit vector
v = (1, 0, . . . 0)T taken as adjoint forcing. Following (11.51), we begin by applying
matrix

�
∂y pð Þ=∂y p�1ð Þ

�T
to v:

∂y pð Þ
∂y p�1ð Þ

 !T
1
0
..
.

0

0BB@
1CCA ¼

∂y pð Þ, 1=∂y p�1ð Þ, 1
∂y pð Þ, 1=∂y p�1ð Þ, 2
..
.

∂y pð Þ, 1=∂y p�1ð Þ,m

0BBB@
1CCCA ¼ ∂y pð Þ, 1

∂y p�1ð Þ
(11.52)

Box 11.3 Simple Adjoint Construction

Consider a three-element state vector (x0, y0 z0)
T on which an operation x = y2 + z is applied.

The resulting vector (x1, y1, z1)
T is

x1 ¼ y20 þ z0
y1 ¼ y0
z1 ¼ z0

The Jacobian matrix for that operation is given by

K ¼
∂x1=∂x0 ∂x1=∂y0 ∂x1=∂z0
∂y1=∂x0 ∂y1=∂y0 ∂y1=∂z0
∂z1=∂x0 ∂z1=∂y0 ∂z1=∂z0

0@ 1A ¼
0 2y0 1
0 1 0
0 0 1

0@ 1A
and the adjoint is then

KT ¼
0 0 0
2y0 1 0
1 0 1

0@ 1A
The null value of the first row of KT means that (x1, y1, z1)

T has no sensitivity to x0.
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This yields a vector of adjoint variables ∂y pð Þ, 1=∂y p�1ð Þ that represents the sensitivity
of y(p),1 to y(p–1). Let us now apply the next matrix

�
∂y p�1ð Þ=∂y p�2ð Þ

�T
in (11.51) to

this vector of adjoint variables:

∂y p�1ð Þ
∂y p�2ð Þ

 !T

∂y pð Þ,1=∂y p�1ð Þ,1
∂y pð Þ,1=∂y p�1ð Þ,2

..

.

∂y pð Þ,1=∂y p�1ð Þ,m

0BBBBB@

1CCCCCA¼

∂y p�1ð Þ,1
∂y p�2ð Þ,1

∂y pð Þ,1
∂y p�1ð Þ,1

þ ∂y p�1ð Þ,2
∂y p�2ð Þ,1

∂y pð Þ,1
∂y p�1ð Þ,2

þ :::

∂y p�1ð Þ,1
∂y p�2ð Þ,2

∂y pð Þ,1
∂y p�1ð Þ,1

þ ∂y p�1ð Þ,2
∂y p�2ð Þ,2

∂y pð Þ,1
∂y p�1ð Þ,2

þ :::

..

.

∂y p�1ð Þ,1
∂y p�2ð Þ,m

∂y pð Þ,1
∂y p�1ð Þ,1

þ ∂y p�1ð Þ,2
∂y p�2ð Þ,m

∂y pð Þ,1
∂y p�1ð Þ,2

þ :::

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA

¼

∂y pð Þ,1=∂y p�2ð Þ,1
∂y pð Þ,1=∂y p�2ð Þ,2

..

.

∂y pð Þ,1=∂y p�2ð Þ,m

0BBBBB@

1CCCCCA¼ ∂y pð Þ,1
∂y p�2ð Þ

(11.53)

where we have made use of

∂y pð Þ, 1
∂y p�2ð Þ, j

¼
Xm
k¼1

∂y pð Þ, 1
∂y p�1ð Þ,k

∂y p�1ð Þ,k
∂y p�2ð Þ, j

(11.54)

We thus obtain ∂y pð Þ, 1=∂y p�2ð Þ. Application of the next matrix ∂y p�2ð Þ=∂y p�3ð Þ
� �T

to
this vector yields ∂y pð Þ, 1=∂y p�3ð Þ and so on. By sequential application of the suite of
matrices in (11.51) we thus obtain ∂y pð Þ, 1=∂x 0ð Þ, which is a row of the Jacobian
matrix. Repeating this exercise for the m unit vectors v representing the different
elements of y yields the full matrix K ¼ ∂y pð Þ=∂x 0ð Þ.
Notice from the above description that a single pass with the adjoint yields the

sensitivity vectors ∂y pð Þ, 1=∂y p�1ð Þ, ∂y pð Þ, 1=∂y p�2ð Þ, . . . ∂y pð Þ, 1=∂y 0ð Þ. This effectively
integrates the CTM back in time, providing the sensitivity of the concentration at
a given location and time (here y(p),1) to the complete field of concentrations at
prior times, i.e., the backward influence function. The same single pass with the
adjoint can also provide the sensitivities of y(p),1 to the state vector at any prior time;
thus:

∂y pð Þ
∂x pð Þ

� �T
1
0
..
.

0

0BB@
1CCA ¼

∂y pð Þ, 1=∂x pð Þ, 1
∂y pð Þ, 1=∂x pð Þ, 2
..
.

∂y pð Þ, 1=∂x pð Þ,n

0BBB@
1CCCA¼ ∂y pð Þ, 1

∂x pð Þ
(11.55)

∂y p�1ð Þ
∂x p�1ð Þ

� �T ∂y pð Þ
∂y p�1ð Þ

 !T
1
0
..
.

0

0BB@
1CCA ¼

∂y pð Þ, 1=∂x p�1ð Þ, 1
∂y pð Þ, 1=∂x p�1ð Þ, 2
..
.

∂y pð Þ, 1=∂x p�1ð Þ,n

0BBB@
1CCCA¼ ∂y pð Þ, 1

∂x p�1ð Þ
(11.56)
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∂y p�2ð Þ
∂x p�2ð Þ

� �T ∂y p�1ð Þ
∂y p�2ð Þ

 !T
∂y pð Þ
∂y p�1ð Þ

 !T
1
0
..
.

0

0BB@
1CCA ¼

∂y pð Þ, 1=∂x p�2ð Þ, 1
∂y pð Þ, 1=∂x p�2ð Þ, 2
..
.

∂y pð Þ, 1=∂x p�2ð Þ,n

0BBB@
1CCCA¼ ∂y pð Þ, 1

∂x p�2ð Þ

(11.57)

and so on. For example, if the state vector represents the emission field, we can
obtain in this manner the sensitivity of the concentration y(p),1 to the emissions at all
prior time steps. Box 11.4 illustrates such an application.

The sensitivities computed by the adjoint method are true local derivatives. For a
nonlinear problem they are sometimes called adjoint sensitivities. This is to contrast
them with the sensitivities obtained by finite differencing calculations, i.e., by

Box 11.4 Computing Adjoint Sensitivities

We illustrate the computation of adjoint sensitivities with an example from Kim et al. (2015),
shown in Box 11.4 Figure 1. Here the adjoint of a CTM is used to compute the sensitivity of mean
smoke particle concentrations in Singapore in July–November 2006 to fires in different locations of
equatorial Asia. The CTM has 0.5	 � 0.67	 horizontal grid resolution and simulates smoke
concentrations on the basis of a fire emission inventory that has the same grid resolution as the
CTM and daily temporal resolution. The fires emit smoke particles that are transported by the model
winds and are eventually removed by wet and dry deposition. Panel 1 shows the mean emissions
and winds used in the CTM, and Panel 2 shows the resulting distribution of smoke concentrations in
surface air.
We now want to use the CTM adjoint to determine the emissions contributing to the mean smoke

concentrations in Singapore in July–November 2006. Fire emissions were limited to that period (dry
season). We define x(i) as the vector of 2-D gridded fire emissions at CTM time ti 2 [t1, tp] where t1
refers to 00:00 local time on July 1 and tp refers to 00:00 on December 1. We define y(i) as the vector
of 3-D smoke concentrations simulated by the model at time step i, and choose the first element of
that vector y(i),1 to represent the smoke concentration in surface air at Singapore.
Following (11.52), we apply the model adjoint over one time step [tp, tp–1] to a unit forcing

v = (1, 0, . . . 0)T at time tp. This yields the sensitivity vector ∂y pð Þ, 1=∂y p�1ð Þ that describes the
sensitivity of concentrations at Singapore at time tp to the 3-D field of concentrations at time tp–1. It
also yields the sensitivity vector ∂y pð Þ, 1=∂x pð Þ that describes the sensitivity of concentrations at
Singapore to the 2-D field of emissions at time tp. We archive ∂y pð Þ, 1=∂x pð Þ, add a unit forcing v
to the sensitivity vector ∂y pð Þ, 1=∂y p�1ð Þ, and apply the adjoint over the next time step [tp–1, tp–2].
From there we get ∂

�
y pð Þ, 1 þ y p�1ð Þ, 1

�
=∂y p�2ð Þ and ∂

�
y pð Þ, 1 þ y p�1ð Þ, 1

�
=∂x p�1ð Þ. We

archive ∂
�
y pð Þ, 1 þ y p�1ð Þ, 1

�
=∂x p�1ð Þ, which is the sensitivity of concentrations in Singapore to

the emission field at time tp–1, and proceed in that manner backward in time until time step 1.
A single pass of the adjoint simulation over the time interval [tp, t1] thus yields sensitivities of

the mean concentration in Singapore y ¼ 1=pð ÞPp
1
y ið Þ, 1 over the period [t1, tp] to the emission

field at every time step over that period:
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Box 11.4 (cont.)

Box 11.4
Figure 1

Application of the adjoint method to determine the sensitivity of smoke concentrations in Singapore
in July–November 2006 to fire emissions across equatorial Asia. Panel 1 shows mean July-November
fire emissions and 0–1 km winds. Panel 2 shows the mean smoke concentrations simulated by
the CTM (circles show observations). Panel 3 shows the sensitivity of smoke concentrations in
Singapore to fire emissions in different regions. Panel 4 shows the contributions of different fire
regions to the smoke concentrations in Singapore. Adapted from Kim et al. (2015).
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perturbing the state vector elements by Δxi and diagnosing the difference in output
Δy. Finite differencing entails some effect of nonlinearity, which can be reduced by
selecting a small Δxi but at the cost of numerical noise.

Henze et al. (2007) describe in detail the steps involved in constructing the adjoint
of a CTM. The main difficulty is linearization to express the CTM as a product of
matrices. Linearization involves differentiation of the model (cf. (11.2)). One can
differentiate either the model equations (continuous adjoint) or the model code
(discrete adjoint). The discrete adjoint is more consistent with the actual CTM.
The differentiated model is the Jacobian of the CTM and is called the tangent linear
model (TLM). Construction of the TLM can be an arduous task and commercial
software packages are available for this purpose.

We present here an elementary example of CTM adjoint construction to
illustrate the basic tasks involved. The CTM calculates the evolution of concen-
trations over a time step [ti, ti+1] by successive application of operators describing
the different model processes. Consider a CTM including 3-D advection
(operator A), chemistry (operator C), and emissions (operator E), with operator
splitting described by

y iþ1ð Þ ¼ A•C•E y ið Þ
� �

(11.60)

∂y
∂x pð Þ

¼ 1
p

∂y pð Þ, 1
∂x pð Þ

∂y
∂x p�1ð Þ

¼ 1
p

∂ y pð Þ, 1 þ y p�1ð Þ, 1
� �

∂x p�1ð Þ
..
.

∂y
∂x 1ð Þ

¼ 1
p

∂
Xp
i¼1

y ið Þ, 1

∂x 1ð Þ

(11.58)

where we recognize that emissions at a given time can only affect concentrations after that time.

Panel 3 shows the mean adjoint sensitivities 1=pð ÞPp
i¼1

∂y=∂x ið Þ. These indicate the potential of

fires occurring in different locations to affect Singapore. We can express the smoke concentration at
Singapore in July–November 2006 as the sum of these adjoint sensitivities weighted by the actual
emissions:

y ¼
X
j

Xp
i¼1

∂y
∂x ið Þ, j

x ið Þ, j (11.59)

where the index j refers to the 2-D emission grid. Panel 4 shows the contributions
Pp
i¼1

∂y
∂x ið Þ, j

x ið Þ, j
of emissions in individual model grid squares j to the mean smoke concentration at Singapore.
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where the • symbol means “applied to.” The operators may or may not be linear in y.
If not, they need to be linearized by differentiation, as we did with the forward model
in (11.49). Let A, C, E be the matrices of the linear operators. We have:

y iþ1ð Þ ¼ ACEy ið Þ (11.61)

so that

∂y iþ1ð Þ
∂y ið Þ

¼ ACE (11.62)

The transpose is given by

∂y iþ1ð Þ
∂y ið Þ

 !T

¼ ETCTAT (11.63)

The case of linear operators offers insight into the physical meaning of the adjoint.
Let us begin with the advection operator. Three-dimensional advection is generally
described by operator splitting with 1-D operators. Consider then a 1-D advection
algorithm using a linear upstream scheme on an Eulerian grid (see Section 7.3.2):

y iþ1ð Þ, j ¼ αy ið Þ, j�1 þ 1� αð Þy ið Þ, j (11.64)

where α is the Courant number, (i) is the time index, and the flow is from gridbox
j – 1 to j. Let us take as an example a uniform cyclical flow over a domain j = [1, 3].
The advection operator is written in matrix form as

A ¼ ∂y iþ1ð Þ
∂y ið Þ

 !
advection

¼
1� α 0 α
α 1� α 0
0 α 1� α

0@ 1A (11.65)

and its transpose is

AT ¼ ∂y iþ1ð Þ
∂y ið Þ

 !T

advection

¼
1� α α 0
0 1� α α
α 0 1� α

0@ 1A (11.66)

We see that the transpose describes the reverse of the actual flow:

y iþ1ð Þ, j ¼ αy ið Þ, jþ1 þ 1� αð Þy ið Þ, j (11.67)

This result is readily generalizable to any number of gridboxes and non-uniform flow.
Thus the adjoint of a linear transport operator is simply the reverse flow, and this is
also found in the continuous adjoint by differentiating the advection equation (Henze
et al., 2007). Advection operators may not be exactly linear because of safeguards for
stability, positivity, or mass conservation. Nevertheless, the approximation of reverse
flow is frequently used to construct the adjoint because of its simplicity.
Consider now a first-order loss chemistry operator dy/dt = –ky where k is a loss

rate constant. Application of this operator over a time step Δt is expressed in matrix
form as follows:

C ¼ ∂y iþ1ð Þ
∂y ið Þ

 !
chemistry

¼
exp �kΔt½ � 0

. .
.

0 exp �kΔt½ �

0B@
1CA (11.68)
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which is a diagonal matrix. In this case the transpose operator is the same as the
original operator; we refer to the operator as self-adjoint. It makes sense that the
sensitivity going back in time should decay with the same time constant as the first-
order chemical loss. From a coding standpoint, it means that the adjoint can use the
same chemical operator as the forward model.

Finally, consider the emission operator E. Its application over a time step Δt
modifies the concentration field as y(i+1) = y(i) + x(i+1)Δt where x is an emission flux
vector that is non-zero only for gridboxes receiving emissions. In terms of sensitivity
to concentrations at the previous time step, the emission operator is the identity
matrix Im and thus self-adjoint:

E ¼ ∂y iþ1ð Þ
∂y ið Þ

 !
emissions

¼ Im (11.69)

while the sensitivity to emissions is also self-adjoint:

∂y iþ1ð Þ
∂x iþ1ð Þ

¼ ImΔt (11.70)

We have thus shown how the matrices AT, CT, ET can be computed in simple cases to
define the adjoint model. In this manner the adjoint model marches back in time to
describe the sensitivity of concentrations to concentrations and emissions at prior
times. See Box 11.4 for an example application.

Another simple application of the adjoint is to linear multi-box models, often used
in geochemical modeling to simulate the evolution of concentrations in m different
coupled reservoirs (boxes). The model is described by

dy
dt

¼ Kyþ s (11.71)

where y is the vector of concentrations or masses in the different boxes, K is a
Jacobian matrix of transfer coefficients kij describing the transfer between boxes, and
s is a source vector. Starting from initial conditions at time t0, the evolution of the
system for one time step Δt = t1 – t0 is given in forward finite difference form by

y 1ð Þ ¼ My 0ð Þ þ s 0ð ÞΔt (11.72)

where M ¼ Im þKΔt. We see that ∂y 1ð Þ=∂y 0ð Þ ¼ M and ∂y 1ð Þ=∂s 0ð Þ ¼ ImΔt; the
corresponding adjoint operators areMT and ImΔt (the source operator is self-adjoint).
Consider a time period of interest [t0, tp] (say from pre-industrial to present time).
A single pass of the adjoint backward in time over [tp, t0] yields the sensitivity of the
concentrations in a given box at a given time to the concentrations and sources at
previous times for all other boxes.

11.5 Analytical Inversion

The vector-matrix tools presented in Section 11.4 allow us to apply Bayes’ theorem
(Section 11.2) to obtain an optimal estimate of a state vector x (dim n) on the basis of
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the observation vector y (dim m), the prior information xA, the forward model F, and
the error covariance matrices SA and SΟ. This is done by finding the minimum of a
cost function describing the observational and prior constraints. Here we present the
analytical solution to this minimization problem assuming Gaussian errors. A major
advantage of the analytical approach, as we will see, is that it provides complete error
characterization as part of the solution. It can also be fast and well suited for
conducting an ensemble of inversions with varying assumptions. But it has three
limitations:

1. It requires construction of the Jacobian K = —xF, which may be computationally
impractical for a very large state vector or for a nonlinear problem where the
Jacobian would have to be re-constructed at each iteration toward the solution.

2. It requires the assumption of Gaussian errors, which may not always be appro-
priate and in particular does not guarantee positivity of the solution.

3. It does not accommodate prior constraints other than specified through Bayes’
theorem.

Other approaches to solving the inverse problem that lift these limitations will be
presented in subsequent sections. The reader is encouraged to consult the simple
scalar example of Section 11.3 in order to develop intuition for the material presented
here. Many of the equations derived here have scalar equivalents in Section 11.3 that
are easier to parse and understand.

11.5.1 Optimal Estimate

Assuming Gaussian distribution of errors, the PDFs to be used for application of
Bayes’ theorem are given by (11.48):

�2 lnP xð Þ ¼ x� xAð ÞTS�1
A x� xAð Þ þ c1 (11.73)

�2 lnP yjxð Þ ¼ y� F xð Þð ÞTSO�1 y� F xð Þð Þ þ c2 (11.74)

from which we obtain by application of Bayes’ theorem, P xjyð Þ / P xð ÞP yjxð Þ:
�2 lnP xjyð Þ ¼ x� xAð ÞTS�1

A x� xAð Þ þ y� F xð Þð ÞTSO�1 y� F xð Þð Þ þ c3
(11.75)

Here c1, c2, c3 are constants. The optimal estimate is defined by the maximum of
P(x|y), or equivalently by the minimum of the scalar-valued χ2 cost function J(x):

J xð Þ ¼ x� xAð ÞTS�1
A x� xAð Þ þ y� F xð Þð ÞTS�1

O y� F xð Þð Þ (11.76)

We find this minimum by solving —xJ xð Þ ¼ 0 :

—xJ xð Þ ¼ 2S�1
A x� xAð Þ þ 2KTS�1

O F xð Þ � yð Þ ¼ 0 (11.77)

where KT ¼ —xFT is the transpose of the Jacobian matrix. Equations (11.26) and
(11.27) in Section 11.3 are the scalar analogues.
Let us assume that F(x) is linear or can be linearized as given by (11.2), i.e., F(x) =

Kx + c where c is a constant, and for simplicity of notation let c = 0 (this can always
be enforced by replacing y by y – c). We then have
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—xJ xð Þ ¼ 2S�1
A x� xAð Þ þ 2KTS�1

O Kx� yð Þ ¼ 0 (11.78)

The solution of (11.78) is straightforward and can be expressed in compact form as

bx ¼ xA þG y�KxAð Þ (11.79)

where G is the gain matrix given by

G ¼ SAK
T KSAK

T þ SO
� ��1

(11.80)

G describes the sensitivity of the optimal estimate to the observations, i.e.,
G ¼ ∂bx=∂y. It is a valuable diagnostic for the inversion as it tells us which observa-
tions contribute most to constrain specific components of the optimal estimate.
Equations (11.78), (11.79), and (11.80) have scalar analogues (11.17), (11.19), and
(11.20) in Section 11.3.

The posterior error covariance matrix bS of bx can be calculated in the same manner
as in Section 11.3 by rearranging the right-hand side of (11.75) with F(x) = Kx to be
of the form x�bxð ÞTbS�1 x� bxð Þ. This yields

bS ¼ KTS�1
O K þ S�1

A

� ��1
(11.81)

Again, note the similarity of this equation to its simple scalar equivalent (11.24) in
Section 11.3. An important feature of the analytical solution to the inverse problem is
that it provides a full characterization of errors on the optimal estimate through bS,
as well as a diagnostic of the influence of different observations through G.

11.5.2 Averaging Kernel Matrix

Error characterization in the analytical solution to the inverse problem allows us to
measure the capability of the observing system to constrain the true value of the state
vector. This is done with the averaging kernel matrix A ¼ ∂bx=∂x, representing the
sensitivity of the optimal estimate bx to the true state x. A is the product of the gain
matrix G ¼ ∂bx=∂y and the Jacobian matrix K ¼ ∂y=∂x:

A ¼ GK (11.82)

Replacing (11.82) and y ¼ Kxþ εO into (11.79) we obtain an alternate form for bx:
bx ¼ Axþ In � Að ÞxA þGεO (11.83)

or equivalently

bx ¼ xþ In � Að Þ xA � xð Þ þGεO (11.84)

where In is the identity matrix of dimension n. Equations (11.21) and (11.22) in
Section 11.3 are scalar analogues. A is a weighting factor for the relative contribution
to the optimal estimate from the true state vs. the prior estimate. Ax represents the
contribution of the true state to the solution, (In – A)xA represents the contribution
from the prior estimate, and GεΟ represents the contribution from the random
observational error mapped onto state space by the gain matrix G. A perfect obser-
vational system would have A = In. (In – A)(xA – x) is called the smoothing error.
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From (11.84) we can also derive an alternate expression for the error covariance
matrix bS:
bS¼E x�bxð Þ x�bxð ÞT

h i
¼E In�Að Þ x�xAð Þ x�xAð ÞT In�Að ÞT

h i
þE GεOε

T
OG

T
� �

¼ In�Að ÞSA In�Að ÞT þGSOG
T (11.85)

from which we see that bS can be decomposed into the sum of a smoothing error
covariance matrix In�Að ÞSA In � Að ÞT and an observational error covariance
matrix in state space GSOG

T . The smoothing error covariance matrix describes
the smoothing of the solution by the prior constraints. The observational error
covariance matrix describes the noise in the observing system.
Algebraic manipulation yields an alternate form of the averaging kernel

matrix as

A ¼ In � bSS�A1 (11.86)

which relates the improved knowledge of the state vector measured by A to the
variance reduction previously discussed for the scalar problem (see (11.25) for the
scalar analogue). This is a convenient way to derive A from knowledge of bS.
The averaging kernel matrix constructed from knowledge of SA, SO, and K is a

very useful thing to know about an observing system. When designing the observ-
ing system it can be used to evaluate and compare the merits of different designs
for quantifying x. By relating the observed state to the true state, it enables
comparison of data from different instruments (Rodgers and Connor, 2003; Zhang
et al., 2010) Box 11.5 illustrates the utility of the averaging kernel matrix in
interpreting satellite data.

11.5.3 Degrees of Freedom for Signal

The averaging kernel matrix quantifies the number of pieces of information in an
observing system toward constraining an n-dimensional state vector. This is called
the degrees of freedom for signal (DOFS) (Rodgers, 2000). Before making the
observations we had n unknowns representing the state vector elements as con-
strained solely by the prior error covariance matrix. We express that number of
unknowns as

E x�xAð ÞTS�1
A x� xAð Þ

h i
¼ n (11.87)

After making the observations the error on x is decreased, and we express this
decrease as a reduction in the number of unknowns to E

�
x� bxð ÞTS�A1 x� bxð Þ�.

The number of pieces of information from the observations is the reduction in the
number of unknowns:

DOFS ¼ E x� xAð ÞTS�1
A x� xað Þ

h i
� E x� bxð ÞTS�A1 x� bxð Þ

h i
¼ n� E x� xð ÞTS�A1 x� bxð Þ

h i
(11.88)
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The quantity x�bxð ÞTS�A1 x� bxð Þ is a scalar and is thus equal to its trace in matrix
notation:

x�bxð ÞTS�A1 x� bxð Þ ¼ tr x� bxð ÞTS�A1 x� bxð Þ
� �

¼ tr x� bxð Þ x�bxð ÞTS�A1
� �

(11.89)

where we have taken advantage of the general property tr(AB) = tr(BA). Thus

E x� bxð ÞTS�A1 x� bxð Þ
h i

¼ E tr x� bxð Þ x�bxð ÞTS�A1
� �h i

¼ tr bSS�A1� �
(11.90)

so that

DOFS ¼ n� tr bSS�A1� �
¼ tr In � bSS�A1� �

¼ tr Að Þ (11.91)

The number of pieces of information in an observing system is the trace of its
averaging kernel matrix. This concept is analogous to the relative error variance
reduction introduced in Section 11.3 with (11.25). If the matrices bS and SA are
diagonal, then we see from (11.91) that the DOFS is simply the sum of the relative
reductions in error variances σ2 for the individual state vector elements:

DOFS ¼ n�
Xn
i¼1

bσ2
i

σ2A, i
¼
Xn
i¼1

σ2A, i � bσ2
i

σ2A, i
(11.92)

Box 11.5 Averaging Kernel Matrix for an Observing System

We illustrate the analytical solution to the inverse problem with the retrieval of carbon
monoxide (CO) vertical profiles from the MOPITT satellite instrument (Deeter et al., 2003). The
instrument makes nadir measurements of the temperature-dependent IR terrestrial emission at and
around the 4.6 μm CO absorption band. Atmospheric CO is detected by its temperature contrast
with the surface. The radiances measured at different wavelengths constitute the observation vector
for the inverse problem. The state vector is chosen to include CO mixing ratios at seven different
vertical levels from the surface to 150 hPa, plus surface temperature and surface emissivity.
The forward model is a radiative transfer model (RTM) computing the radiances as a function of the
state vector values. The observational error covariance matrix is constructed by summing the
instrument error covariance matrix (obtained from knowledge of instrument noise) and the forward
model error covariance matrix (obtained from comparison of the RTM to a highly accurate but
computationally prohibitive line-by-line model). The prior CO vertical profile and its error covariance
matrix are climatological values derived from a worldwide compilation of aircraft measurements.
The prior surface temperature is specified from local assimilated meteorological data and the prior
surface emissivity is taken from a geographical database. The forward model is nonlinear, in
particular because the sensitivity to the CO vertical profile depends greatly on the surface
temperature; thus a local Jacobian matrix needs to be computed for each scene.
Box 11.5 Figure 1 (a) shows the averaging kernel matrix A constructed in this manner for

a typical ocean scene. Here, A is plotted row by row for the CO vertical profile elements only,
with each line corresponding to a given vertical level indicated in the legend. The line for level i
gives ∂x i=∂x, the sensitivity of the retrieval at that level to the true CO mixing ratios at different
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Box 11.5 (cont.)

levels. A perfect observing system (A = In) would show unit sensitivity to that level (∂bx i=∂xi ¼ 1)
and zero sensitivity to other levels. However, we see from Box 11.5 Figure 1 that the averaging
kernel elements are much less than 1 and that the information is smoothed across vertical levels.
Consider the retrieval of the CO mixing ratio at 700 hPa (blue line). We see that the retrieved

value at 700 hPa is actually sensitive to CO at all altitudes, so that it is not possible from the
retrieval to narrowly identify the CO mixing ratio at 700 hPa (or at any other specific altitude). The
temperature contrast between vertical levels is not sufficient. We retrieve instead a broad CO
column weighted toward the middle troposphere (700–500 hPa). In fact, the retrieval at 700 hPa is
more sensitive to the CO mixing ratio at 500 hPa than at 700 hPa. Physically, this means that a
given mixing ratio of CO at 500 hPa will give a spectral response similar to a larger mixing ratio at
700 hPa, because 500 hPa has greater temperature contrast with the surface.
Consider now the retrieval of CO in surface air (black line). There is some thermal contrast

between surface air and the surface itself, but the signal is very faint. If we had a perfect observing
system we could retrieve it; because of observational error, however, the sensitivity of the surface
air retrieval to surface air concentrations is close to zero. In fact, the surface air retrieval is very
similar to that at 700 hPa and exhibits the same maximum sensitivity at 700–500 hPa.
Inspection of the averaging kernel matrix in Box 11.5 Figure 1 suggests that the retrieval only

provides two independent pieces of information on the vertical profile, one for 700–500 hPa
(from the retrievals up to 500 hPa) and one for above 300 hPa (from the retrievals above 350 hPa).
We can quantify the DOFS by the trace of the averaging kernel matrix, reading and adding up from

(a) (b)

Box 11.5
Figure 1

Retrieval of CO mixing ratios by the MOPITT satellite instrument for a scene over the North Pacific.
Lines with different colors in (a) show the rows of the averaging kernel matrix for seven vertical
levels from the surface to 150 hPa. (b) Shows the MOPITT retrieval (solid line with symbols and
posterior error standard deviations) together with a validation profile measured coincidently from
aircraft. The dashed line represents the smoothing of the aircraft profile by the MOPITT averaging
kernel matrix. From Jacob et al. (2003).
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11.5.4 Evaluation of the Inverse Solution

Some basic checks need to be made to evaluate the quality of the optimal estimate
obtained from an inverse model. A first check is that the inversion has actually decreased
the cost function: J bxð Þ< J(xA). One should also check that J bxð Þ 
 mþ n, verifying that
the inverse solution is consistent with the specification of errors. If J bxð Þ >> mþ n, the
inversionwas unable to achieve a solution consistent with the specification of errors. This
can happen if errors were greatly underestimated. If J bxð Þ << mþ n, by contrast, errors
were likely overestimated. Another important test is to apply the forward model to the
optimal estimate and compare the field of F bxð Þ � y (optimal estimate minus observa-
tions) to that of F(xA) – y (prior estimate minus observations). The differences with
observations should be reduced when using the optimal estimate (this follows from the
decrease in the cost function), and the field of F bxð Þ � y should ideally be uniformly
distributed as white noise around zero. Large coherent patterns with F bxð Þ � y of consist-
ent sign suggest model bias, poor characterization of errors, or a poor choice of state
vector leading to aggregation error. Aggregation error is discussed in Section 11.5.5.

The relative weights of prior and observational errors play an important role in
determining the optimal estimate. This weighting is determined not only by the
specifications of SA and SO, but also by the relative dimensions of n and m, as these
affect the relative weighting of prior and observation terms in the computation of
the cost function (see (11.30) and discussion for the scalar example in Section 11.3).
If m � n, the solution may be insensitive to the prior estimate because the number

the figure the ∂bx i=∂xi values for the seven vertical levels. Starting from the lowest level, we find a
DOFS of 0.09 + 0.23 + 0.33 + 0.21 + 0.20 + 0.22 + 0.20 = 1.4. Thus the retrieval mostly provides
a CO column weighted toward the middle troposphere, with a smaller additional piece of
information in the upper troposphere.
The right panel of Box 11.5 Figure 1 shows the vertical profile of CO retrieved by MOPITT and

compares it to a coincident vertical profile of CO measured from aircraft. The aircraft observations
have high accuracy and can be regarded as defining the true vertical profile x. They show a layer of
elevated CO at 900–800 hPa that MOPITT does not detect, as would be expected because of the
vertical smoothing. To determine if the MOPITT retrieval is consistent with the vertical profile
measured from aircraft, we need to smooth the aircraft observations with the averaging kernel
matrix in order to simulate what MOPITT should actually observe. Smoothing defines a vertical
profile x0, shown as the dashed line in the right panel of Box 11.5 Figure 1:

x0 ¼ Axþ In � Að ÞxA (11.93)

This is the expected profile (εO = 0) that MOPITT should see if its capability is as advertised by the
error analysis that led to the averaging kernel matrix. We see that the smoothed vertical profile
from the aircraft agrees closely with the MOPITT observation, supporting MOPITT’s error character-
ization and implying that MOPITT provides an accurate measurement of the weighted tropospheric
column (and not much more). Such aircraft validation of satellite instruments is critical for
identifying retrieval biases and inadequate characterization of retrieval errors.
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of observational terms in the cost function overwhelms the number of prior terms.
An implicit assumption in such a construction is that the observations are independ-
ent and identically distributed across the observational error PDF. However, we often
have little confidence that this is the case. Autocorrelation between observations not
captured by the covariance structure of SO will result in excessive weight given to
the observations. Beyond this concern, there is often large uncertainty in the specifi-
cations of SA and SO. A way of testing the sensitivity to error specification is to
introduce a regularization factor γ in the cost function:

J xð Þ ¼ x� xað ÞTS�1
A x� xað Þ þ γ y� F xð Þð ÞTS�1

O y� F xð Þð Þ (11.94)

which amounts to scaling the observational error covariance matrix SO by 1/γ. The
solution bx can be calculated for different values of γ spanning the range of confi-
dence in error characterization. By plotting the cost function J bxð Þ versus γ, we may
find that a value of γ other than 1 leads to an improved solution.
We pointed out in Section 11.3 the danger of over-interpreting the reduction in error

variance that results from the accumulation of a large number of observations. Idealized
assumption of random and representatively sampled observational error may cause bS to
greatly underestimate the actual error onbx. Amore realistic way of assessing the error inbx is to conduct an ensemble of inverse calculations with various perturbations to model
parameters and error covariance statistics (such as through the regularization factor γ)
within their expected uncertainties. Model parameters are often a recognized potential
source of bias, so that producing an ensemble based on uncertainties in these parameters
can be an effective way to address the effect of biases on the optimal estimate.

11.5.5 Limitations on State Vector Dimension: Aggregation Error

One would ideally like to use a state vector as large as possible in order to maximize
the amount of information from the inversion. There are two limitations to doing so,
one statistical and one computational. There are no such limitations on the size of the
observation vector (see Box 11.6).

Box 11.6 Sequential Updating in Sampling the Observation Vector

There is in general no computational limitation on the size m = dim(y) of the observation vector in
an analytical inversion, even though one needs to invert a m � m matrix in the construction of G.
The reason is that it is usually possible to partition the observation vector into small uncorrelated
“packets” of observations that are successively ingested into the inverse analysis. Rodgers (2000)
calls this procedure sequential updating. The solution (bx,bS) obtained after ingesting one packet is
used as the prior estimate for the next packet, and so on. The final solution is exactly the same as if
the entire observation vector were ingested at once. The only limitation is that there must be no
observational error correlation between packets; in other words, SΟ for the ensemble of observa-
tions must be a block diagonal matrix where the blocks are the individual packets. It is indeed most
computationally efficient to ingest uncorrelated data packets sequentially in the inversion. In the
extreme case where individual observations have no error correlation, each single observation can
be ingested successively and separately.
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The statistical limitation in the size of the state vector is imposed by the amount of
information actually provided by the observations. As the size of the state vector
increases, the number of prior terms in the cost function (11.76) increases while the
number of observation terms stays the same. As a result, the optimal estimate is more
constrained by the prior estimate, and the smoothing error increases. This is not
necessarily a problem if prior error correlations are properly quantified, so that
information from the observations can propagate between state vector elements.
However, this is generally not the case. In a data assimilation problem where the
state vector dimension is by design much larger than the observational vector
dimension, the effect of the prior constraints can be moderated by allowing observa-
tions to modify state variables only locally, or by using a regularization factor as in
(11.94) to balance the contributions of the prior estimate and the observations in the
cost function.

The computational limitation arises from the task of constructing the Jacobian
matrix K and the gain matrix G. Analytical solution to the inverse problem
requires these matrices, but the computational cost of constructing them becomes
prohibitive as the state vector dimension becomes very large. This constraint can
be lifted by using a numerical (variational) rather than analytical method to solve
the inverse problem, as described in Sections 11.6 and 11.8. However, numerical
methods may not provide error characterization as part of the solution. A major
advantage of the analytical solution is to provide a closed form of the posterior
error covariance matrix and from there the averaging kernel matrix and
the DOFS.

Say that we wish to reduce the state vector dimension in order to decrease the
smoothing error or to enable an analytical solution. Starting from an initially large
state vector x, we can use various clustering schemes to reduce the state vector
dimension (Turner and Jacob, 2015). Clustering introduces additional observational
error by not allowing the relationship between the clustered state vector elements to
change in the forward model. This is called the aggregation error and is part of the
forward model error (the relationship between clustered elements is now a model
parameter rather than resolved by the state vector). As the state vector dimension
decreases, the smoothing error decreases while the aggregation error increases. We
expect therefore an optimum state vector dimension where the total error is min-
imum. As long as aggregation error is not excessive, it may be advantageous to
decrease the state vector dimension below that optimum in order to facilitate an
analytical inversion with full error characterization.

The aggregation error for a given choice of reduced-dimension state vector
can be characterized following Turner and Jacob (2015). Consider the clustering
of an initial state vector x of dimension n to a reduced state vector xω of
dimension p. The clustering is described by xω = Γωx where the p � n matrix
Γω is called the aggregation matrix. The Jacobian matrix of the forward model is
K in the original inversion and Kω in the reduced inversion. For the same
ensemble of observations y, the observational errors in the original and reduced
inversions are

ε ¼ y�Kx (11.95)

εω ¼ y�Kωxω (11.96)
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The only difference between the two errors is due to aggregation, causing εω to be
greater than ε. Thus the aggregation error εa is

εa ¼ εω � ε ¼ Kx�Kωxω ¼ K �KωΓωð Þx (11.97)

We see from (11.97) that the aggregation error is a function of the true state x, and the
aggregation error statistics therefore depends on the PDF of the true state. Let x be the
mean value of the true state; the covariance matrix of the true states is Se = E[(x – x)
(x – x)T]. The aggregation bias is the mean value εa of the aggregation error:

εa ¼ E εa½ � ¼ K �KωΓωð Þx (11.98)

and the aggregation error covariance matrix Sa is

Sa ¼ E εa � εað Þ εa�εað ÞT
h i

¼ K �KωΓωð ÞSe K �KωΓωð ÞT (11.99)

In general we have no good knowledge of x and Se. However, we can still estimate the
aggregation error covariance matrix when designing the inversion system to select an
optimum dimension for the state vector. For this purpose we use our prior knowledge
xA and SA as the best estimates for x and Se. When aggregating state vector elements,
the relationship between state vector elements in the forward model is not allowed to
depart from the prior estimate. It follows that if x = xA then there is no aggregation
bias since the prior relationship between state vector elements is true and hence
K ¼ KωΓω; the forward model with the reduced state vector is identical to that with
the original state vector. The aggregation error covariance matrix is given by

Sa ¼ K �KωΓωð ÞSA K �KωΓωð ÞT (11.100)

The corresponding aggregation error covariance matrix in state space (error on x)
is GSaG

T.
We previously derived in (11.85) the smoothing and observational error covar-

iance matrices for x. We can now write a complete error budget for x including the
aggregation error for a reduced-dimension state vector:

bSω ¼ In �Aωð ÞSA,ω In �Aωð ÞT þGω K�KωΓωð ÞSA K�KωΓωð ÞTGT
ω þ GωSOG

T
ω

smoothing error aggregation error observational error
(11.101)

where bSω, SA,ω, Aω, and Gω apply to the reduced-dimension state vector. Equation
(11.101) separates the aggregation error from the observational error by having SO
include forward model error only for the original-dimension state vector (not includ-
ing the effect of aggregation). We can also express the posterior error covariance
matrix bS�

ω in observation space as describing the error on Kωxω:bS�
ω
¼Kω In�Aωð ÞSA,ω In�Aωð ÞTKT

ωþKωGω K�KωΓωð ÞSA K�KωΓωð ÞTGT
ωK

T
ωþKωGωSOG

T
ωK

T
ω

smoothing error aggregation error observational
error

(11.102)

Figure 11.3 illustrates how the different error components of (11.102) contribute to
the overall posterior error covariance matrix. The smoothing error decreases with
decreasing state vector size while the aggregation error increases. There is an
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optimum dimension of x where the posterior error is minimum. Reducing the state
vector dimension beyond this minimum may still be desirable for computational
reasons and to achieve an analytical solution, and incurs little penalty as long as the
aggregation error remains small relative to the observational error. Beyond a certain
reduction the aggregation error grows rapidly to exceed the observational error.

Figure 11.4 shows the impact of smoothing errors in an inversion of satellite
observations of methane columns to constrain methane fluxes over North America at
high spatial resolution. The top-left panel gives results from an attempt to constrain
emissions at the 50 � 50 km2 native grid resolution of the forward model (state
vector with n = 7906). Correction to the prior emissions is less than 50% anywhere
because the information from the satellite data is insufficient to constrain emissions
at such a high resolution. There results a large smoothing error – the solution is
strongly anchored by the prior estimate. The top-right panel gives results from
an inversion where the state vector has been reduced to n = 1000 elements by
hierarchical clustering of the native grid. Corrections to the prior emissions are much
larger. The bottom-right panel compares the quality of inversions with different
levels of hierarchical clustering (n ranging from 3 to 7906) in terms of their
ability to fit the satellite data. This fit is measured by the observational term

Number of State Vector Elements
1 10 100 1,000 10,000

0

5

10

15

20

25

30

M
ea

n 
E

rr
or

 S
td

 D
ev

 (
pp

bv
)

Aggregation
Smoothing
Observational
Total
90% Range

Figure 11.3 Total error budget from the aggregation of state vector elements in an inverse model. The
application here is to an inversion of methane emissions over North America using satellite observations
of methane and with n = 7.366 native-resolution state vector elements representing methane emissions
on a 50 � 50 km2 grid. Results are shown as the square roots of the means of the diagonal terms
(mean error standard deviation) for the aggregation, smoothing, observational, and total (posterior) error
covariance matrices following (11.102) There is an optimum state vector size for which the total error is
minimum and this is shown as the circle. However, the aggregation error remains small compared to the
observational error down to n 
 300 and this could be a suitable choice for a reduced state vector
dimension. Gray shading indicates 90% confidence intervals for the total error as diagnosed from the
5th and 95th quantiles of diagonal elements in the posterior error covariance matrix. From Turner and
Jacob (2015).
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y�F bxð Þð ÞTS�O1 y� F bxð Þð Þ in the cost function for the inversion. We find that n =
300–1000 provides the best fit. Coarser clustering (smaller n) incurs large
aggregation error.

11.6 Adjoint-Based Inversion

Analytical solution to the cost function minimization problem —xJ xð Þ ¼ 0 as
stated by equation (11.77) requires that the forward model be linear with respect
to the state vector and places a practical computational limit on the size of the
state vector for the inversion. These limitations can be lifted by minimizing J
numerically rather than analytically. Such numerical methods, called variational
methods, compute —J xð Þ for successive guesses and converge to the solution by a
steepest-descent algorithm. Figure 11.5 illustrates the general strategy. In the

Correction factor to prior emissions

n = 7,906 n = 1,000

(a) (b)

1,000 clusters Co
st

 fu
nc

�o
n
´

10
–2

(c)

214

222

Number of clusters
1 10 100 1,000 10,000

Aggrega�on Smoothing

(y – F(x))T So
–1 (y – F(x))^ ^

(d)

Figure 11.4 Effect of smoothing and aggregation errors in a high-resolution inversion of methane emissions using
satellite observations of methane columns. (a) The correction factors to prior emissions when attempting to
constrain emissions at the native 50 � 50 km2 grid resolution of the forward model (n = 7906). (b) The
same inversion but with a reduced state vector (n = 1000) constructed by hierarchical clustering of
the native-resolution grid cells. The clustering is shown in (c) with arbitrary colors for individual clusters.
Panel (d) shows the ability of the inversion to fit the satellite observations as the state vector dimension is
decreased from n = 7906 to n = 3 by hierarchical clustering. The quality of the fit is measured by the
observational terms of the cost function for the inversion. Optimal results are achieved for n in the range
300–1000. Finer resolution incurs large smoothing errors, while coarser resolution incurs large aggregation
errors. From Wecht et al. (2014).
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adjoint-based inversion, the adjoint of the forward model is used to compute
—J xð Þ efficiently for successive iterations.

Figure 11.6 gives a graphical representation of the procedure for computing
—J xð Þ with the adjoint. The observations y collected over a period [to, tp] constrain
a state vector x(0) evaluated at to. Using the notation introduced in Section 11.4.4 and
the expression for KT given in (11.51), we have

KT ¼ ∂y 0ð Þ
∂x 0ð Þ

� �T Yp
i¼1

∂y ið Þ
∂y i�1ð Þ

 !T

(11.103)

where y(i) denotes the ensemble of observations at time step i. Starting from the prior
estimate xA and following (11.77), we write the cost function gradient —xJ xAð Þ as

—xJ xAð Þ ¼ 2KTS�1
O F xAð Þ � yð Þ (11.104)

where the adjoint is applied to the adjoint forcing S�1
O F xAð Þ � yð Þ representing the

error-weighted differences between the forward model and the observations. We
make one pass of the forward model F(xA) through the observational period [to, tp]
and collect the corresponding adjoint forcing terms S�1

O F xAð Þ � yð Þ, which may

be scattered over the period. Starting from the observations y(p) at tp, we apply the

first adjoint operator
�
∂y pð Þ=∂y p�1ð Þ

�T
from (11.103) to the adjoint forcing terms

J(xA)

J(x2)

J(x1)

J(x3)

x2

x1

x3

xA

min(J)

Figure 11.5 Steepest-descent algorithm to find the minimum of a cost function. The cost function gradient —
is first computed for the prior estimate xA and this is used to obtain an improved estimate x1. The cost
function gradient is then re-calculated for x1 and this is used to obtain an improved estimate x2, and
so on until convergence. Adapted from an original figure by David Baker (Colorado State University).
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S�1
O

�
F xAð Þ�y pð Þ

�
and obtain the adjoint variables

�
∂y pð Þ=∂y p�1ð Þ

�T
S�1
O

�
F xAð Þ�y pð Þ

�
as a 3-D field on the model grid. We then add to these adjoint variables the adjoint

forcings S�1
O

�
F xAð Þ�y p�1ð Þ

�
from the observations at time tp–1, apply the next adjoint

operator
�
∂y p�1ð Þ=∂y p�2ð Þ

�T
to the resulting quantities, and so on until time towhen the

final application of the adjoint operator
�
∂y 0ð Þ=∂x 0ð Þ

�T
returns the quantity

KTS�1
O F xAð Þ�yð Þ = —xJ xAð Þ from (11.104). The procedure can be readily adapted

to obtain the cost function gradient for a time-invariant state vector; see related
discussion in Section 11.4.4.
The value of —xJ xAð Þ obtained in this manner is passed to the steepest-descent

algorithm to make an updated guess x1 for the state vector. We then recalculate
—xJ x1ð Þ for that updated guess,

—xJ x1ð Þ ¼ 2S�1
A x1 � xAð Þ þ 2KTS�1

O F x1ð Þ � yð Þ (11.105)

using the adjoint as before and adding the terms S�1
A x1 � xAð Þ which are now non-

zero. We pass the result to the steepest-descent algorithm, which makes an updated
guess x2, and so on until convergence to the optimal estimate bx. Each iteration

Figure 11.6 Graphical representation of the adjoint method for computing the cost function gradient
—xJ xAð Þ ¼ 2KTS�1

O F xAð Þ � yð Þ). We consider here an ensemble of observations over the period [to, tp]
to constrain a state vector x evaluated at time to. We start with a pass of the forward model F(xA)
over the observation period [to, tp]. From there we collect adjoint forcings S�1

O F xAð Þ � yð Þ (in red) for the
ensemble of observations. We then force the adjoint model with the adjoint forcings at time tp
and propagate these forcings back in time with the adjoint model (in blue), adding new forcings as
we march backward in time from tp to to and pick up new observations along the way. At time to
we apply the final operation

�
∂y 0ð Þ=∂x 0ð Þ

�T
to the adjoint variables to obtain the cost function

gradient —xJ xAð Þ.
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involves one pass of the forward model over [to, tp] followed by one pass of the
adjoint model over [tp, t0].

An important feature of the adjoint-based inversion method is that the Jacobian
matrix K is never actually constructed. We do not in fact need the sensitivity of
individual observations to x, which is what K would give us (and would be very
expensive to compute for a large number of observations). All we need is the
summed sensitivity KTS�1

O F xAð Þ � yð Þ, which is what the adjoint method provides.
Increasing the number of observations does not induce additional computing costs,
as it just amounts to updating the adjoint variables on the forward model grid to add
new adjoint forcings (Figure 11.5). Increasing the number of state variables (that is,
the size of x) also does not incur additional computing costs other than perhaps
requiring more iterations to achieve convergence.

Constructing the adjoint requires differentiation of the forward model (Section
11.4.4). Approximations are often made in that differentiation, such as assuming
reverse flow for a nonlinear advection operator. The accuracy of the cost function
gradients —xJ xð Þ produced by the adjoint method can be checked with finite
difference testing (Henze et al., 2007). The test involves applying the forward model
to xA, calculating the cost function J(xA), and repeating for a small perturbation to
one of the elements xA + ΔxAwhere ΔxA has value Δxi for element i and zero for all
other elements. The resulting finite difference approximation

—xJ xAð Þ 
 J xA þ ΔxAð Þ � J xAð Þ
Δxi

(11.106)

is then compared to the value obtained with the adjoint model.
Box 11.7 illustrates the adjoint-based inversion with an example using satellite

observations of atmospheric concentrations to optimize emissions. The size of the
emissions state vector is limited solely by the grid resolution of the forward model.
Comparison to a coarse-resolution analytical inversion shows large advantages in the
amount of information retrieved.

A drawback of the adjoint method is that it does not provide the posterior error
covariance matrix as part of the solution. The matrix can be estimated by construct-
ing the Hessian (second derivative) of the cost function. By differentiating equation
(11.77) we obtain:

—2
xJ xð Þ ¼ 2S�1

A þ 2KTS�1
O K (11.107)

from which we see that the posterior error covariance matrix bS (11.81) is the inverse
of the Hessian:

bS ¼ 2 —2
xJ

� ��1
(11.108)

The adjoint method allows an estimate of the Hessian by finite-difference sam-
pling and calculation of —xJ xð Þ around the optimal estimate solution. Full construc-
tion of the Hessian would require n + 1 calculations (where n is the state vector
dimension) and this is not practical for large-dimension state vectors. Targeted
sampling can provide the leading eigenvalues and eigenvectors to approximate the
Hessian. See Bousserez et al. (2015) for a discussion of methods.
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Box 11.7 Adjoint-Based Inversion

Box 11.7 Figure 1 from Kopacz et al. (2009) illustrates the adjoint-based inversion with an
optimization of CO emissions over East Asia using satellite observations of CO columns from the

Box 11.7
Figure 1

Adjoint inversion of CO emissions in East Asia using CO column observations from the MOPITT satellite
instrument in March–April 2001. The top left panel shows the mean MOPITT observations for the
period, the middle left panel shows the forward model with prior emissions, and the bottom panel
shows the forward model with posterior emissions optimized through the inversion. The top right
panel shows the evolution of the cost function with the number of iterations by the adjoint method.
The bottom right panel shows the mean multiplicative factors to the prior emissions from the adjoint
inversion, and the middle right panel shows the same factors for an analytical inversion with only
11 emission regions as state vector elements. From Kopacz et al. (2009).
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11.7 Markov Chain Monte Carlo (MCMC) Methods

Markov chain Monte Carlo (MCMC) methods construct the posterior PDF P(x|y) ~
P(x)P(y|x) from Bayes’ theorem by directly computing P(x) and P(y|x), and their
product, for a very large ensemble of values of x sampling strategically the
n-dimensional space defined by the dimension of x. MCMC methods can use any
form of the prior and observational PDFs. They allow for non-Gaussian errors, a
nonlinear forward model, and any prior constraints. With sufficient sampling, they
can return the full structure of P(x|y) with no prior assumption as to its form.
A drawback of MCMC methods is their computational cost. In addition, because
P(x) and P(x|y) are not Gaussian, one cannot calculate an averaging kernel matrix to
quantify the information content of the observations.

The basis for MCMC methods is a Markov chain where successive values of x
are selected in a way that the next value depends on the current value but not on
previous values. This is done by randomly sampling a transition PDF T(x0|x)
where x is the current value and x0 is the next value. T is often taken to be a
Gaussian form so that values close to x are more likely to be selected as the next
value. Through this Markov chain and by including additional criteria to adopt or
reject candidate next values, we achieve a targeted random sampling of x to map
the function P(x|y).

The general strategy for MCMC methods is as follows. We start from a first
choice for x, such as the prior estimate xA, and calculate P(xA|y). We then choose
randomly a candidate for the next value x1 by sampling T(x1|xA) and calculate the
corresponding P(x1|y). Comparison of P(x1|y) to P(xA|y) tells us whether x1 is
more likely than xA or not, and on that basis we may choose to adopt x1 as our
next value or reject it. If we adopt it, then we use x1 as a starting point to choose a
candidate x2 for the next value by applying T(x2|x1). If we reject it, then we come
back to xA and make another tentative choice for x1 by random sampling of
T(x1|xA). In this manner we sample the PDF P(x|y) in a representative way.
Figure 11.7 gives an illustration.

MOPITT instrument in March–April 2001 (Box 11.5). Here, 21 569 observations are used to constrain
mean scale factors to prior CO emissions on the 2	 � 2.5	 grid of the CTM taken as forward model.
The state vector of emission fluxes has 3013 elements. The CTM with prior emissions shows large
differences with observations, and the inversion cost function is consequently large. Successive
iterations bring the cost function down to its expected value for a successful inversion. The
corrections to the prior emissions from the adjoint-based inversion show fine structure associated
with geographical boundaries and the type of source (fuel combustion or open fires). An analytical
inversion of the same observations with coarse spatial averaging of the emission state vector not
only misses the fine structure but also incurs a large aggregation error (Section 11.5.5), as apparent
for example in the wrong-direction correction for Korea.
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A frequently used MCMC method is the Metropolis–Hastings algorithm. In this
algorithm, following on the above sampling strategy, we calculate the ratio P(x1|y)/
P(xA|y). If the ratio is greater than 1, we are moving in the right direction toward the
most likely value; x1 is then adopted as the next value of the Markov chain and we
proceed to choose a candidate for x2 on the basis of x1. If the ratio is less than 1, this
means that x1 is less likely than xA. In that case, the ratio P(x1|y)/P(xA|y) defines the
probability that x1 should be selected as the next iteration and a random decision is
made based on that probability. If the decision is made to adopt x1, then we proceed
as above. If the decision is made to reject x1, then we go back to xA and make another
tentative choice for x1. Given a sufficiently large sampling size, one can show that
this sampling strategy will eventually generate the true structure of P(x|y).

11.8 Other Optimization Methods

Standard Bayesian optimization regularizes the fitting of the state vector to observa-
tions by applying the prior PDF of the state vector as an additional constraint. We
may wish to use a different type of prior constraint, or ignore prior information
altogether. We briefly discuss these approaches here.
Ignoring prior information is the effective outcome of a Bayesian inversion when

the prior terms SA
�1(x – xA) are small relative to the observational terms

KTS�1
O F xð Þ � yð Þ in the computation of the cost function gradient by equation

(11.77). This happens when the prior errors are large relative to the observational
errors, and/or when the number of state vector elements is very small relative to the
number of observations. If we know this from the outset, then there is little point in
going through the trouble of including prior information in the cost function. The
cost function including only the observational terms amounts to an error-weighted fit
to the observations and this is called the maximum likelihood estimator:

J xð Þ ¼ y� F xð Þð ÞTS�1
O y� F xð Þð Þ (11.109)

Figure 11.7 Sampling of a PDF by an MCMC method. The blue points represent the population and the contours are
the isolines of the PDF. The black line is the MCMC sampling trajectory. For a sufficiently large sample,
the PDF of the sample tends toward the PDF of the population. From Iain Murray (University of Edinburgh).
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The minimum in J can be found by computing the gradient as in (11.77) without the
prior terms. Sequential updating can be applied in computing the gradient by succes-
sive ingestion of small data packets (Box 11.6). The optimal estimate after ingesting
one data packet is used as the prior estimate for ingesting the next data packet.

If all elements in equation (11.109) have the same observational error variances
and zero covariances, so that SO is a multiple of the identity matrix, then the cost
function becomes a simple least-squares fit: J xð Þ ¼ y� F xð Þk k2where :k k denotes
the Euclidean norm. If in addition, the forward model is linear and thus fully
described by its Jacobian matrix K, then we have the familiar linear least-squares
optimization

J xð Þ ¼ y�Kxk k2 (11.110)

One can show that the corresponding minimum of J(x) is for

x ¼ Kþy (11.111)

where K+ = (KTK)–1KT is the Moore–Penrose pseudoinverse of K.
A danger of not including prior information in the solution to the inverse problem

is that the resulting solution may exhibit non-physical attributes such as negative
values or unrealistically large swings between adjacent elements (checkerboard
noise). An important role of the prior information is to prevent such non-physical
behavior by regularizing the solution. Bayesian regularization as described in
Section 11.2 is not the only method for imposing prior constraints. In the Tikhonov
regularization, a term is added to the linear least-squares minimization to enforce
desired attributes of the solution:

J xð Þ ¼ y�Kxk k2 þ Γxk k2 (11.112)

Here Γ is the Tikhonov matrix and carries the prior information. For example,
choosing for Γ a multiple of the identity matrix (Γ = γIn) enforces smallness of the
solution. Off-diagonal terms relating adjacent state vector elements enforce smooth-
ness of the solution. Bayesian inference can be seen as a particular form of Tikhonov
regularization when we write it as

J xð Þ ¼ y�Kxk k2SO þ x� xAk k2SA (11.113)

where ak kS = aTS–1a is the error-weighted norm for vector a with error covariance
matrix S.

In some inverse problems, we have better prior knowledge of the patterns between
state vector elements than of the actual magnitudes of the elements. For example,
when using observed atmospheric concentrations to optimize a 2-D spatial field of
emissions, we may know that emissions relate to population density for which we
have good prior information, even if we don’t have good information on the
emissions themselves. This type of knowledge can be exploited through a geosta-
tistical inversion. Here we express the cost function as

J x; βð Þ ¼ x� P βð ÞTS�1 x� P βð Þ þ y� F xð Þð ÞTS�1
O y� F xð Þð Þ (11.114)

where the n� q matrix P describes the q different state vector patterns, with each
column of P describing a normalized pattern. The unknown vector β of dimension
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q gives the mean scaling factor for each pattern over the ensemble of state vector
elements. Thus P β represents a prior model for the mean, with β to be optimized
as part of the inversion. The covariance matrix S gives the prior covariances of x,
rather than the error covariances.

11.9 Positivity of the Solution

Inverse problems in atmospheric chemistry frequently require positivity of the
solution. This is the case, in particular, when the state vector consists of concen-
trations or emission fluxes (Table 11.1). The standard assumption of Gaussian errors
is at odds with the positivity requirement since it allows for the possibility of
negative values, but this is not a serious issue as long as the probability of negative
values remains small. When small negative values are incurred in the solution for a
state vector element, it may be acceptable to simply aggregate them with adjacent
elements to restore positivity. In some cases, maintaining positivity in the solution
requires stronger measures. Miller et al. (2014) review different approaches for
enforcing positivity in inverse modeling of emission fluxes using observations of
atmospheric concentrations.
A straightforward way to enforce positivity of the solution is to transform the state

variables into their logarithms and optimize the logarithms using Gaussian error
statistics. This assumes that the errors on the state variables are lognormally distrib-
uted, which is often a realistic assumption for a quantity constrained to be positive.
For example, when we say that a state variable is uncertain by a 1-σ factor of 2, we
effectively make the statement that the natural logarithm of that variable has a
Gaussian error standard deviation of ln 2. Any of the inversion methods described
above can be applied to the logarithms of the state variables with Gaussian error
statistics, in the same way as for the original state variables. However, if the forward
model was linear with respect to the original state variables, then transformation to
logarithms loses the linearity. Analytical solution to the inverse problem then
requires an iterative approach with reconstruction of the Jacobian matrix at each
iteration. This is not an issue with an adjoint-based inverse method since the
Jacobian is never explicitly constructed in that case. An adjoint-based inverse
method incurs no computational penalty when transforming the state variables into
their logarithms (or any other transformation). The methane flux inversion in
Figure 11.4, for example, used an adjoint-based method with logarithms of emission
scaling factors as the state variables.
MCMC methods (Section 11.7) can easily handle the requirement of positivity by

restricting the Markov chain to positive values of the state vector elements. However,
these methods are computationally expensive. An additional drawback is that they
may lead to an unrealistic structure of the posterior error PDF with exaggerated
probability density close to zero.
Another approach to enforce positivity of the solution is by applying Karush–

Kuhn–Tucker (KKT) conditions to the cost function. KKT conditions are a general
method for enforcing inequality constraints in the cost function and are an extension
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of the Lagrange multipliers method that enforces equality constraints. Here we
describe the specific application of minimizing the cost function J(x) subject to the
positivity constraints xi ≥ 0 for all n elements of the state vector x. This is done by
minimizing the Lagrange function L(x, μ) with respect to x:

L x;μð Þ ¼ J xð Þ þ
Xn
i¼1

μixi (11.115)

where μ = (μ1, . . . μn) is the vector of unknown KKT multipliers. The KKT
multipliers are constrained to be non-negative (μi ≥ 0) and satisfy the complementary
slackness conditions:

μixi ¼ 0 8i ¼ 1, . . . n (11.116)

The minimum of L with respect to x is given by

—xL ¼ —xJ þ μ ¼ 0 (11.117)

Combination of (11.116) and (11.117) gives us 2n equations to solve for the elements
of x and μ in a way that forces all elements of x to be positive or zero. To see this,
consider that the solution for xi must either be positive, in which case (11.115)
imposes μi = 0, or it must be zero to satisfy (11.116). Application of the KKT
conditions will thus produce a solution for the state vector where some elements will
be zero and others will be positive. Two drawbacks of this method are that (1) it does
not provide characterization of errors on the solution, (2) the solution of zero (or any
positive threshold value) for a subset of elements may not be realistic and bias the
solution for other elements.

11.10 Data Assimilation

Data assimilation is sometimes used in the literature to refer to any inverse problem.
Standard practice in atmospheric chemistry is to refer to chemical data assimilation
as a particular kind of inverse problem where we seek to optimize a gridded time-
dependent 3-D model field of concentrations based on observations of these concen-
trations or related variables. This is similar to meteorological data assimilation
where the 3-D state of the meteorological variables is optimized for the purpose of
initializing weather forecasts or creating a consistent meteorological data archive.
The optimized state resulting from the assimilation of observations is called the
analysis. Chemical data assimilation can be used to improve weather forecasts by
accounting for chemical effects on weather (for example, aerosols affecting clouds),
or by providing indirect information on meteorological variables (for example, ozone
as a tracer of stratospheric motions). Other applications of chemical data assimilation
include air quality forecasting, construction of chemical data archives (reanalyses),
and assessment of consistency between instruments viewing different species for
different scenes and with different schedules. Figure 11.8 gives as an example an
assimilated field for stratospheric ozone. Data assimilation generally involves a
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chemical forecast to serve as the prior estimate and this will be referred to here as the
forecast model. This forecast model is usually a numerical weather prediction model
initialized with assimilated meteorological data and including simulation of the
chemical variables to be assimilated.
The state vector x in chemical data assimilation is the gridded 3-D field of

concentrations at a given time, and it evolves with time as determined by the forecast
model and by the assimilated observations. It is typically very large. Solution of the
optimization problem usually requires numerical methods for minimizing the Baye-
sian cost function J. Such methods, involving iterative computation of —xJ as part of
a minimization algorithm, are called variational methods. The adjoint-based inver-
sion in Section 11.6 is an example of a variational method.
In the standard chemical data assimilation problem, the forecast model initial-

ized with x(0) at time t0 produces a forecast x(1) at time t1 = t0 + h where h is the
assimilation time step, typically of the order of a few hours to a day. Two different
strategies can be used to assimilate the observations (Figure 11.9). In 3-D vari-
ational data assimilation (3DVAR), observed concentrations are collected and
assimilated at fixed time intervals h. The observations y(0) at time t0 are used to
optimize x(0), and the forecast model is then integrated over the time interval
[t0, t1 = t0 + h] to obtain a prior estimate for x(1). The observations at time t1 are
used to optimize the estimate of x(1), and so on. In some cases and with simplify-
ing assumptions, the minimization of J can be done analytically as described in
Section 11.5 instead of with a variational method; the assimilation is then called a
Kalman filter. In 4-D variational data assimilation (4DVAR), the ensemble of
observations spread over the time interval [t0, t1] are used to optimize x(0)
by applying the adjoint of the forecast model backward in time over [t1, t0].

(a) (b) (c)

Figure 11.8 Illustration of data assimilation principles. An analysis of stratospheric ozone on September 15, 2008 (b)
is obtained by optimizing a stratospheric transport model (c) to fit observations (a). Observations are from
the Aura MLS satellite instrument.on September 15, 2008 between 9 and 15 UT, and the analysis is for
12 UT. The right panel shows the free-running stratospheric model initialized on April 1, 2008 with no
subsequent data assimilation. Data from the Belgian Assimilation System for Chemical ObsErvations
(BASCOE, Errera et al., 2008; Errera and Ménard 2012). Provided by Quentin Errera.
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The forecast model is then used to obtain a prior estimate for x(1), observations
over [t1, t1 + h] are used to optimize x(1), and so on.

11.10.1 3DVAR Data Assimilation and the Kalman Filter

The 3DVAR approach uses observations at discrete assimilation time steps to
optimize the state vector at the corresponding times. It is called “3D” because
the optimization operates on the 3-D state vector without consideration of time.
Consider an ensemble of observations collected at assimilation time steps t0, t1,
t2, etc. Let y(0) be the ensemble of observations collected at time t0, and x(0)
the value of the state vector at that time. Starting from some prior knowledge
(xA,(0), SA,(0)), we use the observations y(0) to minimize the cost function as in
(11.76):

J x 0ð Þ
� �¼ x 0ð Þ �xA, 0ð Þ

� �T
S�1
A, 0ð Þ x 0ð Þ �xA, 0ð Þ

� �þ F x 0ð Þ
� ��y 0ð Þ

� �T
S�1
O F x 0ð Þ

� ��y 0ð Þ
� �

(11.118)

Here the forward model F is not the forecast model, but instead a mapping of the
state vector to the observations. If the observations are of the same quantity as the
state vector and on the same grid, then F is the identity matrix. If the observations
are of the same quantity as the state vector but offset from the grid in space or time,
then F is an interpolation operator. If the observations are of different variables than
the state vector, then F is a separate model needed to relate the two; it could be for
example a 0-D chemical model relating the concentrations of different species
through a chemical mechanism.

t0 t1= t0+ h t2= t0+ 2h

Assimilation of observations
3DVAR

4DVAR

3DVAR

4DVAR

3DVAR

Forecast model

Figure 11.9 Schematic of 3DVAR and 4DVAR data assimilation. The long tick marks indicate the assimilation time steps h,
and the short tick marks indicate the internal time steps of the forecast model. In 3DVAR, observations
assembled at discrete assimilation time steps are used to optimize the state vector at the corresponding
times. In 4DVAR, observations spread over the forecast interval are used to optimize the state vector
at the beginning of the forecast by propagating the information backward in time with the adjoint of the
forecast model (see Figure 11.6).
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The minimum for J(x(0)) is obtained by

—x 0ð ÞJ x 0ð Þ
� � ¼ 2S�1

A, 0ð Þ x 0ð Þ � xA, 0ð Þ
� �þ 2—FTS�1

O F x 0ð Þ
� �� y 0ð Þ

� �
¼ 0 (11.119)

In 3DVAR, (11.119) is solved numerically by starting from initial guess xA,(0),
computing —x 0ð ÞJ xA, 0ð Þ

� �
, and using a steepest-descent algorithm to iterate until

convergence (Figure 11.4). The computations of J and —J require simplifications to
keep the matrices to a manageable size and this is typically done by limiting the
spatial extent of error correlation. Simplifications may also be needed in the form of
the forward model.
In the case of a linear forward model (such as the identity matrix or a linear

interpolator) analytical solution to (11.119) is possible. This analytical approach is
called the Kalman filter and it has the advantage of characterizing the error on the
solution through computation of the posterior error covariance matrix. Starting from
the prior estimate (x(0), SA,(0)), assimilation of observations y(0) yields the optimal
estimate and its error covariance matrix ðbx 0ð Þ,bS 0ð ÞÞ through application of
(11.79)–(11.81):

bx 0ð Þ ¼ xA, 0ð Þ þG
�
y 0ð Þ �KxA, 0ð Þ

�
(11.120)

G ¼ SA, 0ð ÞKT KSA, 0ð ÞKT þ SO
� ��1

(11.121)

bS 0ð Þ ¼ KTS�1
O K þ S�1

A, 0ð Þ
� ��1

(11.122)

where the Jacobian matrix K = —xF defines the forward model. We then apply the
forecast model to compute the evolution of ðbx 0ð Þ,bS 0ð ÞÞ over the forecasting time step
[t0, t1], leading to a prior estimate xA, 1ð Þ; SA, 1ð Þ

� �
at time t1. (calculation of SA,(1) is

described below). Assimilation of observations y(1) at time t1 is then done following
the above equations to yield an optimal estimate ðbx 1ð Þ,bS 1ð ÞÞ. From there, we apply
the forecast model over [t1, t2], and so on.
The prior error covariance matrix SA,(1) is the sum of the forecast model error

covariance matrix SM ¼ E εM εMT½ � and the error covariance matrix on the initial
state bS 0ð Þ ¼ E bε 0ð Þbε 0ð Þ

T
h i

modified by the forecast model over [t0, t1]. It can be fully
computed if the forecast model is linear, i.e., represented by a matrix M. In that case
we have

xA, ð1Þ ¼ x 1ð Þ þMbε 0ð Þ þ εM (11.123)

where x(1) is the true value at time t1. Thus

SA, 1ð Þ ¼ E Mbε 0ð Þbε 0ð Þ
TMT

h i
þ E εM εTM

� � ¼ M bS 0ð Þ MT þ SM (11.124)

The term MbS 0ð ÞMT in (11.124) transports the posterior error covariance matrix from
one assimilation time step to the next, thus propagating information on errors. In
the trivial case of a persistence model assumed as forecast, xA, 1ð Þ ¼ bx 0ð Þ andM is the
identity matrix. This may be an adequate assumption if the assimilation time step is
short relative to the timescale over which x evolves.
Transport of the full error covariance matrices through MbS 0ð Þ MT is often not

computationally practical and various approximations are used. One can produce
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an ensemble of estimates for x(1) by randomly sampling the probability density
function bx 0ð Þ;bS 0ð Þ

� �
, transporting this ensemble over the assimilation time step

[t0, t1], and estimating MbS 0ð Þ MT from the ensemble of values at time t1. This is
called an ensemble Kalman filter. Other alternatives are to transport only the
error variances (diagonal terms of bS 0ð Þ) or ignore the transport of prior errors
altogether and just assign SA,(1) = SM. The Kalman filter is then called
suboptimal.

11.10.2 4DVAR Data Assimilation

The 3DVAR approach assimilates observations collected at discrete assimilation
time steps, say once per day, and applies a forecast model to update the state vector
over that interval. However, observations are often taken at all times of day and
therefore scattered in time over the forecast time interval. In 4DVAR data assimila-
tion, observations scattered at times ti over the forecast time interval [t0, t1] are used
to optimize the initial state x(0).This involves minimizing the cost function

J x 0ð Þ
� �¼ x 0ð Þ�xA, 0ð Þ

� �T
S�1
A, 0ð Þ x 0ð Þ�xA, 0ð Þ

� �þXt1
ti¼t0

F x ið Þ
� ��y ið Þ

� �T
S�1
O, ið Þ F x ið Þ

� ��y ið Þ
� �

(11.125)

and is done by applying the adjoint of the forecast model over [t0, t1]. The optimiza-
tion approach is exactly as described in Section 11.6. It returns an optimized estimatebx 0ð Þ but no associated error covariance matrix bS 0ð Þ (although one can estimate bS 0ð Þ
from numerical construction of the Hessian—2

x 0ð ÞJ ; see Section 11.6). The optimized
estimate bx 0ð Þ is used to produce a forecast xA,(1) at time t1 with error covariance
matrix SA,(1) defined by the error in the forecast model over [t0, t1]: SA,(1) = SM.
Observations over the next forecasting time interval are then applied with the model
adjoint to derive an optimized estimate bx 1ð Þ, and so on. The temporal discretization in
the assimilation of the observations is limited solely by the internal time step of the
forecast model.

11.11 Observing System Simulation Experiments

Observation system simulation experiments (OSSEs) are standard tests conducted
during the design phase of a major observing program such as a satellite mission.
Their purpose is to determine the ability of the proposed measurements to deliver on
the scientific objectives of the program. These objectives can often be stated in terms
of improving knowledge of a state vector x by using the proposed observations y in
combination with a state-of-science forward model to relate x to y. For example, we
might want to design a geostationary satellite mission to measure CO2 concentrations
in order to constrain CO2 surface fluxes, and ask what measurement precision is
needed to improve the constraints on the fluxes beyond those achievable from the
existing CO2 observation network.
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If the state vector is sufficiently small that an analytical solution to the inverse
problem is computationally practical (Section 11.5), then a first assessment of the
usefulness of the proposed observing system can be made by characterizing the error
covariance matrices SA and SO, and constructing the Jacobian matrix K = ∂y=∂x of
the forward model relating the state vector x to the observations y. Here SA is the
prior error covariance matrix describing the current state of knowledge of x in
the absence of the proposed observations, and SO is the observational error covar-
iance matrix for the proposed observations. SO describes the properties of the
proposed observing system including instrument errors, forward model errors, and
observation density. From knowledge of SA, SO, and K we can calculate the
averaging kernel matrix A and posterior error covariance matrix bS as described in
Section 11.5. The trace of A defines the DOFS of the observing system (Section
11.5.3) and provides a simple metric for characterizing the improved knowledge of x
to result from the proposed observations. Analysis of the rows of A determines the
ability of the observing system to retrieve the individual components of x (Box 11.5).
Results of such an OSSE will tend to be over-optimistic because of the idealized
treatment of observational errors (Section 11.5.1). In particular, the defining assump-
tions of unbiased Gaussian error statistics and independent and identically distributed
(IID) sampling of the PDFs means that posterior error variances will decrease
roughly as the square root of the number of observations. This will typically not
hold in the actual observing system because of observation bias, non-random
sampling of errors, and unrecognized error correlations. Still, this simple approach
for error characterization of the proposed observed system is very valuable for
defining the potential of the proposed observations to better quantify the state
variables, and to compare the merits of different configurations for the proposed
observing system (such as instrument precision and observing strategy)
A more stringent and general OSSE is to use two independent forward models

simulating the same period (Figure 11.10). For an observing system targeting
atmospheric composition these would be two independent CTMs: CTM 1 and
CTM 2. The CTMs should both be state-of-science but otherwise be as different as
possible, so that difference between the two provides realistic statistics of the
forward model error εM. In particular, they should use different assimilated meteoro-
logical data sets for the same period. We take CTM 1 as representing the “true”
atmosphere, with “true” values of the state vector x generating a “true” 3-D field of
atmospheric concentrations to be sampled by the observing system. This simulation
is often called the Nature Run. We sample the “true” atmosphere with the current and
proposed components of the observing system to produce synthetic data sets for the
observed species, locations, and schedules, including random errors based on instru-
ment precision. This generates a synthetic ensemble of current observations y and
proposed observations y0 over the time period. We then use CTM 2 as the forward
model over the same time period, starting from a prior estimate (xA, SA) for the state
vector and assimilating the synthetic observations y from the current observing
system to achieve an optimal estimate bx1. This is called the Control Run. The
posterior error covariance matrix bS1 associated with bx1 may be generated from
the Control Run or have to be estimated, as discussed in Section 11.10. We then
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take the prior state defined by (bx1,bS1) and assimilate the proposed synthetic obser-
vations y0 to obtain a new optimal estimate (bx2,bS2) reflecting the benefit of the
proposed observations. This is called the Analysis Run. The difference bx2 � x
measures the departure of our knowledge from the truth after the proposed observa-
tions have been made, while bx1 � x measures the departure from the truth before the
proposed observations have been made. Comparison of bx2 � x to bx1 � x allows us to
quantify the value of the proposed observations for constraining x. Compared to the
simple error characterization approach presented in the previous paragraph, this more
advanced OSSE system has two critical advantages: (1) a more realistic description
of forward model errors and their sampling by the observing system; and (2) the use
of a variational data assimilation system to more realistically mimic the use of the
observations. Figure 11.11 gives an example.

Chemical Transport Model 1

2. Analyzed atmosphere
without proposed observa�ons

(Control Run)

Exis�ng
observa�ons

(synthe�c)

Proposed
observa�ons

(synthe�c)

3. Analyzed atmosphere
including proposed observa�ons

(Analysis Run)

Assimila�on

Assimila�on

1. “True” atmosphere
(Nature Run)

Chemical Transport Model 2

Same meteorological period

Figure 11.10 General structure of an observing system simulation experiment for atmospheric composition. Two
independent chemical transport models (1 and 2) are used to simulate the same meteorological period.
The first model is used to simulate a synthetic “true” atmosphere (Nature Run) to be sampled by the
observing system. The second model assimilates current observations in a first step (Control Run), and the
additional proposed observations in a second step (Analysis Run). Comparison of the paired differences
(Analyzed–Nature) and (Control–Nature) measures the improvement in knowledge to be contributed by
the proposed observations.
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A Physical Constants and Other Data

A.1 General and Universal Constants

Base of natural logarithms 2.71828
π (Pi) 3.14159
Boltzmann’s constant 1.38066 � 10–23 J K–1

Molar gas constant 8.3144 J K–1 mol–1

Stefan–Boltzmann’s constant 5.67032 � 10–8 W m–2 K–4

Planck’s constant 6.62618 � 10–34 J s
Speed of light in vacuum 2.99792 � 108 m s–1

Gravitational constant 6.67259 � 10–11 m3 s–2 kg–1

Electron mass 9.1096 � 10–31 kg
Electron charge 1.6022 � 10–19 C
Atomic mass unit (amu) 1.66054 � 10–27 kg
Avogadro number 6.0221 � 1023 mol–1

A.2 Earth

Average radius 6.371 � 106 m
Surface area 5.10 � 1014 m2

Surface area (continents) 1.49 � 1014 m2

Surface area (oceans) 3.61 � 1014 m2

Average height of land 840 m
Average depth of oceans 3730 m
Acceleration of gravity (surface) 9.80665 m s–2

Mass of Earth 5.983 � 1024 kg
Mass of atmosphere 5.3 � 1018 kg
Eccentricity of Earth’s orbit 0.016750
Inclination of rotation axis 23.45� or 0.409 rad
Mean angular rotation rate 7.292 � 10–5 rad s–1

Earth orbital period 365.25463 days
Solar constant 1367 � 2 W m–2

538

013
23 Jun 2017 at 02:30:16, subject to the Cambridge Core terms of use, available



A.3 Dry Air

Average molar mass 28.97 g mol–1

Specific gas constant 287.05 J K–1 kg–1

Standard surface pressure 1.01325 � 105 Pa
Mass density at 0 �C and 101325 Pa 1.293 kg m–3

Number density at 0 �C and 101325 Pa 2.69 � 1025 m–3

Molar volume 0 �C and 101325 Pa 22.414 � 10–3 m3 mol–1

Specific heat at constant pressure (cp) 1004.64 J K–1 kg–1

Specific heat at constant volume (cv) 717.6 J K–1 kg–1

Poisson constant (cp/cv) 1.4
Index of refraction for air 1.000277
Dry diabatic lapse rate 9.75 K km–1

Speed of sound for standard conditions 343.15 m s–1

A.4 Water

Molecular weight 18.016 g mol–1

Gas constant for water vapor 461.6 J K–1 kg–1

Density of pure liquid water at 0 �C 1000 kg m–3

Density of ice at 0 �C 917 kg m–3

Density of water vapor at STP (0 �C, 1 atm) 0.803 kg m–3

Specific heat of water vapor at constant pressure 1952 J K–1 kg–1

Specific heat of water vapor at constant volume 1463 J K–1 kg–1

Specific heat of liquid water at 0 �C 4218 J K–1 kg–1

Specific heat of ice at 0 �C 2106 J K–1 kg–1

Latent heat of vaporization at 0 �C 2.501 � 106 J kg–1

Latent heat of vaporization at 100 �C 2.25 � 106 J kg–1

Latent heat of fusion at 0 �C 3.34 � 105 J kg–1

Latent heat of sublimation at 0 �C 2.83 � 106 J kg–1

Index or refraction for liquid water 1.336
Index of refraction for ice 1.312
Triple-point temperature of water 273.16 K
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B Units, Multiplying Prefixes,
and Conversion Factors

B.1 International System of Units

B.2 Multiplying Prefixes

Quantity Name of Unit Symbol Definition

Length Meter m
Mass Kilogram kg
Time Second s
Electrical current Ampere A
Temperature Kelvin K
Force Newton N kg m s–2

Pressure Pascal Pa N m–2

Energy Joule J kg m2 s–2

Power Watt W J s–1

Electrical potential Volt V WA–1

Electrical charge Coulomb C A s
Electrical resistance Ohm Ω VA–1

Electrical capacitance Farad F A s V–1

Frequency Hertz Hz s–1

Moles Mole mol

Multiple Prefix Symbol Multiple Prefix Symbol

10–1 Deci d 101 Deca da
10–2 Centi c 102 Hecto h
10–3 Milli m 103 Kilo k
10–6 Micro μ 106 Mega M
10–9 Nano n 109 Giga G
10–12 Pico p 1012 Tera T
10–15 Femto f 1015 Peta P
10–18 Atto a 1018 Exa E

Wavelengths are typically expressed in micrometers (μm) or nanometers (nm).
Wavenumbers are expressed in inverse centimeters (cm–1). Atmospheric pressure is
often expressed in hectopascals (hPa), number densities in molecules per cubic
centimeter (cm–3). Molar mixing ratios are given in percent, parts per million (ppm),
parts per billion (ppbv), parts per trillion (pptv), or parts per quadrillion (ppqv).
Mass mixing ratios are expressed in kilograms per kilogram or grams per kilogram.
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B.3 Conversion Factors

B.4 Commonly Used Units for Atmospheric Concentrations

Area 1 ha = 104 m2

Volume 1 liter = 10–3 m3

Velocity 1 m s–1 = 3.6 km h–1 = 2.237 mi h–1

Force 1N = 105 dyn
Pressure 1 bar = 105 Pa =103 mb = 750.06 mm Hg

1 atm = 1.01325 � 105 Pa = 760 Torr
Energy 1 cal = 4.1855 J

1 eV = 1.6021 � 10–19 J
1 J = 1 N m = 107 erg = 0.239 cal

Power 1 W = 14.3353 cal min–1

Temperature T(�C) = T(K) – 273.15
T(�F) = 1.8 T(�C) + 32

Mixing ratios 1 ppb = 10–3 ppm
1 ppt = 10–3 ppb = 10–6 ppm

Logarithms ln x = 2.3026 log10 x

Number density molecules cm–3

Mass density kg m–3

Mixing ratio (molar)a ppm � ppmv � μmol mol–1 � 10–6 mol mol–1

ppb � ppbv � nmol mol–1 � 10–9 mol mol–1

ppt � pptv � pmol mol–1 � 10–12 mol mol–1

ppq � ppqv � fmol mol–1 � 10–15 mol mol–1

Mixing ratio (mass) g g–1 � g per g of air
g kg–1 � g per kg of air

Partial pressure Pa, Torr (1 Torr = 133 Pa)
Column molecules cm–2,

Dobson Unit (1 DU = 2.69 � 1016 molecules cm–2)b

aMixing ratios in the atmospheric chemistry literature denote molar fractions unless otherwise
specified. Mol mol–1 is the SI unit but ppm, ppb, etc. are conventionally used. To avoid
confusion with mass mixing ratios the conventional units are often written as ppmv, ppbv, etc.
where v refers to volume (in an ideal gas such as the atmosphere, the number of moles is
proportional to volume)

bThe Dobson Unit was originally introduced and is still mainly used as a measure of the
thickness of the ozone layer, with 1 DU corresponding to a 0.01 mm thick layer of pure ozone
under standard conditions of temperature and pressure (0 �C, 1 atm).
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C International Reference Atmosphere

Elevation Temperature Pressure
Relative
density

Kinematic
viscosity

Thermal
conductivity Speed of sound

z T p ρ/ρ0 ν κ c
[m] [K] [Pa] [m2 s–1] [W m–1 K–1] [m s–1]

�105 �10–5 �10–2

–1500 297.9 1.2070 1.1522 1.301 2.611 346.0
–1000 294.7 1.1393 1.0996 1.352 2.585 344.1
–500 291.4 1.0748 1.0489 1.405 2.560 342.2
0 288.15 1.01325 1.0000 1.461 2.534 340.3
500 284.9 0.9546 0.9529 1.520 2.509 338.4
1000 281.7 0.8988 0.9075 1.581 2.483 336.4
1500 278.4 0.8456 0.8638 1.646 2.457 334.5
2000 275.2 0.7950 0.8217 1.715 2.431 332.5
2500 271.9 0.7469 0.7812 1.787 2.405 330.6
3000 268.7 0.7012 0.7423 1.863 2.379 328.6
3500 265.4 0.6578 0.7048 1.943 2.353 326.6
4000 262.2 0.6166 0.6689 2.028 2.327 324.6
4500 258.9 0.5775 0.6343 2.117 2.301 322.6
5000 255.7 0.5405 0.6012 2.211 2.275 320.5
5500 252.4 0.5054 0.5694 2.311 2.248 318.5
6000 249.2 0.4722 0.5389 2.416 2.222 316.5
6500 245.9 0.4408 0.5096 2.528 2.195 314.4
7000 242.7 0.4111 0.4817 2.646 2.169 312.3
7500 239.5 0.3830 0.4549 2.771 2.142 310.2
8000 236.2 0.3565 0.4292 2.904 2.115 308.1
8500 233.0 0.3315 0.4047 3.046 2.088 306.0
9000 229.7 0.3080 0.3813 3.196 2.061 303.8
9500 226.5 0.2858 0.3589 3.355 2.034 301.7
10 000 223.3 0.2650 0.3376 3.525 2.007 299.8
10 500 220.0 0.2454 0.3172 3.706 1.980 297.4
11 000 216.8 0.2270 0.2978 3.899 1.953 295.2
11 500 216.7 0.2098 0.2755 4.213 1.952 295.1
12 000 216.7 0.1940 0.2546 4.557 1.952 295.1
12 500 216.7 0.1793 0.2354 4.930 1.952 295.1
13 000 216.7 0.1658 0.2176 5.333 1.952 295.1
13 500 216.7 0.1533 0.2012 5.768 1.952 295.1
14 000 216.7 0.1417 0.1860 6.239 1.952 295.1
14 500 216.7 0.1310 0.1720 6.749 1.952 295.1
15 000 216.7 0.1211 0.1590 7.300 1.952 295.1
15 500 216.7 0.1120 0.1470 7.895 1.952 295.1
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(cont.)

Elevation Temperature Pressure
Relative
density

Kinematic
viscosity

Thermal
conductivity Speed of sound

16 000 216.7 0.1035 0.1359 8.540 1.952 295.1
16 500 216.7 0.09572 0.1256 9.237 1.952 295.1
17 000 216.7 0.08850 0.1162 9.990 1.952 295.1
17 500 216.7 0.08182 0.1074 10.805 1.952 295.1
18 000 216.7 0.07565 0.09930 11.686 1.952 295.1
18 500 216.7 0.06995 0.09182 12.639 1.952 295.1
19 000 216.7 0.06467 0.08489 13.670 1.952 295.1
19 500 216.7 0.05980 0.07850 14.784 1.952 295.1
20 000 216.7 0.05529 0.07258 15.989 1.952 295.1
22 000 218.6 0.04047 0.05266 22.201 1.968 296.4
24 000 220.6 0.02972 0.03832 30.743 1.985 297.7
26 000 222.5 0.02188 0.02797 42.439 2.001 299.1
28 000 224.5 0.01616 0.02047 58.405 2.018 300.4
30 000 226.5 0.01197 0.01503 80.134 2.034 301.7
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D Chemical Mechanism

This appendix lists important chemical and photolysis reactions occurring in the
troposphere and stratosphere, including rate constants and typical photolysis fre-
quencies. It is based on a mechanism described by Emmons et al. (2010) and
Lamarque et al. (2012). Many rate constants in the mechanism are simplified and
uncertain. More comprehensive and detailed information with references can be
found in various compilations, including the regularly updated NASA Jet Propulsion
Laboratory (JPL) Chemical Kinetics and Photochemical Data for Use in Atmos-
pheric Studies and the International Union of Pure and Applied Chemistry (IUPAC)
Evaluated Kinetic Data for Atmospheric Chemistry. See also The Atmospheric
Chemist’s Companion by P. Warneck and J. Williams (Springer, 2012). Chemical
mechanisms used in models often vary in their lumping of larger organic species and
their oxidation products. The present mechanism lumps alkanes and alkenes with
four or more carbon atoms, lumps aromatic hydrocarbons as toluene, and also
includes isoprene and a lumped terpene (α-pinene). The chemical reactivity of the
lumped species is chosen to approximately represent the average reactivity of the
different individual hydrocarbons that are accounted for by the lumped species.
The mechanism symbols identify individual species in the computer code for the
mechanismand are sometimes used in atmospheric chemistry jargon (PAN, for example)
but have otherwise no meaning. The “common names” may depart from IUPAC
nomenclature but represent standard usage in the atmospheric chemistry literature.

D.1 Chemical Species and Definitions of Symbols

D.1.1 Inorganic Gas-Phase Species

Chemical formula Common name

O(3P) Ground state “triplet-P” atomic oxygen
O(1D) Excited state “singlet-D” atomic oxygen
O3 Ozone
N2O Nitrous oxide
NO Nitric oxide
NO2 Nitrogen dioxide
NO3 Nitrate radical
HONO Nitrous acid
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D.1.2 Organic Gas-Phase Species

(cont.)

Chemical formula Common name

HNO3 Nitric acid
HNO4 Pernitric acid
N2O5 Dinitrogen pentoxide
H Atomic hydrogen
H2 Molecular hydrogen
OH Hydroxyl radical
HO2 Hydroperoxy radical
H2O2 Hydrogen peroxide
CO Carbon monoxide
SO2 Sulfur dioxide
NH3 Ammonia
Cl Chlorine atom
ClO Chlorine monoxide
OClO Chlorine dioxide
Cl2O2 Chlorine monoxide dimer
Cl2 Molecular chlorine
HCl Hydrogen chloride
HOCl Hypochlorous acid
ClONO2 Chlorine nitrate
ClNO2 Nitryl chloride
Br Bromine atom
BrO Bromine monoxide
Br2 Molecular bromine
BrCl Bromine monochloride
HBr Hydrogen bromide
HOBr Hypobromous acid
BrONO2 Bromine nitrate

Mechanism
symbol Chemical formula Common name

C1 species
CH4 CH4 Methane
CH3O2 CH3O2 Methylperoxy radical
CH3OOH CH3OOH Methylhydroperoxide
CH2O CH2O Formaldehyde
CH3OH CH3OH Methanol
HCOOH HCOOH Formic acid

C2 species
C2H4 C2H4 Ethene
C2H6 C2H6 Ethane
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(cont.)

Mechanism
symbol Chemical formula Common name

C2H2 C2H2 Acetylene
CH3CHO CH3CHO Acetaldehyde
C2H5OH C2H5OH Ethanol
EO HOCH2CH2O Hydroxy ethene oxy radical
EO2 HOCH2CH2O2 Hydroxy ethene peroxy radical
CH3COOH CH3COOH Acetic acid
GLYOXAL HCOCHO Glyoxal
GLYALD HOCH2CHO Glycolaldehyde
C2H5O2 C2H5O2 Ethylperoxy radical
C2H5OOH C2H5OOH Ethylhydroperoxide
CH3CO3 CH3CO3 Peroxyacetyl radical
CH3COOOH CH3C(O)OOH Peracetic acid
PAN CH3C(O)OONO2 Peroxyacetyl nitrate
DMS (CH3)2S Dimethylsulfide

C3 species
C3H6 C3H6 Propene
C3H8 C3H8 Propane
C3H7O2 C3H7O2 Propylperoxy radical
C3H7OOH C3H7OOH Propylhydroperoxide
PO2 e.g., CH3CH(OO)CH2OH Hydroxyl propene peroxy

radicals
POOH e.g., CH3CH(OOH)CH2OH Hydroxyl propene peroxide
CH3COCH3 CH3COCH3 Acetone
HYAC CH3COCH2OH Hydroxyacetone
CH3COCHO CH3COCHO Methylglyoxal
AO2 CH3COCH2O2 Acetone peroxy radical
AOOH CH3COCH2OOH Acetone hydroperoxide
ONIT CH3COCH2ONO2 Organic nitrate

C4 species
BIGENE C4H8 Lumped >C3 alkene
ENEO2 e.g., CH3CH(OH)CH(OO)CH3 Lumped alkene peroxy radical
MEK CH3C(O)CH2CH3 Methyl ethyl ketone
MEKO2 CH3COCH(OO)CH3 MEK peroxy radical
MEKOOH CH3COCH(OOH)CH3 MEK hydroperoxide
MVK CH2CHCOCH3 Methyl vinyl ketone
MACR CH2CCH3CHO Methacrolein
MPAN CH2CCH3CO3NO2 Methacryloyl peroxynitrate
MACRO2 e.g., CH3COCH(OO)CH2OH MVK + MACR peroxy radical
MACROOH e.g., CH3COCH(OOH)CH2OH MVK + MACR hydroperoxide
MCO3 CH2CCH3CO3 MACR peroxyacyl radical

C5 species
BIGALK C5H12 Lumped >C3 alkane
ALKO2 C5H11O2 Lumped alkyl peroxy radical
ALKOOH C5H11OOH Lumped alkyl hydroperoxide
ISOP C5H8 Isoprene
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D.1.3 Bulk Aerosols

D.2 Photolysis

The following table lists photolysis reactions of importance for the troposphere and
the stratosphere. The photolysis frequency (often called J-value) for a given

(cont.)

Mechanism
symbol Chemical formula Common name

ISOPO2 e.g., HOCH2C(OO)CH3CHCH2 Isoprene peroxy radical
ISOPOOH e.g., HOCH2C(OOH)CH3CHCH2 Isoprene hydroperoxide
HYDRALD e.g., HOCH2CCH3CHCHO Lumped unsaturated

Hydroxycarbonyl
XO2 e.g., HOCH2C(OO)CH3CH(OH)

CHO
HYDRALD peroxy radical

XOOH e.g., HOCH2C(OOH)CH3CH(OH)
CHO

HYDRALD hydroperoxide

BIGALD C5H6O2 Unsaturated dicarbonyl
ISOPNO3 e.g., CH2CHCCH3OOCH2ONO2 Peroxy radical from NO3 + ISOP
ONITR e.g., CH2CCH3CHONO2CH2OH Lumped isoprene nitrate

C7 species
TOLUENE C6H5(CH3) Lumped aromatic hydrocarbon
CRESOL e.g., C6H4(CH3)(OH) Phenols and cresols
TOLO2 C6H5(CH3OO) Aromatic peroxy radical
TOLOOH C6H5(CH3OOH) Aromatic hydroperoxide
XO2 C7H7O2 CRESOL peroxy radical

C10 species
TERPENE C10H16 Lumped monoterpenes, as

α-pinene
TERPO2 C10H16(OH)(OO) Terpene peroxy radical
TERPOOH C10H16(OH)(OOH) Terpene hydroperoxide

Mechanism
symbol Chemical formula Name

SO4 S(VI) � SO4
2– + HSO4

– + H2SO4(aq) Sulfate
NH4 NH4

+ Ammonium
NO3A NO3

– Ammonium nitrate
SOA Secondary organic aerosol
OC Organic carbon
EC Elemental carbon
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molecule A is calculated as a function of altitude z and solar zenith angle χ by
spectral integration over all wavelengths λ of the product of (1) the solar actinic flux
density qλ(λ;z,χ); (2) the absorption cross-section σA(λ) of the molecule; and (3) the
quantum efficiency εA(λ):

JA z; χð Þ ¼
ð∞

0

εA λð Þ σA λð Þqλ λ; z; χð Þdλ

The actinic flux at a given altitude and for a given solar zenith angle is calculated
with a radiative transfer model; see Chapter 5. The photolysis products reported in
the table are the ones used in the chemical mechanism above and assume in some
cases fast reactions of the immediate photolysis products; for example, CCl4 + hν !
CCl3 + Cl is given as CCl4 + hν ! 4Cl. Values of the photolysis frequency J for
different molecules, calculated by the TUV-5.1 model (Madronich, personal com-
munication), are provided at sea level and at 25 km altitude for the following
conditions: ozone column 300 DU, solar zenith angle 30�, surface albedo 5%, no
clouds, no aerosol effects. They can be viewed as typical clear-sky daytime values.
Some of the photolysis processes listed here are of importance for the upper
stratosphere but negligible at lower altitudes, in which case the photolysis frequency
is given as “0.0.” The symbol X e-Y stands for X � 10–Y.

D.2.1 Inorganic Species

Reaction J at sea level [s–1] J at 25 km [s–1]

Oxygen species
O2 + hν ! 2O(3P) 0.0 1.5e-11
O3 + hν ! O(1D) + O2 3.2e-05 1.3e-04
O3 + hν ! O(3P) + O2 4.1e-04 4.9e-04

Hydrogen species
H2O + hν ! OH + H 0.0 0.0
H2O + hν ! H2 + O(1D) 0.0 0.0
H2O2 + hν ! 2OH 7.4e-06 1.3e-05

Nitrogen species
N2O + hν ! O(1D) + N2 0.0 2.8e-08
NO + hν ! N + O 0.0 0.0
NO2 + hν ! NO + O 9.3e-03 1.2e-02
N2O5 + hν ! NO2 + NO3 4.3e-05 7.4e-05
HONO + hν ! NO + OH 1.5e-03 2.2e-03
HNO3 + hν ! NO2 + OH 6.0e-07 6.3e-06
NO3 + hν ! NO2 + O 1.7e-01 1.8e-01
NO3 + hν ! NO + O2 2.2e-02 2.4e-02
HO2NO2 + hν ! OH + NO3 (20%) or
NO2 + HO2 (80%)

6.6e-06 2.3e-05

Halogen species
Cl2 + hν ! 2Cl 2.3e-03 3.6e-03
OClO + hν ! O + ClO 8.2e-02 1.2e-01
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D.2.2 Organic Species (Chemical Mechanism)

CH3OOHþ hv ! CH2Oþ Hþ OH
CH2Oþ hv ! COþ 2H
CH2Oþ hv ! COþ H2

CH4 þ hv ! Hþ CH3O2

CH4 þ hv ! 1:44 H2 þ 0:18CH2Oþ 0:18Oþ 0:66 O Hþ 0:44 CO2 þ 0:38 CO

þ0:05H2O
CH3 CHOþ hv ! CH3O2þCOþ HO2

POOHþ hv ! CH3CHOþ CH2Oþ HO2 þ OH
CH3COOOHþ hv ! CH3O2þOHþ CO2

PANþ hv ! 0:6 CH3CO3 þ 0:6 NO2 þ 0:4 CH3O2 þ 0:4 NO3 þ 0:4 CO2

MPANþ hv ! MCO3þNO2

MACRþ hv ! 0:67 HO2 þ 0:33 MCO3 þ 0:67 CH2Oþ 0:67 CH3CO3 þ 0:33 OH

þ0:67 CO
MVK þ hv ! 0:7 C3H6 þ 0:7 COþ 0:3 CH3O2 þ 0:3 CH3CO3

C2H5OOHþ hv ! CH3CHOþ HO2 þ OH
C3H7OOHþ hv ! 0:82 CH3COCH3þOHþ HO2

ROOHþ hv ! CH3CO3þCH2Oþ OH

(cont.)

Reaction J at sea level [s–1] J at 25 km [s–1]

ClOOCl + hν ! 2 Cl 1.7e-03 2.9e-03
HOCl + hν ! OH + Cl 2.7e-04 4.5e-04
HCl + hν ! H + Cl 0.0 2.4e-08
ClONO2 + hν ! Cl + NO3 3.9e-05 5.7e-05
ClONO2 + hν ! ClO + NO2 7.7e-06 1.6e-05
BrCl + hν ! Br + Cl 1.1e-02 1.4e-02
BrO + hν ! Br + O 3.6e-02 6.0e-02
HOBr + hν ! Br + OH 2.2e-03 3.1e-03
BrONO2 + hν ! Br + NO3 4.0e-04 5.9e-04
BrONO2 + hν ! BrO + NO2 9.8e-04 1.5e-03
CCl4 + hν ! 4Cl 0.0 1.1e-06
CFCl3 + hν ! 3Cl 0.0 5.9e-07
CF2Cl2 + hν ! 2Cl 0.0 6.9e-08
CCl2FCClF2 + hν ! 3Cl 0.0 9.6e-08
CF3Br + hv ! Br 0.0 2.6e-07
CF2ClBr + hv ! Br + Cl 0.0 2.5e-06
CH3Cl + hν ! Cl + CH3O2 0.0 1.5e-08
CH3CCl3 + hv ! 3Cl 0.0 8.8e-07
CHF2Cl + hν ! Cl 0.0 1.7e-10
CH3Br + hv ! Br + CH3O2 0.0 1.5e-06
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D.2.3 Organic Species (Photolysis Frequencies)

Reaction J at sea level [s–1] J at 25 km [s–1]

CH3OOH + hv ! CH3O + OH 5.4e-06 1.1e-05
CH2O + hv ! HCO + H 3.3e-05 6.5e-05
CH2O + hv ! CO + H2 3.8e-05 1.1e-04
CH4 + hv ! products 0.0 0.0
CH3CHO + hv ! CH3 + HCO 4.7e-06 5.4e-05
CH3COOOH + hv ! CH3O2 + OH + CO2 7.4e-07 1.9e-06
PAN + hv ! CH3CO3 + NO2 4.8e-07 4.1e-06
PAN + hv ! CH3 + CO2 + NO3 2.1e-07 1.7e-06
MACR + hv ! products 5.0e-06 8.1e-06
MVK + hv ! products 4.1e-06 3.5e-05
C2H5OOH + hv ! CH3CH2O + OH 5.4e-06 1.1e-05
HOCH2OOH + hv ! HOCH2O + OH 4.5e-06 9.4e-06
C3H7OOH + hv ! CH3CH(O)CH3 + OH 5.4e-06 1.1e-05
CH3COCH3 + hv ! CH3CO + CH3 8.5e-07 1.0e-05
CH3COCHO + hv ! CH3CO + HCO 1.4e-04 5.6e-04
CH3ONO2 + hv ! NO2 + CH3O 8.5e-07 1.5e-05
HYAC + hv ! CH3CO + CH2(OH) 9.1e-07 2.5e-06
HYAC + hv ! CH2(OH)CO + CH3 9.1e-07 2.5e-06
GLYALD + hv ! CH2OH+HCO 9.1e-06 2.5e-05
GLYALD + hv ! CH3OH+CO 1.1e-06 3.1e-06
GLYALD + hv ! CH2CHO+OH 7.7e-07 2.1e-06
MEK + hv ! CH3CO + C2H5 6.1e-06 4.0e-05
C2H5CHO + hv ! C2H5 + HCO 1.7e-05 8.8e-05
GLYOXAL + hv ! HCO + HCO 7.4e-05 1.1e-04
GLYOXAL + hv ! H2 + 2 CO 1.6e-05 3.3e-05
GLYOXAL + hv ! CH2O + CO 2.9e-05 5.6e-05

CH3COCH3 þ hv ! CH3CO3þCH3O2

CH3COCHOþ hv ! CH3CO3þCOþ HO2

XOOHþ hv ! OH
ONITRþ hv ! HO2þCOþ NO2þCH2O
ISOPOOHþ hv ! 0:402 MVK þ 0:288 MACRþ 0:69 CH2Oþ HO2

HYACþ hv ! CH3CO3þHO2þCH2O
GLYALDþ hv ! 2 HO2þCOþ CH2O
MEK þ hv ! CH3CO3þC2H5O2

BIGALDþ hv ! 0:45 COþ 0:13 GLYOXALþ 0:56 HO2 þ 0:13 CH3CO3

þ0:18 CH3COCHO
GLYOXALþ hv ! 2 COþ 2 HO2

C5H11OOHþ hv ! 0:4 CH3CHOþ 0:1 CH2Oþ 0:25 CH3COCH3 þ 0:9 HO2

þ0:8 MEK þ OH
MEKOOHþ hv ! OHþ CH3CO3þCH3CHO
TOLOOHþ hv ! OHþ 0:45 GLYOXALþ 0:45 CH3COCHOþ 0:9 BIGALD
TERPOOHþ hv ! OHþ 0:1 CH3COCH3þHO2 þMVK þMACR
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D.3 Gas-Phase Reactions

The following table lists the rate constants k for gas-phase reactions. In the case of
two-body (bimolecular) reactions, written as X + Y ! products, the temperature-
dependent rate constant [cm3 s–1] is generally expressed as

k Tð Þ ¼ A exp
�B

T

� �

where A [cm3 s–1] is the Arrhenius factor, B [K] the activation temperature equal to
the activation energy Ea [J mol–1] divided by the gas constant R¼8.3144 J K–1 mol–1,
and T is the temperature [K]. The table also includes single-body (unimolecular)
thermolysis reactions, written as X ! products, with rate coefficients expressed in
[s–1].

In the case of three-body (termolecular) reactions, written as X + Y + M ! XY +
M where M is an inert third body (typically N2 or O2), the pressure- and temperature-
dependent coefficients k [cm3 s–1] are derived by the Troe formula

k ¼ k∞k0 M½ �
k∞ þ k0 M½ � f

1þ log10
k0 M½ �
k∞

� �2
n o�1

Here, [M] denotes the air number density [cm–3] and f = 0.6 if it is not otherwise
specified in the tables below. The temperature dependence of coefficients k0 (low-
pressure limit) and k∞ (high-pressure limit) is often expressed as C(T/300)–n where C
and n are constants. For these types of reactions, the table provides the values of k0
[cm6 s–2] and k∞ [cm3 s–1]; only k0 is given when the low-pressure limit dominates
throughout the atmosphere. The rate of the reverse reaction, XY + M ! X + Y + M,
is given as the rate of the forward reaction times an equilibrium constant.

D.3.1 Oxygen–Hydrogen–Nitrogen Chemistry

Oxygen reactions Rate constant

Two-body reactions
O + O3 ! 2O2 8.0e-12 � exp(–2060/T)
O(1D) + N2 ! O + N2 2.1e-11 � exp(115/T)
O(1D) + O2 ! O + O2 3.2e-11 � exp(70/T)
O(1D) + H2O ! 2OH 2.2e-10
O(1D) + H2 ! HO2 + OH 1.1e-10
O(1D) + N2O ! N2 + O2 4.9e-11
O(1D) + N2O ! 2NO 6.7e-11
O(1D) + CH4 ! CH3O2 + OH 1.1e-10
O(1D) + CH4 ! CH2O + H + HO2 3.0e-11
O(1D) + CH4 ! CH2O + H2 7.5e-12
O(1D) + HCN ! OH 7.7e-11 � exp(100/T)

Three-body reactions
O + O + M ! O2 + M k0 = 2.8e-34 � exp(720/T)
O + O2 + M ! O3 + M k0 = 6.0e-34 � (T/300)–2.4

551 Chemical Mechanism

016
23 Jun 2017 at 02:30:24, subject to the Cambridge Core terms of use, available



Hydrogen oxide reactions Rate constant

Two-body reactions
H + O3 ! OH + O2 1.4e-10 � exp(–470/T)
H + HO2 ! 2OH 7.2e-11
H + HO2 ! H2 + O2 6.9e-12
H + HO2 ! H2O + O 1.6e-12
OH + O ! H + O2 2.2e-11 � exp(120/T)
OH + O3 ! HO2 + O2 1.7e-12 � exp(–940/T)
OH + HO2 ! H2O + O2 4.8e-11 � exp(250/T)
OH + OH ! H2O + O 1.8e-12
OH + H2 ! H2O + H 2.8e-12 � exp(–1800/T)
OH + H2O2 ! H2O + HO2 1.8e-12
HO2 + O ! OH + O2 3.0e-11 � exp(200/T)
HO2 + O3 ! OH + 2O2 1.0e-14 � exp(–490/T)
HO2 + HO2 ! H2O2 + O2 (kA+kB) + 1.4e-21 � [H2O] � exp(2200/T)

kA = 3.0e-13 � exp(460/T)
kB = 2.1e-33 � [M] � exp(920/T)

H2O2 + O ! OH + HO2 1.4e-12 � exp(–2000/T)

Three-body reactions
H + O2 + M ! HO2 + M k0 = 4.4e-32 � (T/300)–1.3

k∞ = 4.7e-11 � (T/300)–0.2

OH + OH + M ! H2O2 + M k0 = 6.9e-31 � (T/300)–1.0

k∞ = 2.6e-11

Nitrogen oxide reactions Rate constant

Two-body reactions
N + O2 ! NO + O 1.5e-11 � exp(–3600/T)
N + NO ! N2 + O 2.1e-11 � exp(100/T)
N + NO2 ! N2O + O 5.8e-12 � exp(220/T)
NO + HO2 ! NO2 + OH 3.5e-12 � exp(250/T)
NO + O3 ! NO2 + O2 3.0e-12 � exp(–1500/T)
NO2 + O ! NO + O2 5.1e-12 � exp(210/T)
NO2 + O3 ! NO3 + O2 1.2e-13 � exp(–2450/T)
HNO3 + OH ! NO3 + H2O k ¼ k0 þ k3 M½ �= 1þ k3 M½ �=k2ð Þwith

k0 = 2.4e-14 � exp(460/T)
k2 = 2.7e-17 � exp(2199/T)
k3 = 6.5e-34 � exp(1335/T)

NO3 + NO ! 2NO2 1.5e-11 � exp(170/T)
NO3 + O ! NO2 + O2 1.0e-11
NO3 + OH ! HO2 + NO2 2.2e-11
NO3 + HO2 ! OH + NO2 + O2 3.5e-12
HO2NO2 + OH ! H2O + NO2 + O2 1.3e-12 � exp(380/T)

Three-body and reverse reactions
NO + O + M ! NO2 + M k0 = 9.0e-32 � (T/300)–1.5

k∞ = 3.0e-11
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D.3.2 Organic Chemistry

(cont.)

Nitrogen oxide reactions Rate constant

NO2 + O + M ! NO3 + M k0 = 2.5e-31 � (T/300)–1.8

k∞ = 2.2e-11 � (T/300)–0.7

NO2 + NO3 + M ! N2O5 + M k0 = 2.0e-30 � (T/300)–4.4

k∞ = 1.4e-12 � (T/300)–0.7

N2O5 + M ! NO2 +NO3 + M kNO2+NO3 � 3.7e + 26 � exp(–11000/T)
NO2 + HO2 + M ! HO2NO2 + M k0 = 2.0e-31 � (T/300)–3.4

k∞ = 2.9e-12 � (T/300)–1.1

HO2NO2 + M ! HO2 + NO2 + M kHO2+NO2 � 4.8e + 26 � exp(–10900/T)
NO2 + OH + M ! HNO3 +M k0 = 1.8e-30 � (T/300)–3.0

k∞ = 2.8e-11

C-1 degradation (methane CH4) Rate constant

Two-body reactions
CH4 + OH ! CH3O2 + H2O 2.5e-12 � exp(–1775/T)
CH3O2 + NO ! CH2O + NO2 + HO2 2.8e-12 � exp(300/T)
CH3O2 + HO2 ! CH3OOH + O2 4.1e-13 � exp(750/T)
CH3OOH + OH ! CH3O2 + H2O 3.8e-12 � exp(200/T)
CH2O + NO3 ! CO + HO2 + HNO3 6.0e-13 � exp(–2058/T)
CH2O + OH ! CO + H2O + H 5.5e-12 � exp(125/T)
CH2O + O ! HO2 + OH + CO 3.4e-11 � exp(–1600/T)
CH3O2 + CH3O2 ! 2CH2O + 2HO2 5.0e-13 � exp(–424/T)
CH3O2 + CH3O2 ! CH2O + CH3OH 1.9e-14 � exp(706/T)
CH3OH + OH ! HO2 + CH2O 2.9e-12 � exp(–345/T)
CH3OOH + OH ! 0.7 CH3O2 +0.3 OH +0.3 CH2O + H2O 3.8e-12 � exp(200/T)
CH2O + HO2 ! HOCH2OO 9.7e-15 � exp(625/T)
HOCH2OO ! CH2O + HO2 2.4e+12 � exp(–7000/T)
HOCH2OO + NO ! HCOOH + NO2 + HO2 2.6e-12 � exp(265/T)
HOCH2OO + HO2 ! HCOOH 7.5e-13 � exp(700/T)
HCOOH + OH ! HO2 + CO2 + H2O 4.5e-13
CO + OH ! CO2 + H 1.5e-13 � (1.0 + 6.e-7 p)

(p = air pressure in Pa)

C-2 degradation (acetylene C2H2, ethylene C2H4 and
ethane C2H6 ) Rate constant

C2H2 + OH + M ! 0.65 GLYOXAL + 0.65 OH
+ 0.35 HCOOH + 0.35 HO2 + 0.35 CO + M

k0 = 5.5e-30

k∞ = 8.3e-13 � (T/300)2.0

GLYOXAL + OH ! HO2 + CO + CO2 1.1e-11
C2H4 + O3 ! CH2O + 0.12 HO2 + 0.5 CO + 0.12 OH
+ 0.5 HCOOH

1.2e-14 � exp(–2630/T)
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(cont.)

C-2 degradation (acetylene C2H2, ethylene C2H4 and
ethane C2H6 ) Rate constant

C2H4 + OH + M! 0.75 EO2 + 0.5 CH2O + 0.25 HO2 + M k0 = 1.0e-28 � (T/300)–0.8

k∞ = 8.8e-12
EO2 + NO ! EO + NO2 4.2e-12 � exp(180/T)
EO + O2 ! GLYALD + HO2 1.0e-14
EO ! 2 CH2O + HO2 1.6e+11 � exp(–4150/T)
GLYALD + OH ! HO2 + 0.2 GLYOXAL
+ 0.8 CH2O + 0.8 CO2

1.0e-11

C2H6 + OH ! C2H5O2 + H2O 8.7e-12 � exp(–1070/T)
C2H5O2 + NO ! CH3CHO + HO2 + NO2 2.6e-12 � exp(365/T)
C2H5O2 + HO2 ! C2H5OOH + O2 7.5e-13 � exp(700/T)
C2H5O2 + CH3O2 ! 0.7 CH2O + 0.8 CH3CHO + HO2

+ 0.3 CH3OH + 0.2 C2H5OH
2.0e-13

C2H5O2 + C2H5O2 ! 1.6 CH3CHO + 1.2 HO2

+ 0.4 C2H5OH
6.8e-14

C2H5OOH + OH ! 0.5 C2H5O2 + 0.5 CH3CHO + 0.5 OH 3.8e-12 � exp(200/T)
CH3CHO + OH ! CH3CO3 + H2O 5.6e-12 � exp(270/T)
CH3CHO + NO3 ! CH3CO3 + HNO3 1.4e-12 � exp(–1900/T)
CH3CO3 + NO ! CH3O2 + CO2 + NO2 8.1e-12 � exp(270/T)
CH3CO3 + HO2 ! 0.75 CH3COOOH
+ 0.25 CH3COOH + 0.25 O3

4.3e-13 � exp(1040/T)

CH3CO3 + CH3O2 ! 0.9 CH3O2 + CH2O + 0.9 HO2

+ 0.9 CO2 + 0.1 CH3COOH
2.0e-12 � exp(500/T)

CH3CO3 + CH3CO3 ! 2 CH3O2 + 2 CO2 2.5e-12 � exp(500/T)
CH3COOH + OH ! CH3O2 + CO2 + H2O 7.0e-13
CH3COOOH + OH ! 0.5 CH3CO3 + 0.5 CH2O
+ 0.5 CO2 + H2O

1.0e-12

C2H5OH + OH ! HO2 + CH3CHO 6.9e-12 � exp(–230/T)
CH3CO3 + NO2 + M ! PAN + M k0 = 8.5e-29 � (T/300)–6.5

k∞= 1.1e-11 � (T/300)–1

PAN + M ! CH3CO3 +NO2 + M kCH3CO3+NO2 � 1.1e+28 �
exp(–14000/T)

PAN + OH ! CH2O + NO3 4.0e-14

C-3 degradation (propene C3H6 and propane C3H8) Rate constant

C3H6 + OH + M ! PO2 + M k0 = 8.0e-27 � (T/300)–3.5

k∞ = 3.0e-11
f = 0.5

C3H6 + O3 ! 0.54 CH2O + 0.19 HO2 + 0.33 OH
+ 0.08 CH4 + 0.56 CO + 0.5 CH3CHO + 0.31 CH3O2

+ 0.25 CH3COOH

6.5e-15 � exp(–1900/T)

C3H6 + NO3 ! ONIT 4.6e-13 � exp(–1156/T)
PO2 + NO ! CH3CHO + CH2O + HO2 + NO2 4.2e-12 � exp(180/T)
PO2 + HO2 ! POOH + O2 7.5e-13 � exp(700/T)
POOH + OH ! 0.5 PO2 + 0.5 OH + 0.5 HYAC + H2O 3.8e-12 � exp(200/T)
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(cont.)

C-3 degradation (propene C3H6 and propane C3H8) Rate constant

ROOH + OH ! RO2 + H2O 3.8e-12 � exp(200/T)
HYAC + OH ! CH3COCHO + HO2 3.0e-12
CH3COCHO + OH ! CH3CO3 + CO + H2O 8.4e-13 � exp(830/T)
CH3COCHO + NO3 ! HNO3 + CO + CH3CO3 1.4e-12 � exp(–1860/T)
ONIT + OH ! NO2 + CH3COCHO 6.8e-13

C3H8 + OH ! C3H7O2 + H2O 1.0e-11 � exp(–665/T)
C3H7O2 + NO ! 0.82 CH3COCH3 + NO2 + HO2

+ 0.27 CH3CHO
4.2e-12 � exp(180/T)

C3H7O2 + HO2 ! C3H7OOH + O2 7.5e-13 � exp(700/T)
C3H7O2 + CH3O2 ! CH2O + HO2 + 0.82 CH3COCH3 3.8e-13 � exp(–40/T)
C3H7OOH + OH ! H2O + C3H7O2 3.8e-12 � exp(200/T)
CH3COCH3 + OH ! RO2 + H2O 3.8e-11 � exp(–2000/T)

+1.3e-13
RO2 + NO ! CH3CO3 + CH2O + NO2 2.9e-12 � exp(300/T)
RO2 + HO2 ! ROOH + O2 8.6e-13 � exp(700/T)
RO2 + CH3O2 ! 0.3 CH3CO3 + 0.8 CH2O + 0.3 HO2

+ 0.2 HYAC + 0.5 CH3COCHO + 0.5 CH3OH
7.1e-13 � exp(500/T)

C-4 degradation (lumped species BIGENE represented by
butene C4H8) Rate constant

BIGENE + OH ! ENEO2 5.4e-11
ENEO2 + NO ! CH3CHO + 0.5 CH2O + 0.5 CH3COCH3

+ HO2 + NO2

4.2e-12 � exp(180/T)

C-5 degradation (isoprene C5H8 and lumped species
BIGALK represented by pentane C5H12) Rate constant

BIGALK + OH ! ALKO2 3.5e-12
ALKO2 + NO ! 0.4 CH3CHO + 0.1 CH2O
+ 0.25 CH3COCH3 + 0.9 HO2 + 0.8 MEK + 0.9 NO2

+ 0.1 ONIT

4.2e-12 � exp(180/T)

ALKO2 + HO2 ! ALKOOH 7.5e-13 � exp(700/T)
ALKOOH + OH ! ALKO2 3.8e-12 � exp(200/T)
C5H8 + OH ! ISOPO2 2.5e-11 � exp(410/T)
C5H8 + O3 ! 0.4 MACR + 0.2 MVK + 0.07 C3H6
+ 0.27 OH + 0.06 HO2 + 0.6 CH2O + 0.3 CO + 0.1 O3

+ 0.2 MCO3 + 0.2 CH3COOH

1.1e-14 � exp(–2000/T)

C5H8 + NO3 ! ISOPNO3 3.0e-12 � exp(–446/T)
ISOPO2 + NO ! 0.08 ONITR + 0.92 NO2 + HO2

+ 0.51 CH2O + 0.23 MACR + 0.32 MVK
+ 0.37 HYDRALD

4.4e-12 � exp(180/T)

ISOPO2 + NO3 ! HO2 + NO2 + 0.6 CH2O
+ 0.25 MACR + 0.35 MVK + 0.4 HYDRALD

2.4e-12

ISOPO2 + HO2 ! ISOPOOH 8.0e-13 � exp(700/T)
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(cont.)

C-5 degradation (isoprene C5H8 and lumped species
BIGALK represented by pentane C5H12) Rate constant

ISOPOOH + OH ! 0.8 XO2 + 0.2 ISOPO2 1.5e-11 � exp(200/T)
ISOPO2 + CH3O2 ! 0.25 CH3OH + HO2

+ 1.2 CH2O + 0.19 MACR + 0.26 MVK + 0.3 HYDRALD
5.0e-13 � exp(400/T)

ISOPO2 + CH3CO3 ! CH3O2 + HO2 + 0.6 CH2O
+ 0.25 MACR + 0.35 MVK + 0.4 HYDRALD

1.4e-11

ISOPNO3 + NO ! 1.206 NO2 + 0.794 HO2

+ 0.072 CH2O + 0.167 MACR + 0.039 MVK
+ 0.794 ONITR

2.7e-12 � exp(360/T)

ISOPNO3 + NO3 ! 1.206 NO2 + 0.072 CH2O
+ 0.167 MACR + 0.039 MVK + 0.794 ONITR + 0.794 HO2

2.4e-12

ISOPNO3 + HO2 ! XOOH + 0.206 NO2 + 0.794 HO2

+ 0.008 CH2O + 0.167 MACR + 0.039 MVK
+ 0.794 ONITR

8.0e-13 � exp(700/T)

ONITR + OH ! HYDRALD + 0.4 NO2 + HO2 4.5e-11
ONITR + NO3 ! HO2 + NO2 + HYDRALD 1.4e-12 � exp(–1860/T)
HYDRALD + OH ! XO2 1.9e-11 � exp(175/T)
XO2 + NO ! NO2 + HO2 + 0.5 CO + 0.25 GLYOXAL
+ 0.25 HYAC + 0.25 CH3COCHO + 0.25 GLYALD

2.7e-12 � exp(360/T)

XO2 + NO3 ! NO2 + HO2 + 0.5 CO + 0.25 HYAC
+ 0.25 GLYOXAL + 0.25 CH3COCHO + 0.25 GLYALD

2.4e-12

XO2 + HO2 ! XOOH 8.0e-13 � exp(700/T)
XO2 + CH3O2 ! 0.3 CH3OH + 0.8 HO2 + 0.7 CH2O
+ 0.2 CO + 0.1 HYAC + 0.1 GLYOXAL + 0.1 CH3COCHO
+ 0.1 GLYALD

5.0e-13 � exp(400/T)

XO2 + CH3CO3 ! 0.5 CO + CH3O2 + HO2 + CO2

+ 0.25 GLYOXAL + 0.25 HYAC + 0.25 CH3COCHO
+ 0.25 GLYALD

1.3e-12 � exp(640/T)

XOOH + OH ! H2O + XO2 1.9e-12 � exp(190/T)
XOOH + OH ! H2O + OH 7.7e-17� T2� exp(253/T)
MVK + OH ! MACRO2 4.1e-12 � exp(452/T)
MVK + O3 ! 0.8 CH2O + 0.95 CH3COCHO + 0.08 OH
+ 0.2 O3 + 0.06 HO2 + 0.05 CO + 0.04 CH3CHO

7.5e-16 � exp(–1521/T)

MEK + OH ! MEKO2 2.3e-12 � exp(–170/T)
MEKO2 + NO ! CH3CO3 + CH3CHO + NO2 4.2e-12 � exp(180/T)
MEKO2 + HO2 ! MEKOOH 7.5e-13 � exp(700/T)
MEKOOH + OH ! MEKO2 3.8e-12 � exp(200/T)
MACR + OH ! 0.5 MACRO2 + 0.5 H2O + 0.5 MCO3 1.9e-11 � exp(175/T)
MACR + O3 ! 0.8 CH3COCHO + 0.275 HO2

+ 0.2 CO + 0.2 O3 + 0.7 CH2O + 0.215 OH
4.4e-15 � exp(–2500/T)

MACRO2 + NO ! NO2 + 0.47 HO2 + 0.25 CH2O
+ 0.53 GLYALD + 0.25 CH3COCHO + 0.53 CH3CO3

+ 0.22 HYAC + 0.22 CO

2.7e-12 � exp(360/T)

MACRO2 + NO ! 0.8 ONITR 1.3e-13 � exp(360/T)
MACRO2 + NO3 ! NO2 + 0.47 HO2 + 0.25 CH2O
+ 0.25 CH3COCHO + 0.22 CO + 0.53 GLYALD
+ 0.22 HYAC + 0.53 CH3CO3

2.4e-12

556 Chemical Mechanism

016
23 Jun 2017 at 02:30:24, subject to the Cambridge Core terms of use, available



(cont.)

C-5 degradation (isoprene C5H8 and lumped species
BIGALK represented by pentane C5H12) Rate constant

MACRO2 + HO2 ! MACROOH 8.0e-13 � exp(700/T)
MACRO2 + CH3O2 ! 0.73 HO2 + 0.88 CH2O + 0.11 CO
+ 0.24 CH3COCHO + 0.26 GLYALD + 0.26 CH3CO3

+ 0.25 CH3OH + 0.23 HYAC

5.0e-13 � exp(400/T)

MACRO2 + CH3CO3 ! 0.25 CH3COCHO + CH3O2

+ 0.22 CO + 0.47 HO2 + 0.53 GLYALD + 0.22 HYAC
+ 0.25 CH2O + 0.53 CH3CO3

1.4e-11

MACROOH + OH ! 0.5 MCO3 + 0.2 MACRO2

+ 0.1 OH + 0.2 HO2

2.3e-11 � exp(200/T)

MCO3 + NO ! NO2 + CH2O + CH3CO3 5.3e-12 � exp(360/T)
MCO3 + NO3 ! NO2 + CH2O + CH3CO3 5.0e-12
MCO3 + HO2 ! 0.25 O3 + 0.25 CH3COOH
+ 0.75 CH3COOOH + 0.75 O2

4.3e-13 � exp(1040/T)

MCO3 + CH3O2 ! 2 CH2O + HO2 + CO2 + CH3CO3 2.0e-12 � exp(500/T)
MCO3 + CH3CO3 ! 2 CO2 + CH3O2 + CH2O + CH3CO3 4.6e-12 � exp(530/T)
MCO3 + MCO3 ! 2 CO2 + 2 CH2O + 2 CH3CO3 2.3e-12 � exp(530/T)
MCO3 + NO2 + M ! MPAN + M 1.1e-11 � (300/T)/[M]
MPAN + M ! MCO3 +NO2 + M kMCO3+NO2 � 1.1e+28 �

exp(–14000/T)
MPAN + OH + M ! 0.5 HYAC + 0.5 NO3

+ 0.5 CH2O + 0.5 HO2 + 0.5 CO2 + M
k0 = 8.0e-27 � (T/300)–3.5

k∞ = 3.0e-11
f = 0.5

C-7 degradation (lumped aromatics represented by toluene C7H8) Rate constant

TOLUENE + OH ! 0.25 CRESOL + 0.25 HO2 + 0.7 TOLO2 1.7e-12 � exp
(352/T)

TOLO2 + NO ! 0.45 GLYOXAL + 0.45 CH3COCHO
+ 0.9 BIGALD + 0.9 NO2 + 0.9 HO2

4.2e-12 � exp
(180/T)

TOLO2 + HO2 ! TOLOOH 7.5e-13 � exp
(700/T)

TOLOOH + OH ! TOLO2 3.8e-12 � exp
(200/T)

CRESOL + OH ! XOH 3.0e-12
XOH + NO2 ! 0.7 NO2 + 0.7 BIGALD + 0.7 HO2 1.0e-11

C-10 degradation (terpenes lumped as α-pinene C10H16) Rate constant

TERPENE + OH ! TERPO2 1.2e-11 � exp(444/T)
TERPENE + O3 ! 0.7 OH + MVK + MACR + HO2 1.0e-15 � exp(–732/T)
TERPENE + NO3 ! TERPO2 + NO2 1.2e-12 � exp(490/T)
TERPO2 + NO ! 0.1 CH3COCH3 + HO2 + MVK + MACR
+ NO2

4.2e-12 � exp(180/T)

TERPO2 + HO2 ! TERPOOH 7.5e-13 � exp(700/T)
TERPOOH + OH ! TERPO2 3.8e-12 � exp(200/T)
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D.3.3 Halogen Chemistry

O(1D) reactions with halogens Rate constant

O1D + CFCl3 ! 3 Cl 1.7e-10
O1D + CF2Cl2 ! 2 Cl 1.2e-10
O1D + CCl2FCClF2 ! 3 Cl 1.5e-10
O1D + CHF2Cl ! Cl 7.2e-11
O1D + CCl4 ! 4 Cl 2.8e-10
O1D + CH3Br ! Br 1.8e-10
O1D + CF2ClBr ! Cl + Br 9.6e-11
O1D + CF3Br ! Br 4.1e-11

Inorganic chlorine reactions Rate constant

Cl + O3 ! ClO + O2 2.3e-11 � exp(–200/T)
Cl + H2 ! HCl + H 3.1e-11 � exp(–2270/T)
Cl + H2O2 ! HCl + HO2 1.1e-11 � exp(–980/T)
Cl + HO2 ! HCl + O2 1.8e-11 � exp(170/T)
Cl + HO2 ! OH + ClO 4.1e-11 � exp(–450/T)
Cl + CH2O ! HCl + HO2 + CO 8.1e-11 � exp(–30/T)
Cl + CH4 ! CH3O2 + HCl 7.3e-12 � exp(–1280/T)
ClO + O ! Cl + O2 2.8e-11 � exp(85/T)
ClO + OH ! Cl + HO2 7.4e-12 � exp(270/T)
ClO + OH ! HCl + O2 6.0e-13 � exp(230/T)
ClO + HO2 ! O2 + HOCl 2.7e-12 � exp(220/T)
ClO + NO ! NO2 + Cl 6.4e-12 � exp(290/T)
ClO + ClO ! 2Cl + O2 3.0e-11 � exp(–2450/T)
ClO + ClO ! Cl2 + O2 1.0e-12 � exp(–1590/T)
ClO + ClO ! Cl + OClO 3.5e-13 � exp(–1370/T)
HCl + OH ! H2O + Cl 2.6e-12 � exp(–350/T)
HCl + O ! Cl + OH 1.0e-11 � exp(–3300/T)
HOCl + O ! ClO + OH 1.7e-13
HOCl + Cl ! HCl + ClO 2.5e-12 � exp(–130/T)
HOCl + OH ! H2O + ClO 3.0e-12 � exp(–500/T)
ClONO2 + O ! ClO + NO3 2.9e-12 � exp(–800/T)
ClONO2 + OH ! HOCl + NO3 1.2e-12 � exp(–330/T)
ClONO2 + Cl ! Cl2 + NO3 6.5e-12 � exp(135/T)

Three-body and reverse reactions
ClO + ClO + M ! Cl2O2 + M k0 = 1.6e-32 � (T/300)–4.5

k∞ = 2.0e-12 � (T/300)–2.4

Cl2O2 + M ! ClO + ClO + M kClO+ClO � 5.8e26 � exp(–8649/T)
ClO + NO2 + M ! ClONO2 + M k0 = 1.8e-31 � (T/300)–3.4

k∞ = 1.5e-11 � (T/300)–1.9
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D.4 Heterogeneous Reactions

The following table lists the dimensionless reactive uptake probabilities γ of different
heterogeneous reactions. The symbol OC stands for organic carbon, SO4 for sulfate,
NH4NO3 for ammonium nitrate and SOA for secondary organic aerosols. r denotes
the particle radius.

Inorganic bromine reactions Rate constant

Two-Body Reactions
Br + O3 ! BrO + O2 1.7e-11 � exp(–800/T)
Br + HO2 ! HBr + O2 4.8e-12 � exp(–310/T)
Br + CH2O ! HBr + HO2 + CO 1.7e-11 � exp(–800/T)
BrO + O ! Br + O2 1.9e-11 � exp(230/T)
BrO + OH ! Br + HO2 1.7e-11 � exp(250/T)
BrO + HO2 ! HOBr + O2 4.5e-12 � exp(460/T)
BrO + NO ! Br + NO2 8.8e-12 � exp(260/T)
BrO + ClO ! Br + OClO 9.5e-13 � exp(550/T)
BrO + ClO ! Br + Cl + O2 2.3e-12 � exp(260/T)
BrO + ClO ! BrCl + O2 4.1e-13 � exp(290/T)
BrO + BrO ! 2Br + O2 1.5e-12 � exp(230/T)
HBr + OH ! Br + H2O 5.5e-12 � exp(200/T)
HBr + O ! Br + OH 5.8e-12 � exp(–1500/T)
HOBr + O ! BrO + OH 1.2e-10 � exp(–430/T)
BrONO2 + O ! BrO + NO3 1.9e-11 � exp(215/T)

Three-body reactions
BrO + NO2 + M ! BrONO2 + M k0 = 5.2e-31 � (T/300)–3.2

k∞ = 6.9e-12 � (T/300)–2.9

Organic halogen reactions with Cl, OH Rate constant

CH3Cl + Cl ! HO2 +CO +2 HCl 2.2e-11 � exp(–1130/T)
CH3Cl + OH ! Cl +H2O + HO2 2.4e-12 � exp(–1250/T)
CH3CCl3 + OH ! H2O + 3 Cl 1.6e-12 � exp(–1520/T)
CHF2Cl + OH ! Cl +H2O + CF2O 1.1e-12 � exp(–1600/T)
CH3Br + OH ! Br +H2O + HO2 2.4e-12 � exp(–1300/T)

Heterogeneous reactions on tropospheric aerosols Reactive uptake probability γ

N2O5 ! 2 HNO3 0.1 on OC, SO4, NH4NO3, SOA
NO3 ! HNO3 0.001 on OC, SO4, NH4NO3, SOA
NO2 ! 0.5 OH + 0.5 NO + 0.5 HNO3 0.0001 on OC, SO4, NH4NO3, SOA
HO2 ! 0.5 H2O2 0.2 on OC, SO4, NH4NO3, SOA
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Stratospheric sulfate aerosol reactions Reactive uptake probability γ

N2O5 ! 2 HNO3 0.04
ClONO2 ! HOCl + HNO3 f(sulfuric acid wt%)
BrONO2 ! HOBr + HNO3 f(T, p, [HCl], [H2O], r)
ClONO2 + HCl ! Cl2 + HNO3 f(T, p, [H2O], r)
HOCl + HCl ! Cl2 + H2O f(T, p, [HCl], [H2O], r)
HOBr + HCl ! BrCl + H2O f(T, p, [HCl], [HOBr], [H2O], r)

Nitric acid trihydrate reactions Reactive uptake probability γ

N2O5 ! 2 HNO3 0.0004
ClONO2 ! HOCl + HNO3 0.004
ClONO2 + HCl ! Cl2 + HNO3 0.2
HOCl + HCl ! Cl2 + H2O 0.1
BrONO2 ! HOBr + HNO3 0.3

Ice aerosol reactions Reactive uptake probability γ

N2O5 ! 2 HNO3 0.02
ClONO2 ! HOCl + HNO3 0.3
BrONO2 ! HOBr + HNO3 0.3
ClONO2 + HCl ! Cl2 + HNO3 0.3
HOCl + HCl ! Cl2 + H2O 0.2
HOBr + HCl ! BrCl + H2O 0.3
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E Brief Mathematical Review

E.1 Mathematical Functions

A function f from set S to set T is a rule that associates with each element x of set S a
unique element y of set T. One writes

y ¼ f xð Þ (1)

where y is said to be a function of x, or to be the image of x under f. Function f maps
therefore x on y. Element x is called the independent variable and element y the
dependent variable. The concept can be extended to multiple independent variables:

y ¼ f x1; x2; ::; xnð Þ
A function written as (1) is said to be explicit. If expressed as

f x; yð Þ ¼ 0

it is implicit.

Partial Derivatives

We define the partial derivative ∂f =∂x of a function f versus independent variable x as
the variation of f relative to infinitesimal variation in x, while keeping all other
independent variables constant.

Total Differential

The total differential of function f is defined as the variation in f for an infinitesimal
perturbation of all independent variables. If f depends on variables xi (with i = 1, n),
the total differential is thus

df ¼
Xn
i¼1

∂f
∂xi

dxi (2)

Total Derivative

By direct application of relation (2), the total derivative of function f versus any
independent variable xk is

df

dxk
¼

Xn
i¼1

∂f
∂xi

dxi
dxk

� �
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Time Derivative: Eulerian Versus Lagrangian

For a function f that depends, for example, on three spatial variables (x, y, z) and on
time (t), the total derivative is

df

dt
¼ ∂f

∂x
dx

dt
þ ∂f

∂y
dy

dt
þ ∂f

∂z
dz

dt
þ ∂f

∂t

or

df

dt
¼ ∂f

∂x
uþ ∂f

∂y
vþ ∂f

∂z
wþ ∂f

∂t

where u = dx/dt, v = dv/dt, and w = dz/dt are the velocity components. The total
derivative on the left-hand side is called the Lagrangian time derivative because it
expresses the change of function f following a moving parcel. The partial derivative
∂f =∂t on the right-hand side defines the change in the function at a given point of the
domain in response to local sources and sinks. It is called the Eulerian time
derivative. The remaining terms on the right-hand side represent the change in f
versus time due to the advection of air parcels from other locations in the domain
where the value of f is different.

Notations for Differentiation

If equation y = f(x) represents a mathematical relationship between a dependent variable y and an
independent variable x, the first and second derivatives of y versus x can be expressed in different
equivalent forms:

• Leibniz0s notation:
dy
dx

d2y
dx2

• Lagrange0s notation: f 0 xð Þ f 00 xð Þ
• Euler0s notation: Dxy D2x y
• Newton0s notation: _y €y

The notation can be generalized for higher-order derivatives. In this book we generally use Leibniz’s
notation but adopt the Lagrangian notation in some cases. The “dot” notation of Newton is used in
the fluid dynamics literature to express time derivatives.
For a function y = f(x, y) of two independent variables x and y, the first and second partial

derivatives are often expressed using the following notations:

∂f
∂x

¼ f x ¼ ∂x f

∂2f
∂x2

¼ f xx ¼ ∂xx f

∂2f
∂x∂y

¼ f xy ¼ ∂xy f
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Higher-Order Derivatives

The second-order derivatives of function f(x, y) versus independent variables x and y
are expressed by

∂2f
∂x∂y

¼ ∂
∂x

∂f
∂y

� �
¼ ∂

∂y
∂f
∂x

� �

This can be generalized to all higher-order derivatives, for example

∂nf
∂xn

¼ ∂
∂x

∂n�1f

∂xn�1

� �

Taylor Expansion of f(x)

If f (x) is a function whose successive derivatives exist, it can be expressed by an
infinite polynomial series

f xð Þ ¼ f x0ð Þ þ
X∞
i¼1

1

i!

∂if
∂xi

� �
x0

x� x0ð Þi

where f(x0) is the value of f estimated at a point x0, and ∂if =∂xi
� �

xo
represents

the ith order derivative of function f evaluated at xo. In many applications,
function f(x) is approximated in the vicinity of point x0 by a finite Taylor
expansion limited to order n. Terms with higher order derivatives are neglected.
The accuracy of the approximation increases with the value of n. Nonlinear
functions can be linearized around x0 by limiting the Taylor expansion to the
first order

f xð Þ ¼ f x0ð Þ þ ∂f
∂x

� �
x0

x� x0ð Þ

Taylor expansions are the basis for many numerical methods.

Differential operators for a scalar field φ and a vector field a are expressed as follows:

• Gradient: grad φ or —φ
• Divergence: div a or —�a
• Laplacian: div grad φ or —2φ or Δφ
• Rotation: curl a or rot a or —� a

where — is a differential operator expressed as a vector whose Cartesian components are
∂
∂x

;
∂
∂y

;
∂
∂z

� �T

.
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E.2 Scalars and Vectors

Scalars

A scalar is a physical quantity that is completely defined by a single number.
Examples are temperature or pressure at a given location and time. A scalar field
associates a scalar value to every point in space. In many atmospheric applications, a
scalar field such as the temperature or the concentration of a chemical species is
provided by a real function f (x, y, z, t) expressed as a function of three independent
spatial variables (x, y, z) and time (t).

Vectors

A vector x (noted by a bold symbol) of dimension n is an ordered collection of n
elements called components:

x ¼

x1
..
.

xi
..
.

xn

0
BBBBB@

1
CCCCCA

The elements of a vector are usually numbers but can also be functions. A vector field
associates a vector to every point of a Euclidean space. Vectors are used in physics to
represent physical quantities that have both a magnitude and a direction such as
force, velocity, acceleration, flux. Vectors are also basic tools of matrix algebra, used
in atmospheric chemistry for statistical applications. In such applications, one may
for example define a concentration vector x where the components xi represent the
concentrations of the different species i.
Vector elements are usually arranged as a column, as shown in the example above;

one sometimes refers to column vectors, but “column” is generally assumed by
default. When vector elements are arranged in a row one refers to a row vector.
A column vector is an (n� 1) matrix (n rows� 1 column). When column vectors are
written out horizontally in text, we express the vector as its transpose (1 � n) to
avoid ambiguity with row vectors. Thus we write x = (x1, x2, . . .xn)

T for the column
vector in the example above.
In a Cartesian coordinate frame, a vector a can be described by its orthogonal

projections on the axes of the reference frame. In a 3-D space (x, y, z), for example,
we write

a ¼ axiþ ayjþ azk

where ax, ay, az are the three components of vector a and (i, j, k) are the unit vectors
along the axes (x, y, z) of the coordinate frame. The norm of the vector is

ak k ¼ a2x þ a2y þ a2z

h i1
2
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and measures the length (or magnitude, or amplitude) of the vector. The sum of
two vectors a and b is a resultant vector c represented by the diagonal of a
parallelogram whose adjacent sides are the two vectors. The components of the
resultant vector are

cx ¼ ax þ bx cy ¼ ay þ by cz ¼ az þ bz

Scalar Product

The scalar product (also known as the inner or dot product) of vectors a and b is a
scalar whose value is

a � b ¼ ak k bk k cos θ ¼ axbx þ ayby þ azbz

Here θ denotes the angle between the two vectors. The following rules are satisfied
by scalar products (m is a scalar):

a � b ¼ b � a
a � bþ cð Þ ¼ a � bþ a � c
m a � bð Þ ¼ mað Þ � b ¼ a � mbð Þ

Vector Product

The vector product (also known as the outer or cross product) of vectors a and b is a
vector c = a � b directed perpendicularly to the plane defined by a and b. Stretch out
the three fingers of your right hand so that your middle finger is perpendicular to the
plane defined by your thumb and your index finger (the “right hand rule”). If your
thumb is vector a, and your index finger is vector b, then c is oriented in the direction
of your middle finger. The amplitude of c is

ck k ¼ a� bk k ¼ ak k bk ksinθ
The components of the vector product are

cx ¼ aybz � azby cy ¼ azbx � axbz cz ¼ axby � aybx

The following rules are satisfied by the vector product (m is a scalar):

a� b ¼ �b� a
a� bþ cð Þ ¼ a� bþ a� c
m a� bð Þ ¼ mað Þ � b ¼ a� mbð Þ
a� b� cð Þ ¼ a � cð Þb� a � bð Þc

Triple Products

a � b� cð Þ¼c � a� bð Þ¼b � c� að Þ¼ a� bð Þ � c
a� bð Þ � c� dð Þ¼ a � c� dð Þð Þb� b � c� dð Þð Þa

¼ a � b� dð Þð Þc� a � b� cð Þð Þd
a� bð Þ � c� dð Þ¼ a � cð Þ b � dð Þ� a � dð Þ b � cð Þ
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Derivative of a Vector

The derivative da/dξ of vector a (ax, ay, az) with respect to independent variable ξ
is obtained by computing the derivative of each component. For example, in a
Cartesian frame,

da
dξ

¼ dax
dξ

iþ day
dξ

jþ daz
dξ

k

We have

d a � bð Þ
dξ

¼ da

dξ
� bþ a � db

dξ

d a� bð Þ
dξ

¼ da
dξ

� bþ a� db
dξ

E.3 Matrices

A matrix of size (m � n) is a rectangular table of elements arranged as m rows and n
columns. A (m � n) matrix with elements ai, j (i = 1, n; j = 1, m), is written as

A ¼
a1,1 . . . a1,n
..
. . .

. ..
.

am, 1 � � � am,n

0
B@

1
CA (3)

A matrix with the same number of rows and columns (m = n) is called a square
matrix. A matrix with zero elements below (above) the diagonal ai,i is an upper
(lower) triangular matrix. A matrix with non-zero elements on the main diagonal
and zero off-diagonal elements is called a diagonal matrix. A matrix with non-zero
elements only on the main diagonal and on the first diagonals below and above the
main diagonal is called a tridiagonal matrix. Matrices that include a large number of
zero elements (often encountered in chemical modeling) are referred to as sparse
matrices.
Matrices of the same size (m � n) can be added or subtracted element by element.

If ai,j are the elements of matrix A and bi,j the elements of matrix B, the elements of
matrix C = A + B are

ci, j ¼ ai, j þ bi, j

The multiplication of a matrix A by a scalar γ is a matrix B whose elements are
bi,j = γ ai,j.
Matrices can be multiplied when the number of columns (equal to n) of the

first matrix (A) is equal to the number of rows of the second matrix (B).
If C = AB

ci, j ¼
Xn
k¼1

ai,kbk, j
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Matrix multiplication satisfies several rules:

ABð ÞC ¼ A BCð Þ
Aþ Bð ÞC ¼ ACþ BC

A Bþ Cð Þ ¼ ABþ AC

Matrix multiplication is not commutative

AB 6¼ BA

The trace of a square matrix A is the sum of its diagonal elements.
The transpose AT of a (m� n) matrix A is a (n� m) matrix in which the rows have

been turned into the columns and the columns into the rows. For example, the
transpose of the (m � n) matrix A in (3) is

AT ¼
a1,1 . . . am, 1
..
. . .

. ..
.

a1,n � � � am,n

0
B@

1
CA

An (n � n) square matrix A is said to be symmetric if A = AT such that ai,j = aj,i. It
is said to be antisymmetric if A = –AT with ai,j = –aj,i.

If the matrix includes complex elements, the complex conjugate matrix A* of
matrix A is a matrix whose elements are the complex conjugates of the elements of
matrix A.

For a complex matrix Awith elements ai,j, the adjoint A
{with elements a{i,j is the

complex conjugate of the transpose AT (with elements aj,i)

a{i, j ¼ a�j, i

The adjoint of a real matrix is thus its transpose.
The identity matrix I of size n (denoted In) is a (n � n) square matrix in which all

diagonal elements are equal to 1 and all off-diagonal elements are 0. For example
(n = 2)

I¼ 1 0
0 1

� �

The multiplication of a matrix A by the identity matrix I is

IA ¼ A

The inverse matrix of a square matrix A is a matrix of the same size denoted A–1

that satisfies the relation

A�1A¼A A�1¼I

The inverse of a diagonal matrix is a diagonal matrix of reciprocal elements.

Determinants

The determinant of a square matrix A of size n with elements ai,j is denoted det(A) or
|A| and is calculated as
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det Að Þ ¼
X
ki 6¼ kj
i, j ¼ 1, n

ε k1::::knð Þ a1,k1a2,k2 . . . an,kn (4)

The Levi-Civita symbol ε(k1 . . . kn) denotes the permutation sign function defined by

ε k1 . . . knð Þ ¼ �1ð Þπ Kð Þ

where π(K) is the number of pairwise exchanges among the indices of sequence
K = {k1, k2, . . . kn} needed to reorder the sequence of distinct indices ranging from
1 to n into an ascending order given by [1, 2, . . ., n]. Thus, for example,
ε(1, 2, 3) = +1 and ε(2, 1, 3, 4) = –1. The summation in (4) is performed over all
non-repeated combinations of indices 1, 2, . . . n.
For example, the determinant of a matrix of size n = 2 is

det Að Þ ¼ a1,1 a2,2 � a1,2 a2,1

and for a matrix of size n = 3:

det Að Þ ¼ a1,1 a2,2 a3,3 � a2,3 a3,2ð Þ þ a1,2 a2,3 a3,1 � a2,1 a3,3ð Þ
þa1,3 a2,1 a3,2 � a2,2 a3,1ð Þ

A matrix whose determinant is equal to zero is said to be singular or degenerate.
A matrix whose determinant is non-zero is said to be non-singular or of full rank.
Important properties of determinants are

det ABð Þ ¼ det BAð Þ
det AT

� 	 ¼ det Að Þ
det A�1

� 	 ¼ 1= det Að Þ
The determinant of a triangular or diagonal matrix T with elements ti,j is the

product of its diagonal elements

det Tð Þ ¼ Π
n

1
ti, i

Linear Systems

A system of m linear equations with n independent variables

a1,1x1 þ a1,2x2 þ . . .þ a1,nxn ¼ b1
a2,1x1 þ a2,2x2 þ . . .þ a2,nxn ¼ b2

. . .

am, 1x1 þ am, 2x2 þ . . .þ am,nxn ¼ bm

(5)

can be represented in a matrix form by

a1,1 . . . a1,n
..
. . .

. ..
.

am, 1 � � � am,n

0
B@

1
CA

x1
..
.

xn

0
B@

1
CA ¼

b1
..
.

bm

0
B@

1
CA

or
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Ax ¼ b

Here, A is an m � n matrix, x is a vector of dimension n, and b is a vector of
dimension m. If m = n, the number of unknowns in system (5) is equal to the number
of equations, and matrix A is a square matrix. If A is also non-singular (det(A) 6¼ 0)
then the system can be solved as

x ¼ A�1b

A generic expression for the inverse of a non-singular matrix of size n � n is
given by

A�1 ¼ 1

det Að ÞB

In this expression, B, called the adjugate of A, is a matrix of size n � n whose
coefficients bi,j, referred to as cofactors of elements ai,j, are given by

bi, j ¼ �1ð Þiþj det A i; jð Þð Þ
where matrix A(i, j) of size (n – 1� n – 1), called (i,j)-th redact, is the same as matrix
A in which row i and column j have been removed. In practical applications, more
efficient algorithms are adopted to seek the solution of linear systems. Among these
are direct methods (e.g., Gauss–Jordan elimination, LU decomposition) or iterative
methods (e.g., Jacobi, Gauss–Seidel, least-square, conjugate gradients methods).
See Press et al. (2007) and Co (2013) for more details. The Thomas algorithm (see
Box 4.4) is used to solve tridiagonal systems.

Jacobian Matrix

Let x = (x1, x2, . . . xn)
T be a vector of dimension n and f = (f1, f2, . . . fm)

T be a vector-
valued function of dimension m whose elements fi are scalar-valued functions of x.
The Jacobian matrix J(f) of f defined by

J ¼ ∂f
∂x

is the m � n matrix whose elements ji,j are partial derivatives of fi with respect to
vector elements xj.

ji, j ¼
∂f i
∂xj

ji,j represents the sensitivity of function fi to variable xj. The Jacobian generalizes the
notion of gradient to describe the sensitivity to a vector. The m components of f are
assumed to be continuous over the entire domain under consideration. The Jacobian
matrix is often used as the linearized expression of a mathematical model. In
Chapter 11, the Jacobian is denoted K to avoid confusion with the usual notation
for the cost function (J ).

The Hessian H(f ) of a scalar-valued function f is a square matrix whose elements
hi,j are the second-order partial derivatives of function f
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hi, j¼ ∂2f
∂xi∂xj

It describes the local curvature of a function of many variables. The Hessian matrix is
related to the Jacobian matrix by

H fð Þ ¼ J —fð Þ

Eigenvalues and Eigenvectors

An eigenvector e of a square matrix A (n � n) is a vector that satisfies

Ae ¼ λ e (6)

where the scalar λ (real or complex) is the eigenvalue corresponding to the eigen-
vector. It is often useful to know the eigenvectors of a matrix because they represent
the vectors for which operation by the matrix modifies the amplitude without
changing the direction. If e is an eigenvector of A, then any scalar multiplier of e
must also be an eigenvector as seen from (6). It follows that (6) must yield an infinite
number of solutions for e and hence that

det A� λInð Þ ¼ 0 (7)

The eigenvalues of matrix A are thus the solutions to (7) and replacement into (6)
yields the corresponding eigenvectors e1, e2, . . .
One can show that the trace of a matrix is equal to the sum of its eigenvalues, and

that its determinant is equal to the product of its eigenvalues.

E.4 Vector Operators

The Gradient Operator

If f(x, y, z) is a scalar field at position (x, y, z) in three dimensions, the gradient of f
denoted grad(f ) or—f is defined in Cartesian coordinates by

—f x; y; zð Þ ¼ grad fð Þ ¼ ∂f
∂x

iþ ∂f
∂y

jþ ∂f
∂z

k

where, as above, i, j, and k represent the basis of unit vectors in the coordinate
system, and — (nabla symbol) the vector differential operator. At any point P, the
gradient of a scalar-valued function f is a vector that points in the direction of
the greatest change of f at point P. In spherical coordinates (Figure E.1), the gradient
is expressed by

—f r; θ;φð Þ ¼ grad fð Þ ¼ ∂f
∂r

ir þ 1

r

∂f
∂θ

iθþ 1

r sin θ
∂f
∂φ

iφ

where ir, iθ, and iφ are unit vectors pointing along coordinate directions, and where φ
is the azimuth angle and θ the zenith angle.
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The gradient of a vector-valued function f(x) is its Jacobian matrix
J ¼ ∂f=∂x. This is often used in a steepest-descent algorithm to find the
minimum of f.

Divergence of a Vector Field

If f = (fx, fy, fz)
T is a vector function in a 3-D Euclidean space, its divergence is a

scalar field defined in Cartesian coordinates by

— � f ¼ div fð Þ ¼ ∂f x
∂x

þ ∂f y
∂y

þ ∂f z
∂z

The divergence of a vector field represents the flux generation per unit volume at
each point of the field. In spherical coordinates, the divergence of a vector f(fr, fθ, fφ)
is written

— � f r; θ;φð Þ ¼ div fð Þ ¼ 1

r2
∂
∂r

r2f r
� 	þ 1

r sin θ
∂
∂θ

sin θ f θð Þ þ 1

r sin θ

∂f φ
∂φ

Curl of a Vector Field

The curl of a vector field f = (fx, fy, fz)
T is a vector defined as the cross product of the

operator — with vector f. In Cartesian coordinates,

Figure E.1 Definition of spherical coordinates. Point P is defined by the radial distance r, the azimuthal angle φ, and
the zenith angle θ. If i, j, and k are the unit vectors along rectangular coordinates x, y, and z, the unit
vectors in spherical coordinates ir, iφ, and iθ are defined by ir = r/||r|| = (x i + y j + z k)/(x2 + y2 + z2)1/2,
iφ = k � ir, and iθ = iφ � ir.
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—� f ¼ curl fð Þ¼

i j k

∂
∂x

∂
∂y

∂
∂z

f x f y f z






















¼ ∂f z

∂y
� ∂f y

∂z

� �
iþ ∂f x

∂z
� ∂f z

∂x

� �
jþ ∂f y

∂x
� ∂f x

∂y

� �
k

The curl of a vector field f represents the vorticity or circulation per unit area of the
field. In spherical coordinates, it is expressed by

—� f r; θ;φ;ð Þ ¼ curl fð Þ ¼ 1

r sin θ
∂
∂θ

f φ sin θ
� �

� ∂f θ
∂φ

� �
ir

þ 1

r

1

sin θ
∂f r
∂φ

� ∂
∂r

rf φ

� �� �
iθ

þ 1

r

∂
∂r

rf θð Þ � ∂f r
∂θ

� �
iφ

Laplacian of a Scalar Field

The Laplacian Δf of a scalar field f is the divergence of its gradient.

Δf ¼ — � —fð Þ

It is a scalar field. In Cartesian coordinates, it is expressed as

Δf ¼ ∂2f
∂x2

þ ∂2f
∂y2

þ ∂2f
∂z2

In spherical coordinates, it is written

Δf ¼ 1

r2
∂
∂r

r2
∂f
∂r

� �
þ 1

r2 sin θ
∂
∂θ

sin θ
∂f
∂θ

� �
þ 1

r2 sin 2θ
∂2f
∂φ2

Important Relations

If f is a scalar field and f a vector field, we have

—� —fð Þ ¼ 0

— � —� fð Þ ¼ 0

—� —� fð Þ ¼ — — � fð Þ � —2f

— � f fð Þ ¼ f — � fð Þ þ —fð Þ � f
—� f fð Þ ¼ f —� fð Þ þ —fð Þ � f
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Scalar and Vector Potentials

Any vector field f whose curl is equal to zero can be expressed as the gradient of a
scalar potential V

f ¼ �—V

Any vector field f whose divergence is equal to zero can be expressed as the curl of a
vector field a

f ¼ —� a

Integration Theorems

If f = (fx, fy, fz)
T is a vector field defined in a given region, Γ a curve in this region, and

dr = (dx, dy, dz)T an elementary displacement along this curve, the circulation C
between points P1 and P2 is given by the line integral

C ¼
ðP2

Γ,P1

f dr ¼
ðP2

Γ,P1

f xdxþ f ydyþ f zdz
h i

For a vector f whose curl equals zero, the circulation can be expressed as a function
of potential V, and

C ¼ �
ðP2

Γ,P1

∂V
∂x

dxþ ∂V
∂y

dyþ ∂V
∂z

dz ¼ �
ðP2

Γ,P1

dV ¼ VP1 � VP2

In this case, the circulation is thus independent of the path between points P1 and P2.
For a closed curve, the circulation of a vector whose curl is equal to zero is equal
to zero.

The Kelvin–Stokes’ theorem, also called the curl theorem, relates the surface
integral of the curl of vector f over a surface A in the 3-D Euclidean space to the
line integral of the vector field over its boundary Γþ

Γ

f � dr ¼
ðð
A

n � —� fð ÞdS

where n is the outward-pointing unit normal vector on the surface boundary. The
Gauss–Ostrogradsky’s theorem, also called the divergence theorem, states that the
outward flux of a vector field f through a closed surface A is equal to the volume
integral of the divergence of f over the volume V inside the surface

�

ðð
A

f � n dS ¼
ððð
V

— � fð ÞdV

The 2-D version (in a plane) of the divergence theorem, called Green’s theorem, is
expressed as þ

Γ

f � n ds ¼
ðð
A

— � fð ÞdS
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E.5 Differential Equations

A differential equation is a mathematical expression that relates some function to
its derivatives. The order of a differential equation is the highest order of the
derivative(s) found in the equation. We consider here two types of differential
equations: ordinary differential equations (ODEs) and partial differential
equations (PDEs).

Ordinary Differential Equations

An ODE prescribes a function and its derivative(s) relative to a single independent
variable. A simple example of an initial value ODE for a vector-valued function y(t)
is the first-order equation

dy tð Þ
dt

¼ f y; tð Þ

which describes the rate at which the vector-valued function y(t) varies with time t,
for an applied forcing f(y, t). The system is said to be autonomous if function f is not
explicitly dependent on time [f = f(y)] and non-autonomous otherwise [f = f(y, t)].
The solution y(t) is expressed for a specified initial value y(t0) by

y tð Þ ¼ y t0ð Þ þ
ðt
t0

f y; t0ð Þ dt0

A linear ODE of order N, written here for a scalar function y(x), is expressed as

a0
dNy

dxN
þ a1

dN�1y

dxN�1
þ a2

dN�2y

dxN�2
þ . . .þ aN�1

dy

dx
þ aNy ¼ f xð Þ

It is said to be homogeneous if the forcing term f(x) = 0 and inhomogeneous
otherwise. The solution of this equation requires that N independent conditions be
specified. These can be, for example, values of function y and its N – 1 first
derivatives at one end of the interval under consideration (e.g., at point x = 0).
These conditions are referred to as initial conditions when the independent
variable is time. Another option is to provide conditions at each boundary of
the interval.

Partial Differential Equations

A PDE prescribes a function and its partial derivatives relative to several independ-
ent variables. If y is a dependent variable and x(x1, x2, . . ., xn) are n independent
variables, the general form of a first-order partial differential equation is

F x; y;
∂y
∂x1

;
∂y
∂x2

; :::;
∂y
∂xn

� �
¼ 0
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One distinguishes between different forms of first-order PDEs:

Quasi-linear equation:
Xn
i¼1

ai x; yð Þ ∂y
∂xi

¼ f x; yð Þ

Linear equation:
Xn
i¼1

ai xð Þ ∂y
∂xi

¼ f xð Þ þ b xð Þy

Strictly linear equation:
Xn
i¼1

ai xð Þ ∂y
∂xi

¼ f xð Þ

The second-order linear PDE for a field ψ(x, y)

A
∂2ψ
∂x2

þ B
∂2ψ
∂x∂y

þ C
∂2ψ
∂y2

þ D
∂ψ
∂x

þ E
∂ψ
∂y

þ F ψ ¼ G

is said to be

• elliptic if B2 � 4AC < 0

• parabolic if B2 � 4AC ¼ 0

• hyperbolic if B2 � 4AC > 0

by formal analogy with the name of the conics (ellipse, parabola, and hyperbola)
represented for these same conditions when applied to the quadratic equation

Ax2 þ Bxyþ Cy2 þ Dxþ Eyþ F ¼ 0

An example of an elliptic PDE is the Laplace equation

—2ψ ¼ 0

describing a time-independent “boundary value” problem. The determination of the
solution requires that a condition be prescribed at each point of the boundary of the
domain in which this equation is to be solved. This condition can be a specified value
of the function y (Dirichlet or first-type condition) or a specified value of the normal
derivative of y (Neumann or second-type condition).

An example of a parabolic PDE is the diffusion equation

∂ψ
∂t

¼ D—2ψ

The solution of this linear parabolic PDE requires that an initial condition and a
condition at each point of the boundary of the spatial domain be specified.

Finally, the wave equation

∂2ψ
∂t2

¼ c2—2ψ

is an example of a hyperbolic PDE. The advection equation

∂ψ
∂t

þ c
∂ψ
∂x

¼ 0

can also be classified as a hyperbolic PDE since its solution verifies the wave equation.
The solution of the linear advection equation requires that initial conditions be specified
along with boundary conditions at the upstream boundary of the spatial domain.
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Another characterization of PDEs that is more useful from a computational point
of view is to distinguish between initial value problems (such as the advection and
the diffusion equations) in which the equations are integrated forward in time from a
specified initial condition, and boundary value problems (such as the Laplace
equation) in which the correct solution must be found everywhere at once (Press
et al., 2007).
Different analytical methods are available to solve PDEs (see, e.g., Durran, 2010;

Co, 2013) including the method of characteristics, discussed in different textbooks,
the use of the Laplace or Fourier transforms (see Section E.6), etc. Numerical
approaches to solve the advection and diffusion equations are presented in Chapters 7
and 8.

E.6 Transforms

Orthogonal Transforms

We consider a linear transformation of n-element vector x to a new n-element
vector y:

y ¼ M x

whereM is an n � n matrix. The transformation is said to be orthogonal if matrix M
is orthogonal, i.e., its inverse M–1 is equal to its transpose MT:

MTM ¼ I

where I is the identity matrix. The transformation is said to be unitary if the adjoint
matrix M{ (see Section E.3) is equal to the inverse matrix M–1:

M{M ¼ I

Under these conditions, the norm of vector y is equal to the norm of vector x.
A unitary transformation (such as a Fourier transform, see next section) preserves the
norm of a vector.

Laplace and Fourier Transforms

If function f(x) of a real variable x is equal to zero for x < 0, the Laplace transform of
f(x) is defined by function F(p) of a complex variable p

F pð Þ ¼
ð∞
0

f xð Þ e�pxdx

where F(p) is said to be the image of f(x). One shows easily that the Laplace
transform of the derivative of function f is given by p F(p) – f(0) and, more generally,
the Laplace transform of the nth derivative of f(x) denoted f (n) is

pnF pð Þ � Pn�1

m¼0
pn�m�1f mð Þ 0ð Þ. Here f (m) is the mth derivative of function f at x = 0.
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The Laplace transform can thus be applied to transform an ODE into an algebraic
equation, or a PDE into an ODE. The solution of these transformed equations is
generally easier to obtain than for the original equations, and the solution f(x) is then
obtained by applying an inverse transform.

The Fourier transform of f(x) is defined by

F kð Þ ¼ 1ffiffiffiffiffi
2π

p
ðþ∞

�∞

f xð Þ e�i k xdx

and its inverse by

f xð Þ ¼ 1ffiffiffiffiffi
2π

p
ðþ∞

�∞

F kð Þ ei k xdk

where k is a real variable and i2 = –1. In many global modeling applications,
information is repeatedly transferred between spectral and grid point representations
(see Chapter 4) by applying Fourier transforms. If independent variable x represents
space [m], variable k represents wavenumber [m–1]. If the independent variable x
represents time [s], variable k represents frequency [s–1]. The Fourier transform of
the derivative of f(x) is equal to i k F(k) if f(0) = 0.
In grid point models, the values of function f(x) are known only at N discrete

points xj, (j = 0, 1, . . ., N – 1) of the spatial domain, for example, on regularly spaced
grid points along a longitude circle on a sphere. In this case, the transfer of data
between the grid point and spectral spaces is achieved by applying a discrete Fourier
transform (DFT), which takes the form

Fk¼:
XN�1

j¼0

f j e
�2π i j k=N (8)

f j¼:
XN�1

k¼0

Fk e
2π i j k=N (9)

Here, fj denotes the value of function f(x) at the geometric point xj, Fk is proportional
to the value of function F(k) for a discrete value of the wavenumber k.
The application of expressions (8) and (9) requires N multiplications and add-

itions. Since these operations have to be applied N times, the total number of
operations required is of the order of N2. The method can become computationally
impractical when the value of N is large. The fast Fourier transform (FFT) algo-
rithm, introduced in its modern version by Cooley and Tukey (1965), but already
considered by Gauss in 1805, circumvents this problem by breaking the N-point
transform into two N/2 point transforms, one for the even (2 j) points and one for the
odd (2 j + 1) points. The splitting is further repeated until the problem is broken into
N single-point transforms. The number of steps required to calculate the discrete
Fourier Transform is then of the order of N log2N operations, and the computational
cost is considerably smaller.
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Principal Component Analysis and Empirical Orthogonal Functions

Principal component analysis (PCA) is a standard method to identify the character-
istic patterns of variability in a data set. Consider a time series of observations for an
ensemble of K variables assembled into a vector x = (x1, x2, . . ., xK)

T. The time series
consists of successive values of x at discrete times. The variability of x with time is
characterized by the (K � K) covariance matrix

Cov xð Þ ¼
var x1ð Þ . . . cov x1; xKð Þ

..

. . .
. ..

.

cov xK ; x1ð Þ � � � var xKð Þ

0
B@

1
CA

This is a symmetric matrix of full rank and thus has K eigenvalues λk and K
corresponding eigenvectors ek forming an orthonormal basis. The eigenvectors
represent uncorrelated patterns in the data and are called the empirical orthogonal
functions (EOFs) for the data set.
For a given realization of x at an individual time, one defines the principal

components (PCs) as the projections of x onto the orthonormal basis defined by
the EOFs. Thus the k-th principal component yk is the projection of x onto the k-th
eigenvector ek:

yk ¼ eTk x ¼
XK
i¼1

ek, ixi

Each realization of the vector x can thus be projected onto the basis of EOFs using
the PCs:

x ¼
XK
k¼1

ykek

The PCs form a time series corresponding to the time series of x, and the variance of
a given PC is given by the corresponding eigenvalue: var(yk) = λk. We thus see that λk
measures the variance associated with the EOF pattern defined by eigenvector ek. In
this manner, we can define the dominant independent patterns accounting for the
variability in a data set.

E.7 Probability and Statistics

A random (or stochastic) variable X is a variable whose values cannot be predicted
deterministically, but can be described probabilistically. These values can be either
discrete or continuous. In the first case, the variable may take only a countable
number of distinct values xi, while in the second case it may take an infinite number
of possible values x. Here, xi and x refer to specific values taken by X.
A random variable is described by its probability density. The probability density

of a discrete random variable is given by a list of N probabilities pi associated with
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each of its possible values. All values of pi must be non-negative and normalized so
that their sum is equal to 1:

XN
1

pi ¼ 1

Continuous random variables are described by a probability density function
(PDF), denoted p(x), such that p(x)dx is the probability for X being in the range
[x, x + dx], normalized to add up to 1 for all possible realizations of X:

ðþ∞

�∞

p xð Þ dx ¼ 1

The PDF for a discrete random variable is often represented by a histogram (in blue
in Figure E.2) that displays the probability pi (i = 1, N) that X lies in certain ranges
over a given domain. The red curve shows the corresponding continuous PDF p(x).

Joint Probability Distribution

If p(x) dx is the probability that a random variable X takes a value between x and
x + dx, and p(y) dy is the probability that variable Y takes a value between y and
y + dy, the joint probability density function p(x, y) is defined as the probability that
the values x and y be in the range x and x + dx, and y + dy, respectively. This joint
PDF is normalized so that

–6
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Figure E.2 Probability distribution (blue histogram) and probability density function (red curve) for a random variable.
Reproduced from http://glowingpython.blogspot.com.
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ðþ∞

�∞

ðþ∞

�∞

p x; yð Þ dx dy ¼ 1

Further, it is also normalized with respect to each variable

p xð Þ ¼
ðþ∞

�∞

p x; yð Þ dy and p yð Þ ¼
ðþ∞

�∞

p x; yð Þ dx

Conditional Probability Distribution

The probability that X takes a value between x and x + dx, given a known value y of Y,
is expressed by the conditional probability p(x|y)

p xjyð Þ ¼ p x; yð Þ
p yð Þ

If random variables X and Y are independent,

p x; yð Þ ¼ p xð Þ p yð Þ
and consequently

p xjyð Þ ¼ p xð Þ

Mean of a Distribution

We consider a random variable X that is distributed according to a PDF p(x). The
mean value m of a population, also called the expected value of x and denoted by
E[x], is given by the first-order population moment:

m ¼
ðþ∞

�∞

x p xð Þ dx

The mean value mxy of the product of two independent random variables x and y is
given by

mxy ¼
ðþ∞

�∞

ðþ∞

�∞

x y p x; yð Þ dx dy ¼
ðþ∞

�∞

x p xð Þdx
ðþ∞

�∞

y p yð Þdy ¼ mx my

Variance and Standard Deviation

The variance of a variable X whose distribution is expressed by the PDF p(x) relative
to its mean value m is defined as the second population moment

σ2 ¼
ðb
a

x� mð Þ2p xð Þ dx

The standard deviation σ is the square root of the variance.
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Normal Density Function

A common PDF form is the Gaussian function (also called normal function)

p xð Þ ¼ 1

σ
ffiffiffiffiffi
2π

p exp � x� mð Þ2
2σ2

" #

where m and σ are the mean and standard deviation of the distribution, respectively.
One standard deviation from the mean accounts for 68.2% of the population, two
standard deviations for 95.4%, and three standard deviations for 99.7% (Figure E.3).

Sample Data

We now consider a sample of random data containing N points xi(i = 1, N) (e.g., N
observations of variable x). The sample mean value (denoted by x) is given by

x ¼
XN
i¼1

xipi

where pi is the weight given to point i with

XN
i¼1

pi ¼ 1

For variables of equal weights, the sample mean is

x ¼ 1

N

XN
i¼1

xi

The sum of the deviation of variables xi from their arithmetic mean x is by definition
equal to zero XN

i¼1

xi � xð Þ ¼ 0

Figure E.3 Gaussian probability density function. Symbol σ denotes the standard deviation of the distribution.
The fraction [percent] of the population included in different intervals is also shown. Reproduced
from Wikimedia Commons.
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For a scalar random variable x that takes N discrete values x1, x2, . . ., xN with the
corresponding probabilities p1, p2, . . ., pN, the sample variance of x relative to its
sample mean is given by

s2 ¼
XN
i¼1

pi xi � xð Þ2

For equally probable values, we have

s2 ¼ 1

N

XN
i¼1

xi � xð Þ2 (10)

Inmany practical applications, one often examines a limited number of individual data
points, and number N corresponds to a sample of the entire data population. One can
show that the variance of the entire population is equal to the average of the variances
derived for all possible samples if, in expression (10), the squared distance xi � xð Þ2 is
divided byN – 1 rather than byN. In this case, the sample variance represents an unbiased
estimate of the population variance. Therefore, it is often recommended to divide the
squared distance by N – 1 when calculating the sample variance. The correction,
however, is very small when the number of data in the sample becomes large.

Covariance

The covariance between two scalar-valued random variables x and y, each charac-
terized by N sampled data points (x1, x2, . . ., xN) and (y1, y2, . . . yN), is defined by

cov x; yð Þ ¼ x� xð Þ y� yð Þ
or

cov x; yð Þ ¼ 1

N

XN
i¼1

xi � xð Þ yi � yð Þ

where the overbar is again a representation of the sample mean. The variance is the
covariance of two identical variables. One shows easily that

cov x; yð Þ ¼ xy � x y

If z is a random vector (vector whose components are random numbers), the
covariance matrix

Cov zð Þ ¼ ðz� zÞ z� zð ÞT
represents a multivariate generalization of the variance and covariance defined above
in the case of a scalar. If z1, z2, z3, . . . zk denote the K elements of vector z (assumed
to be random variables), the K � K covariance matrix (also called variance–
covariance matrix) has the following structure:

Cov zð Þ ¼
var z1ð Þ . . . cov z1; zKð Þ

..

. . .
. ..

.

cov zK ; z1ð Þ � � � var zKð Þ

0
B@

1
CA (11)
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The inverse of this matrix is called the precision matrix or the concentration
matrix. The diagonal elements represent variances of the individual elements of
vector z, and the non-diagonal elements a measure of the correlation between the
different elements of the vector. The covariance matrix is symmetric since the
covariance operator is commutative (cov(zi,zj) = cov(zj,zi)).

The cross-covariance between the two random vectors x and y of dimension m and
n, respectively, is a matrix of dimension m � n

Cov x; yð Þ ¼ x� xð Þ y�yð ÞT

Ordinary Regression Analysis

Relationships among different variables, specifically between a dependent variable y
and an independent variable x, can be estimated by using a statistical process called
regression analysis. We consider here the simple case in which we fit N given data
points (x1, y1), (x2, y2), . . ., (xN, yN), of two correlated random variables x and y by a
parameter-dependent regression function

~y xð Þ ¼ f x; a; b; :::ð Þ
We use themethod of least squares to derive the parameters a, b, . . . that minimize the

distance between the values of the data points and the corresponding values of the
dependent variable yprovided by function f. Thus,weminimize over a, b, . . . the function

S a; b; :::ð Þ ¼
Xn
i¼1

yi � f xi; a; b:::ð Þ½ �2

and write

∂S
∂a

¼ 0
∂S
∂b

¼ 0 :::::

The first step is to discover the form of the relationship that exists between variables
x and y. A scatterplot diagram for y versus x displaying the data points (xi, yi) may be
useful. If the diagram suggests that a linear relationship is a suitable approximation,
one expresses the regression curve as a linear statistical model (see Figure E.4)

0

100

200

300

y

10 20 30 40 50 60 x

Figure E.4 Scatterplot with a number of data points (xi, yi) and the corresponding regression line (statistical model).
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~y xð Þ ¼ aþ bx

More complex polynomial regressions may have to be considered if the scatterplot
points to a nonlinear relationship.
In the linear ordinary regression method (ORM), coefficients a and b are derived

from the minimization of the sum of the residuals between the data points yi and the
corresponding predicted values ~yi for x = xi

S ¼
XN
i¼1

yi � ~yi½ �2

This is expressed by

∂S
∂a

¼ �2
XN
i¼1

yi � a� bxið Þ ¼ 0 and
∂S
∂b

¼ �2
XN
i¼1

yi � a� bxið Þ xi ¼ 0

and results in linear equations in the parameters a and b called the normal equations
of least-squares

Naþ b
XN
i¼1

xi ¼
XN
i¼1

yi

a
XN
i¼1

xi þ b
XN
i¼1

x2i ¼
XN
i¼1

yixi

The solution of these equations is for the intercept

a ¼ y � bx

and the slope

b ¼
PN
i¼1

xi � xð Þ yi � yð Þ
PN
i¼1

xi � xð Þ2
¼

N
PN
i¼1

xiyi �
PN
i¼1

xi

� � PN
i¼1

yi

� �

N
PN
i¼1

x2i �
PN
i¼1

xi

� �2 ¼ cov x; yð Þ
s2 xð Þ ¼ r x; yð Þ s yð Þ

s xð Þ

where

x ¼ 1

N

XN
i¼1

xi and y ¼ 1

N

XN
i¼1

yi

denote the averages of the sampled xi and yi values, and s(x) and s(y) denote
the corresponding standard deviations. Figure E.4 shows an example of a regression line.
When quantity y depends on several independent variables x1, x2, x3, . . ., the

simple regression model described here must be generalized and replaced by a
multiple regression approach.
The strength and sign of the linear relationship between the two random variables

x and y are expressed by the Pearson correlation coefficient r

r ¼
PN
i¼1

xi � xð Þ yi � yð Þ

PN
i¼1

xi � xð Þ2
� �1

2 PN
i¼1

yi � yð Þ2
� �1

2
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or by the alternative formula

r ¼
N
PN
i¼1

xiyi �
PN
i¼1

xi

� � PN
i¼1

yi

� �

N
PN
i¼1

x2i �
PN
i¼1

xi

� �2
" #1

2

N
PN
i¼1

y2i �
PN
i¼1

yi

� �2
" #1

2

This coefficient is equal to the covariance of x and y divided by the standard
deviation of the sampled values of variables x and y:

r x; yð Þ ¼ cov x; yð Þ
s xð Þ s yð Þ

Its value ranges from –1 to +1. The sign of the correlation coefficient indicates
whether the random variables x and y are positively or negatively correlated.

The coefficient of determination R2 provides information on the goodness of
fit of a statistical model. It represents the degree by which a regression line or
curve represents the data. It provides the proportion of the variance of variable y
that is predictable from the value of the other variable (x). The coefficient is
expressed by

R2 ¼ 1�
PN
i¼1

yi � ~yið Þ2

PN
i¼1

yi � yð Þ2

where ~yi represents again the value of function y approximated by the regression
model for x = xi, and y is the mean value of all data yi. If R

2 = 1, all data points
perfectly fit the regression model. For linear least squares regression with an
estimated intercept term, R2 equals the square r2 of the Pearson correlation
coefficient.

In multilinear regression analyses, the value of R2 increases automatically when
extra explanatory variables are added to the model. The adjusted R2 corrects for this
spurious behavior by taking into account the number of explanatory variables p
relative to the number of data points n. It is defined as

R2 adjð Þ ¼ R2 � 1� R2
� 	 p

n� p� 1

Reduced Major Axis Regression Analysis

The ordinary regression method described above minimizes the distance between the
measured and predicted values of variable y (vertical distance, see Figure E.5a), but
ignores errors in the measured values of variable x (horizontal distance). The uncer-
tainties in both variables can be accounted for by applying the reduced major axis
(RMA) regression method. In this case, the regression line is defined by minimizing
the error in both Cartesian directions x and y, and specifically the area of the triangle
shown in Figure E.5b.
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The resulting value for the slope of the regression line is

b ¼ �
PN
i¼1

yi � yð Þ2

PN
i¼1

xi � xð Þ2
¼ � s yð Þ

s xð Þ

where the sign is chosen to be the same as the sign of the correlation coefficient.
Note that, in this approach, the slope is provided by the ratio between the
standard deviations of the y and x variables, respectively. The slope bRMA from
the RMA regression is related to the slope bORM from the ordinary regression
method by bRMA = bORM/r(x, y), thus the RMA regression will produce a steeper
slope.

Student’s t-Test

Introduced by the Irish chemist William Sealy Gosset under the pseudonym of
Student, the t-test is used to determine whether two sets of data are significantly
different from each other. We distinguish between the one-sample test, used to test
whether the mean of the population from which a sample is drawn randomly differs
significantly from the mean of a reference population, and the two-sample test, used
to test whether two population means are significantly different from each other on
the basis of randomly drawn samples. The test allows for some chance of error, and
this is measured by the level of significance α, indicating a probability of error
(p-value) not to be exceeded. Standard practice is to choose α = 0.05, meaning that
we require the t-test to have less than a 5% chance of being in error. We then say that
the p-value must be less than 0.05. Significance depends on the degrees of freedom
(df) in the data set, defined as the number of variables that are free to vary.
Computation of the t-value for the test and comparison to a critical value tc(α, df)
gives us the result. Critical values tc(α, df) are tabulated here.

y

yi

y

PP yi

xi xix x

yi

yi

y=a+bx
y=a+bx

(a) (b)

Figure E.5 Geometric representation of the ordinary regression (a) and of the reduced major axis regression (b).
Point P represents a data point (xi, yi). In the ordinary regression method, the sum (for all data points) of
the squared distance (vertical red line) between the data points and the corresponding values of y on
the regression line is minimized. In the reduced major axis regression method, the sum (for all data points)
of the area of the red triangle is minimized.
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One-sample t-test. Here, we compare the sample to a reference population with
mean m. We denote by x and s2 the mean and variance of the N independent data
points in the sample, and compute t as

Critical values of Student’s t-distribution with different degrees of freedom (df)

One-tail
Two-tails

0.50
1.00

0.25
0.50

0.20
0.50

0.15
0.30

0.10
0.20

0.05
0.10

0.025
0.05

0.01
0.02

0.005
0.01

0.001
0.002

0.0005
0.001

df
1 0.000 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 636.62
2 0.000 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 22.327 31.599
3 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 10.215 12.924
4 0.000 0.741 0.941 1.190 1.533 2.132 1.776 3.747 4.604 7.173 8.610
5 0.000 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 0.000 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 0.000 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 0.000 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 0.000 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.297 4.781
10 0.000 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.144 4.587
11 0.000 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 0.000 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 0.000 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 0.000 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 0.000 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.733 4.073
16 0.000 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 0.000 0.689 0.863 1.069 1.33 1.740 2.110 2.567 2.898 3.646 3.965
18 0.000 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 0.000 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 0.000 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.552 3.850
21 0.000 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 0.000 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 0.000 0.685 1.060 1.319 1.714 2.069 2.500 2.807 3.485 3.485 3.768
24 0.000 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 0.000 0.684 0.856 1.056 1.316 1.708 2.060 2.485 2.787 3.450 3.725
26 0.000 0.684 0.856 1.056 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 0.000 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.421 3.690
28 0.000 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 0.000 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.396 3.659
30 0.000 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.385 3.646
40 0.000 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 3.307 3.551
60 0.000 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 3.232 3.460
80 0.000 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639 3.195 3.416
100 0.000 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 3.174 3.390
1000 0.000 0.675 0.842 1.037 1.282 1.646 1.962 2.330 2.581 3.098 3.300
∞ 0.000 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.090 3.290
Confidence level 0% 50% 60% 70% 80% 90% 95% 98% 99% 99.8% 99.9%
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t ¼ x � mð Þ
s=

ffiffiffiffi
N

p

with degrees of freedom df = N – 1. We formulate the hypothesis that the difference
between the mean m for the reference population and the mean of the population
from which the sample was drawn is not significant (null hypothesis). If the value of
|t| calculated from the above expression is larger than the critical value tc(α, df), then
we reject that null hypothesis. The test can be one-tailed, in which we check for
significant difference in only one direction (higher or lower), or two-tailed, in which
case we allow for the possibility of significant difference at either end. Using
α = 0.05, a one-tailed test checks whether the mean of the sample is within the
lower 95th quantile of the PDF for it to be consistent with m, while a two-tailed test
checks whether the mean of the sample is between the 2.5th and 97.5th quantiles of
the PDF.
For example, if the mean value m of the reference population is 100, and if a

sample provides 17 data points (df = 16), with a mean value x of 90 and a standard
deviation s of 10, we calculate for |t| a value of 4. If we adopt for α a value of 0.05,
the table provides for tc a value of 2.12 (two-tailed test). We reject therefore the null
hypothesis since |t| > tα, and conclude that the mean of the population from which
the sample was drawn is significantly different (p < 0.05) from the reference
mean m.
Two-sample t-test. The t-distribution may also be used to test whether the means

of two populations from which samples are drawn are the same. The means of the
populations are mx and my, respectively. The number of data points in each sample is
Nx and Ny, and the corresponding sample means are x and y. The sample variances
are s2x and s2y . The t-value is computed as

t ¼ x � yð Þ � mx � my

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nxs2x þ Nys2y

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NxNy Nx þ Ny � 2

� 	
Nx þ Ny

s

with degrees of freedom df = Nx + Ny – 2. We test again the null hypothesis (i.e., the
hypothesis that mx = my) by comparing the t-value with the critical value tc. If |t| > tα
the null hypothesis is discarded, and the difference in the means of the two popula-
tions is significant.
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Index

absorption cross-section, 207
absorption of radiation

absorption efficiency, 219
definition, 207

absorptivity, 212
acceleration due to gravity. See standard gravity
acetone

air–sea exchange, 432
acid rain, 14
actinic flux, 210

actinic flux density, 210
actinic photon flux, 210
activated complex, 230
activation energy, 230
ADI. See alternating direction implicit method
adiabatic lapse rate

and atmospheric stability, 35
dry, 33
wet, 34

adjoint, 502–509
continuous, 509
discrete, 509
forcing, 502, 521
self-adjoint, 509
sensitivities, 504–505

advection, 275, 277
equation, 276–277, 279, 281–282, 303, 311
semi-Lagrangian, 276
timescale, 280

advection–diffusion equation, 139
aeronomy, 26–27
aerosol microphysics, 95
aerosol observations

atmospheric components measured, 440–441
in-situ
composition, 444
size distribution, 443
total concentration, 442

remote
aerosol optical depth (AOD), 460

aerosols
accumulation mode, 244
and air quality, 14
Aitken nuclei mode, 244
atmospheric abundance, 21
chemical composition, 78–80
types, 78

and climate, 14
cloud condensation nuclei (CCN), 81

and cloud formation, 29
coarse mode, 244
core-shell model, 80
hydrophobic, hydrophilic, 81
hygroscopicity, 80
microphysical processes, 243

schematic representation, 245
mixing state, 80
nucleation mode, 244
optical properties

aerosol optical depth, 82
scattering, absorption, extinction efficiency,
81

primary (POA) and secondary organic aerosol
(SOA), 80

size distribution, 21, 76–78
discrete representation, 247
modal representation, 249
modes, 77–78
monodisperse, polydisperse, 76
monodisperse representation, 247
sectional representation, 248
size distribution functions, 76–77, 243
spline representation, 247

sulfate–nitrate–ammonium (SNA) aerosol,
78, 79

terminology, 75
aggregation bias, 518
aggregation error, 516–520
covariance matrix, 518

aggregation matrix, 517
air density, 21
air mass factor (AMF), 215, 459
air parcel
definition, 32

air pressure. See atmospheric pressure
air temperature. See atmospheric temperature
aircraft measurements. See observing platforms
albedo
of Earth’s surface, 223

aliasing, 140
alternating direction implicit method, 178
AMF. See air mass factor (AMF)
angular rotation velocity
of Earth, 36

anti-cyclone, 38
in the subtropics, 44

AO. See Arctic Oscillation (AO)
Ar. See Argon (Ar)
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Arctic Oscillation (AO), 47
and middle atmosphere dynamics, 51

area sources, 412
argon (Ar), 21
atmospheric abundance, 22

Arrhenius equation, 230
assimilation, 488
autotrophic respiration, 402
A-stable, 136
asymmetry factor, 220
atmosphere
vertical structure, 24–27

atmospheric chemistry model. See chemical
transport model

atmospheric composition, 21–22, 54
mass, 21
of dry air, 28
primary and secondary species, 54

atmospheric humidity, 28
atmospheric lifetime. See e-folding lifetime
atmospheric observing system, 438, 450
using models to interpret observations, 480–483

atmospheric pressure, 27–28
vertical profile, 21, 25, 31–32

atmospheric scale height. See scale height
atmospheric stability, 31–35
atmospheric temperature, 24
barriers, 389–390
mesopause, 25
stratopause, 25
stratosphere, 25
at the surface, 21
thermopause, 25
tropopause, 25
vertical profile, 24

atmospheric tides, 50–51
atmospheric transport
interhemispheric, 43
meridional mixing, 43

attenuation coefficient. See Extinction
coefficient

autocorrelogram, 469
averaging kernel, 493
matrix, 511–513

Avogadro’s number, 27
azimuthal angle, 571

band matrix, 499
baroclinic atmosphere, 40–41
and circulation in the troposphere, 43
definition, 40

baroclinic instability, 41
barometric law, 31–32
barosphere, 27
barotropic atmosphere, 40–41
definition, 40

Bayes’ theorem, 490–491
Bayesian solution, 490
normalizing factor, 490

posterior pdf, 489
prior pdf, 490

Beer’s law, 81
Beer–Lambert Law, 207
Bergeron process. See precipitation
bidirectional reflectance distribution function

(BRDF), 224
big-leaf model, 418
bimolecular reaction, 230–231

collision frequency, 230
reaction rate, 230

binary nucleation, 245
biofixation, 405
biomass burning. See open fires
blackbody, 211

radiation, 211–213
Boltzmann’s constant, 27, 211
bottom-up constraint, 488
bottom-up emission inventories, 400
boundary condition

Dirichlet, 282
periodic, 282
no-slip, 105

Boussinesq approximation, 353
box model

definition, 17
Brewer–Dobson circulation, 25, 50, 57
broad-band model, 226
Brownian diffusion coefficient, 246
Brunt–Väisälä frequency, 389
burning efficiency, 409

calibration, model, 437
carbon cycle, terrestrial, 403
carbon dioxide (CO2), 21

atmospheric abundance, 22
greenhouse gas, 23
interhemispheric gradient, 43

carbon monoxide (CO), 68–69
global distribution, 69

cascade impactors. See aerosol observations:
in- situ

Cauchy momentum equation, 104
CCL. See convective cloud layer (CCL)
CCN. See cloud condensation nuclei (CCN)
central limit theorem, 495
centered root mean square error (CRMSE), 475
CFCs. See chlorofluorocarbons
CFL criterion, 288
CH4. See methane (CH4)
Chapman mechanism. 11–12, See ozone (O3),

stratospheric
Chappuis band, 55, 217
characteristic timescale, 97
checkerboard noise, 527
chemical covariance, 349–351
chemical eddy transport, 127
chemical evolution equation, 232
chemical family, 56, 262, 269
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chemical ionizationmass spectrometry (CIMS), 439
atmospheric components measured, 440–441

chemical lifetime, 98
chemical mechanism

definition, 233
stiffness, 254, 262

chemical segregation, 368
chemical solvers, 54
chemical transport model, 488

0-D models, 17
1-D models, 17
2-D models, 17
biogeochemical processes, 15
and the continuity equation, 5, 15
chemical mechanism, 54
data assimilation, 16
definition, 1, 15
Eulerian versus Lagrangian, 16–17, 276
field campaigns, 438
history, 1–2, 11–15
offline, 15
online, 15

chemiluminescence, 442
atmospheric components measured, 440–441

chlorofluorocarbons (CFCs), 12
chromatography. See also gas chromatography (GC)

definition, 439
CIMS. See chemical ionization mass spectrometry

(CIMS)
Clausius–Clapeyron equation, 30

and the adiabatic lapse rate, 30
climate models

history, 9–11
closure. See continuity equation:closure relation
cloud condensation nuclei (CCN), 245
cloud-resolving model. See large eddy simulation

(LES)
clouds

formation, 24, 29, 378
in the planetary boundary layer, 49

CO2. See carbon dioxide (CO2)
coagulation, 247
coagulation coefficient, 246
compensation point, 428
complementary slackness condition, 529
compressibility, 279
computing

atmospheric chemistry models, 1, 15
cluster, 19
Earth system models, 15
Fortran, 19
general circulation models, 10
grid, 19
high-performance, 4, 19–20
memory, 19
message passing interface (MPI), 19
meteorological models, 8–9
models, 4
Moore’s law, 4

node, 19–20
open multi-processing (openMP), 19
parallelization, 7, 19
power, 4, 8
processors, 19
speed, 19–20
supercomputer, 7, 19

condensation, 246
condensation growth rate, 246
condensation equation, 246
condensation, aerosol, 246
condensation nuclei counters. See aerosol

observations: in-situ
conditional PDF, 490, 492
conditional stability. See stability
conductance, 429
conservation
of mass, 275

conservation equation
atmospheric dynamics, 102
energy. See equation of energy
momentum, 104

continuity equation
aerosol, 95
anelastic, 116
box models, 17
chemical species, 85
closure relation, 343, 371
Eulerian form, 5, 277
history, 7
Lagrangian form, 17, 278
Reynolds decomposition of, 347
vertical, 367

continuum regime, 240
convection, 24, 275
parameterization, 378–383
velocity scale, 350
deep, 378

convective cloud layer (CCL), 49
convective precipitation, 383
convective parameterizations
and vertical motion in models, 35

convective velocity scale. See convection:
velocity scale

coordinate system
eta η, 121
hybrid sigma-pressure σ–p, 121
isentropic, 122
isobaric. See pressure
log-pressure, 119
pressure, 117
sigma σ, 120

Coriolis force
and general circulation, 42–43
and Rossby waves, 50

Coriolis parameter, 38
and planetary-scale waves, 50

correlated k-distribution method, 226
correlativity, 276
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cost function, 493, 495
regularization factor γ, 516
χ2, 493

Courant number, 285–286
covariance, 582
CRMSE. See centered root mean square error

(CRMSE)
crystallization relative humidity (CRH), 80
CTM. See chemical transport model
curl
definition, 571
theorem, 573

cuticles, of the leaf, 422
cyclone, 38
and baroclinic instability, 41, 43

Dalton’s law, 28
Damköhler number, 350
data assimilation, 488, 530–533
3D-VAR, 530–531
4D-VAR, 9, 530, 533
analysis, 529
chemical, 488, 529–530
meteorological, 529
reanalyses, 529
variational. See 3D-VAR and 4D-VAR

degrees of freedom for signal, 512–515
deliquescence relative humidity (DRH), 80
denitrification, 405
deposition velocity, 416
deterministic models, 4, 6
definition, 5

detrainment, 378
diabatic heating
in radiative transfer, 210

DIAL. See remote sensing, active
diagnostic equation, 114
differential mobility analyzers. See aerosol

observations: in-situ
diffuse-reactive parameter, 242
diffusion
analytical solution, 359
coefficient, 279, 285, 289, 305, 353, 356
equation, 358
numerical, 285, 289, 315, 365, 390–394
numerical solution, 358–365

alternating direction implicit (ADI), 364
Crank–Nicholson, 363
DuFort–Frankel, 360
Richardson, 360
three level, 363

timescale, 280
turbulent, 279

diffusive filter, 179
digital spatial filter, 179
dimethyl sulfide (DMS)
in the PBL, 368

direct numerical simulation (DNS), 343
discrete ordinates method, 222

displacement height, 377
divergence, flux, 5, 15
divergence, 277

definition, 571
of a vector field, 571
theorem, 277, 573

DOAS. See remote sensing, passive
DOFS. See degrees of freedom for signal
downdraft, 378
drag coefficient, 426
dry deposition, 416
dynamic viscosity, 105

Earth system models
definition, 15

Eddington method, 223
eddy correlation, 448
eddy diffusion coefficient, 351
eddy diffusivity of heat, 371
eddy flow, 275
eddy flux. See turbulence
eddy viscosity coefficient, 371
effective temperature

of the Earth, 22
of the Sun, 22

efficiency
computational, 276

effective scale height, 32
e-folding lifetime, 97
eigenanalysis. See eigendecomposition
eigendecomposition, 497–498
eigenvalue, 254

definition, 570
eigenvector, 570
Ekman spiral, 373
El Niño–Southern Oscillation (ENSO), 44
electron microscopy. See aerosol observations:

in situ
emission, at Earth’s surface, 400

anthropogenic, 412
emission factor, 400
of open fires, 408
terrestrial biogenic, 402
volcanic, 410

emissivity, 212
empirical orthogonal functions (EOFs), 460
endothermic reaction, 231
ENSO. See El Niño–Southern Oscillation (ENSO)
entrainment, 378

in the planetary boundary layer, 49, 372
velocity, 373

EOFs. See empirical orthogonal functions (EOFs)
equation of motion, 107
equation of state, 27–28

for dry air, 28
for moist air, 29
for water vapor, 28

error characterization
of models and observations, 454
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error correlation, 497
matrix, 497

error covariance matrix, 497–500
construction, 499–500
validity, 499

error, model, 5, 9, 15, 17–18
and inverse modeling, 454, 458
coding error (“bugs”), 455
community assessments, 456
grid resolution, 455–456
model parameters, 456
noise (meteorology), 456
numerical error, 455
parameterization error, 456
tolerance, 437, 480
types, 436–437

error, observations, 454
random, 454
satellite measurements, 454
systematic, 454

escape velocity, 26
ESMs. See Earth system models
Euler equation, 108
evaluation, model

aerosols, 463
and data assimilation, 438
definition, 436
with linear regression, 469
satellite observations, 459–460
with scatterplots, 469
selection of observations, 458
with statistical metrics. See statistical metrics,

of model skill
timescale considerations, 460

exchange velocity, 429
exobase, 27
exothermic reaction, 231
expected value operator, 491
extinction coefficient, 207
extinction of radiation, 207

extinction efficiency, 219

Favre decomposition, 349
filter measurements, 439
filtering, 336
finite difference methods, 254, 281

Adams–Bashforth–Moulton, 261
backward differientiation formulae. See Gear

solver
backward Euler, 258–259, 268
backward scheme, 131
boundary conditions, 303
centered difference, 283
central scheme, 131
checkerboarding, 296
CHEMEQ, 265
comparison, 298
Crank–Nicholson, 259, 291
Crowley. See Lax–Wendroff

ET method. See extrapolation
explicit, 254, 257, 260, 262–263, 285
exponential approximation, 263
extrapolation, 261, 263–264
forward Euler, 257, 259, 261, 284
forward scheme, 131
fully explicit. See forward Euler
fully implicit. See backward Euler
Gear solver, 271
Heun, 292
implicit, 256, 262, 268, 270, 290
Lax, 287
Lax–Wendroff, 289
leapfrog, 295
Leith. See Lax–Wendroff
Matsuno, 291
midpoint, 260
multi-step, 261
predictor-corrector, 259, 261
quasi-steady-state approximation, 264
QUICK, 294
QUICKEST, 295
RADAU5 solver, 261
relaxation coefficient, 305
RODAS3 solver, 271
ROS2 solver, 271
Rosenbrock solver, 270
Runge–Kutta, 260, 270
semi-implicit Euler, 259
stability, 254, 256–257, 262, 271
trapezoidal scheme, 134
truncation error, 283
TWOSTEP, 266
upstream method, 293
upwind differencing. See upstream method
upwind leapfrog, 297

finite element methods, 335
Chapeau function, 159
Galerkin, 335
spectral element, 335

finite volume methods, 278, 305
Beam–Warming. See upwind slope
centered slope, 309
Crowley–Tremback–Bott, 320–322
donor cell, 307
downward slope, 309
flux correction, 311
flux limiter, 312
Fromm. See centered slope
Lagrangian, 325–328
linear piecewise, 312
minmod, 313
MPDATA, 315–316
piecewise linear, 307–308
piecewise parabolic, 319–320
PPM. See piecewise parabolic
Prather, 322–325
quadratic, 307
semi-Lagrangian, 332
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finite volume methods (cont.)
SHASTA, 316–319
slope limiter, 312
superbee, 313
total variation diminishing (TVD), 311
upwind slope, 309
van Leer, 313

fixed nitrogen, 405
flexibility, 276
Flops. See computing:speed
fog deposition, 399
forecast model, 488, 530
forecast state, 488
Fortran. See computing
forward model, 487, 491
linearization, 502

forward model error, 491–492
covariance matrix, 499
vector, 498

Fourier number, 285
Fourier transform, 576
free molecular regime, 240
free-running model, 16
free troposphere
definition, 47
layers, 390–394
and the planetary boundary layer, 47–49

frequency of radiation, 205
friction force
and geostrophic flow, 40

friction velocity, 374
frontal system
and baroclinic instability, 41

FTIR. See remote sensing, passive

gain factor, 493
gain matrix, 511
gas chromatography (GC), 439
and mass spectrometry (GC-MS), 439
atmospheric components measured,

440–441
gas constant
for air, 27
for dry air, 28, 31
for water vapor, 28
universal, 27

gas-particle equilibrium, 236–239
aqueous solution, 236–238
non-aqueous solution, 236
partitioning coefficient, 237
solid particles, 238

gas-particle mass transfer equation, 241
Gauss–Ostrogradsky theorem. See divergence,

theorem
GC. See gas chromatography (GC)
GCM. See general circulation models
GC-MS. See gas chromatography (GC)
general circulation
definition, 42

in the middle atmosphere (>10 km), 49
in the planetary boundary layer, 47–49
in the troposphere, 41

general circulation models, 16
history, 10

geocorona (aeronomy), 27
geometric altitude, 31–32
geometric optics, 218
geometric scattering, 82, 218
geometric standard deviation, 243
geopotential, 32, 39
geopotential height, 32
geostatistical inversion, 527
geostrophic approximation, 38
geostrophic balance, 35
GFCR. See remote sensing, passive
global biogeochemical models, 399
global energy budget

and general circulation, 41
and global warming, 24

global heat budget. See global energy budget
Godunov’s theorem

definition, 290
gravitational settling of particles, 416
gravity waves, 50

parameterization, 388–389
green function, 93

transition probability density, 93
greenhouse effect

definition, 22–23
greenhouse gases, 225
grid computing. See computing
grid geometry

cubed sphere grid, 147
dynamic adaptive grid, 148
icosahedral grid, 147
longitude–latitude grid, 145
mesh refinement, 148
Voronoi tessellation, 146

gross primary productivity (GPP), 403
group velocity. See numerical dispersion

H2. See hydrogen, molecular (H2)
Hadley cells, 42

and anti-cyclones, 44
halogen radicals, 72–74
Hartley band, 55, 217
He. See helium (He)
heat of reaction, 215–231
helium (He)

atmospheric abundance, 22
in the thermosphere, 25

Henry’s law, 236
effective constant, 237, 384
Henry’s law constant, 236
for air–sea exchange, 430

Herzberg continuum, 217
Hessian, 523

definition, 569
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heterogeneous chemistry, 235
heterosphere (aeronomy), 27
heterotrophic respiration, 402
high-NOx regime, 66
high-performance computing. See computing
HIRDLS. See remote sensing, passive
homosphere (aeronomy), 27
Huggins band, 55, 217
hydrodynamics, 26

effective scale height, 32
equations of the atmosphere, 32

hydrogen, molecular (H2)
atmospheric abundance, 22

hydrogen oxides radical family
HOx family, 61
HOx-catalyzed ozone loss, 61
production and loss, 61

HOy family, 61
hydrogen peroxide (H2O2), 61
hydroperoxyl radical (HO2), 61
hydrostatic approximation, 31–32
hydrostatic equilibrium, 31
hydrostatic law, 32
hydroxyl radical (OH)

history, 12–13
chemistry, 57

hygroscopic growth factors, 243

ice nuclei (IN), 29
ideal gas law

and atmospheric stability, 31
application to the atmosphere, 21, 27, 40

IID. See independent and identically
distributed

IN. See ice nuclei (IN)
in-situ observations

aerosols, 444
gases, 439–442

independent and identically distributed, 495
inertial impaction, of particles, 422
infrared (IR) radiation

and effective temperature, 22
and the global energy budget, 23
and remote sensing, 444
terrestrial emission, 22–23

instrument error, 491–492
covariance matrix, 499
vector, 498

interception, of particles, 422
Intergovernmental Panel on Climate Change,

10–11
interhemispheric mixing

timescale, 43
interpolation, 184
Intertropical Convergence Zone (ITCZ)

and interhemispheric mixing, 43
and precipitation, 44
definition, 42
seasonal migration, 44

inverse modeling, 15, 18, 370
bias, 495–496
definition, 18, 487
and model error, 437
scalar example, 491

inverse solution
evaluation, 515–516
positivity, 528–529

inversion
adjoint-based, 520–523
analytical, 509–520

ionosphere, 27
ion drag, 111
IPCC. See Intergovernmental Panel on Climate

Change
IR. See infrared (IR) radiation
irradiance, 209
isentropic
definition, 40

isobaric
definition, 40

isoprene, 64
biogenic emission, 404

isopycnic
definition, 40

isothermal
definition, 40

ITCZ. See intertropical convergence zone (ITCZ)

Jacobian
definition, 569

Jacobian matrix, 489, 501–502
jet stream, 41

Kalman filter, 530–533
ensemble, 533
linear, 532
persistence model, 532
prior error covariance, 532
prior estimate, 532
suboptimal, 533

Karush–Kuhn–Tucker condition, 528
Kelvin waves, 50
Kelvin–Stokes’ theorem. See curl
Kirchhoff’s law, 212
Kinematic viscosity, 108
KKT. See Karush–Kuhn–Tucker condition
Knudsen number, 246
Kolmogorov scale, 342
Kr. See krypton (Kr)
Kriging, 192
krypton (Kr)
atmospheric abundance, 22

Laminar flow, 344
La Niña. See El Niño–Southern Oscillation

(ENSO)
Lagrange function, 529
Lagrange multipliers method, 529
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Lagrangian derivative. See total derivative
Lagrangian particle dispersion model, 162
Lagrangian stochastic model, 162
Lambertian surface, 223
Langevin equation, 163
Langmuir isotherm, 239
Laplace transform, 576
Laplacian
definition, 572

lapse rate, 24
large eddy simulation (LES), 343, 368
large-scale precipitation, 383
LES. See large eddy simulation (LES)
laser-induced fluorescence (LIF), 442
atmospheric components measured,

440–441
latent heat, 23, 25
and clouds, 30
flux, 366
of sublimation, 30
of vaporization, 30

leaf area index (LAI), 404
LEO. See satellite measurements
LIF. See laser-induced fluorescence (LIF)
lifetime. See e-folding lifetime
lightning
parameterization, 386–388

Lindemann–Hinshelwood rate, 232
line-by-line models, 225
linear regression
error estimate, 466
Pearson correlation coefficient, 465, 473

liquid water content, 237
local thermodynamic equilibrium (LTE), 224
locality, 276
log law for the wind, 418
longwave radiation. 205. See infrared (IR)

radiation
Lorenz–Mie theory. See Mie theory
low-NOx regime, 66
L-stable, 137
lumped species, 234
Lyman-α line, 217
Lyapunov exponent, 392

magnetohydrodynamics, 26
magnetosphere, 27
Markov chain Monte Carlo, 525–526
mass accommodation coefficient, 240
mass density of air, 27
mass extinction cross section, 207
mass spectrometry (MS), 439, See also aerosol

observations: in-situ
definition, 439

mass transfer rate coefficient, 239
mathematical models
definition, 4
history, 4–6

maximum likelihood estimator, 526

matrix manipulation, 566–570
Gauss–Seidel iteration, 266
Jacobi iteration, 266
LU decomposition, 266

Max-DOAS. See remote sensing, passive
MCMC. See Markov chain Monte Carlo
mean age of air, 94
mean bias, 495, 500
mean free path, 240
meridional mixing

timescale, 43
mesopause, 25, 50
mesophyll, of the leaf, 422
mesosphere, 25, 27
metastable equilibrium

and cloud formation, 30
meteorological models

ensembles, 6
history, 6–9
and the Navier–Stokes equation, 5, 7

meteorology
definition, 26

methane (CH4), 21
atmospheric abundance, 22
biogenic emission, 402

method of moments (MOM), 249
Metropolis–Hastings algorithm, 526
middle atmosphere (>10 km) dynamics, 49
Mie scattering, 82
Mie theory, 217
mineral dust

emission processes, 412
mineralization, 405
mixed layer

depth, 350
in the planetary boundary layer, 49

mixing length
in a planetary boundary layer, 372

mixing ratio
definition, 21
of water vapor, 28

mode, aerosol, 250
model

definition, 2–3
history, 3–4

molar mass
of air, 27
of dry air, 28
of moist air, 28
of water, 28

molar mixing ratio. See mixing ratio
molarity, 236
mole fraction. See mixing ratio
molecular diffusion, 88
molecular diffusion coefficient, 89
molecular extinction cross section, 207
molecular weight

of dry air, 31
moment dynamics equations (MDEs), 249
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momentum equation, 104
Monin–Obukhov length, 374
monochromatic value. See spectral density
monotonicity, 275, 311
monsoon circulation, 43
Moore–Penrose pseudoinverse, 527
MS. See mass spectrometry (MS)
multimedia models, 399
multiphase chemistry. See heterogeneous

chemistry

N2. See nitrogen, molecular (N2)
N2O. See nitrous oxide (N2O)
NAO. See Arctic Oscillation (AO)
narrow-band model, 226
Navier–Stokes equation. See meteorological

models
Ne. See neon (Ne)
neon (Ne)

atmospheric abundance, 22
net biome production (NBP), 403
net ecosystem productivity (NEP), 403
net primary productivity (NPP), 403
neural network, 173
neutral atmospheric stability, 34
Newton–Raphson iteration, 270, 272
nitrification, 405
nitrogen oxides (NOx)

and stratospheric ozone loss, 12, 62
and tropospheric ozone production, 14
fuel NOx, 62
source and sinks, 62–64
thermal NOx. See Zel’dovich mechanism
global inventory of anthropogenic emissions,

412
soil emission, 405

nitrogen, molecular (N2), 21
atmospheric abundance, 22

nitrous oxide (N2O)
atmospheric abundance, 22
oxidation by O(1D), 62

North Atlantic Oscillation (NAO). See Arctic
Oscillation (AO)

NOx. See nitrogen oxides
NOx-limited regime. 70
NOx-saturated regime. See VOC-limited regime
NOy, 63–64
non-hydrostatic equation, 114
non-methane volatile organic compounds

(NMVOCs)
biogenic emission, 184

non-transport theorem, 192
nucleation, 245

bursts, 245
rate, 246

null cycle, 62
number density, 27
numerical dispersion

definition, 283

numerical fixer, 336
numerical method
in solving radiative transfer equation, 222–223

O2. See oxygen, molecular (O2)
O3. See ozone (O3), stratospheric; ozone (O3),

tropospheric
observations, of surface fluxes, 448–450
eddy accumulation method, 448
eddy correlation method, 448
flux-gradient method, 450

observation vector, 487, 496
observational error, 487, 492
covariance matrix, 496, 498–499
covariance matrix in sate space, 512
in state space, 494
unbiased, 492
vector, 489, 496

observations, of the atmosphere
in-situ, 439–444
remote, 440–441

observing platforms
aircraft, 452
satellites, 444
surface, 451

observing system. See atmospheric observing
system

observing system simulation experiments, 533
definition, 18, 533
analysis run, 535
control run, 534
nature run, 534
true atmosphere, 534

observing systems
definition, 17–18

ODE. See ordinary differential equations
offline approach, 15
OH. See hydroxyl radical
one-way deposition, 416
online approach, 15
open fires
emission factors, 408
emission rate calculation, 408
and plume rise, 408

operator splitting, 174
operators
chemistry, 253
splitting, 279, 303, 383
transport, 253, 275

optical depth
formulation, 207

optical path. See slant optical depth
optical particle counter. See aerosol observations:

in situ
optimal estimate, 459, 487, 492–493, 510–511
error variance. See posterior error variance
nonlinear, 494

ordinary differential equations, 253–254
definition, 574
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organic nitrate (RONO2), 67
organic peroxides (ROOH), 66
organic peroxy radical (RO2), 66
OSSEs. See observing system simulation

experiments
oxygen, molecular (O2), 21
atmospheric abundance, 22
ground and excited states of O atoms, 55
odd oxygen family (Ox), 56

ozone (O3), stratospheric, 21, 55–60
Antarctic ozone hole, 12, 73
atmospheric abundance, 22
Chapman mechanism, 11–12
distribution, 57–58
historic milestones, 58
photolysis, 55
production and loss, 14, 55–56
polar stratospheric clouds (PSCs), 12

ozone (O3), tropospheric, 21, 69–71
a simple production mechanism, 233
atmospheric abundance, 22
and climate, 14
global distribution, 71
isopleth diagram, 70
production and loss, 14, 69–70
dry deposition velocity, 425

ozonesondes, 439–441
atmospheric components measured,

440–441

PAN, 63–64
parameter vector, 487
partial differential equations (PDEs), 574
particles. See aerosols
particulate matter. See aerosols
path length, 208
PBL. See planetary boundary layer (PBL)
PDF. See probability density function
Péclet number, 279
numerical, 280

Pearson’s correlation coefficient, 497
phase diagram
water, 30

phase speed. See numerical dispersion
phenology, of plant, 404
photosynthetically active radiation (PAR),

404
photochemistry, photochemical mechanisms, 54
photolysis, 229
definition, 227
in the Schumann–Runge bands, 228–229
reaction rate, 227

photolysis frequency, 227
photon flux density, 210
piston velocity. See exchange velocity
Planck constant, 205
Planck function, 212
Planck’s law, 211
planetary albedo, 22–23

planetary boundary layer (PBL), 47–49
mixing timescale, 47
parameterization, 366–378
surface layer, 374–378, See surface layer

planetary waves, 25
planetary waves. See also Kelvin waves
plant functional types (PFTs), 404
plume model, 166
point sources, 412
polar stratospheric cloud (PSC), 73
polar vortex, 50

and Arctic oscillation (AO), 51
and the Antarctic ozone hole, 52
as a dynamical barrier, 390
definition, 52

positive definite, 498
potential temperature, 32–33
potential vorticity unit, 112
posterior error

covariance matrix, 511–512
covariance matrix in observation space, 518
variance, 494

posterior estimate. See optimal estimate
Prandtl number, 377
precipitation

Bergeron process, 31
and riming, 31

pressure. See atmospheric pressure
pressure-dependent collisional broadening, 226
pressure-independent Doppler broadening, 226
primitive equation, 114
principal component analysis (PCA), 578
prior error, 496

covariance matrix, 498
variance, 491

prior estimate, 487, 491, 494, 496
prior information, 487
prior PDF, 492
probability density function, 489

Gaussian PDFs for vectors, 501
prognostic, 114
proton transfer reaction mass spectrometer

(PTR-MS), 439
atmospheric components measured, 440–441

PSCs. See ozone (O3), stratospheric: polar
stratospheric clouds

pseudo-density, 123
PTR-MS. See proton transfer reaction mass

spectrometer (PTR-MS)
puff model, 170
PVU. See potential vorticity unit
pyroconvection, 408

QBO. See quasi-biennial oscillation (QBO)
quantum yield, 228
quasi steady-state, 232
quasi-biennial oscillation (QBO), 51
quasi-geostrophic approximation, 110
quasi-laminar boundary layer, 418
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radiance (intensity)
definition, 206

radiation
definition, 205

radiative source, 208
radiative transfer

definition, 205
equation, 211–224
source function, 250

radiative transfer model, 12, 488, 513
and remote sensing, 445

radical-assisted reaction chains, 54
radicals, 54
RANS. See Reynolds averaged Navier–Stokes

equation
rate coefficient. See rate constant
rate constant, 230
rate-limiting step, 62
Rayleigh scattering, 82, 217
Rayleigh theory, 217
reactive uptake probability, 242
receptor-oriented problem, 502
refraction index, 217
regridding. See remapping
regularization method, 490
relative error variance reduction, 494
relative humidity (RH), 29
remapping, 184
remote sensing, 487

atmospheric components measured, 440–441
differential optical absorption spectroscopy

(DOAS), 445
and Max-DOAS, 445
Dobson spectrophotometers, 444
filter radiometers, 445
gas-filter correlation radiometry (GFCR),

446
Fourier transform infrared (FTIR) spectroscopy,

446
microwave spectroscopy, 447
Umkehr effect, 444

representation error, 491–492
covariance matrix, 499
vector, 498

residual error method, 499–500
retrieval, See optimal estimate
residence lifetime. See e-folding lifetime
resistance

aerodynamic, 420
quasi-laminar boundary resistance (boundary

resistance), 421
surface, 422
total, to dry deposition, 420

resistance-in-series model. See big-leaf model
resonance fluorescence, 442

atmospheric components measured,
440–441

retrieval, of satellite observations
aerosol optical depth (AOD), 460

column concentrations, 459
vertical profiles (optimal estimate), 459

Reynolds decomposition, 343–349, 353
Reynolds averaged Navier–Stokes equation, 107
Reynolds number, 344–345
Reynolds stress, 107
RH. See relative humidity (RH)
Richardson number, 345
critical, 372

riming, 384
RMA. See linear regression
RMSE. See root mean square error (RMSE)
root mean square error (RMSE), See also centered

root mean square error (CRMSE)
roughness length, 375
Rossby waves, 50
RTM. See radiative transfer model

saltation, 413
SAO. See semi-annual oscillation (SAO)
satellite measurements
geostationary orbit, 453
Lagrange L1 and L2 orbits, 453
low Earth orbit (LEO), 453
microwave instruments, 452
Molniya orbit, 453
solar backscatter instruments, 452
thermal infrared (IR) instruments, 452

saturation pressure, 29
saturation vapor pressure. See saturation pressure
scale height, 31
scatterplots, See evaluation, model
scattering of radiation, 217
definition, 207
scattering efficiency, 217, 219
scattering phase function, 217
scattering regimes diagram, 218

Schmidt number, 421
Schumann–Runge bands, 217, 228
Schumann–Runge continuum, 217
Schwarzschild’s equation, 224
sea salt aerosol, 412
sectional model, 96
segregation ratio, 350
semi-annual oscillation (SAO), 51
semi-Lagrangian methods, 328–334
semi-Lagrangian model, 328
sensible heat, 23
sequential updating, 516
shallow atmosphere approximation, 103
Shapiro filter, 179
shape factor
and satellite observations, 459

shortwave radiation, 205. See also solar radiation
Shuman filter, 179
similarity assumption, 352
similarity theory, 374
single-scattering albedo, 81, 208
slant optical depth, 207
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slant column
and satellite observations, 459

slip-correction factor, 427
smog, 14
smoothing, See filtering
smoothing error, 494, 512
covariance matrix, 512

solar constant, 22, 213
solar energy. See solar radiation
solar radiation, 22
absorption spectrum by O2 and O3, 215–231
flux, 22–23
and general circulation, 48–50
and the global energy budget, 23
in the mesosphere, 25
and remote sensing, 444
spectral density at top of the atmosphere, 213
spectral irradiance at sea level, 213
transfer of, in the atmosphere

absorption and scattering, 217–218
numerical solution, 222–223
phase function, 220
scattering by aerosols and cloud droplets,
218–219

scattering by air molecules, 217
source function, 220

sondes. See ozonesondes
specific humidity, 28
spectral decomposition, 497, 501
spectral density
definition, 206
formulation, 206

spectral filter, 183
response function, 183

spectral methods
fast Fourier transform (FFT), 152
Fourier decomposition, 151
Gaussian grid, 155
Gibbs phenomenon, 153
pseudo-spectral, 155
rhomboidal truncation, 154
spherical harmonics, 153
triangular truncation, 154

spectroscopy. See also remote sensing
active, 439
passive, 439

speed of light, 205
s-stage, 138
staggered grid, 143
statistical model, 171
stomata, of the leaf, 404, 422
storm tracks, 44
stability, 275
amplification factor, 285–286, 288, 292, 360
atmospheric, 345
CFL. See CFL criterion
conditional, 35
convective, 366
numerical, 285

polar singularity, 336
unconditional, 290
unconditional instability, 285
von Neumann analysis, 285–287

standard gravity, 32
state vector, 487, 496
statistical metrics, of model skill

correlation, 469, 471–473
grading, 474
other indices of agreement, 471
outliers, 469
statistical significance, 478–480
Target diagram, 477
Taylor diagram, 475–477

steepest-descent algorithm, 520
Stefan–Boltzmann constant, 22, 211
Stefan–Boltzmann law, 211
steric factor, 230
stiff system, 254
STILT model, 370
stochastic models, 4, 6, 8–9

definition, 5
of turbulence, 355

Stokes–Einstein formula, 246
stratiform precipitation. See large-scale

precipitation
stratopause, 25, 51
stratosphere, 25, 27
stratosphere–troposphere exchange, 25

dynamical barriers, 351
streamfunction, 111
Student’s t-test, 473, 479, 586–588
subsaturated, 29
subsidence, 34, 378
subsidence inversion

in the free troposphere, 48
successive order method, 222
sulfur species, 74–75

oxidation states, 75
sulfur dioxide (SO2)
aqueous-phase oxidation, 75
gas-phase oxidation, 75

supercomputer. See computing
supercooled, 29
supersaturated, 29
surface layer, 367
surface measurements. See observing platforms
surface uptake. See dry deposition
surrogate species, 234
synoptic scale

definition, 38
systematic error. See mean bias

tangent linear model, 507
Target diagram. See statistical metrics, of model

skill
Taylor diagram. See Statistical metrics, of model

skill
Taylor expansion, 563
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TDL. See tunable-diode laser (TDL) spectroscopy
temperature. See atmospheric temperature
temperature inversion

and atmospheric stability, 33
definition, 25
in the stratosphere, 25, 49
in the troposphere, 34

ternary nucleation, 245
terminal settling velocity, 427
terrestrial IR. See terrestrial radiation
terrestrial radiation. See infrared (IR) radiation
terrestrial radiation

absorption by molecules, 225
emission of, 224–225
numerical solutions of transfer equation, 225–227
spectrum, 205

thermolysis, 229
third body, 55, 231
three-body reaction, 231–232

broadening factor, 232
high-pressure limit, 232
low-pressure limit, 232
reaction rate, 231

Tikhonov regularization, 491, 527
matrix, 527

time smoothing
Robert–Asselin, 184

TLM. See tangent linear model
top-down constraint, 488
total derivative, 561

definition, 561
trajectory model, 160
troposphere. See also free troposphere
thermal wind, 40–41, 370
thermal wind equations, 39

application to the stratosphere, 49
thermopause, 25
thermosphere, 25–26
thermosphere, 27
third body, 231
top-down constraint, 401
trace gas

definition, 21, 277
trade winds, 42, 44

and El Niño–Southern Oscillation, 47
transfer velocity. See exchange velocity
transition regime, 241
transmission function, 207
transportivity, 276, 289
Troe expression, 232
tropical pipe, 52, 390
tropopause, 25

folding, 390
troposphere, 24–25, 27, See also free troposphere
tunable-diode laser (TDL) spectroscopy, 442
tuning, model. See calibration, model
turbulence, 8–9, 13, 15, 275

cascade, 346
definition, 5–6

diffusion, 279
diffusion coefficient, 351
diffusion matrix, 351
eddy flux, 347
flow regime, 344
kinetic energy (TKE), 346
mechanical, 48
momentum equation, 353
similarity assumption, 352
stochastic models. See stochastic models

turbulent mixing, 105
two-film model, 401
two-stream method, 223
two-way surface exchange, 410

unimolecular reaction, 229
reaction rate, 230

Van’t Hoff law, 236
variogram. See kriging
variational method, 520, 530
velocity
of an air parcel, 36
of Earth’s rotation, 36

velocity potential, 111
ventilation
of the planetary boundary layer,

48, 49
virtual temperature, 29, 353
VOC-limited regime, 71
VOCs. See volatile organic compounds
volatile organic compounds
and tropospheric ozone production, 14

volatile organic compounds (VOCs),
64–67

generic oxidation scheme, 66–67
nomenclature, 65
semivolatile, 66

volatility basis set (VBS) approach, 238
volatility classes, of organic species, 238
volcanic explosivity index (VEI), 410
volume mixing ratio. See mixing ratio
Von Karmann constant, 374
Von Neumann analysis. See stability
Voronoi diagram, 189
vorticity. See curl
vorticity
absolute, 110
Ertel potential, 112
potential, 112
relative, 112

warm pool, Pacific Ocean, 43
water vapor
atmospheric abundance, 21, 28
greenhouse gas, 23

wavelength, 205
weather forecast model. See meteorological

model
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wet chemistry, 439
wet deposition
below-cloud scavenging. See washout
convective scavenging, 382–384
in-cloud scavenging. See rainout
large scale scavenging, 383
rainout, 383, 385
retention efficiency, 384

washout, 383, 385–386
wet scavenging. See wet deposition
Wien’s displacement law, 212
wind shear

dimensionless, 375

Zel’dovich mechanism, 62, 386
zenith angle, 571
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