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Preface

In 1966 my monograph The Linear Hypothesis: A General Theory was published
as one in a series of statistical monographs by Griffin, London. Part of the book
arose out of my PhD thesis, which took a more general approach than usual to
linear models. It used the geometrical notion of projections onto vector spaces
using idempotent matrices, thus providing an elegant theory that avoided being
involved with ranks of matrices. Although not a popular approach at the time, it has
since become an integral part of theoretical regression books where least squares
estimates, for example, are routinely given a geometrical interpretation.

Over the years I have written extensively on related topics such as linear
and nonlinear regression, multivariate analysis, and large sample tests of general
hypotheses including, for example, those arising from the multinomial distribution.
Given this additional experience and the fact that my original monograph is now
out of print, the time has come to rewrite it. This is it! Initially the 1966 monograph
was written as an attempt to show how the linear model and hypothesis provide
a unifying theme where all hypotheses are either linear or asymptotically so. This
means that the linear theory can be applied in a variety of modeling situations and
this monograph extends the breadth of these situations. In a monograph of this size,
the emphasis is on theoretical concepts, and the reader needs to look elsewhere for
practical applications and appropriate software. I appreciate that these days the focus
of statistical courses is much more applied. Numerous computationally oriented
books have been written, for example, on using the statistical package R that was
originally developed in the Statistics Department here at University of Auckland.
However I would mention that my books on linear, nonlinear, and multivariate
models all have comprehensive chapters on computational details and algorithms,
as well as practical examples.

Who is the monograph for? It is pitched at a graduate level in statistics and
assumes that the reader is familiar with the basics of regression analysis, analysis
of variance, and some experimental designs like the randomized block design, with
brief extensions to multivariate linear models. Some previous exposure to nonlinear
models and multinomial goodness-of-fit tests will help, and some knowledge of the
multivariate normal distribution is assumed. A basic knowledge of the matrix theory
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vi Preface

is assumed throughout, though proofs of most of the matrix results used are given
either in the text or in the Appendix. My aim is to provide the reader with a more
global view of modeling and show connections between several major statistical
topics.

Chapters 1, 2, 3 and 4 deal with the basic ideas behind the book: Chap. 1 gives
some preliminary mathematical results needed in the book; Chap. 2 defines the
linear model and hypothesis with examples; Chap. 3 is on estimation; and Chap. 4
is on hypothesis testing, all from a geometrical point of view. Chapter 5 looks at
some general properties of the F-test, and in Chap. 6 methods of testing several
hypotheses are discussed. Chapters 7, 8 and 9 look at special topics: Chap. 7 is
about augmenting hypotheses as in analysis of covariance and missing observations,
for example, Chap. 8 looks at nonlinear models and Chap. 9 at multivariate models.
Chapters 10, 11 and 12 involve considerable asymptotic theory showing how general
hypotheses about sampling from general distributions are asymptotically equivalent
to corresponding linear theory. The book finishes with an appendix giving some
useful, and in some cases not so common, matrix results with proofs.

Looking back after having been retired for a number of years, I am grateful for
the stimulus given to my writing through teaching most of the topics mentioned
above at University of Auckland, New Zealand. Teaching certainly clarifies one’s
understanding of a subject. In conclusion I would like to thank two referees for their
helpful comments.

Auckland, New Zealand George A.F. Seber
February 2015
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Chapter 1
Preliminaries

1.1 Notation

Linear algebra is used extensively throughout this book and those topics particularly
relevant to the development in this monograph are given within the chapters; other
results are given in the Appendix. References to the Appendix are labeled with a
prefix “A”, for example A.3 is theorem 3 in the Appendix. Vectors and matrices
are denoted by boldface letters a and A, respectively, and scalars are denoted by
italics. For example, a D .ai/ is a vector with ith element ai and A D .aij/ is a
matrix with i; jth element aij. I shall use the same notation with random variables,
because using uppercase for random variables and lowercase for their values can
cause confusion with vectors and matrices. We endeavor, however, to help the reader
by using the lower case letters in the latter half of the alphabet, namely u; v; : : : ; z,
with the occasional exception (because of common usage) for random variables and
the rest of the alphabet for constants. All vectors and matrices contain real elements,
that is belong to R, and we denote n-dimensional Euclidean space by R

n.
The n�n matrix diag.a1; a2; : : : ; an/ or diag.a/ is a matrix with diagonal elements

the elements of a0 D .a1; a2; : : : ; an/ and off-diagonal elements all zero. When
the n diagonal elements are all equal to 1 we have the identity matrix In. The n-
dimensional vector with all its elements unity is denoted by 1n. The trace of a matrix
A, denoted by traceŒA�, is the sum of its diagonal elements, and the rank of A is
denoted by rankŒA�. The determinant of a square matrix A is denoted by det A or
jAj. We shall also use the Kronecker delta, ıij which is one when i D j and zero
otherwise

The length of an n-dimensional vector x D .xi/ is denoted by k x k, so that

k x kD
p
.x0x/ D

q
.x21 C x22 C � � � C x2n/:

© Springer International Publishing Switzerland 2015
G.A.F. Seber, The Linear Model and Hypothesis, Springer Series in Statistics,
DOI 10.1007/978-3-319-21930-1_1
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2 1 Preliminaries

We say that two vectors x and y in R
n are orthogonal and write x ? y if x0y D 0.

For an extensive collection of matrix results see Seber (2008).

1.2 Linear Vector Spaces

We shall be interested in particular subsets of Rn called linear vector spaces that
may be defined as follows. A linear vector space is a set of vectors V such that
for any two vectors x and y belonging to V and for any real numbers a and b, the
vector ax C by also belongs to V . This definition is not the most general one, but
it is sufficient for the development given in this book. From now on we shall drop
the word “linear” and take it as understood. Since a and b can both be zero, we see
that every vector space contains a zero vector. We note that Rn is also a vector space
and we can then say that V is a subspace. To prove two vector spaces are identical
we show that one is contained in the other and vice versa, as we see in Theorem 1.1
below.

We now give some examples of useful vector spaces. If V is a subspace of Rn,
then V?, the set of all vectors in R

n perpendicular to every vector in V (called the
orthogonal complement of V), is also a vector subspace. This follows from the fact
that if v 2 V , and x and y belong to V?, then

v0.ax C by/ D av0x C bv0y D 0 and ax C by 2 V?:

If X is an n � p matrix and CŒX� is the set of all vectors θ such that θ D Xβ
for some β, that is CŒX� D fθ W θ D Xβg is the set of all linear combinations of
the columns of X, then CŒX� is a vector space. Also if N ŒX� D fφ W Xφ D 0g, then
N ŒX� is also vector space. We find then that associated with every matrix X there
are three vector spaces: (1) the column space (also called the range space) CŒX�,
(2) the row space CŒX0�, and (3) the null space (sometimes called the kernel) N ŒX�
of X; proofs that they are subspaces are left to the reader. Two of these spaces are
related by the following theorem used throughout this monograph.

Theorem 1.1 N ŒX� D CŒX0�?. In words, the null space of X is the orthogonal
complement of the row space of X.

Proof If θ 2 N ŒX�, then Xθ D 0 and θ is orthogonal to each row of X. It is
therefore orthogonal to any linear combination of the rows of X, so that θ ? CŒX0�
and N ŒX� � CŒX0�?. Conversely, if θ ? CŒX0� then Xθ D 0, θ 2 N ŒX�, and
CŒX0�? � N ŒX�. Hence the result follows.
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1.3 Basis of a Vector Space

A set of vectors β1;β2; : : : ;βp is said to span a vector space V if every vector
v 2 V can be expressed as a linear combination of these vectors, that is, if there
exist constants b1; b2; : : : ; bp such that

v D
pX

iD1
biβi:

The vectors β1;β2; : : : ;βp are linearly independent if
Pp

iD1 biβi D 0 implies that
b1 D b2 D : : : D bp D 0. Thus linear independence implies that there is no non-
trivial linear relation among the vectors. If the vectors βi (i D 1; 2 : : : ; p) span V and
are linearly independent, then they are said to form a basis of V . Although a basis
is not unique, the number of vectors p in it is unique and is called the dimension
of V or dimV . From every basis it is possible to construct an orthonormal basis
α1;α2; : : : ;αp such that α0iαj D ıij; “ortho” as the vectors are mutually orthogonal
and “normal” as they have unit length. The construction can be carried out from a
basis using the Gram-Schmidt algorithm (Seber and Lee 2003, 338–339). If V is a
subspace of Rn, it is always possible to enlarge an orthonormal basis of V to the set
α1;α2; : : : ;αp;αpC1;αpC2; : : : ;αn to form an orthonormal basis for Rn. Thus if
dimV D p, then it is readily seen that αpC1; : : : ;αn form an orthonormal basis for
V? and dimV? D n � p.

Since the column space CŒX� of a matrix X is the space spanned by its columns,
then dim CŒX� will be the number of linearly independent columns of X and
therefore the rank of X. The dimension of N ŒX� is known as the nullity of X and is
obtained from the rule (A.3)

rank C nullity D number of columns of X:

Thus if X is an n � p matrix of rank r (r � p; n), then we see that dim CŒX� D p and
dimN ŒX� D p � r.

1.4 Addition and Intersection of Vector Spaces

A vector space V is said to be the direct sum of two vector spaces V1 and V2 if every
vector v 2 V can be expressed uniquely in the form v D v1 C v2, where vi 2 Vi

(i D 1; 2). We represent this symbolically by V1
LV2. If we drop the word unique

from the definition, we say that V is the sum of V1 and V2 and write V D V1 C V2.
The intersection of two vector spaces V1 and V2 is denoted by V1 \ V2 and is the

set of all vectors that belong to both spaces. The reader should check that if V1 and
V2 are all vector spaces in R

n, then V1
LV2, V1CV2, and V1\V2 are vector spaces.

The following theorems will be useful later on.
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Theorem 1.2 If V1 and V2 are two vector spaces in R
n, then

(i) ŒV1 \ V2�? D V?1 C V?2 :
(ii) If V?1 \ V?2 D 0, then ŒV1 \ V2�? D V?1

LV?2 .

Proof

(i) We can prove this quite generally by showing that the left hand side is contained
in the right hand side, and vice versa; this is left as an exercise. However, the
following proof using matrices is instructive as it uses Theorem 1.1 in Sect. 1.2.
Let A1 and A2 be matrices such that Vi D N ŒAi� for i D 1; 2. Then

ŒV1 \ V2�? D
(

N
 

A1

A2

!)?

D CŒ.A01;A02/� . cf. Theorem 1.1/

D CŒA01�C CŒA02�
D V?1 C V?2 :

(ii) This follows from the fact that the columns of A01 are linearly independent of
the columns of A02 so that CŒ.A01;A02/� D CŒA01�

L CŒA02�.
Theorem 1.3 If V0 and Vi (i D 1; 2) are three vector spaces in R

n such that V1 �
V0, then

V0 \ .V1 C V2/ D V1 C .V0 \ V2/:

Proof If v 2 LHS (left-hand side), then v 2 V0 and v D v1Cv2, where v1 2 V1 � V0
and v2 2 V2. Hence v2 D v � v1 2 V0 and v2 2 V0 \ V2, so that v 2 RHS and LHS
� RHS. Conversely, if v 2 RHS, then v D v1 C v2 2 V0, as v1 2 V1 � V0, and
v2 2 V0 \V2 � V0. Also v1 C v2 2 V1 CV2 so that v 2 LHS. Therefore LHS=RHS
and the result is proved.

1.5 Idempotent Matrices

We shall see later that symmetric idempotent matrices carry out an important role
with regard to projecting vectors orthogonally onto vector spaces, and are therefore
called projection matrices. The symbol P will always represent a symmetric
idempotent matrix, so that P0 D P and PP D P2 D P.

Example 1.1 Let y D .y1; y2; : : : yn/
0 and consider Q1 D P

i.yi � y/2 D y0A1y and
Q2 D ny2 D y0A2y, where y is the mean of the yi. We now show that both A1 and
A2 are symmetric and idempotent. First Q1 D P

i y2i � Q2 and Q2 D n�1.y01n10ny/
so that A2 D n�11n10n and A2

2 D A2. Also Q1 D y0.In � A2/y so that we have
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A2
1 D .In � A2/

2 D In � 2A2 C A2 D A1. We note that y0y D Q1 C Q2 or, in terms
of matrices, In D A1 C A2. This is a special case of Cochran’s theorem discussed
later.

Projection matrices have useful properties that are summarized in the following
theorem.

Theorem 1.4 The eigenvalues of a symmetric idempotent matrix P are zero or
one, and the number of unit eigenvalues is the rank of P. Also, rank P D trace P.
Conversely, if P is symmetric and its eigenvalues are zero or one, then P is
idempotent.

Proof Suppose P is n�n of rank r. As P is symmetric there exists an n�n orthogonal
matrix T (A.7) such that

T0PT D diag.�1; �2; : : : ; �n/ D Λ say;

where �1; �2; : : : ; �n are the eigenvalues of P. Now

Λ2 D T0PTT0PT D T0PPT D T0PT D Λ;

and �2i D �i for each i. Thus the only possible eigenvalues are zero or one, and the
rank of P, which is the number of nonzero eigenvalues, is therefore the number of
unit eigenvalues, namely r. As the rank of a matrix is unchanged by premultiplying
or post-multiplying by a nonsingular matrix (see A.4(i)), rank P D rankΛ D
traceΛ D r. Since by A.1, traceŒAB� D traceŒBA�,

trace P D traceŒPTT0� D traceŒT0PT� D traceΛ;

as T is orthogonal. Conversely, if the eigenvalues are 0 or 1 then Λ2 D Λ, or
T0PTT0PT D T0PPT D T0PT, and P2 D P. This completes the proof.

Since a0Pa D a0P0Pa D b0b � 0, where b D Pa, we see that P is nonnegative
definite (see the beginning of the Appendix for a definition). This also follows from
the fact that the eigenvalues of P are nonnegative.

Finally we note that In � P is symmetric and

.In � P/.In � P/ D In � 2P C P2 D In � P;

which implies that In � P is also idempotent. Hence, if c D .In � P/a, then we have
a0.In � P/a D c0c � 0 and In � P is nonnegative definite.

Example 1.2 Returning to Example 1.1,

rankŒA2� D traceŒA2� D traceŒn�11n10n� D n�1 trace 10n1n D 1
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and

rankŒA1� D traceŒA1� D n � traceŒA2� D n � 1:

Example 1.3 It is possible for a matrix to be idempotent without being symmetric.
For example, the matrix X.X0V�1X/�1X0V�1 that arises in generalized least squares
regression is idempotent as

X.X0V�1X/�1X0V�1X.X0V�1X/�1X0V�1 D X.X0V�1X/�1X0V�1:

Its properties are similar to those of the symmetric case (see A.13).

1.6 Expectation, Covariance, and Variance Operators

If Z D .zij/ is a matrix (or vector) of random variables, we define the general
expectation operator of the random matrix Z to be EŒZ� D .EŒzij�/. Then, by
the linear properties of the one-dimensional expectation operator E, we see that
EŒAZB C C� D AEŒZ�B C C, where A, B, and C are matrices of appropriate sizes
with constant elements. In particular, if y is a random vector with mean θ, then
EŒAy� D Aθ.

We can also define the covariance, CovŒx; y�, of two random vectors x D .xi/

and y D .yi/ as the matrix with .i; j/th element covŒxi; yj�. If x D y, then we write
CovŒy; y� D VarŒy� D .covŒyi; yj�/. This matrix is known variously as the variance,
variance-covariance, or dispersion matrix of y. Its diagonal elements are variances
and its off-diagonal elements are covariances.

Theorem 1.5 Let EŒx� D α and EŒy� D β, then:

(i) CovŒx; y� D EŒ.x � α/.y � β/0�.
(ii) CovŒAx;By� D ACovŒx; y�B0.

(iii) VarŒBy� D BVarŒy�B0.
(iv) VarŒy� is nonnegative definite, and positive definite if a0y ¤ b for some b and

non-zero a.
(v) If a and b are constant vectors of suitable dimensions, then

CovŒx � a; y � b� D CovŒx; y�:

If c is a vector of the correct dimension, then

VarŒy � c� D VarŒy�:

(vi) VarŒy� D EŒyy0� � EŒy�EŒy0�.
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Proof

(i)

CovŒx; y� D .covŒxi; yj�/

D .EŒ.xi � ˛i/.yj � ˇj/�/

D EŒ.x � α/.y � β/0�:

(ii) Let u D Ax and v D By. Then, by (i),

CovŒAx;By� D CovŒu; v�

D EŒ.u � EŒu�/.v � EŒv�/0�

D EŒ.Ax � Aα/.By � Bβ/0�

D EŒA.x � α/.y � β/0B0�

D AEŒ.x � α/.y � β/0�B0

D ACovŒx; y�B0:

(iii) From (ii), VarŒAy� D CovŒAy;Ay� D AVarŒy�A0:
(iv) a0VarŒy�a D varŒa0y� � 0, which is strictly positive for non-zero a if we don’t

have a0y D b for some b and non-zero a.
(v) From (i),

CovŒx � a; y � b� D EŒfx � a � .α � a/gfy � b � .β � b/g0�
D CovŒx; y�:

Then set x D y and a D b D c.
(vi) Use (i) with x D y and expand, namely

VarŒy� D EŒ.y � β/.y � β/0�

D EŒyy0 � βy0 � yβ0 C ββ�

D EŒyy0� � ββ0:

Example 1.4 If y is an n-dimensional vector with mean θ and variance-covariance
matrix Σ D .�ij/, then

varŒy� D varŒ10ny=n�

D 10nVarŒy�1n=n2

D 10nΣ1n=n2

D
X

i

X

j

�ij=n2:
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1.7 Multivariate Normal Distribution

An n�1 random vector y D .yi/ is said to have a (non-singular) multivariate normal
distribution if its density function is

.2�/�n=2jΣj�1=2 exp

�
�1
2
.y � μ/0Σ�1.y � μ/

�
:

We note that EŒy� D μ and VarŒy� D Σ; we shall write y � NnŒμ;Σ�. Since Σ is
nonsingular, it is positive definite. Some situations arise when Σ is singular (e.g.,
the joint distribution of the residuals in linear regression analysis). In this case the
density function does not exist, but then y can be expressed as Ax, where x has a
non-singular normal distribution of smaller dimension. The main properties of the
multivariate normal distribution we shall use are given in the following the theorem.

Theorem 1.6

(i) If y � Nn.μ;Σ/, C is an m � n matrix of rank m, and d is an m � 1 vector, then
Cy C d � Nm.Cμ C d;CΣC0/: in particular a0y is univariate normal.

(ii) Let y D Tz, where T is an orthogonal matrix, and Σ D �2In. Then z D T0y,
VarŒz� D T0ΣT D �2In and z � NnŒT0μ; �2In�, that is the zi are independently
distributed as NŒt0iμ; �2�, where ti is the ith column of T.

(iii) The moment generating function of the multivariate normal vector y is

M.t/ D EŒexp.t0y/�

D exp.t0μ C t0Σt=2/:

This result also holds if Σ is singular.
(iv) A random vector y with mean μ and variance-covariance matrix Σ has an

Nn.μ;Σ/ distribution if and only if a0y has a univariate distribution for every
vector a. This can be used to define the multivariate normal distribution for
both the non-singular and singular case (when Σ is singular).

(v) If y has a singular or non-singular multivariate normal distribution, then
the vectors Aiy (i D 1; 2) are statistically independent if and only if
CovŒA1y;A2y� D 0.

Proof For detailed summaries of the properties of this distribution see Seber and
Lee (2003, chapter 3) and Seber (2008, Section 20.5, 435ff). Property (iv) gives
a very useful definition for the multivariate normal as all other properties can be
derived from it. It can also be used to provide a similar definition of the Wishart
distribution used in multivariate analysis.

In most of this book Σ D �2In. The matrix takes this form when the yi are
uncorrelated and have the same variance. In this case we see from the factorization
of the density function that the yi are independently distributed as N1Œ�i; �

2�. In the
future we drop the subscript “1” from the univariate distribution.



1.8 Non-central Distributions 9

Example 1.5 If y1; y2; : : : ; yn is a random sample from N.�; �2/ we can prove that
y is statistically independent of

P
i.yi � y/2 as follows. Now

y D 10ny=n D A1y

and

z D .y1 � y; y2 � y; : : : ; yn � y/0 D y � 1n10y=n D A2y;

where A2 D In � 1n10n=n. Then, by Theorem 1.5(iii),

CovŒy; z� D CovŒA1y;A2y� D n�110nVarŒy�A02 D �2.n�110n/.In � 1n10n=n/ D 0:

This implies from Theorem 1.6(v) above that y is independent of z, and therefore of
z0z D P

i.yi � y/2.

1.8 Non-central Distributions

The random variable x with probability density function

f�.x; ı/ D 1

2�=2
e�.xCı/=2x.�=2/�1

1X

iD0

�
ıx

4

�i
1

iŠ� . �
2

C i/
; x � 0;

where � .a/ is the Gamma function, is said to have a non-central Chi-square
distribution with � degrees of freedom and non-centrality parameter ı; we write
x � 	2�.ı/. The distribution can also be expressed in the form

f�.x; ı/ D e�ı=2
1X

iD0

.ı=2/i

iŠ
f�C2i.x; 0/;

where f�C2i.x; 0/ is the density function for 	2�C2i, the (central) chi-square distribu-
tion with � C 2i degrees of freedom.

We note the following properties:

Theorem 1.7

(i) When ı D 0, the above density reduces to that of 	2� .
(ii) EŒx� D � C ı.

(iii) The moment generating function (m.g.f.) of x is

Mx.t; ı/ D .1 � 2t/��=2 expŒıt=.1 � 2t/�;
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and it uniquely determines the distribution as it exists as a function of t in an
interval containing t D 0. When ı D 0, the m.g.f. of the chi-square distribution
is .1 � 2t/��=2.

(iv) The m.g.f. of �x is EŒexp.x�t/� D Mx.�t; ı/.
(v) The non-central chi-square can be defined as the distribution of the sum of the

squares of n independent univariate normal variables yi (i D 1; 2; : : : ; n) with
variances 1 and respective means �i. Thus if y is distributed as Nn.μ; �

2In/,
then x D y0y=�2 � 	2n.ı/, where ı D μ0μ=�2.

(vi) The non-central chi-square distribution has the same additive property as the
central chi-square, namely, if two random variables are distributed indepen-
dently as 	2n1 .ı1/ and 	2n2 .ı2/, then the distribution of their sum is 	2n1Cn2
.ı1 C ı2/.

Proof We shall just give an outline. Using (v), the moment generating function
of y2i is readily obtained from which we can find the m.g.f. of y0y by multiplying
the individual m.g.f.s. together giving us (iii). This m.g.f. can be expanded as a
power series of m.g.fs of central chi-square variables and, because of the uniqueness
of the underlying density function, we find that the density function is a power
series in chi-square density functions, as given above. The result (ii) follows from
differentiating the m.g.f., while (iv) is straightforward. The moment generating
function of the sum of two independent random variables is the product of their
m.g.f.s, which readily leads to (vi).

Since ı > 0, some authors set ı D 
2, say. Others use ı=2, which because of (ii)
is not so memorable.

If x � 	2m.ı/, y � 	2n, and x and y are statistically independent, then F D
.x=m/=.y=n/ is said to have a non-central F-distribution with m and n degrees of
freedom and non-centrality parameter ı. We write F � Fm;n.ı/. When ı D 0, we
use the usual notation Fm;n (D Fm;n.0/) for the F-distribution. Another statistic that
is related to the F-statistic is

v D x

x C y
D mF

mF C n
;

which has the so-called non-central Beta distribution with a finite domain Œ0; 1�. For
derivations of the above distributions see, for example, Johnson et al. (1994).

1.9 Quadratic Forms

Quadratic forms arise frequently in this book and we begin by finding the mean and
variance of a quadratic form.
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Theorem 1.8 Let y be an n-dimensional vector with mean μ and variance-
covariance matrix VarŒy� D Σ, let A be an n � n symmetric matrix and c be an
n � 1 constant vector. Then:

(i)

EŒy0Ay� D traceŒAΣ�C μ0Aμ:

(ii)

EŒ.y � c/0A.y � c/� D traceŒAΣ�C .μ � c/0A.μ � c/:

(iii) If Σ D �2In then,

EŒy0Ay� D �2.sum of coefficients of the y2i /C .y0Ay/yDμ:

Proof

(i) This can be derived by simply expanding the quadratic. However, the following
proof is instructive.

EŒy0Ay� D trace.EŒy0Ay�/

D EŒtrace.Ayy0/�; .since trace.BC/ D trace.CB//

D trace.EŒAyy0�/

D trace.AEŒyy0�/

D traceŒA.VarŒy�C μμ0/�; .by Theorem 1.5(vi)/

D traceŒAΣ�C traceŒAμμ0�

D traceŒAΣ�C μ0Aμ:

(ii) Setting x D y � c with mean μ� c, then VarŒx� D VarŒy� (by Theorem 1.5(v)),
and the result follows from (i).

(iii) trace.AΣ/ D trace.�2A/ D �2 traceŒA�, and the result follows from (i).

Example 1.6 Given y1; y2; : : : ; yn a random sample from NŒμ; �2� we show that

Q D y0Ay D 1

2.n � 1/

n�1X

iD1
.yiC1 � yi/

2

is an unbiased estimate of �2. Now

Q D 1

2.n � 1/ Œ.y2 � y1/
2 C .y3 � y2/

2 C : : :C .yn � yn�1/2�

D 1

2.n � 1/ Œy
2
1 C y2n C 2.y22 C : : :C y2n�1/ � 2y1y2 � : : : � 2yn�1yn�;
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and

EŒy0Ay� D �2 traceŒA�C .y0Ay/each yiD�
D �2Œ2C 2.n � 2/�=Œ.2.n � 1/� D �2:

Example 1.7 Suppose that the random variables y1; y2; : : : ; yn have a common mean
�, common variance �2, and the correlation between any pair is �. Let Σ D VarŒy�.
We now find the expected value of y0Ay D P

i.yi � y/2. Since A D .ıij � 1
n / and

Σ D �2

0

B
B
@

1 � � � � � �
� 1 � � � � �
� � � � � � �
� � � � � � 1

1

C
C
A ;

EŒy0Ay� D traceŒAΣ�C 0

D
X

i

X

j

aij�ij

D �2Œn � 1 � �.n2 � n/=n�

D �2.n � 1/.1 � �/:

This example show the effect of correlation on the bias of the usual estimate of
s2 D P

i.yi � y/2=.n � 1/ of �2. Its expected value is �2.1 � �/.

Theorem 1.9 Let x1; x2; : : : ; xn be independent random variables where, for i D
1; 2; : : : ; n, xi has mean �i, variance �22i, and third and fourth moments about the
mean �3i and �4i, respectively (i.e., �ri D EŒ.xi � �i/

r�). If A is any n � n symmetric
matrix, d is a column vector of the diagonal elements of A, and b D Aθ, then:

(i)

varŒx0Ax� D
X

i

a2ii�4i C
X

i

X

j;j¤i

aiiajj�2i�2j C 2
X

i

X

j;j¤i

a2ij�2i�2j

C 4
X

i

b2i�2i C 4
X

i

�3ibiaii � .
X

i

aii�2i/
2:

(ii) If �2i D �2, �3i D �3 and �4i D �4 for i D 1; 2; : : : ; n, then

varŒx0Ax� D .�4 � 3�22/d
0d C 2�22 traceŒA2�C 4�2θ

0A2θ C 4�3θ
0Ad:
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(iii) If the xi are normally distributed then

varŒx0Ax� D 2
X

i

X

j

a2ij�2i�2j C 4
X

i

b2i�2i:

(iv) If x � Nn.θ; �
2In/ then

varŒx0Ax� D 2�4 traceŒA2�C 4�2θ0A2θ:

Proof

(i) Now

VarŒx0Ax� D EŒ.x0Ax/2� � .EŒx0Ax�/2: (1.1)

If y D x � θ so that EŒy� D 0, then

x0Ax D y0Ay C 2b0y C θ0Aθ:

Hence

EŒx0Ax� D EŒy0Ay�C θ0Aθ

D
X

i

X

j

aijEŒyiyj�C θ0Aθ

D
X

i

aii�2i C θ0Aθ:

Also

.x0Ax/2 D .y0Ay/2 C 4.b0y/2 C .θ0Aθ/2

C 2θ0Aθy0Ay C 4θ0Aθb0y C 4b0yy0Ay; (1.2)

and .y0Ay/2 D P
i

P
j

P
k

P
` aijak`yiyjyky`. Since

EŒyiyjyky`� D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

�4i; i D j D k D `

�2i�2k; i D j; k D `

�2i�2j; i D k; j D `

�2i�2j; i D `; j D k
0; otherwise;

we have

EŒ.y0Ay/2� D
X

i

a2ii�4i C
X

i

X

k;k¤i

aiiakk�2i�2k C 2
X

i

X

j;j¤i

a2ij�2i�2j:
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Also

EŒ.b0y/2� D EŒ.
X

i

biyi/
2� D EŒ

X

i

X

j

bibjyiyj� D
X

i

b2i�2i;

and

EŒb0yy0Ay� D EŒ
X

i

X

j

X

k

biyiajkyjyk� D
X

i

�3ibiaii:

Taking the expected value of (1.2) and substituting into (1.1) leads to our result.
(ii)

varŒy0Ay� D .�4 � 3�22/
X

i

a2ii C �22

X

i

X

j

aiiajj C 2�22

X

i

X

j

a2ij

C4�2b0b C 4�3b0d � �22.
X

i

aii/
2

D .�4 � 3�22/d0d C 2�22 traceŒA2�C 4�2b0b C 4�3b0d;

since traceŒA2� D P
i

P
j aijaji D P

i

P
j a2ij, which is our result. This result

was stated without proof by Atiqullah (1962).
(iii) Since xi is normally distributed, �4i D 3�22i, �3i D 0, and the result follows.
(iv) Here �2 D �2, and (iv) follows from (iii).

Example 1.8 If y � NnŒθ;Σ�, whereΣ is positive definite, we shall find the variance
of y0Ay, where A is any symmetric n � n matrix. Since Σ is positive definite, there
exist a nonsingular matrix R such that Σ D RR0 (by A.9(iii)). If z D R�1y, then

VarŒz� D R�1ΣR�10 D R�1RR0R0�1 D In

and z � NnŒR�1θ; In�. Using Theorem 1.9(iv),

varŒy0Ay� D varŒz0R0ARz�

D traceŒ.R0AR/2�C 4θ0R�10.R0AR/2R�1θ

D traceŒR0ARR0AR�C 4θ0R�10R0ARR0ARR�1θ

D traceŒR0AΣAR�C 4θ0AΣAθ

D traceŒAΣAΣ�C 4θ0AΣAθ .by A.1):

The following three theorems are used throughout this book.

Theorem 1.10 Suppose y � Nn.μ; �
2In/. If P is symmetric and idempotent of rank

r, then the quadratic y0Py=�2 is distributed as non-central chi-square with r degrees
of freedom and non-centrality parameter ı D μ0Pμ=�2.
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Proof Suppose P is n � n. As P is symmetric and idempotent, we may assume
without loss of generality that the first r eigenvalues are unity and the rest are zero
(Theorem 1.4 in Sect. 1.5). Then there exists an orthogonal matrix T such that

T0PT D
�

Ir 0
0 0

�
;

and

P D T
�

Ir 0
0 0

�
T0

D .ti; t2; : : : ; tr/

0

B
@

t01
:::

t0r

1

C
A

D TrT0r; say,

where t1; t2; : : : ; tr are the first r columns of T. Putting y D Tz gives us

y0Py D z0T0PTz

D z21 C z22 C � � � C z2r ;

where the zi are independently distributed as NŒt0iμ; �2� (by Theorem 1.6 (ii) in
Sect. 1.6). Hence

Pr
iD1 z2i =�

2 � 	2r .ı/ (by Theorem 1.7(iv)), where

ı D
rX

iD1
.t0iμ/2=�2

D μ0TrT0rμ=�2

D μ0Pμ=�2:

The converse is also true, as we see in the following theorem.

Theorem 1.11 Suppose y � Nn.μ; �
2In/. If y0Ay=�2, where A is symmetric, has a

non-central chi-square distribution, then A is idempotent.

Proof Let y0Ay be any quadratic form and let S be the diagonalizing orthogonal
matrix. Putting y D Sz gives us

y0Ay D �1z
2
1 C �2z

2
2 C � � � C �nz2n;

where the �i are the eigenvalues of A. From the proof of the previous theorem, the
zi are independently distributed as NŒs0iμ; �2� and z2i =�

2 is non-central 	21.ıi/, where
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ıi D .s0iμ/2=�2. The m.g.f. of �iz2i =�
2 is, by Theorem 1.7(iii) and (iv),

Mi.t; ıi/ D .1 � 2�it/
��=2 exp

�
ıi�it

1 � 2�it

�
:

Hence the m.g.f. of y0Ay=�2 is
Q

i Mi.t; ıi/ which has to be the m.g.f of a non-
central chi-square distribution. This can only happen if the �i are 0 or 1, so that A
is idempotent. We note that if the first r eigenvalues are 1 and the rest are zero and
ı D Pr

iD1 ıi, then

Y

i

Mi.t; ıi/ D .1� 2t/�r=2 exp

�
ıt

1 � 2t

�
;

which is the m.g.f. of the non-central chi-square distribution 	2k.ı/.

Theorem 1.12 Suppose y � Nn.μ; �
2In/. Given n � n symmetric idempotent

matrices Ai (i D 1; 2), then the quadratics y0Aiy=�2 (i D 1; 2) are statistically
independent if and only if A1A2 D 0. (We note that the assumption of idempotency
is not necessary, but the proof is instructive and relevant to its application in this
book.)

Proof It follows from Theorem 1.10 that the quadratics are each distributed as non-
central chi-square. Since they are independent, their sum is also non-central chi-
square (Theorem 1.7(vi)) so that by Theorem 1.11 A1 C A2 is idempotent. Hence

.A1 C A2/ D .A1 C A2/.A1 C A2/ D A1 C A1A2 C A2A1 C A2;

so that A1A2 C A2A1 D 0. The two equations obtained by multiplying the last
equation on the left (right) by A1 give us

A1A2 C A1A2A1 D 0; and A1A2A1 C A2A1 D 0;

so that A1A2 D A2A1 D 0. Conversely, given A1A2 D 0, it follows from
Theorem 1.5(ii) in Sect. 1.6 that

CovŒA1y;A2y� D A1VarŒy�A02 D �2A1A2 D 0:

Hence by Theorem 1.6(v), A1y and A2y are statistically independent and the
quadratics y0Aiy D .Aiy/0Aiy (i D 1; 2) are statistically independent.
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1.10 Lagrange Multipliers

For the reader who is not familiar with the use of Lagrange multipliers we introduce
a brief section on their use in three situations. First, suppose we wish to find a local
maximum or minimum of a function g.θ/, where θ0 D .�1; �2; : : : ; �n/, is subject
to a linear constraint a0θ D 0, and a0 D .a1; a2; : : : ; an/. We introduce an unknown
constant called a Lagrange multiplier � for the constraint and consider the function

f .θ/ D g.θ/C �.a0θ/:

If we have the notation that

Dg.θ/ D @g.θ/

@θ
D
�
@g.θ/

@�1
; : : : ;

@g.θ/

@�n

�0
;

then the relative maximum or minimum is then given by differentiating the f .θ/
with respect to θ (cf. A.20), namely

Dg.θ/C �a D 0 and a0θ D 0; (1.3)

and solving for θ.
A second situation is when we have k independent linear constraints a0iθ D 0

(i D 1; 2; : : : ; k). We then introduce a Lagrange multiplier �i for each constraint
and optimize the function

g.θ/C
X

i

�i.a0iθ/ D g.θ/C λ0Aθ;

where A0 D .a1; a2; : : : ; ak/ D .aji/. The relative maximum or minimum, Qθ, is then
given by solving

@g.θ/

@�j
C

kX

iD1
�iaij D 0 .j D 1; 2; : : : ; n/

and

a0iθ D 0 .i D 1; 2; : : : :k/;

where aij is the jth element of ai. We thus have (kCn) equations in (kCn) unknowns
θ and λ, and therefore, theoretically, they can be solved. Since

P
i �iaij D P

i a0ji�i,
the jth element of A0λ, the equations can be written in the form

Dg.θ/C A0λ D 0 and Aθ D 0: (1.4)
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Finally, if the constraints are nonlinear, say ai.θ/ D 0 for i D 1; 2; : : : ; k, and the
matrix A has .i; j/th element @ai=@�j, then the equations become

Dg.θ/C A0λ D 0 and a.θ/ D 0; (1.5)

where a.θ/ D .a1.θ/; a2.θ/; : : : ; ak.θ//
0.

Sufficient conditions for a local maximum or a local minimum are given by Seber
(2008, 516–517). However these conditions are awkward to apply and one usually
uses ad hoc methods to determine the nature of the stationary value.

In conclusion, we look at the role of the Lagrange multiplier in applying
identifiability conditions. Suppose g.θ/ is any real-valued “well-behaved” function
of θ with domain  and range R, and a.θ/ D 0 is now a set of k constraints
sufficient for the identifiability of θ. This means that for every b 2 R, there exists
a unique θ 2  satisfying the equations g.θ/ D b and a.θ/ D 0. Following Seber
(1971, Appendix), let r D n � k and consider the transformation from θ to

φ D .g.θ/; �2; : : : ; �r; a0.θ//0 D c.θ/;

say. Now given b 2 , then for �1 D b, �i D �i (i D 2; 3; : : : ; r), and �i D 0

(i D r C 1; : : : ; n), φ is uniquely determined by the definition of identifiability. This
implies that subject to the constraints on φ, the transformation is one-to-one and the
matrix of partial derivatives

Cθ D .@ci.θ/=@�j/

D

2

6
6
6
6
6
4

@g
@�1

: : : @g
@�n

0 Ir�1 0
@a1
@�1

: : : @a1
@�n

� : : : �
@ak
@�1

: : : @ak
@�n

3

7
7
7
7
7
5

is non-singular. Defining A D .@ai=@θj/ as above, then for all θ such that a.θ/ D 0,
the columns of C0θ are linearly independent and

Dg.θ/C A0λ D 0 (1.6)

implies that λ D 0. This means that in finding the stationary values of g subject to
the identifiability constraints a.θ/ D 0, the Lagrange multiplier is zero.
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Chapter 2
The Linear Hypothesis

2.1 Linear Regression

Ini this chapter we consider a number of linear hypotheses before giving a general
definition. Our first example is found in regression analysis.

Example 2.1 Suppose we have a random variable y with mean � and we assume that
� is a linear function of p non-random variables x0; x1; : : : ; xp�1 called regressors or
explanatory variables, namely,

� D ˇ0x0 C ˇ1x1 C � � � C ˇp�1xp�1;

where the ˇ’s are unknown constants (parameters). For n values of the x’s, we get n
observations on y, giving the model G

yi D �i C "i

D xi0ˇ0 C xi1ˇ1 C � � � C xi;p�1ˇp�1 C "i; .i D 1; 2; : : : ; n/;

where EŒ"i� D 0; generally xi0 D 1, which we shall assume unless stated otherwise.
This is known as a multiple linear regression model with p parameters, and by
putting xij D xj

i we see that the polynomial regression model

yi D ˇ0 C ˇ1xi C ˇ2x
2
i C � � � C ˇp�1xp�1

i C "i;

of degree p �1 for a single variable x is included as a special case. We can also have
a mixture of both models. The linearity resides in the parameters.

Two further assumptions about the errors "i are generally made: (i) the errors are
uncorrelated, or covŒ"i; "j� D 0 for all i ¤ j and (ii) the errors have the same variance
�2. If we wish to test the null hypothesis H W ˇr D ˇrC1 D � � � D ˇp�1 D 0, then we

© Springer International Publishing Switzerland 2015
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need to add a further assumption that the errors are normally distributed. If we define
X D .xij/, β D .ˇ0; ˇ1; : : : ; ˇp�1/0, and let Xr represent the matrix consisting of the
first r columns of X, then the model, assumptions, and hypothesis can be written in
the form y D θ C ε, where ε � NnŒ0; �2In�, G W θ D Xβ and H W θ D Xrβr,
where βr is the vector of the first r elements of β. In this situation X usually has
full rank, that is the rank of X is p. If we define the two column spaces ˝ D CŒX�
and ! D CŒXr�, then it follows from Sect. 1.2 that ˝ and ! are vector subspaces
of Rn and ! � ˝ . Thus H is the linear hypothesis that θ belongs to a vector space
! given the assumption G that it belongs to a vector space ˝ . We also have that
VarŒy� D VarŒy � θ� D VarŒε� D σ2In (Theorem 1.5(v)) so that y � NnŒXβ; �2In�.

2.2 Analysis of Variance

Example 2.2 We note that some of the x-variables in our regression model can also
be so-called indicator variables, that is variables taking the values of 0 or 1. For
example consider n observations from the straight-line model

EŒyi� D ˇ0 C ˇ1xi; i D 1; 2; : : : ; n;

where xi D 0 for i D 1; 2; : : : n1 and xi D 1 for i D n1 C 1; n1 C 2; : : : ; n. If
n � n1 D n2, then Xβ takes the form

Xβ D
�

1n1 0
1n2 1n2

��
ˇ0
ˇ1

�
:

This model splits into two models or samples, namely EŒyi� D ˇ0 for i D
1; 2; : : : ; n1 and EŒyi� D ˇ0 C ˇ1 for i D 1; 2; : : : ; n2. This would give us a model
for comparing the means �1.D ˇ0/ and �2.D ˇ0 C ˇ1/ of two samples of sizes n1
and n2 respectively. Testing if �1 D �2 is equivalent to testing ˇ1 D 0. This type of
model where variables enter qualitatively is sometimes referred to as an analysis of
variance (ANOVA) model.

Example 2.3 We now consider generalizing the above example to comparing I
different samples with Ji observations in the ith sample. Let yij (i D 1; 2; : : : ; I
and j D 1; 2; : : : Ji) be the jth observation from the ith sample, so that we have the
model yij D �i C "ij. Setting y D θ C ε, where

y0 D .y11; y12; : : : y1J1 ; y21; y22; : : : ; y2J2 ; : : : ; yI1; yI2 : : : ; yIJI /;
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and θ is similarly defined, we get θ D Xμ, where

X D

0

B
BB
@

1J1 0 � � � 0
� � � 1J2 � � � 0

� � : : : �
0 0 � � � 1JI

1

C
CC
A
; (2.1)

and μ D .�1; �2; : : : ; �I/
0. Suppose we wish to test the hypothesis H W �1 D �2 D

� � � D �I .D �; say/, or θ D 1n�, where 1n is obtained by adding the columns of X
together. Then, from the previous section, ˝ D CŒX� and ! D CŒ1n�.

Alternatively, we can express H in the form

�1 � �2 D �2 � �3 D � � � D �I�1 � �I D 0;

which can be written in matrix form Cμ D 0, where

C D

0

B
B
@

1 �1 0 � � � 0 0

0 1 �1 � � � 0 0

� � � � � � � �
0 0 0 � � � 1 �1

1

C
C
A :

Since θ D Xμ and X has full rank p, the p�p matrix X0X has rank p and is therefore
nonsingular (cf. A.4(ii)). From θ D Xμ we can then multiply on the left by X0 and
get μ D .X0X/�1X0θ. Hence H takes the form

0 D Cμ D C.X0X/�1X0θ D Bθ; (2.2)

say, or θ 2 !, where ! D CŒX� \ N ŒB�.
An alternative parametrization can be used for the above example that is more

typical of analysis of variance models. Let� D PI
iD1 �i=I and define ˛i D �i�� so

that �i D �C ˛i. Then
PI

iD1 ˛i D 0 is an “identifiability condition” (see Sect. 3.4)
giving us I C 1 parameters or I free parameters still. We now have

Xβ D

0

B
B
@

1J1 1J1 0 � � � 0
1J2 0 1J2 � � � 0
� � � � � � �

1JI 0 0 � � � 1JI

1

C
C
A

0

B
B
B
BB
@

�

˛1
˛2
:::

˛I

1

C
C
C
CC
A
; (2.3)

where the first column of X, namely 1n, is the sum of the other columns, and the
matrix X is no longer of full rank.
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Example 2.4 We consider one other ANOVA model, the randomized block design
where there are J blocks and I treatments randomized in each block. Let yij

with mean �ij be the observation from the ith treatment in the jth block and,
for i D 1; 2; : : : ; I, let yi D .yi1; yi2; : : : ; yiJ/

0 and θi D .�i1; �i2; : : : �iJ/
0. Let

y D .y01; y02; : : : y0I/0 with θ and ε similarly defined. We assume the model

yij D �ij C "ij D �C ˛i C ˇj C "ij; .i D 1; 2; : : : ; I W j D 1; 2; : : : ; J/;

or y D θ C ε, where θ D Xδ, namely

0

B
B
@

θ1
θ2
�
θI

1

C
C
A D

0

B
B
@

1J j 1J 0 0 � � � 0 j IJ

1J j 0 1J 0 � � � 0 j IJ

� j � � � � � � � j �
1J j 0 0 0 � � � 1J j IJ

1

C
C
A

0

@
�

α

β

1

A ;

where α D .˛1; ˛2; : : : ; ˛I/
0 and β D .ˇ1; ˇ2; : : : ; ˇJ/

0.

We have IJ observations and 1 C I C J unknown parameters. Setting � i� DP
j �ij=J and � �� D P

i

P
j �ij=IJ etc., we assume from the randomization process

that the so-called interactions �ij D �ij � � i� � � �j C � �� are all zero, i.e., Cθ D 0
for some matrix C. Since we have

P
i �ij D 0 for j D 1; 2; : : : ; J,

P
j �ij D 0

for i D 1; 2; : : : ; I, and both sets include
P

i

P
j �ij D 0, we have IJ � I � J C 1 D

.I�1/.J�1/ independent constraints so that C will be .I�1/.J�1/�IJ. The number
of parameters that can be estimated is IJ � .I � 1/.J � 1/ D I C J � 1, which means
we have 2 too many parameters in δ. We need to add two identifiability constraints
such as

P
i ˛i D 0 and

P
j ˇj D 0, or ˛I D 0 and ˇJ D 0, for example. By summing

columns, we see that the matrix X above has two linearly dependent columns so that
it is IJ � .1C I CJ/ of rank I CJ �1. If we set ˛I D 0 and ˇJ D 0 then X is reduced
to X1, say, with full rank and the same column space as that of X, and δ is reduced
by two elements to δ1, say. We are usually interested in testing H that there are no
differences in the treatments. Then H W ˛1 D ˛2 D � � � D ˛I�1 D 0 or C1δ1 D 0,
say. Using (2.2) with δ1 D .X01X1/

�1X01θ, we now have ˝ D CŒX� \ N ŒC� and
! D ˝ \ N ŒC1.X01X1/

�1X01�.

2.3 Analysis of Covariance

When we have a mixture of quantitive and qualitative explanatory variables we have
a so-called analysis of covariance model. For example

yij D �i C �izij C "ij .i D 1; 2; : : : ; I W j D 1; 2; : : : ; Ji/

represents observations from I straight-line models. Two hypotheses are of interest,
namely H1 that the lines are parallel (i.e. equal �i) and H2 that the lines have the
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same intercept on the x-axis (i.e. equal �i). If both hypotheses are true, the lines are
identical. This model G can usually be regarded as the “sum” of two models with
˝ D CŒX�˚ CŒZ�, where Z D .zij/, X is given by Eq. (2.1) in the previous section,
and CŒX� \ CŒZ� D 0. Such “augmented” models are discussed in Chap. 7.

2.4 General Definition and Extensions

The above examples illustrate what we mean by a linear hypothesis, and we now
give a formal definition. Let y D θ C ε, where θ is known to belong to a vector
space ˝ , then a linear hypothesis H is a hypothesis which states that θ 2 !, a
linear subspace of ˝ . The assumption that θ 2 ˝ we denote by G. For purposes
of estimation we add the assumptions EŒε� D 0 and VarŒy� D VarŒε� D �2In,
and for testing H we add the further assumption that ε has the multivariate normal
distribution. We now consider three extensions.

Example 2.5 There is one hypothesis that is basically linear, but does not satisfy the
definition. For example, suppose θ D Xβ, where X is n � p of full column rank p,
say, and we wish to test H W Aβ D a, where A and a are known and a ¤ 0. Now
.β D X0X/�1X0θ, so that ! D fθ W A.X0X/�1X0θ D ag is not a linear vector space
(technically a linear manifold) when a ¤ 0. However, if we choose any vector c
such that Ac D a (which is possible if the linear equations Aβ D a are consistent)
and put

z D y � Xc; φ D θ � Xc D X.β � c/; and γ D β � c;

we have

z D φ C ε; G W φ D Xγ;

and H W Aγ D A.β � c/ D 0 or A.X0X/�1X0φ D A1φ D 0 is now a linear
hypothesis with ! D N ŒA1�\˝ and ˝ D CŒX�.
Example 2.6 In some examples the underlying model takes the form y D θ C η,
where η is NnŒ0; �2B� and B is a known positive-definite matrix. This implies that
there exists a nonsingular matrix V such that B D VV0 (by A.9(iii)). Using the
transformations z D V�1y, φ D V�1θ, and ε D V�1η we can transform the model
to z D φ C ε, where by Theorem 1.5(iii) in Sect. 1.6,

VarŒε� D VarŒV�1η�

D V�1VarŒη�.V�1/0

D �2V�1.VV0/.V0/�1 D �2In;
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as before. To see that linear hypotheses remain linear, let the columns of W be any
basis of ˝ . Then

˝ D fθ W θ D Wβg
D fφ W φ D V�1Wβg
D CŒV�1W�:

To test Aβ D 0 we note from above that β D .W0W/�1W0θ so that we have
H W A.W0W/�1W0Vφ D 0 or ! D ˝ \ N ŒA.W0W/�1W0V�.

Example 2.7 One model of interest is y D θCε, where ε � NnŒ0; In�,˝ D R
n, and

! is a subspace of Rn. Although this model appears to be impractical, it does arise
in the large sample theory used in the last three chapters of this monograph. Large
sample models and hypotheses are shown there to be asymptotically equivalent to
this simple situation.



Chapter 3
Estimation

3.1 Principle of Least Squares

Suppose we have the model y D θCε, where EŒε� D 0, VarŒε� D �2In, and θ 2 ˝ ,
a p-dimensional vector space. One reasonable estimate of θ would be the value Oθ,
called the least squares estimate, that minimizes the total “error” sum of squares

SS D
nX

iD1
"2i Dk y � θ k2

subject to θ 2 ˝ . A clue as to how we might calculate Oθ is by considering the simple
case in which y is a point P in three dimensions and˝ is a plane through the origin
O. We have to find the point Q (D Oθ) in the plane so that PQ2 is a minimum; this is
obviously the case when OQ is the orthogonal projection of OP onto the plane. This
idea can now be generalized in the following theorem.

Theorem 3.1 The least squares estimate Oθ which minimizes k y � θ k2 for θ 2 ˝
is the orthogonal projection of y onto˝ .

Proof Let α1, α2, . . . ,αp be an orthornormal basis for ˝ and let ci D α0iy. Then

y D
pX

iD1
ciαi C .y �

pX

iD1
ciαi/

D a C b; say:

© Springer International Publishing Switzerland 2015
G.A.F. Seber, The Linear Model and Hypothesis, Springer Series in Statistics,
DOI 10.1007/978-3-319-21930-1_3
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Now premultiplying by α0j we get

˛0j b D ˛0j y �
pX

iD1
ciα
0
jαi

D cj �
pX

iD1
ciıij

D 0;

where ıij is 1 when i D j and 0 otherwise. Thus a 2 ˝ , b ? ˝ , and we have
decomposed y into two orthogonal vectors. This decomposition is unique otherwise
there will exist some other decomposition y D a1 C b1. Then we have a1 � a D
b1 � b, and since a1 � a 2 ˝ and b1 � b 2 ˝?, both these vectors must be the
zero vector; therefore a1 D a and b1 D b. The unique vector a is the orthogonal
projection of y onto ˝ , and we now show that a D Oθ.

Since a � θ 2 ˝ ,

.y � a/0.a � θ/ D b0.a � θ/ D 0;

and from y � θ D .y � a/C .a � θ/ we have

k y � θ k2 D k y � a k2 C k a � θ k2 C2.y � a/0.a � θ/

D k y � a k2 C k a � θ k2 :

Therefore k y � θ k2 is minimized when θ D a, and Oθ D a.

3.2 Projection Matrices

We now show that Oθ can be found by means of a linear transformation of y.

Theorem 3.2 If Oθ is the least squares estimate defined above, then Oθ D P˝y,
where P˝ is a unique symmetric idempotent matrix of rank p (the dimension of
˝) representing the orthogonal projection of Rn onto˝ .

Proof From Theorem 3.1,

Oθ D a

D
pX

iD1
ciαi
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D
pX

iD1
αi.y0αi/

D .α1;α2; : : : ;αp/.α1;α2; : : : ;αp/
0y

D TT0y

D P˝y; say:

Now P0̋ D P˝ and P˝P˝ D T.T0T/T0 D TT0 D P˝ . Hence P˝ is symmetric
and idempotent. If P is any other n�n matrix representing this orthogonal projection
then, by the uniqueness of a, .P � P˝/y D 0 for all y so that P D P˝ and P˝ is
unique. Also

rankŒP˝� D rankŒTT0� D rankŒT� D p;

by (A.4(ii)).

The converse is also true as we see from the following theorem.

Theorem 3.3 If P is a symmetric n � n idempotent matrix of rank r, then it
represents an orthogonal projection of Rn onto some r-dimensional subspace V .

Proof From the previous theorem we see that P can be expressed in the form
.s1; : : : ; sr/.s1; : : : ; sr/

0, as with TT0 above. Hence P represents an orthogonal
projection onto the vector space spanned by the orthonormal basis s1; : : : ; sr. If this
vector space is V , then dimV D r and the proof is complete.

A very useful result that will often be used is the following.

Theorem 3.4 If ˝ is any subspace of R
n and P˝ represents the orthogonal

projection of Rn onto ˝ , then CŒP˝� D ˝ .

Proof From Theorem 3.2, P˝ D TT0, where the columns of T form an orthonormal
basis of˝ . If θ 2 ˝ , then θ D Tα for some α and P˝θ D TT0Tα D Tα D θ and
θ 2 CŒP˝�. Conversely, if θ 2 P˝ then θ D T.T0β/ for someβ, and θ 2 CŒT� D ˝ .
Thus the two vector spaces are the same.

Since from the previous proof we have P˝θ D θ when θ 2 ˝ , we have that
EŒ Oθ� D P˝EŒy� D P˝θ D θ and Oθ is an unbiased estimate of θ. In addition
VarŒ Oθ� D �2P˝P0̋ D �2P˝ .

3.3 Examples

Example 3.1 (Linear Regression) Let y D θ C ε, where EŒy� D θ D Xβ and X
is an n � p matrix of rank p. Here ˝ D CŒX� D fθ W θ D Xβg. Also we assume
VarŒy� D �2In. Now, from the previous section, P˝ D TT0, where the columns
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of the n � p matrix T form an orthonormal basis for ˝ , i.e., T0T D Ip. Since the
columns of X also form a basis of ˝ , X D TC, where the p � p matrix C is a non-
singular matrix. Otherwise if C is singular, rankŒX� � rankŒC� < p by A.2, which is
a contradiction. Hence:

(i) P˝ D TT0 D XC�1C�10

X0 D X.C0C/�1X0 D X.X0X/�1X0. Since P˝ is
idempotent, we have p D rankŒP˝� D traceŒP˝� by Sect. 1.5.

(ii) P˝X D X.X0X/�1X0X D X.
(iii) By Theorem 1.4 in Sect. 1.5, In � P˝ is symmetric and idempotent and

rankŒIn � P˝� D traceŒIn � P˝� D n � traceŒP˝� D n � p:

If Oθ D X Oβ, then

Oβ D .X0X/�1X0 Oθ D .X0X/�1X0P˝y D .X0X/�1X0y

by (ii), and (see Sect. 1.6)

EŒ Oβ� D .X0X/�1X0Xβ D β and

VarŒ Oβ� D .X0X/�1X0VarŒy�X.X0X/�1 D �2.X0X/�1:

These results can also be derived by the more familiar method of minimizing the
sum of squares SS Dk y � θ k2 for θ 2 ˝; that is minimizing the sum of squares
SS D .y � Xβ/0.y � Xβ/ D y0y � 2β0X0y C β0X0Xβ with respect to β. If d=dβ
denotes the column vector with ith element d=dˇi then we find that (A.20)

d.β0X0y/
dβ

D X0y and
d.β0X0Xβ/

dβ
D 2X0Xβ

giving us

d.SS/

dβ
D 2X0Xβ � 2X0y D 0: (3.1)

These equations are known as the least squares or normal equations and have the
solution Oβ D .X0X/�1X0y, as before. They also follow directly from the fact that
y � Oθ ? ˝ , that is

0 D X0.y � Oθ/ D X0.y � X Oβ/: (3.2)

Using the transpose of (3.2) we note that

.y � Xβ/0.y � Xβ/

D .y � X Oβ C X Oβ � Xβ/0.y � X Oβ C X Oβ � Xβ/
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D .y � X Oβ/0.y � X Oβ/C 2.y � X Oβ/0.X Oβ � Xβ/C .X Oβ � Xβ/0.X Oβ � Xβ/

D .y � X Oβ/0.y � X Oβ/C . Oβ � β/0X0X. Oβ � β/:

Since XX0 is positive definite (A.9(vii)), . Oβ � β/0X0X. Oβ � β/ > 0 unless β D Oβ,
which shows that Oβ is a unique minimum.

We have, by A.4(i),

rankŒ.X0X/�1X0� D rankŒX0� D p;

so that if y is multivariate normal we have by Theorem 1.6(i) in Sect. 1.7, Oβ is
NpŒβ; �

2.X0X/�1�.

Example 3.2 Let ˝ D N ŒA�, where the rows of A are linearly independent. Then
In � P˝ represents the orthogonal projection of R

n onto ˝? since we have the
orthogonal decomposition y D P˝ C .In � P˝/y. As ˝? D CŒA0� (Theorem 1.1 in
Sect. 1.2) it follows from Example 3.1 that

P˝ D In � P˝? D In � A0.AA0/�1A:

Example 3.3 Suppose the y1; y1; : : : ; yn are independent observations from
NŒ�; �2�. Then y D θ C ε, where ε is NnŒ0; �2In� and θ D 1n�. As ˝ D CŒ1n�,
P˝ D 1n.10n1n/

�110n D n�11n10n, and therefore

Oθ D P˝y D 1ny:

Hence, from Oβ D .X0X/�1X0 Oθ,

O� D .10n1/�110n1ny D y:

Example 3.4 Suppose that y D Xβ C η and VarŒη� D �2B, where X has full rank
and B is a known positive-definite matrix. To find the least squares estimate of β we
can use Example 2.6 of Sect. 2.4 and transform the model to the standard form

z D φ C ε and VarŒε� D �2In;

using the transformation z D V�1y, φ D V�1θ D V�1Xβ, where V is given by
B D VV0 (cf. A.9(iii)). We now minimize .z � V�1Xβ/0.z � V�1Xβ/ or

.y � Xβ/0B�1.y � Xβ/ D y0By � 2β0X0B�1y C β0X0B�1Xβ

with respect to β. Differentiating with respect to β and using A.20 we get

�2X0B�1y C 2X0B�1Xβ D 0;
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so that the least squares estimate of β is

Oβ D .X0B�1X/�1X0B�1y;

and that of θ is

Oθ D X Oβ D X.X0B�1X/�1X0B�1y D Py:

We note that P2 D P so that P represents a projection, but it is an oblique projection
rather than an orthogonal one as P is not symmetric.

In practice it is often simpler to work with the original observations y and
minimize the above modified sum of squares rather than calculate the transformed
observations z. The method is referred to as generalized least squares. In many
applications B is a diagonal matrix B D diag.w1;w2; : : : ;wn/, for example when yi

is the mean of a sample of ni observations so that wi D 1=ni, and our sum of squares
to be minimized takes the form

Pn
iD1 w�1i .yi ��i/

2, where the wi are suitably chosen
weights. This method is usually referred to as weighted least squares. Sometimes B
is a function of θ and iterative methods are needed to find the least squares estimates.

3.4 Less Than Full Rank Model

Suppose that ˝ D CŒX� but now X is n � p of rank r (r < p). This means that
although θ is uniquely defined in θ D Xβ, β is not, as the columns of X are
linearly dependent. In this situation we say that β is non-identifiable and the least
squares equations (3.1) in Example 3.1 do not have a unique solution for β. To
overcome this, we introduce a set of t constraints Hβ D 0 on β satisfying two
necessary and sufficient conditions for the identifiability of β: namely (i) for every
θ 2 ˝ there exists a β such that θ D Xβ and Hβ D 0, and (ii) this β is unique.
The first condition is equivalent to CŒX0� \ CŒH0� D 0, that is no vector that is
a linear combination of the rows of X is a linear combination of the rows of H
except 0 (for a proof see A.11). The second condition is satisfied if the rank of the
augmented matrix G D .X0;H0/0 is p, for then the p � p matrix G0G D X0X C H0H
is nonsingular, and adding X0θ D X0Xβ to 0 D H0Hβ gives the unique solution
β D .G0G/�1X0θ. Thus, combining these two results, the conditions Hβ D 0 are
suitable for identifiability if and only if rankŒG� D p and rankŒH� D p � r. In
general we can assume that there are no redundant identifiability constraints, so that
t D p � r and the rows of H are linearly independent.

From Sect. 1.10 and (1.4), the least squares equations are given by

2X0X Oβ � 2X0y C H0 Oλ D 0

H Oβ D 0; (3.3)

where λ is the vector Lagrange multiplier. This leads to the following theorem.
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Theorem 3.5 If the constraints Hβ D 0 are suitable for identifiability constraints
and t D p � r then:

(i) Oβ D .G0G/�1X0y.
(ii) P˝ D X.G0G/�1X0.

(iii) Oλ D 0.
(iv) H.G0G/�1X0 D 0.

Proof

(i) Equation (3.2) holds irrespective of the rank of X. Since the constraints Hβ D
0 are suitable for identifiability, there exists a unique Oβ satisfying Oθ D X Oβ,
that is satisfying the normal equations (3.1). Hence adding in H0H Oβ D 0 leads
to Oβ D .G0G/�1X0y.

(ii) Oθ D X Oβ D X.G0G/�1X0y D P˝y. As P˝ is unique (Theorem 3.2), we have
P˝ D X.G0G/�1X0.

(iii) Since (3.1) holds for Oβ, H0 Oλ D 0 (by (3.3)). Hence Oλ D 0 as the columns of
H0 are linearly independent.

(iv) From 0 D H Oβ D H.G0G/�1X0y for all y, we have H.G0G/�1X0 D 0, and this
completes the theorem.

We note that as Hβ D 0,

EŒ Oβ� D .G0G/�1X0Xβ D .G0G/�1G0Gβ D β

and Oβ is unbiased.
The essence of the above theory is that we wish to find a solution to the normal

equations (3.1) and we do this by imposing the identifiability constraints Hβ D 0
without changing ˝ (as indicated by Oλ D 0, a special case of (1.6) in Sect. 1.10).
However, another method of finding a solution is to use a weak (generalized) inverse
of X0X. A weak inverse of a matrix L is any matrix L� satisfying LL�L D L (See
Seber 2008, chapter 7). Now using the normal equations,

X0y D X0X Oβ D X0X.X0X/�X0X Oβ D X0XŒ.X0X/�X0y�;

so that Oβ D .X0X/�X0y is a solution of the normal equations. Since

P˝y D Oθ D X Oβ D X.X0X/�X0y

for all y, we see that P˝ D X.X0X/�X0, by the uniqueness of P˝ (Theorem 3.2).
From Theorem 3.5(ii), X0X.G0G/�1X0X D X0P˝X D X0X, so that .G0G/�1 is
a weak inverse of X0X. It can be shown that another weak inverse of X0X is B11
defined by

�
X0X H0
H 0

��1
D
�

B11 B12
B21 0

�
:
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Instead of introducing identifiability constraints, another approach to this prob-
lem of identifiability of the β is to find out what functions of β are estimable. A
linear function c0β is said to be estimable if it has a linear unbiased estimate a0y.
Thus

a0Xβ D EŒa0y� D c0β

is an identity in β, and c0 D a0X. Hence c0β is an estimable function of β if and only
if c is a linear combination of the rows of X. Since c0β D a0θ, the class of estimable
functions is simply the class of all linear functions a0θ of the mean vector. We note
that if c is linearly independent of the rows of X, then c0β is not estimable. Thus it
follows from A.11 that the identifiability constraints Hβ D 0 are simply obtained
from a set of non-estimable functions h0iβ, where the h0i form the rows of H.

We note that if c0β is estimable, and Oβ is any solution of the normal equations,
then c0 Oβ is unique. To show this we first note that c D X0a for some a, so that
c0β D a0Xβ D a0θ. Similarly, c0 Oβ D a0X Oβ D a0 Oθ, which is unique.

3.5 Gauss-Markov Theorem

Having given a method of estimating θ, namely by a least squares procedure, we
now ask if there are better ways of estimating θ. Our question is partly answered by
the following theorem (due to Gauss) that proves that the least squares estimate is
best in a certain sense.

Theorem 3.6 If EŒy� D θ, VarŒy� D �2In, θ 2 ˝ , and c D a0θ, then among the
class of linear unbiased estimates of c there exists a unique estimate Oc D a0P˝y
which has minimum variance. Thus if b0y is any other linear unbiased estimate of c,
then varŒb0y� > varŒOc�.
Proof Since P˝θ D θ and a D P˝a C .In � P˝/a,

c D EŒa0y�

D EŒ.P˝a/0y�C a0.1n � P˝/θ

D EŒ Oc �:

Thus Oc is a linear unbiased estimate of c.
If b0y is any other linear unbiased estimate of c, then by a similar argument

.P˝b/0y is also an unbiased estimate. Now

0 D EŒ.P˝a � P˝b/0y�

D .P˝a � P˝b/0θ
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for every θ 2 ˝ , and hence .P˝a � P˝b/ 2 ˝?. But this vector belongs to ˝
so that P˝a D P˝b for every b, and this projection of b, namely P˝b, leads to a
unique Oc. Also

varŒb0y� D �2 k b k2
D �2.k P˝b k2 C k .In � P˝/b k2/
� �2 k P˝b k2
D �2 k P˝a k2
D varŒ Oc �;

with equality only if b D P˝b D P˝a. Thus Oc is the unique unbiased estimate of c
with minimum variance for the class of unbiased estimates.

If we are interested in the single elements �i, then we choose a D ei, where
ei has 1 in the ith position and zeros elsewhere. We therefore have that the linear
unbiased estimate of �i with minimum variance is e0iP˝y D e0i Oθ D O�i, the least
squares estimate of �i.

3.6 Estimation of � 2

Let y D θ C ε where EŒε� D 0 and VarŒε� D �2In. Since

EŒ.y � θ/0.y � θ/� D EŒ
X

i

"2i � D n�2;

we would expect the residual sum of squares RSS Dk y � Oθ k2 to provide some
estimate of �2. Let R D In � P˝ . Since R is idempotent,

RSS D k y � P˝y k2
D y0R2y

D y0Ry

D .y � θ/0R.y � θ/

D ε0Rε;

as Rθ D 0. From Theorem 1.8(iii) in Sect. 1.9 we have

EŒRSS� D �2 traceŒR� D �2.n � traceŒP˝�/ D �2.n � p/: (3.4)



36 3 Estimation

Therefore an unbiased estimate of �2 is given by

s2 D y0Ry=.n � p/: (3.5)

If y � Nn.θ; �
2In/, then, from Theorem 1.9(iv) ,

varŒy0Ry� D 2�4 traceŒR2� D 2�4 traceŒR� D 2�4.n � p/;

so that varŒs2� D 2�4=.n � p/.
We now ask what optimal properties RSS might have as an estimate of �2.n � p/.

Since �2 � 0 it seems reasonable to restrict our class of estimates to those that are
unbiased, non-negative, and quadratic (Rao 1952; Atiqullah 1962). Thus if y0Ay is
such an estimate, then y0Ay � 0 for all y so that A is non-negative definite. Also,
from Theorems 1.8(i) in Sect. 1.9 and 1.9(ii), we have

EŒy0Ay� D �2 traceŒA�C θ0Aθ D .n � p/�2 (3.6)

and

varŒy0Ay� D 2�4 traceŒA2�C 4�2θ0A2θ: (3.7)

Hence from (3.6), traceŒA� D n � p and θ0Aθ D 0 for all θ 2 ˝ . Since A is non-
negative definite, A D VV0, where V has linearly independent columns (A.9(iii)).
Given θ 2 ˝ , θ D P˝α for some α. Then θ0Aθ D 0 implies that 0 D
α0P˝VV0P˝α Dk V0P˝α k2 for all α so that V0P˝ D 0 and AP˝ D VV0P˝ D 0.

If A D R C D, then D is symmetric and traceŒA� D traceŒR� C traceŒD� so that
traceŒD� D 0. Also 0 D AP˝ D RP˝ C DP˝ so that DP˝ D 0 and DR D D. Now
D D D0 D R0D0 D RD and

A2 D .R C D/.R C D/

D R2 C RD C DR C D2

D R C 2D C D2:

Since traceŒD� D 0, we take the trace of the above equation and get

traceŒA2� D .n � p/C traceŒD2� D .n � p/C
X

i

X

j

d2ij:

This has a minimum when D D 0 and A D R so that s2 has minimum variance.
Atiqullah (1962) introduced the concept of a quadratically balanced design

matrix X of full rank as one for which P˝ D X.X0X/�1X0 has equal diagonal
elements. He showed that s2 has minimum variance of all non-negative unbiased
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quadratic estimates irrespective of the distribution of y if X is quadratically
balanced. Quadratic balance is mentioned again in Sect. 5.2.

Under the assumption of normality, RSS=�2 D ε0Rε=�2 is distributed as 	2n�p
by Theorem 1.10 in Sect. 1.9, as R is idempotent of rank (and trace) n � p. When
we don’t have normality and the "i have kurtosis �2 D .�4�3�4/=�4, then we have
from Theorem 1.9(ii) and traceŒR2� D n � p

varŒs2� D 2�4

n � p

�
1C �2

2

d0d
n � p

�
; (3.8)

where d0d D Pn
iD1 r2ii and R D .rij/. As R is idempotent

rii D r2ii C
X

i

X

j;j¤i

r2ij

so that rii > r2ii and 0 � rii < 1. If P˝ D .pij/ then

X

i

r2ii D
X

i

.1 � pii/
2

D n � 2 traceŒP˝�C
X

i

p2ii

D n � 2p C
X

i

p2ii

> n � 2p:

Hence

varŒs2� >
2�4

n � p

�
1C �2

2

n � 2p

n � p

�
:

Clearly inferences for �2 based on s2 will be strongly affected by long-tailed
distributions (�2 > 0). If we have quadratic balance, then the pii will all be equal to
p=n so that the rii are .n � p/=n. Hence d0d D n.n � p/2=n2 and from (3.8)

varŒs2� D 2�4

n � p

n
1C �2

2

n � p

n

o
:

If .n�p/=n is small, inferences about �2 can be robust to non-normality. This won’t
be the case for a single sample as then p D 1.
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3.7 Assumptions and Residuals

Before we have confidence in a particular linear model, we need to check on its
underlying assumptions, which are: (i) the "i have mean zero, (ii), the "i all have
the same variance, (iii) the "i are mutually independent, and (iv) the "i are normally
distributed. An estimate of "i D yi � �i is given by ri D yi � O�i D yi � Oyi, say, where
the Oyi are called the fitted values. The properties of the "i will be reflected in the
properties of the ri, so that the latter can be used to investigate the assumptions. The
elements ri of the vector

r D y � Oθ
D .In � P˝/y

D .In � P˝/ε;

(since .In �P˝/X D 0), are called the residuals. The sum of squares .y � Oθ/0.y � Oθ/
is called the residual sum of squares or RSS. There is an extensive literature on
how the ri and scaled versions of them can be used to investigate the underlying
assumptions (e.g., Seber and Lee 2003, chapter 10) which we shall not consider
here apart from a few properties. We note that Oy D P˝y, where the projection matrix
P˝ is usually referred to as the hat matrix. We summarize the following properties
without assuming normality of ε:

EŒr� D .In � P˝/EŒε� D 0;

VarŒr� D .In � P˝/VarŒy�.In � P˝/0

D �2.In � P˝/.In � P˝/0

D �2.In � P˝/;

EŒ Oy � D P˝θ D θ;

VarŒ Oy � D P˝VarŒy�P0̋

D �2P˝;

and from Theorem 1.5(ii),

CovŒr; Oy� D CovŒ.In � P˝/y;P˝y� D �2.In � P˝/P˝ D 0:

If we now assume a normal distribution for y, the last result implies that r and Oy
are statistically independent (by Theorem 1.6(v) in Sect. 1.7). Also from the above
equations, r � NnŒ0; �2.In � P˝/�, a singular distribution as In � P˝.D P˝?/

has rank n � dimŒ˝� < n, and is therefore a singular matrix. If P˝ D .pij/, the
diagonal elements pii are called the hat matrix diagonals. By suitably scaling the ri,
these scaled residuals can be used for checking on the normality of their distribution
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and constant variance, for looking for outliers, and for checking on the linearity of
the model. For example, if s2 D r0r=.n � p/, we can use the so-called internally
Studentized residual

ri	 D ri

s.1 � pii/1=2
;

which can be shown to have the property that the r�2i =.n � p/ are identically
distributed with the Beta Œ 1

2
; 1
2
.n � p � 1/� distribution (Cook and Weisberg (1982,

18)). Regression computing packages automatically produce various residuals and
their plots.

Systematic bias can sometimes be a problem in linear models so that assumption
(i) at the beginning of the section may not hold. In the case of a regression model,
there may be systematic bias because of an incorrect specification of the model. The
effect of this is discussed in detail in Seber and Lee (2003, section 9.2). In the case
of analysis of variance models, careful experimentation using randomization in the
experimental design will usually minimize any bias.

We can also consider the effect of serial correlation on the "i by assuming that
the "is have a first-order autoregressive model AR(1), namely

"i D �"i�1 C ai j�j < 1;

where the ai (i D 0;˙1;˙2; : : : are independent with EŒai� D 0 and varŒai� D �2a
(i D 1; 2; : : :). From Seber and Wild (1989, 275–276) we have that the correlation
between "i and "i˙k is �k D �k

1. Hence the correlation matrix V D .vij/ is given

by vij D �
ji�jj
1 and VarŒε� D �2V. In terms of the AR(1) model, �1 D � and

�2a D .1��2/�2. We consider the simple regression model of sampling from a single
population, namely yi D �C "i, where O� D y and .n � 1/s2 D P

i.yi � y/2 D y0Ay.
Now

varŒy� D varŒ10ny=n� D �210nV1n=n2 D �2
X

i

X

j

vij=n2;

where, after some algebra,

X

i

X

j

vij D n C 2n� � 2�n

1 � �
� 2�.1 � �n�1/

.1 � �/2

 n.1C 2�

1 � �
/:

This is larger than it should be (> n) for large n as without autocorrelation we have
varŒy� D �2=n. Also, from Theorem 1.8(i) in Sect. 1.9,

EŒ.n � 1/s2� D �2 traceŒAV�C �10nA1n�

D �2 traceŒAV�
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D �2
X

i

X

j

aijvij

D �2
X

i

X

j

.ıij � n�1/vij

D �2.n � n�1
X

i

X

j

vij/


 �2Œn � .1C 2�

1 � �
/�;

so that

EŒs2� 
 �2
�
1 � 2�

.n � 1/.1� �/

�

and s2 is an approximately unbiased estimate of �2 for large n and small �. Now the
usual t-statistic for testing � D 0 assuming � D 0 is based on

t D
p

ny

s
D y
p
cvarŒy�

; (3.9)

where cvarŒy� is varŒy� with �2 replaced by s2. When � ¤ 0, the denominator is
underestimated and t is larger than it should be so that it can give a significant result
when it is not actually significant.

We now consider the effect of autocorrelation on a more general regression model
for which VarŒε� D �2V, where V is the same as before, EŒy� D Xβ, and X is n � p
of rank p. The ordinary least squares estimate ofβ is Oβ D .X0X/�1X0y, which is still
unbiased, with variance matrix �2.X0X/�1X0VX.X0X/�1 that in general will not be
equal to �2.X0X/�1. Suppose we wish to test H W a0β D 0, then when V D In we
would use the t-statistic

t D a0 Oβp Ov ;

where Ov D s2a0.X0X/�1a will normally be a biased estimate of

varŒa0 Oβ� D �2a0.X0X/�1X0VX.X0X/�1a:

Also from Theorem 1.8(i)) in Sect. 1.9

EŒs2� D 1

n � p
EŒε0.In � P˝/ε�

D �2

n � p
traceŒV.In � P˝/�;
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where P˝ D X.X0X/�1X0. Then, if

EŒ Ov� D varŒa0 Oβ�C b;

Swindel (1968, 315) showed that

c1 � d1
d1

� b

varŒa0 Oβ� � c2 � d2
d2

; (3.10)

where c1 is the mean of the .n � p/ smallest eigenvalues of V, c2 is the mean
of the .n � p/ largest eigenvalues, d1 is the largest eigenvalue value of V, and
d2 the smallest eigenvalue; the bounds are attainable. Although we can’t find the
eigenvalues explicitly, we can use some approximations. We begin by considering
the inverse of V, namely (Seber 2008, 8.114b)

V�1 D 1

.1 � �2/

0

B
B
B
B
B
@

1 �� 0 � � � 0 0

�� 1C �2 �� � � � 0 0

0 �� 1C �2 � � � 0 0

� � � � � � � �
0 0 0 � � � �� 1

1

C
C
C
C
C
A
:

Assuming that �2 is small we can approximate V�1 by W=.1 � �2/, where we
have w11 D wnn D 1 C �2 and the other elements are unchanged, thus giving us
a symmetric tridiagonal matrix whose eigenvalues are known, namely (Seber 2008,
8.110(b))

�j D f C 2
p

g2 cos.j�=.n C 1// .j D 1; 2; : : : ; n/;

where f D 1C�2 and g D ��. As �min > f �2jgj D .1�j�j/2 > 0, the eigenvalues
of W�1 are ��1j which, apart from the scale factor .1 � �2/ (which cancels out of
the above ratios in (3.10)), are approximations for the eigenvalues of V. The cosine
terms can be readily computed and, given an estimate of �, we can obtain some idea
of the bounds on b as a multiple of varŒa0 Oβ�.

There are a number of methods for testing for serial correlation that can arise
if the yi observations are collected serially in time. A plot of ri versus time order,
which is often a plot of ri versus i, may show up the presence of any correlation
between time consecutive "i. For positively correlated errors a residual tends to
have the same sign as its predecessor giving a slow up and down effect, while for
negatively correlated errors (which is much less common), the signs of the residuals
tend to alternate giving a saw-toothed plot. Another plot is to divide time-ordered
residuals into consecutive pairs and plot one member of the pair against the other.
Serially correlated data shows up as a linear trend in the plot. A useful graphical
method is the correlogram or autocorrelation plot of the sample autocorrelations
of the residuals rh from the regression versus the time lags h. We would want the
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sample autocorrelations to be close to zero. In addition, the Durbin-Watson statistic
(cf. Seber and Lee 2003, 292–294) provides a test for significant residual autocor-
relation at lag 1. I won’t proceed any further into the time series literature.

We finally consider briefly the effect of unequal variances by looking once again
at sampling from a single population, i.e. yi D �C "i. We assume that

VarŒε� D Σ D diag.�21 ; �
2
2 ; : : : ; �

2
n / where �21 � �22 � � � � � �2n :

Then since the yi are independent,

varŒy� D
X

i

�2i =n2 D �2=n;

where �2 is the mean of the �2i . Also

EŒ.n � 1/s2� D traceŒAΣ� D
X

i

aii�
2
i D n � 1

n

X

i

�2i

so that EŒs2� D �2. We find then that for large n, t of (3.9) will be approximately
NŒ0; 1� and generally insensitive to unequal variances for large n. In the case of
multiple regression, the eigenvalues of Σ are simply the diagonal elements of Σ.
Hence, from (3.10), with the �2i being the eigenvalues,

1
n�p

Pn�p
iD1 �2i
�2n

� 1 � b

varŒa0 Oβ� �
1

n�p

Pn
iDpC1 �2i
�21

� 1:

3.8 Multiple Correlation Coefficient

A helpful assessment tool in regression analysis is the multiple correlation coeffi-
cient defined to be

R D
P

i.yi � y/.Oyi � Oyi/
nP

i.yi � y/2
P

i.Oyi � Oyi/
2
o1=2 ;

the simple correlation between the two vectors y and the fitted values Oy. This is
applied to regression models with a constant term ˇ0 so that the regression matrix
X has its first column all ones and, from P˝X D X, we have P˝1n D 1n. We now
show how an alternative expression for R2 can be derived using projection matrices.
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We begin with

X

i

.yi � Oyi/ D 10n.In � P˝/y D 0

so that y D Oyi. Also, from .In � P˝/P˝ D 0 and the above equation,

.In � P˝/.P˝ � n�11n10n/ D 0:

Hence

X

i

.yi � y/2 D
X

i

y2i � ny2

D y0.In � n�11n10n/y

D y0.In � P˝ C P˝ � n�11n10n/y

D y0.In � P˝/y C y0.P˝ � n�11n10n/y

D k .In � P˝/y k2 C k .P˝ � n�11n10n/y k2

D
X

i

.yi � Oyi/
2 C

X

i

.Oyi � y/2; (3.11)

since In � P˝ and P˝ � n�11n10n are both idempotent. Now

X

i

.yi � y/.Oyi � Oyi/ D
X

i

.yi � y/.Oyi � y/

D y0.In � n�11n10n/.P˝ � n�11n10n/y

D y0.P˝ � n�11n10n/y

D
X

i

.Oyi � y/2:

so that using (3.11),

R2 D
P

i.Oyi � y/2
P

i.yi � y/2

D 1 �
P

i.yi � Oyi/
2

P
i.yi � yi/

2

D 1 � RSS
P

i.yi � y/2
:
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3.9 Maximum Likelihood Estimation

If y � NnŒθ; vIn�, where v D �2, then the likelihood function of y is

`.θ; v/ D .2�v/�n=2 exp

�
� 1

2v
k y � θ k2

�
; (3.12)

and the log likelihood function (ignoring constants) is

L.θ; v/ D �n

2
log v � 1

2v
k y � θ k2 :

To find the maximum likelihood estimates of v and θ subject to θ 2 ˝ we wish to
maximize L.θ; v/ subject to the constraints on θ and v. Clearly, for any v > 0 this
is maximized by minimizing k y � θ k2 using the least squares estimate Oθ. Hence
L. Oθ; v/ � L.θ; v/ for all v > 0. We now wish to maximize L. Oθ; v/ with respect to
v. Setting @L=@v D 0, we get a stationary value of Ov Dk y � Oθ k2 =n. Then

L. Oθ; Ov/� L. Oθ; v/ D �n

2

�
log

� Ov
v

�
C 1 � Ov

v

�
� 0;

since x � ex�1 and therefore log x � x � 1 for all x > 0 (with equality when x D 1).
Hence

L.θ; v/ � L. Oθ; v/ � L. Oθ; Ov/ for all v > 0

with equality if and only if θ D Oθ and v D Ov. Thus Oθ and Ov D O�2 are the maximum
likelihood estimates of θ and v. Also, for future use,

`. Oθ; O�2/ D .2� O�2/�.n=2/e�n=2: (3.13)

Another method is to use a Lagrange multiplier λ (cf. Sect. 1.10) and minimize
L.θ; v/ subject to .In � P˝/θ D 0. Differentiating L.θ; v/ with respect to v and θ
gives us the equations (cf. A.20)

� n

2v
C 1

2v2
.y � θ/0.y � θ/ D 0

�y C θ C .In � P˝/0λv D 0; and

.In � P˝/θ D 0:
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Multiplying the second equation by P˝ we get θ D P˝θ D P˝y D Oθ and

v D 1

n
.y � Oθ/0.y � Oθ/ D Ov;

giving us the same estimates, as expected.
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Chapter 4
Hypothesis Testing

4.1 The Likelihood Ratio Test

Given the model y � Nn.θ; �
2In/ and assumption G that θ 2 ˝ , a p-dimensional

subspace of Rn, we wish to test the linear hypothesis H W θ 2 !, where ! is a
p � q dimensional subspace of ˝ . If v D �2, and `.θ; v/ is the normal probability
density function for y (given by (3.12)), the usual test statistic for H is based on the
likelihood ratio test �ŒHjG�, where

�ŒHjG� D supθ2!;v>0 `.θ; v/
supθ2˝;v>0 `.θ; v/

D maxθ2!;v>0 `.θ; v/
maxθ2˝;v>0 `.θ; v/

:

We accept H if�ŒHjG� is “near” enough to unity. Any monotone function of�ŒHjG�
would also be suitable as a test statistic, and for reasons we shall see later we choose

F D .f�ŒHjG�g�2=n � 1/.n � p/=q:

We would now accept H if F is “small” enough.
Let O�2H and OθH be the maximum likelihood estimates for θ 2 !. Then OθH D P!y

and n O�2H Dk y � OθH k2D RSSH, say, where P! is the symmetric idempotent matrix
representing the orthogonal projection of Rn onto !. Then from (3.13),

�.HjG� D . O�2= O�2H/n=2

© Springer International Publishing Switzerland 2015
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and

F D .n � p/

q

. O�2H � O�2/
O�2

D .n � p/

q

y0.P˝ � P!/y
y0.In � P˝/y

(4.1)

D .n � p/

q

.RSSH � RSS/

RSS
(4.2)

D .n � p/

q

.QH � Q/

Q
; say (4.3)

D .QH � Q/=.qs2/: (4.4)

To find the distribution of F we shall need the following theorem.

Theorem 4.1 Let y � Nn.θ; �
2In/ and let Ai, i D 1; 2; : : : ;m be a sequence of n�n

symmetric matrices with ranks ri such that
Pm

iD1 Ai D In. If one (and therefore all,
by Theorem A.12) of the following conditions hold, namely

(i)
Pm

iD1 ri D n, where ri D rankŒAi�,
(ii) AiAj D 0 for all i; j; i ¤ j,

(iii) A2
i D Ai for i D 1; 2; : : : ;m,

then the quadratics y0Aiy are independently distributed as non-central chi-square
with ri degrees of freedom and non-centrality parameters θ0Aiθ=�

2.

Proof Since Ai is symmetric and AiAj D 0 we have (Theorem 1.1 in Sect. 1.2)

CŒAj� � N ŒAi� D fCŒAi�g?:

Hence the CŒAi� are mutually orthogonal vector spaces and, as Iny D P
i Aix for

every y, their direct sum is R
n. We can therefore construct an orthonormal basis

t1; t2; : : : ; tn of Rn such that t1; ; t2; : : : ; tr1 form a basis of CŒA1�; tr1C1; : : : ; tr1Cr2 a
basis for CŒA2�, and so forth. Let T D .t1; t2; : : : ; tn/, then T0T D In. Now as A1 is
symmetric and idempotent, it represents an orthogonal projection of Rn onto CŒA1�

(Theorem 3.3 in Sect. 3.2). Hence

A1T D .t1; t2; : : : ; tr1 ; 0; : : : 0/

and

T0A1T D
�

Ir1 0
0 0

�
:
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Also

T0A2T D
0

@
0 0 0
0 Ir2 0
0 0 0

1

A ;

and similar expressions are given for the other quadratics. Transforming z D T0y or
y D Tz give us

y0A1y D z0T0A1Tz D z21 C z22 C � � � C z2r1 ;

y0A2y D z2r1C1 C z2r1C2 C � � � C z2r1Cr2 ;

and so forth, where the zi are independently distributed as N.t0iθ; �2/ (by The-
orem 1.6(ii) in Sect. 1.7). Hence, by Theorem 1.10 in Sect. 1.9,

Pr1
iD1 z2i =�

2 is
non-central chi-square with r1 degrees of freedom and non-centrality parameter
ı1 D θ0A1θ=�

2. Similarly x0A2x is independently distributed as non-central chi-
square with r2 degrees of freedom and non-centrality parameter ı2 D θ0A2θ=�

2,
and so forth. This completes the proof.

We now use the above theorem to find the distribution of F given by (4.1).
Consider the identity

In D .In � P˝/C .P˝ � P!/C P!: (4.5)

Since CŒP!� D ! � ˝ (by Theorem 3.4), P˝P! D P!.D P0! D P!P˝/ and
.P˝ � P!/2 D P˝ � P˝P! � P!P˝ C P! D P˝ � P! . As In � P˝ is idempotent
with trace and rank n�p (by (3.4)), and P! is idempotent of rank p�q, the conditions
of Theorem 4.1 hold so that by (i) of the theorem,

n D n � p C rankŒP˝ � P!�C p � q

and rankŒP˝ � P!� D q. It follows from the theorem that the quadratic Q=�2 D
y0.In � P˝/y=�2 is 	2n�p (as the non-centrality parameter, namely θ0.In � P˝/θ=�2,
is zero as P˝θ D θ) and .QH � Q/=�2 D y0.P˝ � P!/y=�2 is independently
distributed as non-central 	2q.ı/, where the non-centrality parameter ı is given by
ı D θ0.P˝ � P!/θ=�2. Note that EŒQH � Q� D �2.q C ı/, from Theorem 1.7(ii)
in Sect. 1.8. When H is true, ı D 0 as P!θ D θ and F has the Fq;n�p distribution,
while if H is false, F has the non-central F-distribution Fq;n�p.ı/ (cf. Sect. 1.8)

The computations for calculating F are usually set out in the form of an analysis
of variance (ANOVA) table as given below (Table 4.1). There df is the degrees of
freedom and MSS D SS=df is the Mean Sum of Squares. The difference QH � Q is
sometimes referred to as the hypothesis sum of squares. Looking at the ratio of the
two MSS we see that F is roughly 1C ı=q, and so we would reject H if F is much
greater than unity and accept H if F 
 1. In fact we reject H at the 100˛% level of
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Table 4.1 ANOVA table

Source SS df MSS E[MSS]

H QH � Q q .QH � Q/=q �2 C ı�2=q

Residual Q n� p Q=.n� p/ �2

Total QH n� pC q

significance if F > F˛ , where F˛ is determined by PrŒFq;n�p � F˛� D 1 � ˛. We
note that the hypothesis sum of squares is given by

QH � Q Dk .P˝ � P!/y k2Dk Oθ � OθH k2 : (4.6)

4.2 The Hypothesis Sum of Squares

In this section we look more closely at the matrix P˝ � P! from the hypothesis sum
of squares. We shall show that the F-test is not only based on the likelihood ratio
principle but it is also the test statistic obtained by applying a general principle due
to Wald. We shall require the following theorems.

Theorem 4.2 P˝ � P! represents the orthogonal projection of Rn onto !? \ ˝ ,
that is P˝ � P! D P!?\˝ .

Proof In the previous section we saw that P!P˝ D P˝P! D P! , and P˝�P! being
symmetric and idempotent is a projection matrix. If θ 2 !? \ ˝ , then P!θ D 0
and θ D P˝θ D .P˝ � P!/θ 2 CŒP˝ � P!�. Conversely, if θ D .P˝ � P!/a
then P˝θ D θ and P!θ D 0, so that θ 2 !? \˝ . Thus !? \˝ D CŒP˝ � P!�,
and the result follows from Theorem 3.3 in Sect. 3.2. [We note in passing that any
vector θ 2 ˝ takes the form θ D P˝b D .P˝ � P!/b C P!b for some b. Thus
we see intuitively that we have an orthogonal decomposition corresponding to ˝ D
.!? \˝/˚ !.]

Theorem 4.3 If A is any matrix such that ! D ˝ \ N ŒA�, then

!? \˝ D CŒP˝A0�:

Proof By Theorems 1.2 and 1.1,

!? \˝ D .˝ \ N ŒA�/? \˝

D .˝? C CŒA0�/ \˝:

If θ belongs to the right-hand side of the above equation, then P˝θ D θ and θ D
.In �P˝/aCA0b for some a and b, which together implies θ D P˝A0b 2 CŒP˝A0�.
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Conversely, suppose θ D P˝A0b, then since ! 2 N ŒA� we have ! ? CŒA0�. Hence

P!θ D P!P˝A0b D P!A0b D 0

and P˝θ D θ so that θ 2 !? \˝ . Thus

.˝? C CŒA0�/\˝ D CŒP˝A0�

and the theorem is proved.

Theorem 4.4 If A is a q � n matrix of rank q, then rankŒP˝A0� D q if and only if
CŒA0� \˝? D 0.

Proof Let the rows of A be a0i (i D 1; 2; : : : ; q). If rankŒP˝A0� ¤ q, then the
columns of P˝A0 are linearly dependent, that is there exist c1; c2; : : : ; cq not all
zero such that

P
i ciP˝ai D 0. This implies there exists a vector

P
i ciai 2 CŒA0�

which is perpendicular to ˝ and therefore CŒA0� \˝? ¤ 0. We have established a
contradiction and the theorem is proved.

4.3 Wald Test

We now use the results of the previous section to consider an alternative form
of the likelihood ratio test. Let y D Xβ C ε, where X is n � p of rank p,
β D .ˇ0; ˇ1; : : : ; ˇp�1/0, θ D Xβ, and ε is NnŒ0; �2In�. Let A1 be a q � n matrix of
rank q such that N ŒA1� D ! ˚˝?. Then

˝ \ N ŒA1� D ˝ \ .w ˚˝?/ D !

by Theorem 1.3 with V0 D ˝ and V1 D !. Also, from Theorem 4.3, P˝ � P!
represents the orthogonal projection onto CŒP˝A01�. Now, by Theorem 1.1 in
Sect. 1.2,

CŒA01� \˝? D N ŒA1�
? \˝?

D .! ˚˝?/? \˝?

D !? \˝ \˝?
D 0:

Hence, by Theorem 4.4, the n � q matrix P˝A01 has rank q, A1P˝A01 is q � q of
rank q (by A.4(ii) and P2˝ D P˝), and is therefore nonsingular. From Example 3.1
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in Sect. 3.3 with X D P˝A01, and Oθ the least squares estimate of θ,

y0.P˝ � P!/y D y0X.X0X/�1X0y

D y0P˝A01.A1P˝A01/�1A1P˝y (4.7)

D .A1
Oθ/0.A1P˝A01/�1A1

Oθ: (4.8)

The variance matrix of A1
Oθ D A1P˝y is (by Theorem 1.5(iii) in Sect. 1.6(iii))

varŒA1
Oθ� D A1P˝�2InP˝A01 D �2A1P˝A01;

and if OD is its value for �2 D O�2 D y0.In � P˝/y=n, the maximum likelihood
estimate of �2, then we find that

F D .n � p/

q

y0.P˝ � P!/y
y0.In � P˝/y

D n � p

nq
.A1

Oθ/0 OD�1.A1
Oθ/:

Thus to test H W A1θ D 0, we replace θ by its maximum likelihood estimate
and see if A1

Oθ is “near enough” to zero by calculating F, a simple positive-
semidefinite quadratic function of A1

Oθ. This simple test principle, due to Wald
(1943), is discussed again later.

Example 4.1 Suppose we consider the regression model discussed above and we
wish to test H W ˇr D ˇrC1 D : : : D ˇp�1 D 0. Then ! D CŒXr�, where Xr consists
of the first r columns of X so that

P˝ D X.X0X/�1X0; P! D Xr.X0rXr/
�1X0r;

and we can immediately write down our F-statistic. However, using the Wald
principle, we can express P˝ � P! as a single matrix as follows. We first of all
show that if X D .Xr;Xp�r/, then

! D ˝ \ N ŒX0p�r.In � P!/�: (4.9)

If θ 2 !, then θ 2 ˝ , .In � P!/θ D 0 and θ belongs to the right-hand side of the
above equation. Conversely, if θ belongs to the right-hand side, then θ D Xβ D
Xrβr C Xp�rβp�r and X0p�r.In � P!/θ D 0. Thus, since .In � P!/Xr D 0,

0 D X0p�r.In � P!/.Xrβr C Xp�rβp�r/

D X0p�r.In � P!/Xp�rβp�r:
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By Theorem 4.4 with ˝? replaced by ! and A D X0p�r , .In � P!/Xp�r with rank
p � r as CŒXp�r�\! D 0 then X0p�r.In � P!/Xp�r is non-singular. Hence βp�r D 0,
θ 2 CŒXr� D !, and (4.9) is established. Since P˝Xp�r D Xp�r,

P˝.In � P!/Xp�r D .In � P!/Xp�r

and it follows from Eq. (4.7), with A1 D X0r�p.In � P!/, that

P˝ � P! D .In � P!/Xp�rŒX0p�r.In � P!/Xp�r�
�1X0p�r.In � P!/; (4.10)

which can be used for a Wald test.

Example 4.2 Suppose X is defined as in Example 4.1, and we wish to test Aβ D b,
where A is q � p of rank q. Let β0 be any solution of Aβ D b, put z D y � Xβ0
and let γ D β � β0. Then our original model and hypothesis are equivalent to
z D Xγ C ε, where ε is NnŒ0; �2In�, and ! W Aγ D 0. If φ D Xγ, then since
γ D .X0X/�1X0φ, ! D ˝ \ N ŒA1�, where A1 D A.X0X/�1X0. Now A01c D 0
implies that X.X0X/�1A0c D 0, which pre-multiplying by X0 give us A0c D 0 or
c D 0, as the q columns of A0 are linearly independent. Hence the rows of A1 are
linearly independent and A1 has rank q. Also,

CŒA01� \˝? � CŒX� \˝? D 0:

Thus (4.7) applies with A1P˝ D A1 (since P˝X D X). Substituting for A1, and
using

Oβ D .X0X/�1X0z D .X0X/�1X0.y � Xβ0/ D Oβ � β0

and Aβ0 D b, we get

z0.P˝ � P!/z D .y � Xβ0/
0A01.A1A01/�1A1.y � Xβ0/

D .y � Xβ0/
0X.X0X/�1A0ŒA.X0X/�1A0��1A.X0X/�1X0.y � Xβ0/

D . Oβ � β0/
0A0ŒA.X0X/�1A0��1A. Oβ � β0/

D .A Oβ � b/0ŒA.X0X/�1A0��1.A Oβ � b/

D .A Oβ � b/0fVarŒA Oβ�g�1.A Oβ � b/0�2:

The above equation can be used for a Wald test.

Example 4.3 We now consider a theoretical model that we shall use in later
asymptotic theory. Let z D φCη where η is NnŒ0; In�. We assume that G W ˝ D R

n

and H W ! D N ŒC�, where the rows of C are linearly independent. Then P˝ D In

so that Oφ D z and, since N ŒC� D CŒC0�? (by Theorem 1.1 in Sect. 1.2), we have



54 4 Hypothesis Testing

P! D In � P D In � C0.CC0/�1C, and OφH D P!z. Because of the usefulness of this
model we express our result as a general theorem.

Theorem 4.5 Let z D φ C η, where η � NpŒ0; Ip�, and consider H W Cφ D 0,
where C is q � p of rank q. Let Qλ and Qφ be the restricted least-squares solutions
under H of

z � Qφ C C0 Qλ D 0 (4.11)

and

C Qφ D 0: (4.12)

Then H can be tested using

t D .z � Qφ/0.z � Qφ/ (4.13)

D z0C0.CC0/�1Cz (4.14)

D QλCC0 Qλ; (4.15)

where t � 	2q.ı/, the non-central chi-square distribution with non-centrality
parameter ı D φ0C0.CC0/�1Cφ. The test statistic t is also the likelihood-ratio test.

Proof To find Qφ we can use A.20 to differentiate (cf. Sect. 1.10)

1

2
k z � φ k2 C�0Cφ D 1

2
.z0z � 2φ0z C φ0z0zφ/C φ0C0λ;

to obtain (4.11). Multiplying (4.11) by C and using (4.12) we obtain Qλ D
�.CC0/�1Cz. Substituting in (4.11) give us Qφ D .Ip�P/z, where P D C0.CC0/�1C,
a projection matrix of rank q. Thus .z � Qφ/0.z � Qφ/ D z0Pz, and has a non-
central chi-square distribution 	2q.ı/ with ı D φ0Pφ by Theorem 1.10 in Sect. 1.9.
Putting the above results together we obtain our three expressions for t. Finally,
the log of the likelihood function for the multivariate normal with �2 D 1 is
L.φ/ D �.z � φ/0.z � φ/ so that the likelihood ratio test is

2ŒL. Oφ/� L. Qφ/� D .z � Qφ/0.z � Qφ/;

as L. Oφ/ D L.z/ D 0. This completes the proof.

Example 4.4 (Less than full rank) Suppose y D Xβ C ε, where X is n � p of
rank r (r < p). Instead of introducing identifiability constraints we can focus on
what linear restrictions H W a0iβ D 0 (i D 1; 2; : : : ; q) we might be able to test,
or in matrix terms Aβ D 0 where rankŒA� D q. A natural assumption is that the
constraints are all estimable, which implies a0i D m0iX (by end of Sect. 3.4) for some
mi, or A D MX, where M is q � n of rank q (as q D rankŒA� � rankŒM� by A.2).
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Since Aβ D MXβ D Mθ we can therefore find the least squares estimate of θ
under H by minimizing k y �θ k2 subject to θ 2 CŒX� D ˝ and MXβ D Mθ D 0,
that is subject to θ 2 ˝ \ N ŒM� (D !). Now using Theorem 4.3 in Sect. 4.2,
!? \˝ D CŒP˝M0�, where by A.15(ii)

P˝M0 D X.X0X/�X0M0 D X.X0X/�A0;

is n � q of rank q (cf. Theorem 4.4 in Sect. 4.2) and .X0X/� is a weak inverse of
X0X. Hence

y0.P˝ � P!/y D y0P!?\˝y

D y0.P˝M0/ŒMP˝M0��1.P˝M0/0y

D y0X.X0X/�A0ŒA.X0X/�A0��1A.X0X/�X0y

D .A Oβ/0ŒA.X0X/�A0��1A Oβ:

4.4 Contrasts

A contrast of the vector θ is any linear function c0θ such that
P

i ci D 0. Two
contrasts c0θ and d0θ are said to be orthogonal if c0d D 0. For example, �1 � �2 and
�1 C �2 C �3 � 3�4 are two orthogonal contrasts.

Example 4.5 The situation that we often meet in factorial experiments is that we
are given a set of independent contrasts a0iθ (i D 1; 2; : : : ; n � p) equal to zero and
we wish to test whether a further set of q orthogonal contrasts a01iθ (i D 1; 2; : : : ; q),
which are orthogonal to the previous set, are also zero. If A D .a1; a2; : : : ; an�p/

0
and A1 D .a11; a12; : : : ; a1q/

0, then G is Aθ D 0 and H is Aθ D 0, A1θ D 0, where
A1A0 D 0 and A1A01 is diagonal, namely D D diag.a011a11; : : : ; a01qa1q/. Define
di.θ/ Dk a1i k�1 a01iθ (i D 1; 2; : : : ; q), a set of orthonormal contrasts. Since, by
Example 3.2 of Sect. 3.3, P˝ D In � A0.AA0/�1A, we have A1P˝A01 D A1A01 and,
from (4.8),

F D n � p

q

.A1
Oθ/0D�1.A1

Oθ/
y0.In � P˝/y

D
Pq

iD1 d2i . Oθ/
qs2

:

Example 4.6 Consider a factorial experiment with two factors a and b, each at two
levels a1, a2 and b1, b2. Then the yields from the four treatment combinations may
be represented symbolically by a2b2, a2b1, a1b2, and a1b1. We can now define the
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following quantities

effect of a at level b1 D a2b1 � a1b1;

effect of a at level b2 D a2b2 � a1b2;

and the average effect is

A D 1

2
.a2b1 � a1b1 C a2b2 � a1b2/:

If the two factors were acting independently we would expect the two effects at
levels b1 and b2 to be equal, but in general they will be different, and their difference
is a measure of the extent to which the factors interact. We define the interaction AB
to be the difference between these two effects, namely

AB D 1

2
.a2b2 � a1b2 � a2b1 C a1b1/:

In a similar manner we can define the average effect of b as

B D 1

2
.a2b2 � a2b1 C a1b2 � a1b1/;

and BA as half of the difference of the two effects of b. However, AB D BA and the
concept of interaction is a symmetrical one, as we would expect. We note that A,
B, and AB are three orthonormal contrasts of the four treatments, and denoting the
mean yield by M we have the orthogonal transformation

0

B
B
@

2M
A
B

AB

1

C
C
A D 1

2

0

B
B
@

1 1 1 1

1 1 �1 �1
1 �1 1 �1
1 �1 �1 1

1

C
C
A

0

B
B
@

a2b2
a2b1
a1b2
a1b1

1

C
C
A ;

or

δ D Tμ;

say, where T is orthogonal. We have denoted the four combinations aibj by �i (i D
1; 2; 3; 4), and suppose we have t observations on each combination �i. Then the
hypothesis of interest, H, is that the four population means are equal. If yij is the
jth observation on the ith mean (i D 1; 2; : : : 4I j D 1; 2; : : : ; t) then we assume the
model yij D �ij C "ij and G W �ij D �i for all i; j. If θ is the vector of elements
�ij, then G states that certain contrasts �ij � � i� of θ are zero, and H is equivalent to
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A D B D AB D 0, where A, B, and AB are orthogonal contrasts in θ. For example

2A.θ/ D a2b2 C a2b1 � a1b2 � a1b1

D �1 C �2 � �3 � �4
D �1� C �2� � �3� � �4�;

and this is a contrast in θ since �1j C �2j � �3j � �4j is a contrast and a sum (and
average) of contrasts is still a contrast. Also the two sets of contrasts for G and H
are orthogonal, and therefore the general theory described in the previous example,
Example 4.5, can be applied to this example. All we require is Oθ, and our F-statistic
for testing H is

F D 4.t � 1/t

3

A. Oθ/2 C B. Oθ/2 C AB. Oθ/2
k y � Oθ k2 :

Minimizing
P

i

P
j.yij � �i/

2 gives us O�ij D O�i D yi�, the least squares estimate of
�i. Hence

2A. Oθ/ D y1� C y2� � y3� � y4� etc.;

4M. Oθ/ D y1� C y2� C y3� C y4� D 4y��;

and

k y � Oθ k2D
4X

iD1

tX

jD1
.yij � yi�/2:

Since Oδ0 Oδ D Oμ0T0T Oμ D Oμ0 Oμ, we see that

A. Oθ/2 C B. Oθ/2 C AB. Oθ/2 D
4X

iD1
y2i� � 4M. Oθ/2 D

4X

iD1
.yi� � y��/2:

4.5 Confidence Regions and Intervals

In most practical applications of linear hypothesis theory our prime interest is not
just in significance tests but also in the finding of confidence regions and confidence
intervals for the unknown parameters. Suppose we are given G W θ 2 ˝ and we wish
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to test the hypothesis A1θ D 0, where the q rows of A1 are linearly independent. Let
B1 D A1P˝A01, where �2B1 is the variance-covariance matrix of A1

Oθ D A1P˝y.
Since P˝θ D θ,

.A1
Oθ � A1θ/

0B�11 .A1
Oθ � A1θ/ D .y � θ/0P˝A01B�11 A1P˝.y � θ/

D ε0.P˝ � P!/ε;

by Eq. (4.7) in Sect. 4.3, and y0.In � P˝/y D ε0.In � P˝/ε. Hence from (4.1),

F D .A1
Oθ � A1θ/

0B�11 .A1
Oθ � A1θ/=qs2 (4.16)

D .n � p/

q

ε0.P˝ � P!/ε
ε0.In � P˝/ε

(4.17)

has the (central) Fq;n�p distribution. Thus if

PrŒFq;n�p � Fq;n�p.˛/� D 1 � ˛;

then a 100.1� ˛/ per cent confidence region for θ is given by

.A1
Oθ � A1θ/

0B�11 .A1
Oθ � A1θ/ � qs2Fq;n�p.˛/: (4.18)

If we wanted to obtain a confidence interval for a single constraint  D a0θ, then
by the Gauss-Markov Theorem 3.6 in Sect. 3.5

O D a0 Oθ D a0P˝y

has minimum variance, and the confidence interval for  is

. O �  /2

.a0P˝a/
� s2F1;n�p.˛/:

As F1;n�p is t2n�p, where tn�p is the t-distribution with n � p degrees of freedom, this
confidence interval can also be expressed in the form

O � s.a0P˝a/1=2tn�p.˛=2/ �  � O C s.a0P˝a/1=2tn�p.˛=2/:

We can also obtain simultaneous confidence intervals using Scheffé’s so-called
S-method (Scheffé 1959, 68) as follows. Let φ D A1θ and Oφ D A1

Oθ. Then,
from (4.18),

1 � ˛ D PrŒFq;n�p � Fq;n�p.˛/�

D PrŒ. Oφ � φ/0B�11 . Oφ � φ/ � qs2Fq;n�p.˛/�
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D PrŒb0B�11 b � m�; say

D Pr

"

sup
h;h¤0

�
.h0b/2

h0B1h

�
� m

#

by A.21(i)

D Pr

�
.h0b/2

h0B1h
� m; for all h (h ¤ 0)

�

D Pr

"
jh0 Oφ � h0φj
s.h0B1h/1=2

� .qFq;n�p.˛//
1=2; for all h (h ¤ 0)

#

:

We can therefore construct a confidence interval for any linear function h0φ, namely

h0 Oφ ˙ .qFq;n�p.˛//
1=2s.h0B1h/1=2; (4.19)

and the overall probability for the entire class of such intervals is exactly 1 � ˛.
We note that the term s2h0B1h involved in calculating (4.19) is simply an unbiased
estimate of varŒh0 Oφ� that can often be found directly. We can therefore write (4.19)
in the form

h0 Oφ ˙ .qFq;n�p.˛//
1=2 O�h0 Oφ:

Suppose θ D Xβ, where X is n � p of rank p and β D .ˇ0; ˇ1; : : : ; ˇp�1/0,
and we wish to use the test of Aβ D 0, where A is q � p of rank q, to
obtain a set of confidence intervals. Then Aβ D A.X0X/�1X0θ D A1θ, say, and
A Oβ D A.X0X/�1X0 Oθ D A1

Oθ. Also VarŒA Oβ� D �2A.X0X/�1A0 D �2B, say. Hence,
from (4.16)

.A Oβ � Aβ/0B�1.A Oβ � Aβ/=.qs2/ � Fq;n�p:

Setting Oη D A Oβ and η D Aβ, we have

1 � ˛ D PrŒ. Oη � η/0B�1. Oη � η/ � m�

D Pr

� jh0 Oη � h0ηj
s.h0Bh/1=2

� .qFq;n�p.˛//
1=2; for all h (h ¤ 0)

�
;

and we end up with a confidence interval for h0η, namely

h0 Oη ˙ .qFq;n�p.˛//
1=2s.h0Bh/1=2:

If we set h0η D �j we include intervals for every �j D a0jβ, where a0j is the jth row
of A, namely

a0j Oβ ˙ .Fq;n�p.˛//
1=2 O�a0

j
Oβ:
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If we set A D Ip, a0jβ is the jth element of β, thus giving us a set of confidence
intervals for the ˇj, (j D 0; 1; 2; : : : ; p � 1).

Other confidence intervals can also be obtained. For example, we can use the p
Bonferroni intervals b̌j˙stn�p.˛=.2p//djj, where djj is the .jC1/th diagonal element
of .X0X/�1. We can also use maximum-modulus t-intervals. For further details see
Seber and Lee (2003, chapter 5).
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Chapter 5
Inference Properties

5.1 Power of the F-Test

We assume the model y D θ C ε, G W θ 2 ˝ , a p-dimensional vector space in R
n,

and H W θ 2 !, a p � q dimensional subspace of ˝; ε is NnŒ0; �2In�. To test H we
choose a region W called the critical region and we reject H if and only if y 2 W.
The power of the test ˇ.W;θ/ is defined to be probability of rejecting H when θ is
the true value of EŒy�. Thus,

ˇ.W;θ/ D PrŒy 2 Wjθ�

and is a function of W and θ. The size of a critical region W is supθ2W ˇ.W;θ/, and
if ˇ.W;θ/ D ˛ for all θ 2 !, then W is said to be a similar region of size ˛. If W is
of size ˛ and ˇ.W;θ/ � ˛ for every θ 2 ˝�! (the set of all points in˝ which are
not in !), then W is said to be unbiased. In particular, if we have the strict inequality
ˇ.W;θ/ > ˛ for θ 2 ˝ � !, then W is said to be consistent. Finally we define W
to be a uniformly most powerful (UMP) critical region of a given class C if W 2 C
and if, for any W 0 2 C and all θ 2 ˝ � !,

ˇ.W;θ/ � ˇ.W 0;θ/:

Obviously a wide choice of W is possible for testing H, and so we would endeavor to
choose a critical region which has some, or if possible, all of the desired properties
mentioned above, namely similarity, unbiasedness or consistency, and providing a
UMP test for certain reasonable classes of critical regions. Other criteria such as
invariance are also used (Lehmann and Romano 2005). The F-test for H, given by

F D f2
f1

y0.P˝ � P!/y
y0.In � P˝/y

;
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where f1 D q and f2 D n � p, provides such a critical region W0, say, and we now
consider some properties of W0.

We note first of all that W0 is the set of vectors y such that F > F˛, where

PrŒF > F˛jθ 2 !� D ˛;

so that W0 is a similar region of size ˛. The similarity property holds because F
is distributed as Ff1;f2 when H is true, and it therefore doesn’t depend on θ when
θ 2 !. The power of W0 depends on θ through the non-centrality parameter ı D
θ0.P˝ � P!/θ=�2 and is therefore a function of ı and W0, say ˇ.W0; ı/. Also

ˇ.W0; ı/ D PrŒv > v˛ D f1F˛=.f1F˛ C f2/�;

where v D f1F=.f1F C f2/ has a non-central Beta distribution (cf. Sect. 1.8). It is
known that ˇ.W0; ı/ can be increased by (a) decreasing f1 keeping f2 and ı fixed, (b)
increasing f2 keeping fŠ and ı fixed, or (c) increasing ı keeping f1 and f2 fixed. Now
since ı D 0 if and only if θ 2 !, and ˇ.W0; ı/ is a monotonic strictly increasing
function of ı, then ˇ.W0; ı/ > ˇ.W0; 0/ D ˛ when θ 2 ˝�!, and W0 is consistent.

It is known that W0 has a number of optimal properties. However we shall only
consider one due to Saw (1964) as it demonstrates the geometric approach used in
this book. The result is stated as a theorem.

Theorem 5.1 W0 is UMP among the class C of all consistent, variance-ratio type
tests. (A variance ratio test is a test of the form sy0Ary=ry0Bsy where the numerator
and denominator sums of squares (SS) are independently distributed as �2 times
a non-central chi-square distribution with r and s degrees of freedom respectively.
Also the non-centrality parameter θ0Bsθ=�

2 for the denominator SS, y0Bsy, is zero
when θ 2 ˝ and the non-centrality parameter θ0Arθ=�

2 for the numerator SS is
zero when θ 2 !.)

Proof For a consistent test we must have θ0Arθ > 0 when θ 2 ˝ � !. The
quadratic y0Bsy is distributed as �2	2s if and only if Bs is symmetric and idempotent
(Theorems 1.10 and 1.11 in Sect. 1.9), and therefore Bs represents an orthogonal
projection of R

n on some vector space Bs of dimension s. The non-centrality
parameter θ0Bsθ=�

2 D .Bsθ/
0.Bsθ/=�

2 is, in units of 1=�2, the square of the
distance from the origin to the projection of θ on Bs. If this is to be zero for every
θ 2 ˝ , then Bs ? ˝ so that s � n�p. When s D n�p there is a unique vector space
Bs D ˝?, so that y0.In � P˝/y is the unique (error) SS with maximum degrees of
freedom n�p. If y0Ary is �2	2r , then Ar represents an orthogonal projection on some
vector space Ar of dimension r. Since y0Ary and y0Bsy are statistically independent
then ArBs D 0 (Theorem 1.12) or geometrically Ar ? Bs. As y0Ary has zero non-
centrality parameter when θ 2 !, then Ar ? !, that is, Ar � !? \ B?s . Now, by
Theorem 1.3 in Sect. 1.4 with V0 D !?, V1 D ˝?, and V2 D ˝ ,

!? D .!? \˝/˚˝?:
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Therefore using ˝ � B?s and Theorem 1.3 again with V0 D B?s , V1 D !? \ ˝ ,
and V2 D ˝? we have

!? \ B?s D Œ.!? \˝/˚˝?�\ B?s
D .!? \˝/˚ .˝? \ B?s / D D;

where D is the sum of two orthogonal vector spaces. We now show that for a
consistent test, r � dimŒ!? \˝� D q.

Let A�r be the orthogonal projection of Ar onto !? \ ˝ so that since Ar �
!?\B?s D D, we have Ar � A�r ˚.˝?\B?s /. Suppose r < q so that dimŒA�r � < q
and A�r is a proper subset of !? \ ˝ . Then there exists θ 2 !? \ ˝ such that
θ ? A�r . Since θ ? ˝?\B?s , θ ? Ar, and Arθ D 0. Hence there exists θ 2 ˝�!
such that θ0Arθ D 0. This contradicts the requirement of consistency, so that r � q.

If Bs D ˝?, then for a consistent test we must have Ar D ! \ ˝?, and y0Ary
(D y0.P˝ � P!/y) is the unique hypothesis sum of squares with minimum degrees
of freedom q. For a general variance-ratio test, however, when Bs � ˝?, we have
Ar ¤ !? \˝ .

We now focus our attention on �2ı, where ı is the non-centrality parameter.
Since Ar � D, PDAr D Ar, where PD is the projection matrix on D. Suppose
θ 2 ˝ � !, then θ D θ1 C θ2, where θ1 2 !, θ2 2 !? \ ˝ , and θ2 ¤ 0. Now
θ1 ? D and, since 0 2 B?s \˝?, θ2 C 0 2 D. Hence by Theorem 4.2 in Sect. 4.2,
.P˝ � P!/θ D .P˝ � P!/θ2 D θ2 D PDθ2 D PDθ. Thus

k .P˝ � P!/θ k2 D k PDθ k2
D k PDArθ k2 C k PD.In � Ar/θ k2
� k PDArθ k2Dk Arθ k2;

or

θ0.P˝ � P!/θ � θ0Arθ

with strict equality occurring for every θ 2 ˝ � ! if and only if Ar � !? \ ˝

(since Arθ2 D θ2).
It has been shown that (1) r � q (ii) n � p � s, (iii) the F-test is the unique

consistent variance-ratio test with r D q and s D n � p, and (iv) the F-test has a
non-centrality parameter as large as that of any other variance-ratio test and that if
there is a different test with the same non-centrality parameter, then Ar � !? \˝

(with strict inclusion) and r > q. By virtue of the remarks made above prior to the
theorem statement about the power being monotonic increasing with respect to ı and
s and monotonic decreasing with respect to r, it follows that ˇ.W0;θ/ � ˇ.W;θ/
for every θ 2 ˝ � ! and every W 2 C, with equality if and only if W D W0.
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5.2 Robustness of the F-Test and Non-normality

Although optimality properties of the F-test are of theoretical interest, what is
important is the degree of robustness the test has with regard to departures from
the underlying assumptions of the test. These assumptions are spelt out in Sect. 3.7
along with mention of some diagnostic tools for detecting departures from them.
We now examine the effect of various departures on the validity of the F-test. We
first begin with the assumption of normality and the effect of some departures from
it are described in the following two theorems from Atiqullah (1962) that make the
following assumptions. Let the yi be independent random variables with means �i

(i D 1; 2; : : : ; n), with common variance �2, and common third and fourth moments
�3 and�4 respectively about their means. Let �2 D .�4�3�4/=�4 be their common
kurtosis.

Theorem 5.2 Let Pi (i D 1; 2) be a symmetric idempotent matrix of rank fi such
that EŒy0Piy� D �2fi, and let P1P2 D 0. If pi is the column vector of the diagonal
elements of Pi, then:

(i) varŒy0Piy� D 2�4.fi C 1
2
�2p0ipi/.

(ii) covŒy0P1y; y0P2y� D �4�2p01p2.

Proof

(i) Since Pi is symmetric and idempotent, traceŒPi� D rankŒPi� D fi (by
Theorem 1.4 in Sect. 1.5). Also, by Theorem 1.8(iii) in Sect. 1.9,

EŒy0Piy� D �2 traceŒPi�C θ0Piθ D �2fi;

so that θ0P2i θ D θ0Piθ D 0 for all θ; that is Piθ D 0 for all θ. Therefore
substituting A D Pi and μ D θ in Theorem 1.9(ii) of Sect. 1.9, we have

varŒy0Piy� D 2�4 traceŒP2i �C .�4 � 3�4/p0ipi

D 2�4ftraceŒPi�C 1

2
�2p0ipig

D 2�4.fi C 1

2
�2p0ipi/:

(ii) Given P1P2 D 0, we have

.P1 C P2/2 D P21 C P1P2 C P2P1 C P22

D P1 C P1P2 C .P1P2/0 C P2

D P1 C P2:
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Therefore P1 C P2 is idempotent and, by (i),

varŒy0P1y C y0P2y� D varŒy0.P1 C P2/y�

D 2�4ftraceŒP1 C P2�C 1

2
�2.p1 C p2/0.p1 C p2/g

D 2�4ff1 C f2 C 1

2
�2.p01p1 C 2p01p2 C p02p2/g

D varŒy0P1y�C varŒy0P2y�C 2�4�2p01p2:

Hence

covŒy0P1y; y0P2y� D 1

2
fvarŒy0.P1 C P2/y�� varŒy0P1y� � varŒy0P2y�g

D �4�2p01p2:

Theorem 5.3 Suppose that P1 and P2 satisfy the conditions of Theorem 5.2 above.
Let Z D 1

2
log F, where

F D y0P1y=f1
y0P2y=f2

�
D s21

s22
; say

�
;

Then, for large f1 and f2 we have asymptotically

EŒZ� 
 1
2
.f�12 � f�11 /

� Œ1C 1

2
�2.f1p2 � f2p1/0.f1p2 C f2p1/ff1f2.f1 � f2/g�1�; (5.1)

and

varŒZ� 
 1

2
.f�12 Cf�11 /Œ1C 1

2
�2.f1p2�f2p1/0.f1p2�f2p1/ff1f2.f1Cf2/g�1�: (5.2)

Proof Using a Taylor expansion of log s2i about log �2, we have

log s2i 
 log �2 C s2i � �2

�2
� .s2i � �2/2

2�4
: (5.3)

Taking expected values, and using EŒs2i � D �2, we have

EŒlog s2i � 
 log �2 � 1

2�4
varŒs2i �;
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where, from Theorem 5.2,

varŒs2i � D varŒy0Piy�

f 2i
D 2�4.f�1i C 1

2
�2f
�2
i p0ipi/:

Substituting in

EŒZ� D 1

2
.EŒlog s21� � EŒlog s22�/

leads to (5.1).
To find an asymptotic expression for varŒZ�, we first note that

varŒZ� D 1

4
fvarŒlog s21�C varŒlog s22� � 2covŒlog s21; log s22�g: (5.4)

Then ignoring the third term of (5.3), we have EŒlog ss
i � � log �2 and

varŒlog s2i � 
 EŒ.log s2i � log�2/2�


 EŒ.s2i � �2/2�

�4

D varŒs2i �

�4
:

Similarly,

covŒlog s21; log s22� 
 EŒ.log s21 � log �2/.log s22 � log �2/�


 EŒ.s21 � �2/.s22 � �2/�

�4

D covŒs21; s
2
2�

�4
:

Finally, substituting in

varŒZ� 
 1

4�4
.varŒs21�C varŒs22�� 2covŒs21; s

2
2�/

and using Theorem 5.2 leads to Eq. (5.2). This completes the proof.

We now apply the above theory to the F-test of H W θ 2 ! given G W θ 2 ˝ . This
test is given by

F D y0.P˝ � P!/y=q

y0.In � P˝/y=.n � p/
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D y0P1y=f1
y0P2y=f2

D s21
s22

say;

where P1P2 D .P˝ � P!/.In � P˝/ D �P! C P!P˝ D 0. We now relax the
assumptions underlying F and assume only that the "i D yi � �i are independently
and identically distributed with mean zero and variance �2; i.e., EŒε� D 0 and
VarŒε� D �2In. We note that EŒs22� D �2 (from (3.4) in Sect. 3.6) and, from
Theorem 1.8(i) in Sect. 1.9,

EŒqs21� D EŒy0.P˝ � P!/y�

D �2.traceŒP˝� � traceŒP!�/C θ0.P˝ � P!/θ

D �2Œp � .p � q/� D �2q;

when H is true as P˝θ � P!� D θ � θ D 0. Thus the conditions of Theorem 5.3
are satisfied. It is known that when the "i are normally distributed and f1 and f2 are
large, Z D 1

2
log F is approximately normally distributed with mean and variance

given by (5.1) and (5.2), but with �2 D 0. This approximation is evidently quite
good even when f1 and f2 are as small as four so that it is not unreasonable to
accept the proposition that Z is still approximately normal for a moderate amount of
non-normality with mean and variance given approximately by (5.1) and (5.2). On
this assumption, Z and therefore F will be approximately independent of �2 if the
coefficient of �2 in (5.1) and (5.2) is zero; that is if

f1p2 D f2p1: (5.5)

Now using Atiqullah’s (1962) terminology, we say that F is quadratically balanced
if the diagonal elements of Pi (i D 1; 2) are equal, that is if the diagonal elements
of P! are equal and those of P˝ are equal; most of the usual F-tests for balanced
experimental designs belong to this category. In this case, since traceŒPi� D fi, we
have

pi D fi
n

1n and f1p2 D f1f2
n

1n D f2p1:

Thus a sufficient condition for (5.5) to hold is that F is quadratically balanced.

Example 5.1 We revisit Example 2.3 in Sect. 2.2 where we compare I Normal
populations. Let yij be the jth observation (j D 1; 2; : : : ; Ji) on the ith population
NŒ�i; �

2� (i D 1; 2; : : : ; I), and let n D P
i Ji. This gives us the model

yij D �ij C "ij .i D 1; 2; : : : ; II j D 1; 2; : : : ; Ji/
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with G W �ij D �i for all i; j. Then setting

y D .y11; y12 : : : ; y1J1 ; y21; y22; : : : ; y2J2 ; : : : ; yI1; yI2; : : : ; yIJI /
0

with θ and ε similarly defined, we have y D θ C ε, where ε � NnŒ0; �2In�. We
have G W �ij D �i and we wish to test H W �1 D �2 D � � � D �I (D �, say). The
least squares estimate O�i of �i is obtained by minimizing

P
i

P
j.yij � �i/

2 with

respect to �i, namely O�i D PJi
jD1 yij=Ji D yi� say, and the residual sum of squares

(y0.In � P˝/y) is

RSS D
X

i

X

j

.yij � O�i/
2 D

X

i

X

j

.yij � yi�/2: (5.6)

Similarly, under H we minimize
P

i

P
j.yij � �/2 with respect to � giving

O�H D
X

i

X

j

yij=n D y��

and

RSSH D
X

i

X

j

.yij � O�H/
2 D

X

i

X

j

.yij � y��/2:

Using the matrix approach, we have from (2.1) that RSS has n�I degrees of freedom
(since rankŒX� D I), and RSSH D y0.In � P!/y has n � 1 degrees of freedom (since
rankŒXH � D rankŒ1n� D 1). The F-test of H is now

F D .RSSH � RSS/=.I � 1/

RSS=.n � I/
;

which has an FI�1;n�I distribution when H is true. Alternative parameterizations
have been used for this model and the reader is referred to Seber and Lee (2003,
section 8.2.1). We note from (4.6) that

QH � Q D RSSH � RSS Dk Oθ � OθH k2

which for the above example gives us

X

i

X

j

. O�i � O�H/
2 D

X

i

Ji.yi� � y��/2: (5.7)

In order for F to be quadratically balanced we require the coefficients of the y2ij
terms to be all equal for each of RSSH and RSS. Now expanding RSS,

RSS D
X

I

X

j

y2ij �
X

i

y2i�
Ji
;
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where yi� D P
j yij so that for quadratic balance we must have all the Ji equal (to J,

say). In this case

QH D
X

i

X

j

.yij � y��/2 D
X

i

X

j

y2ij � .
X

i

X

j

yij/
2=IJ;

which will also have equal diagonal elements for P! .

5.3 Unequal Variances

One of our assumptions is that the yi all have the same variance. We now allow the
variances to vary and consider by way of illustration Example 5.1 in the previous
section. We assume that for each i D 1; 2; : : : ; I, yi1; yi2; : : : ; yiJi is a random sample
from a population with mean �i, variance �2i and kurtosis �i2 (D �i4=�

4
i � 3).

Assuming normality of the observations and equal variances, the F-ratio that we
can use for testing the hypothesis H that the �i’s are all equal can be expressed in
the form

F D n � p

q
� ε
0.P˝ � P!/ε
ε0.In � P˝/ε

; (5.8)

which has an Fq;n�p distribution with q D I � 1 and n � p D P
i.Ji � 1/. To

actually carry out the test we replace ε by y and then F has an F-distribution when
H is true. However (5.8) is useful for examining the effects of non-normality and
unequal variances. We note that because P˝θ D θ, the denominator of (5.8) is
.n � p/s2 D y0.In � P˝/y. Referring to Example 5.1 and using (5.6) and (5.7) we
have from (5.8)

F D
IX

iD1
Ji.vi � v/2=Œ.I � 1/s2�; (5.9)

where, replacing yij by yij � �i,

vi D yi� � �i; v D
X

i

Jivi=n;

s2 D
X

i

.Ji � 1/s2i =.n � I/; and

s2i D
JiX

jD1
.yij � yi�/2=.Ji � 1/:
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Following Scheffé (1959, 341–342) we now allow the Ji and n to go off to infinity
in such a way that Ji=n is fixed. Then s2i ! �2i , and approximating Ji � 1 by Ji and
n � I by n in s2, F is approximately distributed as

F1 D 1

.I � 1/�2w

X

i

Ji.vi � v/2;

where �2w D P
i Ji�

2
i =n, a weighted average of the variances �2i , and

X

i

Ji.vi � v/2 D
X

i

Jiv
2
i � nv2 D v0Av;

where A D .aij/ and aij D ıijJi � JiJj=n. The next step is to find the mean and
variance of F1. Now vi is approximately normal with mean zero and variance �2i =Ji

so that

EŒF1� D 1

.I � 1/�2w

(
X

i

Ji
�2i
Ji

� nvarŒv�

)

D 1

.I � 1/�2w

(
X

i

�2i �
X

i

Ji�
2
i =n

)

D 1

.I � 1/�2w
.I�2u � �2w/; (5.10)

where �2u is the unweighted average of the �2i . We can find the variance of F1 using
Theorem 1.9(iii) for Normal data, namely

varŒv0Av� D 2
X

i

X

j

a2ij�2i�2j;

where �2i D �2i =Ji and aij D ıijJi � JiJj=n. Hence

varŒF1� D 2

.I � 1/2.�2w/2

8
<

:

X

i

J2i

�
1 � Ji

n

�2
�4i

J2i
C
X

i

X

jWj¤i

J2i J2j �
2
i �

2
j

n2JiJj

9
=

;

D 2

.I � 1/2.�2w/2
(
X

i

�4i � 2
X

i

Ji�
4
i =n C .

X

i

Ji�
2
i =n/2

)

D 2

.I � 1/2.�2w/2
(
X

i

�4i � 2
X

i

Ji�
4
i =n C .�2w/

2

)

:
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Now for large n, FI�1;n�I ! .I � 1/�1	2I�1, and given normality and equal
variances F1 will be distributed as .I � 1/�1	2I�1. In general it therefore has an
expected value of 1 and variance 2=.I � 1/. We see from (5.10) that the expected
value of F1 will be unity only if �2u D �2w, that is if all the fJig are equal. When this
happens

varŒF1� D 2

.I � 1/2.�2u /2
(
X

i

�4i � 2
X

i

�4i =I C .�2u /
2

)

:

Using
P

i �
4
i � I.�2u /

2 D P
i.�

2
i � �2u /

2, we can readily prove that the above
expression is equal to

varŒF1� D 2

I � 1
�
1C Vu

I � 2

I � 1

�
; (5.11)

where

Vu D 1

I.�2u /
2

X

i

.�2i � �2u /2:

The result (5.11) was proved by Scheffé (1959, 342) using a different approach. He
noted that if I D 2 or if the f�2i g are all equal so that Vu D 0 in (5.11), then F1 has
the correct variance of 2=.I � 1/; otherwise it is inflated. We conclude that except
for comparing just two populations, the F-test can be seriously affected by unequal
variances.
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Chapter 6
Testing Several Hypotheses

6.1 The Nested Procedure

Let θ be an unknown vector parameter, let G be the hypothesis that θ 2 ˝ , a
p-dimensional vector space in R

n, and assume that y � NnŒθ; �
2In�. Let Hi (i D

1; 2; : : : ; k) be the hypothesis that θ 2 !i, a p � qi-dimensional subspace of ˝ , and
denote the joint hypotheses θ 2 !1 \ !2, θ 2 !1 \ !2 \ !3 etc., by H12, H123, etc.
Suppose we wish to test the hypothesis H12:::k versus G. Obviously we could test this
hypothesis directly, but if it was rejected we would not know why it was rejected
and which of the Hi were responsible. What we want is a sequence of tests that tell
us how much of H12:::k we can accept. One such method is the nested test procedure
where we accept H12:::k only if the tests of H1 versus G, H12 versus H1, H123 versus
H12,. . . , H12:::k versus H12:::k�1 are not significant. The question immediately arises:
is such a procedure reasonable, and what sort of power does it have as a test method?
If we use the likelihood ratio as our test criterion, we have (Sect. 4.1)

�ŒH12:::kjG� D �ŒH1jG� �ŒH12jH1� � � ��ŒH12:::kjH12:::k�1�:

Thus if each of the likelihood ratio statistics on the right-hand side is “near” unity
then the left-hand side will also be “near” unity. This implies that if each of the
nested test statistics is well below its significance level then this nested procedure
is “nearly” equivalent to a direct likelihood ratio test of H12:::k versus G. As the F-
test—and therefore the likelihood ratio test—has good power, this procedure will
also have good power. If the nested method led to an “acceptance” of H12:::k, we
could make a final check and carry out a direct F-test of H12:::k versus G.

© Springer International Publishing Switzerland 2015
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The appropriate distribution theory for the nested method follows from the
orthogonal decomposition

y D .y � Oθ˝/C . Oθ˝ � Oθ1/C . Oθ1 � Oθ12/C � � � C Oθ12:::k
D .In � P˝/y C .P˝ � P1/y C .P1 � P12/y C � � � C P12:::k;

where P12:::i D P!1\!2\:::\!i and Oθ12:::i D P12:::iy is the least squares estimate of
θ 2 !1 \ !2 \ : : : \ !i (i D 1; 2; : : : ; k). The orthogonality follows by multiplying
the appropriate projection matrices together and using the fact that the product of
two projection matrices is equal to the projection matrix projecting onto the smaller
subset vector space. For example

.P˝ � P1/.P12 � P1/ D P˝P12 � P˝P1 � P1P12 C P21 D P12 � P1 � P12 C P1 D 0:

Since from the orthogonal decomposition of y above,

In D .In � P˝/C .P˝ � P1/C .P1 � P12/C � � � C .P12:::k�1 � P12:::k/C P12:::k

and the projection matrices in parenthesis are each idempotent representing orthog-
onal projections onto the mutually orthogonal subspaces˝?, !?1 \˝ , .!1\!2/?\
!1; : : :, and !12:::k, then Cochran’s Theorem 4.1 in Sect. 4.1 applies. Hence the
quadratics obtained by multiplying the bracketed terms in right-hand side of the
above equation on the left by y0, on the right by y, and dividing by �2, namely

Q=�2; .Q1 � Q/=�2; .Q12 � Q1/=�
2; : : : ; .Q12:::k � Q12:::k�1/=�2;

are all distributed independently as chi-square with n�p and ri�1�ri (i D 1; 2; : : : k)
degrees of freedom respectively, where ri D dimŒ!1 \ !2 \ : : : \ !i� and r0 D
dimŒ˝� D p. The distributions are central or non-central depending on which of the
Hi are true. Thus the test statistics for the nested method

.n � p/.Q1 � Q/

.p � r1/Q
;
.n � r1/.Q12 � Q1/

.r1 � r2/Q1

;
.n � r2/.Q123 � Q12/

.r2 � r3/Q12

; and so forth,

all have F-distributions and the nesting procedure is continued until a significant test
is obtained. We notice that the denominator or residual sum of squares (SS) of each
test is obtained by pooling the previous numerator and residual SS. For this reason
the nested method is essentially one of “pooling non-significant sums of squares.”

Example 6.1 The nested procedure can be applied to a set of hypotheses in which
there is a natural ordering of the hypotheses. An example of this is found in
polynomial regression where our basic underlying model is

yi D ˇ0 C ˇ1xi C ˇ2x
2
i C � � � C ˇp�1xp�1

i C "i .i D 1; 2; : : : ; n/;
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and the problem is to estimate p. The first step would be to decide what is the highest
value of k necessary for a polynomial approximation of the form

yi D ˇ0 C ˇ1xi C ˇ2x
2
i C � � � C ˇkxk

i C "i (6.1)

to represent an adequate fit to the observations y. We could then apply the nested
procedure to the following sequence of hypotheses H1 W ˇk D 0, H12 W ˇk D
ˇk�1 D 0 etc. and carry on until a significant test is obtained. If the test of ˇj D 0

given that ˇk D ˇk�1 D � � � D ˇjC1 D 0, is the first significant test, then j is our
estimate of p. Before leaving this example it should be noted that polynomial fitting
has some problems. It is known from the Weierstrass approximation theorem that
any continuous function on a finite interval can be approximated arbitrarily closely
by a polynomial (Davis 1975, chapter VI). We would therefore be tempted to fit a
low degree polynomial to a well-behaved curved trend in a scatter plot for the pairs
.xi; yi/. Although the approximation could be improved by increasing the order of
the polynomial, the cost is an increase in the number of the ˇi and some oscillation
between data points. Although it is possible to fit a polynomial of degree up to n�1,
there are a number of practical difficulties when k is large. In particular, for k greater
than about 6, we find that the regression matrix X associated with (6.1) becomes ill-
conditioned, that is becomes close to being less than full rank. For further details
about the problem see Seber and Lee (2003, Section 7.1).

When there is no natural ordering of a set of hypotheses, the most thorough
procedure would be to test all possible combinations of hypotheses using special
computer selection methods. This problem arises in multiple regression where we
are given the model

yi D ˇ0 C ˇ1xi1 C ˇ2xi2 C � � � C ˇp�1xi;p�1 C "i

and we wish to find out which of the ˇ’s can be put equal to zero without giving
a significant increase in the residual SS. Obviously the subset of ˇ’s selected will
not be unique, especially when there are high correlations among the x-variables,
and what we require is some criterion for choosing the best subset of ˇ’s from the
class of admissible subsets. Various methods are available, and these are discussed
in detail in Seber and Lee (2003, Chapter 12) for example.

In many situations, especially in analysis of variance applied to experimental
designs, the order of nesting is immaterial because of a certain property of the
system of hypotheses known as “orthogonality,” and a simpler procedure that we
describe below is available.
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6.2 Orthogonal Hypotheses

One method for testing H12:::k versus G would be to accept the hypothesis if we
accepted each of the k hypotheses Hi W θ 2 !i (i D 1; 2; : : : ; k) versus G separately.
As a first step, we assume that �2 D 1, which arises in large sample tests considered
in later chapters. Now the individual test for Hi is (cf. Sect. 4.1 with v D 1)
�2 log LŒHijG� D y0.P˝ � Pi/y and the corresponding test statistic for H12:::k is
y0.P˝ � P12:::k/y. Following Darroch and Silvey (1963), a useful requirement would
be to have the individual test statistics independent of one another, and we ask what
constraints must be put on the vector spaces˝ , !1, !2, : : :, !k to achieve this. Now
a reasonable criterion for independence would be

�ŒH12:::kjG� D
kY

iD1
�ŒHijG�;

and taking logarithms this is true if and only if

P˝ � P12:::k D
kX

iD1
.P˝ � Pi/;

where P˝ � Pi represents the orthogonal projection onto !p
i D !?i \ ˝ (Theo-

rem 4.2). We therefore have from the above equation (cf. the special case of (4.5) in
Sect. 4.1)

In D In � P˝ C
kX

1D1
.P˝ � Pi/C P12:::k;

where all the matrices are symmetric and idempotent. Hence by Theorem 4.1 in
Sect. 4.1, the subspaces ˝?, !p

1 ; !
p
2 ; : : : ; !

p
k , and !12:::k are mutually orthogonal

and the test statistics for the Hi are mutually independent. We are thus led to
the following definition due to Darroch and Silvey (1963, 564). An experimental
design is orthogonal relative to a general linear model G and linear hypotheses H1,
H2,. . . ,Hk if, with this design, the subspaces˝;!1; !2; : : : ; !k satisfy the conditions
!

p
i ? !

p
j for all i; j; i ¤ j. Since !p

i ? !
p
j if and only if !i ˚˝? D .!?i \˝/? �

!
p
j (Theorem 1.2(ii) in Sect.1.4) if and only if !i � !

p
j (since ˝ � !

p
j and

.!i ˚ ˝?/ \ ˝ D !i), we have an equivalent definition of orthogonality, namely
!i � !

p
j for all i; j; i ¤ j. Because we have symmetry between i and j in the original

definition, we see that !i � !
p
j if and only if !j � !

p
i .
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If �2 is unknown and !i has dimension p � qi, then the F-statistics for testing the
individual hypotheses are

.n � p/

qi

y0.P˝ � Pi/y
y0.In � P˝/y

D .n � p/

qi

Qi � Q

Q
.i D 1; 2; : : : ; k/:

An advantage of having the above property of orthogonality is given by the
following theorem.

Theorem 6.1 The sums of squares Q1 � Q, Q12 � Q1, . . . Q12:::k � Q12:::k�1 are the
same independent of the order of nesting of the hypotheses if and only if !p

i ? !
p
j ,

i ¤ j, that is, the hypotheses are orthogonal.

Proof (Sufficiency) Suppose !p
i ? !

p
j , i ¤ j. The matrix P12:::i�1 � P12:::i represents

an orthogonal projection onto

Wi D !1 \ !2 \ : : : \ !i�1 \ .!1 \ !2 \ : : : \ !i/
?

D !1 \ : : : \ !i�1 \ .!?1 C � � � C !?i / (by Theorem 1.2)

D !
p
i :

Justification for this last step is as follows: if θ 2 !
p
i then θ 2 !1 \ : : : \ !i�1

(by the alternative definition of orthogonality), θ 2 !?i , and θ 2 Wi. Conversely, if
θ 2 Wi, then θ 2 !1 \!2 : : :\!i�1 and θ D P12:::i�1θ. Also θ 2 .!?1 C � � � C!?i /
so that for some α1;α2; : : : ;αi, θ D Pi

jD1.In � Pj/αj and

θ D P12:::i�1
iX

jD1
.In � Pj/αj

D P12:::i�1.In � Pi/αi

D P12:::i�1.P˝ � Pi/αi

D P12:::i�1P!p
i
αi

D P!p
i
αi;

since!p
i � !1\!2\: : : ; !i�1. Hence θ 2 !p

i and Wi D !
p
i . Equating the projection

matrices on these two subspaces gives us

P12:::i�1 � P12:::i D P˝ � Pi (6.2)

and the sums of squares are equal to Qi � Q for i D 1; 2; : : : ; k, which are
independent of the order of nesting.
(Necessity). Given the sums of squares independent of the order of nesting, we can
choose!i to be the first in the sequence so that (6.2) must hold, that is !p

i D Wi � !j
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(i D 1; 2; : : : ; kI j D 1; 2; : : : ; i�1). Hence!p
i ? !

p
j for all i; j; i ¤ j. This completes

the proof of the theorem.

Having established the definition of orthogonality, we can now demonstrate using
the above theorem that the separate test method for testing H12:::k versus G is a
reasonable one when we have hypothesis orthogonality. The following justification
is due to Darroch and Silvey (1963). From Sect. 4.1 we have, with orthogonality,

f�ŒH12:::kjG�g�2=n � 1 D Q12:::k � Q

Q

D .Q1 � Q/C .Q12 � Q1/C � � � C .Q12:::k � Q12:::k�1/
Q

D
kX

iD1

Qi � Q

Q
(by Theorem 6.1)

D
kX

iD1
.f�ŒHijG�g�2=n � 1/:

If each �ŒHijG� is “near” unity, then �ŒH12:::kjG� is “near” unity, and by the same
argument applied to the nested procedure we see that the separate test method will
also have good power.

6.3 Orthogonal Hypotheses in Regression Models

In this section we shall show that the idea of hypothesis orthogonality is usually
associated with those experimental designs in which least squares estimates of
certain parameters are uncorrelated.

Example 6.2 Suppose˝ takes the form θ D Xβ, where X is an n�p matrix of rank
r (r < p) and Hβ D 0 are suitable identifiability conditions. Let X be partitioned
into k C 1 submatrices .X0;X1;X2; : : : ;Xk/ with a corresponding partition of β D
.β00;β01; : : : ;β0k/0 and of H. We are interested in testing the hypotheses Hi W βi D 0
(i D 1; 2; : : : ; k). Thus !i D fθ D X�i β�i ;H�i β�i D 0g, where X�i is the matrix X
with the submatrix Xi deleted; H�i and β�i are similarly defined. We shall now prove
that the least squares estimates Oβi of βi (i D 1; 2; : : : ; k) for θ 2 ˝ are uncorrelated
if and only if we have orthogonality. The proof rests on the following Theorem.

Theorem 6.2 Let ˝ be a vector space and let Ai (i D 1; 2; : : : ; k) be any matrix
such that !i D N ŒAi� \ ˝ is a proper subspace of ˝ . Then !p

i ? !
p
j if and only

if AiP˝A0j D 0. Furthermore, if ˝ D N ŒA� and AA0i D 0 for i D 1; 2; : : : ; k, then
!

p
i ? !

p
j if and only if AiA0j D 0 (for all i; j; i ¤ j).
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Proof From Theorem 4.3 in Sect. 4.2,

!
p
i D !?i \˝ D CŒP˝A0i�

and therefore !p
i ? !

p
j if and only if

.P˝A0i/0P˝A0j D AiP2˝A0j D AiP˝A0j D 0:

If ˝ D N ŒA� D CŒA0�? and AA0i D 0, then

AiP˝A0j D AiŒIn � A0.AA0/�A�A0j D AiA0j;

where .AA0/� is a weak inverse (cf. A.15(ii)), and the result follows.

We are now in the position to prove the following theorem for our regression
example given above.

Theorem 6.3 The vectors Oβi and Oβj are uncorrelated if and only if !p
i ? !

p
j .

Proof We note from Theorem 3.5(i) in Sect. 3.4 that Oβ D .G0G/�1X0y. Since the
constraints Hβ D 0 are suitable for identifiability, we have from Theorem 3.5 in
Sect. 3.4

P˝ D X.G0G/�1X0 and H.G0G/�1X0 D 0; (6.3)

where G0G D X0X C H0H. Now β D .G0G/�1X0θ, and the hypothesis βi D 0
is equivalent to Biβ D 0, where Bi, if partitioned in the same way as X, has the
identity matrix in the .i C 1/th partition and zero matrices elsewhere. Thus testing
the hypothesis Hi is equivalent to testing Bi.G0G/�1X0θ D Aiθ D 0, and from
Theorem 6.2 above, !p

i ? !
p
j if and only if

AiP˝A0j D Bi.G0G/�1X0X.G0G/�1X0X.G0G/�1B0j D 0:

or using (6.3) with P˝X D X and adding H0H to X0X,

Bi.G0G/�1X0X.G0G/�1B0j D 0:

But from Theorem 1.5(iii) in Sect. 1.6,

CovŒ Oβi; Oβj� D CovŒBi Oβ;Bj Oβ�
D BiVarŒ Oβ�B0j
D �2Bi.G0G/�1X0X.G0G/�1B0j;

and we therefore have orthogonality if and only if CovŒ Oβi; Oβj� D 0.
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Example 6.3 We return to Example 6.1 on polynomial regression where we con-
sidered the model (6.1). In applying the nested method of hypothesis testing we run
into the problem that the least squares estimates of the ˇi have to be recalculated at
each stage of the nesting. However, the algebra would be much simpler if each of the
hypotheses Hi W ˇi D 0, i D 0; 1; 2; : : : ; k was orthogonal, for then the least squares
estimates Ǒ

i would be uncorrelated, that is covŒ Ǒ
i; Ǒ

j� D 0 for i ¤ j, and they would
be the same irrespective of whether or not some of the ˇi were made zero. This
means we would not have to recalculate these estimates at each stage. One method
of achieving this desired simplification is by the use of orthogonal polynomials. Our
model then becomes

yi D �0�0.xi/C �1�1.xi/C � � � C �k�k.xi/C "i;

where �0.xi/ D 1, �r.xi/ is a polynomial of degree r, and
P

i �r.xi/�s.xi/ D 0 for
all r; s D 0; 1; 2; : : : ; k, r ¤ s. if γ D .�0; �1; : : : ; �k/

0, then EŒy� D Wγ, where
W D .�j.xi// has mutually orthogonal columns. Let Oγ be the least-squares estimate
of γ, then VarŒ Oγ� D �2.W0W/�1, which is diagonal as W0W is diagonal, and the O�i

are uncorrelated. Hence, by Theorem 6.3, the hypotheses Hi W �i D 0 are orthogonal;
also ˇk D ˇk�1 D � � � D ˇi D 0 if and only �k D �k�1 D : : : D �i D 0. For further
details concerning orthogonal polynomials see Seber and Lee (2003, Chapter 7).
This example can be generalized in the following theorem.

Theorem 6.4 Suppose X D .X0;X1; : : : ;Xk/ with linearly independent columns,
with a corresponding partition of β D .β00;β01; : : : ;β0k/0. We wish to test the
hypotheses Hi W βi D 0 (i D 1; 2; : : : ; k). Thus !i D CŒX�i �, where X�i is the
matrix X with the submatrix Xi deleted. Then !p

i ? !
p
j for all i; j D 1; 2; : : : k; i ¤ j

if and only if X0j.In � P0/Xi D 0, where P0 is the orthogonal projection onto CŒX0�.

Proof We shall use the results that (i) P!P˝ D P˝P! D P! for ! 2 ˝ , and (ii)
CŒV� D CŒPV�, where PV represents the orthogonal projection onto CŒV�. Also let
Pi D P!i .

We first show that

.CŒX�i �/? \ CŒX� D CŒ.In � Pi/X�;

where the left-hand side (LHS) of the above equation is !p
i . If θ 2 LHS, then .In �

Pi/θ D θ and θ D Xβ for some β, that is θ D .In � Pi/Xβ and θ 2 RHS.
Conversely, if θ 2 RHS, then θ D .In � Pi/Xβ for some β and θ 2 .CŒX�i �/?. Now

.In � P˝/θ D .In � P˝/.In � Pi/Xβ

D .In � P˝ � Pi C Pi/Xβ .as P˝Pi D Pi/

D .In � P˝/Xβ

D 0 .as P˝X D X/:
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Hence θ 2 ˝ and θ 2 LHS. Using the alternative definition for the orthogonality
of hypotheses, we now have the following equivalent statements for all i; j; i ¤ j.

!
p
i ? !

p
j ” !

p
i � \jWj¤i!j

” CŒ.In � Pi/Xi� � CŒX0;Xi�

” CŒPiXi� � CŒX0;Xi�

” CŒPi.In � P0 C P0/Xi� � CŒX0;Xi�

” CŒPi.In � P0/Xi� � CŒX0;Xi� .by (i) and (ii) as PiP0 D P0/

” CŒ.Pi � P0Pi/Xi� � CŒX0;Xi� .as PiP0 D P0Pi/

” CŒ.In � P0/PiXi� � CŒXi� .by (ii)/

” CŒPi.In � P0/Xi� � CŒXi�

” Pi.In � P0/Xi D 0 .as CŒX�i � \ CŒXi� D 0/

” X0j.In � P0/Xi D 0:

This completes the proof.

Since In � P0 is idempotent, the above conditions are equivalent to

.In � P0/Xi ? .In � P0/Xj:

A number of special cases of the above theorem follow. For example, if X0 D 0,
then the conditions reduce to X0iXj or, if Xi D xi, to X having orthogonal columns,
as we found in Example 6.3 above. If X0 D 1n and Xi D xi, then P0 D 1n10n=n and
the conditions reduce to

Pn
rD1.xir � xi/.xjr � xj/ D 0 (all i; j; i ¤ j), where xi has

elements xir and xi is the mean of the elements of xi.

6.4 Orthogonality in Complete Two-Factor Layouts

Consider a two-factor analysis of variance with factor A and B at I and J levels
respectively, and suppose that nij observations yij1; yij2; : : : ; yijnij are made on the
combination �ij of the ith level of A with the jth level of B. This gives us the model
yijk D �ijk C "ijk for k D 1; 2; : : : ; nij, i D 1; 2; : : : ; I, and j D 1; 2; : : : ; J, where
�ijk D �ij: the random “errors” "ijk are all independently distributed as NŒ0; �2�. We
now split up the i; jth cell mean �ij into an overall mean �, an effect ˛i due to the
ith level of A, an effect ˇj due to the jth level of B, and an interaction term �ij, so
that �ij D � C ˛i C ˇj C �ij. If we write the element sets fyijkg, f�ijkg, and f"ijkg
as single n-dimensional vectors (where n D n�� D P

i

P
j nij), we can express the
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above model in the form y D θ C ε with G W θ D Xδ, where

δ D .�; ˛1; : : : ; ˛I ; ˇ1; : : : ; ˇJ ; �11; �12; : : : ; �1J; �21; �22; : : : ; �I1; : : : ; �IJ/
0:

Since we have replaced the IJ uniquely defined parameters �ij by 1C I CJ C IJ new
parameters, δ will not be identifiable and we must introduce some identifiability
constraints. The form of these constraints will depend on what “weights” we choose
for defining these parameters. For example, the observations for certain i; j cells may
be more important than the others, and therefore we would want to give more weight
to these observations. Thus we may define our parameters as follows.

The means for the ith level of A and the jth level of B are defined to be ai DP
s vs�is and bj D P

r ur�rj, where all the ui � 0, vj � 0 and
P

r ur D P
s vs=1.

The general mean � is defined to be

� D
X

i

uiai D
X

j

vjbj D
X

i

X

j

uivj�ij:

The main effect of the ith level of A is defined by

˛i D ai � � D
X

s

vs�is �
X

r

X

s

urvs�rs

and the main effect of the jth level of B is defined by

ˇj D bj � � D
X

r

ur�rj �
X

r

X

s

urvs�rs:

Now �ij D �C ˛i C ˇj C �ij, where

�ij D �ij �
X

j

vj�ij �
X

i

ui�ij C
X

i

X

j

uivj�ij

is called the interaction between the ith level of A and the jth level of B. We have
effectively imposed the identifiability constraints

X

i

ui˛i D
X

j

vjˇj D
X

i

ui�ij D
X

j

vj�ij D 0:

Finally, let �ijk D �ijk � � ij� where � ij� D P
k �ijk=nij, so that our model now takes

the form

�ijk D �C ˛i C ˇj C �ij C �ijk;
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where the �, ˛i, ˇj, and �ij are defined above with � ij� replacing �ij in the definitions.
We now consider testing the hypotheses Hi (i D 1; 2; 3; 4) versus G, where

G W �ijk D 0;

H1 W �ijk D 0; �ij D 0 (interactions zero)

H2 W �ijk D 0; ˛i D 0 (main effects of A zero)

H3 W �ijk D 0; ˇj D 0 (main effects of B zero)

H4 W �ijk D 0; � D 0;

and in the following theorem we derive necessary and sufficient conditions for this
system of hypotheses to be orthogonal.

Theorem 6.5 The hypotheses Hi (i D 1; 2; 3; 4) are orthogonal with respect to G if
and only if

nij D ni�n�j=n; ui D ni�=n; and vj D n�j=n for all i; j;

where ni� D P
j nij, n�j D P

i nij, and n D n�� D P
i

P
j nij.

Proof If θ is the n-dimensional vector with elements �ijk we can express the
hypotheses in the form

G W Aθ D 0 and Hr W Aθ D 0; Arθ D 0 .r D 1; 2; 3; 4/:

For example, we wish to express the conditions

�ijk D �ijk �
nijX

`D1
�ij`=nij D 0 (6.4)

in the form Aθ D 0. The matrix A would be n � n and the row corresponding to
Eq. (6.4) would have the .r0; s0; t0/ element of the form

ıir0ıjs0ıkt0 � ıir0ıjs0=nr0s0 ; (6.5)

where ıab is the Kronecker delta. Now

�ij D � ij� �
X

s

vs� is� �
X

r

ur� rj� C
X

r

X

s

urvs� rs�;

and the row of A1 corresponding to �i1j1 D 0 has its .r1; s1; t1/ element as

.ıi1r1ıj1s1 � vs1ıi1r1 � ur1ıj1s1 C ur1vs1 /=nr1s1 : (6.6)
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Similarly the .r2; s2; t2/ element of row ˛i2 D 0 for the matrix A2 is

.ıi2r2vs2 � ur2vs2 /=nr2s2 ; (6.7)

the .r3; s3; t3/ element of row ˇj3 D 0 for A3 is

.ıj3s3ur3 � ur3vs3 /=nr3s3 ; (6.8)

and the .r4; s4; t4/ element of � D 0 is

ur4vs4=nr4s4 : (6.9)

By multiplying together (6.5) and (6.6), putting r1 D r0, s1 D s0, t1 D t0 and
summing on r0; s0; t0 (t0 D 1; 2; : : : ; nr0s0 I r0 D 1; 2; : : : ; II s0 D 1; 2; : : : ; J) we
have A1A0 D 0. Similarly, A2A0, A3A0, and A4A0 are all zero matrices since (6.5)
is the only term above containing t0, and this summed on t0 is zero. Thus by
Theorem 6.2, the hypotheses are orthogonal if and only if ApA0q is the zero matrix
for all p; q; p ¤ q, and we now show that these matrix conditions hold if and only if

nij D ni�n�j=n; ui D ni�=n; and vj D n�j=n for all i; j:

Sufficiency. If the above conditions on the nij, ui, and vj hold, then (6.6) becomes

n.ıi1r1=nr1� � 1=n/.ıj1s1=n�s1 � 1=n/: (6.10)

Therefore by multiplying (6.7) and (6.10) together, putting r2 D r1, s2 D s1, t2 D t1,
and summing on r1; s1; t1, we have A1A02 D 0. In a similar manner it can be shown
that A1A03,: : :,A3A04 are all zero matrices. Hence the hypotheses are orthogonal and
the conditions are sufficient.
Necessity. Given that A1A04 D 0, we multiply (6.6) and (6.9) together, set r4 D r1,
s4 D s1, t4 D t1 and then sum on r1; s1; t1. This gives us an element of A1A04 so that

ui1vj1

ni1j1

�
X

s1

(
ui1v

2
s1

ni1s1

)

�
X

r1

(
vj1u

2
r1

nr1j1

)

C
X

r1

X

s1

(
u2r1v

2
s1

nr1s1

)

D 0: (6.11)

Similarly, from A2A04 D 0 and A3A04 D 0 we obtain

ui2

X

s2

(
v2s2

ni2s2

)

�
X

r2

X

s2

(
u2r2v

2
s2

nr2s2

)

D 0 (6.12)
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and

vj3

X

r3

(
u2r3

nr3j3

)

�
X

r3

X

s3

(
u2r3v

2
s3

nr3s3

)

D 0: (6.13)

From these last two equations we note that ui2 > 0 and vj3 > 0 for all i2 and j3.
Adding (6.13) to (6.11), putting j1 D j3, and dividing by ui1 , we obtain

vj1

ni1j1

�
X

s1

(
v2s1

ni1s1

)

D 0: (6.14)

Multiplying this equation by ni1j1 , summing on j1, and using
P

j1
vj1 D 1, give us

1 � ni1�
X

s1

(
v2s1

ni1s1

)

D 0:

Substituting this back into (6.14) leads to vj1 D ni1j1=ni1� for all i1, that is,

vj1 D
P

i1
ni1j1P

i1
ni1�

D n�j1
n
:

In a similar manner it can be shown that

ui1 D ni1j1

n�j1
D ni1�

n
:

Now by multiplying (6.7) and (6.8) together, putting r3 D r2, s3 D s2, t3 D t2,
and summing on r2, s2, t2 give us an element of A2A03. Thus if A2A03 D 0 we have,
substituting the expressions given above for ur2 and vs2 ,

0 D
X

r2

X

s2

X

t2

��
ıi2r2

nr2�
� 1

n

��
ıj3s2

n�s2
� 1

n

��

D ni2j3

ni2�n�j3
� 1

n

for every i2 and j3. Therefore a necessary condition for orthogonality is that we have
nij D ni�n�j=n for all i; j and this completes the proof of the theorem

We note that when we have equal numbers of observations per cell, that is nij D K
for all i; j, the conditions for orthogonality are automatically satisfied, provided we
use equal weights. In this case the identifiability constraints reduce to the equationsP

i ˛i D P
j ˇj D P

i �ij D P
j �ij D 0:
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When the hypotheses are orthogonal, we have from Theorem 6.3 in Sect. 6.3 that
the least squares estimates of the �, f˛ig, fˇjg, and f�ijg for θ 2 ˝ are uncorrelated
group-wise and are readily derived, as we shall see below, by using the Gauss-
Markov theorem. In the remainder of this section we will assume the conditions
for orthogonality hold, namely

ui D ni�=n; vj D n�j=n; nij D ni�n�j=n for all i; j:

To find the least squares estimates of the parameters �, ˛i etc. for G we require
the least squares estimates of Arθ (r D 1; 2; 3; 4, θ 2 ˝). From the Gauss-Markov
Theorem 3.6 in Sect. 3.5 these are given by ArP˝y, which is just Ary since P˝ D
In �A0.AA/�1A and ArA0 D 0 (Theorem 6.2). Therefore the least squares estimates
O�, Ǫ i etc. can be written down immediately from the definitions of the parameters
by replacing θ by y and using the above conditions for orthogonality: thus

O� D
X

i

X

j

ni�n�jyij�=n2

D
X

i

X

j

X

k

yijk=n

D y��� say;

O�ij D yij� �
X

j

n�jyij�=n �
X

i

ni�yij�=n C y���

Ǫ i D
X

j

n�jyij� � y��� and

Ǒ
j D

X

i

ni�yij� � y���:

Suppose we wish to test H1 W �ijk D 0, �ij D 0, or θ 2 !1, say, then we require the
least squares estimates Ar

Oθ1 of Arθ (r D 2; 3; 4) for θ 2 !1, namely ArP1y, where
P1 D P!1 . Now In � P1 represents the projection onto CŒ.A0;A01/� (by Theorem 1.1
in Sect. 1.2) which is orthogonal to CŒA0r� for r D 2; 3; 4. Therefore we have the
result .In � P1/A0r D 0 or ArP1 D Ar and

Ar Oθ1 D Ary D ArP˝y D Ar Oθ for r D 2; 3; 4:

This confirms that the least squares estimates of �, ˛i, and ˇj remain unchanged
when �ij D 0 and do not have to be recalculated. As already noted, this follows
from the fact that the groups of estimates are uncorrelated and therefore independent
under the assumptions of normality. Hence the least squares estimates of any one
group, say the f˛ig, are independent of the least squares estimates of the parameters
in the other groups �, fˇjg, and f�ijg.
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The numerator sums of squares, k Oθ � Oθ1 k2, for the F-test of H1 is simplyP
i

P
j

P
k O�2ij D P

i

P
j nij O�2ij as the i; j; kth element of Oθ � Oθ1 is . O� C Ǫ i C Ǒ

j C
O�ij/� . O�C Ǫ i C Ǒ

j/ or O�ij. Similarly we have

k Oθ1 � Oθ12 k2 D k Oθ � Oθ2 k2D
X

i

ni� Ǫ 2i

k Oθ12 � Oθ123 k2 D k Oθ � Oθ3 k2D
X

j

n�j Ǒ2
j

k Oθ123 � Oθ1234 k D k Oθ � Oθ4 k2D n O�2

and

O�ijk D O�C Ǫ i C Ǒ
j C O�ij

D yij�:

We note that Oθ1234 D 0 and therefore k Oθ123 k2D n O�2. Thus corresponding to the
decomposition

�ijk D �C ˛i C ˇj C �ij C �ijk

we have a similar decomposition

yijk D O�C Ǫ i C Ǒ
j C O�ij C yijk � yij�:

Squaring both sides and summing on i; j; k we find that the cross-product terms
vanish because of orthogonality, giving

X

i

X

j

X

k

y2ijk D n O�2 C
X

i

ni� Ǫ 2i C
X

j

n�j Ǒ2
j

C
X

i

X

j

nij O�2ij C
X

i

X

j

X

k

.yijk � yij�/2:

In general we usually consider the total variation about the mean namely,

y0.In � P123/y D
X

i

X

j

X

k

y2ijk � n O�2

D
X

i

X

j

X

k

.yijk � y���/2

and construct the following analysis of variance table for the sums of squares
(SS). Here the term “row” and “column” refer to the levels of the factors A and
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Table 6.1 Two-way ANOVA table

Source SS df MSS

Between rows
P

i ni� Ǫ2i I � 1 MSS.2/

Between columns
P

j n�j Ǒ2j J � 1 MSS.3/

Interactions
P

i

P
j nij O�2ij .I � 1/.J � 1/ MSS.1/

Residual
P

i

P
j

P
k.yijk � yij�/

2 n� IJ MSS

Corrected total
P

i

P
j

P
k.yijk � y

���
/2 n� 1

Correction for ny2
���

1

the mean

Total
P

i

P
j

P
k y2ijk n

B respectively. The test statistic for testing Hr is simply

F D MSS.r/

MSS
r D 1; 2; 3;

where MSS, as usual, denotes the appropriate SS divided by its degrees of freedom
(Table 6.1).

In general we are not interested in testing H4 W � D 0, but if we accept hypothesis
H123 we may be interested in finding confidence intervals for �. These can be
calculated from

p
n.y�����/=

p
MSS, which has the t-distribution with n�IJ degrees

of freedom.
The column giving the degrees of freedom for each SS is obtained by calculating

the number of independent constraints in Apθ for p D 1; 2; 3. Thus α D A2θ
has .I � 1/ independent constraints as there exists one identifiability conditionP

i ui˛i D 0. Similarly, as
P

i ui�ij D 0 for j D 1; 2; : : : ; J and
P

j vj�ij D 0

for i D 1; 2; : : : ; I with
P

i

P
j uivj�ij D 0 in common, we see that γ D A1θ has

.I C J � 1/ identifiability conditions giving us IJ � I � J C 1 or .I � 1/.J � 1/

independent constraints for the �ij. The degrees of freedom can also be obtained
from the traces associated with the SS, where the trace is the sum of the coefficients
of the terms y2ijk. The expected value of a quadratic y0Cy is �2 traceŒC� C θ0Cθ so
that it can be shown, for example, that

EŒ
X

i

ni� Ǫ 2i � D �2.I � 1/C
X

i

ni�˛2i :

If nij D K for all i; j (which is usually referred to as a balanced design), it can
be shown that the diagonal elements of each of the projection matrices Pi for the
hypothesis Hi W θ 2 !i (i D 1; 2; 3) and of P˝ are all equal. This means that the
corresponding F tests are quadratically balanced, which implies some robustness to
non-normality (by Theorem 5.3 in Sect. 5.2 and the following discussion). If we set



6.5 Orthogonality in Complete p-Factor Layouts 89

ui D 1=I and vj D 1=J so that the identifiability conditions are now
P

i ˛i D 0

and
P

j ˇj D 0 etc., we again have orthogonality as the orthogonality conditions are
satisfied. Clearly having equal numbers per cell is the ideal situation.

6.5 Orthogonality in Complete p-Factor Layouts

The ideas developed in the previous section can be extended to complete layouts
with more than two factors. We have the following theorem (cf. Seber, 1964).

Theorem 6.6 A p-factor analysis of variance model with ni1i2i3���ip observations per
cell has orthogonal hypotheses if and only if

ni1i2i3���ip D .ni1����/.n�i2���/ � � � .n���ip/
np�1���

. for all i1; i2; : : : ; ip/; (6.15)

where a “dot” signifies summing on that subscript. For example, n���� (D n, say) is
the sum of all the observations, namely

n���� D
X

i1

X

i2

� � �
X

ip

ni1i2i3���ip :

Proof As the notation becomes very complicated we shall prove this theorem for
just p D 3, with a change in notation for clarity, and then briefly indicate the
generalizations needed for p > 3. We use a different approach from the case p D 2

by beginning directly with three-way layout model

yijk` D �ijk` C "ijk`

for i D 1; 2; : : : ; II j D 1; 2; : : : ; JI k D 1; 2; : : : ;KI ` D 1; 2; : : : ; nijk and

�ijk` D �ijk D � ijk�:

Let �ijk` D �ijk` � � ijk�. We now define the following interactions and main effects:

�ijk D � ijk� � � ij�� � � i�k� � � �jk� C � i��� C � �j�� C � ��k� � � ����
�
.12/
ij D � ij�� � � i��� � � �j�� C � ����

�
.13/
ik D � i�k� � � i��� � � ��k� C � ����

�
.23/
jk D � �jk� � � �j�� � � ��k� C � ����

˛
.1/
i D � i��� � � ����
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˛
.2/
j D � �j�� � � ����
˛
.3/
k D � ��k� � � ����

together with � D � ����, where � ijk� D P
` �ijk`=nijk, � ij�� D P

k

P
` �ijk`=nij�, � i��� DP

j

P
k

P
` �ijk`=ni�� etc. We note that this time weights are automatically imposed,

for example
P

i ˛
.1/
i ni��=n D 0. The f�g are called second order interactions, the f�g

first order interactions, and the f˛g are the main effects for each factor. Then

�ijk` D �C ˛
.1/
i C ˛

.2/
j C ˛

.3/
k C �

.12/
ij C �

.13/
ik C �

.23/
jk C �ijk C �ijk`;

and we assume G W �ijk` D �ijk` � � ijk� D 0 for all i; j; k; `. Given G, let H1, H2,
and H3 be the individual hypotheses of no main effects, H12, H13, and H23 the
hypotheses of zero first order interactions, H123 the hypothesis of zero second order
interactions, i.e. �ijk D 0, and H0 W � D 0. We denote the matrices corresponding
to the null space representations of these hypotheses by Ar, Ars, A123, and A0 D 10n,
respectively; also A denotes the matrix corresponding to G. Now it is seen that, apart
from �, all the other parameters are contrasts in �ijk` so that A1n, Ar1n, Ars1n, and
A1231n are all zero, which means that each matrix post-multiplied by A00 is zero.
This is obviously true for a p-factor layout. To apply Theorem 6.2 we now need to
show that all the matrix products ArA0s, ArA0st etc. are zero if and only if (6.15) is
true.
Sufficiency. Assuming (6.15) to be true for p D 3, we have

nijk D ni��n�j�n��k
n2

(6.16)

and summing on i gives us

n�jk D n�j�n��k
n

(6.17)

together with two similar expressions obtained by summing on j and k respectively.
Since �ijk` is the only parametric expression containing `, and �ijk� D 0, we have, by
taking matrix products and summing on ` first, that all the matrices post-multiplied
by A0 are zero. For example, if θ has elements �ijk` (stacked according to the order
i; j; j; k; `), then Aθ D 0 implies that A is an n �n matrix with its row corresponding
to �i0j0k0`0 having its .r0; s0; t0; u0/ element

ıi0r0ıj0s0ık0t0ı`0u0 � ıi0r0ıj0s0ık0t0=nr0s0t0 ; (6.18)
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where ıab is the Kronecker delta. Summing (6.18) on `0 gives us zero. Similarly the
row of A123 corresponding to �i1j1k1 has .r1; s1; t1; u1/ element

ıi1r1ıj1s1ık1t1

nr1s1t1

� ıi1r1ıj1s1

nr1s1�
� ıi1r1ık1t1

nr1�t1
� ıj1s1ık1t1

n�s1t1
C ıi1r1

nr1��

C ıj1s1

n�s1�
C ık1t1

n��t1
� 1

n
: (6.19)

Using equations like (6.16) we find that (6.19) reduces to

n2
�
ıi1r1

nr1��
� 1

n

��
ıj1s1

n�s1�
� 1

n

��
ık1t1

n��t1
� 1

n

�
: (6.20)

With A12, the .r2; s2; t2; u2/ element of the row corresponding to �.12/i2j2
is

ıi2r2ıj2s2

nr2s2�
� ıi2r2

nr2��
� ıj2s2

n�s2�
C 1

n
;

and, using equations like (6.17), the above equation reduces to

n

�
ıi2r2

nr2��
� 1

n

��
ıj2s2

n�s2�
� 1

n

�
: (6.21)

Finally, A1 has the .r3; s3; t3; u3/ element of the row corresponding to ˛.1/i3
given by

ıi3r3

nr3��
� 1

n
: (6.22)

We see then that all the elements of the matrices Ar, Ars, and Arst factorize into one
or more of the following types of brackets:

�
ıir

nr��
� 1

n

�
;

�
ıjs

n�s�
� 1

n

�
; and

�
ıkt

n��t
� 1

n

�
: (6.23)

When we form all the matrix product pairs A1A012, A23A0123 etc. we find that,
ignoring any power of n, the product of corresponding elements is also a product
of terms like those given by (6.23) with at least one of the above types of brackets
occurring only once. (This is true for general p-factor models.) For example,
considering A12A023 we multiply the .r2; s2; t2; u2/ term of a row of A12 (cf. (6.21))
by the .r3; s3; t3; u3/ term of a row of A23 and set r3 D r2, s3 D s2, t3 D t2, and
u3 D u2 to get

n2
�
ıi2r2

nr2��
� 1

n

��
ıj2s2

n�s2�
� 1

n

��
ıj3s2

n�s2�
� 1

n

��
ık3t2

n��t2
� 1

n

�
;
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where we have a “j” term occurring twice and the “i” and “k” terms occurring only
once each. We now sum over r2, s2, t2 and u2 to get an element of A12A023. In fact to
get the result that we want we only need to sum the first bracket over r2 and u2 as it
is the only term containing r2, namely

IX

r2D1

nr2s2 t2X

u2D1

�
ıi2r2

nr2��
� 1

n

�
D

IX

r2D1
nr2s2t2

�
ıi2r2

nr2��
� 1

n

�

D ni2s2t2

ni2��
� n�s2t2

n

D 0;

since combining (6.16) and (6.17) gives us

nijk D ni��n�jk
n

for all i; j; k. Using similar arguments we see that all the matrix products are zero
and the hypotheses are orthogonal.
Necessity. We assume that all the matrix products are zero. From A1A02 D 0 it can
be shown, after some algebra, that

0 D
IX

r3D1

JX

s3D1

KX

t3D1

nr3s3 t3X

u3D1

�
ıi3r3

nr3��
� 1

n

��
ıj3s3

n�s3�
� 1

n

�

D
IX

r3D1

JX

s3D1

KX

t3D1
nr3s3t3

�
ıi3r3

nr3��
� 1

n

��
ıj3s3

n�s3�
� 1

n

�

D ni3j3 �
ni3��n�j3�

� 1

n
:

Hence

nij� D ni��n�j�
n

(6.24)

for all i and j, and we have similar expressions for n�jk and ni�k.
From A12A03 D 0 and using expressions like (6.24) it can be shown that

0 D
IX

r2D1

JX

s2D1

KX

t2D1

�
ıi2r2ıj2s2

nr2s2�
� ıi2r2

nr2��
� ıj2s2

n�s2�
C 1

n

��
ık2t2

n��t2
� 1

n

�

D ni2j2k2

ni2j2�n��k2
� 1

n
:
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Hence

nijk D nij�n��k
n

;

which combined with (6.24) gives us

nijk D ni��n�j�n��k
n

;

and the result is proved.

The above proof can be extended to any higher-way layout and we demonstrate
this using a 4-factor experiment. The matrices involved would now be of the form
A0 D 1n as before along with Ai, Aij, Aijk, and A1234 representing main effects,
first order interactions, second order interactions, and third order interactions,
respectively. To prove sufficiency we need to show that the appropriate products
of all pairs of matrices, for example A12A1234 are zero. In the latter case we would
get “i” and ’‘j” factors occurring twice each (cf. (6.23)) as subscripts (1,2) occur in
both matrices, and the other two factors occur only once each. We then sum on the
number of observations and on a factor occurring only once to get zero. To prove
necessity for p D 4, we assume A1A02, A12A03, and A123A4 are all zero matrices to
prove the following (using a more general notation):

ni1i2�� D .ni1���/.n�i2��/=n����
ni1i2i3� D .ni1i2��/.n��i3�/=n����

ni1i2i3i4 D .ni1i2i3�/.n���i4/=n����;

which combined give

ni1i2i3i4 D .ni1���/.n�i2��/.n��i3�/.n���i4 /=n3;

our required result. The conditions for orthogonality are automatically satisfied if
we have equal numbers of observations per cell, i.e. ni1i2i3i4 D n0 for all i1,i2, i3,
and i4. For further background reading, particularly with regard to the formulation
of interactions, see Seber and Lee (2003, section 8.6).

6.6 Orthogonality in Randomized Block Designs

Consider a randomized block design with I treatments and J blocks. Let yij be the
observation for the ith treatment on the jth block, and assume the model EŒyij� D
�ij D �C ˛i C ˇj for i D 1; 2; : : : ; I and j D 1; 2; : : : ; J. This is the same model as
for the two-way layout of Sect. 6.4, except that the treatment � block interactions are
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assumed to be negligible and there is only one observation per cell. As before we use
weights fuig and fvjg giving the identifiability conditions

P
i ui˛i D P

j vjˇj D 0.
We now consider the hypotheses

H1 W �ij D �C ˇj; H2 W �ij D �C ˛i; H3 W �ij D ˛i C ˇj

and find what weights we must use for H1, H2, and H3 to be orthogonal with respect
to G W �ij D �C ˛i C ˇj.

Theorem 6.7 The hypotheses Hi (i D 1; 2; 3) are orthogonal with respect to G if
and only if ui D 1=I and vj D 1=J for all i and j.

Proof We shall use a more direct proof than that in Theorem 6.5.

(a) Necessity. From the alternative form of the definition of orthogonality we have
that the hypotheses are orthogonal if and only if !?i \˝ � !j for j ¤ i. Thus
a necessary condition for orthogonality is that !?3 \˝ � !1 \ !2. The vector
space !?3 \˝ is defined by the set of �ij D �C ˛i C ˇj such that θ ? !3, i.e.,

X

i

X

j

.˛�i C ˇ�j /.�C ˛i C ˇj/ D 0 (6.25)

for every ˛�i and ˇ�j satisfying the constraints
P

i ui˛
�
i D P

j vjˇ
�
j D 0. If this

set of �ij also belongs to !1 \ !2, the �ij must be constant with respect to i and
j so that ˛i D ˛, ˇj D ˇ, say. Equation (6.25) now becomes

X

i

X

j

.˛�i C ˇ�j /.�C ˛ C ˇ/ D 0:

Since we are concerned with nontrivial vectors, .�C˛Cˇ/ ¤ 0, and by putting
the fˇj	g equal to zero we see that

P
i ˛
�
i D 0. In the same way

P
j ˇ
�
j D 0

so that we have shown that the identifiability conditions must take the formP
i ˛i D 0 and

P
j ˇj D 0.

(b) Sufficiency. If
P

i ˛i D P
j ˇj D 0, then the vector space !?1 \˝ is defined by

the set of �ij such that

0 D
X

i

X

j

.�� C ˇ�j /.�C ˛i C ˇj/

D ��.IJ�/C I
X

j

ˇ�j ˇj;

for every �� and ˇ�j . Hence � D 0 and ˇj D 0, giving �ij D ˛i. This implies

that !?1 \ ˝ � !2. The other requirements follow in a similar manner. The
above method of proof was suggested by Dr. S. D. Silvey.
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We now turn our attention to the least squares estimation of the unknown
parameters, and by way of variation we give a slightly different approach from that
used in the complete two-way layout.

Let
P

i ˛i D 0 and
P

j ˇj D 0, then we find that

� D � ��; ˛i D � i� � � ��; and ˇj D � �j � � ��: (6.26)

Hence

yij � �ij D .y�� � �/C .yi� � y�� � ˛i/C .y�j � y�� � ˇj/

C.yij � yi� � y�j C y��/:

Squaring both sides, summing on i and j, and using the identifiability constraints,
we find that the cross-product terms vanish (because of orthogonality) giving

X

i

X

j

.yij � �ij/
2 D IJ.y�� � �/2 C J

X

i

.yi� � y�� � ˛i/
2

CI
X

j

.y�j � y�� � ˇj/
2 C

X

i

X

j

.yij � yi� � y�j C y��/2:

Thus minimizing
P

i

P
j.yij � �ij/

2 with respect to the �, f˛ig, and fˇjg gives us the
least squares estimates

O� D y��; Ǫ i D yi� � y��; and Ǒ
j D y�j � y��; (6.27)

which are of the same form as (6.26) but with θ replaced by y. Also the above
estimates are unchanged if we put some of the parameters equal to zero. This means
we do not have to recalculate the estimates for testing the hypotheses H1 and H2, a
feature we have seen of orthogonality. The analysis of variance table follows with
MSS D SS=.df / (Table 6.2).

Table 6.2 ANOVA table for randomized blocks

Source SS df MSS

Between treatments J
P

i.yi� � y
��
/2 I � 1 MSS.1/

Between Blocks I
P

j.y�j � y
��
/2 J � 1 MSS.2/

Residual
P

i

P
j.yij � yi� � y

�j C y
��
/2 .I � 1/.J � 1/ MSS

Corrected total
P

i

P
j.yij � y

��
/2 IJ � 1

Correction for IJy2
��

1

the mean

Total
P

i

P
j y2ij IJ



96 6 Testing Several Hypotheses

The test statistic for testing Hr (r D 1; 2) is simply

F D MSS.r/

MSS
:

Before concluding this section, let us consider the model

yijk�:::� D �C ˛i C ˇj C 
k C � � � C "ijk�:::�

with identifiability conditions
P

i ui˛i D P
j vjˇj D P

k wk
k D � � � D 0. The
hypotheses of interest are H1: all the ˛i zero, H2: all the ˇj zero, etc., and we can
add the hypothesis H0 W � D 0. As the proof of Theorem 6.5 can be generalized
to deal with this as in the next section, we have that the hypotheses H0, H1, H2,: : :
are orthogonal with respect to G if and only if the identifiability conditions take the
form

P
i ˛i D P

j ˇj D P
k 
k D � � � D 0. The Latin and hyper-Latin square designs

and factorial designs with no interactions are special cases of this general model.
We look at the Latin square next.

6.7 Orthogonality in Latin Square Designs

An n � n Latin square design is a design method for comparing three factors A, B,
and C at n levels for each factor. An example of a 5 � 5 Latin square is

1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4:

Note that each number occurs once in each row and once in each column. Here
factor A has five levels given by the row number, factor B has five levels given by
the column number, and factor C has five levels given by the number. For example
the entry “4” in the (2,3) position represents factor A at level 2, factor B at level
3, and factor C at level 4. We can obtain other Latin squares by permuting rows,
columns, and numbers. The one chosen has “5” down one of the diagonals, which
may lead to bias. In setting up such an experiment one usually chooses a Latin
square at random from an appropriate set. This randomization goes some way to
help achieve any underlying normal distribution assumptions and reduce interaction
effects. We won’t be going into such details as our focus is on orthogonality.

The model we assume for the Latin square is

yijk D �ijk C "ijk; .i; j; k/ 2 S;
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where yijk is the observation on the treatment combination of factor A at level i,
factor B at level j, and factor C at level k. The triples .i; j; k/ take on just n2 values
determined by the Latin square chosen. This set of n2 values of the triple .i; j; k/
is denote by the set S. For the above model, the set of n2 random variables f"ijkg
are assumed to be independently and identically distributed as NŒ0; �2�. Our model
G W θ 2 ˝ is the set of all θ such that

�ijk D �C ˛i C ˇj C �k .i; j; k/ 2 S;

where
P

i ui˛i D P
j vjˇj D P

k wk�k D 0 are identifiability constraints. The
hypotheses of interest are

H1 W �ijk D �C ˇj C �k .˛i D 0 for all i/

H2 W �ijk D �C ˛i C �k .ˇj D 0 for all j/

H3 W �ijk D �C ˛i C ˇj .�k D 0 for all k/

and we add

H4 W �ijk D ˛i C ˇj C �k .� D 0/:

We now establish necessary and sufficient conditions for orthogonality of the
hypotheses.

Theorem 6.8 The hypotheses Hi (i D 1; 2; 3; 4) are orthogonal with respect to G if
and only if ui D vj D wk D 1=n for all .i; j; k/ 2 S.

Proof (Necessity) To prove necessity we assume that the hypotheses are orthogonal,
that is !p

i � !j for all i; j; i ¤ j, i.e., !p
4 � !1 \ !2 \ !3. Now !?4 \˝ is defined

by the set of �ijk D �C ˛i C ˇj C �k such that θ ? !4, that is,

X

.ijk/2S

.˛�i C ˇ�J C ��k /.�C ˛i C ˇj C �k/ D 0: (6.28)

for all ˛�i , ˇ�j , and ��k satisfying
P

i ui˛
�
i D P

j vjˇ
�
j D P

k wk�
�
k D 0. If this set of

�ijk also belongs to !1 \ !2 \ !3, then �ijk must be constant with respect to i, j, and
k so that ˛i D ˛, ˇj D ˇ, and �k D � , say. Then (6.28) now becomes

X

.i;j;k/2S

.˛�i C ˇ�j C ��k /.�C ˛ C ˇ C �/ D 0:



98 6 Testing Several Hypotheses

For nontrivial vectors we have .� C ˛ C ˇ C �/ ¤ 0, so that putting the fˇ�j g
and f��k g all equal to zero, we have that

P
i ˛
�
i D 0. Using a similar argument we

find that
P

j ˇ
�
j D P

k �
�
k D 0. Hence our identifiability constraints take the formP

i ˛i D P
j ˇj D P

k �k D 0, and the constraints are necessary.

(Sufficiency.) If
P

i ˛i D P
j ˇj D P

k �k D 0 then !?1 \ ˝ is the set of all θ
such that f�ijk W �ijk D �C ˛i C ˇj C �kg and

0 D
X

.i;j;k/2S

.�� C ˇ�j C ��k /.�C ˛i C ˇj C �k/

D n2���C n
X

j

ˇ�j ˇj C n
X

k

��k �k

for all ��, ˇ�j , and ��k . Hence � D 0, ˇj D 0 for all j, and �k D 0 for all k giving

us �ijk D ˛i so that !?1 \˝ � !2 \ !3. Using a similar argument, by cycling the
subscripts, we see that !?2 \˝ � !1 \ !3 and !?3 \˝ � !1 \ !2. Now !?4 \˝
is the set of all θ such that f�ijk W �C ˛i C ˇj C �kg and

0 D
X

.i;j;k/2S

.˛�i C ˇ�j C ��k /.�C ˛i C ˇj C �k/

D
X

i

˛�i ˛i C
X

j

ˇ�j ˇj C
X

k

��k �k

for all ˛�i , ˇ�j , and ��k . Hence ˛i D 0 for all i, ˇj D 0 for all j, and �k D 0 for all k so

that �ij D � and !?4 \˝ � !1 \!2 \!3. Bearing in mind that !p
i � !j if and only

if !p
j � !i we see that !p

i � !j for all i; j; i ¤ j and the hypotheses are orthogonal.

We now find the least squares estimates. For θ 2 ˝ , we minimize

X

.i;j;k/2S

.yijk�˛i�ˇj��k/
2C�1.

X

i

˛i�1/C�2.
X

j

ˇj�1/C�3.
X

k

�k�1/ (6.29)

subject to the identifiability constraints, where the �i are the Lagrange multipliers.
Differentiating (6.29) with respect to � and dividing by �2, we get

0 D
X

.i;j;k/2S

.yijk � O� � Ǫ i � Ǒ
j � O�k/

D
X

.i;j;k/2S

yijk � n2 O�� n
X

i

Ǫ i � n
X

j

Ǒ
j � n

X

k

O�k

D
X

.i;j;k/2S

yijk � n2 O�
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or O� D y���, the mean of the n2 observations. Differentiating (6.29) with respect to
˛i gives us

0 D
X

.j;k/2Si

�2.yijk � O� � Ǫ i � Ǒ
j � O�k/C �1;

where Si is the set of n pairs .j; k/ for which .i; j; k/ 2 S and i has a fixed value. If
we also sum the above equation over i we see that �1 D 0, which is what we expect
from the general theory of identifiability constraints. From the above equation we
get

0 D
X

.j;k/2Si

yijk � n O� � n Ǫ i �
X

j

Ǒ
j �

X

k

O�k

D
X

.j;k/2Si

yijk � n O� � n Ǫ i;

or

Ǫ i D yi�� � y���;

where yi�� is the mean of the n observations for which factor A is at level i. By
symmetry we have that Ǒ

j D y�j� � y��� and O�k D y��k � y���. Now the residual sum of
squares Q is

X

.i;j;k/2S

.yijk � O� � Ǫ i � Ǒ
j � O�k/

2 D
X

.i;j;k/2S

.yijk � yi�� � y�j� � y��k C 2y���/2:

To test H1 W ˛i D 0 for all i we minimize
P

.i;j;k/2S.yijk ���ˇj ��k/
2 with respect

to �, ˇj, and �k, and we get the same least squares estimates as before (because of
orthogonality), namely O�, f Ǒ

jg and f O�kg. Now

yijk � �ijk D .y��� � �/C .yi�� � y��� � ˛i/C .y�j� � y��� � ˇj/C .y��k � y��� � �k/

C .yijk � yi�� � y�j� � y��k C 2y���/
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Table 6.3 ANOVA table for Latin Square

Source SS df MSS

Factor A n
P

i.yi�� � y
��
�/2 n� 1 MSS.1/

Factor B n
P

j.y�j� � y
���
/2 n� 1 MSS.2/

Factor C n
P

k.y��k � y
���
/2 n� 1 MSS.3/

Residual
P

.i;j;k/2S.yijk � yı�� � y
�j� � y

��kC 2y
���
/2 n2 � 3nC 2 MSS

Corrected total
P

.i;j;k/2S.yijk � y
���
/2 n2 � 1

Correction for n2y2
���

1

the mean

Total
P

.i;j;k/2S y2ijk n2

Squaring both sides, summing on i, j and k, and using the identifiability constraints,
we find that the cross-product terms vanish (because of the orthogonality) giving

X

.i;j;k/2S

.yijk � �ijk/
2 D n2.y��� � �/2 C n

X

i

.yi�� � y��� � ˛i/
2

Cn
X

j

.y�j� � y��� � ˇj/
2 C

X

k

.y��k � y��� � �k/
2

C
X

.i;j;k/2S

.yijk � yı�� � y�j� � y��k C 2y���/2:

We can now obtain the least squares estimates and the residual sum of squares Qi

for each Hi by inspection. For example, for H1, the hypothesis sum of squares Q1 �
Q D n

P
i.yi�� � y���/2, which leads to MSS.1/ in the Table 6.3 above. Alternatively

we can use the result

Q1� Q Dk . Oθ� OθH1 / k2D
X

.i;j;k/2S

f. O�C Ǫ i C Ǒ
j C O�k/� . O�C Ǒ

j C O�k/g2 D n
X

i

Ǫ 2i :

The analysis of variance table is given above.

6.8 Non-orthogonal Hypotheses

We see from Sect. 6.4 that we don’t have orthogonality of the hypotheses with a two-
way layout when there are unequal numbers of observations per mean and certain
conditions are not satisfied. In this case hypothesis testing is not so straightforward
as different parameterizations are used by different computer packages. We also
have the problem that least squares estimates have to be recalculated when some of
the parameters are put equal to zero. These are important practical issues discussed
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in Seber and Lee (2003, section 8.3) for example, but are not part of the main theme
of this monograph, which is concerned with broad principles.
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Chapter 7
Enlarging the Model

7.1 Introduction

Sometimes after a linear model has been fitted it is realized that more explanatory
(x) variables need to be added, as in the following examples.

Example 7.1 In an industrial experiment in which the response (y) is the yield and
the explanatory variables are temperature, pressure, etc., we may wish to determine
what values of the x-variables are needed to produce a certain yield. However, it may
be realized that another variable, say concentration, needs to be incorporated in the
regression model. This can be readily done by simply using a standard regression
computational package. In this case the added variable is quantitative and is readily
added into the original model.

Example 7.2 Consider an experiment that involves finding what variables deter-
mine a person’s performance on a given task. Suppose quantitative variables such
as height, weight, and age are used as well as the qualitative variable gender. In this
case gender can be incorporated into the initial regression model using an indicator
variable which takes just two values, one for female and zero for male. After fitting
a model it is decided that another qualitative variable with r possible unordered
categories needs to be added. This can be done, for example by adding r�1 indicator
variables.

Example 7.3 A more common application when one might add to a model arises
in the topic of analysis of covariance where we combine qualitative information
as in an analysis of variance model with quantitative information as in regression
models. For example, suppose we compare the effect of four teaching methods
on the performance of students in a test. Students were selected randomly to form
four equal-sized groups giving us a one-way analysis of variance model to test for
differences in the four group means. It was then decided that another quantitative
variable Intelligence Quotient (IQ) needed to be introduced as it was possible that

© Springer International Publishing Switzerland 2015
G.A.F. Seber, The Linear Model and Hypothesis, Springer Series in Statistics,
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the IQs were not randomly spread among the groups. Mathematically we started
with model yij D �i C "ij, where yij is the score of the ith student in the jth
group (i D 1; 2; 3; 4I j D 1; 2; : : : ; J) and the "ij are independently and identically
distributed as NŒ0; �2�. The hypothesis of interest is H W �i D � (i D 1; 2; 3; 4). If
zij is the IQ of the same student, then a possible new model might be

yij D �i C �izij C "ij

when IQ is taken into account. This change amounts to fitting a straight line to the
data from each group. Any test of H would amount to comparing the means, but
allowing for any IQ effect. The variable z is usually referred to as a concomitant
variable. Several other hypotheses now present themselves such as �i D � (i D
1; 2; 3; 4) in which the slopes of the lines are the same, and perhaps followed by the
hypothesis that � D 0. We might even go a step further and consider the model

yij D �i C �izij C ıiz
2
ij C "ij;

which gives us a quadratic model for each group. Such models can be readily fitted
using a standard regression package. However there are some algebraic methods
that can be used to assist with model fitting and show the usefulness of projection
methods that we now consider. We set up a general model in the next section.

7.2 Least Squares Estimation

Given y D θ C ε, suppose our linear model G W θ 2 ˝ , with dimŒ˝� D p, is
modified to QG W θ 2 Q̋ D ˝ ˚ CŒZ�, where ε is NnŒ0; �2In�, ˝ \ CŒZ� D 0, and
Z is n � r of rank r. Instead of calculating the least squares estimates for θ and γ
in the new model QG, it is often more helpful to obtain least squares estimates for G
first and then modify them to give the estimates for QG. Suppose Qθ and Qγ are the least
squares estimates for QG, then

Qθ C Z Q� D P Q̋y: (7.1)

Since ˝ � Q̋ , Q̋ ? � ˝?, and from Theorem 4.2 in Sect. 4.2, P Q̋ � P˝ is the
projection onto Q̋ \˝?. From the last line of Theorem 4.3 with A01 D Z

Q̋ \˝? D .˝ ˚ CŒZ�/ \˝? D CŒRZ�;

where R D In � P˝ D P˝? . Since CŒZ� \ ˝ D 0 and Z has full rank, it follows
from Theorem 4.4 and (4.7) with ˝ replaced by ˝? and A01 replaced by Z that

P Q̋ � P˝ D RZ.Z0RZ/�1Z0R: (7.2)
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Premultiplying (7.1) by Z0R, using R Qθ D 0 (since Qθ 2 ˝), applying RP˝ D 0, and
noting that R2 D R gives us

Z0RZ Qγ D Z0RP Q̋y

D Z0RŒP˝ C RZ.Z0RZ/�1Z0R�y

D Z0Ry:

Hence

Qγ D .Z0RZ/�1Z0Ry (7.3)

and, using (7.1), (7.2), and (7.3),

Qθ D P Q̋y � Z Qγ
D ŒP˝ C RZ.Z0RZ/�1Z0R � Z.Z0RZ/�1Z0R�y

D ŒP˝ C .In � P˝/Z.Z0RZ/�1Z0R � Z.Z0RZ/�1Z0R�y

D P˝.y � Z Qγ/ (7.4)

D Oθ � P˝Z Qγ:

The above result suggests the following two-stage procedure. First, we assume
γ D 0 and obtain Oθ D P˝y and the residual sum of squares y0Ry. Second, minimize
.y � Zγ/0R.y � Zγ/ with respect to γ by differentiating it to get (cf. A.20)

� Z0Ry C Z0RZ Qγ D 0 (7.5)

or

Qγ D .Z0RZ/�1Z0Ry;

which is (7.3). Third, the estimate Qθ is now obtained by replacing y by y � Z Qγ in
Oθ D P˝y, as in (7.4). The correct residual sum of squares for the enlarged model is
then simply the actual minimum of .y � Zγ/0R.y � Zγ/ as

.y � Z Qγ/0R.y � Z Qγ/ D y0Ry � 2 Qγ0Z0Ry C Qγ0Z0RZ Qγ
D y0Ry � Qγ0ZRy (by (7.5))

D y0ŒR � RZ.Z0RZ/�1Z0R�y (by (7.3))

D y0ŒR � .P Q̋ � P˝/�y (by (7.2))

D y.In � P Q̋ /y:
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We note from Theorem 1.5(iii) in Sect. 1.6 that

VarŒ Qγ� D .Z0RZ/�1Z0RVarŒy�RZ.Z0RZ/�1

D �2.Z0RZ/�1

D �2M; (7.6)

say. Using P˝R D 0,

CovŒ Oθ; Qγ� D �2P˝RZ.Z0RZ/�1 D 0 (7.7)

so that from (7.4)

VarŒ Qθ� D VarŒ Oθ�C VarŒP˝Z Qγ�
D �2fP˝ C P˝ZMZ0P˝g: (7.8)

We note that the residuals for the enlarged model are, from (7.2),

.In � P Q̋ /y D Ry � RZ.Z0RZ/�1Z0Ry

D RŒIn � Z.Z0RZ/�1Z0�Ry

D RSRy; say: (7.9)

The above equation forms the basis of an algorithm due to Wilkinson (1970) for
fitting analysis of variance models by regression methods. The steps are

Step 1: Compute the residuals Ry.
Step 2: Use the operator that Wilkinson called a sweep to produce a vector of

apparent residuals Ry � Z Qγ (D SRy).
Step 3: Applying the operator R once again, reanalyze the apparent residuals to

produce the correct residuals RSRy.

7.3 Hypothesis Testing

One of the first hypotheses of interest is Hγ W γ D 0 and the F-statistic for testing
this is given by (4.1), namely

F D n � dimŒ Q̋ �
rankŒZ�

� y0.P Q̋ � P˝/y
y0.I � P Q̋ /y

;

where dimŒ Q̋ � D p C r and rankŒZ� D r. If the test is not significant and we
accept the hypothesis, then we are back to our usual model G. However, if the test is
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significant, we would then test some other hypothesis of the form QH W EŒy� 2 Q! D
! ˚ CŒZ� and repeat the above procedure using ! instead ˝ . The F-statistic would
then be

F D n � dimŒ Q̋ �
dimŒ˝� � dimŒ!�

� y0.P Q̋ � P Q!/y
y0.I � P Q̋ /y

:

7.4 Regression Extensions

Suppose our original model for ˝ is a regression model with θ D Xβ, where X is
n � p of rank p and the columns of X are linearly independent of the columns of Z.
Now Qθ D X Qβ so that from (7.4) with X0P˝ D X0

Qβ D .X0X/�1X0 Qθ
D .X0X/�1X0P˝.y � Z Qγ/
D .X0X/�1X0.y � Z Qγ/
D Oβ � .X0X/�1X0Z Qγ
D Oβ � L Qγ; say: (7.10)

Of particular interest in model fitting is the case of fitting one extra explanatory
variable. Suppose our original model G is denoted by

EŒy� D .x.0/; x.1/; : : : ; x.p�1//β;

where x.j/ is the .j C 1/th column of X, and we wish to add an extra variable with
column x.p/ and parameter ˇp so that Zγ D x.p/ˇp. From the previous section we
find that the least squares estimates for this enlarged model are readily calculated
since Z0RZ (D x.p/

0
Rx.p/) is only a 1 � 1 matrix, that is a scalar. Hence

Q̌
p D Qγ D .Z0RZ/�1Z0Ry D x.p/

0
Ry

x.p/0Rx.p/
;

and from (7.10)

Qβ D . Q̌
0; Q̌

1; : : : ; Q̌
p�1/0 D Oβ � .X0X/�1X0x.p/ Q̌

p D Oβ � L Q̌
p:

From (7.7) we have

CovŒ Oβ;L Q̌
p� D CovŒ.X0X/�1X0 Oθ;L Q̌

p� D .X0X/�1X0CovŒ Oθ; Q̌
p�L0 D 0:
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Hence using Example 3.1 (iii) of Sect. 3.3 and (7.6), we have from the above
equation,

VarŒ Qβ� D VarŒ Oβ�C VarŒL Q̌
p�

D �2Œ.X0X/�1 C LML0�

D �2Œ.X0X/�1 C ll0m�;

where l D .X0X/�1X0x.p/ (a vector) and, from (7.6), m D xp0Rx.p/ (a scalar). Now

CovŒ Qβ; Q̌
p� D CovŒ Oβ � L Q̌

p; Q̌
p�

D CovŒ Oβ; Q̌
p� � lvarŒ Q̌

p�

D ��2lm:

If Qδ D . Qβ0; Q̌
p/
0, then

VarŒ Qδ� D �2
�
.X0X/�1 C ll0 � lm

�l0m m

�
:

Since the “corrections” involved in updating the original regression model are
readily made, the above method can be used in stepwise methods for regression
models. In particular, Wilkinson’s algorithm from (7.9) can be used. Methods
for adding and deleting cases and variables are given in Seber and Lee (2003,
Sect. 11.6).

7.5 Analysis of Covariance Extensions

Example 7.4 (One way ANCOVA) We revisit Example 7.3 in Sect. 7.1 where we
have the balanced model

EŒyij� D �i C �izij; .i D 1; 2; : : : ; II j D 1; 2; : : : ; J/

with n D IJ. Applying the theory of Sects. 7.2 and 7.3 and using the results from
Example 5.1 in Sect. 5.2, the least squares estimate of �i for G W yij D �i C "ij is
O�i D yi� with residual sum of squares Ryy D P

i

P
j.yij � yi�/2. Replacing yij by

yij � �ixij in Ryy gives us

Ryy � 2
X

i

X

j

�i.yij � yi�/.zij � zi�/C
X

i

X

j

�2i .zij � zi�/2:
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Differentiating this expression with respect to �i give us the least squares estimate
of �i for the extended model, namely

Q�i D
P

j.yij � yi�/.zij � zi�/
P

j.zij � zi�/2
D Ryzi

Rzzi
;

say. The residual sum of squares for the extended model is then

y0.In � P Q̋ /y D Ryy � 2
X

i

Q�iRyzi C
X

i

Q�2i Rzzi

D Ryy �
X

i

R2yzi

Rzzi
:

To test QH W �i D � for all i D 1; 2; : : : ; I we find the least squares estimate of �
by minimizing

P
i

P
i.yij � yi� � �.zij � zi�//2 to get

Q�H D
P

i

P
j.yij � yi�/.zij � zi�/

P
i

P
j.zij � zi�/2

D Ryz

Rzz
;

say, and we find that

y0.In � P Q!/y D Ryy � R2yz

Rzz
:

Example 7.5 (Randomized block design) If we wish to extend an experimental
design such as the randomized block design to

EŒyij� D �ij C �zij D �C ˛i C ˇj C �zij;

then we find that identifiability conditions such as
P

i ˛i D P
j ˇj D 0 need to

be incorporated into the model. This can be readily done in general as follows.
Suppose we use a regression formulation θ D Xβ for our experimental design,
with identifiability conditions of Hβ D 0. Enlarging this model to EŒy� D φ D
Xβ C Zγ we find that the conditions Hβ D 0 are still necessary and sufficient for
identifiability in the enlarged model, as we might expect. In fact, as we have

�
φ

0

�
D
�

X Z
H 0

��
β

γ

�
;

the rows of .X;Z/ are linearly independent of the rows of .H; 0/ as the rows of X
are linearly independent of the rows of H. From Theorem 3.5 in Sect. 3.4 we have

P˝ D X.X0X C H0H/�1X0 D X.G0G/�1X0 and Oβ D .G0G/�1X0y:
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Since Qθ D X Qβ and H Qβ D 0, we get

X0 Qθ D X0X Qβ D .X0X C H0H/ Qβ

and

Qβ D .X0X C H0H/�1X0 Qθ D .G0G/�1X0 Qθ:

Hence from (7.4)

Qβ D .G0G/�1X0P˝.y � Z Qγ/
D .G0G/�1X0.y � Z Qγ/;

which is Oβ with y replaced by y � Z Qγ. Since the Lagrange multipliers associated
with the identifiability conditions are zero (by Theorem 3.5), this means that the
general three-stage method of the previous section will apply to this example. We
demonstrate this by finding the squares estimates for our randomized block extended
model. One method of doing this has already been given in Sect. 6.6. We now use
the normal equations instead by differentiating

P
i

P
j.yij � � � ˛i � ˇj/

2 with
respect to each parameter and ignoring the Lagrange multipliers associated with the
identifiable conditions. The answer is

O� D y��; b̨i D yi� � y��; and b̌
j D y�j � y��;

with residual sum of squares

Ryy D
X

i

X

j

.yij � O�� Ǫ i � Ǒ
j/
2 D

X

i

X

j

.yij � yi� � y�j C y��/2:

We now replace yij by yij � �zij in Ryy and differentiate with respect to � to get
Q� D Ryz=Rzz, where

Ryz D
X

i

X

j

.yij � yi� � y�j C y��/.zij � zi� � z�j C z��/

D
X

i

X

j

yij.zij � zi� � z�j C z��/:

The residual sum of squares for the extended model is then the minimum value

X

i

X

j

.yij � yi� � y�j C y�� � Q�.zij � zi� � z�j C z��//2 D Ryy � R2yz

Rzz
:
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7.6 Missing Observations

In some experimental situations observations are “lost”, for example a test tube
is broken, a flood damages part of an agricultural experiment, animals die, and
patients withdraw from a medical trial because of some unpredictable event such
as having to move from the district or having an accident. When this happens,
an experimental design usually becomes unbalanced so that, for example, we lose
some robustness that we have shown with balanced designs in previous chapters. In
recent years there has been a complete change in methods for handling missing data,
beginning with the classification of types of missing data given by Rubin (1976)
and Little and Rubin (2002). They described three types of processes leading to
missing observations: missing completely at random (MCAR), missing at random
(MAR), and missing not at random (MNAR, sometimes referred to as NMAR). Here
MCAR assumes that the observed data can be regarded as a random subsample of
the hypothetically complete data sample. It means that the probability of a missing
observation on a variable y is unrelated to other measured variables and to the values
of y itself. The term MAR is a bit of a misnomer as the mechanism is not strictly
random but describes systematic “missingness,” where the propensity for missing is
related to other measured variables but not to the underlying values of y. Finally, data
are MNAR if the probability of missing is systematically related to the hypothetical
values that are missing. It is often hard to know whether we have MAR or MNAR.
In this Section I am only going to consider MCAR of which examples were given
at the beginning of the section. In this case some of the traditional methods of
analysis are satisfactory, in particular list-wise deletion; also known as complete-
case analysis. Many of more complex missing data problems do not fit into the
MCAR category so that the complete cases method produces biased estimates when
the MCAR assumption does not hold. The appropriate methods are then multiple
imputation and maximum likelihood (e.g., Baraldi and Enders 2010; Graham 2012).
In using the complete-cases method we have two basic strategies: (1) carry out the
statistical analysis with the data that we have and use the incomplete model, or (2)
add artificial numbers to replace the missing data so that we now use the properties
of a balanced design, but choose the numbers so that the final statistical analysis
gives results that are the same as those obtained through (1). The second method
essentially means choosing the artificial data so that the final residuals for those
missing data points are zero. We now develop the theory based on Kruskal (1960)
for this second approach using projection matrices. Later we also use an analysis of
covariance method due to Bartlett to produce the same estimates.

We begin with our usual model y D θ C ε, where, by relabelling the yi, we have

y D
 

yn�m

0

!

C
 

0
ym

!

D y.1/ C y.2/;

where only the n � m values yn�m are observed: θ is partitioned in the same way.
We can therefore write R

n as the direct sum of two vector spaces V1 and V2, that is
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R
n D V1

L
V2, and y.i/ D P.i/y, where P.i/ represents the orthogonal projection of

R
n on Vi. Here

P.1/ D
�

In�m 0
0 0

�
and P.2/ D

�
0 0
0 Im

�
:

Let ˝i � P.i/˝ and EŒy.i/� D θ.i/ D P.i/θ. Then ˝1 ? ˝2 and in general we have
˝ ¤ ˝1

L
˝2, although˝ � ˝1

L
˝2.

To find the least squares estimates we first minimize

k y � θ k2Dk y.1/ � θ.1/ k2 C k y.2/ � θ.2/ k2

subject to θ 2 ˝ to get Oθ D P˝y and the usual residual sum of squares, namely
k .In � P˝/y k2, and then minimize this sum of squares with respect to y.2/ to get
Oy.2/, which is substituted back into Oθ. Hence from the first step we get

Oθ D Oθ.1/ C Oθ.2/ D P˝y D P˝.y.1/ C y.2//;

and from the second step

Oy.2/ D Oθ.2/:

Combining these two equations,

Oθ.2/ D P.2/ Oθ D P.2/P˝.y.1/ C Oθ.2//: (7.11)

We now ask, when does (7.11) have a unique solution for Oθ.2/? To answer this, let
P.i/˝ represent the projection onto˝i. Now

Oθ D P˝ Oθ D P˝. Oθ.1/ C Oθ.2//; (7.12)

and P.1/˝ y.1/ 2 ˝1 � V1 (as well as y.1/), which implies that .In � P.1/˝ /y
.1/ 2 V1,

and is therefore perpendicular to V2. This means that .In � P.1/˝ /y
.1/is orthogonal to

both˝1 and˝2 and hence to ˝ , so that P˝.In � P.1/˝ /y
.1/ D 0. Therefore

Oθ D P˝.y.1/ C Oy.2// (7.13)

D P˝.P
.1/
˝ y.1/ C Oθ.2//: (7.14)

Subtracting (7.14) from (7.12) gives us

P˝. Oθ.1/ � P.1/˝ y.1// D 0:
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Thus Oθ.1/ � P.1/˝ y.1/, which belongs to ˝1, is orthogonal to ˝ , and this can only
happen if

Oθ.1/ D P.1/˝ y.1/:

(To see this suppose .a01; a02/0 2 ˝ so that .a01; 00/0 2 ˝1. If this vector is
perpendicular to ˝ then a01a1 D 0; that is a1 D 0.) We see then that the above two-
step least-squares procedure corresponds to first minimizing .y.1/�θ.1//0.y.1/�θ.1//,
subject to θ.1/ 2 ˝1, and then putting Oy.2/ D Oθ.2/, where Oθ.2/ is chosen such that
Oθ D Oθ.1/ C Oθ.2/ belongs to ˝ . The residual sum of squares is then

Q D y.1/
0

.In � P.1/˝ /y
.1/ D .y.1/

0 � Oθ.1//0.y.1/0 � Oθ.1// D z0.In � P˝/z;

where z D y.1/ C Oθ.2/. This last result follows from the fact that .In � P˝/ is
idempotent, and using (7.13) give us

.In � P˝/.y.1/ C Oθ.2// D y.1/ C Oθ.2/ � Oθ
D y.1/ � Oθ.1/:

Obviously Oθ.2/ can only be unique if, corresponding to every θ.1/ 2 ˝1, there exists
a unique θ.2/ 2 ˝2 such that θ.1/ Cθ.2/ 2 ˝ . Now θ.2/ will be unique if and only if
there is no non-zero φ.2/ 2 ˝2 such that 0 Cφ.2/ 2 ˝ , for then θ.2/ and θ.2/ Cφ.2/

both correspond to θ.1/. Thus the condition for uniqueness is that

dimŒ˝� D dimŒ˝1�;

and as an exercise we verify that the above condition implies that (7.11) has a unique
solution for θ.2/.

Suppose two solutions u and v exist, then from (7.11)

u � v D P.2/P˝.u � v/: (7.15)

Now if PW represents the projection on any vector space W, then z D PWz C .In �
PW/z for every z and therefore k z k�k PWz k with equality if and only if z 2 W.
Applying this twice to Eq. (7.15) give us that .u � v/ 2 ˝ and P˝.u � v/ 2 V2.
Hence P˝.u � v/ is in both V2 and ˝; it is therefore zero as dimŒ˝� D dimŒ˝1�,
and .u � v/ ? ˝ . Thus u D v, establishing the uniqueness of θ.2/.

To test the hypothesis H W θ 2 !, a p � q subspace of ˝ , we simply go through
the same procedure as described above with the estimate Oθ.2/H given by (7.11) with
˝ replaced by !, namely

Oθ.2/H D P.2/P!.y.1/ C Oθ.2/H /: (7.16)
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Once again this equation will have unique solution if dimŒ!� D dimŒ!1�, where
!1 � P.1/!. The residual sum of squares for the hypothesis is

QH D y.1/
0

.In � P.1/! /y
.1/ D z0H.In � P!/zH ;

where zH D y.1/C Oθ.2/H . The corresponding degrees of freedom for the residual sums
of squares Q and QH are n � p � m and n � p C q � m, respectively, m degrees of
freedom being lost due to the estimation of ym. The F-statistic is

F D .n � p � m/

q

.QH � Q/

Q
D .n � p � m/

q

y.1/
0

.P.1/˝ � P.1/! /y.1/

y.1/0.In � P.1/˝ /y
.1/

:

Example 7.5 We revisit the randomized block design, namely

EŒyij� D �ij D �C ˛i C ˇj; .i D 1; 2; : : : ; II j D 1; 2; : : : ; J/;

where
P

i ˛i D 0 and
P

j ˇj D 0. From (6.27), the least squares estimate of O�ij is
given by

O�ij D O�C Ǫ i C Ǒ
j D yi� C y�j � y��:

We assume that the observation yIJ is missing under the MCAR scenario, and denote
its estimate by u. From the above theory, u is also the least squares estimate of �IJ .
With θ.2/ D .0; 0; : : : ; u/0, (7.11) becomes

u D O�IJ D yI� C u

J
C y�J C u

I
� y�� C u

IJ
;

where the “star” notation denotes summation on the observed variables; for example
yI� D PJ�1

jD1 yIj and y�� D IJy�� � yIJ . Solving for u gives us

u D ŒIyI� C Jy�J � y���=Œ.I � 1/.J � 1/�;

and since EŒu� D � C ˛i C ˇj D �IJ , u is an unbiased estimator of �IJ . To obtain
the residual sum of squares we evaluate RSS D P

i

P
j.yij � yi� � y�j C y��/2 with yIJ

replaced by its estimate u.

Suppose we wish to test H W ˛i D ˛2 D : : : D ˛I D 0. Then, when H is true, the
least squares estimate of �ij is

O�ij D O�C Ǒ
j D y�� C y�j � y�� D y�j:
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If we denote the new estimate of yIJ under H by uH, we have by (7.16)

uH D O�IJH D .y�J C uH/=I (7.17)

or uH D y�J=.I � 1/. To obtain the residual sum of squares under H, we calculate
RSSH D P

i

P
j.yij � y�j/2 with yIJ replaced by uH. Then

F D Œ.I � 1/.J � 1/� 1�

.I � 1/

.RSSH � RSS/

RSS
:

Bartlett (1937) suggested using an analysis of covariance method for handling
missing observations that we now use assuming the MCAR scenario. The method
is to assume that the missing observations are zero and then introduce concomitant
variables having a value of �1 corresponding to the missing observations, and zero
values elsewhere. For example, in the above randomized block example we assume
the model

yij D �C ˛i C ˇj C �zij;

where yIJ D 0 and zij D �ıiIıjJ. To find O� , the least squares estimate of � , we first
assume � D 0 and obtain RSS D P

i

P
i.yij � yi� � y�j C y��/2. Then setting yIJ D 0

and replacing yij by yij � �zij, we minimize RSS with respect to � (cf. Example 7.5
in Sect. 7.5). We therefore minimize

X

i

X

i

(

.yij � yi� � y�j C y��/� �.
X

i

X

i

.zij � zi� � z�j C z��/
) 2
;

or Ryy � 2�Ryz C �2Rzz, say, giving O� D Ryz=Rzz. With yIJ D 0 we find that

Ryz D .IyI� C Jy�J � y��/=IJ and Rzz D .I � 1/.J � 1/=IJ

so that

O� D .IyI� C Jy�J � y��/=.I � 1/.J � 1/
D u:

Hence the covariance method leads to the same estimate u above. The reason for
this follows from the fact that all we are effectively doing is replacing yIJ by � and
minimizing the residual sum of squares with respect to � . We note that we have the
alternative form

RSS D Ryy � O�2Rzz; where yIJ D 0 in Ryy:
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In conclusion we find that the covariance method will lead to the same F-statistic as
before. However, the variance of O� for the covariance method will be greater by �2

than the variance of u for the previous method, for although yIJ is put equal to zero
it will still have a variance of �2.
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Chapter 8
Nonlinear Regression Models

8.1 Introduction

Nonlinear models arise when EŒy� is a nonlinear function of unknown parameters.
Hypotheses about these parameters may be linear or nonlinear. Such models tend
to be used when they are suggested by theoretical considerations or used to
build non-linear behavior into a model. Even when a linear approximation works
well, a nonlinear model may still be used to retain a clear interpretation of the
parameters. Once we have established a nonlinear relationship the next problem
is how to incorporate the “error” term ". Sometimes a nonlinear relationship can be
transformed into a linear one but in doing so we may end up with an error term that
has awkward properties. In this case it is usually better to work with the non-linear
model. These kinds of problems are demonstrated by several examples.

A simple example of a non-linear model is

yi D ˇ0 C ˇ1e
ˇ2x C ";

which is nonlinear in ˇ2. If ˇ0 is zero, we have the choice of two models

yi D ˇ1e
ˇ2x C " or yi D ˇ1e

ˇ2x";

depending on whether we think the error is additive or multiplicative. In the latter
case we have the possibility of using a log transformation

log y D logˇ1 C ˇ2x C log ":

with its usefulness depending on the distribution of log ".
As a further example, theoretical chemistry predicts that for a given sample of

gas kept at constant temperature, the volume v and pressure p of the gas satisfy the
relationship pv� D c, where � is a constant depending on the gas. Setting y D p

© Springer International Publishing Switzerland 2015
G.A.F. Seber, The Linear Model and Hypothesis, Springer Series in Statistics,
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and x D v�1, we have a linear model y 
 cx� , where any error term will be due to
experimental error. Once again we have the possibility of a log transformation. We
can then use the model to estimate the value of the gas constant � .

We have considered just two simple models. However the subject of nonlinear
modeling is a large and complex one and the associated inference theory depends
very much on complex assumptions that are discussed in detail by Seber and Wild
(1989, chapter 12). In this chapter we shall focus on the role and interplay of
asymptotic linear theory.

8.2 Estimation

We use the general model

yi D f .xiIθ/C "i D fi.θ/C "i .i D 1; 2; : : : ; n/;

or

y D φ C ε D f.θ/C ε;

where f.θ/ D . f1.θ/; f2.θ/; : : : ; fn.θ//0, xi is a k �1 vector of explanatory variables,
θ is a p-dimensional vector, and θT , the true value of θ, is known to belong to �,
a subset of R

p. (We use the notation θT to fit in with this and later chapters on
asymptotic theory.) For example, if we have the model

yi D ˛1e
ˇ1xi1 C ˛2e

ˇ2xi2 C "i;

then xi D .xi1; xi2/
0, k D 2, θ D .˛1; ˛2; ˇ1; ˇ2/

0, and p D 4.
Let F.θ/ D @f.θ/=@θ0 with .i; r/th element @fi.θ/=@�r. We shall make the

following regularity assumptions.

A(1). The "i are independently and identically distributed with mean zero and
variance �2.

A(2). For each i, fi.θ/ D f .xiIθ/ is a continuous function of θ for θ 2 �.
A(3). � is a closed, bounded (i.e., compact) subset of Rp. (Such an assumption is

not too much of a restriction as parameters are usually bounded by the physical
constraints of the system being modeled. Also actual computations are discrete
so that � can be regarded as a set with a finite number of elements (Wu, 1981).)

A(4). Let

Cn.θ;θ1/ D
nX

iD1
fi.θ/fi.θ1/ and Dn.θ;θ1/ D

nX

iD1
Œ fi.θ/� fi.θ1/�

2:
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Then as n ! 1, n�1Cn.θ;θ1/ converges uniformly for all θ and θ1 in � to
a function C.θ;θ1/ (which is continuous if A(2) and A(3) hold). Also we have
D.θ;θT/ D 0 if and only θ D θT .

A(5). θT is an interior point of ˝ . Therefore there exists an open neighborhood
of θT in �, say �T .

A(6). The first and second derivatives

@fi.θ/=@�r and @2fi.θ/=@�r@�s .r; s D 1; 2; : : : ; p/;

exist and are continuous for all θ 2 �T .
A(7). The matrix

n�1
nX

iD1

@fi.θ/

@θ

@fi.θ/

@θ0
D n�1F0.θ/F.θ/

converges to some matrix Φ.θ/ uniformly in θ for θ 2 �T as n ! 1.
A(8). The matrix

n�1
nX

iD1

�
@2fi.θ/

@�r@�s

�2

converges uniformly in θ for θ 2 �T (r; s D 1; 2; : : : ; p) as n ! 1.
A(9). ΦT D Φ.θT/ is nonsingular.

The least squares estimate Oθ of θ is obtained by minimizing

Q.θ/ D
nX

iD1
fyi � f .xiIθ/g2:

In contrast to the linear situation, Q.θ/may have several relative minima in addition
to the absolute minimum. Given assumptions A(1) to A(4) above, we find that Oθ
exists and Oθ and O�2 D Q. Oθ/=n are (strongly) consistent estimators of θT and �2

respectively. Differentiating with respect to θ, we find from assumption A(5) and n
sufficiently large that Oθ is an interior point of� and satisfies the equation

@Q.θ/

@�j
D 2

nX

iD1
Œ yi � fi.θ/�

@fi.θ/

@�j
D 0; . j D 1; 2; : : : ; p/: (8.1)

This gives us

0 D OF0fy � f. Oθ/g
D OF0 Oε;
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the normal equations for the nonlinear model, where OF D F. Oθ/ and Oε is the vector
of residuals. If OPF D OF. OF0 OF/�1 OF0, the idempotent matrix projecting R

p orthogonally
on to CŒ OF�, then the above equation can be written as

OPF Oε D 0:

We can also prove from the above assumptions that n1=2. Oθ � θT/ is asymptotically
NpŒ0; �2Φ�1T �. Since the assumptions imply that n�1 OF0 OF is a strongly consistent
estimator of ΦT , then for large n

n1=2. Oθ � θT/ is approximately NpŒ0; �2.
1

n
F0TFT/

�1�; (8.2)

where FT D F.θT/.
If in addition to assumption A(1) above we assume that the "i are normally

distributed, then using exactly the same method used in Sect. 3.9 we find that Oθ
and O�2 are also the maximum likelihood estimates of θ and �2.

Before considering some linear approximations we require the following result
for future use. From (8.1) we have

@2Q.θ/

@�j@�k
D �2

nX

iD1

�
Œyi � fi.θ/�

@2fi.θ/

@�j@�k
� @fi.θ/

@�j
� @fi.θ/

@�k

�

so that

E

�
@2Q.θ/

@θ@θ0

�
D 2F.θ/0F.θ/: (8.3)

8.3 Linear Approximations

From assumption A(5), if θ 2 �T , where �T is a small neighborhood of θT , we
have the Taylor expansion

fi.θ/ 
 fi.θT/C
pX

jD1

@fi
@�j

ˇ
ˇ
ˇ
ˇ̌
ˇ
θT

.�j � �T;j/;

or

f.θ/ 
 f.θT/C FT.θ � θT/: (8.4)
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Hence

Q.θ/ D k y � f.θ/ k2

 k y � f.θT/ � FT.θ � θT/ k2
D k ε � FTβ k2; (8.5)

say, where ε D y � f.θT/ and β D θ � θT . From the properties of the linear
regression model, (8.5) is minimized when β is given by (cf. Example 3.1 in
Sect. 3.3)

Oβ D .F0TFT/
�1F0Tε:

For n sufficiently large, Oβ is almost certain to be in �T so that Oθ � θT 
 Oβ and

Oθ � θT 
 .F0TFT/
�1F0Tε: (8.6)

Furthermore, from (8.4) with θ D Oθ,

f. Oθ/� f.θT/ 
 FT. Oθ � θT/


 FT.F0TFT/
�1F0Tε

D PFε; (8.7)

and

y � f. Oθ/ 
 y � f.θT/� FT. Oθ � θT/


 ε � PFε

D .In � PF/ε: (8.8)

Hence from (8.8) and (8.7) we have

.n � p/s2 D Q. Oθ/
D k y � f. Oθ/ k2

 k .In � PF/ε k2
D ε0.In � PF/ε; (8.9)

and

k f. Oθ/� f.θT/ k2 
 k PFε k2
D ε0PFε: (8.10)
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Therefore, using (8.9) and (8.10) we get

Q.θT/� Q. Oθ/ 
 ε0ε � ε0.In � PF/ε

D ε0PFε


 . Oθ � θT/F0TFT. Oθ � θT/: (8.11)

Within the order of the linear approximation used, we can replace FT by OF in the
above expressions when necessary. Also (8.6) and (8.9) hold to op.n�1=2/ and op.1/,
respectively (e.g., Gallant, 1987, 258–260). We now have the following theorem.

Theorem 8.1 Given ε � NnŒ0; �2In� and regularity conditions A(1) to A(9) above,
we have approximately for large n:

(i) Oθ � θT � NpŒθ; �
2C�1T �, where CT D F0TFT .

(ii) .n � p/s2=�2 
 ε0.In � PF/ε=�
2 � 	2n�p.

(iii) Oθ is statistically independent of s2.
(iv)

ŒQ.θT/ � Q. Oθ/�=p

Q. Oθ/=.n � p/

 ε0PFε

ε0.In � PF/ε
� n � p

p

� Fp;n�p: (8.12)

(v)

. Oθ � θT/
0F0TFT. Oθ � θT/

ps2
� Fp;n�p: (8.13)

Proof Parts (i) to (iii) follow from the exact linear theory (see Example 3.1 in
Sect. 3.3) with X D FT . Part (iv) follows from Theorem 4.1 by noting that
In D .In � P˝/ C P˝ . Part (v) follows from (iv) and (8.11). [The normality of
" is not needed for the proof of (i).]

We can use the above theorem to test a hypothesis such as H W θT D c. The
so-called Wald test uses (8.13), namely

. Oθ � c/0 OF0 OF. Oθ � c/=.ps2/;

which is asymptotically distributed as Fp;n�p when H is true. We can also use (8.13)
to obtain approximate simultaneous confidence intervals. An approximate likeli-
hood ratio test for H is given by (8.12).
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8.4 Concentrated Likelihood Methods

We note that �2 is a “nuisance” parameter as far as inference about θ is concerned.
There is however a method that uses a useful technique referred to as the method of
concentrated likelihood, which is a step-wise method of maximum likelihood that
side-steps involvement with v D �2.

Suppose we have a general log-likelihood function L.θ; v/ to be maximized with
respect to θ and v, given the data y. We assume that L is uniquely maximized with
respect to θ and v for every y. The first step of the maximization is to find �max.θ; y/,
the unique value of v that maximizes L with respect to v, with θ being regarded
as a constant. The second step consists of finding Oθ D Oθ.y/, the value of θ that
maximizes M.θ j y/ � L.θ; �max.θ; y/ j y/. Then

LŒ Oθ.y/; �max. Oθ; y/ j y� D M. Oθ j y/

� M.θ j y/

D LŒθ; �max.θ; y/ j y�

� L.θ; v j y/;

and Oθ and Ov D �max. Oθ; y/ are the maximum likelihood estimates of θ and v.
The function M.θ/ is called the concentrated log-likelihood function because it is
concentrated on θ. The usefulness of M.θ/ is highlighted by the following theorem.

Theorem 8.2 Let L.θ; v/ be the log-likelihood defined above. We assume that L is
twice differentiable. Define δ D .θ0; v/0, and let Oδ D . Oθ0; Ov/0 solve

@L.θ; v/

@θ

ˇ
ˇOδ D 0 and

@L.θ; v/

@v

ˇ
ˇOδ D 0: (8.14)

Define

I.δ/ D � @2L

@δ@δ0

D
 

� @2L
@θ@θ0 � @2L

@θ@v

� @2L
@v@θ0

� @2L
@v2

!

D
�

I�� I�v
Iv� Ivv

�
; (8.15)

say, and assume that it is positive definite at δ D Oδ. Also define

I�1.δ/ D
�

J�� J�v
Jv� Jvv

�
: (8.16)



124 8 Nonlinear Regression Models

Suppose for any fixed θ that v D �.θ/ solves

@L.θ; v/

@v
D 0; (8.17)

and let M.θ/ D LŒθ; �.θ/�. Then:

(i)

�
@M.θ/

@θ

�

Oθ
D 0:

(ii)

�
�@

2M.θ/

@θ@θ0

�

Oθ
D J�1��

ˇ
ˇOδ D .I�� � I�vI�1vv Iv� /Oδ: (8.18)

Proof Since I. Oδ/ is assumed to be positive definite, it follows from A.9(viii) that
I.δ/ is positive definite in a neighborhoodN of Oδ. Also, setting appropriate elements
of x in x0I.δ/x equal to zero we see that in N the principal submatrix I�� is positive
definite and therefore nonsingular, and Ivv > 0. Applying the implicit-function
theorem to (8.17) we find in N that �.θ/ is uniquely defined, Ov D �. Oθ/, and �.θ/
has continuous first order derivatives. We assume that the following expressions are
valid for δ 2 N .

(i) For v D �.θ/,

@M.θ/

@�j
D
X

i

@L.θ; v/

@�i
� @�i

@�j
C @L.θ; v/

@v
� @v
@�j

D @L.θ; v/

@�j

ˇ
ˇ
ˇ
ˇ
vD�.θ/

;

since the second term is zero by (8.17). Hence using Ov D �. Oθ/,
@M.θ/

@θ

ˇ
ˇ
ˇ̌
Oθ

D @L.θ; �.θ//

@θ

ˇ
ˇ
ˇ̌
Oθ

D @L.θ; v/

@θ

ˇ
ˇ
ˇ
ˇ Oθ; Ov

D 0;

by (8.14). Thus (i) is proved.
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(ii) Now in N , (8.17) is an identity in θ, so that differentiating with respect to �j,

0 D @

@�j

�
@L.θ; v/

@v

ˇ̌
ˇ
ˇ
vD�.θ/

)

D
�
@2L.θ; v/

@�j@v
C @2L.θ; v/

@v2
� @v
@�j

�

vD�.θ/
;

that is

0 D
�
@2L.θ; v/

@θ@v
C @2L.θ; v/

@v2
@v

@θ

�

vD�.θ/
: (8.19)

Now �@2L.θ; v/=@v2 evaluated at v D �.θ/ cannot be identified with Ivv as
the former is a function of θ (�.θ/ being a particular function of θ), whereas
the latter is a function of both θ and v with v unconstrained. However, when
θ D Oθ we have �. Oθ/ D Ov and the two matrices then have the same value. The
same argument applies to the first term in (8.19). Hence from (8.19) we have

@�.θ/

@θ

ˇ
ˇ
ˇ̌
Oθ

D �.I�vI�1vv / Oθ; Ov: (8.20)

Using a similar argument leads to

�@
2M.θ/

@θ@θ0
D
�

�@
2L.θ; v/

@θ@θ0
� @�

@θ

@2L.θ; v/

@v@θ0

�

vD�.θ/
:

Setting θ D Oθ and using (8.20) we have

�
�@

2M.θ/

@θ@θ0

�

Oθ
D .Iθθ � IθvI�1vv Ivθ/Oδ:

Then applying F�1 given by A.17 to I�1. Oδ/ of (8.16) gives us

JθθjOδ D .Iθθ � IθvI�1vv Ivθ/�1Oδ ;

and (ii) is proved.

From the above theorem we have the following steps to finding the maximum
likelihood estimates of θ and v and their asymptotic variance-covariance matri-
ces.

(1) Differentiate the log-likelihood function L.θ; v/ with respect to v and solve the
resulting equation for v D �.θ/ as a function of θ.

(2) Replace v by �.θ/ in L.θ; v/ to get M.θ/.



126 8 Nonlinear Regression Models

(3) Treat M.θ/ as though it were the true log-likelihood function for θ, namely
differentiate M.θ/ with respect to θ, solve for Oθ, and find the estimated
information matrix (8.18). Under general regularity conditions, the latter matrix
is an estimate of the asymptotic variance-covariance matrix of Oθ.

(4) Ov is given by �. Oθ/.
Example 8.1 The above process is now demonstrated for the normal distribution.
We have

f .y/ D .2�v/�n=2 exp

 

� 1

2v

nX

iD1
Œyi � f .xiIθ/�2

!

;

so that taking logarithms and ignoring constants

L.θ; v/ D �n

2
log v � 1

2v

nX

iD1
Œyi � f .xiIθ/�2

D �n

2
log v � 1

2v
Q.θ/:

For fixed θ, and differentiating with respect to v, the above expression is maximized
when v D Q.θ/=n so that the concentrated log-likelihood function is

M.θ/ D L

�
θ;

Q.θ/

n

�

D �n

2
log Q.θ/C n

2
.log n � 1/:

This expression is maximized when Q.θ/ is minimized, that is at the least-squares
estimator Oθ. To get Ov we replace θ by Oθ in �.θ/ so that Ov D Q. Oθ/=n is the maximum
likelihood estimator of v. Now Œ@Q.θ/=@θ� Oθ D 0, so that

�
�@

2M.θ/

@θ@θ0

�

Oθ
D
�

� n

2ŒQ.θ/�2
@Q.θ/

@θ
� @Q.θ/

@θ0
C n

2Q.θ/

@2Q.θ/

@θ@θ0

�

Oθ

D 1

2 Ov
�
@2Q.θ/

@θ@θ0

�

Oθ


 1

2 Ov 2
OF0 OF by (8.3)

D
OF0 OF
Ov

so that VarŒ Oθ� is estimated by Ov. OF0 OF/�1. This is our usual estimator but with s2

replaced by Ov (cf. (8.13)).
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8.5 Large Sample Tests

Three large sample tests are available for testing a nonlinear hypothesis H W a.θ/ D
Œa1.θ/; a2.θ/; : : : ; aq.θ/�

0 D 0, the Likelihood ratio (LR) test, Wald’s (1943) (W)
test, and the Lagrange Multiplier (LM) or Score test (Rao, 1947; Silvey, 1959). If
M.θ/ is the concentrated log-likelihood function, then the three test statistics are
defined as follows:

LR D 2.M. Oθ/ � M. OθH//;

W D a0. Oθ/ŒAM�1A0��1Oθ a. Oθ/ and

LM D
�
@M

@θ0
M�1

@M

@θ

�

OθH

;

where

A D
�
@ai.θ/

@�j

�
and M D �@

2M.θ/

@θ@θ0
:

Under fairly general conditions (cf. Amemiya 1983: 351; Engle 1984), the above
three statistics are asymptotically equivalent and asymptotically distributed as 	2q
when H is true. When normal errors are assumed, another method is available
since the expected information matrix for θ and �2 is block diagonal for the two
parameters. We can then effectively treat �2 as though it were a constant, use the
log-likelihood L instead of M, derive the three test statistics, and then replace �2 by
an appropriate estimator. However, if �2 is actually a function of θ in the nonlinear
model, then we can use the likelihood function L.θ/ directly.

The asymptotic equivalence of the above three statistics can be proved by
showing that the nonlinear model can be approximated for large samples by a linear
normal model with a linear hypothesis as described by Theorem 4.5 in Sect. 4.3.
There we showed that for this model all three test statistics are identical, and it
transpires that those three statistics are asymptotically equivalent to the above three
large-sample test statistics. The theory showing the asymptotic equivalence to linear
theory is essentially spelt out in detail in Chap. 10 with L appropriately replaced by
M if necessary, so we won’t reproduce it here. When L is used, we usually replace
M by B D �n�1EŒ@2L.θ/=@θ@θ0�, the expected information matrix. We can’t use
EŒM� because of the result (8.18).
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Chapter 9
Multivariate Models

9.1 Notation

Up till now we have been considering various univariate linear models of the form
yi D �i C "i (i D 1; 2; : : : ; n), where EŒ"i� D 0 and the "i are independently and
identically distributed. We assumed G that θ 2 ˝ , where ˝ is a p-dimensional
vector space in R

n. A natural extension to this is to replace the response variable yi

by a 1 � d row vector of response variables y0i, and replace the vector y D .yi/ by
the data matrix

Y D

0

BB
B
@

y01
y02
:::

y0n

1

CC
C
A

D .y.1/; y.2/; : : : ; y.d//;

say. Here y.j/ .j D 1; 2; : : : ; d/ represents n independent observations on the jth
variable of y. Writing y.j/ D θ.j/ C u.j/ with EŒu.j/� D 0, we now have d univariate
models, which will generally not be independent, and we can combine them into
one equation giving us

Y D Θ C U;

where Θ D .θ.1/;θ.2/; : : : ;θ.d//, U D .u.1/;u.2/; : : : ;u.d//, and EŒU� D 0.
Of particular interest are vector extensions of experimental designs where each
observation is replaced by a vector observation. For example, we can extend the
randomized block design

�ij D �C ˛i C 
j .i D 1; 2; : : : ; II j D 1; 2; : : : ; J/;
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where θ D .�11; �12; : : : ; �1J; �21; �22 : : : ; �2J; : : : ; �I1; �I2; : : : ; �IJ/
0 to

θij D μ C αi C τj:

In the univariate case we can use a regression model representation θ D Xβ, where
X is an n � p design matrix. Since the form of X depends on the structure of the
design, it will be the same for each of the response variables in the multivariate
model so that θ.j/ D Xβ.j/, Θ D X.β.1/;β.2/; : : : ;β.d// D XB, say, and

Yn�d D Xn�pBp�d C Un�d : (9.1)

If we let ˝ D CŒX� then our general model G now becomes θ.j/ 2 ˝ for each
j D 1; 2; : : : ; d, that is the columns of Θ are in ˝ . We can now generalize the
univariate least squares theory if we use so-called partial (Löwner) ordering for
symmetric matrices, namely, we say that C � D when C �D is nonnegative definite
(Seber 2008, 219–220). Thus if C.Θ/ is a symmetric matrix-valued function, we
say that C is minimized at � D OΘ if C.Θ/ � C. OΘ/.

By analogy with univariate least squares estimation, we can minimize the matrix
U0U D .Y � Θ/0.Y � Θ/ subject to the columns of Θ belonging to ˝ . Now it
seems reasonable to apply the univariate method to each column of Θ and consider
Oθ.j/ D P˝y.j/ or OΘ D P˝Y. Then P˝Θ D Θ, and since P˝.In � P˝/ D 0, we have

.Y � OΘ/0. OΘ � Θ/ D Y0.In � P˝/P˝.Y � Θ/ D 0: (9.2)

Hence for all Θ with columns in ˝

C.Θ/ D .Y � Θ/0.Y � Θ/

D .Y � OΘ C OΘ � Θ/0.Y � OΘ C OΘ � Θ/

D .Y � OΘ/0.Y � OΘ/C . OΘ � Θ/0. OΘ � Θ/ (by Eq. 9.2/

� .Y � OΘ/0.Y � OΘ/ (9.3)

D C. OΘ/;

since . OΘ � Θ/0. OΘ � Θ/ � 0, and OΘ gives the required minimum. Equality occurs
in (9.3) only when . OΘ � Θ/0. OΘ � Θ/ D 0 or, by A.9(v), when OΘ D Θ. Since P˝ is
unique, OΘ is unique and it is called the least squares estimator of Θ. The minimum
value of .Y � Θ/0.Y � Θ/ is

Q D .Y � OΘ/0.Y � OΘ/
D Y0.In � P˝/2Y

D Y0.In � P˝/Y; (9.4)
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the matrix analogue of Q D y0.In � P˝/y, the residual sum of squares for the
univariate model.

We now apply the theory to the case Θ D XB with ˝ D CŒX�. Referring to the
univariate Example 3.1 in Sect. 3.3, we have from Eq. (3.2) and X0P˝ D X0 that

X0.Y � OΘ/ D X0.In � P˝/Y D 0:

Hence if OB satisfies OΘ D X OB, it satisfies the equations

X0X OB D X0Y; (9.5)

the multivariate analogue of the normal equations. The converse is also true. If OB
satisfies (9.5) then X0.Y � X OB/ D 0, X0.y.j/ � X Oβ.j// D 0 and y.j/ � X Oβ.j/ ? ˝ for
every j. Now

y.j/ D X Oβ.j/ C y.j/ � X Oβ.j/ D a C b;

where a 2 ˝ and b 2 ˝?. Since this orthogonal decomposition is unique, we have
Oθ.j/ D a D X Oβ.j/ and OB satisfies OΘ D X OB.

Extracting the jth column from (9.5) we have X0X Oβ.j/ D X0y.j/, so that as far as
least squares estimation is concerned, we can treat each of the d response variables
separately, even though the y.j/ are correlated. Therefore any technique for finding
Oβ in the corresponding univariate model can be used to find each Oβ.j/. This means
that univariate computational techniques can be readily extended to the multivariate
case.

We began this section with a randomized block example in which X does not have
full rank so we need to address this situation. Once again univariate methods carry
over naturally. We introduce identifiability restrictions Hβ.j/ D 0 (j D 1; 2; : : : ; d)
or HB D 0, where the rank of G D .X0;H0/0 is p and the rows of H are linearly
independent of the rows of X (see Sect. 3.4).

In the case of multivariate regression we would generally not have the same X
matrix for each response variable so that a more appropriate model would then be

y.j/ D Xjβ
.j/ C u.j/:

We shall not consider this situation (cf. Seber 1984, Section 8.9 for some details).
Instead of the column representation of the multivariate model

y.j/ D Xβ.j/ C u.j/ .j D 1; 2; : : : ; d/ (9.6)

it is sometimes more convenient to use the ith row representation

yi D B0xi C ui .i D 1; 2; : : : ; n/; (9.7)

where xi is the ith row of X.
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9.2 Estimation

So far we have only assumed that EŒU� D 0. Then

EŒ OΘ� D P˝EŒY� D P˝Θ D Θ; (9.8)

and OΘ is an unbiased estimator of Θ. If X has less than full rank and we introduce
identifiability restrictions HB D 0 then, by analogy with the univariate case, we
have OB D .G0G/�1X0Y, where G0G D X0X C H0H, and

EŒ OB� D .G0G/�1X0EŒY�

D .G0G/�1X0XB

D .G0G/�1.X0X C H0H/B

D B:

To consider variance properties we generalize the univariate assumption that the
"i are uncorrelated with common variance �2, that is EŒ"h"i� D ıhi�

2 where the
Kronecker delta ıhi D 1 when h D i and 0 otherwise. The multivariate version is
that the ui are uncorrelated with common variance-covariance matrix Σ D .�jk/,
namely

CovŒyh; yi� D CovŒuh;ui�

D EŒuhu0i�

D ıhiΣ .h; i D 1; 2; : : : ; n/: (9.9)

Referring to (9.6) we have

CovŒy.j/; y.k/� D CovŒu.j/;u.k/� D �jkId; (9.10)

and, since Oβ.j/ D .G0G/�1X0y.j/,

CovŒ Oβ.j/; Oβ.k/� D .G0G/�1X0CovŒy.j/; y.k/�X.G0G/�1

D �jk.G0G/�1X0X.G0G/�1: (9.11)

Here .G0G/�1 is a generalized inverse of X0X by A.15(iii). If X has full rank then
G is replaced by X and (9.11) reduces to �jk.X0X/�1. The univariate version of the
so-called Gauss-Markov theorem can be generalized to the multivariate case as in
the following theorem.
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Theorem 9.1 Let Y D Θ C U, where the rows of U are uncorrelated with mean 0
and have a common variance-covariance matrix Σ; Θ D .θ.1/;θ.2/; : : : ;θ.d//. Let
� D Pd

jD1 b0jθ.j/ and let OΘ be the least squares estimate of Θ subject to the columns

of Θ belonging to ˝ . Then O� D Pd
jD1 b0j Oθ.j/ is the BLUE of �, that is, the linear

unbiased estimate of � with minimum variance.

Proof From (9.8) O� is an unbiased estimator of �. Since OΘ D P˝Y, Oθ.j/ D P˝y.j/

and

O� D
dX

jD1
b0jP˝y.j/ D

dX

jD1
.P˝bj/

0y.j/

is linear in the elements of Y. Let �� D P
j c0jy.j/ be any other linear unbiased

estimator of �. Then, taking expected values,

X

j

c0jθ.j/ D � D
X

j

b0jθ.j/ for all θ.j/ 2 ˝

so that .bj �cj/
0θ.j/ D 0 for all θ.j/ (j D 1; 2; : : : ; d). Hence .bj �cj/ is perpendicular

to˝ , and its projection onto˝ is zero; that is, P˝.bj �cj/ D 0, or P˝bj D P˝cj for
(j D 1; 2; : : : ; d). We now compare the variances of the two estimators O� and ��.

varŒ O�� D var

2

4
X

j

b0jP˝y.j/

3

5

D cov

2

4
X

j

c0jP˝y.j/;
X

k

c0kP˝y.k/

3

5

D
X

j

X

k

c0jP˝CovŒy.j/; y.k/�P˝ck

D
X

j

X

k

c0jP˝ck�jk Œby (9.10)�;

and similarly

varŒ��� D
X

j

X

k

c0jck�jk:
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Setting C D .c1; c2; : : : ; cn/ and Σ D RR0, where R is nonsingular (see A.9(iii)),
we have, since In � P˝ is symmetric and idempotent,

varŒ��� � varŒ O�� D
X

j

X

k

c0j.In � P˝/ck�jk

D traceŒC0.In � P˝/CΣ�

D traceŒR0C0.In � P˝/0.In � P˝/CR� by (A.1)

D traceŒD0D� say,

� 0;

since D0D is positive semidefinite, and its trace is the sum of its (nonnegative)
eigenvalues (by A.9(ix)). Equality occurs only if D0D D 0 or D D 0 (by A.9(v)), that
is if .In � P˝/C D 0 or if cj D P˝cj D P˝bj. Thus varŒ��� � varŒ O�� with equality
if and only if �� D O�, and O� is the unique estimate with minimum variance. This
completes the proof.

The advantage of the above approach is that ˝ is not specified. We now turn out
attention to the estimation of Σ. If ˝ has dimension p then, by analogy with the
univariate case, a natural contender would be (9.4), namely Q=.n � p/ D Y0.In �
P˝/Y=.n � p/. Since P˝ is symmetric and idempotent, we have from Theorem 1.4
in Sect. 1.5 that traceŒP˝� D rankŒP˝� D p so that

traceŒIn � P˝� D n � traceŒP˝� D n � p:

Since P˝Θ D Θ,

Q D Y0.In � P˝/Y

D .Y � Θ/0.In � P˝/.Y � Θ/

D U0.In � P˝/U

D
X

h

X

i

.In � P˝/hiuhu0i:

Hence, by (9.9),

EŒQ� D
X

h

X

i

.In � P˝/hiıhiΣ

D ftraceŒ.In � P˝/In�gΣ
D .n � p/Σ; (9.12)

so that Q=.n � p/ is an unbiased estimator of Σ.
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9.3 Hypothesis Testing

In order to use the geometrical approach in hypothesis testing as in univariate
models, some multivariate distribution theory is needed that requires a type of multi-
variate generalization of the chi-square distribution, namely the Wishart distribution.
A number of equivalent definitions are available and the simplest definition is as
follows. If u1;u2; : : : ;um are independently and identically distributed as NdŒ0;Σ�,
where Σ is positive definite, then

W D U0U D
mX

iD1
uiu0i

is said to have the (nonsingular) Wishart distribution with m degrees of freedom. We
shall write W � WdŒm;Σ�, and the definition can be extended if Σ is non-negative
definite. If m � d (which we shall assume), then it can be shown that W is positive
definite and has distinct positive eigenvalues, all with probability 1. Given the above
definitions, we list some properties.

Theorem 9.2

(i) If C is a q � d matrix of rank q, then

CWC0 � WqŒm;CΣC0�:

The distribution is nonsingular if m � q.
(ii) For every `, `0W`=`0Σ` � 	2n.

(iii) If A is an n � n matrix of rank r, then U0AU � WdŒr;Σ� if and only if A2 D A,
that is A is a projection matrix.

(iv) Let Wi D U0AiU � WdŒmi;Σ� for i D 1; 2. Then W1 and W2 are statistically
independent if and only if AB D 0. If W1 and W2 are statistically independent,
then W1 C W2 � Wd.m1 C m2;Σ�

(v) If A is an n � n non-negative definite matrix of rank r and r � d, then, with
probability one, U0AU is positive definite with distinct eigenvalues (Okamoto
1973; Eaton and Perlman 1973). Setting A D Id we see that this result applies
to any Wishart matrix when m � d as a Wishart matrix can be expressed in the
d � d form U0U of rank d.

Proof Proofs are given in Seber (1984, Section 2.3; A2.8, A5.13).

Given Y D Θ C U, where the columns of Θ are in ˝ , a p-dimensional subspace
of Rn, we wish to test whether the columns are in !, a .p�q/-dimensional subspace
of˝ . If QH D Y0.In �P!/Y, then by analogy with the univariate model, our interest
focusses on QH � Q D Y0.P˝ � P!/Y and Q D Y0.In � P˝/Y. We know from
univariate theory that .P˝ � P!/.In � P˝/ D 0 so that by (iv) in the above theorem,
QH � Q and Q are statistically independent. Also, since we showed above that

Y0.In � P˝/Y D U0.In � P˝/U;
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where In � P˝ is idempotent of rank n � p, it follows from (iii) above that Q �
WdŒn � p;Σ�. When H is true, P!Θ D Θ and

Y0.P˝ � P!/Y D .Y � Θ/0.P˝ � P!/.Y � Θ/

D U0.P˝ � P!/U: (9.13)

Since P˝�P! is idempotent of rank q, QH �Q � WdŒq;Σ� when H is true. Thus we
have independent Wishart distributions when H is true. To test H, a natural statistic
to use is the likelihood-ratio test statistic. To do this we first need to obtain the
maximum likelihood estimates under G and H.

Theorem 9.3 Given our general linear model Y D Θ C U with the rows u0i of U
independently and identically distributed as NdŒ0;Σ�, then OΘ D P˝Y and OΣ D
.Y � OΘ/0.Y � OΘ/=n are the maximum likelihood estimates of Θ and Σ. Also the
maximum value of the likelihood function is

f .YI OΘ; OΣ/ D .2�/�nd=2j OΣj�n=2e�nd=2:

Proof The likelihood function of Y D .y1; y2; : : : ; yn/
0 is the product of the density

functions of the yi, namely

f .YIΘ;Σ/ D .2�/�nd=2jΣj�n=2 exp

(

�1
2

nX

iD1
.yi � θi/

0Σ�1.yi � θi/

)

;

where θi is the ith row of Θ. Since a constant equals its trace and traceŒCD� D
traceŒDC� (by A.1), the last term of the above expression is

traceŒΣ�1
Pn

iD1 .yi � θi/.yi � θi/
0�

D traceŒΣ�1.Y � Θ/0.Y � Θ/�

D traceŒΣ�1.Y � OΘ/0.Y � OΘ/C Σ�1. OΘ � Θ/0. OΘ � Θ/� by (9.2)

D traceŒΣ�1Q�C traceŒ. OΘ � Θ/Σ�1. OΘ � Θ/0�:

Since Σ is positive definite, then so is Σ�1 and by A.9(iv)

b D traceŒ. OΘ � Θ/Σ�1. OΘ � Θ/0� � 0:

Now the log-likelihood function takes the form

L.Θ;Σ/ D c � n

2
log jΣj � 1

2
traceŒΣ�1Q� � 1

2
b;

which is maximized for any positive definite Σ when b D 0, that is when Θ D OΘ.
Hence L. OΘ;Σ/ � L.Θ;Σ/ for all positive definite Σ. Now, as Q is positive definite
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with probability 1,

L. OΘ;Σ/ D �n

2

˚
log jΣj C traceŒΣ�1Q=n�

�

has a maximum at Σ D OΣ D Q=n (by A.10). Thus

L. Oθ; OΣ/ � L. OΘ;Σ/ � L.Θ;Σ/;

so that OΘ and OΣ are the maximum likelihood estimates. When b D 0 we have
traceŒ OΣ�1Q� D n traceŒId� D nd and

f . OΘ; OΣ/ D .2�/�nd=2j OΣj�n=2e�nd=2: (9.14)

To obtain the likelihood ratio test we note that under H the maximum likelihood
estimates are OΘH D P!Y and

OΣH D .Y � OΘH/
0.Y � OΘH/=n D Y0.In � P!/Y=n D QH=n:

Hence, from (9.14), the likelihood ratio is

�ŒHjG� D f .YI OΘH; OΣH/

f .YI OΘ; OΣ/

D j OΣHj�n=2

j OΣj�n=2

and

�W D �ŒHjG�2=n

D j OΣj
j OΣHj

D jY0.In � P˝/Yj
jY0.In � P!/Yj

D jQj
jQHj : (9.15)

To find the distribution of�W , a statistic proposed by Wilks (1932) and a monotonic
function of the likelihood ratio test, we can use a multivariate analogue of Cochran’s
Theorem 4.1 in Sect. 4.1 stated below. This theorem is useful in testing several
hypotheses, as we shall see later.

Theorem 9.4 Let u1;u2; : : : ;un be independently and identically distributed (i.i.d.)
as NdŒ0;Σ� and let Ai (i D 1; 2; : : : ;m) be a sequence of n � n symmetric matrices
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with ranks ri such that
Pm

iD1 Ai D In. If one (and therefore all, by A.12) of the
following conditions hold, namely

(i)
Pm

iD1 ri D m, where ri D rankŒAi�,
(ii) AiAj D 0 for all i; j; i ¤ j,

(iii) A2
i D Ai for i D 1; 2; : : : ;m,

then the generalized quadratics U0AiU are independently distributed as Wishart
distributions WdŒri;Σ�.

Proof It is convenient to break the proof into two cases.

(Case 1: Σ D Id). The method of proof follows the same pattern as for the
univariate case. Suppose the xi (i D 1; 2; : : : ; n) are independently and identically
distributed (i.i.d.) NdŒ0; Id� and X D .x1; x2; : : : ; xn/

0 D .x.1/; x.2/; : : : ; x.d// D
.xij/. Then using the orthogonal matrix T as in Theorem 4.1 in Sect. 4.1, and
making the transformation T0x.i/ D z.i/, we have X D TZ and

X0A1X D Z0T0A1TZ

D
r1X

rD1
zrz0r:

Similarly

X0A2X D
r1Cr2X

rDr1C1
zrz0r etc.

Now the elements of xi are i.d.d. as NŒ0; 1� so that all the xij are i.i.d. as NŒ0; 1�,
as the xi are independent. If Z D .zij/, then, since

VarŒz.i/� D T0VarŒx.i/�T D T0IdT D TT0 D Id;

the zij are i.i.d. NŒ0; 1� and the zi are i.i.d. NdŒ0; Id�. Hence the X0AiX are
independently distributed as WdŒri; Id�.
(Case 2: Σ positive definite). Now Σ D VV0 for some nonsingular V (A.9(iii)),
and setting xi D V�1ui we have VarŒxi� D V�1ΣV�10 D Id so that the xi are
i.i.d. NdŒ0; Id�. Now x0i D u0iV�10 or X D UV�10 D UV

0�1. Setting X D TZ as
in case 1, the transformation U D XV0 D TZV0 gives us

U0A1U D VZ0T0A1TZV0

D
r1X

rD1
Vzr.Vzr/

0

D
r1X

rD1
wrw0r; say,
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which is distributed as WdŒri;Σ� as the wr are i.i.d. NdŒ0;VV0� that is NdŒ0;Σ�.
Applying the same transformation again we get

U0A2U D
r1Cr2X

rDr1C1
wrw0r

etc. showing that U0AiU � WdŒri;Σ� and the U0AiU are mutually independent.
This complete the proof.

We now return to (9.15). When H is true, we have from (9.15) and (9.13)

�W D jQj
jQHj

D jQj
jQH � Q C Qj

D jU0.In � P˝/Uj
jU0.P˝ � P!/U C U0.In � P˝/Uj :

Since In D .In � P˝/ C .P˝ � P!/ C P! is a decomposition into idempotent
matrices, Theorem 9.4 applies. Hence, once again, we find that Q and QH � Q
are independently distributed as WdŒn � p;Σ� and WdŒq;Σ� respectively and, by
Theorem 9.2(iv), QH is WdŒn � p C q;Σ�, when H is true.

Here �W has a so-called Ud;q;n�p distribution when H is true and its properties
are discussed in Seber (1984, Sects 2.5.4, 2.5.5). When .n � p/ � d and q � d, Q
and QH are both positive definite with probability one (cf. Theorem 9.2(v)) so that
QH has a symmetric positive-definite square root Q1=2

H (see A.9(ii)). Hence,

�W D jQ�1=2H QQ�1=2H j
D jQ�1=2H .QH C Q � QH/Q

�1=2
H j

D jId � Vj
D jT0jjId � VjjTj .T orthogonal and T0VT D diag.�1; �2; : : : ; �d//

D jId � diag.�1; �2; : : : ; �d/j

D
dY

jD1
.1 � �j/;

where V D Q�1=2H .QH �Q/Q�1=2H and .Id �V/ have multivariate Beta distributions,
and the �j are the ordered eigenvalues of V. Since V is positive definite with
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probability one (by A.9(iv)), each �j > 0 with probability one. Then �j is a root of

0 D jV � �jIdj
D jQ�1=2H .QH � Q/Q�1=2H � �jQ

�1=2
H QHQ�1=2H j

D jQHj�1jQH � Q � �jQHj;

that is, a root of

j.QH � Q/� �jQHj D 0: (9.16)

The above matrix, written as .1 � �j/.QH � Q/ � �jQ, is negative definite with
probability 1 if �j � 1 which implies that the above determinant is zero with
probability 0 (a contradiction); hence �j < 1 with probability one. Since Q is
positive definite with probability one, we can express (9.16) in the form

j.QH � Q/� �jQj D 0; (9.17)

where �j D �j=.1 � �j/ are the eigenvalues of Q�1=2.QH � Q/Q�1=2. Then
conditional on Q, QH � Q is still WdŒq;Σ� (because of independence) and
Q�1=2.QH � Q/Q�1=2 is WdŒq;Q�1=2ΣQ�1=2� having distinct eigenvalues �j with
probability one. Hence the eigenvalues of V are also distinct so that we can order
them in the form 1 > �1 > �2 > � � � > �d > 0.

We note from above that �W D Qd
jD1.1 � �j/ D Qd

jD1.1 C �j/
�1, a statistic

proposed by Wilks (1932). By the likelihood principle (cf. 9.15) we reject H if �W

is too small, that is, if jQHj is much greater than jQj. However there are several
other competing test statistics also based on functions of eigenvalues. The key ones
as well as Wilks’ lambda are as follows:

(1) Wilks’ �W D Qd
jD1.1 C �j/

�1 is the most commonly used statistic. It is most
useful if the underlying distributional assumptions appear to be met.

(2) Pillai-Bartlett trace (Pillai 1955),

�PB D traceŒ.QH � Q/Q�1H � D
dX

jD1

�
�j

1C �j

�
:

This is more robust than �W and is preferable with smaller sample sizes,
unequal cell numbers, and unequal variances.

(3) The Lawley-Hotelling trace,

�LH D .n � p/ traceŒ.QH � Q/Q�1�

D .n � p/
dX

jD1
�j:

This test can generally be ignored as it is similar to �W .
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(4) Roy’s (1953) greatest root test is based on the statistic �R D �max, and it arises
from the so-called union-intersection test. Here �max is the largest eigenvalue of
.QH � Q/Q�1. We reject H if �max is too large. This statistic is very sensitive to
departures from the underlying distributional assumptions and should be used
with caution. However �max can be used to construct simultaneous confidence
intervals, as we see later.

The above four statistics are translated into F-statistics in order to test the null
hypothesis. In some cases, the F statistic is exact and in other cases it is approximate
and good statistical packages will tell us whether the F is exact or approximate.
Although the four statistics will generally differ, they produce identical F statistics
in some cases. Because Roy’s largest root is an upper bound on F, it is generally
disregarded when it is significant and the others are not significant. All four test
statistics are usually given in statistical computing packages.

9.4 Some Examples

We now apply the above theory to several examples. Univariate ANOVA methods
generalize readily to multivariate methods since, in practice, we simply replace
y0Ay D P

i

P
j aijyiyj by Y0AY D P

i

P
j aijyiy0j, which means we simply replace

yiyj by yiy0j.

Example 9.1 (Randomized Block Design) We now consider the multivariate exam-
ple given at the beginning of this chapter, namely

θij D μ C αi C τj;

where
P

i αi D 0 and
P

j τj D 0. From (6.27) the least squares estimates are

Oμ D y��, Oαi D yi� � y��, and Oβj D y�j � y��. To test H that the αi are all zero,
the univariate treatment sum of squares from Table 6.2 in Sect. 6.6 is J

P
i.yi�� y��/2

which now becomes QH �Q D J
P

i.yi��y��/.yi��y��/0. The residual sum of squaresP
i

P
j.yij � yi� � y�j C y��/2 becomes

Q D
X

i

X

j

.yij � yi� � y�j C y��/.yij � yi� � y�j C y��/0:

Example 9.2 (Comparing Multivariate Means) We wish to compare the means μi

of I multivariate normal populations with common variance-covariance Σ. For
i D 1; 2; : : : ; I, let yij (j D 1; 2; : : : ; Ji) be a sample of Ji observations from
NdŒμi;Σ�. In the univariate case we can use the normal equations obtained by
differentiating

P
i

P
j.yij � �i/

2 to obtain the least squares estimate O�i D yi� of
�i and Q D P

i

P
j.yij � y��/2. Under H W �i D � for all i, we differentiate

P
i

P
j.yij � �/2 to get O�H D y�� and QH D P

i

P
j.yij � y��/2. For the multivariate
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case we have H W μi D μ for all i with

Q D
X

i

X

j

.yij � yi�/.yij � yi�/0; QH D
X

i

X

j

.yij � y��/.yij � y��/0

and QH � Q D P
i

P
j.yi� � y��/.yi� � y��/0.

Example 9.3 (Regression Model) We return to the regression model considered
in Sect. 9.1, namely Θ D XB, where X is n � p of rank r. If r D p then
B D .X0X/�1X0Θ, OΘ D X OB, and from (9.5) OB D .XX0/�1X0Y. To test AB D 0,
where A is a known q � p of rank q, we wish to minimize .Y � XB/0.Y � XB/
subject to 0 D AB D A.XX0/�1X0Θ D A1Θ. We therefore wish to minimize
.Y � Θ/0.Y � Θ/ subject to the columns of Θ lying in ! D ˝ \ N ŒA1�. The least
squares estimator of Θ is now OΘH D P!Y. From (4.7) we have

P˝ � P! D P˝A01.A1P˝A01/�1A1P˝

D X.X0X/�1A0ŒA.X0X/�1A0��1A.X0X/�1X0: (9.18)

so that

Y0.P˝ � P!/Y D OB0A0ŒA.X0X/�1A0��1A OB:

Now using (9.18),

X0X OBH D X0 OΘH

D X0P!Y

D X0P˝Y C X0.P! � P˝/Y

D X0X OB � A0ŒA.X0X/�1A0��1A OB; (9.19)

so that

OBH D OB � .X0X/�1A0ŒA.X0X/�1A0��1A OB:

If X is not of full rank, then the constraints A0iβ.j/ must be estimable (see end of
Sect. 3.4), that is the rows a0i of A must be linear combinations of the rows of X, or
A D MX. Referring to Example 4.5 in Sect. 4.3 we have that

P˝ � P! D X.X0X/�A0ŒA.X0X/�A0��1A.X0X/�X0;

along with P˝ D X.X0X/�X: If HB D 0 are identifiability constraints we can use
.X0X/� D .G0G/�1, where G0G D X0X C H0H.

Example 9.4 (Regression Coefficients) We consider the following example with X
having full rank, as we make use of it later. Suppose in the previous example we set
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A D Ip so that we are then testing H W B D 0 (i.e., Θ D 0 and P! D 0). When H is
true we have

QH � Q D Y0.P˝ � P!/Y

D Y0P˝Y

D Y0P2˝Y

D Y0X.X0X/�1.X0X/.X0X/�1X0Y

D OB0X0X OB � WdŒp;Σ�:

If we replace Y by Y � XB in the above algebra, we get . OB � B/0X0X. OB � B/ which
is now WdŒp;Σ� in general (irrespective of whether H is true or not). We shall use
this result to construct simultaneous intervals in Sect. 9.6.

Example 9.5 (Orthogonal Hypotheses) Suppose we have hypotheses Hi W θ 2 !i,
(i D 1; 2; : : : ; k) that are orthogonal with respect to G W θ 2 ˝ , so that we have
!?i \ ˝ ? !?j \ ˝ for all i; j; i ¤ j. We now ask which of the four test statistics
supports the separate method of Chap. 6. If Q12:::k � Q is the hypothesis matrix for
testing θ 2 !1 \ !2 � � � \ !k, then from the end of Sect. 6.2,

�LH D .n � p/ traceŒ.Q12::::k � Q/Q�1�

D
kX

iD1
.n � p/ traceŒ.Qi � Q/Q�1�

D
kX

iD1
�
.i/
LH ;

so that we have the additive property of the individual test statistics. None of the
other three test statistics have this property.

Example 9.6 (Generalized Linear Hypothesis) The theory in this chapter can be
generalized in several ways and we consider one generalization. We have the usual
model Y D XB C U, where X is n � p of rank p and the rows of U are i.i.d NdŒ0;Σ�,
but H now takes the form ABD D 0, where A is q � p of rank q (q � p), B is
p � d, and D is d � v of rank v (v � d). As the hypothesis reduces to AB D 0
when D D Id, a reasonable procedure for handling H is to try and carry out the
same reduction with a suitable transformation. We can do this by setting YD D YD
so that

YD D XBD C UD

D XΦ C UD;
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say, where the rows of

UD D

0

B
BB
@

u01
u02
:::

u0n

1

C
CC
A

D D

0

B
BB
@

.D0u1/0

.D0u2/0
:::

.D0un/
0

1

C
CC
A

are i.i.d. NvŒ0;D0ΣD�. Since H is now AΦ D 0, we can apply the general theory of
this chapter with (cf. (9.18))

QH � Q D D0Y0X.X0X/�1A0ŒA.X0X/�1A0��1A.X0X/�1X0YD (9.20)

D .A OBD/0ŒA.X0X/�1A0��1A OBD;

and

Q D Y0D.In � P˝/YD D D0Y0.In � P˝/YD:

The only change is that Y is replaced by YD and d by v. Then Q � WvŒn�p;D0ΣD�
and, when H is true, QH �Q � WvŒq;D0ΣD�. If X has less than full rank, say r < p,
then the above theory still holds, with .X0X/�1 replaced by .X0X/�, and p by r.

It transpires that by an appropriate choice of A the above theory can be used to
carry out tests on one or more multivariate normal distributions such as testing for
linear constraints on a mean or comparing profiles of several normal distributions.
An example of the former is given in Example 9.7 in the next section. Another
generalization of the above model is to use Y D XΔK0CU along with H W AΔD D
0. This model can be used for analyzing growth curves.

9.5 Hotelling’s Test Statistic

If x � NdŒμ;Σ�, W � WdŒm;Σ�, Σ is positive definite, and x is statistically
independent of W, then

T2 D m.x � μ/0W�1.x � μ/ .m � d/

is said to have a Hotelling’s T2d;m distribution. In particular

m � d C 1

d

T2

m
� Fd;m�dC1:

When d D 1, T2 reduces to t2, where t has the tm distribution.
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In Sect. 9.3, if q D 1 so that QH �Q � WdŒ1;Σ� when H is true, then we find that
all four test statistics reduce to the same test. To see this we note first that there exists
u � NdŒ0;Σ� such that QH � Q D uu0 (by definition of the Wishart distribution),
where u is statistically independent of Q. Then, by A.4(i)

rankŒ.QH � Q/Q�1� D rankŒQH � Q� D 1

so that (9.17) has only one (non-zero) root that we can call �max. We see that the
four statistics are�W D .1C�max/

�1,�PB D �max=.1C�max/, �LH D .n�p/�max,
and�R D �max that are all monotonic functions of �max. Also, using A.1

�LH D .n � p/ traceŒ.QH � Q/Q�1� (9.21)

D .n � p/ traceŒuu0Q�1�

D .n � p/ traceŒu0Q�1u�

D .n � p/u0Q�1u

D u0S�1u (9.22)

D T2;

where T2 � T2d;n�p and S D Q=.n � p/.

Example 9.7 (Testing for constraints on a multivariate normal mean) Let
y1; y2; : : : ; yn be i.i.d. NdŒμ;Σ� and suppose we wish to test H W D0μ D 0, where D0
is a known q � d matrix of rank q. Putting Y0 D .y1; y2; : : : ; yn/ and XB D 1nμ

0,
we have the linear model Y D XB C U, where the rows of U are i.i.d. NdŒ0;Σ�. The
hypothesis H now becomes 00 D μ0D D BD, which is a special case of ABD D 0
with A D 1 in Example 9.6, in the previous section. Now from (9.20)

QH � Q D D0Y01n.10n1n/
�1.10n1n/.10n1n/

�110nYD

D nD0yy0D;

and

Q D D0Y0fIn � 1n.10n1n/
�110ngYD

D D0
X

i

.yi � y�/.yi � y�/0D

D D0QyD;
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say. However as rankŒQ � QH� D 1, Q � WqŒn � 1;Σ�, and VarŒy� D Σ=n, we can
test H using (cf. (9.21) and (9.22) with u D D0y)

T2 D .n � 1/ traceŒ.QH � Q/Q�1�

D n.D0y/0ŒD0SD��1D0y;

where S D Qy=.n � 1/.

9.6 Simultaneous Confidence Intervals

Suppose we have Y D XB C U as before where X is n � p of rank p and B D .ˇij/.
From Example 9.4 in Sect. 9.4, the least squares estimate of B is OB D .X0X/�1Y,
and we consider testing B D 0 as a means of constructing simultaneous confidence
intervals for the ˇij. We note that H is true if and only if Hab W a0Bb D 0 is true for
all a and b, so that we can write H D \a \b Hab. Setting y D Yb, β D Bb, and
Oβ D .X0X/�1X0y, we can test Hab W a0β D 0 using the F-ratio (with q D 1)

F.a;b/ D QH � Q

Q=.n � p/
;

where (cf. (9.18))

QH � Q D y0X.X0X/�1aŒa0.X0X/�1a��1a0.X0X/�1X0y

D fa0.X0X/�1X0Ybg2=fa0.X0X/�1ag

D .a0Lb/2

a0Ma
;

where L D .X0X/�1X0Y D OB and M D .X0X/�1. We also have

Q D y0.In � P˝/y

D b0Y0.In � P˝/Yb

D b0Qb:

Using the union-intersection principle, a test of H has acceptance region

\a \bfY W F.a; b/ � kg D fY W sup
a;b¤0

F.a;b/ � kg

D fY W sup
a;b

.a0Lb/2

.a0Ma/.b0Qb/
� k

n � p
D k1g (9.23)

D fY W �max � k1g:
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where �max is the maximum eigenvalue of M�1LQ�1L0 (by A.21(ii)), that is of
(see A.6)

L0M�1LQ�1 D Y0X.X0X/�1X0X.X0X/�1X0Q�1

D OB0X0X OBQ�1

D .QH � Q/Q�1 .by Example 9.4/:

We have therefore arrived at Roy’s maximum root test again. Following Exam-
ple 9.4, we can replace L (D OB) by OB � B to obtain the following:

1 � ˛ D PrŒ�max � �˛�

D PrŒja0. OB � B/bj � f�˛a0.X0X/�1a � b0Qbg1=2 for all a;b .¤ 0/:

We therefore have a set of multiple confidence intervals for all linear combinations
of B given by

a0 OBb ˙ f�˛a0.X0X/�1a � b0Qbg1=2;

and the set has an overall confidence of 100.1 � ˛/%. If we set a and b equal to
vectors with 1 in the ith and jth positions, respectively, and zeroes elsewhere, we
include confidence intervals for all the ˇij. These intervals will tend to be very wide.
If we wish to include a set of confidence intervals from testing AB D 0, it transpires
that using (9.18) we simply replace a by A0a in the above theory. This gives us the
set of confidence intervals

a0A OBb ˙ f�˛a0A.X0X/�1A0a � b0Qbg1=2:

The largest root test of AB D 0 will be significant if at least one of the above
intervals does not contain zero.
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Chapter 10
Large Sample Theory: Constraint-Equation
Hypotheses

10.1 Introduction

Apart from Chap. 8 on nonlinear models we have been considering linear models
and hypotheses. We now wish to extend those ideas to non-linear hypotheses based
on samples of n independent observations x1; x2; : : : ; xn (these may be vectors) from
a general probability density function f .x;θ/, where θ D .�1; �2; : : : ; �p/

0 and θ
is known to belong to W a subset of R

p. We wish to test the null hypothesis H
that θT , the true value of θ, belongs to WH , a subset of W, given that n is large.
We saw in previous chapters that there are two ways of specifying H; either in the
form of “constraint” equations such as a.θ/ D .a1.θ/; a2.θ/; : : : ; aq.θ//

0 D 0, or
in the form of “freedom” equations θ D θ.α/, where α D .˛1; ˛2; : : : ; ˛p�q/

0,
or perhaps by a combination of both constraint and freedom equations. Although
to any freedom-equation specification there will correspond a constraint-equation
specification and vice versa, this relationship is often difficult to derive in practice,
and therefore the two forms shall be dealt with separately in this and the next
chapter.

We saw in Sect. 8.5 that three large-sample methods of testing H are available for
the nonlinear model: the likelihood ratio test, the Wald test, and the Score (Lagrange
multiplier) test. The same tests apply in the general situation of sampling from a
probability density function. The choice of which method to use will depend partly
on the ease of computation of the test statistic and therefore to some extent on the
method of specification of WH . We shall show how a non-linear hypothesis and non-
normal model can be approximated, for large n, by a linear normal model and linear
hypothesis. The normality arises from fact that a maximum likelihood estimate
is asymptotically normally distributed. We shall then use this approximation to
define the three test statistics mentioned above and show that they are equivalent
asymptotically. In this chapter we shall consider just the constraint-equation form
a.θ/ D 0 only so that WH D fθ W a.θ/ D 0 and θ 2 Wg. The freedom-equation
hypothesis will be considered in the next chapter. We have a slight change in
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notation because of subscript complications and replace OθH by Qθ, the restricted (by
H) maximum likelihood estimate of θ.

10.2 Notation and Assumptions

Let L.θ/ D log
Qn

iD1 f .xi;θ/ represent the log likelihood function, and let Oθ and
Qθ be the maximum likelihood estimates of θ for θ in W and WH , respectively.
Although the maximum likelihood estimates depend on n we shall drop the latter
from the notation for simplicity. The (expected) information matrix is denoted by
Bθ , where Bθ is the p � p with i; jth element

�1
n

E

�
@2L.θ/

@�i@�j

�
D �E

�
@2 log f .x;θ/

@�i@�j

�
:

Let DL.θ/ be the column vector with ith element @L.θ/=@�i, and let Aθ be the q � p
matrix with i; jth element @ai.θ/=@�j. For any function g.θ/, D2g.θ/ is the matrix
with i; jth element @2g.θ/=@�i@�j:

We now assume that W, WH , f .x;θ/ and a.θ/ satisfy certain regularity assump-
tions which we list below (Silvey 1959). These are not the weakest assumptions we
could use, but are perhaps the simplest for the development given here.

(i) θT , the true value of θ, is an interior point of W.
(ii) For every θ 2 W, z.θ/ D R

.log f .x;θ//f .x;θT/dx exists.
(iii) W is a convex compact subset of Rp.
(iv) For almost all x, log f .x;θ/ is continuous on W.
(v) For almost all x and for every θ 2 W, @ log f .x;θ/=@�i exists for

i D 1; 2; : : : ; p and j@ log f .x;θ/=@�ij < g.x/ for i D 1; 2; : : : ; p, whereR
g.x/f .x;θT/dx < 1.

(vi) The function a.θ/ is continuous on W.
(vii) There exists a point θ� 2 WH such that z.θ�/ > z.θ/ when θ 2 WH and

θ ¤ θ�.
(viii) θ� is an interior point of WH .

(ix) The functions ai.θ/ possess first- and second-order partial derivatives that are
continuous (and therefore bounded) on W.

(x) The order of operations of integration with respect to x and differentiation
with respect to θ are reversible; thus

0 D .@=@�i/.1/ D .@=@�i/

Z
f .x;θ/dx D

Z
@f=@�idx

and, using a similar argument,

0 D
Z
@2f=@�i@�jdx:
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(xi) For almost all x, log f .x;θ/ possesses continuous second-order partial deriva-
tives in a neighborhood of θT . Also if θ belongs to this neighborhood, then

j@2 log f .x;θ/=@�i@�jj < G1.x/ for i; j D 1; 2; : : : ; p;

where
Z

G1.x/f .x;θT/dx < 1:

(xii) For almost all x, log f .x;θ/ possesses third-order partial derivatives in a
neighborhood of θT , and if θ is in this neighborhood, then

j@3 log f .x;θ/=@�i@�j@�kj < G2.x/ for i; j; k D 1; 2; : : : ; p;

where
Z

G2.x/f .x;θT/dx < 1:

(xiii) The matrix Aθ has rank q in the neighborhood of θT .

In the above assumptions, the statement “for almost all x” means “for all x except for
a set of measure zero—the probability measure being defined by the (cumulative)
distribution function of f .x;θ/”. Also these assumptions can be applied to discrete
probability functions by writing the above integrals in the Stieltjes form.

The matrices BT , B�, OB and QB denote that Bθ is evaluated at θT , θ�, Oθ, and Qθ
respectively, with the same notation for Aθ . We have a similar assignment for D; for
example DL.θT/ is DL.θ/ evaluated at θT .

As we shall be considering asymptotic theory we will need some definitions.
Let fang be a sequence of vectors. If g.n/ is a positive function of n, we say that
an D oŒg.n/� if

lim
n!1 an=g.n/ D 0;

and an D OŒg.n/� if there exists a positive integer n0 and positive constant M such
that

k an k< Mg.n/ for n > n0:

Let fzng be a sequence of random vectors. We write

p lim
n 1 zn D 0 if, for every ı > 0; lim

n 1PrŒk zn k� ı� D 1:
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Also zn D opŒg.n/� if

p lim
n!1 zn=g.n/ D 0;

and zn D OpŒg.n/� if for each " > 0 there exists a c."/ such that

PrŒk zn k� c."/g.n/� � 1 � "

for all values of n.

10.3 Positive-Definite Information Matrix

We make a further assumption, namely,

(xiv) The matrix Bθ exists and is positive definite in a neighborhood of θT ; also its
elements are continuous functions of θ there.

Assumptions (xiv), (ix), and (xiii), imply that .AB�1A0/θ is positive defi-
nite (A.9(iv)) and its elements are continuous functions of θ in the neighborhood
of θT .

Let

d D @ log f .x;θ/

@θ
and di D @ log f .xi;θ/

@θ
for i D 1; 2; : : : ; n:

A key part in the proof that follows in the next section depends on the asymptotic
distribution of

1

n
DL.θ/ D 1

n

nX

iD1

@ log f .xi;θ/

@θ

D d:

By the multivariate central limit theorem n1=2d is asymptotically normally dis-
tributed with mean

EŒd� D E

�
@ log f .x;θ/

@θ

�

D
Z
1

f

@f

@θ
fdx

D @

@θ

Z
fdx D @.1/

@θ
D 0; by assumption (x)
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and variance-covariance matrix

VarŒd� D EŒdd0�;

by Theorem 1.5(vi) in Sect. 1.6.
If Bθ D .bij/ then

bij D �1
n

E

�
@2L.θ/

@�i@�j

�

D �
Z
@2 log f

@�i@�j
fdx

D �
Z

@

@�i

�
1

f

@f

@�j

�
fdx

D
Z

1

f 2
@f

@�i

@f

@�j
fdx �

Z
1

f

@2f

@�i@�j
fdx

D E

�
@ log f

@�i

@ log f

@�j

�
C 0 (by Assumption (x))

D .EŒdd0�/ij:

Hence
p

nDn�1L.θ/ is asymptotically normally distributed with mean 0 and
variance matrix Bθ . This will give us the normality assumption for our asymptotic
linear model.

10.3.1 Maximum Likelihood Estimation

We now derive some maximum likelihood equations. From assumptions (ii) to (v) it
can be shown, using the Strong Law of Large Numbers, that for almost all sequences
fxg D x1; x1; : : :, the sequence xn D n�1L.θ/ converges to z.θ/ uniformly with
respect to θ in W. Assumption (iii) ensures that any continuous function on W
attains it supremum at some point in W. In particular, the function L.θ/, for almost
all x, attains its supremum in W at Oθ, the maximum likelihood estimate. But from
Wald (1949), z.θT/ > z.θ/ when θ ¤ θT and θ 2 W, and therefore it can be shown
that Oθ D wn (as it depends on n) converges to θT for almost all sequences fwg as
n ! 1. In other words we say that Oθ ! θT with probability one as n ! 1, which
implies the weaker statement p lim. Oθ � θT/ D 0. Since θT is an interior point of
W (assumption (i)), it follows that for n sufficiently large, Oθ will also be an interior
point of W and will, by the usual laws of calculus, emerge as a solution of

Dn�1L. Oθ/ D 0:
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Using a Taylor expansion, we have from assumption (xii) and the above equation

0 D Dn�1L.θT/C ŒD2n�1L.θT/�. Oθ � θT/C op.1/:

But by assumption (xi), the Law of Large Numbers, and assumption (x),

p lim D2n�1L.θT/ D D2z.θT/ D �BT :

Thus we can write

D2n�1L.θT/ D �BT C op.1/ (10.1)

and hence from the previous three equations

Oθ � θT D B�1T Dn�1L.θT/C op.1/:

Since n1=2Dn�1L.θT/ is asymptotically NpŒ0;BT �, it follows from Theorem 1.5(iii)
that

n1=2. Oθ � θT/ is asymptotically NpŒ0;B�1T �; (10.2)

and since B�1T does not depend on n we have

n1=2. Oθ � θT/ D Op.1/: (10.3)

We now turn out attention to Qθ and first of all make one further assumption:

(xv) If H is not true then θT is “near” W1. This means that since θT and θ�
maximize z.θ/ for θ belonging to W and WH , respectively, θT will be “near”
θ�. We define what we mean by nearness by

n1=2.θT � θ�/ D O.1/: (10.4)

Assumption (xv) assumes that in testing H we now consider classes of alterna-
tives θT that tend to WH as n ! 1. We choose this class of alternatives as for a fixed
alternative, θT , the powers of the tests considered will tend to unity as n ! 1. This
method using a limiting sequence of alternatives is usually referred to a Pitman’s
limiting power or Pitman’s local power analysis. However, according to McManus
(1991), the idea was first introduced by Neyman and then developed further by
Pitman. This assumption (xv) now implies that assumptions (xi), (xiii), and (xiv)
are valid in a neighborhood of θ�, and from assumptions (iii) and (vi) it follows that
WH is a convex compact subset of W. Therefore, by a similar argument that led to
Eq. (10.3) we have (Silvey 1959, p. 394) using (10.4)

n1=2. Qθ � θ�/ D Op.1/ and n1=2. Qθ � θT/ D Op.1/: (10.5)
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In addition, as θ� is an interior point of WH , Qθ will be an interior point also, for large
enough n, and will emerge as a solution of (cf. Sect. 1.10)

Dn�1L. Qθ/C QA0 Qμ D 0 (10.6)

and

a. Qθ/ D 0; (10.7)

where μ is the Lagrange multiplier.
Finally, from Eqs. (10.3) to (10.5) we see that θT , θ�, Oθ and Qθ are all “near” each

other. Since Aθ and Bθ are continuous functions of θ in the neighborhood of θT , we
have from Taylor expansions

OB D BT C Op.n
�1=2/ (10.8)

A� D AT C O.n�1=2/ (10.9)

and

QA D AT C Op.n
�1=2/: (10.10)

10.3.2 The Linear Model Approximation

Using the asymptotic results above, we can now show that our original model and
hypothesis can be approximated by the linear model

z D φ C ε;

where " is NpŒ0; Ip�, ˝ D R
p, and the linear hypothesis

H W ! D N Œ.AV/T �;

where nonsingular VT is defined later. The argument is as follows.
From (10.3) and (10.5) we have

n1=2. Qθ � Oθ/ D Op.1/

so that using a Taylor expansion,

Dn�1L. Qθ/ D Dn�1L. Oθ/C ŒD2n�1L. Oθ/�. Qθ � Oθ/C Op.n
�1/:
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Now Dn�1L. Oθ/ D 0, and applying (10.1) to a neighborhood of θT containing Oθ
gives us, by (10.8) and the previous equation,

Dn�1L. Qθ/ D � OB. Qθ � Oθ/C Op.n
�1/

D �BT. Qθ � Oθ/C Op.n
�1/: (10.11)

Therefore from (10.6),

QA0n1=2 Qμ D �n1=2Dn�1L. Qθ/ D Op.1/;

which means that we can write

QA0n1=2 Qμ D A0Tn1=2 Qμ C op.1/: (10.12)

Thus using (10.11), (10.6) becomes

BT n1=2. Oθ � θ�/� BTn1=2. Qθ � θ�/C A0Tn1=2 Qμ D op.1/: (10.13)

In the same way,

0 D n1=2Œa. Qθ/� a.θ�/�

D A�n1=2. Qθ � θ�/C Op.n
�1=2/

D ATn1=2. Qθ � θ�/C Op.n
�1=2/; by (10.9):

Therefore (10.7) becomes

ATn1=2. Qθ � θ�/ D op.1/: (10.14)

Now from (10.2),

n1=2. Oθ � θ�/ D n1=2.θT � θ�/C δ; (10.15)

where δ is asymptotically NpŒ0;B�1T �, which reminds us of the linear model given
in Example 2.6 in Sect. 2.4. As BT is positive definite, so is B�1T , and there exists
a non-singular matrix VT such that B�1T D VTV0T (A.9(vi) and (iii)). Using BT D
.V0T/�1V�1T , we put

z D n1=2V�1T . Oθ � θ�/ (10.16)

φ D n1=2V�1T .θT � θ�/ (10.17)
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and

Qφ D n1=2V�1T . Qθ � θ�/ (10.18)

in Eq. (10.15) to give us

VarŒz� D V�1T VarŒδ�.V�1T /0 D V�1T .VTV0T/.V�1T /0 D Ip;

and the linear model

z D φ C ε;

where ε is NpŒ0; Ip�. Premultiplying (10.13) by V0T and using (10.14) leads to

z � Qφ C ŒAV�0T n1=2 Qμ D op.1/

and

ŒAV�T Qφ D op.1/:

But these are asymptotically the least squares equations for testing the linear
hypothesis ŒAV�Tφ D 0. Thus our original model is asymptotically equivalent to
a linear model with

G W ˝ D R
p and H W ! D N Œ.AV/T �: (10.19)

10.3.3 The Three Test Statistics

Consider the linear model z D φC ε, where ε is NpŒ0; Ip�, G W φ 2 ˝ , and H W φ 2
˝ \ N ŒC� D ! for some matrix C. The least squares estimate of φ is Oφ D P˝z.
To find the restricted least squares estimate Qφ we minimize k z � φ k2 subject to
Cφ D 0 and .Ip � P˝/φ D 0. Introducing Lagrange multipliers �2λ and �2λ1
and using Sect. 1.10, we have to solve the following equations (cf. Theorem 4.5 in
Sect. 4.3)

z � Qφ C .Ip � P˝/ Qλ C C0 Qλ1 D 0; (10.20)

.Ip � P˝/ Qφ D 0 and C Qφ D 0: (10.21)

Premultiplying (10.20) by P˝ and using (10.21) leads to

�
Ip �P˝C0

�CP˝ 0

�� Qφ
Qλ1
�

D
�

P˝z
0

�
:
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By choosing C correctly (Sect. 4.3), .CP˝C0/�1 will exist, and inverting the
above matrix (cf. A.17) we have

� Qφ
Qλ1
�

D
�

Ip � P˝C0.CP˝C0/�1CP˝ �P˝C0.CP˝C0/�1
�.CP˝C0/�1CP˝ �.CP˝C0/�1

��
P˝z

0

�
;

Qφ D ŒP˝ � P˝C0.CP˝C0/�1CP˝�z D P!z

and

Qλ1 D �.CP˝C0/�1CP˝z:

Since

VarŒ Qλ1� D .CP˝C0/�1CP˝IrP˝C0.CP˝C0/�1 D .CP˝C0/�1;

we have

. Oφ � Qφ/0. Oφ � Qφ/ D z0.P˝ � P!/2z

D z0.P˝ � P!/z (by Theorems 4.2 and 4.3)

D z0P˝C0.CP˝C0/�1CP˝z (10.22)

D .C Oφ/0.CP˝C0/�1C Oφ (10.23)

D Qλ01.CP˝C0/ Qλ1
D Qλ01.VarŒ Qλ1�/�1 Qλ1; (10.24)

a slight generalization of Theorem 4.5 in Sect. 4.3. (Note that the scale factor of �2
applied to λ1 at the beginning of this section cancels out of the above expression.)
As �2 D 1, the likelihood function is (cf. (3.12) in Sect. 3.9)

`.θ; 1/ D .2�/�n=2 exp

�
�1
2

k y � θ k2
�
;

so that the likelihood ratio is given by

�ŒHjG� D maxθ2! `.θ; 1/
maxθ2˝ `.θ; 1/

D exp
˚
1
2
.z0.Ip � P˝/z

�

exp
˚
1
2
.z0.Ip � P!/z/

�

and therefore

� 2 log�ŒHjG� D z0.P˝ � P!/z: (10.25)
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For testing H we use the statistic z0.P˝ � P!/z which has a chi-square distribution
when H is true, and we reject H if this statistic is too large. From the above we see
that this statistic can be expressed in three forms (10.23) to (10.25), and each form
defines a different test principle. Thus we accept H if C Oφ is “near enough” to zero
(Wald principle), or if the Lagrange multiplier Qλ is “near enough ” to zero (Lagrange
multiplier or Score principle), or if the likelihood ratio is “near enough” to unity.

If we put C D ŒAV� and ˝ D R
p, then P˝ D Ip and C is now function of θ.

Equations (10.20) and (10.21) now become

z � Qφ C Œ QA QV�0 Qλ1 D 0

and

QA QV Qφ D 0;

which are asymptotically equivalent to the equations obtained at the end of
Sect. 10.3.2 when Qλ1 D n1=2 Qμ and QA QV is approximated by ATVT . Now Oφ D z,
and using a Taylor expansion we have

ŒAV�T Oφ D ATVTz

D n1=2AT. Oθ � θ�/ by .10.16/

D n1=2a. Oθ/C op.1/ (since a.θ�/ D 0/:

Also, by virtue of the remarks made after assumption (xiv),

ŒA0B�1A�T D ŒA0B�1A� Oθ C op.1/;

where the inverse of the matrix on the right-hand side will exist for n sufficiently
large. Using (10.23) with C D .AV/T , P˝ D Ip, and CC0 D ŒAB�1A�T , and
combining the above two results gives us

.C Oφ/0.CP˝C0/�1C Oφ D na0. Oθ/ŒA0B�1A��1Oθ a. Oθ/C op.1/;

the so-called Wald test statistic. From (10.12),

A0Tn1=2 Qμ D QA0n1=2 Qμ C op.1/;

D �n1=2Dn�1L. Qθ/C op.1/;

and from (10.6) with C D QA QV and Qλ1 D n1=2 Qμ,

Qλ01CP˝C0 Qλ1 D . QA0 Qλ1/0 QV QV0. QA0 Qλ1/
D nŒDn�1L. Qθ/�0 QB�1ŒDn�1L. Qθ/�C op.1/;
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the Score test statistic. Using a Taylor expansion and (10.1), we have

L. Qθ/� L. Oθ/ D DL. Oθ/0. Qθ � Oθ/

C 1

2
. Qθ � Oθ/0ŒD2L. Oθ/�. Qθ � Oθ/C op.1/

D 0 � 1

2
n. Qθ � Oθ/0 OB. Qθ � Oθ/C op.1/;

and therefore, from (10.16) and (10.18) with P˝ D Ip,

�2LŒ. Qθ/ � L. Oθ/� D n. Qθ � Oθ/0 OB. Qθ � Oθ/C op.1/

D n. OV�1 Qθ � OV�1 Oθ/0. OV�1 Qθ � OV�1 Oθ/C op.1/

D .z � Qφ/0.z � Qφ/C op.1/

D z0.Ip � P!/z C op.1/

D z0.P˝ � P!/z C op.1/

D �2 log�ŒHjG�C op.1/;

the likelihood ratio test statistic (see (10.25)). Thus the three statistics

na0. Oθ/Œ OA OB�1 OA0��1a. Oθ/;
n�1ŒDL. Qθ/�0 QB�1ŒDL. Qθ/�; and

�2ŒL. Qθ/� L. Oθ/�

are asymptotically distributed as 	2q when H is true. When H is false, but θT is
near W1, then the above linear approximation is valid and the three statistics have
an asymptotic non-central chi-square distribution with non-centrality parameter
(cf. (10.22) with C D ŒAV�T )

ı D EŒz0�C0.CC0/�1CEŒz�

D φ0C0.CC0/�1Cφ

D n.θT � θ�/0A0T.AB�1A0/�1T AT.θT � θ�/


 n.a.θT/ � a.θ�//0.AB�1A0/�1T .a.θT/ � a.θ�//;

which is 0 when H is true, i.e., when θT D θ�. When θT is not near W1, the linear
approximation can not be used and we can say nothing about the power of the test
except that it will tend to unity as n tends to infinity. This is obvious since, for
example,

p
na. Oθ/ will be far from 0 when a. Oθ/ is not near 0.
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Example 10.1 Suppose we have the above model and we wish to test the hypothesis
H W θT � θ0 D 0. To do this we adopt the method described in Example 2.5 in
Sect. 2.4 where we essentially shift the origin. Recalling (10.16)–(10.18), we define
φ0 D n1=2V�1T .θ0 � θ�/ and consider the asymptotic model w D η C ε, where

w D z � φ0

D n1=2V�1T Œ. Oθ � θ�/ � .θ0 � θ�/�

D n1=2V�1T . Oθ � θ0/;

η D φ � φ0 D n1=2V�1T .θT � θ0/;

and AT D Ip. We now test H W ATVTη D n1=2.θT � θ0/ D 0, which is equivalent to
testing θT D θ0. We have

�2 log�ŒHjG� D w0.P˝ � P!/w

D w0.Ip � 0/w

D w0w

D n. Oθ � θ0/
0BT. Oθ � θ0/


 n. Oθ � θ0/B Oθ. Oθ � θ0/;

the Wald test. Rao’s score test readily follows from the above theory, namely
n�1ŒDL.θ0/�0B�1θ0 DL.θ0/. All three statistics are asymptotically distributed as 	2p
when H is true.

10.4 Positive-Semidefinite Information Matrix

The following is based on Seber (1963). If BT is a p�p positive-semidefinite matrix
of rank p�r0, then θT is not identifiable and we introduce r0 independent constraints
to make θT identifiable, namely

h.θT/ D .h1.θT/; h2.θT/; : : : ; hr0.θT//
0 D 0:

Let HT be the r0 � p matrix of rank r0 with .i; j/th element Œ@hi.θ/=@�j�θT . Since BT

is positive semidefinite, there exists a .p � r0/� p matrix RT of rank p � r0 such that
BT D .R0R/T (A.9(iii)). We now add a further assumption, namely

(xvi) .B C H0H/T is positive definite, that is the p � p matrix GT D .R0;H0/0T is
of rank p and HT has rank r0.



162 10 Large Sample Theory: Constraint-Equation Hypotheses

It follows from the above assumption that .G0G/T D .B C H0H/T is nonsingular,
GT is nonsingular, and from ŒG.G0G/�1G0�T D Ip we get

�
R.G0G/�1R0; R.G0G/�1H0
H.G0G/�1R0; H.G0G/�1H0

�

T

D
�

Ip�r0 0
0 Ir0

�
: (10.26)

Assuming certain underlying assumptions (Silvey 1959), the maximum likeli-
hood estimate of θT is the solution of

Dn�1L. Oθ/C OH0 Oλ0 D 0 (10.27)

and

h. Oθ/ D 0:

Since Oθ is near θT we can use the usual Taylor expansions

n1=2Dn�1L. Oθ/ D n1=2Dn�1L.θT/ � n1=2BT . Oθ � θT/C op.1/; (10.28)

OH D HT C Op.n
�1=2/;

and, since h.θT/ D 0,

0 D n1=2h. Oθ/ � n1=2h.θT/

D n1=2HT. Oθ � θT/C op.1/: (10.29)

Multiplying (10.29) by H0T , subtracting the result (zero) from the right-hand side
of (10.28), and noting that n1=2Dn�1L.θT/ is asymptotically NpŒ0;BT �, we get
from (10.27)

n1=2.G0G/T. Oθ � θT/� n1=2H0T Oλ0 D δ1 C op.1/;

where δ1 � NpŒ0;BT �. Multiplying the above equation on the left by HT.G0G/�1
gives us

n1=2HT. Oθ � θT/� n1=2HT.G0G/�1H0T Oλ0 D HT.G0G/�1δ1 C op.1/:

Using (10.29) and (10.26) in the above equation leads to

n1=2 Oλ0 D �HT.G0G/�1δ1 C op.1/

D �Cδ1 C op.1/; say:
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Now

varŒn1=2 Oλ0� D CvarŒδ1�C0 C o.1/

D CBTC0 C o.1/

D fH.G0G/�1R0R.G0G/�1H0gT C o.1/

D o.1/ by (10.26);

so that n1=2 Oλ0 D op.1/ and

n1=2Dn�1L. Oθ/ D op.1/: (10.30)

Since θT is near θ� we have from (10.28) and (10.30)

0 D δ1 � BTn1=2. Oθ � θ�/C BTn1=2.θT � θ�/C op.1/; (10.31)

n1=2HT. Oθ � θ�/ D op.1/ (10.32)

and

n1=2HT.θT � θ�/ D o.1/: (10.33)

10.4.1 Hypothesis Testing

The hypothesis of interest H is a.θ/ D 0 as in Sect. 10.2, and Aθ is the q � p matrix
of rank q of corresponding derivatives. To find the restricted maximum likelihood
estimate Qθ we solve

n1=2Dn�1L. Qθ/C n1=2 QH0 Qλ0 C n1=2 QA0 Qλ1 D 0; (10.34)

h. Qθ/ D 0;

and

a. Qθ/ D 0:

As Qθ, θ�, and Oθ are all near each other, we can carry out the usual Taylor expansions
to get from (10.30)

n1=2Dn�1L. Qθ/ D n1=2Dn�1L. Oθ/ � BT n1=2. Qθ � Oθ/C op.1/

D 0 � BTn1=2. Qθ � Oθ/C op.1/

D �BTn1=2. Qθ � θ�/C BT n1=2. Oθ � θ�/C op.1/; (10.35)
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along with

n1=2HT. Qθ � θ�/ D op.1/;

and

n1=2AT. Qθ � θ�/ D op.1/:

The rows of AT are assumed to be linearly independent of the rows of HT . Since Qθ
is close to θT we have

QH D HT C Op.n
�1=2/

and

QA D AT C Op.n
�1=2/:

Using the above equations and substituting (10.35) in (10.34) gives us

�BT n1=2. Qθ�θ�/CBT n1=2. Oθ�θ�/Cn1=2H0T Qλ0Cn1=2A0T Qλ1Cop.1/ D 0; (10.36)

and setting y D n1=2. Oθ � θ�/, β D n1=2.θT � θ�/, and Qβ D n1=2. Qθ � θ�/ in
equations (10.31)–(10.33) we get the asymptotic linear model

BTy D BTβ C δ1;

where δ1 � NpŒ0;BT �, HTy D 0, and HTβ D 0. From (10.36), ! is given by

A2Tβ D
�

HT

AT

�
β D 0;

where A2T is .q C r0/� p of rank q C r0 (q C r0 < p). Recalling that BT D .R0R/T ,
where RT is .p � r0/ � p of rank r0, we get

R0TRTy D R0TRTβ C δ1:

Since .RR0/T is p � r0 � p � r0 of rank p � r0 it is nonsingular, and multiplying the
above equation by Œ.RR0/�1R�T we get the linear model

z D φ C ε;

where z D RTy, HTy D 0, ε D Œ.RR0/�1R�Tδ1,

VarŒε� D Œ.RR0/�1R.R0R/R0.RR0/�1�T D Ip�r0 ;
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HTβ D 0, and φ D RTβ. Considering the previous two equations, it follows
from A.11 and the assumption that .G0G/T is positive definite that β is identifiable
so that φ is not constrained and ˝ D R

p�r0 . This also follows from the fact that
since .G0G/�1T is a generalized (weak) inverse of .R0R/T (cf., A.14(iii)) and P˝ is
unique, we have

P˝ D ŒR.R0R/�R0�T D ŒR.G0G/�1R0�T D Ip�r0 by .10.26/:

Since R0Tφ D BTβ and HTβ D 0 we have R0Tφ D .BT C H0THT/β so that
β D .G0G/�1T R0Tφ. Also ATβ D 0 implies that ! D fφ j Cφ D 0g, where
C D AT.G0G/�1T R0T . Replacing φ by z we get y D .G0G/�1T R0Tz. We now have the
asymptotic linear model and hypothesis

z D φ C ε; ˝ D R
p�r0 ; ! D N ŒAT .G0G/�1T R0T �: (10.37)

Referring to Section to (10.25) in Sect. 10.3.3 with P˝ D Ip, and using the
result N ŒC� D CŒC0�? (Theorem 1.1 in Sect. 1.2), along with generalized (weak)
inverses (A.14), gives us

� 2 log�ŒHjG� D z0.Ip�r0 � P!/z (10.38)

D z0C0.CC0/�Cz

D y0R0TC0.CC0/�CRTy

D y0BT.G0G/�1T A0T ŒA.G0G/�1B.G0G/�1A0��T AT.G0G/�1T BT y

D y0A0T ŒA.G0G/�1B.G0G/�1A0��T ATy .as H0THTy D 0/

(10.39)


 a. Oθ/0.VarŒa. Oθ/�/�Oθ a. Oθ/; (10.40)

as ATy D n1=2AT. Oθ � θ�/ 
 n1=2a. Oθ/ and

VarŒATy� 
 ATVarŒ.G0G/�1T R0Tz�A0T
D ŒA.G0G/�1R0R.G0G/�1A0�T
D ŒA.G0G/�1B.G0G/�1A0�T :

Therefore the Wald statistic, (10.40), is asymptotically equivalent to the likelihood
ratio statistic, which has a 	2q distribution when H is true. It is shown later that the
above variance expression actually has an inverse.

To complete the picture we consider another form of the Wald statistic, namely

na2. Oθ/0ŒA2.G0G/�1A02��1Oθ a2. Oθ/ 
 y0fA02ŒA2.G0G/�1A02��1A2g Oθy D W1;
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say, where y D n1=2. Oθ � θ�/ and A02 D .A0;H0/. Then, since HTy D 0,

W1 D y0
(

.A0;H0/
��

A
H

�
.G0G/�1.A0;H0/

��1 �
A
H

�)

bθ
y

D y0
(

.A0; 0/
�

A.G0G/�1A0 A.G0G/�1H0
H.G0G/�1A0 H.G0G/�1H0

��1 �
Ay
0

�)

Oθ
y

D y0ŒA0F�1A� Oθy;

where F�1 is the matrix in the .1; 1/ position in the inverse of the above matrix.
From A.17

F D A.G0G/�1A0 � A.G0G/�1H0H.G0G/�1A0

D A.G0G/�1.G0G/.G0G/�1A0 � A.G0G/�1H0H.G0G/�1A0

D A.G0G/�1B.G0G/�1A0:

Hence W1 D y0fA0ŒA.G0G/�1B.G0G/�1A0��1A0g Oθy, which leads to (10.39) once
again.

10.4.2 Lagrange Multipler Test

To apply the Lagrange multiplier test statistic we add H0THT Qβ D 0 and H0THTy D 0
to (10.36) to replace BT by .G0G/T and then multiply the resulting equation by
RT.G0G/�1T to give us the approximate equation

�RT
Qβ C RTy C n1=2RT.G0G/�1T H0T Qλ0 C n1=2RT.G0G/�1T A0T Qλ1 D 0

or, by (10.26),

� Qφ C z C 0 C C0n1=2 Qλ1 D 0: (10.41)

Hence, from (10.41) and Qφ D P!z, it follows from (10.38) that

z0.Ip�r0 � P!/z D .z � Qφ/.0z � Qφ/
D n Qλ01CC0 Qλ1
D n Qλ01ŒA.G0G/�1R0R.GG0/�1A0�T Qλ1
D n Qλ01ŒA.G0G/�1B.GG0/�1A0�T Qλ1 (10.42)


 n Qλ01ŒA.G0G/�1B.GG0/�1A0�Qθ Qλ1: (10.43)
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This is the Lagrange multiplier test statistic, based on Qλ1, which can also be written
in the form of a score statistic as follows.

From continuity considerations, G0G will be positive definite in a neighborhood
of θT (cf. A.9(viii)), so that it follows from (10.26) that ŒR.G0G/�1H0�Qθ D 0.
Multiplying (10.34) by ŒR.G0G/�1�Qθ we get

ŒR.G0G/�1�Qθn1=2Dn�1L. Qθ/C n1=2ŒR.G0G/�1A0�Qθ Qλ1 D 0;

and from (10.43)

n Qλ01ŒA.G0G/�1R0R.G0G/�1A0�Qθ Qλ1
D nDn�1L. Qθ/0Œ.G0G/�1B.G0G/�1�QθDn�1L. Qθ/: (10.44)

Now BT D ŒG0G � H0H�T in (10.44) and from (10.35)

Dn�1L. Qθ/0Œ.G0G/�1H0�T D �. Qθ � Oθ/0ŒR0R.G0G/�1H0�T D 0;

since ŒR.G0G/�1H0�T D 0 by (10.26). Hence (10.44) becomes

n�1DL. Qθ/0Œ.G0G/�1�QθDL. Qθ/; (10.45)

which is the well known score statistic. The only difference from the formula for
the case when BT is non-singular is to replace BT by .B C H0H/T .

Another form of the Lagrange multiplier test has been derived by Silvey (1959)
and its derivation is instructive. Using a Taylor expansion (cf. (10.34)),

n1=2Dn�1L. Qθ/ D n1=2Dn�1L.θT/� BT. Qθ � θT/C op.1/: (10.46)

We now define Qλ2 D . Qλ00; Qλ01/0 and A2T D .H0T ;A0T/0, and we now assume that
H is true so that θ� D θT and Qθ has an asymptotic mean of θT . We also have
HT. Qθ � θT/ D op.1/ and AT. Qθ � θT/ D op.1/ so that A2T. Qθ � θT/ D op.1/.
Substituting these expressions into (10.34) gives us

n1=2.BT C H0THT/. Qθ � θT/ � n1=2A02T
eλ2 D n1=2Dn�1L.θT/C op.1/;

which can be approximately expressed in the form

n1=2
�
.G0G/T �A02T

�A2T 0

�� Qθ � θT
Qλ2

�
D
�
δ1
0

�
;
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where δ1 is NpŒ0;BT �, and Q�2 has approximately a zero mean. Inverting the matrix,
we can now write

n1=2
� Qθ � θT

Qλ2
�

D
�

U V0
V W

�

T

�
δ1
0

�
;

where from A.18

V D �ŒA2.G0G/�1A02��1A2.G0G/�1;

W D �ŒA2.G0G/�1A02��1; and

VA02 D VŒH0;A0� D �Ir0Cq with VH0 D �ŒIr0 ; 0�
0:

Hence n1=2 Qλ2 D VTδ1 so that

VarŒn1=2 Qλ2� D ŒVBV0�T
D ŒV.G0G � H0H/V0�T
D ŒWA2.G0G/�1.G0G/.G0G/�1A02W0�T � VTH0THTV0T

D �WT �
�

Ir0 0
0 0

�

D ST ; say:

We now depart from Silvey’s proof and show that (i) �W�1T is a weak inverse of ST

and (ii) traceŒ�W�1T ST � D q. We first consider

�
�

Ir0 0
0 0

�
W�1T

�
Ir0 0
0 0

�
D
��

Ir0 0
0 0

��
H
A

�
.G0G/�1

	
H0;A0


 � Ir0 0
0 0

��

T

D
�

Ir0 0
0 0

��
H.G0G/�1H0 H.G0G/�1A0
A.G0G/�1H0 A.G0G/�1A0

�

T

�
Ir0 0
0 0

�

D
�

H.G0G/�1H0/ 0
0 0

�

T

D
�

Ir0 0
0 0

�
;

by (10.26). Using this result we then find that ST.�W�1T /ST D ST so that �W�1T is
a weak inverse of ST . Now using (10.26) again,

�STW�1T D Ir0Cq C
�

Ir0 0
0 0

�
A2T.G0G/�1T A02T
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D Ir0Cq �
�

HT.G0G/�1T H0T 	
0 0

�

D Ir0Cq �
�

Ir0 	
0 0

�

and traceŒ�ST W�1T � D q. We can now apply A.16 and then approximate WT by QW
to prove that

�n Qλ02 QW�1 Qλ2 D n Qλ02ŒA2.G0G/�1A02�Qθ Qλ2
is approximately distributed as 	2q when H is true. This expression looks very

different from (10.43), being based on Qλ2 rather than eλ1, and Silvey shows that
r0 of the transformed normal variables are identically zero. We note from (10.34)
that

Dn�1L. Qθ/ D � QA02 Qλ2
so that our Lagrange Multiplier statistic above can be expressed in the form of the
Score statistic

n�1DL. Qθ/0Œ.G0G/�1�QθDL. Qθ/; (10.47)

which is (10.45) again.
One other approach is worth mentioning. Assuming H to be true so that θ� D θT

once again, we substitute (10.42) into (10.34) to get

n1=2Dn�1L.θT/ � BT n1=2. Qθ � θT/C n1=2H0T Qλ0 C n1=2A0T Qλ1 D op.1/

or the approximate equation

δ1 
 BT n1=2. Qθ � θT/ � n1=2H0T Qλ0 � n1=2A0T Qλ1:

Since HT. Qθ � θT/ D op.1/, we can replace BT by BT C H0THT D .G0G/T and
express the above equation in matrix form

n1=2

0

@
.G0G/T �H0T �A0T
�HT 0 0
�AT 0 0

1

A

0

@
Qθ � θT

Qλ0
Qλ1

1

A 

0

@
δ1
0
0

1

A :

The matrix on the left hand side can be inverted using A.19 to get

n1=2 Qλ1 D .AMA0/�1T ATMTδ1;
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where

MT D .G0G/�1T ŒIp � H0.H.G0G/�1H0/�1H.G0G/�1�T
D .G0G/�1T ŒIp � H0H.G0G/�1�T by (10.26)

D .G0G/�1T ŒIp � .G0G � B/.G0G/�1�T
D .G0G/�1T BT .G0G/�1T :

Using BT D Œ.G0G/�1 � H0H�T once again we find that ŒMBM�T D MT and

VarŒn1=2 Qλ1� D fŒAMA0��1AMBMA0ŒAMA0��1gT

D ŒAMA0��1T :

Thus

n Qλ01.VarŒn1=2 Qλ1�/�1 Qλ1 D n Qλ01ŒA.G0G/�1B.G0G/�1A0�T Qλ1;

which is the same as (10.42).
We see then that a major advantage of using the asymptotic linear model is

that we have proved that the likelihood ratio, Wald, and Lagrange multiplier test
statistics are all asymptotically equivalent as they are exactly equivalent for the
asymptotic linear model.

Example 10.2 We revisit Example 10.1 at the end of Sect. 10.3.3 where we tested
θT � θ0 D 0, except we now have r0 linear identifiability constraints HTθT D 0
(and HTθ0 D 0). If β0 D n1=2.θ0 � θ�/, then in the theory following (10.36) we
replace y by

w D y � β0 D n1=2Œ. Oθ � θ�/ � .θ0 � θ�/� D n1=2. Oθ � θ0/;

and replace β by η D β � β0 D n1=2.θT � θ0/. Then w D η C ε, HTw D
0 and, since HTθ0 D 0, we have HTη D 0. We now wish to test H W η D 0,
given the identifiability constraints, so that AT is an appropriately chosen p � r0 � p
matrix, depending on the formulation of HT (an example is given in Sect. 12.3).
Proceeding with the algebra we end up with the linear model z D φ C ε where
z D RTw, HTw D 0, and φ D RTη. From (10.37) we have ˝ D R

p�r0 and
! D N Œ.AT G0G/�1T R0T �. With y replaced by w, the likelihood ratio test is given
by (10.39) and (10.40), namely

n. Oθ � θ0/
0fA0Œ.A.G0G/�1B.G0G/�1A0��1AgT. Oθ � θ0/


 n. Oθ � θ0/
0fA0Œ.A.G0G/�1B.G0G/�1A0��1Ag Oθ. Oθ � θ0/; (10.48)
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the Wald statistic. The Score statistic follows in a similar fashion. From (10.45) this
statistic is given by

n�1DL.θ0/
0Œ.G0G/�1�θ0DL.θ0/: (10.49)

10.5 Orthogonal Hypotheses

Suppose that we are interested in testing two hypotheses Hi W fθ W θ 2 WI ai.θ/ D
0g (i D 1; 2), namely θ 2 Wi, given G W θ 2 W. We first assume a nonsingular (and
therefore positive-definite) expected information matrix BT , where B�1T D VTV0T
and VT is nonsingular. Given that θT is close to W1\W2 we can use our linear model
approximation z D φCε, with (cf. (10.19)) G W ˝ D R

p and!i D fθ W θ 2 N ŒCi�g,
where Ci D .A.i/V/T and A.i/ D .@ai=@θ

0/. Now !?i \ ˝ D !?i D CŒV0TA.i/0
T �

(by Theorem 1.1 in Sect. 1.2) so that we have orthogonal hypotheses if and only if
!?1 ? !?2 , that is if and only if

C1C02 D .A.1/VV0A.2/0/T D .A.1/B�1A.2/0/T D 0

for all θT 2 !1\!2. This result was given by Aitchison (1962, 246) using a different
method. The following example is taken from Example 5 in his paper.

Example 10.3 The three dimensions of cuboids produced by a certain process are
described by a random vector x D .x1; x2; x3/0, where the xi are independently and
identically distributed as the scaled Gamma distribution

f .x/ D xk�1 exp.�x=�/

� k� .k/
.x > 0/

with known k. Here W D fθ W �i > 0 .i D 1; 2; 3/g. Two hypotheses of interest are
W1 D fθ W θ 2 WI k3�1�2�3 D a3g, the hypothesis that the average volume is a3,
and W2 D fθ W θ 2 WI �1 D �2 D �3g, the hypothesis that the three dimension
are equal. Assuming a large sample n of vector observations xi D .xi1; xi2; xi3/

0
(i D 1; 2; : : : ; n) from the Gamma distribution, we can use the large sample
approximation described above. The likelihood function takes the form

nY

iD1

3Y

jD1

(
xk�1

ij e�.xij=�j/

� k
j � .k/

)

and the log likelihood (without constants) is

L.θ/ D
X

i

X

j

.�xij=�j � k log �j/
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so that

@L

@�j
D
P

i xij

�2j
� nk

�j
:

Since EŒxij� D k�j,

�1
n

E

�
@2L

@�i@�j

�
D ıij

k

�2j

giving us B�1 D k�1 diag.�21 ; �
2
2 ; �

2
3 /. We find that A1 D k3.�2�3; �3�1; �1�2/, and

A2 D
�
1 �1 0

1 0 �1
�
;

so that .A1B�1A02/T D k3�1�2�3.�1 � �2; �1 � �3/T D 0, when θT 2 !1 \ !2 � !2.
We therefore have orthogonality. This completes the example.

When BT (D R0TRT ) is singular we can use the theory of the previous section
where we have identifiability constraints with derivative matrix H. In this case,
from (10.37), we replace Ci by the matrix A.i/.G0G/�1RT so that the condition
for orthogonality is

C1C02 D ŒA.1/.G0G/�1B.G0G/�1A.2/0�T D 0 (10.50)

for all θ 2 !1 \ !2, where G0G D B C H0H. If we also assume either
ŒH.G0G/�1A.1/0�T D 0 or ŒH.G0G/�1A.2/0�T D 0 then, by adding H0H to B
in (10.50), this condition reduces to ŒA.1/.G0G/�1A.2/0�T D 0. This gives us
sufficient conditions for orthogonality. We now apply the theory to Example 6 of
Aitchison (1962).

Example 10.4 A random sample with replacement of n individuals is taken from
a genetic population whose individuals belong to one or other of three types—
dominant, hybrid, and recessive. We therefore have n independent multinomial
trials with three categories having probabilities �1=��; �2=��; �3=��, where �� D
�1 C �2 C �3, for dominant, hybrid, and recessive types, respectively. Here W D
fθ W �i > 0I i D 1; 2; 3g. The first hypothesis of interest is H1 that θ 2 W1,
where W1 D fθ W θ 2 WI .�1=��/1=2 C .�3=��/1=2 D 1g, the hypothesis that the
population is genetically stable, and the second hypothesis is H2 that θ 2 W2, where
W2 D fθ W θ 2 WI �1 D �3g, the hypothesis of equal proportions of dominants
and recessives. Our identifiability constraint is h.θ/ D �1 C �2 C �3 � 1 D 0

so that H D .1; 1; 1/ D 103. Now we can use this constraint to replace W1 by

W 01 D fθ W θ 2 WI �1=21 C �
1=2
3 D 1g. The multinomial distribution is discussed
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in Chap. 12 and from (12.3) we have

G0G D B C H0H

D
�
ıjk

�j
� 1

�
C 13103

D
�
ıjk

�j

�

D diag.θ�1/

so that .G0G/�1 D diag.�1; �2; �3/. Then considering W 01,

A1 D 1

2
.�
�1=2
1 ; 0; �

�1=2
3 /;

and for W2 we have A2 D .1; 0;�1/. Then

A1.G0G/�1A02 D 1

2
.�
1=2
1 ; 0; �

1=2
3 /.1; 0;�1/0

D 1

2
.�
1=2
1 � �1=23 / D 0

when �1 D �3 for � 2 !1 \ !2. Also

H.G0G/�1A02 D 103 diag.�1; �2; �3/.1; 0;�1/0
D �1 � �3 D 0;

when �1 D �3. Hence !1 and !2 are orthogonal. This completes the example.

In concluding this section we now show that orthogonality of the hypotheses
leads to a partitioning of test statistics. From Theorem 6.1 in Sect. 6.2 we have

Q12::::k � Q D
kX

iD1
.Qi � Q/;

where Q12:::k � Q is the test statistic for testing H12:::k W θ 2 w1 \ w2 \ � � � \ wk and
Qi � Q is the test statistic for testing Hi W θ 2 !i. Now

Qi � Q D y0.P˝ � Pi/y

D y0Pw
p
i
y;

where P˝ D Ip and!?i \˝ D !?i . As P!p
i
P!p

j
D 0 (i ¤ j) because of orthogonality,

we have that the test statistic for H12:::k can be partitioned into independent test
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statistics for the individual hypotheses Hi W θ 2 !i. When H12:::k is true, all the test
statistics have chi-square distributions.
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Chapter 11
Large Sample Theory: Freedom-Equation
Hypotheses

11.1 Introduction

In this chapter we assume once again that θ 2 W. However our hypothesis
H now takes the form of freedom equations, namely θ D θ.α/, where α D
.˛1; ˛2; : : : ; ˛p�q/

0. We require the following additional notation. Let ‚α be the
p � p � q matrix with .i; j/th element @�i=@˛j, which we assume to have rank p � q.
As before, L.θ/ D log

Qn
iD1 f .xi;θ/ is the log likelihood function. Let DθL.θ/ and

DαL.θ.α// be the column vectors whose ith elements are @L.θ/=@�i and @L.θ/=@˛i

respectively. As before, Bθ is the p � p information matrix with i; jth element

�n�1Eθ

�
@2L.θ/

@�i@�j

�
D �E

�
@2 log f .x;θ/

@�i@�j

�
;

and we add Bα, the p � q � p � q information matrix with i; jth element
�EŒ@2 log f .x;θ.α//=@˛i@˛j�. To simplify the notation we use Œ��α to denote that
the matrix in square brackets is evaluated at α, for example

Bα D ŒΘ0BθΘ�˛ D Θ0αBθ.α/Θα:

We note that

D˛L.θ/ D Θ0̨ DθL.θ.α//:

We use similar assumptions to those given in the previous chapter so that (10.4)
and (10.5) still hold. This means that once again θT , θ� D θ.α�/, Oθ and Qθ D
θ. Qα/ are assumed to be all “near” each other. We consider two cases depending on
whether BθT is positive definite or positive semi-definite. The theory in the next two
sections is based on Seber (1964) with a couple of typos corrected and a change in
notation.

© Springer International Publishing Switzerland 2015
G.A.F. Seber, The Linear Model and Hypothesis, Springer Series in Statistics,
DOI 10.1007/978-3-319-21930-1_11
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11.2 Positive-Definite Information Matrix

As BθT is positive definite there exists a p � p nonsingular matrix VT such that
we have BθT D V0TVT . We now show that our original model and hypothesis are
asymptotically equivalent to the linear model

z D ψ C ε;

where ε is NpŒ0; Ip�, G W ˝ D CŒVT � D R
p and H W ! D CŒVTΘα�

�. In preparation
for proving this result we need to find the least squares estimates for the above linear
model. If X D VTΘα�

, then under G we have Oψ D z and under H the least squares
(normal) equations are X0.z � Qψ/ (cf. (3.2)). We use these equations below.

If Oθ and Qα are the maximum likelihood estimates under G and H respectively
and Qθ D θ. Qα/, then these estimates are the solutions of

Dθn�1L. Oθ/ D 0 (11.1)

and

Dαn�1L. Qθ/ D 0: (11.2)

As Oθ is near θT , a Taylor expansion of (11.1) give us

0 D Dθn�1L.θT/ � BθT .
Oθ � θT/C op.1/; (11.3)

where n1=2Dθn�1L.θT/ is asymptotically NpŒ0;BθT �. Since θ� is near θT , (11.3)
becomes

δ D BθT n1=2. Oθ � θ�/ � BθT n1=2.θT � θ�/C op.1/; (11.4)

where δ is NpŒ0;BθT �. As Qθ is near Oθ and therefore both near θ�, we have a similar
equation for (11.2), namely

0 D n1=2Θ0QαDθn�1L. Qθ/
D n1=2Θ0̨

�

Dθn�1L. Qθ/C op.1/

D �n1=2Θ0α�

BθT .
Qθ � Oθ/C op.1/

D �n1=2Θ0α�

V0TVT Œ. Qθ � θ�/ � . Oθ � θ�/�C op.1/: (11.5)

Multiplying (11.4) on the left by V0�1T and putting z D n1=2VT. Oθ � θ�/ and ψ D
n1=2VT.θT � θ�/, we get ε D z �ψ, where ε is NpŒ0; Ip�. If Qψ D n1=2VT. Qθ � θ�/ it
follows from (11.5) that X0.z � Qψ/ D op.1/, where X D VTΘα�

. We have therefore
established that z D ψ C ε, G W ˝ D R

p, and H W ! D CŒVTΘα�
�.
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Unfortunately the above formulation is not very helpful in providing a test
statistic, as it would be based z0.Ip � P!/z, where

P! D VTΘα�ŒΘ0α�BTΘα���1Θ0α�V0T :

Instead we can use the Score test based on the constraint equation specification from
Sect. 10.3.3, namely

n�1ŒD�L. Qθ/�0 QB�1ŒD�L. Qθ/�;

where Qθ D θ. Qα/. We simply assume that a constraint equation exists for
formulating the hypothesis, but we don’t need to actually find it.

11.3 Positive-Semidefinite Information Matrix

Suppose that the p � p matrix BθT is positive semidefinite of rank p � r0. We now
find that θT is not identifiable and we introduce r0 identifiability constraints

h.θT/ D .h1.θT/; h2.θT/; : : : ; hr0.θT//
0 D 0:

Let HT be the r0 � p matrix of rank r0 with .i; j/th element @hi=@�j evaluated at θT .
We make a further assumption.

(xvi) BθT C .H0H/T is positive definite. (We see below once again that this
assumption follows naturally from the linear theory.)

Since BθT is positive semidefinite, there exists a p � r0 � p matrix RT of rank p � r0
such that BθT D ŒR0R�T (A.9(iii)). We will now show that our asymptotic linear
model and hypothesis take the form (cf. Seber 1964, with a slight change in notation)

z D φ C ε;

where ε is Np�r0 Œ0; Ip�r0 �,

G W ˝ D fφ j φ D RTβI HTβ D 0g D R
p�r0

and

H W ! D fφ j φ D RTΘα�
γI HTΘα�

γ D 0g:

Assumption (xvi) implies that ŒBθ C H0H�T is of full rank p so that the p � p
matrix GT D ŒR0;H0�0T has rank p and HT has rank r0, which are necessary and
sufficient conditions for the constraints HTβ D 0 to be identifiable (see A.11).
Since .G0G/T is positive definite it follows from A.9(iv) that the p�q�p�q matrix



178 11 Large Sample Theory: Freedom-Equation Hypotheses

Θ0α�

G0TGTΘα�
D Bα�

C .HTΘα�
/0.HTΘα�

/ is also positive definite. This means
that the constraints HTΘα�

γ D 0 in H above are necessary and sufficient conditions
for γ to be identifiable.

The least squares estimates Oθ and Qθ (D θ. Qα/) are respectively given by the
solutions of

Dθn�1L. Oθ/C H0Oθ
Oλ0 D 0; h. Oθ/ D 0 (11.6)

and

Dαn�1L.θ. Qα//C Θ0QαH0Qθ Qλ1 D 0; h.θ. Qα// D 0; (11.7)

where Oλ0 and Qλ1 are the appropriate Lagrange multipliers for the identifiability
constraints. From (10.30) we have that n1=2 Oλ0 D op.1/ and, using the same
argument with α the unknown vector parameter, we have that n1=2 Qλ1 D op.1/.
As θT is near θ�, we can use (10.30) and the following equations and replace (11.6)
by

n1=2Dθn�1L. Oθ/ D op.1/; (11.8)

HTn1=2. Oθ � θ�/ D op.1/ and HTn1=2.θT � θ�/ D op.1/: (11.9)

Similarly (11.7) can be replaced by

n1=2Dαn�1L.θ. Qα// D op.1/ (11.10)

and HTn1=2. Qθ � θ�/ D op.1/, which can be approximated by

Hθ�
Θ˛�

n1=2. Qα � α�/ D op.1/: (11.11)

Now using a Taylor expansion for (11.10) we have

0 D n1=2Θ0QθDθn�1L. Qθ/C op.1/;

D n1=2Θ0α�

Dθn�1L. Qθ/C op.1/

D n1=2Θ0α�

Dθn�1L. Oθ/� Θ0α�

BθT n1=2. Qθ � Oθ/C op.1/

D 0 � Θ0α�

BθT n1=2. Qθ � Oθ/C op.1/ by (11.8)

D Θ0α�

BθT n1=2. Oθ � θ�/� Θ0̨
�

BθT n1=2. Qθ � θ�/: (11.12)
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Now setting z D RTn1=2. Oθ �θ�/, φ D RTn1=2.θT �θ�/, Qφ D RTn1=2. Qθ �θ�/, and
recalling that BθT D ŒR0R�T , we have from (11.12)

Θ0α�

R0Tz � Θ0α�

R0T Qφ D op.1/

or

X0.z � Qφ/ D op.1/; (11.13)

where X D RTΘ˛�
. Referring to (10.31), we have

BθT n1=2. Oθ � θ�/ � BθT n1=2.θT � θ�/ D δ1 C op.1/;

where δ1 is NpŒ0;BθT �, a singular multivariate normal distribution. Now RTR0T is
p � r0� p � r0 of rank p � r0, so it is nonsingular. Premultiplying the above equation
by Œ.RR0/�1R�T we get

RTn1=2. Oθ � θ�/� RTn1=2.θT � θ�/ D ε C op.1/; (11.14)

where ε is Np�r0 Œ0; Ip�r0 � as

VarŒε� D Œ.RR0/�1R.R0R/R0.RR0/�1�T D Ip�r0 :

Putting all this together, we have from (11.14) the approximating linear model z D
φ C ε, where z D RTn1=2. Oθ � θ�/ and φ D RTn1=2.θT � θ�/. From Sect. 10.4
the G model given there is the same as here so that ˝ D R

p�r0 . Since (11.13) are
the normal equations for H, we have ! D fφ j φ D RTΘα�

γg with identifiability
constraints HTΘα�

γ D 0. The likelihood ratio test statistic is (cf. (10.25))

�2 log�ŒHjG� D z0.Ip�r0 � P!/z;

where

P! D RTΘ˛�ŒΘ0̨ �.R0TRT C H0THT/
�1Θ˛���1Θ0̨ �R0T

D RTΘ˛�ŒΘ0̨ �.G0TGT/
�1Θ˛���1Θ0̨ �R0T :

As with the full rank case in Sect. 11.2, a more convenient approach is to use the
the Score test, namely

n�1ŒD�L. Qθ/�0. QB C QH0 QH/�1ŒD�L. Qθ/�: (11.15)
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Chapter 12
Multinomial Distribution

12.1 Definitions

In this chapter we consider asymptotic theory for the multinomial distribution,
which is defined below. Although the distribution used is singular, the approximat-
ing linear theory can still be used.

Let ei be the r-dimensional vector with 1 in the ith position and 0 elsewhere.
Let y be an r-dimensional random vector that takes the value ei with probability
pi=p� (i D 1; 2; : : : ; k), where p� D Pr

iD1 pi. A random sample of n observations yj

(j D 1; 2; : : : ; n) is taken from this multivariate discrete distribution giving the joint
probability function

f .y1; y2; : : : ; yn/ D
rY

iD1

�
pi

p�

�xi

; (12.1)

where xi is the number of times yj takes the value ei. We note that the probability
function of the xi is

f .x1; x2; : : : ; xr/ D nŠ
Qr

iD1 xiŠ

rY

iD1

�
pi

p�

�xi

; (12.2)

which is a (singular) multinomial distribution because
P

i xi D n. The pi in (12.1)
and (12.2) are not identifiable as we can replace pi by api without changing (12.2),
so we need to add an identifiability constraint, namely p� D 1. The nonsingular
multinomial distribution then takes the form

f .x1; x2; : : : ; xr�1/ D nŠ
Qr

iD1 xiŠ

rY

iD1
pxi

i ;

with xr D n �Pr�1
iD1 xi and pr D 1 �Pr�1

iD1 pi.

© Springer International Publishing Switzerland 2015
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12.2 Test of p D p0

If p D .p1; p2; : : : ; pr/
0, then the log likelihood function from (12.1) is

L.p/ D log f .y1; y2; : : : ; yr/

D
rX

iD1
xj log pi � n log p�: (12.3)

To find the maximum likelihood estimate of p we differentiate L.p/ C �.p� � 1/,
where � is a Lagrange multiplier (which we expect to be zero for an identifiability
constraint). We have, differentiating with respect to pi,

xi

pi
� n

p�
C � D 0 together with p� D 1:

Multiplying by pi and summing on i gives us n D P
i xi D n � �, and � D 0 as

expected. Then the maximum likelihood estimate of pi is Opi D xi=n (i D 1; 2; : : : ; r),
and

@L

@pi
D xi

pi
� n

p�
;

so that

@2L

@p2i
D � xi

p2i
C n

p2�
and

@2L

@pi@pj
D n

p2�
.i ¤ j/:

Taking expected values gives us EŒxi� D npi=p�,

cij D �E

�
@2L

@pi@pj

�
D n

ıij

pi
� n;

and our expected information matrix is

Bp D n�1.cij/ D .
ıij

pi
� 1/; (12.4)

where ıij D 1 when i D j and 0 otherwise.
Let

Op D .Op1; Op2; : : : ; Opr/
0

D n�1.x1; x2; : : : ; xr/
0
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D n�1
rX

iD1
xiei

D y;

which has mean p and is asymptotically normal by the multivariate Central Limit
Theorem. Now the variance-covariance matrix of y is

Σ.r/ D

0

BB
@

p1q1 �p1p2 � � � �p1pr

�p2p1 p2q2 � � � �p2pr

� � � � � �
�prp1 �prp2 � � � prqr

1

CC
A

D diag.p/� pp0; (12.5)

where diag.p/ is diag.p1; p2; : : : ; pr/. The matrix Σ.r/ is singular as Σ.r/1r D 0, and
n1=2. Op � p/ is asymptotically NpŒ0;Σ.r/�.

Let F D diag.p�11 ; p�12 ; : : : ; p�1r / D diag.p�1/, say, then

FΣ.r/ D diag.p�1/.diag.p/� pp0/

D Ir � 1rp0;

and

Σ.r/FΣ.r/ D .diag.p/� pp0/.Ir � 1rp0/

D diag.p/� pp0

D Σ.r/;

so that F is a generalized inverse Σ�.r/ of Σ.r/. Furthermore, we see that
Σ.r/FΣ.r/FΣ.r/ D Σ.r/FΣ.r/ and

traceŒFΣ.r/� D traceŒIr � 1rp0�

D r � traceŒp01r�

D r � 1:

It therefore follows from A.16 that

n. Op � p/0Σ�.r/. Op � p/ D
rX

iD1

.xi � npi/
2

npi
(12.6)
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is asymptotically 	2r�1. We can now test the hypothesis H that p D p0, where we
have p0 D .pi0/, using the so-called Pearson’s goodness-of-fit statistic

X20 D
rX

iD1

.xi � npi0/
2

npi0
; (12.7)

which is approximately distributed as 	2r�1 when H is true.

12.3 Score and Wald Statistics

We shall first see where the general theory of Sect. 10.4.1 with p D r and r0 D 1

fits into the picture. To simplify notation we drop the subscript “T” and let pT D p,
the true value of p. Referring to Example 10.2 at the end of Sect. 10.4.2 where we
test H W p D p0, we have the linear model w D η C ε, where Hpη D 0 are the
identifiability constraints and η D n1=2.p�p0/. From (12.3), Bp D diag.p�1/�1r10r
and since 10r.p � p0/ D 0, Hp D 10r and r0 D 1. Hence

.G0G/�1p0 D .B C H0H/�1p0 D diag.p0/

and

DL. Qp/0 D DL.p0/0 D .
x1
p10

� n;
x2
p20

� n; : : : ;
xr

pr0
� n/:

The Score statistic is therefore given by (cf. 10.49)

n�1DL.θ0/
0Œ.G0G/�1�θ0DL.θ0/ D

X

i

.xi � npi0/
2

npi0
; (12.8)

which means that Pearson’s goodness-of-fit statistic is also the Score (Lagrange
Multiplier) statistic.

In a similar manner we can derive the Wald statistic. Since

.G0G/�1B.G0G/�1 D diag pŒdiag.p�1/ � 1r10r� diag.p/

D diag p � pp0; (12.9)

we have from (10.49) that the Wald statistic is

W D n. Op � p0/0fA0ŒA.G0G/�1B.G0G/�1A0��1Ag Op. Op � p0/
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where we can set A D .Ir�1; 0/, an r � 1 � r matrix. Now using (12.9)

A.G0G/�1B.G0G/�1A0 D .Ir�1; 0/.diag.p/ � pp0/.Ir�1; 0/0

D diag.pr�1/ � pr�1p0r�1
D Σ.r�1/;

say, where pr�1 D .p1; p2; : : : ; pr�1/0. From Seber (2008, result 10.27)

Σ�1.r�1/ D diag.pr�1/ � p�1r 1r�110r�1

and

A0Σ�1.r�1/A D diag.p�1r�1; 0/C p�1r .10r�1; 0/0.1r�1; 0/:

Also

. Op � p0/0
�

1r�1
0

�
D

r�1X

iD1
.Opi � p0i/

D p0r � Opr;

using the fact that
P

i pi D 1. Hence

W D n. Op � p0/0ŒA0Σ�1.r�1/A�Op. Op � p0/

D
r�1X

iD1

n.Opi � p0i/
2

Opi
C n.Opr � p0r/

2

Opr

D
rX

jD1

.xj � npj0/
2

nOpj
:

We know from the general theory that the Score and Wald statistics are asymptoti-
cally equivalent to the likelihood ratio test, which is given by the likelihood ratio

�ŒHjG� D
Qr

iD1 pxi
0iQr

iD1 Opxi
i

;

and corresponding test statistic

�2 log� D 2n
rX

iD1
Opi log

� Opi

p0i

�
:
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We have seen above how the asymptotic linear model can be used to provide the
format of each of the three statistics and thereby prove their asymptotic equivalence,
being all approximately distributed as 	2r�1 when p D p0. However, given the
three statistics, another method can be used to prove their asymptotic equivalence
described in Seber (2013, 41–44).

12.4 Testing a Freedom Equation Hypothesis

Suppose we wish to test a more general hypothesis such as H W p D p.α/ where α
is .r � q/ � 1, as discussed in Chap. 11 with p D r. The likelihood ratio is then

�ŒHjG� D
Qr

iD1 pi. Qα/xi

Qr
iD1 Opxi

i

;

with test statistic

� 2 log� D 2n
rX

iD1
Opi log

Opi

pi. Q̨ /

D 2n
rX

iD1
Opi log

�
1C Opi � pi. Qα/

pi. Qα/
�



rX

iD1

.xi � npi. Qα//2
npi. Qα/ (12.10)

using the approximation log.1 C yi/ 
 yi � y2i =2 for jyij < 1, where yi converges
to 0 in probability. The above statistic is asymptotically distributed as 	2q when H is
true.

The Score statistic is readily obtained from (12.7); we simply replace p0 by Qp to
get (12.10) again.

Example 12.1 (Test for Independence) Suppose we have a multinomial experiment
giving rise to a two-way table consisting of I rows and J columns with xij the
frequency of the .i; j/th cell. This is a single multinomial distribution with r D IJ
cells so that the log likelihood function is (cf. (12.3))

L.p/ D
IX

iD1

JX

jD1
xij log pij � n log p�;

where n D P
i

P
j xij and p� D P

i

P
j pij. We can express the pij as a single vector

p D .p11; p12; : : : ; p1J ; p21; p22; : : : ; p2J ; : : : ; pI1; pI2; : : : ; pIJ/
0:
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The hypothesis H of row and column independence is pij D ˛iˇj, where we havePI
iD1 ˛ D 1 and

PJ
jD1 ˇj D 1. Therefore H takes the form p D p.θ/, where

θ D .˛1; ˛2; : : : ; ˛I ; ˇ1; ˇ2; : : : ˇJ/
0. Also, under H,

pi� D ˛i; p�j D ˇj and
X

i

X

j

pij D 1;

so that H can also be expressed in the form pij D pi�p�j. We can therefore use
the theory given above and test H using a chi-square statistic of the form (12.10),
namely

IX

iD1

JX

jD1

.xij � npij. Q̨ i
Q̌
j//

2

npij. Q̨ i
Q̌
j/

: (12.11)

We need to find the maximum likelihood estimates ęi and Q̌
j, and the degrees of

freedom. Now the likelihood function (apart from constants) is

`.α;β/ D
IY

iD1

JY

jD1
.˛iˇj/

xij D
Y

i

˛
Ri
i

Y

j

ˇ
Cj

j ;

where Ri D P
j xij (the ith row sum) and Cj D P

i xij (the jth column sum).
If L.α;β/ D log `.α;β/ and �1 and �2 are Lagrange multipliers we need to
differentiate

L.α;β/C �1

 
X

i

˛i � 1
!

C �2

0

@
X

j

ˇj � 1

1

A

with respect to ˛i and ˇj. The estimates are then solutions of

Ri

˛i
C �1 D 0;

IX

iD1
˛i D 1 and

Cj

ˇj
C �2 D 0

JX

jD1
ˇj D 1:

Since �1 D �2 D �Pi Ri D �Pj Cj D �n, our maximum likelihood estimates
are

Q̨ i D Ri

n
and Q̌

j D Cj

n
:
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Hence pij. Q̨ i; Q̌
j/ D RiCj=n so that the Score test is, from (12.11),

IX

iD1

JX

jD1

.xij � RiCj=n/2

RiCj=n
:

Under H this statistic has approximately the chi-square distribution with degrees of
freedom IJ � 1 � .I � 1C J � 1/ D .I � 1/.J � 1/ corresponding to the difference
in the number of free parameters specifying˝ and !.

12.5 Conclusion

In the last three chapters we have seen how general hypotheses about sampling from
general distributions can, for large samples, be approximated by linear hypotheses
about linear normal models. Here the normality comes from maximum likelihood
estimates that are generally asymptotically normal. For the approximating linear
model the three test statistics, the likelihood ratio, the Wald Test, and the Score
(Lagrange Multiplier) test statistics are identical thus showing that for the original
model they are asymptotically equal. Clearly the method used is a general one so that
it can be used for other models as well. For example, one referee suggested structural
equation, generalized linear, and longitudinal models as well as incorporating
Bayesian and pure likelihood methods. The reader might like to try and extend the
theory to other models as an extended exercise!
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Appendix: Matrix Theory

In this appendix, conformable matrices are matrices that are the correct sizes when
multiplied together. All matrices in this appendix are real, though many of the results
also hold for complex matrices (see Seber 2008). Because of lack of uniformity in
the literature on some definitions I give the following definitions.

A symmetric n�n matrix A is said to be non-negative definite (n.n.d.) if x0Ax � 0

for all x, while if x0Ax > 0 for all x ¤ 0 we say that A is positive definite (p.d.).
The matrix A is said to be positive semidefinite if it is non-negative definite and
there exists x ¤ 0 such that x0Ax D 0, that is A is singular. A matrix A is said to be
negative definite if �A is positive definite.

A matrix A� is called a weak inverse of A if AA�A D A. (We use the term weak
inverse as the term generalized inverse has different meanings in the literature.)

Trace

Theorem A.1 If A is m � n and B is n � m, then

traceŒAB� D traceŒBA� D traceŒB0A0� D traceŒA0B0�:

Proof

traceŒAB� D
mX

iD1

nX

jD1
aijbji D

nX

jD1

mX

iD1
bjiaij D

mX

iD1

nX

jD1
b0ija0ji D

nX

nD1

mX

iD1
a0jib0ij:

If m D n and either A or B is symmetric then traceŒAB� D Pn
iD1 aijbij.
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Rank

Theorem A.2 If A and B are conformable matrices, then

rankŒAB� � minimumfrank A; rank Bg:

Proof The ith row of AB is
P

j aijb0j, where b0j is the jth row of B. The rows of
AB are therefore linear combinations of the rows of B so that the number of linearly
independent rows of AB is less than or equal to those of B; thus rankŒAB� � rankŒB�.
Similarly, the columns of AB are linear combinations of the columns of A, so that
rankŒAB� � rankŒA�.

Theorem A.3 Let A be an m � n matrix with rank r and nullity s, where the nullity
is the dimension of the null space of A, then

r C s D number of columns of A:

Proof Let α1;α2; : : : ;αs be a basis for N ŒA�. Enlarge this set of vectors to give a
basis α1;α2; : : : ;αr;β1;β2; : : : ;βt for Rn. Every vector in CŒA� can be expressed
in the form

Ax D A

0

@
sX

iD1
aiαi C

tX

jD1
bjβj

1

A

D
tX

jD1
bjAβj

D
tX

jD1
bjγj; say:

Now suppose that
Pt

jD1 cjγj D 0, then

A

0

@
tX

jD1
cjβj

1

A D
jX

jD1
cjγj D 0

and
P

cjβj 2 N ŒA�. This is only possible if the cj’s are all zero so that the γj are
linearly independent. Since every vector Ax in CŒA� can be expressed in terms of
the γj’s, the γj’s form a basis for CŒA�; thus t D s. Since s C t D n, our proof is
complete.
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Theorem A.4 Let A be any matrix.

(i) The rank of A is unchanged when A is pre- or post-multiplied by a non-singular
matrix.

(ii) rankŒA0A� D rankŒA�. Since rankŒA0� D rankŒA� this implies that rankŒAA0� D
rankŒA�.

Proof

(i) If Q is a conformable non-singular matrix, then by A.2

rankŒA� � rankŒAQ� � rankŒAQQ�1� D rankŒA�

so that rankŒA� D rankŒAQ� etc.
(ii) Ax D 0 implies that A0Ax D 0. Conversely, if A0Ax D 0 then x0A0Ax D 0,

which implies Ax D 0. Hence the null spaces of A and A0A are the same. Since
A and A0A have the same number of columns, it follows from A.3 that A and
A0A have the same ranks. Similarly, replacing A by A0 and using rankŒA� D
rankŒA0� we have rankŒA0� D rankŒAA0�, and the result follows.

Theorem A.5 If A is n � p of rank p and B is p � r of rank r, than AB has rank r.

Proof We note that n � p � r. From A.4(ii), A0A and B0B are nonsingular.
Multiplying ABx D 0 on the left by .B0B/�1B0.A0A/�1A0 gives us x D 0 so that
the columns of n � r matrix AB are linearly independent. Hence AB has rank r.

Eigenvalues

Theorem A.6 For conformable matrices, the nonzero eigenvalues of AB are the
same as those of BA.

Proof Let � be a nonzero eigenvalue of AB. Then there exists u (¤ 0) such that
ABu D �u, that is BABu D �Bu. Hence BAv D �v, where v D Bu ¤ 0 (as
ABu ¤ 0), and � is an eigenvalue of BA. The argument reverses by interchanging
the roles of A and B

Theorem A.7 (Spectral Decomposition Theorem) Let A be any n � n sym-
metric matrix. Then there exists an orthogonal matrix T such that T0AT D
diag.�1; �2; : : : ; �n/, where the �i are the eigenvalues of A. [For further details
relating to this theorem see Seber (2008: 16.44).]

Proof Most matrix books give a proof of this important result.

Theorem A.8 If A is an n � n positive-definite matrix and B is a symmetric
n � n matrix, then there exists a non-singular matrix V such that V0AV D In and
V0BV D diag.�1; �2; : : : ; �n/, where the �i are the roots of j�A � Bj D 0, (i.e., are
the eigenvalues of A�1B (or BA�1 or A�1=2BA�1=2//.
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Proof There exists an orthogonal T such that T0AT D Λ, the diagonal matrix of
(positive) eigenvalues of A. Let Λ1=2 be the square root of Λ, that is has diagonal
elements �1=2i , and let R D TΛ�1=2. Then R0AR D Λ�1=2T0ATΛ�1=2 D In. As
C D R0BR is symmetric, there exists an orthogonal matrix S such that S0CS D
diag.�1; �2; : : : ; �n/ D Γ, say, where the diagonal elements of Γ are the eigenvalues
of C. Setting V D RS we have V0AV D S0R0ARS D In and V0BV D S0CS D Γ,
where the �i are the roots of

0 D j�In � R0BRj D j�R0AR � R0BRj D jRjj�A � BjjR0j D j�A � Bj;

that is of j�In � A�1Bj D 0. Using A.9(ii), we then apply A.6 to A�1=2A�1=2B,
which has the same eigenvalues as A�1=2BA�1=2 to complete the proof.

Non-negative Definite Matrices

Theorem A.9 Let A be an n � n matrix of rank r (r � n).

(i) A is non-negative (positive) definite if and only if all its eigenvalues are non-
negative (positive).

(ii) If A is non-negative (positive) definite, then exists a non-negative (positive)
definite matrix A1=2 such that A D .A1=2/2.

(iii) A is non-negative definite if and only if A D RR0 where R is n � n of rank r.
This result is also true if we replace R by an n � r matrix of rank r. If A is
positive definite then r D n and R is nonsingular.

(iv) If A is an n�n non-negative (positive) definite matrix and C is an n�p matrix
of rank p, then C0BC is non-negative (positive) definite.

(v) If A is non-negative definite and C0AC D 0, then AC D 0; in particular,
C0C D 0 implies that C D 0.

(vi) If A is positive definite then so is A�1.
(vii) If A is n �p of rank p, then A0A is nonsingular and therefore positive definite.

(viii) If the elements of n � n matrix A.θ/ are continuous functions of θ and A.θ0/
is positive definite, then it will be positive definite in a neighborhood of θ0.

(ix) If A is non-negative definite (n.n.d.), then traceŒA� is the non-negative sum of
the eigenvalues of A.

Proof

(i) Since A is symmetric there exists an orthogonal matrix T such that T0AT D
diag.�1; �2; : : : ; �n/ D Λ, where the �i are the eigenvalues of A. Now A is
n.n.d. if and only x0T0ATx D �1x21 C�2x22 C � � �C�nx2n � 0, if and only if the
�i are nonnegative as we can set x D ei for each i, where ei has one for the
ith element and zeros elsewhere.

(ii) From the previous proof,

A D TΛT0 D TΛ1=2T0TΛ1=2T0 D .A1=2/2;
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where Λ1=2 D diag.�1=21 ; �
1=2
2 ; : : : ; �

1=2
d / is n.n.d. and A1=2 D TΛ1=2T0 is

n.n.d. by (iii).
(iii) Since A is positive semidefinite of rank r, we have from the proof of (i) that

T0AT D Λ, where the eigenvalues �i are all positive for i D 1; 2; : : : ; r, say,
and zero for the rest. Let Λ1=2 D diag.�1=21 ; �

1=2
2 ; : : : ; �

1=2
r ; 0; : : : ; 0/. Then

A D TΛ1=2Λ1=2T0 D RR0, where R D TΛ1=2 has rank r. Conversely, if
A D RR0, then rankŒR� D r D rankŒRR0� D rankŒA�, and x0Ax D x0RR0x D
y0y � 0, where y D R0x. Hence A is positive semidefinite of rank r.

We can replace R D TΛ1=2 by the n � r matrix TrΛ
1=2
r , where Λ

1=2
r D

diag.�1=21 ; : : : ; �
1=2
r / and Tr consists of the first r columns of T.

(iv) We note that y0C0RR0Cy D z0z � 0, where z D R0Cy. If R is nonsingular,
z D 0 if and only if y D 0 as C has full column rank.

(v) We have from (iii) that A D RR0 so that 0 D C0RR0C D B0B (B D R0C),
which implies that b0ibi D 0 and bi D 0 for every column bi of B. Hence
B D 0 and AC D RR0C D RB D 0.

(vi) Using (iii),

A�1 D .RR0/�1 D R0�1R�1 D R�10

R�1 D S0S;

say, where S is nonsingular. Hence A�1 is positive definite.
(vii) If y D Ax, then x0A0Ax D y0y � 0 and A0A is positive semi-definite.

However by A.4(ii), the p � p matrix A0A has rank p and is therefore non-
singular and positive definite.

(viii) It is well-known that a matrix is positive definite if and only if all its leading
minor determinants are positive (for a proof see Seber and Lee (2003, 461–
462)). Now at θ0 the ith leading minor determinant of A.θ/ is positive, so
by continuity it will be positive in a neighborhood Ni of θ0. Hence all the
m leading minor determinants will be positive in the neighborhood N D
\m

iD1Ni, and A.θ/ will be positive definite in N .
(ix) This follows from the proof of (ii), with T orthogonal, that

traceŒA� D traceŒTΛT0� D traceŒT0TΛ� D traceŒΛ� D
X

i

λi � 0;

by A.1 and (i).

Theorem A.10 Let f be the matrix function

f .Σ/ D log jΣj C traceŒΣ�1A�:

If the d � d matrix A is positive definite, then, subject to Σ being positive definite,
f .Σ/ is minimized uniquely at Σ D A.

Proof Let �1; �2; : : : ; �d be the eigenvalues of Σ�1A, that is of Σ�1=2AΣ�1=2
(by A.8). Since the latter matrix is positive definite (by A.9(iv)), the �i are positive.
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Also, since the determinant of a symmetric matrix is the product of it eigenvalues

j.Σ�1A/j D jΣ�1jjAj D jΣ�1=2AΣ�1=2j D
Y

i

�i:

Hence

f .Σ/� f .A/ D log jΣA�1j C traceŒΣ�1A�� trace Id

D � log jΣ�1=2AΣ�1=2j C traceŒΣ�1=2AΣ�1=2� � d

D � log
Y

i

�i C
X

i

�i � d

D
dX

iD1
.� log�i C �i � 1/ � 0;

as log x � x � 1 for x > 0. Equality occurs when each �i is unity, that is when
Σ D A.

Identifiability Conditions

Theorem A.11 Let X be an n � p matrix of rank r, and H a t � p matrix. Then the
equations θ D Xβ and Hβ D 0 have a unique solution for β for every θ 2 CŒX� if
and only if

(i) CŒX0� \ CŒH0� D 0, and

(ii) rankŒG� D rank

�
X
H

�
D p.

Proof (Scheffé 1959: 17) We first of all find necessary and sufficient conditions for
β to exist. Now β will exist if and only if

φ D
�
θ

0

�
D
�

X
H

�
β D Gβ 2 CŒG� for every θ 2 CŒX�:

This statement is equivalent to: every vector perpendicular to CŒG� is perpendicular
to φ for every θ 2 CŒX�. Let a0 D .a0X; a0H/ be any n C t dimensional vector. Then

G0a D 0 ) φ0a D 0 if and only if

X0aX C H0aH D 0 ) θ0aX D 0 for every θ 2 CŒX� if and only if

X0aX C H0aH D 0 ) X0aX D 0 and hence H0aH D 0:

Thus β will exist if and only if no linear combination of the rows of X is a linear
combination of the rows of H except 0, or CŒX0� \ CŒH0� D 0.
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If β is to be unique, then the columns of G must be linearly independent so that
rankŒG� D p.

We note that the theorem implies that rankŒH� must be p � r for identifiability, so
we usually have t D p � r, with the rows of H linearly independent.

Idempotent Matrices

Theorem A.12 Let A1;A2; : : : ;Am be a sequence of n�n symmetric matrices such
that

Pm
iD1 Ai D In. Then the following conditions are equivalent:

(i)
Pm

iD1 ri D n, where ri D rankŒAi�.
(ii) AiAj D 0 for all i; j; i ¤ j.

(iii) A2
i D Ai for i D 1; 2; : : : ;m.

Proof We first show that (i) implies (ii) and (iii). Since

y D Iny D A1y C A2y C � � � C Amy; (A.1)

(i) implies that Rn D CŒA1�˚� � �˚CŒAm�. Let y 2 CŒAj�. Then the unique expression
of y in the above form is

y D 0 C � � � C y C � � � C 0: (A.2)

Since Eqs. (A.1) and (A.2) must be equivalent as y has a unique decomposition into
components in mutually exclusive subspaces, we have Aiy D 0 (all i, i ¤ j) and
Ajy D y when y 2 CŒAj�. In particular, for any x, we have by putting y D Ajx that
AiAjx D 0 and A2

j x D Ajx. Hence (ii) and (iii) are true.
That (ii) implies (iii) is trivial; we simply multiply

P
k Ak D In by Ai.

If (iii) is true so that each Ai is idempotent, then rankŒAi� D traceŒAi� (by A.13)
and

n D traceŒIn�

D traceŒ
X

i

Ai�

D
X

i

traceŒAi�

D
X

i

rankŒAi�

D
X

i

ri;

so that (iii) implies (i). This completes the proof.

Theorem A.13 If A is an idempotent matrix (not necessarily symmetric) of rank r,
then its eigenvalues are 0 or 1 and traceŒA� D rankŒA� D r.
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Proof As A2�A D 0, �2�� D 0 is the minimal polynomial. Hence its eigenvalues
are 0 or 1 and A is diagonalizable. Therefore there exists a nonsingular matrix R
such that

R�1AR D
�

Ir 0
0 0

�
;

since the rank is unchanged when pre- or post-multiplying by a nonsingular
matrix (A.4(i)). Hence

traceŒA� D traceŒARR�1� D traceŒR�1AR� D r:

When A is also symmetric we see from Theorem 1.4 in Sect. 1.5 that R is
replaced by an orthogonal matrix.

Weak (Generalized) Inverse

Theorem A.14 If A is any matrix with weak inverse A�, then AA� is idempotent
and traceŒAA�� D rankŒAA�� D rankŒA�.

Proof .AA�A/A� D AA�, so that AA� is idempotent. Now from A.4(ii),

rankŒA� D rankŒAA�A� � rankŒAA�� � rankŒA�:

Hence rankŒAA�� D rankŒA� D traceŒAA��, by A.13.

Theorem A.15

(i) .A�/0 is a weak inverse of A0, which we can then describe symbolically as
.A�/0 D .A0/�. (Technically A� is s not unique as it represents a family of
matrices.)

(ii) If X is n � p of rank r < p and .X0X/� is any weak inverse of X0X, then we
have P D X.X0X/�X0 is the unique projection matrix onto CŒX�, so that it is
symmetric and idempotent.

(iii) If G is defined in A.11, then .G0G/�1 is a weak inverse of X0X.

Proof

(i) This is proved by taking the transpose of A D AA�A.
(ii) Let˝ D CŒX� and let θ D Xβ 2 ˝ . Given the normal equations X0Xβ D X0y,

these have a solution Oβ D .X0X/�X0y. If Oθ D X Oβ, then

Oθ0.y � Oθ/ D Oβ0X0.y � X Oβ/
D Oβ0.X0y � X0X Oβ/
D 0:
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We therefore have an orthogonal decomposition of y D Oθ C y � Oθ such that
Oθ 2 ˝ and .y � Oθ/ ? ˝ . Since Oθ D X Oβ D X.X0X/�X0y and the orthogonal
projection is unique, we must have P˝ D X.X0X/�X0.

(iii) Using the normal equations X0X Oβ D X0y and adding H Oβ D 0 we have
.X0X C H0H/ Oβ D X0y so that 0 D H Oβ D H.G0G/�1X0y for all y. Hence
H.G0G/�1X0 D 0 and

X0X.G0G/�1X0X D .X0X C H0H/.G0G/�1X0X D X0X:

Theorem A.16 Let y � NnŒ0;Σ�, where Σ is a nonnegative-definite matrix of rank
s. If Σ� is any weak inverse of Σ, then y0Σ�y � 	2s .

Proof If z � NnŒIs; 0�, then y has the same distribution as Σ1=2z (cf. A.9(ii))
since VarŒy� D .Σ1=2/2 D Σ. Now y0Ay D z0Σ1=2AΣ1=2z is 	2r if Σ1=2AΣ1=2 is
idempotent (Theorem 1.10 in Sect. 1.9), where

r D traceŒΣ1=2AΣ1=2� D traceŒΣA�

(since traceŒCD� D traceŒDC�), that is if

Σ1=2AΣ1=2Σ1=2AΣ1=2 D Σ1=2AΣ1=2: (A.3)

Multiplying the above equation on the left and right by Σ1=2 we get

ΣAΣAΣ D ΣAΣ: (A.4)

We now show that Eqs. (A.3) and (A.4) are equivalent conditions.
Let B D AΣA � A, then we need to show that ΣBΣ D 0 implies that the matrix

D D Σ1=2BΣ1=2 D 0. Now D is symmetric and given ΣBΣ D 0,

traceŒD2� D traceŒΣ1=2BΣ1=2Σ1=2BΣ1=2�

D traceŒΣBΣB�

D 0:

However traceŒD2� D P
i

P
j d2ij D 0 implies that D D 0.

We now set A D Σ�, then

ΣAΣAΣ D .ΣΣ�Σ/Σ�Σ D ΣΣ�Σ D ΣAΣ;

and the condition for idempotency is satisfied. We note that r D traceŒΣA� D
traceŒΣΣ�� and, from A.14,

rankŒΣΣ�� D rankŒΣ� D s D traceŒΣΣ��:
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Hence r D s and y0Σ�y is 	2s .

Inverse of a Partitioned Matrix

Theorem A.17 If A and C are symmetric matrices and all inverses exist, then

�
A B0
B C

��1
D
�

F�1 �F�1G0
�GF�1 C�1 C GF�1G0

�
;

where F D A � B0C�1B and G D C�1B.

Proof The result is proved by confirming that the matrix multiplied on the left by
its inverse is the identity matrix.

Theorem A.18 If A is positive definite and all inverses exist, then

�
A B0
B 0

��1
D
�

A�1 � A�1B0.BA�1B0/�1BA�1 A�1B0.BA�1B0/�1
.BA�1B0/�1BA�1 �.BA�1B0/�1

�

Proof The matrix times its inverse is the identity matrix.

Theorem A.19 Let A be an r � r positive definite matrix, B be an s1 � r matrix
of rank s1, C be an s2 � r matrix of rank s2, and CŒB0� \ CŒC0� D 0 so that
rankŒ.B0;C0/� D s1 C s2. If

Z D
0

@
A B0 C0
B 0 0
C 0 0

1

A ;

then

Z�1 D
0

@
P Q0 R0
Q �QAQ0 �QAR0
R �RAQ0 RAR0

1

A ;

where

P D M � MC0.CMC0/�1CM;

Q D .BA�1B0/�1BA�1ŒIr � C0.CMC0/�1CM�;

R D .CMC0/�1CM; and

M D M0 D A�1ŒIr � B0.BA�1B0/�1BA�1�:
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Proof Let

Z�1 D
0

@
P Q0 R0
Q T U0
R U V

1

A ;

then from ZZ�1 D IrCs1Cs2 , we have a system of nine matrix equations, namely

AP C B0Q C C0R D Ir; BP D 0; CP D 0; (A.5)

AQ0 C B0T C C0U D 0; BQ0 D Is1 ; CQ0 D 0; (A.6)

AR0 C B0U0 C C0V D 0; BR0 D 0; CR0 D Is2 : (A.7)

Now from Eq. (A.5)

P D A�1 � A�1B0Q � A�1C0R (A.8)

and using BP D 0 gives us

Q D .BA�1B0/�1BA�1.Ir � C0R/:

Substituting back into Eq. (A.8) and using CP D 0 leads to

CM � CMC0R D 0: (A.9)

Since A�1 is positive definite, there exists a nonsingular r � r matrix L such that
A�1 D L0L (A.9(iii)). Now LB0 is r � s1 of rank s1 so that

CMC0 D CL0ŒIr � LB0.BL0LB0/�1BL0�LC0

D CL0.Ir � PCŒLB0�/LC0

D CL0PN ŒBL0�.CL0/0

by Theorem 1.1 in Sect. 1.2. Now Theorem 4.4 in Sect. 4.2 states that if A is q � n
of rank q then rankŒP˝A0� D q if and only if CŒA0� \˝? D 0. If ˝ D N ŒBL0� and
A D CL0, an s2 � r matrix of rank s2, then

CŒA0� \˝? D CŒL0C� \ CŒL0B� D 0;

since rankŒB0;C0� is unchanged by premultiplying by L0, a nonsingular matrix.
Hence rankŒPN ŒBL0 �LC0� D s2. As PN ŒBL0� is symmetric and idempotent,
CL0PN ŒBL0�PN ŒBL0�LC0 is s2 � s2 of rank s2, and is therefore nonsingular, so that
CMC0 has an inverse. From Eq. (A.9)
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R D .CMC0/�1CM;

and from Eq. (A.6)

0 D QAQ0 C QB0T C QC0U

D QAQ0 C Is1T

so that T D �QAQ0. From premultiplying Eq. (A.7) by Q, and then premultiply-
ing (A.7) by R, we obtain U0 D �QAR0. Since RC0 D Is2 , V D RAR0.

Differentiation

Theorem A.20 If d=dβ denotes the column vector with ith element d=dˇi, then:

(i) d.a0β/=dβ D a.
(ii) d.β0Aβ/=dβ D 2Aβ.

Proof

(i) d
P

i aiˇi=dˇi D ai.
(ii)

d.β0Aβ/=dˇi D d.
X

i

aiiˇ
2
i C

X

i

X

jWj¤i

aijˇiˇj=/dˇi

D 2aiiˇi C
X

jWj¤i

.aij C aji/ˇj

D 2
X

j

aijˇj:

Inequalities

Theorem A.21

(i) If D is positive definite, then for any a

sup
xWx¤0

�
.a0x/2

x0Dx

�
D a0D�1a:
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(ii) If M and N are positive definite, then

sup
x;y;x¤0;y¤0

�
.x0Ly/2

x0Mx � y0Ny

�
D �max;

where �max is the largest eigenvalue of M�1LN�1L0, and of N�1L0M�1L:

Proof Proofs are given by Seber (1984: 527).
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Analysis of variance (ANOVA)

examples of, 22–24, 67
orthogonality in, 81
table, 50
table for randomized block design, 95
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Estimable functions, 34, 54
Expectation of a random matrix, 6
Expected information matrix, 150

F
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Fitted values, 38
Freedom-equation hypothesis, 175–179,

186–188

G
Gauss-Markov theorem
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Generalized inverse, 33, 132
Generalized linear hypothesis, 143
Growth curves, 144

H
Hat matrix, 38
Hotelling’s test statistic, 144–146
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non-central chi-square and, 14
orthogonal projection and, 28, 29
symmetric, 5

© Springer International Publishing Switzerland 2015
G.A.F. Seber, The Linear Model and Hypothesis, Springer Series in Statistics,
DOI 10.1007/978-3-319-21930-1

203



204 Index
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multivariate, 132

Independent quadratic forms, 16
Indicator variables, 22
Inequalities, 200
Information matrix

definition of, 150
positive definite, 152, 176–177
positive semidefinite, 161–171, 177–179

Internally studentized residual, 39
Intersection of vector spaces, 3

L
Lagrange multiplier, 17, 32, 44, 110, 157

multiplier test, 127, 166–171
zero for identifiability conditions, 33

Least squares equations, 30
Least squares estimate, 27
Length of a vector, 1
Less than full rank model, 32–34
Likelihood ratio test, 47, 127, 185
Linear hypothesis, 21–26

definition of, 25
Linear independence, 3
Linear model approximation, 155
Linear regression

examples of, 21–22, 29, 30, 52
orthogonal hypotheses and, 78–81

Linear vector space, 2

M
Maximum likelihood estimation, 44–45
Minimum variance estimator, 34
Missing observations, 111–116

analysis of covariance for, 115
randomized block design and, 114

Moment generating function, 9
Multinomial distribution, 181
Multiple confidence intervals, 147
Multiple correlation coefficient, 42
Multivariate maximum likelihood estimates,

136
Multivariate models, 129–147
Multivariate normal distribution, 8
Multivariate randomized block design, 129,

141

N
Nested test method, 73
Non-central chi-square distribution, 9, 48, 160
Non-central F-distribution, 10, 49

Non-centrality parameter, 9
Non-linear regression

asymptotic theory for, 122
examples of, 117
large sample tests for, 127

Non-negative definite matrix, 5, 192
Normal equations, 30, 33
Nullity, 3
Null space, 2

O
Orthogonal complement, 2
Orthogonal decomposition, 74
Orthogonal hypotheses

definition of, 76
multivariate, 143
nonlinear, 171–174
p-factor layouts and, 89–93
randomized block design and,

93–96
regression models and, 78–81
two-factor layouts and, 81–89

Orthogonal matrix, 192
Orthogonal polynomials, 80
Orthogonal projection, 27, 48
Orthogonal transformation, 56
Orthonormal basis, 3, 27, 30, 48
Orthonormal contrasts, 55

P
Partitioned matrix, 198–200
p-factor layouts, 89–93
Pitman’s limiting power, 154
Polynomial regression, 21
Positive-definite matrix, 189, 192, 193, 200
Positive semidefinite matrix, 189
Power of the F-test, 61–63
Projection matrix, 4

Q
Quadratically balanced design, 36
Quadratically balanced test, 67
Quadratic form

expectation of, 11
variance of, 12

R
Randomized block design, 93–96
Rank, 190–191
Residuals, 38
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Residual sum of squares, 35
Robustness of F-test, 64–69
Row space, 2

S
Score test, 127, 184–186
Separate test method, 76
Serial correlation effect, 39
Simultaneous confidence intervals,

58
Sum of two vector spaces, 3
Systemic bias, 39

T
Test for independence, 186
Trace, 1, 189

Two-factor layouts, 81–89
Two-way ANOVA table, 88

U
Uniformly most powerful test, 61

V
Variance-covariance matrix, 6
Variance estimation, 35
Vector differentiation, 30, 200

W
Wald test, 51–55, 127, 165, 184–186
Weak inverse, 33, 197
Wishart distribution, 135
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