


Statistics for Biology and Health

Series Editors
M. Gail
K. Krickeberg
J. Samet
A. Tsiatis
W. Wong

For further volumes:
www.springer.com/series/2848

http://www.springer.com/series/2848


Gang Zheng � Yaning Yang � Xiaofeng Zhu �

Robert C. Elston

Analysis of Genetic
Association Studies



Gang Zheng
Bethesda, MD, USA

Yaning Yang
School of Management, Dept. Statistics &

Finance
University of Science & Technology of

China
Hefei, Anhui, People’s Republic of China

Xiaofeng Zhu
School of Medicine, Dept. Epidemiology &

Biostatistics
Case Western Reserve University
Cleveland, OH, USA

Robert C. Elston
School of Medicine, Dept. Epidemiology &

Biostatistics
Case Western Reserve University
Cleveland, OH, USA

Statistics for Biology and Health Series Editors
M. Gail
National Cancer Institute
Bethesda, MD, USA

K. Krickeberg
Le Châtelet
Manglieu, France

J. Samet
Department of Preventive Medicine
Keck School of Medicine
University of Southern California
Los Angeles, CA, USA

A. Tsiatis
Department of Statistics
North Carolina State University
Raleigh, NC, USA

W. Wong
Department of Statistics
Stanford University
Stanford, CA, USA

ISSN 1431-8776 Statistics for Biology and Health
ISBN 978-1-4614-2244-0 e-ISBN 978-1-4614-2245-7
DOI 10.1007/978-1-4614-2245-7
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011946278

© Springer Science+Business Media, LLC 2012
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy


To my mother: GZ

To my parents, Min and Qiutong: YY

To family: Fang, Luke, Jimmy and Helen: XZ

To all my numerous former students and
family: RCE



Preface

We started writing this book two years ago targeting it not only as a graduate level
text book in statistical genetics and genetic epidemiology, especially for genetic
association studies, but also as a reference book for the analysis of genetic associa-
tion studies. As a text book for graduate students in statistics, biostatistics, genetics
and genetic epidemiology, in addition to covering various topics in this subject, we
wanted to cover details of the various derivations as well as illustrate detailed step-
by-step applications through both real examples and simulations. We hope this book
can serve as a bridge from taking classes in statistical genetics and genetic epidemi-
ology to conducting independent research in this area. As a reference, we wanted to
cover a broad range of topics in genetic association studies, both population-based
and family-based, but we focus mostly on population-based case-control association
studies. The book should also be useful for other statisticians or readers who are not
familiar with the subject.

The book covers many technical details, and the breadth of coverage gives the
option to pick and choose what interests the reader most. The book contains thirteen
chapters in six parts and we give here a brief introduction to each part. In the first
part, we have two introductory chapters. The probability and statistical background
required for this book is covered in the first chapter, while the second chapter covers
the basic genetic and genetic epidemiology terminology necessary to understand the
rest of the book. Readers who are familiar with the material in either of these two
background chapters can skip one or both of them.

Part II of the book comprises four chapters. Chapters 3 and 4 cover single-
marker analysis for case-control data in unmatched and matched designs, respec-
tively. In Chap. 3, we introduce both genotype-based tests (including trend tests
and Pearson’s chi-squared test) and the allele-based test, and inference in terms
of odds ratios. Their relation to each other and their relation to a logistic regres-
sion model are discussed. Exact tests for association and tests using the deviation
from Hardy-Weinberg proportions to detect association are studied. How to simulate
case-control data with or without covariates is also studied. In Chap. 4, we focus on
matched designs under 1: m or variable matching. Results for the matched trend test
and the matched Hardy-Weinberg disequilibrium test are derived. Chapter 5 cov-
ers Bayesian analysis of case-control genetic association studies. Bayesian analysis
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viii Preface

plays an important role in the analysis of genetic association studies, especially in
reporting results from genome-wide association studies. We focus on calculating
Bayes factors and their approximations, derivations of approximate Bayes factors
with or without covariates, coding genotypes in Bayesian analysis, and the choice
of priors. We assume the underlying genetic model is known in all these three chap-
ters. In Chap. 6, however, we assume the genetic model is unknown and study robust
procedures for association studies. The maximin efficiency robust test, maximum-
type statistics (including MAX3), constrained likelihood ratio test, tests based on
genetic model selection or exclusion, and minimum p-values are considered.

Part III, comprising Chaps. 7 and 8, covers multi-marker analysis. We study hap-
lotype analysis in Chap. 7 and gene-gene interactions in Chap. 8. Part IV contains
three additional chapters on related topics. Population stratification is an important
topic in the analysis of case-control data and is covered in Chap. 9. The impact
of population stratification and various approaches to correct for it are discussed.
Chapter 10 discusses gene-environment interactions with different genetic models,
illustrated with real examples. Power and sample size calculations are important
when designing an association study. In Chap. 11 we consider the power and sam-
ple size calculations for single marker analysis using the trend test with perfect or
imperfect linkage disequilibrium, and for Pearson’s chi-squared test. We also cover
power for gene-gene and gene-environment interactions using an existing publicly
available Power Program. An introduction to genome-wide association studies, pop-
ular since 2005, is presented as Chap. 12 in Part V. This brief introduction discusses
quality control, analysis strategy, genome-wide scans, ranking, and replication.

An introduction to family-based association studies is given in Chap. 13, the last
part of the book. Although we still focus on association studies, we also briefly dis-
cuss linkage analysis, including the original and revised Haseman-Elston regression
models and linkage studies using affected sibpairs. We focus on the transmission
disequilibrium test (TDT) and family-based association tests (FBAT). Both binary
and quantitative traits are studied.

One challenge in writing this book has been how to balance the overall coverage,
technical details and applications. Although we have tried to cover most topics of as-
sociation studies, some topics, especially those recently developed since we started
writing this book, including the analysis of imputed SNPs, copy number variants and
the detection of rare variants, are not covered. The analysis of family data is reduced
to one chapter. Moreover, the book focuses more on technical details and presenting
application results than on demonstrating them with programs or the use of soft-
ware. Almost all illustrations presented in the book, including figures and tables,
were obtained by running our own programs, which were written using a combina-
tion of SAS, R, S-Plus, Maple, S.A.G.E., and other existing programs or software.
Therefore it is not easy to present all the programs used in this book, although some
illustrations are given. Selected materials can be used for one-semester or a one-year
course in statistical genetics together with other supplementary reading materials.

We would like to thank John Kimmel, the former senior editor of statistics
at Springer, and Marc Strauss, the current editor, for their support and unending
patience. We are grateful to Han Zhang for collecting some references and Huizhen
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Qin for producing a figure; to Prakash Gorroochurn, Neal Jeffries, Jungnam Joo,
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Gang Zheng thanks Joseph Gastwrith and Nancy Geller for their strong support of
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Chapter 1
Introduction to Probability Theory and Statistics

Abstract Basic probability theory and statistical models and procedures for the
analysis of genetic studies are covered in Chap. 1. This chapter starts with an in-
troduction to basic distribution theory and common distributions that are used in
the book, including the uniform, multinomial, normal, t-, F -, Beta, Gamma, chi-
squared and hypergeometric distributions. The basic distributions for order statistics
are also given. Several types of stochastic convergence used in the book are summa-
rized. Maximum likelihood estimation and its large sample properties are discussed.
Various tests, including the efficient Score test, likelihood ratio test and Wald test,
are studied with or without nuisance parameters. Multiple testing issues related to
testing association with multiple genetic markers and related to hypothesis testing
with an unknown genetic model are briefly reviewed. This chapter also covers the
Delta method, the EM algorithm, basic concepts of sample size and power calcula-
tions, and asymptotic relative efficiency.

Applications of classical probability and statistical techniques to the analysis of ge-
netic data date back to at least 1918 when R.A. Fisher studied the correlation be-
tween relatives under Mendelian inheritance. It should be recognized, however, that
Gregor Mendel’s Experiments on Plant Hybridization presented at the meetings of
the Natural History Society of Brünn in 1865 was highly statistical in nature. Since
then, probability theory and statistical methods have played important roles in the
analysis of genetic data. Basic probability theory and statistical models and proce-
dures for the analysis of case-control genetic association studies are covered in this
chapter.

We start with an introduction to basic probability theory and common distribu-
tions that are used in this book, including the uniform, multinomial, normal, t-,
F -, Beta, chi-squared and hypergeometric distributions. The basic distributions for
order statistics are also discussed. We then review several stochastic convergences
used in this book.

Maximum likelihood estimation and its large sample properties are discussed.
Test statistics, including the efficient Score test, likelihood ratio test, and Wald test
are studied with or without nuisance parameters. Multiple testing issues related
to testing association with multiple genetic markers or related to hypothesis test-
ing with an unknown genetic model are briefly reviewed. We also cover the Delta
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method, the EM algorithm, an introduction to sample size and power calculations,
and asymptotic relative efficiencies.

1.1 Basic Probability Theory

1.1.1 Introduction

Denote a random variable by X and its realization (observation) by x. Let Ω be the
sample space for X. The cumulative distribution function (CDF) of X is defined as
F(x) = Pr(X ≤ x) for x ∈ Ω . We use the notation: X ∼ F(x). We only consider two
types of random variables. One is a continuous random variable whose CDF F(x)

has a continuous derivative at every x ∈ Ω . The derivative of F(x) is then called
the probability density function (PDF) of X, denoted by f (x). Hence, F(x) =∫ x

−∞ f (y)dy and F(x) is continuous at every x ∈ Ω . The kth moment of X is given
by E(Xk) = ∫ xkf (x)dx. The second type is a discrete random variable, which
only takes on a finite or countable number of values, e.g. X = x1, x2, . . . . Thus,
Ω = {x : x1, x2, . . .}. Its distribution function (or probability mass function) is de-
noted by Pr(X = xi) for i = 1,2, . . . . Hence, F(x) =∑xi≤x Pr(X = xi), and the

kth moment is given by E(Xk) = ∑xi
xk
i Pr(X = xi). For both continuous and

discrete random variables, the mean and variance of X are given by E(X) and
Var(X) = E(X2) − {E(X)}2, respectively. Note that F(x) is non-decreasing and
strictly increasing for a continuous random variable as defined above. In most of
our applications, Ω = (−∞,∞), (0,1), or (0,∞) for continuous random variables.
Unless the sample space Ω is (0,1) or (0,∞), we always use Ω = (−∞,∞) to dis-
play formulas.

The joint CDF of two continuous random variables X1 and X2 is given by
F(x1, x2) = Pr(X1 ≤ x1,X2 ≤ x2) with the PDF denoted by f (x1, x2), where

F(x1, x2) =
∫ x2

−∞

{∫ x1

−∞
f (y1, y2)dy1

}

dy2.

For two discrete random variables, the joint distribution function is

F(x1, x2) =
∑

y1≤x1,y2≤x2

Pr(X1 = y1,X2 = y2).

In this book, we only consider joint distributions of random variables of the same
type. Two random variables are independent if, for any x1 and x2, F(x1, x2) =
F(x1)F (x2). The covariance of the two random variables X1 and X2 is defined
as

Cov(X1,X2) = E[{X1 − E(X1)}{X2 − E(X2)}],
which equals

∫ ∫ {x1 −E(X1)}{x2 −E(X2)}f (x1, x2)dx2dx2 for continuous random
variables or

∑
x1,x2

{x1 −E(X1)}{x2 −E(X2)}Pr(X1 = x1,X2 = x2) for discrete ran-
dom variables. It can be shown that Cov(X1,X2) = E(X1X2)−E(X1)E(X2), where
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the integration in E(X1X2) is with respect to the joint distribution. The correlation
between X1 and X2 is defined as

Corr(X1,X2) = Cov(X1,X2)√
Var(X1)Var(X2)

.

If X1 and X2 are independent, Cov(X1,X2) = 0 and Corr(X1,X2) = 0. The con-
verse, however, is not always true.

For a continuous random variable X ∼ F(x), the pth quantile of F(x), denoted
by xp , is given by xp = F−1(p) for p ∈ (0,1). Here xp is also called the 100pth
percentile of F(x). For a discrete random variable, xp = sup{x : F(x) ≤ p}. That
is, the largest value of x such that F(x) ≤ p.

1.1.2 Marginal and Conditional Distributions

Given the joint PDF or the joint distribution function of X1 and X2, the PDF and
distribution function of X2 can be obtained, respectively, from

f (x2) =
∫ ∞

−∞
f (x1, x2)dx1,

Pr(X2 = x2) =
∑

x1

Pr(X1 = x1,X2 = x2),

which are also referred to as the marginal PDF and marginal distribution function
of X2 with respect to the joint PDF and joint distribution function. Let E1 and E2

be two events. Then the following conditional probability can be used to define the
conditional distribution

Pr(E2|E1) = Pr(E1,E2)/Pr(E1), provided Pr(E1) �= 0.

If we substitute Ei with {Xi = xi}, we obtain the conditional distribution function
for X2 = x2 given X1 = x1. For the continuous random variables X1 and X2, we
have f (x2|x1) = f (x1, x2)/f (x2). Thus, if X1 and X2 are independent, Pr(X2 =
x2|X1 = x1) = Pr(X2 = x2) or f (x2|x1) = f (x2).

Suppose the conditional distribution of X2 given X1 = x1 is given by f (x2|x1)

or Pr(X2 = x2|X1 = x1). Then the conditional expectation of X2 given X1 = x1 is
given by

E(X2|X1 = x1) =
∫

x2f (x2|x1)dx2,

E(X2|X1 = x1) =
∑

x2

x2 Pr(X2 = x2|X1 = x2).
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Note that E(X2|X1) itself is a random variable. Therefore, we can calculate its mean
and variance. The following results are useful (Problem 1.5):

E(X2) = E{E(X2|X1)}, (1.1)

Var(X2) = Var{E(X2|X1)} + E{Var(X2|X1)}. (1.2)

We have not indicated parameters in the CDF F(x) and PDF f (x). For many
applications, a parameter or a vector of parameters θ appear in F(x) and f (x). In
this case, we denote them by F(x|θ) and f (x|θ), respectively.

1.1.3 Basic Distributions

Some basic statistical distributions are now considered, including the uniform distri-
bution, multinomial (including binomial), normal, multivariate normal, chi-squared,
t-, F -, Beta, Gamma, and hypergeometric distributions. These distributions are used
in subsequent chapters. A symbol is given to indicate a distribution, which is also of-
ten used to indicate a variate following the same distribution. For example, N(0,1)

is used to present the standard normal distribution as well as a variate following
the standard normal distribution. Otherwise the capital letter X is used to indicate a
random variable and the lower case x is a realization of the random variable X.

The Uniform Distribution

A random variate X is said to follow the uniform distribution on (0,1), denoted by
X ∼ U(0,1), if it has the PDF

f (x) = 1 for x ∈ (0,1),

and 0 for x /∈ (0,1). The CDF is F(x) = x for x ∈ (0,1), 0 if x ≤ 0, and 1 if x ≥ 1.
The mean and variance of X are E(X) = 1/2 and Var(X) = 1/12. The random
variate X ∼ U(0,1) is also called the unit rectangular variate.

Let Y be any continuous random variable with a CDF F(y). Then the random
variable X = F(Y ) ∼ U(0,1) because, for any x ∈ (0,1),

Pr(X ≤ x) = Pr(F (Y ) ≤ x) = Pr(Y ≤ F−1(x)) = F(F−1(x)) = x.

It follows that if X ∼ U(0,1), F−1(X) ∼ F(x).

The Multinomial Distribution

Assume that n independent experiments or trials are conducted. Each experiment
has one of L outcomes. The probabilities of the L outcomes are the same among
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each of the n experiments and are denoted by p1, . . . , pL with p1 + · · · + pL = 1.
Among the n experiments, the count of each outcome is obtained. The counts
of the L outcomes are denoted by X1, . . . ,XL, which represent a random sam-
ple X = (X1, . . . ,XL) drawn from the multinomial distribution, denoted by X ∼
Mul(n;p1,p2, . . . , pL). The distribution function for X = (X1, . . . ,XL) can be
written as

Pr(X = x) = Pr(X1 = x1, . . . ,XL = xL) = n!
x1! · · ·xL!p

x1
1 · · ·pxL

L , 0 ≤ xi ≤ n,

where pL = 1 − (p1 + · · · + pL−1) and x1 + · · · + xL = n.
The binomial distribution is a special case with L = 2, where the two outcomes

are often termed “success” and “failure”. The binomial distribution is denoted by
B(n;p), where p1 = p and p2 = 1 − p. For the binomial random variable X (the
number of successes in n trials) with the probability of success p, the distribution
function can be written as

Pr(X = x) = n!
x!(n − x)!p

x(1 − p)n−x, 0 ≤ x ≤ n.

Let Xi be the number of ith outcomes of a multinomial random variable. The
mean and variance of Xi are given by E(Xi) = npi and Var(Xi) = pi(1 − pi)/n.
The covariance of two outcomes Xi and Xj is given by Cov(Xi,Xj ) = −pipj/n

for i �= j . Thus,

Corr(Xi,Xj ) = −
√

pipj

(1 − pi)(1 − pj )
.

The Normal Distribution

The normal distribution is the most commonly used distribution in statistics. Let X

be a random variable that follows a normal distribution. Then the PDF of X is given
by

f (x) = 1√
2πσ 2

e− 1
2 (

x−μ
σ

)2
, x ∈ (−∞,∞), (1.3)

where μ is the mean (location) of X and σ is the standard deviation (scale) of X.
The normal distribution is denoted by X ∼ N(μ,σ 2), where σ 2 is the variance of X.
A special case with μ = 0 and σ 2 = 1 is called the standard normal distribution.
The symbols φ(x) and Φ(x) are used for the PDF and CDF of N(0,1). The normal
distribution plays an important role in large sample statistical inference (estimation
and hypothesis testing). It is used to construct confidence intervals and calculate
the power and sample size in the design of genetic studies. Normal densities with
(μ,σ ) = (0,1) and (2,1.5) are plotted in Fig. 1.1.
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Fig. 1.1 Normal density
plots: The solid curve is the
standard normal density
N(0,1) and the dotted curve
is N(2,1.52) with the
location parameter μ = 2 and
the scale parameter σ = 1.5

The Multivariate Normal Distribution

The multivariate normal distribution is a generalization of the normal distribution.
Let X = (X1, . . . ,Xp)T be a p-dimensional random vector, where T is a matrix
transpose. Denote x = (x1, . . . , xp)T and μ = (μ1, . . . ,μp)T . Let Σ = Var(X) be
the p × p covariance matrix of X, whose (i, j)th element is E{Xi − E(Xi))(Xj −
E(Xj )}. The covariance matrix is positive definite. That is, for any real-valued vec-
tor a �= 0, aT Σa > 0. The random vector X is said to have the multivariate normal
distribution Np(μ,Σ) if its PDF has the form

f (x1, . . . , xp) = 1

(2π)p/2|Σ |1/2
exp{−(x − μ)T Σ−1(x − μ)/2},

where |Σ | is the determinant of Σ . The above PDF reduces to (1.3) when p = 1
and Σ = σ 2. When p = 2, X is said to follow a bivariate normal distribution. The
covariance matrix for the bivariate normal distribution can be written as

Σ =
[

σ 2
1 ρ12σ1σ2

ρ12σ1σ2 σ 2
2

]

,

where σ 2
i = Var(Xi) and ρ12 = Corr(X1,X2).

Let p = 2. Given X2 = x2, the conditional distribution of X1 is normal with
mean μ1 + ρ12σ1(x2 − μ2)/σ2 and variance σ 2

1 (1 − ρ2
12), denoted by

X1|X2 = x2 ∼ N

(

μ1 + ρ12
σ1

σ2
(x2 − μ2), σ

2
1 (1 − ρ2

12)

)

. (1.4)

Note that (1.4) can be used to generate bivariate normal random variates.
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For a general p ≥ 2, we can decompose X = (X1,X2)
T , where Xi is a pi -

dimensional random vector and p1 + p2 = p. Accordingly, μ = (μ1,μ2)
T and

Σ =
[

Σ11 Σ12

Σ12 Σ22

]

,

where |Σ22| > 0. Then the conditional distribution of X1 given X2 = x2 is the p1-
dimensional normal with mean and covariance matrix matrix given by

E(X1|X2 = x2) = μ1 + Σ12Σ
−1
22 (x2 − μ2)

and

Var(X1|X2 = x2) = Σ11 − Σ12Σ
−1
22 Σ21.

Chi-Squared Distribution

Let Yl , l = 1, . . . ,L, be independent random variables from N(0,1). Then X =∑L
l=1 Y 2

l has a central chi-squared distribution with L degrees of freedom, denoted
by X ∼ χ2

L. Its PDF is given by

f (x) = xL/2−1

2L/2Γ (L/2)
e−x/2,

where Γ (L/2) is the gamma function with argument L/2, which is given by Γ (x) =∫∞
0 tx−1e−xdx. The mean and variance of X are L and 2L, respectively. The chi-

squared distributions with 1, 2 and 4 degrees of freedom are frequently used in
subsequent chapters in testing hypothesis.

On the other hand, if Yl ∼ N(μl,1) for l = 1, . . . ,L. Then X =∑L
l=1 Y 2

l has
a non-central chi-squared distribution with L degrees of freedom and the non-
centrality parameter is δ =∑μ2

l . The non-central chi-squared distribution is often
used to calculate the power of a statistic with a chi-squared distribution. Plots of
central chi-squared densities with different degrees of freedom are given in Fig. 1.2.
We always use chi-squared distribution to refer to a central chi-squared distribution
unless “non-central” is specified.

The F -Distribution

The F -distribution with shape parameters s and t is the ratio of two variates fol-
lowing chi-squared distributions with s and t degrees of freedom, respectively. The
shape parameters of the F -distribution are often referred to as the degrees of free-
dom, which are positive integers. The PDF of the F -distribution with s and t degrees
of freedom can be written as

f (x|s, t) = Γ ((s + t)/2)(s/t)s/2x(s−2)/2

Γ (s/2)Γ (t/2)(1 + xs/t)(s+t)/2
.
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Fig. 1.2 Chi-squared density
plots with degrees of freedom
1 (the solid curve), 2 (the
dotted curve) and 4 (the thick
curve)

Let X follow the F -distribution with s and t degrees of freedom, denoted by
F(s, t). The mean and variance of X are respectively t/(t − 2) when t > 2 and
2t2(s + t − 2)/{s(t − 2)2(t − 4)} when t > 4. Let Ys and Yt follow chi-squared dis-
tributions with s and t degrees of freedom, respectively. Then (Ys/s)/(Yt/t) follows
F(s, t). When both s and t go to infinity, F(s, t) converges to N(0,1) in distribu-
tion. When t goes to infinity, F(s, t) converges to χ2

s in distribution. Convergence in
distribution is used here, which will be defined with other stochastic convergences
in Sect. 1.1.5.

The t-Distribution

The t-distribution, also called Student’s t-distribution, has a shape parameter d ,
which is a positive integer and referred to as the degrees of freedom. Its PDF can be
written as

f (x|d) = Γ ((d + 1)/2)√
πdΓ (d/2)(1 + x2/d)(d+1)/2

,

where d > 1. When d = 1, the t-distribution corresponds to the Cauchy distribution.
The t-distribution has mean 0 when d > 1 and variance d/(d − 2) when d > 2.

Let X follow a t-distribution with d degrees of freedom. Then X is related to
the F -distribution by X2 ∼ F(1, d), related to the chi-squared distribution by X2 ∼
χ2

1 /(χ2
d /d), and related to the normal distribution by X ∼ N(0,1)/

√
χ2

d /d . When
d goes to infinity, the t-distribution converges to the normal distribution. Figure 1.3
plots the normal density N(0,1) and the t-densities with 1 and 5 degrees of freedom.

The Hypergeometric Distribution

Consider a finite population of size n, from which a random sample of size m < n

is drawn. Suppose the finite population consists of two types of sample outcomes
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Fig. 1.3 Plots of the
densities of normal N(0,1)

(the thick curve) and t

distributions with 1 (the
dotted curve) and 5 (the solid
curve) degrees of freedom

Table 1.1 The
hypergeometric distribution
with x successes

Sets of Sampled Not sampled Total

Black balls x s − x s

White balls m − x n − m + x − s n − s

Total m n − m n

(e.g., black balls and white balls). Suppose there are s black balls and n − s white
balls. One is interested in calculating the probability of drawing x black balls among
m draws. The number of black balls among m draws follows the hypergeometric
distribution. The probability of obtaining x black balls among m draws is given by

Pr(x) =
(
m
x

)(
n−m
s−x

)

(
n
s

) = m!(n − m)!s!(n − s)!
x!(m − x)!(s − x)!(n − m − s + x)!n! ,

where max(0, s + m − n) ≤ x ≤ max(m, s). The mean and variance of a hypergeo-
metric random variable X are sm/n and sm(n−m)(n−s)/{n2(n−1)}, respectively.

The hypergeometric distribution can be displayed in a 2 × 2 table as in Table 1.1.
The probability Pr(x) is the probability of obtaining a 2 × 2 table given the four
margins: s, n − s, m, and n − m. This probability is used when Fisher’s exact test
for association of the 2 × 2 table is studied in Chap. 3.

Beta and Gamma Distributions

The Beta distribution has two shape parameters u > 0 and v > 0. A variate with the
Beta distribution is denoted by Beta(u, v). The PDF is given by

f (x|u,v) = xu−1(1 − x)v−1/B(u, v),
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where B(u, v) is the Beta function with arguments u and v, given by

B(u, v) =
∫ 1

0
yu−1(1 − y)v−1dy = Γ (u)Γ (v)

Γ (u + v)
.

The mean and variance of Beta(u, v) are u/(u + v) and uv/{(u + v)2(u + v + 1)}.
Beta(1,1) is the uniform distribution on (0,1).

The Gamma distribution includes many common distributions as special cases
(e.g., a chi-squared distribution). Its PDF is given by

f (x|u,v) = (x/u)v−1 exp(−x/u)/{uΓ (v)}, u > 0, v > 0.

A variate with the Gamma distribution is denoted as Gamma(u, v).
For integer v, the variate Gamma(u, v) can be generated from

∑v
i=1 −u log(Ui)

where Ui ∼ U(0,1) are independent unit rectangular variates. The identity

Beta(u, v) = Gamma(1, u)

Gamma(1, u) + Gamma(1, v)

is often used to generate variates with the Beta distribution.

1.1.4 Order Statistics

Let X1, . . . ,Xn be a random sample drawn from F(x) with the PDF f (x). Then
X1, . . . ,Xn are referred to as independent and identically distributed (IID). Rank
X1, . . . ,Xn in ascending order, denoted by X(1:n) ≤ · · · ≤ X(n:n). The ordered sam-
ples are order statistics. That is, X(1:n), . . . ,X(n:n) are order statistics of random
samples X1, . . . ,Xn.

The Distribution of a Single Order Statistic

Let i be any number between 1 and n. The PDF of X(i:n) can be obtained from the
multinomial distribution. Once the random variable X(i:n) is observed as X(i:n) = x,
the sample space of X can be divided into three portions: the one containing X(i:n) =
x chosen from X1, . . . ,Xn with probability f (x), the second one containing i − 1
observations chosen from X1, . . . ,Xn whose values are smaller than x and each
with probability F(x), and the third one containing n − i observations chosen from
X1, . . . ,Xn whose values are greater than x and each with probability 1 − F(x).
Hence, the PDF of X(i:n) can be written as

fi:n(x) = n!
(i − 1)!(n − i)! {F(x)}i−1f (x){1 − F(x)}n−r , x ∈ (−∞,∞).

When i = 1 and i = n, X(1:n) and X(n:n) are the smallest and largest order statis-
tics. Their CDFs can also be directly obtained as follows:
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Pr(X(1:n) ≤ x) = 1 − Pr(X1 > x, . . . ,Xn > x) = 1 − {1 − F(x)}n,
Pr(X(n:n) ≤ x) = Pr(X1 ≤ x, . . . ,Xn ≤ x) = {F(x)}n.

The Distribution of Two Order Statistics

Let X(i:n) and X(j :n) be two order statistics, 1 ≤ i < j ≤ n. The joint PDF of X(i:n)

and X(j :n) can be obtained as follows. Assume the values of X(i:n) and X(j :n) are
observed as xi and xj , respectively. Then the sample space is divided into five por-
tions: in addition to the two portions containing X(i:n) = xi with probability f (xi)

and X(j :n) with probability f (xj ), it also contains the portion with i − 1 samples
smaller than xi each with probability F(xi), j − i − 1 samples between xi and xj

each with probability F(xj ) − F(xi), and n − j samples greater than xj each with
probability 1 − F(xj ). Thus, the joint PDF for (X(i:n),X(j :n)) can be written as

fij :n(xi, xj ) = n!
(i − 1)!(j − i − 1)!(n − j)!
× {F(xi)}i−1{F(xj ) − F(xi)}j−i−1{1 − F(xj )}n−j f (xi)f (xj ),

where −∞ < xi < xj < ∞.

Remarks

The joint distribution for any collection of order statistics can be obtained similarly.
The joint PDF of all order statistics is given by (Problem 1.1)

f1···n:n(x1, . . . , xn) = n!
n∏

i=1

f (xi), x1 < · · · < xn.

Although X1, . . . ,Xn are independent, the order statistics are dependent. For
example, fij :n(xi, xj ) �= fi:n(xi)fj :n(xj ). The conditional density of X(j :n) given
X(i:n) can be written as fj |i:n(xj |xi) = fij :n(xi, xj )/fi:n(xi). Then it can be shown
that (Problem 1.2) the order statistics have the following Markov Chain property,

fj |1···j−1:n(xj |x1, . . . , xj−1) = fj |j−1:n(xj |xj−1).

That is, conditional on X(j−1:n), X(j :n) and (X(1:n), . . . ,X(j−2:n)) are independent.
Suppose X ∼ F(x) with continuous PDF f (x), which is positive for any x ∈ Ω .

The pth quantile (or 100pth percentile) is denoted by xp = F−1(p). Let X(r:n) be
the r th order statistic, 1 < r < n. If r/n → p ∈ (0,1) as n → ∞, then

√
n(X(r:n) − xp) → N(0, σ 2

p) (1.5)

in distribution, where σ 2
p = p(1 − p)/f 2(xp).
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1.1.5 Convergence

We use two basic types of stochastic convergence in this book: convergence in dis-
tribution, which is also called weak convergence or convergence in law, and conver-
gence in probability. Another type of convergence that we do not use in this book is
convergence almost surely (a.s.). We review these three types of convergence using
univariate random variables. The results hold for multivariate random variables with
some notational modifications.

Let {Xn;n ≥ 1} be a sequence of random variables and X be a random variable
whose CDF is F(x) = Pr(X ≤ x). Let Ω be the sample space of X. The sequence
{Xn;n ≥ 1} is said to converge in distribution to X if

lim
n→∞ Pr(Xn ≤ x) = F(x)

for every x ∈ Ω at which F(x) is continuous. The sequence {Xn;n ≥ 1} is said to
converge in probability to X if, for any ε > 0,

lim
n→∞ Pr(|Xn − X| > ε) = 0.

For comparison, {Xn;n ≥ 1} converge to X a.s. if

Pr
(

lim
n→∞|Xn − X| = 0

)
= 1.

The following properties are useful.

1) A sequence {Xn;n ≥ 1} converges to X in distribution if and only if

lim
n

E{f (Xn)} = E{f (X)}

for all continuous and bounded functions f .
2) For a continuous function g(x), Xn → X in distribution (in probability, a.s.)

implies g(Xn) → g(X) in distribution (in probability, a.s.).
3) Xn → X a.s. implies Xn → X in probability, which implies Xn → X in distri-

bution.
4) (Slutsky’s Theorem) If Xn → X in distribution and Yn → c in distribution, where

c is a constant, then Xn +Yn → X+c in distribution, XnYn → cx in distribution,
and Xn/Yn → X/c in distribution.

5) If Xn → X in distribution and |Xn − Yn| → 0 in probability, then Yn → X in
distribution.

Note that property 1) shows that convergence in distribution does not imply conver-
gence in moments.
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1.2 Statistical Inference

1.2.1 Estimation and Confidence Intervals

Maximum Likelihood Estimate

When a random sample of size n, x1, . . . , xn, is drawn from F(x|θ) with parameter
θ , one of the goals of statistical inference is to estimate the parameter θ using the
observations. In the binomial distribution B(n;p), θ = p, the probability of success,
and in the normal distribution N(μ,σ 2), θ = (μ,σ 2)T , its mean and variance.

We focus on the maximum likelihood estimate (MLE). To find the MLE, the
likelihood function is first obtained, which is given by

L(θ |x1, . . . , xn) =
n∏

i=1

f (xi |θ),

where f (x|θ) is the PDF or the distribution function. We often use L(θ) for the
likelihood function. An estimate of θ , denoted by θ̂ , is the MLE for θ if it maximizes
the likelihood function. Denote the parameter space as Θ , e.g., Θ = (0,1) for the
binomial probability p. Then the MLE θ̂ satisfies

L(θ̂) = max
θ∈Θ

L(θ). (1.6)

We may also write

θ̂ = arg max
θ∈Θ

L(θ) = arg max
θ∈Θ

l(θ),

where l(θ) = logL(θ) is the log-likelihood function. If the base of the log function
is not specified, the natural log is used throughout this book.

To find the MLE satisfying (1.6) may not be trivial. It is often solved from the
following equation

d

dθ
l(θ) = 0.

Note that when θ contains multiple parameters, the derivative d/dθ in the above
equation becomes a partial derivative, which is evaluated for each element of θ .

Let X ∼ B(n;p) with an observation x. Then l(p) = c(x,n) + x logp +
(n − x) log(1 − p), where c(x,n) does not contain the parameter p. Thus, we solve

dl(p)

dp
= x

p
− n − x

1 − p
= 0,

from which we obtain the MLE for p as p̂ = x/n. This estimate is unbiased, that
is, E(p̂ ) = p, with variance Var(p̂ ) = p(1 − p)/n. Similarly, if (x1, . . . , xL) ∼
Mul(n;p1, . . . , pL) with

∑L
l=1 xl = n, the MLE for pl is p̂l = xl/n with mean
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and variance E(p̂l) = pl and Var(p̂l) = pl(1 − pl)/n for l = 1, . . . ,L. Here, p̂l

is also an unbiased estimate for pl . For any two MLEs p̂i and p̂j , their covariance
is Cov(p̂i , p̂j ) = −pipj/n for i �= j .

Let X1, . . . ,Xn ∼ N(μ,σ 2) with observations x1, . . . , xn. Then the MLEs for μ

and σ 2 are

μ̂ = 1

n

n∑

i=1

xi = x̄ and σ̂ 2 = 1

n

n∑

i=1

(xi − x̄)2.

This MLE of σ 2 is biased, but the estimate

s2 = 1

n − 1

n∑

i=1

(xi − x̄)2

is unbiased for σ 2. It is known that x̄ and s2 are independent and that
√

nx̄/s follows
a t-distribution with n − 1 degrees of freedom.

Properties of Maximum Likelihood Estimate

Let x1, . . . , xn be a random sample from F(x|θ) and θ̂ be the MLE for θ . Under
some regularity conditions, the MLE uniquely exists and satisfies the following large
sample property:

√
n(θ̂ − θ) → N

(

0,
1

I1(θ)

)

. (1.7)

The above result can be interpreted as the distribution of
√

n(θ̂ − θ) converging to
N(0, I−1

1 (θ)), where I1(θ) is the Fisher information about θ contained in a single
observation, given by

I1(θ) = E

(
d

dθ
l(θ)

)2

= −E

(
d2

dθ2
l(θ)

)

, X ∼ F(x|θ).

The Fisher information about θ contained in a random sample of size n, denoted
by In(θ), is n times that in a single observation. That is, In(θ) = nI1(θ). In(θ)

is also called the expected Fisher information, while in(θ) = −d2l(θ)/dθ2 is the
observed Fisher information. The subscript n in In(θ) and in(θ) may be omitted if
this does not cause confusion. The MLE θ̂ is a consistent estimate of θ , i.e., θ̂ → θ

in probability as n → ∞. In addition, the MLE is also optimal in the sense that its
asymptotic variance reaches the Cramer-Rao lower bound. Under some regularity
conditions, the variance of a consistent estimate of θ has a lower bound 1/{nI1(θ)}.
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When θ contains multiple parameters, In(θ) and in(θ) can be written as

In(θ) = E

{(
∂

∂θ
l(θ)

)(
∂

∂θ
l(θ)

)T }

= −E

(
∂2l(θ)

∂θ∂θT

)

,

in(θ) = − ∂2l(θ)

∂θ∂θT
.

Under suitable regularity conditions, In(θ) and in(θ) are both positive definite for
θ ∈ Θ .

Let X ∼ B(n;p). Then, ∂2l(p)/∂p2 = −x/p2 − (n − x)/(1 − p)2. Thus,

−E

(
∂2

∂p2
l(θ)

)

= np/p2 + n(1 − p)/(1 − p)2 = n/(p(1 − p)) = In(p).

Hence,
√

n(p̂ − p) → N(0,p(1 − p)).

For comparison, in(p) = x/p2 + (n − x)/(1 − p)2.
For the multinomial distribution,

√
n

⎡

⎢
⎢
⎢
⎢
⎢
⎣

p̂1 − p1

p̂2 − p2

...

p̂L − pL

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→ NL

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

0

...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎣

p1(1 − p1) −p1p2 · · · −p1pL

−p2p1 p2(1 − p2) · · · −p2pL

...
... · · · ...

−pLp1 −pLp2 · · · pL(1 − pL)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Confidence Intervals

The MLE θ̂ for θ is referred to as a point estimate. To incorporate the uncertainty
of the point estimate, a common approach is to report a confidence interval (CI).
A 100(1 − α)% CI for θ is an interval (a, b) such that

Pr(θ ∈ (a, b)) = 1 − α

asymptotically holds for the true value of θ . The CI can be obtained from the ex-
act distribution of a pivotal statistic or based on the large sample property of the
estimate.

Suppose X1, . . . ,Xn are independent and identically distributed random vari-
ables with finite second moments. Denote μ = E(X1) and σ 2 = Var(X1). Then
X̄ =∑n

i=1 Xi/n is asymptotically normally distributed and

√
n(X̄ − μ) → N(0, σ 2) (1.8)

in distribution. The result (1.8) is due to the central limit theorem (CLT).
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Suppose x1, . . . , xn is a random sample drawn from N(μ,σ 2). Then the esti-
mates of μ and σ 2 are x̄ and s2. Then,

√
n(μ̂ − μ) → N(0, σ 2) in distribution.

Thus,
√

n(μ̂ − μ)/s → tn−1 in distribution and

Pr(
√

n|x̄ − μ|/s < t1−α/2(n − 1)) = 1 − α,

where t1−α/2(n−1) is the 100(1−α/2)th percentile of tn−1. Hence, the 100(1−α)%
CI for μ is given by

x̄ ± t1−α/2(n − 1)s/
√

n.

Note that when n is large, t1−α/2(n − 1) is approximately equal to z1−α/2, the
100(1 − α/2)th percentile of N(0,1).

Let θ̂ be the MLE for a single parameter θ . From (1.7),
√

In(θ)(θ̂ − θ) has an
approximate N(0,1). Then, asymptotically,

Pr
(√

In(θ)|θ̂ − θ | < z1−α/2
)= 1 − α.

The above equation holds asymptotically if we replace θ in In(θ) by the MLE θ̂ ,
i.e.,

Pr
(√

In(θ̂ )|θ̂ − θ | < z1−α/2
)= 1 − α.

from which the CI is

θ̂ ± z1−α/2/

√
In(θ̂ ).

Let X ∼ B(n;p). Then p̂ = x/n and In(p) = n/(p(1 − p)). Thus, In(p̂ ) =
n3/(x(n − x)). Note that in(p̂ ) = n3/(x(n − x)) as well. The 95% CI for p is

x/n ± 1.96
√

x(n − x)/n3.

1.2.2 Testing Hypotheses

Introduction

Hypothesis testing considers a null hypothesis H0 and an alternative hypothesis H1.
For example, to test for association between a genetic marker and a disease, the null
hypothesis is “H0: There is no association”, and the alternative hypothesis is “H1:
There is association between the genetic marker and the disease”. More specifically,
the genetic association can be measured by the odds ratio (see Chap. 2 and Chap. 3).
Denote the log odds ratio by θ . Then the null hypothesis of no association is H0 :
θ = 0 and the alternative hypothesis of association is equivalent to H1 : θ �= 0. This
alternative hypothesis is two-sided because the direction under an association is not
specified. That is, which of the two alleles is the risk allele is unknown. If the risk
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allele is known, a one-sided alternative can be used and is given by either H1 : θ > 0
or H1 : θ < 0.

In some cases, the parameter θ is a vector, which contains multiple parameters,
for example, θ = (θ1, θ2)

T . However, the null hypothesis may be written as H0 :
θ1 = 0 where θ2 is not specified. In this case, θ2 is often called a nuisance parameter
because only the parameter θ1 is of interest. A hypothesis is simple if all the values
of unknown parameters are specified, while a hypothesis is composite if it does not
specify all the values of the parameters. For example, if θ is an unknown scalar
parameter, the alternative hypothesis H1 : θ = 1.5 is simple while H1 : θ > 0 is
composite.

Here we review classical hypothesis testing (a frequentist approach). Bayesian
hypothesis testing using Bayes factors will be discussed in Chap. 5.

Type I and Type II Errors

The Type I and Type II errors are often specified in classical hypothesis testing. The
Type I error refers to rejecting the null hypothesis when it is true, while the Type II
error refers to failure to reject the null hypothesis when the alternative is true. In
other words,

Pr(Type I error) = Pr(reject H0|H0),

Pr(Type II error) = Pr(accept H0|H1).

Given simple hypotheses and a sample size, it is not possible to make both proba-
bilities of Type I and Type II errors as small as possible. In practice, one may limit
the probability of making a false positive error. Therefore, a significance level α is
prespecified to control the Type I error, i.e., Pr(Type I error) ≤ α. For testing a single
null hypothesis, α = 0.05 is often chosen, so that the rejection rate is no more than
5% when H0 is true.

Once the null and alternative hypotheses are specified and α is chosen, a test
statistic, denoted by T , is identified and calculated using the observed data. Then
the asymptotic null distribution of the test statistic is derived to find the critical
value C such that the probability that the test statistic is greater than C is less than
or equal to α under H0. Then T is compared with C. Usually, the null hypothesis
is rejected if T > C and the null hypothesis is accepted if T < C. When more than
one test statistic is available, given the same significance level α, the test statistic
with smaller probability of Type II error is more powerful. For a given sample size
and α, the power of a test statistic is defined as 1 minus the probability of its Type II
error. We use β and π to indicate the probability of Type II error and power. Thus,
π = 1 − β .

P-Value

The p-value is commonly used in classical significance testing. It is the smallest
significance level with which one can reject the null hypothesis. That is, if the sig-
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nificance level α is less than the p-value, one will accept the null hypothesis. Denote
the p-value of a test statistic T by p. Assume, under H0, T ∼ F(x). In addition, as-
sume T > 0. Let X ∼ F(x), the same distribution for T and continuous. Then the
p-value is given by

p = Pr(X > T |H0) = 1 − F(T ).

For t ∈ (0,1),

Pr(p < t) = Pr(T > F−1(1 − t)) = 1 − F(F−1(1 − t)) = 1 − (1 − t) = t.

Thus, under H0, the p-value follows the uniform distribution in (0,1), i.e., p ∼
U(0,1).

If T ∼ N(0,1) under H0 and the two-sided alternative is used, then the p-value
can be written as

p = 2 Pr(Z > |T |) = 2{1 − Φ(|T |)},
where Z ∼ N(0,1). If the alternative is one-sided, then the p-value is given by

p = Pr(Z > T ) = 1 − Φ(T ).

In applications, the p-value is often reported. For testing a single hypothesis, a p-
value less than 0.0001 would be regarded as a very significant one. If the significance
level α is specified, then the null hypothesis is rejected if p < α. Note that the p-
value only depends on the distribution of the test statistic, it does not depend on the
sample size given the test statistic.

1.2.3 Likelihood-Based Test Statistics: Without a Nuisance
Parameter

Let X1, . . . ,Xn be independent, identically distributed random variables with the
CDF F(x|θ) and the PDF f (x|θ), where θ = (θ1, . . . , θd)T is the vector of the
unknown parameters. We test H0 : θ = θ0 = (θ10, . . . , θd0)

T . The likelihood func-
tion is denoted by L(θ) = ∏i f (Xi |θ). The log-likelihood function is given by
l(θ) =∑n

i=1 logf (Xi |θ). Under H0, the log-likelihood function is l(θ0). Denote

l′(θ) = ∂l(θ)

∂θT
=
(

∂l(θ)

∂θ1
, . . . ,

∂l(θ)

∂θd

)T

d×1
,

l′′(θ) = ∂2l(θ)

∂θ∂θT
=
[

∂2l(θ)

∂θi∂θj

]

d×d

.

The Score function is defined as U(θ) = l′(θ) and the observed Fisher information
matrix is given by in(θ) = −l′′(θ). Note that “Score” is used in the Score function
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and Score statistic throughout this book. This is to distinguish it from the scores
used in the trend test in Chap. 3. Denote the MLE of θ by θ̂ , which satisfies U(θ̂) =
l′(θ̂) = 0.

Score Test

To test H0 : θ = θ0, the Score statistic can be written as

ST = U(θ0)
T i−1

n (θ0)U(θ0) = U(θ0)
T {−l′′(θ0)}−1U(θ0) ∼ χ2

d under H0.

Wald Test

The Wald test is also called the maximum likelihood test. It is based on the large
sample property of the MLE θ̂ , θ̂ − θ ≈ Nd(0, i−1

n (θ)), where θ is the true value.
The Wald statistic for H0 : θ = θ0 can be written as

WT = (θ̂ − θ0)
T in(θ̂)(θ̂ − θ0) = (θ̂ − θ0)

T {−l′′(θ̂)}(θ̂ − θ0) ∼ χ2
d under H0.

Likelihood Ratio Test

To test H0 : θ = θ0, the likelihood ratio test (LRT) is based on the likelihood ratio
and is given by

LRT = 2 log
L(θ̂)

L(θ0)
= 2l(θ̂ ) − 2l(θ0) ∼ χ2

d under H0.

1.2.4 Likelihood-Based Test Statistics: With a Nuisance Parameter

In genetic association studies, nuisance parameters are often present. For example,
in the analysis of gene-environment interaction, we may be interested in testing only
the gene-environment interaction and treat the odds ratios of the main genetic and
environmental effects as nuisance parameters. When applying a logistic regression
model to test for association between a genetic susceptibility and a disease using
case-control data, the intercept in the logistic regression model is a nuisance param-
eter.

In general, we assume the parameter θ is decomposed into θ = (ψ,η)T . We test
H0 : ψ = ψ0 without specifying η, a nuisance parameter. Let the log-likelihood
function be l(θ). Denote the MLE as θ̂ = (ψ̂, η̂ )T , which maximizes l(θ) = l(ψ,η)

without any restriction, and the restricted MLE as θ̃ = (ψ0, η̃ )T , which maximizes
l0(θ) = l(ψ0, η) under H0. Note that ψ̂ �= ψ̃ .
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The Score function U(θ) can be written as

U(θ) =
[

Uψ(θ)

Uη(θ)

]

=
[

∂l(θ)
∂ψ

∂l(θ)
∂η

]

.

Decompose the observed Fisher information matrix in(θ) according to (ψ,η)T as

in(θ) = − ∂2l(θ)

∂θ∂θT
=
[

iψψ(θ) iψη(θ)

iηψ(θ) iηη(θ)

]

.

Denote the inverse of in(θ) as

i−1
n (θ) =

[
iψψ(θ) iψη(θ)

iηψ(θ) iηη(θ)

]

.

Then the Score test for H0 : ψ = ψ0 is given by

ST = UT
ψ (θ̃)iψψ(θ̃)Uψ(θ̃) ∼ χ2

d under H0, (1.9)

where d is the dimension of ψ . The Wald test for H0 : ψ = ψ0 can be written as

WT = (ψ̂ − ψ0)
T {iψψ(θ̂)}−1(ψ̂ − ψ0) ∼ χ2

d under H0. (1.10)

The LRT is given by

LRT = 2l(θ̂ ) − 2l0(θ̃) ∼ χ2
d under H0. (1.11)

When the nuisance parameter η vanishes, the above three tests become the ones
discussed in Sect. 1.2.3.

1.2.5 Multiple Testing

Suppose the conventional significance level α = 0.05 is used to test a single null
hypothesis. When multiple hypothesis testing is conducted, each at the α level, the
probability of rejecting at least one null hypothesis is expected to be greater than
α. It is common in genetic association studies to test association with several ge-
netic markers. Suppose M markers are tested. Then the null hypothesis is that no
marker is associated with the disease, and the alternative hypothesis is at least one
of the markers is associated with the disease. Two commonly used methods, Bon-
ferroni correction and control of the false positive rate, are discussed in this section
to correct for such multiple testing issues.

A second multiple testing issue arises when the data generating model is un-
known, even if only a single null hypothesis is tested. In this case, when the trend
test is used, the test result depends on the choice of a model underlying the data. In
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practice, the true model is unknown. Therefore, several models may be assumed and
the Score statistics for each of these models are applied. Then, only the best result
(e.g., the smallest p-value) among these Score statistics may be reported. This mul-
tiple testing issue may not be recognized if the number of test statistics or analyses
that have been tried is not reported. To resolve this type of multiple testing, the cor-
relations among the test statistics have to be derived. Then asymptotic distribution
theory or Monte-Carlo approaches can be used to correct for inflated Type I errors
caused by the multiple testing procedure.

Bonferroni Correction

Bonferroni correction is one of the most common approaches to control the family-
wise error rate. To apply a Bonferroni correction when testing M null hypotheses,
each null hypothesis is tested at the level α/M . If one of the M tests is significant at
the α/M level, the null hypothesis is rejected, and the overall Type I error would be
controlled at the α level.

Let Ti be the ith test for the ith null hypothesis with level α/M . Denote its critical
value by Ci . Thus, under H0, Pr(Ti > Ci) = α/M . Hence, under H0, the Type I error
to incorrectly reject H0 is

Pr(reject H0) = Pr

(
M⋃

i=1

(Ti > Ci)

)

≤
M∑

i=1

Pr(Ti > Ci) =
M∑

i=1

α/M = α.

It is known that Bonferroni correction is conservative because it assigns equal level
α/M to each null hypothesis. The loss of power using Bonferroni correction is sub-
stantial when the statistics for testing M hypotheses are highly correlated. On the
other hand, when the test statistics are nearly independent, Bonferroni correction is
a reasonable approach to use.

False Discovery Rate

In contrast to Bonferroni correction to control the family-wise error rate, which tests
each of M hypotheses at the α/M level, an alternative approach is to control the
false discovery rate (FDR). The FDR approach is to control the expected proportion
of true null hypotheses among the rejected null hypotheses.

Suppose there are M0 non-true null hypotheses among a total of M hypotheses.
Assume R > 0 null hypotheses are rejected, among which V are true null hypothe-
ses. Then the FDR is defined as E(V/R). To control the FDR, we keep E(V/R)

below a given threshold α. One simple procedure to control the FDR is as follows.
Assume the M test statistics are independent or positively correlated. Then, first cal-
culate all the p-values for testing M hypotheses, denoted by p1, . . . , pM . Next, order
these p-values in ascending order to obtain order statistics: p(1:M) < · · · < p(M:M).
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For a given threshold level α, find the largest k such that p(k:M) ≤ kα/M . Finally,
reject the k null hypotheses corresponding to p(1:M), . . . ,p(k:M).

Note that, in the above simple approach, in order to reject at least one null hy-
pothesis, the smallest p-value has to be smaller than the Bonferroni-corrected signif-
icance level α/M . Therefore, any null hypothesis that is rejected under Bonferroni
correction will be rejected using the FDR when the same threshold level is used.
The FDR approach is often more powerful than the Bonferroni correction to reject
the null hypothesis when the alternative hypothesis is true.

When the Data Generating Model Is Unknown

When testing a single hypothesis, the data generating model is unknown. A family
of plausible models is available. For each model in the family, an asymptotically
normally distributed test statistic is obtained. Multiple testing may be conducted if
the null hypothesis is tested for each model and the corresponding p-value is ob-
tained. In this case, the FDR approach cannot be applied, and Bonferroni correction
is still too conservative because all tests under various genetic models are positively
correlated.

When the asymptotic null correlations among the test statistics can be obtained,
a common approach to control Type I error is to calculate the maximum statistic
over all statistics under various genetic models, or equivalently to find the minimum
p-value. Then the asymptotic null distributions for the maximum statistic or the min-
imum p-value can be found using an asymptotic multivariate normal distribution and
the asymptotic null covariance matrix. For case-control genetic association studies,
see Chap. 6. In Chap. 8 and Chap. 10, we also mention multiple testing issues due to
model uncertainty in the analysis of gene-gene and gene-environment interactions.

1.3 The Delta Method

The Delta method is a useful tool to derive the asymptotic variance and large sample
distribution for some estimates and test statistics. Let T be a test statistic or an esti-
mator (e.g., the MLE) such that, asymptotically,

√
n(T − θ) → N(0, σ 2). Then, for

a continuously differentiable function g,
√

n(g(T )−g(θ)) has the same asymptotic
distribution as the random variate

√
ng′(θ)(T − θ). That is,

√
n(g(T ) − g(θ)) → N(0, {g′(θ)}2σ 2).

g(T ) can be approximated from a Taylor expansion around θ . The above re-
sult also implies that the asymptotic variance of g(T ) is given by Var(g(T )) =
{g′(θ)}2 Var(T ) = {g′(θ)}2σ 2. When g′(θ) = 0, the Taylor expansion to a higher
order term is required, for example,

g(T ) = g(θ) + g′(θ)(T − θ) + 1

2
g′′(θ∗)(T − θ)2,
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where θ∗ is between θ and T . In this case, the asymptotic distribution is no longer
normally distributed.

The above one-dimensional Taylor expansion can be modified to a high dimen-
sional expansion. Let g be a real-valued function of the k dimensional statistic or es-
timator T . Let ti and θi be the ith coordinates of T and θ , respectively, i = 1, . . . , k.
Then

g(T ) − g(θ) =
k∑

i=1

∂g(θ)

∂ti
(ti − θi) + 1

2

∑

i,j

∂2g(θ∗)
∂ti∂tj

(ti − θi)(tj − θj ),

where θ∗
i is the ith coordinate of θ∗ which is between ti and θi for i = 1, . . . , k.

1.4 The Newton-Raphson Method

The Newton-Raphson method is commonly used in numerical analysis to find the
root of an equation g(θ) = 0. When g =∑n

i=1 f ′(Xi |θ)/f (Xi |θ) and f (x|θ) is
the density function, the root is the MLE of θ . The Newton-Raphson method is a
one-step approximation given the previous estimate of θ . Suppose at step i, given
θ̂i−1,

g(θi) = g(θ̂i−1) + g′(θ̂i−1)(θi − θ̂i−1) + · · · .

From g(θi) = 0, one obtains an approximate estimate of θ at step i as

θ̂i = θ̂i−1 − {g′(θ̂i−1)}−1g(θ̂i−1),

which forms the iteration step, where θ̂0 can be an initial guess or some simple
estimate.

If the iteration converges (it may not), then the solution may be at a maximum, at
a minimum, or at a saddle point. This can cause problems when using the Newton-
Raphson method to find MLEs.

1.5 The EM Algorithm

The EM algorithm was originally developed to maximize the likelihood function
with incomplete observations. It contains two steps. One is an expectation step (the
E-step) and the other is a maximization step (the M-step).

Let X = (X1, . . . ,Xn) be a random sample with the PDF f (x|θ). The log-
likelihood function is denoted by l(θ |X) =∑n

i=1 logf (Xi |θ). The MLE of θ , de-
noted by θ̂ , is given by θ̂ = arg maxθ l(θ |X). Consider augmenting the data with Y

with the joint density f (x, y|θ) and the complete log-likelihood function l(θ |X,Y).
Let

Q(θ |θ(i),X) = Eθ(i)
{l(θ |X,Y)},
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where the expectation is with respect to the conditional density f (y|θ(i), x). The
EM algorithm is an iterative procedure. Start with some initial estimate of θ . In
the E-step, compute the expectation Q(θ |θ̂(i),X) = Eθ̂(i)

{l(θ |X,Y)}, the expectation

being with respect to f (y|θ̂(i), x). Then in the M-step, maximize Q(θ |θ̂(i),X) with
respect to θ . Denote θ̂(i+1) = arg maxθ Q(θ |θ̂(i),X). The iteration continues until a
fixed point of Q is obtained. This iteration process generates a sequence of estimates
θ̂(i) such that l(θ̂(i+1)|X) ≥ l(θ̂(i)|X).

Applying the EM algorithm to ABO allele frequencies assuming Hardy-
Weinberg equilibrium proportions is a typical example (see Bibliographical Com-
ments). Here we consider an example from a linkage study using affected sibpairs.
For n sibpairs, the data (x0, x1, x2) follow a multinomial distribution

(x0, x1, x2) ∼ Mul(n;p0,p1,p2),

where p0 = (1 − θ)/4, p1 = rθ + (1 − θ)/2, p2 = (1 − r)θ + (1 − θ)/4, where
θ ∈ [0,1] is an unknown parameter and r ∈ [0,1/2] is known. The null hypothesis
of no linkage corresponds to H0 : θ = 0 under which r is not defined. Under the
alternative hypothesis, r corresponds to an underlying genetic model. The observed-
data likelihood function is proportional to

L(θ |x) = (1 − θ)x0{rθ + (1 − θ)/2}x1{(1 − r)θ + (1 − θ)/4}x2 .

The MLE of θ has no closed form. To apply the EM algorithm, we augment x to
(x0, y1, y2, y3, y4) as follows

(x0, y1, y2, y3, y4) ∼ Mul

(

n; 1 − θ

4
, rθ,

1 − θ

2
, (1 − r)θ,

1 − θ

4

)

,

where y1 + y2 = x1 and y3 + y4 = x2. The complete-data likelihood function is
proportional to

L(θ |x, y) = θy1+y3(1 − θ)x0+y2+y4 .

Therefore, given θ̂(i), in the E-step

Q(θ |θ̂(i), x)

= Eθ̂(i)
(logL(θ |x, y))

=
{

rθ̂(i)x1

rθ̂(i) + 1
2 (1 − θ̂(i))

+ (1 − r)θ̂(i)x2

(1 − r)θ̂(i) + 1
4 (1 − θ̂(i))

}

log θ

+
{

x0 +
1
2 (1 − θ̂(i))x1

rθ̂(i) + 1
2 (1 − θ̂(i))

+
1
4 (1 − θ̂(i))x2

(1 − r)θ̂(i) + 1
4 (1 − θ̂(i))

}

log(1 − θ).

(1.12)

Denote the above equation by

Q(θ |θ̂(i), x) = u(θ̂(i), x) log θ + v(θ̂(i), x) log(1 − θ),
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which can be maximized in the M-step by

θ̂(i+1) = u(θ̂(i), x)

u(θ̂(i), x) + v(θ̂(i), x)
. (1.13)

The E-step and the M-step are defined in (1.12) and (1.13), respectively.

1.6 Sample Size and Power

In the design of any medical study, sample size and power are calculated based
on the scientific goals of the study. The basic purpose of sample size and power
calculations is to avoid conducting an under-powered study. Here we give a brief
introduction to power and sample size calculations. In Chap. 11, we discuss sample
size and power calculations for single marker analysis, gene-gene interactions, and
gene-environment interactions.

Suppose the null, H0, and alternative, H1, hypotheses are specified. A test statis-
tic T to test the null hypothesis is given such that T ∼ N(0,1) under H0 and
T ∼ N(μ,σ 2) under H1. The null hypothesis will be rejected if |T | > z1−α/2, where
α is the significance level or the probability of Type I error (Sect. 1.2.2) and z1−α/2

is the upper 100(1 −α/2)th percentile of N(0,1). Statistical power is defined as the
probability of rejecting H0 when H1 is true. Thus, the power is 1 minus the prob-
ability of Type II error (Sect. 1.2.2). Denote the probability of Type II error by β .
Then the power is 1 − β . The sample size n is the number of subjects enrolled in
a study. The data from these n subjects are used in the test statistic T . The power
1 − β is increasing with the sample size n. However, a larger sample size means
more cost of the study. To design a study, one needs to determine the sample size n

such that, given T , α and H0 and H1, the power is greater than or equal to a pre-
specified 1 − β . On the other hand, when the sample size is constrained by cost, the
power can also be calculated and compared to some prespecified values. In practice,
1 − β is at least 80%.

The test statistic T is a function of n, so that we can denote it by Tn. Similarly,
we can denote (μ,σ ) by (μn,σn). Then, to reach the prespecified power 1 − β , we
require

Pr(|Tn| > z1−α/2|H1) ≥ 1 − β.

Note that (Tn − μn)/σn ∼ N(0,1) under H1. The above expression can be further
written as

1 − β ≤ Pr((Tn − μn)/σn > (z1−α/2 − μn)/σn|H1)

+Pr((Tn − μn)/σn < −(z1−α/2 + μn)/σn|H1)

= 1 − Φ

(
z1−α − μn

σn

)

+ Φ

(

−z1−α + μn

σn

)

.
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Hence, given the sample size n, the power of Tn can be written as

power = 1 − Φ

(
z1−α − μn

σn

)

+ Φ

(

−z1−α + μn

σn

)

. (1.14)

On the other hand, the sample size can be obtained from (1.14), where the power
is replaced by 1 − β . The sample size n satisfying the above equation requires nu-
merical calculation. Simplification can be obtained by noting that, under H1, the
probability that Tn is less (or greater) than −z1−α/2 is small when Tn > z1−α/2 (or
Tn < −z1−α/2). Therefore, we can approximate the sample size n by

1 − β ≈ Pr((Tn − μn)/σn > (z1−α/2 − μn)/σn|H1),

from which we obtain that the sample size n satisfies

z1−α/2 − zβσn = μn. (1.15)

For illustration, let us consider X1, . . . ,Xn ∼ N(μ,1). We test H0 : μ = 0
against H1 : μ �= 0. The test statistic Tn = √

nX̄ = √
n
∑n

i=1 Xi/n is used. Under
H0, Tn ∼ N(0,1). Assume the goal is to detect a difference in mean μ0 �= 0, which
is specified. Then Tn ∼ N(

√
nμ0,1) under H1, and so μn = √

nμ0 and σn = 1. The
power can be calculated from the right hand side of (1.14) when the sample size n is
given. To detect a mean difference of μ0 with sample size n, the power is given by

power = 1 − Φ(z1−α/2 − √
nμ0) + Φ(−z1−α/2 − √

nμ0).

The power functions for n = 50, 100, and 500 are plotted in Fig. 1.4 for varying
μ0 (indicated as mu_0 in the figure). On the other hand, given α and 1 − β , using
(1.15), we obtain the sample size as

n =
(

z1−α/2 − zβ

μ0

)2

=
(

z1−α/2 + z1−β

μ0

)2

.

1.7 Asymptotic Relative Efficiency

A concept related to statistical power is efficiency. Suppose two consistent test statis-
tics T1 and T2 are used respectively to test H0 : μ = μ0 against H1 : μ > μ0. A test
for H0 : μ = μ0 is consistent if its power tends to one as the sample size goes to
infinity for a fixed alternative H1 : μ = μ1 > μ0. One approach to compare the
performance of T1 and T2 is to compare their asymptotic efficiencies under local
alternatives μn = μ0 + cn−1/2 where c > 0 and n is the sample size. The alternative
is local in the sense that μn → μ0 as n → ∞. Denote the sample size for Ti under
the local alternative by ni . The asymptotic efficiency of using Ti is defined as

ei = lim
ni→∞

E′
μ0

(Ti)
√

ni Varμ0(Ti)
,
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Fig. 1.4 Power functions
given sample sizes 50 (the
solid curve), 100 (the dotted
curve) and 500 (the thick
curve) and non-centrality
parameter μ0 (indicated as
mu_0)

where E′
μ0

(Ti) = ∂Eμ(Ti)/∂μ|μ=μ0 is the partial derivative of Eμ(Ti) with respect
to μ evaluated under H0.

The asymptotic relative efficiency (ARE) of T1 to T2, also known as Pitman
efficiency, is defined by

ARE(T1, T2) = lim
n1,n2→∞

(
n2

n1

)

=
(

e1

e2

)2

. (1.16)

From (1.16),

ARE(T1, T2) =
(

e1

e2

)2

≈ n2

n1
.

From the above expression, ARE(T1, T2) ≤ 1 implies n2 ≤ n1. Thus, when T2 is
more efficient than T1, T1 requires a larger sample size than T2 in order to reach the
same power. In other words, when T2 is more efficient than T1, it implies that T2 is
more powerful than T1 given the same sample size. Note that, for a given alternative,
if T2 is asymptotically optimal, then ARE(T1, T2) ≤ 1 for any consistent test T1.
Hence, the ARE can be used to measure the loss of efficiency of a test statistic
relative to the optimal one. If (T1, T2)

T asymptotically follows a bivariate normal
distribution with the null correlation ρ12, then ARE(T1, T2) = ρ2

12, which can be
used to evaluate the ARE. An example of finding the ARE is given in Problem 1.8.

1.8 Bibliographical Comments

Topics of statistical inference that are covered in this chapter can be found in many
text books [27, 48, 279]. The book by Casella and Berger [27] provides basic statis-
tical inference, while the books by Cox and Hinkley [48] and van der Vaart [279] are
more advanced. More details of stochastic convergences can also be found in these
references. Elston and Johnson [73] is an elementary introduction of biostatistics
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for geneticists and epidemiologists. A good resource for discrete and continuous
distributions and their characteristics can be found in Evans et al. [79]. David and
Nagaraja [57] is the classical text book for the theory and applications of order
statistics. The distributions of order statistics are useful when studying the distribu-
tions of ordered p-values in genome-wide association studies or in meta-analysis to
combine independent p-values.

In this chapter, we discussed multiple testing issues and three different ap-
proaches to correct for multiple testing. In particular, controlling the false discovery
rate has been an active research area [14, 15, 260, 261]. More can be found in
Dudoit and van der Laan [64]. The EM algorithm is a very useful tool which will
be used in, e.g., Chap. 7. The concept of the EM algorithm was originally due to
Ceppellini et al. [29], who studied estimations of ABO allele frequencies. The EM
algorithm was later developed by Dempster et al. [58] (see also page 176 of Robert
and Casella [218]).

The asymptotic relative efficiency was introduced by Pitman and was further de-
veloped by Noether [198]. See also [156]. The concept of ARE has been applied
to derive robust test statistics [95, 96] with applications to genetic linkage studies
[97], association studies using case-parents trios [333], and association studies using
case-control data [91, 334]. Examples of calculations of the ARE and its applica-
tions can be found in Sect. 3.5 and Sects. 4.7, 4.8, 4.9 of Lachin [156].

1.9 Problems

1.1 Show that the joint density function of all n order statistics X(1:n), . . . ,X(n:n) is
given by

f1···n:n(x1, . . . , xn) = n!
n∏

i=1

f (xi) for x1 < · · · < xn.

Prove that
∫ · · · ∫

x1<···<xn
f1···n:n(x1, . . . , xn)dx1 · · ·dxn = 1.

1.2 Show that, given X(j−1:n), the order statistics (X(1:n), . . . ,X(j−2:n)) and X(j :n)

are conditionally independent.

1.3 Let X(1:n) < · · · < X(n:n) be order statistics from a uniform distribution F(x) =
x. Derive fi:n(x) and fij :n(xi, xj ) (1 ≤ i < j ≤ n). In addition, find the mean and
variance of X(i:n).

1.4 Let X1 and X2 be independent random variables, each having a U(0,1) distri-
bution. Derive the PDF and CDF for Y = −2 log(X1) − 2 log(X2).
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1.5 Prove the following properties, given in (1.1) and (1.2),

E(X2) = E{E(X2|X1)},
Var(X2) = Var{E(X2|X1)} + E{Var(X2|X1)}.

1.6 Let (r0, r1, r2) ∼ Mul(r;p0,p1,p2). Then the MLE of pi is given by p̂i = ri/r .
Consider the function Δ(p1,p2) = p2 − (p2 +p1/2)2. Using the Delta method find
the asymptotic variance of Δ̂(p1,p2) = Δ(p̂1, p̂2).

1.7 Let X1, . . . ,Xn be independent, identically distributed random variables with
the normal distribution N(μ,σ 2). Denote the median of the sample of size n by
Xmed. Using the result in Sect. 1.1.4, find the limiting distribution of

√
n(Xmed −μ).

1.8 Let X follow the location-scale distribution F((x − μ)/σ) with the continuous
PDF f ((x − μ)/σ)/σ . Suppose E(X) = μ and E(X2) < ∞. Let X1, . . . ,Xn be a
random sample and Xmed be its median. Both the sample mean X̄ and the median
Xmed can be used to estimate μ, and both estimates are asymptotically unbiased, i.e.,
E(X̄) = μ and E(Xmed) → μ as n → ∞. Let T1 = Xmed and T2 = X̄ be statistics
testing H0 : μ = 0. Show that the asymptotic efficiencies of T1 and T2 are e1 =
2f (0)/σ and e2 = 1/σ . Thus, the ARE is ARE(T1, T2) = 4f 2(0). When F is the
normal distribution, ARE(T1, T2) = 2/π ≈ 0.637.

1.9 Let X1 and X2 follow a uniform distribution U(0,1). Denote Y = min(X1,X2).
If X1 and X2 are positively correlated, show that Pr(Y < y) < y.

1.10 Let p1 and p2 be two positively correlated p-values. Let MIN2 = min(p1,p2)

be the minimum of the two p-values. Denote the p-value of MIN2 by pMIN2. Then,
using Problem 1.9, show that pMIN2 > MIN2.

1.11 Let Zi(Xn) = ai(Xn)/bi(Xn) (i = 1,2), where Xn is a random variable and
Xn → μ in probability as n → ∞, ai and bi are both real-valued, non-random func-
tions. Assume ai(Xn) is bounded for any Xn and bi(Xn) has finite second-order
derivative for any Xn. Show that, without higher order terms,

Cov(Z1(Xn),Z2(Xn)) = Cov(a1(Xn), a2(Xn))/{b1(μ)b2(μ)}.



Chapter 2
Introduction to Genetic Epidemiology

Abstract Chapter 2 introduces a background to population genetics and genetic
epidemiology. It starts with basic concepts of genetics and population genetics,
including genes, alleles, genotypes, phenotypes, linkage disequilibrium, Hardy-
Weinberg equilibrium, and population structure. Other terminology not covered in
this chapter is discussed in later chapters. Designs of genetic association studies
are then introduced, including population-based and family-based designs. Testing
Hardy-Weinberg equilibrium proportions is covered. Goodness-of-fit, likelihood ra-
tio and exact tests for deviation from Hardy-Weinberg equilibrium proportions are
discussed. This chapter also discusses two types of risk measures: odds ratios and
relative risks. Applying a logistic regression model for case-control data is pre-
sented.

This chapter introduces a background of population genetics and genetic epidemiol-
ogy. It contains two parts. First, we start with basic concepts of population genetics,
including alleles, genotypes, phenotypes, and linkage disequilibrium. Other terms
that are not covered here will be discussed in later chapters. Designs of genetic
association studies are then introduced, including case-control and family-based de-
signs. We will focus here on case-control designs and family-based designs will be
discussed in Chap. 13.

The Hardy-Weinberg law plays an important role in population genetics and
the analysis of genetic data. Hardy-Weinberg equilibrium in a population is re-
viewed and the implications of departure from Hardy-Weinberg equilibrium are also
demonstrated. Asymptotic and exact tests for Hardy-Weinberg proportions are given
with examples. Calculation of the genotype frequencies in the population with or
without Hardy-Weinberg proportions is given. The impact of departure from Hardy-
Weinberg proportions is reviewed. It is well known that a case-control association
study may be affected by hidden population substructure. Definitions of two com-
mon population substructures are given. Methods to correct for population substruc-
ture will be discussed in Chap. 9.

We discuss two measures of genotypic risks (odds ratio and relative risk) and
their inference. The logistic regression models for case-control data are reviewed.
Differences in the prospective and retrospective logistic regression models are
briefly discussed. The conditional logistic regression model is often used for the

G. Zheng et al., Analysis of Genetic Association Studies,
Statistics for Biology and Health,
DOI 10.1007/978-1-4614-2245-7_2, © Springer Science+Business Media, LLC 2012

33

http://dx.doi.org/10.1007/978-1-4614-2245-7_2


34 2 Introduction to Genetic Epidemiology

analysis of matched case-control data. A discussion of conditional logistic regres-
sion is given in Chap. 4.

2.1 Basic Genetic Terminology

With a few exceptions, human beings have in each cell nucleus 23 pairs of chro-
mosomes, among which one pair comprises the sex chromosomes, also known as
the X and Y chromosomes, and the other pairs are autosomal chromosomes. Within
each chromosome is a molecule of DNA, which is made up of a long sequence of
four different nucleotides labeled A, T , C, and G, with a structure that allows it to
replicate itself. A gene is a series of DNA sequences that contain genetic informa-
tion. For the purposes of this book we shall assume that along each chromosome
pair hundreds or thousands of genes are arranged in a linear order (in the case of
the sex chromosomes this occurs mostly along a single chromosome—from now
on we shall restrict our discussion to autosomal chromosomes). This is perhaps not
the case with the latest definition of a gene, but will suffice for our purposes. Simi-
larly we shall define a locus to be the location of a gene or any DNA sequence on a
chromosome pair. When the location of a DNA sequence on a chromosome pair is
known, and that sequence varies in the population, it is also called a genetic marker.
An allele is an alternative DNA sequence that can occur at a particular location on
a single chromosome. Since chromosomes are present in pairs, at a given locus a
person’s gene or marker has two alleles, one on each chromosome. In the popu-
lation, however, a gene or marker could have multiple (>2) alleles. We focus on
diallelic markers, which have only two alleles in the population. A single nucleotide
polymorphism (SNP) is a commonly used diallelic marker that varies in individuals
owing to the difference of a single nucleotide (A, T , C, or G) in the DNA sequence.
Although the location of a SNP is often referred to as a locus, it is more properly
referred to as a site, a locus comprising more than one site.

We denote alleles by A and B for a single marker, where A is referred to as a
wild type or a typical allele, and B is the complement of A, or the risk allele when
a disease or trait is affected by this gene. For a multiallelic marker, it is possible
that more than one allele may carry risks. (Other notation may also be used for
alleles. In particular, when referring to two loci, we use a different notation: A and
a for the alleles at one locus, and B and b for the alleles at the other locus.) Two
alleles A and B at a locus form a genotype. There are four possible genotypes:
AA, AB, BA and BB, but the two orders AB and BA are not distinguished. Hence
only three genotypes are possible at a diallelic locus, denoted by AA, AB or BB.
Genotypes AA and BB are said to be homozygous, and AB is heterozygous. For a
multiallelic marker, more genotypes may be observed. For example, if a marker has
three alleles, A, B and C, a total of six genotypes are possible: AA, AB, AC, BB,
BC, and CC. Allele frequencies are usually the relative frequencies of the alleles in
the population, denoted by Pr(B) = p and pr(A) = 1 − p. Minor allele frequency
(MAF) refers to the frequency of the allele with frequency no more than 0.5 in
a population. Denote the three genotypes by G0 = AA, G1 = AB and G2 = BB.
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Table 2.1 Joint distribution
of marker and a functional
locus

B b

A (1 − p)(1 − q) + D (1 − p)q − D 1 − p

a p(1 − q) − D pq + D p

1 − q q 1

The genotype frequencies are then the frequencies of the three genotypes in the
population, denoted by gi = Pr(Gi) for i = 0, 1 and 2, and g0 + g1 + g2 = 1.

A phenotype is any observable characteristic or trait of an individual. It refers to
a physical expression of genotypes at many loci and/or environmental factors. The
trait can be continuous, e.g., blood pressure, weight, height etc., discrete, including
binary such as diseased/case and normal/control, or ordinal categories related to dif-
ferent stages of a disease. A discrete trait can be defined based on a continuous trait.
For example, cases and controls correspond to extremely high or low values of the
trait, respectively. In some study designs, cases can be obtained from the extremely
high values of the trait while controls are random samples from the population.

One of the goals of genetic association studies is to detect disease susceptibility
genes (or functional loci). Suppose M1 is a functional locus for a disease. The alleles
at a functional locus are not observed. Suppose M2 is an observed marker. Assume
M1 and M2 have alleles A, a and B , b, respectively. Suppose the allele frequencies
are given by Pr(a) = p and Pr(b) = q . Thus, Pr(A) = 1−p and Pr(B) = 1−q . The
joint distribution of the alleles at the two loci (the marker and the functional locus)
is given in Table 2.1, where

D = Pr(AB) − Pr(A)Pr(B),

is the linkage disequilibrium coefficient. When D = 0, the two loci are independent,
and we say the two loci are in gametic phase equilibrium. When D �= 0, they are
correlated and in gametic phase disequilibrium. When two loci are on the same
chromosome pair and close enough to each other, their alleles are not transmitted
independently to each offspring and the loci are said to be linked. Gametic phase
disequilibrium between two linked loci is called linkage disequilibrium (LD). Most
of the discussions in this book assume that a marker is also a functional locus and
that they have the same allele frequencies. We refer to this model as a single-locus
model, under which either A = B and a = b with p = q or A = b and a = B with
p = 1 − q . In the former case, Pr(AB) = Pr(A) = 1 − p and D = p(1 − p). In the
latter case Pr(AB) = 0 and D = −p(1 − p). We also call the model with D �= 0 a
two-locus model. A common measure for LD is the standardized LD coefficient D′,
defined by

D′ =
{

D/min{(1 − q)p, (1 − p)q} if D > 0,

D/min{(1 − p)(1 − q),pq} if D < 0.
(2.1)

Using D′, complete LD refers to |D′| = 1; perfect LD refers to |D′| = 1 together
with either A = B and a = b with p = q (D > 0), or A = b and a = B with
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p = 1 − q (D < 0). Thus, the single-locus model refers to perfect LD, while the
two-locus model refers to imperfect LD.

When D �= 0, there are nine possible combinations of genotypes for the two loci:

(AA,BB), (AA,Bb), (AA,bb),

(Aa,BB), (Aa,Bb), (Aa,bb),

(aa,BB), (aa,Bb), (aa,bb).

Given genotypes (AA,BB), it is certain that alleles on both chromosomes are A

and B . In this situation, phase is known. Given genotypes (Aa,Bb), however, it is
not certain which two alleles are on the same chromosome; they can be AB and ab
or Ab and aB. In this situation, phase is unknown. A different two-locus model is
used in gene-gene interactions (Chap. 8), where the two loci refer to two disease
susceptibility genes. It can also be modified to a two-marker model, in which both
M1 and M2 are markers and both are in LD with a functional locus. It can be further
extended to multiple markers. A disease can be affected by more than two markers
in the form of a haplotype, which will be introduced and discussed in Chap. 7.
Discussion of D �= 0, when one locus is a marker and the other is a functional
locus, will also be given for some topics in Chap. 11. Penetrance is defined as the
probability of having a disease given a specific genotype at the marker, denoted by
fi = Pr(case |Gi) for genotype Gi , i = 0,1,2. Here we assume perfect LD. When
there is no association, f0 = f1 = f2 = Pr(case). We denote Pr(case) = k as the
prevalence of the disease.

2.2 Genetic Association Studies

In this section, we first show the relationship between LD and association under the
imperfect LD model by varying the parameter D defined in Table 2.1, in which one
locus is a marker with alleles A/a and the other is a functional locus with alleles
B/b. We will discuss two types of designs: population based and family based.
In the population-based design, we focus on the retrospective case-control study.
We discuss case-control designs and analyses from the epidemiological perspective.
Other relevant designs are also mentioned.

2.2.1 Linkage Disequilibrium and Association Studies

Because the functional locus (or disease locus) that has a causal relationship with
a disease is unknown, a marker is genotyped and tested for association with the
disease. If the marker is in LD with the disease locus, an association between the
marker and the disease can be identified through testing for association. Figure 2.1
shows a diagram of the association between the marker and the disease, the causal
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Fig. 2.1 Diagram of LD,
association and causal
relationship among the
marker, functional locus and
disease

relationship between the disease locus and the disease, and the LD between the two
loci.

To demonstrate the relationship between the LD and association, we use the nota-
tion defined in Table 2.1. In addition, we assume the penetrances at the disease locus
are f ∗

i = Pr(case |G∗
i ), where (G∗

0,G
∗
1,G

∗
2) = (BB,Bb,bb). The penetrances at the

marker are still denoted by fi = Pr(case |Gi), where (G0,G1,G2) = (AA,Aa,aa).
Denote

F1 = 1 − q + D/(1 − p), F2 = 1 − q − D/p,

F3 = q − D/(1 − p), F4 = q + D/p,

where p, q and D are given in Table 2.1. Denote λ∗
1 = f ∗

1 /f ∗
0 and λ∗

2 = f ∗
2 /f ∗

0 ,
which are referred to as genotype relative risks (GRRs). More discussion of GRRs
will be provided in Chap. 3. Then (Problem 2.2),

f0 = f ∗
0 (F 2

1 + 2F1F3λ
∗
1 + F 2

3 λ∗
2), (2.2)

f1 = f ∗
0 (F1F2 + F1F4λ

∗
1 + F2F3λ

∗
1 + F3F4λ

∗
2), (2.3)

f2 = f ∗
0 (F 2

2 + 2F2F4λ
∗
1 + F 2

4 λ∗
2). (2.4)

When D = 0, i.e., under linkage equilibrium, (2.2) to (2.4) reduce to

f0 = f1 = f2 = f ∗
0 {(1 − q)2 + 2q(1 − q)λ∗

1 + q2λ∗
2} = k,

regardless of values of λ∗
1 and λ∗

2. Hence, there is no association between the marker
and the disease under linkage equilibrium. From Problem 2.3, when D �= 0, the pen-
etrances (f0, f1, f2) are not equal, which leads to unequal distributions for genotype
counts in cases and controls. Therefore, a standard chi-squared test can be applied to
detect association between the genotypes of the marker and the disease. Association,
however, can arise from other factors, e.g., population substructure (see Sect. 2.4).
Associations not due to LD, or more generally to gametic phase disequilibrium, are
called spurious associations. Table 2.2 reports the GRRs at the marker λ1 = f1/f0
and λ2 = f2/f1 given those at the disease locus λ∗

1 = f ∗
1 /f ∗

0 , λ∗
2 = f ∗

2 /f ∗
1 , and val-

ues of p, q , D′ and disease prevalence k. Table 2.2 shows that the values of λ2 are
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Table 2.2 GRRs at the
marker (λ1, λ2) given those at
the disease locus (λ∗

1, λ
∗
2)

with prevalence k = 0.1 and
values of p = Pr(a) (marker
allele frequency), q = Pr(b)

(disease locus allele
frequency) and LD
parameter D′

λ∗
1 λ∗

2 p q D′ λ1 λ2

1.00 1.50 0.1 0.1 0.9 1.005 1.414

0.8 1.008 1.336

0.3 0.9 1.078 1.396

0.8 1.072 1.332

1.30 1.60 0.3 0.1 0.9 1.268 1.567

0.8 1.237 1.474

0.3 0.9 1.185 1.369

0.8 1.164 1.327

1.50 1.50 0.3 0.1 0.9 1.441 1.481

0.8 1.384 1.455

0.3 0.9 1.224 1.244

0.8 1.196 1.232

smaller than those of λ∗
2 when |D′| < 1, and λ2 decreases with |D′|. This indicates

that association becomes weaker with a weaker LD. A similar phenomenon is ob-
served for λ1 except for λ∗

1 = 1, which corresponds to a recessive disease (for the
definitions of genetic models, see Chap. 3).

2.2.2 Population-Based Designs

A typical population-based design is the case-control study. In this design, individ-
uals are genetically unrelated. A retrospective case-control design is cost-effective
and commonly used in genetic studies. In this book, we focus on the retrospective
case-control design, in which a random sample of cases (controls) is drawn from
the case (control) population. The numbers of cases and controls in practice are
determined in the design stage based on considerations of power, cost, and the dis-
ease prevalence. Given the total sample size, a design with equal numbers of cases
and controls is more powerful than one with unequal numbers. In epidemiology,
the retrospective case-control design is particularly useful to study a rare disease.
For each individual, the genotype of the marker of interest is obtained. The goal of
this design is to test whether or not the disease is associated with the marker. The
retrospective case-control design is also used in large-scale association studies, in
particular for genome-wide association studies (GWAS) using 500,000 to more than
a million SNPs.

Another type of population-based design is a prospective case-control (cohort)
study. In this design, individuals entering the study are drawn randomly from the
study population without the disease. Following a period of time after, say, a treat-
ment or an intervention, individuals who develop the disease are called cases and
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those who do not are controls. This design, however, is not efficient for rare diseases.
The outcome of this design is not restricted to a binary trait. It can be a quantitative
trait, e.g., comparing the change of weight from baseline among three genotypes or
between two alleles after a diet intervention.

In general, case-control designs are cost-effective for large-scale association
studies. One potential concern of case-control studies is population substructure,
which would lead to spurious association if not properly controlled.

2.2.3 Family-Based Designs

One simple family-based design for association studies is the case-parents trio de-
sign. In this design, an affected offspring is first ascertained and genotyped. The
genotypes of the parents are also obtained. One approach to detect association in
this design is based on a statistic comparing the number of marker alleles trans-
mitted from parents to the offspring with the number not transmitted. In this case,
only heterozygous parents are considered in the analysis. A typical method to ana-
lyze the trio data is called the transmission disequilibrium test (TDT). Because the
untransmitted alleles can be regarded as controls for those transmitted, concern of
population stratification, which can inflate the Type I error rate in population-based
designs, is not relevant in the analysis of the trio design. This simple design has
been extended to include multiple affected offspring (affected sibpairs), or disease-
free siblings. For more details of this design and analysis, refer to Chap. 13.

More complicated family-based designs use data on large pedigrees with two or
more generations. Some genotypes may not be available, especially for late onset
diseases. Both binary traits and quantitative traits can be analyzed using family-
based designs. Different kinds of family-based association tests can be used to an-
alyze large family data in which correlations of traits among family members and
their genetic relationships are incorporated into the analysis. A well-known example
of this design is the Framingham Heart Study, which is a community-based family
design. The original study began in 1948 and was designed to study cardiovascu-
lar disease and its risk factors in Framingham, Massachusetts. Now data from three
generations have been obtained. Recent genetic studies, including linkage studies
and GWAS, have been extensively reported.

Unlike population-based designs, family-based designs can eliminate the effects
of population stratification using TDT statistics, without the need of the kinds of
methods briefly described later. But these designs are typically not as efficient as
population-based designs, especially for late onset diseases.

2.2.4 Other Designs

In addition to purely population-based and family-based designs, there are other de-
signs for genetic studies. These designs use multi-stage samples. For example, in
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stage 1, family data are obtained for linkage studies, from which candidate-genes
are identified. In the second stage, association studies (either population-based or
family-based) are conducted. In another population-based design, controls may be
shared by association studies for different diseases. In the Wellcome Trust Case-
Control Consortium (WTCCC) study, 3,000 controls drawn from the British popula-
tion were shared among association studies of seven diseases. Data from population-
based and family-based designs can also be combined to enhance the power to detect
true associations. The community-based Framingham Heart Study has been used to
supply controls for association studies of diabetes. These designs arise because a
genetic study often uses multi-stage samples and thousands of individuals to detect
small to moderate genetic effects.

In testing gene-environment interaction for a rare disease when a genetic suscep-
tibility and an environmental factor are independent in the population, a case-only
design can be employed because the odds ratio relating the gene and environment
to a disease is approximately the odds ratio relating the environmental factor to the
genetic factor among cases. The case-only design is often more powerful to detect
gene-environment interaction than a case-control design using a logistic regression
model.

Many hybrid designs have been proposed for cost-effectiveness, including com-
bining case-control and family-based designs to test for genetic associations, and
combining case-control and case-only designs to test for gene-environment interac-
tions. Many genetic studies have been conducted and data from various study de-
signs are available. Thus, hybrid designs based on data sharing are becoming more
important and popular.

2.3 Hardy-Weinberg Principle

The Hardy-Weinberg principle, also known as the Hardy-Weinberg law or Hardy-
Weinberg equilibrium (HWE), is a well-known model in population genetics. It
states that under random mating both allele and genotype frequencies in a popu-
lation remain constant or stable if no disturbing factors are introduced. We first in-
troduce HWE followed by testing for departure from Hardy-Weinberg proportions
(usually erroneously called “testing for HWE”). Both asymptotic chi-squared tests
and an exact test will be discussed. The impact of departure from Hardy-Weinberg
proportions will also be discussed.

2.3.1 What Is Hardy-Weinberg Equilibrium?

Autosomal Chromosomes

Consider a diallelic locus with alleles A and B with population frequencies q

and p, respectively. Assume males and females have the same allele frequencies.
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Table 2.3 Genotype
frequencies under random
mating given male and female
gametes

Male gametes

A B

q p

Female A q g0 g1/2

gametes B p g1/2 g2

Table 2.4 Mating types (MTs) with frequencies and conditional probabilities of zygotes given
mating types

MTs Freq. Freq. of zygotes

AA AB BB

MT1 : AA × AA g2
0 1 0 0

MT2 : AA × AB 2g0g1 1/2 1/2 0

MT3 : AA × BB 2g0g2 0 1 0

MT4 : AB × AB g2
1 1/4 1/2 1/4

MT5 : AB × BB 2g1g2 0 1/2 1/2

MT6 : BB × BB g2
2 0 0 1

Then, under random mating, Table 2.3 gives the genotype frequencies g0 = Pr(AA),
g1 = Pr(AB) and g2 = Pr(BB) together with the male and female gametes and their
frequencies.

When HWE holds in the population,

g0 = q2, g1 = 2pq, g2 = p2. (2.5)

Equations (2.5), known as HWE proportions or simply Hardy-Weinberg propor-
tions, can be obtained assuming random mating, under which alleles of male and fe-
male gametes are independent. More assumptions, however, are required for HWE.
In addition to random mating, it also requires that the population size is infinite,
males and females have identical allele frequencies, there is no effect of migration
or mutation, and there is no natural selection.

Assume that HWE does not hold at the current generation in the population.
Under random mating, we will show that for one locus the proportions (2.5) hold
in the population after one generation. The genotype frequencies are denoted by
g0, g1, and g2 as before. Then the allele frequencies of A and B in the population
given the genotype frequencies can be written as q = g0 + g1/2 and p = g2 +
g1/2, respectively. Table 2.4 shows six mating types MTj for j = 1, . . . ,6, their
corresponding frequencies, and the conditional probabilities of their zygotes given
the mating types.
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In the next generation, the genotype frequencies can be obtained from

Pr(Gi) =
6∑

j=1

Pr(Gi |MTj )Pr(MTj ), (2.6)

where (G0,G1,G2) = (AA,AB,BB). It can be shown that (Problem 2.4), using (2.6)
and Table 2.4,

Pr(G0) = (g0 + g1/2)2 = q2,

Pr(G1) = 2(g0 + g1/2)(g2 + g1/2) = 2pq,

Pr(G2) = (g2 + g1/2)2 = p2, (2.7)

where p and q are the frequencies of alleles B and A, respectively. Hence, at the
next generation, the Hardy-Weinberg proportions hold. Note carefully that we have
shown that one round of random mating results in these proportions, not that these
proportions imply equilibrium. It is possible for these proportions to hold at every
generation and yet the allele frequencies change from generation to generation.

The above results can be extended to multiallelic loci. In general, assume a lo-
cus has m alleles, denoted by Aj , j = 1, . . . ,m, with population frequencies pj =
Pr(Aj ). Under HWE, the genotype frequencies are given by Pr(AiAj ) = 2pipj for
i �= j and Pr(AjAj ) = p2

j .

The X Chromosome

For sex-linked loci, females have two copies of the X chromosome, while males
have one copy of the X chromosome and one copy of the Y chromosome. We focus
on the X chromosomes. Then the Hardy-Weinberg proportions, as defined for auto-
somal chromosomes, can be applied to females. For males, we assume that the allele
frequency is identical to that of females. Hence, with Hardy-Weinberg proportions
at the X chromosome, we have

Pr(B|male) = Pr(B|female) = p, Pr(A|male) = Pr(A|female) = q, (2.8)

Pr(G0|female) = q2, Pr(G1|female) = 2pq, Pr(G2|female) = p2.

(2.9)

If (2.8) holds and (2.9) does not hold, it takes one generation to reach Hardy-
Weinberg proportions. If (2.8) does not hold but (2.9) holds, it takes infinitely many
generations to reach the proportions.
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Table 2.5 Testing Hardy-Weinberg proportions: the observed genotype counts, the expected geno-
type counts under HWE, and estimates of the expected genotype counts

AA AB BB

Observed n0 n1 n2

Expected nq2 2npq np2

Estimated nq̂ 2 2np̂ q̂ np̂ 2

2.3.2 Testing Hardy-Weinberg Equilibrium Proportions

We discuss asymptotic tests and an exact test for Hardy-Weinberg proportions in the
population for autosomal chromosomes. Results for the X chromosome are given
next.

A Simple Chi-Squared Test

Suppose a random sample of size n is drawn from the population and the genotype
counts of the n individuals are obtained. Denote the genotype counts by (n0, n1, n2)

for (G0,G1,G2) = (AA,AB,BB), and n0 + n1 + n2 = n. The allele counts are
2n0 + n1 for A and 2n2 + n1 for B among a total of 2n alleles. Let p = Pr(B). An
estimate of p is given by p̂ = (2n2 + n1)/(2n). Likewise, an estimate of q = Pr(A)

is given by q̂ = (2n0 +n1)/(2n). Table 2.5 shows the observed genotype counts, the
expected genotype counts under Hardy-Weinberg proportions (the null hypothesis
H0), and estimates of the expected genotype counts under H0.

A typical chi-squared test has the form

χ2 =
∑ (observed − expected)2

expected
.

Applying the above test to the data in Table 2.5 with the expected counts being
replaced by the estimated ones, we have

χ2 = (n0 − nq̂ 2)2

nq̂2
+ (n1 − 2np̂ q̂ )2

2np̂ q̂
+ (n2 − np̂ 2)2

np̂ 2
, (2.10)

which has an asymptotic χ2
1 distribution under H0. Using a chi-squared distribution

for the statistic based on discrete genotype data, a bias correction of 1/2 may be
used

χ2 =
∑ (|observed − expected| − 1/2)2

expected
.

To apply the chi-squared test in (2.10) requires a large n and the expected counts
in each of the three cells not too small. This may not be true for alleles with small
MAFs, or a small sample size.
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Test Based on Hardy-Weinberg Disequilibrium

An alternative derivation of the above chi-squared test is based on the Hardy-
Weinberg disequilibrium (HWD) coefficient, defined by

Δ = Pr(BB) − {Pr(B)}2 = Pr(BB) − {Pr(BB) + Pr(AB)/2}2.

Under H0, Δ = 0. Hence, to test Hardy-Weinberg proportions, we can test H0 : Δ =
0. A test statistic can be constructed based on Δ̂, given by

Δ̂ = P̂r(BB) − {P̂r(BB) + P̂r(AB)/2}2 = n2

n
−
(

2n2 + n1

2n

)2

.

Denote the mean and variance of Δ̂ by μ = E(Δ̂) and σ 2 = Var(Δ̂), where, ignoring
terms with orders higher than 1/n,

μ = Δ − {p − 2p2 + Pr(BB)}/(2n),

σ 2 = {p2(1 − p)2 + (1 − 2p)2Δ − Δ2}/n.

Under H0 : Δ = 0, after ignoring the terms with order 1/n in μ,

μ = 0 and σ 2 = 1

n
p2(1 − p)2.

Hence, asymptotically,
√

nΔ̂ ∼ N(0,p2(1 − p)2) under H0,

which leads to an asymptotic chi-squared test

χ2 = nΔ̂2

p̂ 2(1 − p̂ )2
∼ χ2

1 , (2.11)

where p̂ = n2/n + n1/(2n) is same as in (2.10).
Using data on the MN blood groups in a British population, n = 1000 with n0 =

298, n1 = 489 and n2 = 213, the estimate of p is p̂ = (2 × 213 + 489)/(2000) =
0.4575, and the estimate of Δ is Δ̂ = 213/1000 − p̂ 2 = 0.003694. From (2.11),

χ2 = 1000 × 0.0036942

0.45752(1 − 0.4575)2
≈ 0.22152.

If we use (2.10), the estimates of the expected genotype counts corresponding to
(n0, n1, n2) are (294.306, 496.388, 209.306). Hence,

χ2 = (298 − 294.306)2

294.306
+ (489 − 496.388)2

496.388
+ (213 − 209.306)2

209.306
≈ 0.22152,

which is identical to the previous chi-squared statistic (Problem 2.5). The p-value
for χ2 = 0.222 is 0.67, so there is no strong evidence to indicate deviation from
Hardy-Weinberg proportions.
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Likelihood Ratio Test

The LRT can be used to test Hardy-Weinberg proportions. The genotype counts
(n0, n1, n2) follow the multinomial distribution Mul(n;p0,p1,p2), where pi =
Pr(Gi) for i = 0,1,2. Then the likelihood function can be written as

L(p0,p1,p2) = n!
n0!n2!n2!p

n0
0 p

n1
1 p

n2
2 .

The MLE for pi is p̂i = ni/n. Thus, the maximum of the likelihood function is

L(p̂0, p̂1, p̂2) = n!
n0!n2!n2!

n
n0
0 n

n1
1 n

n2
2

nn
.

Under the null hypothesis H0, the likelihood function is

L0(p, q) = n!
n0!n2!n2!2n1pn1+2n2qn1+2n0 .

The MLEs are p̂ = (2n2 + n1)/(2n) and q̂ = (2n0 + n1)/(2n). Thus,

L0(p̂, q̂ ) = n!
n0!n2!n2!

2n1(n1 + 2n2)
n1+2n2(n1 + 2n0)

n1+2n0

(2n)2n
.

Hence, the LRT can be written as

LRT = 2 log
L(p̂0, p̂1, p̂2)

L0(p̂, q̂)

= 2 log
(2n)2nn

n0
0 n

n1
1 n

n2
2

2n1nn(n + 1 + 2n2)n1+2n2(n1 + 2n0)n1+2n0
∼ χ2

1 under H0.

Applying the LRT to the above data, we obtain

LRT = 2
2∑

i=0

ni logni + 4n log(2n) − 2n logn − 2n1 log 2

−2(n1 + 2n2) log(n1 + 2n2) − 2(n1 + 2n0) log(n1 + 2n2) ≈ 0.22147,

which is essentially the same p-value as we obtained before.
The asymptotic test given in (2.10) can be easily modified for testing Hardy-

Weinberg proportions for a multiallelic locus. Suppose the following genotype
counts are observed for m(m − 1)/2 genotypes with m alleles:

{nij : i, j = 1, . . . ,m, i ≤ j}.
Let n =∑i≤j nij and p̂j = (2njj +∑i<j nij +∑k>j njk)/(2n). Then

χ2 =
m∑

j=1

(njj − np̂ 2
j )2

np̂ 2
j

+
m∑

j=1

∑

i<j

(nij − 2np̂ip̂j )
2

2np̂ip̂j

+
m∑

j=1

∑

k>j

(njk − 2np̂kp̂j )
2

2np̂kp̂j

.



46 2 Introduction to Genetic Epidemiology

Under H0, χ2 ∼ χ2
m(m−1)/2. However, a more powerful test, based on χ2

1 , is obtained
by modeling the genotype frequencies as

Pr(AiAj ) = 2(1 − F)pipj for i �= j,

Pr(AiAi) = (1 − F)p2
i + Fpi,

and testing the null hypothesis H0 : F = 0, where F is Wright’s inbreeding coeffi-
cient.

Exact Test

The performance of asymptotic chi-squared tests depends on approximations of the
distributions of test statistics under H0. Because the genotype counts are discrete
data, the approximations are not always accurate. In this case, an exact test may
be preferred. Note that HWE is a model for calculating genotype frequencies us-
ing allele frequencies. Therefore, the exact test for Hardy-Weinberg proportions is
based on the probability distribution of all possible genotype counts under HWE
conditional on the observed allele counts.

Let (n0, n1, n2) be the genotype counts for (AA,AB,BB) and (nA,nB) be
the allele counts for (A,B). Then nA = 2n0 + n1, nB = 2n2 + n1, and nA +
nB = 2n. The genotype counts follow the multinomial distribution: (n0, n1, n2) ∼
Mul(n;q2,2pq,p2) under HWE, where p = Pr(B), i.e.,

Pr(n0, n1, n2) = n!
n0!n1!n2! (q

2)n0(2pq)n1(p2)n2 = n!
n0!n1!n2!2

n1pnB qnA.

The allele counts (nA,nB) have the binomial distribution given by

Pr(nA,nB) = (2n)!
nA!nB !p

nB qnA.

Since the allele counts are determined by the genotype counts, we have

Pr(n0, n1, n2, nA,nB) = Pr(n0, n1, n2).

Hence,

Pr(n0, n1, n2|nA,nB) = Pr(n0, n1, n2)

Pr(nA,nB)
= n!nA!nB !2n1

n0!n1!n2!(2n)! . (2.12)

Substituting nA = 2n − nB , n0 = (nA − n1)/2 = n − (nB + n1)/2 and n2 = (nB −
n1)/2 into (2.12), we obtain

Pr(n1|nB) = n!(2n − nB)!nB !2n1

[n − (nB + n1)/2]!n1![(nB − n1)/2]!(2n)! , (2.13)

which only depends on n1 given nB and n (nA is determined by nB and n).
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Table 2.6 Conditional
probabilities of n1 given
nB = 8 and n = 30

n1 n − nB+n1
2

nB−n1
2 Pr(n1|nB)

0 26 4 0.000011

2 25 3 0.0022

4 24 2 0.0557

6 23 1 0.3565

8 22 0 0.5856

Choose all valid values of n1 given nB and n, including the observed num-
ber with genotype AB. The valid value of n1 has to be bounded by 0 ≤ n1 ≤
min(nB,2n − nB), and (nB − n1)/2 is an integer. This implies that n1 is even (odd)
if nB is. Calculate the probability in (2.13) for each valid n1. The exact p-value is
the sum of probabilities with valid n1 smaller than or equal to the observed number
with genotype AB. In practice, to apply (2.13), the allele with smaller allele count
is denoted by B and its corresponding allele count by n1, which will reduce the
computation burden of (2.13).

Applying the exact test for Hardy-Weinberg proportions to the genotype counts
(n0, n1, n2) = (24,4,2) with n = 30, the allele counts are (nA,nB) = (52,8). Note
that nB < nA and nB is even. Hence, the only valid values for n1 are 0, 2, 4, 6 and 8.
The corresponding probabilities of (2.13) are reported in Table 2.6. Then the sum of
probabilities that are smaller than or equal to 4 is the exact p-value. Using Table 2.6,
we have p = 0.000011 + 0.0022 + 0.0557 = 0.0579, not significant at the 5% level.

Test Hardy-Weinberg Proportions for the X Chromosome

If the allele frequency in males is identical to that in females, Hardy-Weinberg pro-
portions can be tested among females using χ2 as given in (2.10) or (2.11) and the
exact test. The male allele frequency may not be equal to that of females owing to
many reasons, including genotyping errors. Therefore one may also test whether or
not the male allele frequency is equal to that of females.

Let pm = Pr(B|male) and pf = Pr(B|female). Let (n
f

0 , n
f

1 , n
f

2 ) be the geno-
type counts in females and (nm

A,nm
B) be the allele counts in males. Let Δf be the

HWD coefficient for females. The null hypothesis consists of H0a : pM = pF and
H0b : Δf = 0, i.e., Hardy-Weinberg proportions hold in females. Let nm = nm

A +nm
B

and nf = n
f

0 + n
f

1 + n
f

2 . Using the data, estimates of pm and pf are given by

p̂m = nm
B/nm and p̂f = (2n

f

2 + n
f

1 )/(2nf ). Note that Var(p̂m) = pm(1 − pm)/nm

and Var(p̂f ) = pf (1 − pf )/(2nf ), which can be estimated by V̂ar(p̂m) = p̂m(1 −
p̂m)/nm and V̂ar(p̂f ) = p̂f (1 − p̂f )/(2nf ). A test statistic for H0a can be written
as

Z = p̂m − p̂f
√

V̂ar(p̂m) + V̂ar(p̂f )

∼ N(0,1) under H0a.
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In Problem 2.6, it is shown that Z and χ2 are asymptotically uncorrelated under
H0a and H0b . Thus, each test can be applied at the α/2 level to control for multiple
testing.

2.3.3 Impact of Hardy-Weinberg Equilibrium or Disequilibrium

In population genetics, HWE is used as a reference model to compare with other
models. It is built on many assumptions which may not hold true. On the other
hand, for genetic association studies, testing Hardy-Weinberg proportions has been
used as a tool to detect genotyping errors. In research articles, p-values from test-
ing Hardy-Weinberg proportions are often reported together with p-values of the
association tests. Others, however, argue that a typical chi-squared test is not sensi-
tive to departure from Hardy-Weinberg proportions (see Bibliographical Comments
in Sect. 2.7). Hence the power to detect genotyping errors is low. Random mat-
ing is a necessary condition for HWE, which is also a requirement for applying
the allele-based association test (Chap. 3). But failure to reject the null hypothesis
that Hardy-Weinberg proportions hold does not mean the null hypothesis is true.
Deviation from Hardy-Weinberg proportions in case-control data may also imply
inbreeding or population stratification.

Testing Hardy-Weinberg proportions is based on samples drawn from the pop-
ulation. When case-control data are used, testing Hardy-Weinberg proportions is
usually based on controls when studying a rare disease, because then the population
and control genotypic distributions are similar. On the other hand, deviation from
Hardy-Weinberg proportions in cases may indicate association when it holds in the
population (or, for a rare disease, controls). Association tests incorporating HWD
have been proposed to improve efficiency and power to detect true associations.

When Hardy-Weinberg proportions do not hold, the inbreeding coefficient, F ,
has been used above. Using F , given the allele frequencies, the genotype frequen-
cies can be written as

g0 = q2 + pqF, g1 = 2pq(1 − F), g2 = p2 + pqF.

Hence, Hardy-Weinberg proportions hold if and only if F = 0.

2.4 Population Substructure

The case-control design for genetic association studies may be affected by popula-
tion substructure. Two types of substructure are considered in the literature. One is
population stratification (PS) and the other is cryptic relatedness (CR). Case-control
samples may be affected by PS or CR or both. We given brief introductions to PS
and CR in this section. More details and corrections for these two substructures will
be deferred to Chap. 9.
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2.4.1 Population Stratification

Population stratification often refers to the situation that the allele (or genotype)
frequency of the marker changes across the subpopulations. However, when testing
association between a marker and a disease, the hidden PS influences the test result
only if the following two conditions are both satisfied:

I. The allele (or genotype) frequency of the marker varies across the subpopula-
tions,

II. The disease prevalence varies across the subpopulations.

Suppose there are two subpopulations, denoted by Z1 and Z2, with allele fre-
quencies of a marker of interest Pj = Pr(B|Zj ) for j = 1,2. In each subpopula-
tion, penetrances are all equal to the disease prevalence f0j = f1j = f2j = kj =
Pr(case |Zj ), j = 1,2. Hence, there is no association between the marker and the
disease in each subpopulation.

Suppose the subpopulations are known so that rj cases and sj controls can be
drawn from the j th subpopulation. One example is that the subpopulations are de-
fined by geographical regions or ethnicities. The total numbers of cases and con-
trols are r = r1 + r2 and s = s1 + s2, respectively. Denote the estimates of allele
frequencies using cases and controls from the j th subpopulation by p̂1j = nAj/rj
and p̂0j = mAj/sj , respectively, where nAj and mAj are the numbers of A alleles
among cases and controls in the j th subpopulation. Then,

E(p̂1j ) = E(p̂0j ) = pj , j = 1,2.

That is, the estimates using cases and controls have the same expectation in each
subpopulation. When cases and controls from the two subpopulations are pooled
(ignoring the existence of subpopulations), we have r cases and s controls. We esti-
mate allele frequency from the r cases, denoted by p̂1 = (nA1 + nA2)/r , and from
the s controls, denoted by p̂0 = (mA1 + mA2)/s. Their expectations, conditional on
{ri, si; i = 1,2}, are given by

E(p̂1) = (r1p1 + r2p2)/r,

E(p̂0) = (s1p1 + s2p2)/s.

If E(p̂1) �= E(p̂0), then there is association between the disease and the marker at
the total population level, even though there is no association in each subpopu-
lation. This is spurious association caused by PS, which is ignored in the above
calculations.

A sufficient condition for E(p̂1) = E(p̂0) is sj = mrj for all j , where m does
not change with j . This condition is satisfied under the matched case-control de-
sign (Chap. 4). When m = 1, the design is called a matched-pair design, in which
equal numbers of cases and controls are drawn from each subpopulation. Another
sufficient condition for E(p̂1) = E(p̂0) is p1 = p2, i.e., the allele frequency does not
change across the subpopulations.
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To take account of the known subpopulations, stratified estimates should be used,
which are given by

p̂1 =
2∑

j=1

wj

nAj

rj
, p̂0 =

2∑

j=1

wj

mAj

sj
,

with weights wj = (rj + sj )/
∑

j (rj + sj ), proportional to the size of the j th sub-
population. It follows that

E(p̂1) = E(p̂0) =
∑

j

wjpj .

For PS to have an effect, it is necessary that the disease prevalence kj varies
across the subpopulations. The disease prevalence is not used in the above argu-
ments because the subpopulations are known, so that cases and controls can be
drawn separately from each subpopulation and then pooled. In practice, PS is latent
(i.e., the subpopulations are not known), and definitions of subpopulations by geo-
graphical regions are not perfect (see discussion in Chap. 9). In this case, suppose r

cases and s controls are drawn from the case population and control population, re-
spectively. Then rj cases (sj controls) belong to the j th subpopulation for j = 1,2,
which are random and unknown. Note that

E(rj /r) = Pr(Zj | case) = Pr(Zj )kj

Pr(case)
,

E(sj /s) = Pr(Zj |control) = Pr(Zj )(1 − kj )

1 − Pr(case)
.

If k1 = k2, there is no change in disease prevalence across the subpopulations,
and k1 = k2 = Pr(case). Hence, E(rj /r) = E(sj /s), equivalent to a matched case-
control design. Under this sampling design,

E(p̂1) = E{E(p̂1|r1, r2)} = E(r1/r)p1 + E(r2/r)p2,

E(p̂0) = E{E(p̂0|s1, s2)} = E(s1/s)p1 + E(s2/s)p2.

Hence E(p̂1) = E(p̂0) if either k1 = k2 or p1 = p2.

2.4.2 Cryptic Relatedness

A simple model for cryptic relatedness in a population is that HWE does not hold
due to unknown relatedness among individuals in the population. For this simple
CR model, we assume the population does not contain subpopulations with varying
allele frequencies. However, HWE does not hold because of unknown relatedness
among individuals. This CR model is also studied in Chap. 9. In Sect. 2.4.1, we
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considered the bias of estimates of allele frequencies using cases and controls in the
presence of PS. The variance of the estimates would be affected in the presence of
CR, which will be also discussed in Chap. 9.

One can also consider a more general model of CR with several subpopulations.
In each subpopulation, HWE does not hold, but individuals across the subpopula-
tions are not genetically related. In this generalized model, how the allele frequen-
cies and disease prevalences change across the subpopulations is not specified. If, in
addition to relatedness among individuals in each subpopulation, the allele frequen-
cies and disease prevalences also change across the subpopulations, then the PS and
CR can be studied simultaneously.

2.5 Odds Ratio and Relative Risk

2.5.1 Odds Ratios

Definitions

The odds ratio (OR) is commonly used to measure association in epidemiology.
For a prospective case-control study, the odds of being a case versus a control for a
given risk factor R = E+ (exposed) or R = E− (not exposed) is defined as

Pr(d = 1|R)

Pr(d = 0|R)
, (2.14)

where d = 1 is for a case and d = 0 is for a control. The OR with respect to two
levels of R is defined as

ORd=1:d=0 = Pr(d = 1|E+)

Pr(d = 0|E+)

/Pr(d = 1|E−)

Pr(d = 0|E−)
.

For a retrospective case-control study, the odds of being E+ versus being E− in
cases (d = 1) or controls (d = 0) is defined as

Pr(E + |d)

Pr(E − |d)
. (2.15)

The OR with respect to case and control groups is

ORR=E+:R=E− = Pr(E + |d = 1)

Pr(E − |d = 1)

/Pr(E + |d = 0)

Pr(E − |d = 0)
.

It can be shown that

Pr(E + |d = 1)Pr(E − |d = 0)

Pr(E − |d = 1)Pr(E + |d = 0)
= Pr(d = 1|E+)Pr(d = 0|E−)

Pr(d = 1|E−)Pr(d = 0|E+)
.

Thus, the ORs for the retrospective and prospective case-control studies are identi-
cal. This property, along with its close relation with relative risk as mentioned below,
makes the OR a widely used measure of association in epidemiology.
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Table 2.7 A 2 × 2 table with
case and control status and
levels of a risk factor for n

subjects

E+ E−
Case a b a + b

Control c d c + d

a + c b + d n

Inference

For a general 2 × 2 table as given in Table 2.7, the estimate of the OR is given by

ÔR = ad

bc
, or log ÔR = log

(
ad

bc

)

.

Note that if any entry in Table 2.7 is 0, a constant 1/2 is often added to each cell in
the table. When there is no association in the 2 × 2 table, ÔR ≈ 1. If the exposure
to the risk factor (E+) increases the risk of having the disease, ÔR > 1.

A consistent estimate of the variance of the log OR can be written as (Prob-
lem 2.7)

V̂ar(log ÔR) = 1

a
+ 1

b
+ 1

c
+ 1

d
, (2.16)

which is referred to as Woolf’s estimate of the variance of the log OR. The confi-
dence interval for the log OR can be obtained from

log ÔR − log OR
√

V̂ar(log ÔR)

→ N(0,1). (2.17)

That is, log ÔR ± z1−α/2

√
V̂ar(log OR). Denote z = z1−α/2

√
V̂ar(log OR). Then,

the 100(1 − α)% confidence interval for the OR is (ÔR/ez, ÔRez). Under the null
hypothesis of no association H0, log OR = 0. Thus, after substituting log OR = 0,
the left hand side of (2.17) can be used as a test statistic for association.

Odds Ratios for Genetic Associations

For a diallelic marker with alleles A and B , and three genotypes (G0,G1,G2) =
(AA,AB,BB), case-control data can be displayed in a 2 × 3 table. For Table 2.8,
two ORs can be used to measure association. One is between AB and AA, denoted
as OR1. The other is between BB and AA, denoted as OR2. In both ORs, genotype
G0 = AA is used as the reference.

The formulas for the estimates of the two log ORs and their asymptotic variances
are given by

log ÔR1 = log

(
r1s0

r0s1

)

, V̂ar(log ÔR1) = 1

r0
+ 1

r1
+ 1

s0
+ 1

s1
, (2.18)
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Table 2.8 A 2 × 3 table with case and control status and three genotypes

AA AB BB

Case r0 r1 r2

Control s0 s1 s2

log ÔR2 = log

(
r2s0

r0s2

)

, V̂ar(log ÔR2) = 1

r0
+ 1

r2
+ 1

s0
+ 1

s2
. (2.19)

The estimates log ÔR1 and log ÔR2 are negatively correlated with covariance (Prob-
lem 2.8)

Ĉov(log ÔR1, log ÔR2) = − 1

r0
− 1

s0
. (2.20)

If one is interested in the OR between AA versus genotypes with at least one
allele B (i.e., AB and BB), the estimate of the log OR can be written as

log ÔR = log

(
s0(r1 + r2)

r0(s1 + s2)

)

,

with an estimated asymptotic variance

V̂ar(log ÔR) = 1

r0
+ 1

r1 + r2
+ 1

s0
+ 1

s1 + s2
.

On the other hand, to calculate the OR between BB versus genotypes with at least
one allele A (i.e., AA and AB), one has

log ÔR = log

(
r2(s0 + s1)

s2(r0 + r1)

)

,

V̂ar(log ÔR) = 1

r0 + r1
+ 1

r2
+ 1

s0 + s1
+ 1

s2
.

As before, infinite estimates and variances can be avoided by adding 1/2 to each
cell in Table 2.8.

2.5.2 Relative Risks

Definition and Relation with Odds Ratio

Define f1 = Pr(d = 1|E+) and f0 = Pr(d = 1|E−). Then the relative risk (RR) of
the disease on being exposed versus not being exposed is

RR = f1

f0
.
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If the data in Table 2.7 are collected in a prospective case-control design, the esti-
mate of the RR is given by

R̂R = f̂1

f̂0
= a(b + d)

b(a + c)
,

where f̂0 = b/(b+d) and f̂1 = a/(a +c). To obtain the asymptotic variance of R̂R,
it is easier to work with the log RR. Note that, in a prospective study, f̂0 and f̂1 are
independent. Thus, Var{log(f̂1/f̂0)} = Var(log f̂1)+Var(log f̂0). Denote n0 = b+d

and n1 = a + c. Then both a and b follow binomial distributions, a ∼ B(n1;f1) and
b ∼ B(n0;f0). Thus, by the Delta method,

Var(log f̂i ) ≈ 1

f 2
i

fi(1 − fi)

ni

= 1 − fi

fini

.

Hence,

V̂ar

{

log

(
f̂1

f̂0

)}

= c

a(a + c)
+ d

b(b + d)
.

From the expression for the OR, we have

ORd=1:d=0 = ORR=E+:R=E− = f1(1 − f0)

f0(1 − f1)
= f1

f0

(

1 + f1 − f0

1 − f1

)

.

Thus, for a rare disease (f1 − f0 ≈ 0 and f1 ≈ 0),

ORd=1:d=0 = ORR=E+:R=E− ≈ RR.

Genotype Relative Risks

For the data presented in Table 2.8, two GRRs can be defined,

GRR1 = Pr(d = 1|AB)/Pr(d = 1|AA),

GRR2 = Pr(d = 1|BB)/Pr(d = 1|AA).

When there is no association between the case-control status and the marker,
GRR1 = GRR2 = 1. In general, unbiased estimates for GRRs are not available using
retrospective case-control data.
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2.6 Logistic Regression for Case-Control Studies

2.6.1 Prospective Case-Control Design

Likelihood Function

A logistic regression model is often used for the analysis of prospective case-control
data. Let d = 1 denote a case and d = 0 a control. Denote X = (X1, . . . ,Xp)T a vec-
tor of covariates and H(X) = (h1(X), . . . , hp(X))T , where hi is a coding function
or transformation of covariates. Then using logistic regression, one has

P(x) = Pr(d = 1|X = x) = exp{β0 + βT
1 H(x)}

1 + exp{β0 + βT
1 H(x)}

and Pr(d = 0|X = x) = 1 − Pr(d = 1|X = x). The prospective likelihood function
can be written as

Lpros(β0, β1) =
n∏

j=1

{p(xj)}dj {1 − p(xj)}1−dj

=
n∏

j=1

exp{β0dj + βT
1 H(xj)dj }

1 + exp{β0 + βT
1 H(x)} . (2.21)

Inference for β1 can be made using (2.21).

Examples

For the first example, consider a single binary covariate in the logistic regression
model. Hence, H(X) = H(X) = 0 for not exposed (E−) and 1 for exposed (E+).
For the second example, consider a single genetic marker G as a covariate. De-
note the three genotypes as (G0,G1,G2) = (AA,AB,BB). There are several ways
to code (or score) the genotype G. For examples, a two-dimensional scoring func-
tion is H(G) = (h1(G),h2(G))T , where h1(G) = 0,0,1 and h2(G) = 0,1,1 if
G = G0,G1,G2, respectively, and a one-dimensional scoring function is H(G) = i

if G = Gi for i = 0,1,2.

2.6.2 Retrospective Case-Control Design

The retrospective case-control design differs from the prospective case-control de-
sign. The data in the retrospective design are not drawn from the general population.
They are sampled from a population with selected samples (S = 1) of cases and con-
trols. The proportion of cases in the selected population is often different from the
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disease prevalence in the general population. In fact, this is an important difference
between the retrospective and prospective designs.

In a retrospective case-control study, the covariates X of a case d = 1 or a con-
trol d = 0 in the selected population S = 1 are obtained. Thus, the likelihood of
observing X = x is

Pr(X = x|d,S = 1),

where d = 0 or 1. The likelihood function can be written as

Lretro(β0, β1) =
n∏

j=1

{Pr(Xj = xj|dj = 1, Sj = 1)}dj

× {1 − Pr(Xj = xj|dj = 0, Sj = 1)}1−dj . (2.22)

Denote p̃(xj) = Pr(dj = 1|Sj = 1,Xj = xj) and πi = Pr(Sj = 1|dj = i,Xj = xj),
i = 0,1. Then it can be shown that

logitp̃(xj) = p̃(xj)

1 − p̃(xj)
= π1

π0

p(xj)

1 − p(xj)
= exp{β̃0 + βT

1 H(xj)},

where β̃0 = β0 + log(π1/π0). Thus, the odds of observing x in the selected case-
control samples is proportional to the odds of observing x in the population. There-
fore, the OR in the selected population equals that in the population. The proportion

π1/π0 = Pr(dj = 1|Sj = 1,xj)

Pr(dj = 0|Sj = 1,xj)

/Pr(dj = 1|xj)

Pr(dj = 0|xj)

is the ratio of probabilities of cases to controls in the selected samples with respect
to that in the population.

The likelihood (2.22) can be further written as

Lretro(β0, β1) =
n∏

j=1

{p̃(xj)}di {1 − p̃(xj)}1−di (2.23)

×
n∏

j=1

{
Pr(xj|Sj = 1)

Pr(dj = 1|Sj = 1)

}dj
{

Pr(xj|Sj = 1)

Pr(dj = 0|Sj = 1)

}1−dj

.

(2.24)

If (2.24) does not depend on the coefficient β1 which appears in (2.23), then (2.23)
can be used for the analysis of the retrospective data. Thus, the prospective likeli-
hood function Lpros can be used for the retrospective case-control data for inference
of β1.
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2.7 Bibliographical Comments

This book focuses on the analysis of genetic case-control association studies. There-
fore, only the background in population genetics needed for case-control association
studies is introduced in this chapter. More about population genetics can be found
in other textbooks or Refs. [49, 71], and [117]. In Chap. 13, we will discuss linkage
and association studies using family data. Some background related to the analy-
sis of family data will be given there. Basic statistical methods for testing associ-
ation and other genetic studies, including linkage analysis and family-based asso-
ciation studies, can be found in [12, 165, 240, 245], and [299]. Elston et al. [74]
reviewed multi-stage sampling for various genetic studies, including family and/or
case-control data. The TDT was proposed by Spielman et al. [255]. For the GWAS
design with 3,000 common controls shared with seven different diseases, refer to
the WTCCC [301].

The Hardy-Weinberg principle was independently introduced by Hardy [115]
and Weinberg [297] in 1908. A triangle diagram for Hardy-Weinberg proportions
was given by Edwards [67]. Testing Hardy-Weinberg proportions and interpreta-
tion of deviation from Hardy-Weinberg proportions can be found in Weir [299] and
Sham [240]. The example used to test Hardy-Weinberg proportions in Sect. 2.3.2
comes from Hartl and Clark [117]. Comparison of various asymptotic tests for
Hardy-Weinberg proportions can be found in Emigh [76]. The exact test for Hardy-
Weinberg proportions was first proposed by Haldane [112]. Guo and Thompson
[109] studied exact tests for Hardy-Weinberg proportions for multiallelic loci. A def-
inition of HWE on the X chromosome and its properties were given in Li [165].
Testing Hardy-Weinberg proportions on the X chromosome was studied by Zheng
et al. [339]. Nielsen et al. [193] and Song and Elston [251] studied the departure
from Hardy-Weinberg proportions in cases and/or case-control association studies.
Li [164] showed that one can have Hardy-Weinberg proportions and yet the popu-
lation is not in equilibrium.

The concept of LD between two loci and the use of D′ can be found in Lewontin
[162] and Weir [299]. The formulas (2.2) to (2.4) are studied by Zheng et al. [340].
Similar formulas were also given in Nielsen and Weir [195]. Lewontin did not mean
his coefficient D′ to refer solely to linked loci (personal communication) but rather
to any two loci, and hence intended D′ to be the more general measure of genetic
phase disequilibrium. See also discussion of this in Wang et al. [293].

Population substructure is an important issue for genetic case-control association
studies [66, 283]. The definition of PS can be also found in Crow and Kimura [49]
(p. 54) and Elandt-Johnson [71] (p. 228). The simple definition of CR was given by
Voight and Pritchard [282]. The more general definition of CR given in Sect. 2.4.2
was used by Crow and Kimura [49] (p. 64), Elandt-Johnson [71] (p. 213), Devlin
and Roeder [60], and Whittemore [302]. Recent discussions can be found in Astle
and Balding [10] and Zheng et al. [341].

Measures of risks and their inference can be found in many epidemiological or
biostatistics textbooks, e.g., Fleiss et al. (Chaps. 7, 11 and 13) [86] and Sahai and
Khurshid [222]. Using the prospective logistic regression model for the retrospective
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case-control data was studied by Prentice and Pyke [204]. Their results hold for
both the unmatched case-control design discussed here and for the matched case-
control design discussed in Chap. 4. The derivation of the likelihood functions for
the retrospective data presented here can be found in Sahai and Khurshid [222].

2.8 Problems

2.1 Let F1, F2, F3 and F4 be defined as in Sect. 2.2.1. Show that F1F4 = F2F3 if
and only if D = 0.

2.2 Using the notation defined in Sect. 2.2.1, show that

f0 = f ∗
0 (F 2

1 + 2F1F3λ
∗
1 + F 2

3 λ∗
2),

f1 = f ∗
0 (F1F2 + F1F4λ

∗
1 + F2F3λ

∗
1 + F3F4λ

∗
2),

f2 = f ∗
0 (F 2

2 + 2F2F4λ
∗
1 + F 2

4 λ∗
2).

2.3 Using (2.2) to (2.4), show that

f1 − f0 = Df ∗
0

p(1 − p)
{F1(λ

∗
1 − 1) + F3(λ

∗
2 − λ∗

1)},

f2 − f1 = Df ∗
0

p(1 − p)
{F2(λ

∗
1 − 1) + F4(λ

∗
2 − λ∗

1)}.

Further, when D �= 0, f0 = f1 = f2 holds if and only of λ∗
1 = λ∗

2 = 1 holds.

2.4 Using (2.6) and Table 2.4, derive (2.7).

2.5 Show that the chi-squared tests for Hardy-Weinberg proportions in (2.10) and
(2.11) are identical.

2.6 Show that, ignoring higher order terms, the test for equal allele frequencies
in males and females and the test for Hardy-Weinberg proportions in females are
uncorrelated under H0a and H0b .

2.7 Under a prospective case-control design, a ∼ B(a+c;f1) and b ∼ B(b+d;f0)

(binomial distributions). The OR is given by OR = f1(1 −f0)/{f0(1 −f1)}. Derive
the variance of the estimate of log OR and show its estimate can be written as (2.16).

2.8 Derive the covariance of the estimates of ORs given in (2.18) and (2.19) using
multinomial distributions for the genotype counts of cases and controls and the fact
that the genotype counts of cases and controls are independent.



Part II
Single-Marker Analysis

for Case-Control Data



Chapter 3
Single-Marker Analysis for Unmatched
Case-Control Data

Abstract Chapter 3 begins with an introduction to the notation for penetrance and
genotype relative risk. Since many statistical analyses of a case-control association
study depend on the underlying genetic model, the genetic models are introduced
in terms of genotype relative risks. Test statistics for genetic association covered in
this chapter include genotype-based tests (Pearson’s chi-squared test, the Cochran-
Armitage trend test, and the likelihood-ratio test), the allelic test, exact tests, and the
Hardy-Weinberg disequilibrium trend test. Combining the Hardy-Weinberg disequi-
librium trend test with the Cochran-Armitage trend test is also discussed. Numerical
and analytical comparisons between the allelic and genotype-based tests are given.
This chapter also discusses how to obtain the trend test and Pearson’s chi-squared
test as the Score tests from logistic regression models. Estimates of odds ratios and
their confidence intervals are given. Results from simulation studies are presented.
Common approaches to simulate case-control data with or without covariates are
given. Examples and case studies are presented.

In single-marker analysis, a diallelic marker is genotyped for cases and controls. The
cases and controls are retrospectively sampled from the study population. The case-
control data can be presented in a contingency table, either in a 2 × 2 table when
alleles are counted or a 2 × 3 table when genotypes are counted. When the genetic
marker is in LD with a disease locus, the association between the genetic marker
and the disease can be detected by independence tests of the contingency table data.
Single-marker analysis is one of the most important analyses in case-control genetic
association studies. It is often the first analysis carried out in GWAS. Other analyses
involving multiple markers will be discussed in Chap. 7 (haplotype analysis) and
Chap. 8 (gene-gene interaction).

This chapter begins with an introduction of notation for penetrance and GRRs.
Since many statistical analyses of a case-control association study depend on the
underlying genetic model, we introduce in detail the concept of genetic models in
terms of the GRRs. Test statistics covered in this chapter include genotype-based
tests (Pearson’s chi-squared test, the Cochran-Armitage trend test (CATT) and the
LRT), the allelic test, exact tests, and the HWD trend test. Combination of the HWD
trend test with the CATT is discussed. Estimates of ORs and their CIs are stud-
ied. To evaluate the performance of the various tests, simulation studies are often

G. Zheng et al., Analysis of Genetic Association Studies,
Statistics for Biology and Health,
DOI 10.1007/978-1-4614-2245-7_3, © Springer Science+Business Media, LLC 2012
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conducted. Simple approaches to simulate case-control data are presented in this
chapter. Examples and case studies are presented.

3.1 Penetrance and Genotype Relative Risks

Consider a diallelic marker M , typically a SNP, with alleles A and B . Let the three
genotypes of M be G0 = AA, G1 = AB, and G2 = BB. The allele frequencies in
the population are denoted by p = Pr(B) and q = Pr(A) = 1 − p. The genotype
frequencies of Gj in the population are denoted by gj = Pr(Gj ) for j = 0,1,2,
which are given by (Sect. 2.3)

g0 = q2 + pqF, g1 = 2pq(1 − F), and g2 = p2 + pqF, (3.1)

where F is Wright’s coefficient of inbreeding. For humans, F is usually between
0 and 0.05. If Hardy-Weinberg proportions hold in the population, F = 0. Then
g0 = q2, g1 = 2pq , and g2 = p2.

The disease prevalence in the population is denoted by k = Pr(case). The pene-
trance of a disease given a genotype is denoted by fj = Pr(case |Gj) for j = 0,1,2.
Then,

k =
2∑

j=0

Pr(Gj )Pr(case |Gj) = f0g0 + f1g1 + f2g2.

In case-control studies, cases and controls are retrospectively sampled from
case and control populations (Sect. 2.2.2). Their genotypes at marker M are ob-
tained and the genotype counts are presented in Table 3.1, in which (r0, r1, r2)

and (s0, s1, s2) are genotype counts for (G0,G1,G2) in cases and controls, respec-
tively. The total numbers of cases and controls are respectively r = r0 + r1 + r2 and
s = s0 + s1 + s2. The total number with genotype Gj is denoted by nj = rj + sj . Let
n = r + s = n0 + n1 + n2 be the total number of individuals. The genotype counts
(r0, r1, r2) and (s0, s1, s2) follow multinomial distributions Mul(r;p0,p1,p2) and
Mul(s;q0, q1, q2), respectively, where pj = Pr(Gj | case) and qj = Pr(Gj |control)
for j = 0,1,2. Let d denote the disease status (case with d = 1 or control with
d = 0). From

Pr(Gj |d) = Pr(Gj )Pr(d|Gj)

Pr(d)
,

we obtain

pj = gjfj

k
and qj = gj (1 − fj )

(1 − k)
. (3.2)

These two formulas are often used to calculate the genotype probabilities in the case
and control groups in simulation studies.
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Table 3.1 Genotype counts
of case-control samples for a
single marker with alleles A

and B

AA AB BB Total

Cases r0 r1 r2 r

Controls s0 s1 s2 s

Total n0 n1 n2 n

Denote GRR by λi = fi/f0 for i = 1,2, where f0 > 0 is used as the reference
penetrance. Using the GRRs, k = f0(g0 + λ1g1 + λ2g2). Under the null hypothesis
of no association between the disease status d and the genotype, the penetrances are
equal to the prevalence, i.e., f0 = f1 = f2 = k. That is, λ1 = λ2 = 1.

3.2 Genetic Models

A genetic model refers to a specific mode of inheritance. Four common genetic
models are discussed in the literature: the recessive (REC), additive (ADD), multi-
plicative (MUL), and dominant (DOM) models. Assume that marker M described
in Sect. 3.1 is associated with a disease and that allele B is the risk allele in the sense
that

Pr(case |G2) ≥ Pr(case |G1) ≥ Pr(case |G0)

and Pr(case |G2) > Pr(case |G0). (3.3)

That is, the probability of developing the disease increases with the number of risk
alleles carried. Then, (3.3) implies f2 ≥ f1 ≥ f0 and f2 > f0. Throughout this chap-
ter we assume B is the risk allele. The alternative hypothesis H1 of association can
be stated as H1: λ2 ≥ λ1 ≥ 1 and λ2 > 1. Hence, two GRRs, (λ1, λ2), are required
to define an alternative hypothesis. A genetic model specifies a relationship among
the three penetrances, and hence between the two GRRs.

A genetic model is called REC, ADD, MUL, and DOM if

f1 = f0,

f1 = (f0 + f2)/2,

f1 =√f0f2,

f1 = f2,

respectively. Using the GRRs, the above four equations can be also written as

λ1 = 1, λ1 = (1 + λ2)/2, λ1 = λ
1/2
2 , and λ1 = λ2.

Hence, given λ2 = λ and one of the four genetic models, λ1 can be calculated using
λ. Note that the definitions of the REC and DOM models depend on which allele is
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Fig. 3.1 Plot of the four
common genetic models in
the genetic model space Λ

constrained by the rays, from
the point C(1,1),
corresponding to the REC
and DOM models

the risk allele. If the same GRRs λi = fi/f0, i = 1,2 are used but allele A is the risk
allele, then the REC and DOM models refer to λ1 = λ2 and λ1 = 1, respectively.
When the GRRs are weak (i.e. λ1 ≈ 1 and λ2 ≈ 1), the ADD model is a good
approximation for the MUL model. This can be shown by expressing the ADD
model as λ2 = 2λ1 − 1 and using the Taylor expansion about λ2 − 1 ≈ 0,

λ
1/2
2 = (1 + λ2 − 1)1/2 ≈ 1 + (λ2 − 1)/2 = 1 + (2λ1 − 1 − 1)/2 = λ1,

which is the MUL model.
In Fig. 3.1, the four common genetic models are plotted in the GRR space Λ =

{(λ1, λ2) : λ2 ≥ λ1 ≥ 1}. The line corresponding to the ADD model is the tangent
line at C = (1,1) for the curve corresponding to the MUL model. The REC and
DOM models form the boundaries for Λ. In addition to the four common genetic
models, the space Λ in Fig. 3.1 defines a family of genetic models indexed by θ ∈
[0,1] as

Λ = {(λ1, λ2) : λ1 = (1 − θ) + θλ2, 0 ≤ θ ≤ 1}. (3.4)

The REC, ADD, and DOM models correspond to θ = 0, 1/2, and 1, respectively. In
practice, the true genetic model is usually unknown. It could correspond to Λ with
any θ ∈ [0,1], or not even constrained in Λ. For example, the overdominant model
has (λ1, λ2) /∈ Λ, because, under the overdominant model, the risk of the disease is
higher for genotype AB than for genotype BB, even though B is the risk allele. We
focus on the constrained genetic model space Λ given in (3.4). Discussion of results
for genetic models outside of Λ will be briefly mentioned if such models are used.
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3.3 Genotype-Based Tests

To test for genetic association using a case-control design, the CATT (the trend
test, for short) and Pearson’s chi-squared test (Pearson’s test, for short) are two
commonly used test statistics. The trend test relies on the assumptions that one of
the alleles is the risk allele and that the risk of developing the disease increases with
the number of the risk alleles in the genotype. Different trend tests are used for the
four different genetic models discussed in Sect. 3.2. The trend test may not be robust
when the genetic model is misspecified. Pearson’s test, on the other hand, is robust to
the underlying genetic model, because it does not require the genetic model. Both
tests asymptotically follow chi-squared distributions even when Hardy-Weinberg
proportions do not hold in the population.

3.3.1 Cochran-Armitage Trend Tests

In the literature, the CATT may only refer to the trend test that we describe below
under the ADD model. We treat all trend tests as CATTs with different scores. The
trend test is used to test for association in ordered categorical data. The case-control
data presented in Table 3.1 is ordered if the risk of the disease increases with the
number of the risk allele in the three genotypes. The trend test utilizes the order
of the risks for the genotypes by assigning a set of increasing scores to the three
genotypes. Let the scores be (x0, x1, x2) for the three genotypes (G0,G1,G2). Then
the scores are increasing: x0 ≤ x1 ≤ x2 and x0 < x2. The trend test is based on the
differences between the estimates of the genotype frequencies in cases (rj /r) and
in the combined case-control samples (nj/n) weighted by the increasing scores:

U =
2∑

j=0

xj

(
rj

r
− nj

n

)

= 1

nr

2∑

j=0

xj (srj − rsj )

= 1

r

2∑

j=0

xj {(1 − φ)rj − φsj }, (3.5)

where φ = r/n is the proportion of cases. The variance of the statistic U can be
written as (Problem 3.2)

Var(U) = n

r2
φ(1 − φ)2

{
2∑

j=0

x2
j pj −

(
2∑

j=0

xjpj

)2}

+ n

r2
φ2(1 − φ)

{
2∑

j=0

x2
j qj −

(
2∑

j=0

xjqj

)2}

. (3.6)
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Then the trend test can be written as

ZCATT = U
√

V̂ar(U)
, (3.7)

where, in (3.6), the genotype frequencies in cases and controls, pj and qj , are esti-
mated using the combined case-control samples under H0 : pj = qj , i.e. p̂j = q̂j =
nj/n for j = 0,1,2. This leads to

ZCATT =
∑2

j=0 xj ((1 − φ)rj − φsj )
√

nφ(1 − φ){∑2
j=0 x2

j nj /n − (
∑2

j=0 xjnj /n)2}
. (3.8)

An alternative approach is to estimate pj and qj in (3.6) using cases and controls
separately, i.e.

p̂j = rj /r and q̂j = sj /s.

Both estimates of the variance, using either the combined or separate case-control
samples, are consistent under H0. Thus, ZCATT, with either estimate of the variance,
asymptotically follows N(0,1) under H0. Under the alternative hypothesis, how-
ever, only the estimate using the separate case-control samples is consistent. Thus,
the trend test using the estimate with the separate case-control samples is more pow-
erful than that using the estimate with the combined case-control samples. The cost
of this improved power is that using the combined case-control samples has better
control of Type I error than using the separated case-control samples under the null
hypothesis (see Problem 3.8). Because the risk allele is unknown, a two-sided test
is used. The null hypothesis of no association is rejected at the significance level α

if |ZCATT| > z1−α/2, where z1−α/2 is the 100(1 − α/2)th percentile of N(0,1).
The trend test depends on the choice of scores, but it is invariant under a linear

transformation of the scores. That is, the trend tests are identical if the following
two sets of scores are used: (x0, x1, x2) where x0 ≤ x1 ≤ x2, x0 < x2 and (0, (x1 −
x0)/(x2 −x0),1) where 0 ≤ (x1 −x)/(x2 −x0) ≤ 1. Thus, without loss of generality,
we consider a set of scores (0, x,1), where 0 ≤ x ≤ 1, and denote the corresponding
trend test as ZCATT(x). The optimal score x depends on the underlying genetic
model. For the REC model, genotypes AA and AB have the same risk. Therefore,
x = 0 is used (both genotypes have the same score). On the other hand, for the
DOM model, AB and BB have the same risk. Hence, x = 1 is used (both genotypes
have the same score). For the ADD and MUL models, x = 1/2 is used. The scores
(0,1/2,1) is equivalent to using the proportion of risk alleles in the three genotypes.
In practice, when the true genetic model is unknown, x = 1/2 is used, because it is
the most robust among all trend tests with 0 ≤ x ≤ 1 (Problem 3.9). The robustness
of the trend tests will be further discussed in Chap. 6, where several other robust
tests will also be studied.

Table 3.2 presents simulated case-control samples for a single marker, where
(r0, r1, r2) = (317,171,12) and (s0, s1, s2) = (264,208,28). Thus, (n0, n1, n2) =
(581,379,40) and n = 1000. The proportion of cases φ = 0.5. The risk allele is
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Table 3.2 Simulated
case-control samples for a
single marker with 500 cases
and 500 controls: the allele
frequency of B is 0.25 under
the ADD model with an OR
of 0.5

AA AB BB Total

Cases 317 171 12 500

Controls 264 208 28 500

Total 581 379 40 1000

unknown. If we estimate P̂r(B| case) = (r1 + 2r2)/(2r) = {171 + 2(12)}/1000 =
0.195 and P̂r(B|control) = (s1 +2s2)/(2s) = {208+2(28)}/1000 = 0.264, it shows
Pr(B| case) < Pr(B|control). Thus, B is not likely the risk allele. However, we can
still use (3.8) to compute the CATT and report a two-sided p-value when the risk
allele is unknown. Using estimates of p̂j = q̂j = nj/n,

ZCATT

(
1

2

)

=
1
2 (171/2 − 208/2) + (12/2 − 28/2)

√
1000 × 1

2 × 1
2 × {( 1

2 )2 × 379
1000 + 40

1000 − ( 1
2 × 379

1000 + 40
1000 )2}

≈ −3.808.

The two-sided p-value using the standard normal distribution is p = 0.00014.
The trend test is negative because we treat allele B as the risk allele even
though A is the risk allele. Using the alternative variance estimates p̂j = rj /r

and q̂j = sj /s,
∑2

j=0 x2
j rj /r − (

∑2
j=0 xj rj /r)2 = 0.071475 and

∑2
j=0 x2

j sj /s −
(
∑2

j=0 xj sj /s)
2 = 0.090304. The denominator of (3.7) is

√
V̂AR(U) =

√
{1000/(8 × 5002)}(0.071475 + 0.090304) = 0.008994.

Hence,

ZCATT

(
1

2

)

= ( 1
2 (171/2 − 208/2) + (12/2 − 28/2))/500

0.008994
≈ −3.836.

The two-sided p-value is p = 0.000125. The p-value of the trend test with the vari-
ance estimated using the separate case-control samples is smaller than that with the
variance estimated using the combined case-control samples.

3.3.2 Trend Test Obtained from the Logistic Regression Model

The trend test ZCATT(x) in (3.8) can be obtained as a Score statistic from a logistic
regression model. Define an indicator function of genotype as I (G) = 0 if G = AA,
x if G = AB, and 1 if G = BB. The prospective logistic regression model is often
used for retrospective case-control data (Sect. 2.6). Thus,

Pr(case |G) = exp{β0 + β1I (G)}
1 + exp{β0 + β1I (G)} . (3.9)
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Let di = 1 for case and 0 for control for i = 1, . . . , n. The likelihood function for
the case-control data in Table 3.1 is

L(β0, β1) =
n∏

i=1

{Pr(case |Gi)}di {1 − Pr(case |Gi)}1−di

= exp{rβ0 + (xr1 + r2)β1}
{1 + exp(β0)}n0{1 + exp(β0 + xβ1)}n1{1 + exp(β0 + β1)}n2

.

We test H0 : β1 = 0 and β0 is a nuisance parameter. The Score test given in (1.9) can
be directly applied after we replace θ = (ψ,η)T in (1.9) by β = (β1, β0)

T . Denote
the log-likelihood function by l(β). Then, from

∂l(β)

∂β0
|H0 = r − n exp(β0)/(1 + exp(β0)) = 0,

we obtain the MLE for β0 restricted under H0 as β̃0 = log(r/s). Thus, β̃ = (0, β̃0)
T .

The Score function, evaluated with β = β̃ , can be written as

U(β̃) = ∂l(β)

∂β1
|β=β̃ = (xr1 + r2) − (xn1 + n2)

r

n

= rU =
2∑

j=0

xj {(1 − φ)rj − φsj }, (3.10)

where U is the statistic given in (3.5) with scores (x0, x1, x2) = (0, x,1). The ob-
served Fisher information matrix can be written as (Problem 3.3)

in(β̃) = −
⎡

⎣
∂2l

∂β2
1

∂2l
∂β1β0

∂2l
∂β0β1

∂2l

∂β2
0

⎤

⎦ |β=β̃ = rs

n2

⎡

⎣

∑2
j=0 x2

j nj

∑2
j=0 xjnj

∑2
j=0 xjnj n

⎤

⎦ .

The element corresponding to the parameter β1, the (1,1)th element, in the inverse
of the above matrix, i−1

n (β̃), is

iβ1β1(β̃) = n3

rs{n∑2
j=0 x2

j nj − (
∑2

j=0 xjnj )2} ,

whose inverse, nφ(1 − φ){∑j x2
j nj /n − (

∑
j xjnj /n)2}, is also a consistent esti-

mate of the variance for the Score function (3.10). The Score statistic of (1.9) is

ST = U2(β̃)iβ1β1(β̃) = Z2
CATT,

where ZCATT is given in (3.8).
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3.3.3 Pearson’s Chi-Squared Test

Pearson’s test compares the observed genotype counts in cases (r0, r1, r2) and con-
trols (s0, s1, s2) with their expected values under the null hypothesis that the disease
status and genotypes are independent. Under H0, the expected counts for rj and sj
are nj r/n and nj s/n, respectively. Therefore, Pearson’s test can be written as

Tχ2
2

=
2∑

j=0

(rj − nir/n)2

nir/n
+

2∑

j=0

(sj − nj s/n)2

nj s/n
. (3.11)

Under H0, Tχ2
2

asymptotically follows χ2
2 . H0 is rejected at the level α if Tχ2

2
>

χ2
2 (1 − α), where χ2

2 (1 − α) is the 100(1 − α)th percentile of χ2
2 .

Applying Tχ2
2

to the simulated data in Table 3.2 with (r0, r1, r2) = (317,171,12)

and (s0, s1, s2) = (264,208,28), the expected genotype counts of AA, AB and BB
for both cases and controls are 290.5, 189.5 and 20. Hence, Tχ2

2
= 14.8469 with

p-value p = 0.000597.

3.3.4 Pearson’s Test Obtained from the Logistic Regression Model

Like the trend test, Pearson’s test can also be obtained from the prospective lo-
gistic regression model. Define two indicator functions I1(G) and I2(G) as fol-
lows: I1(G) = I2(G) = 0 if G = AA, I1(G) = 0 and I2(G) = 1 if G = AB, and
I1(G) = I2(G) = 1 if G = BB. Applying

Pr(case |I1(G), I2(G)) = exp{β0 + β1I1(G) + β2I2(G)}
1 + exp{β0 + β1I1(G) + β2I2(G)} , (3.12)

the likelihood function is proportional to

L(β0, β1, β2) =
n∏

i=1

{Pr(case |I1(Gi), I2(Gi))}di {1 − Pr(case |I1(Gi), I2(Gi))}1−di

= exp{rβ0 + r2β1 + (r1 + r2)β2}
{1 + exp(β0)}n0{1 + exp(β0 + β2)}n1{1 + exp(β0 + β1 + β2)}n2

,

where di = 1 (di = 0) when the ith individual is a case (a control).
We test H0 : β1 = β2 = 0 and β0 is the nuisance parameter. Let β = (β1, β2, β0)

T .
Under H0, β̃ = (0,0, β̃0), where β̃0 = log(r/s). Let the log-likelihood function be
l(β). From Problem 3.4, the Score function is U(β̃) = (U1(β̃),U2(β̃))T , where

U1(β̃) = ∂l(β)

∂β1
|β=β̃ = 1

n
(sr2 − rs2),
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U2(β̃) = ∂l(β)

∂β2
|β=β̃ = 1

n
{s(r1 + r2) − r(s1 + s2)}.

Then iψψ(β̃), ψ = (β1, β2)
T , given in (1.9) can be written as (Problem 3.4)

iψψ(β̃) = 1

φ(1 − φ)

[ n1+n2
n1n2

− 1
n1

− 1
n1

n0+n1
n0n1

]

.

Thus, the Score statistic can be written as

T̃χ2
2

= U(β̃)T iψψ(β̃)U(β̃)

= 1

1 − ρ2
{Z2

CATT(0) − 2ρZCATT(0)ZCATT(1) + Z2
CATT(1)}, (3.13)

where

ρ =
√

n0n2

(n1 + n2)(n0 + n1)
.

It can be shown that Tχ2
2

and T̃χ2
2

are equivalent (Problem 3.5). Note that in (3.13),
Pearson’s test is written as a function of the two trend tests with scores (0,0,1) for
the REC model and scores (0,1,1) for the DOM model.

3.3.5 Other Likelihood-Based Tests

Using the likelihood functions given in Sect. 3.3.2 and Sect. 3.3.4, the Score statis-
tics were derived. Using these likelihood functions, the standard LRT and Wald test
can also be derived following Sect. 1.2.4, which can also be found in many statistical
inference books. We illustrate the LRT here.

The likelihood function is given by

L(β) = L(β0, β1, . . . , βl) = exp(rβ0 +∑n
i=1 di

∑l
j=1 βjXij )

∏n
i=1{1 + exp(β0 +∑l

j=1 βjXij )}
,

where (Xi1, . . . ,Xil) are the covariates for the ith individual (e.g., indicators for
genotypes). Under a global null hypothesis H0 : β1 = · · · = βl = 0, the likelihood
function is L0(β0) = L(β0,0, . . . ,0), which is maximized by β̃0 = log(r/s). Thus,
β̃ = (β̃0,0, . . . ,0)T . Denote l0(β̃) = logL0(β̃0). Without any restriction, the MLE
β̂ can be solved from ∂ logL(β)/∂β = 0, i.e.,

r −
n∑

i=1

exp(β0 +∑l
j=1 βjXij )

1 + exp(β0 +∑l
j=1 βjXij )

= 0,
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Table 3.3 Allele counts of
case-control samples for a
single marker

A B Total

Cases 2r0 + r1 2r2 + r1 2r

Controls 2s0 + s1 2s2 + s2 2s

Total 2n0 + n1 2n2 + n1 2n

n∑

i=1

Xijdi −
n∑

i=1

Xij exp(β0 +∑l
j=1 βjXij )

1 + exp(β0 +∑l
j=1 βjXij )

= 0, for j = 1, . . . , l.

The solutions have no closed forms and can be found numerically. Denote l(β̂) =
logL(β̂). Then, from (1.11), the LRT can be written as

LRT = 2l(β̂) − 2l0(β̃) ∼ χ2
l under H0.

3.4 Allele-Based Test

3.4.1 Test Statistics

The allele-based test (ABT) or allelic test is another commonly used test for genetic
association using case-control data. It compares the allele frequencies between cases
and controls. Instead of presenting genotype counts as in Table 3.1, the data for the
ABT, displayed in Table 3.3, comprise the number of alleles A and B in cases and
controls. Because each individual has two alleles, the total number of alleles is 2n.

Let p and q be the frequencies of B in cases and controls, respectively. Then,
under the null hypothesis of no association H0, p = q . The MLEs of p and q are
given by

p̂ = (2r2 + r1)/(2r) = r2/r + r1/(2r),

q̂ = (2s2 + s1)/(2s) = s2/s + s2/(2s).
(3.14)

By the property of MLEs (Sect. 1.2.1), we have

p̂ ∼ N(p,Var(p̂ )) and q̂ ∼ N(q,Var(̂q ))

asymptotically, where

Var(p̂ ) = p(1 − p)/(2r) and Var(̂q ) = q(1 − q)/(2s).

The ABT for association of Table 3.3 can be written as

ZABT = p̂ − q̂
√

V̂ar(p̂ − q̂ )
(3.15)



72 3 Single-Marker Analysis for Unmatched Case-Control Data

where V̂ar(p̂ − q̂ ) can be written as

V̂ar(p̂ − q̂ ) =
(

1

2r
+ 1

2s

)

p̄(1 − p̄), (3.16)

where p̄ = (2n2 + n1)/(2n); or

V̂ar(p̂ − q̂ ) = p̂(1 − p̂ )/(2r) + q̂(1 − q̂ )/(2s), (3.17)

where p̂ and q̂ are given in (3.14). Both estimates of variances in (3.16) and (3.17)
are asymptotically equivalent under H0. Thus, ZABT asymptotically follows N(0,1)

under H0. Under the alternative hypothesis H1, however, the estimate in (3.16) is
not consistent while the estimate of (3.17) is still consistent. Therefore, the ABT
using (3.17) is expected to be more powerful than that using (3.16) under H1, but
with the cost that using the estimate (3.16) has better control of Type I error than
using (3.17) under H0 (Problem 3.8).

Using the simulated data in Table 3.2, 2r0 + r1 = 805, 2r2 + r1 = 195, 2s0 + s1 =
736, 2s2 + s1 = 264, 2n0 + n1 = 1541, and 2n2 + n1 = 459. Thus, p̂ = 0.195 and
q̂ = 0.264. The estimate of variance using (3.16) is

V̂ar(p̂ − q̂ ) = (1/1000 + 1/1000)(459/2000)(1 − 459/2000) = 0.000354,

which yields ZABT = −3.6673 with two-sided p-value p = 0.000245; and the esti-
mate of variance using (3.17) is

V̂ar(p̂ − q̂ ) = 0.195(1 − 0.195)/1000 + 0.264(1 − 0.264)/1000 = 0.000351,

which yields ZABT = −3.6829 with two-sided p-value p = 0.000231. Note that
both p-values are larger than those of the trend tests with scores (0,1/2,1).

3.4.2 Comparison of the Allele-Based Test with the Trend Test

The numerator of ZABT in (3.15) can be written as

(
r2

r
− s2

s

)

+ 1

2

(
r1

r
− s1

s

)

=
2∑

j=0

xj

(
rj

r
− sj

s

)

,

where (x0, x1, x2) = (0,1/2,1). Therefore, the numerator of ZABT is identical to
that of the trend test for the ADD model ZCATT(1/2). The difference between them
is the estimates of their variances. Two algebraic relationships between the ABT and
the trend test for the ADD model have been obtained in the literature, both using the
variance estimates based on the combined case-control samples.

First, it can be shown that

Z2
ABT = Z2

CATT

(
1

2

){

1 + 4n0n2 − n2
1

(n1 + 2n2)(n1 + 2n0)

}

. (3.18)
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Denote the estimate of genotype frequency using the combined case-control samples
by p̄j = nj/n for j = 0,1,2. Then, it can be shown that

4n0n2 − n2
1 = 0 and p̄2 = (p̄2 + p̄1/2)2

are equivalent (Problem 3.6), where the latter indicates that Hardy-Weinberg propor-
tions hold in the combined case-control samples, under which 4n0n2 −n2

1 should be
asymptotically equal to 0. Hence, ZABT and ZCATT are asymptotically equivalent.
Although Eq. (3.18) is derived for studying the validity of the ABT under the null
hypothesis, the asymptotic equivalence of ZABT and ZCATT holds under both null
and alternative hypotheses when Hardy-Weinberg proportions hold in the combined
case-control samples.

In practice, however, we do not test whether or not Hardy-Weinberg proportions
hold in the combined case-control samples. In particular, when the marker is associ-
ated with the disease, departure from Hardy-Weinberg proportions in the combined
samples may occur. A more useful assumption is that Hardy-Weinberg proportions
hold in the population, although this assumption cannot be tested using case-control
samples unless the disease prevalence is known (see Sect. 2.3).

Rewriting (3.18), the second algebraic relationship is given by

Z2
ABT = Z2

CATT

(
1

2

){

1 + p̄2 − p̄2

p̄(1 − p̄)

}

, (3.19)

where p̄2 = n2/n and p̄ = (2n2 + n1)/(2n). It can be shown that, as n → ∞,

p̄2 − (p̄)2 → p2 − p2 in probability

under H0, where p2 is the population frequency of genotype BB and p is the pop-
ulation frequency of allele B . Hence, when Hardy-Weinberg proportions hold in
the population, p̄2 − (p̄)2 converges to 0 in probability, which implies that ZABT
and ZCATT are asymptotically equivalent under H0. Thus, the ABT is then valid.
On the other hand, when Hardy-Weinberg proportions do not hold in the popula-
tion (e.g., due to allelic correlation), the ABT is not valid, because in Table 3.3
the columns are not independent. Under the alternative hypothesis H1, however,
p̄2 − (p̄)2 → p2 − p2 does not usually hold even when Hardy-Weinberg propor-
tions hold in the population (Problem 3.7). Therefore, under H1, ZABT and ZCATT
may have different power.

Table 3.4 reports the simulated Type I error rates of ZABT and ZCATT under H0
given the allele frequency of B is p = 0.10, 0.30 and 0.50, the prevalence k = 0.10,
and F = 0 (under Hardy-Weinberg proportions), 0.05 and 0.10 with 500 cases and
500 controls. The Type I error rates were estimated using 10,000 replicates. Both
tests use the variance estimates of the combined case-control samples. Results in
Table 3.4 show that both tests have good control of Type I error rates when Hardy-
Weinberg proportions hold (F = 0). When F becomes larger than 0, the size of the
trend test is still close to the nominal level while that of the ABT increases with F

and is much larger than α = 0.05 when F = 0.05 and 0.10.
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Table 3.4 Simulated Type I error rates of ZABT and ZCATT(1/2) with 500 cases and 500 controls
based on 10,000 replicates (F = 0 under Hardy-Weinberg proportions). The nominal level is α =
0.05

F p = 0.1 p = 0.3 p = 0.5

ZABT ZCATT ZABT ZCATT ZABT ZCATT

0 0.0452 0.0453 0.0519 0.0517 0.0524 0.0512

0.05 0.0560 0.0497 0.0539 0.0488 0.0580 0.0520

0.10 0.0620 0.0502 0.0638 0.0502 0.0627 0.0498

Table 3.5 Simulated power of ZABT and ZCATT(1/2) under Hardy-Weinberg proportions in the
population with 500 cases and 500 controls based on 10,000 replicates (GRR λ2 = 1.5). The nom-
inal level is α = 0.05

p REC ADD MUL DOM

ZABT ZCATT ZABT ZCATT ZABT ZCATT ZABT ZCATT

0.10 0.0631 0.0603 0.3936 0.3948 0.3404 0.3402 0.8065 0.8106

0.30 0.3732 0.3574 0.6779 0.6783 0.6511 0.6514 0.8825 0.8895

0.50 0.7892 0.7711 0.7035 0.7012 0.7082 0.7042 0.6324 0.6460

Assuming Hardy-Weinberg proportions hold in the population, we compare the
simulated power of ZABT and ZCATT(1/2) (both variances are estimated using
the combined case-control samples) under the four common genetic models: REC,
ADD, MUL and DOM models. In the simulation, p and k are equal to those used in
Table 3.4 and the GRR λ2 = 1.5. Based on the results in Table 3.5, the power of the
ABT and the trend test are similar under the MUL model. But under the REC model
the ABT is slightly more powerful, while under the DOM model the trend test is
slightly more powerful. Under the ADD and MUL models, their power is similar.
Although these conclusions may change when other parameter values are used, the
results in Table 3.5 demonstrate that the ABT and the trend test could have different
performance under H1, although the power difference is usually less than 1%.

3.5 Exact Tests

Two types of exact tests are used in the analysis of case-control association studies.
In the first type, all possible 2 × 3 tables (Table 3.1) or all possible 2 × 2 tables
(Table 3.3) are formed with the margins fixed at their values in the observed 2 × 3
or 2 × 2 table. The probabilities for all possible tables under the null hypothesis are
obtained, from which the p-value for the observed table can be calculated. Fisher’s
exact test is one such test for testing association in 2 × 2 tables. The second type
is a Monte-Carlo based-test, which generates a large number of replicates of the
case-control samples under the null hypothesis based on the observed data. This ap-
proach includes permutation and parametric bootstrap methods. Typically, an exact
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test refers to the first type. The Monte-Carlo based-tests are also called exact tests
here because they give accurate p-values provided the number of replicates used is
large enough.

These exact tests are often used for sparse contingency tables where the MAF
is small, because the asymptotic normal distribution does not then provide a good
approximation of the null distribution of the test statistic. For example, in Table 3.1,
if the population allele frequency for B is p = 0.1, the disease prevalence is k = 0.1,
and the GRRs (λ1, λ2) = (1,2) (the REC model), then the genotype frequency for
BB in cases is p2 = 0.0198 under Hardy-Weinberg proportions. Therefore, the ex-
pected genotype count for BB is r2 = rp2 < 2 even if r = 100 cases are sampled.
The Monte-Carlo approach is also useful when the null distribution of a test statis-
tic is not available. Hence, the Monte-Carlo method is used to simulate the null
distribution. Some of these test statistics will be discussed later in Chap. 6.

The first type of exact tests can be computationally intensive because it involves
computing probabilities from the central hypergeometric distribution and has been
criticized as being too conservative. Monte-Carlo based-tests, however, can be effi-
ciently applied. On the other hand, Monte-Carlo tests may also be computationally
prohibitive when the significance level is extremely small. For example, the signif-
icance level is α = 5 × 10−7 for testing each genetic marker in a GWAS in which
500,000 to more than a million genetic markers are tested. Hence, the number of
replicates, in applying the parametric bootstrap method, should be at least 10 mil-
lion per marker in order to obtain an accurate estimate of the p-value.

3.5.1 Exact Tests

For the case-control samples presented in Table 3.1, the exact test relies on
generating all possible 2 × 3 tables fixing the margins. Given the five margins
(r, s, n0, n1, n2), two of the six cells in the 2 × 3 table are free, which determine
the other four cells. Let r0 and r1 be free. Note that r0 ≤ r and r0 ≤ n0. Thus,
r0 ≤ min(r, n0). On the other hand, r0 = n0 − s0 ≥ n0 − s and r0 = r − r1 − r2 ≥
r −n1 −n2. Given that n0 −s = r −n1 −n2 and r0 ≥ 0, we have r0 ≥ max(n0 −s,0).
Likewise, given the margins and r0, r1 is between max(n1 − s + s0,0) and
min(r − r0, n1). Hence, the following algorithm can be used to generate all pos-
sible tables with the same fixed margins:

1. Let r0 run from max(n0 − s,0) to min(r, n0), and set s0 = n0 − r0;
2. Let r1 run from max(n1 − s + s0,0) to min(r − r0, n1), and set s1 = n1 − r1;
3. Set r2 = r − r0 − r1 and s2 = n2 − r2.

For each such table, the probability of obtaining it under H0 can be calculated
from the central hypergeometric distribution as

PrH0(rj , sj ; j = 0,1,2|r, s, nj , j = 0,1,2) = r!s!n0!n1!n2!
n!r0!r1!r2!s0!s1!s2! .
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All the null probabilities are sorted, including the one corresponding to the observed
2 × 3 table. The p-value for the observed table is then the sum of the null probabili-
ties of all the tables whose probabilities are at least as small as that of the observed
table.

The same idea for the 2 × 3 table can be applied to the 2 × 2 table (Table 3.3).
For simplicity, let a = 2r0 + r1, b = 2r2 + r1, c = 2s2 + s1, and d = 2s2 + s1. The
above algorithm for the 2 × 3 table is modified to:

1. Let a run from max(2n0 + n1 − 2s,0) to min(2n0 + n1,2r);
2. Set b = 2r − a, c = 2n0 + n1 − a, and d = 2s − c.

For each table, the probability of obtaining it under H0 can also be calculated from
the central hypergeometric distribution as

PrH0(a, b, c, d|r, s, n0, n1, n2) = (2n0 + n1)!(2n2 + n1)!(2r)!(2s)!
(2n)!a!b!c!d! .

The p-value for the observed 2 × 2 table can then be calculated in the same manner
as that for the 2 × 3 table.

Using the data presented in Table 3.2, max(n0 − s,0) = 81, min(r, n0) = 500,
max(n1 − s + s0,0) = 143, and min(r − r0, n1) = 183. Thus, r0 runs from 81 to 500
and r1 runs from 143 to 183. A total of 17,220 genotype-based tables will be formed
whose probabilities need to be calculated. For the allele-based table, max(2n0 +
n1 − 2s,0) = 541 and min(2n0 + n1,2r) = 1000. Thus, only 460 tables will be
formed. Many software packages conduct the above exact tests.

Other algorithms to simplify the computation are available. For example, a short
cut calculation for a 2 × 2 table is given as follows: (i) Let a be the smallest value
among the four values in the 2×2 table. (ii) At step k (k = 1, . . . , a), consider a new
2 × 2 table with the counts (a, b, c, d) replaced by (a − k, b + k, c + k, d − k). The
four margins of the new table do not change. Denote the probability of the central
hypergeometric distribution for this table as pk . (iii) Then

pk = (a − (k − 1))(d − (k − 1))

(c + (k + 1))(b + (k + 1))
pk−1.

(iv) The exact p-value for the 2 × 2 table is given by
∑a

k=0 pk , where p0 is the
probability of the central hypergeometric distribution for the observed 2 × 2 table.

3.5.2 Permutation Approach

To apply the permutation approach to the 2 × 3 table, we fix the genotype of each
individual and permute the case and control status among them. This generates a
new 2 × 3 table under H0 with fixed margins. For each generated table, the p-value
of the test statistic can be calculated. After a large number of permutations, all the
p-values can be sorted and the p-value of the observed table can be estimated by
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Fig. 3.2 Plot of 10,000
random variates N(0,1) and
10,000 bootstrapped trend
tests using the data in
Table 3.2

the proportion of tables whose p-values are at least as small as that of the observed
table. The permutation for the 2 × 2 table can be done in the same manner as for the
2 × 3 table.

3.5.3 Parametric Bootstrap Approach

Both exact tests and the permutation procedure fix the margins. The parametric boot-
strap method only fixes the numbers of cases (r) and controls (s), but not the num-
bers of genotypes. For each replicate, case genotype counts (r0, r1, r2) are simulated
from Mul(r;n0/n,n1/n,n2/n) and control genotype counts are simulated from
Mul(s;n0/n,n1/n,n2/n), where n0, n1, n2 are the observed genotype counts in
the combined case-control samples. Each replicate simulates a case-control dataset
under H0, from which the test statistic can be calculated. After a large number of
replicates, the simulated test statistics form an approximation to the empirical distri-
bution under the null hypothesis, from which the approximate p-value or the critical
value can be obtained. The parametric bootstrap method will be further discussed in
Chap. 6.

Using the simulated case-control samples in Table 3.2, we apply the paramet-
ric bootstrap with 10,000 replicates. In each replicate ZCATT(1/2) is calculated.
A random sample of size 10,000 is also drawn from N(0,1). Figure 3.2 displays
the plot for the bootstrapped ZCATT(1/2) and the random normal samples, in which
the ranked values of the bootstrapped ZCATT(1/2) sample are plotted against the
ranked values of the random normal sample. The plot shows that the bootstrapped
test statistics are close to the normal random samples. The bootstrapped p-values
using the data in Table 3.2 with various numbers of replicates are reported in Ta-
ble 3.6 together with the asymptotic p-value reported in Sect. 3.3.1. From Table 3.6,
we see that using 10,000 replicates may not be sufficient to provide an accurate es-
timate of the p-value when the true (asymptotic) p-value is about 10−4. It takes 6
minutes to simulate 10 million replicates using a personal computer (Pentium(R)
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Table 3.6 Asymptotic and bootstrapped p-values for the trend test ZCATT(1/2) using the data in
Table 3.2

Asymptotic Number of replicates

10,000 100,000 1,000,000 10,000,000

0.00014 0 0.00009 0.000084 0.0000891

4 CPU 3.40 GHz, 3.39 GHz, 0.99 GB of RAM). Although computing the asymp-
totic p-value from the trend test is convenient, this example shows that it appears to
be more conservative than the parametric bootstrap method with a large number of
replicates.

3.6 Hardy-Weinberg Disequilibrium Trend Test

It is known that when the marker is associated with the disease, departure from
Hardy-Weinberg proportions in cases can be used to test for association. Departure
from Hardy-Weinberg proportions is measured by the Hardy-Weinberg disequilib-
rium (HWD) coefficient, denoted in a given population by

Δ = Pr(BB) − {Pr(BB) + Pr(AB)/2}2.

When Hardy-Weinberg proportions hold in the population, Δ = 0. Denote HWD
coefficients in cases and in controls by Δp and Δq , respectively, which are given by

Δp = p2 − p2
M and Δq = q2 − q2

M,

where pM = p2 + p1/2 and qM = q2 + q1/2. When Hardy-Weinberg proportions
hold in the case (control) population, Δp = 0 (Δq = 0). Under the null hypothesis
of no association, H0 : Δ = Δp = Δq . Hence, when Δ = 0, the null hypothesis of
no association can be tested by H0 : Δp = Δq against the alternative hypothesis
H1 : Δp �= Δq . The HWD trend test (HWDTT) is based on the difference of HWD
in cases and controls to test for association. For a rare disease, the HWDTT can be
based only on the HWD in cases because Δq ≈ 0 when Hardy-Weinberg proportions
hold in the population (see Problem 3.13).

The estimates of HWD coefficients in cases and controls are given by

Δ̂p = p̂2 − (p̂2 + p̂1/2)2 and Δ̂q = q̂2 − (̂q2 + q̂1/2)2,

where p̂j = rj /r and q̂j = sj /s for j = 0,1,2. Note that

E(Δ̂p) = Δp − (pM(1 − pM) + Δp)/(2r) ≈ Δp,

Var(Δ̂p) ≈ {p2
M(1 − pM)2 + (1 − 2pM)2Δp − Δ2

p}/r,
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which hold under both H0 and H1, and asymptotically,

Δ̂p ∼ N(E(Δ̂p),Var(Δ̂p)).

Similar expressions can be obtained for Δ̂q . The HWDTT can therefore be written
as

ZHWDTT = Δ̂p − Δ̂q
√

V̂ar(Δ̂p) + V̂ar(Δ̂q)

,

where, under H0 : Δp = Δq ,

V̂ar(Δ̂p) + V̂ar(Δ̂q) = (1/r + 1/s){p̄2
M(1 − p̄M)2 + (1 − 2p̄M)2Δ̄p − Δ̄2

p},

in which p̄M = (2n2 + n1)/(2n) and Δ̄p = n2/n − {n2/n + n1/(2n)}2. Further
simplifying the denominator of ZHWDTT and assuming Hardy-Weinberg proportions
in the population, we obtain

ZHWDTT =
√

rs/n(Δ̂p − Δ̂q)

{1 − n2/n − n1/(2n)}{n2/n + n1/(2n)} . (3.20)

Under H0, ZHWDTT ∼ N(0,1) asymptotically.
From Problem 3.10, the expected value of ZHWDTT under the MUL model is

asymptotically 0. Thus, ZHWDTT has no power to test for association under this
model. From Sect. 3.2, the ADD model approximates the MUL model near the null
hypothesis. Thus, the power of ZHWDTT for the ADD model is also low unless the
GRRs are large. For example, using the simulated data of Table 3.2, ZHWDTT =
−0.0294 with p-value = 0.9765.

3.7 Combining the HWDTT and the CATT

A simulation study is conducted to compare the empirical power of ZCATT(1/2) and
ZHWDTT under the four common genetic models and various settings. The empirical
power is estimated using 10,000 replicates. The results are presented in Table 3.7.
The results indicate that ZHWDTT is slightly more powerful than ZCATT(1/2) under
the REC model with small to moderate MAFs. On the other hand, ZHWDTT has
moderate power under the DOM model with moderate to common MAFs, though it
has substantially less power than ZCATT(1/2). Under the ADD model, however, the
power of ZHWDTT is close to the significance level unless the genetic effect is much
larger than λ2 = 2.0. The performance of ZHWDTT under the ADD model provides
insight into the result of applying ZHWDTT to the simulated data in Sect. 3.6.

Although ZCATT(1/2) outperforms ZHWDTT in many practical situations, we will
show that ZHWDTT actually provides useful information in addition to ZCATT(1/2)

that can be incorporated into an analysis together with ZCATT(1/2) and may result
in more powerful approaches than using ZCATT(1/2) alone.
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Table 3.7 Empirical power of ZCATT(1/2) and ZHWDTT under Hardy-Weinberg proportions in
the population with 500 cases and 500 controls, and k = 0.1. The significance level is α = 0.05

GRR
λ2

p REC ADD DOM

CATT HWDTT CATT HWDTT CATT HWDTT

1.2 0.1 0.0487 0.0681 0.1099 0.0513 0.2417 0.0555

0.3 0.0992 0.1128 0.1862 0.0472 0.3100 0.1071

0.5 0.2173 0.1284 0.2067 0.0518 0.1956 0.1264

1.5 0.1 0.0663 0.1351 0.3977 0.0510 0.8266 0.1098

0.3 0.3496 0.3796 0.6811 0.0512 0.8842 0.3673

0.5 0.7741 0.4205 0.7040 0.0516 0.6449 0.4088

2.0 0.1 0.1053 0.3316 0.8885 0.0555 0.9994 0.3891

0.3 0.8306 0.8556 0.9897 0.0733 0.9994 0.8471

0.5 0.9986 0.8348 0.9879 0.0661 0.9625 0.8132

From Problem 3.11, the two trend tests ZCATT(1/2) and ZHWDTT are asymptoti-
cally uncorrelated under the null hypothesis of no association when Hardy-Weinberg
proportions hold in the population, i.e.

CorrH0(ZCATT(1/2),ZHWDTT) = 0 as n → ∞. (3.21)

By the joint normality of the two trend tests, the above property indicates that the
two trend tests are asymptotically independent when Hardy-Weinberg proportions
hold in the population. This property can be incorporated in the analysis of case-
control association studies using the trend test.

We first consider Fisher’s combination of the p-values of the two trend tests.
Let pCATT and pHWDTT be p-values of ZCATT(1/2) and ZHWDTT. Then Fisher’s
combination test is written as

TF = −2 log(pCATT) − 2 log(pHWDTT),

which asymptotically follows χ2
4 under H0. Thus, H0 is rejected at the level α if

TF > χ2
4 (1 −α), where χ2

4 (1 −α) is the 100(1 −α)th percentile of χ2
4 . The p-value

of TF is given in Problem 3.12. An alternative simple approach is to combine the
two test statistics directly as given by

TSUM = Z2
HWDTT + Z2

CATT(1/2),

which has an asymptotic χ2
2 distribution under H0.

Tables 3.8, 3.9 report the results from simulation studies comparing ZCATT(1/2)

with TF , Pearson’s test and TSUM under the null hypothesis and under alternative
hypotheses with various genetic models. The Type I error and power are estimated
based on 100,000 replicates. The results for all four test statistics are not sensitive
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Table 3.8 Empirical power of ZCATT(1/2), Fisher’s combination test TF , Pearson’s test Tχ2
2

, and
the sum of the two trend tests TSUM with 500 cases and 500 controls (GRR is 1.5), and 250 cases
and 250 controls (GRR is 2.0), k = 0.1 and 100,000 replicates. The nominal level is α = 0.05 and
F = 0 (Hardy-Weinberg proportions hold)

Model λ2 p CATT TF Tχ2
2

TSUM

NULL 1 0.1 0.0493 0.0489 0.0466 0.0485

0.3 0.0499 0.0490 0.0486 0.0486

0.5 0.0501 0.0493 0.0497 0.0497

REC 1.5 0.1 0.0658 0.0974 0.0913 0.0968

0.3 0.3507 0.5228 0.4995 0.5154

0.5 0.7742 0.8402 0.8370 0.8355

2.0 0.1 0.0755 0.1231 0.1031 0.1211

0.3 0.5543 0.7600 0.7290 0.7510

0.5 0.9263 0.9596 0.9596 0.9580

ADD 1.5 0.1 0.4025 0.3064 0.3099 0.3132

0.3 0.6851 0.5689 0.5811 0.5817

0.5 0.7013 0.5861 0.5995 0.5995

2.0 0.1 0.6108 0.4923 0.4936 0.5043

0.3 0.8553 0.7696 0.7802 0.7811

0.5 0.8422 0.7508 0.7636 0.7635

MUL 1.5 0.1 0.3541 0.2671 0.2704 0.2725

0.3 0.6540 0.5351 0.5459 0.5464

0.5 0.7095 0.5958 0.6083 0.6083

2.0 0.1 0.5000 0.3842 0.3838 0.3949

0.3 0.8245 0.7233 0.7364 0.7373

0.5 0.8595 0.7676 0.7799 0.7799

DOM 1.5 0.1 0.8253 0.7672 0.7641 0.7741

0.3 0.8871 0.9011 0.8944 0.9005

0.5 0.6337 0.7443 0.7387 0.7374

2.0 0.1 0.9545 0.9338 0.9294 0.9376

0.3 0.9638 0.9753 0.9718 0.9750

0.5 0.7448 0.8605 0.8579 0.8544

to departure from Hardy-Weinberg proportions. The power of Fisher’s combina-
tion TF and TSUM are much higher than using ZHWDTT alone, in particular under
the ADD and MUL models. Results show that TF and TSUM are more powerful than
ZCATT(1/2) under the REC model but less powerful under the ADD and MUL mod-
els. Under the DOM model, ZCATT(1/2), TF and TSUM have similar performance,
although TF and TSUM are slightly more powerful than ZCATT(1/2). TF also out-
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Table 3.9 Empirical power of ZCATT(1/2), Fisher’s combination test TF , Pearson’s test Tχ2
2

, and
the sum of the two trend tests TSUM with 500 cases and 500 controls (GRR is 1.5), and 250 cases
and 250 controls (GRR is 2.0), k = 0.1, based on 100,000 replicates. The significance level is
α = 0.05 and F = 0.05 (Hardy-Weinberg proportions do not hold)

Model λ2 p CATT TF Tχ2
2

TSUM

NULL 1 0.1 0.0498 0.0493 0.0477 0.0491

0.3 0.0507 0.0501 0.0497 0.0498

0.5 0.0509 0.0500 0.0500 0.0500

REC 1.5 0.1 0.0794 0.1372 0.1158 0.1354

0.3 0.4010 0.5797 0.5406 0.5716

0.5 0.7899 0.8456 0.8447 0.8420

2.0 0.1 0.1047 0.2034 0.1598 0.1978

0.3 0.6161 0.8097 0.7699 0.8013

0.5 0.9352 0.9614 0.9626 0.9604

ADD 1.5 0.1 0.4142 0.3215 0.3228 0.3273

0.3 0.7028 0.5852 0.5991 0.5979

0.5 0.7236 0.6121 0.6237 0.6239

2.0 0.1 0.6252 0.5053 0.5137 0.5165

0.3 0.8695 0.7854 0.7946 0.7970

0.5 0.8578 0.7731 0.7846 0.7851

MUL 1.5 0.1 0.3673 0.2835 0.2821 0.2885

0.3 0.6772 0.5616 0.5733 0.5748

0.5 0.7311 0.6158 0.6288 0.6288

2.0 0.1 0.5283 0.4223 0.4180 0.4301

0.3 0.8426 0.7471 0.7581 0.7597

0.5 0.8733 0.7861 0.7977 0.7978

DOM 1.5 0.1 0.8136 0.7347 0.7591 0.7458

0.3 0.8879 0.8944 0.8961 0.8946

0.5 0.6633 0.7656 0.7585 0.7588

2.0 0.1 0.9493 0.9185 0.9267 0.9242

0.3 0.9640 0.9739 0.9727 0.9737

0.5 0.7700 0.8773 0.8732 0.8720

performs both Pearson’s test and TSUM under the REC model, but is slightly less
powerful under the ADD and MUL models. Under the DOM model, TF , Tχ2

2
and

TSUM have comparable power.
Applying Fisher’s combination test to the simulated data of Table 3.2, we

have pCATT = 0.00014 and pHWDTT = 0.9765. Thus, Fisher’s combination test is
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TF = −2 log(0.00014) − 2 log(0.9765) = 17.7953 with p-value = 0.00135. How-
ever, when TSUM is applied, the p-value is 0.00071.

3.8 Estimates of Odds Ratios

Using the notation given in Sect. 2.5 and the case-control data in Table 3.1, two
ORs, ORG1:G0 = OR1 and ORG2:G0 = OR2, are given by

ORG1:G0 = f1(1 − f0)

f0(1 − f1)
, (3.22)

ORG2:G0 = f2(1 − f0)

f0(1 − f2)
. (3.23)

Dividing (3.23) by (3.22), we also have

ORG2:G1 = ORG2:G0

ORG1:G0

= f2(1 − f1)

f1(1 − f2)
.

ORi , i = 1,2 compares the risk of the heterozygous genotype G1 = AB or homozy-
gous genotype G2 = BB with the reference genotype G0 = AA.

The genetic models can be defined using GRRs. Note that the REC (f1 = f0) and
DOM (f1 = f2) models are equivalent to ORG1:G0 = 1 and ORG2:G1 = 1, respec-
tively. However, the ADD or MUL model cannot be represented in a simple form
by ORs. Assuming 0 < fj < 1 for j = 0,1,2, under the ADD model,

1 + ORG2:G0 − 2ORG1:G0 = (f2 − f1)(2 − f0 − f2)

f0(1 − f1)(1 − f2)
> 0, (3.24)

and under the MUL model,

ORG2:G0 − OR2
G1:G0

= (1 − f0)f2(f0 + f2 − 2f1)

f0(1 − f1)2(1 − f2)
> 0. (3.25)

Note that (3.24) and (3.25) can be directly verified (see Problem 3.1).
Using the data in Table 3.1, the estimates of OR1 and OR2 are

ÔR1 = r0s1

r1s0
and ÔR2 = r0s2

r2s0
.

Consistent estimates of the variances of ÔR1 and ÔR2 can be obtained from
Sect. 2.5.

Applying the results to the simulated data in Table 3.2,

ÔR1 = 1.46 and V̂ar(log ÔR1) = 0.01760.

Hence, the 95% CI for OR1 is (1.13, 1.89), which indicates the odds of having the
disease in the genotype AB group is significantly higher than that in the genotype
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AA group. Likewise, we obtain ÔR2 = 2.80 and V̂ar(log ÔR2) = 0.1260. Thus, the
95% CI for OR2 is (1.40, 5.61). This also indicates a significant association between
case/control and genotypes AA/BB.

An OR for these data can also be computed for the allelic data given in Table 3.3.
Then a = 805, b = 195, c = 736, and d = 264. The estimate of the OR is ÔR = 1.48
with 95% CI (1.20, 1.83). When the underlying genetic model is REC or DOM, the
genotype data can be reduced to a 2 × 2 table. For the REC model, a = r0 + r1,
b = r2, c = s0 + s1, and d = s2. For the DOM model, a = r0, b = r1 + r2, c = s0,
and d = s1 + s2. For the ADD model, however, the estimate of the OR and its
variance estimate can be obtained from the prospective logistic regression model in
Sect. 3.3.2 with the score I (G) = 1/2 for G = AB. Then, ÔR = exp(β̂1). See the
real data analysis in Sect. 3.11.

3.9 Simulating Case-Control Samples

Cases and controls can be simulated independently from multinomial distributions
with fixed r and s using the parametric bootstrap method described in Sect. 3.5.3. In
the following, we discuss two approaches using logistic regression models, in which
covariates can be adjusted out.

3.9.1 Without Covariates

To simulate case-control samples without covariates for genetic marker M given a
specific genetic model, the following algorithm can be used:

1. Specify the numbers of cases (r) and controls (s), the disease prevalence k, the
allele frequency p for the risk allele B (the minor allele if the risk allele is un-
known), and the GRR λ2 = λ;

2. Calculate the GRR λ1 based on the given genetic model and population geno-
type frequencies g0, g1 and g2 using (3.1) (where F = 0 under Hardy-Weinberg
proportions in the population);

3. Calculate f0 = k/(g0 + λ1g1 + λ2g2), f1 = λ1f0, and f2 = λ2f0;
4. Calculate pj = gjfj /k and qj = gj (1 − fj )/(1 − k) for j = 0,1,2;
5. Generate random samples (r0, r1, s2) and (s0, s1, s2) independently from the

multinomial distributions Mul(r;p0,p1,p2) and Mul(s;q0, q1, q2), respectively.

The above procedure can be used to generate case-control samples under the null
and alternative hypotheses, where λ = 1 for H0 (regardless of the genetic model
specified) and λ > 1 for H1. When the genetic model is unknown, both GRRs
(λ1, λ2) need to be specified. The following is an example to generate a case-control
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dataset for r = s = 500, p = 0.25, k = 0.10, and λ = 1.5 under the ADD model:

AA AB BB

case 251 213 36

control 270 195 35

When the ORs, ORG1:G0 = OR1 and ORG2:G0 = OR2, are given instead of the
GRRs, we can specify the reference penetrance f0, and use the prospective logistic
regression model to calculate fi as

fi = Pr(case |Gi) = exp(β0 + βi)

1 + exp(β0 + βi)
, for i = 1,2,

where β0 = log(f0/(1 − f0)) and βi = log(ORi ) for i = 1,2. Then, k is calculated
by k =∑2

j=0 gjfj . When the underlying genetic model defined in (3.4) is known,
we only need to specify f0 and OR2. Then f2 can be calculated from OR2 and f1
can be calculated from f0 and f2 from (3.4). After the penetrances f0, f1, and f2
are calculated, the above algorithm can be used to generate genotype counts in cases
and controls. To generate data with ORs, the previous example for the ADD model
is modified with r = s = 500, p = 0.25, f0 = 0.01, and OR2 = 0.5 (here A is the
risk allele) as follows:

AA AB BB

case 317 171 12

control 264 208 28

The above data are also presented in Table 3.2.

3.9.2 With Covariates

We can generate case-control samples incorporating covariates for each individual,
e.g., age and sex. Let Xit be the t th covariate value for the ith individual i = 1, . . . , n

and t = 1, . . . , T . Define

f0i = exp(β0 +∑T
t=1 β0t xit )

1 + exp(β0 +∑T
t=1 β0j xit )

and

f2i = exp(β0 +∑T
t=1 β0t xit + β2)

1 + exp(β0 +∑T
t=1 β0t xit + β2)

,

where β0 and β0t (t = 1, . . . , T ) are prespecified effects, β2 = log(OR2) for geno-
type BB, and xit are observed covariates for the ith individual, which can be simu-
lated from the distribution of Xit . A real example is given later in which case-control
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samples are generated with individual age and sex and the distributions of age and
sex are fitted based on a real dataset. Given the underlying genetic model, f0i and
f2i , f1i can be calculated for the ith individual. Then, for each i = 1, . . . , n, calcu-
late

ki =
2∑

j=0

gjfji, pji = gjfji

ki

, and qji = gj (1 − fji)

(1 − ki)
, for j = 0,1,2.

The genotype of a case (or a control) with covariates Xit = xit (t = 1, . . . , T ) can be
simulated from Mul(1;p0i , p1i , p2i ) (or Mul(1;q0i , q1i , q2i )). This can be repeated
until all r cases and s controls are generated.

For example, consider a GWAS for age-related macular degeneration (AMD).
The data contains 46 cases and 50 controls with the covariates age and sex. The
following logistic regression model for the reference penetrance is used

f0 = Pr(case|sex, age) = exp(β0 + β1sex + β2age)

1 + exp(β0 + β1sex + β2age)
. (3.26)

Fitting the above model using the real data, the estimates of β0, β1 and β2 are
−18.99 (p-value = 0.0000186), 0.45 (p-value = 0.239), and 0.22 (p-value =
0.0000356). Then, for the ith individual, (3.26) is modified to

f0i = exp(β̂0 + β̂1sex + β̂2age)

1 + exp(β̂0 + β̂1sex + β̂2age)
,

where the age and sex for the ith individual are generated from the normal and
binomial distributions whose parameters are estimated based on the observed AMD
data. For a given GRR λ2, f2i = λ2f0i is calculated. If a genetic model is assumed,
λ1i can be obtained based on the underlying genetic model. Then, the procedures in
Sect. 3.9.2 can be followed.

3.10 Adjusting out Covariates

The statistical methods to test for association introduced in this chapter use either the
genotype data or the allele data (Tables 3.1 and 3.3). In practice, measured covariates
are also available, including age, sex, and race. If a covariate is associated with the
disease, it may be a confounder for association between the genetic marker and
the disease. Adjusting out and correcting for such confounding effects is important
in a genetic association study. Not all procedures that are covered in this chapter
can allow adjusting out covariates. The genotype-based and allele-based analyses,
however, can allow for covariates using the prospective logistic regression model.

As shown in Sect. 3.3.2 and Sect. 3.3.4, the trend test and Pearson’s chi-squared
test can be obtained from the logistic regression models. To adjust out covariates X,
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we modify the logistic regression models in (3.9) and (3.12) as

Pr(case |G,X) = exp(β0 + β1I (G) + βXX)

1 + exp(β0 + β1I (G) + βXX)
,

Pr(case |I1(G), I2(G),X) = exp(β0 + β1I1(G) + β2I2(G) + βXX)

1 + exp(β0 + β1I1(G) + β2I2(G) + βXX)
,

respectively. The null hypotheses of no association between the genetic marker and
the disease are stated as H0 : β1 = 0 and H0 : β1 = β2 = 0, respectively. The Score
test, LRT and Wald test given in Sect. 1.2.4 can be applied.

3.11 Examples and Case Studies

3.11.1 Data from Genome-Wide Association Studies

Seventeen SNPs were chosen from four GWAS: AMD, prostate cancer, breast can-
cer, and hypertension. These SNPs were reported to have true association with the
diseases (see Sect. 3.12). Table 3.10 reports the genotype counts for each SNP
with a unique SNP ID. The minor alleles are defined using the controls, that is,
an allele is minor if its allele frequency is equal to min{(2s0 + s1)/(2s0 + 2s1 +
2s2), (2s2 + s1)/(2s0 + 2s1 + 2s2)}. Then the frequency of that allele in cases is
estimated. Using SNP rs380390 as an example, the allele frequencies for A and B

are (2 × 6 + 25)/{2(6 + 25 + 19)} = 0.37 and (2 × 19 + 25)/{2(6 + 25 + 19)} =
0.63, respectively. Thus, allele A is minor. The frequency of allele A in cases is
(2 × 50 + 35)/{2(50 + 35 + 11)} ≈ 0.7031, which appears in the first row of Ta-
ble 3.10.

3.11.2 Association Tests

Using the data in Table 3.10, four test statistics (the ABT, the trend test for the ADD
model, Pearson’s test and Fisher’s combination of the trend test and the HWDTT)
and their corresponding p-values are calculated. The p-values were obtained from
the asymptotic distributions of the test statistics without assuming which is the
risk allele. The results are reported in Table 3.11. Overall, the ABT and CATT
with the score x = 1/2 have comparable p-values, but Pearson’s test and Fisher’s
combination test are more robust. For example, there are three SNPs (rs12505080,
rs7696175, and rs2398162) associated with breast cancer that have p-values greater
than 0.05 using ZABT and ZCATT but have much stronger evidence of association
when Tχ2

2
and TF are used.

To illustrate the exact tests, we only consider the first two SNPs in Table 3.10.
The exact tests for the genotype and allelic data are considered. The p-values for
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Table 3.10 The genotype distributions and MAFs for the 17 SNPs with true associations in four
genetic studies

SNP ID MAFs Cases Controls

cases controls r0 r1 r2 s0 s1 s2

AMD

rs380390 0.7031 0.3700 50 35 11 6 25 19

rs1329428 0.1489 0.4063 2 24 68 5 29 14

Prostate cancer

rs1447295 0.1421 0.1029 25 283 864 10 218 929

rs6983267 0.5546 0.4896 223 598 351 301 579 277

rs7837688 0.1439 0.0986 27 283 861 11 206 939

Breast cancer

rs10510126 0.0873 0.1316 10 180 955 14 272 854

rs12505080 0.2542 0.2670 50 477 608 99 408 628

rs17157903 0.1584 0.1227 18 316 777 26 220 862

rs1219648 0.4555 0.3848 250 543 352 170 538 433

rs7696175 0.4275 0.4356 187 605 353 249 496 396

rs2420946 0.4498 0.3796 242 546 357 165 537 440

Hypertension

rs2820037 0.1709 0.1410 40 587 1325 72 684 2180

rs6997709 0.2441 0.2851 118 716 1116 237 1201 1500

rs7961152 0.4605 0.4147 416 963 570 492 1448 992

rs11110912 0.2002 0.1652 67 647 1237 83 804 2049

rs1937506 0.2480 0.2886 113 742 1097 244 1205 1484

rs2398162 0.2180 0.2581 111 624 1205 194 1121 1608

the first SNP (rs380390) are 4.56e−7 (genotype-based) and 2.30e−8 (allele-based).
The p-values for the second SNP (rs1329428) are 1.28e−6 (genotype-based) and
1.42e−6 (allele-based). Two types of notation are used for p-values. Here 4.56e−7
(or 4.56E−7) is equivalent to 4.56 × 10−7.

3.11.3 Estimates of Odds Ratios

Finally we calculate ORs and their 95% CIs (Sect. 3.8). Three ORs are considered.
The first one is based on the linear trend or the ADD model. The estimate of the OR
(or the log OR) under the ADD model is evaluated numerically. Standard software
reports the OR and its 95% CI under the ADD model once scores (0,1/2,1) are
chosen. When the OR is greater (less) than 1, it indicates that the logit of the prob-
ability of having the disease increases linearly with the number of the risk allele B
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Table 3.11 Test statistics and p-values for the 17 SNPs in Table 3.10. The trend test has the scores
(0,1/2,1) indicating the proportion of B alleles in the genotype

SNP ID ABT CATT(1/2) χ2
2 Fisher’s

ZABT p-value ZCATT p-value Tχ2
2

p-value TF p-value

rs380390 −5.49 4.01e−8 −5.12 3.10e−7 26.51 1.75e−6 32.35 1.62e−6

rs1329428 4.83 1.36e−6 4.92 8.70e−7 25.05 3.64e−6 33.51 9.39e−7

rs1447295 −4.08 4.50e−5 −4.08 4.50e−5 17.12 1.91e−4 21.45 2.58e−4

rs6983267 4.44 9.03e−6 4.47 7.91e−6 20.54 3.46e−5 25.08 4.84e−5

rs7837688 −4.73 2.26e−6 −4.69 2.68e−6 22.15 1.55e−5 26.81 2.17e−5

rs10510126 4.79 1.66e−6 4.83 1.38e−6 25.02 3.69e−6 26.19 3.02e−6

rs12505080 0.98 3.27e−1 0.99 3.24e−1 21.82 1.83e−5 29.13 2.90e−5

rs17157903 −3.41 6.30e−4 −3.42 6.32e−4 23.05 9.87e−6 28.66 7.37e−6

rs1219648 −4.84 1.28e−6 −4.77 1.81e−6 26.61 7.46e−6 26.52 9.15e−6

rs7696175 0.55 5.82e−1 0.55 5.85e−1 22.07 1.61e−5 28.17 2.49e−5

rs2420946 −4.82 1.46e−6 −4.76 1.94e−6 23.28 8.80e−6 35.06 1.15e−5

rs2820037 −4.02 5.94e−5 −4.02 5.76e−5 28.17 7.66e−7 23.97 4.51e−7

rs6997709 4.47 7.71e−6 4.47 7.88e−6 20.08 4.36e−5 25.29 8.10e−5

rs7961152 −4.47 7.87e−6 −4.48 7.39e−6 20.81 3.03e−5 27.46 4.40e−5

rs11110912 −4.41 1.01e−5 −4.44 9.18e−6 21.70 1.94e−5 44.89 1.61e−5

rs1937506 4.42 9.77e−6 4.43 9.23e−6 20.00 4.53e−5 43.19 6.67e−5

rs2398162 4.52 6.22e−6 4.47 7.85e−6 24.16 5.67e−6 28.99 7.85e−6

(A) in the genotype. This association is significant at the 0.05 level if the 95% CI
does not contain 1.

The other two types of ORs compare AB + BB versus AA and AB + AA ver-
sus BB. When B is the risk allele, the first type assumes a DOM model while the
second type assumes a REC model. However, when A is the risk allele, the DOM
and REC models are switched. For the REC and DOM models, ORs and their con-
fidence intervals can be obtained explicitly (Sect. 3.8). However, they can also be
obtained from the standard logistic regression model by scoring the three genotypes
by (0,0,1) for the REC model and (0,1,1) for the DOM model when B is the risk
allele.

All three types of ORs and their CIs are reported in Table 3.12. The results in
Table 3.12 show that whether the CIs contain 1 may depend on the underlying ge-
netic model. For example, for SNP rs12505080, when B is the risk allele, the OR
for comparing AB + BB versus AA is significant at the 0.05 level, which indicates
a strong DOM effect. But the other two ORs are not significant. On the other hand,
some SNPs are significant regardless of the underlying genetic model. Therefore, re-
porting ORs along with their corresponding genetic models is important. A genetic
model could be determined a priori; otherwise ORs for all genetic models need to
be reported, not just choosing a genetic model with the significant OR.
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Table 3.12 The ORs and their 95% CIs for the 17 SNPs with true associations in four genetic
studies

SNP ID ADD model AB + BB vs AA AB + AA vs BB

OR CI OR CI OR CI

rs380390 0.27 (0.16,0.46) 0.13 (0.05,0.32) 0.21 (0.09,0.49)

rs1329428 4.80 (2.44,9.46) 5.35 (1.00,28.7) 6.35 (2.94,13.7)

rs1447295 0.69 (0.58,0.83) 0.40 (0.19,0.84) 0.69 (0.58,0.84)

rs6983267 1.30 (1.16,1.47) 1.50 (1.23,1.82) 1.36 (1.13,1.63)

rs7837688 0.65 (0.55,0.78) 0.41 (0.20,0.83) 0.64 (0.53,0.78)

rs10510126 1.60 (1.32,1.94) 1.41 (0.62,3.19) 1.68 (1.37,2.07)

rs12505080 1.07 (0.94,1.22) 2.07 (1.46,2.94) 0.93 (0.79,1.10)

rs17157903 0.74 (0.63,0.88) 1.46 (0.80,2.68) 0.66 (0.55,0.80)

rs1219648 0.75 (0.67,0.85) 0.63 (0.51,0.78) 0.73 (0.61,0.86)

rs7696175 1.03 (0.92,1.16) 1.43 (1.16,1.77) 0.84 (0.70,1.00)

rs2420946 0.75 (0.67,0.85) 0.63 (0.51,0.78) 0.72 (0.61,0.86)

rs2820037 0.80 (0.71,0.89) 1.20 (0.81,1.78) 0.73 (0.65,0.83)

rs6997709 1.24 (1.13,1.35) 1.36 (1.08,1.71) 1.28 (1.14,1.44)

rs7961152 0.83 (0.76,0.90) 0.74 (0.64,0.86) 0.81 (0.71,0.92)

rs11110912 0.79 (0.71,0.88) 0.82 (0.59,1.14) 0.75 (0.66,0.85)

rs1937506 1.23 (1.12,1.35) 1.48 (1.17,1.86) 1.25 (1.12,1.41)

rs2398162 1.24 (1.13,1.37) 1.17 (0.92,1.49) 1.34 (1.19,1.51)

3.12 Bibliographical Comments

Several test statistics for association are discussed. The CATT, the ABT and Pear-
son’s chi-squared test are most commonly used in analysis for case-control genetic
associations. Sham [240], Thomas [270], Ziegler and Köenig [351], and Siegmund
and Yakir [245] also contain some of these association test statistics. Two reviews
also discussed basic statistical tests for the analysis of case-control data (Balding
[12] and Li [171]).

Armitage [9] and Cochran [40] proposed the trend test to analyze a linear trend
in ordered categorical data (Agresti [4]). Sasieni [223] compared the trend test and
the ABT for testing genetic association using case-control samples. In particular,
he studied some conditions under which the two tests are asymptotically equivalent
under the null hypothesis. The choice of scores in the trend test has been extensively
discussed in the context of the analysis of ordered categorical data (e.g., Graubard
and Korn [106]) and case-control genetic association studies (Sasieni [223], Devlin
and Roeder [60], Slager and Schaid [248], Freidlin et al. [91], and Zheng et al.
[336]). Kim et al. [143] show that the association model becomes the ADD as the
distance between two loci increases regardless of the true genetic model. Zheng et
al. [340] show that, when the marker and the functional locus have imperfect LD,
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the genetic model space defined at the functional locus tends to shrink towards the
ADD model at the marker. That means that there are no pure REC or DOM models
at the marker locus unless the linkage disequilibrium is perfect, a justification for
using the ADD model as a robust model under model uncertainty. More discussion
of robust tests will be provided in Chap. 6.

Zheng and Gastwirth [345] discussed the two different estimates of the variance
in the trend test obtained by using the combined case-control samples or the separate
case-control samples. Skol et al. [246] estimated the variance of the ABT using the
separate case-control samples. Expressing Pearson’s chi-squared test in terms of the
trend tests or the logistic regression model was used by Zheng et al. [335] to correct
for population substructure for tests with two degrees of freedom, and by Zheng et
al. [343] to prove that the ratio of the trend test to Pearson’s test and Pearson’s test
are asymptotically independent under the null hypothesis of no association.

The asymptotic equivalence of the trend test (for the ADD model) and the ABT
under the null hypothesis has been studied by Sasieni [223], Guedj et al. [108], and
Knapp [146]. Sasieni [223] studied Hardy-Weinberg proportions in the combined
samples while Guedj et al. [108] and Knapp [146] considered Hardy-Weinberg pro-
portions in the population. The condition for the asymptotic equivalence between
these two tests under the alternative hypothesis has been studied by Zheng [329],
who related the condition to the sampling scheme in the retrospective case-control
design. Schaid and Jacobsen [233] and Knapp [145] studied the impact of depar-
ture from Hardy-Weinberg proportions on the ABT and provided some corrections.
Issues of testing Hardy-Weinberg proportions can be found in Zou and Donner
[355]. See Nielsen et al. [193] and Song and Elston [250] for using departure from
HWD (Weir [299]) to detect association. Song and Elston [251] further studied the
HWDTT and proposed to combine it with the trend test for the ADD model in a
linear combination. Other combinations have been studied by Li [163], Zheng et al.
[345] and Zheng et al. [343].

Exact tests are covered in many biostatistics textbooks, e.g., Lachin [156]. Many
algorithms for calculating the exact p-value for a 2 × 2 or 2 × 3 tables are avail-
able. See [5, 181] and [212]. Applications of exact tests in case-control studies can
be found in Neuhauser [192] and Guedj et al. [107]. In the case of the trend test
for association using case-control data with a multiallelic marker, Czika and Weir
[52] proposed a linear trend test. Exploring Hardy-Weinberg proportions, Chen and
Chatterjee [32] studied a new class of tests for association, which may be more
powerful than the linear combination of the trend test and the HWDTT of Song and
Elston [251].

The data for the four GWAS were used by Li et al. [170]. Klein et al. [144] stud-
ied 100,000 SNPs for AMD. The prostate cancer, breast cancer, and hypertension
data were studied by Yeager et al. [313], Hunter et al. [127], and the Wellcome
Trust Case-Control Consortium [301], respectively. For the last three studies, about
300,000 to 500,000 SNPs were used.
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3.13 Problems

3.1 Prove the equations and inequalities for the ADD and MUL models given in
(3.24) and (3.25).

3.2 Derive the variance of the statistic U for the trend test given in (3.6).

3.3 Using the prospective log-likelihood function for case-control samples, show
that the observed Fisher information matrix can be written as
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3.4 Derive Pearson’s test as a Score test.

(a) Show the Score functions can be written as

U1(β̃) = ∂l

∂β1
|β=β̃ = 1

n
(sr2 − rs2),

U2(β̃) = ∂l

∂β2
|β=β̃ = 1

n
{s(r1 + r2) − r(s1 + s2)}.

(b) Find the observed Fisher information matrix evaluated under H0 where β0 is
replaced with β̃0.

(c) Find the inverse of the observed Fisher information matrix.
(d) Show that the Score statistic obtained from the logistic regression model can be

written as (3.13).

3.5 Show that Tχ2
2

in (3.11) and T̃χ2
2

in (3.13) are equivalent.

3.6 Show that the conditions 4n0n2 −n2
1 = 0 and p̄2 = (p̄2 + p̄1/2)2 are equivalent.

3.7 Assume r/n → φ ∈ (0,1) as n → ∞. Find the limit of p̂2 − p̂2 under the alter-
native hypothesis of association H1, where p̂2 = n2/n and p̂2 = (2n2 + n1)/(2n).
Discuss when the above limit is zero under H1 if HWE proportions hold in the
population (Hint: φ = k = Pr(case)).

3.8 Comparison of the variance estimates for the trend test and the ABT.

(a) Write an R program (or other program) to simulate 1,000 replicates of case-
control samples without covariates under the null hypothesis (GRRs λ1 = λ2 =
1), each with p = Pr(B) = 0.2, Hardy-Weinberg proportions in the population,
equal numbers of cases and controls with total sample size n = 100, and the
disease prevalence k = 0.10.
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(b) Apply the trend tests to the 1,000 simulated datasets with three different scores
(0,0,0), (0,1/2,1), and (0,1,1), each with the variances estimated from the
separate case-control samples and the combined case-control samples. Using
the significance level α = 0.05, estimate the probability of Type I error for each
of the six trend tests from the 1,000 replicates (combinations of three sets of
scores and two variance estimates). Keep other parameters the same, and repeat
this for n = 500 and n = 2,000. Summarize your results of the estimated Type I
error rates.

(c) Apply the ABT to the same 1,000 simulated datasets with the two different
variance estimates. Repeat problem (b) for the ABT with different variance es-
timates.

3.9 Choices of scores for the trend and genetic models.
Write an R program (or other program) to conduct simulation studies to examine

how the power of the trend test depends on the choices of scores when the underly-
ing genetic models are REC, ADD, MUL and DOM.

3.10 Show that E(Δ̂p −Δ̂q) = 0 under the MUL model (Sect. 3.6). Hence, ZHWDTT
cannot be applied to test for association under the MUL model.

3.11 Asymptotic null correlations between ZCATT(x) and ZHWDTT.
Using the results of Problem 1.11 show that, when Hardy-Weinberg proportions

hold in the population and under H0,

Corr(ZCATT(0),ZHWDTT) =
√

1 − p

1 + p
+ o(n−1),

Corr(ZCATT(1/2),ZHWDTT) = o(n−1),

Corr(ZCATT(1),ZHWDTT) = −
√

p

2 − p
+ o(n−1),

where p is the frequency of allele B (see Zheng and Ng [344]).

3.12 Let p1 and p2 be p-values of two asymptotically independent test statistics.
Fisher’s combination test TF = −2 log(p1)−2 log(p2) asymptotically follows a chi-
squared distribution with 4 degrees of freedom. Show that the p-value of Fisher’s
combination test is given by p = p1p2{1 − log(p1p2)}. [Note that the CDF for TF

is F(x) = 1 − (1 + x/2) exp(−x/2).]

3.13 The HWDTT is based on the estimate of the difference in HWD between cases
and controls. Modify the HWDTT to be based only on the estimate of HWD using
cases. Conduct a simulation study to compare the power of the original HWDTT
with the modified one on changing the disease prevalence.



Chapter 4
Single-Marker Analysis for Matched
Case-Control Data

Abstract Chapter 4 studies a matched case-control design. Matching is often used
to control for confounding variables and a known population stratification. The typ-
ical method for the analysis of a matched case-control study is the conditional logis-
tic regression model. This chapter focuses on a matched retrospective case-control
study using the conditional approach with a prospective likelihood. It discusses 1 : m
(m = 1) matching and a more flexible matching such that m is not fixed but changes
over the different matched sets. The matched trend test, the matched disequilibrium
test, and a model-free test are derived. Methods to simulate matched case-control
data are discussed. Results of simulation studies are reported.

Matching is a technique that is often used in epidemiological studies to control
for confounding variables and known population stratification. Common confound-
ing variables for genetic case-control association studies include race, sex, and age.
Unlike an unmatched case-control study, which is usually analyzed based on the
unconditional logistic regression model (e.g., the CATT and Pearson’s chi-squared
test in Chap. 3), the typical method for the analysis of a matched case-control study
is the conditional logistic regression model. We focus on analyses of a matched
retrospective case-control study using the conditional approach with a prospective
likelihood.

For a matched design, the values of the confounding variables are used to de-
fine strata from which matched sets are sampled. A matched set contains one case
and one or more controls so that the case and controls share the same confounding
variable values. In each stratum, previous concepts for unmatched designs (e.g., pen-
etrance, prevalence, GRRs and genetic models) can be directly used. The matched
trend tests (MTTs) are first introduced with score specifications corresponding to
various underlying genetic models. The MTT is an extension of McNemar’s test,
and can be used to test association of a marker with the disease under study. Asymp-
totically, the test statistic follows a chi-squared distribution with one degree of free-
dom. Matched disequilibrium tests (MDTs) also have an asymptotic chi-squared
distribution with one degree of freedom. They compare the average scores of geno-
types in cases and controls within each matched set. Both tests depend on the un-
derlying genetic model. The model-free two-degree-of-freedom chi-squared test,
analogous to Pearson’s test, is also known as the Cochran-Mantel-Haenszel test and
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Table 4.1 Genotype counts
for a single marker with
alleles A and B in a matched
pair design with n matched
sets

Cases Controls Total

AA AB BB

AA m00 m01 m02 r0

AB m10 m11 m12 r1

BB m20 m21 m22 r2

Total s0 s1 s2 n

can be expressed in terms of matched trend tests. We focus on the above three tests
for a 1 : m matched design, in which each matched set contains one case and m ≥ 1
controls (including the 1 : 1 and 1 : 2 matched designs). Statistics for more gen-
eral situations with a variable number of controls matched to each case will also be
discussed. Robust statistics for a matched case-control design will be discussed in
Chap. 6.

Using simulation studies, we compare the performance of the above three test
statistics under the null and alternative hypotheses for various genetic models. Esti-
mates of RRs and ORs for a matched design are studied. Their large sample proper-
ties and confidence intervals are provided. We focus on analyses based on genotypes
of cases and controls. Finally, technical comments are given.

4.1 Notation and Models

Suppose the values of confounding variables z are used to define J strata, denoted
by {z1, . . . , zJ }. For example, if sex (male and female) and race (African American
and Caucasian) are the only confounding variables, four strata can be formed (J =
4). Then n matched sets are sampled. Each matched set contains one case and m

controls, all belonging to the same stratum. This matching is referred to as 1 : m

matching. In practice, owing to the cost of matching, m is often taken to be 1 or 2
and is rarely larger than 5. The 1 : 1 matched design is also called a matched pair
design. When a continuous confounding variable, such as age, is taken into account,
a discretization technique is often employed. For example, a five-year window can
be used to stratify on age. Then, race, sex and discretized age can be used to define
strata, from which we sample matched sets with one case and m controls having the
same race, same sex and age within five years. In a matched set, if the case or all the
controls are missing, then this matched set does not contain information about the
association between the disease status and the genetic marker. Hence, we assume a
matched set contains one case and at least one control.

The genotype counts for a matched pair design with n matched sets are given
in Table 4.1. A total of 2n genotypes are observed for the n matched sets. In Ta-
ble 4.1, there are m00 matched sets in which both case and control have genotype
AA, and m01 matched sets in which the case has genotype AA and the control has
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Table 4.2 Genotype counts of a single marker with alleles A and B in a 1 : 2 matched design with
n matched sets

Cases Controls Total

AA, AA AA, AB AA, BB AB, AB AB, BB BB, BB

AA m0,00 m0,01 m0,02 m0,11 m0,12 m0,22 r0

AB m1,00 m1,01 m1,02 m1,11 m1,12 m1,22 r1

BB m2,00 m2,01 m2,02 m2,11 m2,12 m2,22 r2

Total s00 s01 s02 s11 s12 s22 n

Table 4.3 Example (ACCESS): genotype counts for the KM(1,3) polymorphism in a matched
pair design

Cases Controls Total

AA AB BB

AA 35 45 5 85

AB 57 40 9 106

BB 13 13 2 28

Total 105 98 16 219

genotype AB. Table 4.2 displays the genotype counts for a 1 : 2 matched design with
n matched sets and a total of 3n genotypes.

Table 4.3 is a subset of the matched pair data from a case-control etiologic study
of sarcoidosis (ACCESS). There are 219 African-American matched pairs presented
in the table, who were matched based on age (within 5 years) and sex. The candi-
date gene presented in Table 4.3 is the KM(1,3) polymorphism, whose alleles are
denoted by A and B . Age is not shown in Table 4.3. If we define six categories
based on male and female and three categories for ages: age group = 1 if age ≤ 40;
age group = 2 if age is > 40 and ≤ 60, and age group = 3 if age > 60, then the
matched pairs in Table 4.3 can be displayed as in Table 4.4, where the information
on matching is retained.

We have focused on 1 : m matching, but the general situation is that a case and
a variable number of controls are matched in the various matched sets. In the latter
case, we divide the n matched sets into n1, . . . , nm sets such that n =∑m

j=1 nj ,
where nj is the number of matched sets in which j controls are matched to a case
for j = 1, . . . ,m. The total number of matched sets is still n. Hence, each matched
set contains one case and at least one control. A matched pair design and a 1 : m

matched design can be obtained as special cases.
The following notation is used in this chapter. Assume cases and controls are

matched based on the values of confounding variables z with a total of J strata
{z1, . . . , zJ }. The notation and definitions of the penetrances and the disease preva-
lence for an unmatched case-control study can be used in each stratum for the
matched design. In the j th stratum (note that the index j was used before to indicate
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Table 4.4 Stratifying the matched pair data in Table 4.3 into six strata

Female age
group

Cases Controls

AA AB BB

1

AA 9 10 0

AB 21 15 6

BB 6 5 0

2

AA 12 20 4

AB 17 10 1

BB 2 6 1

3

AA 3 4 0

AB 2 1 1

BB 0 0 0

Male age
group

Cases Controls

AA AB BB

1

AA 8 5 1

AB 8 8 1

BB 2 1 1

2

AA 3 6 0

AB 8 5 0

BB 3 1 0

3

AA 0 0 0

AB 1 1 0

BB 0 0 0

the j th control in a matched set), denote kj = Pr(case |zj ), pij = Pr(Gi | case, zj ),
qij = Pr(Gi | control, zj ), gij = Pr(Gi |zj ), and fij = Pr(case |Gi, zj ) for i = 0,1,2
and j = 1, . . . , J . Then, for j = 1, . . . , J ,

pij = gij fij /kj and qij = gij (1 − fij )/(1 − kj ).

The GRRs are given by λ1j = f1j /f0j and λ2j = f2j /f0j . Given λ2j and λ1j , the
REC, ADD, MUL and DOM models in each stratum are defined as before (see
Sect. 3.2):

λ1j = 1, λ1j = (1 + λ2j )/2, λ1j = λ
1/2
2j , and λ1j = λ2j

for all j = 1, . . . , J . To pool information across strata, we need the following ho-
mogeneity assumption

λ1j ≡ λ1, λ2j ≡ λ2.
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4.2 Conditional Likelihoods for Matched Case-Control Data

Suppose the j th matched set has 1 case and mj controls and nj = 1+mj . The score
for an individual is 0, x or 1 if his genotype is G0 = AA, G1 = AB or G2 = BB,
where x = 0, 1/2 and 1 for the REC, ADD/MUL, and DOM models. For a general
set-up of a conditional likelihood, the score is denoted as X, which takes value of 0,
x, or 1. The probabilities of a case or a control given any score X can be written as

π1(X) = Pr(case |X) = exp(αj + Xβ)

1 + exp(αj + Xβ)
,

π0(X) = Pr(control |X) = 1

1 + exp(αj + Xβ)
.

Note that a common (homogeneous) β is assumed but we allow αj vary across the
matched sets, characterizing the stratum-specific properties. In the j th matched set,
the nj genotypes are conditionally independent. Denote the event that a randomly
sampled individual from all nj samples is a case by (1,mj ). Let xij be the score for
the ith individual, i = 1, . . . , nj . Like the analysis of unmatched data, the prospec-
tive conditional logistic regression model can be used for the matched retrospective
case-control data. The conditional likelihood for the j th matched set can be written
as

Lj(β|z) = Pr(1 case with score x1j and mj controls with other scores|(1,mj ))

= π1(x1j )
∏nj

i=2 π0(xij )
∑nj

l=1 π1(xlj )
∏

l∗ �=l π0(xl∗j )
= exp(βx1j )
∑nj

l=1 exp(βxlj )
. (4.1)

For a 1 : m matched design, (4.1) can be used with nj replaced by m + 1. In the
conditional likelihood function (4.1), the nuisance parameter αj is eliminated. The
full conditional likelihood can be written as

L(β|z) =
∏

j

Lj (β|z).

The above conditional likelihood function can also incorporate other covariates by
changing βxij to βT xij , where β and xij are both vectors.

4.3 Matched Trend Tests

We first consider the case that each matched set contains one case and m controls.
The situation that a variable number of controls are matched to a case in some
matched sets will be discussed later. For each individual, only the genotype score is
considered as a covariate in the conditional likelihood function (4.1).
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4.3.1 1 : m Matching

For the lth matched set with one case and m controls (l = 1, . . . , n), let x1l be the
score for the case and x2lj be the score for the j th control, j = 1, . . . ,m. The con-
ditional likelihood function (4.1), L(β|z), can be written as

L(β|z) =
n∏

l=1

exp(βx1l )

exp(βx1l ) +∑m
j=1 exp(βx2lj )

.

The Score statistic for testing the null hypothesis of no association, H0 : β = 0, can
be written as (Problem 4.1)

ZMTT =
∑n

l=1
∑m

j=1(x1l − x2lj )

[∑n
l=1{
∑m

j=1(x1l − x2lj )2 +∑1≤j1<j2≤m(x2lj1 − x2lj2)
2}]1/2

. (4.2)

ZMTT is called the MTT, analogous to the trend test for unmatched case-control
data (Sect. 3.3.1). Under H0, ZMTT ∼ N(0,1) asymptotically for a given x ∈ [0,1].
If the case and m controls in a matched set have the same genotype, then their scores
are identical and

x1l − x2lj = x2lj1 − x2lj2 = 0.

Hence, this matched set does not contribute to the MTT.

1 : 1 Matching

When m = 1, (4.2) becomes

ZMTT =
∑n

l=1(x1l − x2l)√∑n
l=1(x1l − x2l )2

, (4.3)

where the subscript j is omitted in the score for the control x2lj = x2l . Using the
data in Table 4.1, (4.3) can also be expressed as (Problem 4.3)

ZMTT =
∑

0≤s<t≤2(mst − mts)(xs − xt )
√∑

0≤s<t≤2(mst + mts)(xs − xt )2
, (4.4)

where (x0, x1, x2) = (0, x,1). From (4.4), it can be seen that the MTT is an exten-
sion of McNemar’s test (4.5) for the matched design with three genotypes. The MTT
depends on only the discordant matched sets, i.e. mst for s �= t .

Given the matched-pair data in Table 4.5 with two exposure levels, + (the genetic
susceptibility present) and − (the genetic susceptibility not present), McNemar’s
test can be written as

T = (b − c)2

b + c
∼ χ2

1 under H0. (4.5)



4.3 Matched Trend Tests 101

Table 4.5 Match pair data
for McNemar’s test Controls

+ −

Cases + a b

− c d

1 : 2 Matching

For m = 2, from Problem 4.4, the numerator of (4.2) using the data in Table 4.2 can
be written as

∑
(x1l − x2lj ) = x01{(m0,01 − 2m1,00) + (2m0,11 − m1,01) + (m0,12 − m1,02)}

+ x02{(m0,02 − 2m2,00) + (2m0,22 − m2,02) + (m0,12 − m2,01)}
+ x12{(m1,12 − 2m2,11) + (2m1,22 − m2,12) + (m1,02 − m2,01)},

(4.6)

where xst = xs − xt , and for the denominator of (4.2),

∑
(x1l − x2lj )

2

= x2
01{(m0,01 + 2m1,00) + (2m0,11 + m1,01) + (m0,12 + m1,02)}

+ x2
02{(m0,02 + 2m2,00) + (2m0,22 + m2,02) + (m0,12 + m2,01)}

+ x2
12{(m1,12 + 2m2,11) + (2m1,22 + m2,12) + (m1,02 + m2,01)}, (4.7)

and
∑

(x2lj1 − x2lj2)
2 = x2

01s01 + x2
02s02 + x2

12s12. (4.8)

The ACCESS Example

Applying the MTT in (4.4) to Table 4.3 with a given x, the numerator of (4.4) is

(m01 − m10)(x0 − x1) + (m02 − m20)(x0 − x2) + (m12 − m21)(x1 − x2)

= (45 − 57)(0 − x) + (5 − 13)(0 − 1) + (9 − 13)(x − 1) = 8x + 12

and the denominator is

(m01 + m10)(x0 − x1)
2 + (m02 + m20)(x0 − x2)

2 + (m12 + m21)(x1 − x2)
2

= 102x2 + 18 + 22(x − 1)2 = 124x2 − 44x + 40.
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Fig. 4.1 Plot of the MTT
given in (4.9) over the score
x ∈ [0,1]. The dashed line is
the cut-off line for the 0.05
significance level

Hence, the MTT for a given x is

ZMTT = 4x + 6√
31x2 − 11x + 10

. (4.9)

Substituting x = 0, 1/2 and 1, we obtain ZMTT = 1.8974, ZMTT = 2.2857, and
ZMTT = 1.8257, respectively. If allele B of KM(1,3) is the risk allele, the corre-
sponding p-values for the one-sided tests are 0.029, 0.011 and 0.034, all less than
the significance level α = 0.05. If the risk allele is unknown, then two-sided p-values
are reported, which double the one-sided p-values. Therefore, only the test with the
score x = 1/2 has a significant p-value. Although we consider x = 0,1/2,1 for
various common genetic models, other values of x ∈ [0,1] can also be chosen.

Figure 4.1 plots the MTT over x ∈ [0,1] (the curve) with a dashed reference
line corresponding to the significance level 0.05 (two-sided). For a given x, if the
MTT is above the reference line, the test is significant at the 0.05 level (if multiple
testing is ignored). Figure 4.1 shows that, except for the values near the endpoints
of x ∈ [0,1], the MTT is significant at the 0.05 level. This example also shows
that the result depends on the choice of score x. Robust tests studied in Chap. 6
are useful when the results depend on the choice of the score, i.e., the underlying
genetic model.

4.3.2 A Variable Number of Controls and a Case Are Matched

Assume that, in some matched sets, a variable number of controls and a case are
matched. For the lth matched set with one case and i controls, let x1il be the score
for the case and x2ilj be the score for the j th control, j = 1, . . . , i, l = 1, . . . , ni , and
i = 1, . . . ,m. In this setting, we have ni matched sets in which a case and i controls
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are matched. The total number of matched sets is n =∑m
i=1 ni . Under this setting,

the conditional likelihood function (4.1), L(β|z), can be written as

L(β|z) =
m∏

i=1

ni∏

l=1

exp(βx1il)

exp(βx1il) +∑i
j=1 exp(βx2ilj )

.

The Score test statistic for testing the null hypothesis of no association, H0 : β = 0,
can be written as

ZMTT

=
∑m

i=1
1

1+i

∑ni

l=1(ix1il −∑i
j=1 x2ilj )

[∑m
i=1

1
(1+i)2

∑ni

l=1{(1 + i)(x2
1il +∑i

j=1 x2
2ilj ) − (x1il +∑i

j=1 x2ilj )2}]1/2
.

(4.10)

Under H0, ZMTT ∼ N(0,1) asymptotically for a given x ∈ [0,1]. The MTT given
in (4.2) is a special case of (4.10) given above.

For an alternative expression, let nil0 and nil1 be the numbers of AA and AB
genotypes in the lth matched set with one case and i controls. Using the result in
Problem 4.2, the MTT given in (4.10) can be written as

ZMTT =
∑m

i=1
∑ni

l=1{x1il − EH0(x1il |nil0, nil1)}
√∑m

i=1
∑ni

l=1 VarH0(x1il |nil0, nil1)

. (4.11)

Another expression for ZMTT can also be obtained using the results in Problem 4.5.

4.4 Matching Disequilibrium Tests

For the matching disequilibrium test (MDT), the situation that a variable number of
controls and a case are matched is not complicated. Hence, we first consider this
case and obtain the 1 : m matching as a special case.

4.4.1 A Variable Number of Controls and a Case Are Matched

Using the notation of Sect. 4.3.2, consider a matched case-control design with n

matched sets, where ni matched sets contain one case and i matched controls, i =
1, . . . ,m and n =∑m

i=1 ni . Let the following scores for genotypes be defined as in
Sect. 4.3.2:

{(x1il , x2ilj ) : j = 1, . . . , i; l = 1, . . . , ni; i = 1, . . . ,m}.
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For a matched set with one case and i controls, the average score for controls is∑i
j=1 x2ilj /i. Then, for this matched set, the difference of the mean scores between

the case and controls is given by

dil = x1il − 1

i

i∑

j=1

x2ilj .

The average of dil over all matched sets can be written as

D = 1

n

m∑

i=1

ni∑

l=1

dil = 1

n

m∑

i=1

ni∑

l=1

(

x1il − 1

i

i∑

j=1

x2ilj

)

.

The association can be tested based on D. Under the null hypothesis of no asso-
ciation H0, E(D) = 0. Thus, Var(D) = E(D2) where,

E(D2) = 1

n2

m∑

i=1

ni∑

l=1

EH0(d
2
il) = 1

n
EH0(d

2
11).

A consistent moment estimate of Var(D) under H0 is given by

V̂ar(D) = 1

n2

m∑

i=1

ni∑

l=1

(

x1il − 1

i

i∑

j=1

x2ilj

)2

.

The MDT can be written as

ZMDT =
∑m

i=1
∑ni

l=1(x1il −∑i
j=1 x2ilj /i)

√∑m
i=1
∑ni

l=1(x1il −∑i
j=1 x2ilj /i)2

. (4.12)

Under H0, ZMDT ∼ N(0,1) asymptotically for a given x ∈ [0,1].

4.4.2 1 : m Matching

For the special 1 : m matched design, denote the scores by (x1l , x2lj ) for l = 1, . . . , n

and j = 1, . . . ,m as in Sect. 4.3.1. Then ZMDT given in (4.12) can be simplified to

ZMDT =
∑n

l=1(mx1l −∑m
j=1 x2lj )

√∑n
l=1(mx1l −∑m

j=1 x2lj )2
.

To calculate the above ZMDT, we have
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ZMDT

=
∑n

l=1
∑m

j=1(x1l − x2lj )

[∑n
l=1{
∑m

j=1(x1l − x2lj )2 + 2
∑

1≤j1<j2≤m(x1l − x2lj1)(x1l − x2lj2)}]1/2
,

(4.13)

where
∑

(x1l − x2lj ) and
∑

(x1l − x2lj )
2 are given in (4.6) and (4.7), respectively,

and 2
∑

(x1l − x2lj1)(x1l − x2lj2) can be written as

2
n∑

l=1

∑

1≤j1<j2≤2

(x1l − x2lj1)(x1l − x2lj2)

= 2x2
01(m0,11 + m1,00) + 2x2

02(m0,22 + m2,00) + 2x2
12(m1,22 + m2,11)

+ 2x01x02m0,12 + 2x02x12m2,01 − 2x01x12m1,02,

where xst = xs − xt .
Note that the original MDT only uses x = 1/2. Then the MDT in (4.12) is based

on the difference of the average B allele counts between cases and controls. The
MDT that we present in (4.12) generalizes the difference of the average allele counts
to the difference of the average scores between cases and controls. The MTT and
MDT are generally different in the variance calculations except for a matched pair
design. Under the matched pair design, ZMTT ≡ ZMDT.

4.5 A Model-Free Test

For a given x, both ZMTT and ZMDT are one-degree-of-freedom tests but they de-
pend on the underlying genetic model, or x. Like Pearson’s test for an unmatched
design, the two-degrees-of-freedom test for a matched design is often implemented
in the commercial software, which uses two indicator variables to model the genetic
effects. We first discuss matched case-control data in which matched sets have a
variable number of controls matched to a case, as in Sect. 4.3.2 and Sect. 4.4. The
1 : m matching will be then obtained as a special case.

4.5.1 A Variable Number of Controls and a Case Are Matched

Analogous to the unmatched design with two indicator variables (Sect. 3.3.4), two
indicator variables are used for cases and controls, respectively. For cases, de-
fine (x1il1, x1il2) = (0,0) for G0, (0,1) for G1, and (1,1) for G2, and define
(x2ilj1, x2ilj2) similarly for controls. Then the conditional likelihood function can
be written as

L(β1, β2|z) =
m∏

i=1

ni∏

l=1

exp(β1x1il1 + β2x1il2)

exp(β1x1il1 + β2x1il2) +∑i
j=1 exp(β1x2ilj1 + β2x2ilj2)

.
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Denote the log-likelihood as l = logL(β1, β2|z). Then, the Score statistic for testing
H0 : β1 = β2 = 0 can be written as

Tχ2
2 ,M =

[
∂l
∂β1

∂l
∂β2

]
⎡

⎣
− ∂2l

∂β2
1

− ∂2l
∂β1β2

− ∂2l
∂β2β1

− ∂2l

∂β2
2

⎤

⎦

−1 [ ∂l
∂β1

∂l
∂β2

]

|H0, (4.14)

where expressions for the partial derivatives are given in Problem 4.7. Under H0,
Tχ2

2 ,M ∼ χ2
2 asymptotically.

Denote

Zi = (∂l/∂βi)/

√
−∂2l/∂β2

i |H0, i = 1,2.

Then, from Problem 4.7, Z1 is the MTT with the score x = 0 and Z2 is the MTT
with the score x = 1. Denote

ρ = (−∂2l/∂β1∂β2)/

√
(−∂2l/∂β2

1 )(−∂2l/∂β2
2 )|H0 .

From Problem 4.7,

Tχ2
2 ,M = 1

1 − ρ2
(Z2

1 − 2ρZ1Z2 + Z2
2). (4.15)

4.5.2 1 : m Matching

The two indicator variables for an individual take on the values (0,0), (0,1) and
(1,1) for the three genotypes G0, G1 and G2, respectively. Because the indicators
are either 0 or 1, we have x1lk = x2

1lk and
∑m

j=1 x2
2ljk =∑m

j=1 x2ljk for k = 1,2.
Moreover, x1l1x1l2 = x1l1 and

∑
j x2lj1x2lj2 =∑j x2lj1. Denote the average values

for the first (k = 1) and second (k = 2) indicators in the lth stratum by

x̄lk = 1

m + 1

(

x1lk +
m∑

j=1

x2ljk

)

, k = 1,2.

Then, using Problem 4.7, the second order partial derivatives given in (4.14) can be
written as

− ∂2l

∂β2
k

|H0 =
n∑

l=1

x̄lk(1 − x̄lk), − ∂2l

∂β1β2
|H0 =

n∑

l=1

x̄l1(1 − x̄l2).

Hence, Tχ2,M depends on (x1l1, x1l2) and (
∑m

j=1 x2lj1,
∑m

j=1 x2lj2).
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Table 4.6 Values of d2
l1 and

d2
l2 for a matched pair design

Matched pair genotype d2
l1 d2

l2 Count

(AA,AA) 0 0 m00

(AA,AB) 0 1 m01

(AA,BB) 1 1 m02

(AB,AA) 0 1 m10

(AB,AB) 0 0 m11

(AB,BB) 1 0 m12

(BB,AA) 1 1 m20

(BB,AB) 1 0 m21

(BB,BB) 0 0 m22

1 : 1 Matching

For a matched pair design with n matched sets, the scores for cases and controls
are denoted by x1lk and x2lk respectively, for the kth indicator variable and the lth
matched set, where l = 1, . . . , n and k = 1,2. Let dlk = x1lk − x2lk . Then, from
(4.3),

Zk =
n∑

l=1

dlk

/
√√
√
√

n∑

l=1

d2
lk.

In addition,

x̄lk(1 − x̄lk) = (x1lk + x2lk)/2 − (x1lk + x2lk)
2/4

= (x1lk + x2lk)/2 − (x1lk + x2lk)/4 − x1lkx2lk/2

= (x1lk + x2lk)/4 − x1lkx2lk/2 = (x2
1lk + x2

2lk)/4 − x1lkx2lk/2

= (x1lk − x2lk)
2/4 = d2

lk/4,

x̄l1(1 − x̄l2) = (x1l1 + x2l1)/2 − (x1l1 + x2l1)(x1l2 + x2l2)/4

= (x1l1 + x2l1 − x1l1x2l2 − x2l1x1l2)/4 = dl1dl2/4.

Thus,

ρ =
n∑

l=1

(dl1dl2)
/
√√
√
√

(
n∑

l=1

d2
l1

)(
n∑

l=1

d2
l2

)

.

The values of d2
l1 = (x1l1 − x2l1)

2 and d2
l2 = (x1l2 − x2l2)

2 are given in Table 4.6,
from which we have

∑n
l=1 d2

l1 = m02 +m20 +m12 +m21,
∑n

l=1 d2
l2 = m01 +m10 +

m02 + m20, and
∑n

l=1 dl1dl2 = m02 + m20.
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Table 4.7 Computing ρ for 1 : 2 matching

Count x̄l1 x̄l2 x̄l1(1 − x̄l1) x̄l2(1 − x̄l2) x̄l1(1 − x̄l2)

m0,00 0 0 0 0 0

m0,01 0 1/3 0 2/9 0

m0,02 1/3 1/3 2/9 2/9 2/9

m0,11 0 2/3 0 2/9 0

m0,12 1/3 2/3 2/9 2/9 1/9

m0,22 2/3 2/3 2/9 2/9 2/9

m1,00 0 1/3 0 2/9 0

m1,01 0 2/3 0 2/9 0

m1,02 1/3 2/3 2/9 2/9 1/9

m1,11 0 1 0 0 0

m1,12 1/3 1 2/9 0 0

m1,22 2/3 1 2/9 0 0

m2,00 1/3 1/3 2/9 2/9 2/9

m2,01 1/3 2/3 2/9 2/9 1/9

m2,02 2/3 2/3 2/9 2/9 2/9

m2,11 1/3 1 2/9 0 0

m2,12 2/3 1 2/9 0 0

m2,22 1 1 0 0 0

1 : 2 Matching

To calculate ρ for 1 : 2 matching, Table 4.7 can be used, where the first column con-
tains the counts of the matched sets. Here is an example to illustrate how the entries
in Table 4.7 are calculated. There are m0,12 matched sets that each contains one case
with genotype AA and two controls with genotypes AB and BB, respectively (see Ta-
ble 4.2). Therefore, the case has the indicators (x1l1, x1l2) = (0,0) and controls have
(x2l11, x2l12) = (0,1) and (x2l21, x2l22) = (1,1). Then, the mean values of the indi-
cators for the first and second alleles are x̄l1 = (x1l1 + x2l11 + x2l21)/3 = 1/3 and
x̄l2 = (x1l2 + x2l12 + x2l22)/3 = 2/3, respectively.

Using Table 4.7,
∑

l x̄lk(1 − X̄lk) and
∑

l x̄l1(1 − X̄l2) can be calculated as the
sums of the corresponding columns weighted by the counts. For example,

n∑

l=1

X̄l1(1− X̄l2) = 1

9
(2m0,02 +2m0,22 +2m2,00 +2m2,02 +m0,12 +m1,02 +m2,01).
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The ACCESS Example

Applying Tχ2
2 ,M to the data given in Table 4.3 and using the results for the MTTs in

Sect. 4.3, we have Z1 = 1.8974 and Z2 = 1.8257, and
∑219

l=1 d2
l1 = 5+9+13+13 =

40,
∑219

l=1 d2
l2 = 45+5+57+13 = 140, and

∑219
l=1 dl1dl2 = 5+13 = 18. Therefore,

ρ =
219∑

l=1

dl1dl2

/
√√
√
√

219∑

l=1

d2
l1

219∑

l=1

d2
l2 = 18/

√
40 × 120 = 0.2598.

Substituting these values into (4.15), we have Tχ2
2 ,M = 5.5049 with p-value =

0.0638.

4.6 Multiple Cases and Multiple Controls Are Matched

In Sects. 4.3–4.5, each matched set contains one case and at least one control. When
a matched set has multiple cases and multiple controls, the previous test statistics
need to be modified. We use the MTT and MDT as examples.

Assume the j th matched set contains m1j cases and m2j controls, nj = m1j +
m2j , j = 1, . . . , J , and n =∑j nj . The conditional likelihood function is

L(β|z) =
J∏

j=1

exp(β
∑m1j

i=1 xij )
∑Kj

l=1 exp(β
∑m1j

i(l)=1 xi(l)j )
,

where Kj = ( nj

m1j

)
is the total number of permutations of m1j cases in a matched

set with nj subjects. For the lth permuted matched set (l = 1, . . . ,Kj ), let i(l) =
1, . . . ,m1j indicate the permuted ranks of the cases. Then the MTT for testing H0 :
β = 0 can be written as

ZMTT =
∑J

j=1(Kj

∑m1j

i=1 xij −∑Kj

l=1

∑m1j

i(l)=1 xi(l)j )

[∑J
j=1{Kj

∑Kj

l=1(
∑m1j

i(l)=1 xi(l)j )2 − (
∑Kj

l=1

∑m1j

i(l)=1 xi(l)j )2}]1/2
,

(4.16)

which has an asymptotic N(0,1) distribution under H0. Note that, if nj = 1 + m

and m1j = 1 for all j , then the MTT given in (4.16) is identical to the MTT for the
1 : m matched design given in (4.2).

When the number of cases m1j in each stratum or matched set is large, computing
the MTT for all Kj permutations for j = 1, . . . , J may be intensive. The MDT
studied in Sect. 4.4 is simple, because it replaces the score for the case in (4.12) by
the averaged score for the cases in each stratum or matched set. The MDT can be
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written as

ZMDT =
∑n

j=1(
1

m1j

∑m1j

i=1 xij − 1
m2j

∑nj

i=m1j +1 xij )

[∑n
j=1(

1
m1j

∑m1j

i=1 xij − 1
m2j

∑nj

i=m1j +1 xij )2]1/2
, (4.17)

which has an asymptotic N(0,1) distribution under H0.

4.7 Simulating Matched Case-Control Data

We discuss simulation procedures for 1 : m matched designs. Examples are given
for the 1 : 1 and 1 : 2 matched designs. The simulation studies discussed in Sect. 4.8
are based on these simulation methods.

Suppose the study population is divided into J strata based on the values of
the confounding variable values (z1, . . . , zJ ). Denote πj = Pr(z = zj ). Suppose n

matched sets are sampled, each containing one case and m controls who have the
same values of z. Let Eist be the event that, given a matched set, the case has geno-
type Gi (i = 0, 1, or 2) and the m controls have genotype counts (s, t,m− s − t) for
(G0,G1,G2). Denote pist = Pr(Eist ) and the count for the event Eist in n matched
sets by yist . The following notation is also given in Sect. 4.1:

pij = Pr(Gi | case, zj ) = gij fij /kj ; (4.18)

qij = Pr(Gi | control, zj ) = gij (1 − fij )/(1 − kj ). (4.19)

Then, by the independence of case and control genotypes given z,

pist =
(

m

s, t,m − r − s

) J∑

j=1

πjpij q
s
0j q

t
1j q

m−s−t
2j , i = 0,1, (4.20)

and
(

m
s,t,m−r−s

)= m!/{s!t !(m − s − t)!}.
To calculate the probabilities pist , the following parameters need to be specified:

the number of strata J , πj , kj , MAFs pj , and the GRRs (λ1j , λ2j ) in the j th stra-
tum. The following algorithm can be used to calculate pist for each combination of
(i, s, t):

1. Specify J and the values of πj , kj , pj , λ1j , and λ2j in the j th stratum for
j = 1, . . . , J .

2. Under HWE, calculate the genotype frequencies gij = Pr(Gij ) in each stratum.
Calculate f0j = kj /(g0j + λ1j g1j + λ2j g2j ), f1j = f0j λ1j and f2j = f0j λ2j .
Then pij = gijfij /kj and qij = gij (1 − fij )/(1 − kij ).

3. For each combination of (i, s, t) such that i = 0,1,2 and s + t ≤ m, calculate
pist using (4.20).

Table 4.8 shows the probabilities pist for the matched pair design with J = 5
strata, where πj = 0.20 for all j , (k1, k2, k3, k4, k5) = (0.01,0.10,0.15,0.05,0.20),
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Table 4.8 Multinomial probabilities for simulating a matched pair design

Events
Eist

Genotypes Count Count* pist

Case Control

E010 G0 G0 y010 m00 0.3212

E001 G0 G1 y001 m01 0.1564

E000 G0 G2 y000 m02 0.0225

E110 G1 G0 y110 m10 0.2471

E101 G1 G1 y101 m11 0.1422

E100 G1 G2 y100 m12 0.0230

E210 G2 G0 y210 m20 0.0498

E201 G2 G1 y201 m21 0.0322

E200 G2 G2 y200 m22 0.0056

*The counts are given in Table 4.1

Table 4.9 Simulated sample of 500 matched pairs

Cases Controls Total

AA AB BB

AA 163 63 12 238

AB 116 87 17 220

BB 20 18 4 42

Total 299 168 33 500

MAFs (p1,p2,p3,p4,p5) = (0.10,0.30,0.15,0.25,0.20), λ1j = 1.5, and λ2j = 2
for all j . Using the specified values and the above algorithm, pist can be calculated
for each combination of (i, s, t) for i = 0,1,2 and s + t ≤ 1. For reference, the
symbols mst for genotype counts given in Table 4.1 are also given in Table 4.8. To
simulate matched pairs using Table 4.8, let

y = {y010, y001, y000, y110, y101, y100, y210, y201, y200}
and

p = {0.3212,0.1564,0.0225,0.2471,0.1422,0.0230,0.0498,0.0322,0.0056}.
Then n matched pairs can be simulated from the multinomial distribution y ∼
Mul(n;p). Table 4.9 presents a simulated sample of 500 matched pairs using the
probabilities given in Table 4.8.

In general, since
∑

i

∑
s+t≤m pist = 1, the counts, {yist : i = 0,1,2; s + t ≤ m}

for a 1 : m matched design can be generated from the multinomial distribution
Mul(n; {pist , i = 0,1,2, s + t ≤ m}). For 1 : 2 matching, we use Table 4.10 when
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Table 4.10 Multinomial probabilities for simulating 1 : 2 matched design when the case genotype
is Gi , i = 0,1,2

Events
Eist

Genotypes Count Count pist

Case Control

Ei20 Gi (G0,G0) yi20 mi,00 pi20

Ei11 Gi (G0,G1) yi11 mi,01 pi11

Ei10 Gi (G0,G2) yi10 mi,02 pi10

Ei02 Gi (G1,G1) yi02 mi,11 pi02

Ei01 Gi (G1,G2) yi01 mi,12 pi01

Ei00 Gi (G2,G2) yi00 mi,22 pi00

Table 4.11 1 : 2 matching: genotype counts of a single marker with alleles A and B

Cases Controls Total

AA, AA AA, AB AA, BB AB, AB AB, BB BB, BB

AA 137 102 5 21 4 1 270

AB 91 77 10 20 5 0 203

BB 9 13 1 2 2 0 27

Total 237 192 16 43 11 1 500

the case genotype is Gi , i = 0,1,2. Therefore, a total of 18 probabilities have to
be calculated for m = 2, and all the counts {yist : i = 0,1,2; s + t ≤ 2} for the 18
events {Eist : i = 0,1,2; s + t ≤ 2} are simulated from the multinomial distribu-
tion. Table 4.11 presents a simulated 1 : 2 matched dataset with the same parameter
values as in Table 4.9.

4.8 Performance of the Three Test Statistics

We conduct simulations to compare the empirical power of the MTT (ZMTT), the
MDT (ZMDT) and Pearson’s test (Tχ2

2 ,M ) under the null and alternative hypotheses
for ADD, DOM and REC models. We only consider the matched pair and the 1 : 2
matched designs. For the matched pair design, ZMTT and Tχ2

2 ,M are compared. For
the 1 : 2 matching, all three statistics are compared.

The values of the parameters for both designs are the same as those used in Ta-
bles 4.8 and 4.9 except that λ2 = 1.5 in each stratum. The Type I error and empirical
power are estimated using 10,000 replicates. The results for the matched pair and
for the 1 : 2 matching are presented in Figs. 4.2 and 4.3.

Note that, in Fig. 4.2, the empirical power of ZMTT changes with the value of
x, while the power of Tχ2

2 ,M is independent of x. ZMTT is expected to be most
powerful when x approaches 0, 1/2 and 1 under the REC, ADD and DOM models,
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Fig. 4.2 Comparing the empirical power of the MTT and Pearson’s test (Tχ2
2 ,M) for the matched

pair design under the null and alternative hypotheses for ADD, DOM, and REC models. The power
of the MTT changes with the value of x, where x = 0,1/2,1 correspond to the REC, ADD and
DOM models, respectively

respectively. In addition, ZMTT with the optimal x is more powerful than Tχ2
2 ,M .

However, when x is not chosen appropriately, Tχ2
2 ,M could be more powerful than

ZMTT. For example, under a REC model, Tχ2
2 ,M is more powerful than ZMTT when

a larger x is chosen. Similar conclusions can be obtained for the 1 : 2 matched
design. However, Fig. 4.3 shows that the MTT is slightly more powerful than the
MDT.

4.9 Estimates of Odds Ratios and Relative Risks

We discuss the estimates of ORs and RRs for a matched pair design. For RRs, we
show that the estimates can be approximated by the estimates of ORs when the
disease prevalence is small. The CIs for the estimates of ORs are also given.
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Fig. 4.3 Comparing the empirical power of the MTT, MDT and Pearson’s test (Tχ2
2 ,M) for 1 : 2

matching under the null and alternative hypotheses for ADD, DOM, and REC models. The power
of the MTT and MDT changes with the value of x, where x = 0,1/2,1 correspond to the REC,
ADD and DOM models, respectively

4.9.1 Conditional Odds Ratios

Suppose J strata are defined by the values (z1, . . . , zJ ) of confounding variables.
Given zj the conditional OR is defined as

ORGi :G0|zj
= Pr(Gi | case, zj )Pr(G0| control, zj )

Pr(G0| case, zj )Pr(Gi | control, zj )

= Pr(case |Gi, zj )Pr(control |G0, zj )

Pr(case |G0, zj )Pr(control |Gi, zj )
, for i = 1,2,

i.e., the retrospective conditional OR equals the prospective conditional OR.
If ORGi :G0|zj1

= ORGi :G0|zj2
for all 1 ≤ j1 < j2 ≤ J and i = 1,2, there is a single

pair of common ORs denoted as ORGi :G0 for i = 1,2, and these can be consistently
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estimated. Using the data in Table 4.1, we have

ÔRG1:G0 = m10

m01
and ÔRG2:G0 = m20

m02
.

Asymptotic variances are better obtained for the logs of the above estimates, which
can be obtained from

V̂ar{log(ÔRGi :G0)} = mi0 + m0i

mi0m0i

, for i = 1,2.

The CI for ORGi :G0 can be obtained in a way similar to that under the unmatched
design (Sect. 3.8). For log(ORGi :G0), the 100(1 − α)% CI is given by

log(ÔRGi :G0) ± z1−α/2

√
V̂ar{log(ÔRGi :G0)},

from which the 100(1 − α)% CI for OR can be constructed.

The ACCESS Example

Using the data given in Table 4.3, m10 = 57, m01 = 45, m20 = 13, and m02 = 5.
Thus, consistent estimates of the ORs are given by ÔRG1:G0 = 57/45 ≈ 1.27 and
ÔRG2:G0 = 13/5 = 2.6 with log ORs

log(ÔRG1:G0) = log

(
57

45

)

≈ 0.2364,

log(ÔRG2:G0) = log

(
13

5

)

≈ 0.9555.

Estimates of the variances of the above estimates can be calculated as

V̂ar{log(ÔRG1:G0)} = 57 + 45

57 × 45
≈ 0.03977,

V̂ar{log(ÔRG2:G0)} = 13 + 5

13 × 5
≈ 0.2769.

Thus, the 95% CI for log(ORG1:G0) is given by

0.2364 ± 1.96
√

0.03977 = (−0.1545,0.6273),

which is converted to (0.86, 1.87) for ORG1:G0 . The 95% CI for log(ORG2:G0) is
given by

0.9555 ± 1.96
√

0.2769 = (−0.0759,1.9869),

which is converted to (0.93, 7.29) for ORG2:G0 .
If we display Table 4.1 in terms of alleles A and B , we obtain Table 4.12. A con-

sistent estimate for the OR and the estimate of its asymptotic variance are given
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Table 4.12 Allele-based
table for the ACCESS data Cases Controls Total

A B

A 192 84 276

B 116 46 162

Total 308 130 438

by

ÔRB:A = 116/84 ≈ 1.381,

V̂ar{log(ÔRB:A)} ≈ 0.0205.

Thus, the 95% CI for log(ORB:A) is 0.3228 ± 1.96
√

0.0205 = (0.0422,0.6034),
which is converted to (1.04, 1.83) for the OR.

4.9.2 Relative Risks

It is known that, for an unmatched case-control design, the GRRs can be approxi-
mated by the ORs for rare diseases. This is also true for the matched case-control
design. Consider the GRRs λij conditional on zj given by

λij = fij

f0j

= Pr(case |Gi, zj )

Pr(case |G0, zj )
= Pr(Gi | case, zj )Pr(G0|zj )

Pr(G0| case, zj )Pr(Gi |zj )
,

where, for i = 0,1,2,

Pr(Gi |zj ) = Pr(case |zj )Pr(Gi | case, zj ) + Pr(control |zj )Pr(Gi | control, zj ).

Thus the numerator of λij can be written as

Pr(Gi | case, zj )Pr(case |zj )Pr(G0| case, zj )

+ {1 − Pr(case |zj )}Pr(Gi | case, zj )Pr(G0| control, zj ),

which converges to Pr(Gi | case, zj )Pr(G0| control, zj ) when Pr(case |zj ) → 0.
Likewise, the denominator of λij converges to Pr(G0| case, zj )Pr(Gi | control, zj )

when Pr(case |zj ) → 0. Thus,

λij → Pr(Gi | case, zj )Pr(G0| control, zj )

Pr(G0| case, zj )Pr(Gi | control, zj )
= ORGi :G0|zj

.
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4.10 Bibliographical Comments

The matched case-control design has been extensively studied in epidemiological
studies [21, 39, 156, 270]. However, most results have dealt with binary exposures,
equivalent to two alleles A and B in genetic studies. McNemar’s test is often applied
for the matched pair design with binary exposures [156]. These results have to be
extended for three genotypes. Breslow and Day [21] and Lachin [156] discuss more
general results for matched case-control designs, including 1 : m matching and the
matching with a variable number of controls per case, estimation problems, etc. We
used the matched prospective conditional likelihood to analyze matched retrospec-
tive case-control samples [156, 204]. Thus, our statistics can be applied to matched
prospective case-control samples.

Breslow and Day [21] study general trend tests for matched case-control designs,
which are derived as Score statistics in Lachin [156]. Zheng and Tian [346] study
MTTs for testing genetic association for matched designs. The expression of the
MTT, (4.11) in Sect. 4.3.2, can be found in Walter [296], who studied a general
matched design where a matched set contains a variable number of controls per
case. Lee [161] studied the MDT for an ADD model, which we generalized to any
genetic model between the REC and DOM models by using x ∈ [0,1]. See also
Zang et al. [315].

In simulation studies, the multinomial distribution probabilities given in (4.20)
were given in Ejigou and McHugh [70]. The ACCESS dataset given in Table 4.3 was
from a matched pair case-control study for sarcoidosis [3]. Most of the estimation
problems that are discussed here can be found in Lachin [156]. However, his results
only considered binary exposures, which cannot be directly applied to analyses with
three genotypes.

4.11 Problems

4.1 Derive the Score statistic MTT for the 1 : m matched design and show it can be
written as (4.2).

4.2 Let nil0 and nil1 be the numbers of genotypes AA and AB in the lth matched set
with one case and i controls. Then, for an integer v, show that, under H0,

E(xv
1il |nil0, nil1) = E

(

xv
1il |xv

1il +
i∑

j=1

xv
2ilj

)

=
(

xv
1il +

i∑

j=1

xv
2ilj

)
/

(1 + i).

4.3 For a matched pair design, using the data in Table 4.1, show that the MTT given
in (4.2) can be written as
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Table 4.13 Marginal genotype counts of a matched pair design based on Table 4.1

Genotypes Total

AA AB BB

Cases
∑2

j=0 m0j

∑2
j=0 m1j

∑2
j=0 m2j

∑2
i=1
∑2

j=0 mij

Controls
∑2

i=0 mi0
∑2

i=0 mi1
∑2

i=0 mi2
∑2

j=1
∑2

i=0 mij

Total
∑2

i=0(m0i + mi0)
∑2

i=0(m1i + mi1)
∑2

i=0(m2i + mi2) 2
∑2

i=1
∑2

j=0 mij

ZMTT =
∑

0≤s<t≤2(mst − mts)(xs − xt )
√∑

0≤s<t≤2(mst + mts)(xs − xt )2
,

where (x0, x1, x2) = (0, x,1).

4.4 Verify (4.6)–(4.8) for the MTT under the 1 : 2 matching.

4.5 Let yvst be defined as in Sect. 4.7 (see also Table 4.8). Denote (x0, x1, x1) =
(0, x,1). Prove that, for k = 1,2,

ni∑

l=1

xk
1il =

2∑

v=0

∑

s+t≤i

xk
vyvst ,

ni∑

l=1

i∑

j=1

xk
2ilj =

2∑

v=0

∑

s+t≤i

{ixk
2 + s(xk

0 − xk
2) + t (xk

1 − xk
2 )}yvst ,

ni∑

l=1

(

x1il +
i∑

j=1

x2ilj

)2

=
2∑

v=0

∑

s+t≤i

{xv + rx2 + s(x0 − x2) + t (x1 − x2)}2yvst .

Substituting the above formulas into (4.10), an alternative expression for the MTT
can be obtained using all the observed yvst .

4.6 The margins of the matched pair data in Table 4.1 form an unmatched case-
control sample as presented in Table 4.13. Rewrite the trend test ZCATT given
in (3.8) for a given x using the data given in Table 4.13. Compare this ZCATT to
ZMTT given in Problem 4.3 for a given x. Use the data in Table 4.3 as an example
and plot the two test statistics as functions of x over x ∈ [0,1].

4.7 The two-degrees-of-freedom test.

(a) Show that the partial derivatives in (4.14) can be written as, for k = 1,2,

∂l

∂βk

|H0 =
m∑

i=1

ni∑

l=1

{

x1ilk −
(

x1ilk +
i∑

j=1

x2iljk

)
/

(1 + i)

}

,



4.11 Problems 119

Table 4.14 Allele count for a
matched pair design under the
REC model

Cases Controls

AA + AB BB

AA + AB a b

BB c d

a = m00 + m01 + m10 + m11

b = m02 + m12

c = m20 + m21

d = m22

Table 4.15 Allele count for a
matched pair design under the
DOM model

Cases Controls

AA + AB BB

AA + AB a b

BB c d

a = m00

b = m01 + m02

c = m10 + m20

d = m11 + m12 + m21 + m22

− ∂2l

∂β2
k

|H0 =
m∑

i=1

ni∑

l=1

{(

x2
1ilk +

i∑

j=1

x2
2iljk

)
/

(1 + i)

−
(

x1ilk +
i∑

j=1

x2iljk

)2/
(1 + i)2

}

,

− ∂2l

∂β1β2
|H0 =

m∑

i=1

ni∑

l=1

{(

x1il1x1il2 +
i∑

j=1

x2ilj1x2ilj2

)
/

(1 + i)

}

−
m∑

i=1

ni∑

l=1

{(

x1il1 +
i∑

j=1

x2ilj1

)(

x1il2 +
i∑

j=1

x2ilj2

)
/

(1 + i)2

}

.

(b) Prove (4.15) and show that, in (4.15), Z1 = ZMTT with x = 0 and Z2 = ZMTT
with x = 1.

4.8 Consider a matched case-control design with J strata. The ith stratum con-
tains ni independent cases and each case is matched with m controls, a matched
set (i = 1, . . . , J ). The total number of controls in the ith matched set is mni . Let
n =∑J

i=1 ni be the total number of cases. In the ith stratum, denote the scores for
the lth case and the j th control matched to the lth case as x1il and x2ilj , respectively.
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Then, using the conditional likelihood function

J∏

i=1

ni∏

l=1

exp(βx1il)

exp(βx1il) +∑m
j=1 exp(βx2ilj )

,

show that the Score statistic for testing H0 : β = 0 can be written as

Z =
∑J

i=1
∑ni

l=1(mx1l −∑m
j=1 x2lj )

[∑J
i=1
∑ni

l=1{(1 + m)(x2
1l +∑m

j=1 x2
2lj ) − (x1l +∑m

j=1 x2lj )2}]1/2
,

which is identical to the MTT, ZMTT, given in (4.2). The MDT can be obtained
similarly.

4.9 Show that, under REC (x = 0) and DOM models (x = 1), the MTTs given in
(4.4) using the data in Table 4.1 are identical to McNemar’s test (4.5) using the
allele-based matched pair data in Tables 4.14 and 4.15.



Chapter 5
Bayes Factors for Case-Control Association
Studies

Abstract Chapter 5 focuses on the Bayes factor with Laplace approximation and
an approximate Bayes factor. The latter is the Bayes factor based on the maximum
likelihood estimate of the odds ratio for the genetic effect. In this chapter, the under-
lying genetic model is assumed to be known (either a recessive, additive or dominant
model). How to code the genetic effect in a Bayesian analysis is discussed. The re-
sult may depend on how the genetic effect is coded. Bayesian analysis based on a
full saturated model is an alternative approach, which is also studied. Examples are
given of using Bayes factors and approximate Bayes factors for the analysis of case-
control association studies. Covariates can be adjusted out in the analysis. Results
of simulation studies are presented.

In the previous two chapters, frequentist approaches for hypothesis testing have been
discussed for case-control association studies, in which p-values of test statistics
are calculated and used against a prespecified significance level to accept or reject
the null hypothesis. The conventional significance level is 0.05 for testing a single
hypothesis. In the analysis of GWAS, a small significance level, e.g. 5 × 10−7, is
used regardless of the power of the test statistic and the sample size of the study.
Therefore, the null hypothesis can be rejected with a p-value less than 5 × 10−7 in
a GWAS, even though the power to detect the association is low.

Unlike frequentist approaches, Bayesian approaches treat parameters (e.g., log
OR) as random variables and use the observed data to update prior knowledge about
the parameters. In Bayesian hypothesis testing, a Bayes factor is often calculated
and used with the prior information to measure evidence in the data in favor of or
against the null hypothesis. Bayes factors have been especially proposed for the
analysis of GWAS because they incorporate both strong significance of associa-
tions (small p-values) and the power of associations. Calculating a Bayes factor can
involve evaluating multiple integrations. In practice, approximations of Bayes fac-
tors are used, using asymptotic approximations (e.g., a Laplace approximation) or
a Monte-Carlo Markov Chain technique. Approximate Bayes factors that model the
distributions of test statistics are studied because they have closed forms and are
computationally simple.

For the analysis of case-control data with a diallelic marker, the logistic regres-
sion model is used. When a genotype is the only covariate in the logistic regression
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Statistics for Biology and Health,
DOI 10.1007/978-1-4614-2245-7_5, © Springer Science+Business Media, LLC 2012

121

http://dx.doi.org/10.1007/978-1-4614-2245-7_5


122 5 Bayes Factors for Case-Control Association Studies

model, either the Laplace approximation or the approximate Bayes factor can be
readily obtained. Bayesian hypothesis testing allows other covariates to be adjusted
out, but the dimension of the parameter space then increases accordingly. In this
case, intensive computation or the requirement of the Monte-Carlo Markov Chain
technique may prevent us from using standard Bayesian techniques in GWAS, in
which hundreds of thousands of markers are analyzed. The computation burden is
greatly reduced if Bayes factors are only calculated for the top markers with the
most significant p-values.

We focus on Bayes factors with Laplace approximation and a particular approxi-
mate Bayes factor. The latter is based on the MLEs of the parameters and their large
sample properties. For this approximate Bayes factor, the data in the Bayes factor
are replaced by a Wald statistic or the estimates of the parameters. Besides its sim-
plicity and similar interpretation as a Bayes factor, another advantage of the approx-
imate Bayes factor is that only the prior distributions for the parameters modeling
the genetic effects have to be specified. The priors for the nuisance parameters (the
intercept and the coefficients adjusting for other covariates in the logistic regression
model) are not used.

In this chapter, we assume the underlying genetic model is known (either a REC,
ADD or DOM model). Bayesian analysis based on a full saturated model is an
alternative approach, which is also discussed. Examples using Bayes factors and
approximate Bayes factors for the analysis of case-control association studies are
given. Simulation studies are presented. Bibliographical comments and cited refer-
ences are given at the end.

5.1 Introduction

Bayesian inference is based on the following Bayes theorem. For any two events A

and B ,

Pr(A|B) = Pr(B|A)Pr(A)/Pr(B). (5.1)

Let p(x|θ) denote the likelihood for data x of the parameter θ , p(θ) denote the prior
density, and p(θ |x) denote the posterior density. Then, using (5.1),

p(θ |x) = p(x|θ)p(θ)/p(x) = p(x|θ)p(θ)/

∫
p(x|θ)p(θ)dθ, (5.2)

where p(x) = ∫ p(x|θ)p(θ)dθ is the marginal density of x. Equation (5.2) is often
written as

p(θ |x) ∝ p(x|θ)p(θ).

Thus, the posterior is proportional to the likelihood multiplied by the prior. In this
chapter, we use Pr(·) to denote the probability of an event in general, and use p(·)
for a likelihood or density. For discrete random variables, Pr(·) and p(·) are also
used.
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5.2 Bayes Factor

5.2.1 Definition

Consider testing the null hypothesis H0 against the alternative hypothesis H1. The
probabilities of observing data x under H0 and H1 are denoted by Pr(x|H0) and
Pr(x|H1), respectively. The Bayes factor (BF) is defined as

BF01 = Pr(x|H0)

Pr(x|H1)
. (5.3)

In the literature, the BF may also be defined as

BF10 = Pr(x|H1)

Pr(x|H0)
. (5.4)

Define the prior odds and posterior odds of H0 by

prior odds(H0) = Pr(H0)/Pr(H1),

posterior odds(H0) = Pr(H0|x)/Pr(H1|x).

From

Pr(H0|x)

Pr(H1|x)
= Pr(x|H0)

Pr(x|H1)

Pr(H0)

Pr(H1)
= BF01 × Pr(H0)

Pr(H1)
,

it follows that the BF is the ratio of the posterior odds to the prior odds. From
(5.3), a smaller value of BF01 provides more evidence in the data in favor of H1.
If BF01 = 1, it implies that the data are equally likely under H0 or H1. Further
interpretation of the BF is discussed later.

Assume the data are drawn from the probability model p(x|θ), where θ = θi

under Hi , i = 0,1. Then

BF01 = Pr(x|H0)

Pr(x|H1)
=
∫
Θ0

p(x|θ0,H0)p(θ0|H0)dθ0
∫
Θ1

p(x|θ1,H1)p(θ1|H1)dθ1
, (5.5)

where p(θi |Hi) is a prior density and Θi is the parameter space under the hypothesis
Hi for i = 0,1. From (5.5), the parameter θ is averaged out in the integrations over
the parameter space rather than maximized.

5.2.2 Interpreting Bayes Factors

The BF is often used as a measure of evidence in the data in favor of the null or
alternative hypotheses. It has to be interpreted together with the prior odds. If one
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has negligible prior evidence for or against H0, then the prior odds is 1 (i.e., the
prior probability of H0 is 1/2), and the posterior odds equals the BF. If BF01 < 0.05,
then the posterior odds in favor of H0 is less than 5% of the prior odds, and this is
evidence against H0.

Without the prior information, BF01 = 0.05 itself does not provide evidence
against H0. If the prior odds is large, then BF01 = 0.05 could still be in favor of
H0. In fact, an important distinction between Bayesian and frequentist approaches
is that the BF depends on the prior information to provide evidence in the data, while
a p-value alone does not measure strength of association. However, when compar-
ing strength of association of two genetic markers (within a study or across studies),
their BFs can be compared if they have the same priors for H0.

Given the prior probability of H0 as π0 = Pr(H0), the posterior probability of
H0, π1 = Pr(H0|x), can be obtained using the BF as follows:

π1 = BF01 × prior odds(H0)

1 + BF01 × prior odds(H0)
. (5.6)

Hence, when the prior odds of H0 is 1 and the BF is less than 0.05, the posterior
probability of H0 is less than 0.0476, which is in favor of H1. Some practical guide-
lines are provided to interpret the BF as evidence against H0. Using the logarithm to
base 10 of BF01, the evidence against H0 is positive if −2 log10(BF01) is between
2 and 6, strong if it is between 6 and 10, and very strong if it is greater than 10.
Hence, BF01 < 0.05 corresponds to strong evidence in the data against H0. This
interpretation, however, is for testing a single hypothesis. The posterior probability
of H0, π1 = Pr(H0|x), is also referred to as a Bayesian false discovery probability
(BFDP).

Alternatively, one specifies 1 − π0 = Pr(H1), the prior probability of H1, and
reports 1 − π1 = Pr(H1|x) as the posterior probability of association (PPA). Then

PPA = 1

1 + BF01 × prior odds(H0)
= BF10 × prior odds(H1)

1 + BF10 × prior odds(H1)
, (5.7)

where the prior odds(H1) = Pr(H1)/Pr(H0). In testing association with a single
marker, a negligible prior π0 = 0.50 may be used. In GWAS, however, π0 = 0.999
to 0.9999 has been suggested. That is, Pr(H1) = 1 − π0 is about 10−4 to 10−5.

Given a threshold, H1 is claimed as noteworthy if the PPA exceeds the thresh-
old. The probability that H1 is claimed as noteworthy under H1 is called Bayesian
power. Given a threshold t , Bayesian power is Pr(PPA > t) = Pr(π1 < 1 − t) =
Pr(BFDP < 1 − t).

5.2.3 Approximations of Bayes Factors

To evaluate the BF, the following integrals need to be evaluated:

Pr(x|Hi) =
∫

p(x|θi,Hi)p(θi |Hi)dθi, i = 0,1. (5.8)
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For case-control genetic association studies, a logistic regression model is often
used, and evaluating the above integral may not be trivial, particularly with a large
number of covariates. Various approximations of the BF have been commonly used.
Some of them are considered below. More details of the first two approaches will be
given for case-control genetic association studies.

Laplace Approximation

Let θ̃i maximize p(x|θi,Hi)p(θi |Hi) = p(x, θi |Hi), which is referred to as the
maximum a posteriori (MAP) estimate of θi . Note that p(x, θi |Hi) =
p(x|Hi)p(θi |x,Hi) and that p(x|Hi) does not contain the parameter. Thus, the
MAP estimate is also the posterior mode, which maximizes p(θi |x,Hi).

Expand h(θi) = log{p(x, θi |Hi)} as a quadratic function about the MAP esti-
mate θ̃i :

h(θi) ≈ h(θ̃i) − 1

2
(θi − θ̃i )

T

(

− ∂2h

∂θi∂θT
i

)

(θi − θ̃i ).

Denote

Σ̃i = −
(

∂2h

∂θi∂θT
i

)−1

|θi=θ̃i
.

Then

p(x|θi,Hi)p(θi |Hi) ≈ p(x|θ̃i ,Hi)p(θ̃i |Hi) exp

{

−1

2
(θi − θ̃i )

T Σ̃−1
i (θi − θ̃i )

}

.

Integrating both sides and using the multivariate normal distribution, we have

∫
p(x|θi,Hi)p(θi |Hi)dθi ≈ p(x|θ̃i ,Hi)p(θ̃i |Hi)

×
∫

exp

{

−1

2
(θi − θ̃i )

T Σ̃−1
i (θi − θ̃i )

}

dθi

= p(x|θ̃i ,Hi)p(θ̃i |Hi)(2π)di/2|Σ̃i |1/2,

where di is the dimension of θi . This yields the following Laplace approximation of
Pr(x|Hi):

log{Pr(x|Hi)} ≈ di

2
log(2π) + 1

2
log |Σ̃i | + log{p(x|θ̃i ,Hi)p(θ̃i |Hi)}. (5.9)

The MAP estimate θ̃i can be obtained using the Newton-Raphson optimization al-
gorithm or by a grid search over the parameter space.
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Approximate Bayes Factors

The BF given in (5.3) models the data with the distributions (likelihoods) of the
data under H0 and H1, where the parameters in the distributions are averaged out
with respect to the prior distributions under H0 and H1. A simple modification of
the BF in (5.3) is to model a test statistic T with its asymptotic distributions under
H0 and H1, where the parameters are also averaged out with respective to the prior
distributions. This modified BF, referred to as approximate BF (ABF), can be written
as

ABF01 = Pr(T |H0)

Pr(T |H1)
=
∫
Θ0

p(T ; θ0,H0)p(θ0|H0)dθ0
∫
Θ1

p(T ; θ1,H1)p(θ1|H1)dθ1
, (5.10)

where p(T ; θi,Hi) is the asymptotic distribution of T under Hi and p(θ |Hi) is the
prior density of θ under Hi . Note that the parameter in (5.3) and the parameter in
(5.10) can be different. So the priors p(θ |Hi), i = 0,1, can also be different. The
above ABF has an interpretation similar to that of BF in (5.3). For example, given
the prior odds, a similar posterior probability of H1 and PPA can be obtained as
follows:

Pr(H0|T ) = ABF10 × prior odds(H0)

1 + ABF10 × prior odds(H0)
,

and PPA = Pr(H1|T ) = 1 − Pr(H0|T ). The ABF can be regarded as a measure of
evidence in T for or against H0.

The ABF can be useful if we replace T by the MLE of the parameter of interest
θ . In this case, the large sample distributions of the MLE under H0 and H1 can be
applied in computing the ABF. Hence, from (5.10),

ABF01 = Pr(θ̂ |H0)

Pr(θ̂ |H1)
,

in which θ̂ is the MLE of θ . As n → ∞, ignoring negligible terms,
√

n(θ̂ − θ) → Nd(0, I−1
1 (θ)) (5.11)

in distribution, where d is the dimension of θ and I1(θ) is the Fisher information
matrix contained in a single sample. For applications, the observed Fisher informa-
tion matrix i1(θ̂) is used to replace I1(θ), where the parameter θ is replaced by its
MLE. Thus, without negligible terms,

θ̂ ∼ Ndi
(θi, i

−1
1 (θ̂)/n) under Hi for i = 0,1.

Then

ABF01 = Pr(θ̂ |H0)

Pr(θ̂ |H1)
=
∫

p(θ̂ |θ0,H0)p(θ0|H0)dθ0∫
p(θ̂ |θ1,H1)p(θ1|H1)dθ1

, (5.12)

where the multivariate normal density in (5.11) can be used for p(θ̂ |θi,Hi) rather
than using the logistic regression model p(x|θi,Hi) as in the BF.
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Monte Carlo and Importance Sampling

One approach to approximate the integral (5.8) is to use a random sample of size M

drawn from the prior density p(θi |Hi). Denote the random sample by

θ
(1)
i , . . . , θ

(M)
i ∼ p(θi |Hi).

Then, when M is large, one has

P̂r(x|Hi) ≈ 1

M

M∑

m=1

Pr(x|θ(m)
i ,Hi). (5.13)

The approximation in (5.13) may not be efficient when the random samples θ
(m)
i ,

m = 1, . . . ,M have small likelihood values so that the convergence of (5.13) to a
Gaussian distribution can be slow. One approach to improve this is to draw random
samples from the so-called importance sampling function p∗(θi |Hi). Then define
wm = p(θ

(m)
i |Hi)/p

∗(θ(m)
i |Hi), and estimate the integral (5.8) as

P̂r(x|Hi) ≈
∑M

m=1 wm Pr(x|θ(m)
i ,Hi)

∑M
m=1 wm

. (5.14)

One choice for p∗(θi |Hi) is the posterior density

p∗(θi |Hi) = p(θi |x,Hi) = p(x|θi,Hi)p(θi |Hi)/p(x|Hi).

Then, using the above equation, wm = p(x|Hi)/p(x|θ(m)
i ,Hi), and (5.14) becomes

the harmonic mean of the likelihood values:

P̂r(x|Hi) ≈
[

1

M

M∑

m=1

{Pr(x|θ(m)
i ,Hi)}−1

]−1

.

Drawing a random sample from the posterior density is usually not feasible.
Other techniques, such as Markov Chain Monte Carlo, in particular the Metropolis-
Hastings algorithm or Gibbs sampler, are used to draw a dependent sample θ

(m)
i ,

m = 1, . . . ,M , which form a Markov chain.

5.3 Bayes Factor for Genetic Association Studies

Let d = 1 indicate a case and d = 0 indicate a control. Denote the three genotypes
for a diallelic marker with alleles A and B by (G0,G1,G2) = (AA,AB,BB). Let
Pi = Pr(d = 1|θ,Gi), which is given by

Pi = exp{α + βI (Gi)}
1 + exp{α + βI (Gi)} , (5.15)
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where θ = (α,β)T and I (Gi) is a known function of genotype Gi for i = 0,1,2.
For example, I (Gi) = i for the ADD model, I (G0) = I (G1) = 1 and I (G2) = 1
for the REC model, and I (G0) = 0 and I (G1) = I (G2) = 1 for the DOM model.
Because a single parameter β is used for the genetic effect, we assume the genetic
model is known, i.e., the function I (G) is well defined given one of the three genetic
models. In general, we can write

I (G) = 0, if G = AA,

= t1, if G = AB,

= t2, if G = AB. (5.16)

Assume B is the risk allele under H1. Then (t1, t2) = (0,1) for the REC model,
(t1, t2) = (1,1) for the DOM model, and (t1, t2) = (1,2) for the ADD model. Under
the null hypothesis of no association H0, β = 0 and α is a nuisance parameter. In
the above logistic regression model, we have only an intercept α and a covariate β

for the genetic effect. Therefore, the dimension of θ here is d0 = 1 under H0 and
d1 = 2 under H1. Later we will describe models to adjust out other covariates.

5.3.1 Laplace Approximation

Suppose that r cases and s controls are drawn from the population with genotype
counts (r0, r1, r2) and (s0, s1, s2) for (G0,G1,G2). The following prospective like-
lihood function can be used for case-control data:

Pr(data|θ) =
n∏

j=1

P
dj

j (1 − Pj )
1−dj = exp{αr + β

∑2
i=0 riI (Gi)}

∏2
i=0[1 + exp{α + βI (Gi)}]ni

, (5.17)

where ni = ri +si is the total genotype count for Gi and n = r +s is the total sample
size. Under the alternative hypothesis H1, θ1 = (α,β)T and the likelihood function
is given in (5.17), which is rewritten as

Pr(data|θ1,H1) = exp{αr + β
∑2

i=0 riI (Gi)}
∏2

i=0[1 + exp{α + βI (Gi)}]ni

.

Under H0, θ0 = α and the likelihood function is given by

Pr(data|θ0,H0) = eαr

(1 + eα)n
.

The prior distributions for α and β can be specified as

α ∼ N(μ1, σ
2
1 ),

β ∼ N(μ2, σ
2
2 ),
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where (μ1, σ1) and (μ2, σ2) are prespecified. Choosing μ1 = μ2 = 0, their densities
are given by

p(θ0|H0) ∝ 1

σ1
exp

(

− α2

2σ 2
1

)

,

p(θ1|H1) ∝ 1

σ1
exp

(

− α2

2σ 2
1

)
1

σ2
exp

(

− β2

2σ 2
2

)

.

The denominator of the BF involves double integration with respect to θ1 =
(α,β)T ,

∫
Pr(data|θ1,H1)p(θ1|H1)dθ1.

We use the Laplace approximation to evaluate the above integral. Under H1, with
μ1 = μ2 = 0, the MAP estimate θ̃1 = (̃α, β̃)T satisfies (Problem 5.2)

r − α̃

σ 2
1

−
2∑

i=0

ni exp{̃α + β̃I (Gi)}
1 + exp{̃α + β̃I (Gi)} = 0, (5.18)

2∑

i=0

riI (Gi) − β̃

σ 2
2

−
2∑

i=0

niI (Gi) exp{̃α + β̃I (Gi)}
1 + exp{̃α + β̃I (Gi)} = 0, (5.19)

and |Σ̃−1
1 | = 1/|Σ̃1| is given by

|Σ̃−1
1 | =

∣
∣
∣
∣
∣
∣

1
σ 2

1
+∑2

i=0 niΔi (̃α, β̃)
∑2

i=0 niI (Gi)Δi (̃α, β̃)

∑2
i=0 niI (Gi)Δi (̃α, β̃) 1

σ 2
2

+∑2
i=0 niI

2(Gi)Δi (̃α, β̃)

∣
∣
∣
∣
∣
∣
, (5.20)

where Δi(α,β) = exp{α + βI (Gi)}/[1 + exp{α + βI (Gi)}]2.
The numerator of the BF is equal to

Eθ0|H0

[
exp(αr)

{1 + exp(α)}n
]

= 1√
2πσ1

∫
exp(αr)

{1 + exp(α)}n exp

(

− α2

2σ 2
1

)

dα,

which contains a single integral. However, the integrand is usually too small to inte-
grate in the range α ∈ (−∞,∞). For example, if r = 100 and n = 200 with σ1 = 1,
the integrand is 2.4826 × 10−61 when α = 0, 5.5558 × 10−72 when α = 1, and
3.87 × 10−457 when α = 10. To approximate the numerator of the BF, we can also
use the Laplace approximation with β = 0. Under H0, the MAP estimate for α, α̃0,
satisfies

α̃0

σ 2
1

+ neα̃0

1 + eα̃0
= r
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and

Σ̃−1
0 = 1/σ 2

1 + neα̃0/(1 + eα̃0)2. (5.21)

Then BF01 can be computed with Laplace approximations using the above approx-
imations, (5.3) and (5.9).

5.3.2 An Example

For illustration, we compute a BF using the Laplace approximation for the SNP
rs10510126 which has shown association with breast cancer in a GWAS (see Ta-
ble 3.10). The genotype counts for the SNP are (r0, r1, r2) = (10,180,955) and
(s0, s1, s2) = (14,272,854). Thus, r = 1145, s = 1140, and n = 2285, where
(n0, n1, n2) = (24,452,1809). For the function I (G) defined in (5.16), in addition
to choosing (t1, t2) = (0,1), (1,1), and (1,2), we also chose (t1, t2) = (1/2,1) for
comparison with (t1, t2) = (1,2).

Given σ 2
1 , σ 2

2 and (t1, t2), and μ1 = μ2 = 0, Eqs. (5.18) and (5.19) become

α

σ 2
1

+ 24eα

1 + eα
+ 452eα+βt1

1 + eα+βt1
+ 1809eα+βt2

1 + eα+βt2
= 1145,

β

σ 2
2

+ 452t1e
α+βt1

1 + eα+βt1
+ 1809t2e

α+βt2

1 + eα+βt2
= 180t1 + 955t2.

We solve these two equations for θ = (α,β)T to obtain the MAP estimates under
H1. Under H0 : β = 0, only Eq. (5.18) is available. Thus, the MAP estimate for α

satisfies

α

σ 2
1

+ 2285eα

1 + eα
= 1145.

The numerical values of MAP estimates θ̃1 = (̃α1, β̃1)
T under H1 and θ̃0 = α̃0 under

H0 depend on σ 2
1 , σ 2

2 and (t1, t2). Table 5.1 reports the values of the MAP estimates.
To use Laplace approximations, |Σ̃i | and L(θ̃i) = p(data|θ̃i ,Hi)p(θ̃i |Hi), i =

0,1 are calculated. |Σ̃i | is calculated using (5.20) and (5.21). L(θ̃i) is given by

L(θ̃0) = e1145α̃−α̃2/(2σ 2
1 )

√
2πσ1(1 + eα̃)2285

,

L(θ̃1) = e1145α̃+(180t1+955t2)β̃−α̃2/(2σ 2
1 )−β̃2/(2σ 2

2 )

2πσ1σ2(1 + eα̃)24(1 + eα̃+β̃t1)452(1 + eα̃+β̃t2)1809
.

The BFs in Table 5.1 are obtained from BF01 = Pr(data|H0)/Pr(data|H1) with the
Laplace approximation (5.9).
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Table 5.1 MAP estimate, BF and posterior probability of H0, Pr(H0|data), when Pr(H0) = 0.5,
using Laplace approximations given σ1 = 1.0 (a negligible prior for α), σ2 and (t1, t2). PPA can be
obtained from 1 − Pr(H0|data)

σ2 (t1, t2) α̃0 α̃1 β̃1 BF01 Pr(H0|data)

0.10 (0,1) 0.0043 −0.1928 0.2493 0.0033 0.0033

(1,2) −0.4191 0.2381 0.0036 0.0036

(1,1) −0.0144 0.0190 1.0142 0.5035

( 1
2 ,1) −0.1710 0.1972 0.0936 0.0856

0.20 (0,1) 0.0043 −0.3178 0.4070 0.0001 0.0001

(1,2) −0.6537 0.3698 0.0002 0.0002

(1,1) −0.0585 0.0636 1.0591 0.5143

( 1
2 ,1) −0.4190 0.4761 0.0036 0.0036

0.40 (0,1) 0.0043 −0.3792 0.4843 3e−5 3e−5

(1,2) −0.7611 0.4300 9e−5 9e−5

(1,1) −0.1473 0.1553 1.2404 0.5537

( 1
2 ,1) −0.6537 0.7396 0.0002 0.0002

A smaller BF01 indicates more evidence in the data in favor of H1. Table 5.1
shows that the BFs in this example are fairly robust across various choices of the
prior parameter σ 2

2 but they are strongly dependent on the underlying genetic model,
i.e., the values of (t1, t2). Here we assume the genetic model is known. In practice,
when the genetic model is unknown, we need to be cautious about which values of
(t1, t2) are used in calculating BFs. The BFs are different when (t1, t2) = (1,2) and
(t1, t2) = (1/2,1) are used. This indicates that, when the same priors are used, the
BF is not invariant under a scaled transformation of (t1, t2). The reason for this will
be discussed in the next section. On the other hand, the trend tests in Chap. 3 are
invariant under any scaled transformation of the scores (t1, t2).

In Table 5.1, a negligible prior for α|H0 ∼ N(0,1) is used (i.e., σ1 = 1). For
β|H1 ∼ N(0, σ 2

2 ), the choice of σ2 is related to the genetic effect. In Sect. 5.5, we
see that σ2 = 0.174 and σ2 = 0.557 correspond to small and large genetic effects,
respectively, determined by the upper bounds of the small and large genetic effects.
Thus when σ2 increases, the upper bound for the genetic effect increases accord-
ingly.

Some parameter values are not reported in Table 5.1, e.g., L(θ̃i). These values
are extremely small in the calculations. Corresponding to the first entry of the table
(row 1), L(θ̃1) = 9.4712 × 10−686 and L(θ̃0) = 5.620 × 10−689. In Table 5.1, we
chose σ2 = 0.1, 0.2 and 0.4. For comparison, we calculate the trend tests (3.8) for
the same SNP, and obtain ZCATT(0) = 4.999 (REC model), ZCATT(1/2) = 4.827
(ADD model), and ZCATT(1) = 0.832 (DOM model). The results from using BFs
and trend tests are consistent.

Assuming the prior odds of H0 is 1 (a negligible prior with π0 = 0.50), the pos-
terior probability of H0 is Pr(H0|data) = BF01/(1 + BF01), which is also presented
in Table 5.1 (the last column). There is very strong evidence for association of this
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SNP with breast cancer under the REC model, and strong evidence under the ADD
model. However, the result is not in favor of H1 under the DOM model.

5.3.3 Coding the Genetic Effect

In Table 5.1, the BFs with genotype codes (t1, t2) = (1,2) and (t1, t2) = (1/2,1) are
different when the same priors are used. The first code is used to count the number
of B alleles in the genotypes, while the second one uses the proportion of B alleles
in the genotypes.

Consider one genotype code

(I (1)(G0), I
(1)(G1), I

(1)(G2)) = (0, t1, t2), (5.22)

where t2 ≥ t1 ≥ 0 and t2 > 0, and another genotype code

(I (2)(G0), I
(2)(G1), I

(2)(G2)) = (0, t,1), (5.23)

where t ∈ [0,1]. Let t = t1/t2 and (αi, βi) denote the parameters for the ith geno-
type code. Suppose one chooses the same priors for α, αi |H0 ∼ N(0, σ 2

1 ) and
αi |H1 ∼ N(0, σ 2

1 ) for i = 1,2, but different priors for β , β1|H1 ∼ N(0, σ 2
2 ) and

β2|H1 ∼ N(0, σ̃ 2
2 ). Denote the BF with parameters σ 2

1 and σ 2
2 and the genotype

code (t1, t2) by BF01(σ1, σ2; t1, t2). Then (Problem 5.7)

BF01(σ1, σ2; t1, t2) = BF01(σ1, t2σ2; t1/t2,1). (5.24)

The above result shows that the BF with the code (t1, t2) equals the BF with the code
(t,1) = (t1/t2,1) if the priors β1|H1 ∼ N(0, σ 2

2 ) and β2|H1 ∼ N(0, t2
2 σ 2

2 ) are used,
respectively. To prove (5.24), one can use the two transformations α1 = α2 and β1 =
β2/t2. The second one implies that σ̃ 2

2 = Var(β2) = t2
2 Var(β1) = t2

2 σ 2
2 . Therefore,

using β1|H1 ∼ N(0, σ 2
2 ) and β2|H1 ∼ N(0, t2

2 σ 2
2 ) ensures that comparable priors

are used for both codes under which the BFs are identical.
As an example, in Table 5.1, the BF with (t1, t2) = (1/2,1) and σ2 = 0.20 (or

0.40) is identical to the BF with (t1, t2) = (1,2) and σ2 = 0.10 (or 0.20).

5.4 Approximate Bayes Factor for Genetic Association Studies I

In this section we consider the ABF when a single parameter is used to model the
genetic effect of the marker. We start with the model that has only an intercept and
a single parameter for the genetic model. Then the simple model is extended to
have other covariates. In the next section, a saturated model with two parameters is
considered.
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5.4.1 No Covariates

Denote the log-likelihood as l = log Pr(data|θ), where Pr(data|θ) is given in (5.17).
The function I (G) defined in (5.16) is used.

The MLE of θ , denoted by θ̂ = (̂α, β̂)T , satisfies ∂l/∂θ = 0. The expressions for
∂l/∂θ = 0 are given in Problem 5.3 (a). The elements of the observed Fisher in-
formation matrix evaluated at θ̂ can be written as in(θ̂ ) = −∂l2/∂θ∂θT |θ=θ̂ , which
is also given in Problem 5.3 (a). When the underlying genetic model is REC with
(t1, t2) = (0,1) or DOM with (t1, t2) = (1,1), simple closed forms for θ̂ can be ob-
tained (see Problem 5.3 (b)). For the ADD model with (t1, t2) = (1,2), θ̂ can be
found numerically. When HWE proportions hold in the population, one may con-
sider a 2 × 2 table for the ADD model comparing the two alleles between cases and
controls. In this case, the closed form θ̂ is available.

By the large sample property of the MLE θ̂ , we have, as n = r + s → ∞ (and
r/n → ε ∈ (0,1)), without negligible terms,

θ̂ =
[

α̂

β̂

]

∼ N2(θ, i−1
n (θ̂ )) = N2

⎛

⎝

[
α

β

]

,

[
i00(θ̂) i01(θ̂)

i10(θ̂) i11(θ̂)

]−1
⎞

⎠ ,

where in(θ̂ ) is based on n case-control samples. For comparison, i1(θ) in (5.11)
is based on a single sample. Using the transformation α∗ = α + (i01(θ̂)/i00(θ̂ ))β ,
which is estimated by α̂ ∗ = α̂ + (i01(θ̂)/i00(θ̂ ))β̂ , we have

[
α̂ ∗

β̂

]

∼ N2

([
α∗

β

]

,

[
i−1
00 (θ̂ ) 0

0 (i11(θ̂ ) − i2
01(θ̂)/i00)

−1(θ̂)

])

.

Then the ABF is given by

ABF =
∫

p(̂α ∗, β̂|α∗,H0)p(α∗|H0)dα∗
∫ ∫

p(̂α ∗, β̂|α∗, β,H1)p(α∗, β|H1)dα∗dβ
,

where the numerator of the ABF can be written as

p(β̂|H0)

∫
p(̂α ∗|α∗,H0)p(α∗|H0)dα∗

and the denominator of the ABF can be written as
∫

p(β̂|β,H1)p(β|H1)dβ ×
∫

p(̂α ∗|α∗,H1)p(α ∗|H1)dα∗.

The same prior density can be used for α∗ under either model Hi , i.e. p(α∗|H0) =
p(α∗|H1). Then the ABF can be simplified to

ABF = p(β̂|H0)∫
p(β̂|β,H1)p(β|H1)dβ

,



134 5 Bayes Factors for Case-Control Association Studies

where p(β̂|H0) is the density N(0,V ), p(β̂|β,H1) is the density N(β,V ), where

V = (i11(θ̂) − i2
01(θ̂ )/i00(θ̂ ))−1,

and p(β|H1) is the prior density N(0, σ 2
2 ), where σ 2

2 is prespecified. Then (Prob-
lem 5.3)

ABF =
√

V + σ 2
2

V
exp

(

−1

2

β̂ 2

V

σ 2
2

σ 2
2 + V

)

, (5.25)

where β̂ 2/V is the Wald statistic for testing H0 : β = 0. The ABF in (5.25) depends
on the underlying genetic model, specified by (t1, t2).

5.4.2 With Covariates

Let z be a vector of m covariates, including an intercept, to adjust for in the logistic
regression model. It takes the value zij = (zij1, . . . , zijm)T with zij1 = 1 for the
j th individual with genotype Gij , j = 1, . . . , ni and i = 0,1,2. Without loss of
generality, assume the first r individuals are cases. Thus, the covariates for the cases
with genotypes Gij are zij , j = 1, . . . , r , and for the controls with genotypes Gij

they are zij , j = r + 1, . . . , n. Then the likelihood function (5.17) becomes

Pr(data|θ, z,H1) = exp{∑2
i=0
∑ri

j=1 αT zij + β
∑2

i=0 riI (Gi)}
∏2

i=0
∏ni

j=1[1 + exp{αT zij + βI (Gij )}]
, (5.26)

where α = (α1, . . . , αm)T and (G0,G1,G2) = (G0j ,G1j ,G2j ). Under H0 : β = 0,

Pr(data|θ, z,H0) = exp(
∑2

i=0
∑ri

j=1 αT zij )
∏2

i=0
∏ni

j=1{1 + exp(αT zij )}
. (5.27)

The equations for the MLEs of θ = (α,β)T and observed Fisher information matrix
are given in Problem 5.3 (c). It can be shown that the ABF with covariates has the
same form as (5.25) (Problem 5.5) given by

ABF =
√

V ∗ + σ 2
2

V ∗ exp

(

−1

2

β̂∗2

V ∗
σ 2

2

σ 2
2 + V ∗

)

, (5.28)

where β̂∗ is the MLE of β satisfying

∂

∂θ
log Pr(data|θ, z) = 0,

σ 2
2 is specified in the prior β|H1 ∼ N(0, σ 2

2 ) and is also given in (5.25), and V ∗ is
given in Problem 5.5 with the covariates.
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5.4.3 An Alternative Derivation

In deriving the ABF in Sect. 5.4.1, the parameter θ in the ABF contains (α,β)T ,
where α is the nuisance parameter and β (the log OR) is the parameter of inter-
est. Note that the linear transformation α∗ = α + (i01(θ̂ )/i00(θ̂ ))β was used in the
derivation to eliminate α in the ABF. Thus, the ABF given by (5.25) can also be
obtained by replacing the statistic T in the ABF with β̂ , i.e.,

ABF = Pr(β̂|H0)

Pr(β̂|H1)
=
√

V + σ 2
2

V
exp

(

−1

2

β̂ 2

V

σ 2
2

σ 2
2 + V

)

.

A similar result holds when covariates are adjusted out in the ABF.

5.4.4 Coding the Genetic Effect

Suppose the genotype codes (5.22) and (5.23) are used. We show that a result similar
to (5.24) can be obtained:

ABF(σ1, σ2; t1, t2) = ABF(σ1, t2σ2; t1/t2,1). (5.29)

In (5.29), covariates are assumed to be present. Let (̂α ∗
1 , β̂ ∗

1 ) and (̂α ∗
2 , β̂ ∗

2 ) be
the MLEs using (5.22) and (5.23), respectively, with covariates. Then using Prob-
lem 5.3 (c), it can be shown that α̂ ∗

1 = α̂ ∗
2 and β̂∗

1 = β̂∗
2 /t2. Denote the observed

Fisher information matrix corresponding to (̂α∗
j , β̂∗

j ) by i
(j)

00 , i
(j)

01 and i
(j)

11 , j = 1,2.

Then, using Problem 5.3 (c), it can be shown that i
(1)
00 = i

(2)
00 , i

(1)
01 = t2i

(2)
01 , and

i
(1)
11 = t2

2 i
(2)
11 . Hence,

V ∗(1) = (i(1)
11 − i

(1)
10

(
i
(1)
00

)−1
i
(1)
01

)−1 = 1

t2
2

(
i
(2)
11 − i

(2)
10

(
i
(2)
00

)−1
i
(2)
01

)−1 = V ∗(2)/t2
2 .

Thus,

ABF(σ1, σ2; t1, t2) =
√

V ∗(1) + σ 2
2

V ∗(1)
exp

(

−1

2

(β̂∗
1 )2

V ∗(1)

σ 2
2

σ 2
2 + V ∗(1)

)

=
√

V ∗(2)/t2
2 + t2

2 σ 2
2 /t2

2

V ∗(2)/t2
2

exp

(

−1

2

(β̂∗
2 )2/t2

2

V ∗(2)/t2
2

t2
2 σ 2

2 /t2
2

t2
2 σ 2

2 /t2
2 + V ∗(2)/t2

2

)

=
√

V ∗(2) + t2
2 σ 2

2

V ∗(2)
exp

(

−1

2

(β̂∗
2 )2

V ∗(2)

t2
2 σ 2

2

t2
2 σ 2

2 + V ∗(2)

)

= ABF(σ1, t2σ2; t1/t2,1).
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5.4.5 An Example

The example studied in Sect. 5.3.2 is revisited using the ABFs with REC, ADD and
DOM models. Based on the results of the previous section, we only consider the
genotype codes (t1, t2) = (0,1) for the REC model, (1,2) for the ADD model and
(1,1) for the DOM model. Across the three genetic models, the same σ 2

2 is used in
the prior distribution of β .

We apply the ABF (5.28) to the SNP for a given genetic model. The MLEs α̂ and
β̂ can be solved from the following equations (see Problem 5.3 (a) and (b))

24eα̂

1 + eα̂
+ 452eα̂+t1β̂

1 + eα̂+t1β̂
+ 1809eα̂+t2β̂

1 + eα̂+t2β̂
= 1145,

452t1e
α̂+t1β̂

1 + eα̂+t1β̂
+ 1809t2e

α̂+t2β̂

1 + eα̂+t2β̂
= 180t1 + 955t2.

Under the REC or DOM models, closed forms for α̂ and β̂ are available. Under the
ADD model, we apply the Newton-Raphson procedure to find α̂ and β̂ .

For illustration, consider the REC model. Numerical results show that α̂ =
−0.4090 and β̂ = 0.5207. Given α̂ and β̂ , Δ̂0 = exp(̂α)/{1 + exp(̂α)}2 = 0.2398,
Δ̂1 = exp(̂α + t1β̂)/{1 + exp(̂α + t1β̂)}2 = 0.2398 and Δ̂2 = exp(̂α + t2β̂)/{1 +
exp(̂α + t2β̂)}2 = 0.2492, where t1 = 0 and t2 = 1. The observed Fisher informa-
tion can be evaluated using

i00(θ̂) = 24Δ̂0 + 452Δ̂1 + 1809Δ̂2 = 564.9476,

i01(θ̂) = 452t1Δ̂1 + 1809t2Δ̂2 = 450.8028,

i11(θ̂) = 452t2
1 Δ̂1 + 1809t2

2 Δ̂2 = 450.8028.

Hence, the asymptotic variance for β̂ is V = 1/(i11(θ̂ ) − i2
01(θ̂)/i00(θ̂)) = 0.01098.

Finally, the ABF given by (5.28) is computed. The results are reported in Table 5.2.
Comparing the results in Table 5.2 with those in Table 5.1, we notice that the ABFs
are similar to the BFs. The ABFs are again fairly robust to the choices of σ2 but they
are very sensitive to the underlying genetic model through the values of (t1, t2).

5.5 Approximate Bayes Factor for Genetic Association Studies II

In this section, we consider a saturated model with two parameters to model the
genetic effect of a single marker. In this case, the underlying genetic model is not
required. We start with the case where there are covariates to adjust out. Then we
consider the special case with only an intercept and two coefficients for the genetic
effect.
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Table 5.2 MLEs and ABFs given σ2 and a genetic model

σ2 (t1, t2) α̂ β̂ V ABF01

0.10 (0,1) −0.4090 0.5207 0.0110 0.0038

(1,2) −0.8315 0.4686 0.0096 0.0041

(1,1) −0.3365 0.3444 0.1732 1.0094

0.20 (0,1) −0.4090 0.5207 0.0110 0.0001

(1,2) −0.8315 0.4686 0.0096 0.0002

(1,1) −0.3365 0.3444 0.1732 1.0404

0.40 (0,1) −0.4090 0.5207 0.0110 3e−5

(1,2) −0.8315 0.4686 0.0096 8e−5

(1,1) −0.3365 0.3444 0.1732 1.1767

5.5.1 With Covariates

In Sect. 5.3, Sect. 5.4.1, and Sect. 5.4.2, an indicator function I (G) is used for geno-
type G with I (AA) = 0, I (AB) = t1, and I (BB) = t2, where the values of (t1, t2)

depend on the underlying genetic model. A single coefficient β is used for the ge-
netic effect. That setting requires the underlying genetic model. When the genetic
model is unknown, one can use two indicator functions with two coefficients, as in
Sect. 3.3.4.

Define I1(G) = 0, 0, 1 for G = AA, AB, BB, and I2(G) = 0, 1, 1 for G = AA, AB,
BB. Let zij , j = 1, . . . , n, be covariates as defined before. The likelihood function
(5.17) with covariates becomes

Pr(data|θ, z,H1) = exp{∑2
i=0
∑ri

j=1 αT zij +∑2
i=1
∑2

h=1 riβhIh(Gi)}
∏2

i=0
∏ni

j=1[1 + exp{αT zij +∑2
h=1 βhIh(Gij )}]

,

where (G0,G1,G2) = (G0j ,G1j ,G2j ) = (AA,AB,BB). Under H0 : β1 = β2 = 0,

Pr(data|θ, z,H0) = exp(
∑2

i=0
∑ri

j=1 αT zij )
∏2

i=0
∏ni

j=1{1 + exp(αT zij )}
.

Denote

Eij (θ) = exp

{

αT zij +
2∑

h=1

βhIh(Gij )

}

, j = 1, . . . , ni, i = 0,1,2.

Let l(θ) denote the log-likelihood function. The MLEs of θ = (α,β1, β2)
T , denoted

by θ̂ = (̂α, β̂1, β̂2), can be solved from ∂l(θ)/∂α = 0 and ∂l(θ)/∂βh = 0, h = 1,2,
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which are given by

2∑

i=0

ri∑

j=1

zij =
2∑

i=0

ni∑

j=1

zijEij (θ)

1 + Eij (θ)
, (5.30)

2∑

i=1

riIh(Gi) =
2∑

i=0

ni∑

j=1

Ih(Gij )Eij (θ)

1 + Eij (θ)
, h = 1,2. (5.31)

Denote δij = Eij (θ)
/{1 + Eij (θ)}2. Then the observed Fisher information matrix

for θ̂ = (̂α, β̂1, β̂2)
T can be written as

in(θ̂ ) =
⎡

⎢
⎣

i00 i01 i02

i10 i11 i12

i20 i21 i22

⎤

⎥
⎦

θ=θ̂

=
⎡

⎢
⎣

∑∑
zij z

T
ij δij

∑∑
zij I1δij

∑∑
zij I2δij

∑∑
zij I1δij

∑∑
I1δij

∑∑
I1I2δij

∑∑
zij I2δij

∑∑
I1I2δij

∑∑
I2δij

⎤

⎥
⎦

θ=θ̂

(5.32)

where Ih = I1(Gij ) for h = 1,2, and θ is replaced by θ̂ . Then, asymptotically,

θ̂ ∼ Nm+2(θ, i−1
n (θ̂)),

where m is the number of covariates, including the intercept.
Partition the matrix i(θ̂ ) as i(θ̂ ) = (Bij )2×2, where B11 = i00, B12 = (i01, i02),

B21 = BT
12, and

B22 =
[

i11 i12

i12 i22

]

.

Consider the transformation α∗ = α + B−1
11 B12β , where β = (β1, β2)

T . Let α̂ ∗ =
α̂ + B−1

11 B12β̂ . Then, asymptotically,

[
α̂ ∗

β̂

]

∼ Nm+2

([
α∗

β

]

,

[
Var(̂α ∗) 0

0 (B22 − B21B
−1
11 B12)

−1

])

. (5.33)

Using a similar argument as for the ABF in Sect. 5.4.1, we have

ABF =
∫

p(̂α ∗, β̂|α∗,H0)p(α∗|H0)dα∗
∫ ∫

p(̂α ∗, β̂|α∗, β,H1)p(α∗, β|H1)dα∗dβ

= p(β̂|H0)∫
p(β̂|β,H1)p(β|H1)dβ

.
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Denote

V = (B22 − B21B
−1
11 B12)

−1.

Then β̂|H0 ∼ N2(0,V ) and β̂|β,H1 ∼ N2(β,V ). Let β|H1 ∼ N2(0,W). Then

p(β̂|H0) = 1

2π |V |1/2
exp

(

−1

2
β̂ T V −1β̂

)

,

and, using the results of Problem 5.6,
∫

p(β̂|β,H1)p(β|H1)dβ

= 1

(2π)2|V W |1/2

∫
exp

[

−1

2
{(β − β̂)T V −1(β − β̂) + βT W−1β}

]

dβ

= 1

2π |V + W |1/2
exp

{

−1

2
β̂ T (V + W)−1β̂

}

.

Thus, the ABF can be written as

ABF = |V + W |1/2

|V |1/2
exp

[

−1

2
β̂ T {V −1 − (V + W)−1}β̂

]

. (5.34)

5.5.2 No Covariates

When the logistic regression model only contains an intercept α and two parameters
(β1, β2) for the genetic effect, the likelihood function (5.17) becomes

Pr(data|θ,H1) = exp{αr +∑2
i=1
∑2

h=1 riβhIh(Gi)}
∏2

i=0
∏ni

j=1[1 + exp{α +∑2
h=1 βhIh(Gij )}]

.

Under H0 : β1 = β2 = 0,

Pr(data|θ,H0) = exp(αr)

{1 + exp(α)}n .

The MLEs θ̂ can be written as

α̂ = log

(
r0

s0

)

, β̂1 = log

(
r2s1

r1s2

)

, β̂2 = log

(
r1s0

r0s1

)

. (5.35)

Note that β̂1 and β̂2 are log ORs of genotype G2 = BB relative to G1 = AB and
genotype G1 = AB relative to G0 = AA. Using the Delta method, we can obtain the
asymptotic covariance matrix of β̂1 and β̂2 directly. Following the derivation used
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before with the linear transformation, the observed Fisher information matrix i(θ̂ ) in
(5.32) can be obtained and used to find V = (B22 − B21B

−1
11 B12)

−1 given in (5.33).
Let ai = risi/ni for i = 0,1,2. Then (5.32) can be written as

in(θ̂ ) =

⎡

⎢
⎢
⎣

∑2
i=0 ai a2

∑2
i=1 ai

a2 a2 a2
∑2

i=1 ai a2
∑2

i=1 ai

⎤

⎥
⎥
⎦ and

i−1
n (θ̂) =

⎡

⎢
⎢
⎣

1
a0

0 − 1
a0

0 1
a1

+ 1
a2

− 1
a1

− 1
a0

− 1
a1

1
a0

+ 1
a1

⎤

⎥
⎥
⎦

with the determinant |in(θ̂ )| = a0a1a2. Thus, V is given by

V = (B22 − B21B
−1
11 B12)

−1

=
[

1
r1

+ 1
s1

+ 1
r2

+ 1
s2

− 1
r1

− 1
s1

− 1
r1

− 1
s1

1
r0

+ 1
s0

+ 1
r1

+ 1
s1

]

. (5.36)

A direct approach to derive V is to find the asymptotic covariance matrix of
β̂ = (β̂1, β̂2)

T using multinomial distributions for case genotype counts and con-
trol genotype counts and the fact that cases and controls are independent. Using the
prior β|H1 ∼ N(0,W), the ABF in (5.34) can be computed.

5.5.3 An Example

We revisit the SNP rs10510126 studied before with genotype counts (r0, r1, r2) =
(10,180,955) and (s0, s1, s2) = (14,272,854). The estimate α̂ is not used in the
ABF. Thus, we only calculate the estimates for β1 and β2, which are given by β̂1 =
0.5246 and β̂2 = −0.07637. The matrix V in (5.36) is given by

V =
[

0.01145 −0.009232

−0.009232 0.1807

]

.

For the prior we choose (β1, β2)
T ∼ N2(0,W) with

W =
[

σ 2
2 /1.52 −σ 2

2 /1.5

−σ 2
2 /1.5 σ 2

2

]

. (5.37)

The choice of the above covariance matrix is for illustration. How to choose prior
distributions is discussed in the next section. The ABFs are 0.0051, 0.0002, and
5e−5 for σ2 = 0.1, 0.2, and 0.4, respectively.
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5.6 Prior Specification

5.6.1 Prior for Using a Single Parameter

Priors need to be specified in Bayesian hypothesis testing. The BF given in Sect. 5.3
and the ABF given in Sect. 5.4 depend on the prior distributions. The results change
when different priors are used. Hence, as shown in Tables 5.1 and 5.2, a sensitivity
analysis with different priors is essential to draw meaningful conclusions using a BF
or an ABF.

In Sect. 5.3, the priors for α and β are specified for the BF, while in Sect. 5.4,
only the prior for β is specified for the ABF. In the logistic regression model (5.15),
α is the log odds of baseline genotype G0 = AA, which contains 0 risk alleles,

α = log

(
Pr(case |G0)

1 − Pr(case |G0)

)

.

Therefore, a normal prior is reasonable for α. In practice, to have a negligible prior
for α,

α ∼ N(0, σ 2
1 ) = N(0,1)

can be used. Both the BF and ABF require a prior for β , which is the log OR of
genotype Gi relative to the baseline genotype G0. More specifically,

log

{
Pr(case |Gi)

1 − Pr(case |Gi)

/ Pr(case |G0)

1 − Pr(case |G0)

}

= βI (Gi), for i = 1,2.

For the ADD model, I (G1) = 1 and β is the log OR of genotype G1 = AB relative
to G0 = AA, given by

β = log

{
Pr(case |G1)

1 − Pr(case |G1)

/ Pr(case |G0)

1 − Pr(case |G0)

}

.

Hence, a normal prior can be used for β . In practice, one may choose

β ∼ N(0, σ 2
2 ).

There are many ways to determine the value for σ 2
2 . One approach is based on

the OR of the genotype G1 relative to G0. For many common diseases, the OR is in
the range of 1.1 to 2 with more weight on the range of 1.1 to 1.5. If we assume that
the probability of an OR greater than 2 is 0.05, then from

Pr(exp(β) ≤ 2) = Pr(β ≤ log 2) = Pr(β/σ2 ≤ log 2/σ2) = 0.95,

and β/σ2 ∼ N(0,1), we have

σ2 = log(2)/Φ−1(0.95) ≈ 0.421. (5.38)
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Fig. 5.1 Histogram plots of
the ORs OR = eβ with
σ2 = 0.174,0.247,0.421, and
0.557. Each plot is based on
10,000 random variates
β ∼ N(0, σ 2

2 )

If a two-sided OR is considered, then

σ2 = log(2)/Φ−1(0.975) ≈ 0.354.

In general, we can give an upper bound Uβ for β with a small probability pβ

such that Pr(exp(β) ≤ Uβ) = 1 − pβ , from which σ2 can be obtained in a similar
manner to (5.38). Table 5.3 presents σ2 for some choices of Uβ and pβ . The choices
of σ2 range from 0.174 for a small genetic effect to 0.557 for a large genetic ef-
fect. Figure 5.1 plots histograms of the OR eβ simulated from β ∼ N(0, σ 2

2 ) with
different choices of σ2. Because the BF and ABF would change with different σ2,
it is important to conduct sensitivity analysis and calculate the BF and ABF with
different σ 2

2 or even with different priors.
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Table 5.3 Choosing priors
for the log OR β with a risk
allele given the upper bound
of the OR Uβ and the
probability pβ that the OR is
greater than the upper bound

Uβ pβ σ2

1.5 0.01 0.174

0.05 0.247

2.0 0.01 0.298

0.05 0.421

2.5 0.01 0.394

0.05 0.557

Table 5.4 Median (standard
deviation) of the posterior
probability of H0 under H0,
given the prior probability of
H0 0.99 with allele frequency
p = Pr(B) and σ 2

2 . We used
t = 0, 1/2, and 1 for the BFs
calculated under the REC,
ADD, and DOM models,
respectively

p σ2 t = 0 t = 1/2 t = 1

0.1 0.1 0.9901 0.9911 0.9909

(0.0001) (0.0032) (0.0028)

0.2 0.9902 0.9931 0.9928

(0.0004) (0.0142) (0.0123)

0.4 0.9907 0.9957 0.9954

(0.0013) (0.0202) (0.0199)

0.3 0.1 0.9905 0.9921 0.9914

(0.0013) (0.0086) (0.0054)

0.2 0.9918 0.9947 0.9936

(0.0049) (0.0149) (0.0121)

0.4 0.9942 0.9970 0.9962

(0.0138) (0.0170) (0.0205)

0.5 0.1 0.9911 0.9924 0.9911

(0.0031) (0.0077) (0.0032)

0.2 0.9931 0.9951 0.9931

(0.0106) (0.0166) (0.0121)

0.4 0.9958 0.9973 0.9958

(0.0199) (0.0226) (0.0198)

5.7 Simulation Studies Using Approximate Bayes Factors

We present simulation results to compare the posterior probabilities of H0 when H0

is true. The prior probability of H0 is fixed at 0.99 in the simulation. Under H1, we
consider the PPA. In all the simulations, we use r = s = 500 with disease prevalence
0.1 and the different MAFs p = 0.1, 0.3 or 0.5. The standard deviations (σ2 = 0.1,
0.2 and 0.4) in the normal prior distribution for the genetic effect are used. In the
simulations, HWE proportions in the population are assumed. The results are based
on 10,000 case-control datasets.
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Table 5.5 Medians of PPA under H1, given the prior probability of H1 0.01 with the allele fre-
quency p = Pr(B), σ 2

2 and GRR λ2 with a genetic model. We used t = 0, 1/2, and 1 for the REC,
ADD, and DOM models, respectively

Model p Measures σ2 = 0.2 σ2 = 0.4

λ2 λ2

1.2 1.5 2.0 1.2 1.5 2.0

REC 0.3 t = 0 0.009 0.023 0.252 0.007 0.031 0.685

t = 1/2 0.006 0.012 0.169 0.003 0.008 0.161

t = 1 0.006 0.007 0.011 0.004 0.004 0.007

0.5 t = 0 0.011 0.160 0.996 0.008 0.255 0.999

t = 1/2 0.008 0.092 0.992 0.004 0.079 0.997

t = 1 0.007 0.009 0.024 0.004 0.006 0.024

ADD 0.3 t = 0 0.009 0.013 0.041 0.006 0.013 0.075

t = 1/2 0.007 0.044 0.871 0.004 0.037 0.923

t = 1 0.008 0.030 0.609 0.005 0.028 0.813

0.5 t = 0 0.008 0.021 0.158 0.005 0.019 0.252

t = 1/2 0.007 0.049 0.830 0.004 0.042 0.879

t = 1 0.008 0.024 0.238 0.005 0.024 0.466

DOM 0.3 t = 0 0.008 0.010 0.014 0.006 0.007 0.014

t = 1/2 0.010 0.172 0.994 0.006 0.180 0.998

t = 1 0.013 0.295 0.999 0.010 0.441 0.999

0.5 t = 0 0.007 0.008 0.011 0.004 0.005 0.008

t = 1/2 0.007 0.035 0.429 0.004 0.023 0.462

t = 1 0.011 0.079 0.795 0.008 0.123 0.973

The medians and the standard deviations of the posterior probability of H0 from
10,000 replicates simulated under H0 are reported in Table 5.4. The results show
that the medians and the standard deviations are comparable among the three ABFs.

The simulation results under H1 are reported in Table 5.5 for the three ABFs.
We only considered p = 0.3 and 0.4 with σ2 = 0.2 and 0.4. Under H1, given the
prior probability of H1 to be 0.01, a greater PPA indicates stronger association. The
results show that the PPA with correctly chosen t is largest under that model, and
the PPA with t = 1/2 is fairly robust across the three genetic models.

Results presented in Table 5.5 are based on median PPAs. In Table 5.6, we report
Bayesian power, the proportion of PPA for a given method being greater than 0.20,
which is a threshold of PPA that we chose to claim association given the prior of H1

is 0.01. Only σ2 = 0.2 was considered. The conclusions are similar to those obtained
from Table 5.5. The results also show that using t = 1/2 is fairly robust across the
three genetic models.
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Table 5.6 Proportion of PPA greater than 0.20 (Bayesian power) under H1, given the prior prob-
ability of H1 0.01

Model p Measures λ2

1.2 1.5 2.0

REC 0.3 t = 0 0.001 0.034 0.575

t = 1/2 0.006 0.066 0.468

t = 1 0.002 0.006 0.036

0.5 t = 0 0.025 0.451 0.991

t = 1/2 0.026 0.349 0.963

t = 1 0.002 0.011 0.086

ADD 0.3 t = 0 0.000 0.054 0.102

t = 1/2 0.019 0.231 0.870

t = 1 0.010 0.153 0.766

0.5 t = 0 0.006 0.077 0.441

t = 1/2 0.021 0.251 0.847

t = 1 0.006 0.086 0.543

DOM 0.3 t = 0 0.002 0.001 0.009

t = 1/2 0.039 0.473 0.980

t = 1 0.045 0.588 0.996

0.5 t = 0 0.014 0.007 0.246

t = 1/2 0.017 0.180 0.665

t = 1 0.017 0.275 0.885

5.8 Bibliographical Comments

Many classical textbooks on Bayesian analysis contain BFs [25, 99]. We present
BFs and related results for the analysis of case-control genetic association studies.
Therefore the review paper of BFs by Kass and Raftery [140] serves as our pri-
mary reference. The BF in the context of case-control genetic association studies
was discussed by the WTCCC [301] and Stephens and Balding [259]. The ABFs of
Wakefield [284, 285] are simple for analyzing case-control data. Because of using
the estimate of the parameter instead of using the observed data, the ABFs may be
less powerful than the BF. The ABF is a special case of the BF based on a test statis-
tic proposed by Johnson [133, 134], who considered modeling the distributions of
a test statistic under H0 and H1 instead of the distributions of the observed data in
the original BF. Bayesian analysis for categorical data by Congdon [42] is also a
useful reference. Sawcer [226] provided a good review of using BFs in complex ge-
netics and showed that the BF integrates the p-value (significance) and the observed
power of association. Simulations in Sawcer [226] show that case-control studies
with different sample sizes and GRRs can have the same p-values but different BFs.
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In other words, the simulations demonstrate that BFs are more comparable across
studies than p-values.

The Laplace approximation of integrals and its properties were described in Tier-
ney and Kadane [273]. It is a reasonable approach when the posterior density is
unimodal or has a dominant single mode. The advantage of the ABF is that it has a
closed form, so its computation is usually simpler.

Both the WTCCC [301] and Wakefield [285] discussed the choice of priors. The
prior model for β described in (5.38) was proposed in Wakefield [285], who also
proposed several other models for the prior, e.g., a prior depending on the MAF or
related to the p-value. Stephens and Balding [259] also discussed using a normal
mixture prior, 0.9N(0,0.22)+0.05N(0,0.42)+0.05N(0,0.82), for β , with a small
probability and a large variance 0.64. When the variance σ 2

2 in the normal prior
N(0, σ 2

2 ) for β is unknown, a hyper-prior can be used, for example the inverse of
σ 2

2 following a gamma distribution Gamma(u, v) with two additional parameters
u and v (see Sect. 1.1.3), which can be determined a prior. See the discussion in
Fridley et al. [92]. Sensitivity analysis with different priors is important in Bayesian
analysis. Kass and Raftery [140] cover more on how to conduct sensitivity analysis.

In this chapter, we assumed that the underlying genetic model is known (REC,
ADD (or MUL), or DOM models). Hence, a single parameter β is used for the ge-
netic effect in either the BF or ABF. When the genetic model is unknown, we have
shown in numerical examples and simulations that BFs and ABFs are sensitive to
the underlying genetic model. Some standard treatments of model uncertainty in
Bayesian analysis can be found in Kass and Raftery [140]. Bayesian model aver-
aging was discussed in Stephens and Balding [259]. For the situation that the true
genetic model is unknown, the WTCCC [301] and Wakefield [284] discussed the
BF and ABF, respectively, based on the two parameters β1 and β2, which model
the genetic effects of both G1 = AB and G2 = BB, where B is the risk allele. This
approach is model-free but the computation is more complex than using a single
parameter β . In addition, the two-parameter model in the WTCCC [301] is different
from the one we discussed here owing to using different parameterizations.

Other approaches to deal with genetic model uncertainty have also been dis-
cussed in the literature (e.g., Hoeting et al. [121]; Kass and Raftery [140]). For
example, in the context of the three possible genetic models (the REC, ADD and
DOM models), the posterior of each model is calculated and the following set is
defined as the one containing the models for consideration

{

Hl : maxi=1,2,3 Pr(Hi |data)

Pr(Hl |data)
≤ C; l = 1,2,3

}

,

where C is a given number, e.g., C = 20. That is, if a genetic model is not included
in the above set, it will be excluded. For the genetic models included in the above set,
a sensitivity analysis can be conducted to examine how the BFs and ABFs depend
on the genetic models.

In the analysis of GWAS, although p-values are still the main tool used to report
association of a genetic marker with a disease, BFs or ABFs have been increasingly
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reported to support the results obtained based on p-values alone. When a small p-
value is found, either the conditional power of the test statistic is calculated for that
marker and reported, or a BF or ABF for that marker is reported to support the
observed p-value. Therefore, a BF or ABF is only calculated for the top markers in
GWAS.

5.9 Problems

5.1 Show that

Pr(H0|x) = BF01 × prior odds

1 + BF01 × prior odds
.

5.2 Verify that the MAP estimates satisfy (5.18) and (5.20).

5.3 MLEs and information matrices.

(a) No covariates. Denote Δi = exp(α + βI (Gi))/[1 + exp{α + βI (Gi)}]2. Show
that the MLE of θ = (α,β)T in Sect. 5.4 satisfies

r =
2∑

i=0

ni

exp{α + βI (Gi)}
1 + exp{α + βI (Gi)} ,

2∑

i=0

riI (Gi) =
2∑

i=0

niI (Gi)
exp{α + βI (Gi)}

1 + exp{α + βI (Gi)} ,

and the observed Fisher information matrix in(θ) can be obtained from

i00 = − ∂2l

∂α2
=

2∑

i=0

niΔi,

i01 = i10 = − ∂2l

∂α∂β
=

2∑

i=0

niI (Gi)Δi,

i11 = − ∂2l

∂β2
=

2∑

i=0

niI
2(Gi)Δi,

where θ is to be replaced by its MLE.
(b) No covariates (continued). Under the REC model, show that the MLEs are

given by α̂ = log{(r0 + r1)/(s0 + s1)} and β̂ = log[{r2(s0 + s1)}/{s2(r0 + r1)}].
Under the DOM model, show that α̂ = log(r0/s0) and β̂ = log[{s0(r1 + r2)}/
{r0(s1 + s2)}].
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(c) With covariates. Show that the MLEs satisfy

2∑

i=0

ri∑

j=1

zij =
2∑

i=0

ni∑

j=1

zij exp{αT zij + βI (Gij )}
1 + exp{αT zij + βI (Gij )} ,

2∑

i=1

riI (Gi) =
2∑

i=0

ni∑

j=1

I (Gij ) exp{αT zij + βI (Gij )}
1 + exp{αT zij + βI (Gij )} .

Denote Δij = exp(αT zij + βI (Gij ))/[1 + exp{αT zij + βI (Gij )}]2. Show

i00 = − ∂2l

∂α2
=

2∑

i=0

ni∑

j=1

zij z
T
ijΔij ,

i01 = − ∂2l

∂α∂β
=

2∑

i=0

ni∑

j=1

zij I (Gij )Δij ,

i11 = − ∂2l

∂β2
=

2∑

i=0

ni∑

j=1

zij I
2(Gij )Δij .

5.4 Derive the ABF given in (5.25).

5.5 From Sect. 5.4 with covariates, let

i(θ) =
[

i00 i01

i10 i11

]

,

where iT10 = i01. Denote Δ = i11 − i10i
−1
00 i01. Show that the inverse of i can be

written as

i−1(θ) =
[

i−1
00 + i−1

00 Δ−1i10i
−1
00 −i−1

00 i01Δ
−1

−Δ−1i10i
−1
00 Δ−1

]

.

Show that, using the transformation α∗ = α + i−1
00 i01β , the ABF when covariates

are adjusted for in the logistic regression model can be written as (5.28), where
V ∗ = Δ−1.

5.6 ABF with two indicator functions.

(a) Prove that V −1 − V −1(V −1 + W−1)−1V −1 = (V + W)−1 by multiplying both
sides by V from the left, followed by multiplying by V −1 + W−1 from the left.
Finally, multiply both sides by V + W from the right.
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(b) Show that

(β − β̂)T V −1(β − β̂) + βT W−1β

= β̂ T (V + W)−1β̂

+ [β − (V −1 + W−1)−1V −1β̂]T (V −1 + W−1)

× [β − (V −1 + W−1)−1V −1β̂].
(c) Let (r0, r1, r2) ∼ Mul(r;p0,p1,p2) and (s0, s1, s2) ∼ Mul(s;q0, q1, q2). Sup-

pose genotype counts (r0, r1, r2) in cases are independent of those in controls
(s0, s1, s2). Let (β̂1, β̂2) be given as in (5.35). Show that, omitting higher order
terms,

Var(β̂1) = 1

rp1
+ 1

rp2
+ 1

sq1
+ 1

sq2
,

Var(β̂2) = 1

rp0
+ 1

rp1
+ 1

sq0
+ 1

sq1
.

In addition, show that Cov(β̂1, β̂2) = −1/(rp1) − 1/(sq1).

5.7 Let αi |H0 ∼ N(0, σ 2
1 ) and αi |H1 ∼ N(0, σ 2

1 ) for i = 1,2. Let β1|H1 ∼
N(0, σ 2

2 ) and β2|H1 ∼ N(0, t2
2 σ 2

2 ). The codes for genotypes are (t1, t2) and
(t1/t2,1) respectively. Show that p(x|Hi) = ∫ p(x|θi,Hi)p(θi |Hi)dθi using the
first code with the above priors for (α1, β1)

T equals p(x|Hi) using the second code
with the above priors for (α2, β2)

T .

5.8 The allele counts for (A,B) are (2r0 +r1,2r2 +r1) in cases and (2s0 +s1,2s2 +
s1) in controls. Then the logistic regression model based on the allele counts is given
by

logit{Pr(case |allele)} = α + βI (allele)

where I (A) = 0 and I (B) = 1. The likelihood function is given by

exp(2rα) + (2r2 + r1)β

(1 + exp(α))2n0+n1(1 + exp(α + β))2n2+n1
.

This leads to

α̂ = log

(
2r0 + r1

2s0 + s1

)

, β̂ = log

{
(2r2 + r1)(2s0 + s1)

(2s2 + s1)(2r0 + r1)

}

,

and the elements of the observed Fisher information matrix are

i00 = (2r0 + r1)(2s0 + s1)/(2n0 + n1) + (2r2 + r1)(2s2 + s1)/(2n2 + n1),

i01 = i10 = i11 = (2r2 + r1)(2s2 + s1)/(2n2 + n1),
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where θ = (α,β)T is replaced by its estimate θ̂ = (̂α, β̂)T . Derive the ABF based
on the allele counts, which is an allele-based ABF. Compare the allele-based ABF
with the genotype-based ABF under the ADD model, given in (5.25), in simulations
with and without HWE in the population.

5.9 Find the ABF for the SNP (rs10510126) given in Sect. 5.5.3 with the prior
(β1, β2)

T ∼ N2(0,W), where

W = σ 2
2

[
1 0

0 1

]

with σ 2 = 0.1, 0.2 and 0.4, respectively.

5.10 Let ZCATT(x) be the trend test given in (3.8) for a given genetic model x,
where x = 0, 1/2 and 1 for the REC, ADD and DOM model, respectively. Define an
approximate BF as

ABF = Pr(ZCATT(x)|H0)

Pr(ZCATT(x)|H1)
.

Derive expressions for the above ABF with and without covariates and compare
then with the ABFs given in (5.25) and (5.28) for the same genetic model.



Chapter 6
Robust Procedures

Abstract Robust procedures for the analysis of case-control association are pre-
sented in Chap. 6, starting with an introduction to robust hypothesis testing. The
definition of the maximin efficiency is given. This chapter discusses how to find the
maximum efficiency robust test (MERT). Several maximum tests based on the max-
imum of trend tests are studied, including MAX2, MAX3 and a more general MAX.
Connections among MAX, Pearson’s test and the trend test are given. Other robust
tests are also studied, including MIN2, the constrained likelihood ratio test, and tests
based on genetic model selection or exclusion. Simulation studies are conducted to
compare the different robust tests. All results in this chapter are presented for un-
matched case-control data except for MAX3, which is also applied to a matched
case-control design.

For testing association between a diallelic marker and a disease in case-control stud-
ies, the null hypothesis of no association is equivalent to the three penetrances being
equal to the disease prevalence in the population (see Sect. 3.1). Therefore, under
the alternative hypothesis of association, at least one of the three penetrances is not
equal to the disease prevalence. In this case, a genetic model refers to the mode of
inheritance, which defines some relationship among the risks of having the disease
given different genotypes (penetrances). The common genetic models include, but
are not limited to, REC, ADD, MUL and DOM models. Under the alternative hy-
pothesis, if the three penetrances increase with the numbers of risk alleles in the
genotype, the penetrances are ordered. In this case, one can restrict the alternative
hypotheses to the collection of models formed by the above four genetic models,
which includes any genetic model between the REC and DOM models. Though less
common, genetic models outside the above collection may also occur, for example,
the over-dominant and under-dominant models (Sect. 3.1). Because the MUL model
can be approximated by the ADD model, some results may not be presented for the
MUL model.

In Chap. 3, the trend test and Pearson’s test were discussed, which are the most
common statistics for the analysis of case-control association studies. To apply the
trend test, increasing scores are specified a priori for the three genotypes. If the un-
derlying genetic model is known, the asymptotically optimal trend test can be used.
Otherwise, a single trend test is not robust when the scores are misspecified. On the
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other hand, Pearson’s test does not require specifying the genetic model. Hence, it is
more robust than a single trend test. More insight regarding the robustness of Pear-
son’s test will be discussed later in this chapter. Pearson’s test, however, ignores that
the penetrances are often ordered under the alternative hypothesis. Thus, it is less
powerful compared to the trend test when the genetic model can be approximately
specified. The trade-off of power and robustness between the trend test and Pear-
son’s test will be studied in this chapter. Robust tests are useful when the underlying
genetic model is unknown. Several robust tests will be studied in this chapter.

We first present a general discussion of robust hypothesis testing and maximin
efficiency robustness. A class of simple, linear maximin efficiency robust tests
(MERTs) is first introduced. Several maximal statistics (e.g., MAX3 and MAX)
based on the trend tests will be studied next. Distributions and approximations of the
tails of the maximal statistics will be discussed. Relationships and insight among the
trend tests, Pearson’s test and MAX will be provided. A constrained likelihood ratio
test statistic will also be discussed, which has power performance similar to MAX.
Next, a genome-wide scan statistic proposed by the Wellcome Trust Case-Control
Consortium is reviewed. Its asymptotic null distribution and p-value are provided.
Other approaches that are considered in this chapter include genetic model selection
and genetic model exclusion. Simulation results and applications to real data will be
used to illustrate how to apply the above methods in real data analysis.

6.1 Robust Hypothesis Testing

6.1.1 Discrete Numbers of Alternative Hypotheses

Consider testing a null hypothesis H0 against a family of alternative hypotheses
{H1i : i = 1, . . . ,M}. Each of the M alternative hypotheses corresponds to a sci-
entifically plausible model under which the data are generated. Given model i

(i = 1, . . . ,M), an asymptotically normally distributed test Zi is obtained and used
to test H0. We assume Zi is asymptotically optimal (most efficient) when i is the
true model under the alternative hypothesis. The efficiency of a test is defined using
the asymptotic relative efficiency (ARE) (Sect. 1.7). In testing case-control genetic
association, H11, H12, and H13 correspond to REC, ADD, and DOM models, re-
spectively. The trend tests ZCATT(0), ZCATT(1/2) and ZCATT(1) are respectively
used to test H0 against H11, H12, and H13. It is shown that ZCATT(0) and ZCATT(1)

are asymptotically optimal under the REC and DOM models. For the ADD model,
ZCATT(1/2) is asymptotically optimal when the proportion of cases in the data is
close to the disease prevalence. Otherwise, ZCATT(1/2) is approximately optimal
under the ADD model.

Denote the ARE of Zj to Zi by ARE(Zj ,Zi) for i, j = 1, . . . ,M . If the true
model is i∗ and 1 ≤ i∗ ≤ M , then Zi∗ is used to test H0. On the other hand, when
the true model is unknown, any test in the family of normally distributed statistics
T = {Zi : i = 1, . . . ,M} could be optimal. In the analysis of case-control genetic
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associations, T contains all three trend tests ZCATT(x) with scores x = 0, 1/2, and
1. If the true model is i∗ but this is unknown, and we choose the test statistic Zi ,
sub-optimal results may be obtained and Zi may not be efficient when i∗ �= i. The
loss of efficiency is measured by

e(i, i∗) = ARE(Zi,Z
∗
i ).

For studying robust tests, we assume that any two tests out of {Zi, i = 1, . . . ,M} fol-
low asymptotically bivariate normal distributions under H0 and H1 with the asymp-
totic null correlations given by ρij = CorrH0(Zi,Zj ) for any i, j = 1, . . . ,M with
ρii = 1 and ρij > 0 for i �= j .

6.1.2 Alternative Hypothesis Indexed by an Interval

The model described in the previous section assumes that H1 contains a finite num-
ber of possible models. In many applications, H1 is also indexed by an interval
x ∈ [a, b], where the endpoints of the interval are known. For example, in the anal-
ysis of case-control association using the trend test ZCATT(x), the parameter x be-
longs to [0,1], where x = 0, x = 1/2, and x = 1 correspond to the REC, ADD,
and DOM models, respectively (Sect. 3.3.1). In this case, the family of normally
distributed test statistics is given by T = {Zx : x ∈ [a, b]}. When H1x is the true
model for x ∈ [0,1], Zx is asymptotically optimal when the proportion of cases in
the data is close to the disease prevalence or approximately optimal otherwise. For
any x, y ∈ [a, b], we assume (Zx,Zy) follow bivariate normal distributions under
H0 and H1. Denote the asymptotic null correlation by ρxy = CorrH0(Zx,Zy) > 0.
When x∗ is the true model and Zx is used but x �= x∗, the ARE of Zx to Zx∗ is given
by

e(x, x∗) = ARE(Zx,Zx∗).

6.1.3 Maximin Efficiency

For each alternative hypothesis H1i , i = 1, . . . ,M , Zi is asymptotically (approx-
imately) optimal, and Zi ∼ N(0,1) under H0. In this case, there is no uniformly
optimal test for a family of alternative hypotheses, because each test would be opti-
mal when the true model is specified. A similar argument can be made for alternative
hypotheses indexed by an interval: H1x , x ∈ [a, b]. In the following, without loss of
generality, we only consider [a, b] = [0,1]. Thus, tests cannot be compared with
respect to their highest efficiency or power. Maximin efficiency can be used to com-
pare the tests: finding a test with most efficiency in its worst performance when the
model is misspecified.

Let i = i∗ ∈ {1, . . . ,M} be the index for the true model. We focus on the case
with a finite number of alternative hypotheses. The results can be readily extended
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to the case when the alternative hypothesis is indexed by x ∈ [0,1]. Thus, Zi∗ is
asymptotically optimal, but the optimal model i∗ is unknown. Suppose Zi is chosen
to test H0. Then the ARE of Zi to Zi∗ is e(i, i∗) = ρ2

ii∗ , for i = 1, . . . ,M . Because
i∗ is unknown, the worst ARE when using Zi is given by

min
1≤i∗≤M

e(i, i∗). (6.1)

For each i = 1, . . . ,M , the worst ARE in (6.1) can be evaluated. Among the M

worst AREs, the best is given by

max
1≤i≤M

min
1≤i∗≤M

e(i, i∗),

which is referred to as the maximin efficiency. If Zj has the best worst ARE, i.e.,

min
1≤i∗≤M

e(j, i∗) = max
1≤i≤M

min
1≤i∗≤M

e(i, i∗), (6.2)

then Zj is the maximin efficiency robust test (MERT) among T = {Zi : i =
1, . . . ,M}. However, we often do not find the MERT restricted to the tests in
T = {Zi : i = 1, . . . ,M} (Problem 6.14). Instead, we are interested in finding the
MERT in a larger set T ∗ = {wiZi +wjZj : wi,wj ≥ 0,Zi,Zj ∈ T }. See Sect. 6.2.1
for the definition of the MERT based on T ∗.

Note that if test Z1 is more efficient than test Z2, Z1 is usually more powerful
than Z2 under local alternatives. A relationship between power and efficiency is
given in Sect. 1.7. Thus, the maximin efficiency of tests can be demonstrated by the
empirical power of the tests. For case-control genetic association studies, when the
trend test is used, T = {ZCATT(x) : x ∈ [0,1]} is given in (3.8) with (x0, x1, x2) =
(0, x,1) and x ∈ [0,1], which is also given by

ZCATT(x) =
√

rs
n

{(xr1/r + r2/r) − (xs1/s + s2/s)}
√

(x2n1/n + n2/n) − (xn1/n + n2/n)2
, (6.3)

where (r0, r1, r2) and (s0, s1, s2) are genotype counts of (AA,AB,BB) in r cases and
s controls, ni = ri + si and n = r + s.

In Table 6.1, the empirical power of the three trend tests, ZCATT(x) with x =
0,1/2,1, is obtained under the REC, ADD and DOM models with 250 cases and
250 controls and disease prevalence 0.1. Assuming HWE proportions in the popula-
tion, under H1 with a given genetic model, the GRRs are chosen so that the asymp-
totically optimal trend test has about 80% power. Then empirical power is estimated
for each of the three trend tests using the data simulated using the same GRRs. The
results reported in Table 6.1 are grouped by the MAF for the risk allele. For each
MAF, the empirical power of each trend test is estimated from the simulation for
each genetic model. The minimum power (min power) of each trend test across the
three genetic models is also presented. Finally, the largest power among the min-
imum powers is reported, which is the maximin power across the genetic models
given the MAF and other parameters. From Table 6.1, it is seen that the three trend
tests cannot be compared by their maximum power, because each test is optimal
under one genetic model. However, among the three trend tests, ZCATT(1/2) has
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Table 6.1 Empirical power
of three trend tests ZCATT(x)

for a given MAF of the risk
allele under three genetic
models: the REC, ADD, and
DOM models

MAF True
model

ZCATT(x)

x = 0 x = 1
2 x = 1

0.1 REC 0.813 0.364 0.138

ADD 0.223 0.813 0.802

DOM 0.108 0.796 0.813

min power 0.108 0.364 0.138

maximin power 0.364

0.3 REC 0.793 0.537 0.177

ADD 0.433 0.812 0.684

DOM 0.133 0.717 0.787

min power 0.133 0.537 0.177

maximin power 0.537

0.5 REC 0.810 0.662 0.177

ADD 0.575 0.802 0.684

DOM 0.131 0.574 0.787

min power 0.131 0.574 0.177

maximin power 0.574

the maximin power across the three genetic models. Hence, it is more robust than
ZCATT(0) and ZCATT(1).

For H1 indexed by x ∈ [0,1] using a family of test statistics T = {Zx : x ∈ [0,1]},
the maximin efficiency, restricted to T , is given by

sup
x∈[0,1]

inf
x∗∈[0,1] e(x, x∗),

where e(x, y) = ARE(Zx,Zy) and x∗ is the true unknown model and x is the se-
lected model. A test Zy is the MERT among T if it reaches the maximin efficiency,
i.e.

inf
x∗∈[0,1] e(y, x∗) = sup

x∈[0,1]
inf

x∗∈[0,1] e(x, x∗).

Finding the MERT from T = {Zx : x ∈ [0,1]} is much more complicated than the
case with a finite number of tests, T = {Zi : i = 1, . . . ,M}.
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6.2 Maximin Efficiency Robust Test

6.2.1 The MERT as a Robust Test

The MERT of a Family of Test Statistics

In Sect. 6.1.2, the maximin efficiency and the MERT are introduced. But the discus-
sions are focused on the MERT among the families of statistics

T = {Zi : i = 1, . . . ,M} and

T = {Zx : x ∈ [0,1]}.
However, we are interested in finding the MERT of all convex linear combinations
of test statistics among T (Problem 6.14), denoted by

T ∗ =
{

M∑

j=1

cjZj : cj ≥ 0

}

and (6.4)

T ∗ =
{

m∑

j=1

cjZxj
: cj ≥ 0, xj ∈ [0,1], m ≥ 1

}

. (6.5)

Hence T ⊂ T ∗. Then the maximin efficiency is modified to

sup
Zi∈T ∗

inf
Zj ∈T

ARE(Zi,Zj ) or sup
Zx∈T ∗

inf
Zy∈T

ARE(Zx,Zy).

In this case, the MERT may not belong to the family of test statistics T . Note that the
test statistics contained in T ∗ are consistent and asymptotically normally distributed.
T ∗ can be further expanded to T ∗∗, which contains all consistent tests. When T is
fixed, the maximin efficiency is increased if the family of test statistics is expanded.

Extreme Pair

Two test statistics Zi and Zj are called the extreme pair of the family of test statistics
T if their correlation is the minimum among any pair of two test statistics in T .
Denote the minimum correlation by ρ0 > 0. Then, for any test Zi and the optimal
test Zi∗ for the alternative hypothesis H1i∗ with asymptotic null correlation ρi,i∗ ,
ARE(Zi,Zi∗) = ρ2

i,i∗ ≥ ρ2
0 . Thus, the minimum correlation of the extreme pair of

test statistics provides a lower bound for the ARE when the underlying model is
misspecified. Therefore, a larger ρ2

0 implies a “smaller” family of test statistics,
in the sense that using a test statistic in the family with larger ρ0 may lose less
efficiency compared to using a test in a “larger” family of test statistics with smaller
ρ0. Applications and empirical studies have shown that the minimum correlation is
high if ρ0 ≥ 0.75 and low if ρ0 ≤ 0.50.

Let x, y ∈ [0,1] and ρx,y be the asymptotic null correlation of ZCATT(x) and
ZCATT(y). Then (Problem 6.1)
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ρx,y = (xyp1 + p2) − (xp1 + p2)(yp1 + p2)√
(x2p1 + p2) − (xp1 + p2)2

√
(y2p1 + p2) − (yp1 + p2)2

, (6.6)

where (p0,p1,p2) are the probabilities of genotypes (G0,G1,G2) = (AA,AB,BB)

in the population, which can be written as functions of the MAF under HWE pro-
portions. An estimate of ρx,y can be obtained by replacing (p0,p1,p2) with their
consistent estimates under H0, e.g., p̂i = ni/n for i = 0,1,2, where ni is the count
of genotype Gi and n = n0 + n1 + n2. Note that ρx,y = ρy,x for any x, y ∈ [0,1].

For the three trend tests with x = 0,1/2,1, we have

ρ0,1/2 = p2(p1 + 2p0)√
p2(1 − p2)

√
(p1 + 2p2)p0 + (p1 + 2p0)p2

, (6.7)

ρ1/2,1 = p0(p1 + 2p2)√
p0(1 − p0)

√
(p1 + 2p2)p0 + (p1 + 2p0)p2

, (6.8)

ρ0,1 =
√

p0p2

(1 − p0)(1 − p2)
. (6.9)

Expressions for the above correlations under HWE proportions are given in Prob-
lem 6.11. Consistent estimates of ρ0,1/2, ρ0,1 and ρ1/2,1 under H0 are given by

ρ̂0,1/2 = n2(n1 + 2n0)√
n2(n − n2)

√
(n1 + 2n2)n0 + (n1 + 2n0)n2

,

ρ̂1/2,1 = n0(n1 + 2n2)√
n0(n − n0)

√
(n1 + 2n2)n0 + (n1 + 2n0)n2

,

ρ̂0,1 =
√

n0n2

(n − n0)(n − n2)
.

Using (6.7) to (6.9), it can be shown that (Problem 6.2)

1 + 2ρ0,1/2ρ0,1ρ1/2,1 = ρ2
0,1/2 + ρ2

0,1 + ρ2
1/2,1. (6.10)

Define the following matrix

Σ =
⎡

⎢
⎣

1 ρ0,1/2 ρ0,1

ρ0,1/2 1 ρ1/2,1

ρ0,1 ρ1/2,1 1

⎤

⎥
⎦ .

Then (6.10) shows that the determinant of Σ is 0, i.e. |Σ | = 0.
Table 6.2 reports the values of ρx,y for the three trend tests under HWE. The

results show that, among the three trend tests, ZCATT(0) and ZCATT(1) are the ex-
treme pair with minimum correlation in the range 0.20 to 0.35, while ZCATT(1/2)

and ZCATT(1) have the largest correlation, greater than 0.80 across various MAFs.
Note that if we switch the labels for the two alleles, i.e., switching alleles A and B ,
then (r0, r1, r2) and (s0, s1, s2) are genotype counts for (BB,AB,AA) in cases and
controls. Accordingly, ρ0,1/2 and ρ1/2,1 are switched, but ρ0,1 does not change. Fig-
ure 6.1 plots three correlation curves for various values of MAFs. The top, middle
and bottom plots correspond to ρ1/2,1, ρ0,1/2 and ρ0,1, respectively.
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Table 6.2 The asymptotic
null pair-wise correlations
among the three trend tests
ρx,y =
Corr(ZCATT(x),ZCATT(y))

under HWE proportions. The
correlations are functions of
the MAF

MAF ρx,y

ρ0, 1
2

ρ 1
2 ,1 ρ0,1

0.10 0.4264 0.9733 0.2075

0.20 0.5774 0.9428 0.2722

0.25 0.6325 0.9258 0.2928

0.30 0.6794 0.9075 0.3083

0.40 0.7559 0.8660 0.3273

0.50 0.8165 0.8165 0.3333

Fig. 6.1 Plots of the three
pair-wise correlations ρx,y of
the three trend tests against
the MAF p for the REC,
ADD and DOM models. The
top, middle and bottom plots
across p correspond to ρ1/2,1,
ρ0,1/2 and ρ0,1, respectively,
when B is the risk allele

Finding the MERT

Let T = {Zi : i = 1, . . . ,M} or T = {Zx : x ∈ [0,1]} be a family of consistent test
statistics that we discussed before. The pair-wise correlation is defined by ρij of
Zi and Zj or ρxy of Zx and Zy . Let T ∗ be defined as in (6.4) or (6.5). Denote
the minimum correlation by ρ0. If ρ0 > δ > 0, where δ is some positive number
(independent of the sample size), then the MERT in T ∗ exists and is unique. It can
be written as a linear combination of test statistics in T .
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A simple algorithm to find the MERT of T ∗ is to find the MERT for the extreme
pair. Let Zi0 and Zi1 be the extreme pair (1 ≤ i0 < i1 ≤ M or i0, i1 ∈ [0,1]). Then
the MERT of the extreme pair is given by (Problem 6.14)

ZMERT = Zi0 + Zi1√
2(1 + ρ0)

. (6.11)

A necessary and sufficient condition for the MERT of the extreme pair in (6.11),
ZMERT, to be the MERT of T ∗ is one of the following inequalities:

ρi0,i + ρi,i1 ≥ 1 + ρi0,i1, for any i = 1, . . . ,M, (6.12)

ρi0,x + ρx,i1 ≥ 1 + ρi0,i1, for any x ∈ [0,1]. (6.13)

In general, (6.12) and (6.13) are not easy to verify. Note that if (6.13) holds, (6.12)
also holds. If condition (6.13) holds, the ARE of ZMERT to the optimal test in T ∗ is
at least (1 + ρ0)/2. Thus, if ρ0 ≥ 0.75, the MERT has high ARE, at least 0.875. On
the other hand, if ρ0 < 0.50, then the ARE of ZMERT is at most 0.75. Even when
(6.13) cannot be confirmed, ZMERT may also be used as a robust test. Based on the
minimum correlations in Table 6.2, when the MERT ZMERT is used for testing case-
control association, the ARE of the MERT to the optimal test would be in the range
of (1 + 0.208)/2 = 0.604 to (1 + 0.333)/2 = 0.667 for MAFs of 0.1 to 0.5.

6.2.2 The MERT Versus a Single Trend Test for Genetic
Association

In Table 6.2 and Fig. 6.1, it is shown numerically that ρ01 is the minimum correla-
tion. Using the result in Problem 6.3, condition (6.13) holds. Thus, ZCATT(0) and
ZCATT(1) are the extreme pair for case-control association studies with x ∈ [0,1].
In addition, the MERT for case-control genetic association studies can be written as

ZMERT = ZCATT(0) + ZCATT(1)
√

2(1 + ρ0,1)
, (6.14)

which has an asymptotic normal distribution N(0,1) under H0. The ARE of the
MERT to the optimal test for genetic association is between 0.60 and 0.67.

Table 6.3 reports simulated power of the three trend tests with x = 0,1/2,1 and
the MERT under the four genetic models: REC, ADD/MUL, and DOM models.
Under each model, the GRR, λ2 = Pr(case |G2)/Pr(case |G0), is chosen so that the
optimal trend test has about 80% power. The sample sizes for the simulation studies
are r = 1,000 (cases) and s = 1,000 (controls) with disease prevalence 0.1. HWE
in the population is assumed. The results in Table 6.3 show that the MERT is more
efficiency robust than any single trend test. It can be seen that the MERT has higher
efficiency than the trend test ZCATT(1/2) because the REC model is included in
the family of models. The trend test ZCATT(1/2) is more powerful than the MERT
under the ADD/MUL and DOM models. When the MAF is 0.5, the MERT and
ZCATT(1/2) have similar power performance. Later in Sect. 6.3.2 we will express
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Table 6.3 Empirical power of ZCATT(x) and the MERT for a given GRR and MAF with 1,000
cases and 1,000 controls under four genetic models: the REC, ADD/MUL, and DOM models

MAF True
model

ZCATT(x) ZMERT GRR

x = 0 x = 1
2 x = 1

0.1 REC 0.811 0.299 0.115 0.597 2.43

ADD 0.210 0.813 0.799 0.721 1.60

MUL 0.242 0.798 0.775 0.720 1.65

DOM 0.093 0.788 0.806 0.601 1.32

min power 0.093 0.299 0.115 0.597

maximin power 0.597

0.3 REC 0.808 0.504 0.154 0.625 1.44

ADD 0.465 0.808 0.746 0.789 1.40

MUL 0.500 0.802 0.714 0.788 1.41

DOM 0.132 0.722 0.814 0.622 1.26

min power 0.132 0.504 0.154 0.622

maximin power 0.622

0.5 REC 0.818 0.659 0.170 0.650 1.29

ADD 0.606 0.800 0.647 0.801 1.38

MUL 0.652 0.803 0.618 0.803 1.38

DOM 0.144 0.609 0.791 0.618 1.31

min power 0.144 0.609 0.170 0.618

maximin power 0.618

ZCATT(1/2) as a weighted sum of the extreme pair, ZCATT(0) and ZCATT(1), with
more weight on ZCATT(1). This could explain why ZCATT(1/2) is more powerful
for the ADD to DOM models. Table 6.3 also shows that the MERT has maximin
power from 0.597 to 0.622, which is consistent with our previous statement that the
ARE of the MERT is in the range of 0.60 to 0.67 owing to low null correlations of
the extreme pair.

Figures 6.2, 6.3, 6.4 plot the empirical power of the MERT and ZCATT(1/2)

under various genetic models with different MAFs. These plots also show that the
MERT is often more powerful than the trend test under the REC model, while the
trend test is more powerful under the ADD and DOM models. The loss of power of
the MERT under the ADD and DOM models is less than that of the trend test under
the REC model. In practice, if the REC model is more of interest, then the MERT
seems to be more robust than the trend test ZCATT(1/2). On the other hand, if the
ADD or DOM models are of interest, then ZCATT(1/2) is preferable. In general, we
prefer using ZCATT(1/2) because, under an imperfect LD model, a REC model at
the functional locus is usually not presented at the marker locus as the same REC
model, but is in fact closer to the ADD model at the marker (see Sect. 2.2.1 and
Table 2.2).
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Fig. 6.2 Empirical power of
the MERT and ZCATT(1/2)

under the REC model with
various MAFs

The above discussions are based on normally distributed test statistics (the trend
tests and MERT). In the next section, we discuss more robust tests that are based
on maximum statistics. These maximum-type statistics are computationally more
intensive than the trend tests and MERT. We also compare the trend tests and the
maximum-type statistics with Pearson’s chi-squared test.

6.3 Max Statistics

The minimum correlation among the trend tests presented in Table 6.2 is in the
range of 0.20 to 0.35. The maximin efficiency robust theory shows that the MERT
of this family of trend tests would have asymptotic efficiency relative to the optimal
trend test below 0.70. One advantage of the MERT given in (6.14) is that it asymp-
totically follows N(0,1) under H0. Therefore, it is easy to use. More robust tests
have been studied that are computationally more intensive than any single trend test
and the MERT. Maximum-type statistics are among them. We first introduce MAX3
followed by a general MAX, which may also be used in the literature for MAX3.
Other robust tests will be discussed in later sections of this chapter.
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Fig. 6.3 Empirical power of
the MERT and ZCATT(1/2)

under the ADD model with
various MAFs

6.3.1 MAX3

Denote the family of trend statistics for testing H0 by {Zx : x ∈ [0,1]}. For a given
x ∈ [0,1], Zx ∼ N(0,1) under H0. When the risk allele is unknown, MAX3 is
defined by

MAX3 = max{|ZCATT(0)|, |ZCATT(1/2)|, |ZCATT(1)|}. (6.15)

MAX3 can also be defined by

MAX3 = max{Z2
CATT(0),Z2

CATT(1/2),Z2
CATT(1)}. (6.16)

Both definitions result in the same p-value. Thus, we use the definition given in
(6.15). If the risk allele is known, from Problem 6.4, the trend tests are one-sided
for any scores under H1. Thus, when allele B is the risk allele, MAX3 is given by

MAX3 = max{ZCATT(0),ZCATT(1/2),ZCATT(1)}. (6.17)

From (6.15), when one of the REC, ADD/MUL or DOM models is the true data-
generating model, the corresponding Score statistic is asymptotically optimal under
that model. MAX3 will be likely to take the value of that trend test statistic. Thus,
using a single trend test may lose efficiency by misspecifying the underlying genetic
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Fig. 6.4 Empirical power of
the MERT and ZCATT(1/2)

under the DOM model with
various MAFs

model. But MAX3 covers a wider range of genetic models and is more robust than
a single trend test.

Under H1, a large value of MAX3 is in favor of H1. Although each trend test has
an asymptotic N(0,1) under H0, MAX3 does not follow the same distribution as
the trend test. Figure 6.5 plots empirical densities of the three trend tests |ZCATT(x)|
and MAX3 with sample sizes r = s = 500, and MAF of 0.3 assuming HWE in the
population. The plots, based on 1,000 replicates, show the distribution of MAX3
is different from those of the trend tests. The medians of the four distributions are
1.02, 0.66, 0.64 and 0.70 for MAX3, |ZCATT(0)|, |ZCATT(1/2)| and |ZCATT(1)|,
respectively.

Moreover, due to the multiple testing issue (testing association in each of the
three models, see the discussion in Sect. 1.2.5), the significance level α = 0.05 for
a single trend test is no longer a correct size for MAX3. Applying the Bonferroni
correction and testing MAX3 at the level α/3 using N(0,1) is too conservative
because of the positive correlations among the three trend tests.
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Fig. 6.5 Densities of the
absolute value of ZCATT(x)

for x = 0,1/2,1 and MAX3
under H0; MAF is 0.3, with
500 cases and 500 controls

6.3.2 Monte-Carlo Approaches for MAX3

Monte-Carlo approaches can be used to simulate the empirical null distribution of
MAX3 and approximate its empirical power. Two approaches are discussed in this
section. One is the parametric bootstrap (Sect. 3.5.3 and Sect. 3.9) and the other is
based on the asymptotic joint distribution of trend test statistics.

Parametric Bootstrap Approach

The parametric bootstrap approach that we discussed in Sect. 3.5.3 can be applied to
simulate the distribution of MAX3. Suppose the genotype counts of (G0,G1,G2) =
(AA,AB,BB) in cases and controls are denoted by (r0, r1, r2) and (s0, s1, s2), re-
spectively. The total number of genotype counts are (n0, n1, n2), where ni = ri + si .
Let n = n0 + n1 + n2, r = r0 + r1 + r2 and s = s0 + s1 + s2. Note that under
H0 (r0, r1, r2) ∼ Mul(r;p0,p1,p2) and (s0, s1, s2) ∼ Mul(s;p0,p1,p2), where the
probabilities pi are estimated under H0 by p̂i = ni/n for i = 0,1,2.
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In the bootstrap procedure, case-control datasets of the same size (r, s) are sim-
ulated from (r0, r1, r2) ∼ Mul(r; p̂0, p̂1, p̂2) and (s0, s1, s2) ∼ Mul(s; p̂0, p̂1, p̂2),
respectively. The MAX3 statistic is calculated using each simulated dataset. After
this procedure has been done m times, the m MAX3 values form an empirical null
distribution for MAX3, which can be used to determine a critical value for MAX3
or an approximate p-value.

The above method is used to find the critical value or p-value for MAX3 after
the case-control data are observed. The critical value and p-value found by this
approach may vary from SNP to SNP. In simulation studies, because replicates of
case-control data are simulated with the same parameter values, the same critical
value can be used for all replicates. In this case, pi = Pr(Gi) under H0 for both cases
and controls, which can be calculated under HWE or using Wright’s inbreeding
coefficient when HWE does not hold. In addition, the parametric bootstrap method
described here can be used to approximate the null distribution for any test statistics,
e.g., the constrained likelihood ratio test that we describe later.

The parametric bootstrap approach can also be used to approximate empirical
power in simulation studies, in which (p0,p1,p2) and (q0, q1, q2) are calculated by

pi = Pr(Gi)fi

k
and qi = Pr(Gi)(1 − fi)

1 − k
,

for i = 0,1,2 (see Eq. (3.2) in Sect. 3.1). The empirical power is estimated using
case-control data simulated from (r0, r1, r2) ∼ Mul(r;p0,p1,p2) and (s0, s1, s2) ∼
Mul(s;q0, q1, q2). For other simulations of case-control data, see Sect. 3.9.

Simulating Trend Tests from the Bivariate Normal Distribution

From (6.10) of Sect. 6.2.1, under H0 ZCATT(0), ZCATT(1/2) and ZCATT(1) do not
asymptotically follow a joint multivariate normal distribution because the covari-
ance matrix Σ is not positive definite. The covariance matrix is given by

Σ =
⎡

⎢
⎣

1 ρ0,1/2 ρ0,1

ρ0,1/2 1 ρ1/2,1

ρ0,1 ρ1/2,1 1

⎤

⎥
⎦ ,

where the correlations are given in (6.6). That is, there exists a non-zero vector a
such that aT Σa = 0. In other words, aT Z = 0, where

Z = (ZCATT(0),ZCATT(1/2),ZCATT(1))T .

Let a = (a1, a2, a3)
T �= 0. Then a1ZCATT(0)+ a2ZCATT(1/2)+ a3ZCATT(1) = 0. It

can be shown that a2 �= 0; otherwise a1 and a3 must be 0 too (Problem 6.5). Without
loss of generality, we write

ZCATT(1/2) = w0ZCATT(0) + w1ZCATT(1).

Then
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ρ0,1/2 = w0 + w1ρ0,1,

ρ1/2,1 = w0ρ0,1 + w1.

Solving the above equations, we obtain

w∗
0 = ρ0,1/2 − ρ0,1ρ1/2,1

1 − ρ2
0,1

, (6.18)

w∗
1 = ρ1/2,1 − ρ0,1ρ0,1/2

1 − ρ2
0,1

. (6.19)

See Problem 6.11 for w∗
0 and w∗

1 under HWE. Therefore,

ZCATT(1/2) = w∗
0ZCATT(0) + w∗

1ZCATT(1). (6.20)

From Problems 6.3 and 6.5, w∗
0 > 0, w∗

1 > 0 and w∗
0 + w∗

1 ≥ 1. Hence, ZCATT(1/2)

can be written as a weighted sum of the extreme pair ZCATT(0) and ZCATT(1). When
B (or A) is the risk allele w∗

1 > (or <) w∗
0 . Thus, more weight is on ZCATT(1) (or

ZCATT(0)) when B (or A) is the risk allele. For comparison, the MERT gives equal
weights to the extreme pair.

An algorithm to generate the three trend tests and MAX3 is given as follows.

i) Generate (ZCATT(0),ZCATT(1))T from the bivariate normal distribution,
[

ZCATT(0)

ZCATT(1)

]

∼ N

([
0

0

]

,

[
1 ρ0,1

ρ0,1 1

])

. (6.21)

ii) Calculate ZCATT(1/2) from (6.20). All correlations are estimated by replacing
pi with ni/n for i = 0,1,2.

iii) Find MAX3 once the three trend tests are obtained.

Unlike simulating case-control samples in the parametric bootstrap procedure,
the above method can be used to simulate the trend test statistics without simulating
case-control data. Hence, it is more efficient computationally. Like the parametric
bootstrap method, in simulation studies, the genotype frequencies in the correlations
in (6.21) and (w∗

0,w∗
1) can be calculated using the MAF under HWE, or together

with Wright’s inbreeding coefficient without assuming HWE. Table 6.4 reports crit-
ical values for MAX3 using the two simulation-based approaches under HWE. The
critical values calculated using both approaches match very well except for MAF
0.1. Otherwise, the critical values are not sensitive to change in the MAF. In these
simulations, a sample size of 500 cases and 500 controls was used in the paramet-
ric bootstrap method, while the sample size was not used in the bivariate normal
approach.

6.3.3 Asymptotic Distribution of MAX3

The asymptotic null distribution of MAX3 can be derived using (6.21). Denote the

joint density of (ZCATT(0),ZCATT(1))T by f (z0, z1;Σ0), where Σ0 = [ 1 ρ0,1
ρ0,1 1

]
is

the covariance matrix of (ZCATT(0),ZCATT(1))T given in (6.21). Then
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Table 6.4 Critical values for MAX3 with various MAFs using the parametric bootstrap (boot)
and bivariate normal distribution (BVN) under HWE. The nominal level is α. Each critical value
is based on 1,000,000 replicates

MAF α Critical values MAF α Critical values

boot BVN boot BVN

0.10 0.05 2.23 2.26 0.30 0.05 2.28 2.28

0.01 2.73 2.84 0.01 2.86 2.85

0.20 0.05 2.26 2.27 0.40 0.05 2.28 2.27

0.01 2.84 2.85 0.01 2.86 2.86

0.25 0.05 2.28 2.27 0.50 0.05 2.28 2.27

0.01 2.85 2.85 0.01 2.86 2.87

Pr(MAX3 > t) = 1 − Pr(|Z0| < t, |Z1/2| < t, |Z1| < t)

= 1 − Pr(|Z0| < t, |w∗
0Z0 + w∗

1Z1| < t, |Z1| < t)

= 1 −
∫ ∫

Ω

f (z0, z1;Σ0)dz0dz1, (6.22)

where Ω = {(z0, z1) : |Z0| < t, |w∗
0Z0 + w∗

1Z1| < t, |Z1| < t}. The integration re-
gion Ω is the shaded area shown in Fig. 6.6, where the coordinates for the points u

and v on the Z0-axis are −t (1−w∗
1)/w∗

0 and t (1−w∗
1)/w∗

0 , respectively. The prob-
ability in (6.22) requires double integration. Based on the symmetry of the bivariate
normal distribution, the above integrals are only calculated for the right half-space
of Ω . Thus,

∫ ∫

Ω

f (z0, z1;Σ0)dz0dz1 = 2
∫ t (1−w∗

1 )

w∗
0

0
dz0

∫ t

−t

f (z0, z1;Σ0)dz1

+2
∫ t

t (1−w∗
1 )

w∗
0

dz0

∫ t−w∗
0z0

w∗
1

−t

f (z0, z1;Σ0)dz1.

Note that

f (z0, z1;Σ0) = f (z0)f (z1|z0;ρ0,1),

where f (z0) = φ(z0) is the density N(0,1) and f (z1|z0;ρ0,1) is the density of the
conditional normal distribution N(ρ0,1z0,1 − ρ2

0,1) (Sect. 1.1.3). That is,

f (z1|z0;ρ0,1) = 1
√

1 − ρ2
0,1

φ

(
z1 − ρ0,1z0√

1 − ρ2
0,1

)

.

Applying the above densities, we have

2
∫ t (1−w∗

1 )

w∗
0

0
dz0

∫ t

−t

f (z0, z1;Σ0)dz1
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Fig. 6.6 The integration
region Ω bounded by
|Z0| < t , |w∗

0Z0 + w∗
1Z1| < t ,

and |Z1| < t , where
w∗

0 + w∗
1 ≥ 1

= 2
∫ t (1−w∗

1 )

w∗
0

0

{

Φ

(
t − ρ0,1z0√

1 − ρ2
0,1

)

− Φ

(−t − ρ0,1z0√
1 − ρ2

0,1

)}

φ(z0)dz0

and

2
∫ t

t (1−w∗
1 )

w∗
0

dz0

∫ t−w∗
0 z0

w∗
1

−t

f (z0, z1;Σ0)dz1

= 2
∫ t

t (1−w∗
1 )

w∗
0

{

Φ

(
(t − w∗

0z0)/w
∗
1 − ρ0,1z0

√
1 − ρ2

0,1

)

− Φ

(−t − ρ0,1z0√
1 − ρ2

0,1

)}

φ(z0)dz0.

Finally,

∫ ∫

Ω

f (z0, z1;Σ0)dz0dz1 = 2
∫ t (1−w∗

1 )

w∗
0

0
Φ

(
t − ρ0,1z0√

1 − ρ2
0,1

)

φ(z0)dz0

+ 2
∫ t

t (1−w∗
1 )

w∗
0

Φ

(
(t − w∗

0z0)/w
∗
1 − ρ0,1z0

√
1 − ρ2

0,1

)

φ(z0)dz0

− 2
∫ t

0
Φ

(−t − ρ0,1z0√
1 − ρ2

0,1

)

φ(z0)dz0. (6.23)

The asymptotic null distribution of MAX3 is a function of genotype frequencies
through the correlation ρ0,1, where the genotype frequencies can be estimated by
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p̂i = ni/n under H0. Hence it may vary from SNP to SNP with different MAFs. If
t∗ = MAX3 is observed, then the p-value of MAX3 is given by Pr(MAX3 > t∗).

6.3.4 Approximation of the Tail of the Distribution of MAX3:
The Rhombus Formula

Monte-Carlo approaches, in particular the parametric bootstrap method that gen-
erates complete case-control data, have limitations when the significance level is
small. In GWAS, the significance levels would be α = 1 × 10−5 for moderate as-
sociations and α = 5 × 10−7 for strong associations. P-values much smaller than
5 × 10−7 are often observed. To find a p-value about α = 5 × 10−7, at least 10
million replicates per SNP are required in the simulation. When testing 500,000 to
more than a million SNPs in GWAS, Monte-Carlo approaches could be computa-
tionally prohibitive given the current computer capacity. Finding p-values using the
asymptotic distribution of MAX3 requires computing multiple integrations for each
marker. This may also be computationally intensive in GWAS. Simpler approaches
have been proposed. We introduce one here.

The approach we introduce here approximates the p-value of MAX3 by an up-
per bound of the tail probability of MAX3. Consider three normally distributed
test statistics T1, T2 and T3, Ti ∼ N(0,1), with correlations ρij = Corr(Ti, Tj ). Let
Li,j = arccos(ρij ) and i �= j . Denote MAX3 = max1≤i≤3(|Ti |). Define

Ii,i+1 = 2Φ

(
tLi,i+1

2

)

+ e− t2L2
i,i+1
8

{

Φ

(
t (π − Li,i+1)

2

)

− Φ

(
tLi,i+1

2

)}

;

I c
i,i+1 = 2Φ

(
t (π − Li,i+1)

2

)

+ e− t2(π−Li,i+1)2

8

{

Φ

(
tLi,i+1

2

)

− Φ

(
t (π − Li,i+1)

2

)}

.

Then,

Pr(MAX3 > t)

≤ 4φ(t)

t

2∑

i=1

{Li,i+1I(Li,i+1∈[0,π/2]) + Lc
i,i+1I(Li,i+1∈[π/2,π]) − 1} − 2Φ(−t),

where φ and Φ are the PDF and CDF of N(0,1), respectively and I(·) is an indi-
cator. The above bound, referred to as the Rhombus formula, can be used to find
the approximate p-value for MAX3 when the three normally distributed tests are
replaced by the three trend test statistics and t is replaced by the observed MAX3.

Note that the order of three tests T1, T2 and T3 is not specified in the above ap-
proximation. Therefore, for the three trend tests, 6 upper bounds could be obtained
using the above formula. The smallest upper bound, which gives the best approxi-
mation, is reported.
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6.3.5 MAX

MAX3 takes the maximum of the trend tests over three genetic models: REC, ADD
and DOM models. A more general statistic is to take the maximum over all genetic
models in the constrained genetic model space Λ:

Λ = {(λ1, λ2) : λ2 ≥ λ1 ≥ 1, and λ2 > 1}, (6.24)

where λi = fi/f0 is the GRR and fi = Pr(case |Gi) is the penetrance for i = 0,1,2.
For the discussion of a family of genetic models, see Sect. 3.2. We assume B is the
risk allele. The constrained genetic model space Λ contains four common genetic
models: the REC (λ1 = 1), ADD (λ1 = (1 + λ2)/2), MUL (λ1 = λ

1/2
2 ), and DOM

(λ1 = λ2) models (see Fig. 3.1). The REC, ADD and DOM models can also be
expressed using a linear function of λ1 and λ2 by λ1 = 1 − θ + θλ2 for θ ∈ [0,1],
which is also given in (3.4). Then the REC, ADD and DOM models correspond to
θ = 0,1/2,1, respectively. Using this parameterization, the REC and DOM models
correspond to the boundaries of θ ∈ [0,1] and the ADD model is in the middle. The
score x = θ is used in the trend test ZCATT(x). When (λ1, λ2) ≈ (1,1), the MUL
model is approximately close to the ADD model in the middle of [0,1].

The MAX for {Zx : x ∈ [0,1]} can be written as

MAX = max
x∈[0,1]

|Zx |.
For the trend tests, we have

MAX = max
x∈[0,1]

|ZCATT(x)|.
A simple closed expression for MAX is given in Sect. 6.3.7, where we relate MAX
to the trend test and Pearson’s test. The asymptotic null distribution of MAX is more
complicated than MAX3. The parametric bootstrap procedure (Sect. 6.3.2) can be
used to find the asymptotic null distribution or p-value for MAX.

6.3.6 Comparing MAX2, MAX3 and MAX

To compare the empirical power of MAX3 and MAX, we add a simpler maximum
test MAX2 = max(ZCATT(0),ZCATT(1)). The data are simulated similarly to those
under H0 but with GRRs (λ1, λ2) �= (1,1) for a given genetic model under H1. We
choose λ2 = 1.25 and 1.5 with MAFs 0.1, 0.3, or 0.5. Prevalence is 0.1 and 500
cases and 500 controls are used. The empirical power is estimated using 10,000
replicates. Results are reported in Table 6.5.

The results are consistent with how the maximum tests are constructed. MAX2
only considers the REC and DOM models. Thus, it is slightly more powerful under
these two models. MAX3 and MAX are often more powerful under the ADD model.
Moreover, MAX is slightly more powerful than MAX3. Overall, the three maximum
tests perform similarly. The difference in power is usually less than 2% under the
REC or DOM models and less than 5% under the ADD model.
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Table 6.5 Empirical power of MAX2, MAX3 and MAX given MAF and a genetic model (REC,
ADD or DOM); 500 cases and 500 controls with prevalence 0.1

MAF Model λ2 = 1.25 λ2 = 1.5

MAX2 MAX3 MAX MAX2 MAX3 MAX

0.1 REC 0.063 0.062 0.062 0.097 0.092 0.099

ADD 0.121 0.122 0.120 0.342 0.346 0.340

DOM 0.290 0.288 0.281 0.795 0.789 0.780

0.3 REC 0.173 0.172 0.175 0.524 0.516 0.523

ADD 0.235 0.240 0.244 0.611 0.633 0.640

DOM 0.429 0.427 0.426 0.914 0.912 0.912

0.5 REC 0.350 0.352 0.354 0.854 0.857 0.855

ADD 0.242 0.259 0.263 0.617 0.656 0.663

DOM 0.312 0.314 0.315 0.768 0.766 0.770

6.3.7 Relationship Among MAX, Trend Test and Pearson’s Test

In Chap. 3, e.g., Tables 3.8 and 3.9, we compared the trend test, which is optimal for
the ADD model, and Pearson’s test Tχ2

2
. We showed that the trend test ZCATT(1/2)

is more powerful under the ADD and DOM models while Tχ2
2

is more powerful
under the REC model. Simulation results presented in Table 6.6 show that MAX3
has greater efficiency robustness than ZCATT(1/2) and Tχ2

2
. In fact, among the five

tests considered in Table 6.6, MAX3 is the test that has the maximin efficiency, and
it outperforms Pearson’s test for each of the four genetic models. From Table 6.5,
MAX3 and MAX have similar power performance. Thus, we study MAX here and
discuss the relationship among the trend test, MAX and Pearson’s test. The results
can be used to explain why MAX3 (or MAX, as expected) is always more powerful
than Pearson’s test over the four common genetic models, and the trade-off between
the trend test and Pearson’s test.

Let the scores used in the trend test be (x0, x1, x2). We used scores (0, x,1)

with x ∈ [0,1] because the trend test is invariant after a linear transformation of the
scores. That is, provided that x2 > x0, the trend test is identical if the two scores
(x0, x1, x2) and (0, (x1 − x0)/(x2 − x0),1) are used (Problem 6.6). Scores in the
trend tests are prespecified. For the REC, ADD/MUL and DOM models, x = 0, 1/2,
1, respectively.

When case-control data (r0, r1, r2) and (s0, s1, s2) are observed, we define a set
of new scores as

(x∗
0 , x∗

1 , x∗
2 ) = (r0/n0, r1/n1, r2/n2).

These scores are not prespecified but random. Let x∗ = (x∗
1 − x∗

0 )/(x∗
2 − x∗

0 ), which
is not necessarily in [0,1]. We are interested in what the trend test is if the score
(0, x∗,1) is used. The following result (Problem 6.7) shows that the trend test with
this random score is identical to Pearson’s test, i.e.,
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Table 6.6 Power of the trend tests ZCATT(x) with x = 0,1/2,1, Pearson’s test Tχ2
2

and MAX3
with prevalence 0.1, MAF 0.3, 500 cases and 500 controls, and 10,000 replicates: GRRs are chosen
so that the optimal trend test has about 80% power

Model ZCATT(x) Tχ2
2

MAX3

x = 0 x = 1/2 x = 1

REC 0.797 0.516 0.162 0.711 0.733

ADD 0.389 0.818 0.805 0.742 0.786

MUL 0.508 0.799 0.718 0.711 0.748

DOM 0.131 0.712 0.797 0.690 0.735

min 0.131 0.516 0.162 0.690 0.733

maximin 0.733

Tχ2
2

≡ Z2
CATT(x∗). (6.25)

Hence Pearson’s test is also a trend test, with the random score (0, x∗,1) and, ow-
ing to the randomness, the degrees of freedom of its asymptotic null distribution
increase from 1 to 2. The random score ri/ni is the proportion of cases among
sampled individuals with genotype Gi . In a prospective case-control (cohort) study,
ri/ni is the MLE of the penetrance fi = Pr(case |Gi). When we consider retrospec-
tive case-control data, i.e., cases and controls are sampled from case and control
populations, ri/ni is a biased estimate of fi . Because it is data-driven, the trend test
with this score (Pearson’s test) is more robust than the trend test with a prespecified
fixed score. On the other hand, its robustness that is due to randomness leads to a
higher degree of freedom test and loses power compared to ZCATT(1/2) when the
model with x = 1/2 is correctly specified.

Let

MAX = max
x∈[0,1]

Z2
CATT(x),

which is slightly different from the one defined before as

MAX = max
x∈[0,1]

|ZCATT(x)|.

The random score x∗ used in Pearson’s test can be any real number, x∗ ∈ (−∞,∞).
However, if x∗ ∈ [0,1], then the following holds (Problem 6.7):

MAX ≡ Tχ2
2

= Z2
CATT(x∗), if x∗ ∈ [0,1]. (6.26)

Hence, MAX itself is a constrained trend test, or Pearson’s test when the random
score is constrained. When case-control data are generated under the four genetic
models in a constrained genetic model space Λ, MAX would be more powerful
using this constraint than Pearson’s test without any constraint. However, if the true
genetic model is outside of Λ, Pearson’s test would be more powerful.

Note that, when x∗ /∈ [0,1], MAX = max(Z2
CATT(0),Z2

CATT(1)) on taking the
maximum on the boundary, or the extreme pair.
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Table 6.7 SNPs reported from GWAS of prostate cancer and breast cancer (see Table 3.10)

Cancer SNP IDs Cases Controls p̂0 p̂1

r0 r1 r2 s0 s1 s2

Prostate rs1447295 25 283 864 10 218 929 0.0150 0.2151

rs6983267 223 598 351 301 579 277 0.2250 0.5044

rs7837688 27 283 861 11 206 939 0.0163 0.2101

Breast rs10510126 10 180 955 14 272 854 0.0105 0.1978

rs12505080 50 477 608 99 408 628 0.0656 0.3899

rs17157903 18 316 777 26 220 862 0.0198 0.2416

rs1219648 250 543 352 170 538 433 0.1837 0.4729

rs7696175 187 605 353 249 496 396 0.1907 0.4816

rs2420946 242 546 357 165 537 440 0.1780 0.4736

6.3.8 Examples

In this section, we illustrate the use of MAX3 to test association when the true
genetic model is unknown. The SNPs that were reported with associations in GWAS
of prostate cancer and breast cancer are used (see Table 3.10). Table 6.7 presents the
genotype counts for these SNPs along with their SNP ID numbers and the estimates
of genotype frequencies in case-control samples given by

p̂i = ni

n0 + n1 + n2
, for i = 0,1,

where nj = rj + sj , j = 0,1,2 and p̂2 = 1 − p̂0 − p̂1. For the SNPs in Table 6.7,
neither the underlying genetic models nor the risk alleles are known a priori.

The trend tests for a given score (x0, x1, x2) = (0, x,1) are given in (3.8) or
(6.3). Using the data in Table 6.7, three trend statistics are calculated under the REC
(x = 0), ADD (x = 1/2), and DOM (x = 1) models. The results are reported in Ta-
ble 6.8 along with MAX3 = maxx=0,1/2,1 |ZCATT(x)|. Using the estimated genotype
frequencies in Table 6.7 and the formulas (6.7) to (6.9), we arrive at the estimated
pair-wise correlations also given in Table 6.8. Because the risk allele is unknown,
ρ0,1/2 > ρ1/2,1 when A is the risk allele. The results in Table 6.8 indicate that A is
the risk allele under H1.

To determine the p-values for MAX3, we consider four approaches: (i) the para-
metric bootstrap, (ii) simulation using the bivariate normal, (iii) asymptotic distri-
bution of MAX3, and (iv) the approximation using the Rhombus formula. For the
first two methods, 1 million and 10 million replicates are used, respectively. We use
the first SNP in Tables 6.7 and 6.8 for illustration.

i) Fix the total numbers of cases and controls at r = 25 + 283 + 864 = 1172
and s = 10 + 218 + 929 = 1157. To apply the parametric bootstrap, we simulate
genotype counts (r0l , r1l , r2l ) in cases and genotype counts in controls (s0l , s1l , s2l )

from
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Table 6.8 Trend tests ZCATT(x) for x = 0,1/2,1, their estimated pair-wise correlations ρx,y , and
MAX3 for the SNPs in Table 6.7

SNP IDs |ZCATT(x)| ρx,y MAX3

x = 0 x = 1
2 x = 1 ρ0, 1

2
ρ0,1 ρ 1

2 ,1

rs1447295 3.768 4.080 2.516 0.9668 0.2259 0.4673 4.080

rs6983267 3.267 4.468 4.038 0.8270 0.3274 0.8019 4.468

rs7837688 4.438 4.694 2.577 0.9644 0.2381 0.4866 4.694

rs10510126 4.999 4.827 0.832 0.9737 0.2009 0.4189 4.999

rs12505080 0.843 0.986 4.153 0.9233 0.2898 0.6352 4.153

rs17157903 4.214 3.417 1.227 0.9614 0.2391 0.4972 4.214

rs1219648 3.628 4.773 4.281 0.8580 0.3431 0.7768 4.773

rs7696175 1.975 0.546 3.341 0.8524 0.3389 0.7809 3.341

rs2420946 3.688 4.759 4.180 0.8602 0.3403 0.7723 4.759

(r0l , r1l , r2l ) ∼ Mul(1172;0.015,0.2151,0.7699),

(s0l , s1l , s2l ) ∼ Mul(1157;0.015,0.2151,0.7699), for l = 1, . . . ,m.

For each replicate (l = 1, . . . ,m), we calculate the three trend tests and MAX3. Then
the p-value of MAX3 is estimated by the proportion of simulated MAX3 values
greater than or equal to the observed one in Table 6.8. We choose m = 1,000,000
for the bootstrap method.

ii) Apply (6.21) to generate three test statistics directly from the bivariate normal
distribution:

[
Z0,l

Z1,l

]

∼ N

([
0

0

]

,

[
1 0.2259

0.2259 1

])

, for l = 1, . . . ,m.

The weights in (6.18) and (6.19) are given by w∗
0 = 0.9075 and w∗

1 = 0.2623. Then,
using (6.20), we have Z1/2,l = w∗

0Z0,l + w∗
1Z1,l for l = 1, . . . ,m. Finally, for each

l, we calculate MAX3 = max(|Z0,l |, |Z1/2,l |, |Z1,l |), from which the empirical dis-
tribution of MAX3 is obtained. The p-value of MAX3 can also be obtained. We
choose m = 10,000,000 for the bivariate normal approach. We choose a larger m

because generating test statistics is less simulation-intensive than simulating case-
control data in the parametric bootstrap approach.

iii) To apply the asymptotic null distribution of MAX3 to find p-values, let t be
an observed MAX3. Formula (6.23) is used to calculate the p-value Pr(MAX3 > t)

for each SNP. Using SNP rs1447295 for illustration, given t = 4.080, w∗
0 = 0.9075,

w∗
1 = 0.2623, and the estimated ρ̂0,1 = 0.2259, the three double integrals in (6.23)

with 10 decimal places are obtained as

I1 = 2
∫ t (1−w∗

1 )

w∗
0

0
Φ

(
t − ρ̂0,1z0√

1 − ρ̂ 2
0,1

)

φ(z0)dz0 = 0.9990509524,



6.3 Max Statistics 175

I2 = 2
∫ t

t (1−w∗
1 )

w∗
0

Φ

(
(t − w∗

0z0)/w
∗
1 − ρ̂0,1z0

√
1 − ρ̂ 2

0,1

)

φ(z0)dz0 = 0.000847540775,

I3 = 2
∫ t

0
Φ

(−t − ρ̂0,1z0√
1 − ρ̂ 2

0,1

)

φ(z0)dz0 = 7.184633976 × 10−6.

Then the p-value is 1 − I1 − I2 + I3 = 1.0869 × 10−4, which is reported as 1.1e−4
in Table 6.9.

iv) The last method is to apply the Rhombus formula (Sect. 6.3.3). We first set
T1 = ZCATT(0), T2 = ZCATT(1/2) and T3 = ZCATT(1). Using π ≈ 3.14159,

L1,2 = arccos(ρ0,1/2) = arccos(0.9668) = 0.2584 ∈ [0,π/2],
L2,3 = arccos(ρ1/2,1) = arccos(0.4673) = 1.0846 ∈ [0,π/2].

Based on the formulas in Sect. 6.3.4, when Li,i+1 ∈ [0,π/2] for i = 1,2, we only
need to calculate I1,2 and I2,3, not I c

1,2 and I c
2,3 which will only be used when

Li,i+1 ∈ [π/2,π] for i = 1,2. Thus, using t = 4.080 and L1,2 = 0.2584,

I1,2 = 2Φ

(
tL1,2

2

)

+ exp

(

− t2L2
1,2

8

){

Φ

(
t (π − L1,2)

2

)

− Φ

(
tL1,2

2

)}

= 1.6622.

I2,3 = 1.9742 can be obtained using L2,3 = 1.0846 to replace L1,2 in the above
formula. Finally, the p-value is approximately given by

Pr(MAX3 > t) ≈ 4φ(t)

t
(I1,2 − 1 + I2,3 − 1) − 2Φ(−t) ≈ 0.0001104.

The p-value calculated by the Rhombus formula depends on the order of the three
tests. All six permutations are used and the minimum p-value of the six permutations
is reported as the approximate p-value of MAX3. For the first SNP in Table 6.8, the
other five approximate p-values are 0.0001419, 0.0001122, 0.000112, 0.0001104,
and 0.0001122. The minimum p-value reported in Table 6.9 is 1.1e−4.

In Table 6.9, the p-values of all four methods are presented. Note that p-values us-
ing the asymptotic distribution and the Rhombus formulas match particularly well.
P-values of both approaches also match that of using the bivariate normal simula-
tion (using 10 million replicates). The parametric bootstrap method using 1 million
replicates does not match well with the other three methods in some cases. It is also
the most computationally intensive among the four methods. Applying the asymp-
totic distribution of MAX3 requires integrations while using the Rhombus formula
only requires calculations of normal distribution functions. The parametric bootstrap
method can be easily used in candidate-gene association studies, but the asymptotic
distribution of MAX3 or the Rhombus formula are preferred for large-scale asso-
ciation studies such as GWAS. The last two methods are also useful in simulation
studies at genome-wide scales.
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Table 6.9 P-values of MAX3 from four approaches: bootstrap (boot), bivariate normal distribution
(BVN), asymptotic distribution (ASYM) and the approximation using Rhombus formula (Rhom-
bus). For the simulation-based p-values, the numbers of replicates are 1 million for the bootstrap
method (boot) and 10 million for using the bivariate normal method (BVN)

SNP IDs P-values of MAX3

boot BVN ASYM Rhombus

rs1447295 8.2e−5 1.1e−4 1.1e−4 1.1e−4

rs6983267 2.2e−5 2.0e−5 2.2e−5 2.1e−5

rs7837688 4.0e−6 7.0e−6 6.7e−6 6.7e−5

rs10510126 1.0e−6 1.4e−6 1.4e−6 1.4e−6

rs12505080 8.7e−5 8.2e−5 8.5e−5 8.3e−5

rs17157903 4.6e−5 6.2e−5 6.2e−5 6.2e−5

rs1219648 6.0e−6 6.5e−6 5.0e−6 4.8e−6

rs7696175 2.1e−3 2.1e−3 2.1e−3 2.0e−3

rs2420946 8.0e−6 6.8e−6 5.3e−6 5.2e−6

6.4 MIN2

6.4.1 Joint Distribution and P-Value

An alternative robust test, which borrows strengths from Pearson’s test under the
REC model and the trend test under the ADD or DOM models, is the minimum of
the p-values of Pearson’s test and the trend test that is optimal for the ADD model.
This robust test is referred to as MIN2, given by

MIN2 = min(pχ2
2
,pCATT), (6.27)

where pχ2
2

is the p-value of Pearson’s test Tχ2
2

and pCATT is the p-value of

Z2
CATT(1/2).

Both p-values are calculated based on the same case-control data. Hence they are
correlated. To find the asymptotic distribution and p-value of MIN2 under the null
hypothesis H0 of no association, the correlation is usually required. However, using
a property of Pearson’s test and trend test (Problem 6.8), Z2

CATT(1/2)/Tχ2
2

and Tχ2
2

are asymptotically independent under H0. Hence, the joint distribution of Tχ2
2

and

Z2
CATT(1/2) under H0 can be obtained (Problem 6.8) as

Pr

(

Z2
CATT

(
1

2

)

< t1, Tχ2
2

< t2

)

= 1 − 1

2
e− t1

2 − 1

2
e− t2

2

+ 1

2π

∫ t2

t1

e− v
2 arcsin

(
2t1

v
− 1

)

dv (6.28)

when t1 < t2, and Pr(Z2
CATT(1/2) < t1, Tχ2

2
< t2) = 1 − exp(−t2/2) when t1 > t2.

Let Fi denote the distribution function of χ2
i with i = 1,2 degrees of freedom. Then
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pCATT = 1 − F1(Z
2
CATT(1/2)),

pχ2
2

= 1 − F2(Tχ2
2
).

Hence,

Pr(MIN2 > t) = Pr

(

Z2
CATT

(
1

2

)

< F−1
1 (1 − t), Tχ2

2
< F−1

2 (1 − t)

)

.

Thus, (6.28) can be used to find the distribution of MIN2 under H0 and its p-value,
denoted by pMIN2 = Pr(MIN2 < tmin2), where tmin2 is the observed value of MIN2.
Then the p-value of MIN2 can be written as

pMIN2 = 1

2
e−F−1

1 (1−tmin2)/2 + 1

2
tmin2

− 1

2π

∫ −2 log(tmin2)

F−1
1 (1−tmin2)

e− v
2 arcsin

(
2F−1

1 (1 − tmin2)

v
− 1

)

dv. (6.29)

Note that, from (6.29), the p-value of MIN2 only depends on the value of MIN2
and is independent of the MAF of the genetic marker. Computation of the p-value
of MIN2 only involves the evaluation of a single integral.

6.4.2 MIN2 Versus the P-Value of MIN2

In Problem 6.8, it is shown that Pearson’s test Tχ2
2

and the trend test Z2
CATT(1/2)

are positively correlated, and that MIN2 is always greater than its p-value pMIN2.
That is, MIN2 itself is not a valid p-value. Using MIN2 as a p-value would inflate
Type I error in testing association. For example, if the significance level is α = 0.05
and MIN2 = 0.05 is observed, then the p-value of MIN2 using (6.29) is 0.0751. In
order to have the p-value pMIN2 < 0.05, the significance level has to be no more
than α = 0.0328, which is smaller than the typical 0.05 level but greater than 0.025,
the level obtained on applying the Bonferroni correction.

Table 6.10 reports thresholds for MIN2 to be significant given the significance
levels (or p-values of MIN2). For example, to have an association to be significant
at the level 5 × 10−5, i.e., pMIN2 < 5 × 10−5, the observed MIN2 has to be no more
than 2.97 × 10−5.

6.4.3 Examples

For illustration, we apply MIN2 to the SNPs reported in Table 6.9 from two GWAS
of cancer. For comparison, the p-values of MAX3 reported in Table 6.9 using the
asymptotic null distribution are also presented. The p-value of MIN2 is calculated
from (6.29) for each SNP. Results are presented in Table 6.11.
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Table 6.10 The thresholds
for MIN2 to be significant
given the significance levels
(p-values of MIN2)

Threshold pMIN2

3.28×10−2 5.00×10−2

3.12×10−3 5.00×10−3

3.03×10−4 5.00×10−4

2.97×10−5 5.00×10−5

2.93×10−6 5.00×10−6

2.90×10−7 5.00×10−7

9.62×10−8 1.67×10−7

5.76×10−8 1.00×10−7

Table 6.11 P-values of
MAX3 and MIN2 for the
SNPs reported in Table 6.9.
The p-values of MAX3,
which are also reported in
Table 6.9, are based on the
asymptotic null distribution
(ASYM)

SNP IDs P-values

ZCATT( 1
2 ) Tχ2

2
MAX3 MIN2

rs1447295 4.5e−5 1.9e−4 1.1e−4 7.6e−5

rs6983267 7.9e−6 3.5e−5 2.2e−5 1.3e−5

rs7837688 2.7e−6 1.6e−5 6.7e−6 4.6e−5

rs10510126 1.4e−6 3.7e−6 1.4e−6 2.4e−6

rs12505080 0.3240 1.8e−5 8.5e−5 3.1e−5

rs17157903 6.3e−4 9.9e−6 6.2e−5 1.7e−5

rs1219648 1.8e−6 7.5e−6 5.0e−6 3.1e−6

rs7696175 0.5851 1.6e−5 2.1e−3 2.7e−3

rs2420946 1.9e−6 8.8e−6 5.3e−6 3.3e−6

Table 6.11 shows that the trend test is not robust. The two SNPs, rs12505080
and rs7696175, have p-values 0.3240 and 0.5851, respectively. The trend test and
Pearson’s test also have p-values that disagree: when a p-value of the trend test is
smallest in Table 6.11, the p-value of Pearson’s test is largest, and vice versa. MIN2
borrows strength from both the trend test and Pearson’s test and is more robust in
the sense that its p-values are always between those of the trend test and Pearson’s
test. The results also show that MIN2 could have smaller p-values than MAX3, but
not always. More comparison between MAX3 and MIN2 will be presented later in
this chapter, along with other robust tests.

6.5 The Constrained Likelihood Ratio Test

The idea of the constrained likelihood ratio test (CLRT) is similar to MAX. It con-
strains the GRRs (λ1, λ2) to the genetic model space Λ given in (6.24). Note that
(λ1, λ2) ∈ Λ indicates that f0 ≤ f1 ≤ f2 when B is the risk allele. When A is the
risk allele, the constrained genetic model space would correspond to f0 ≥ f1 ≥ f2.
In other words, the constrained genetic model corresponds to ordered penetrances.
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6.5.1 Restricted Maximum Likelihood Estimates of Penetrances

Note that the frequencies of Gi genotype in cases and controls are pi = gifi/k

and qi = gi(1 − fi)/(1 − k), respectively, for i = 0,1,2, where gi is the population
frequency of Gi , fi is a penetrance, and k is the prevalence. The likelihood for
the case-control data (ri , si), i = 0,1,2 is proportional to

∏2
i=0 p

ri
i q

si
i . Thus, the

log-likelihood function is proportional to

l2(f0, f1, f2) =
2∑

i=0

{ri logfi + si log(1 − fi)}.

Under H0, the log-likelihood function has a maximum

l0 = r log(f̂0) + s log(1 − f̂0),

where f̂0 = r/n. Therefore, the CLRT is given by

TCLRT = 2
(

max
(f0,f1,f2)
are ordered

l2(f0, f1, f2) − l0

)
.

An algorithm to obtain TCLRT is as follows:

(i) Denote f̂i = ri/ni for i = 0,1,2. If f̂i , i = 0,1,2 are ordered (increasing or
decreasing), TCLRT can be directly calculated using the estimates as

TCLRT = 2(l2(f̂0, f̂1, f̂2) − l0).

(ii) Otherwise, estimate f̂0 = f̂1 = (r0 + r1)/(n0 + n1) and f̂2 = r2/n2 under
the REC model and calculate TCLRTR = 2(l2(f̂0, f̂0, f̂2) − l0). Next, esti-
mate them by f̂0 = r0/n0 and f̂1 = f̂2 = (r1 + r2)/(n1 + n2) under the
DOM model, and calculate TCLRTD = 2(l2(f̂0, f̂2, f̂2) − l0). Finally, TCLRT =
max(TCLRTR, TCLRTD).

Under H0, the asymptotic distribution of TCLRT is a mixture of chi-squared distri-
butions with degrees of freedom 0, 1 and 2. The bootstrap procedure used for MAX
and MAX3 can be also used to find the asymptotic null distribution for TCLRT.

Note that, under case (i), the estimates f̂i = ri/ni , i = 0,1,2 are the random
scores (x∗

0 , x∗
1 , x∗

2 ) used in Pearson’s test, for which the random scores do not need
to be ordered. However, when the random scores are ordered as in case (i), the trend
test becomes MAX. When the random scores are not ordered, TCLRT takes on the
maximum value of the trend tests for the REC model (case (ii)) or DOM model (case
(iii)). Hence, the CLRT and MAX are expected to have similar power performance.

6.5.2 Examples

For illustration, we use the first SNP in Table 6.7 with (r0, r1, r2) = (25,283,864)

in r = 1172 cases, (s0, s1, s2) = (10,218,929) in s = 1157 controls, (n0, n1, n2) =
(35,501,1793), and n = 2329. First, we calculate l0 by
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Table 6.12 P-values of
MAX3 and the CLRT for the
SNPs reported in Table 6.9

SNP IDs P-values

MAX3 CLRT

rs1447295 1.1e−4 1.1e−4

rs6983267 2.2e−5 1.9e−5

rs7837688 6.7e−6 8.4e−5

rs10510126 1.4e−6 2.4e−6

rs12505080 8.5e−5 8.7e−5

rs17157903 6.2e−5 8.4e−5

rs1219648 5.0e−6 4.5e−6

rs7696175 2.1e−3 2.3e−3

rs2420946 5.3e−6 3.9e−6

l0 = 1172 log

(
1172

2329

)

+ 1157 log

(
1157

2329

)

= −1614.29.

Next, we calculate the random scores f̂i for i = 0,1,2 and obtain f̂0 = 25/35 =
0.7143, f̂1 = 283/501 = 0.5649, and f̂2 = 864/1793 = 0.4819, which are decreas-
ing. Thus, case (i) applies and l2 is obtained

l2 = 25 log(0.7143) + 283 log(0.5649) + 864 log(0.4819)

+ 10 log(1 − 0.7143) + 218 log(1 − 0.5649) + 929 log(1 − 0.4819)

= −1605.61.

Then, TCLRT = 2(l2 − l0) = 17.36. The parametric bootstrap can be applied to find
the p-value for TCLRT = 17.36. In Table 6.12, p-values of the CLRT are reported for
all the SNPs in Table 6.7. The p-values of the CLRT are similar to those of MAX3.

6.6 Genetic Model Selection

The genetic model selection (GMS) approach is an adaptive procedure that has two
steps. In step 1, an underlying genetic model is selected based on the difference in
HWD between cases and controls. The selected genetic model is either REC, DOM
or ADD (MUL). Then the score, 0, 1/2, or 1 for the trend test is determined based
on the selected genetic model. In step 2, the trend test with the score corresponding
to the selected model is used to test for association. The correlation between the two
steps is taken into account to control the overall Type I error.

The HWD coefficient and the HWDTT for association have been discussed in
Sect. 3.6. Here we discuss the relationship between HWD and genetic models. Then
we present how to use the HWDTT to select a genetic model and test for association.



6.6 Genetic Model Selection 181

6.6.1 Hardy-Weinberg Disequilibrium and Genetic Models

Using the notation in Sect. 3.6, pi = Pr(Gi |case) and qi = Pr(Gi |control) for
genotypes (G0,G1,G2) = (AA,AB,BB). The HWD coefficients in cases (Δp),
controls (Δq ), and the population (Δ) are given by Δp = p2 − (p2 + p1/2)2,
Δq = q2 − (q2 + q1/2)2, and Δ = Pr(BB) − {Pr(BB) + Pr(AB)/2}2. We are in-
terested in the relationship between (Δp,Δq) and genetic models when HWE holds
in the population (Δ = 0).

Under HWE, gi = Pr(Gi) can be calculated by

(g0, g1, g2) = ((1 − p)2,2p(1 − p),p2),

where p = Pr(B). Substituting pi = gifi/k and qi = gi(1 − fi)/(1 − k), where
k = Pr(case), into Δp and Δq , we have

Δp = f 2
0 p2(1 − p)2

k2
(λ2 − λ2

1), (6.30)

Δq = f 2
0 p2(1 − p)2

(1 − k)2
(2λ1 − 1 − λ2 − f0λ

2
1 + f0λ2). (6.31)

Under a REC model λ1 = 1,

λ2 − λ2
1 = λ2 − 1 > 0,

2λ1 − 1 − λ2 − f0λ
2
1 + f0λ2 = −(λ2 − 1)(1 − f0) < 0.

Thus, from (6.30) and (6.31), Δp > 0 and Δq < 0. On the other hand, under a DOM
model λ1 = λ2,

λ2 − λ2
1 = −λ2(λ2 − 1) < 0,

2λ1 − 1 − λ2 − f0λ
2
1 + f0λ2 = (λ2 − 1)(1 − f0λ2) = (λ2 − 1)(1 − f2) > 0.

Thus Δp < 0 and Δq > 0.
Note that, when B is the risk allele, the signs of Δp and Δq are the opposite

of those under the REC model (Δp,Δq) = (+,−) and DOM model (Δp,Δq) =
(−,+). However, the signs of Δp and Δq are independent of which allele is the
risk allele. If A is the risk allele, using the same definitions of Gi and fi , i = 0,1,2,
then λ2 ≤ λ1 ≤ 1 and λ2 < 1. In addition Δp and Δq have the same expressions
as in (6.30) and (6.31). Under the REC model (λ1 = λ2), λ1 = λ2, and under the
DOM model, λ1 = 1. Hence, under the REC model, λ2 − λ2

1 = λ2(1 − λ2) > 0 and
2λ1 − 1 − λ2 − f0λ

2
1 + f0λ2 = −(1 − λ2)(1 − f2) < 0. Under the DOM model

(λ1 = 1), λ2 − λ2
1 < 0 and 2λ1 − 1 − λ2 − f0λ

2
1 + f0λ2 > 0.

Although the signs of Δp and Δq can be used to determine the genetic model, a
simple approach is to consider the difference Δp − Δq , which can be normalized to
the HWDTT, ZHWDTT, given in (3.20) and is also given below:

ZHWDTT =
√

rs/n(Δ̂p − Δ̂q)

{1 − n2/n − n1/(2n)}{n2/n + n1/(2n)} . (6.32)
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Table 6.13 Performance of the GMS under HWE given MAF. True genetic models include REC,
ADD, MUL, and DOM models. The ADD or MUL models are grouped as A/M when neither REC
or DOM is selected. The sample sizes are r = s = 250 with λ2 = 2

True model MAF Selected model

REC A/M DOM

REC 0.1 20.28% 79.21% 0.51%

0.3 66.86% 33.13% 0.01%

0.5 66.28% 33.71% 0.01%

ADD 0.1 2.02% 90.24% 7.74%

0.3 2.27% 87.94% 9.79%

0.5 2.36% 89.22% 8.42%

MUL 0.1 2.95% 92.14% 4.91%

0.3 5.00% 90.27% 4.73%

0.5 5.64% 90.20% 4.16%

DOM 0.1 0.03% 61.48% 38.49%

0.3 0.00% 31.73% 68.27%

0.5 0.03% 34.91% 65.06%

Under H0, ZHWDTT ∼ N(0,1). We assume the underlying genetic model is ADD
or MUL unless there is strong evidence that it is REC when ZHWDTT > c∗ or DOM
when ZHWDTT < −c∗, where the threshold c∗ = 1.645, corresponding to the upper
95% percentile of N(0,1), can be used.

6.6.2 Performance of the Genetic Model Selection

To examine the performance of the GMS under H1, we conduct a simulation study.
The parameters in the simulation study are given below. We first examine the per-
formance under HWE. The sample sizes are r = s = 250 when GRR λ2 = 2.0 or
r = s = 1000 when λ2 = 1.5. The GRR λ1 is determined by the underlying ge-
netic model and the value of λ2. Next, we examine it without HWE by choosing
Wright’s coefficient of inbreeding F = 0.10. In all simulations, the prevalence is
k = 0.10. The frequencies of selecting genetic models are reported in Table 6.13
and Table 6.14 for sample sizes 500 and 2,000, respectively.

The GMS mostly performs well for moderate to common allele frequencies. The
frequencies of correctly selecting the REC or DOM models range from 65% to
80% in the simulations. They are higher for the ADD or MUL models, because the
GMS procedure assumes the genetic model is ADD or MUL unless there is strong
evidence indicating a REC or DOM model.

The signs of the HWD coefficients in cases and controls presented in Sect. 6.6.1
require HWE in the population. We also conduct simulations with Wright’s coeffi-
cient of inbreeding in the population F = 0.10. Results corresponding to Table 6.13
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Table 6.14 Performance of the GMS under HWE given MAF. True genetic models include REC,
ADD, MUL, and DOM models. The ADD or MUL models are grouped as A/M when neither REC
or DOM is selected. The sample sizes are r = s = 1000 with λ2 = 1.5

True model MAF Selected model

REC A/M DOM

REC 0.1 25.26% 74.36% 0.38%

0.3 75.08% 24.92% 0.00%

0.5 79.90% 20.10% 0.00%

ADD 0.1 3.37% 90.41% 6.22%

0.3 3.06% 88.92% 8.02%

0.5 3.13% 89.27% 7.60%

MUL 0.1 4.47% 90.62% 4.91%

0.3 5.25% 89.71% 5.04%

0.5 5.59% 89.88% 4.53%

DOM 0.1 0.13% 64.15% 35.72%

0.3 0.00% 23.22% 76.78%

0.5 0.00% 21.65% 78.15%

Table 6.15 Performance of the GMS without HWE. Wright’s coefficient of inbreeding is F =
0.10. Other parameter values are the same as those in Table 6.13

True model MAF Selected model

REC A/E DOM

REC 0.1 35.18% 64.74% 0.08%

0.3 74.91% 25.09% 0.00%

0.5 61.56% 38.44% 0.00%

ADD 0.1 8.91% 89.12% 1.97%

0.3 4.16% 90.62% 5.22%

0.5 2.08% 88.40% 9.52%

MUL 0.1 12.12% 86.51% 1.32%

0.3 8.74% 88.81% 2.45%

0.5 4.55% 89.91% 5.54%

DOM 0.1 1.17% 86.10% 12.73%

0.3 0.02% 43.31% 56.67%

0.5 0.00% 33.14% 66.86%

are reported in Table 6.15. They show that there is no strong influence of HWD on
the performance of genetic model selection.
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6.6.3 Testing Association After the Genetic Model Selection

The idea of the GMS is to enhance the power to detect true association after the
model selection. If the selected model is REC, ADD/MUL or DOM, the trend test
optimal for the selected model can be used to test the null hypothesis. Because the
same case-control data are used for both model selection and testing association, the
two steps are statistically correlated. Therefore, we need to first derive the correla-
tion between the model selection and a trend test. Then an association test can be
applied with an adjusted level, or a critical value, to control the overall significance
level.

Correlation Between the Model Selection and a Trend Test

The GMS is based on the HWDTT, ZHWDTT, given by (6.32). The trend test
ZCATT(x) is given by (6.3). The model index x in the trend test is determined by
ZHWDTT. In order to control the Type I error, the correlation between ZHWDTT and
ZCATT(x) is helpful for deriving analytical results.

We describe how the asymptotic null correlation of ZHWDTT and ZCATT(x) can
be derived. Denote, under H0,

ρx = Corr(ZHWDTT,ZCATT(x)).

Assume the proportion of cases has a limit: r/n → η ∈ (0,1) as n → ∞. Then,
under H0,

ni

n
= r

n

ri

r
+ s

n

si

s
→ ηpi + (1 − η)qi = pi.

Therefore, the denominator of ZHWDTT converges in probability:

{1 − n2/n − n1/(2n)}{n2/n + n1/(2n)} → (1 − p2 − p1/2)(p2 + p1/2).

Likewise, the denominator of ZCATT(x) converges in probability:
√

(x2n1/n + n2/n) − (xn1/n + n2/n)2 →
√

(x2p1 + p2) − (xp1 + p2)2.

Under H0, the expections of the numerators of the trend test and the HWDTT are
0. Hence we focus on the asymptotic null correlation between the numerator of
the trend test (denoted by Ux ) and that of the HWDTT (denoted by D) (see Prob-
lem 1.1), which are given by

Ux =
√

rs/n2
√

n{(xr1/r + r2/r) − (xs1/s + s2/s)},
D =

√
rs/n2

√
n{r2/r − (r2/r + r1/r)2 − s2/s + (s2/s + s2/s)

2}.
Note that

√
rs/n2 → √

η(1 − η). The null correlation of Ux and D can be obtained
by applying the multinomial distributions for (r0, r1, r2) and (s0, s1, s2) and the in-
dependence of genotype counts between cases and controls.
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With HWE in the population and p = Pr(B), it can be shown that (see Prob-
lem 3.11)

ρ0 =
√

1 − p

1 + p
+ O(n−1), (6.33)

ρ 1
2

= O(n−1), (6.34)

ρ1 = −
√

p

2 − p
+ O(n−1). (6.35)

The higher order terms are omitted in the above expressions. Note that ρ1/2 is
asymptotically 0, which was given in (3.21) of Sect. 3.7 and was used to combine
ZHWDTT and ZCATT(1/2).

The Genetic Model Selection Test

Let B be the risk allele. The genetic model index x = 0 if ZHWDTT > c∗, x = 1 if
ZHWDTT < −c∗, and x = 1/2 otherwise, where c∗ = 1.645. Denote the index for
the selected model by x∗. Then the trend test ZCATT(x∗) is used to test association.
The genetic model selection (GMS) test, denoted by ZGMS, is given by

ZGMS = ZCATT(0), if ZHWDTT > c∗;
= ZCATT(1), if ZHWDTT < −c∗;
= ZCATT(1/2), if |ZHWDTT| < c∗.

Because we assume B is the risk allele, we test association for a one-sided alter-
native with significance level α/2. In this case, each allele can be tested as the risk
allele at the α/2 level, by the Bonferroni correction.

Asymptotic Distribution

The null hypothesis H0 is rejected when ZGMS = ZCATT(x∗) > c. Note that
ZCATT(x∗) does not follow N(0,1) asymptotically under H0. We need to determine
c under H0 from

Pr(ZGMS > c) = Pr(ZCATT(x∗) > c) = α/2, (6.36)

where

Pr(ZCATT(x∗) > c) = Pr(ZHWDTT > c∗,ZCATT(0) > c)

+ Pr(ZHWDTT < −c∗,ZCATT(1) > c)

+ Pr(−c∗ < ZHWDTT < c∗,ZCATT(1/2) > c). (6.37)

All the above probabilities are evaluated under H0, under which the asymptotic
distribution of (ZCATT(x),ZHWDTT)T is the bivariate normal
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Fig. 6.7 Type I error (solid)
of the GMS test
Pr(ZGMS > c) over c ∈ [1,4]
under H0 when HWE holds in
the population. The reference
line (point) is the for the
nominal level α/2 = 0.025

[
ZCATT(x)

ZHWDTT

]

∼ N

([
0

0

]

,

[
1 ρx

ρx 1

])

,

where ρx is given in (6.33)–(6.35). Let the density of (ZCATT(x),ZHWDTT)T be
f (u, v;x) given by

f (u, v;x) = 1

2π
√

1 − ρ2
x

exp

{

− 1

2(1 − ρ2
x)

(u2 − 2ρxuv + v2)

}

= 1
√

2π(1 − ρ2
x)

exp

{

−1

2

(
v − ρxu√

1 − ρ2
x

)2} 1√
2π

exp(−u2/2).

Then the equation in (6.36) can be written as:

2Φ(c∗){1 − Φ(c)} +
∫ ∞

c

{

Φ

(−c∗ − ρ1u√
1 − ρ2

1

)

− Φ

(
c∗ − ρ0u√

1 − ρ2
0

)}

dΦ(u) = α

2
,

(6.38)

where Φ(c∗) = 0.95 when c∗ = 1.645, and c is unknown. Both c and c∗ appear in
(6.37).

Let the left hand side of (6.38) be a function of the critical value c. Then it
can be shown that the derivative of that function with respect to c is strictly neg-
ative (Problem 6.9). Note that, under H0, Pr(ZCATT(x∗) > −∞) = 1 > α/2 and
Pr(ZCATT(x∗) > ∞) = 0 < α/2. Thus, there exists a unique c satisfying (6.38).

To obtain the p-value of ZGMS, calculate the left hand side of (6.38) separately
with A and B being the risk allele by substituting the observed ZGMS for c, which
must be greater than 0 (otherwise the p-value is greater than 0.5), and replacing ρ0
and ρ1 with their estimates respectively. Take the minimum of the two p-values.
Then the p-value of ZGMS is twice the minimum. Figure 6.7 plots Pr(ZGMS > c)

over c ∈ [1,4] under H0 with the reference line for α/2 = 0.025. Numerical val-
ues of the critical values c are reported in Table 6.16. In general, the critical values
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Table 6.16 Critical values c for the GMS test ZGMS when HWE holds in the population

MAF α c MAF α c

0.05 0.05 2.2396 0.30 0.05 2.1974

0.01 2.8107 0.01 2.8186

0.10 0.05 2.2333 0.35 0.05 2.1916

0.01 2.8171 0.01 2.8168

0.15 0.05 2.2235 0.40 0.05 2.1875

0.01 2.8205 0.01 2.8152

0.20 0.05 2.2136 0.45 0.05 2.1851

0.01 2.8212 0.01 2.8141

0.25 0.05 2.2047 0.50 0.05 2.1843

0.01 2.8203 0.01 2.8138

change with the frequency of allele B . Table 6.16 only presents critical values for
p ≤ 0.50. For p > 0.50, the critical value is identical to the one for 1 − p (Prob-
lem 6.10).

6.6.4 Examples

For illustration, we apply ZGMS to the SNPs in Table 6.7. We also use the
first SNP as an example to show detailed calculations. Given the genotype
counts for (AA,AB,BB) as (r0, r1, r2) = (25,283,864) in cases and (s0, s1, s2) =
(10,218,929) in controls, we calculate ZHWDTT using (6.32) and obtain ZHWDTT =
0.6919, which satisfies |ZHWDTT| < c∗ = 1.645. Thus, there is no strong evidence
for a REC model or a DOM model underlying the data. We choose x∗ = 0.5 for
the trend test and obtain ZGMS = ZCATT(0.5) = −4.080 < 0. This implies that A

is the risk allele under H1. If we switch alleles A and B , the sign of the trend
test ZCATT(0.5) will change to positive. (Note, however, for x∗ = 0 and x∗ = 1,
ZCATT(0) and ZCATT(1) are also switched.) If we set (r2, r1, r0) = (25,283,864)

and (s2, s1, s0) = (10,218,929), ZHWDTT does not change but ZCATT(0.5) = 4.080.
Next, we estimate p̂ = (n1 + 2n2)/(2n) = 0.1226 as the allele frequency and

ρ̂0 =
√

1 − p̂

1 + p̂
= 0.8841,

ρ̂1 = −
√

p̂

2 − p̂
= 0.2555.

Evaluate the left hand side of (6.38) with c = 4.080 and ρ0 and ρ1 being replaced
by 0.8841 and 0.2555, respectively. The p-value is twice the left hand side of (6.38),
which is 0.0000984 and reported in Table 6.17 as 9.8e−5.
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Table 6.17 P-value of ZGMS for SNPs reported in Table 6.7. The p-values of MAX3 are also
reported for comparison

SNP IDs ZHWDTT x∗ ZGMS P-values

MAX3 GMS

rs1447295 0.692 0.5 4.080 1.1e−4 9.8e−5

rs6983267 −0.752 0.5 4.468 2.2e−5 2.1e−5

rs7837688 0.579 0.5 4.694 6.7e−6 6.0e−6

rs10510126 1.506 0.5 4.827 1.4e−6 3.1e−6

rs12505080 −4.515 1.0 4.153 8.5e−5 7.9e−5

rs17157903 −3.371 1.0 4.214 6.2e−5 5.6e−5

rs1219648 0.975 0.5 4.773 5.0e−6 5.0e−6

rs7696175 −4.672 1.0 3.341 2.1e−3 1.9e−3

rs2420946 0.853 0.5 4.759 5.3e−6 5.3e−6

To illustrate how ZCATT(0) and ZCATT(1) are switched with opposite signs when
the alleles A and B are switched, we use SNP rs17157903 (Table 6.17). With geno-
type counts (r0, r1, r2) = (18,316,777) and (s0, s1, s2) = (26,220,862), we obtain
ZHWDTT = −3.371 < −1.645. Thus, the DOM model is selected with x∗ = 1.0.
However, which trend test, ZCATT(0) or ZCATT(1), is for the DOM model is relative
to the risk allele. ZCATT(1) is optimal when B is the risk allele while ZCATT(0) is
optimal when A is the risk allele. Numerical results show that ZCATT(0) = −4.214
and ZCATT(1) = 1.227. Using ZGMS = 1.227, its p-value is 0.1529. If we switch the
alleles with (r2, r1, r0) = (18,316,777) and (s2, s1, s0) = (26,220,862), ZHWDTT
does not change, but ZCATT(0) = −1.227 and ZCATT(1) = 4.214. Using ZGMS =
4.214, the p-value is 0.00002799. The final reported p-value is 2 × 0.00002799 =
0.00005597 or 5.6e-5 as in Table 6.17.

Results in Table 6.17 show that the p-values of ZGMS are slightly smaller than
or equal to those of MAX3 except for SNP rs10510126. For that SNP, x∗ = 0.5 is
selected but ZCATT(0) = 4.999 > ZCATT(1/2) = 4.827. Thus, ZGMS = 4.827 and
MAX3 = 4.999, which leads to a smaller p-value for MAX3.

6.6.5 Choice of Thresholds for the Genetic Model Selection

The GMS procedure depends on the threshold c∗ for model selection. So far we have
used the threshold c∗ = 1.645 for model selection with ZHWDTT, which corresponds
to the upper 95th percentile of N(0,1). We consider some other values here. In
particular, we choose c∗ = 1.285 and 1.96, which correspond to the upper 90th and
97.5th percentiles of N(0,1), respectively. Intuitively, a larger value of c∗ would
select stronger REC or DOM effects than a smaller c∗. Therefore, there is a trade-
off between selecting ADD/MUL models and REC or DOM models, in particular
when ZHWDTT is close to the threshold c∗.
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Fig. 6.8 Type I error rates of
the GMS test
PrH0 (ZGMS > c) over
c ∈ [1,4] with different
choices of threshold c∗. The
light solid, point and dark
solid curves correspond to
c∗ = 1.285, 1.645, and 1.96,
respectively

Table 6.18 P-values of
ZGMS for SNPs reported in
Table 6.7 with three different
choices of threshold c∗

SNP IDs c∗

1.285 1.645 1.96

rs1447295 1.0e−4 9.8e−5 9.6e−5

rs6983267 2.1e−5 2.1e−5 2.0e−5

rs7837688 6.1e−6 6.0e−6 5.8e−6

rs10510126 1.3e−6 3.1e−6 3.1e−6

rs12505080 8.1e−5 7.9e−5 7.6e−5

rs17157903 5.7e−5 5.6e−5 5.5e−5

rs1219648 4.9e−6 5.0e−6 4.8e−6

rs7696175 2.0e−3 1.9e−3 1.7e−3

rs2420946 5.3e−6 5.3e−6 5.1e−6

Figure 6.8 plots Type I error rates, the left hand side of (6.38), for the three
different values of c∗. The light solid, point and dark solid curves correspond to
c∗ = 1.285, 1.645 and 1.96, respectively. The plots show that, given α, the critical
value becomes smaller when the threshold c∗ increases. P-values with these three
thresholds are reported in Table 6.18. Overall, p-values are not that sensitive to the
thresholds. P-values with c∗ = 1.96 are smaller than those with smaller c∗ except
for SNP rs10510126, in which the REC model is selected with c∗ = 1.285, but not
with the other two thresholds. In practice, it would be helpful to conduct a sensitivity
analysis with different values of c∗ as in Table 6.18.
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6.6.6 Simulating the Null Distribution

In Sect. 6.6.3, we derived the asymptotic null distribution for the GMS test ZGMS.
To obtain p-values and critical values, we need to evaluate single integrals or double
integrals (with the CDF of N(0,1)).

The parametric bootstrap procedure discussed in Sect. 6.3.2 can still be applied.
As shown for MAX3 (Sect. 6.3.2), directly simulating test statistics under H0 with
their correlations is simpler. Throughout this section, we assume HWE holds in
the population. First, we show that ZCATT(0), ZCATT(1) and ZHWDTT are linearly
dependent. From ρ0 = √

(1 − p)/(1 + p), ρ1 = −√
(1 − q)/(1 + q), and ρ0,1 =√

pq/{(1 + p)(1 + q)} (Problem 6.11), we have

ρ2
0 + ρ2

1 + ρ2
0,1 − 2ρ0ρ1ρ0,1 = 1.

Thus,
∣
∣
∣
∣
∣
∣
∣

1 ρ0,1 ρ0

ρ0,1 1 ρ1

ρ0 ρ1 1

∣
∣
∣
∣
∣
∣
∣
= 0.

Writing ZHWDTT = u∗ZCATT(0) + v∗ZCATT(1) leads to

u∗ = ρ0 − ρ1ρ0,1

1 − ρ2
0,1

, (6.39)

v∗ = ρ1 − ρ0ρ0,1

1 − ρ2
0,1

. (6.40)

To estimate u∗ and v∗, we use p̂ = (n1 + 2n2)/(2n).
The following algorithm can be used to simulate ZGMS given the observed case-

control data.

i) Estimate p, ρ0, ρ1, and ρ0,1. Calculate (w∗
0,w∗

1) given in (6.18) and (6.19) and
(u∗, v∗);

ii) Simulate (ZCATT(0),ZCATT(1))T from the bivariate normal distribution
[

Z0

Z1

]

∼ N

([
0

0

]

,

[
1 ρ0,1

ρ0,1 1

])

;

iii) Calculate

ZCATT(1/2) = w∗
0Z0 + w∗

1Z1,

ZHWDTT = u∗Z0 + v∗Z1.

iv) Find the one-sided test, ZGMS, as follows: ZGMS = Z0 if ZHWDTT > 1.645;
ZGMS = Z1 if ZHWDTT < −1.645; and ZGMS = ZCATT(1/2) if |ZHWDTT| <

1.645.
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Table 6.19 Simulated p-values of ZGMS for the SNPs reported in Table 6.7 with c∗ = 1.645. p

is the frequency of the risk allele B . P-values in Table 6.18 are also included for comparison. The
number of replicates is 10 million for each SNP

SNP IDs p u∗ v∗ w∗
0 w∗

1 Analytical Simulated

rs1447295 0.123 0.992 −0.480 0.262 0.908 9.8e−5 9.6e−5

rs6983267 0.522 0.853 −0.879 0.631 0.594 2.1e−5 2.3e−5

rs7837688 0.121 0.993 −0.478 0.261 0.908 6.0e−6 5.6e−6

rs10510126 0.891 0.455 −0.994 0.918 0.246 3.1e−6 3.0e−6

rs12505080 0.739 0.673 −0.965 0.802 0.405 7.9e−5 7.4e−5

rs17157903 0.141 0.990 −0.511 0.283 0.894 5.6e−5 5.5e−5

rs1219648 0.420 0.907 −0.815 0.546 0.677 5.0e−6 5.4e−6

rs7696175 0.568 0.823 −0.902 0.668 0.556 1.9e−3 1.9e−3

rs2420946 0.415 0.910 −0.811 0.542 0.681 5.3e−6 5.8e−6

Repeat the above steps to generate empirical distribution of ZGMS under H0 and
HWE, from which the proportion of simulated ZGMS greater than the observed
ZGMS can be calculated. The p-value is twice that proportion.

The above simulation procedure is applied to the SNPs reported in Table 6.18.
To obtain small p-values, 10 million replicates are used for each SNP. Results are
presented in Table 6.19. The analytical p-values and the simulated p-values match
very well.

6.7 Genetic Model Exclusion

Unlike the GMS procedure which selects a genetic model using the HWDTT
ZHWDTT, based on which the appropriate trend test is applied for testing associa-
tion, the genetic model exclusion (GME) procedure is to exclude unlikely model(s)
based on ZHWDTT, and then test association with a smaller range of possible models.

6.7.1 Reducing the Genetic Model Space

From Tables 6.13 to 6.15, the frequencies of correctly selecting the REC or DOM
models are in the range of 65–80% with GRRs from 1.5 to 2.0. The frequencies
could be even lower when the GRRs are smaller. Although it may not be possible
to correctly select the true genetic model with high frequency, it is relatively easy
to exclude the most unlikely genetic model(s). Consider the following algorithm for
GME:

i) Assume B is the risk allele. Let c∗ = 1.645. If ZHWDTT > c∗, the DOM model
is excluded. The possible models are REC or ADD/MUL;
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Table 6.20 Frequencies of correctly excluding unlikely genetic model(s) under HWE in the popu-
lation given MAF. True genetic models include REC, ADD, MUL, and DOM models. R/D denotes
REC or DOM models and A/M denotes ADD or MUL models. The sample sizes are r = s = 250
with λ2 = 2

True model MAF GMS selects Frequencies of
correct exclusionREC A/M DOM

REC 0.1 20.28% 79.21% 0.51% DOM 99.49%

0.3 66.86% 33.13% 0.01% 99.99%

0.5 66.28% 33.71% 0.01% 99.99%

ADD 0.1 2.02% 90.24% 7.74% R/D 90.24%

0.3 2.27% 87.94% 9.79% 87.94%

0.5 2.36% 89.22% 8.42% 89.22%

MUL 0.1 2.95% 92.14% 4.91% R/D 92.14%

0.3 5.00% 90.27% 4.73% 90.27%

0.5 5.64% 90.20% 4.16% 90.20%

DOM 0.1 0.03% 61.48% 38.49% REC 99.97%

0.3 0.00% 31.73% 68.27% 100%

0.5 0.03% 34.91% 65.06% 99.97%

ii) If ZHWDTT < −c∗, the REC model is excluded. The possible models are DOM
or ADD/MUL models;

iii) Otherwise (|ZHWDTT| < c∗), the REC and DOM models are both excluded. The
possible models are ADD or MUL.

Re-organizing Table 6.13 to show the above GME, we have Table 6.20, in which
the last column is the frequency of correctly excluding unlikely genetic model(s).
The frequencies of correctly excluding REC or DOM models are much higher than
correctly selecting them.

6.7.2 The MERT-Based Genetic Model Exclusion Test

Testing After Model Exclusion

After some genetic models are excluded, we test association based on a set of re-
duced genetic models. We apply the MERT to a smaller set of genetic models. The
MERT-based GME trend test, denoted by ZGME1, is defined as follows. Assume B

is the risk allele.

ZGME1 = ZCATT(0) + ZCATT(1/2)
√

2(1 + ρ̂0,1/2)
, if ZHWDTT > c∗; (6.41)

= ZCATT(1/2) + ZCATT(1)
√

2(1 + ρ̂1/2,1)
, if ZHWDTT < −c∗; (6.42)
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= ZCATT(1/2), if |ZHWDTT| < c∗. (6.43)

In (6.41) and (6.42), the MERT (Sect. 6.2) is applied to the REC and ADD models
and to the DOM and ADD models, respectively.

Asymptotic Null Distribution

The null hypothesis H0 is rejected for a large value of ZGME1. Because ZGME1 does
not follow N(0,1) asymptotically under H0, we need to determined c under H0
such that

Pr(ZGME1 > c) = α/2.

ZGME1 only depends on the three trend tests ZCATT(x) with x = 0,1/2,1 and
ZHWDTT. The trend test ZCATT(1/2) and ZHWDTT are linear combinations of the
extreme pair ZCATT(0) and ZCATT(1). Denote

ZCATT(1/2) = w∗
0ZCATT(0) + w∗

1ZCATT(1),

ZHWDTT = u∗ZCATT(0) + v∗ZCATT(1),

where w∗
0 and w∗

1 are given in (6.18) and (6.19), and u∗ and v∗ are given in (6.39)
and (6.40). After omitting the terms converging to 0 arising from replacing ρ̂0,1/2
by ρ0,1/2 and ρ̂1,1/2 by ρ1,1/2, we have

Pr(ZGME1 > c)

= Pr

(
ZCATT(0) + ZCATT( 1

2 )
√

2(1 + ρ0, 1
2
)

> c, ZHWDTT > c∗
)

(6.44)

+ Pr

(
ZCATT(1) + ZCATT( 1

2 )
√

2(1 + ρ1, 1
2
)

> c, ZHWDTT < −c∗
)

(6.45)

+ Pr(ZCATT(1/2) > c, |ZHWDTT| < c∗). (6.46)

The last term in (6.46) can be easily obtained as {1 − Φ(c)}{2Φ(c∗) − 1} by the
asymptotic independence of ZCATT(1/2) and ZHWDTT. The other two probabilities
in (6.44)–(6.45) can be written as double integrals using the joint density of the
extreme pair. However, the integration regions are not simple. We take a simpler
approach to compute these two probabilities.

Let Tx = {ZCATT(x) + ZCATT(1/2)}/√2(1 + ρx,1/2) for x = 0,1. Under H0,
Tx ∼ N(0,1) for a given x. Assume that, for a given x, Tx and ZHWDTT follow
jointly a bivariate normal distribution. Then, under H0,

Corr

(
ZCATT(x) + ZCATT( 1

2 )
√

2(1 + ρ
x, 1

2
)

,ZHWDTT

)

= ρx√
2(1 + ρ

x, 1
2
)
.

Denote the above correlation by ρ̃x for x = 0,1. The joint density of (Tx,ZHWDTT)T

can then be written as
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Table 6.21 Critical values c of the GME test ZGME1 when HWE holds in the population

MAF α c MAF α c

0.05 0.05 2.0933 0.30 0.05 2.0566

0.01 2.7226 0.01 2.6820

0.10 0.05 2.0802 0.35 0.05 2.0540

0.01 2.7088 0.01 2.6789

0.15 0.05 2.0714 0.40 0.05 2.0522

0.01 2.6991 0.01 2.6767

0.20 0.05 2.0650 0.45 0.05 2.0511

0.01 2.6919 0.01 2.6755

0.25 0.05 2.0602 0.50 0.05 2.0508

0.01 2.6863 0.01 2.6751

f (u, v; ρ̃x) = 1

2π
√

1 − ρ̃ 2
x

exp

{

− 1

2(1 − ρ̃ 2
x )

(u2 − 2ρ̃xuv + v2)

}

.

Hence, (6.44) can be written as

Pr(T0 > c, ZHWDTT > c∗) =
∫ ∞

c

{∫ ∞

c∗
f (u, v; ρ̃0)dv

}

du

= 1 − Φ(c) −
∫ ∞

c

Φ

(
c∗ − ρ̃0u√

1 − ρ̃ 2
0

)

dΦ(u).

Similarly, (6.45) can be written as

Pr(T1 > c, ZHWDTT < −c∗) =
∫ ∞

c

Φ

(−c∗ − ρ̃1u√
1 − ρ̃ 2

1

)

dΦ(u).

Combining the above probabilities, we obtain

Pr(ZGME1 > c)

= 2Φ(c∗){1 − Φ(c)} +
∫ ∞

c

{

Φ

(−c∗ − ρ̃1u√
1 − ρ̃ 2

1

)

− Φ

(
c∗ − ρ̃0u√

1 − ρ̃ 2
0

)}

dΦ(u).

(6.47)

Note that this probability has the same form as that of the GMS test Pr(ZGMS >

c), given as the left hand side of (6.38), except for the correlations. In (6.38), ρx

for x = 0,1 are used, but in (6.47) ρ̃x are used. Thus, the previous computation
program to find c for using ZGMS can also be used to find c for ZGME1 such that
Pr(ZGME1 > c) = α/2 by substituting the new correlations.

Table 6.21 reports critical values c for various MAFs. Note that the critical val-
ues for ZGME1 are smaller than the corresponding critical values for ZGMS. This is
not surprising, because selecting a single genetic model in ZGMS is more likely to
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Fig. 6.9 Type I error rate of
the GMS test Pr(ZGMS > c)

(point curve) and the GME
test Pr(ZGME1 > c) (solid
curve) over c ∈ [1,4]

increase Type I error than selecting two genetic models (or excluding one model)
in ZGME1. Figure 6.9 plots Pr(ZGMS > c) (point curve) and Pr(ZGME1 > c) (solid
curve) over c ∈ [1,4] for a MAF p = 0.3. It also shows that the critical value of
ZGME1 is smaller than that of ZGMS.

From the expressions of ZGMS and ZGME1, we see that the only difference be-
tween them occurs when |ZHWDTT| > c∗. When |ZHWDTT| < c∗, both tests use
ZHWDTT(1/2). But the smaller critical value of ZGME1 indicates that its p-value
could be smaller than that of ZGMS. However, when |ZHWDTT| > c∗, MERT is used
by ZGME1. Because ZHWDTT has low power under the ADD model, ZCATT(1/2)

may be much smaller than ZCATT(0) or ZCATT(1), which may yield a larger p-
value for ZGME1 than ZGMS when |ZHWDTT| > c∗. For illustration, consider SNPs
rs12505080 and rs7696175. From Table 6.8, both SNPs have |ZCATT(1/2)| < 1 but
their ZHWDTT = −4.515 and −4.672, respectively (Table 6.17). Thus, ZGME1 for
these two SNPs would be much smaller than ZGMS, with larger p-values, even
though the critical values of ZGME1 are smaller.

6.7.3 Examples

We apply ZGME1 to the SNPs in Table 6.9. For comparison, we also show the GMS
test ZGMS with three choices of c∗ = 1.285, 1.645, and 1.96 that were reported in
Table 6.18, but we only report ZGME1 with c∗ = 1.645. The results are presented
in Table 6.22. As expected, ZGME1 always has smaller p-values than ZGMS (with
c∗ = 1.645) when the ADD/MUL models are selected. Three p-values (indicated
with ∗) for ZGME1 become much larger than those for ZGMS when the DOM model
is selected and ZCATT(1/2) is relatively small. In Table 6.22, ZGME2 is the MAX-
based GME test described in the next section. For all the three SNPs, |ZHWDTT| is
much larger than 1.645. We will examine the performance of ZGME1 in simulations
later for relatively smaller |ZHWDTT| and |ZHWDTT| > 1.645.
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Table 6.22 P-values of ZGMS, ZGME1 (the MERT-based), and ZGME2 (the MAX-based) for the
SNPs reported in Table 6.9. For ZGMS, c∗ = 1.285, 1.645, and 1.96 are used but only c∗ = 1.645
is used for ZGME1 and ZGME2

SNP IDs ZGMS ZGME1 ZGME2

1.285 1.645 1.96 1.645 1.645

rs1447295 1.0e−4 9.8e−5 9.6e−5 8.0e−5 1.1e−4

rs6983267 2.1e−5 2.1e−5 2.0e−5 1.4e−5 2.0e−5

rs7837688 6.1e−6 6.0e−6 5.8e−6 5.1e−6 4.6e−6

rs10510126 1.3e−6 3.1e−6 3.1e−6 2.7e−6 4.2e−6

rs12505080 8.1e−5 7.9e−5 7.6e−5 0.0120* 8.3e−5

rs17157903 5.7e−5 5.6e−5 5.5e−5 2.0e−4∗ 5.7e−5

rs1219648 4.9e−6 5.0e−6 4.8e−6 3.2e−6 5.0e−6

rs7696175 2.0e−3 1.9e−3 1.7e−3 0.0537* 1.9e−3

rs2420946 5.3e−6 5.3e−6 5.1e−6 3.5e−6 5.8e−6

*Power of ZCATT(1/2) is low with large values of ZHWDTT, which affects ZGME1

6.7.4 The MAX-Based Genetic Model Exclusion Test

Instead of using the MERT in ZGME1, we now take the maximum of the trend tests
over the remaining two models after one model is excluded. We denote this test by
ZGME2. Assume B is the risk allele. ZGME2 can be written as

ZGME2 = max(ZCATT(0),ZCATT(1/2)), if ZHWDTT > c∗;
= max(ZCATT(1),ZCATT(1/2)), if ZHWDTT < −c∗;
= ZCATT(1/2), if |ZHWDTT| < c∗.

The null hypothesis is rejected when ZGME2 > c, where c satisfies

Pr(ZGME2 > c) = α/2.

The derivation of Pr(ZGME2 > c) is more tedious than that of Pr(ZGME1 > c).
A simulation procedure similar to that for ZGMS can be used. The p-values for
ZGME2 reported in Table 6.22 (last column) are obtained using simulation with 10
million replicates. These p-values are comparable to those of ZGME1.

6.8 Simulation Studies with Robust Tests

6.8.1 Critical Values and Type I Errors

We conduct simulation studies to compare several robust tests. The true genetic
model in the simulations is unknown. It is indexed by x = θ satisfying (Sect. 6.3.5)
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Table 6.23 Critical values
used in the simulations given
a MAF

*Based on 1 million replicates

Statistics MAF

0.1 0.3 0.5

MAX3 2.2661 2.2740 2.2753

MIN2 0.0328 0.0328 0.0328

CLRT* 4.1982 5.3735 5.3297

ZGMS 2.2333 2.1974 2.1843

ZGME1 2.0802 2.0566 2.0508

ZGME2
* 1.9235 2.1964 2.1837

Table 6.24 Simulated Type I error rate given MAF based on 10,000 replicates

Statistics MAF

0.1 0.3 0.5

Tχ2
2

0.0215 0.0470 0.0500

MAX3 0.0222 0.0486 0.0492

MIN2 0.0272 0.0470 0.0503

CLRT 0.0486 0.0486 0.0493

ZGMS 0.0200 0.0497 0.0506

ZGME1 0.0300 0.0470 0.0501

ZGME2 0.0491 0.0497 0.0508

λ1 = 1 − x + xλ2,

where λ1 and λ2 are GRRs. We focus on x ∈ [0,1]. The REC, ADD and DOM
models correspond to x = 0,1/2,1, respectively. We fix λ2 = 1.5 or 2.0 with sample
size r = s = 250. λ1 is calculated using the above equation given x and λ2. The
disease prevalence is k = 0.1. Three MAFs p = 0.1, 0.3, and 0.5 are used. The risk
allele is also assumed to have the MAF. The significance level in the simulations is
α = 0.05.

The critical values used in the simulations for Pearson’s test, MAX3, MIN2,
ZGMS, and ZGME1 are obtained from the asymptotic distributions of the test statis-
tics. The critical values for the CLRT and ZGME2 are obtained from simulations with
1 million replicates. Table 6.23 reports the critical values used in the simulations.
Except for MIN2, the critical values depend on minor allele frequencies. Table 6.24
reports the estimated Type I error rate for each test statistic using these critical val-
ues with 10,000 replicates. Type I error rates are close to the nominal level 0.05
for the MAFs p = 0.3 and 0.5. For small allele frequencies, the Type I error rates
based on the asymptotic distributions are smaller than 0.05 except for the CLRT and
ZGME2, whose Type I error rates are based on the simulated critical values. Based
on Table 6.24, we suggest using simulated critical values or simulated p-values for
very small MAFs.
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Fig. 6.10 Power of Person’s test Tχ2
2

(chi2), MAX3, and MIN2

6.8.2 Empirical Power

The empirical power comparisons are grouped by test statistics. For a test statis-
tic in each group, 10,000 replicates are run to estimate the empirical power as the
proportion of simulations exceeding the critical value. Only MAFs 0.3 and 0.5 are
considered.

MAX3, Pearson’s Test, MIN2, and the CLRT

We first compare MAX3, Pearson’s test and MIN2 over x ∈ [0,1]. The empirical
power is plotted in Fig. 6.10. The plots show that Pearson’s test is least powerful
among the three tests when the genetic models are restricted to lie between the REC
and DOM models, and that MAX3 and MIN2 have comparable power except when
x is close to 0 (the REC model) or 1 (the DOM model), under which MAX3 is
slightly more powerful. Figure 6.11 plots the empirical power of MAX3 and the
CLRT. As expected, they have nearly identical power across all values of x.

MAX3, the GMS test and GMEs

The power of MAX3 and ZGMS is presented in Fig. 6.12, and that of ZGMS and
GMEs (ZGME1 and ZGME2) is given in Fig. 6.13. The figures show that MAX3 and
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Fig. 6.11 Power of MAX3 (dashed) and the CLRT (solid). MAX3 and the CLRT have nearly
identical power

ZGMS have very comparable power for most genetic models, and that ZGME1 seems
to outperform ZGMS, which has very comparable power with ZGME2. This finding is
slightly different from the p-values reported in Table 6.22, in which for some SNPs
the p-value for ZGME1 is much larger owing to a smaller value of the trend test for
the ADD model ZCATT(1/2), with larger ZHWDTT.

6.8.3 Discussion

From the simulation studies, we have shown that MAX3, MIN2, the CLRT, ZGMS
and ZGME2 have similar performance, which outperform Pearson’s test when the
genetic models are restricted to the range that includes the REC, ADD/MUL, and
DOM models. ZGME1 seems to outperform the other tests. However, real applica-
tions demonstrate that ZGME1 could lead to larger p-values for SNPs under REC or
DOM models, with larger ZHWDTT and small ZCATT(1/2).

Our simulation studies are done under a candidate-gene setting with significance
level 0.05. For GWAS, the significance level is much smaller. Moreover, the SNPs
with association need to be detected among a large number of null SNPs. The per-
formance of these robust tests would be different under this setting.

In practice, we recommend MAX3, MIN2, ZGMS and ZGME1. One could apply
any one of them or several of them. However, the multiple testing issue for a single
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Fig. 6.12 Power of MAX3 and ZGMS. They have very comparable power

SNP is a concern when more than one test is applied to each SNP. Other evidence
(e.g., through haplotype analysis and meta-analysis) and independent replication
studies are very important in this situation.

6.9 MAX3 for Matched Pair Designs

From Sect. 6.2 to Sect. 6.7, we have discussed robust test statistics for unmatched
case-control designs. Robust procedures for matched case-control designs (Chap. 4)
have not been well studied. We only discuss the use of MAX3 for a matched case-
control design. The MTTs (Sect. 4.3) will be used in MAX3. The correlations
among the three MTTs will be given. The simulation procedure for matched case-
control data was presented in Sect. 4.7. The simulation results for MAX3, however,
will now be presented for matched designs.

Pair-matching is the most common of matched case-control designs. Thus, we
focus on MAX3 for the matched pair design. Using the matched pair data given in
Table 6.25 (see Table 4.1), the MTT can be written as

ZMTT(x) =
∑

0≤s<t≤2(mst − mts)(xs − xt )
√∑

0≤s<t≤2(mst + mts)(xs − xt )2

where x0 = 0, x1 = x ∈ [0,1], and x2 = 1. The above test is also given in (4.4).
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Fig. 6.13 Power of the GMS test and GMEs. ZGMS and ZGME2 have nearly identical power

Table 6.25 Genotype counts
for a single marker with
alleles A and B in a matched
pair design with n matched
sets

Cases Controls Total

AA AB BB

AA m00 m01 m02 r0

AB m10 m11 m12 r1

BB m20 m21 m22 r2

Total s0 s1 s2 n

Let x ∈ [0,1] and y ∈ [0,1], and x �= y. The asymptotic null correlation between
ZMTT(x) and ZMTT(y) can be written as (omitting higher order terms)

ρM
x,y =

∑
s<t (xs − xt )(ys − yt )(mst + mts)√∑

s<t (xs − xt )2(mst + mts)

√∑
s<t (ys − yt )2(mst + mts)

, (6.48)

where (x0, x1, x2) = (0, x,1) and (y0, y1, y2) = (0, y,1).
Applying the correlation in (6.48) to the MTT under the REC, ADD and DOM

models, we have

ρM
0,1 = M20√

(M20 + M21)(M20 + M10)
,

ρM

0, 1
2

= M20 + M21/2√
(M20 + M21/4 + M10/4)(M20 + M21)

,
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ρM
1
2 ,1

= M20 + M10/2√
(M20 + M21/4 + M10/4)(M20 + M10)

,

where Mst = mst + mts .
MAX3 for the matched pair design can be written as

MAX3 = max(|ZMTT(0)|, |ZMTT(1/2)|, |ZMTT(1)|).
Like unmatched designs, the three MTTs, ZMTT(0), ZMTT(1/2) and ZMTT(1), are
linearly dependent (Problem 6.13). Thus, ZMTT(1/2) can be expressed as the linear
sum of ZMTT(0) and ZMTT(1). Using this result (Problem 6.13), the asymptotic null
distribution of MAX3 can be simulated without simulating the raw matched data.

6.10 Bibliographical Comments

We have discussed many robust procedures for testing single marker case-control as-
sociation studies. When the underlying genetic model is known, the CATT with an
appropriately chosen set of scores is asymptotically optimal and can be employed
[223, 248]. The trend test, however, uses prespecified scores and is not robust to
genetic model misspecification when the model is unknown [91, 334]. A general
discussion of the sensitivity of using scores in ordered categorical data can be found
in Graubard and Korn [106]. Pearson’s chi-squared test is robust because it does
not specify any genetic model and uses data-driven scores [338]. However, this ig-
nores that the alternative hypothesis of association could be ordered in terms of
penetrances. Hence, it is usually less powerful, especially under the ADD model.

Efficient robust testing is useful in the situation that the alternative hypothesis
contains several scientifically plausible models. The MERT was proposed by Gast-
wirth [95]. The algorithm to find the MERT was studied by Gastwirth [95, 96] and
Birnbaum et al. [18]. The general conditions for the MERT of the extreme pair to
be the MERT of a larger family of models was given in Gastwirth [95, 96]. The
Bayesian version of the MERT was studied in [19]. In addition to applications of
the MERT in genetics, it has applications in other areas, including survival analysis
[90, 116, 356].

Owing to their higher efficiency robustness, MAX3 or a general maximum test
(MAX) are more commonly used as robust tests. Davies [55, 56] studied MAX with
a parameter over a closed interval. His results were proposed for general hypothesis
testing when a nuisance parameter is present only under the alternative. For exam-
ple, if the nuisance parameter refers to the genetic model, it is only defined under the
alternative hypothesis. MAX3 is a simple version of MAX. MAX3 and MAX have
been applied to many genetic studies, including the family-based trio design [51,
243, 331, 333], linkage studies [97, 243, 244], and case-control association studies
[91, 334]. Zheng and Chen [330] compared MAX3 and MAX for several genetic
studies and found they have comparable power performance. MAX3 has been ap-
plied to GWAS as a scan in initial analysis [170, 247]. The computations of MAX3
using the asymptotic null distribution and simulated null distribution are derived by
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Zang et al. [316], and the Rhombus formula was obtained by Li et al. [168]. Con-
neely and Boehnke [43] also proposed a simple approach to correct p-values after
multiple correlated tests have been applied. A comparison between the MERT and
MAX3 and suggestions for choosing between the MERT and MAX3 were provided
by Freidlin et al. [90]. The relationships among the trend test, MAX and Pearson’s
test are given by Zheng et al. [338]. In particular, they show that all three are trend
tests, depending on whether they use fixed scores or random scores and whether or
not the scores are constrained. Yamada and Okada [309] obtain similar results. We
focused on MAX3 based on the trend tests. Gonzalez et al. [102] considered MAX3
based on the LRTs under REC, ADD and DOM models.

The CLRT is another common robust test. It was first studied by Chernoff [35]
and Chernoff and Lander [36]. Much statistical theory of constrained inference has
been developed since then, e.g., Self and Liang [238]. Wang and Sheffield [288]
applied the method of Prentice and Pyke [204] to the retrospective case-control data
and obtained the CLRT. The performance of the CLRT is similar to that of MAX
or MAX3, because both approaches (CLRT and MAX3 or MAX) use the restricted
data-driven scores as the estimates of penetrances.

MIN2, taking the minimum p-values of the trend test and Pearson’s test, was first
proposed by the Wellcome Trust Case-Control Consortium (WTCCC) [301]. MIN2
was later further developed by Joo et al. [135], who also derived the asymptotic
null distribution. Song and Elston [251] studied using the HWDTT and the trend
test for association studies. Asymptotic results of estimates of the HWD coefficient
using cases and controls can be found in Weir [299]. The results of Song and Elston
[251] were later used to develop a GMS procedure [344] and GMEs [137]. Although
both the GMS test and the GME procedures require the risk allele to be known, this
assumption can be relaxed in replication studies if the same risk allele is replicated
as in the original study. Moreover, in the GMS test and GMEs, the HWDTT uses
the difference of HWD between cases and controls. It is expected that it might be
more efficient to construct a HWDTT based on the deviation from HWE in only
cases because controls mimic the general population when the disease prevalence is
small (e.g. for a rare disease) so that the HWD in controls is approximate 0 when
HWE holds in the general population (see Problem 3.13).

Other robust tests have also been studied in the literature. Zheng et al. [345]
studied an adaptive procedure, in which they used two independent test statistics
(the HWDTT and the trend test that is optimal for the ADD model) in two stages.
In stage 1, they determined the significance level for the conditional power of the
HWDTT to be at least 80%. The significance level to be used in stage 2 is then
determined by the independence of the two statistics and the level used in stage 1.
This adaptive test is more robust than a single trend test. Similar adaptive two-stage
(two-phase) analysis was also considered by Zheng et al. [343]. Donegani [61] also
considered some powerful adaptive randomization tests, which can be modified to
test case-control genetic association.

We also briefly discussed MAX3 for the matched pair design. For more results of
robust tests for the matched designs, derivations, simulation studies, and asymptotic
power, refer to Zheng and Tian [346] and Zang et al. [315]. The real data used for
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illustrations were taken from GWAS for breast cancer [127] and prostate cancer
[313].

6.11 Problems

6.1 Let ZCATT(x) be the trend test given by (6.3) with x ∈ [0,1]. Denote the denom-
inator of ZCATT(x) by v1/2(x,n1/n,n2/n) and the numerator by u(x, ri , si , r, s, n).
Note that, as n → ∞,

v1/2(x,n1/n,n2/n) → v1/2(x,p1,p2)

in probability, where pi = Pr(case |Gi) for genotype Gi , i = 1,2. Assume r/n →
φ ∈ (0,1) as n → ∞. Derive the asymptotic null correlation (6.6) of ZCATT(x) and
ZCATT(y) for x, y ∈ [0,1] and x �= y by applying Problem 1.11.

6.2 Properties of asymptotic null correlations ρx,y .

1) Using (6.7) to (6.9), prove |Σ | = 0.
2) Show that ρ0,1/2 > ρ0,1ρ1/2,1 and ρ1/2,1 > ρ0,1ρ0,1/2.
3) Show that ρ1/2,1 > ρ0,1/2 if and only if p0 > p2. Under HWE, this implies that

B is the allele with allele frequency less than 1/2.
4) Let w∗

0 and w∗
1 be given as in (6.18) and (6.19). Then show that w∗

0 < w∗
1 if and

only if p2 < p0.

6.3 For case-control studies, show that for x ∈ [0,1]
ρ0,x + ρx,1 ≥ 1 + ρ0,1,

where ρx,y is given in (6.6).

6.4 If B is the risk allele under H1, i.e., f2 ≥ f1 ≥ f0 and f2 > f0, show that
E(ZCATT(x)) > 0 for any x ∈ [0,1] under H1.

6.5 Assume |Σ | = 0. Then there exists a �= 0 such that a1ZCATT(0)+a2ZCATT( 1
2 )+

a3ZCATT(1) = 0. Show that, if a2 = 0, then ρ01 = 1. This implies that a2 �= 0.

6.6 Let ZCATT(x0, x1, x2) be the trend test defined in (3.8). Show that the trend test
is invariant under a linear transformation of the scores. That is ZCATT(x0, x1, x2) =
ZCATT(0, x,1), where x = (x1 − x0)/(x2 − x1), provided that x2 �= x0.

6.7 Prove (6.25) and (6.26).

6.8 Properties of the trend test, Pearson’s test and MIN2.

1) Prove that Z2
CATT(1/2)/Tχ2

2
and Tχ2

2
are asymptotically independent under H0

(Zheng et al. [343]) and derive (6.28).
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2) Show that

Pr
(
Z2

CATT(1/2) > t1, Tχ2
2

> t2
)
> Pr

(
Z2

CATT(1/2) > t1
)

Pr(Tχ2
2

> t2).

Use this result to show that Z2
CATT(1/2) and Tχ2

2
are positively correlated.

3) Use the result in Problem 1.9 and the above result to show MIN2 > pMIN2, where
pMIN2 is the p-value of MIN2.

6.9 Let Pr(ZCATT(x∗) > c) = p(c) be the left hand side of (6.38). Then

∂p(c)

∂c
= −2Φ(c∗)φ(c) − Φ

(−c∗ − ρ1c√
1 − ρ2

1

)

φ(c) + Φ

(
c∗ − ρ0c√

1 − ρ2
0

)

φ(c).

Show that ∂p(c)/∂c < {1 − 2Φ(c∗)}φ(c) < 0 for c∗ = 1.645.

6.10 Show that the critical value c solved from (6.38) does not change with p

replaced by 1 − p.

6.11 Correlations under HWE in the population.

1) Show that, under HWE, the correlations given in (6.7)–(6.9) can be written as

ρ0,1/2 =
√

2p

1 + p
, ρ1/2,1 =

√
2q

1 + q
,

ρ0,1 =
√

pq

(1 + p)(1 + q)
,

where p = Pr(B) and q = 1 − p.
2) Show that the weights w∗

0 and w∗
1 given in (6.18) and (6.19) can be written as

w∗
0 =

√
p(1 + p)

2
, w∗

1 =
√

q(1 + q)

2
.

3) Using ZCATT(1/2) = w∗
0ZCATT(0) + w∗

1ZCATT(1), and ρ0 and ρ1 as given in
(6.33) and (6.35), show that, under H0,

ρ 1
2

= Corr(ZCATT(1/2),ZHWDTT) = w∗
0ρ0 + w∗

1ρ1 = 0.

4) Show that

1 + 2ρ0ρ1ρ0,1 = ρ2
0 + ρ2

1 + ρ2
0,1.

6.12 How can you simulate critical values and p-values for the genetic model ex-
clusion trend test without simulating case-control data?

6.13 Matched trend tests.

1) Show that ZMTT(0), ZMTT(1/2), and ZMTT(1) are linearly dependent.
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2) Write ZMTT(1/2) = α∗ZMTT(0) + β∗ZMTT(1). Determine the weights α∗ and
β∗ in terms of the correlations among the MTTs under H0.

3) Derive the asymptotic null distribution for MAX3 and design a simulation pro-
cedure for MAX3.

6.14 The MERT.
Let both Z1 and Z2 have a N(0,1) distribution and the correlation ρ > 0 under

H0. Under H1, one of them corresponds to the true model (more powerful). The
ARE of Z1 (or Z2) relative to Z2 (or Z1) when Z2 (or Z1) is based on the true
model is ρ2. Show that

1) (Z1 + Z2)/
√

2(1 + ρ) has ARE (1 + ρ)/2 > ρ2.
2) The MERT for all linear combinations of Z1 and Z2, (w1Z1 +

w2Z2)

√
w2

1 + 2w1w2ρ + w2
2, with w1,w2 ≥ 0 is (Z1 + Z2)/

√
2(1 + ρ).
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Chapter 7
Haplotype Analysis for Case-Control Data

Abstract Chapter 7 covers haplotype analysis. It starts with haplotype inference,
including an introduction to phase and phase ambiguity and estimation of haplo-
type frequencies. Haplotype disequilibrium, testing for linkage disequilibrium (LD),
haplotype blocks and tagging SNPs are discussed. Two types of tests are considered.
The first is haplotype-based association analysis, including the likelihood ratio test,
regression method, and haplotype similarity. The second comprise LD contrast tests,
including composite LD measures and contrasting LD measures.

Association analysis attempts to identify genetic variants that predispose to complex
diseases. The identified genetic variants either could be the causal variants or are in
LD with the casual variants. Alleles at different loci or sites on the same chromo-
some (i.e., in cis position) within a gene may create a “super allele” that has a larger
effect than any of the single alleles. The “super allele” composed of a sequence of
alleles at different loci or sites on the same chromosome is known as a haplotype.
As noted in Sect. 2.1, SNPs occur at sites rather than at loci. In this chapter, we will
use the word locus to denote either a locus or a site. The LD information of the al-
leles on the same haplotype can be thought of as representing allelic cis interaction
that captures the genetic variations of human traits. Therefore, haplotype analysis is
valuable in characterizing human genetic variations.

Alleles on the same chromosome are said to be in phase. But phase information
is not observable with most of the current genotyping platforms and only unphased
genotypes can be observed. Although molecular haplotyping methods can be used
to derive phase information, they are very costly and not applicable to large scale
studies. Therefore, recovering phase information from unphased multi-locus geno-
types is a crucial step in haplotype analysis. Many algorithms have been proposed
for this, among which the EM algorithm for solving the MLEs of haplotype fre-
quencies is one of the popular haplotype inference methods. Other methods include
a combinatorial method, a Bayesian method and other evolution-based methods. We
focus on the combinatorial algorithm and the EM algorithm.

Association analysis using haplotypes is expected to provide useful information
of allelic interaction across different loci and, by using a regression model, can
detect haplotype effects on disease susceptibility. Three major difficulties occur
with haplotype-based association analysis using unphased genotypes. First, phase
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ambiguity of genotype data makes haplotype analysis complicated; second, the
over-sampling of cases in a case-control design needs to be allowed for in the analy-
sis; third, high-dimensionality of the haplotype space may cause standard statistical
analysis methods to be problematic. In this chapter, we will introduce a retrospec-
tive likelihood approach, in which the retrospective sampling nature of genotype
data is accounted for by a retrospective likelihood method; the high-dimensionality
problem is solved by introducing haplotype-specific covariates for one or a group
of haplotypes; and a conditional EM method is used to maximize the retrospective
likelihood function of the unphased genotypes. We will also introduce association
analysis methods that are based on contrasting haplotype similarity measures or LD
patterns between cases and controls.

This chapter is organized as follows. We first introduce methods for estimating
haplotype frequencies in the population followed by definitions of LD measures.
Then we discuss haplotype-based case-control association analysis using a retro-
spective likelihood approach. Finally, we consider an association analysis method
based on contrasting the LD patterns between cases and controls.

7.1 Haplotype Inference

Haplotypes provide a useful tool in dissecting the genetic basis of complex diseases.
A haplotype is a sequence of alleles at different loci on the same chromosome that
are transmitted together as a block. If phase information is observable by molecu-
lar methods or other haplotyping methods, haplotype-based analysis can be directly
implemented using observed haplotypes. However, phase information cannot be ob-
served in most studies. Therefore, reconstructing haplotypes for each individual or
estimating haplotype frequencies from genotype observations in the studied popu-
lation is an inevitable step in any haplotype-based studies.

7.1.1 Phase and Phase Ambiguity

When phase is known, the haplotype pairs of each individual can be directly ob-
served. Based on such data, the population haplotype frequencies can be estimated
by the counting method. Let hi1 and hi2 be the two haplotypes of individual i, and
denote the (unordered) haplotype pair by Hi = {hi1, hi2}, i = 1, . . . , n, where n is
the number of individuals. Then the frequency of haplotype h can be estimated by
the gene counting method

p̂h = 1

2n

n∑

i=1

δh(Hi),

where δh(Hi) denotes the number of haplotypes h in Hi , and the variances and
covariances are given by
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Table 7.1 Two-locus
genotypes and haplotypes BB Bb bb

AA AB/AB AB/Ab Ab/Ab

Aa AB/aB AB/ab or Ab/ab

Ab/aB

aa aB/aB aB/ab ab/ab

Var(p̂h) = ph(1 − ph)/2n,

Cov(p̂h, p̂h′) = −phph′/2n, h �= h′.
Molecular methods are costly and only applicable for obtaining phase informa-

tion of haplotypes with short lengths. Therefore, in most population-based associa-
tion analyses, the phase information is usually unknown to the researchers and only
genotypes are available. Many methods for haplotype inference and haplotype as-
sociation analysis have been developed. See the discussion in the Bibliographical
comments.

Table 7.1 illustrates the issue of phase ambiguity in estimating two-locus haplo-
types from genotype data. The alleles at the two loci are denoted as A, a and B , b,
respectively. The genotypes at the first and second loci are one of AA, Aa, aa and one
of BB, Bb, bb, respectively. Therefore, there are in total 9 genotype combinations.
Except for the double-heterozygous cell in the middle of the table, the remaining 8
genotype combinations are heterozygous at no more than one locus and their hap-
lotype pairs can be uniquely determined. For the genotype combination (Aa,Bb),
there are two possible haplotype pairs, {AB,ab} or {Ab,aB}, as shown in the table.

7.1.2 Haplotype Reconstruction

Clark’s parsimony method attempts to find the smallest (and hence the most par-
simonious) set of haplotypes that are consistent with the observed genotypes. It
was the first method for reconstructing haplotypes from genotype data and still re-
mains an efficient approach for resolving haplotypes, especially when the number
of loci is large. If we code the two alleles at each locus by 0 and 1, then a hap-
lotype is a binary vector and the genotypes at all loci is a vector with each ele-
ment being 0, 1 or 2. Given genotypes at multiple loci, the parsimony approach, as
well as other combinatorial algorithms, essentially solves a set of linear equations.
For example, given genotypes G = (2,1,1,2,0), one solves haplotype pairs {h,h′}
such that h + h′ = G. The two possible solutions for this G are h = (1,0,1,1,0),
h′ = (1,1,0,1,0), and h = (1,0,0,1,0), h′ = (1,1,1,1,0). We say that a hap-
lotype h can resolve, or is compatible with, genotype G if h′ = G − h is also a
haplotype; that is, all elements of h and h′ are either 0 or 1.

Given the observed ambiguous genotypes Gi , i = 1, . . . , n, the combinatorial
methods solve the linear equations hi1 + hi2 = Gi , i = 1, . . . , n, under some con-
straints on the solutions. The parsimony approach repeats the following three steps:
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(a) Resolve into haplotypes all the genotypes of individuals who are homozygotes
or single-locus heterozygotes, and store these haplotypes in R, as the initial set
of resolved haplotypes;

(b) Determine in turn whether each of the haplotypes in R can resolve any unre-
solved genotypes. If it can, then another haplotype, either in R or not, can be
identified (Clark’s Inference Rule);

(c) If the haplotype identified in step (b) is not in R, add it to R and remove the
resolved genotype from the ambiguous genotypes.

The above procedure is repeated until either all the genotypes are resolved or no
further genotype can be resolved. Remaining unresolved genotypes are called “or-
phans”. This method has the drawback that multiple solutions can occur if different
orders of resolving genotypes are applied. Clark showed that the solution with the
fewest orphans is the most accurate one and suggested that the solution with the
maximum parsimony, which solves the maximum number of ambiguous genotypes,
is unique and has high accuracy. The rationale behind this approach is that unam-
biguous genotypes and their corresponding haplotypes are probably common and a
phase-ambiguous genotype is likely to have one or two such common haplotypes in
it.

The parsimony algorithm can be reformulated into a maximum resolution (MR)
problem, which can be reduced to an integer linear programming problem. The par-
simony algorithm is quite simple and easy to implement. However, in many situa-
tions, not all genotypes can be unambiguously resolved by the algorithm. In addi-
tion, the algorithm implicitly requires the random mating assumption and is quite
sensitive to deviation from HWE. Furthermore, Clark’s algorithm cannot properly
handle missing data.

Since, in most situations, it is impossible to resolve the haplotypes perfectly by
any of the combinatorial methods, the MLE method, which does not aim to resolve
all the haplotype pairs, but rather attempts to estimate the probabilities of the hap-
lotype pairs, is often used in practice. We introduce the MLE method in the next
section.

7.1.3 Estimating Haplotype Frequencies

The EM algorithm is a classical method for estimating haplotype frequencies from
the observed genotype data. The EM algorithm breaks up into two steps, namely, the
E-step and the M-step (Sect. 1.5). In the E-step, the unobserved haplotype pair or
phase information is estimated by using its conditional expectation given an initial
guess of haplotype frequencies. Then, with the phase information imputed, in the
M-step one can apply the gene counting method to obtain the sample proportions
of haplotypes and update the initial guess of the haplotype frequencies. These two
steps are repeated until the haplotype frequencies converge to some stable values,
which are usually the MLEs. In what follows, we first show the EM algorithm in a
two-locus case, and then introduce the EM method for multiple loci.
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Table 7.2 Two-locus
genotype counts BB Bb bb Total

AA n11 n12 n13 n1+
Aa n21 n22 n23 n2+
aa n31 n32 n33 n3+
Total n+1 n+2 n+3 n

EM Algorithm for Two-Locus Haplotype Estimation

We first illustrate the EM method with the two-locus case. Denote the alleles at
the first locus by A, a and those at the second locus by B , b. There are 4 possible
haplotypes, AB, Ab, aB, ab, and their frequencies are denoted as pAB, pAb, paB,
pab. Table 7.2 presents genotype counts for the 9 genotype combinations. Only the
genotype combination (Aa,Bb) is ambiguous in reconstructing the haplotype pair,
which leads to the possible haplotype pair {AB,ab} or {Ab,aB}.

The probability of each of the two possible pairs depends on the haplotype fre-
quencies in the population, which may be inferred from the other, unambiguous,
genotypes. Let x be the (unobserved) count for haplotype pair {AB,ab} and y for
the pair {Ab,aB}. Note that x + y = n22. If the haplotype frequencies are known,
then under the assumption of HWE, x and y are expected to be proportional to
pABpab and pAbpaB, respectively. They can be estimated as

x = n22
pABpab

pABpab + pAbpaB
, y = n22 − x, (7.1)

which is the E-step in the EM algorithm. On the other hand, if x and y are known,
then the haplotype frequencies can be obtained by the gene counting method as
follows

pAB = 2n11 + n12 + n21 + x

2n
,

pAb = n12 + 2n13 + y + n23

2n
,

paB = n21 + y + 2n31 + n32

2n
,

pab = x + n23 + n32 + 2n33

2n
,

(7.2)

which is the M-step in the EM algorithm. The MLEs of the haplotype frequencies
can be solved by iterating the above two steps (7.1) and (7.2) starting from some
arbitrary initial frequencies. The iterating procedure converges in a few steps, and
the final values of (pAB,pAb,paB,pab) are the MLEs of the haplotype frequencies.
An application of this procedure to real data is given in Sect. 7.5.
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General EM Algorithm

To understand the EM algorithm for m loci, suppose that each locus has two alleles
denoted by 0 and 1. A haplotype is a vector of 0’s and 1’s and there are totally 2m

haplotypes. We denote all the haplotypes at the m loci by h1 = (0,0,0, . . . ,0), h2 =
(1,0,0, . . . ,0), . . . , h2m = (1,1,1, . . . ,1), corresponding to the binary expansions
of 0,1,2, . . . ,2m − 1, respectively. For example, for m = 3 loci, the 8 haplotypes
are given below

Locus h1 h2 h3 h4 h5 h6 h7 h8

1 0 1 0 1 0 1 0 1
2 0 0 1 1 0 0 1 1
3 0 0 0 0 1 1 1 1

Let ph = Pr(h) be the relative frequency of a haplotype h and

p = (ph1 ,ph2 , . . . , ph2m ).

Suppose there are n individuals. Let genotype Gij ∈ {0,1,2} be the number of
copies of allele 1 in the genotype at locus j for individual i (1 ≤ i ≤ n). The
observed genotypes at all m loci for individual i are denoted by a vector Gi =
(Gi1,Gi2, . . . ,Gim). We denote the set of compatible haplotype pairs for a geno-
type G by

S(G) = {{h,h′}|h + h′ = G}. (7.3)

To simplify notation, let Si = S(Gi) be the set of haplotype pairs that are compatible
with Gi .

Under HWE, the probability of haplotype pair H = {h,h′} is πH = 2phph′ if
h �= h′ and πH = p2

h if h = h′. The likelihood function for the observed genotypes
is given by

L(p) =
n∏

i=1

( ∑

H∈Si

πH

)

. (7.4)

Instead of maximizing the above likelihood function directly, the EM algorithm
maximizes the expected complete-data likelihood as described below.

Let X
(i)
H be the (unobservable) indicator function that individual i has the haplo-

type pair H . Then the likelihood function for the complete data is given by

Lc(p) =
n∏

i=1

∏

H∈Si

π
X

(i)
H

H . (7.5)

Assuming p is known, the E-step of the EM algorithm predicts the unobserved ran-
dom variable X

(i)
H by using its conditional expectation given p and the genotype

data:

̂
X

(i)
H = E(X

(i)
H |G,p) = Pr(X(i)

H = 1|Gi,p) = πH∑
H̃∈Si

πH̃

1(H∈Si), (7.6)
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which is the posterior probability of individual i having haplotype pair H , given the
genotype Gi , where 1(H∈Si) is the indicator function of H ∈ Si = S(Gi). With the

predicted value
̂
X

(i)
H , the M-step maximizes the conditional expectation of the log of

the complete-data likelihood (7.5), given the observed genotype data and the current
value of the haplotype frequencies. The maximizer of (7.5) is given by

pnew
h =

∑n
i=1
∑

H∈Si
δh(H)

̂
X

(i)
H

2n
, (7.7)

which updates the haplotype frequencies, where δh(H) is the number of h haplo-
types in H . Starting from an initial value of p, the EM algorithm iterates between
the E-step (7.6) and the M-step (7.7) until convergence is achieved.

It is well known that the EM algorithm is stable and always converges in the sense
that the likelihood function (7.4) always increases in the iterating procedure, but the
convergence is usually very slow when the number of loci is large. In addition,
the EM algorithm may converge to a local maximum and a typical solution for
this problem of local maximization is to try different initial values of haplotype
frequencies and find the solution with the overall maximal likelihood.

The EM algorithm allows random missing genotypes. For example, it can handle
completely missing data (no genotype observed at some loci) and partially missing
data (only one allele A or a present but not the other). When there are missing data,
the above EM algorithm can be applied in the same way except that the compatible
haplotype set (7.3) for genotypes Gi containing missing elements is enlarged.

7.2 Linkage Disequilibrium

LD refers to the non-independence of alleles at different loci. When a particular
allele at one locus is found together more often than expected with a specific allele
on the same chromosome at a second locus, the two loci are in disequilibrium. LD
is a special case of gametic phase disequilibrium (Sect. 2.1).

7.2.1 Linkage Disequilibrium Coefficients

For two loci with alleles A and a at the first locus and B and b at the second locus,
let the allele frequencies be pA, pa , pB , pb . The two-locus haplotype frequencies
are denoted by pAB, pAb, paB and pab. The (gametic) LD coefficient is defined as

DAB = pAB − pApB = pABpab − pAbpaB. (7.8)

The LD coefficient can also be defined using other haplotypes, denoted as DAb, DaB

and Dab. It is easy to see that DAB = −DAb = −DaB = Dab. The measure DAB is
not standardized, which makes it difficult to use to compare LD patterns. There are
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many standardized measures of LD proposed in the literature, among which the LD
coefficient proposed by Lewontin and the correlation coefficient are widely used.

Since 0 ≤ pAB ≤ min{pA,pB}, we have

max(−pApB,−papb) = Dmin ≤ DAB ≤ Dmax = min(pApb,papB),

which is used to standardize DAB to yield Lewontin’s LD coefficient (see also (2.1)
in Sect. 2.1)

D′
AB =

{
DAB/Dmax if DAB ≥ 0

DAB/|Dmin| if DAB < 0.

This measure lies between −1 and 1. If |D′
AB| = 1, then the loci are in complete LD

and at least one haplotype has 0 frequency. If D′
AB = 0 or DAB = 0, the two loci

are in linkage equilibrium and the haplotype frequencies are the products of allele
frequencies.

By applying the Cauchy-Schwartz inequality, one can bound LD by

|DAB| = |pAB − pApB | ≤ √
pApapBpb,

which leads to another commonly used standardized LD coefficient

rAB = DAB√
pApapBpb

,

which is known as Pearson’s correlation coefficient. This measure also lies between
−1 and 1, and r = 0 corresponds to linkage equilibrium and rAB = ±1 corresponds
to perfect correlation, for which at most two haplotypes are possibly present.

The “fundamental formula for LD mapping” asserts that the allelic test statistic at
a marker locus is related to the allelic test at the disease locus by the LD coefficient
(squared correlation coefficient) between the two loci. Therefore, significance of a
test at a marker may imply that the marker is in strong LD with a disease locus.

7.2.2 Testing for Linkage Equilibrium

Non-LD can be tested based on the estimated LD coefficients. Let p̂AB be the sample
frequency of haplotype AB and p̂A, p̂B, p̂a = 1 − p̂A, p̂b = 1 − p̂B be the sample
allele frequencies estimated from n individuals. Then the sample LD coefficient is
defined as D̂AB = p̂AB − p̂Ap̂B . Its mean is E(D̂AB) = (2n − 1)DAB/2n, and its
variance is (see Weir [299])

Var(D̂AB) = {pApBpapb + (1 − 2pA)(1 − 2pB)DAB − D2
AB}/2n.

Under the null hypothesis of linkage equilibrium H0 : DAB = 0, Var(D̂AB) =
(pApBpapb)/2n. The chi-squared test statistic for H0 can be written as

χ2 = D̂2
AB

V̂ar(D̂AB)
= 2n(p̂AB − p̂Ap̂B)2

p̂Ap̂Bp̂ap̂b

= 2n(̂rAB)2,

which asymptotically follows χ2
1 under H0.
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7.2.3 Haplotype Block and Haplotype-Tagging SNPs

Empirical studies have shown that the human genome is structured as haplotype
blocks. Each block represents a region with high LD and a small number of haplo-
types. The haplotype blocks are separated by short regions known as recombination
hotspots, in which recombinations occur frequently and therefore LD between two
contiguous blocks is relatively low. The block structure of the human genome can
explain a large proportion of the haplotype diversity.

Within a haplotype block, the SNPs are in tight LD and there are only a few
haplotypes present. Within a block or a small region with low haplotype diversity,
it is anticipated that most SNPs may be redundant and only a few representative
SNPs are necessary to capture the LD information in this region. These represen-
tative SNPs are called haplotype-tagging SNPs (htSNPs). In order to select a set of
htSNPs, we need to quantitatively measure how informative the selected subset of
SNPs is about the haplotypes formed by all the SNPs. A haplotype certainty mea-
sure was introduced for this purpose, denoted as R2

h, which measures the haplotype
information retained in the subset. The following materials are based on Stram et al.
[263].

Haplotype Certainty Measure

For a specific haplotype h, let δh be the number of copies of h in the haplotype pair
of an individual, which is a random variable and takes on the value 0, 1 or 2. Under
HWE, it is apparent that δh has a binomial distribution B(2;ph) with mean 2ph and
variance 2ph(1 − ph), where ph is the probability of h. Let δh(H) be the number
of copies of h in a specific haplotype pair H , then the predicted number of copies
of haplotype h conditional on genotype G is given by

δ̂h = E(δh|G) =
∑

H∈S(G)

δh(H)Pr(H |G) =
∑

H∈S(G)

{

δh(H)πH

/ ∑

H∈S(G)

πH

}

,

where, for H = {h1, h2}, πH = 2ph1ph2 if h1 �= h2 and πH = p2
h1

if h1 = h2, and
Pr(G) =∑H∈S(G) πH , Pr(H |G) = πH 1(H∈S(G))/

∑
H∈S(G) πH as given in (7.6).

Variability of the prediction is measured by its variance

Var(̂δh) =
∑

G

{E(δh|G)}2 Pr(G) − (2ph)
2 =
∑

G

δ̂ 2
h Pr(G) − 4p2

h (7.9)

where the outer summation is over all genotypes G that are compatible with haplo-
type h.

Define the certainty measure R2
h = Corr(̂δh, δh)

2 to be the squared correlation of
δ̂h and δh. It measures how well the compatible genotypes can predict the specific
haplotype h. Since E(̂δh) = E(δh) = 2ph, and Cov(̂δh, δh) = Var(̂δh) (Problem 7.5),

R2
h = Var(̂δh)

Var(δh)
= Var(̂δh)

2ph(1 − ph)
, 0 < ph < 1 (7.10)
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Table 7.3 Details of the calculation of Var(̂δh) and R2
h for two SNPs (reproduced from Stram et

al. [263])

G (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

S(G) {h1, h1} {h1, h3} {h3, h3} {h1, h2} {h2, h3}
{h1, h4}

{h3, h4} {h2, h2} {h2, h4} {h4, h4}

P (G) p2
h1

2ph1ph3 p2
h3

2ph1ph2 2(ph1ph4

+ ph2ph3 )

2ph3ph4 p2
h2

2ph2ph4 p2
h4

δ̂h1 2 1 0 1
ph1 ph4

ph1 ph4 +ph2 ph3
0 0 0 0

δ̂h2 0 0 0 1
ph2 ph3

ph1 ph4 +ph2 ph3
0 2 1 0

δ̂h3 0 1 2 0
ph2 ph3

ph1 ph4 +ph2 ph3
1 0 0 0

δ̂h4 0 0 0 0
ph1 ph4

ph1 ph4 +ph2 ph3
1 0 1 2

and, for ph = 0 or ph = 1, R2
h is defined to be 1. Because Var(δh) = Var(̂δh) +

E{Var(δh|G)}, it follows that 0 ≤ R2
h ≤ 1 and, in view of (7.10), R2

h is the proportion
of the total haplotype variability explained by the observed genotypes. Obviously,
1 −R2

h can be regarded as a haplotype uncertainty measure. Empirical studies show
that, typically, R2

h decreases as the number of loci increases or as the LD coefficient
decreases.

Table 7.3 illustrates calculation of the conditional variances and the certainty
measure for two SNPs. For brevity, we use the binary notation for alleles and use
{h,h′} to represent an unordered haplotype pair. The four haplotypes are h1 = (0,0),
h2 = (1,0), h3 = (0,1), and h4 = (1,1). Calculation of the predictions is straight-
forward, for example, for G = (1,1), S(G) = {Ha = {h1, h4},Hb = {h2, h3}},

δ̂h1 = E(δh1 |G = (1,1)) = 1 × πHa + 0 × πHb

πHa + πHb

= ph1ph4

ph1ph4 + ph2ph3

,

and by (7.9)

Var(̂δh1) = 4p2
h1

+ 2ph1ph3 + 2ph1ph2 + 2p2
h1

p2
h4

ph1ph4 + ph2ph3

− 4p2
h1

= 2ph1(1 − ph1) − 2ph1ph2ph3ph4

ph1ph4 + ph2ph3

,

then the certainty measure of h1 is

R2
h1

= 1 − ph2ph3ph4

(1 − ph1)(ph1ph4 + ph2ph3)
, 0 < ph1 < 1.

Generally,

R2
hk

= 1 − ph1ph2ph3ph4

phk
(1 − phk

)(ph1ph4 + ph2ph3)
, 0 < phk

< 1, k = 1,2,3,4

and Rhk
= 1 for phk

= 0 or 1. From the above formulas, we can see that the certainty
measures are all 1 if and only if at least one of ph1 , ph2 , ph3 , ph4 is 0, or equivalently
D′ = 1.
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Table 7.4 Details of the calculation of Var(̂δh) and R2
h for two SNPs when only the first SNP is

used for prediction

G (0,−) (1,−) (2,−)

S(G) ({h1, h1}, {h1, h3}, {h3, h3}) ({h1, h2}, {h2, h3},
{h1, h4}, {h3, h4})

({h2, h2}, {h2, h4}, {h4, h4})

P (G) (ph1 + ph3 )
2 2(ph1 + ph3 )(ph2 + ph4 ) (ph2 + ph4 )

2

δ̂h1

2ph1
ph1 +ph3

ph1
ph1 +ph3

0

δ̂h2 0
ph2

ph2 +ph4

2ph2
ph2 +ph4

δ̂h3

2ph3
ph1 +ph3

ph3
ph1 +ph3

0

δ̂h4 0
ph4

ph2 +ph4

2ph4
ph2 +ph4

Tagging Haplotypes

When a subset of SNPs is used, called htSNPs, information is lost and the certainty
measure decreases in magnitude. Proper candidates for htSNPs should not reduce
the original certainty measure of the whole set of SNPs to a large extent. For each
subset, S, of all available SNPs and each haplotype h, one can compute the certainty
measure R2

h(S) similar to the above calculations. The only difference is that, for a
reduced subset of SNPs, there are more haplotype pairs that are compatible with the
genotypes in the reduced set. The set of htSNPs should keep the certainty measure
as much as possible. One approach is to select m htSNPs out of all the available
SNPs by maximizing minh R2

h(S) over all possible subsets S with size m.
We illustrate this procedure using two SNPs, where we want to keep just one

of the two SNPS. Table 7.4 shows details of the calculation of the predictions
δ̂h using information from the first SNP. For example, for G = (0,−), S(G) =
{{h1, h1}, {h1, h3}, {h3, h3}},

δ̂h1 = 2 × p2
h1

+ 1 × 2ph2ph3 + 0 × p2
h3

p2
h1

+ 2ph2ph3 + p2
h3

= 2ph1

ph1 + ph3

,

then

Var(̂δh1) = 2p2
h1

(ph2 + ph4)

ph1 + ph3

and

R2
h1

(1) = ph1(ph2 + ph4)

(1 − ph1)(ph1 + ph3)
= ph1/(1 − ph1)

(ph1 + ph3)/(1 − ph1 − ph3)
.

Note that ph1 + ph3 is the frequency of allele 0 at the first locus. To be more trans-
parent, we write the probabilities of alleles 0 and 1 at the locus as p0− and p1−,
respectively, and the allele probabilities at the second locus as p−0 and p−1, and
use the notation p00 = ph1 , p10 = ph2 , p10 = ph3 and p11 = ph4 . Then the above
formula is expressed as an OR (two-locus versus first locus only):
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R2
h1

(1) = p00/(1 − p00)

p0−/(1 − p0−)
.

Generally, for haplotype h = (i, j), i, j = 0,1, the certainty measure when the first
locus is chosen as the htSNP is

R2
ij (1) = pij /(1 − pij )

pi−/(1 − pi−)

and for the second locus

R2
ij (2) = pij /(1 − pij )

p−j /(1 − p−j )
.

This tagging method first finds the minimal value among all the 4 certainty mea-
sures for each of the two SNPs. Let R2(1) = minh R2

h(1) for the first locus and
R2(2) = minh R2

h(2) for the second, where the minimizations are over all the 4 hap-
lotypes. Then the first SNP is chosen as htSNP if R2(1) > R2(2) and otherwise the
second SNP is chosen to be the htSNP.

7.3 Haplotype-Based Population Association Analysis

In single-marker analysis, one tests association based on the genotype by compar-
ing the genotype frequencies between cases and controls. On the other hand, the
allelic test that compares allele frequencies between cases and controls can be more
powerful but requires that HWE holds in the population. Similarly, for a multi-locus
study, association analysis can be based on comparing frequencies of either joint
genotypes or haplotypes, which play the role of “super-alleles”.

7.3.1 Likelihood Ratio Test

The LRT for testing association between haplotypes and disease can be constructed
from the maximum likelihood functions for cases, controls and the pooled data of
cases and controls. The null hypothesis is that the haplotype frequencies in cases
and controls have no difference. Let the maximum likelihood for cases, controls and
the pooled data be Lcase, Lcontrol, Ltotal, respectively. Then the LRT is

LRT = 2{log(Lcase) + log(Lcontrol) − log(Ltotal)}.
The LRT statistic has an asymptotic chi-squared distribution with degrees of free-
dom one less than the number of haplotypes present in the data.

The LRT works well for a small number of loci but, when the number of loci
is relatively large, the approximation of the null distribution using a chi-squared
distribution may not be accurate owing to the existence of rare haplotypes for loci
with high LD coefficients. Another limitation of the LRT is that HWE is assumed
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when estimating haplotype frequencies from the data, which may bias the estimates.
Furthermore, since the LRT is a global test, it does not provide inference on the
effects of haplotypes. Therefore a variety of regression methods have been proposed
to model the haplotype effects. The retrospective likelihood method of Epstein and
Satten [78] will be discussed next.

7.3.2 Regression Method

The Retrospective Likelihood

Let H be the (unordered) haplotype pair for an individual. Define πH = Pr(H |D =
0), ρH = Pr(H |D = 1) as the probabilities of observing H in controls and cases,
respectively. For individual i, denote the observed genotype by Gi and the disease
status by Di (i = 1, . . . , n). Then the retrospective likelihood function is given by

L =
n∏

i=1

Pr(Gi |Di = 1)Di Pr(Gi |Di = 0)1−Di

=
n∏

i=1

( ∑

H∈Si

ρH

)Di
( ∑

H∈Si

πH

)1−Di

.

Let the odds of disease for haplotype pair H be

θH = Pr(D = 1|H)

Pr(D = 0|H)
.

Then we have Pr(H,D = 1) = Pr(D = 1|H)Pr(H) = θH Pr(D = 0|H)Pr(H) =
θH πH Pr(D = 0). Hence ρH can be expressed as a function of π ′s and θ ′s as

ρH = Pr(H,D = 1)

Pr(D = 1)
= Pr(H,D = 1)
∑

H ′ Pr(H ′,D = 1)
= θH πH∑

H ′ θH ′πH ′
. (7.11)

Thus, the retrospective likelihood function can be written as

L =
n∏

i=1

( ∑

H∈Si

πH θH∑
H ′ πH ′θH ′

)Di
( ∑

H∈Si

πH

)1−Di

. (7.12)

In order to assess haplotype-specific effects, we assume the following logistic
model

θH = α + xT
H β, (7.13)

where xH is the design vector for haplotype pair H , which can be defined according
to the target of the study, and β is the vector of corresponding regression coeffi-
cients. For example, if one wants to study the effect of a specific haplotype h∗,
then one can set xH = 1(δh∗ (H)=2) for a REC model, xH = 1(δh∗ (H)≥1) for a DOM
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model and xH = δh∗(H) for an ADD model. Similarly, if H is a set of haplo-
types each of which is thought to have a similar effect on disease, for H = (h,h′)
one can test its effect by defining xH = 1(h∈H and h′∈H ) under a REC model,
xH = 1(h∈H or h′∈H ) under a DOM model, and xH = 1(h∈H ) + 1(h′∈H ) under
an ADD model.

In what follows, we assume HWE holds in the control population, that is, for
H = (h,h′), πH = 2phph′ if h �= h′ and πH = p2

h if h = h′. We still use the notation
p for the vector of frequencies of all haplotypes present in the sample. Incorporating
(7.13) and the HWE assumption into (7.12), the retrospective likelihood function
can be written as

L(β,p) =
∏n

i=1{
∑

H∈Si
πH exp(xT

H β)}Di (
∑

H∈Si
πH )1−Di

{∑H πH exp(xT
H β)}r , (7.14)

where r is the number of cases. Note that the intercept terms cancel out and do not
appear in the likelihood function.

Expectation/Conditional Maximization Algorithm

To make inferences about β , one needs to compute the MLE of φ = (p, β)T , and to
do this, we apply a generalized EM algorithm, the so-called expectation/conditional
maximization (ECM) algorithm. Let xi denote the haplotype pair of individual i.
Then the complete likelihood function is

Lc(φ) =
n∏

i=1

( ∏

H∈Si

ρ
1(xi=H)

H

)Di
( ∏

H∈Si

π
1(xi=H)

H

)1−Di

.

In the E-step, given the current value φ(k) = (p(k), β(k))T , we need to compute
Pr(xi = H |Di,Gi,φ

(k)). For haplotype pair H ∈ Si = S(Gi),

ui = Pr(xi = H |Di = 0,Gi,φ
(k)) = π

(k)
H

∑
H ′∈Si

π
(k)

H ′
1(H∈Si),

vi = Pr(xi = H |Di = 1,Gi,φ
(k)) = θ

(k)
H π

(k)
H

∑
H ′∈Si

θ
(k)

H ′ π
(k)

H ′
1(H∈Si),

where π
(k)
H and θ

(k)
H are calculated at φ = φ(k).

The M-step maximizes the conditional expectation of the log complete-data like-
lihood with respect to φ:

E(logc(φ)|D,G,φ(k)) =
∑

Di=1

∑

H∈Si

ui logρH +
∑

Di=0

∑

H∈Si

vi logπH

=
∑

Di=1

∑

H∈Si

ui log

(
πH exp(xT

H β)
∑

H ∗ πH ∗ exp(xT
H ∗β)

)

+
∑

Di=0

∑

H∈Si

vi log(πH ),

(7.15)
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which can be solved by the Newton-Raphson algorithm, but this may be unstable
when the number of parameters is large for a large m. We suggest maximizing the
objective function (7.15) by a conditional maximization strategy. That is, given p,
maximize (7.15) with respect to β; then given β , maximize (7.15) with respect to
each element of p given the other elements.

Asymptotic Inference

We discuss the Score statistic (Sect. 1.2.4) for testing the null hypothesis H0 : β = 0.
Denote the number of haplotypes with non-zero estimates by J and their probabil-
ities as ph1 , . . . , phJ

, satisfying
∑J

j=1 phj
= 1. Reparameterize the haplotype fre-

quencies using the new parameters τ = (τ1, . . . , τJ−1) given by

phj
= eτj

1 +∑J−1
k=1 eτk

, j = 1, . . . , J − 1

and phJ
= 1 − ph1 − · · · − phJ−1 = 1/(1 +∑J−1

k=1 eτk ). The reparameterization is
not completely necessary, but it makes the computation more stable. The likelihood
function (7.14) can then be written as a function of τ and β . Thus

Uβ = ∂ logL(β,p)

∂β
=

n∑

i=1

Di(X̄i − X̄), (7.16)

where

X̄i =
∑

H∈Si
πH xH exp(xT

H β)
∑

H∈Si
πH exp(xT

H β)
,

X̄ =
∑

H πH xH exp(xT
H β)

∑
H πH exp(xT

H β)
,

and

Uτj
= ∂ logL(β,p)

∂τj

= 2
n∑

i=1

(1 − Di)phj

{∑
(h,h′)∈Si

ph′I(h=hj )
∑

(h,h′)∈Si
ph′

− 1

}

+ 2
n∑

i=1

Diphj

{∑
H=(h,h′)∈Si

ph′ exp(xT
H β)I(h=hj )

∑
(h,h′)∈Si

ph′

−
∑

H=(h,h′) ph′ exp(xT
H β)I(h=hj )

∑
(h,h′) ph′

}

, (7.17)

where (h,h′) denotes an ordered haplotype pair. Denote Uτ = (Uτ1 , . . . ,UτJ−1)
T

and the Score function as U = U(β,p) = (UT
β ,UT

τ )T , which can be written as
U = ∑n

i=1 Ui . Evaluate U at β = 0 and τ̂0, where τ̂0 is the MLE of τ under
H0 : β = 0. Estimate the Fisher information matrix or the covariance matrix of U

by in =∑n
i=1 UiU

T
i , also evaluated at β = 0 and τ̂0. Partition in according to β and

τ as follows



224 7 Haplotype Analysis for Case-Control Data

in =
[

iββ iβτ

iτβ iττ

]

.

Then the Score test is given by

ST = UT
β (iββ − iβτ i

−1
ττ iτβ)−1Uβ,

where (iββ − iβτ i
−1
ττ iτβ)−1 is the (1,1)th submatrix of i−1

n corresponding to β . This
test asymptotically follows a chi-squared distribution with R (the length of β) de-
grees of freedom.

7.3.3 Haplotype Similarity

We have introduced association analysis methods based on comparing haplotype
frequencies between cases and controls. A different yet related method is to test
association through comparing haplotype similarities between cases and controls.
This approach is based on the idea that for a disease mutation of recent origin,
haplotypes from cases should share longer stretches of allele sequence around the
disease locus than haplotypes from controls. A difference in the length of haplotype
sharing between the two samples can result from a shorter coalescence time of a
recent mutation in the case sample relative to the normal allele in the control sample.
The coalescence time is the number of generations since an allele first occurred in
the population. Therefore, any excessive sharing of haplotypes in cases may indicate
the existence of association.

For two haplotypes h and h′ with lengths m, which are two binary sequences, a
similarity measure Mhh′ is defined to quantify the degree of similarity between h

and h′. There are various ways to define such a measure. For example, a commonly
used measure is the counting measure, which counts the number of common alleles
shared in the two sequences or, equivalently, Mhh′ = m−d(h,h′) = m−||h−h′||1,
where d(h,h′) = ||h − h′||1 is the hamming distance—the number of positions that
the two sequences differ. Another commonly used measure is the length measure,
which is the maximum number of adjacent loci that the two haplotypes share.

Define the total similarity measure of a haplotype block in controls as the
weighted sum of similarity measures of every pair of haplotypes weighted by the
probability of the pair, i.e.,

Scontrol =
∑

h

∑

h′
qhqh′Mhh′ ,

where qh is the frequency of haplotype h in controls. The total similarity measure
in cases is similarly defined as

Scase =
∑

h

∑

h′
phph′Mhh′ ,

where ph is the frequency of haplotype h in cases.
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To compare the haplotype similarity patterns between cases and controls, we can
define the test statistic

T = |Ŝcase − Ŝcontrol|,
where Ŝcontrol and Ŝcase are the estimates of Scontrol and Scase, obtained by plugging
in the estimated haplotype frequencies p̂h, q̂h in Scase and Scontrol, respectively. The
significance of T can be evaluated by a permutation method. Specifically, one can
permute the case and control labels N times. Each time, the haplotype frequencies
are estimated and the permuted versions of Ŝcontrol, Ŝcase and the test statistic T are
calculated. Let the N tests be Ti , i = 1, . . . ,N . Then the p-value of the test T can
be computed as the proportion of Ti , i = 1, . . . ,N that exceeds the observed T . If
the cases are thought to be more similar than the controls, then one can apply a
one-sided test by defining T = Ŝcase − Ŝcontrol and applying the same permutation
procedure.

7.4 Linkage Disequilibrium Contrast Tests

LD is essential for genetic association studies. The extent of LD varies between
cases and controls and the comparison of LD patterns between the two groups can
provide insight into multi-locus associations. In order to compare LD coefficients
between the two groups, the haplotype frequencies within each group need to be
estimated but the HWE assumption may be problematic. A different approach is to
contrast the LD patterns based on the composite LD coefficient, application of which
does not require estimating haplotype frequencies and does not rely on HWE. We
discuss two methods of doing this in Sect. 7.4.1 and Sect. 7.4.2.

7.4.1 Composite LD Measure

For two loci with alleles A,a and B,b, the LD coefficient is given by

DAB = pAB − pApB,

where pAB is the frequency of haplotype AB and pA and pB are the frequencies of
alleles A and B . Estimating the LD coefficient involves estimating haplotype fre-
quency pAB from genotype data under the HWE assumption. A composite measure
of LD, which is the sum of the LD coefficient and a non-gametic LD coefficient,
was proposed as a substitute of the LD coefficient. The alleles A and B at two
loci can associate in an individual either by being together on the same haplotype
(gametic) or by being together on the different (maternal and paternal) haplotypes
(non-gametic). The non-gametic LD coefficient represents the inter-locus allelic de-
pendence on the two haplotypes. Estimation of the composite measure does not re-
quire phase information and can therefore be appropriately estimated from observed
unphased genotypes without the assumption of HWE.
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Table 7.5 Probabilities of
genotypes BB Bb bb Total

AA P AB
AB P AB

Ab P Ab
Ab P A

A

Aa P AB
aB P AB

ab + P Ab
aB P Ab

ab P A
a

aa P aB
aB P aB

ab P ab
ab P a

a

Total P B
B P B

b P b
b 1

Define the non-gametic LD coefficient as

DA/B = pA/B − pApB,

where pA/B is the joint frequency of alleles A and B on a person’s two different
homologous chromosomes, indicted by the slash. The composite LD coefficient is
then

ΔAB = DAB + DA/B = pAB + pA/B − 2pApB.

The probabilities pAB and pA/B cannot be separately estimated from counting geno-
types without assuming HWE. However, the composite measure ΔAB can be directly
estimated from counting two-locus genotypes regardless of HWE.

We now show how the composite measure relates to the genotype frequencies.
The genotype probabilities are given in Table 7.5, where P h′

h is the probability of
the two haplotypes for an individual with the superscript and subscript representing
haplotypes on the two homologous chromosomes, respectively. Then the haplotype
frequencies can be written as

pAB = P AB
AB + 1

2

(
P AB

Ab + P AB
aB + P AB

ab

)
,

pA/B = P AB
AB + 1

2

(
P AB

Ab + P AB
aB + P Ab

aB

)
.

These probabilities are not estimable without assuming HWE. It can be shown that
the composite LD coefficient can be written as

ΔAB = 2P AB
AB + P AB

Ab + P AB
aB + 1

2

(
P AB

ab + P aB
Ab

)− 2pApB.

Under HWE, it can be verified that ΔAB = DAB (Problem 7.6). Therefore, the com-
posite LD measure is an extension of DAB. Unlike DAB, however, ΔAB is a function
of the genotype probabilities and allele probabilities in Table 7.5 and therefore can
be directly estimated from the genotype counts. Using the data in Table 7.2, the
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MLE of ΔAB can be written as

Δ̂AB = 2n11 + n12 + n21 + n22/2

n

− 2

(
n1+ + n2+/2

n

)(
n+1 + n+2/2

n

)

(7.18)

and, omitting high order terms, its variance is given by (see Weir [299])

Var(Δ̂AB) ≈ {pA(1 − pA) + DA}{pB(1 − pB) + DB}/n, (7.19)

where DA = pAA − p2
A and DB = pBB − p2

B are the HWD coefficients at the two
loci. To test H0 : ΔAB = 0, we can apply the composite LD test

X2
CLD = Δ̂2

AB/V̂ar(Δ̂AB), (7.20)

where V̂ar(Δ̂AB) = {p̂A(1 − p̂A) + D̂A}{p̂B(1 − p̂B) + D̂B}/n. This test has an
asymptotic χ2

1 distribution under H0.
The composite LD measure is in fact half the covariance of the genotype scores

at the two loci. Code genotypes AA, Aa, aa as scores ξ = 2,1,0 (the number of A

alleles in a genotype at the first locus) and genotypes Bb, Bb, bb as scores η = 2,1,0
(the number of B alleles in a genotype at the second locus), and it can be shown that

ΔAB = Cov(ξ, η)/2. (7.21)

This fact can be verified as follows. Let ξ1, η1 be indicators of alleles A,B on one
specific chromosome and ξ2, η2 of those on the other chromosome. Then

E(ξ1η1) = E(ξ2η2) = pAB, E(ξ1η2) = E(ξ1η2) = pA/B,

and E(ξ1) = E(ξ2) = pA, E(η1) = E(η2) = pB . Therefore,

DAB = Cov(ξ1, η1) = Cov(ξ2, η2),

DA/B = Cov(ξ1, η2) = Cov(ξ2, η1).

Then, we have

Cov(ξ, η) = E(ξ1η1) + E(ξ2η2) + E(ξ1η2) + E(ξ2η1)

− {E(ξ1) + E(ξ2)}{E(η1) + E(η2)}
= 2pAB + 2pA/B − 4pApB = 2ΔAB.

Furthermore, Var(ξ) = Var(ξ1 + ξ2) = Var(ξ1) + Var(ξ2) + 2 Cov(ξ1, ξ2) =
2(pA − p2

A + DA) and Var(ξ) = 2(pB − p2
B + DB). Therefore, the correlation co-

efficient

rAB = Cov(ξ, η)√
Var(ξ)Var(ξ)

= ΔAB√
(pA − p2

A + DA)(pB − p2
B + DB)

.

Denote the sample correlation coefficient by r̂AB. Then the LD test given in (7.20)
can be written as

X2
CLD = n( r̂AB)2.
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Table 7.6 Two-locus
genotype counts for cases and
controls

Case Total Control Total

BB Bb bb BB Bb bb

AA r11 r12 r13 r1+ AA s11 s12 s13 s1+
Aa r21 r22 r23 r2+ Aa s21 s22 s23 s2+
aa r31 r32 r33 r3+ aa s31 s32 s33 s3+
Total r+1 r+2 r+3 r Total s+1 s+2 s+3 s

7.4.2 Contrasting LD Measures

The LD contrast test for testing association between the disease and the two loci can
be written as

X2 = (D̂1 − D̂0)
2

V̂ar(D̂1 − D̂0)
, (7.22)

where D̂1 and D̂0 are the estimated LD coefficients of the cases and controls, re-
spectively,

V̂ar(D̂1 − D̂0)

=
(

1

2r
+ 1

2s

)

{p̂A(1 − p̂A)p̂B(1 − p̂B) + (1 − 2p̂A)(1 − 2p̂B)D̂AB − D̂2
AB}

is the estimated variance of the LD difference under the null hypothesis, where r

and s are the numbers of cases and controls. The LD coefficients can be estimated
from haplotype frequency estimates obtained from the EM algorithm. However,
since HWE is assumed to hold in cases and controls in the maximum likelihood
approach, which would not be expected to hold for a case-control sampling design,
the above LD contrast test is biased. A different method is to contrast the composite
LD measures between cases and controls.

Suppose the genotype counts for cases and controls are as given in Table 7.6
with a total of n = r + s individuals. Let the composite LD coefficients for cases
and controls be Δ̂1 and Δ̂0, respectively. Then

Δ̂1 = 2r11 + r12 + r21 + r22/2

r
− 2

(
r1+ + r2+/2

r

)(
r+1 + r+2/2

r

)

,

Δ̂0 = 2s11 + s12 + s21 + s22/2

s
− 2

(
s1+ + s2+/2

s

)(
s+1 + s+2/2

s

)

.

The composite LD contrast test can then be defined as follows

X2
CLDC = rs

n

(Δ̂1 − Δ̂0)
2

{p̂A(1 − p̂A) + D̂A}{p̂B(1 − p̂B) + D̂B} , (7.23)

where the estimated allele frequencies p̂A, p̂B and HWD coefficients D̂A, D̂B are
calculated under the null hypothesis H0 of no association from the pooled sam-
ple nij = rij + sij , i = 1,2,3 and j = 1,2,3. Thus, p̂A = (n1+ + n2+/2)/n,
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Table 7.7 Observed counts
at the R990G (A) and A986S
(B) loci in the CASR gene in
the disease population
(reproduced from Hamilton
and Cole [113])

BB Bb bb Total

AA 109 50 10 169

Aa 34 4 0 38

aa 14 0 0 14

Total 157 54 10 221

p̂B = (n+1 +n+2/2)/n, D̂A = n1+/n− p̂ 2
A , D̂B = n+1/n− p̂ 2

B . Under H0, X2
CLDC

follows χ2
1 asymptotically.

7.5 Examples

Example 1 We use a two-locus real dataset to illustrate the use of the EM algorithm.
Table 7.7 shows the genotype counts for the 9 genotype combinations.

Starting from the initial values pAB = pAb = paB = pab = 0.25, the unob-
served quantities x and y can be predicted from (7.1) as x = 4pABpab/(pABpab +
pAbpaB) = 2 and y = 2. Plugging these values into (7.2), we have pAB = (2×109+
50 + 34 + x)/442 = 0.68778, pAb = (50 + 2 × 10 + y + 0)/442 = 0.16290, paB =
(34+y +2×14+0)/442 = 0.14480, pab = 1−p1 −p2 −p3 = 0.00452, which are
the updated estimates of the haplotype frequencies. Calculating the expected values
using (7.1), we obtain the new predictions x = 4pABpab/(pABpab + pAbpaB) =
0.46579 and y = 3.53421, which are again plugged into (7.2) to obtain the updated
estimates pAB = 0.68431,pAb = 0.16637,paB = 0.14827,pab = 0.00105.

After repeating the above procedure 5 times, the haplotype frequencies converge
to p̂AB = 0.6833, p̂Ab = 0.1674, p̂aB = 0.1493, and p̂ab = 0.

Example 2 We compute the LD coefficients using the same dataset as in Example 1.
Clearly, D̂AB = 0 and D̂′

AB = 0, since p̂bb = 0. Using the formula in (7.18) and the

variance formula, we have Δ̂AB = −0.0409 and its standard error
√

V̂ar(Δ̂AB) =
0.011. The chi-squared test for H0 : ΔAB = 0 is X2

CLD = 14.08, which indicates
high significance of LD.

7.6 Bibliographical Comments

The haplotype is an important concept and has been widely recognized as a use-
ful tool in dissecting the genetic basis of complex diseases (The International
HapMap Consortium [268, 269]). Although molecular haplotyping methods do exist
(Michalatos-Beloin et al. [183], Eitan and Kashi [69], Hurley et al. [128], Konfortov
et al. [149]), they are costly and are only applicable for obtaining phase information
of haplotypes with short lengths. Therefore, in most population-based association
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analysis, the phase information is usually unknown to the researchers and the avail-
able data are unphased genotypes. There have been many methods in haplotype
inference and haplotype-based association analysis. Niu [197] presented a compre-
hensive review of algorithms for inferring haplotypes from genotype data, and Liu
et al. [174]. comprehensively reviewed methods for haplotype analysis.

Based on unphased genotype data, many efforts have been made to recover haplo-
types or to estimate haplotype frequencies. The earliest phasing algorithm is Clark’s
parsimony method (Clark [37]), which resolves the minimum number of haplotypes
that can explain the observed genotype data. The combinatorial algorithms were
also investigated and improved by many researchers. Gusfield [110] showed that
the parsimony algorithm can be cast into the framework of a maximum resolution
(MR) problem and can be solved by an integer linear programming method. Gusfield
[111] proposed an alternative combinatorial algorithm, the pure-parsimony method,
which minimizes the number of haplotypes that can resolve all genotypes. It was
shown that for a small dataset, say with less than 50 individuals and 30 SNPs, the
pure-parsimony approach correctly infers 80–95% of the haplotype pairs. Brown
and Harrower [22, 23] improved the efficiency of the Inductive Logic Programming
(ILP) algorithm by including additional constraints.

The EM algorithm is a powerful method for finding MLEs with incomplete data
(Dempster et al. [58]). Under the assumption of HWE, Excoffier and Slatkin [80],
Hawley and Kidd [119], and Long et al. [175] proposed the EM algorithm for find-
ing the MLEs of haplotype frequencies using unphased genotypes. Although HWE
is assumed in the EM algorithm, Niu et al. [196] showed that its performance is not
strongly affected by departures from HWE, particularly when the direction of de-
parture is towards an excess of homozygosity. One drawback of the EM algorithm
is that it may converge to a local maximum and different choices of initial values of
the parameters may lead to different converged values. To avoid trapping at a local
maximum, one useful strategy is to try different initial values of haplotype frequen-
cies, another way is to use a stochastic-EM algorithm (Tregouët et al. [274]). For
pooled DNA data, Ito et al. [130], Wang et al. [290], and Yang et al. [312] studied
the EM algorithm for haplotype inference. The EM algorithm is computationally
inefficient when the number of individuals in each pool is large. Zhang et al. [322]
and Kuk et al. [154] proposed an approximate EM algorithm for estimating hap-
lotype frequencies from large DNA pools. Generally, the EM-based methods are
computationally infeasible when the number of loci is relatively large (say, greater
than 15 to 20), even for unpooled data. Niu et al. [196] and Qin et al. [209] used a
divide-and-conquer-combine algorithm, the partition-ligation (PL) method, to han-
dle a large number of loci. Bayesian methods have been studied in haplotype in-
ference. Stephens et al. [257, 258] proposed the coalescence-based Markov Chain
Monte Carlo (MCMC) method using a pseudo-Gibbs sampler, and Niu et al. [196]
proposed a prior annealing and partition-ligation (PL) strategy to handle a large
number of loci. Xing et al. [307] proposed a method based on a nonparametric prior
known as the Dirichlet process.

LD is a fundamental concept in genetic studies. Reviews of various measures
of LD or gametic phase disequilibrium can be found in Devlin and Risch [59],
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Jorde [138], McVean [182], Li [171]. Empirical studies have shown that the hu-
man genome demonstrates a blocklike LD structure (Daly et al. [54], Gabriel et al.
[93] etc.). Wall and Pritchard [287] proposed haplotype block models aimed at cap-
turing the underlying LD structure. Within a haplotype block, the LD coefficients
are high and there may be only a few haplotypes that can occur. Consequently, tight
LD information may be captured by a subset of haplotype-tagging SNPs (htSNPs)
(Johnson et al. [132]). Zhang et al. [320], Stram et al. [263] proposed the certainty
measure R2

h for each haplotype h when only a subset of SNPs are used; the subset of
SNPs that maximizes the minimum certainty measures of all haplotypes comprises
the htSNPs. Ke and Cardon [141], and Sebastiani et al. [237] investigated different
methods for tagging haplotypes.

Haplotype-based association analysis needs to take account of the phase uncer-
tainty. An intuitive approach is to separate the analysis into two stages: at the first
stage the most likely haplotype pair for each individual is recovered, and at the sec-
ond stage cases and controls are compared using these deduced haplotypes. This ap-
proach may substantially lose information and the results may be seriously biased
(Schaid [229, 230]). A more powerful approach is to estimate haplotype frequen-
cies and their effects simultaneously by introducing a regression model. Prospective
likelihood methods based on logistic regression or generalized linear models (GLM)
are investigated by Zaykin et al. [318], Schaid et al. [229] and others. These meth-
ods treat unobserved haplotypes as covariates in a regression model and compute
the conditional expectation of the covariates given genotype observations under the
null hypothesis with a HWE assumption in the pooled sample of cases and controls.
Zhao et al. [328] proposed a prospective estimating equation approach that only re-
quires HWE in control samples. Stram et al. [262] investigated the bias incurred
by applying prospective likelihood methods in a case-control design and introduc-
ing the HWE assumption, and developed an approach incorporating the sampling
proportions of case and control samples. To account for sample ascertainment, ret-
rospective likelihood inference can be applied in studying haplotype-disease asso-
ciation in a case-control design. Epstein and Satten [78], Satten and Epstein [224],
and Spinka et al. [256] investigated retrospective likelihood inferences of haplo-
type association. To guard against deviation from HWE, Satten and Epstein [224]
introduced a fixation index to account for departure from HWE. In Sect. 7.3.2, we
introduced the retrospective regression method of Epstein and Satten [78] and Sat-
ten and Epstein [224], but we have used an approximation to the Fisher information
matrix for all parameters by using the Score function. Lin and Zeng [173] fully
investigated the GLM haplotype regression models for various study designs, in
which environmental factors can also be included. Zhang et al. [321] studied the
haplotype-based regression method for a matched case-control design. To overcome
the high-dimensionality problem in haplotype-association analysis, Tzeng et al.
[276, 277] proposed to cluster similar haplotypes and thereby increase the power of
haplotype-based association tests. They derived the variance estimate of the differ-
ence of counting measures of haplotype similarity between case and control groups,
and proposed the following z-test z = (Ŝcase − Ŝcontrol)/

√
v̂ar(Scase) + v̂ar(Scontrol),

which has a standard normal distribution under the null hypothesis. For other simi-
larity measures, bootstrap or a permutation method was recommended.
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Contrasting LD patterns between cases and controls can be more powerful than
the haplotype-based or single-locus approached. Abecasis and Cookson [2] pro-
vided a graphical representation method for contrasting pairwise LD matrices be-
tween cases and control. Nielsen et al. [194] proposed a LD contrasting method for
two diallelic loci when phase is known. For unphased genotype data, most algo-
rithms estimate haplotype frequencies by assuming HWE, which produces biased
estimates and thus comparison of LD coefficients between cases and controls using
the EM algorithm is not strictly appropriate. Alternatively, the composite LD mea-
sure (Weir [298], Weir and Cockerham [300]) had been used in contrasting LD. The
composite LD coefficients can be directly estimated from genotype counts without
requiring the HWE assumption. Weir [299] presented the MLE of the composite LD
coefficient and its variance. Zaykin et al. [319] and Wang et al. [292] proposed asso-
ciation tests based on contrasting LD matrices between cases and controls. Nielsen
et al. [194] investigated a two-SNP situation and found that a test comparing LD
coefficients can be more powerful than a single-locus or a haplotype test and this is
a promising addition to existing methods of characterizing multi-locus associations.

7.7 Problems

7.1 For the two-locus data shown in Table 7.2, verify that under the HWE assump-
tion the likelihood function (7.4) is

L(p) = (p2
1)

n11(2p1p2)
n12(p2

2)
n13(2p1p3)

n21(2p1p4 + 2p2p3)
n22(2p2p4)

n23

× (p2
3)

n31(2p2p4)
n32(p2

4)
n33 ,

where p1 = pAB, p2 = pAb, p3 = paB, p4 = pab are haplotype frequencies, and the
complete likelihood function (7.5) is

Lc(p) = (p2
1)

n11(2p1p2)
n12(p2

2)
n13(2p1p3)

n21(2p1p4)
x(2p2p3)

n22−x(2p2p4)
n23

× (p2
3)

n31(2p2p4)
n32(p2

4)
n33 ,

where x is the (unobserved) number of haplotype pairs {AB,ab} among the n22
individuals with genotype combination (Aa,Bb).

7.2 For the dataset given in Table 7.7:

1) Starting from the initial values pAB = pAb = 0.2, paB = pab = 0.3, use the algo-
rithm in (7.1) and (7.2) to compute the MLEs of the haplotype frequencies.

2) Using the likelihood function given in Problem 7.1, verify that the log-likelihood
function calculated within each iteration always increases.

3) Use the Newton-Raphson algorithm to maximize the likelihood function and
compare with the results from the EM algorithm.

7.3 For two diallelic loci with alleles A,a and B,b, respectively, assuming HWE,
show that the probability that an individual has haplotype pair {h,h′} = {AB,ab}
conditional on observing genotypes G1 = Aa, G2 = Bb is given by
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Table 7.8 Two-locus
genotype data Case Control

BB Bb bb BB Bb bb

AA 51 42 8 AA 50 47 8

Aa 40 46 0 Aa 36 29 10

aa 5 0 13 aa 7 13 0

P(h = AB, h′ = ab|G1 = Aa,G2 = Bb) = pABpab

pABpab + pAbpaB
.

7.4 Prove Eq. (7.11).

7.5 Prove Eq. (7.10) (hint: E(̂δh) = E{E(δh|G)} = E(δh), E(̂δhδh) = E(̂δh ×
E(δh|G)) = E(̂δ 2

h )).

7.6 Prove that ΔAB = DAB when HWE holds (hint: when HWE holds, P h′
h =

2phph′ for h �= h′ and P h
h = p2

h).

7.7 Verify that the MLE Δ̂AB of the composite LD measure is given by (7.18) and,
using the Delta method, prove that the variance of Δ̂AB is as presented in (7.19).

7.8 Use the composite LD contrast test (7.23) to analyze the dataset in Table 7.8.



Chapter 8
Gene-Gene Interactions

Abstract Chapter 8 discusses gene-gene interactions. The focus is on two-locus in-
teractions. Different genetic models are incorporated in the two-locus models. The
expressions of odds ratios for the main genetic effects and the gene-gene interac-
tion are given. A saturated logistic regression model is also studied. Different test
statistics for the two-locus interaction model are discussed. Their relation to con-
trasting log-odds ratios and contrasting LD measures are given. Their relation to the
log-linear model is also discussed. For higher order gene-gene interactions, the mul-
tifactor dimensionality reduction method and logic regression are briefly discussed.

Gene-gene interaction plays an important role in dissecting complex diseases. It is
known that for complex diseases a single gene may have a small or moderate effect
and that multiple genes and/or environmental factors may act jointly, known as inter-
action or epistasis, to have a large effect on a disease. This chapter introduces some
methods for analysis of gene-gene interactions. Gene-environment interactions will
be discussed in Chap. 10.

In a statistical sense, gene-gene interaction describes the non-additivity of single-
factor effects on the distribution of a response variable. Additivity of factors x =
(x1, . . . , xk)

T on a response variable y refers to

h(E(y|x)) = α + βT x,

for some link function h, e.g., for a normal distribution model h(u) = u, the iden-
tity function, and for a logistic regression model h(u) = logit(u) = log{u/(1 − u)}.
Existence of gene-gene interaction can be expressed as the deviation γ (x) from the
additivity model:

h(E(y|x)) = α + βT x + γ (x),

where γ (x) is nonlinear in x, capturing interactions of the genetic factors, and the
elements of β are known as main effects.

When the number of loci is small, the logistic regression model is an appropriate
approach for the analysis of gene-gene interaction. Two-locus association analy-
sis using a logistic regression model will be discussed in Sect. 8.1. However, when
many loci and their interactions are considered, the classical statistical modeling ap-
proach may lack power due to high dimensionality of the covariates and many data
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mining and machine learning approaches have been proposed. These include the re-
stricted logistic regression approach, in which the number of regression parameters
is reduced by restrictions on the effects, such as the logic regression method, and the
combinatorial partitioning approach such as the multifactor dimensional reduction
(MDR). Section 8.2 introduces the logic regression and MDR methods.

This chapter also introduces some statistical characterizations of gene-gene inter-
action effects, mainly for the two-locus case. We show that the gene-gene interaction
effect can be regarded as a quantification of a differential inter-locus dependence
structure between cases and controls, followed by some brief discussion on tests
for detecting the existence of gene-gene interactions. Section 8.3 discusses a repre-
sentation of some gene-gene interaction effects in a logistic regression model, then
several gene-gene interaction tests contrasting dependence measures between cases
and controls are discussed. It should be noted that the gene-gene interactions that we
consider in this chapter are statistical interactions rather than biological interactions.

8.1 Two-Locus Association Analysis with Interactions

8.1.1 Saturated Logistic Regression Model

In order to apply a logistic regression model to analyze gene-gene interaction us-
ing case-control data, the genotypes of two loci and their interaction are added
into the regression model as covariates. For three genotypes at a single locus, if
there is no scientific knowledge about the underlying genetic model, two indicator
(dummy) variables are often used to code the genotypes. Denote the genotypes of
the first locus G(1) as (G

(1)
0 ,G

(1)
1 ,G

(1)
2 ) = (aa,aA,AA) and of the second locus G(2)

as (G
(2)
0 ,G

(2)
1 ,G

(2)
2 ) = (bb,bB,BB). Code genotype G(i) as c(G(i)) = (Ii1, Ii2)

T ,

where Ii1 = Ii2 = 0 if G(i) = G
(i)
0 , Ii1 = 1 and Ii2 = 0 if G(i) = G

(i)
1 , and

Ii1 = Ii2 = 1 if G(i) = G
(i)
2 , where i = 1,2. The gene-gene interaction G(1) × G(2)

is coded by c(G(1) × G(2)) = (I11I21, I11I22, I12I21, I12I22)
T .

Let f = Pr(case|G(1),G(2)) be a penetrance given the genotypes of the two loci.
Then, the logistic regression model can be represented as

logit(f ) = α0 + α1I11 + α2I12 + β1I21 + β2I22

+ γ11I11I21 + γ12I11I22 + γ21I12I21 + γ22I12I22

= α0 + αT c(G(1)) + βT c(G(2)) + γ T c(G(1) × G(2)), (8.1)

where α = (α1, α2)
T is the main effect for the first locus, β = (β1, β2)

T is the main
effect for the second locus, and γ = (γ11, γ12, γ21, γ22)

T is the interaction effect of
the two loci.

If we are interested in detecting any main or interaction effects, we can test a
global null hypothesis H0 : α1 = α2 = β1 = β2 = γ11 = γ12 = γ21 = γ22 = 0. On
the other hand, if the interaction alone is of interest, we can test H0 : γ11 = γ12 =
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Table 8.1 Two-locus genotype counts for cases (controls)

Case (control) bb Bb BB Total

aa R00 (S00) R01 (S01) R02 (S02) R0· (S0·)
Aa R10 (S10) R11 (S11) R12 (S12) R1· (S1·)
AA R20 (S20) R21 (S21) R22 (S22) R2· (S2·)

Total R·0 (S·0) R·1 (S·1) R·2 (S·2) r (s)

Table 8.2 ORs for a general two-locus model

ORs bb Bb BB

aa 1 exp(βT c·1) exp(βT c·2)
Aa exp(αT c1·) exp(αT c1· + βT c·1 + γ T c11) exp(αT c1· + βT c·2 + γ T c12)

AA exp(αT c2·) exp(αT c2· + βT c·1 + γ T c21) exp(αT c2· + βT c·2 + γ T c22)

γ21 = γ22 = 0. The LRT, Score test and Wald test can be used to test either H0.
The three tests are asymptotically equivalent and follow an asymptotic chi-squared
distribution with 8 degrees of freedom for a global H0, or with 4 degrees of freedom
for only the gene-gene interaction. Note that the Score test is in fact Pearson’s chi-
squared test, which compares the nine two-locus genotype counts (cell counts Rij

and Sij in Table 8.1) between cases and controls. More details are given later.
Rewrite the penetrance f in (8.1) as

p1(Gi,Gj ) = Pr(case |G(1) = G
(1)
i ,G(2) = G

(2)
j )

and p0(Gi,Gj ) = 1 − p1(Gi,Gj ). From model (8.1), we have

exp(αi) =
{

p1(Gi,G0)

p0(Gi,G0)

}/{p1(Gi−1,G0)

p0(Gi−1,G0)

}

, (8.2)

exp(βi) =
{

p1(G0,Gi)

p0(G0,Gi)

}/{p1(G0,Gi−1)

p0(G0,Gi−1)

}

, (8.3)

exp(γ T cij ) =
{p1(Gi ,Gj )

p0(Gi ,Gj )
}/{p1(G0,G0)

p0(G0,G0)
}

exp(αT ci· + βT c·j )
, (8.4)

where ci· = c(G(1)) when G(1) = G
(1)
i , c·j = c(G(2)) when G(2) = G

(2)
j , and cij =

c(G(1),G(2)) when G(1) = G
(1)
i and G(2) = G

(2)
j . In (8.4), exp(αT ci·) is the OR of

G(1) = G
(1)
i over G(1) = G

(1)
0 = aa given G(2) = G

(2)
0 = bb, and exp(βT c·i ) is the

OR of G(2) = G
(2)
i over G(2) = G

(2)
0 = bb given G(1) = G

(1)
0 = aa. The numerator

of (8.4) is the OR of (G(1),G(2)) = (G
(1)
i ,G

(2)
j ) over (G(1),G(2)) = (G

(1)
0 ,G

(2)
0 ) =

(aa, bb). The ORs of association for the two-locus model are given in Table 8.2.
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Table 8.3 ORs for the
two-locus model with the
main effects of two loci coded
by (0, x,1) and (0, y,1) and
the gene-gene interaction
effect coded by (0, x, y,1)

ORs bb Bb BB

aa 1 exp(yβ) exp(β)

Aa exp(xα) exp(xα + yβ + xyγ ) exp(xα + β + xγ )

AA exp(α) exp(α + yβ + yγ ) exp(α + β + γ )

8.1.2 Incorporating Two-Locus Genetic Models

The ORs and models can be simplified if genetic models, e.g., REC, ADD/MUL
or DOM, can be incorporated into the framework of logistic regression models
by appropriately assigning scores to two-locus genotype combinations. We con-
sider a general model by coding the genotypes of two loci treating the genotypes
as ordinal. First, we code genotypes differently from those used in Sect. 8.1.1.
If the genotypes at both loci are ordinal, we code c(G(1)) = xi if G(1) = G

(1)
i

(i = 0,1,2), c(G(2)) = yj if G(2) = G
(2)
j (j = 0,1,2), and c(G(1) × G(2)) = zij

for (G(1),G(2)) = (G
(1)
i ,G

(2)
j ) (i, j = 0,1,2). For comparison, without a genetic

model, G(1) and G(2) are coded with two indicator variables, respectively. x =
(x0, x1, x2), y = (y0, y1, y2) and z = (z11, z12, z21, z22) are the scores for the main
and gene-gene interaction effects. Hence the logistic regression model with these
specified scores can be written as

logit(f ) = α0 + αc(G(1)) + βc(G(2)) + γ c(G(1) × G(2)). (8.5)

This model is much simpler than that given in (8.1), with only four scalar param-
eters (α0, α,β, γ ). The null hypothesis of no gene-gene interaction can be written
as a global null hypothesis H0 : α = β = γ = 0, or the gene-gene interaction only
H0 : γ = 0. The LRT, Score test, or Wald test derived from model (8.5) have an
asymptotic chi-squared distribution with 3 degrees of freedom for a global null hy-
pothesis or 1 degree of freedom for testing only the interaction. However, it requires
specifying all the values of xi , yi and zij .

Choice of the scores relies on the underlying genetic model for each of the two
loci as well as the two-locus interaction model, which, however, are usually un-
known. Since linear transformations of the scores x and y do not affect the null hy-
pothesis H0 and test statistics (Problem 8.1), we can simply assume (x0, x1, x2) =
(0, x,1) and (y0, y1, y2) = (0, y,1) for the main effects, where only x and y need to
be specified. A simple choice of zij is zij = xiyj so that z = (0, x, y,1). The ORs
corresponding to (8.5) with scores x = (0, x,1), y = (0, y,1) and z = (0, x, y,1)

are given in Table 8.3.
Some special two-locus models can be obtained from Table 8.3. For example,

three two-locus models in the literature are (i) “MUL within and between loci”,
(ii) “two-locus interaction MUL effects”, and (iii) “two-locus interaction threshold
effects”, which are present in Table 8.4. The MUL model is used in both (i) and
(ii), while the DOM model is used in (iii). If we set x = y = 1/2, exp(xα) = 1 +
δ1, exp(yβ) = 1 + δ2, and γ = 0, we obtain model (i), which has no gene-gene
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Table 8.4 ORs for the three special two-locus genetic models

(i) bb Bb BB

aa 1 (1 + δ2) (1 + δ2)
2

Aa (1 + δ1) (1 + δ1)(1 + δ2) (1 + δ1)(1 + δ2)
2

AA (1 + δ1)
2 (1 + δ1)

2(1 + δ2) (1 + δ1)
2(1 + δ2)

2

(ii) bb Bb BB

aa 1 1 1

Aa 1 (1 + δ) (1 + δ)2

AA 1 (1 + δ)2 (1 + δ)4

(iii) bb Bb BB

aa 1 1 1

Aa 1 (1 + δ) (1 + δ)

AA 1 (1 + δ) (1 + δ)

interaction. If we set α = β = 0, exp(xyγ ) = 1 + δ, and x = y = 1/2, we obtain
model (ii), which has only gene-gene interaction effects (no main effects). If we set
α = β = 0, exp(xyγ ) = 1 + δ, and x = y = 1, we obtain model (iii), which has only
one gene-gene interaction effect. Other models similar to the three models presented
in Table 8.4 can be obtained by choosing other values of x and y in Table 8.3 or by
directly modifying the models in Table 8.4. For example, in Table 8.4 (ii), we can
replace (1 + δ)2 by (1 + 2δ) and (1 + δ)4 by (1 + 4δ) to obtain a two-locus genetic
model with “two-locus interaction ADD effects”.

8.2 Association Analysis with Higher-Order Interactions

The logistic regression model (8.1) is easy to use for detecting association with
lower-order interactions, but may lose power when higher-order interactions exist
because a lot more parameters are involved in modeling higher-order interaction
effects. There are generally two classes of approaches to overcome the curse of di-
mensionality. One is to reduce the number of parameters in a logistic regression
model by assigning scores to the genotypes under proper genetic models, for exam-
ple (8.5). However, since gene-gene interaction models are generally unknown, this
approach is not robust to model misspecification and therefore subject to substantial
power loss when the models are misspecified. Another approach is to use a machine
learning method such as the tree method or a combinatorial partitioning method.
Existing methods include the MDR, the combinatorial partitioning method, and the
restricted partitioning method. The logic regression method in some sense combines



240 8 Gene-Gene Interactions

the last two approaches. It reduces the dimensionality of the parameter space by in-
troducing logical combinations of predictors, which are put into the framework of
a logistic regression model. This section introduces the MDR method and the logic
regression method.

8.2.1 Multifactor Dimensionality Reduction

Recognizing the limitation of the logistic regression method to deal with a large
number of gene-gene interactions, the MDR approach was proposed in order to
reduce the dimensionality of the multi-locus genotype space. The MDR approach is
a model-free method and has been shown to have good power to identify high-order
gene-gene interactions.

The central idea of the MDR is to collapse multi-locus genotypes with similar
risks into a single factor for the purpose of reducing the dimensionality of the risk
factors. For m loci each with 3 possible genotypes, there is a total of 3m geno-
type combinations. Denote these genotype combinations by G1, . . . ,G3m . Then the
genotype counts in a case-control study can be summarized in a 2 × 3m table. Let
ri and si be the genotype counts of Gi , i = 1,2, . . . ,3m, for cases and controls,
respectively. Let fi = ri/si . Note that fi is an estimate of

Pr(Gi | case)

Pr(Gi |control)
= Pr(case |Gi)

Pr(control|Gi)
× Pr(control)

Pr(case)
,

which is proportional to the odds (or risk) of disease, Pr(case |Gi)/Pr(control|Gi).
Define the genotype combinations (columns of the 2 × 3m table) to be “high risk”
if the ratio fi exceeds some pre-specified threshold C (e.g., C = r/s), and “low-
risk” otherwise. Then the “low-risk” columns and “high-risk” columns are sepa-
rately collapsed, resulting in a 2 × 2 table. Hence the dimension of the risk factors
(number of levels of genotype risk) is reduced from 3m to 2. For the reduced table,
the case:control ratio, R2×2, of the counts within the “high-risk” category can be
computed as a measure of significance. An alternative approach is to apply Pear-
son’s chi-squared statistic to the reduced table.

For example, for two diallelic loci with alleles A/a and B/b, respectively, there
are nine genotype combinations (aa,bb), (aa,Bb), (aa,BB), (Aa,bb), (Aa,Bb),
(Aa,BB), (AA,bb), (AA,Bb), (AA,BB), as shown in Table 8.1. Using two digits to
represent each genotype, the first (second) digit counts the number of A (B) alleles
in genotype G1 (G2). For example, (AA,Bb) is represented by 21 and (AA,BB) by
22. Then we can summarize the data in Table 8.1 into a 2 × 9 table (Table 8.5).

If, for example, we take the threshold as C = r/s, where r and s are the total
numbers of cases and controls, and only f02, f11, f12 are greater than C, we then
collapse genotypes 00,11,12 into a high-risk group and other genotypes into a low-
risk group, leading to a 2 × 2 table (Table 8.6). The measure of association for this
table is R2×2 = (R02 + R11 + R12)/(S02 + S11 + S12).
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Table 8.5 Two-locus genotype counts

Genotype 00 01 02 10 11 12 20 21 22 Total

Case R00 R01 R02 R10 R11 R12 R20 R21 R22 r

Control S00 S01 S02 S10 S11 S12 S20 S21 S22 s

Risk ratio f00 f01 f02 f10 f11 f12 f20 f21 f22

Table 8.6 A collapsed 2 × 2 table with high-risk and low-risk groups

High-risk Low-risk Total

Case R02 + R11 + R12 R00 + R01 + R10 + R20 + R21 + R22 r

Control S02 + S11 + S12 S00 + S01 + S10 + S20 + S21 + S22 s

The MDR method uses a K-fold cross-validation method to select the best subset
of factors from a given set of M genetic factors. For example, a 10-fold cross-
validation method randomly splits all samples into 10 sets of subsamples with the
same or similar proportions of cases and controls as in the original samples. For
each fold of cross-validation, we take one subsample (10%) as a testing dataset and
the remaining nine subsamples (90%) as a training dataset. A total of 10 folds of
cross-validations can be formed by taking each of the 10 subsamples as a testing
dataset and the remaining nine subsamples as a training dataset.

In any fold of the cross-validation, for each subset of factors with size m (m =
2, . . . ,M), using only the training dataset, we collapse the 2 × 3m table into a 2 × 2
table as described above. Then the m-factor collapsed table with the largest R2×2 is
selected as the best m-factor model, which is used to calculate the prediction error
on the testing dataset. For a balanced case-control design with the same number of
cases and controls, we can simply predict the subjects with the “high-risk” factor as
cases and the others as controls. This process is repeated 10 times, and the prediction
errors are averaged. Finally, among all the best m-factor models (m = 2, . . . ,M),
the one with the least averaged prediction error is selected as the final model or
the MDR model. From the 10-fold cross-validations, in which the above process
is repeated 10 times, the consistency of the selection of the final model across 10
cross-validations is recorded, which is defined as the number of times the same
MDR model is identified in all 10 training datasets. The averaged cross-validation
consistency measure over the 10 training datasets is reported. The significance of
this averaged cross-validation consistency measure is evaluated by a permutation
of the 10-fold cross-validations, and a p-value based on the permutation is used to
assess the significance of the selected MDR model.
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8.2.2 Logic Regression

Logic regression provides a way to search for high-order gene-gene interactions
expressed as Boolean combinations of genetic variants that can best discriminate
the case and control groups. We introduce briefly the logic regression method. As-
suming that all covariates X = (X1, . . . ,Xp)T are binary, a logical expression (or
Boolean expression) is a function of X1, . . . ,Xp with the logic operators AND (∧),
OR (∨) and NOT (c). For example, the logical expression

L = (X1 ∧ X2) ∨ (Xc
3)

is 1 if and only if X1 = X2 = 1 or X3 = 0. If X1,X2,X3 are logical variables to
denote homozygous genotypes at three loci, then L = 1 means “both loci 1 and
2 are homozygous or locus 3 is heterozygous”. A single logical expression can be
represented as a logic tree. Any logic tree can be obtained by simple operations such
as growing branches, pruning branches, and substituting leaves (variables).

Figure 8.1 gives some examples, in which Xc
1 is a branch and X2 and X3 are

leaves. The initial logic tree Xc
1 ∧ (X2 ∨ X3) is represented in (a) using diamonds.

The covariates are indicated inside diamonds. If a diamond has dashed sides, it
indicates the complement of the covariate inside the diamond, e.g. Xc

1 and Xc
4. When

the alternate operator ∧ is used to replace ∨, the second logic tree (b) is obtained.
Logic tree (c) is obtained by splitting the leaf X3 to X3 ∧ Xc

4. Logic tree (d) is
obtained by pruning the branch Xc

1. Other operations not shown in Fig. 8.1 include
“alternate a leaf”, e.g. X2 to Xc

2 in Xc
1 ∧ (Xc

2 ∨ X3); “grow a branch”, e.g. X4 in
Xc

1 ∧ X4 ∧ (X2 ∨ X3); and “delete a leaf”, e.g. Xc
1 ∧ X2, in which X3 is deleted.

The logic regression method assumes that the linear predictors of a logistic re-
gression model (or any other generalized linear model) are Boolean or logical com-
binations. A logic regression with one logical expression (or logic tree) is given
by

logit(f ) = β0 + β1L. (8.6)

The logic tree L can be selected adaptively by using the simulated annealing al-
gorithm, which provides a stochastic search for an approximation of the global
optimum in a large search space. In logic regression, the aim is to maximize the
log-likelihood function specified by (8.6). The simulated annealing algorithm starts
with L = 0. At each stage a new tree is selected at random among those that can be
obtained by simple operations on the current tree. The new tree is accepted if it has a
larger log-likelihood than the current one, otherwise it is accepted with a probability
that depends on the difference of the current and the previous log-likelihoods and
the stage of the algorithm. Allowing moving to a tree with a lower log-likelihood can
avoid trapping around a local maximum. To overcome over-fitting, cross-validation
or a permutation method can be used to control the sizes (number of leaves) of the
trees.



8.3 Test for Two-Locus Interactions 243

Fig. 8.1 Initial logic tree (a) Xc
1 ∧ (X2 ∨ X3) with permissible moves to other logic trees:

(b) Xc
1 ∧ (X2 ∧ X3) by using an alternate operator, (c) Xc

1 ∧ (X2 ∨ (X3 ∧ Xc
4)) by splitting a

leaf, and (d) X2 ∨ X3 by pruning a branch. A covariate is indicated inside a diamond with dashed
sides to indicate the complement of the covariate inside

8.3 Test for Two-Locus Interactions

Testing the existence of a gene-gene interaction effect is important in association
studies, especially when the marginal effects are small. Using the previous notation,
the three genotypes (aa,aA,AA) of G(1) and (bb,bB,BB) of G(2) are denoted as
(G

(1)
0 ,G

(1)
1 ,G

(1)
2 ) and (G

(2)
0 ,G

(2)
1 ,G

(2)
2 ), respectively. Let fij = p1(G

(1)
i ,G

(2)
j ) =

Pr(case|G(1) = G
(1)
i ,G(2) = G

(2)
j ) be the penetrance given in (8.1). Then the likeli-

hood function using the data in Table 8.1 is given by

L(θ) = L(α0, α
T ,βT , γ T ) =

∏

i,j

{logit(fij )}rij {1 − logit(fij )}sij , (8.7)

where θ = (α0, α
T ,βT , γ T )T . In some studies, only the gene-gene interaction is of

interest. The null hypothesis is H0 : γ T = 0, i.e., H0 : γ11 = γ12 = γ21 = γ22 = 0.
The corresponding likelihood function under H0 is

L0(θ) = L0(α0, α
T ,βT ) = L(α0, α

T ,βT , γ T = 0), (8.8)
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where θ = (α0, α
T ,βT ,0)T . Let θ̂ = (̂α0, α̂

T , β̂ T , γ̂ T )T and θ̃ = (̃α0, α̃
T , β̃ T ,0)T

be the MLEs that maximize the log-likelihood functions l(θ) = logL(θ) and l0(θ) =
logL0(θ), respectively. Then they can be solved from

∂l(θ)/∂θ = 0 and

∂l0(θ)/∂θ = 0 or ∂l(θ)/∂θ |H0:γ T =0 = 0. (8.9)

Note that, in (8.9), θ = (α0, α
T ,βT )T in the first equation and θ = (α0, α

T ,βT , γ T )T

in the second equation. θ̂ has a closed form solution but θ̃ does not, and has to be
found numerically. We show an alternative simple approach to find θ̂ in what fol-
lows.

From (8.2), (8.3) and (8.4), αT , βT and γ T are all functions of ORs. Note that
an OR under the retrospective distribution Pr(G|disease status) is the same as that
based on the prospective distribution Pr(disease status|G), for example,

exp(αi) = Pr(D = 1|G(1)
i ,G

(2)
0 )

Pr(D = 0|G(1)
i ,G

(2)
0 )

/Pr(D = 1|G(1)
i−1,G

(2)
0 )

Pr(D = 0|G(1)
i−1,G

(2)
0 )

= Pr(G(1)
i ,G

(2)
0 |D = 1)

Pr(G(1)
i ,G

(2)
0 |D = 0)

/Pr(G(1)
i−1,G

(2)
0 |D = 1)

Pr(G(1)
i−1,G

(2)
0 |D = 0)

,

where D = 1 denotes cases and D = 0 controls. See also the discussion of ORs
in Sect. 2.5.1. The probabilities in the latter expression for exp(αi) can be es-
timated easily using multinomial distributions and the data in Table 8.1 as fol-
lows. If we denote pij = Pr(G(1)

i ,G
(2)
j |D = 1) and qij = Pr(G(1)

i ,G
(2)
j |D = 0),

then Table 8.7 gives all the probabilities for the observed genotype counts in Ta-
ble 8.1. Then, using (Rij , i, j = 0,1,2) ∼ Mul(r;pij , i, j = 0,1,2) and (Sij , i, j =
0,1,2) ∼ Mul(s;qij , i, j = 0,1,2), the MLEs for pij and qij are p̂ij = Rij /r and
q̂ij = Sij /s. Thus,

α̂i = log

(
Ri0S(i−1)0

Si0R(i−1)0

)

,

whose asymptotic variance can be obtained by the Delta method and the indepen-
dence between Rij and Sij , and can thus be estimated by V̂ar(̂αi) = 1/Ri0 +1/Si0 +
1/S(i−1)0 + 1/R(i−1)0. Likewise,

β̂i = log

(
R0iS0(i−1)

S0iR0(i−1)

)

,

V̂ar(β̂i) = 1/R0i + 1/S0i + 1/S0(i−1) + 1/R0(i−1).

Denote ORij = pij q00/(qijp00). From Table 8.2, exp(γ T cij ) = ORij /

exp(αT ci· + βT c·j ). Hence

γ̂ T cij = log

{
ÔRij

exp(̂α T ci· + β̂ T sc·j )

}

.

An estimate of its asymptotic variance can be obtained by the Delta method (Prob-
lem 8.2). For α0, we have α̂0 = p̂00/q̂00 = R00/S00. Finally, the MLE θ̂ and the
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Table 8.7 Two-locus genotype probabilities for cases (controls)

Case (control) bb Bb BB Total

aa p00 (q00) p01 (q01) p02 (q02) p0· (q0·)
Aa p10 (q10) p11 (q11) p12 (q12) p1· (q1·)
AA p20 (q20) p21 (q21) p22 (q22) p2· (q2·)

Total p·0 (q·0) p·1 (q·1) p·2 (q·2) 1 (1)

estimate of its asymptotic covariance matrix V̂ar(θ̂) can be obtained with closed
forms (Problem 8.3). Further, we have asymptotically

⎡

⎢
⎣

α̂

β̂

γ̂

⎤

⎥
⎦−

⎡

⎢
⎣

α

β

γ

⎤

⎥
⎦≈ N8(0, Σ̂)

in distribution, where Σ̂ is the estimate of the asymptotic covariance matrix and the
dimension of (αT ,βT , γ T )T is 8.

The above simple approach, however, cannot be used to find the MLE of θ under
H0 : γ T = 0, which is θ̃ , because γ T = 0 places constraints on the probabilities pij

and qij . For example, γ11 = 0 implies OR11 = exp(α1 +β1), that is, p11q10q01p00 =
q11p10p01q00. The usual MLEs of p̂ij = Rij /r and q̂ij = Sij /s do not necessarily
satisfy this constraint. Hence, θ̂ is obtained numerically from (8.9).

To test H0 : γ T = 0, the LRT, Wald test and Score test with nuisance parameters
can be applied (Sect. 1.2.4). The LRT is given by

LRT = 2l(θ̂ ) − 2l0(θ̃ ). (8.10)

Under H0, it has an asymptotic χ2
4 distribution. The Wald test is easier to use than

the LRT because it only uses θ̂ and V̂ar(θ̂), not θ̃ . To test the above H0 using the
Wald test, we decompose V̂ar(θ̂ ) according to the parameter θ = (α0, α

T ,βT , γ T )T

as

V̂ar(θ̂) =

⎡

⎢
⎢
⎢
⎢
⎣

Vα0α0 Vα0α Vα0β Vα0γ

Vαα0 Vαα Vαβ Vαγ

Vβα0 Vβα Vββ Vβγ

Vγα0 Vγα Vγβ Vγγ

⎤

⎥
⎥
⎥
⎥
⎦

.

Then, under H0 : γ T = 0, from γ̂ ≈ N4(0,Vγγ ), the Wald test is given by

WT = γ̂ T V −1
γ γ γ̂ ∼ χ2

4 .

To derive the Score test for H0, the Score function is given by

U(θ̃) = ∂l(θ)

∂γ
|θ=θ̃ .
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Compute the observed Fisher information matrix in(θ̃ ) = −∂2l(θ)/∂θ∂θT |θ=θ̃ and
its inverse i−1

n (θ̃). The 4 × 4 submatrix on the lower right diagonal of i−1
n (θ̃) is

denoted as iγ γ (θ̃ ). Then the Score test is written as

ST = U(θ̃)T iγ γ (θ̃)U(θ̃) ∼ χ2
4 under H0.

The similar LRT, Wald test and Score test can also be derived for testing a global null
hypothesis (Problem 8.4). Test statistics discussed above are derived under a general
two-locus model. For some special models, e.g. a particular model in Table 8.3,
these test statistics can also be derived (Problem 8.5).

8.3.1 A Representation of Two-Locus Interaction Effects

In this section, we first consider a representation of the two-locus interaction ef-
fects as the difference of inter-locus dependence measures between cases and con-
trols using a logistic regression model. Then a general characterization of gene-gene
interaction effects for the multi-locus situation is discussed. This motivates one to
consider more general tests of gene-gene interactions by contrasting the dependence
measures between case and control groups.

Using fij , pij and qij defined before and model (8.1), we have

logit(fij ) = α0 + αT ci· + βT c·j + γ T cij ,

where ci·, c·j and cij are given in Table 8.2. Denote Γij = γ T cij for i, j = 1,2. It
follows that

Γij = log

(
pijp00

pi0p0j

)

− log

(
qij q00

qi0q0j

)

= log(θij ) − log(ψij ), (8.11)

where θij = pijp00/(pi0p0j ) is the OR of genotypes (G
(1)
i ,G

(2)
j ) relative to geno-

types (aa, bb) among cases, and ψij = qij q00/(qi0q0j ) is the OR of (G
(1)
i ,G

(2)
j )

relative to (aa, bb) among controls. These two quantities measure inter-locus de-
pendence in the two groups. Equation (8.11) implies that, using logistic regression
model (8.1), the gene-gene interaction effect can be represented as the difference of
log-ORs between cases and controls.

8.3.2 Contrasting Log-Odds Ratios

Based on the representation (8.11), we can construct the Wald test for the gene-gene
interaction effects, which is identical to the one obtained before. Note that Γij = 0
for any i, j if and only if γ = 0. Thus, the gene-gene interaction can be tested under
H0 : Γij = 0 for i, j = 1,2.

Denote Γ = (Γ11,Γ12,Γ21,Γ22)
T and its MLE as Γ̂ = (Γ̂11, Γ̂12, Γ̂21, Γ̂22)

T ,
where
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Γ̂ij = log

(
p̂ij p̂00

p̂i0p̂0j

)

− log

(
q̂ij q̂00

q̂i0q̂0j

)

= log(θ̂ij ) − log(ψ̂ij ),

and p̂ij = Rij /r and q̂ij = Sij /s. By the Delta method, omitting the high order
terms, the variances and covariances of Γ̂ij , i, j = 1,2, can be written as (Prob-
lem 8.1)

Cov(Γ̂ij , Γ̂kl) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
rpij

+ 1
rpi0

+ 1
rp0j

+ 1
rp00

+ 1
sqij

+ 1
sqi0

+ 1
sq0j

+ 1
sq00

, if i = k, j = l

1
rp00

+ 1
rpi0

+ 1
sq00

+ 1
sqi0

, if i = k, j �= l

1
rp00

+ 1
rp0j

+ 1
sq00

+ 1
Sq0j

, if i �= k, j = l

1
rp00

+ 1
sq00

, if i �= k, j �= l.

(8.12)

Denote the covariance matrix of Γ̂ as Σ = Cov(Γ̂ ) and its estimate by Σ̂ . Then the
Wald test is given by

WT = Γ̂ T Σ̂−1Γ̂ ∼ χ2
4 under H0.

The LRT, Wald test, and Score test are asymptotically equivalent, but the Wald
test has an advantage that it can be easily generalized to obtain more powerful tests
by incorporating underlying genetic models. Consider a test Ta = aT Γ̂ /(aT Σ̂a)1/2

for some prespecified weight vector a. For a given a, T 2
a has an asymptotic χ2

1
and is presumably more powerful if the weight vector is properly constructed. Let
H = (c11, c12, c21, c22)

T . Thus, Γ = Hγ and H is given by

H =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎦

.

Then γ = H−1Γ . If we construct a test based on bT γ with the weight vector b =
(xy, x, y,1)T corresponding to Table 8.3 and model (i), we can take a = (HT )−1b.
Other weight vectors b = (1/4,1/2,1/2,1)T and b = (1,1,1,1)T can be used for
models (ii) and (iii), respectively.

Another approach is to use maximum-type tests. Let 1k = (0, . . . ,0,1,0, . . . ,0)T

whose elements are 0 except for the kth position, which is 1 (k = 1,2,3,4).
Then, T

(1)
MAX = max1≤k≤4 |T1k |. The weight vector b = (xy, x, y,1)T is a func-

tion of x and y, which may not be known in practice. Thus, we can consider
T

(2)
MAX = max0≤x,y≤1 |Tb| or simply T

(3)
MAX = maxx,y=0,1/2,1 |Tb|. These maximum

tests are robust with respect to the weight vector. Using a single weight vector a, test
Ta is not robust when a is misspecified (cf. Sect. 6.3). The significance (p-value) of
the three maximum tests can be assessed by a permutation method.
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8.3.3 Relationship with the Log-Linear Model

The logistic regression model logit(fij ) can be linked to a log-linear model for the
case and control genotype counts (rij , sij ) given in Table 8.1. Let ci·, c·j and cij be
defined as before. Consider the following log-linear model for (rij , sij ):

log(qij ) = μ0 + α̃T ci· + β̃ T c·j + γ̃ T cij , (8.13)

log(pij ) = μ0 + α̃T ci· + β̃ T c·j + γ̃ T cij + α0 + αT ci· + βT c·j + γ T cij , (8.14)

where pij and qij are given in Table 8.7. Equation (8.13) models the expected con-
trol genotype counts and Eq. (8.14) models the expected case genotype counts. From
(8.14), we have

log(pij ) = log(qij ) + α0 + αT ci· + βT c·j + γ T cij = log(qij ) + logit(fij ).

Thus

logit(fij ) = log(pij ) − log(qij ). (8.15)

Note that

logit(fij ) − logit(fi0) − logit(f0j ) + logit(f00) = γ T cij = Γij .

Then, from (8.15),

Γij = log

(
pijp00

pi0p0j

)

− log

(
qij q00

qi0q0j

)

,

which is (8.11). Both the log-linear model and the logit model share the same pa-
rameters α, β and γ . However, the log-linear model can exploit the gene-gene inde-
pendence or linkage equilibrium by setting γ̃ T = 0.

8.3.4 Contrasting LD Measures

We have discussed the LD contrast and composite LD contrast tests in Sect. 7.4. The
two-locus representation (8.11) of the interaction effects enables us to view the two
LD contrast tests (7.22) and (7.23) as two interaction tests. In addition to the LD
contrast test discussed in Sect. 7.4, here we introduce interaction tests using other
LD measures. We will show that the composite LD contrast test is in fact a test of
comparing inter-locus covariances between cases and controls.

Let F be the inbreeding coefficient in cases. Then the probability of a case having
the haplotype pair {h,h′} is given by

P h′
h =

{
p2

h + Fph(1 − ph), h = h′

2(1 − F)phph′ , h �= h′,
where ph (ph′ ) is the haplotype frequency of haplotype h (h′) in cases. In controls,
the probability having the haplotype pair is given by
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Qh′
h = q2

hI(h=h′) + 2qhqh′I(h�=h′),

where qh (qh′ ) is the haplotype frequency of h (h′) in controls. Define

d1 = pABpab

pAbpaB

, d0 = qABqab

qAbqaB

,

for cases and controls, respectively, where pAB,pab,pAb,paB (qAB, qab, qAb, qaB)
are two-locus haplotype frequencies in cases (controls). These two quantities are
also measures of allele dependence or LD (see Eq. (7.8) in Sect. 7.2.1 where LD is
measured by the difference of pABpab and pAbpaB, but here quotient is used).

Let P h′
h (Qh′

h ) be the probability of the haplotype pair {h,h′} on the two homol-
ogous chromosomes for a case (control). From Table 7.5, we have the following
representations of the interaction effects

Γ11 = log

(
(P AB

ab + P Ab
aB )P ab

ab

P Ab
ab P aB

ab

)

− log

(
(QAB

ab + QAb
aB)Qab

ab

QAb
ab QaB

ab

)

= log

(
d1 + 1

2

)

− log

(
d0 + 1

2

)

+ O(F),

Γ12 = log

(
P AB

aB P ab
ab

P Ab
ab P aB

aB

)

− log

(
QAB

aB Qab
ab

QAb
ab QaB

aB

)

= log(d1) − log(d0) + O(F),

Γ21 = log

(
P AB

Ab P ab
ab

P Ab
Ab P aB

ab

)

− log

(
QAB

Ab Qab
ab

QAb
AbQ

aB
ab

)

= log(d1) − log(d0) + O(F),

Γ22 = log

(
P AB

AB P ab
ab

P Ab
Ab P aB

aB

)

− log

(
QAB

ABQab
ab

QAb
AbQ

aB
aB

)

= 2{log(d1) − log(d0)} + O(F),

where, in each expression, O(F) contains the remaining terms and O(F) = 0 when
F = 0. Because F is usually close to 0, all the interaction effects. Γij , in the logistic
regression model can be viewed as the difference of the LD coefficients d1 and d0 on
the logarithmic scale. If, on the other hand, F is relatively large, then all the O(F)

terms cannot be omitted and the interaction effects measure the difference of the LD
coefficients between cases and controls as well as the magnitude of the inbreeding
coefficient. In this case, one should use the method contrasting log-ORs discussed
in the previous section.

When F ≈ 0, we can test for gene-gene interaction by using the following test

χ2 = {log(d̂1) − log(d̂0)}2

V̂ar{log(d̂1) − log(d̂0)}
,

where

d̂1 = p̂ABp̂ab

p̂Abp̂aB

, d̂0 = q̂ABq̂ab

q̂Abq̂aB

,

and

V̂ar{log(d̂1) − log(d̂0)} = 1

p̂AB

+ 1

p̂Ab

+ 1

p̂aB

+ 1

p̂ab

+ 1

q̂AB

+ 1

q̂Ab

+ 1

q̂aB

+ 1

q̂ab

.
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This test is asymptotically equivalent to the LD contrast test given in (7.22) in
Chap. 7 and, under the null hypothesis of no interaction, has a chi-squared dis-
tribution with 1 degree of freedom. But it has the same drawback as the LD contrast
test that the haplotype frequencies need to be estimated separately for the cases and
controls.

Alternatively, we can code the three genotypes at each locus as 0, 1, 2 by counting
the minor alleles in the genotype, use the covariance between the two loci as a
dependence measure, and contrast the covariances between cases and controls as
a test of the gene-gene interaction (see Problem 8.7). Explicitly, let (ξ

(D)
i , η

(D)
i ),

i = 1,2, . . . , n be the two-locus genotypes for all n individuals in group D (D = 1
for the case group and D = 0 for the control group). Then the sample covariances
of the two loci are

Σ̂D = 1

n − 1

n∑

i=1

(ξ
(D)
i − ξ̄ (D))(η

(D)
i − η̄(D)), D = 0,1,

and the covariance contrast (CC) test is based on the Wald test

χ2
CC = (Σ̂1 − Σ̂0)

2

V̂ar(Σ̂1) + V̂ar(Σ̂0)
.

As we have noticed in Sect. 7.4.1, e.g. (7.21), the composite LD coefficient between
two loci equals half the covariance, i.e., Σ̂D = 2Δ̂D and Var(Σ̂D) = 4 Var(Δ̂D) for
D = 0,1. Thus, we have

χ2
CC = (Δ̂1 − Δ̂0)

2

V̂ar(Δ̂1) + V̂ar(Δ̂0)
,

which is a composite LD contrast test. Therefore, contrasting covariances between
cases and controls is equivalent to contrasting composite LD coefficients. Note that
the margins of genotype counts in cases and controls in Table 7.6 use different nota-
tion from those in Table 8.1. In Table 7.6, for example, r1+ is used, but in Table 8.1,
r1· is used. Using the notation in this chapter, we rewrite the composite LD contrast
in (7.23) as follows:

χ2
CC = χ2

CLDC = rs

n

(Δ̂1 − Δ̂0)
2

{p̂A(1 − p̂A) + D̂A}{p̂B(1 − p̂B) + D̂B} ,
where

Δ̂1 = 2R22 + R21 + R12 + R11/2

r
− 2

(
R2· + R1·/2

r

)(
r·2 + r·1/2

r

)

,

Δ̂0 = 2S22 + S21 + S12 + S11/2

s
− 2

(
S2· + S1·/2

s

)(
S·2 + S·1/2

s

)

,

p̂A = (R2· + S2· + R1·/2 + S1·/2)/n,

p̂B = (R·2 + S·2 + R·1/2 + S·1/2)/n,

D̂A = (R2· + S2·)/n − p̂ 2
A,

D̂B = (R·2 + S·2)/n − p̂ 2
B.
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Under the null hypothesis of no gene-gene interaction, χ2
CC = χ2

CLDC and both fol-
low χ2

1 asymptotically under H0.

8.3.5 Test for Second-Order Interactions for Multiple Loci

The gene-gene interaction effects can be treated as the difference of inter-locus de-
pendence measures between cases and controls. The existence of gene-gene inter-
actions can be tested using contrasting LD matrices, composite LD matrices, or any
other dependence measures between cases and controls.

We illustrate the use of composite LD matrices for m loci. Let Ψ1 and Ψ0 be
the composite LD matrices for cases and controls, respectively. They are half the
variance-covariance matrices of genotypes when the genotypes are coded as 0, 1, 2
for the three genotypes at all loci. We can construct tests based on the contrasting
matrices through Ψ1Ψ

−1
0 as follows

T = g(Ψ1Ψ
−1
0 ),

where typical choices of g function include the trace g(A) = tr(A), the determinant
g(A) = det(A), or the largest eigenvalue g(A) = λmax(A). Significance of T with
these choices of g can be assessed by a permutation method. However, these tests
may not be powerful since only eigenvalues are involved.

Note that any difference between Ψ1 and Ψ0 can be captured by the difference in
the direction of the eigenvectors and the difference in their magnitudes (i.e., eigen-
values). Based on this observation, a test to contrast the first l principal components
of the two matrices has been proposed, which compares the directions of the l prin-
cipal vectors

Z1 = tr(E1E
T
1 E0E

T
0 ),

where E1 and E0 are the matrices of the first l eigenvectors in cases and controls,
respectively. It can be shown that Z1 is the sum of squares of all pairwise inner
products of the eigenvectors in E1 and E0. For example, if l = 1, Z1 = (ET

1 E0)
2.

Another test is to compare the magnitudes of Ψ1 − Ψ0:

Z2 = tr{(Ψ1 − Ψ0)
T (Ψ1 − Ψ0)}.

These two tests can be used to test for gene-gene interactions among the m loci, and
their significances (p-values) may be assessed by a permutation procedure.

8.3.6 Representation of Higher-Order Interactions

In a case-control study, let x = (x1, . . . , xm)T denote m binary genetic factors. For
example, in an m-locus SNP study, x contains the indicator functions for presence
of minor alleles on all m loci. Assume the distributions of x among cases (D = 1)
and among controls (D = 0) are f1(x) and f0(x), respectively, i.e., x|D=1 ∼ f1(x)
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and x|D=0 ∼ f0(x). It follows that

Pr(D = 1|x) = f1(x)k

f1(x)k + f0(x)(1 − k)
= exp{α + l(x)}

1 + exp{α + l(x)} , (8.16)

where k = Pr(D = 1) is the disease prevalence, l(x) = log{f1(x)/f0(x)} is the log-
likelihood ratio, and α = log{k/(1 − k)} is the baseline odds. Generally, the null
hypothesis of no gene-gene interaction means that there is no quadratic term or
higher-order term in the log-likelihood ratio, i.e.,

l(x) = log{f1(x)/f0(x)} = h(aT x + b)

for some function h.
Denote the ORs of (u, v) among cases (D = 1) and controls (D = 0) as

ORu,v|D=d = Pr(u = 1, v = 1|D = d)Pr(u = 0, v = 0|D = d)

Pr(u = 1, v = 0|D = d)Pr(u = 0, v = 1|D = d)
,

where d = 0,1. We have used log-linear models to represent gene-gene interactions
in Sect. 8.3.3. The following representations generalize the results in Sect. 8.3.3.
The distribution of x can be represented by the following log-linear model

f1(x) = exp

{

α0 +
∑

αixi +
∑

i<j

αij xixj + · · · + α12...mx1x2 · · ·xm

}

,

f0(x) = exp

{

β0 +
∑

βixi +
∑

i<j

βij xixj + · · · + β12...mx1x2 · · ·xm

}

,

where, for k ≥ 2, αi1i2...il and βi1i2...il are measures of l-order dependence of com-
ponents of x. For example, for i < j ,

exp(αij ) = ORxi ,xj |y=1,xk=0,k �=i,j,D=1 and

exp(βij ) = ORxi ,xj |y=0,xk=0,k �=i,j,D=0

are the ORs of (xi, xj ) given that other variables xk , k �= i, j , are 0 in cases and
controls respectively and, for i < j < k,

exp(αijk) = ORxi ,xj |D=1,xk=1,xl=0,l �=i,j,k

ORxi ,xj |D=1,xk=0,xl=0,l �=i,j,k

,

exp(βijk) = ORxi ,xj |D=0,xk=1,xl=0,l �=i,j,k

ORxi ,xj |D=0,xk=0,xl=0,l �=i,j,k

.

Therefore

l(x) = α0 − β0 +
∑

(αj − βj )xj

+
∑

i<j

(αij − βij )xixj + · · · + (α12...m − β12...m)x1x2 . . . xm.

It follows that
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Pr(D = 1|x)

= exp(γ0 +∑j γj xj +∑i<j γij xixj + · · · + γ12...mx1x2 . . . xm)

1 + exp(γ0 +∑j γj xj +∑i<j γij xixj + · · · + γ12...mx1x2 . . . xm)
,

(8.17)

where γi1i2...il = αi1i2...il − βi1i2...il .
From (8.17), if αi1i2...il = βi1i2...il for all subscripts i1, . . . , il and all k ≥ 2, there

is no gene-gene interaction. On the other hand, if for some l ≥ 2, αi1i2...il �= βi1i2...il ,
then there exists l-order gene-gene interaction. This implies that the difference of
dependence parameters between cases and controls represents gene-gene interaction
effects.

8.4 Bibliographical Comments

Search for genetic factors in the etiology of complex diseases is one of the central
objectives in most GWAS (Hoh and Ott [122], Wang et al. [295], Cordell [44], and
Casci [26]). Success of such investigations relies on efficiency of analysis strategies
in discovering marginal effects as well as joint effects of several interacting genetic
markers. Single-locus analysis is widely used in GWAS, but this strategy may over-
look the genes that have strong joint effects but small marginal effects. Therefore,
analysis for multi-locus gene-gene interactions along with gene-environment inter-
actions, to be discussed in Chap. 10, has been increasingly employed in GWAS.

Association analysis that incorporates multi-locus gene-gene interactions can be
done using logistic regression models, which, however, may lose power if the num-
ber of loci is large or the sample size is small. Even for the case of two-locus inter-
actions, four parameters are needed in capturing the gene-gene interaction effects,
so that the LRT, Wald test, or Pearson’s chi-squared test are all 8-degree-of-freedom
tests for a global null hypothesis of no association. To increase the power to detect
gene-gene interactions, two-locus genetic models can be incorporated. The three
two-locus models in Table 8.4 can be found in Marchini et al. [179]. Alternatively,
constraints can be placed on the parameters to restrict the parameter space. Song
and Nicolae [252] studied models with a restricted parameter space for testing in-
teractions.

Another approach is to use the logic regression method, in which logical combi-
nations of genetic factors is used to reduce the number of predictors (Ruczinski et
al. [221], Schwender and Ickstadt [236], Kooperberg et al. [151]). The logic regres-
sion model discussed in Sect. 8.2.2 is based on Ruczinski et al. [221] and the logic
expression of Xc

1 ∧ (X2 ∨ X3) with permissible moves can be found in Kooperberg
and Ruczinski [152]. Machine learning methods provide another useful approach,
including the MDR (Ritchie et al. [216, 217]), the combinatorial partitioning method
(Nelson et al. [194] and Culverhouse et al. [50]) and the tree method (Chen et al.
[34]), to reduce the dimensionality of the parameter space. Machine learning meth-
ods are similar to logic regression models in searching for combinations of genetic
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variants, but the former are model-free and easier to implement. We only briefly dis-
cussed machine learning methods; much research has been done in this area recently
[160, 176, 189, 201].

There is no consensus on how interaction of multiple factors should be defined.
Cox [47] defines statistical interaction as a deviation from additivity of single-factor
effects. Let f1 and f2 be the probability distribution functions of the response vari-
able y under factors 1 and 2, respectively, and f2(y) = f1(y − τ), where τ is the
difference of the effects of the two factors. If τ depends on the initial level y, say,
τ = τ(y), of the response, then this implies a form of interaction. Otherwise, inter-
action of the two factors is absent and the two distributions have the same shape.
Since examination of distributional shape may not be efficient with limited sample
size, a common strategy is to consider variance only, that is, if the two variances
of response y under factors 1 and 2 are different, then there exists an interaction
with f1 and f2. If there exists a variance stabilizing transform of the response vari-
able such that the variances are equal under the two factors, then the interaction is
said to be removable. If such a transform does not exist, then the interaction is non-
removable, which is also called “essential interaction” (Scheffé [227] and Wu et al.
[305]).

For a case-control study, association analysis often compares the genotype prob-
ability distributions between cases and controls. We show in Sect. 8.3.6 that gene-
gene interaction effects using a logistic regression model can be treated as the dif-
ference between inter-locus log-ORs in cases and controls. Therefore, detection of
gene-gene interaction effects can be done by contrasting inter-locus dependence
measures between cases and controls. Contrasting log-ORs between cases and con-
trols is equivalent to the testing of gene-gene interaction effects using a logistic
regression model. This idea can be extended to contrast other dependence measures
such as the LD coefficients or composite LD coefficients. Zhao et al. [327] proposed
to detect gene-gene interactions by testing the LD coefficient to be zero for two un-
linked loci in the case group only. They noticed that for two unlinked loci in the
population, the LD coefficient can be regarded as zero and their test is in fact an LD
contrast test. Methods of association analysis by contrasting LDs can be found in
Nielsen et al. [194], Zaykin et al. [319], and Wang et al. [292]. In particular, the test
Z1 using the first several principal components of the two matrices Ψ1 and Ψ0 in
Sect. 8.3.5 is due to Zaykin et al. [319].

The log-linear model for gene-gene interactions using the expected genotype
counts of cases and controls in Sect. 8.3.3 was used by Umbach and Weinberg
[278] for detecting gene-environment interactions. The methods for testing gene-
gene interactions are similar to those for detecting gene-environment interactions,
especially if the environment has three exposure levels (factors). In this chapter,
we did not discuss Bayesian methods for detecting gene-gene interactions, some of
which can be found in Zhang and Liu [324], Wakefield et al. [286] and Ferreira et
al. [85]. Other references with general discussions of gene-gene interactions include
Moore et al. [184] and Foulkes [89].

We have focused on a discussion of statistical methods and models for detecting
gene-gene interaction, which is basically statistical interaction, rather than biolog-
ical interaction. The latter only requires that both genes have an effect, whether or
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not there is statistical interaction. It the two marginal effects exist, there must be a
biological interaction; in that case the only reason to test for statistical interaction
would be to determine the best way to quantify the effects. Wang et al. [293] and
Wang et al. [294] provide a good review of various gene-gene interactions, includ-
ing gene-environment interactions which we will discuss in Chap. 10, and discuss
further how to best describe biological interaction.

8.5 Problems

8.1 Show that linear transformations of x from (x0, x1, x2) to (0, (x1 − x0)/(x2 −
x0),1) and y from (y0, y1, y2) to (0, (y1 − y0)/(y2 − y0),1) do not affect the out-
come of inference using a logistic regression model (8.5).

8.2 Let pij = Pr(case|G(1) = G
(1)
i ,G(2) = G

(2)
j ), qij = 1 − pij , γ = (γ11, γ12, γ21,

γ22)
T be log ORs for gene-gene interactions.

1) Using the logistic regression model

logit(pij ) = α0 + αT ci· + βT c·j + γ T cij ,

show that

exp(γ T cij ) = pij q00 p(i−1)0 qi0 p0(j−1) q0j

qij p00 q(i−1)0 pi0 q0(j−1) p0j

and

exp(γ11) = exp(γ T c11),

exp(γ12) = exp(γ T c12)/ exp(γ T c11),

exp(γ21) = exp(γ T c21)/ exp(γ T c11),

exp(γ22) = exp(γ T c22) exp(γ T c11)

exp(γ T c12) exp(γ T c21)
.

2) Derive the asymptotic variances and covariances for exp(γ̂ T cij ), i, j = 1,2, us-
ing the Delta method.

8.3 Let l(θ) be the log-likelihood of (8.7) and θ̂ be the MLE. Derive

V̂ar(θ̂ ) ≈ −
{

∂2l(θ)

∂θ∂θT

∣
∣
θ̂

}−1

.

8.4 Derive the LRT, Wald test and Score test for H0 : αT = 0, βT = 0, γ T = 0. Note
that the Wald test can be directly obtained using θ̂ and its asymptotic covariance
matrix from Problem 8.3.

8.5 Derive the LRT, Wald test and Score test for no gene-gene interaction H0 : γ = 0
(γ is a scalar parameter) based on the model in Table 8.3.
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Fig. 8.2 Discriminating two normal populations

8.6 Derive the variance-covariance formulae in (8.12).

8.7 Interaction and quadratic discriminant function.
Suppose that x is a continuous random vector with x|D=1 ∼ N(μ1,Σ1) and

x|D=0 ∼ N(μ2,Σ2). Use Eq. (8.16) to show that if Σ1 �= Σ2, then there is an inter-
action using a logistic regression model and consequently, a quadratic discriminant
function is needed to best discriminate between the two groups (see Fig. 8.2).
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Chapter 9
Population Structure

Abstract Population stratification (PS) and correcting for PS are studied in
Chap. 9. The chapter starts with an introduction to population structure and its im-
pact on inference using the trend test. Different models of PS are given. Methods
to correct for PS are discussed, including genomic control, structural association,
principal component clustering , and multidimensional scaling plots. How to select
marker loci to correct for PS is discussed. Comparison of the several methods is
reported using simulations. How to simulate case-control data in the presence of PS
is given.

In epidemiology studies aiming to establish the association between a disease and
an exposure, confounding factors can often hinder establishing such an association
correctly. Similarly, to test the association between a disease and a genetic variant in
genetic epidemiology studies, confounding factors should be carefully addressed in
order to infer a true association. The most important confounding factor in genetic
epidemiology studies is the hidden population structure existing in a study sample
(see Sect. 2.4). Such population structure often defines latent subpopulations, and
allele (genotype) frequencies and disease prevalence may vary across the subpopu-
lations and/or non-random mating may occur at the subpopulation level. Population
structure can cause spurious association. If population structure is ignored in the
analysis, association may be detected in a mixed population even if there is no as-
sociation at the subpopulation level.

In this chapter, we begin with an introduction to population structure from a hu-
man genetics point of view, and a discussion of the effect of population structure
in genetic association studies, followed by an introduction to methods for control-
ling the effect of population structure, including genomic control, association using
STRUCTURE, principle components and clustering methods, and a multidimen-
sional scaling method. Comparisons of some of these methods will also be discussed
using simulations. Other methods will be briefly mentioned in the Bibliographical
comments.

G. Zheng et al., Analysis of Genetic Association Studies,
Statistics for Biology and Health,
DOI 10.1007/978-1-4614-2245-7_9, © Springer Science+Business Media, LLC 2012
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9.1 Population Structure

In humans, mating is often not random between subpopulations because of geo-
graphical and language barriers. As a result, the genetic variants have different
allele frequencies across the subpopulations because of random drift. Such allele
frequency differences at the subpopulation level result in population stratification.
In contrast, genetic markers can be used to cluster a human population into sub-
populations. The largest component of genetic structure in human populations falls
along geographic/continental lines, as suggested by studies using either microsatel-
lite markers or dense SNPs. It has been suggested that there are six major clusters
detected by using genome-wide genetic markers. Among them are the five major
geographic regions: Europeans/West Asians (whites), sub-Saharan Africans, East
Asians, Pacific Islanders, and Native Americans. The correspondence between the
self-reported racial/ethnic categories and the clusters defined by the genetic mark-
ers is near-perfect. Further studies using dense SNPs lead to similar conclusions,
although the subpopulations often have mixed ancestries from major geographic
regions. Figure 9.1 presents the worldwide human population structure based on
938 unrelated individuals from 51 populations analyzed using 650,000 SNPs. As
suggested, mixed ancestries of the six founding populations can be observed for
the samples from these 51 populations. Such mixed ancestry can be interpreted
by either recent population admixture or shared ancestry before the divergence of
two populations. A typical example of recent population admixture is provided
by African Americans, whose admixture is mainly due to the recent admixture
process between Africans and Europeans. In general, it has been consistently re-
ported that African American genomes consist of around 80% African ancestry and
20% European ancestry, although much variation can be observed when samples
are drawn from different regions in the United States. European Americans were
usually considered as one homogenous population several years ago. With dense
genetic markers available, population structure has been reported recently within
European Americans, although such population structure is more difficult to detect
than the population structure existing at the continental level. In fact, recent studies
have clearly demonstrated that population structure can be detected among samples
distanced by only several hundred kilometers.

Population subdivision results in inbreeding because the individuals in a subpop-
ulation can share common ancestors even if random mating occurs in this subpop-
ulation. Let F be Wright’s inbreeding coefficient, which is defined as the reduction
in heterozygosity expected in a population with random mating. Let pi be the fre-
quency of allele Ai in the population (i = 1,2). The frequencies of genotypes are
given by

Pr(AiAj ) =
{

Fpi + (1 − F)p2
i if i = j

2(1 − F)pipj if i < j.
(9.1)

In other words, population structure will result in HWD, or correlation of the two
alleles in a genotype. Equation (9.1) can be used to describe either an inbreeding
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Fig. 9.1 Individual ancestry and a population dendrogram. (A) Region ancestry inferred by the
frappe program. Each individual is represented by a vertical line. (B) Maximum likelihood tree of
51 populations (reproduced from Li et al. [166])

population or cryptic relatedness (Sect. 2.4). It can be shown that the correlation
coefficient of the two alleles is F (Problem 9.1). Let X be the number of A alleles in
an individual’s genotype. Then E(X) = 2p1, which is not dependent on F . However,
the variance Var(X) = 2p1(1 − p1)(1 + F) is inflated by a factor of 1 + F , which
is 1 when HWE holds (F = 0).

We consider population structure that arises from three models (Table 9.1): two
models of population stratifications (PS-I and PS-II) and cryptic relatedness (CR),
which can be described as follows. One population stratification (PS) model is de-
noted as PS-I, which does not require the disease prevalence to vary across the sub-
populations. The other PS model, PS-II, requires both differential allele frequency
and differential disease prevalence. Because PS is often hidden, it causes cases and
controls to be sampled disproportionally with respect to the sizes of the subpopula-
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Table 9.1 Population
structure: population
stratification (PS-I or PS-II)
and cryptic relatedness (CR).
J is the number of
subpopulations

Population
structure

At the subpopulation level

J Allele frequency Disease prevalence HWE

PS-I ≥ 2 varies – Yes

PS-II ≥ 2 varies varies Yes

CR 1 – – No

tions. PS-II has more impact on the analysis of case-control data than PS-I. Thus,
in the following, PS refers to PS-II. In PS, subpopulations are defined by a discrete
variable with J distinct values. In the next section, we describe subpopulations that
can be defined by a continuous variable. An admixed population is also denoted as
PS, and then J refers to the number of discrete ancestral subpopulations. In both
PS-I and PS-II, we assume HWE proportions hold in each subpopulation. On the
other hand, HWE is not relevant if inference is genotype-based rather than allele-
based. However, if we restrict attention to a single subpopulation, F �= 0. This type
of population structure is CR.

9.2 Impact of Population Stratification

9.2.1 A Model for Population Stratification

Because random mating may not be the case within the subpopulations, where cul-
ture is inherited as a result of different environmental effects, population structure
can result in confounding effects in genetic association analysis. In Sect. 2.4, a sim-
ple model was introduced to describe the association between a genetic marker and
a disease created by PS. Here we introduce a general population genetic model,
which leads to spurious genotype-phenotype associations on account of PS.

Consider an association study in which individuals are sampled from a continu-
ous geographical space Z, which is directly correlated with PS. We are interested
in testing for association between a phenotype Y and a genotype G at a marker of
interest. Suppose the phenotype is binary with Y = 1 as a case and 0 a control. We
further assume that the genotype and phenotype of an individual are conditionally
independent given that the individual is sampled at position z ∈ Z, that is, there is
no direct or indirect association between Y and G for a fixed z. Mathematically, this
is equivalent to

Pr(G|z,Y = 1) = Pr(G|z,Y = 0) = Pr(G|z), (9.2)

where Pr(G|z,Y = 1) and Pr(G|z,Y = 0) are the genotype frequencies at the point
z for a case and a control, respectively, so the genotype and phenotype are indepen-
dent conditional on the given region.

In an association study, we may not know where the cases and controls are sam-
pled from. Thus, the null hypothesis H0 can be written as

Pr(G|Y = 1) = Pr(G|Y = 0). (9.3)
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If H0 is rejected based on (9.3) when (9.2) holds, the association is called spurious
association. Note that if z ∈ Z is a constant (both cases and controls are sampled
from the same geographical region or from the same genetic background), (9.2)
always guarantees (9.3) and spurious association will not occur.

To understand how spurious association can affect the analysis, we calculate
the difference Δ = Pr(G|Y = 1) − Pr(G|Y = 0) when (9.2) holds. Let γ (z) be
the probability density function of sampling an individual at z ∈ Z. Denote the
probability of observing Y at z as Pr(Y |z). Then the marginal distribution of Y

is Pr(Y = y) = ∫
z

Pr(Y = y|z)γ (z)dz for y = 0,1. Using Bayes theorem,

Pr(z|Y = y) = Pr(Y = y|z)γ (z)
∫
z

Pr(Y = y|z)γ (z)dz
. (9.4)

Using (9.2) and (9.4), it can be shown that the difference Δ can be written as
(Problem 9.2)

Δ =
∫
z

Pr(G|z)Pr(Y = 1|z)γ (z)dz − {∫
z

Pr(Y = 1|z)γ (z)dz}{∫
z

Pr(G|z)γ (z)dz}
{∫

z
Pr(Y = 1|z)γ (z)dz}{1 − ∫

z
Pr(Y = 1|z)γ (z)dz} ,

(9.5)

which suggests that Δ is dependent on the sampling scheme γ (z), and spurious
association can occur if Pr(G|z) does not satisfy

∫

z

Pr(G|z)Pr(Y = 1|z)γ (z)dz =
{∫

z

Pr(Y = 1|z)γ (z)dz

}{∫

z

Pr(G|z)γ (z)dz

}

.

In the above derivations, G stands for a genotype. The results still hold when G is
an allele. In this case, the numerator in (9.5) is equivalent to the covariance between
Y and G. Thus, (9.5) suggests that spurious associations can occur when Y and G

are correlated with respect to the sampling scheme γ (z).
The above results for a continuous Z can also be applied to a discrete popula-

tion. Suppose that the space Z consists of J disjoint subpopulations denoted by
Z1,Z2, . . . ,ZJ , respectively. The genotype frequency and disease prevalence are
constant within the subpopulations, so that Pr(G|Zj ) = pj and Pr(Y = 1|Zj ) = kj ,
j = 1, . . . , J . Denote γj = ∫

Zj
γ (z)dz with

∑J
j=1 γj = 1. Similar to (9.5), Δdisc =

Pr(G|Y = 1) − Pr(G|Y = 0) can be written as

Δdisc =
∑J

j=1 pjkjγj − (
∑J

j=1 kjγj )(
∑J

j=1 kjγj )

(
∑J

j=1 kjγj )(1 −∑J
j=1 kjγj )

.

Thus, there is no spurious association if and only if

J∑

j=1

pjkjγj =
(

J∑

j=1

pjγj

)(
J∑

j=1

kjγj

)

. (9.6)
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Fig. 9.2 |Δdisc| (indicated as
delta) as a function of k2
when p1 = 0.2, p2 = 0.4,
k1 = 0.1, and γ1 = 0.5

Fig. 9.3 |Δdisc| (indicated as
delta) as a function of γ1
(indicated as gamma1) when
p1 = 0.2, p2 = 0.4, k1 = 0.1,
and k2 = 0.2

In the special case of J = 2, with γ1 �= 0 and γ2 �= 0, we have

(p1 − p2)(k1 − k2) = 0.

The above equation implies that, for J = 2, spurious association will occur if both
genotypic frequency and disease prevalence vary across the subpopulations pro-
vided both subpopulations are sampled. For J ≥ 3, varying allele genotype frequen-
cies and disease prevalence across the subpopulations does not necessarily produce
spurious association. For example, one may find values of pi , ki and γi that satisfy
(9.6) for J = 3.
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Table 9.2 Genotype counts
of case-control samples for a
single marker with alleles A

and B . Genotypes are
(G0,G1,G2) = (AA,AB,BB)

G0 G1 G2 Total

Cases r0 r1 r2 r

Controls s0 s1 s2 s

Total n0 n1 n2 n

The absolute difference |Δ| or |Δdisc| can be used to measure the degree to which
the null hypothesis is violated. From (9.4) and (9.6), the severity of the violation
is dependent on the disease prevalence and allele (or genotype) frequencies in the
subpopulations. For J = 2, Fig. 9.2 presents the relationship between |Δdisc| and
the disease prevalence in the two subpopulations. It shows that the degree of vio-
lation increases as the difference of disease prevalence in the two subpopulations
increases when the other parameters are fixed. The contribution of a subpopulation
is presented in Fig. 9.3.

9.2.2 Impact on Trend Tests

The CATT (or the trend test) is commonly used to test association (Sect. 3.3). Let
the case-control data at a diallelic marker be as displayed in Table 9.2.

The trend test can be in general written as a difference in weighted averages of
the estimates of genotype frequencies between cases and controls

Tn =
2∑

i=0

ωip̂i −
2∑

i=0

ωiq̂i ,

where the weights ωi (i = 0,1,2) are known (often determined by the genetic
model), and p̂i = ri/r and q̂i = si/s are estimates of pi = Pr(Gi |case) and qi =
Pr(Gi |control), respectively. Under the null hypothesis of no association H0, we
have pi = qi = Pr(Gi) for i = 0,1,2. Denote μn = EH0(Tn) and σ 2

n = VarH0(Tn)

under H0. Then, in the absence of PS,

μn =
2∑

i=0

ωipi −
2∑

i=0

ωiqi = 0, (9.7)

σ 2
n = (1/r + 1/s)ωT Ωω, (9.8)

where ω = (ω0,ω1,ω2)
T , and Ω is a 3 × 3 matrix with the (i, i)th element pi(1 −

pi) and the (i, j)th element −pipj (i �= j ). Thus, asymptotically,

Tn − μn

σn

= Tn

σn

∼ N(0,1) under H0. (9.9)
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In the presence of PS, however, (9.7) and (9.8) are no longer valid, nor is
the asymptotic distribution for the trend test (9.9). Given PS-II (Table 9.1), μ∗

n =
EH0(Tn|PS) �= μn = 0 and σ ∗2

n = VarH0(Tn|PS) �= σ 2
n . Therefore, Tn ≈ N(μ∗

n, σ
∗2
n )

when n is large enough. Unfortunately, because the PS is hidden, μ∗
n and σ ∗

n cannot
be estimated using the data in Table 9.2.

9.3 Correcting for Population Stratification

We have observed that spurious associations can be obtained because of PS. Meth-
ods to eliminate spurious associations have been recently developed and this re-
search area is still active. All the existing methods to correct for PS use genomic
data to adjust a test statistic.

9.3.1 Genomic Control

One popular and simple approach to control for PS is the genomic control (GC)
approach. For the data presented in Table 9.2, we use a simple trend test to illustrate
the GC method. The trend test is given by

Z2
CATT = n{n(r1 + 2r2) − r(n1 + 2n2)}2

r(n − r){n(n1 + 4n2) − (n1 + 2n2)2} , (9.10)

which asymptotically follows a χ2
1 distribution under H0 in the absence of PS.

Note that the numerator of (9.10) is proportional to the difference of the frequen-
cies of allele B between cases and controls,

n(r1 + 2r2) − r(n1 + 2n2) = rs{(r1 + 2r2)/r − (s1 + 2s2)/s}. (9.11)

In Sect. 3.4, we showed that Z2
CATT is asymptotically equivalent to the allele-based

test, Z2
ABT, which is based on the right hand side of (9.11). The trend test in (9.10)

is also asymptotically optimal (most powerful) under the ADD model. Both Z2
CATT

and Z2
ABT share the same numerator but have different denominators, where Z2

ABT
estimates the variance of the numerator under HWE. The variance estimates in both
Z2

CATT and Z2
ABT are often underestimated in the presence of population structure.

Thus, they may have inflated Type I error rates under H0. We focus on the numerator
given by (9.11) and the trend test.

Following Sect. 9.2.2, given the PS, ZCATT = Tn/σn ∼ N(μ∗
n/σn, (σ

∗
n /σn)

2)

when n is large enough and r/n �= 0 or 1 as n → ∞. Thus, (ZCATT − μ∗
n/σn)/

(σ ∗
n /σn) ∼ N(0,1), where μ∗

n/σn is the bias and σ ∗2
n /σ 2

n is the variance distortion
or the variance inflation factor (VIF). Expressions for σ ∗

n depends on the type of
the population structure underlying the data (Table 9.1). To apply the GC method,
however, one does not need to know the true type of structure. Of course, the GC
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method may work better for some types of population structure than others, which
will be discussed later.

It is impossible to estimate the VIF using the data in Table 9.2. However, it can be
estimated when a set of null markers that are unlinked to disease loci is available. In
current GWAS, 500,000 to more than a million SNPs are genotyped, from which the
null markers for controlling PS can be selected. We consider the ideal case that the
VIF is a constant for all markers (the candidate marker and null markers). In general,
several conditions are required for the VIF to be roughly constant: i) the markers
under study have similar mutation rates; ii) there is no strong or subpopulation-
specific selection; and iii) F should be close to a constant across the markers with
respective to the underlying population structure. For modeling CR, the VIF is due
to kinship coefficients, which are not dependent on individual loci. Thus, in this
case, it is reasonable to assume a constant VIF.

Under the above assumptions, denote the values of the trend test at M unlinked
markers as Z2

CATT,m, m = 1, . . . ,M . Then the VIF, denoted as λ, can be estimated
by

λ̂ = median{Z2
CATT,1, . . . ,Z

2
CATT,M}/0.456,

the ratio of the sample median of the observed Z2
CATT,m, m = 1, . . . ,M to that of the

theoretical median of χ2
1 . When the sample size is large enough, under H0, λ̂ ≈ 1 if

there is no PS and λ̂ ≈ σ ∗2
n /σ 2

n when PS is present. If λ̂ is much larger (or smaller)
than 1, the uncorrected trend test would have inflated (or deflated) Type I error
rate under H0, which affects the apparent power under H1. To correct for PS, we
re-scale the trend test to Z2

CATT/̂λ, which asymptotically follows χ2
1 under H0. This

adjustment process is referred to as GC. It has also been suggested that in estimating
λ the median can be replaced by the mean. However, this can overestimate the VIF
when there are multiple genetic variants contributing to a phenotypic variation.

Although applying the GC method does not need knowledge of the substructure
of the population, an analytical expression for λ would help understand the impact
of PS on the trend test. Consider PS-II given in Table 9.1. Let Xi (i = 1, . . . , r)
be the number of B alleles in the ith case and Yj (j = 1, . . . , s) the number of B

alleles in the j th control. Assume there are J discrete subpopulations, as discussed
in Sect. 9.2.1. Let a1, . . . , aJ and b1, . . . , bJ denote the sample sizes of cases and
controls from each of the J subpopulations with

∑J
j=1 aj = r and

∑J
j=1 bj = s.

We assume r = s for simplicity.
The trend test Z2

CATT is proportional to the square of T =∑i Xi −∑j Yj . Under
H0, the variance of T depends on whether or not the cases and controls are from the
same subpopulation. Specifically,

Var(T ) =
r∑

i=1

Var(Xi) +
s∑

j=1

Var(Yj ) + 2
∑

i<l

Cov(Xi,Xl) + 2
∑

j<l

Cov(Yj , Yl)

− 2
∑

i

∑

j

Cov(Xi, Yj ).
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From (9.1), we have Var(Xi) = Var(Yj ) = 2p(1 − p)(1 + F), where p is the
population frequency of allele B . We assume that there is no correlation for a
pair of genotypes from two different subpopulations. Cov(Xi,Xl) = Cov(Yj , Yl) =
Cov(Xi, Yj ) = 4Fp(1 − p) for i �= l and j �= l when the samples are drawn from
the same subpopulations. Then, taking into account the J subpopulations,

Var(T ) = 4p(1 − p)

[

r(1 + F)

+ 4F
∑

j

{aj (aj − 1) + bj (bj − 1) − 2ajbj }
]

. (9.12)

It can be seen that Var(T ) reaches its maximum 4rp(1 − p){1 + F(2r − 1)} when
all cases are from one subpopulation and all controls are from another, and that it
reaches its minimum 4rp(1 − p)(1 − F) when aj = bj for all j = 1, . . . , J (Prob-
lem 9.4). In the trend test, when the PS is ignored, we estimate the variance as
Var(T ) =∑i Var(Xi) +∑j Var(Yj ) = 4rp(1 − p)(1 + F). Thus, the VIF is given
by

λ = Var(T )

4rp(1 − p)(1 + F)
, (9.13)

where Var(T ) is given in (9.12), and is inflated most when cases and controls are
from distinct subpopulations. In this case, λ can achieve its maximum {1 + F(2r −
1)}/(1 + F). Alternatively, λ reaches its minimum (1 − F)/(1 + F) when disease
status is independent of the subpopulation membership.

The GC approach is computationally simple, does not need knowledge of the
number of subpopulations J , and allows for a large J . It can work effectively with
a small number of null markers. In some simulations and real examples, M < 50
can remove the impact of PS. It can also be used with pooled DNA samples instead
of using individual genotypes, which can be substantially less expensive. However,
there are some limitations of using the GC method, e.g., λ may be either overes-
timated or underestimated, resulting in either reducing statistical power or Type I
error rate not being properly controlled. It re-scales the trend test but does not di-
rectly correct the bias due to PS.

When J = 1 and F �= 0 (the CR in Table 9.1), VIF λ �= 1 but the bias is 0.
Therefore, the GC method is more effective in correcting for CR than for PS-II.
Even though more popular methods to correct for PS have been developed lately,
the VIF is still the most important simple measure to indicate whether or not there
is PS, or if it has been corrected for either by the GC or an other method.

Note that the VIF given in (9.13) is independent of the allele frequency of the
candidate marker (p cancels out). Thus, there is no restriction on the allele frequen-
cies of the null markers. However, this is only true when the trend test for the ADD
model is used. If the trend tests for other genetic models are used, e.g., the REC or
DOM models, the VIF depends on p. Then, the GC method using null markers with
arbitrary allele frequencies may not be effective. We assumed the same F for cases
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and controls. For the CR given in Table 9.1, if cases are more similar than controls,
then one may use F1 for cases and F2 for controls with F1 �= F2. Then, similarly to
the calculations given before, it can be shown that (see Problem 9.5) when r = s

Var(T ) = 2rp(1 − p){2 + (F1 + F2)(2r − 1)}.

9.3.2 Structural Association

With several hundred thousand genetic markers genotyped across the genome, an
individual’s membership in a particular subpopulation can be inferred with high
confidence. It is typically assumed that there is no population structure within
each subpopulation. Therefore, after each individual membership has been in-
ferred, any statistical method can be applied within each subpopulation to have
a correct Type I error rate. This process is referred to as the Structural Asso-
ciation (SA) method. The subpopulation memberships of individuals can be in-
ferred using a software called STRUCTURE, which is available free of charge
(http://pritch.bsd.uchicago.edu/structure.html). Here we present the SA method for
testing association. The SA method tests H0 of no association between a candidate
marker and a disease at the subpopulation level given in (9.2), rather than the over-
all H0 indicated in (9.3). Thus, any association observed at the subpopulation level
cannot be due to PS. After the subpopulations and the memberships have been in-
ferred, the usual association test statistics, e.g., the trend test, can be applied at the
subpopulation level.

Let G denote the set of genotypes of individuals at the candidate marker, P0 and
P1 be the allele frequencies in the subpopulations under H0 and H1, respectively,
and Q be a vector of genetic background measures of all individuals in the sample.
Let Pr0(G;P0,Q) and Pr1(G;P1,Q) be the likelihoods for observing the genotypes
under H0 and H1, respectively, given the genetic background Q. The likelihood ratio
test statistic is given by

Λ(G) = Pr1(G; P̂1, Q̂)

Pr0(G; P̂0, Q̂)
,

where P̂0, P̂1 and Q̂ are the estimates of P0, P1 and Q, respectively. Note that the
genetic background Q is estimated independently of the candidate marker.

Similar to the GC method, when a set of unlinked null markers have been geno-
typed, STRUCTURE, a Bayesian clustering method, or the EM algorithm can be
applied to determine both the number of subpopulations J and the proportions of an
observed individual’s ancestry from the subpopulations. Specifically, assume that
individuals inherit their marker alleles from a pool of J subpopulations (where
J may be unknown). The allele frequencies at each locus within each subpopu-
lation are assumed to be unknown and need to be estimated. Let qmj denote the
proportion of the mth genome (m = 1, . . . ,M) originating from the j th subpopu-
lation. Based on the genotypes of all n individuals at the M unlinked null mark-
ers, either a MCMC approach or EM algorithm can be applied to estimate J and

http://pritch.bsd.uchicago.edu/structure.html
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Q = {qmj : m = 1, . . . ,M; j = 1, . . . , J }, and the allele frequency matrix in the sub-
populations. Either microsatellite markers or SNPs can be used to produce reliable
estimates of J and Q.

After the estimate of Q is obtained, denoted as Q̂, one estimates P0 and P1

under H0 and H1, respectively. An EM algorithm can be applied to estimate P0

and P1, denoted as P̂0 and P̂1, respectively. Let pd
jl denote the lth allele frequency

(l = 1,2) at the candidate marker in the j th subpopulation among individuals with
disease status d . Under H0, pd

jl is not dependent on disease status d . Thus, the allele

frequency matrix in all subpopulations is P0 = {pjl : j = 1, . . . , J ; l = 1,2}. Let gh
i

denote the ith individual’s hth allele at the candidate marker (h = 1,2). Here we
assume the two alleles of an individual are independent and their order in a genotype
is not distinguished. Then

Pr0(g
h
i = l|P̂0, Q̂, d) =

J∑

j=1

q̂ij p̂j l, l = 1,2; h = 1,2; i = 1, . . . , n. (9.14)

We further assume that HWE holds in each subpopulation and that the likelihood
Pr0(G; P̂0, Q̂) is proportional to the product of Pr0(g

h
i = l; P̂0, Q̂, d) for the alleles

of all n individuals. Under H1, the allele frequency matrix is dependent on the dis-
ease status d , and P1 = {pd

jl : j = 1, . . . , J ; l = 1,2}, which has twice the number
of parameters under H0. Similarly,

Pr1(g
h
i = l|P̂1, Q̂, d) =

J∑

j=1

q̂ij p̂
d
j l, l = 1,2; h = 1,2; i = 1, . . . , n. (9.15)

The likelihood Pr1(G; P̂1, Q̂) is proportional to the product of Pr1(g
h
i = l; P̂1, Q̂, d)

for all the alleles of n individuals. Given the estimated genetic backgrounds Q̂, the
EM algorithm is applied to estimate P0 and P1 (Problem 9.6).

The p-value for testing H0 using the SA method can be obtained by the following
simulation procedure. Generate a new genotype at the candidate marker under H0

for each individual as an independent random sample drawn from Pr0(·|P̂0, Q̂).
Repeat this procedure L times and obtain genotype data sets G(1), . . . ,G(L). The
empirical p-value is given by

p-value = 1

L
#{1 ≤ l ≤ L : Λ(G(l)) > Λ(G)},

where #{A} denotes the number of members in set {A}. Simulation studies show
that this SA method can control the PS provided that the number of unlinked mark-
ers M is large enough, and that it is often more powerful than a family-based TDT,
which is based on trio data (parents and a diseased offspring). One of the difficulties
is the estimation of the number of subpopulations J , especially when there is a large
number of subpopulations. Compared to the GC method, the SA method is much
more computationally demanding, and it does not correct for CR (see Table 9.1).
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The assumption of HWE, required for the independence of two alleles in a geno-
type, can be relaxed. The genetic background matrix Q is likely dependent on the
disease status and incorporating this information may improve the performance of
the SA method. The methods that we present in the next two sections would be more
efficient than the SA method to correct for PS.

9.3.3 Principal Components and Clustering

Principal components (PCs) are often used to summarize high dimensional data
without losing much information. PCs are ideal for summarizing the genetic markers
across the genome and have been used for characterizing population differences.
Studies suggest that the map produced by the first two PCs calculated from genomic
data is highly correlated with latitudes and altitudes of worldwide populations. Thus
the map produced by PCs may reflect the environmental and cultural variation in
worldwide populations, as well as population migration. Recently, PCs have further
been successfully applied to correcting PS in genetic association studies. The idea
behind using PCs of genetic marker data is that an individual’s genetic background
can be represented by his/her genetic markers, which can be summarized using the
principal components of marker data. In other words, individuals who have similar
PC values likely come from the same subpopulation. A genetic association analysis
conditional on PCs is equivalent to an analysis conditional on subpopulations, which
will reduce the chance of producing spurious association.

A natural way to incorporate the PCs into a statistical model is based on a regres-
sion framework. For instance, we can model the association between a phenotype
Yi and genetic marker gi for the ith individual using a generalized linear model

f (E(Yi)) = β0 + β1gi + μ(Ti) = Gi
T β + μ(Ti), (9.16)

where f (E(yi)) is a link function, β = (β0, β1)
T is the parameter vector, Gi =

(1, gi)
T , where gi is a candidate marker to test, Ti is an individual’s PCs obtained

from the marker data, and μ(Ti) is a function of the PCs. Several methods have been
proposed to model μ(Ti), including a mixture model in logistic regression, a semi-
parametric model using kernel smoothers, and a linear function of Ti . A common
advantage of these models is that the effect of PS on a phenotype Y is taken care of
by the function μ(Ti) in the logistic regression model.

Consider a case-control study with M unlinked null markers for controlling PS.
Let Xi = (xi1, . . . , xiM)T , i = 1, . . . , n = r + s, be a vector of the ith individual’s
marker data, where xim is the genotype value of the mth marker for the ith individual
and its value is 0, 1 or 2, representing the number of A alleles in a genotype. The
sample covariance matrix of marker data is

Σ = Cov(X) =
n∑

i=1

(Xi − X̄)(Xi − X̄)T , (9.17)
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Fig. 9.4 Histograms of the
first two PCs when samples
were simulated from two
different populations (A and
B) and when samples were
simulated from an admixed
population with two ancestral
populations (C and D)

which is an M × M matrix. Let ej be the j th eigenvector corresponding to the j th
largest eigenvalue of Σ and denote the corresponding PC for the ith individual as
tij = (Xi − X̄)T ej . Let Ti = (ti1, . . . , tiq ) be the first q PCs, where q ≤ M . All
the PC-based approaches are based on Ti . In the following sections, we discuss the
PC-based approaches in detail.

Mixture Model

When a population consists of a mixture of subpopulations, it is natural to consider
each PC of the marker data as coming from a mixture of several normal distributions.
Figure 9.4 demonstrates the histograms of the first and second PCs when samples
were simulated from two different populations (Fig. 9.4 A and B) and when samples
were simulated from an admixed population with two parental populations (Fig. 9.4
C and D). It can be observed that the individuals from two different populations are
clustered into two groups by the first PC. When individuals are sampled from an
admixed population with two ancestral populations, the first PC can fit a mixture of
two normal distributions. The second PC seems to fit a normal distribution well for
both simulated datasets.

The distribution of PCs suggests we can use a mixture model to model pop-
ulation structure. Using the same notation as before, if there are J subpopula-
tions, the PCs are assumed to follow approximately a mixture of J normal dis-
tributions. Because the PCs are independent, conditional on the j th subpopula-
tion we can assume that the distribution of Ti is the product of q normal distribu-
tions, f (Ti |j) =∏q

l=1 φ(til |μjl, σ
2
j l), where φ(til |μjl, σ

2
j l) is the density function

N(μjl, σ
2
j l), and q is the number of PCs to use for controlling PS. The unconditional

density function of Ti is

f (Ti) =
J∑

j=1

λj

q∏

l=1

φ(til |μjl, σ
2
j l),
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where λj is the probability that an individual originates from the j th subpopulation,
and

∑
λj = 1.

Given an individual is from the j th subpopulation, a logistic regression model is
applied:

log

{
Pr(Yi = 1|Gi, j)

Pr(Yi = 0|Gi, j)

}

= GT
i β + δj , (9.18)

where δj indicates the effect of the j th subpopulation subject to δJ = 0. It is as-
sumed that the effect of the candidate gene is the same across subpopulations, but
this is not necessary, because we can use a population specific βj .

The likelihood for the observed data Yi = yi is then

L =
n∏

i=1

f (yi |Gi,Ti) =
n∏

i=1

{∑J
j=1 λj Pr(yi |Gi, j)f (Ti |j)

f (Ti)

}

,

where Pr(yi |Gi, j) is specified by (9.18). To test the null hypothesis H0 : β1 = 0,
the LRT can be applied. The Bayesian Information Criterion (BIC) can be used to
estimate the number of subpopulations.

A question that arises from the PC analysis is how many PCs should be used
in controlling for PS. This question can be modified to ask which PCs contribute
ancestry information. From the analysis of the second PC, we observed that a PC
distributes as a normal distribution if it does not contribute any ancestry information.
We can thus test whether or not a PC deviates from a normal distribution by the
Kolmogorov-Smirnov test.

Semi-parametric Approach

We use the same notation for a case-control design as in the previous section using
the mixture model. A semi-parametric logistic model, denoted as QualSPT, can be
used to model the relation between a trait and candidate gene locus with genetic
background:

log

{
Pr(yi = 1|Gi,Ti)

Pr(yi = 0|Gi,Ti)

}

= GT
i β + μ(Ti),

where μ(Ti) is a one-dimensional unknown smoothing function and Ti is q-
dimensional. The model is semi-parametric because μ = μ(Ti) is unspecified. Un-
der this model, the null hypothesis of no association is written as H0 : β1 = 0.

The log-likelihood function is

l(β,μ) =
n∑

i=1

l(β,μ(Ti);Gi,yi)
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=
n∑

i=1

[yi{GT
i β + μ(Ti)} − log{1 + exp(GT

i β + μ(Ti))}].

Several methods are available to estimate the parameter β and the non-parametric
function μ(·). The QualSPT statistic is based on the LRT statistic

Λ = L(β̂, μ̂1(Ti))

L(0, μ̂0(Ti))
,

where μ̂0(Ti) and μ̂1(Ti) are the MLEs of μ(·) under H0 and H1, respectively, and
β̂ is the MLE of β under H1. Under H0, the QualSPT LRT follows a chi-squared
distribution with degrees of freedom equal to the length of the vector β .

For a given smoothing parameter h and a given kernel function K(·), an iterative
estimation procedure for (β,μ) contains the following two steps:

Step 1. For a given β̂(m), η is solved from the following equation

n∑

i=1

K

(
Ti − T

h

)
∂

∂η
l(β̂ (m), η;Gi,yi) = 0.

Denote the solution of η at T = Ti as μ̂(m)(Ti) (i = 1, . . . , n).
Step 2. Solve β from the equation

n∑

i=1

∂

∂β
l(β, μ̂(m)(Ti);Gi,yi) = 0,

which is denoted as an updated estimate β̂ (m+1).

The algorithm repeats the above two-step process until convergence occurs. Dif-
ferent kernels can be used, although the choice of kernels has little effect on the
estimation of β . For example, we can use the quadratic kernel K(Ti) =∏q

i=1 k(ti),
where

k(ti) = (1 − t2
i )2, if |ti | ≤ 1,

= 0, if |ti | > 1,

with Ti = (ti1, . . . , tiq) representing the first q PCs for the ith individual.
We need to choose the smoothing parameter h. One way is to choose the h that

minimizes a Kolmogorov test statistic. Specifically, for a given h, we perform Qual-
SPT to M unlinked markers and obtain their corresponding p-values p1, . . . , pM .
Let Fn be the empirical distribution function of the M p-values, and F be a uniform
distribution function. Define the Kolmogorov test as L(h) = maxx |Fn(x) − F(x)|.
The smoothing parameter h∗ satisfies

h∗ = arg min
h

L(h).
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The rationale for this method is that, if PS is well controlled, these p-values asymp-
totically follow a uniform distribution. Therefore, the best smoothing parameter h∗
should be the one that minimizes the difference between the empirical distribution
and the uniform distribution. This procedure also provides a method to check if
the PS has been corrected by the set of unlinked markers. If the p-value of the Kol-
mogorov test with h = h∗ is greater than a pre-specified significance level, e.g. 0.05,
we may consider that the PS has been well controlled. Otherwise, additional markers
might be necessary to control the PS.

Linear Model Approach

In Eq. (9.16) we can replace μ(T ) by a linear function of T , the PCs of genetic
marker data, to account for the PS. This method first performs a regression anal-
ysis by regressing both phenotype and unlinked markers on the PCs. Association
between the phenotype and the candidate marker is then tested using the residual
correlation. This approach is simple and can be easily applied to test a large number
of markers. To do this, one first fits the regression models using the first q PCs on
the unlinked markers

yi =
q∑

l=0

βltil + εi,

gi =
q∑

l=0

αltil + τi,

where ti0 = 1 and εi and τi are random errors. Let β̂l and α̂l (l = 0,1, . . . , q) be the
usual least squares estimators of βl and αl , respectively. Since the PCs are orthogo-
nal, we have

β̂l =
∑n

i=1 yitil
∑n

i=1 t2
il

and α̂l =
∑n

i=1 gitil
∑n

i=1 t2
il

.

We can then calculate the phenotype and genotype residuals for a particular candi-
date marker as

y∗
i = yi −

q∑

l=0

β̂l til ,

g∗
i = gi −

q∑

l=0

α̂l til ,

where gi (i = 1, . . . , n) is the genotype of the candidate marker of the ith individual.
Let r be the sample correlation coefficient between y∗

i and g∗
i , i = 1, . . . , n. Then a
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statistic to test association is given by

T = (N − q − 1)r2,

which asymptotically follows a chi-squared distribution with one degree of freedom.
Intuitively, y∗

i and g∗
i can be viewed as the trait and marker after removing the

effect of PS. That is, we can consider y∗
i and g∗

i as if they were obtained from a
homogenous population. Thus, any association test based on y∗

i and g∗
i will not be

affected by the PS.

Calculating PCs

Current GWAS use 500,000 to more than a million SNPs. To calculate PCs, we
usually have to calculate the eigenvalues and eigenvectors of the matrix given in
(9.17), which is a high dimensional matrix. This computation requires huge com-
puter memory space. However, PCs can be equivalently calculated from a matrix
based on individuals. For example, let X be the n × M matrix, in which each row
denotes an individual’s marker genotype values for the M markers. Using the sin-
gular value decomposition, XT = USV T , where U is an M × n matrix whose kth
column, denoted by Uk , corresponds to the kth eigenvector, S is a diagonal matrix
of singular values and V is an n × n matrix whose kth column, denoted by Vk , cor-
responds to the ancestries along the kth axis. In the approach of traditional PCs, the
kth PC is

XUk = V SUT Uk = skVk,

where sk is the kth singular value, because UT Uk is a vector whose components are
0 except for the kth, which is 1. Thus, PCs calculated based on individuals and the
standard PCs analysis are the same up to a constant, which will have no effect in the
regression modeling.

Using Family Data

Because of the simplicity of the linear regression method, it can be easily extended
to using family data. For simplicity, we only consider using nuclear families. As-
sume that the data contain nf nuclear families. The ith family has ki members,
with the first two being the father and mother (j = 1,2). In addition to these fam-
ilies, we have r unrelated cases and s unrelated controls. The total number of in-
dividuals is nT =∑nf

i=1 ki + r + s =∑nf

i=1 ki + n. We define each unrelated case
or control as a family with a family size of 1 (ki = 1 for each case or control).
Thus, we have a total of m = nf + n families. Let yij and gij be the observed trait
value and the marker genotype of the jth individual in the ith family (j = 1, . . . , ki ).
Although covariates can be incorporated, we do not consider covariates here. Let
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Xij = (xij1, . . . , xijM)T represent the marker genotypic values for the jth individual
in the ith family.

Similar to case-control designs, we perform a PC analysis to summarize the
marker data. Because the data now include both family and unrelated individuals, a
standard PC analysis using all the available data will result in biased directions of
the maximum variability for the data. Thus, we use the unrelated individuals (par-
ents) in each family and the unrelated cases and controls to calculate the eigenvalues
and eigenvectors. Then we calculate PCs for all individuals using the above eigen-
vectors.

Let tij l be the lth PC for the j th individual in the ith family (l = 1, . . . , q ,
j = 1, . . . , ki , and i = 1, . . . , n). We perform the linear regressions of phenotypes
and candidate marker genotypes on the PCs for all individuals, ignoring the family
structure. Denote the residuals of phenotypes and genotypes as y∗

ij and g∗
ij , respec-

tively. The statistic for testing association between the phenotype and a candidate
marker is given by

S2 = T 2

V̂ar(T )
= {n−1

T

∑m
i=1
∑ki

j=1 g∗
ij y

∗
ij }2

V̂ar(T )
.

To calculate Var(T ), note that

Var(T ) = Var

( nf∑

i=1

Ti

)

+ Var

(
m∑

i=nf +1

Ti

)

= nf σ 2
f + nσ 2

u ,

where σ 2
f and σ 2

u are estimated respectively by

σ̂ 2
f = 1

nf − 1

nf∑

i=1

(Ti − T̄f )2,

σ̂ 2
u = 1

n − 1

m∑

i=nf +1

(Ti − T̄u)
2,

where

Ti = 1

ki

ki∑

j=1

g∗
ij y

∗
ij , T̄f = 1

nf

nf∑

i=1

Ti, and T̄u = 1

n

m∑

i=nf +1

Ti.

An estimate of Var(T ), V̂ar(T ), is obtained by replacing σ 2
f and σ 2

u by their esti-
mates, respectively.

To examine whether or not we are able to calculate the children’s PCs using the
eigenvectors calculated from the genotypes of their parents and the unrelated cases
and controls, we conducted simulations using 200 nuclear families, 200 cases and
200 controls, with 200 ancestry informative markers (AIMs). Two distinct mixture
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Fig. 9.5 Plots of the first two PCs when samples were drawn from (i) two discrete populations
(A and B), and when samples were drawn from (ii) an admixture of two ancestral populations
(C–F)

populations were simulated: (i) a discrete model that samples from two distinct pop-
ulations, and (ii) an admixed population, with two ancestral populations, that mimics
the formation of the African-American population. Figure 9.5 presents the first two
PCs for the two different mixture populations.

The results indicate that, for both simulated samples, the PCs can well capture the
variation of an individual’s ancestry, and that a child’s ancestry can also be estimated
through the prediction of the PCs obtained from those of the unrelated individuals.
Further, it can be seen that the first PC can distinguish individuals from the two
subpopulations for both independent samples and children, but not the second PC
(A and B). For samples from an admixed population, the first PC, but not the second,
is highly correlated with the true ancestry (C-F).

9.3.4 Multidimensional Scaling Plots

Multidimensional Scaling (MDS) plots have been used as an important tool to an-
alyze high dimensional data. Similar to PC analysis (PCA), MDS plots project the
points in a high dimensional space to a lower dimensional space, but preserve the
distances between points as much as possible. The coordinates of the points in the
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Fig. 9.6 PCA (left panel) and MDS (right panel) of the genotype data of 701 African-Americans
sampled from Maywood, Illinois

lower dimensional space can be used in the association analysis to control for pop-
ulation structure. Figure 9.6 presents the first two PCs and the first two coordinates
of MDS in African-American samples from Maywood, Illinois. Over 800,000 SNPs
genotyped using the Affymetrix 6.0 platform were used in the analysis. We observe
that the PCA and MDS result in almost identical plots.

9.4 Selection of Marker Loci

Ideally, the markers used to identify population structure should be unlinked to the
disease loci. For GWAS, where over hundreds of thousands of SNPs are often geno-
typed, the selection of unlinked null SNPs can be achieved by thinning the SNPs
according to their LD patterns. It has often been thought that AIMs are necessary
for the first step. With a large number of markers available in association studies,
using random SNPs should be better than selecting a limited number of AIMs. Fig-
ure 9.7 presents the correlations between the first PC and the true ancestry based
on simulated African-American data for different sets of markers. We observe that
using more random markers (b) is better than selecting a subset of AIMs (a). When
more dense SNPs are used, we expect there to be many SNPs in strong LD (c). How-
ever, the LD affects the correlation very little. In fact, the best correlation between
the first PC and the true ancestry is obtained on using all SNPs (about 2 million),
rather than on using unlinked AIMs or independent SNPs. Therefore, as long as the
SNPs are randomly distributed across the genome, we should use all the available
genetic markers in the analysis.
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Fig. 9.7 Correlations between average true ancestry and the first PC based on different SNP sets:
(a) The first PC based on 3,029 unlinked AIMs across the genome. (b) The first PC based on 19,697
distinct SNPs; many SNPs may be in LD. (c) The first PC based on dense SNPs; more SNPs may
be in LD

9.5 Simulating Data in the Presence of Population Stratification

There are many ways to simulate case-control data in the presence of PS. A com-
mon method is the Balding-Nichols model. Suppose we simulate case-control data
from a population with J subpopulations, in each of which HWE holds. We first
discuss how to simulate markers not associated with a disease (null markers). Then
we modify the algorithm to simulate disease markers.

To apply the Balding-Nichols model in a replicate, an ancestral allele frequency,
denoted as p, is simulated from the uniform distribution U(0.1,0.9). Note that
we exclude MAFs ≤ 0.1 as markers with MAF < 0.1 are often excluded from
the analysis in GWAS. Then for the j th subpopulation, j = 1, . . . , J , the allele
frequency pj of a marker is simulated from the Beta distribution Beta(p(1 −
Fst )/Fst , (1 − p)(1 − Fst )/Fst ), where Fst is Wright’s inbreeding coefficient and
specified a priori for all subpopulations and replicates. The parameter Fst here mea-
sures differentiation between the subpopulations. Under HWE in the j th subpopu-
lation, the genotype frequencies of (G0,G1,G2) for a null marker are given by
((1 − pj )

2,2pj (1 − pj ),p
2
j ). The genotype counts in cases and in controls in the

j th subpopulation follow the same multinomial distribution with the probabilities
((1 − pj )

2,2pj (1 − pj ),p
2
j ). In this simulation, all pj , j = 1, . . . , J , follow the

same Beta distribution and are independent. The mean and variance of a random
variate from this Beta distribution are p and p(1 − p)Fst , respectively. Then, with
the given proportions of cases and controls from the j the subpopulation, we can
simulate genotype counts respectively for cases and for controls in this subpopula-
tion. After all data are simulated for each subpopulation, we can pool the data to
form a simple 2 × 3 table with one replicate.

In order to create PS in the data, the proportion of cases should not equal that of
controls in all subpopulations. Otherwise, the simulation data can be regarded as a
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matched case-control design and PS has no impact on the analysis. The above pro-
cedure is used to simulate the null markers. To simulate a disease marker, we need
to specify the prevalence kj = Pr(case |the j th subpopulation) and GRRs (λ1j , λ2j )

in the j th subpopulation. For simplicity, one may assume GRRs are constant across
the subpopulations. Thus, (λ1j , λ2j ) = (λ1, λ2). The simulation procedure is simi-
lar to that for the null marker. After (g0j , g1j , g2j ) = ((1 − pj )

2,2pj (1 − pj ),p
2
j )

are calculated in the j th subpopulation, the genotype probabilities for controls
and cases are given by ((1 − f0j )g0j /(1 − kj ), (1 − λ1f0j )g1j /(1 − kj ), (1 −
λ2f0j )g2j /(1 − kj )) and (f0j g0j /kj , λ1f0j g1j /kj , λ2f0j g2j /kj ), respectively,
where f0j = Pr(case|G0, the j th subpopulation) = (g0j +λ1g1j +λ2g2j )/kj is the
reference penetrance. If the disease is rare, we can use (g0j , g1j , g2j ) for controls
and (g0j /Rj ,λ1g1j /Rj ,λ2g2j /Rj ) for cases, where Rj = kj /f0j .

9.6 Comparison of Methods

Since both GC and PC analyses are computationally appealing, we compare them
in this section by simulations. For PC analysis, we focus on QualSPT (the semi-
parametric approach) and the linear regression method.

We used a panel of SNPs from a publicly available database that are AIMs across
the genome for the African-American population. To form an admixed population,
the allele frequencies of the SNPs and the marker map for both the African and
European populations were downloaded from “http://www.journals.uchicago.edu”.
Briefly, at the first generation the marker genotypes of 10,000 unrelated individuals
were simulated according to marker allele frequencies in the African population
under HWE and independence of the markers. An admixed population was then
formed by taking a proportion λ randomly selected from the African population
to marry with people generated according to the marker allele frequencies in the
European population, with the remaining proportion 1 − λ randomly mating among
themselves. We drew λ from a uniform distribution between 0 and 0.08. The number
of children produced by each marriage was assumed to follow a Poisson distribution
with mean size 2. The number of crossovers between two marker loci at a distance
d cM was assumed to follow a Poisson distribution with mean d/100. This process
was repeated in the following generations. All the samples were drawn from the 5th
generation, at which point the population was a mixture of approximately 80%/20%
African and European ancestry.

We first simulated the data under the null hypothesis that no SNP is associated
with the trait but the population structure contributes to the phenotypic variation.
Hence, we assigned an individual’s disease status with probability equal to his/her
African ancestry. We simulated 500 cases and 500 controls respectively. In addition,
we simulated 1,000 AIMs (SNPs) to correct for the population structure. We ana-
lyzed the association of the 1,000 SNPs using both QualSPT and linear regression
with PCs. The CATT was also calculated for comparison. We used the first 10 PCs
in the linear regression and the first PC in QualSPT.

http://www.journals.uchicago.edu
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Fig. 9.8 Q-Q plots of three methods: (A) CATT. The plot is based on the test statistic values. GC
VIF is 2.97; (B) Linear regression with the first 10 PCs. The plot is based on the test statistic values.
GC VIF is 0.90; (C) QualSPT. The plot is based on − log 10(p-value). GC VIF is 1.0

Table 9.3 P-values for testing association using different approaches to correct for population
structure

Methods CATT after GC SA* Mixture model Linear regression QualSPT

P-value 1.19 × 10−6 < 10−6 9.75 × 10−7 1.29 × 10−6 4 × 10−6

*P-value is based on 1,000,000 permutations

Figure 9.8 presents the Q-Q plots of statistics to test for association using the
simulated 1,000 SNPs with CATT, linear regression with PCs and QualSPT, respec-
tively. Without proper correction for the population structure, the CATT apparently
has large inflated Type I error rate, with a GC variance inflation factor value of 2.97.
Both linear regression adjusting for the first 10 PCs and QualSPT have reasonable
Type I error rates. The linear regression method seems to slightly over-correct the
effect of the population structure using the simulated data.

We further simulated a disease variant. The penetrances of the disease genotypes
were 0.20, 0.15 and 0.10 for genotypes carrying two, one and no risk alleles, re-
spectively. The p-values using different approaches are reported in Table 9.3. For
the CATT, we applied GC first. The results show that all p-values are similar after
correcting for the population structure.
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9.7 Bibliographical Comments

In this chapter, population structure is classified into PS-I, PS-II and CR (Table 9.1).
An admixed population is regarded as a special case of PS. Classical definitions of
PS and CR can be found in Crow and Kimura [49] and Elandt-Johnson [71]. Voight
and Pritchard [282] defined a single population with CR, while Whittemore [302]
considered population structure as a combination of PS and CR.

The worldwide population structure has been studied using various genetic mark-
ers, including microsatellite markers and dense SNPs [166, 220, 266]. The con-
founding effect of population structure in genetic association studies has been well
documented in the study of type II diabetes mellitus and Gm3;5,13,14 in American
Indians by Knowler et al. [148]. A general framework of how population structure
produces confounding effects in case-control association studies was presented by
Rosenberg et al. [219]. Population structure used to be considered a serious prob-
lem in admixed populations such as the African-American and Hispanic popula-
tions. Recently, it has been observed that population structure can also result in high
type I error in association studies in the European American population, which was
usually considered as a homogenous population [24]. In GWAS, the effects of pop-
ulation structure are often large [178], because the impact of population structure
becomes stronger as the sample size increases.

The GC approach was first proposed by Devlin and Roeder [60], who suggested
using the median of a one-degree-of-freedom chi-squared test statistic based on a
set of unlinked markers to rescale the observed one-degree-of-freedom chi-squared
test statistic. The power of GC, compared to that of the TDT, was studied by Ba-
canu et al. [11]. Extension of the GC to a robust chi-squared statistic with 2 degrees
of freedom was studied by Zheng et al. [335], who also considered robustness of
GC based on the trend tests with different genetic models. Using the mean of the
test statistic based on a set of unlinked markers was also proposed [211]. Because
the GC approach only corrects for the variance distortion of the trend test in the
presence of population structure, directly correcting for bias using unlinked mark-
ers was considered by Gorroochurn et al. [104]. Their approach, however, requires
matching allele frequencies of unlinked markers to that of the candidate marker at
the subpopulation levels. This matching may not be achievable [341].

Although the methods to correct for PS presented in Sect. 9.3.3 and Sect. 9.3.4
are now more popularly used in practice, the GC approach is still the simplest
method to examine whether or not the population structure is reasonably controlled.
It is used in initial data analysis in most GWAS. A value of the VIF λ close to 1
indicates no PS effect, and λ < 1.05 is generally taken to suggest that any PS effect
is not serious. Estimating the 95% CI for λ is also feasible by assuming that the
markers are all independent. When there is no population structure, the estimate λ̂

asymptotically follows

√
M(̂λ − 0.455) ∼ N

(

0,
1

0.828f (0.455)2

)

,

where f (0.455) is the value of the density function of the chi-squared distribution
with 1 degree of freedom evaluated at 0.455 and M is the number of markers used
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Fig. 9.9 The Q-Q plot of
observed − log 10(p-value) vs
the expected value for a
quantitative trait. 800,000
SNPs were simulated with
sample size 2,000. There are
2,000 QTLs contributing 80%
of the phenotypic variation.
No PS is included. RegUa:
linear regression analysis
without including any PCs.
GAPCC (global ancestry):
linear regression analysis
including the first 10 PCs
calculated using all SNPs.
LAPCC (local ancestry):
linear regression analysis
including the first 10 PCs
calculated using only the
SNPs in a local region where
a tested SNP is located. The
shaded area is the 95%
confidence band

for controlling PS. We calculated a CI for λ̂ for 300,000 SNPs using this formula
based on asymptotic theory and obtained the 95% CI (0.992, 1.008), which was also
reported by [139]. However λ may be over-estimated when there are many genetic
variants contributing to the phenotypic variation. For instance, in the simulation, if
there were 2,000 quantitative trait loci (QTLs) contributing a total of 80% of the
phenotypic variance across the genome, such as may occur for height, for example,
we observed that the estimated values of λ can be outside the simulated 95% con-
fidence band even if there is no PS (see Fig. 9.9). On the other hand, using PCs to
correct PS has little negative impact. Thus, setting the GC inflation factor to 1 as a
golden standard for controlling PS may be misleading, possibly resulting in loss of
statistical power to detect true associations.

The SA approaches were studied by Pritchard et al. [207], who also developed
the software STRUCTURE [82], based on Gibbs sampling, to cluster subpopula-
tions. Satten et al. [225] studied a method of applying latent-class analysis to in-
fer the population structure while simultaneously estimating the model parameters
and testing for association. An EM based algorithm to cluster populations, which
is computationally much faster and allows more markers than the Gibbs sampling
approach, can be found in Tang et al. [265]. PC analysis of a set of marker geno-
types was first used to characterize population differences by Cavalli-Sforza [28].
Using PCs to eliminate the effects of population structure was first studied in Zhu
et al. [350], Zhang et al. [323] and Chen et al. [31], who also pointed out that a lin-
ear regression including the first PC can adequately control for population structure
in an admixed population such as African-Americans. The PC mixture model can
be computationally intensive and maximizing the likelihood function is challeng-
ing. The semi-parametric method is thus more attractive. Because a large number
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of markers are often available in GWAS, the PC-based linear regression method
is more popular and computationally efficient, especially when the PCs are calcu-
lated from a matrix based on individuals [77, 205]. The PC-based linear regression
method has also been extended to data comprising both family and unrelated sam-
ples [349].

When dense SNPs are available in GWAS, it is possible to estimate the de-
gree of relationships among individuals in the absence of genealogical information.
This can often be done by estimating the kinship matrix. The inferred relationships
among individuals have been recently suggested for correcting the effect of both PS
and CR in association studies via a variance component model [139, 206]. These
methods decompose the variance into two parts, a component due to the sharing of
genetic markers and a component of residual effects. However, whether population
structure should be considered as a random or fixed effect is still under investiga-
tion [325]. Simulations suggested that mixed model approaches can perform well
in general, but not for markers with very different allele frequencies in ancestral
populations [325].

It has also been suggested in the literature that the GC approach works for both
PS and CR, while PCs approaches can only control the confounding caused by PS,
because CR could occur when there is a single population without random mating.
Therefore, the GC approach should perform better in the presence of CR, as does
the mixed model approach. When both PS and CR exist in the samples studied,
including both PCs and variance components in a model should perform adequately
well [325].

The Balding-Nichols method given in Sect. 9.5 is a common approach to simu-
late case-control data in the presence of PS [13]. This method was also referred to
as a “random SNP” method in Price et al. [205], who also considered a “differen-
tiated SNP” method, under which the allele frequencies in the subpopulations are
specified. Then genotype frequencies are calculated under HWE. Other simulation
procedures were given by Gorroochurn et al. [104, 105], Zheng et al. [335, 341].
See also discussion of different simulation procedures in Dadd et al. [53].

Finally, the methods that we discussed so far focus on adjusting global popu-
lation structure, which is mainly caused by recent migration and random genetic
drift. However, local genomic regions harboring functional variants may be subject
to subtle forms of population structure as a result of not only demographic history
but also natural selection and local random fluctuations of admixture [100, 264]. In
addition, genetic phase disequilibrium can be present between a causal variant and
a genetic marker whether they are close together or they are in different chromo-
somes when co-evolution has occurred. Thus, adjusting for local ancestry can be
an appealing method to control the confounding caused by either global ancestry or
local ancestry population structure (LAPCC in Fig. 9.9) [208].

9.8 Problems

9.1 Let the genotype frequencies in a population be given as in (9.1). Prove that the
correlation of the two alleles in a genotype is F .



286 9 Population Structure

9.2 Show that Δ = Pr(G|Y = 1) − Pr(G|Y = 0) in Sect. 9.2.1 can be written as
(9.5).

9.3 Give the values of pj , kj and γi (j = 1, . . . , J ) that satisfy Eq. (9.6) when
J = 3.

9.4 When does Var(T ) given in (9.12) reach its maximum and minimum?

9.5 Let Wright’s inbreeding coefficient in cases and controls be F1 and F2, respec-
tively. Show that, when r = s, Var(T ) in the CATT with the ADD model can be
written as

Var(T ) = 2rp(1 − p){2 + (F1 + F2)(2r − 1)}.

9.6 Assume that the genetic backgrounds are known. Using Eqs. (9.14) and (9.15),
explain how P0 and P1 are estimated using the EM algorithm.



Chapter 10
Gene-Environment Interactions

Abstract Gene-environment interactions are considered in Chap. 10, which fo-
cuses on a 2 × 2 × 2 table. The expressions of odds ratios for the genetic effect, the
environmental factor effect, and the gene-environment interaction are given. More
general cases for gene and environmental factors are briefly discussed. Three com-
mon tests for gene-environment interaction are studied, including the Score test,
the likelihood ratio test (LRT) and the Wald test. Examples are given with detailed
calculations.

We discuss gene-environment interactions and odds ratios for the association of
the main genetic and environmental effects and gene-environment interactions un-
der various models. Inference, including estimates and test statistics, for gene-
environment interactions is studied. Maximum likelihood estimates and various
test statistics, e.g., the likelihood ratio test, Score test and Wald test, for gene-
environment interactions are presented. We focus on a binary exposure for the en-
vironmental factor and a binary genetic susceptibility. In this case, the data can be
displayed in a 2 × 2 × 2 table. A more general environmental factor and genetic
susceptibility are also considered. We only consider gene-environment interactions
for a single genetic marker. Some discussion of gene-environment interactions in
the context of genome-wide association studies will be given in Chap. 12.

It should be understood that throughout this chapter we are only considering
statistical interaction, not biological interaction. If two factors affect an outcome
(phenotype), there must be biologic interaction at some level whether or not an
additive statistical model is adequate to estimate actual effects.

10.1 Introduction

In Chap. 3, we studied a genetic association using a logistic regression model for
case-control data. Covariates, including environmental factors, can be adjusted for
by simply adding them to the logistic regression model so that the genetic effect and
the effect of an environmental factor on the risk of development of a disease can
be investigated separately. Gene-environment interaction, however, allows one to
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study a joint genetic and environmental effect on the risk of development of a dis-
ease. Some rationales for studying gene-environment interaction are summarized
in the literature, which include providing an accurate estimate of the population-
attributable risk for genetic and environmental factors with gene-environment inter-
action, helping understand the disease mechanisms and biologic pathways, studying
how the genetic effect would be modified by a change of environmental or risk fac-
tors, and helping design personalized treatment for a disease based on individual
genetic susceptibility and levels of risk factors.

Although a case-control association study may be designed to have enough power
to detect a main genetic effect and/or an environmental effect, it is known that there
is less power to detect a gene-environment interaction. In epidemiology, one often
does not test for a gene-environment interaction unless the main genetic and envi-
ronmental effects are significant at a given level of significance. In genetic studies,
however, we may expect a gene-environment interaction to be present in the absence
of a main genetic or environmental effect. Besides the lower power to detect an in-
teraction, testing gene-environment interaction may also involve an issue of multiple
testing, especially for a 2 × 3 × k table, which contains case-control data with three
genotypes and an environment with k ≥ 2 levels. For example, for a 2 × 3 × 3 table,
an interaction can be defined in different ways in terms of the underlying genetic
model (REC, ADD or DOM) and/or various models for the three exposure levels
of an environment. Hence, it is important to report all the analyses under various
models or appropriately correct for multiple testing.

We first describe gene-environment interactions using a binary environmental
factor, such as exposed or not exposed, and a binary genetic susceptibility, such as
with a genetic variant or without that genetic variant. This type of data can be pre-
sented in a 2× 2 × 2 table. ORs associated with the main genetic and environmental
effects and gene-environment interactions are discussed. We focus on a multiplica-
tive gene-environment interaction model for ORs. The ORs for the association of
2 × 2 × k and 2 × 3 × k tables are also considered. In the first table, the genetic sus-
ceptibility is binary but the environmental factor has k levels. In the second table,
we consider three genotypes and an environmental factor with k levels.

In Chap. 8, we discussed gene-gene interactions and statistical methods to detect
gene-gene interactions. Some of the methods described in that chapter are related to
what we are presenting in this chapter.

10.2 Gene-Environment Interactions and Inference

10.2.1 A 2 × 2 × 2 Table

Notation

Let D, G and E denote the binary disease status, a diallelic-allelic genetic marker,
and an environment, respectively. Denote D = 1 for a case and D = 0 for a control.
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The levels of a binary G are denoted as (G0,G1). More generally, (G0,G1,G2) =
(AA,AB,BB) is used for the three genotypes of G with alleles A and B . A binary G

may be of interest, for example, when B is the risk allele and the underlying genetic
model is REC, G0 is for AA or AB and G1 is BB. Under the DOM model, G0 is
AA and G1 is AB or BB. The levels of E are denoted as (E0,E1, . . . ,Ek−1) for
k ≥ 2. Although an environmental factor E can be continuous, we only focus on a
qualitative one. We always denote G0 and E0 as the reference levels.

Let c(Gi) and c(Ej ) be the coding values of Gi and Ej , respectively. For exam-
ple, c(G1) = c(G2) = 1 and c(G0) = 0 under the DOM model, and c(E1) = 1 and
c(E0) = 0 for k = 2. In general, we code c(Gi) = gi (i = 0,1 or i = 0,1,2) and
c(Ej ) = ej (j = 0,1, . . . , k − 1), where g0 = e0 = 0. We choose gi = i, i = 0,1,2,
for the ADD model by counting the number of B alleles in the genotype, and ej = j ,
j = 0,1, . . . , k − 1, for an equal-spaced E. The above coding for G (or E) allows a
linear relationship among the levels of G (or E).

Odds Ratios and Gene-Environment Interactions

Consider a binary G with c(G0) = g0 = 0 and c(G1) = g1 = 1 and a binary E

with c(E0) = e0 = 0 and c(E1) = e1 = 1. Denote p1(G,E) = Pr(D = 1|G,E) and
p0(G,E) = 1 − p1(G,E) = Pr(D = 0|G,E). Using a logistic regression model,
we have

logit(p1(G,E)) = β0 + βGc(G) + βEc(E) + βGEc(G)c(E). (10.1)

Then

ORG|E0 = ORG:D|E=E0 = exp(βG) = p1(G1,E0)

p0(G1,E0)

/p1(G0,E0)

p0(G0,E0)

is the OR relating D to G given E = E0,

ORE|G0 = ORE:D|G=G0 = exp(βE) = p1(G0,E1)

p0(G0,E1)

/p1(G0,E0)

p0(G0,E0)

is the OR relating D to E given G = G0, and

exp(βGE) = ORE|G1

ORE|G0

=
{

p1(G1,E1)

p0(G1,E1)

/p1(G1,E0)

p0(G1,E0)

}/{p1(G0,E1)

p0(G0,E1)

/p1(G0,E0)

p0(G0,E0)

}

= ORG|E1

ORG|E0

=
{

p1(G1,E1)

p0(G1,E1)

/p1(G0,E1)

p0(G0,E1)

}/{p1(G1,E0)

p0(G1,E0)

/p1(G0,E0)

p0(G0,E0)

}
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Table 10.1 ORs for the
association of D with a
binary G and a binary E.
Part (a) and part (b)
are equivalent

Part (a) E

E0 E1

G G0 1.0 ORE|G0

G1 ORG|E0 ORE|G0 × ORG|E0 × exp(βGE)

Part (b) E

E0 E1

G G0 1.0 exp(βE)

G1 exp(βG) exp(βG + βE + exp(βGE)

Table 10.2 RRs for the
association of D with a
binary G and a binary E

under an additive interaction
model

E

E0 E1

G G0 0.0 RRE|G0

G1 RRG|E0 RRE|G0 + RRG|E0 + RRG,E

is the ratio of two ORs both relating D to E given G = G1 and G = G0, re-
spectively, or, equivalently, the ratio of two ORs both relating D to G given
E = E1 and E = E0, respectively. This interaction model is often referred to as
a multiplicative interaction model. If βGE = 0, ORE|G1 = ORE|G0 or, equivalently,
ORG|E1 = ORG|E0 . Hence, there is no gene-environment interaction. ORs and the
multiplicative interaction model are natural choices when the logistic regression
model (10.1) is used. An additive interaction model (i.e., an additive model with an
interaction term) can be considered if one is interested in differences in risks instead
of ORs. In the following, we only consider the multiplicative interaction model and
ORs.

Note that the above exp(βGE) can also be expressed as

exp(βGE) =
p1(G1,E1)
p0(G1,E1)

/p1(G0,E0)
p0(G0,E0)

ORE|G0 × ORG|E0

= ORG,E

ORE|G0 × ORG|E0

,

where ORG,E = ORG,E:D is the OR relating D to both G and E. Thus, we have

ORG,E = ORE|G0 × ORG|E0 × exp(βGE).

If βGE = 0, ORG,E is the product of the two ORs, ORE|G0 and ORG|E0 , and there
is no gene-environment interaction. All ORs for the association are given in Ta-
ble 10.1. If an additive interaction model is of interest, the relative risks (RRs) for
the association can be represented as in Table 10.2.
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Table 10.3 Case (control)
data with a binary G and a
binary E

E Total

E0 E1

Cases (controls) G G0 R00 (S00) R01 (S01) R0· (S0·)
G1 R10 (S10 ) R11 (S11) R1· (S1·)
Total R·0 (S·0) R·1 (S·1) r (s)

Data and Inference

A dataset with r cases and s controls can be displayed in a 2 × 2 × 2 table (Ta-
ble 10.3). Each cell of Table 10.3 contains the number of cases (or controls) with
the given levels of G and E. Using c(G0) = 0, c(G1) = 1, c(E0) = 0 and c(E1) = 1,
the likelihood function for the data in the table can be written as

L(β) = exp(rβ0 + R1·βG + R·1βE + R11βGE)
∏4

k=1{1 + exp(βT 1k)}Nk

, (10.2)

where β = (β0, βG,βE,βGE)T , 11 = (1,0,0,0)T , 12 = (1,1,0,0)T , 13 = (1,0,

1,0)T , 14 = (1,1,1,1)T , N1 = n00 = R00 + S00, N2 = n10 = R10 + S10, N3 =
n01 = R01 + S01, and N4 = n11 = R11 + S11.

Let l(β) be the log-likelihood function. The MLEs of β0, βG, βE and βGE , de-
noted as β̂0, β̂G, β̂E and β̂GE , can be solved from ∂l(β)/∂βT = 0. From Prob-
lem 10.1, we have

exp(β̂0) = R00

S00
,

exp(β̂G) = R10

S10

/R00

S00
= R10S00

S10R00
,

exp(β̂E) = R01

S01

/R00

S00
= R01S00

S01R00
,

exp(β̂GE) =
(

R11

S11

/R10

S10

)/(R01

S01

/R00

S00

)

= R11S10S01R00

S11R10R01S00
. (10.3)

The asymptotic variances of the MLEs can be approximated by

−{∂2l(β)/∂β∂βT |β̂}−1.

Denote a = (R−1
00 + S−1

00 )−1, b = (R−1
01 + S−1

01 )−1, c = (R−1
10 + S−1

10 )−1 and d =
(R−1

11 + S−1
11 )−1. From Problem 10.2, we have

− ∂2l(β)

∂β∂βT
|β̂ =

⎡

⎢
⎢
⎢
⎢
⎣

a + b + c + d c + d b + d d

c + d c + d d d

b + d d b + d d

d d d d

⎤

⎥
⎥
⎥
⎥
⎦

. (10.4)
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The (2,2)th, (3,3)th and (4,4)th elements of the inverse of the above matrix are
estimates of the asymptotic variances of β̂G, β̂E and β̂GE , respectively. From Prob-
lem 10.2, they are respectively 1/a + 1/c, 1/a + 1/b and 1/a + 1/b + 1/c + 1/d .
Thus, the MLE of βGE is β̂GE = log{R11S10S01R00/(S11R10R01S00)} and the esti-
mate of its asymptotic variance is V̂ar(β̂GE) = 1/R11 + 1/S10 + 1/S01 + 1/R00 +
1/S11 + 1/R10 + 1/R01 + 1/S00. When the sample size n = R + S is large enough,

β̂GE − βGE ≈ N(0, V̂ar(β̂GE)),

in distribution, where βGE is the true value. This approximation can be used to give
a 95% CI for βGE .

Note that in (10.3) the MLEs of β̂ are solved from the Score equations (see
Problem 10.1). In Chap. 8, an alternative simple approach to find similar MLEs
was to use multinomial distributions and the fact that ORs using prospective and
retrospective distributions are equivalent. That method can be applied here to find
the MLEs and their asymptotic variances and covariances (see Problem 10.5).

Two special cases of (10.1) are βG = 0 or βE = 0, under which respectively

exp(βGE) = p1(G1,E1)

p0(G1,E1)

/p1(G0,E1)

p0(G0,E1)
,

or exp(βGE) = p1(G1,E1)

p0(G1,E1)

/p1(G1,E0)

p0(G1,E0)
.

The first one is the OR relating D to G among those with E = E1 (samples with E =
E0 have no information for the interaction) and the second one is the OR relating
D to E among those with G = G1 (samples with G = G0 have no information for
the interaction). The MLEs and their asymptotic variances under these two special
cases are different (Problem 10.4).

10.2.2 An Example

As an example, we consider the case-control study of a genetic susceptibility to a
lung cancer with a binary smoking exposure: light (E = E0) versus at least moderate
(E = E1). The data are given in Table 10.4.

Fitting the data in Table 10.4 with the logistic regression model given in (10.1),
we obtain the MLE for the OR relating the cancer to the genetic susceptibility among
light smokers as

exp(β̂G) = 5 × 79/(9 × 6) = 7.315

or the log OR as log(7.315) = 1.9899. The estimate of the asymptotic variance of
β̂G is

V̂ar(β̂G) = 1/5 + 1/79 + 1/9 + 1/6 = 0.4903.
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Table 10.4 Case-control data
of a genetic susceptibility to a
lung cancer with smoking

Smoking Total

E0 E1

Cancer G G0 6 27 33

G1 5 7 12

Total 11 34 45

Normal G G0 79 40 119

G1 9 7 16

Total 88 47 135

Thus the 95% CI for the log OR, βG, is

1.9899 ± 1.96 × 0.49031/2 = (0.6173,3.3625),

and the 95% CI for the OR, exp(βG), is (exp(0.6173), exp(3.3625)) = (1.854,

28.861).
Similarly, the MLE for the OR relating the cancer to light smoking among those

without the genetic susceptibility is

exp(β̂E) = 27 × 79/(40 × 6) = 8.887.

Hence the log OR is log(8.887) = 2.185 and

V̂ar(β̂E) = 1/27 + 1/79 + 1/40 + 1/6 = 0.2414.

The 95% CI for the log OR, βE , is

2.185 ± 1.96 × 0.24141/2 = (1.222,3.148),

and the 95% CI for the OR, exp(βE), is (exp(1.222), exp(3.148)) = (3.394,23.289).
To examine if the ORs relating the cancer to the genetic susceptibility vary across

smoking status, we compute the MLE for exp(βGE) as

exp(β̂GE) = 7 × 9 × 40 × 6/(7 × 5 × 27 × 79) = 0.2025.

The estimate of the asymptotic variance of β̂GE is

V̂ar(β̂GE) = 1/7 + 1/9 + 1/40 + 1/6 + 1/7 + 1/5 + 1/27 + 1/79 = 0.8382.

The 95% CI for βGE is

log(0.2025) ± 1.96 × 0.83821/2 = (−3.39,0.1974),

which covers 0, or the 95% CI for exp(βGE) is (0.034,1.218), which covers 1.
Thus, there is no significant evidence to support the gene-environment interaction
at the 5% significance level. Other test statistics for gene-environment interactions
will be discussed later.
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10.2.3 More General G and E

In the previous section, both G = (G0,G1) and E = (E0,E1) are binary. We coded
G as (g0, g1) = (c(G0), c(G1)) = (0,1) and E as (e0, e1) = (c(E0), c(E1)) =
(0,1). In fact, inference is invariant to linear transformations of the coding val-
ues of G and E when they are binary. For example, we can code G by any (g0, g1)

with g1 > g0 and E by any (e0, e1) with e1 > e0 (Problem 10.6). Thus, the coding
values themselves have no meaning. This, however, is not true when G and E have
more than two levels because the coding values themselves imply a relationship
of the levels. For example, for the ADD model, (g0, g1, g2) = (0,1,2) is used for
(AA,AB,BB), which specifies ORG2|E0 = {ORG1|E0}2, while (g0, g1, g2) = (0,1,4)

specifies a different genetic model, under which ORG2|E0 = {ORG1|E0}4. Although
G has three levels, its main effect is determined by a single parameter when
(g0, g1, g2) = (0,1,2) is used. To avoid establishing a linear relationship among
the three genotypes because we may not know the true relationship, we can code
them by c(G0) = (0,0)T , c(G1) = (1,0)T and c(G2) = (1,1)T . In this case, two
parameters βG = (βG1 , βG2)

T are used to determine the main genetic effect. This
argument can also be applied to E with more than two levels.

Data and ORs for a 2 × 2 × k Table

Consider a binary G and an E with k levels. The data can be displayed in a 2 ×
2 × k table (Table 10.5). Denote p1(Gi,Ej ) = Pr(D = 1|G = Gi,E = Ej) and
p0(Gi,Ej ) = 1 − p1(Gi,Ej ), where

logit(p1(Gi,Ej )) = β0 + βGc(Gi) + βT
Ec(Ej ) + βT

GEc(Gi)c(Ej ), (10.5)

and βE = (βE1 , . . . , βEk−1)
T , βGE = (βGE1 , . . . , βGEk−1)

T , c(E0) = (0, . . . ,0)T ,
c(Ej ) = (1, . . . ,1,0, . . . ,0)T (the first j ≥ 1 elements are 1), c(G0) = 0, and
c(G1) = 1. Then the ORs relating D to G = Gi given E = Ej and relating D to
E = Ej given G = Gi , denoted as ORGi |Ej

and OREj |Gi
, respectively, are given by

ORGi |Ej
= exp{βGc(Gi) + βT

GEc(Gi)c(Ej )},
OREj |Gi

= exp{βT
Ec(Ej ) + βT

GEc(Gi)c(Ej )}.

ORs of the association for the 2 × 2 × k table are given in Table 10.6. Thus,
the main effect of G is determined by βG, the main environmental effect is de-
termined by βE , and the gene-environment interaction is determined by βGE . If
βGE1 = · · · = βGEk−1 = 0, there is no gene-environment interaction, which is equiv-
alent to βT

GEc(E1) = · · · = βT
GEc(Ek−1) = 0.
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Table 10.5 Case-control data with a binary G and a k-level E

E Total

E0 E1 · · · Ek−1

Cases G G0 R00 R01 · · · R0(k−1) R0·
G1 R10 R11 · · · R1(k−1) R1·
Total R·0 R·1 · · · R·(k−1) r

Controls G G0 S00 S01 · · · S0(k−1) S0·
G1 S10 S11 · · · S1(k−1) S1·
Total S·0 S·1 · · · S·(k−1) s

Table 10.6 ORs for the association of D with a binary G and a k-level E. Part (a) and part (b) are
equivalent

Part (a) E

E0 E1 · · · Ek−1

G G0 1.0 ORE1|G0 · · · OREk−1|G0

G1 ORG1|E0 ORE1|G0× · · · OREk−1|G0×
ORG1|E0 × exp{βT

GEc(E1)} · · · ORG1|E0 × exp{βT
GEc(Ek−1)}

Part (b) E

E0 E1 · · · Ek−1

G G0 1.0 exp(βT
Ec(E1) · · · exp(βT

Ec(Ek−1)

G1 exp(βG) exp(βG)× · · · exp(βG)×
exp{βT

Ec(E1) + βT
GEc(E1)} · · · exp{βT

Ec(Ek−1) + βT
GEc(Ek−1)}

Inference for a 2 × 2 × k Table

The likelihood function for the data in Table 10.5 is given by

L(β0, βG,βT
E ,βT

GE)

=
1∏

i=0

k−1∏

j=0

{p1(Gi,Ej )}Rij {p0(Gi,Ej )}Sij

= exp

[

rβ0 + R1·βG +
k−1∑

j=1

(R·j βT
E + R1j β

T
GE)c(Ej )

]

×
[

k−1∏

j=0

{1 + exp(β0 + βT
Ec(Ej ))}n0j

]−1
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×
[

k−1∏

j=0

{1 + exp(β0 + βG + βT
Ec(Ej ) + βT

GEc(Ej ))}n0j

]−1

, (10.6)

where nij = Rij + Sij , p1(Gi,Ej ) is given in (10.5), and p0(Gi,Ej ) = 1 −
p1(Gi,Ej ). Denote the log-likelihood as l(β) and β = (β0, βG,βT

E ,βT
GE)T . The

MLE of β can be obtained from the Score equations ∂l(β)/∂βT = 0, which has a
closed form solution. The MLEs of the parameters in β and their asymptotic vari-
ances and covariances can be obtained using multinomial distributions and the inde-
pendence of cases and controls, as in the 2 × 2 × 2 table. In the following, we show
how to solve the Score equations to find the MLEs.

In l(β), instead of considering βT
E and βT

GE , we first treat βT
Ec(Ej ) and

βT
GEc(Ej ) as parameters for j = 1, . . . , k − 1. For a given j , from

∂l(β)

∂{βT
GEc(Ej )}

= 0,
∂l(β)

∂{βT
Ec(Ej )}

= 0,

we have

k−1∑

j=1

n1j

exp{β0 + βG + (βE + βGE)T c(Ej )}
1 + exp{β0 + βG + (βE + βGE)T c(Ej )} =

k−1∑

j=1

R1j ,

k−1∑

j=1

n0j

exp{β0 + βT
Ec(Ej )}

1 + exp{β0 + βT
Ec(Ej )}

=
k−1∑

j=1

R0j .

Substituting them into ∂l(β)/∂β0 = 0 and ∂l(β)/∂βG = 0, we have exp(β0)/{1 +
exp(β0)} = R00/n00 and exp(β0 +βG)/{1+exp(β0 +βG)} = R10/n10, from which
we have

exp(β0) = R00/S00,

exp(βG) = R10S00/(S10R00).

Thus β̂0 = log(R00/S00) and β̂G = log{R10S00/(S10R00)}. Next, we consider βT
E

and βT
GE as parameters. From ∂l(β)/∂βGE = 0 and ∂l(β)/∂βE = 0, we have

k−1∑

j=1

n1j

exp{β0 + βG + (βE + βGE)T c(Ej )}
1 + exp{β0 + βG + (βE + βGE)T c(Ej )}c(Ej ) =

k−1∑

j=1

R1j c(Ej ),

k−1∑

j=1

n0j

exp{β0 + βT
Ec(Ej )}

1 + exp{β0 + βT
Ec(Ej )}

c(Ej ) =
k−1∑

j=1

R0j c(Ej ).

It follows, for any j ,

exp{β0 + βG + (βE + βGE)T c(Ej )} = R1j /S1j ,



10.2 Gene-Environment Interactions and Inference 297

Table 10.7 Case-control
data of a binary genetic
susceptibility to a lung cancer
with smoking (light E0,
moderate E1 and heavy E2)

Smoking Total

E0 E1 E2

Cancer G G0 6 11 16 33

G1 5 4 3 12

Total 11 15 19 45

Normal G G0 79 22 18 119

G1 9 4 3 16

Total 88 26 21 135

exp{β0 + βT
Ec(Ej )} = R0j /S0j .

Thus,

exp{βT
Ec(Ej )} = R0j S00/(S0jR00),

exp{βT
GEc(Ej )} = R1j S10S0jR00

S1jR10R0j S00
,

from which we obtain the MLEs of βT
Ec(Ej ) and βT

GEc(Ej ). Using these re-
sults, the ORs in Table 10.6 can be estimated using OREj |G0 = exp{βT

Ec(Ej )} and
OREj |G1 = exp{βT

Ec(Ej ) + βT
GEc(Ej )}. Their asymptotic variances can be directly

obtained from multinomial distributions and the independence of cases and controls
(see Problem 10.5). Although we can obtain MLEs of βT

E and βT
GE , to estimate the

ORs we only need the MLEs of βT
Ec(Ej ) and βT

GEc(Ej ) for j = 1, . . . , k − 1.

An Example

To illustrate, the example given in Table 10.4 is represented with three categories
for smoking (Table 10.7): light (E0), moderate (E1) and heavy (E2).

Using the results presented before, we have ORG1|E0 = exp(βG) = 5 × 79/(9 ×
6) = 7.315, which is the same as ORG1|E0 estimated using the data in Table 10.4.
The asymptotic variance of log(ORG1|E0) and the 95% CI for ORG1|E0 are also the
same as before, e.g., the 95% CI for ORG1|E0 is (1.854,28.861). To obtain the OR
relating D to (G1,E1), we have

ORG1,E1 = exp{βG + βT
Ec(E1) + βT

GEc(E1)} = R11S00

R00S11
= 4 × 79

6 × 4
= 13.17.

The log OR is log(13.17) = 2.578 and the estimate of its asymptotic variance is
1/R11 + 1/S00 + 1/R00 + 1/S11 = 0.6793. Hence the 95% CI for ORG1,E1 is

(exp(2.578−1.96×0.67931/2), exp(2.578+1.96×0.67931/2)) = (2.618,66.249).
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Table 10.8 ORs for the association of D with a binary G and a equal-spaced k-level E. θ =
exp(βGE1 )

E

E0 E1 · · · Ek−1

G G0 1.0 ORE1|G0 · · · ORk−1
E1|G0

G1 ORG1|E0 ORE1|G0 × ORG1|E0 × θ · · · ORk−1
E1|G0

× ORG1|E0 × θk−1

Restricted Models

The number of parameters can be reduced with some additional assumptions. For
example, we can assume a MUL effect for E as OREj |G0 = (ORE1|G0)

j , i.e. ej = j

for all j . Hence, exp{βT
Ec(Ej )} = [exp{βT

Ec(E1)}]j = exp(jβE1) for j ≥ 1. The
k − 1 parameters for the main effect of E can then be expressed in terms of a single
parameter exp(βE1). For the gene-environment interaction, if we assume a “top-
to-bottom quantile” interaction effect as exp{βT

GEc(Ej )} = [exp{βT
GEc(E1)}]j =

exp(jβGE1) for j ≥ 1, then each of the k − 1 interaction parameters can be ex-
pressed as a power of a single parameter θ = exp{βT

GEc(E1)} = exp(βGE1). Ta-
ble 10.6 presents all ORs for the association with these additional model assump-
tions. However, these model assumptions may not generally hold. For example, one
may assume OREj |G0 = jORE1|G0 for j ≥ 1.

The likelihood function for the data in Table 10.5 under the model in Table 10.8
is given by

L(β) =
1∏

i=0

k−1∏

j=0

{p1(Gi,Ej )}Rij {p0(Gi,Ej )}Sij

= exp

{

rβ0 + R1·βG +
k−1∑

j=1

jR·jβE1 +
k−1∑

j=1

jR1j βGE1

}

×
[

k−1∏

j=0

{1 + exp(β0 + jβE1)}n0j

]−1

×
[

k−1∏

j=0

{1 + exp(β0 + βG + jβE1 + jβGE1)}n1j

]−1

,

where β = (β0, βG,βE1, βGE1)
T . This likelihood can be obtained from (10.6) by

setting βE1 = · · · = βk−1 and βGE1 = · · · = βGEk−1 . When k = 2, the above likeli-
hood L(β) becomes the one in (10.2), and the MLE of βGE1 , β̂GE1 , has a closed
form solution as before. For k > 2, however, β̂GE1 has no closed form solution, but
can be obtained numerically. Its asymptotic variance can also be obtained numeri-
cally. When θ = 1, there is no gene-environment interaction.
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Table 10.9 ORs for the association of D with an ADD model for G and a equal-spaced k-level
E. θ = exp(βG1E1 )

E

E0 E1 · · · Ek−1

G G0 1.0 ORE1|G0 · · · ORk−1
E1|G0

G1 ORG1|E0 ORE1|G0 × ORG1|E0 × θ · · · ORk−1
E1|G0

× ORG1|E0 × θk−1

G2 OR2
G1|E0

ORE1|G0 × OR2
G1|E0

× θ2 · · · ORk−1
E1|G0

× OR2
G1|E0

× θ2(k−1)

A 2 × 3 × k Table

For a 2 × 3 × k table, in which G has three levels, ORs for the association are
given in Table 10.9. ORG2|E0 = {ORG1|E0}2 is assumed, and the other models for
E and the interaction used in Table 10.8 are also assumed. The likelihood function
for a 2 × 3 × k table using the model in Table 10.9 can be obtained as before and
the MLEs for the parameters can be found numerically. When θ = 1, there is no
gene-environment interaction.

A 2×3× k table is used for G with three genotypes, which is useful for an ADD
model. In this case, one can also consider a 2 × 2 × k table in which G is based
on alleles. The first part of Table 10.10 is a genotype-based 2 × 3 × 2 table and the
second part is an allele-based 2×2×2 table. In the first table, the gene-environment
interaction is defined by two parameters βG1E and βG2E or a single parameter βG1E

under the ADD model. In the second table, it is defined by a single parameter βGE .
Inference for the gene-environment interaction using the data in the second part of
Table 10.10 may be subject to allelic correlation. However, it is not clear if such
a potential impact due to allelic correlation can be ignored if HWE holds in the
population. If so, it is not clear if inferences for βG1E using the data from the first
table and βGE using the data from the second table are asymptotically equivalent.
Similar issues are discussed in Sect. 3.4.2.

10.2.4 Gene-Environment Independence

The independence between gene and environment in the population with a rare dis-
ease is often assumed in the context of gene-environment interaction. Under this
assumption, the OR relating to the gene-environment interaction can be estimated
using cases only. To illustrate, we use the 2 × 2 × 2 table in Table 10.3. Denote D

for D = 1 and D̄ for D = 0. From Sect. 10.2.1, we have

exp(βGE) = Pr(D|G1,E1)Pr(D̄|G1,E0)Pr(D̄|G0,E1)Pr(D|G0,E0)

Pr(D̄|G1,E1)Pr(D|G1,E0)Pr(D|G0,E1)Pr(D̄|G0,E0)

= Pr(E1|D,G1)

Pr(E1|D̄,G1)

Pr(E0|D̄,G1)

Pr(E0|D,G1)

Pr(E1|D̄,G0)

Pr(E1|D,G0)

Pr(E0|D,G0)

Pr(E0|D̄,G0)
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Table 10.10 Case-control data with a binary E and a genotype-based G or an allele-based G

E Total

E0 E1

Cases G AA R00 R01 R0·
AB R10 R11 R1·
BB R20 R21 R2·
Total R·0 R·1 r

Controls G AA S00 S01 S0·
AB S10 S11 S1·
BB S20 S21 S2·
Total S·0 S·1 s

E Total

E0 E1

Cases G A 2R00 + R10 2R01 + R11 2R0· + R1·
B 2R20 + R10 2R21 + R11 2R2· + R1·
Total 2R·0 2R·1 2r

Controls G A 2S00 + S10 2S01 + S11 2S0· + S1·
B 2S20 + S10 2S21 + S11 2S2· + S1·
Total 2S·0 2S·1 2s

= Pr(E1|D,G1)Pr(E0|D,G0)

Pr(E0|D,G1)Pr(E1|D,G0)

× Pr(E0|D̄,G1)Pr(E1|D̄,G0)

Pr(E1|D̄,G1)Pr(E0|D̄,G0)
(10.7)

≈ Pr(E1|D,G1)Pr(E0|D,G0)

Pr(E0|D,G1)Pr(E1|D,G0)
, (10.8)

where the second factor in (10.7) is approximately 1 under the assumptions of gene-
environment independence and a rare disease (Problem 10.7).

Note that (10.8) shows that exp(βGE) can be approximated by the OR relating E

to G among cases because it does not involve D̄ (controls). However, even when the
assumption holds, under the logistic regression model (10.1) the gene-environment
independence cannot be incorporated and both cases and controls are used to esti-
mate exp(βGE). An equation similar to (10.7) is also obtained for gene-gene inter-
actions (Sect. 8.11).
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10.3 Test Statistics for Gene-Environment Interaction

The LRT, Score test and Wald test will be discussed to test for a gene-environment
interaction. The general formulas of these three tests in the presence of nuisance
parameters given in Sect. 1.2.4 can be used. Four parameters, β0, βG, βE and βGE ,
appear in the logistic regression model (10.1). The parameters βG and βE are for the
main genetic and environmental effects, respectively, and the last parameter is for
the gene-environment interaction. To test for βGE , the null hypothesis H0 should
be specified explicitly. For example, in H0 : βGE = 0, the parameters βG and βE

are not specified, while in H0 : βG = βE = βGE = 0 (a global null hypothesis), all
parameters of the main effects and the gene-environment interaction are specified.
The test statistics corresponding to different H0 are often different.

To illustrate these three tests, we consider the 2 × 2 × 2 table with a binary G

and a binary E given in Table 10.3. The likelihood for the data is given in (10.2).
The log-likelihood, denoted as l(β), can be written as

l(β) = rβ0 + R1·βG + R·1βE + R11βGE − n00 log{1 + exp(β0)}
− n10 log{1 + exp(β0 + βG)} − n01 log{1 + exp(β0 + βE)}
− n11 log{1 + exp(β0 + βG + βE + βGE)}, (10.9)

where β = (β0, βG,βE,βGE)T . The MLE, β̂ = (β̂0, β̂G, β̂E, β̂GE)T , is given in
(10.3) in Sect. 10.2.

10.3.1 Likelihood Ratio Test

Consider testing H0 : βGE = 0 against H1 : βGE �= 0 without specifying βG and βE .
Replacing β in l(β) by β̂ , we obtain l(β̂).

Under H0, l(β) is denoted as l0(β) and is given by

l0(β) = rβ0 + R1·βG + R·1βE − n00 log{1 + exp(β0)}
− n10 log{1 + exp(β0 + βG)} − n01 log{1 + exp(β0 + βE)}
− n11 log{1 + exp(β0 + βG + βE)}, (10.10)

where β = (β0, βG,βE,0)T . The estimate β̃ = (β̃0, β̃G, β̃E,0)T that maximizes
l0(β), or l(β) under H0, has no closed form solution. It can be found numerically.
Then we compute l0(β̃). The LRT is given by

LRT = 2l(β̂) − 2l0(β̃) ∼ χ2
1 under H0.

Consider testing H0 : βG = βE = βGE = 0, where β = (β0, βG,βE,βGE)T

without any restriction and β = (β0,0,0,0)T under H0. In this case, l(β̂) is the
same as before. However, l0(θ) = rβ0 − n log{1 + exp(β0)}, which has a maximum
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value l0(β̃) = r log r + s log s − n logn, where n = r + s is the total sample size.
Hence, the LRT is given by

LRT = 2l(β̂) − 2l0(β̃) = 2l(β̂) − 2(r log r + s log s − n logn) ∼ χ2
3 under H0.

10.3.2 Score Test

To obtain the Score test for H0 : βGE = 0, the restricted MLE of β under H0, β̃ , is
given in (10.10). Hence the Score function is given by

U(β̃) = ∂l(β)

∂βGE

|β=β̃ = R11 − (R11 + S11)
exp(β̃0 + β̃G + β̃E)

1 + exp(β̃0 + β̃G + β̃E)
. (10.11)

The observed Fisher information matrix is given by

in(β̃) = − ∂2l(β)

∂β∂βT
|β=β̃ . (10.12)

Then compute the inverse i−1
n (β̃). Denote the (4,4)th element of i−1

n (β̃) as iβGEβGE .
Its inverse is also the estimate of the asymptotic variance of U(β̃). Finally, the Score
test is given by

ST = UT (β̃)iβGEβGEU(β̃) ∼ χ2
1 under H0.

To test a global hypothesis H0 : βG = βE = βGE = 0, β0 is a nuisance parameter
and estimated under H0, which yields β̃0 = log(r/s). Thus, β̃ = (β̃0,0,0,0)T . Then
the Score function is given by

U(β̃) =

⎡

⎢
⎢
⎣

∂l(β)
∂βG

∂l(β)
∂βE

∂l(β)
∂βGE

⎤

⎥
⎥
⎦ |β=β̂ = rs

n

⎡

⎢
⎣

R1·/r − S1·/s
R·1/r − S·1/s
R11/r − S11/s

⎤

⎥
⎦ ,

and

in(β̃) = − ∂2l(β)

∂β∂βT
|β=β̂

= rs

n2

⎡

⎢
⎢
⎢
⎢
⎣

n R1· + S1· R·1 + S·1 R11 + S11

R1· + S1· R1· + S1· R11 + S11 R11 + S11

R·1 + S·1 R11 + S11 R·1 + S·1 R11 + S11

R11 + S11 R11 + S11 R11 + S11 R11 + S11

⎤

⎥
⎥
⎥
⎥
⎦

. (10.13)

Let a = rs(R00 + S00)/n2, b = rs(R01 + S01)/n2, c = rs(R10 + S10)/n2, and d =
rs(R11 + S11)/n2. Then the above matrix is identical in format to the one given
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in (10.4). Its inverse is given in Problem 10.3. That is,

i−1
n (β̃) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
a

− 1
a

− 1
a

1
a

− 1
a

1
a

+ 1
c

1
a

− 1
a

− 1
c

− 1
a

1
a

1
a

+ 1
b

− 1
a

− 1
b

1
a

− 1
a

− 1
c

− 1
a

− 1
b

1
a

+ 1
b

+ 1
c

+ 1
d

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Define the submatrix corresponding to (βG,βE,βGE)T as

Σ =

⎡

⎢
⎢
⎣

1
a

+ 1
c

1
a

− 1
a

− 1
c

1
a

1
a

+ 1
b

− 1
a

− 1
b

− 1
a

− 1
c

− 1
a

− 1
b

1
a

+ 1
b

+ 1
c

+ 1
d

⎤

⎥
⎥
⎦ . (10.14)

Then the Score test can be written as ST = UT (β̃)ΣU(β̃) ∼ χ2
3 under H0.

10.3.3 Wald Test

The Wald test is based on the asymptotic distribution of the MLE. To test H0 :
βGE = 0, the MLE of βGE is given by β̂GE = log{(R11S10S01R00)/(S11R10R01S00)}
and V̂ar(β̂GE) = 1/R11 +1/S10 +1/S01 +1/R00 +1/S11 +1/R10 +1/R01 +1/S00
(see Sect. 10.2.1). When the sample size n is large enough,

β̂GE − βGE = β̂GE ≈ N(0, V̂ar(β̂GE)),

where βGE = 0 under H0. Thus, the Wald test is given by

WT = β̂2
GE/V̂ar(β̂GE) ∼ χ2

1 under H0.

To test H0 : βG = βE = βGE = 0, the MLEs of (βG,βE,βGE)T are given
in (10.3). Denote the estimate of the asymptotic covariance matrix of the MLEs
(β̂G, β̂E, β̂GE)T as Σ . Then,

Σ =

⎡

⎢
⎢
⎣

1
a

+ 1
c

1
a

− 1
a

− 1
c

1
a

1
a

+ 1
b

− 1
a

− 1
b

− 1
a

− 1
c

− 1
a

− 1
b

1
a

+ 1
b

+ 1
c

+ 1
d

⎤

⎥
⎥
⎦ ,

where a = (R−1
00 + S−1

00 )−1, b = (R−1
01 + S−1

01 )−1, c = (R−1
10 + S−1

10 )−1 and d =
(R−1

11 + S−1
11 )−1. Thus, the Wald test is given by

WT = (β̂G, β̂E, β̂GE)Σ−1(β̂G, β̂E, β̂GE)T ∼ χ2
3 under H0,
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where

Σ−1 =

⎡

⎢
⎢
⎣

(a+b)(c+d)
a+b+c+d

ad−bc
a+b+c+d

(a+b)d
a+b+c+d

ad−bc
a+b+c+d

(a+c)(b+d)
a+b+c+d

(a+c)d
a+b+c+d

(a+b)d
a+b+c+d

(a+c)d
a+b+c+d

(a+b+c)d
a+b+c+d

⎤

⎥
⎥
⎦ . (10.15)

10.3.4 Examples

Using the data presented in Table 10.4, R00 = 6, R01 = 27, R10 = 5, R11 = 7, S00 =
79, S01 = 40, S10 = 9, and S11 = 7. Hence R1· = R10 + R11 = 12, R·1 = R01 +
R11 = 34, S1· = S10 +S11 = 16, S·1 = S01 +S11 = 47. n00 = R00 +S00 = 85, n01 =
R01 +S01 = 67, n10 = R10 +S10 = 14 and n11 = R11 +S11 = 14. The total numbers
of cases and controls are r = 45 and s = 135, respectively, and n = r + s = 180.

Testing H0 : βG = βE = βGE = 0

We first consider testing the global null hypothesis H0 : βG = βE = βGE = 0. The
log-likelihood functions are

l(β) = 45β0 + 12βG + 34βE + 7βGE − 85 log{1 + exp(β0)}
− 14 log{1 + exp(β0 + βG)} − 67 log{1 + exp(β0 + βE)}
− 14 log{1 + exp(β0 + βG + βE + βGE)}, (10.16)

l0(β0) = 45β0 − 180 log{1 + exp(β0)}.
The MLEs for β = (β0, βG,βE,βGE)T based on l(β) are given by

β̂0 = log(R00/S00) = −2.5777,

β̂G = log{R10S00/(S10R00)} = 1.9899,

β̂E = log{R01S00/(S01R00)} = 2.1847,

β̂GE = log{R11S10S01R00/(S11R10R01R00)} = −1.5969. (10.17)

The MLE for β0 based on l0(β0) is β̃0 = log(r/s) = −1.0986. Hence, −2l(β̂) =
171.377 and −2l0(β̃) = −2l0(β̃0) = 202.441. Thus, LRT = 2l(β̂) − 2l0(β̃) =
202.441 − 171.377 = 31.064. The p-value is 8.2 × 10−7.

For the Score test, the Score function U(β̃) and Σ given in (10.14) are

U(β̃) = rs

n

⎡

⎢
⎣

R1·/r − S1·/s
R·1/r − S·1/s
R11/r − S11/s

⎤

⎥
⎦=

⎡

⎢
⎣

5

13.75

3.5

⎤

⎥
⎦ ,
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Σ =
⎡

⎢
⎣

0.4437 0.06275 −0.4437

0.06275 0.14235 −0.14235

−0.4437 −0.14235 0.90425

⎤

⎥
⎦ .

Thus, ST = UT (β̃)ΣU(β̂) = 28.479 with p-value 2.9 × 10−6.
To compute the Wald test, the MLEs (β̂G, β̂E, β̂GE)T are given in (10.17). Σ−1

given in (10.15) is

Σ−1 =
⎡

⎢
⎣

5.1275 −1.1367 2.6728

−1.1367 6.0707 1.0830

2.6728 1.0830 3.0688

⎤

⎥
⎦ .

Thus, WT = (β̂G, β̂E, β̂GE)Σ−1(β̂G, β̂E, β̂GE)T = 22.676 with p-value 4.7 ×
10−5.

Testing H0 : βGE = 0

We next consider only testing the gene-environment interaction H0 : βGE = 0. For
the LRT, the log-likelihood function l(β) is given by (10.16). So β̂ given in (10.17)
can be used. Hence, −2l(β̂) = 171.377. Under H0, l0(β) is obtained from (10.10):

l0(β) = 45β0 + 12βG + 34βE − 85 log{1 + exp(β0)}
− 14 log{1 + exp(β0 + βG)} − 67 log{1 + exp(β0 + βE)}
− 14 log{1 + exp(β0 + βG + βE)},

where β = (β0, βG,βE,0)T . The estimates, β̃0, β̃G and β̃E , can be solved from
the equation ∂l0(β)/∂βT = 0. The numerical results show that β̃0 = −2.2857 β̃G =
1.0498 and β̃E = 1.7765. Hence −2l0(β̃) = 174.373 and LRT = 2l(β̂) − 2l0(β̃) =
174.373 − 171.377 = 2.996 with p-value 0.0835.

For the Score test, the Score function from (10.11) is

U(β̃) = 7 − 14
exp(β̃0 + β̃G + β̃E)

1 + exp(β̃0 + β̃G + β̃E)
= −1.8471.

Then, from (10.12),

in(β̃) =

⎡

⎢
⎢
⎢
⎢
⎣

28.5302 5.6986 18.9657 3.2563

5.6986 5.6986 3.2563 3.2563

18.9657 3.2563 18.9657 3.2563

3.2563 3.2563 3.2563 3.2563

⎤

⎥
⎥
⎥
⎥
⎦

.

The (4,4)th element of i−1
n (β̃) is Σ = 0.9206. Hence ST = U2Σ = 3.1409 with

p-value 0.0764.
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To apply the Wald test for H0 : βGE = 0, we have β̂GE = −1.5969 and
V̂ar(β̂GE) = 0.8382. Thus, WT = β̂2

GE/V̂ar(β̂GE) = 3.042 with p-value 0.0811.

Remarks

The results show that, although different test statistics may have different p-values,
they lead to the same conclusions. That is, the overall model is significant at the 0.05
level but the gene-environment interaction is not significant at that level. The Wald
test is relatively easy to use as it has closed forms for either H0 : βGE = 0 or the
global null hypothesis H0 : βG = βE = βGE . Computation of the LRT needs one to
evaluate the log-likelihood functions but does not require computation of the Fisher
information matrix or its inverse, while the Score test needs them. Both the LRT
and Score test also require finding the MLEs numerically. The three test statistics
are output from most statistical software.

When G and/or E have greater than 2 levels, the degrees of freedom of the chi-
squared distribution for each of the three test statistics for H0 : βGE = 0 would be
greater than 1. For example, for a binary G and a three-level E, the number of
degrees of freedom is 2. However, if the top-to-bottom quantile interaction model is
assumed (Sect. 10.2.3), the number of degrees of freedom is still 1 as only a single
parameter is used, which may improve the power if the model assumption is valid.

Whether or not βGE = 0 is of relevance to fitting a parsimonious model, but
is irrelevant regarding the presence of biological interaction. If two factors (e.g.,
gene and environment) are involved in a disease, this in itself implies some kind of
biological interaction.

10.4 Bibliographical Comments

We focus on gene-environment interaction of a single genetic marker and a discrete
environmental factor. Gene-environment interactions in the context of genome-wide
association studies will be discussed in Chap. 12 [126, 271]. Different definitions
of gene-environment interactions were discussed by Smith and Day [249], Khouri
et al. [142] and Hunter [126]. Hunter [126] also summarized the benefits of study-
ing gene-environment interactions, some of which are also discussed in Sect. 10.1.
A general discussion of interactions, including statistical interactions and biological
interactions, can be found in Wang et al. [293]. This chapter is focused on statistical
gene-environment interactions. Cordell [44] discussed how to model statistical in-
teraction if one is interested in biological interaction. Wang et al. [294], on the other
hand, briefly discussed how to infer biological interaction when statistical interac-
tion is not significant.

Gene-environment independence was studied by Piegorsch et al. [203], who
showed that, under this assumption and for a rare disease, gene-environment in-
teraction can be tested by the association between genetic susceptibility and an en-
vironmental factor using cases only. However, using the logistic regression model
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for case-control data cannot exploit this assumption for the analysis. This concept
was further exploited by Umbach and Weinberg [278]. They showed also that for a
rare disease the logistic regression model for testing gene-environment interaction
is equivalent to using a log-linear model and that the independence of gene and en-
vironment can be incorporated in the analysis using the log-linear model. Hence,
using the logistic regression model is not appropriate when the independence be-
tween gene and environment holds in the population [278]. However, the log-linear
model of Umbach and Weinberg [278] contains a large number of parameters to
be estimated. A similar log-linear model was also used for gene-gene interactions
(Sect. 8.3.3). In this chapter, we only consider a logistic regression model for testing
gene-environment interactions. Chatterjee and Carrol [30] studied a retrospective
model for case-control data and converted it to the logistic regression model with a
joint distribution of a gene factor and an environmental factor. Hence, exploiting the
independence of gene and environment, they could handle the joint distribution by
writing them as two marginal distributions of gene and environment and estimated
each of them nonparametrically. This approach allows a more general environmental
factor to be tested, while not needing a large number of parameters to be estimated,
as in Umbach and Weinberg [278]. Although the independence of gene and envi-
ronment is a natural assumption in some situations, Albert et al. [7] showed that
inference can be biased when this assumption is violated.

Inference of gene-environment interactions when an environmental factor has
multiple exposure levels is not efficient due to the large number of degrees of free-
dom. The top-to-bottom interaction model of Foppa and Spiegelman [87] can be
used to reduce the number of parameters for the gene-environment interaction and
hence the number of degrees of freedom of test statistics. This interaction model is
also used for calculating sample size and power for gene-environment interactions,
which is discussed in the next chapter. The data in Table 10.4 and Table 10.7 used
in the examples were originally reported by Nakachi et al. [188] and were used by
Piegorsch et al. [203].

10.5 Problems

10.1 Using the notation of Sect. 10.2.1, let u1(β) = exp(β0)/{1+exp(β0)}, u2(β) =
exp(β0 +βG)/{1+ exp(β0 +βG)}, u3(β) = exp(β0 +βE)/{1+ exp(β0 +βE)}, and
u4(β) = exp(β0 + βG + βE + βGE)/{1 + exp(β0 + βG + βE + βGE)}. Show that:

∂l(β)/∂β0 = r −
4∑

k=1

Nkuk(β) = 0,

∂l(β)/∂βG = R1· − N2u2(β) − N4u4(β) = 0,

∂l(β)/∂βE = R·1 − N3u3(β) − N4u4(β) = 0,

∂l(β)/∂βGE = R11 − N4u4(β) = 0,

from which the MLEs of βG, βE and βGE can be obtained.
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10.2 Show that −∂2l(β)/∂β∂βT can be expressed as (10.4), whose determinant is
abcd .

10.3 Verify that the inverse of (10.4) is

{

− ∂2l(β)

∂β∂βT
|β̃
}−1

=

⎡

⎢
⎢
⎢
⎢
⎣

1
a

− 1
a

− 1
a

1
a

− 1
a

1
a

+ 1
c

1
a

− 1
a

− 1
c

− 1
a

1
a

1
a

+ 1
b

− 1
a

− 1
b

1
a

− 1
a

− 1
c

− 1
a

− 1
b

1
a

+ 1
b

+ 1
c

+ 1
d

⎤

⎥
⎥
⎥
⎥
⎦

.

10.4 Derive the MLE of exp(βGE) and its asymptotic variance under the two special
cases of (10.1) with βG = 0 and βE = 0, respectively. See Sect. 10.2.

10.5 The asymptotic variance of β̂GE can be directly obtained using multinomial
distributions,

(R00,R01,R10,R11) ∼ Mul(r;p1(0,0),p1(0,1),p1(1,0),p1(1,1)),

(S00, S01, S10, S11) ∼ Mul(s;p0(0,0),p0(0,1),p0(1,0),p0(1,1)),

and the fact that cases and controls are independent.

10.6 In Sect. 10.2.1, the binary G and binary E both take values 0 and 1. Suppose G

takes values g0 and g1, g1 > g0 and E takes values e0 and e1, e1 > e0. The logistic
regression model is given by logit(p1(G,E)) = β0 + βGG + βEE + βGEGE. Let
G̃ = (G − g0)/(g1 − g0) and Ẽ = (E − e0)/(e1 − e0) be linear transformations.
Denote β̃0 = β0 + βGg0 + βEe0 − βGEg0e0, β̃G̃ = (βG + βGEe0)(g1 − g0), β̃Ẽ =
(βE + βGEg0)(e1 − e0), and β̃G̃Ẽ = βGE(g1 − g0)(e1 − e0). Show that, under the
above reparameterization, logit(p1(G̃, Ẽ)) = β̃0 + β̃GG̃ + β̃ẼẼ + β̃G̃ẼG̃Ẽ, where
G̃ and Ẽ both take values 0 and 1.

10.7 Show that, under the assumption of gene-environment independence and a rare
disease,

Pr(E0|D̄,G1)Pr(E1|D̄,G0) ≈ Pr(E1|D̄,G1)Pr(E0|D̄,G0).



Chapter 11
Power and Sample Size Calculations

Abstract Chapter 11 covers sample size and power calculations for testing ge-
netic association, gene-environment interaction, and gene-gene interaction. Asymp-
totic power for testing a single marker association using the trend test is derived.
The power calculations are discussed under perfect linkage disequilibrium or un-
der imperfect linkage disequilibrium. The asymptotic power for Pearson’s test is
also given. Asymptotic power is presented using either genotype relative risks or
odds ratios. How to use an existing Power Program to calculate sample size and
power for single marker association is illustrated. A general approach is described
for testing interactions. Then testing gene-environment and gene-gene interactions
are treated as special cases. The same Power Program is used to calculate the asymp-
totic power/sample size for testing gene-gene and gene-environment interactions.
Examples are used to illustrate the use of the Power Program.

In the design of genetic association studies, power and sample size calculations are
required in order to avoid an under-powered study. For most common designs, it
is often required that the power to detect a single association is at least 80% given
the significance level 0.05 and a particular GRR or OR under a specific genetic
model. To calculate the power or sample size, other parameters need to be speci-
fied, which include, but are not limited to, the allele frequency, the disease preva-
lence, and the proportion of cases in the sample. If HWE proportions hold in the
study population, genotype frequencies can be calculated using the allele frequency.
Otherwise, Wright’s inbreeding coefficient is specified and used to compute geno-
type frequencies given the allele frequency. If the sample size and power are calcu-
lated for a marker locus rather than a disease locus, the LD parameter also needs
to be specified. With so many parameters varying, sample sizes could range from
less than a thousand to more than ten thousand to detect an association with 80%
power.

In this chapter, we focus on association studies using unrelated cases and con-
trols. For a single marker analysis, sample size and power calculations are consid-
ered for both disease and marker loci. For testing interactions, we only consider a
disease locus. A general approach to test for interactions is considered. Then gene-
environment and gene-gene interactions are treated as special cases. A program
to calculate power and sample size for single marker analysis, gene-environment
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interaction and gene-gene interaction is discussed. The use of this program is illus-
trated with examples.

11.1 Single Marker Analysis Using Trend Tests

11.1.1 Power and Sample Size Formulas

The trend test studied in Sect. 3.3.1 can be written as

ZCATT(x) = Ux

{V̂ar(Ux)}1/2
, (11.1)

where

Ux = nψ0ψ1xT (̂P − Q̂),

V̂ar(Ux) = nψ0ψ1[(x2)T (ψ1P̂ + ψ0Q̂) − {xT (ψ1P̂ + ψ0Q̂)}2], (11.2)

in which ψ0 = s/n and ψ1 = r/n, x = (x0, x1, x2)
T = (0, x,1)T , x2 = (0, x2,1)T ,

P̂ = (p̂0, p̂1, p̂2)
T , Q̂ = (q̂0, q̂1, q̂2)

T , p̂i = ri/r and q̂i = si/s (i = 0,1,2). Here
x = 0,1/2,1 is an indicator for the underlying genetic model of REC, ADD (or
MUL), and DOM, respectively. For sample size and power calculation using trend
tests, we assume x is given. Under the null hypothesis H0, for a given x, ZCATT(x) ∼
N(0,1) asymptotically.

To calculate sample size and power, we use the asymptotic distribution of
ZCATT(x) under the alternative hypothesis H1, which can be obtained from Slut-
sky’s theorem. First, denote

μ1x = ψ0ψ1xT (P − Q), (11.3)

σ̃ 2
1x = ψ0ψ1[(x2)T (ψ1P + ψ0Q) − {xT (ψ1P + ψ0Q)}2], (11.4)

where P = (p0,p1,p2)
T and Q = (q0, q1, q2)

T , and

pi = Pr(Gi | case) and qi = Pr(Gi |control)

for the given genotype Gi (i = 0,1,2). Then

E(Ux |H1) = nμ1x,

Var(Ux |H1) = n2ψ2
0 ψ2

1 xT (ΣP /r + ΣQ/s)x = nσ 2
1x,

where

σ 2
1x = ψ2

0 ψ1xT ΣP x + ψ0ψ
2
1 xT ΣQx, (11.5)

and ΣP and ΣQ are 3 × 3 matrices with respectively the (i, i)th element pi(1 −pi)

and qi(1 − qi) (i = 0,1,2), and the (i, j)th element −pipj and −qiqj (i �= j ).
Thus, under H1, n−1V̂ar(Ux) → σ̃ 2

1x as n → ∞ and ψ0 ∈ (0,1), and, when n is
large enough,

{Ux − E(Ux |H1)}/{Var(Ux |H1)}1/2 ∼ N(0,1). (11.6)
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Next, under H1, we have (Problem 11.1)

Pr(ZCATT(x) < t |H1) = Φ

(
t σ̃1x − n1/2μ1x

σ1x

)

. (11.7)

Given the above result, following the discussions in Sect. 1.6, the asymptotic
power of the trend test for the significance level α is given by

Power = Pr(|ZCATT(x)| > z1−α/2|H1) = 1 − Φ

(
z1−α/2σ̃1x − n1/2μ1x

σ1x

)

+ Φ

(

−z1−α/2σ̃1x + n1/2μ1x

σ1x

)

, (11.8)

where z1−α = Φ−1(1 − α) is the upper 100αth percentile of N(0,1).
Denote the power as 1 − β . Then, from (11.8), the sample size n to have at least

1 − β power can be approximated by

z1−α/2σ̃1x − n1/2μ1x

σ1x

≤ Φ−1(β) = zβ,

from which

n ≥
(

z1−α/2σ̃1x − zβσ1x

μ1x

)2

. (11.9)

In the two subsequent subsections, we discuss how to compute P and Q for a
disease locus and a marker. Then, using the prespecified x and ψ1, μ1x , σ̃ 2

1x and σ 2
1x

can be calculated from (11.3), (11.4) and (11.5), respectively. Finally, the asymptotic
power and sample size can be obtained from (11.8) and (11.9), respectively.

An alternative approach to derive the asymptotic power is to use a non-centrality
chi-squared distribution. Denote δ = E(Ux |H1)/{Var(Ux |H1)}1/2. From (11.6), as
n is large,

Tx = ZCATT(x)
σ̃1x

σ1x

∼ N(δ,1).

Thus, under H1, T 2
x ∼ χ2

1 (δ2), a chi-squared distribution with 1 degree of freedom
and non-centrality parameter δ2. The asymptotic power can also be obtained using
the above result as

Power = Pr(Z2
CATT(x) > c1|H1) = Pr

(

T 2
x > c1

{
σ̃1x

σ1x

}2

|H1

)

= 1 − Probchi(c∗
1,1, δ2),

where c1 is the 100(1 − α)th percentile of a central χ2
1 (0), c∗

1 = c1{̃σ1x/σ1x}2,
and Probchi(·,1, δ2) is the cumulative distribution of a chi-squared distribution
with 1 degree of freedom and a non-centrality parameter δ2. Note that c∗

1 = c1
under H0 but c∗

1 �= c1 under H1, because V̂ar(Ux) in (11.2) is estimated under
H0 by pooling cases and controls while Var(Ux |H1) is computed under H1. An
alternative approach is to consider a trend test whose denominator is given by
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V̂ar∗(Ux) = n2ψ2
1 ψ2

0 xT (Σ̂P + Σ̂Q)x, where Σ̂P (Σ̂Q) is estimated by replacing pi

(qi ) with p̂i (q̂i ). Then the asymptotic power can be written as 1−Probchi(c1,1, δ2),
because c∗

1 = c1 under H1.
When using this last approach, there is no closed-form formula for sample size

calculation. It can be approximated by varying the sample size until the asymptotic
power is close to the target one.

11.1.2 Perfect Linkage Disequilibrium

Under the assumption of perfect LD, we consider a disease locus. Assume the al-
leles of the disease locus are B and b. Denote the genotypes as (G0,G1,G2) =
(BB,Bb,bb) and gi = Pr(Gi). Let the disease prevalence be k = Pr(case) =∑2

i=0 gifi = f0(g0 + g1λ1 + g2λ2), where fi is the penetrance (Sect. 2.1) and
λi = fi/f0, i = 1,2, are the GRRs (Sect. 2.2). Denote the frequency of allele b

as p.
The following steps can be used to compute sample size and power for a disease

locus:

1) Specify k, p, a genetic model x, GRR λ2, ψ1, and the significance level α;
2) Specify the power 1 − β for computing the sample size;
3) Or specify the sample size n for computing the power;
4) Compute gi assuming HWE;
5) Compute GRR λ1 using λ2 and the genetic model;
6) Compute f0 = k/(g0 + g1λ1 + g2λ2), f1 = λ1f0, and f2 = λ2f0;
7) Compute pi = gifi/k and qi = gi(1 − fi)/(1 − k) for i = 0,1,2;
8) Compute μ1x , σ̃1x and σ1x ;
9) Compute the power using (11.8) or the sample size using (11.9).

Example

Let k = 0.1, p = 0.3, x = 0.5, λ2 = 1.5, ψ = 0.5, α = 0.05, and 1 − β =
0.80. Then, under HWE, (g0, g1, g2) = (0.49,0.42,0.09). Given x = 0.5 (the
ADD model), λ1 = (1 + λ2)/2 = 1.25. Hence, the penetrances are given by
(f0, f1, f2) = (0.0870,0.1087,0.1304). It follows P = (0.4261,0.4565,0.1174)T

and Q = (0.4971,0.4159,0.0870)T . Applying (11.3), (11.4) and (11.5), we have
μ1x = 0.0127, σ̃ 2

1x = 0.0272 and σ 2
1x = 0.0270, respectively. Given n = 500, the

power given by (11.8) is 0.4052, and given the target power 1 −β = 0.8, the sample
size given by (11.9) is n = 1,324 (r = s = 662).

Results

Tables 11.1 and 11.2 report the sample sizes given the target power 1 − β = 0.8
and the power given the sample size n = 1,000, respectively. The values of other
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Table 11.1 Sample sizes for testing association using the trend test for a disease locus with α =
0.05, λ2 = 1.5 and 1 − β = 0.80

k p Model ψ1

(x) 0.3 0.5 0.7

0.1 0.1 REC 14,466 12,620 15,530

ADD 3,160 2,696 3,256

DOM 1,032 886 1,074

0.3 REC 1,832 1,586 1,940

ADD 1,566 1,324 1,584

DOM 754 632 748

0.5 REC 876 748 902

ADD 1,508 1,266 1,502

DOM 1,134 936 1,090

0.2 0.1 REC 11,042 9,694 11,988

ADD 2,462 2,106 2,548

DOM 798 688 836

0.3 REC 1,408 1,226 1,504

ADD 1,230 1,042 1,246

DOM 598 500 592

0.5 REC 680 584 706

ADD 1,192 1,000 1,188

DOM 912 750 874

parameters required in calculating sample size and power are also given in the tables.
The results show that when ψ1 = 0.5, i.e. r = s, the design has highest power given
the total sample size, on fixing the other parameters, or requires the smallest sample
size to achieve 80% power. The results also show that there is less power to detect a
REC disease with small allele frequency, while there is less power to detect a DOM
disease with a larger allele frequency. The power (sample size) increases (decreases)
with the disease prevalence. The power or sample size vary substantially across the
three genetic models and different allele frequencies.

11.1.3 Imperfect Linkage Disequilibrium

A marker locus, which is in LD with the disease locus, is often used. Denote the
alleles of the disease locus as B and b as before, and the alleles of the marker as A

and a. Let Pr(a) = p and Pr(b) = q . Denote the genotypes at the disease locus as
(G∗

0,G
∗
1,G

∗
2) = (BB,Bb,bb) and at the marker as (G0,G1,G2) = (AA,Aa,aa).

Denote the penetrances at the disease and marker loci as f ∗
i and fi , respectively

(i = 0,1,2). Following Sect. 2.2.1, let
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Table 11.2 Asymptotic power (%) for testing association using the trend test for a disease locus
with α = 0.05, λ2 = 1.5 and n = 1,000

k p Model ψ1

(x) 0.3 0.5 0.7

0.1 0.1 REC 14.2 12.4 8.5

ADD 36.2 40.0 33.0

DOM 78.8 84.6 77.1

0.3 REC 55.8 60.4 50.4

ADD 61.2 68.2 60.2

DOM 89.8 94.2 89.7

0.5 REC 84.9 90.0 84.0

ADD 62.6 70.2 62.8

DOM 74.7 82.6 76.6

0.2 0.1 REC 16.8 14.7 9.8

ADD 44.2 48.8 40.6

DOM 87.8 92.2 86.8

0.3 REC 66.5 71.6 61.5

ADD 71.6 78.4 70.7

DOM 95.3 97.8 95.4

0.5 REC 92.2 95.7 91.9

ADD 72.8 80.0 73.0

DOM 83.7 89.9 84.9

F1 = 1 − q + D/(1 − p), F2 = 1 − q − D/p,

F3 = q − D/(1 − p), F4 = q + D/p,

where p, q and D are given in Table 2.1 in Sect. 2.2.1, and D is the LD parameter.
The standardized D′ is used here, which is given by

D′ = D

min((1 − q)p, (1 − p)q)
, if D > 0,

= D

min((1 − q)(1 − p),pq)
, if D ≤ 0.

Note that 0 ≤ D′ ≤ 1. When D′ = 0, the marker and the disease locus are in linkage
equilibrium. We assume 0 < D′ < 1. See Sect. 2.2.1 for a discussion of the signs
of D′ and D. Denote the GRRs at the disease and marker loci as λ∗

i = f ∗
i /f ∗

0 and
λi = fi/f0, respectively, for i = 1,2. Then, from (2.2)–(2.4),

f0 = f ∗
0 (F 2

1 + 2F1F3λ
∗
1 + F 2

3 λ∗
2),

f1 = f ∗
0 (F1F2 + F1F4λ

∗
1 + F2F3λ

∗
1 + F3F4λ

∗
2),

f2 = f ∗
0 (F 2

2 + 2F2F4λ
∗
1 + F 2

4 λ∗
2).
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The following steps can be used to compute sample size and power for a marker
locus:

1) Specify k, p, q , D′, a genetic model x at the disease locus, GRR λ∗
2, ψ1, and the

significance level α;
2) Specify the power 1 − β to compute the sample size;
3) Or specify the sample size n to compute the power;
4) Compute D, F1, F2, F3 and F4;
5) Compute g∗

i = Pr(G∗
i ) and gi = Pr(Gi) assuming HWE (i = 0,1,2);

6) Compute GRR λ∗
1 using λ∗

2 and the genetic model and

f ∗
0 = k/(g∗

0 + g∗
1λ∗

1 + g∗
2λ∗

2);
7) Compute fi for i = 0,1,2 at the marker, and

pi = gifi/k and qi = gi(1 − fi)/(1 − k) (i = 0,1,2);
8) Compute μ1x , σ̃1x and σ1x ;
9) Compute the power using (11.8) or the sample size using (11.9).

Example

Let k = 0.1, p = 0.3 (for the marker), q = 0.2 (for the disease locus), x = 0.5 (the
ADD model), D′ = 0.95, λ∗

2 = 1.5, ψ = 0.5, α = 0.05, n = 1,000, and 1 − β =
0.80. Then D = 0.133 and (F1,F2,F3,F4) = (0.99,0.35667,0.01,0.64333). Un-
der HWE, (g∗

0 , g∗
1 , g∗

2) = (0.64,0.32,0.04) and (g0, g1, g2) = (0.49,0.42,0.09).
Given the ADD model at the disease locus, λ∗

1 = (1 + λ∗
2)/2 = 1.25. Hence,

f ∗
0 = 0.09091 and (f0, f1, f2) = (0.0914,0.1058,0.1202), which still forms an

ADD model at the marker (f1 = (f0 + f2)/2). It follows that P = (0.4477,0.4442,

0.1081)T and Q = (0.4947,0.4173,0.0880)T . Applying (11.3), (11.4) and (11.5),
we have μ1x = 0.0084, σ̃ 2

1x = 0.02688 and σ 2
1x = 0.02681, respectively. Given

n = 1,000, the power given by (11.8) is 36.68%, and given the power 1 − β = 0.8,
the sample size given by (11.9) is n = 2,990.

Results

Tables 11.3 and 11.4 report the sample size given the target power 1 − β = 0.8 and
the power given the sample size n = 1,000 for a marker locus, respectively. The
values of other parameters required in calculating sample size and power are also
given in the tables. With the other parameters being fixed, the required sample size
to achieve 80% power decreases (the power for the given sample size increases)
when D′ > 0 increases. Since the allele frequency of the risk allele at the disease
locus is fixed at q = 0.2, the results change significantly when the frequency of the
risk allele p at the marker varies. Overall, a better design is obtained when p is
closer to q . For example (Table 11.3), the required sample size for the REC model
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Table 11.3 Sample size for testing association using the trend test for a marker locus with α =
0.05, λ2 = 1.5, ψ1 = 0.5, and 1−β = 0.80. p is the allele frequency of the risk allele at the marker
locus, while the frequency of the risk allele at the disease locus is fixed at q = 0.2

k p Model D′

(x) 0.8 0.8 1.0

0.1 0.1 REC 27,038 18,908 13,716

ADD 5,714 4,544 3,704

DOM 2,518 1,984 1,604

0.3 REC 13,558 9,626 7,054

ADD 4,204 3,328 2,702

DOM 1,848 1,426 1,128

0.5 REC 40,056 29,564 22,426

ADD 9,610 7,592 6,148

DOM 5,162 3,966 3,124

0.2 0.1 REC 20,946 14,594 10,548

ADD 4,476 3,556 2,896

DOM 1,970 1,550 1,252

0.3 REC 10,623 7.530 5,510

ADD 3,312 2,622 2,128

DOM 1,462 1,128 892

0.5 REC 31,586 23,306 17,671

ADD 7,594 5,998 4,858

DOM 4,104 3,156 2,488

is 13,716 when k = 0.1, D′ = 1 and p = 0.1, but 7.054 when p = 0.3 and the other
parameters are the same, because p is closer to q = 0.2.

Compared to the results when the marker and the disease locus are in LD, the
required sample size (power) is much larger (smaller) when D′ ≤ 1 and p �= q .
Other patterns of sample size and power in terms of genetic models and k are similar
to those in Tables 11.1 and 11.2.

11.2 Pearson’s Chi-Squared Test

In the previous section, trend tests ZCATT(x) are used to calculate power and sample
size when the genetic model is known. The closed forms for power and sample size
for a marker and a disease locus are given based on (11.8) and (11.9). The power
and sample size vary substantially across the genetic models. When the true genetic
model is unknown, ZCATT(0.5) is often used. On the other hand, Pearson’s test is
also commonly used, being robust to the genetic model. We consider the power and
sample size calculation using Pearson’s test. We only consider computations for a
disease locus, which can be readily modified for a marker.
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Table 11.4 Asymptotic power (%) for testing association using the trend test for a marker locus
with α = 0.05, λ∗

2 = 1.5, ψ1 = 0.5, and n = 1,000. p is the allele frequency of the risk allele at the
marker locus while the frequency of the risk allele at the disease locus is fixed at q = 0.2

k p Model D′

(x) 0.8 0.8 1.0

0.1 0.1 REC 8.3 9.9 11.8

ADD 21.6 26.0 30.7

DOM 42.3 51.1 59.9

0.3 REC 11.8 14.7 18.4

ADD 27.7 33.6 39.9

DOM 54.0 65.0 75.1

0.5 REC 7.3 8.1 9.1

ADD 14.7 17.4 20.4

DOM 23.4 29.0 35.4

0.2 0.1 REC 9.4 11.3 13.9

ADD 26.3 31.8 37.7

DOM 51.4 61.4 70.7

0.3 REC 13.8 17.5 22.2

ADD 33.7 40.9 48.4

DOM 63.9 75.1 84.3

0.5 REC 7.9 8.9 10.2

ADD 17.4 20.8 24.6

DOM 28.2 35.1 42.7

It has been shown (see Bibliographical Comments) that, under H1, Pearson’s
test Tχ2

2
follows a chi-squared distribution with 2 degrees of freedom with a non-

centrality parameter δ2, which can be written as

δ2 = nψ0ψ1

2∑

i=0

(pi − qi)
2

ψ1pi + ψ0qi

,

where pi and qi are calculated for cases and controls at the disease locus. Let c2 be
the 100(1 − α)th percentile of a central chi-squared distribution with 2 degrees of
freedom. Then the power with sample size n to detect H1 specified by GRRs can be
written as

Power = Pr(Tχ2
2

> c2|H1) = 1 − Probchi(c2,2, δ2), (11.10)

where Probchi(·,2, δ2) is the cumulative distribution of a chi-squared distribution
with 2 degrees of freedom and a non-centrality parameter δ2. While (11.10) can be
used to compute the power given n and the significance level α, an explicit formula
to compute the sample size n given power 1−β is not available. But the sample size
n can be approximated by varying n in (11.10) until, say, 80% power is reached.
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Table 11.5 Asymptotic power (%) for testing association using the trend test ZCATT(0.5) and
Pearson’s test for the disease locus with α = 0.05, k = 0.1, and ψ1 = 0.5

p Model n = 1000, λ2 = 1.5 n = 3000, λ2 = 1.2

(x) ZCATT(0.5) Pearson’s ZCATT(0.5) Pearson’s

0.1 REC 6.5 10.0 5.8 7.6

ADD 40.0 31.3 23.8 18.3

DOM 82.5 76.3 58.8 50.6

0.3 REC 35.2 49.9 20.9 29.6

ADD 68.2 58.0 45.5 36.0

DOM 88.7 89.3 70.6 69.7

0.5 REC 77.2 83.4 52.7 58.8

ADD 70.2 60.0 49.9 40.0

DOM 73.7 73.8 47.2 54.2

11.2.1 Example

We compute the sample size to reach 80% power for the disease locus using Tχ2
2

with k = 0.1, p = 0.3 (the frequency of the risk allele), α = 0.05, and λ2 = 1.5.
The results are also compared to those obtained using ZCATT(0.5). When the true
model is REC, ADD and DOM, the total sample size for ZCATT(0.5) is 3138, 1324
and 782, respectively. The total sample size for using Tχ2

2
is given by 1950 (80.0%

power under the REC model), 1624 (80.1% power under the ADD model) and 780
(80.1% power under the DOM model). The asymptotic power with those sample
sizes is given in parentheses. Although Pearson’s test is robust to the genetic model,
sample size calculations depend on GRRs under H1, which depends on a genetic
model. Thus, sample sizes vary across the genetic models for using either test. Both
tests have a similar sample size under the DOM model, but the trend test requires
a much larger sample size under the REC model, while Pearson’s test requires a
relatively larger sample size under the ADD model.

11.2.2 Asymptotic Power of Pearson’s Chi-Squared Test and the
Trend Test

The asymptotic power of Tχ2
2

and ZCATT(0.5) for n = 1,000, α = 0.05, k = 0.1, and
ψ1 = 0.5 are reported in Table 11.5. It shows that the trend test and Pearson’s test
have different asymptotic power given n under the REC and ADD models.
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11.3 Using Odds Ratios

In sample size and power calculations discussed before, GRRs (λ1, λ2) are spec-
ified, and the penetrances (f0, f1, f2) are calculated. When the genetic model is
known, only a single GRR λ2 is required, and λ1 = 1 − x + xλ2 is obtained for
x = 0, 1/2 and 1 under the REC, ADD and DOM models, respectively.

The ORs can also be used (Sect. 2.5.1). Given the penetrance fi , the ORs can be
computed using

ORi = fi(1 − f0)

f0(1 − fi)
, i = 1,2.

If the ORs are specified in the calculations, the GRRs can be obtained if the other
specified parameters are given. First, we have

fi = ORif0

ORif0 + 1 − f0
. (11.11)

For the REC model, f0 = f1. Then, given OR2, using k = f0(g0 + g1) + f2g2, we
have (Problem 11.5)

f0 = −(1 + a) +√(1 + a)2 + 4kb

2b
, (11.12)

where a = (g2 − k)(OR2 − 1) and b = (1 − g2)(OR2 − 1). For the DOM model,
f1 = f2 and k = f0g0 + f2(1 − g0). Thus,

f0 = −(1 + c) +√(1 + c)2 + 4kd

2d
, (11.13)

where c = (1 − g0 − k)(OR2 − 1) and d = g0(OR2 − 1).
Under the REC model, λ1 = 1 and OR1 = 1 are equivalent; and under the DOM

model, λ1 = λ2 and OR1 = OR2 are equivalent. However, this is not true for the
ADD model, under which λ1 = (1 +λ2)/2 does not imply OR1 = (1 + OR2)/2 and
vice versa (Problem 11.5). In general, given OR1 and OR2, we can substitute fi ,
i = 1,2, in k = g0f0 + g1f1 + g2f2 with (11.11) and obtain

k = f0

{

g0 + g1
OR1

(OR1 − 1)f0 + 1
+ g2

OR2

(OR2 − 1)f0 + 1

}

. (11.14)

Hence f0 can be solved from the above equation numerically and fi can be obtained
from (11.11).

Table 11.6 reports f0 solved from (11.12) and (11.13) and GRR λ2 under the
REC and DOM models given OR2 = 1.5 and values of p and k. When OR is
fixed, GRR changes with p and k. When k is small, GRR2 ≈ OR2, but all val-
ues of GRR2 < OR2, which indicates that specifying GRRs and ORs are different
in calculating sample size and power. However, (11.12), (11.13) and (11.14) show
that one only needs to specify either GRRs (or ORs), and then ORs (or GRRs) are
determined by the GRRs (or ORs, p and k).
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Table 11.6 Penetrances and GRRs given OR2 = 1.5 under the REC and DOM models. HWE
holds in the population

p k REC DOM

f0 λ2 f0 λ2

0.1 0.01 0.0099 1.493 0.0091 1.493

0.05 0.0498 1.464 0.0728 1.466

0.10 0.0996 1.429 0.1423 1.434

0.25 0.2492 1.333 0.3324 1.342

0.3 0.01 0.0099 1.493 0.0080 1.494

0.05 0.0480 1.465 0.0403 1.470

0.10 0.0963 1.431 0.0816 1.441

0.25 0.2426 1.338 0.2115 1.357

0.5 0.01 0.0089 1.493 0.0073 1.495

0.05 0.0448 1.467 0.0369 1.473

0.10 0.0902 1.435 0.0749 1.446

0.25 0.2301 1.345 0.1962 1.366

11.4 Using a Power Program

A Power Program (V3.0) was developed by the National Cancer Institute (see
Bibliographical Comments in Sect. 11.6) for sample size and power calcula-
tions. The program can also be used to calculate sample size and power for in-
teractions, which will be described later. The software can be downloaded from
http://dceg.cancer.gov/tools/design/power. Here we describe how to use it for single
marker analysis.

11.4.1 Specifications

To enter the parameter values, a user can choose “Default Values” for a new com-
putation or “Previous Run” to repeat the previous computation with different pa-
rameter values. The program can also read a parameter file. “Case-Control” is then
chosen as the study design and a control to case ratio needs to be specified. This
ratio, in terms of our notation, is s/r = ψ0/ψ1. Up to two exposure variables can
be used. For single marker analysis, only one exposure variable is used (treating it
as a candidate gene). The exposure level is from 2 to 10, which is chosen by the
user. For the REC or DOM models, two-level is chosen with score 0 and 1, and
for the ADD model, three-level is used with scores 0, 1, and 2. The significance
level α (type I error) is entered and a two-sided test is chosen (do not choose this
if a one-sided alternative hypothesis is to be used). The program does not allow
the user to specify the frequency of the risk allele or the minor allele frequency.

http://dceg.cancer.gov/tools/design/power
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Instead, it asks for probabilities for all exposure levels. Note that the three geno-
types are denoted as (G0,G1,G2) = (BB,Bb,bb). Under the REC model, the score
for genotypes BB and Bb is 0 and for genotype bb is 1 (if b is a risk allele). The
probabilities entered in the program are the sum of genotype frequencies for BB
and Bb for level (score) 0 and the genotype frequency for bb for level (score) 1.
For example, if the allele frequency for b is 0.3, then 0.09 is entered for score 1
and 1 − 0.09 = 0.91 (or 0.42 + 0.49 = 0.91) is entered for score 0. The baseline
disease probability Pr(case |G0) is specified, which is the reference penetrance f0.
The OR is specified. For exposure with more than two levels, the OR is specified for
the top-to-bottom (bb versus BB). Only a single OR is specified. Thus, the program
assumes that one knows the genetic model. The user then decides the objective of
the calculation by choosing “Sample Size” with a target power, or “Power” with a
given sample size (the number of cases). After clicking “Finish”, results are output
in a new window.

11.4.2 Examples

We illustrate the use of the Power Program with several examples.
Example 1 (REC model with two levels): Default Values

Study Design
Case-Control Control to Case Ratio: 1

Exposures
Number: one
Exposure 1 Levels (2-10): 2

Type I Error
Alpha-Level: 0.05 Two-Sided

Exposure Scores Probabilities

Scores Total
0 0.91
1 0.09
Total 1.00

Probability of Disease at Baseline: 0.1

Single Exposure Odds Ratios:
Odds Ratio Under the Alternative Hypothesis
Exposure 1
0: 1
1: 1.5

Calculations
Calculate
Sample Size
Given: Power: 0.8
Finish
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The program outputs sample sizes along with the parameter values entered. The
sample sizes are reported as:
No. cases = 1035.5 No. controls = 1035.5 No. subjects = 2071.0

We know that a REC model can also be specified as three-level with scores 0, 0
and 1. This is not allowed in the Power Program because strictly increasing scores
are required. Thus, we chose scores 0, 0.001 and 1 as an approximation (note that
the scores only allow three decimal places in the program), and obtained the total
sample size of 2073.2, which is very close to the original 2071.0.
No. cases = 1036.6 No. controls = 1036.6 No. subjects = 2073.2

To calculate the power given the sample size (the number of cases), we only need
to change a portion of the entries of Example 1 as follows:
......
Calculations
Calculate
Power
Given: Sample size: 1000
Finish

Then the power is 78.6%.
No. cases = 1000.0 No. controls = 1000.0 No. subjects = 2000.0
Study Power = 0.786

In the first example, the choice of scores, 0 and 1, has no impact on the sample
size and power calculations. For example, we can use scores 0 and 2 and obtain
the same sample size and power. This is not true, however, if a three-level score
is considered, which will be demonstrated below. In the second example, we also
change some parameter values and compute the power given the sample size.
Example 2 (ADD model with three levels): Default Values

Study Design
Case-Control Control to Case Ratio: 1.5

Exposures
Number: one
Exposure 1 Levels (2-10): 3

Type I Error
Alpha-Level: 0.05 Two-Sided

Exposure Scores Probabilities

Scores Total
0 0.49
1 0.42
2 0.09
Total 1.00

Probability of Disease at Baseline: 0.01

Single Exposure Odds Ratios:
Odds Ratio Under the Alternative Hypothesis
Exposure 1
0: 1
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1: 1.5

Calculations
Calculate
Power
Given: Sample Size: 1000
Finish

The program outputs the study power 90.6% along with the parameter values
entered. The original sample sizes and the calculated power are reported as:

No. cases = 1000.0 No. controls = 1500.0 No. subjects = 2500.0
Study Power = 0.906

If we change the scores from 0, 1, 2 to 0, 1, 3, the power becomes 85.1%. How-
ever, as long as equally spaced scores are used, the power does not change after
a linear transformation of the scores. For example, the power is still 90.6% if the
scores 0, 2 and 4 are used.

In the next example, we still consider the ADD model but specify two levels
(allele b versus allele B under HWE) using the same parameter values. Note that
the allele-based penetrances will be different from the genotype-based ones, and
that the OR is for b versus B , which is different from the OR for bb versus BB.
Thus, the power is expected to be different.

Example 3 (ADD model with two levels): Default Values

Study Design
Case-Control Control to Case Ratio: 1.5

Exposures
Number: one
Exposure 1 Levels (2-10): 2

Type I Error
Alpha-Level: 0.05 Two-Sided

Exposure Scores Probabilities

Scores Total
0 0.70
1 0.30
Total 1.00

Probability of Disease at Baseline: 0.01

Single Exposure Odds Ratios:
Odds Ratio Under the Alternative Hypothesis
Exposure 1
0: 1
1: 1.5

Calculations
Calculate
Power
Given: Sample Size: 1000
Finish
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The power becomes 99.7%, which is much higher than that with three levels,
because the ORs refer to different comparisons in the two examples.

11.4.3 Limitations

The Power Program is very easy to use. However, it has some limitations for genetic
association studies. First, because the program was not developed specifically for
genetic association studies, it does not allow one to specify the allele frequency.
Instead, the probability of susceptibility has to be specified. Thus, the user has to
compute this with or without HWE and enter the results into the program. Second,
when the score has three levels, only strictly increasing scores may be used. This
only works for the ADD model. For the REC or DOM models, one can only choose
two levels. A more flexible program would allow a REC model to be entered with
scores 0, 0 and 1, so that the genotype frequencies for the three genotypes could be
entered. To examine the performance of sample size and power calculation when
the genetic model is misspecified, the program should allow one to enter two ORs,
not just the top-to-bottom one. Currently, the program assumes that the true genetic
model is known. Third, it can only calculate power or sample size for a candidate-
gene, which assumes perfect LD between the susceptibility and disease loci. If the
LD between the marker and disease locus is measured as D′ (Sect. 11.1.3), the
sample size n when |D′| is not equal to 1 can be obtained from the results presented
in Sect. 11.1.3. Based on the results in Table 11.3, for the ADD model, one can first
calculate the sample size n under |D′| = 1 using the Power program. Then the actual
sample size with |D′| < 1 is approximately equal to n divided by |D′|2. This is not
true, however, for the REC or DOM models.

11.5 Testing Interactions

Sample size and power calculations for testing gene-environment and gene-gene
interactions are considered here. They are often discussed in terms of ORs in the
literature. Either interaction can be tested in a logistic regression model. We consider
testing a general interaction, and then treat gene-environment exposure interaction
and gene-gene interaction as special cases.

11.5.1 Score Statistic for an Interaction

Score Statistic

Let V1 and V2 be two binary variables. A logistic regression model is commonly
used for testing an interaction of V1 and V2, given by

logit{p1(V)} = logit{Pr(case|V1,V2)} = β0 + β1V1 + β2V2 + β12V1V2, (11.15)
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Table 11.7 ORs for main
effects and the interaction
between V1 and V2

V1 = 0 V1 = 1

V2 = 0 1.0 ORV1=1|V2=0

V2 = 1 ORV2=1|V1=0 ORV1,V2

where V = (V1,V2) and V1,V2 = 0,1. In (11.15), βi (i = 1,2) is the log OR for
the main effect of Vi and β12 = log OR12 is the log OR for the interaction. Let
p0(V) = 1 − p1(V). Then

β1 = ln ORV1=1|V2=0 = ln

{
p1(V = (1,0))

p0(V = (1,0))

/p1(V = (0,0))

p0(V = (0,0))

}

,

β2 = ln ORV2=1|V1=0 = ln

{
p1(V = (0,1))

p0(V = (0,1))

/p1(V = (0,0))

p0(V = (0,0))

}

.

Note that this definition of interaction assumes the main effects are additive on the
logistic scale. In the case of a rare disease, logit(p) ≈ log(p), i.e. the main effects
are additive on a log scale, so that we are testing for multiplicative interaction. All
the ORs are summarized in Table 11.7, where we denote

ORV1,V2 = ORV1=1|V2=0 × ORV2=1|V1=0 × OR12.

The null hypothesis of no interaction is H0 : β12 = 0 and the alternative hy-
pothesis is H1 : β12 �= 0 (two-sided), where the main effects β1 and β2 are not
specified under either H0 or H1. Denote the parameters θ0 = (β0, β1, β2)

T and
θ1 = (β0, β1, β2, β12)

T .
Denote the counts of cases and controls with V1 = i and V2 = j as Rij and Sij ,

respectively (i, j = 0,1), and nij = Rij +Sij . The total sample size is n =∑i,j Nij ,
the total number of cases is r =∑i,j Rij , and the total number of controls is s =∑

i,j Sij . Then the log-likelihood function can be written as

l(θ1) = rβ0 + (R10 + R11)β1 + (R01 + R11)β2 + R11β12

− n00 log{1 + exp(β0)} − n01 log{1 + exp(β0 + β2)}
− n10 log{1 + exp(β0 + β1)}
− n11 log{1 + exp(β0 + β1 + β2 + β12)}. (11.16)

When testing H0 : β12 = 0, θ0 is treated as a set of nuisance parameters. The MLE
of θ0 under H0, denoted as θ̂0, can be solved from (Problem 11.6)

∂l(θ1)

∂θ0
|H0 = 0. (11.17)

Let

in(θ̂0) = − ∂2l

∂θ1θ
T
1

|H0,θ0=θ̂0
,

which is a 4 × 4 observed Fisher information matrix evaluated under H0 with θ̂0.
The second order partial derivatives are given in Problem 11.6. Denote its inverse as



326 11 Power and Sample Size Calculations

i−1
n (θ̂0), whose (4,4)th element is denoted as i

β12β12
n (θ̂0). The Score function under

H0 is given by

U12 = ∂l(θ1)

∂β12
|H0,θ0=θ̂0

= R11 − n11p1(V = (1,1))|H0,θ̂0
,

whose asymptotic variance under H0 is V0(U12) = 1/i
β12β12
n (θ̂0). Thus, the Score

statistic for testing H0 : β12 = 0 is given by

Z12 = U12

{V0(U12)}1/2
, (11.18)

which follows N(0,1) under H0 when n is large enough. The null hypothesis is
rejected at the level α if |Z12| > z1−α/2.

Asymptotic Power and Sample Size

The power and sample size for the interaction can be calculated in a similar manner
as in Sect. 11.1.1 when the trend test is used, because (11.1) and (11.18) have similar
patterns. Denote

1

n
V0(U12)

H1→ σ̃ 2
12,

E(U12|H1) = nμ12,

1

n
Var(U12) = σ 2

12.

Then the asymptotic power for a given significance level α is given by

Power = Pr(|Z12| > z1−α/2|H1) = 1 − Φ

(
z1−α/2σ̃12 − n1/2μ12

σ12

)

+ Φ

(

−z1−α/2σ̃12 + n1/2μ12

σ12

)

, (11.19)

while the sample size n to achieve 1 − β power is given by

n ≥
(

z1−α/2σ̃12 − zβσ12

μ12

)2

. (11.20)

Although (11.19) and (11.20) are similar to (11.8) and (11.9), computations of σ̃12,
σ12 and μ12 are more complex. The Power Program that we described in Sect. 11.4
can be used for calculations of sample size and power for both gene-environment
and gene-gene interactions.

11.5.2 Gene-Environment Interactions

Various test statistics for gene-environment interactions have been studied in
Sect. 10.3. To test the interaction between a genetic susceptibility locus and a two-
level environment exposure, the Score statistic derived in the previous section can
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Table 11.8 Case-control
data classified by a two-level
exposure variable without
specifying a genetic model.
The total number of cases
(controls) is r (s)

G0 = BB G1 = Bb G2 = bb

cases E = 0 R00 R01 R02

E = 1 R10 R11 R12

controls E = 0 S00 S01 S02

E = 1 S10 S11 S12

Table 11.9 Case-control data with a two-level exposure variable under the REC model, when b is
the risk allele

E = 0 E = 1

G = 0 G = 1 G = 0 G = 1

cases R̃00 = R00 + R01 R̃10 = R02 R̃01 = R10 + R11 R̃11 = R12

controls S̃00 = S00 + S01 S̃10 = S02 S̃01 = S10 + S11 S̃11 = S12

Table 11.10 Case-control data with a two-level exposure variable under the ADD model, when b

is the risk allele

E = 0 E = 1

G = 0 G = 1 G = 0 G = 1

cases R̃00 = 2R00 + R01 R̃10 = R01 + 2R02 R̃01 = 2R10 + R11 R̃11 = R11 + 2R12

controls S̃00 = 2S00 + S01 S̃10 = S01 + 2S02 S̃01 = 2S10 + S11 S̃11 = S11 + 2S12

be applied with V1 replaced by G and V2 by E (see Sect. 10.3.2 for more discussion
on applying the Score statistic to test for gene-environment interactions).

Data and Genetic Model

The observed case-control data with the exposure variable E can be displayed as in
Table 11.8 without specifying a genetic model. Given a genetic model (REC, ADD
and DOM), the data in Table 11.8 can be displayed in a 2 × 2 × 2 table. Tables
11.9, 11.10 and 11.11 are 2 × 2 × 2 tables for the three genetic models, respectively.
For the ADD model, the data can also be displayed as in Table 11.8 with scores
0,1,2. Thus, the environment exposure has two levels, while the gene has either
two or three levels depending on the genetic models. Assigning scores to the three
levels is not easy without knowing the genetic model. Using Table 11.10 for the
ADD model would lead to different sample size and power calculations compared
to using Table 11.8 with scores 0,1,2 because the specifications of ORs are different
in the two tables. Examples are presented to illustrate the use of the Power Program.
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Table 11.11 Case-control data with a two-level exposure variable under the DOM model, when b

is the risk allele

E = 0 E = 1

G = 0 G = 1 G = 0 G = 1

cases R̃00 = R00 R̃10 = R01 + R02 R̃01 = R10 R̃11 = R11 + R12

controls S̃00 = S00 S̃10 = S01 + S02 S̃01 = S10 S̃11 = S11 + S12

Specifications

To apply the Power Program, the following parameters are specified.

1) Control to case ratio (s/r);
2) A significance level α;
3) A one-sided or two sided alternative hypothesis;
4) The marginal probabilities of exposure levels and susceptibility;
5) Probability of disease at the baseline f0 = Pr(case |G0);
6) Three ORs: two for the main effects (or marginal effects) of the exposure and

gene, and one for the interaction;
7) A sample size (the number of cases) for power calculation or a target power for

sample size calculation.

In the above specifications, the main effect for the environment refers to the OR of
exposure in the control group, while the main effect for the gene refers to the OR of
gene susceptibility in the non-exposed group. The marginal effects refer to the ORs
of susceptibility and exposure in the general population.

Examples

Example 1 (REC model with two levels): Default Values

Study Design
Case-Control Control to Case Ratio: 1

Exposures
Number: two
Exposure 1 Levels (2-10): 2
Exposure 2 Levels (2-10): 2

Type I Error
Alpha-Level: 0.05 Two-Sided

Exposure Scores Probabilities
(Only specify the margins. The cells in the center
are obtained as the products of the margins under the
null hypothesis.)

Scores 0 1 Total
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0 0.455 0.045 0.50
1 0.455 0.045 0.50
Total 0.91 0.09 1.00

Probability of Disease at Baseline: 0.1
Model: multiplicative (logistic)

Odds Ratio Under the Alternative Hypothesis
Specify: Main Effect
Exposure 1: 1.5
Exposure 2: 1.5
Interaction: 2

Calculations
Calculate
Power
Given: Sample Size: 1000
Finish

The output for power to detect gene-environment interaction given the sample sizes
is given by
No. cases = 1000.0 No. controls = 1000.0 No. subjects = 2000.0
Study Power = 0.642

If we change the genetic model to ADD (Table 11.8) with three levels and scores
0, 1, 2, and keep the same margins for the exposure, then the margins for the gene
become 0.49, 0.42, and 0.09 for scores 0, 1, and 2. On re-running the program, we
obtain the new study power for interaction as 0.697 with the same sample sizes. For
the DOM model with two-level exposures, the new margins for the gene are 0.49
and 0.51(= 0.42 + 0.09). With other parameters fixed the same, the study power
becomes 0.955. The results show that the power depends on the underlying genetic
model.

Example 2 (REC model with two levels): Default Values

Study Design
Case-Control Control to Case Ratio: 1

Exposures
Number: two
Exposure 1 Levels (2-10): 2
Exposure 2 Levels (2-10): 2

Type I Error
Alpha-Level: 0.05 Two-Sided

Exposure Scores Probabilities
(Only specify the margins. The cells in the center are
obtained as the products of the margins under the null
hypothesis.)

Scores 0 1 Total
0 0.637 0.063 0.70
1 0.273 0.027 0.30
Total 0.91 0.09 1.00
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Probability of Disease at Baseline: 0.1
Model: multiplicative (logistic)

Odds Ratio Under the Alternative Hypothesis
Specify: Marginal
Exposure 1: 1.5
Exposure 2: 1.5
Interaction: 4

Calculations
Calculate
Power
Given: Sample Size: 1000
Finish

The output for power to detect gene-environment interaction given the sample sizes
is given by
No. cases = 1000.0 No. controls = 1000.0 No. subjects = 2000.0
Study Power = 0.993

11.5.3 Gene-Gene Interactions

The approach discussed in Sect. 11.5.1 can be used to test gene-gene interaction.
Thus, the power and sample size formulas given before can be used but both ex-
posure variables are genetic susceptibility. The probabilities are more complicated
for two susceptibility genes due to genetic model uncertainty. If three genetic mod-
els are plausible for each candidate-gene, then there are 9 different combinations of
models for gene-gene interaction: REC-REC, REC-ADD, REC-DOM, ADD-REC,
ADD-ADD, ADD-DOM, DOM-REC, DOM-ADD, and DOM-DOM. For more dis-
cussion of using genetic models and different test statistics for gene-gene interac-
tions, see Chap. 8. For illustration, we consider the following example, assuming a
REC-ADD model, using the Power Program.

Example

Example (G1 = REC and G2 = ADD): Default Values

Study Design
Case-Control Control to Case Ratio: 1

Exposures
Number: two
Exposure 1 Levels (2-10): 2
Exposure 2 Levels (2-10): 3

Type I Error
Alpha-Level: 0.05 Two-Sided

Exposure Scores Probabilities
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(Only specify the margins. The cells in the center are
obtained as the products of the margins under the null
hypothesis.)

Scores 0 1 2 Total
0 0.5824 0.2912 0.0364 0.91
1 0.0576 0.0288 0.0036 0.09
Total 0.64 0.32 0.04 1.00

Probability of Disease at Baseline: 0.1
Model: multiplicative (logistic)

Odds Ratio Under the Alternative Hypothesis
Specify: Main Effect
Exposure 1: 1.5
Exposure 2: 1.5
Interaction: 4

Calculations
Calculate
Power
Given: Sample Size: 1000
Finish

The output for power to detect gene-gene interaction given for the REC-ADD model
and the sample sizes is:
No. cases = 1000.0 No. controls = 1000.0 No. subjects = 2000.0
Study Power = 0.774

11.6 Bibliographical Comments

We considered power and sample size calculations for genetic association studies
using case-control data. The focus is on single marker analysis, for which several
methods have been discussed. The power and sample size calculations for gene-
environment and gene-gene interactions are unified. Use of the Power Program is
illustrated.

The formulas for sample size and power calculations under perfect LD for a
single marker analysis can be found in Friedlin et al. [91]. Extensions of these to
the LD situation are discussed by Pfeiffer and Gail [202] and Hanson et al. [114].
All these approaches assume a known genetic model. However, the sample size and
power vary substantially when the genetic model changes from the REC model to
the DOM model. Li et al. [169] consider some power calculations for robust tests,
including a maximum robust test studied in Friedlin et al. [91] and Pearson’s test.
Statistical analysis of case-control data is affected by both genotyping errors and
phenotyping errors. Ahn et al. [6] study how genotyping error can affect the power
of trend tests, while Zheng and Tian [346] and Edwards et al. [68] study the impact
when phenotypes (cases/controls) are diagnosed with errors. Zheng and Tian [346]
focus on the trend test while Edwards et al. [68] also consider Pearson’s test. The
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impact of different estimates of the variance of the trend test on the asymptotic
power is considered by Zheng and Gastwirth [337].

A general approach to test interactions is presented by Lubin and Gail [177],
which can be used to test case-control association in single marker analysis and
gene-environment and gene-gene interactions. The Power Program is developed to
calculate sample size and power based on this approach. How to test gene-gene
interaction and calculate sample size and power, however, are not explicitly ex-
plained. The approach also assumes a known genetic model. How to deal with an
unknown genetic model in interactions for sample size and power calculations is
not discussed. Some special cases are considered by Foppa and Spiegelman [87]
and Hwang et al. [129]. The former assume that the ORs for the main effects due
to the exposure and gene are known, while the latter assume that there is no ge-
netic main effect in the absence of an environmental factor [94]. These special cases
put constraints on the parameter spaces under the null and alternative hypotheses,
which lead to an under-powered study when these parameters are actually estimated
in testing gene-environment interaction. In Sect. 11.5.1, we did not give explicit ex-
pressions for σ̃ 2

12, μ12 and σ 2
12, which can be found in Lubin and Gail [177]. We

only focused on a binary environmental factor. For general categorical environment
variables, see Foppa and Spiegelman [87] and Garcia-Closas and Lubin [94].

In this chapter, we did not discuss power and sample size calculations for haplo-
type analysis. Readers can refer to Schaid [231] for some discussion. This is often
more complicated than calculating power and sample size for single marker anal-
ysis and interactions, owing to the unknown phases of halotypes and specification
of genotype/haplotype frequencies. A case-only study for gene-environment inter-
action is an efficient design to study disease etiology that assumes HWE in the
population. Sample size and power calculations to detect gene-environment interac-
tion using case-only designs have been studied in the literature. Readers can refer to
Yang et al. [311] and Clarke and Morris [38] for more details. We focused on sample
size and power calculations for an unmatched case-control study. Gauderman [98]
discussed sample size calculations for detecting gene-environment interaction for a
matched case-control design (Chap. 4). In particular, he used sample size require-
ments to compare the matched case-control design with some family-based designs,
including case-parent and case-sibling designs. A software program, “Quanto”, that
implements his method can be freely downloaded from “http://hydra.usc.edu/gxe”.
This program can also compute sample sizes for genes and gene-gene interactions
using the matched case-control design, case-parents design, case-sibling design, and
case-only design.

11.7 Problems

11.1 For a given x, derive the asymptotic distribution of ZCATT(x), given in (11.7),
under H1.

11.2 For a given x, prove that σ̃ 2
1x = σ 2

1x + μ2
1x .

http://hydra.usc.edu/gxe
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11.3 Prove that the asymptotic power using the trend test with the denominator
{V̂ar∗(Ux)}1/2 is always higher than that using the trend test with {V̂ar(Ux)}1/2.

11.4 Compute the sample size n required to detect association with a disease locus
given the allele frequency p and GRRs (λ1, λ2) (or λ2 with a genetic model) based
on the trend test ZCATT(0.5) and Pearson’s chi-squared test Tχ2

2
. Let α = 0.05 and

the target power be 80%. Then conduct simulations to compare the empirical power
to the theoretical one.

11.5 Relationship between ORs and GRRs

(a) Prove (11.12) and (11.13).
(b) Show that the DOM model defined using the GRRs and ORs are equivalent.
(c) Show that the REC model defined using the GRRs and ORs are equivalent.
(d) Show that if λ1 = (1+λ2)/2, then OR1 < (1+OR2)/2. Hence, the ADD model

defined using the GRRs is not equivalent to that defined using the ORs.

11.6 Show that ∂l(θ1)/∂θT
0 in (11.17) can be written as

∂l

∂β0
=

1∑

i,j=0

{Rij − nijp1(V = (i, j))},

∂l

∂β1
=

1∑

j=0

{R1j − n1jp1(V = (1, j))},

∂l

∂β2
=

1∑

i=0

{Ri1 − ni1p1(V = (i,1))}.

Denote p0(V) = 1 − p1(V). Then show that

− ∂2l

∂β2
0

=
1∑

i,j=0

nijp0(V = (i, j))p1(V = (i, j)),

− ∂2l

∂β0β1
= − ∂2l

∂β2
1

=
1∑

j=0

n1jp0(V = (1, j))p1(V = (1, j)),

− ∂2l

∂β0β2
= − ∂2l

∂β2
2

=
1∑

i=0

ni1p0(V = (i,1))p1(V = (i,1)),

− ∂2l

∂β1β2
= − ∂2l

∂β2
12

= − ∂2l

∂β0β12
= − ∂2l

∂β1β12
= − ∂2l

∂β2β12

= n11p0(V = (1,1))p1(V = (1,1)).
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Chapter 12
Genome-Wide Association Studies

Abstract Test statistics that have been discussed in previous chapters can be used
in the analysis of genome-wide association studies (GWAS). However, in addition
to association analysis, GWAS contain other aspects. We give a brief introduction
to GWAS in this chapter, including some aspects of quality control, genome-wide
ranking, testing gene-environment and gene-gene interactions in GWAS, and repli-
cation studies. A short introduction to GWAS is first given. Some details of quality
control, including testing HWE, are discussed next. For the analysis of GWAS, we
consider genome-wide ranking with the trend test, Pearson’s test and two robust
tests. Strategies for testing gene-environment and gene-gene interactions in GWAS
are discussed. Finally, we review replication studies to confirm significant findings
in GWAS.

Test statistics that have been discussed in previous chapters can be used in the anal-
ysis of genome-wide association studies (GWAS). However, in addition to associa-
tion analysis, GWAS contain other aspects. We give a brief introduction to GWAS in
this chapter, including some aspects of quality control, genome-wide ranking, test-
ing gene-environment and gene-gene interactions in GWAS, and replication stud-
ies. A short introduction to GWAS is first given. Some details of quality control,
including testing HWE, are discussed next. For the analysis of GWAS, we con-
sider genome-wide ranking with the trend test, Pearson’s test and two robust tests.
Strategies for testing gene-environment and gene-gene interactions in GWAS are
discussed. Finally, we review replication studies to confirm significant findings in
GWAS.

12.1 Introduction

GWAS are designed to detect common genetic variants that could influence a va-
riety of diseases and disorders. A common genetic variant often refers to a marker
with MAF no less than 1% in the population. Population-based study designs us-
ing unrelated individuals are commonly employed in GWAS, but family-based or
community-based study designs with related samples are also used. Phenotypes
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studied in GWAS include binary, quantitative or ordinal traits. We focus on case-
control data in this chapter, although most discussions also apply to other types of
traits. The number of markers tested in GWAS has increased from 100,000 SNPs in
2005 to more than 1 million SNPs at present, plus additional imputed SNPs.

The genotyping technology currently used by Affymetrix, Inc. for GWAS is
“Genome-Wide Human SNP Array 6.0”, which consists of more than 906,000
SNPs, where 482,000 SNPs were selected unbiasedly from “Genome-Wide Human
SNP Array 5.0”, and an additional 424,000 SNPs were selected using tag SNPs,
for chromosomes X and Y, and mitochondrial SNPs, etc. On the other hand, Illu-
mina, Inc. provides a variety of whole-genome genotyping arrays, including “Hu-
man Omni5 BeadChip” with over 4 million SNPs and arrays with up to 500,000
custom SNPs.

Before conducting analyses of association in GWAS, quality control is first car-
ried out. In Sect. 12.2, we discuss some aspects of quality control. After quality
control filtering, in which low-quality SNPs are removed, the remaining SNPs are
tested for association. Regardless of the type of trait, each SNP is tested for asso-
ciation at a prespecified significance level (e.g., 5E−08) or a level adjusted by the
Bonferroni correction. Test statistics discussed before can be used for association
analysis. Once the candidate SNPs are obtained from the analysis, one can check
information about the SNPs by using the SNP rs number to search the dbSNP Home
Page (http://www.ncbi.nlm.nih.gov/SNP/). The search outcomes include some de-
tails about the SNP and its alleles, neighboring SNPs, its chromosome and physical
location for a given genome build, whether or not the SNPs are covered by genes,
and the name and reference of the genes, etc. In Sect. 12.3.1, we discuss genome-
wide ranking and show how the ranks of SNPs with true association depend on the
choice of test statistics.

In addition to the above single-marker analysis, haplotype association and gene-
environment and gene-gene interactions may also be analyzed. Some discussion
of these analyses in GWAS is given in Sect. 12.3.2. Finally, a replication study is
an essential step to confirm any significant findings in the initial study, and this is
considered in Sect. 12.4.

12.2 Quality Control

GWAS data without any quality control are raw data. The initial quality control
steps include some biological and technological quality checks. For example, con-
taminated DNA and low-quality SNPs are excluded. Genotypes are called using one
of the genotype calling algorithms for each individual based on the signal intensities
of alleles for each SNP. Low-quality genotype calls are also excluded. To conduct
these quality control steps, special expertise in biology, technology and computing
algorithms and high capacity computers are required. In some cases, however, the
above quality control steps are done through collaborations. For example, if one
accesses the GWAS data from the database of Genotypes and Phenotypes (dbGap)

http://www.ncbi.nlm.nih.gov/SNP/
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(http://www.ncbi.nlm.nih.gov/gap), both raw data and the data after initial quality
control steps may be available.

The next steps of quality control involve calculations of the missing rate and call
rate. The missing rate per SNP is the percentage of individuals whose genotypes
are not called for a given SNP. SNPs with missing rates greater than 2% to 3% are
usually removed from the analysis. The call rate per individual is the percentage
of SNPs whose genotypes are called for a given individual. Individuals with call
rates lower than 95% to 97% are also removed. Different GWAS may set slightly
different thresholds for the missing rate and call rate. One can calculate the MAF
for a SNP using either controls or the combined case-control samples. SNPs with
MAFs less than 1%, including monomorphic SNPs, are also not analyzed because
there is virtually no power in GWAS to detect association with such rare variants.

Deviation from HWE proportions in controls is tested for each SNP using ei-
ther an asymptotic chi-squared test or an exact test (Sect. 2.3.2). Note that if family
data are used, testing HWE is not trivial due to the relatedness in the data. The
program FREQ in S.A.G.E. calculates the allele frequencies and departure from
HWE for each SNP by maximum likelihood from family data assuming Mendelian
inheritance. It does this by modeling the founder genotypic frequencies as a func-
tion of the allele frequencies and the locus specific inbreeding coefficient. So it will
estimate these parameters even if none of the pedigree founders are typed. Divid-
ing the inbreeding coefficient by its standard error can then be used to test HWE.
Some references for other methods of testing HWE using family data are given in
Sect. 12.5. SNPs with extremely significant deviation from HWE, based on a pre-
specified significance level (or with the Bonferroni correction), are regarded as due
to genotyping error, outliers from multiple testing and other quality-related issues,
and are removed from the analysis. Certain genotyping error leads to deviation from
HWE (see simulation results reported later in this section). However, association can
also lead to deviation from HWE, especially deviation from HWE in cases. Thus,
testing HWE is only done using controls.

We conducted a simulation with 10 SNPs with true association (two with the
REC model, six with the ADD model and two with the DOM model), whose MAFs
were simulated from the uniform distribution U(0.1,0.5) and GRRs were simulated
from U(1.2,1.6) for the given genetic models. In the simulation, HWE held in the
general population (Wright’s inbreeding coefficient F = 0) and there was no geno-
typing error. The sample size was either 1,500 or 2,500 cases (controls). P-values for
testing HWE using controls, cases or combined case-control samples were obtained
and are reported in Table 12.1.

The results in Table 12.1 justify testing HWE using controls, but not cases nor
combined samples, because the p-values using the cases or combined samples tend
to be strongly significant when the sample size or the GRR is large enough, espe-
cially under the REC or DOM models. This is consistent with the results presented
in Sect. 3.6 and Sect. 6.6.1, where deviation from HWE in cases is expected for
SNPs with true association under the REC or DOM models. We used 1E−04 sig-
nificance level in Table 12.1. But if we apply the Bonferroni correction to the 0.05
level for testing 10 SNPs, no significant deviation from HWE in controls is observed.

http://www.ncbi.nlm.nih.gov/gap
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Table 12.1 P-values for testing deviation from HWE using controls, cases or combined samples
given that HWE holds in the general population. There is no genotype error. The disease prevalence
is 0.15. P-values are in bold if they are less than 1E−04

r = s Model MAF GRR Controls Cases Combined

1,500 REC 0.32 1.43 8.07E−01 3.10E−03 4.49E−02

0.28 1.30 8.66E−01 4.46E−03 2.91E−02

ADD 0.39 1.20 7.90E−01 8.79E−01 8.00E−01

0.43 1.60 5.59E−01 6.68E−01 6.69E−01

0.19 1.45 7.44E−01 9.54E−01 6.55E−01

0.18 1.46 3.61E−01 8.44E−01 5.10E−01

0.26 1.28 8.36E−01 8.54E−01 8.36E−01

0.33 1.54 2.83E−01 9.38E−01 3.48E−01

DOM 0.40 1.24 6.93E−01 2.00E−02 2.25E−01

0.22 1.31 6.92E−01 5.66E−03 1.04E−01

2,500 REC 0.41 1.30 6.80E−01 1.32E−04 1.26E−02

0.41 1.55 2.26E−02 4.84E−08 1.54E−02

ADD 0.43 1.46 5.80E−01 3.93E−01 9.21E−01

0.50 1.38 6.88E−01 2.37E−01 3.11E−01

0.40 1.27 4.59E−01 5.87E−01 4.34E−01

0.33 1.23 7.37E−01 3.78E−02 9.32E−02

0.30 1.56 5.17E−01 8.08E−01 3.73E−01

0.35 1.56 3.64E−01 5.84E−01 6.21E−01

DOM 0.49 1.57 1.31E−01 3.67E−11 5.75E−08

0.15 1.25 2.46E−01 1.93E−01 9.90E−02

Next, we conducted a similar simulation but HWE did not hold in the population.
We used Wright’s inbreeding coefficient F = −0.1 or 0.1 to produce deviation from
HWE. Results reported in Table 12.2 show that p-values for testing HWE using
controls also tend to be significant. With the same MAFs as in Table 12.2, we also
simulated 10 null SNPs and tested HWE. Similar patterns to those of the associated
SNPs in Table 12.2 were also observed (the results are not reported here). Hence,
when HWE does not hold, removing SNPs with extreme deviation from HWE in
controls is likely to exclude some SNPs with true association as well as some null
SNPs from GWAS analysis. On the other hand, we conducted similar simulations
with F = −0.05 or 0.05. We did not observe significant deviation at the 1E−04
level among the 10 SNPs with true association.

In a further simulation, we considered genotyping error but assumed HWE pro-
portions in the population. Two different models for genotyping error were consid-
ered. The first model, referred to as “error 1” model, assumes error occurs in calling
alleles A and B:

Pr(A allele is called as B allele) = Pr(B allele is called as A allele) = e,
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Table 12.2 P-values for testing deviation from HWE using controls, cases or combined samples
given Wright’s inbreeding coefficient F . There is no genotyping error. The disease prevalence is
0.15. 1,500 cases and 1,500 controls are used. P-values (using controls) are in bold if they are less
than 1E−04

F Model MAF GRR Controls Cases Combined

−0.1 REC 0.42 1.29 4.79E−05 2.17E−03 5.48E−07

0.18 1.34 5.08E−05 4.01E−04 7.90E−08

ADD 0.27 1.22 7.67E−07 5.30E−03 5.02E−08

0.20 1.52 8.96E−09 1.83E−05 8.93E−12

0.32 1.29 6.76E−08 4.70E−05 2.89E−11

0.24 1.58 2.48E−04 1.10E−05 3.98E−08

0.44 1.33 7.76E−05 2.69E−05 1.08E−08

0.22 1.53 1.55E−03 1.02E−10 1.44E−11

REC 0.49 1.47 2.63E−02 1.62E−11 7.81E−10

0.10 1.51 3.41E−04 1.33E−08 8.67E−11

0.1 REC 0.11 1.25 2.47E−03 1.96E−10 5.13E−12

0.14 1.52 1.84E−02 7.77E−16 2.66E−14

ADD 0.45 1.53 5.62E−03 2.60E−03 9.27E−06

0.25 1.42 9.14E−06 1.17E−05 1.35E−10

0.32 1.45 7.61E−05 1.73E−05 3.33E−09

0.12 1.50 3.84E−02 6.18E−04 5.94E−05

0.46 1.29 9.41E−04 3.74E−04 5.28E−07

0.49 1.53 1.11E−03 1.39E−02 2.54E−05

DOM 0.11 1.50 1.26E−03 2.90E−01 2.88E−03

0.24 1.46 2.40E−03 4.26E−01 1.03E−01

where we chose e = 0.2, a quite large error rate. This is a special case of a more
general genotyping error model allowing the above two probabilities to be unequal
[103]. Therefore, given the true genotype frequencies (g0, g1, g2) for (AA,AB,BB),
the observed genotype frequencies with error are given by (p0,p1,p2), where p0 =
(1− e)2g0 + e(1− e)g1 + e2g2, p1 = 2e(1− e)g0 +{e2 + (1− e)2}g1 +2e(1− e)g2
and p2 = e2g0 +e(1−e)g1 + (1−e)2g2. The second model, referred to as “error 2”
model, allows error directly in calling genotypes [62]. Assuming genotype AA is not
likely to be called as BB and vice versa, the second model assumes the probability
that a homozygous genotype is called as heterozygous is γ and the probability that a
heterozygous genotype is called as homozygous is η. Then [103], p0 = (1 −γ )g0 +
(η/2)g1, p1 = γg0 + (1 − η)g1 + γg2 and p2 = (η/2)g1 + (1 − γ )g2. When e =
η = γ = 0, there is no genotyping error (referred to as “no error”), so pi = gi ,
i = 0,1,2. Similar simulations were conducted to test HWE with HWE proportions
in the population. Three models were considered: no error, error 1 model and error 2
model. In each case we simulated 10 associated SNPs with genetic models specified
as before and 10 null SNPs with the same MAFs as the associated SNPs. The p-
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values for testing HWE are reported in Table 12.3. The results show that, under error
1 model when there is allele call error with a 20% error rate, no significant deviation
from HWE is observed. This is consistent with the analytical findings reported in
the literature [355]. However, when there is genotype call error with η = γ = 0.1,
strong deviation from HWE is observed for the associated SNPs as well as for the
null SNPs, especially when the number of controls is 2,500.

The results in Tables 12.1, 12.2, 12.3 show that, when testing HWE for GWAS
quality control, the control samples should be used, a small significance level such
as the one based on Bonferroni correction can be used, and that deviation from
HWE can be observed for SNPs with true association when there is genotyping
error. SNPs that are removed from single-marker analysis due to departure from
HWE can be analyzed later if necessary. For example, some SNPs removed may be
in high LD with the candidate SNPs that show strong association in single marker
analysis. Then, these removed SNPs can be re-analyzed with the candidate SNPs in
haplotype analysis.

In Chap. 9, we discussed PS and methods to correct PS when it is present. In
GWAS, a simple measure for PS is the variance over-dispersion measure, the VIF,
discussed in Sect. 9.3, which is the ratio of the observed median of the trend test
Z2

CATT over that of the theoretical one (0.456). When there is no PS, under the null
hypothesis of no association the VIF is 1. Thus, a large (or small) value of VIF im-
plies PS. A large VIF would lead to identifying SNPs with spurious association. In
practice, a VIF > 1.1 would be considered as inflated and an appropriate method to
correct for PS needs to be applied. Using the self-reported ethnicity in GWAS anal-
ysis may not always control the VIF. For example, in the WTCCC [301], the VIFs
for seven diseases before correcting for PS are 1.11, 1.07, 1.11, 1,06, 1.03, 1.05 and
1.08, while after correcting for PS using the PCA method they become 1.09, 1.06,
1.07, 1.07, 1.03, 1.05 and 1.06, respectively. Q-Q plots of the observed test statistics
versus those simulated from the theoretical distribution under the null hypothesis
are also helpful to visually examine the deviation of the observed statistics in the
presence of PS.

12.3 Analysis of GWAS

12.3.1 Genome-Wide Scans and Ranking

Analysis of GWAS often starts with a simple single-marker analysis strategy, testing
one SNP at a time. For genome-wide scans of a binary trait, test statistics to be used
include, but are not limited to, the allele-based test comparing the frequency of an
allele between cases and controls (Sect. 3.4), the trend test under the ADD model
(Sect. 3.3.1), Pearson’s chi-squared test (Sect. 3.3.3), or robust tests (e.g., MAX3 or
MIN2) (Sect. 6.3.1 and Sect. 6.4). When the trait is quantitative, a linear regression
model is often used.
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When the p-values of a test statistic are obtained for all SNPs, they are com-
pared to a prespecified genome-wide significance level, e.g., 5E−08, or the conven-
tional significance level adjusted for multiple testing using the Bonferroni correc-
tion. A SNP has significant association with the trait, subject to confirmation using
independent samples, if its p-value is less than the genome-wide significance level.
It is possible that, in GWAS, none of the SNPs has a p-value less than the signif-
icance level. In this case, all the SNPs can be ranked by their p-values (or the test
statistics), and a small number of top-ranked SNPs can be selected as candidate
SNPs for further consideration. SNPs with previously reported association may be
confirmed, and some novel genes may also be identified.

One should not expect, in genome-wide scans or ranking, the SNPs with true
association to have p-values less than 5E−08 or to be always ranked near the top.
Many factors affect the order of the ranks for the SNPs with true association, e.g.,
MAFs, genetic models, the total number of SNPs with true association, genetic ef-
fects, and the sample size (or power). Under some assumptions, the probabilities of
the ranks of SNPs with true association can be derived (Problem 12.1).

Let Y1, . . . , YM be statistics for SNPs with true association, whose p-values are
denoted as q1, . . . , qM , and X1, . . . ,XN−M be statistics for SNPs without associa-
tion (i.e., null SNPs), whose p-values are denoted as p1, . . . , pN−M , where N is the
total number of SNPs in a GWAS. Rank q1, . . . , qM as q(1:M) < · · · < q(M:M), and
p1, . . . , pN−M as p(1:N−M) < · · · < p(N−M:N−M). Then Pr(q(1:M) < p(k:N−M))

measures how likely the most significant SNP with true association would have
a better rank than the kth ranked null SNP. When N = 500,000, M = 10 and
k = 10, it refers to the probability that at least one of the 10 SNPs with true
association would be ranked in the top 10 among 500,000 SNPs. Pr(q(1:M) <

p(k:N−M)|min(q(1:M),p(1:N−M)) < α) has a similar interpretation except that it
is conditional on at least one SNP having p-value smaller than α, where α is the
genome-wide significance level. These theoretical probabilities depend on many
factors, including M , N and the power to detect the SNPs with true associa-
tion.

Tables 12.4 and 12.5 report simulation results in genome-wide ranking with equal
number of cases r and controls s, and n = r + s. We simulated a single GWAS with
500,000 SNPs, where 10 SNPs had true association, among which the numbers of
SNPs with the REC, ADD and DOM models were 2,4,2, respectively. The other
499,990 SNPs were null. All MAFs were simulated from U(0.1,0.5) and the GRR
for each of the 10 associated SNPs was simulated from U(1.2,1.6). All 500,000
SNPs were ranked separately for each of the test statistics considered. The ranks of
the 10 associated SNPs were recorded and are reported in Tables 12.4 and 12.5. In
Table 12.4 HWE holds in the population, and in Table 12.5 deviation from HWE
occurs in the cases for the 4 SNPs with true association under the REC and DOM
models (Wright’s inbreeding coefficient is 0.2, which was made large to see an
effect). In Table 12.4, the ranks of the 10 SNPs with association are similar by any
of the methods. However, in Table 12.5, we see that deviation from HWE in cases
for the two SNPs with the REC model and the two SNPs with the DOM model may
have an impact on genome-wide ranking using the trend test. For example, the three
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Table 12.4 Ranks of 10 SNPs with true association under different genetic models in a genome-
wide ranking of 500,000 SNPs. The prevalence is 0.15 and the sample size n varies (r = s). HWE
holds in the population

r = s SNP GRR MAF MIN2 MAX3 CATT Pearson’s

1,500 REC 1.37 0.28 40 57 24 57

1.38 0.16 247,606 152,413 262,551 187,903

ADD 1.44 0.30 3,626 3,631 2,279 5,736

1.52 0.49 15 18 9 38

1.39 0.32 1,200 1,788 753 2,968

1.37 0.41 2,401 3,546 1,511 3834

1.33 0.43 8,740 12,585 5,636 16,150

1.35 0.30 39 56 23 78

DOM 1.54 0.14 1 1 1 1

1.31 0.49 1,664 560 3,402 1,027

2,500 REC 1.55 0.31 7 5 12 5

1.49 0.38 8 4 38 6

ADD 1.40 0.47 13 17 9 24

1.53 0.14 3 3 3 3

1.22 0.37 6 9 5 8

1.28 0.42 4 6 4 9

1.44 0.40 34 46 23 86

1.45 0.36 2 2 2 2

DOM 1.26 0.19 372 348 231 649

1.38 0.29 1 1 1 1

SNPs (two with the REC model and one with the DOM model) in Table 12.5 with
r = s = 2,500 have ranks 5463, 2956 and 8034 and would not be detected if the
trend test is applied. Since the results were based on a single GWAS of 500,000
SNPs without any replication, actual results may vary when other GWAS data are
used.

For the SNPs whose p-values are significant or that are top-ranked, BFs (Chap. 5)
can be reported along with their p-values. The BFs are especially useful when the
results are compared across GWAS, e.g., between the initial study and the confir-
mation study. P-values measure the significance of SNPs regardless of the power
or sample size, while BFs incorporate both significance of the SNPs and the power
(sample size) to detect significant association. If the p-value of the trend test under
a genetic model is reported, we can report the BF under the same genetic model.
However, when the p-value of a robust test is reported, we can report the three BFs
under the REC, ADD and DOM models.
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Table 12.5 Ranks of 10 SNPs with true association under different genetic models in a genome-
wide ranking of 500,000 SNPs. The prevalence is 0.15 and the sample size n varies (r = s). Devi-
ation from HWE occurs in the controls for the associated SNPs under the REC and DOM models

r = s SNP GRR MAF MIN2 MAX3 CATT Pearson’s

1,500 REC 1.43 0.45 1 2 547 1

1.51 0.45 2 1 2 2

ADD 1.30 0.20 5,744 2,520 3,713 3,671

1.59 0.23 5 5 4 5

1.55 0.31 4 4 3 4

1.49 0.18 86 113 46 205

1.30 0.43 2,079 1,293 1,281 2,091

1.43 0.22 3,271 4,753 2,066 7,354

DOM 1.56 0.32 3 3 1 3

1.31 0.39 7 6 60 6

2,500 REC 1.33 0.21 2 2 5,463 2

1.31 0.42 1 1 2,956 1

ADD 1.24 0.28 37 51 24 55

1.34 0.27 724 1,047 443 1,530

1.41 0.39 267 398 169 720

1.24 0.35 26,425 36,821 17,320 49,843

1.58 0.34 3 3 1 3

1.41 0.34 6 9 3 7

DOM 1.34 0.22 4 4 2 4

1.22 0.31 5 5 8,034 5

12.3.2 Haplotype Analysis and Interactions

A large number of haplotypes can be formed and tested in GWAS, which results in
a large number of multiple tests. Hence, candidate SNPs (or candidate genes) can be
first identified in single-marker analysis. Then the methods for haplotype analysis
discussed in Chap. 7 can be applied to the haplotype formed by the candidate SNPs.
Haplotype analysis can be more powerful than single-marker analysis for SNPs in
LD with functional loci or when the variations in traits are inherited in haplotypes.

Unlike haplotype analysis, which tests association of SNPs in LD, gene-gene
interaction tests association of a combination of SNPs on the same or different
chromosomes on the assumption that they are not in gametic phase disequilibrium.
However, there are more combinations of gene-gene interaction terms to be tested
in GWAS. With 500,000 SNPs, there are more than 100 billion combinations of any
two SNPs. In addition, it is known that the power to detect gene-gene interaction is
often lower than to test marginal effects, even though the interaction may exist with-
out the marginal effects. A two-step analysis strategy is helpful [151, 179]. First,
candidate SNPs in single-marker analysis are selected at a given significance level,
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e.g., 0.01. Then we only test gene-gene interactions for these marginally significant
SNPs, using the methods discussed in Chap. 8.

Recent GWAS show that only a small portion of the heritability has been ex-
plained by the identified genetic variants. This finding, along with the empirical
evidence, suggests that some of the missing heritability could be due to gene-
environment interactions. Lower power and multiple testing are challenges for test-
ing gene-environment interaction in GWAS. Two strategies have been studied in
the literature. Both relate to selecting a small number of SNPs to test for gene-
environment interaction. The first approach is similar to that mentioned above in
testing gene-gene interaction. That is, one tests gene-environment interaction only
for the SNPs (and the environments if there is more than one risk factor) which show
marginal effects at a prespecified significance level, e.g. 0.01 [150]. In the second
approach, we test gene and environment association using the pooled case-control
samples (n0, n1, n2) and identify SNPs with most significant association. Then we
test gene-environment interaction with these SNPs using the case-control data. It
can be shown that the selection of SNPs and the procedure to test for the interaction
are independent [187].

In haplotype analysis and testing interactions, we need to correct for multiple
testing. One simple approach is to apply the Bonferroni correction for the actual
number of hypotheses tested or apply other approaches such as controlling the false
discovery rate.

12.4 Replication and Follow-Up

Replication is an important step in GWAS. It is often necessary to confirm the find-
ings of the initial study using independent samples. A good design of a replication
study, with careful choices of study population and trait, and with a large sample
size, would increase the chance of replicating the SNPs with true association. The
importance of replication and guidelines of how to conduct replication studies can
be found in the literature [190, 191]. We emphasize a few points here.

A replication study should have enough power to separate true association from
null association. However, if the study power for replication is calculated based on
the observed effect of a significant SNP, the “winner’s curse” may have an adverse
effect on the power calculation [306]. In genetic association studies, the winner’s
curse refers to any bias related to estimating genetic effects based on selecting the
most significant SNPs for replication. There is a tendency to overestimate the ge-
netic effects so that the follow-up study would be under-powered.

A replication study should use independent case-control data, sampled from the
same population as the initial study. Breaking the whole sample into independent
testing and training sets is often less powerful [246]. Multi-stage sampling or meta-
analysis can be applied to a replication study. Selecting the same phenotype is cru-
cial in a replication study because the phenotype determines the underlying genetic
model and the performance of test statistics depends on the genetic model. The same
or similar phenotypes, along with similar covariates, should be used for both cases
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and controls. If case-control status is determined based on a quantitative trait with
a threshold model, using more extreme traits for cases and controls would improve
the power to replicate the findings. The same test statistic based on the same genetic
model should be first used in a replication study, although using the same test is not
always optimal. For example, if the initial study is tested based on a trend test opti-
mal for the DOM model, the same test based on the DOM model is not optimal in
a replication study, because, for complex traits, the true genetic model is not known
and the optimal test also depends on the LD between the SNP and the functional
loci.

Although some may argue there is no correction necessary when replicating mul-
tiple SNPs, it is still necessary to correct for multiple testing if multiple tests are
applied to replicate each SNP, e.g., if both the trend test and Pearson’s chi-squared
test are applied to replicate each SNP. Furthermore, a combination of the p-values
(or test statistics) of the initial and replication studies should be more significant
than that of the initial study (Problem 12.2).

12.5 Bibliographical Comments

In this chapter, we provide a short review of GWAS. The WTCCC [301] and its
online supplementary materials cover most of the procedures for the analysis of
GWAS, including those we did not mention here. A comprehensive reference fo-
cusing on biostatistical aspects of GWAS is given in Ziegler et al. [352]. Strate-
gies for analysis of gene-environment interaction in GWAS, referred to as “gene-
environment-wide association studies”, is reviewed by Thomas [271]. Other strate-
gies and statistical methods for testing gene-gene and gene-environment interactions
can be found in a review by Kooperberg et al. [151]. We mentioned selection bias
due to the winner’s curse in GWAS [306]. Many statistical methods have been pro-
posed to correct for it (e.g., [101, 254, 353]). Other biases also exist as a result of
genome-wide ranking [131], which we did not discuss here. The NCI-NHGRI [191]
provided detailed descriptions of how to design, analyze and report replication stud-
ies, as well as general guidelines on how to report phenotype-genotype association.

Some topics related to GWAS are not discussed in this chapter, including testing
untyped SNPs and imputing SNPs [172]. Analysis of copy number variants (CNVs)
in GWAS is not covered here either [289, 354]. Other methods for analysis of GWAS
can be found in the journal Statistical Science, which published a special issue on
statistical methods for genome-wide association studies [342].

We mentioned that the program FREQ in S.A.G.E. (http://darwin.case.edu/sage/)
can be used to test departure from HWE using family data. Other analytical ap-
proaches have also been developed to test HWE using family data. For example,
Bourgain et al. [20] developed several tests for deviation from HWE not due to
inbreeding, and noticed that the usual chi-squared test for HWE ignoring the re-
latedness within families would greatly inflate Type I error. Li and Graubard [167]
considered testing HWE using data collected from a complex survey, which includes
family data. Zou and Donner [355] showed that departure from HWE does not imply

http://darwin.case.edu/sage/
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any allele call error, the first model discussed in Sect. 12.2. The results in Table 12.3,
under error 1 model, also demonstrate this. They further argued that, although geno-
type call error leads to departure from HWE, the power to detect genotyping error
is low. The cautionary note of Zou and Donner [355] on testing HWE as a quality
control step was mostly for candidate-gene studies. With improved technology for
genotyping and calling algorithms, genotyping error and call error are much reduced
in GWAS. Hence, the purpose of checking deviation from HWE in GWAS quality
control is not just to detect genotyping error.

12.6 Problems

12.1 In a GWAS of N SNPs, assume all SNPs are independent, and that the test
statistics of the SNPs with true association Y1, . . . , YM follow the same distribution
F1(y) with density f1(y), and the test statistics for the null SNPs X1, . . . ,XN−M

follow the same distribution F0(x) with density f0(x). Let the ordered p-values be
q(i:M), 1 ≤ i ≤ M , and q(k:N−M), 1 ≤ k ≤ N − M , as given in Sect. 12.3.1. Using
the results in Sect. 1.1.4, derive the following results [317].

(a) Show that the densities of q(1:M) and p(k:N−M) are given respectively by

f1:M(q) = M
f1(F

−1
0 (1 − q))

f0(F
−1
0 (1 − q))

FM−1
1 (FM−1

0 (1 − q)),

fk:N−M(p) = (N − M)!
(k − 1)!(N − M − k)!p

k−1(1 − p)N−M−k.

(b) Show that the joint density of (p1:N−M,pk:N−M) (k > 1) can be written as

f1k:N−M(p1,pk) = (N − M)!
(k − 1)!(N − M − k)! (pk − p1)

k−1(1 − pk)
N−M−k.

(c) Show that Pr(q1:M < pk:N−M) = ∫
p>q

fk:N−M(p)f1:M(q)dp dq , and

Pr(q1:M < pk:N−M |min(q1:M,p1:N−M) < α)

= Pr(q1:M < pk:N−M) − Pr(α < q1:M < pk:N−M,p1:N−M > α)
∫
q>α

f1:M(q)dq
∫
p>α

f1:N−M(p)dp
.

(d) Derive Pr(α < q1:M < pk:N−M,p1:N−M > α).

12.2 Let p1 and p2 be the p-values of the initial and replication studies, respectively.
Since the data in the two studies are independent, Fisher’s combination of the two
p-values can be considered as a joint analysis, given by

T = −2 log(p1) − 2 log(p2) ∼ χ2
4

under H0. When is the p-value of T smaller than p1?
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Chapter 13
Analysis of Family Data

Abstract Chapter 13 covers the analysis of family data, including linkage and
association studies. Both model-free and model-based linkage analyses are dis-
cussed. For the former, estimating marker identity by descent, interval mapping, the
Haseman-Elston regression method for a quantitative trait, and the likehood vari-
ance component method are studied. The transmission-Disequilibrium Test (TDT)
is presented. Robust tests for linkage using affected sibpairs and for association
using parent-offspring trio data are presented. Finally, family-based methods for
linkage and association analysis (FBAT) are reviewed.

When two loci are close enough on the same chromosome that the alleles at the
two loci tend to cosegregate to the next generation, the two loci are linked. In
genetic studies, linkage analysis will test whether a marker locus and a disease
locus are linked, whereas association analysis investigates the linkage disequilib-
rium between a marker and a disease locus in a population. Association analy-
sis can be viewed as a linkage analysis in which an entire population is consid-
ered as a whole family and we can trace the flow of alleles from generation to
generation. Linkage analysis can be model-based or model-free, which refers to
the mode of inheritance assumed for the trait whose underlying chromosome lo-
cations are being tested. This chapter begins with an introduction to model-based
linkage analysis, followed by model-free methods, variance component methods,
and the transmission/disequilibrium test (TDT). For family-based association stud-
ies, we focus on a parent-offspring trio design using the TDT. Some robust pro-
cedures discussed in Chap. 6 will be applied to the trio design. A general family-
based association test (FBAT) is introduced with applications to the trio design and
some general pedigrees. Some of the advantages and disadvantages of these dif-
ferent methods will also be mentioned. Because we only give an introduction to
the analysis of family data, some details are omitted. The references for the mate-
rials presented in this chapter are given in the Bibliographical Comments section
(Sect. 13.6).

G. Zheng et al., Analysis of Genetic Association Studies,
Statistics for Biology and Health,
DOI 10.1007/978-1-4614-2245-7_13, © Springer Science+Business Media, LLC 2012
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13.1 Model-Based Methods for Linkage Analysis

Model-based methods are also sometimes called “lod score” methods, or “para-
metric” analyses, and the use of lod scores for linkage analysis was developed by
Newton Morton in his seminal article. In these methods, the mode of inheritance of
the phenotype (a genetic model) is specified. These methods have been very suc-
cessful in past decades in identifying disease genes for Mendelian diseases. We
consider a dichotomous phenotype, either affected (cases) or unaffected (controls),
and a diallelic trait locus. Denote the two alleles as D and d , and their correspond-
ing allele frequencies as p and 1−p, respectively. Under the assumption of random
mating, or HWE proportions, the genotype frequencies for DD, Dd and dd are p2,
2p(1 − p) and (1 − p)2, respectively. Let the penetrances of the three genotypes
be fDD , fDd and fdd . Note that in this chapter we use a different notation for
analyzing family data. For analyzing population-based case-control data, the three
penetrances were denoted as f0, f1 and f2. In this chapter, (f0, f1, f2) are used to
denote other probabilities (e.g., see Sect. 13.2.1) while we use fDD , fDd and fdd to
denote penetrances. We previously used φ and Φ for the PDF and CDF of N(0,1).
In this chapter, however, they are the kinship coefficient and matrix, respectively.
Other differences in notation in this chapter will be pointed out when they appear.
We further assume that the affection status of an individual is only dependent on his
or her own genotype. Let (Y1, . . . , YK) denote the phenotypes in a family of size K ,
and (g1, . . . , gK) denote their genotypes at the trait locus. We have

Pr(Y1, . . . , YK |g1, . . . , gK) =
K∏

k=1

Pr(Yk|gk).

We assume a marker locus M with two alleles, A and a. Let θ denote the recom-
bination fraction between the trait and marker loci, i.e. the proportion of offspring
expected to inherit together the alleles at M and A that are on the same chromo-
some of a homologous pair a parent has. Let (m1, . . . ,mK) denote the genotypes
at the marker locus M . We usually do not observe the trait genotypes. The likeli-
hood for observing the phenotypes and marker genotypes in a family is dependent
on the parameters (θ,p,fDD,fDd,fdd). That is, the likelihood of θ , the parameter
of interest, for the data is given by

Pr(data|θ,p,fDD,fDd,fdd)

= Pr(Y1, . . . , YK,m1, . . . ,mK |θ,p,fDD,fDd,fdd)

=
∑

g1,...,gK

K∏

k=1

Pr(Yk|gk)Pr(m1, g1; . . . ;mK,gK).

For illustration, we assume a nuclear family of size k and denote the father and
mother as individuals 1 and 2. Then the above likelihood function becomes

Pr(m1)Pr(m2)
∑

g1

Pr(Y1|g1)Pr(g1)
∑

g2

Pr(Y2|g2)Pr(g2)
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Fig. 13.1 A pedigree of 6
individuals with a rare DOM
disease. A filled circle or
square denotes a family
member who is affected.
A full penetrance model is
assumed, i.e. fDD = fDd = 1
and fdd = 0

×
K∏

k=3

∑

gk

Pr(Yk|gk)Pr(mk, gk|m1, g1;m2, g2),

which is a function of (θ,p,fDD,fDd,fdd), because Pr(mk, gk|m1, g1;m2, g2)

is a function of the recombination fraction θ . For a general or large pedigree,
the likelihood function can be efficiently calculated using the Elston-Stewart
algorithm, which has been implemented in the Software packages LINKAGE
(ftp://linkage.rockefeller.edu/software/linkage/), FASTLINK (http://www.ncbi.
nlm.nih.gov/CBBresearch/Schaffer/fastlink.html) and the Statistical Analysis for
Genetic Epidemiology (S.A.G.E.) (http://darwin.cwru.edu/sage).

In a linkage analysis between a trait and a marker locus, the null hypothesis (H0)
is free recombination, corresponding to θ = 1/2, and the alternative hypothesis (H1)
is linkage, corresponding to 0 ≤ θ < 1/2. The logarithm to base 10 of the likelihood
ratio,

Z(θ) = log10
Pr(data|θ,p,fDD,fDd,fdd)

Pr(data|θ = 1/2,p,fDD,fDd,fdd)
,

for various values of θ is termed a lod score, or lod. Let Z(θ̂) be the value evalu-
ated at the MLE of θ , θ̂ , or the maximized lod, which is a measure of support for
linkage versus absence of linkage. Asymptotically, under H0, 4.605 ×Z(θ̂) follows
χ2

1 because 2 × log 10 = 4.605. Thus, a maximum lod score > 3 implies a p-value
∼0.0001, because we have a one-sided alternative H1 : θ < 1/2.

Consider an autosomal DOM disease segregating in a family, as in Fig. 13.1. As-
sume all individuals have been genotyped at the marker locus, as shown in Fig. 13.1.
We further assume an individual carrying the disease allele D is always affected.
Since the mother is affected and she has both affected and unaffected children, her
genotype at the disease locus must be heterozygous Dd, while the father, who is
unaffected, must have genotype dd. Thus, the father always transmits the haplotype
da to offspring. We can then infer the phased genotypes for all the offspring. Al-
though we can easily infer the mother’s genotype at the disease locus, we are not
certain of her phase. The possible phased genotype for the mother is either DA/da

ftp://linkage.rockefeller.edu/software/linkage/
http://www.ncbi.nlm.nih.gov/CBBresearch/Schaffer/fastlink.html
http://www.ncbi.nlm.nih.gov/CBBresearch/Schaffer/fastlink.html
http://darwin.cwru.edu/sage
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or Da/dA. Because we have the genotype information at both the marker and trait
loci, the likelihood for the pedigree in Fig. 13.1 can be written as

Pr(data|θ,p,fDD,fDd,fdd)

= Pr(Yf ,Ym, . . . , Y4,mf ,mm, . . . ,m4,

gf , gm, . . . , g4|θ,p,fDD = 1, fDd = 1, fdd = 0)

= Pr(mf ,gf )P (mm,gm)

4∏

k=1

Pr(mk, gk|mf ,gf ;mm,gm).

If the mother’s phased genotype is known, then the conditional probability of an
offspring phased genotype given the parents’ phased genotypes can be calculated
by counting the number of recombinants and non-recombinants in the family. For
example, given the mother’s phased genotype is DA/da, there are four recombinants.
The likelihood for this case is

Pr(mf ,gf )Pr(mm,gm) ×
(

1

2
θ

)4

.

Analogously, given the mother’s phased genotype is Da/dA, there are four non-
recombinants, so that the likelihood is

Pr(mf ,gf )Pr(mm,gm) ×
{

1

2
(1 − θ)

}4

.

If we do not have the phase information for the mother, we let the two phased geno-
types have equal probability to occur. Then the likelihood is

Pr(data|θ,p,fDD,fDd,fdd) = 1

25
Pr(mf ,gf )Pr(mm,gm){(1 − θ)4 + θ4}.

The lod score is

Z(θ) = log10
Pr(data|θ,p,fDD,fDd,fdd)

Pr(data|θ = 1
2 ,p,fDD,fDd,fdd)

= 3 log10(2) + log10{(1 − θ)4 + θ4},
which reaches its maximum when θ = 0.

A family or set of families is informative for linkage if the lod score Z(θ) is not
equal to zero when θ < 1/2. Similarly, offspring are called informative for linkage
when their marker genotypes reveal linkage information. If there were only one
offspring in the above example, we would have the lod score Z(θ) = 0. Thus, there
is no information for linkage in a nuclear family when there is only one offspring.
In general, when there are at least two offspring in a family, the family provides
linkage information.

When there are multiple independent families, it is straightforward to calculate
the lod score for all the families together. Letting Zi(θ) be the lod score for family i,
the lod score for N independent families is

Z(θ) =
N∑

i=1

Zi(θ).
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When multiple studies are available, we can also sum the lod scores from the
multiple studies. Traditionally, we publish lod score curves as a function of θ in
every study, to allow the pooling of independent studies. Caution should be taken
that we should add the lod score functions first, and then take the maximization
of the sum for the estimation of θ and testing for linkage, rather than adding the
maximum lods from different studies.

Traditionally, to control the probability of being in error when we declare linkage,
a p-value of 10−4 is required for significance. In a linkage test of a marker, the usual
significance level is defined as

α = Pr(rejection of H0 given θ = 1/2),

and the power is defined as

1 − β = Pr(rejection of H0 given θ < 1/2).

The probability of being in error when we declare there is linkage, i.e., the posterior
probability of Type I error, is a function of both the usual Type I error (i.e. the
probability of error given H0 is true) and the prior probability that H0 is true. That
is

Pr(θ < 1/2|rejection of H0) = (1 − β)Pr(θ < 1/2)

(1 − β)Pr(θ < 1/2) + α Pr(θ = 1/2)
.

Using the fact that two loci picked randomly from a genome have a small prior
probability (approximately Pr(θ < 1/2) = 0.05) of being linked, it approximately
follows that using a p-value of 10−4 before accepting linkage controls to 5% the
probability of being in error when declaring there is linkage.

For large families, calculating lod scores is extremely tedious and may be im-
possible by hand. Even with the help of computers, the computation time can be
intensive. The Elston-Stewart algorithm is a recursive method to calculate likeli-
hoods for large families with a limited number of markers.

13.2 Model-Free Methods for Linkage Analysis

If a marker and trait loci are linked, then pairs of relatives who are similar with
respect to the trait phenotype will also be similar with respect to the marker phe-
notype, and conversely. Thus, we can test the correlation between trait and marker
similarity, which is the basis of model-free linkage analysis.

13.2.1 Estimating Marker Identity by Descent

Model-free methods of linkage analysis can be based on marker identity in state,
or on marker identity by descent (IBD). Both methods measure the marker simi-
larity and tend to be equivalent as a marker becomes more and more polymorphic.
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Methods based on IBD are more powerful than those based on identity in state. We
introduce the estimation of marker IBD for full siblings. But the same idea can be
extended to any types of relative pairs in a pedigree. If we have enough informa-
tion at a marker locus—for example, the sibs’ parents are also genotyped for the
marker or a sufficient number of sibs are genotyped—it is often possible to deduce
the number of alleles a sibpair shares IBD. In general, the number of alleles shared
IBD between a sibps cannot be counted unambiguously. Haseman and Elston pro-
posed estimating the IBD allele sharing probabilities at a marker locus by utilizing
the marker information available on the sibs and their parents. Let f0, f1 and f2 now
denote the prior probabilities that a relative pair share i = 0, 1 and 2 alleles IBD,
respectively. For full sibs, f0 = 1/4, f1 = 1/2, f2 = 1/4. By Bayes theorem, the
estimated posterior probability that the sibs share i alleles IBD given the available
marker information Im, denoted as f̂i , is simply

f̂i = Pr(i|Im) = fi Pr(Im|i)
Pr(Im)

= fi Pr(Im|i)
∑2

i=0 fi Pr(Im|i) .

In general, the estimate of f̂i is dependent on having accurate estimates of the
marker genotype frequencies. However, f̂i is not dependent on the genotype fre-
quencies when both parents and the sibs are genotyped. Let π be the proportion of
alleles shared IBD by a sibpair, which can only take on values 0, 1/2, or 1. π is esti-
mated by π̂ = f̂2 + f̂1/2. It can be shown that π and π̂ have the highest correlation
for a single marker.

When families whose structures are more extensive than just nuclear fam-
ilies are available, the IBD sharing probabilities can be estimated in a mul-
tipoint fashion with greater accuracy, using for example the Lander-Green al-
gorithm—whose computation time increases linearly in the number of mark-
ers and exponentially in the size of the families. The computer program pack-
age MAPMAKER/SIBS implements the Lander-Green algorithm. The website is
ftp://ftp-genome.wi.mit.edu/distribution/software/sibs/. The full speed version of
the algorithm is implemented in the S.A.G.E. program GENIBD.

13.2.2 Interval Mapping

An alternative multipoint algorithm for estimating πq , the proportion of alleles IBD
at a location q, is calculated from the single point estimates of IBD at a set of m
marker loci on the same chromosome. To illustrate, let L1 and L2 be the locations
of two markers. A trait locus is at Lq between the two markers (Fig. 13.2). Let π1
and π2 be the proportions of alleles IBD at markers L1 and L2, respectively. Let the
recombination fraction between L1 and Lq , Lq and L2, and L1 and L2 be θ1, θ2
and θ12, respectively.

If π1 and π2 are known, the estimated proportion of alleles IBD for the trait locus
can be calculated using a linear regression as

πq = α + β1π1 + β2π2, (13.1)

ftp://ftp-genome.wi.mit.edu/distribution/software/sibs/
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Fig. 13.2 Schematic of a
chromosome segment with 2
marker loci and one trait
locus

where the values of β1 and β2 are calculated using the equations
[

Cov(π1,πq)

Cov(π2,πq)

]

=
[

Var(π1) Cov(π1,π2)

Cov(π1,π2) Var(π2)

][
β1

β2

]

.

Using the facts that (assuming no interference) Var(πi) = 1/8, Cov(π1,π2) = (1 −
2θ12)

2/8, and Cov(πi,πq) = (1 − 2θi)
2/8 for i = 1,2, we have

β1 = (1 − 2θ1)
2 − (1 − 2θ2)

2(1 − 2θ12)
2

1 − (1 − 2θ12)4
, (13.2)

β2 = (1 − 2θ2)
2 − (1 − 2θ1)

2(1 − 2θ12)
2

1 − (1 − 2θ12)4
, (13.3)

α = (1 − β1 − β2)/2. (13.4)

Substituting Eqs. (13.2)–(13.4) into (13.1) will result in an estimate of the proportion
of alleles IBD, π̂q , for a trait locus. This algorithm can be extended to estimate πq

from the single point estimates of IBD at a set of m marker loci on a chromosome.
Let π̂1, . . . , π̂m be the IBD estimates for m marker loci. The a linear regression of
πq is

π̂q = α + β1π̂1 + · · · + βmπ̂m.

The regression coefficients can be estimated using the fact that for any two loci i
and j with recombination fraction θij between them,

E{Cov(π̂i , π̂j )} = 8V (π̂i)V (π̂j )(1 − 2θij )
2

and

E{Cov(π̂i , π̂q)} = V (π̂i)(1 − 2θi)
2,

where V (π̂i) is the empirical estimate of the variance Var(π̂i) at locus i. This mul-
tipoint algorithm gives an estimate of πq at any location other than the locations
for which marker information is available. Thus, the IBD sharing estimate at each
marker location can be obtained, and the regression method can be applied to ob-
tain a fast and good approximation to true multipoint estimates at all chromosomal
locations, on the assumption of no interference.
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13.2.3 The Original Haseman-Elston (HE) Regression
for a Quantitative Trait

When we have the IBD sharing information at a locus, we can essentially compare
the phenotype similarity and the IBD sharing between relative pairs. For example,
let Y1j and Y2j be the trait values for the j th sibpair, with the following model:

Y1j = μ + g1j + e1j ,

Y2j = μ + g2j + e2j ,

where μ is the overall mean and gij and eij are quantitative trait locus (QTL) and
environmental effects, respectively. Denote the variances of gij and eij as σ 2

g and

σ 2
e , respectively. Let ΔYj = (Y1j − Y2j )

2 and πj denote the proportion of alleles
that the j th sibpair shares IBD at a trait locus. Assuming no dominant effect, it can
be shown that

E(ΔYj |πj ) = (σ 2
e + σ 2

g ) − 2σ 2
g πj .

Let πmj denote the proportion of alleles the jth sibpair shares IBD at a marker
locus m and π̂mj be the estimate of πmj , π̂mj = f̂m2j + 0.5f̂m1j , where f̂mij is the
estimated probability that the jth sibpair shares i alleles IBD (i = 0, 1, or 2) at the
marker locus, conditional on the marker information available on the sibpair and
their relatives. Under the assumption of linkage equilibrium between the marker
and trait loci, it can be shown that

E(ΔYj |π̂mj ) = {σ 2
e + 2(1 − 2θ + 2θ2)σ 2

g } − 2(1 − 2θ)2σ 2
g π̂mj ,

which can be represented as a linear regression model that has been termed
Haseman-Elston (HE) regression:

E(ΔYj |π̂mj ) = α − βπ̂mj .

Based on the above regression model, we can test the null hypothesis of no link-
age H0 : β = 0 by a one-sided t-test. There has been a concern that the regression
method requires the residuals to be normally distributed in order to have appropriate
type I error in the test. It has been shown that the HE regression is quite robust to de-
viations from normality for reasonable sample sizes. Because of its robustness and
simplicity, the HE regression has been extended to various situations, for example,
to a multivariate regression, two unlinked QTLs, parent-of-origin effects etc.

13.2.4 The New HE Regression

The original HE regression is less powerful than the full likelihood-based variance
component methods when trait normality holds approximately. It has been pointed
out that the full likelihood function for a sibpair can be written in terms of both
a sum and a difference of trait values. An extension of the HE method has been
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Table 13.1 Definitions of the dependent variables for various forms of HE regression (reproduced
from Wang and Elston [291])

Method Acronym Dependent variables

Original oHE 0.5(Y1j − Y2j )
2

Revisited rHE (Y1j − Ȳ )(Y2j − Ȳ )

Weighted wHE 1
2 {(1 − w)(Y1j + Y2j − 2Ȳ )2 − w(Y1j − Y2j )

2}
Sibship sample mean smHE (Y1j − Ȳj )(Y2j − Ȳj )

Shrinkage mean pmHE (Y1j − μ̃j )(Y2j − μ̃j )

Ȳ overall mean; Ȳj : sibship mean; μ̃: shrinkage mean; w: weight

proposed that uses both the sibpair trait sum and difference as dependent variables,
and estimates the slope by averaging the estimates from the two regressions, i.e.,
of the squared sum and squared difference, which is the best estimate when the
residuals have the same variance for both the squared sum and difference. Based on
the same idea, the overall mean-centered cross-product of sibpair traits was adopted
as the trait similarity measure in the revisited HE regression. Table 13.1 lists the
different trait similarity measurements that are implemented in the program SIBPAL
of the S.A.G.E. program package.

It is known that the assumption of the same residual variance for the squared
sum and difference can be violated, resulting in loss of statistical power for the
revisited HE regression. To improve the power, different weighting methods have
been proposed for the two slopes estimated from the squared sum and difference;
these methods differ in how to estimate the weight of the two regression slopes using
their estimated variances.

Regression-based linkage methods have also been extended for pairs in any type
of pedigree structure, using generalized estimating equations (GEEs). It has been
demonstrated that the different choices of the working covariance matrix in GEEs
will correspond to the different HE and variance component methods. A two-level
HE is also proposed for quantitative trait linkage analysis and general pedigrees
under the framework of multiple level regression. The two-level HE can make use
of all the information available in any general pedigree, simultaneously incorporat-
ing individual-level and pedigree effects, and feasibly modeling various complex
genetic effects.

13.2.5 Maximum Likelihood Variance Component Model

Variance component model-based linkage analysis is also widely used in mapping
QTLs. The variance component approach to linkage analysis has been extended to
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general pedigrees. Assuming a quantitative trait Yi for the ith individual affected by
n QTLs linearly,

Yi = μ +
n∑

j=1

gij + ei,

where μ is the overall mean, gij is the effect for the j th QTL, and ei is a random
environmental effect. Similar to before, gij and ei are independent variables with
means 0. The variance of Yi is Var(Yi) =∑n

j=1 σ 2
gj

+ σ 2
e , where σ 2

gj
is the variance

for the j th QTL. Here we assume additive effects for all gij , i.e. all gij , j = 1, . . . , n,
are independent.

We can calculate the covariance between the trait values of any pair of relatives,
Y1 and Y2, as

Cov(Y1, Y2) = E{(Y1 − μ)(Y2 − μ)} = E

{(
n∑

j=1

g1j + e1

)(
n∑

j=1

g2j + e2

)}

= E

{
n∑

j=1

g1j g2j

}

=
n∑

j=1

E{E(g1j g2j |i)}, (13.5)

where i represents that individuals 1 and 2 share i alleles IBD at the j th QTL. Let
fij be the probability of individuals 1 and 2 sharing i alleles IBD at the j th QTL,
i = 0,1,2. From (13.5), we have

Cov(Y1, Y2) =
n∑

j=1

2∑

k=0

Pr(i = k)E(g1j g2j |i = k)

=
n∑

j=1

{Pr(i = 1)E(g1j g2j |i = 1) + Pr(i = 2)E(g1j g2j |i = 2)}

=
n∑

j=1

{
1

2
Pr(i = 1)σ 2

gj
+ Pr(i = 2)σ 2

gj

}

(13.6)

=
n∑

j=1

(
1

2
f1j + f2j

)

σ 2
gj

. (13.7)

Equation (13.6) is obtained as follows: i = 2 implies g1j ≡ g2j , so E(g1j g2j |i =
2) = E(g2

1j ) = σ 2
gi

. Then we use the results in Table 13.2 to derive E(g1j g2j |i = 1).

From Table 13.2, E(g1j g2j |i = 1) = p(1 − p) = 1
2σ 2

gj
(Problem 13.1). Hence, the

phenotypic correlation between individuals 1 and 2 is given by

ρ(Y1, Y2) =
n∑

j=1

(
1

2
f1j + f2j

)

h2
gj

,
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Table 13.2 The possible genotype configuration of individuals 1 and 2 when they share 1 allele
IBD. Allele A has frequency p

Individual 1’s genotype Individual 2’s genotype g1j g2j Probability

AA AA 2(1 − p) 2(1 − p) p3

AA Aa 2(1 − p) 1 − 2p p2(1 − p)

AA aa 2(1 − p) −2p 0

Aa AA 1 − 2p 2(1 − p) p2(1 − p)

Aa Aa 1 − 2p 1 − 2p p(1 − p)

Aa aa 1 − 2p −2p p(1 − p)2

aa AA −2p 2(1 − p) 0

aa Aa −2p 1 − 2p p(1 − p)2

aa aa −2p −2p (1 − p)3

where h2
gj

is the heritability contributed by the j th QTL, given by

h2
gj

= σ 2
gj∑n

j=1 σ 2
gj

+ σ 2
e

.

In linkage analysis, we do not have information for all the QTLs and usually use
the expectation of f1j and f2j over the genome to obtain the approximation

Cov(Y1, Y2) = 2φσ 2
g ,

where σ 2
g =∑n

j=1 σ 2
gj

is the total additive genetic variance and φ = 1
2 E(f1j /2 +

f2j ) is the kinship coefficient between individuals 1 and 2. In fact, this idea has
been used for estimating the missing heritability for common variants using GWAS
data. Since we are interested in an individual QTL (e.g., the j th QTL), we can
rewrite Eq. (13.7) as

Cov(Y1, Y2) = πjσ
2
gj

+ 2φσ ∗2
g ,

where πj = f1j /2 + f2j is the proportion of allele shared IBD by individuals 1 and
2 at a particular QTL of interest, as opposed to small background QTLs represented
by φ and σ ∗2

g = σ 2
g − σ 2

gj
is the total genetic variance after excluding the j th QTL.

For any pair of members from a pedigree and all the n QTLs, Eq. (13.5) corresponds
to the covariance matrix

Ω = Π̂jσ
2
gj

+ 2Φσ ∗2
g + Iσ 2

e ,

where Π̂j is a matrix whose elements represent the proportion of alleles IBD at the
j th QTL for the pairs of individuals, Φ is the kinship coefficient matrix, and I is
the identity matrix. The matrix Π̂j can be estimated using genetic markers.

Assuming the phenotypic vector Y follows a multivariate normal distribution, the
log-likelihood for the data is

logL(μ,σ 2
gj

, σ ∗2
g , σ 2

e |Y) = −N

2
log(2π) − 1

2
log |Ω|(Y − μ)T Ω−1(Y − μ),



364 13 Analysis of Family Data

where N is the number of individuals, and μ is an overall mean vector in which co-
variates can be modeled. The standard maximum likelihood theory can be applied
to estimate the parameters θ = (μ,σ 2

gj
, σ ∗2

g , σ 2
e )T . In linkage analysis, the null hy-

pothesis is H0 : σ 2
gj

= 0, which can be tested by the LRT

LRT = 2{logL(θ̂) − logL(θ̃)},
where θ̂ = (μ̂, σ̂ 2

gj
, σ̂ ∗2

g , σ̂ 2
e )T and θ̃ = (μ̃,0, σ̃ ∗2

g , σ̃ 2
e )T are the estimates under H1,

no restriction, and H0, respectively. The lod score can be defined as

Lod = log10
L(θ̂)

L(θ̃)
= 4.605 × LRT.

When the multivariate normality assumption holds, the LRT asymptotically fol-
lows a 0.5:0.5 mixture distribution of a χ2

1 and a point mass at zero. Alternative test
statistics, such as the Score test and Wald test, can be applied.

13.2.6 Qualitative Traits

We have mentioned the lod score method for analyzing qualitative traits at the be-
ginning of this chapter. Linkage analysis can also be carried out by studying the IBD
sharing conditional on the trait phenotypes. The idea is that individuals in a pedigree
who have inherited disease alleles in common are likely to share genetic material
in the region of the disease locus more often than expected by chance. There are
advantages in conditioning on affected individuals only, including 1) removing one
penetrance parameter reduces the degrees of freedom in statistical tests; 2) affected
individuals often contribute most of the linkage information; 3) an affected individ-
ual is more likely to carry a disease susceptibility allele than an unaffected person,
particularly for those with late ages of onset.

Under the null hypothesis H0 that a marker is not linked to a disease locus, af-
fected sibpairs will share 0, 1, or 2 alleles IBD at the marker with the probabilities
( 1

4 , 1
2 , 1

4 ). We can test linkage by testing whether the observed IBD sharing in the
sample of affected sibpairs is consistent with the probabilities under H0, against the
alternative hypothesis H1 that there is a skewing toward higher numbers of alleles
shared IBD, as would be expected for the case of affected pairs if the marker is
linked to the trait.

Let (z0, z1, z2) be the true underlying probabilities that an affected sibpair shares
0, 1, 2 alleles IBD at a marker position. Several different test statistics have been de-
veloped to test H0 : (z0, z1, z2) = (1/4,1/2,1/4) when we know exactly how many
alleles are shared IBD by each sibpair. One method to test linkage is a goodness-of-
fit test with two degrees of freedom:

χ2
2 =

∑ (Oi − Ei)
2

Ei

,

where Oi and Ei represent the observed and expected number of sibpairs sharing
i alleles IBD, respectively. Let ( ẑ0, ẑ1, ẑ2) be sample estimates of (z0, z1, z2). That
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is, ẑi = ni/n if ni is the observed number of sharing i alleles IBD among n sibpairs
(i = 0,1,2). The “mean” test is based on the mean number of alleles shared IBD:

Tmean = ẑ1 + 2 ẑ2 − E( ẑ1 + 2 ẑ2|H0)√
Var( ẑ1 + 2 ẑ2|H0)

= √
2n( ẑ1 + 2 ẑ2 − 1),

and the proportion test based on ẑ2 is

Tprop = ẑ2 − E( ẑ2|H0)√
Var( ẑ2|H0)

=
√

n

3
(4 ẑ2 − 1),

where n is the number of affected sibpairs. Both T 2
mean and T 2

prop have an asymp-

totic χ2
1 distribution under H0. Among the three test statistics, χ2

2 , Tmean and Tprop,
the “mean” test has been shown to be generally more powerful than the other two
tests. Although the above methods are model-free, their power is dependent on the
underlying genetic model. Hence, no single test is uniformally most powerful for
any alternative hypothesis. It has been showed that Tmean is most powerful under a
multiple monogenic mode of inheritance and is locally optimal otherwise. On the
other hand, the maximum of Tmean and Tprop is suggested as a method that is more
robust than either individual test.

Both Tmean and Tprop belong to a family of normally distributed tests of the fol-
lowing form

T (w) = ẑ2 + wẑ1 − E( ẑ2 + wẑ1|H0)√
Var( ẑ2 + wẑ1|H0)

=
√

n{ ẑ2 − 1
4 + w( ẑ1 − 1

2 )}
1
4

√
3 − 4 + 4w2

, (13.8)

where w is a weight parameter. Setting w = 1/2 results the mean test Tmean, while
setting w = 0 results the proportion test Tprop. Later, we will show that the interest-
ing range for w is w ∈ [0,1/2].

A test with the weight w = 0.275 is referred to as a “minmax” test, which is
similar to the test using the midpoint w = 1/4 as a weight. The “minmax” test
is more robust than Tmean and Tprop when the true value of w is unknown. See
Sect. 13.4 for more discussion of robust procedures.

An alternative to the above one-degree-of-freedom tests T 2(w) is a two-degree-
of-freedom LRT, LRT2, also called the maximum lod score (MLS), which is based
on the likelihood ratio

Pr(data |z0, z1, z2)

P(data | 1
4 , 1

2 , 1
4 )

= Pr(data |z0, z1, z2)

P(data |z00, z10, z20)
,

where (z00, z10, z20) = (1/4,1/2,1/4). Denote fij as the probability of observing
the markers of the ith sibpair, given they share j alleles IBD. The likelihood for the
ith sibpair is

∑2
j=0 zjfij . For n affected sibpairs, the lod score is

T (z) = log10

{
n∏

i=1

∑2
j=0 zjfij

∑2
j=0 zj0fij

}

=
n∑

i=1

log10

∑2
j=0 zjfij

∑2
j=0 zj0fij

. (13.9)

The MLS can be estimated by maximizing (13.9) with respect to (z0, z1, z2) un-
der the constraint z0 + z1 + z2 = 1 and 0 ≤ zj ≤ 1, j = 0,1,2. The estimates of
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Fig. 13.3 The large triangle
is the unrestricted search area
for the MLEs of (z0, z1) and
z2 = 1 − z0 − z1. The small
triangle, bounded by
z1 = 2z0, z1 = 1/2 and
z0 = 0, imposes the
restrictions on the search area
for the MLEs on the
assumption that only
Mendelian loci cause the trait

(z0, z1, z2) obtained by maximizing (13.9) are equivalent to the MLEs because the
denominator is a constant. The MLEs, denoted as ( ẑ0, ẑ1, ẑ2), can also be used in
the one-degree-of-freedom tests. It has been shown that the power of LRT2 can be
increased by constraining the maximization so that ( ẑ0, ẑ1, ẑ2) lie in a “possible tri-
angle” defined by ẑ0 > 0, ẑ1 < 1/2, ẑ1 > 2 ẑ0, which corresponds to the values of
( ẑ0, ẑ1, ẑ2) that are consistent with simple Mendelian inheritance assuming mono-
genic inheritance (Fig. 13.3). LRT2 can be converted into a one-degree-of-freedom
LRT, LRT1, by adding the further constraint ẑ1 = 1/2. In general, the power of
LRT2 is lower than LRT1. However, LRT2 has some advantages for extending to
the case of multi-locus models, that is, saturation in which a single trait is caused by
multiple disease loci that may themselves be linked or unlinked.

13.3 Transmission/Disequilibrium Test

Case-control association studies have been a powerful tool in genetic epidemiologi-
cal studies, as demonstrated in many GWAS. However, one problem is that without
genotyping many genetic markers it is difficult to know whether a significant result
is biologically meaningful, or just a consequence of the case and control samples
coming from populations with different genetic backgrounds. To avoid this problem,
appropriate controls must be selected. A popular design is to sample one affected
child with two parents. Consider a diallelic marker (e.g. SNP) with two alleles, A

and B . For each family we are able to determine which of a parent’s two alleles is
transmitted to an affected offspring. Suppose we have a sample of n parent-offspring
trios. For each family (trio), we consider the two transmitted parental alleles as a
case and the two nontransmitted alleles as a control. Then we can examine whether
allele A is present more frequently in cases than in controls by a matched or un-
matched design.
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Table 13.3 The counts of
mating types and the
offspring marker genotype,
and the
transmitted/nontransmitted
alleles

Parental Offspring Transmitted

Mating type (MT) Count Genotype Count Yes No

MT1: AA × AA n1 AA n1 A,A A,A

MT2: AA × AB n2 AA n22 A,A A,B

AB n21 A,B A,A

MT3: AA × BB n3 AB n3 A,B A,B

MT4: AB × AB n4 AA n42 A,A B,B

AB n41 A,B A,B

BB n40 B,B A,A

MT5: AB × BB n5 AB n51 A,B B,B

BB n50 B,B A,B

MT6: BB × BB n6 BB n6 B,B B,B

Table 13.4 Counts of two
transmitted alleles (cases),
i.e., offspring genotypes, and
two nontransmitted alleles
(controls) for a single marker
with alleles A and B in a
matched pair design with n

matched sets (trios)

Cases Controls

AA AB BB

AA n1 n22 n42

AB n21 n3 + n41 n51

BB n40 n50 n6

There are six different mating types if we ignore the parental order of the geno-
types. Their counts among n trios are denoted as ni , i = 1, . . . ,6, respectively, and∑

i ni = n. Table 13.3 presents the counts of the six mating types and the offspring
genotype with two transmitted/nontransmitted alleles. In Table 13.4, the counts are
presented as a matched pair design (see Table 4.1). To analyze the data in Table 13.4,
random mating is a necessary condition if the null hypothesis is no association, so
two pairs of alleles (transmitted and nontransmitted) in each matched set are inde-
pendent. If the null hypothesis is no linkage, random mating is not necessary. The
counts in Table 13.4 are arranged in Table 13.5 with the A allele present or absent
in the offspring genotype. This forms a two-level matched pair design and McNe-
mar’s test given in Sect. 4.3.1 can be applied. The test is referred to as the matched
genotype relative risk (MGRR), given by

MGRR = (B ′ − C′)2

B ′ + C′ = {(n42 − n40) + (n51 − n50)}2

n42 + n40 + n51 + n50
∼ χ2

1 under H0. (13.10)

The null hypothesis H0 refers to no association or linkage between a disease and a
marker.

We can apply the MTT (4.4) to the matched pair data in Table 13.4. In Sect. 4.4,
we also discussed the MDT test. The MTT is also the MDT under the 1:1 matching.
The MTT uses the scores (0, x,1) for the three offspring genotypes (AA,AB,BB),
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Table 13.5 Arrangement of
the counts in Table 13.4 with
allele A present or absent in
the offspring genotype

Cases Controls Total

A present A absent

A present A′ B ′ W

A absent C′ D′ X

Total Y Z n

A′ = n1 + n2 + n3 + n41

B ′ = n42 + n51

C′ = n40 + n50

D′ = n6

Table 13.6 Arrangement of
the data in Table 13.5 without
matching

A present A absent Total

Cases W X n

Controls Y Z n

Total W + Y X + Z 2n

where x ∈ [0,1] is determined by the underlying genetic model. Using the data in
Table 13.4, the MTT is given by

Z2
MTT(x) = {x(n22 − n21) + (n42 − n40) + (1 − x)(n51 − n50)}2

x2(n22 + n21) + (n42 + n40) + (1 − x)2(n51 + n50)
∼ χ2

1 under H0.

(13.11)

Comparing (13.10) and (13.11), MGRR = Z2
MTT(0). Thus, the MGRR test is the

MTT under the REC model with x = 0. This is not surprising as the data in Ta-
ble 13.5 are obtained by pooling genotypes AA and AB in Table 13.4 which have the
same risk of being a case under the REC model.

Table 13.5 can also be converted to a 2 × 2 unmatched table, as summarized in
Table 13.6. The usual chi-squared statistic for testing independence can be applied
to Table 13.6, which is often referred to as the genotype-based haplotype relative
risk (GHRR) statistic and is given by

GHRR = 2n(WZ − XY)2

(W + Y)(X + Z)n2
= (B ′ − C′)2

1
2n

(2A′ + B ′ + C′)(B ′ + C′ + 2D′)
. (13.12)

The difference between the MGRR and GHRR statistics is the estimate of Var(B ′ −
C′).

The above test statistics are based on the counts of transmitted/nontransmitted
genotypes. We can also consider the counts of transmitted/nontransmitted alleles
of each individual. In this case, the data can be summarized as in Table 13.7 and
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Table 13.7 Counts for
combinations of transmitted
and nontransmitted marker
alleles A and B among n

parent-offspring trios (2n

parents)

Transmitted Nontransmitted Total

A B

A a b w = a + b

B c d x = c + d

Total y = a + c z = b + d 2n

a = 2n1 + n2 + n3

b = n22 + 2n42 + n41 + n51

c = n21 + 2n40 + n41 + n50

d = 2n6 + n3 + n5

Table 13.8 Arrangement of
the counts in Table 13.7
without matching

A B Total

Transmitted w x 2n

Nontransmitted y z 2n

Total w + y x + z 4n

McNemar’s test can be applied, which is referred to as the transmission/disequilibrium
test (TDT) and is given by

TDT = (b − c)2

b + c
∼ χ2

1 under H0, (13.13)

which has been used to test linkage when disease association has already been es-
tablished. Similar to the genotype-based analysis, the unmatched analysis can also
be applied here, as we can arrange the data as in Table 13.8. The haplotype-based
haplotype relative risk (HHRR) statistic is proposed to test for independence in Ta-
ble 13.8:

HHRR = 4n(wz − xy)2

(w + y)(x + z)4n2
= (b − c)2

(2a + b + c)(b + c + 2d)/4n
.

Thus, the distinction between the TDT and the HHRR test lies in the variances
in the denominators. It has been shown that the HHRR test is more powerful for
association than the TDT because the former uses the homozygous parents in ad-
dition to the heterozygous parents. However, the HHRR test needs the assumption
that the allele frequency does not vary across the different families—a situation
that can occur when there is population stratification. If we compare the MTT in
(13.11) and the TDT in (13.13), we see TDT = Z2

MTT(1/2) with x = 1/2 (op-
timal for the ADD model) if n42 + n40 = n41. Under H0, given the mating type
AB × AB, (n40, n41, n42) ∼ Mul(n4;1/4,1/2,1/4) based on Mendel’s laws. Thus,
E(n42 + n40) = n4/2 = E(n41). It follows that n42 + n40 ≈ n41 under H0 and the
TDT can be related to the MTT under the ADD model.
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Table 13.9 Probabilities of the counts in Table 13.7

Transmitted Nontransmitted Total

A B

A q2 + qΔ/p q(1 − q) + (1 − θ − q)Δ/p q + (1 − θ)Δ/p

B q(1 − q) + (θ − q)Δ/p (1 − q)2 − (1 − q)Δ/p 1 − q − (1 − θ)Δ/p

Total q + θΔ/p 1 − q − θΔ/p 1

Suppose a disease locus has two alleles D and d , with corresponding frequencies
1−q and q , respectively, and that the population frequency of A and B , the two alle-
les of a marker, are p and 1−p, respectively. Let the coefficient of LD be Δ and the
recombination fraction be θ between the disease and marker loci, respectively. Then
the four haplotypes and their respective population frequencies can be calculated as
follow: Pr(Ad) = pq + Δ, Pr(Bd) = (1 − p)q − Δ, Pr(AD) = p(1 − q) − Δ, and
Pr(BD) = (1−p)(1−q)+Δ. For a REC disease, the probabilities corresponding to
the four cells of Table 13.7 are as presented in Table 13.9, which suggests that, when
θ = 1/2 or Δ = 0, we have E(b) = E(c), whatever the values of p and q . Thus, the
TDT tests the null hypothesis Δ(1 − 2θ) = 0, so it can clearly be considered either
as a test of association (null hypothesis Δ = 0 provided θ < 1/2), a situation which
is sometimes called a candidate-gene association study, or as a test of linkage (null
hypothesis θ = 1/2 provided Δ �= 0). When population structure exists, the TDT is
a valid test of linkage, irrespective of the pedigree structure. However, the TDT is
invalid as a test of association when multiplex sibships are present. The contingency
statistics, GHRR and HHRR, are not valid tests for association in general because
they require random mating in the population and no admixture for at least two
generations before sampling the affected offspring.

General Score tests for testing association of genetic markers with disease, using
trios, have been developed based on the conditional probabilities. One method is
to consider a conditional logistic regression, in which a matched set consists of an
observed case marker genotype (of offspring) and all three control marker genotypes
that the parents could have produced. In this model, the TDT is a special case of the
general Score tests corresponding to a binary indicator to code for genotypes or an
ADD model (A presenting or absent).

Let the trait value be y, which is 1 if the individual is affected and 0 if not. The
probability of the offspring marker genotype, conditional on the parents’ marker
genotypes and given that the offspring is affected, is

Pr(go|gm,gf , y = 1) = Pr(y = 1, gm,gf , go)

Pr(y = 1, gm,gf )

= Pr(y = 1|gm,gf , go)Pr(go|gm,gf )Pr(gm,gf )
∑

g∗
o∈G Pr(y = 1|gm,gf , g∗

o)Pr(g∗
o |gm,gf )Pr(gm,gf )

,

(13.14)

where go, gm, and gf are the marker genotypes of the offspring, mother and fa-
ther, the sum in the denominator is over all four possible marker genotypes that
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the parents can produce, and g∗
o is one of these genotypes. Pr(go|gm,gf ) depends

only on the usual transmission probabilities given by Mendel’s laws and does not
involve any parameter of interest. Thus, Pr(g∗

o |gm,gf ) is equal to 1/4. Assuming
that Pr(y = 1|gm,gf , go) = Pr(y|go), a penetrance, (13.14) reduces to

Pr(go|gm,gf , y = 1) ∝ Pr(y = 1|go)∑
g∗
o∈G Pr(y = 1|g∗

o)
. (13.15)

Consider two examples. If gm = gf = AA, go = AA and g∗
o = {AA,AA,AA,AA}. It

follows Pr(y = 1|g∗
o) ≡ Pr(y = 1|AA). Hence, (13.15) becomes Pr(go|gm,gf , y =

1) ∝ 1/4, which does not contribute to the conditional likelihood. In other words,
the mating type AA × AA is not informative. If gm = AB and gf = AB, then g∗

0 =
{AA,AB,BA,BB}. If g0 = AA, we have

Pr(AA|gm = gf = AB, y = 1) ∝ Pr(y = 1|AA)

Pr(y = 1|AA) + 2Pr(y = 1|AB) + Pr(y = 1|BB)

= 1

1 + 2 Pr(y=1|AB)
Pr(y=1|AA)

+ Pr(y=1|BB)
Pr(y=1|AA)

. (13.16)

The ratios of penetrances in (13.16) are called GRRs and denoted as λ(g). Using our
notation for the GRRs in previous chapters, we have λ1 = λ(AB) and λ2 = λ(BB),
where AA is used as a reference genotype. Then Eq. (13.15) can be written as

Pr(go|gm,gf , y = 1) ∝ λ(go)∑
g∗
o∈G λ(g∗

o)
.

The conditional probabilities as functions of the GRRs (λ1, λ2) are given in Ta-
ble 13.10 for the informative mating types (MT2, MT4 and MT5).

The marker GRRs can be denoted as follows: x = (2,0)T for AA, x = (1,1)T

for AB, and x = (0,2)T for BB. Thus, the first element of x is the number of A

alleles and the second element is the number of B alleles. The log-additive regres-
sion model is given by log(λ(g)) = xT β , where β models the genetic effects of the
marker. If n trios are observed, the total conditional likelihood for matched data is
given by

L(β) ∝
n∏

i=1

exp(xT
i β)

∑
g∗
o∈G exp(x∗T β)

.

The null hypothesis of no association, H0 : β = 0, can be tested by the Score statistic

ST = UT V −1U ∼ χ2
2 under H0,

where U = ∂ logL/∂β|H0:β=0 and the elements of V are given by

Vij = −∂2 logL/∂βi∂βj |H0:β=0.

This Score test does not directly test the null hypothesis H0 : λ1 = λ2 = 1 nor H0 :
λ(g) = 1 for any g ∈ G, which will be discussed in Sect. 13.4.
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Table 13.10 From Table 13.3: the conditional probabilities (cond. prob.) of observing an affected
(case) offspring marker genotype given the mating type. Only informative mating types are given

Parental Offspring Cond. prob.

Mating type (MT) Count Genotype Count

MT2: AA × AB n2 AA n22 1/(1 + λ1)

AB n21 λ1/(1 + λ1)

MT4: AB × AB n4 AA n42 1/(1 + 2λ1 + λ2)

AB n41 2λ1/(1 + 2λ1 + λ2)

BB n40 λ2/(1 + 2λ1 + λ2)

MT5: AB × BB n5 AB n51 λ1/(λ1 + λ2)

BB n50 λ2/(λ1 + λ2)

13.4 Robust Methods

We first discuss linkage analysis using affected sibpairs. Then we consider testing
for association between a marker and a disease using parent-offspring trios. In both,
we focus on robust procedures based on Score statistics.

13.4.1 Linkage Analysis Using Affected Sibpairs

Following Sect. 13.2.6, let (z0, z1, z2) be the probabilities that an affected sibpair
shares (0,1,2) alleles IBD. Under the null hypothesis of no linkage, (z0, z1, z2) =
(1/4,1/2,1/4). In Fig. 13.3, the large triangle is the area of (z0, z1), in which the
null point (z1, z0) = (1/2,1/4) is an inner point. The small triangle imposes con-
straints on the area for (z0, z1), for which the null point is on the boundary. As we
have seen in Chap. 6, when the space for the alternative hypothesis is reduced, the
power of a test statistic would increase. The smaller the space, the more power a test
statistic will have. However, there is a trade-off between the power (or efficiency)
and robustness. If the space is too small and the true parameter value lies outside
the space, then test statistics based on the smaller space become less robust, i.e., the
true model is misspecified.

The large and small triangles in Fig. 13.3 are denoted as ΛL and ΛS , respectively,
and given by

ΛL = {(z0, z1) : 0 ≤ z0, z1 ≤ 1; z0 + z1 ≤ 1},
ΛS = {(z0, z1) : 0 ≤ z0, z1 ≤ 1;2z0 ≤ z1 ≤ 1/2}.

The LRTs based on ΛL and ΛS have different asymptotic distributions. The former
has a usual χ2

2 distribution under H0, and the latter has a mixture of three chi-
squared distributions with different degrees of freedom. In this section, we focus on
the Score test for ΛS .
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Fig. 13.4 The point N is the
null point and the point P is a
true point under the
alternative hypothesis of
linkage. The distance
between O and M is denoted
as a ∈ [0,1/2]

Figure 13.4 plots the triangles ΛL and ΛS . Assume the true value of (z1, z0)

is denoted as P in Fig. 13.4. Then we can connect the null point N : (z1, z0) =
(1/2,1/4) and the point P , which crosses at the z1-axis at point M : (a,0), where a

is the distance between O and M . Note that a is not defined under H0, under which
P is N . Denote the distance between two points M and N as |MN| = |NM|. Let
λ = |PN|/|MN|. Then λ ∈ [0,1]. In other words, we reparameterize the null point
N using two parameters (λ, a). Under H0, λ = 0 but a is not defined and is only a
nuisance parameter in this parameterization. The coordinates of P can be expressed
as

z0 = 1 − λ

4
, z1 = 1 − λ

2
+ λa,

and z2 = 1 − z0 − z1. It can also be expressed as a mixture of (a,0) and (1/2,1/4)

for P , (z1, z0) = λ(a,0) + (1 − λ)(1/2,1/4).
Assume we have n independent sibpairs and observe (n0, n1, n2) sibpairs who

share (0,1,2) alleles IBD. The likelihood function is proportional to

L(λ,a) =
(

1 − λ

4

)n0
(

λ(2a − 1) + 1

2

)n1
(

1 + λ(3 − 4a)

4

)n2

∝ (1 − λ)n0{λ(2a − 1) + 1}n1{1 + λ(3 − 4a)}n2 .

To test H0 : λ = 0 with the nuisance parameter a, the Score test given in Sect. 1.2.4
cannot be directly applied because the nuisance parameter a is not estimable under
H0. Thus, we assume a is known and apply the Score test in Sect. 1.2.3 without a
nuisance parameter. Therefore, the Score test is a function of a, which can be written
as (Problem 13.2)

ZST(a) =
√

n{4(a − 1)̂z0 + (6a − 4)̂z1 + (3 − 4a)}√
3 − 8a + 6a2

∼ N(0,1) under H0,

(13.17)

where ẑi = ni/n (i = 0,1,2).
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We have used a family of tests T (w), w ∈ [0,1/2], given in (13.8) to test for
linkage. In fact, T (w) and ZST(a) are identical if we use a one-to-one monotone
mapping function w = a/{2(a − 1)}, which maps [0,1/2] onto [0,1/2] (Problem
13.2). Thus, the mean and proportion tests correspond to ZST(0) and ZST(1/2),
respectively. The “minmax” test with w = 0.275 corresponds to ZST(a) with a ≈
0.355, and the test T (w) with the midpoint w = 1/4 corresponds to ZST(a) with
a = 1/3.

Note that to apply ZST(a), we need to know a unless a special value of a is
chosen, e.g., a = 0 or a = 1/2. In practice, a is unknown. For a family of normally
distributed Score statistics {ZST(a) : a ∈ [0,1/2]}, we can apply the robust tests
discussed in Chap. 6. The asymptotic null correlation of ZST(a1) and ZST(a2), a1 �=
a2, can be written as (Problem 13.2)

ρa1,a2 = 3 − 4(a1 + a2) + 6a1a2√
3 − 8a1 + 6a2

1

√
3 − 8a2 + 6a2

2

. (13.18)

It follows that, for any a ∈ [0,1/2], we have ρ0,a + ρa,1/2 ≥ 1 + ρ0,1/2, a sufficient
condition under which ρ0,1/2 is the minimum among all the correlations ρa1,a2 , 0 ≤
a1, a2 ≤ a2; see (6.13) of Sect. 6.2.1. Thus, ZST(0) and ZST(1/2) is the extreme
pair, and the MERT (Sect. 6.2.1) for the family {ZST(a) : a ∈ [0,1/2]} has the form

ZMERT = ZST(0) + ZST(1/2)
√

2(1 + ρ0,1/2)
∼ N(0,1),

where ρ0,1/2 = 0.8165.
Usually, the MERT does not belong to the family of normally distributed test

statistics as the family is not closed to any convex linear combination. For testing
linkage using {ZST(a) : a ∈ [0,1/2]}, however, the MERT belongs to that family.
That is, there is a∗ ∈ [0,1/2] such that ZMERT = ZST(a∗). It can be shown that

a∗ = 3 − √
6

4 − √
6

≈ 0.355.

In terms of the weight w used in T (w), we have w = (3 − √
6)/2 ≈ 0.275. Thus,

the “minmax” test is the MERT. More discussion of these two tests will be given in
the Bibliographical Comments (Sect. 13.6).

Other robust tests have also been discussed in Chap. 6, including maximum tests
and the CLRT. Since the minimum null correlation is greater than 0.8, the ARE for
using the MERT would be at least (1+ρ0,1/2)/2 = (1+0.8165)/2 ≈ 90.8% relative
to the best test ZST(a) with a correctly specified a ∈ [0,1/2]. Therefore, the gain of
power or efficiency using more complex robust tests would be limited, if any.

13.4.2 Association Analysis Using Trios

For association analysis using trios, instead of using the conditional likelihood
method for the matched data as in Sect. 13.3, we use the conditional probabilities in
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Table 13.10 directly. Since trios are independent, applying multinomial distributions
to mating types 2, 4 and 5, the likelihood function is proportional to

L(λ1, λ2) = λ
n21
1

(1 + λ1)n2
× λ

n41
1 λ

n40
2

(1 + 2λ1 + λ2)n4
× λ

n51
1 λ

n50
2

(λ1 + λ2)n5

= λ
n21+n41+n51
1 λ

n40+n50
2

(1 + λ1)n2(1 + 2λ1 + λ2)n4(λ1 + λ2)n5
.

The LRT, Score test and Wald test discussed in Sect. 1.2.3 can be applied to test
H0 : λ1 = λ2 = 1. Each test has an asymptotic χ2

2 distribution under H0. The two-
degree-of-freedom tests are robust because they do not rely on an underlying genetic
model. However, the following approach often leads to a more robust test.

Let λ2 = λ. Then λ1 = 1 − x + xλ2 for x ∈ [0,1], where x is determined by the
genetic model; x = 0, 1/2 and 1 for the REC, ADD and DOM models. We assume
x is known. Then the likelihood function can be written as L(λ|x). We focus on the
Score test as a function of x because x is not estimable under H0 : λ = 1. The Score
test (Problem 13.3) can be written as

Z(x) =
∂ logL(λ|x)

∂λ
|H0:λ=1

√
EH0{− ∂2 logL(λ|x)

∂λ2 |H0:λ=1}
= x{(n21 + n41 + n51) − (n2 + n4 + n5)/2} + (n40 − n4/4) + (n50 − n5/2)

√
x2

4 n2 + 4x2−4x+3
16 n4 + (x−1)2

4 n5

.

(13.19)

Under H0, for a given x, Z2(x) ∼ χ2
1 . When the underlying genetic model is REC

(ADD or DOM), Z(0) (Z(1/2) or Z(1)) is asymptotically optimal, which is more
powerful than the two-degree-of-freedom tests. On the other hand, when the genetic
model is unknown, the latter are more robust than Z2(x) with a misspecified x.

In particular, for the ADD model with x = 1/2, we have

Z(1/2) = (n21 − n22) + 2(n40 − n42) + (n50 − n51)√
n2 + 2n4 + n5

.

The TDT given in (13.13), using the counts given in Table 13.7, can be written as

TDT = {(n22 − n21) + 2(n42 − n40) + (n51 − n50)}2

n2 + 2n4 + n5
.

Thus, TDT ≡ Z2(1/2). We have also shown that the TDT is equivalent to the MTT
under the ADD model. These results show that the TDT is optimal for testing asso-
ciation using trios under the ADD model. Therefore, it is expected that the TDT is
sub-optimal under a non-additive model.

When the true genetic model is unknown, the optimal Z(x) is not available.
Robust procedures can be considered. The asymptotic null correlation ρx1,x2 of
Z(x1) and Z(x2), conditional on (n2, n4, n5), can be directly obtained for any
0 ≤ x1, x2 ≤ 1 using the multinomial distributions for genotype counts and the fact
that the genotype counts across mating types are independent. It can be shown that
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(Z(0),Z(1)) is the extreme pair with the minimum correlation ρ0,1, which has an
upper bound 1/3. Thus, the MERT is less efficient than a maximum test if the min-
imum correlation is less than 0.5. A simple maximum test is given by

MAX3 = max{|Z(0)|, |Z(1/2)|, |Z(1)|}.
Its asymptotic null distribution can be obtained from Monte-Carlo simulation con-
ditional on the observed (n2, n4, n5). Under H0, (n21, n22) ∼ Mul(n2;1/2,1/2),
(n40, n41, n42) ∼ Mul(n4;1/4,1/2,1/4), and (n50, n51) ∼ Mul(n5;1/2,1/2). Thus,
for each replicate, we can generate offspring genotypes using the above distributions
and compute MAX3. After a large number of replicates have been simulated, an em-
pirical distribution of MAX3 can be obtained to estimate the p-value of MAX3.

Other robust tests using trio data are also proposed, including the CLRT and an
adaptive genetic model selection procedure. We do not discuss those tests here, but
references are given in Sect. 13.6.

13.5 Family-Based Methods for Linkage and Association
Analysis: FBAT

13.5.1 A General FBAT

A general approach to the analysis of family-based data has been proposed and is
often called family-based association test (FBAT). We can classify the possible tests
in a family design according to three possible hypotheses:

(i) H0: There is no linkage and no association between a marker and a disease
susceptibility locus;

(ii) H0: There is linkage but no association between a marker and a disease sus-
ceptibility locus; and

(iii) H0: There is association but no linkage between the marker and a disease sus-
ceptibility locus.

FBAT refers to testing the first or second null hypothesis, while the purpose of
the TDT is to test the third null hypothesis. The general idea of the FBAT approach
is to condition on the traits and on the parental genotypes, and then computes the
distribution of the test statistic from the distribution of offspring genotypes under
the null hypothesis. When parents’ genotypes are missing, FBAT conditions on the
sufficient statistic for the parental genotypes under the null hypothesis.

The test statistic in FBAT is based on

U =
∑

i,j

Yij {Xij − E(Xij |Si)}, (13.20)

where i indexes the family, j indexes the nonfounders in the family, and Si denotes
the sufficient statistic for the parental genotypes and traits. Here, Yij denotes a cod-
ing function for the trait and Xij is a coding function for a genotype. Xij is centered
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around its expected value E(Xij |Si), conditional on the sufficient statistic Si under
the null hypothesis. The distribution of U in (13.20) under the null hypothesis is
obtained by treating the Xij as a random variable, but conditioning on Yij and Si .
Under the null hypothesis, E(U) = 0. The FBAT test statistic is defined as

χ2
FBAT = U2

Var(U)
, (13.21)

where

Var(U) =
∑

i

∑

j,j ′
YijYij ′ Cov(Xij ,Xij ′ |Si, Yij , Yij ′).

For large sample sizes, χ2
FBAT is approximately distributed as χ2

1 . The condi-
tional covariance in (13.21) only depends on Si , and not on the traits, when the null
hypothesis is no linkage. For testing no association in the presence of linkage, how-
ever, the conditional covariance will also depend on the traits. Algorithms have been
developed to calculate the conditional distribution under the two null hypotheses: no
linkage and no association in the presence of linkage. For trios, when the parental
genotypes are known, it is straightforward to compute the distribution of Xij given
parental genotypes by using Mendel’s first law. If there is no linkage and there are
multiple offspring, transmissions to all offspring are independent and we can treat
the offspring as if they come from different families. When linkage is present, the
transmissions to different offspring in a family will be dependent on the unknown
recombination fraction and the affection statuses of the offspring. To remove the
dependence of the joint distribution on the unknown recombination fraction, FBAT
conditions the distribution of the IBD observed among the offspring. This approach
will result in discarding many families as noninformative when parental genotypes
are unknown. Thus, calculating an empirical variance to estimate Var(U) in (13.21)
has been suggested. FBAT can be easily extended to the cases of either multiple
alleles or multiple traits. In this case U is a vector referring to the multiple alleles or
traits. Then the FBAT statistic is the quadratic form UT Var(U)−1U , where Var(U)

is a covariance matrix, and the FBAT statistic has an asymptotic χ2
d distribution,

where d equals the rank of Var(U).

13.5.2 Application to Parent-Offspring Trios

As an application of FBAT, we consider a parent-offspring trio design. Let Xij be
the number of A alleles in the offspring, and Xij1 and Xij2 be the two alleles the off-
spring carries, with 1 representing A and 0 the other allele. Then Xij = Xij1 +Xij2.
When the parental genotypes are available, the sufficient statistic Si is the parental
genotypes and the offspring trait value. Under either no linkage or no association, we
have Xij − E(Xij |Sij ) = 0 when both the parents are homozygous. Thus, transmis-
sions from homozygous parents do not contribution to the test statistic. When one
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parent is heterozygous, the offspring has 50% probability of being either homozy-
gous or heterozygous, depending on which allele is transmitted from the heterozy-
gous parent. Assume Xij1 is the allele transmitted from the heterozygous parent.
We have

E(Xij |Sij ) = E(Xij1|Sij ) + E(Xij2|Sij ) = 1

2
+ Xij2

and Xij − E(Xij |Sij ) = Xij1 − 1
2 , which is 1/2 if A is transmitted and −1/2 if the

other allele is transmitted from the heterozygous parent. Similarly, when both par-
ents are heterozygous, we have E(Xij |Sij ) = 1, and Xij − E(Xij |Sij ) = 1, 0 or −1,
depending on the offspring genotype. Assume our data are parent-offspring trios
and all the offspring are affected (Yij = 1). Further, assuming there are n heterozy-
gous parents, then U =∑{Xij − E(Xij |Si)} = nA − 1

2n, where nA is the number of
transmissions of the A allele from heterozygous parents to affected offspring, and
Var(U) can be calculated as

Var(U) =
∑

i,j

Var(Xij |Sij ) = n

4
,

because each transmission from a heterozygous parent has variance equal to 1/4.
Thus,

χ2
FBAT = 4(nA − n

2 )2

n
= (nA − nB)2

nA + nB

,

where nB is the number of transmissions of the other allele from heterozygous par-
ents to affected offspring. We can observe that the FBAT statistic for trios is identical
to the TDT derived in Sect. 13.3. Thus, FBAT can be viewed as a generalization of
the TDT.

13.5.3 A General Pedigree

The idea of conditioning on parental genotypes can be extended to general pedi-
grees, where we now condition on all founders’ genotypes, provided their genotypes
are known. The power can be potentially increased when analyzing large pedigrees.

When parents’ or founders’ genotypes are unknown, FBAT evaluates the distri-
bution of the test statistic using the conditional distribution of offspring genotypes
conditional on a sufficient statistic for any nuisance parameter in the model. Let x

denote the founders’ genotypes and traits, which is a sufficient statistic for the nui-
sance parameters under the null hypothesis. When founders’ genotypes are missing,
the minimal sufficient statistic is a function of the outcome y, observed offspring and
founder genotypes and traits. Two outcomes y and y′ have the same value of the ob-
served data minimal sufficient statistic if, and only if, for any value of the full data
minimal sufficient statistic, x, either Pr(y|x) and Pr(y′|x) are both equal to zero, or
the ratio Pr(y|x)/Pr(y′|x) is invariant to the choice of x. The algorithm for com-
puting the conditional distribution in a pedigree has the following steps. Following
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Fig. 13.5 A five-member
nuclear family with the
mother’s genotype missing

each step, we will give an example of how to calculate the conditional distribution
for a nuclear family of five members with the mother’s genotype missing, under the
null hypothesis of no linkage (Fig. 13.5).

(i) Find all the patterns of founders’ marker genotypes that are compatible with the
genotyped markers.

Example In Fig. 13.5, only the mother has a missing genotype. Given the observed
genotypes in the pedigree, the compatible mother’s genotypes are AC or BC.

(ii) For each of the compatible founders’ genotypes obtained in Step 1, find the set
of compatible’s offspring genotypes. Find the intersection of the sets of com-
patible offspring genotypes. Calculate the probabilities of the offspring geno-
types given the compatible founders’ genotypes. Find the subset of the com-
patible offspring genotypes that has exactly the same compatible genotypes of
founders’ genotypes as the observed genotypes in the offspring.

Example (continued) Given the mother’s genotype is AC, the possible offspring
genotypes are AA, AB, AC and BC. Given mother’s genotype is BC, the possible
offspring genotypes are AB, AC, BB and BC. The intersection of these two sets
of offspring genotypes contains AB, AC and BC. The conditional probabilities of
the offspring genotypes given the mother’s and father’s genotypes are listed in Ta-
ble 13.11. For the three offspring, the possibly genotypes are {AB}, {AC}, {BC}, {AB,
AC}, {AB,BC}, {AC,BC}, and {AB,AC,BC}, where {g} refers to all three offspring
having the same genotype g, {g1, g2} refers to at least one offspring having either
g1 or g2, and {g1, g2, g3} refers to the three offspring genotypes being g1, g2, g3,
respectively. If the offspring genotypes are {AB}, the mother’s genotype can be any
of AA, AB or BB, which is not compatible with Step 1, and so we do not include
{AB}. Similarly, we exclude {AC}, {BC}, and {AC,BC}. To be compatible with the
mother’s genotypes in Step 1, the offspring genotypes can be {AB,AC}, {AB,BC},
or {AB,AC,BC}. Thus, the final compatible offspring genotypes include {AB,AC},
{AB,BC} and {AB,AC,BC}.
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Table 13.11 Conditional probabilities of offspring genotypes given the mother’s and father’s
genotypes

Mother, father Offspring

AB AC BC

AC, AB 1/4 1/4 1/4

BC, AB 1/4 1/4 1/4

Table 13.12 Conditional probabilities of the compatible offspring genotypes given the mother’s
and father’s genotypes

Mother, father Offspring

{AB,AC,BC} {AB,AB,AC} {AB,AC,AC} {AB,AB,BC} {AB,BC,BC}

AC, AB (1/4)3 (1/4)3 (1/4)3 (1/4)3 (1/4)3

BC, AB (1/4)3 (1/4)3 (1/4)3 (1/4)3 (1/4)3

Table 13.13 Ratios of the conditional probability of compatible offspring genotypes to the condi-
tional probability of the observed offspring genotypes

Mother, father Offspring

{AB,AC,BC} {AB,AB,AC} {AB,AC,AC} {AB,AB,BC} {AB,BC,BC}

AC, AB 1 1 1 1 1

BC, AB 1 1 1 1 1

(iii) For every compatible founders’ genotype found in Step 1 and for every possible
offspring genotype found in Step 2, we compute the ratios of the conditional
probability of possible (compatible) genotypes in the offspring to that of the
observed genotypes in the offspring.

Example (continued) We calculate the conditional probabilities of the possible off-
spring genotypes given the mother’s and father’s genotypes, as listed in Table 13.12.
Arrange for the first column to be the observed offspring genotypes {AB,AC,BC}.
Compute the ratios by dividing the numbers in each column of Table 13.12 by the
numbers in the first column (observed) of Table 13.12, resulting in Table 13.13.

(iv) For the offspring genotypes found in Step 2, the ratios found in Step 3 will be
the same for all the compatible founders’ genotypes found in Step 1. This is
a basic requirement for a sufficient statistic. These offspring genotypes have
positive conditional probabilities.

Example (continued) Since the numbers in each of the columns in Table 13.13 are
the same, these offspring genotypes will have positive probabilities conditional on
the sufficient statistic.
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Table 13.14 Conditional distributions or probabilities P of offspring genotypes G given that one
homozygous parent’s genotype is AA

G Conditional distribution

{AA} or {AB} P = 1.

{AA,AB} Randomly assign equal P = 1/2 to AA and AB to each sib,
discarding outcomes without at least one AA and one AB
sib.

{AB,AC} Randomly assign equal P = 1/2 to AB and AC to each sib,
discarding outcomes without at least one AB and one AC
sib.

(v) Compute the conditional probability of each offspring genotype found in Step 4.
The conditional distribution is calculated by arbitrarily choosing any one of the
compatible founders’ genotypes found in Step 1 and computing the conditional
probabilities of offspring genotypes given the chosen founders’ genotypes and
the genotypes found in Step 4.

Example (continued) For each of the five sets of offspring genotypes found in
Step 4, listed in Table 13.12, we permute the genotypes. For {AB,AC,BC}, there
are six ordered permutations, given by {AB,AC,BC}, {AB,BC,AC}, {AC,AB,BC},
{AC,BC,AB}, {BC,AB,AC} and {BC,AC,AB}. For the other four sets, each has
three ordered permutations. For example, for {AB,AB,AC}, we have the permuta-
tions {AB,AB,AC}, {AB,AC,AB} and {AC,AB,AB}. The distribution of compatible
offspring genotypes conditional on the sufficient statistic is given by all the permu-
tations of the offspring genotypes found in Step 4. The conditional probability for
the offspring genotypes {AB,AC,BC} is thus calculated by

(1/4)3/{6 × (1/4)3 + 3 × (1/4)3 + 3 × (1/4)3 + 3 × (1/4)3 + 3 × (1/4)3}
= 1/18,

where (1/4)3 is the conditional probability from Table 13.12 and the integers
6,3,3,3,3 in the denominator correspond to the number of different ordered per-
mutations of genotypes for the offspring. The conditional probabilities for the other
genotype patterns are also 1/18. These probabilities can also be obtained by ran-
domly assigning AB, AC and BC with probabilities 1/3, 1/3, 1/3 to each offspring
independently, discarding the outcomes without AB assigned at least once or without
at least one of AC and BC at least once.

In general, the conditional distributions for different offspring genotypes are
given conditional on the parental genotype. These conditional probabilities are given
in Tables 13.14, 13.15, 13.16.

Given the conditional distribution calculated from Tables 13.14, 13.15, 13.16,
it is straightforward to evaluate the FBAT statistic. For example, assume we have
a family with two sibs and no parents. If we observed both sibs with genotype
AA (or both with AB), i.e., G = {AA} or {AB}, from Table 13.16, no information
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Table 13.15 Conditional distributions or probabilities P of offspring genotypes G given that one
heterozygous parent’s genotype is AB

G Conditional distribution

{AA} or {AB} P = 1.

{AA,AB} Randomly assign AA and AB in a manner that keeps
invariant the number of each.

{AA,BB} or
{AA,AB,BB}

Randomly assign P = (1/4,1/2,1/4) to (AA,AB,BB) to
each sib, discarding outcomes without at least one AA and
one BB sib.

{AC} or {AC,BC} Randomly assign equal P = 1/2 to AC and BC to each sib.

{AB,AC} or
{AB,AC,BC}

Randomly assign equal P = 1/3 to AA, AC and BC to
each sib, discarding outcomes without at least one AB and
at least one AC or BC sib.

{AA,AC}, {AA,BC},
{AA,AB,AC},
{AA,AB,BC} or
{AA,AC,BC}

Randomly assign equal P = 1/4 to AA, AC, AB and BC to
each sib, discarding outcomes without at least one AA and
at least one AC or BC sib.

{AC,BD}, {AC,AD},
{AC,BC,BD} or
{AC,BC,BD,AD}

Randomly assign equal P = 1/4 to AC, AD, BC and BD to
each sib, discarding outcomes in which either C or B is
not present.

can be inferred about the parents’ genotypes and such sibpairs are not informa-
tive because P = 1. On the other hand, if we observe one AA sib and one BB
sib, i.e., G = {AA,BB}, then we know both parents’ genotypes are AB. From Ta-
ble 13.16, conditional on the sufficient statistic for both parents’ genotypes to be
missing, we requires the two sibs’ genotypes to be either (AA,BB) or (BB,AA)

with equal probability, which would be 1/2 after deleting outcomes without at
least one AA and one BB. Thus, (Xi1,Xi2) = (2,0) if (Gi1,Gi2) = (AA,BB)

for the two sibs, (0,2) if (Gi1,Gi2) = (BB,AA) for the two sibs. We can then
calculate E(Xi1|Si) = E(Xi2|Si) = 2 × (1/2) + 0 × (1/2) = 1 and E(X2

i1|Si) =
E(X2

i2|Si) = 22 × (1/2) + 02 × (1/2) = 2. Thus, Var(Xi1|Si) = Var(Xi2|Si) = 1
and Cov(Xi2,Xi2|Si) = −1 because E(Xi1Xi2|Si) = 0. The contribution to U in
Eq. (13.20) is (Yi1 − Yi2) and the contribution to Var(U) is (Yi1 − Yi2)

2, assuming
the first sib is AA and the second is BB. Thus, such families with both sibs affected,
Yi1 = Yi2 = 1, will not be informative and have no contribution, but a discordant
sibpair, (Yi1, Yi2) = (1,0) or (Yi1, Yi2) = (0,1), will be informative.

By conditioning on the traits and parental genotypes, the FBAT statistic does not
use all the information about linkage and association that is available in the data.
To use more information, one can separate the family data into two independent
partitions, corresponding to the population information and the within-family infor-
mation. Specifically, the full distribution of the data, which consists of the offspring
phenotype, Y , the offspring genotype coding X, and the parental genotype (or the
sufficient statistics for parents, S), can be partitioned into two independent parts:

Pr(Y,X,S) = Pr(X|Y,S)Pr(Y,S).
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Table 13.16 Conditional distributions or probabilities P of offspring genotypes G given that no
parent’s genotype is known

G Conditional distribution

{AA} or {AB} P = 1.

{AA,AB} Randomly assign AA and AB in a manner that
keeps invariant the number of each.

{AA,BB} or
{AA,AB,BB}

Randomly assign equal P = 1/3 to AA, AB and
BB to each sib, discarding outcomes without at
least one AA and one BB sib.

{AB,AC,BC} Randomly assign equal P = 1/3 to AB, AC and
BC to each sib, discarding outcome without at
least one of AB, AC and BC.

{AB,AC} Randomly assign equal P = 1/2 to AB and AC to
each sib, discarding outcomes without at least one
AB or AC sib.

{AA,BC}, {AA,AB,AC},
{AA,AC,BC} or
{AA,AB,AC,BC}

Randomly assign equal P = 1/4 to AA, AB, AC
and BC to each sib, discarding outcomes without
at least one AA sib and without both B and C

present.

{AC,BD} Randomly assign equal P = 1/2 to AC and BD

to each sib, discarding outcomes without at least
one AC and one BD sib.

{AC,BC,BD} or
{AC,BC,AD,BD}

Randomly assign equal P = 1/4 to AC, BC, AD
and BD to each sib, discarding outcomes that do
not contain at least three of the four alleles A, B,
C and D.

Under the null hypothesis, we can replace Pr(X|Y,S) by Pr(X|S). If Y is a quanti-
tative trait, we can model Pr(Y,S) using a conditional mean model that is given by
the linear regression model

E(Y ) = μ + βE(X|S). (13.22)

This conditional mean model has been suggested for screening the genetic markers
in GWAS. Markers are then selected for the next step based on the conditional power
of the FBAT analysis.

13.5.4 FBAT Website and Software

FBAT has a website (http://www.biostat.harvard.edu/~fbat/default.html), which
contains a brief introduction to what analyses FBAT does. The software for using
FBAT can also be downloaded from http://www.biostat.harvard.edu/~fbat/fbat.htm
for different computing platforms. The documentation for using FBAT, key refer-
ences and applications of FBAT can be found at the FBAT website.

http://www.biostat.harvard.edu/~fbat/default.html
http://www.biostat.harvard.edu/~fbat/fbat.htm
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We have introduced some basic features and uses of FBAT. Based on the website
of FBAT, FBAT can do many statistical analyses for family-based designs, includ-
ing (i) analyzing family data with different traits, e.g., a binary trait, a quantitative
trait, a time to event trait, and multiple traits; (ii) analyzing both autosomal and X
chromosomes; (iii) testing diallelic and multiallelic markers with different genetic
models; (iv) providing large sample and simulation-based exact tests for testing H0:
no linkage and no association, and H0: no association; and (v) testing haplotypes
and multiple markers, and providing estimates of haplotype frequencies and pair-
wise LD between markers.

13.6 Bibliographical Comments

Model-based methods to test for linkage were studied by Morton [185] more than
half a century ago. These methods were mainly developed to identify genetic sus-
ceptibilities for Mendelian diseases. For more complex diseases with incomplete
penetrances, methods have been developed to analyze large family data or pedigrees
(Sect. 13.1). The Elston-Stewart algorithm (Elston and Stewart [75]) is an efficient
recursive approach to calculate a likelihood function for large pedigrees with a small
number of markers. Monte-Carlo Markov Chain methods for pedigree analysis are
summarized in Thompson [272].

Alternatively, model-free methods based on IBD sharing are simple (Sect. 13.2).
Estimating IBD sharing probabilities is important to model-free methods (Sect.
13.2.1). The Lander-Green algorithm can be used to estimate IBD sharing proba-
bilities for various family structure in a multipoint fashion (Lander and Green [158]
and Kruglyak et al. [153]). Haseman and Elston [118] developed the HE regression
model to detect linkage using the quantitative traits of two sibs (Sect. 13.2.3). The
original HE model is based on the squared trait difference of two sibs. Wright [304]
found a full likelihood of sibpair data as a function of both a sum and a difference
of the trait values. Using both the sibpair trait sum and difference as dependent
variables was proposed by Drigalenko [63] (Sect. 13.2.4). In the revisited HE re-
gression, Elston et al. [72] adopted this idea and used the overall mean-centered
cross-product of sibpair traits as a measure of trait similarity. As the variances of
the squared trait sum and squared trait difference may not be the same, Forrest [88];
Shete et al. [241]; Visscher and Hopper [281]; and Xu et al. [308] considered using
different weighting methods for the squared sum and squared difference of the trait
values, so that two different estimates of he same slope for the regression would
be used. In addition to the linkage analysis using sibpairs, regression-based linkage
analysis has been extended to other pairs using the GEE method (Chen et al. [33];
Olson and Wijsman [199]). Chen et al. [33] linked the different types of the work-
ing covariance matrix in GEEs to the different HE regression analyses and variance
component methods. A two-level HE method for quantitative trait linkage was de-
veloped by Wang and Elston [291].

Hopper and Mathews [124] and Lange et al. [159]) are good references for the
variance component model (Sect. 13.2.5). For the extension to a general pedigree,



13.6 Bibliographical Comments 385

refer to Almasy and Blangero [8]. The idea of expressing the correlation of two
traits in terms of the additive variance and kinship coefficient is due to Blangero et
al. [17], which was used for estimating the missing heritability using GWAS data by
Yang et al. [310]. In the variance component model, for the LRT to have a mixture
of chi-squared distributions with different degrees of freedom under non-standard
situations, refer to Self and Liang [238] and Self et al. [239] and, for using the Score
and Wald tests, refer to Blangero et al. [17].

In Sect. 13.2.6, linkage analysis based on IBD sharing by sibpairs was studied.
Blackwelder and Elston [16] and Knapp et al. [147] compared the mean and propor-
tion tests and their properties. Schaid and Nick [232] proposed to use the maximum
of the mean and proportion tests as a robust test. The triangle constraints for IBD
sharing probabilities in Fig. 13.3 were obtained and studied by Faraway [83], Hol-
mans [123] and Whittemore and Tu [303]. In particular, Whittemore and Tu [303]
proposed the simple “minmax” test, which has the minimum of the worst (maxi-
mum) power loss due to using a wrong model, indexed by the parameter w in the
family of statistics T (w). Extension of the IBD sharing by sibpairs to sib-triples was
considered by Whittemore and Tu [303], who also obtained constraints on the IBD
sharing probabilities by sib-triples. The simple test statistic based on the midpoint
w = 0.5 was proposed by Feingold and Siegmund [84]. The two-degree-of-freedom
statistic or the MLS was proposed by Risch [213, 214], while Morton [186] and
Risch [215] discussed how to convert the MLS to a one-degree-of-freedom test.
Collins et al. [41] and Whittemore and Tu [303] also compared the power perfor-
mance of these two tests. Extending to multi-locus models was studied by Cordell
et al. [45, 46]; and Dupuis et al. [65].

The TDT was first proposed by Spielman et al. [255] (Sect. 13.3) to test linkage
in the presence of association. Both the MGRR and HHRR tests were studied in
Terwilliger and Ott [267], and the GHRR test was named by Falk and Rubinstein
[81]. The matched design for analyzing transmitted/nontransmitted alleles was dis-
cussed in Schaid and Sommer [235] and Zhao [326]. Some comparisons between
the TDT and HHRR and the impact of population stratification on the HHRR test
can be found in Schaid and Sommer [235] and Terwilliger and Ott [267]. Spielman
and Ewens [253] examined the TDT and population structure and showed that the
TDT is a valid test of linkage regardless of population structure, and that it is not
a valid test of association with multiple sibs. The joint probabilities of the trans-
mitted and nontransmitted alleles in Table 13.9 were obtained in Ott [200]. Schaid
[228] developed methods to test association using general conditional probabilities
of offspring genotypes given mating type and given that the offspring is affected,
using which some two-degree-of-freedom LRT and Score tests can be derived. This
conditional likelihood method is also used to derive the conditional probabilities in
Table 13.10.

A robust linkage test using the MERT was considered by Gastwirth and Friedlin
[97]. They showed that the MERT of the family of normally distributed statistics
{T (w) : w ∈ [0,1/2]} is the MERT of the extreme pair T (0) and T (1/2), and
that the MERT is equivalent to the “minmax” test proposed by Whittemore and
Tu [303]. See also reviews of this subject in Shih and Whittemore [242]. The con-
ditional probabilities of affected offspring genotypes given parental genotypes of
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Schaid [228] were used to derive one-degree-of-freedom Score tests assuming a
genetic model (Schaid and Sommer [234]). Zheng et al. [333] extended this to a
family of genetic models indexed by x ∈ [0,1] and obtained the family of robust
tests {Z(x) : x ∈ [0,1]} given in (13.19). They also considered MERT and maxi-
mum tests, including MAX2, which takes the maximum of the extreme pair and
MAX3, given in Sect. 13.4.2. The proof that the existence of the extreme pair for
{Z(x) : x ∈ [0,1]} was given in Zheng et al. [332], which is also outlined in Prob-
lem 13.4. The CLRTs using trios were studied by Zheng et al. [331] and Troendle et
al. [275] with different alternative spaces. Due to constrained alternative spaces, the
CLRTs follow mixtures of chi-squared distributions. A recent adaptive approach to
use deviation from HWE in trios to select an underlying genetic model followed by
testing association using Z(x∗) with a selected model x∗ was considered by Yuan et
al. [314]. A review of robust procedures with applications to linkage analysis using
affected sibpairs and association tests using trios is provided by Joo et al. [136].

Most of the material on FBAT presented in Sect. 13.5 is based on Laird and Lange
[155] and Rabinowitz and Laird [210]. The latter contains detailed discussion of us-
ing a sufficient statistic in FBAT. Using the empirical variance to estimate Var(U)

in Sect. 13.5.1 was suggested by Lake et al. [157]. Applying FBAT to multiallelic
markers and multiple traits was covered by Laird and Lange [155]. Rabinowitz and
Laird [210] listed all the conditional distributions when testing for linkage and for
association in the presence of linkage. For testing association in the presence of link-
age, we need to condition on the distribution of IBD observed among the offspring.
Here we listed some conditional distributions for testing linkage from nuclear fami-
lies of arbitrary size, in Tables 13.14, 13.15, 13.16. The five-member family figure,
Fig. 13.5, is similar to the one considered by Horvath et al. [125] under the null hy-
pothesis of no linkage. Herbert et al. [120] and Van Steen et al. [280] used (13.22)
to screen genetic markers in the first stage analysis of GWAS for a quantitative trait,
and then tested a small number of selected markers in the second stage. We have
focused on the application of FBAT to parent-offspring trios (Sect. 13.5.2). FBAT
has also been extended to analyze haplotype data and perform a multivariate test to
handle multivariate traits, using what is called the FBAT-GEE statistic (Laird and
Lange [155]).

Beside the original TDT and FBAT, there have been many other approaches
developed to analyze family data, including a conditional analysis incorporat-
ing a polygenic component in family data for quantitative traits (Zhu and Elston
[347, 348]), the pedigree disequilibrium test (Martin et al. [180]), and the QTDT, a
TDT for a quantitative trait (Abecasis et al. [1]). It is generally considered that the
TDT-type methods are less powerful than unrelated population-based case-control
approaches, although the latter may suffer confounding due to population structure
(Zhu et al. [349]).

13.7 Problems

13.1 Using the results in Table 13.2, verify
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(1) E(gij ) = 0 for i = 1,2;
(2) Var(gij ) = 2p(1 − p) for i = 1,2; and
(3) Derive Cov(g1j , g2j |i = 1).

13.2 In testing linkage based on IBD sharing by affected sibpairs,

(1) For a given a, show that the Score test ZST(a) can be written as in (13.17).
(2) Show that ZST(a) and T (w) are equivalent with a one-to-one function between

a and w.
(3) Show that the asymptotic null correlation of ZST(a1) and ZST(a2), for a1 �= a2,

is as given in (13.18).

13.3 In association analysis using parent-offspring trios, show that the Score test
can be written as in (13.19).

13.4 TDT-type robust tests and the extreme pair (Zheng et al. [332]).

(1) The parameterization of the GRRs (λ1, λ2) used in Sect. 13.4.2 is not unique.
Consider λ1 = 1 + r sin θ and λ2 = 1 + r cos θ , where r ≥ 0 and θ ∈ [0,π/4] is
a nuisance parameter (π = 180°). Show that the Score test for H0 : r = 0 for a
given θ can be written as

Z(θ) = d cos θ + e sin θ√
I (θ)

= d cos θ + e sin θ
√

a cos2 θ + c sin2 θ − b sin(2θ)
,

where a = n2/4 + 2n4/16, b = n2/4 + n4/8, c = (n2 + n4 + n5)/4, d =
(n22 −n2/2)+(n42 −n4/4) and e = (n21 −n2/2)+(n41 −n4/2)+(n51 −n5/2).
Indicate which values of θ ∈ [0,π/4] corresponds to the REC and DOM mod-
els.

(2) Find the asymptotic null correlation of Z(θ1) and Z(θ2) for θ1, θ2 ∈ [0,π/4].
Show it can be expressed as

Corr(θ1, θ2) = cos θ1Q1(θ2) + sin θ1Q2(θ2)√
I (θ1)I (θ2)

,

where Q1(θ) = a cos θ − b sin θ and Q2(θ) = a sin θ − b cos θ .
(3) Show that, for θi ∈ [0,π/4] (i = 1,2), cos(θ1 − θ2) ≥ sin(θ1 + θ2).
(4) Using c > a > b and (3), show that, for θi ∈ [0,π/4] (i = 1,2), Corr(θ1, θ2) > 0.
(5) For θ ∈ [0,π/4], show that ∂ Corr(0, θ)/∂θ < 0 and ∂ Corr(θ,π/4)/∂θ > 0.
(6) Let f (θ) = Corr(0, θ) + Corr(θ,π/4). Show that f (θ) has exactly one root

θ∗ ∈ [0,π/4], i.e., f ′(θ∗) = df (θ)/dθ |θ=θ∗ = 0.
(7) Show that f ′(θ) > 0 if θ < θ∗ and f ′(θ) < 0 if θ > θ∗, i.e., f (θ) has a mini-

mum value on [0,π/4] at either θ = 0 or θ = π/4.
(8) Use (7) to verify Corr(0, θ) + Corr(θ,π/4) ≥ 1 + Corr(0,π/4) for any θ ∈

[0,π/4]. Thus, (Z(0),Z(π/4)) is the extreme pair to construct the MERT.
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Adaptive procedure, 203
Additive (ADD), see Genetic model
Additive genetic variance, 363
Adjusting out covariate, 86
Admixture, 260, 283
Affected sibpairs, 26, 39, 365, 372
Algorithm, 274

combinatorial, 211, 230
constrained likelihood ratio test (CLRT),
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Elston-Stewart, 355, 357
expectation/conditional maximization

(ECM), 222
genetic model exclusion (GME), 191
genetic model selection (GMS), 190
Inductive Logic Programming (ILP), 230
Lander-Green, 358
MAX3, 166
parsimony, 212
simulated annealing, 242

Allele, 34
coding, 211
frequency, 34, 42, 49, 187, 216
minor allele, 34
risk allele, 34, 63, 128, 173, 188
transmitted, 39
wild type, 34

Allele-based test (ABT), 71, 90
Ancestry, 260, 278–281

global, 284
local, 284

Ancestry informative markers (AIMs), 277,
279

Approximate Bayes factor (ABF), 126, 132,
133, 135, 136, 143, 145

allele-based, 150

example, 136, 140
genotype-based, 150
no covariate, 133, 139
transformation, 133, 135, 138, 140, 148
with covariate, 134, 137

Association, 30, 36, 37, 40, 169
comparison of tests, 72
genetic, 117, 127, 132, 136, 154, 202, 331
haplotype, 220
likelihood-based test for, 70
linkage disequilibrium (LD), 36
spurious, 37, 49, 262–264, 342
strength of, 124
trios, 374
two-locus, 236

Asymptotic distribution, 126
Asymptotic relative efficiency (ARE), 29–31,

152–155
Autosomal, 34, 42

B
Balding-Nichols model, 280, 285
Basic distributions, 6
Bayes factor (BF), 19, 123, 127, 129, 145, 345

approximations of, 124, 125
evidence, 123, 124, 126
example, 130
guidelines, 124
Laplace approximation, 125, 128–130, 146

Bayes theorem, 122, 263, 358
Bayesian analysis, 145

for categorical data, 145
Bayesian false discovery probability (BFDP),
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Bayesian information criterion (BIC), 273
Bayesian model averaging, 146
Bayesian power, 124

G. Zheng et al., Analysis of Genetic Association Studies,
Statistics for Biology and Health,
DOI 10.1007/978-1-4614-2245-7, © Springer Science+Business Media, LLC 2012

405

http://dx.doi.org/10.1007/978-1-4614-2245-7


406 Index

Beta distribution, 11, 280
distribution function, 11
generating, 12
mean, 12
notation for, 11
relating to uniform distribution, 12
variance, 12

Beta function, 12
Binomial distribution, 7, 15, 46, 217

confidence interval (CI), 18
distribution function, 7
Fisher information, 17
MLE, 15
notation for, 7

Bivariate normal distribution, 8, 29, 153, 166,
167, 173–175, 190, 193

conditional distribution, 8, 167
conditional mean, 8
conditional variance, 8
correlation, 153
covariance matrix, 8
generating, 8

Bonferroni correction, 22–24, 163, 338
conservative, 23
family-wise error rate, 23
for multiple testing, 23

C
Candidate-gene, 40, 338
Case-control design, 38, 40, 332
Case-only design, 40, 332
Case-parents design, 39, 332
Case-sibling design, 332
Cauchy distribution, 10
Cauchy-Schwartz inequality, 216
Central limit theorem (CLT), 17
Chi-squared distribution, 9, 10, 12, 43, 179,

220, 274, 276
central, 9
degree of freedom, 9
density plot, 9
distribution function, 9
for gene-gene, 238
mean, 9
non-central, 9, 311
notation for, 9
variance, 9

Chi-squared test, 43
bias correction, 43
degree of freedom, 172
for association, 69
for HWE, 43, 44
for LD, 216

Pearson’s, 69, 90, 170–172, 176, 177, 197,
198, 202, 204, 316

Chromosome, 34, 210
autosomal, 34
sex, 34, 42

Clark’s Inference Rule, 212
Clark’s parsimony method, 211, 230
Cochran-Armitage trend test (CATT), see

Trend test
Cochran-Mantel-Haenszel test, 95
Coefficient

inbreeding, 339
Cohort design, 38
Combinatorial algorithm, 211
Combining association tests, 79
Common genetic variants, 337
Conditional distribution, 5
Conditional independence, 13
Conditional likelihood function, 99
Confidence interval (CI), 7, 17, 18, 83, 283
Constrained likelihood ratio test (CLRT), see

Likelihood ratio test (LRT)
Convergence, 10, 14, 29, 31

almost surely, 14
in distribution, 10, 13, 14, 16, 17, 24, 126
in law, 14
in moments, 14
in probability, 14, 16, 31, 184
weak convergence, 14

Copy number variant (CNV), 348
Correlation, 5, 23, 24, 29, 93, 156, 180, 184,

201, 205, 216, 261
of two trend tests, 156, 157, 159
Pearson’s, 216
traits, 362

Covariance, 4
Covariance matrix, 8, 9, 24, 166

for pedigree, 363
Critical value, 19, 23, 186, 194, 196

MAX3, 165
trend test, 77

Cross validation, 241
Cryptic relatedness (CR), 50, 261, 283
Cumulative distribution function (CDF), 4

D
Degree of freedom, 9, 10
Delta method, 24, 25, 31, 233, 244, 255

Taylor expansion, 25
Density function, 4

conditional, 5, 13, 26
joint, 4, 5, 13, 30, 166
marginal, 5, 122

Dirichlet process, 230
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Discrete population, 263
Distribution function, 4, 30

conditional, 5, 8, 9
joint, 4, 5, 13, 35
marginal, 5
notation for, 4

DNA, 34
Dominant (DOM), see Genetic model

E
Efficiency, 28

Pitman, 29
Efficiency robustness, 171
Elston-Stewart algorithm, 355, 357, 384
EM algorithm, 25, 26, 30, 212, 222, 230, 232,

269, 286
convergence, 215
for haplotype, 213, 214
local maximum, 215
multiple loci, 212

Estimate
consistent, 157
maximum a posterior (MAP), 125, 129
unbiased, 15, 16, 31

Ethnicity, 342
Exact test, 47, 74, 91

Fisher’s, 11
for association, 75
for HWE, 46

Expectation, 5, 25, 26
conditional, 5, 212, 215

Expectation/conditional maximization (ECM),
222

Extreme pair, 156, 159, 160, 166, 172, 193,
385, 387

F
F-distribution, 9

convergence, 10
degrees of freedom, 9
distribution function, 9
mean, 10
notation for, 10
relating to chi-squared distribution, 10
variance, 10

False discovery rate (FDR), 22, 23, 30
Family-based, 36, 39, 202
Family-based association test (FBAT), 376,

386
general, 376
pedigree, 378
trios, 377
website and software, 383

Family-wise error rate, 23

Fisher information, 16
expected, 16
inverse, 22, 148
matrix, 17, 126, 133, 134, 138, 223
observed, 16, 20, 22, 68, 126, 133, 134,

138, 140, 147, 149
Fisher’s method of pooling p-values, 30, 349
Follow-up, 347
Functional locus, see Locus

G
Gametic phase disequilibrium, 35, 37, 215,

230, 346
relating to LD, 35
spurious association, 37

Gametic phase equilibrium, 35
Gamma distribution, 12, 146

distribution function, 12
generating, 12
notation for, 12

Gamma function, 9
Gene, 34

disease susceptibility, 35
Gene-environment interaction, 24, 40, 253,

287, 306, 326, 331
2 × 2 × 2 tables, 288
2 × 2 × k tables, 294
2 × 3 × k tables, 299
additive interaction, 290
binary environmental factor, 288
biological, 306
CI, 292
definitions, 306
example, 292, 297, 304
gene-environment independence, 299, 306
inference, 288, 291, 295, 301
likelihood function, 291, 295, 298
logistic regression, 306
LRT, 301
multiplicative interaction, 290
OR, 289
restricted model, 298
retrospective, 307
Score test, 302
statistical, 306
top-to-bottom model, 307
violation of independence, 307
Wald test, 303
with log-linear model, 307

Gene-gene interaction, 24, 27, 36, 235, 236,
238, 253, 330, 331, 346

additive, 239
biological, 254
combinatorial partitioning, 239
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Gene-gene interaction (cont.)
composite LD contrast test, 250
contrasting log-OR, 246, 254
curse of dimensionality, 239
dominant, 238
example using a Power Program, 330
genetic model, 239
higher-order, 239, 251
LRT, Wald test, Score test, 247, 255
machine learning, 239
main effect, 236, 238
multifactor dimensionality reduction

(MDR), 240
multiple factor, 254
multiplicative, 238
odds ratio (OR), 255
quadratic discriminant function, 256
statistical, 254
test for second-order, 251
test for two-locus, 243, 245
tree method, 239
with log-linear model, 248, 254

Gene-gene interactions
contrasting LD, 248
logic regression, 242

Generalized estimating equations (GEE), 361
Generalized linear models (GLM), 231, 242
Genetic effect, 132, 135, 139, 142
Genetic model, 24, 38, 63, 128, 131, 133, 134,

136, 137, 146, 159, 160, 163, 170,
172, 173, 178, 180–182, 185, 192,
202, 288, 310, 327, 331, 345, 348

additive, 63, 117, 131, 136, 152, 153, 160,
170, 176, 182, 188, 202, 222, 238

dominant, 63, 131, 136, 152, 153, 170, 176,
181, 188, 222, 238

misspecification, 202
multiplicative, 63, 93, 182, 238
over-dominant, 151
recessive, 63, 131, 136, 152, 153, 170, 176,

181, 188, 222, 238
two-locus model, 238
under-dominant, 151

Genetic model exclusion (GME), 191, 197,
198, 203

critical value, 194
distribution, 193
example, 195
MAX-based, 196
test for association after, 192

Genetic model selection
test for association after, 184

Genetic model selection (GMS), 180, 182,
191, 197, 198, 203

critical value, 186
distribution, 185, 190
example, 187
p-value, 186
test for association after, 185
threshold, 188

Genome-wide association studies (GWAS), 30,
124, 130, 146, 169, 173, 175, 276,
279, 337, 348

analysis, 342
Bayes factor (BF), 345
call rate, 339
dbGap, 339
dbSNP, 338
deviation from HWE, 339
genetic model, 345
haplotype, 346
interaction, 346, 348
minor allele frequency (MAF), 339
missing rate, 339
p-value, 345
power, 339
quality control, 338
scan and ranking, 342, 344, 348
significance level, 338
single-marker analysis, 342
special issue, 348
statistical reference, 348
trait, 337
winner’s curse, 348

Genomic control (GC), 266, 267, 283
Genotype, 34, 127, 210, 211

ambiguous, 211, 212
coding, 132, 135, 136, 149
combination, 211, 213, 238
counts, 37, 43, 62, 96
frequency, 35, 41, 42, 49, 168, 173, 260,

263
multiple loci, 211
ordinal, 238
two-locus model, 237
unphased, 230

Genotype relative risk (GRR), 37, 54, 62, 63
for matched design, 98

Genotype-based haplotype relative risk
(GHRR), 368

Genotype-based test, 65
Genotyping error, 47, 48, 331, 340, 349
Genotyping technology, 338
Gibbs sampling, 127
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H
Haplotype, 36, 209, 210, 346

association, 220
block, 217
certainty measure, 217, 219, 231
compatible with, 211, 214, 217
covariance, 210
example, 229
frequency, 210, 212, 213, 215, 216, 220,

223, 230, 232
from genotype, 211, 225
htSNP, 219, 220, 231
information, 217
LRT, 220
missing data, 215
pair, 211–214, 217, 231
permutation, 225
pooled data, 220
recombination, 217
reconstruction, 210, 211
similarity, 224, 231
super-allele, 220
tag SNPs, 217, 219, 231
two-locus, 211
two-step analysis, 346
variability, 218
variance, 210

Haplotype analysis, 210, 332, 346
Haplotype-based haplotype relative risk

(HHRR), 369
Hardy-Weinberg disequilibrium (HWD), 44,

180, 183, 227, 260
coefficient, 44, 78
impact of, 48
mean, 44
variance, 44

Hardy-Weinberg disequilibrium trend test
(HWDTT), 78, 180, 181, 184, 191,
203

Hardy-Weinberg equilibrium
likelihood ratio test, 45

Hardy-Weinberg equilibrium (HWE), 26,
40–43, 46, 48, 50, 62, 143, 165,
203, 205, 212, 220, 225, 230, 232,
266, 271, 280, 285, 339, 354

chi-squared test, 43
conditions for, 41
exact test, 46
impact of deviation from, 48
sex-linked, 47
test HWE using controls, 339
test of, 43, 48
test using family data, 339, 348

Hardy-Weinberg proportions, see
Hardy-Weinberg equilibrium
(HWE)

Haseman-Elston (HE) regression, 360, 384
original, 360
revised, 360
two-level, 361

Heritability, 363
Heterozygous, heterozygosity, 34, 39, 211, 260
Homozygous, homozygosity, 34
Hybrid design, 40
Hypergeometric distribution, 11, 76

distribution function, 11
mean, 11
variance, 11

Hypothesis testing, 18
alternative, 18, 19
local, 28
null, 18, 19
one-sided, 19
two-sided, 18

I
Identity by descent (IBD), 357, 364, 384

estimate, 357–359
Identity in state, 357
Importance sampling, 127
Imputed SNPs, 338
Inbreeding, 48, 260
Independence or independent, 4–6, 12, 13, 16,

23, 30, 35, 40, 41, 176, 193, 203,
204

Independent and identically distributed (IID),
12

Inductive logic programming (ILP), 230
Inference, 15
Interaction, 24, 27, 236, 253, 287, 332, 346

example using a Power Program, 328
Power Program, 327
Power Program specifications, 328
Score test, 324
testing, 324

International HapMap Consortium, 229
Interval mapping, 358

K
Kinship, 267, 285, 354, 363
Kolmogorov test, 274

L
Lander-Green algorithm, 358, 384
Laplace approximation, see Bayes factor (BF)
Least squares estimate, 275
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Likelihood function, 15, 20, 68, 69, 128, 134,
137, 149, 179

conditional for matching, 371
for complete data, 25, 214
for complete date, 232
for genotype counts, 45
for incomplete data, 25
haplotype analysis, 222
logarithm, 15
notation for, 15
pedigree, 356
retrospective, 221, 222
two-locus model, 243

Likelihood ratio test (LRT), 21, 45, 220, 237,
245, 269

constrained LRT, 165, 178, 197, 198, 203,
386

for HWE, 45
with nuisance parameter, 22
without nuisance parameter, 21

Linkage, 26, 30, 39, 40, 354, 355
Linkage analysis, 354, 385

affected sibpairs, 372
model-free, 357
robust, 385

Linkage disequilibrium coefficient, see
Linkage disequilibrium (LD)

Linkage disequilibrium (LD), 35, 37, 57, 215,
230

association, 38
coefficient, 35, 215, 216, 218, 225, 231,

232, 249
complete, 35
composite LD, 225–227, 232, 233
contrast test, 225
contrasting LD, 228, 232
imperfect, 36, 313
inperfect, 160
Lewontin’s, 57, 216, 314
mapping, 216
patterns, 279
perfect, 35, 36, 312, 331
standardized, 215
standardized coefficient of, 35, 314
tight, 217

Linkage equilibrium, 37, 216, 314, 360
test for, 216

Locus, 34
functional, 35, 36
multiallelic, 42
single-locus model, 35
two-locus model, 35, 36

Lod, see Lod score
Lod score, 354–356, 364, 365

Logarithm
base 10, 124
natural base, 15

Logic regression, 242, 253
expression, 242
operator, 242
simulated annealing algorithm, 242

Logistic regression, 21, 40, 55, 126, 128, 134,
139, 141, 149, 221, 231, 242, 249,
290, 306

for case-control design, 55
for gene-gene, 236
obtaining Pearson’s test, 69
obtaining trend test, 67
saturated, 236

M
Marginal distribution, 5
Marker, 34

diallelic, 34, 127
multiallelic, 34
multiple, 36
two-marker model, 36
unlinked, 275

Markov Chain, 127
Markov Chain Monte Carlo (MCMC), 127,

230, 269, 384
Markov Chain property, 13
Matched design, 50, 96, 117, 200, 203, 332

comparison of tests, 112
example, 115
MAX3, 200
MDT, 104
model-free test, 105
MTT, 99, 200
variable matching, 117

Matched genotype relative risk (MGRR), 367
Matched set, 96
Matched trend test (MTT), 99, 117, 200, 205,

367
correlation, 201
example, 101
variable matching, 102, 117

Matching
1 : 1 matching, 96, 100
1 : 2 matching, 101
1 : m matching, 100, 104, 117
matched pair, 96, 100, 117, 200
variable matching, 102, 103, 117

Matching disequilibrium test (MDT), 103,
117, 367

1 : m matching, 104
variable matching, 103
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Matrix
determinant, 8, 157
eigenvalues and eigenvectors, 276
positive definite, 8
transpose, 8

Maximin efficiency, 153–156, 161, 171
Maximin efficiency robust test (MERT),

154–156, 159–161, 166, 192, 202,
376, 385, 387

Maximization, 25–27
Maximum a posterior (MAP), 125, 129, 147
Maximum likelihood

haplotype, 220
Maximum likelihood estimate (MLE), 15, 18,

21, 24, 25, 45, 126, 133, 134, 136,
139, 147, 212, 230, 232, 244

composite LD, 227
consistency, 16
Cramer-Rao lower bound, 16
properties, 16
restricted, 21
solve, 15, 25

Maximum lod score (MLS), 365
Maximum resolution, 212
Maximum-type statistic, 24, 161

distribution, 164, 166, 168, 170, 173–175,
202

MAX, 161, 170, 178, 179, 202, 203
MAX3, 161, 162, 165, 166, 169, 173–175,

177, 188, 197, 198, 202, 203, 376
McNemar’s test, 95, 117, 367, 369
Mean, 4, 6, 8, 9, 30, 31

harmonic, 127
Mean test, 365, 385
Median, 31, 163
Mendelian inheritance, 339
Meta-analysis, 30, 347
Metropolis-Hastings algorithm, 127
MIN2, 176, 177, 197, 198, 203, 204

distribution, 177, 203
p-value, 177, 205

Minimum p-value, 23, 24, 31, 176
Minmax, 365, 385
Minor allele frequency (MAF), 34, 339
Missing data, 212, 215
Mode, 125, 146
Moment, 4
Monte Carlo simulation, 23, 164, 169
Multidimensional Scaling (MDS), 278
Multinomial distribution, 7, 12, 15, 26, 31, 45,

46, 62, 117, 149, 164
correlation, 7
covariance, 7, 16
distribution function, 7

Fisher information, 17
mean, 7
MLE, 16
notation for, 7
variance, 7

Multiple testing, 22–24, 30, 163, 203, 288
Bonferroni correction for, 23
false discovery rate (FDR) for, 23
for genetic model, 22, 24

Multiplicative (MUL), see Genetic model
Multipoint, 358, 359, 384
Multivariate normal distribution, 8, 24, 125,

126, 165, 363
conditional covariance matrix, 9
conditional distribution, 9
conditional mean, 9
covariance matrix, 8
distribution function, 8
notation for, 8

N
Newton-Raphson method, 25, 125, 136, 223,

232
Non-gametic phase disequilibrium, 225, 226
Normal distribution, 7, 8, 15, 16, 31, 159, 169

density plot, 7
distribution function, 7
mean, 7
MLE, 16
notation for, 7
standard, 7, 9, 18, 20
standard deviation, 7
variance, 7

Nuclear family, 358

O
Odds ratio (OR), 40, 51, 219, 238, 244, 255,

288, 289, 319
CI, 83
conditional, 114
estimate, 83, 88
inference of, 52, 53
matched design, 113
prior for, 141
two-locus model, 237

Order statistics, 12, 13, 23, 30
conditional distribution, 13
dependence, 13
distributions of, 12, 13
notation for, 12
smallest or largest, 12

Orphans, 212
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P
P-value, 19, 20, 24, 30, 31, 77, 145, 162, 169,

173–175, 177, 186, 191, 270, 345,
376

for exact test, 76
MAX3, 165

Parameter, 6, 15, 123, 126
averaged, 123, 126
maximized, 123
multiple, 15
non-central, 9, 311
nuisance, 19, 21, 68, 69, 128, 135, 202
shape, 9–11
space, 15

Parametric bootstrap, 77, 164, 166, 169, 170,
173–175, 180, 190

Parsimony algorithm, 212
PC analysis (PCA), 278, 284
Pedigree analysis, 384
Pedigree disequilibrium test, 386
Penetrance, 36, 37, 62, 178, 203, 237, 313
Percentile, 5, 13, 18
Permutation, 76
Phase, 36, 210, 229

ambiguity, 210, 231
ambiguous, 212

Phenotype, see Trait
Phenotyping error, 331
Population stratification (PS), 39, 48, 49, 260,

266, 271, 283, 342
comparing methods, 281
correcting for, 266
impact, 262, 265
model, 262
simulation, 280

Population structure, 37, 48, 260, 266, 283
model, 261

Population-based, 36, 38, 39
Posterior, 122, 124, 127, 131, 143, 146

distribution, 122
mode, 125
odds, 123, 124

Posterior probability of association (PPA),
124, 126, 143

Power, 7, 9, 19, 23, 27, 29, 145, 154, 159, 170,
198, 202, 203, 253, 288, 331, 339

Bayesian, 124
conditional, 203
example, 312, 315, 318, 321
for gene-environment interaction, 27
for gene-gene interaction, 27
haplotype analysis, 332
interactions, 326
limitations of a Power Program, 324

power formula, 28, 310, 311
robust tests, 331
single marker, 310
specifications of a Power Program, 320
using a Power Program, 320

Power Program, 331, 332
Prevalence, 36, 49, 143, 263
Principal component (PC), 271, 273–275, 284

calculation, 276
linear model, 275, 285
mixture model, 272, 284
QualSPT, 273, 274
semi-parametric, 273, 284
using family data, 276, 285

Prior, 122–124, 128, 131, 132, 140, 146
distribution, 122, 128, 133
for log OR, 141
hyper-prior, 146
mixture normal, 146
negligible, 131, 141
nonparametric, 230
normal, 141, 143
odds, 123, 124, 126, 131
sensitivity analysis, 142, 146
specification, 141

Probability density function (PDF), 4
Probability mass function, 4
Programs

FASTLINK, 355
GENIBD, 358
LINKAGE, 355
MAPMAKER/SIBS, 358
Power Program, 320, 331, 332
Quanto, 332
S.A.G.E., 339, 348, 355, 358, 361
SIBPAL, 361

Proportion test, 365, 385
Prospective, 55, 67, 117, 128, 172, 231

Q
Quality control, see Genome-wide association

studies (GWAS)
Quantile, 5, 13
Quantitative trait, 360, 364
Quantitative trait locus (QTL), 284, 360

R
Random mating, 40–42, 48, 212, 260, 262, 354
Random variable, 4

continuous, 4, 5
discrete, 4, 122

Random vector, 8, 9
Rare disease, 78
Recessive (REC), see Genetic model
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Recombination fraction, 354, 359
likelihood function, 354

Relative risk (RR), 290
matched design, 113, 116

Replication, 347, 348
genetic model, 348
guidelines, 347
trait, 347
using independent samples, 347
using trend test, 348

Retrospective, 55, 67, 117, 172, 203, 221, 231,
307

haplotype analysis, 221
Rhombus formula, 169, 173, 175, 203
Robust test, 30, 153, 176, 202, 203, 372

example, 173, 177, 179, 187, 195

S
Sample size, 7, 20, 27–29, 145, 159, 331, 347

example, 312, 315, 318, 321
for gene-environment interaction, 27
for gene-gene interaction, 27
haplotype analysis, 332
interactions, 326
limitations of a Power Program, 324
sample size formula, 28, 310, 311
single marker, 310
specifications of a Power Program, 320
using a Power Program, 320

Sample space, 4
Score, 20

for trend test, 65
increasing, 65
transformation, 238, 255

Score function, 20, 68, 69
Score statistic, see Score test
Score test, 21, 68, 70, 117, 237, 245, 324

haplotype analysis, 223
with nuisance parameter, 22
without nuisance parameter, 21

Selection of marker loci, 279
Sensitivity analysis, 189
Significance level, 19, 27, 169, 203, 339

for genome-wide, 344
for linkage analysis, 357

Simulation
Bayesian analysis, 143
case-control data, 84
genetic model exclusion (GME), 196
genetic model selection (GMS), 182, 190
matched design, 110
no covariate, 84
population stratification (PS), 280
with covariate, 85

Single nucleotide polymorphism (SNP), 34
Site, 34
Slutsky’s theorem, 14, 310
Statistical Analysis for Genetic Epidemiology

(S.A.G.E.), 355
Structural association (SA), 269, 270, 284

STRUCTURE, 269

T
T-distribution, 10, 16, 18
T-distribution

convergence, 10
degree of freedom, 10
density plot, 10
distribution function, 10
mean, 10
relating to chi-squared distribution, 10
relating to F-distribution, 10
relating to normal distribution, 10
Student’s, 10
variance, 10

Tail probability, 169
Trait, 35

binary, 35
dichotomized, 35
ordinal, 35
quantitative, 35
similarity, 360

Transmission disequilibrium test (TDT), 39,
270, 283, 366, 369, 385

for quantitative trait, 386
Trend test, 22, 65, 90, 131, 152, 154, 159, 160,

162, 163, 171–173, 176, 179, 184,
191, 202, 204, 265–267, 310

asymptotic distribution, 310
choice of score, 66, 93, 171, 173, 179,

202–204
constrained score, 172
example, 66, 87, 88
for matched design, 99, 117, 200
from logistic regression, 67
joint distribution, 164
likelihood function for, 68
median, 342
re-scale, 267
score transformation, 171, 204
variance estimate, 66, 91, 331

Triangle constraints, 366, 385
Trios, 374
Two-phase, 203
Two-stage, 203
Type I or II error, 19, 23, 27, 39, 196, 266



414 Index

U
Uncorrelated

of two test statistics, 48
Uniform distribution, 6, 20, 30, 31, 274, 280

a property of, 6
distribution function, 6
mean, 6
notation for, 6
unit rectangular variate, 6, 12
variance, 6

Unit rectangular variate, see Uniform
distribution

Untyped SNP, 348

V
Variance, 4, 6, 8, 24, 30, 31
Variance component model, 361, 385
Variance inflation factor (VIF), 266–268, 283,

342

W
Wald test, 21, 134, 237, 245

with nuisance parameter, 22
without nuisance parameter, 21

Winner’s curse, 347, 348
Wright’s inbreeding coefficient, 46, 62, 165,

166, 260, 280, 286, 339
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