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Preface

Statistical process control (SPC) is now recognized as having a very
important role to play in modern industry. Our aim in this book has
been to present SPC techniques in a simple and clear way, and also to
present some of the underlying theory and properties of the techniques.

This volume arises partly out of a revision of Wetherill (1977), and
partly out of experience in teaching and implementing SPC at industrial
sites, especially with ICI. It would have been impossible to come to our
present understanding of this field without the joint efforts of industry
and university.

A number of features of this book are new:

(1) The special emphasis on process industry problems, including one-
at-a-time data.

(2) The discussion of between and within-group variation, and the
effects of this on charting and on process capability analysis.

(3) The derivation of the properties of the techniques has not been
gathered together before.

(4) The presentation of sampling by variables contains many new
features.

The techniques themselves are presented in a very simple way by
using ‘method summaries’, and these could be a basis for training when
SPC is implemented.

We hope that this volume will be used in courses in universities and
polytechnics. Some of the more mathematical sections and chapters are
marked with an asterisk, and these can be omitted at first reading. It is
important to get a good intuitive grasp of the subject before delving into
the theory. Two sets of exercises are provided at the ends of chapters.
Those labelled ‘A’ explore the techniques themselves whereas those
under ‘B’ are more mathematical or theoretical. A separate and parallel
volume is being produced, Statistical Process Control — a Manual for
Practitioners, which avoids theoretical aspects, and which covers prac-
tical issues omitted from this text.

The book divides into two major areas. Chapters 1-10 largely deal
with charting, and Chapters 11-14 with sampling inspection.
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Modern industry is very complex, particularly the process industries.
It is important for some of the SPC staff to have an understanding of
the properties of SPC techniques under a variety of assumptions.
Surprisingly enough, there are many points which need further research,
and some of these are pointed out in the text.

We are indebted to many people in the production of this book. The
initiatives of Total Quality of ICI Chemicals and Polymers and ICI
Films lead to a ‘Teaching Company Scheme’ in SPC between ICI and
the University of Newcastle upon Tyne. This scheme covered six
projects and gave the university staff inside experience of the problems
of implementing SPC. Discussions with ICI staff and Teaching Company
Associates have helped. Further discussions with ICI staff at SPC
courses have deepened our understanding.

Although this volume arises partly out of a revision of Wetherill
(1977), and much of the writing has been done by G. B. Wetherill,
much has been done in collaboration with ICI, especially D. W. Brown,
in writing an SPC manual for the company. The emphasis on problems
associated with process industries owes a lot to DWB and contributions
from ICIL.

Colleagues Marion Gerson and Jim Rowlands in the Industrial Statist-
ics Research Unit at the University of Newcastle upon Tyne have helped
enormously. There have been numerous discussions on methodology
and approach as we studied the implementation of SPC at various sites.

We are indebted to Mr W. Dobson for producing many of the
diagrams and the sampling datasets. We are also grateful to Mr S. King
for help with proof-reading.

Appendix C contains a list of National and International Standards
relating to quality control. It is the first time that such a list has been
available. The authors have made every effort to check the list but
cannot vouch for inaccuracies or omissions. Students intending to work
in the quality area ought to be familiar with the major Standards. The
authors are indebted to David Baillie, with the help of John Mallaby of
the British Standards Institution, and Tsuneo Yokoh of the Japanese
Standards Association for provision of this list.

This project has taken a lot of time and energy, but it is one which we
feel has been very worthwhile. We hope that the book proves to be
useful and interesting to others.

G. Barrie Wetherill
Don W. Brown



1
Statistical process control

1.1 DEVELOPMENT OF SPC

Statistical process control and allied techniques of sampling inspection
and quality control were developed in the 1920s. In May 1924, Walter
A. Shewhart of Bell Telephone Laboratories developed the first sketch
of a modern control chart. Work by him, H. F. Dodge, H. G. Romig,
W. J. Jennett and others continued apace. In 1931 a crucial paper on
the new techniques was presented to the Royal Statistical Society, which
stimulated interest in the UK.

SPC was used extensively in World War II both in the UK and in the
USA, but lost its importance as industries converted to peacetime
production. However people in the West taught it to the Japanese, and
W. E. Deming in particular made a big impact in Japan in the 1950s.
Japanese industry applied SPC widely and proved that SPC saves money
and attracts customers. US and UK industries are now being forced to
introduce it in order to compete with the Japanese.

As part of the UK National Quality Campaign, a group representing
UK industrial interests went to Hong Kong, Japan and the USA in the
summer of 1984. As a result of their visits, all members of the group
became alarmed at the competition faced by UK industry, and were
especially convinced about the need for a radical reappraisal of our
attitude to quality. The Japanese philosophy is that good quality
products sell, consistent good quality leads to greater productivity, and
that there is no conflict between price and quality. One of the Japanese
who spoke to the group explained that ‘It would take you ten years to
get to where we are . . . and we know you won’t do it!’

The Japanese have applied very successfully the statistical techniques
they learned in the West from Deming, Juran and others. The message
is clear: these techniques must be applied widely in the West.
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1.2 WHAT SPC IS AND IS NOT

Statistical process control is not a magic formula for curing all produc-
tion ills; it is a very useful tool to be used in promoting and maintaining
the health of a commercial or industrial enterprise. Although many of
the statistical ideas originated in Britain and America, they have been
grossly under-used and misunderstood for many years. It is the Japanese
who have seen the important contribution of SPC within industry and
combined it with a totally different approach to quality and to manage-
ment. The result is slowly filtering through to the West chiefly via the
USA.

Although we shall not always need to differentiate in this text it is
worth noting here that SPC is used:

(1) To improve quality (in the Crosby sense of conformance to require-
ments; for details see the references).
When information about production and control over it leads to the
reduction or elimination of non-conforming product this can lead to:
(a) Reduced manufacturing costs, due to less
® Scrap
® Added value to defective product
® Rescheduling
e Inspection/re-work
(b) Increased reputation/customer satisfaction
(c) Tighter specification limits and hence improved product claims.
(2) To increase yield (or maintain yield at reduced cost).
In many chemical and some other process industries it is important
to maximize output value relative to inputs. Small differences in
yield may have a significant effect on profit, so it is as important to
capitalize on positive causes of variation as to detect and eliminate
those causes that have a negative effect.

A very important part of this process is the role played by measure-
ment. It is necessary for us to have some data measuring the quality of
our output, data on quality costs, data on how a process is performing,
etc. This leads directly to the use of statistics. Statistical methods for
process control have been taught for about 60 years now, and there are
many examples of how important and successful statistical process
control can be. Simple statistical methods can be used in order to:

(1) Have evidence of what a process is doing, and what it is likely to
do.

(2) Provide an assessment of the quality levels your process is currently
capable of meeting.

(3) Tell when to look for trouble and when not to.
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(4) Provide clues as to where trouble is likely to occur.
(5) Help towards an understanding of the operation of the system and
so help in making improvements to the process or product.

The results of the statistical methods must be interpreted by the
operating staff, using their experience, perceptions and common sense.
They are not blind tools, but they are extremely helpful in the context
of a management system committed to achieving quality and product-
ivity.

1.3 ON-LINE SPC METHODS

SPC methods can be described as on-line or off-line. We deal first with
on-line methods, which again divide into two types, screening or
preventative and these can be seen in Fig. 1.1.~

Preventative Screening
_j ! Data on Data on )
action on < e or corrective
process output \
process action on output
THE PROCESS
@
)
[
2.
%
2
&
(ad
OUTPUT >

Figure 1.1 Controlling a process.

In screening, we inspect the output, and if the quality is not
satisfactory, we screen out the substandard items for reworking, for
selling at a reduced price or for scrap. This is usually done by a system
of sampling inspection, and can be done by methods discussed in
Chapters 11-14. Screening for quality is usually very expensive, and not
recommended.

In preventative SPC methods we inspect the process, and try to use
process control to avoid defective items being produced. Typical preven-
tative SPC methods are:
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(1) Shewhart control charts for process variables (Chapters 5 and 6).
(2) CuSum control charts for process variables (Chapter 7).

(3) Sampling inspection of input material (Chapters 11-13).

(4) Continuous production inspection of product (Chapter 14).

Some people contrast control charts, as preventative methods, with
sampling inspection as a screening procedure. This distinction is not
correct. Control charts can be used as a screening mechanism, and
sampling inspection can be used in a preventative manner. But the
importance of on-line SPC methods lies in their use as preventative
procedures.

SPC methods concentrate on trying to control process average level
and process spread. In particular, process spread or variability is a
special enemy of quality, and needs to be tackled with some vigour.
Indeed the vast majority of discussions on quality between manufac-
turers, their customers and suppliers is centred around the consistency of
feedstocks and products.

1.4 OFF-LINE PROCESS CONTROL

This is often the next stage on from on-line SPC, although ideally it
should be built into designing and setting up a product and its
production process from the start.

The aim is to reduce or remove the effect of potential causes of
variability by modifying the process, or the product, so making it less
sensitive to these causes. This generally requires skill and ingenuity from
a team of people with different expertise, one of whom will be a
statistician. It is not possible to give general rules or simple guidelines,
but in a short introduction the following examples may help illustrate
the possibilities. This type of use of experimental design has been
pushed by Taguchi (1985, 1986a, 1986b).

Example 1.1

A number of different factors were postulated as possible causes of
variability in large ceramic insulators. A properly designed experiment
was carried out to determine which of these had significant effects. This
identified firing temperature (which could be different in different parts
of the kiln, depending on loading etc.) as a major factor. A programme
of work was put in hand to find a ceramic mix that would be less
sensitive. In addition, one of the lesser sources of variation was found to
be the length of time that elapsed between manufacture of an insulator
and firing. (A firing batch would be collected over a period of time.)
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This was largely eliminated by setting up a small holding store with a
suitable atmosphere.

Example 1.2

Gorsky (1987) reported an experiment run at some Ford Motor Com-
pany plants. The problem concerned the 3.8L V6 camshaft, and there
were two objectives:

(1) To reduce the percent carbide content variation, lobe to lobe, on a
given camshaft.
(2) To achieve higher lobe hardness.

A brainstorming session was held in order to identify factors worthy
of study in an experiment. Two sorts of factors were identified, tooling
factors and process factors.

The tooling factors affect the configuration of the machine. Five
factors were selected, each at two levels, and it was decided to perform
a fractional factorial experiment of eight runs, in order to find the
optimum configuration.

The process factors represent ‘noise’, which are more difficult or
impossible to control. Six such factors were identified, each at two
levels, and a fractional factorial experiment of sixteen runs was selected.

Under the system proposed by Taguchi (1986b), each of the tooling
factor runs was performed at each combination of noise factors. For full
details see the original article, but in all about 1500 camshafts were
made.

The objective of the analysis was to find a combination of tooling
factors which achieved the objectives consistently across the noise
factors. Because the experiments were of the fractional factorial type,
confirmatory runs had to be made before implementing the conclusions.

Example 1.2 illustrates the contrast between what Taguchi calls
‘control’ and ‘noise’ factors. By carefully designed experiments it is
possible to find control factor combinations which perform consistently
well across the less well-controlled noise factors. In Example 1.1 a
change to the product was necessary to achieve the objectives, whereas
in Example 1.2 the change is more to the process.

Example 1.3

Becknell (1987) reported an experiment run on throttle bodies for the
Ford Motor Company. The component was die cast, and although
quality was satisfactory from most points of view, it was subject to gas
porosity voids which affect visual quality. A brainstorming session was
held after which seven factors were selected for examination. These
were metal cleanliness, shot size, spray pattern, intensification, profile
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velocity, die temperature and metal temperature. Each of these factors
was selected at two levels, but a fractional factorial experiment of only
eight runs was used. The optimum combination of factor levels was
tested in a confirmatory run. The results achieved a 73% reduction in
visual porosity, and an estimated annual saving of over £200000.

Off-line quality control employs a considerable amount of experi-
mental design work, and some special types of design favoured by
Taguchi. There is now a very large literature on this topic: see for
example American Supplier Institute (1987).

In some cases the use of off-line quality control may eliminate the
need for on-line methods, but in most cases on-line methods are a vital
part of the quality initiative. The text to follow concentrates on on-line
methods.

1.5 SPC METHODOLOGY

SPC should be seen as an objective statistical analysis of process
variation and its causes. Often large gains can be made by using quite
simple statistical methods. The difference between decisions made on a
basis of facts and data rather than gut-feel and intuition can be
€normous.

In some industries of the component manufacturing type, filling lines,
etc., the charting methods which form much of the book can be readily
applied. It is sometimes obvious what to plot on the chart, such as a
dimension, and it may also be reasonably clear what to do when a
‘process out of control’ signal is given.

In other industries, particularly in the process industries, the situation
is very complicated and it is not at all clear what to plot, nor what to do
at ‘out of control’ signals.

In process industries the processes involve recycling, automatic control
loops, and many stages of mixing, blending or interaction. Typically, a
process industry has:

(1) About 10 variables defining the quality of the product.

(2) About 200-500 process parameters or variables.

(3) About 30 variables defining quality and amounts of input raw
material.

There is frequently only vague knowledge of the relationships between
many of these variables.

An SPC study into such a process involves much more than charting,
and based on our experience we suggest the following stages. Greater
discussion will be given in the companion volume Statistical Process
Control — a Manual for Practitioners .
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Stage 1 Process flow

1.1 Draw a schematic diagram of the flow of the process, and note the
stages or phases in the process.

1.2 Study the flow of data from the process. Note where and when this
data is stored, communication links, etc.

Stage 2 Determine the problem

2.1 Collect peoples’ opinions about the problem, including the cus-
tomer.

2.2 Determine the important product variables, whether or not they are
measured.

2.3 Collect and analyse data on these variables using moving averages,
CuSums, and process capability studies (Chapters 2—4).

2.4 Calculate the costs of non-conforming product.

2.5 Interpret the data using process log books, and by consultation with
process engineers and operators.

Stage 3 Explore the process

3.1 Collect information about the process:
(a) Known from technical sources and reports
(b) Relationships or material believed, sometimes strongly
(c) Conjectures and opinions.

3.2 Break the process down into modules, if possible, and decide on
any extra data necessary to achieve this.

3.3 Collect data available from quality control or other routine opera-
tions. Decide on extra data required and collect it.

3.4 Analyse and interpret the data using graphs, CuSum plots, multiple
regression or multivariate statistical methods.

3.5 Design and carry out experiments on the plant in order to test and
establish empirical or theoretical models.

3.6 Choose the types of SPC charts to use and decide where to put
them.

3.7 Implement SPC. This stage will often involve training, and some
sort of ‘public relations’ exercise with staff.

A key point with a complex system is to break the process into
modules. Multivariate methods such as principal components can be
used to trace back variations through the process. Often some time-
series analysis will also be required.

The experimental design stage is often essential, for without it there is
insufficient knowledge of the process to implement SPC.

This section has mentioned numerous statistical techniques not
covered in this book, such as experimental design, multivariate analysis
or time-series analysis. For these we refer readers to standard texts.
Versions of texts adapted to the quality field do not seem yet to exist.
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1.6 OTHER FACTORS AFFECTING THE SUCCESS OF SPC

The technical side of SPC is clearly essential in gathering information
about processes, setting up control charts, and showing how quality or
yield can be improved and then maintained at a high level. But as the
Japanese have shown, and as practitioners of SPC and quality manage-
ment such as Crosby and Deming have also realized, there is a great
deal more to it than technical expertise.

The company has to be prepared to make substantial inputs of
training, capital and equipment where these are shown to be beneficial.
It is also essential to have a management philosophy and structure which
permits and encourages workers at all levels to work for high-quality

On-line SPC

Establish what the
process is capable of

producing

Detect and prevent the
effect of occasional large
sources of variation

|

. Quality Input of new
I:put :f Iselt/‘!lz and equipment,
at many yield training

Modify the product
or manufacturing process

Identify sources of
variability

Off-line SPC

Figure 1.2 Factors affecting the success of SPC.
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production. The success of SPC and other quality initiatives in Japan,
and its lack of success in Britain and the USA where the techniques
originated, is thought to be very largely due to a failure on our part to
develop our own industrial philosophy and strategies. In particular,
successful management of the work-force, both skilled and unskilled,
depends on an understanding of what the company is, and the reasons
that people will work well within it.

Many people depend on the continued health and profitability of a
large company. Those directly involved include personal investors, both
large and small, pension funds etc., but the structure and wealth of
society is also affected because of direct taxation of the company,
taxation of its employees, and the maintenance of the many service
industries catering for employees.

But the people who have the greatest stake in the present and future
well-being of the company are the people who work for it at every level.
They make substantial inputs of time and effort and require satisfactory
returns, not all of which are financial.

Although people will often work longer hours (and sometimes harder)
for more money, for the majority of people this is not a motive for a
high standard of work. To achieve this latter, a person must be
motivated by a sense of achievement and of self-worth. Most of us
motivate ourselves quite well over long periods of time and in remark-
ably difficult conditions. This is especially true if we are in a position to
see that the work we are doing is well done or has a value of its own,
including the value of providing for ourselves and for our dependents.
But we do also need external appreciation of various kinds if we are to
continue to think and work to the best of our ability. Awards for quality
improvement (as suggested by Crosby) are one part of this, and so is the
appreciation shown ‘little and often’ by superiors or within a peer group.
This is one of the important requirements that management cannot
afford to overlook in a quality improvement exercise, or they will find
that the programme is relatively short-lived in its effectiveness. In
particular if the ‘appreciation’ of management is shown by making
workers redundant as a result of improved quality or lower production
costs, then sensible people who see colleagues treated in this way will
know how to react to subsequent quality drives. Redeployment and
retraining cost money, but not as much as is lost by demoralizing the
work-force at all levels.

In the final analysis the company is a highly sophisticated tool for
shaping our society. Its importance lies only in the effects it has on large
numbers of different people. Like many tools the edges are inclined to
get blunt and require sharpening, parts wear and need replacing. And
the first and most important step in doing this is to perceive the need.
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1.7 OUTLINE OF THE BOOK

This book is intended to be accessible to people at a range of levels,
including technical management in industry and statistics, engineering
and mathematics undergraduates on degree and degree-level courses.
Chapters 1-7 and 10 (omitting starred sections) should be accessible to a
wide range of readers, provided the material contained in Chapter?2 is
studied in detail. Chapters 8, 9 and 11 onwards are at a higher technical
level.

Two sets of exercises have been provided at the ends of chapters;
those marked ‘A’ are general data exercises to be done by everyone.
Exercises marked ‘B’ are intended to be more mathematical, and to
enable readers to achieve a deeper understanding of the techniques. The
exercises should not be skipped.

Most of the techniques used are presented in a very simple step-by-
step summary form, called Method summaries. These summaries should
make the techniques quite clear, and they should be used as a basis of
training when SPC is implemented.

EXERCISES 1A

1. Write out a detailed flow chart for a process that you are familiar
with. List separately the
(a) Input variables. Variables connected with the input raw mater-
ials.
(b) Process variables. Variables which describe process conditions.
(¢) Product variables. Variables which describe the quality of the
product.

Discuss the possible points in this process at which SPC charting,
sampling inspection, or off-line quality control might be applied.



2
Some basic distributions

2.1 INTRODUCTION

2.1.1 Layout of this chapter

A large part of this book is taken up with the construction of various
types of control chart, and with the derivation of some of the properties
of these charts. All of these charts are based on an underlying model for
the data, and in this chapter we review the main models used. In section
2.1.2 we describe the types of data we meet, and we shall need models
to cover these. Also, in section 2.2 and to some extent in section 2.7 a
list of basic results is given. In fact, a large part of the book can be
understood with a fairly shallow understanding of these ideas.

A revision of the binomial, Poisson, geometric and normal distribu-
tions is given in sections 2.3-7. Those familiar with the material on
distributions should read sections 2.1 and 2.9, with sections 2.10 and
2.11 as optional.

Scientists interested mainly in the applications need not study the
detailed theory but should read the basic definitions in each section.

2.1.2 Types of data

There are three main types of data: attribute, countable and continuous
data.

(a) Attribute data

In attribute data, each item of data is classified as belonging to one of a
number of categories, and the most common case is when there are just
two categories. Examples are as follows:

(1) An article on a production line is inspected and classified as either
effective or defective.

(2) A sample of a chemical is inspected and analysed for the percen-
tage of a certain impurity. This result is simply recorded as either
within or not within specified tolerances.
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(3) A sample of 200 invoices is inspected, and each invoice is classified
as correct or incorrect.

(4) In inspection at an electronics factory, it is recorded which of five
‘setting stations’ produced a given item.

(b) Countable data

Countable data arises when each data item is the count of the number
of faults, accidents etc. for a given length of time or quantity of
material. For countable data, observations range over the values 0, 1, 2,
..., and examples are as follows:

(1) A sample of plastic chips are inspected, and the number of
misshapen pieces recorded.

(2) In the production of electronic equipment, final production was
subject to strict inspection. The number of defects for each item
inspected was noted.

(3) A sample of 200 invoices was inspected and the number of errors
in each noted.

(c) Continuous data
Many variables are measured on a continuous scale such as the
following:

(1) The hardness of a metal, or of a plastic.

(2) The tensile strength of a piece of plastic.

(3) The water content, in parts per million, of a sample of antifreeze.
(4) The weight of a powder packed in a capsule or container.

(d) Multivariate data
Most SPC methods to date deal with one variable at a time, whereas in
fact most practical situations are multivariate. For example, in the
manufacture of film, a set of variables which describes the product
might include hardness, profile, luminescence, yellowness. Similarly, a
set of variables describing the process might include the shift number,
batch number, processing times at various stages, critical temperatures,
draw ratios, etc. For the same application, a further collection of
variables might describe the quality and amounts of input raw materials.
It is often vital to keep a clear distinction between these input, process
and product variables.

Multivariate data is especially common in applications in the process
industries, but multivariate SPC methods are not yet well developed.

2.2 SOME BASIC DEFINITIONS

We have just described some kinds of data which we shall meet in
statistical process control. In order to proceed we shall need some basic
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ideas and definitions. A full explanation of these can be found in books
on elementary statistics, such as Chatfield (1984) or Wetherill (1982).
Suppose we take samples of 1 kg from successive batches of produc-
tion of an engineering plastic, and examine them for longs (unusual-
shaped pieces). The numbers of longs for successive batches might be

0,3,0,1,2,1,1,0,2,5, ...

If we let the successive results be denoted x;, x,, ..., then for the
first n we can calculate the sample mean

X = in/n
and the sample variance
s2= 2@ -2 (n -1

or the standard deviation s, which is the square root of the variance.

We regard any data set, such as a collection of 100 successive results,
as a random sample from a population. For the example we are
considering the population is summarized by the relative frequency table
for a very large set of results taken under the same conditions. (In
practice, it is not possible to sample under identical conditions due to
variations in the process; we shall discuss this later.) Models for
populations are probability distributions. For countable data, as in our
example above, a suitable probability distribution is a set of values p(r),
forr=0,1,2,...,such that p(r) =0 and

>p(r) =1

For continuous data, a suitable probability distribution is defined by a
probability density function f(x) such that f(x) =0,

fjwf(x)dx -1

and the probability of getting a result between L and U is

fLUf(x) dx.

Examples of these distributions are given in the following sections of
this chapter.

The mean of the population, rather than the sample, is called the
expectation, and is defined by
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E(r) =X p(r)

for countable data, and by
E(X) = jxf(x)dx
for continuous data. The variance of the population is given by

vx) = [ & - wfe)dx

where u is the expectation. These quantities can be regarded as the
sample mean and variance, but calculated for the whole population
rather than for a sample.

2.3 ATTRIBUTE DATA - BINOMIAL DISTRIBUTION

The most common distribution which arises for attribute data is the
binomial distribution. This arises in the following situation:
Carry out n independent trials, the result of which is either 0 or 1.
The probability of a ‘1’ result is constant from trial to trial and is
denoted p.
The outcome X of each trial is independent of all others.
With these assumptions, the probability distribution of the number of
‘1’ results is

Pr(X =r) = (’r’)p'a -p)", r=0,1,...,n 2.1)

and some values are given in Table 2.1.
For this distribution we find that the expectation and variance are

E(X)=np, V(X)=np(1-p).

The binomial distribution approaches the normal distribution as
n— . The normal distribution is discussed in section 2.6, and the
normal approximation to the binomial distribution is studied in section
2.10.

Example 2.1 Acceptance inspection

As batches of items come into a production line, a sample of 20 items is
selected and the number defective counted. The distribution of the
observed number of defects will be binomial, theoretically. We find that

Pr(Number of defectives = r) = (2? )p’(l - p)*r
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Table 2.1 Binomial distribution for a selection of p-values with n =20

D 0.05 0.10 0.20 0.40
p
0 0.3585 0.1216 0.0115 0.0000
1 0.3774 0.2702 0.0576 0.0005
2 0.1887 0.2852 0.1369 0.0031
3 0.0596 0.1901 0.2054 0.0123
4 0.0133 0.0898 0.2182 0.0350
5 0.0022 0.0319 0.1746 0.0746
6 0.0003 0.0089 0.1091 0.1244
7 0 0.0020 0.0545 0.1659
8 0.0004 0.0222 0.1797
9 0.0001 0.0074 0.1597
10 0 0.0020 0.1171
11 0.0005 0.0710
12 0.0001 0.0355
13 0 0.0146
14 0.0049
15 0.0013
16 0.0003
17 0
18
19
20 0 0 0 0
Mean 1.00 2.00 4.00 8.00
St.Dev. 0.975 1.342 1.789 2.191

where p is the probability of a defective. This is the basis of acceptance
inspection, and will be discussed later.

A ‘model’ of the binomial distribution can be made as follows.
Suppose we have a container with discs in it, a proportion p of which
are labelled ‘1’ and the rest ‘0. To simulate the binomial distribution
with, say n =10, take 10 separate drawings, replacing the disc each
time. Record the total number of ‘1’ responses. This is precisely the
same as drawing 10 items from a batch with replacement, a proportion
p of which are defective.

2.4 COUNTABLE DATA - POISSON DISTRIBUTION

Countable data occurs very frequently, and one of the most common
distributions which applies is the Poisson distribution. This distribution



16 Some basic distributions

applies when certain ‘events’ occur at random in time or space, and the
observation recorded is the number of events in a given interval.

Examples of cases where the Poisson distribution applies are the
number of incoming telephone calls to an exchange in a five-minute
period, and the number of ‘specks’ per gram of a powder.

In general, let the expected number of ‘events’ in a unit time interval
be u, so that the probability of an event in the interval (¢, t + Ot) is udt,
independently of events in other time intervals. From these assumptions
it can be shown that the probability distribution of the number, X, of
events in a given (unit) time interval is

Pr( X =r)=e*u/r!, r=0,1,2,... (2.2)

For this distribution we find that the expectation and variance are
both u.

The Poisson distribution approximates the Normal distribution for
large u, and the Normal approximation to the Poisson distribution is
studied in section 2.11.

A historic data set which fit the Poisson distribution will illustrate the
basic idea.

Example 2.2 Radioactive emissions

The emission of a-particles from a radioactive source are events which
are independent of each other, and completely randomly distributed in
time. Rutherford er al. (1920) reported the results of observing the
number of emissions from each of 2608 periods of 7.5 seconds, and the
results are shown in Table 2.2.

Table 2.2 The number of emissions from a radioactive source

No. of emissions  Frequency  Poisson distribution, u = 3.870
Probability 2608 x Prob

0 57 0.0209 54.399

1 203 0.0807 210.523

2 383 0.1562 407.361

3 525 0.2015 525.496

4 532 0.1949 508.418

5 408 0.1509 393.515

6 273 0.0973 253.817

7 139 0.0538 140.325

8 45 0.0260 67.882

9 27 0.0112 29.189
10 10

11 4 } 0.0066 17.075
12 2
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The Poission distribution can be worked out theoretically, and it
depends on one parameter, u, which we set equal to the average x. In
column 4 of Table 2.2 we show the fitting Poisson distribution, and
there is very good agreement. A formal statistical test can be done to
show that the agreement is within what we might expect from random
variation.

The point about Example 2.2 is that it is an example where the
assumptions of the Poisson distribution do seem to hold. When we go to
industrial data we often have reasons to doubt that the assumptions
hold.

Example 2.3

Data was collected on the number of accidents in a certain factory each
month for four years. Table 2.3 shows a comparison with a Poisson
distribution of the same mean (3.354 per month).

Table 2.3 Accidents per month for 48 months

No. of accidents Frequency  Poisson distribution, u = 3.354
Probability 48 X Prob

0 3 0.0349 1.68

1 5 0.1172 5.63

2 7 0.1965 9.43

3 12 0.2197 10.55

4 7 0.1843 8.84

5 9 0.1236 5.93

6 2 0.0691 3.31

7 3 0.0331 1.59

=8 0 0.0216 1.04

Although the agreement with the Poisson distribution is fairly good in
Example 2.3, there are reasons to doubt the Poisson fit. For example,
winter may be worse than summer for accidents, and the rate is likely to
depend on the man-hours worked. The occurrence of an accident may
make others more careful so that accidents are not independent of each
other. In fact, the Poisson distribution often fits accident data surpris-
ingly well.

If now we consider the distribution of the number of ‘specks’ in a
kilogram of a powder from an industrial process, then for the Poisson
distribution to hold we would need to assume that the production
conditions hold constant over the period during which the data was
collected, and this may well be unlikely. We would be likely to see a
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greater dispersion in the data than a Poisson distribution would allow.
However, the Poisson distribution fits many situations very well. It can
also be used as an approximation to the binomial distribution when n is
large and p is small, by setting u=np. In Table 2.4 some Poisson
distribution are tabulated, and also one case of a binomial distribution,
showing the close approximation to a Poisson distribution.

Table 2.4 The Poisson distribution

Binomial
r u=1 2 4 8 n=20p=04np=8
0 0.3679 0.1353 0.0183 0.0003 0.0000
1 0.3679 0.2707 0.0733 0.0027 0.0005
2 0.1839 0.2707 0.1463 0.0107 0.0031
3 0.0613 0.1804 0.1954 0.0286 0.0123
4 0.0153 0.0902 0.1954 0.0573 0.0350
5 0.0031 0.0361 0.1563 0.0912 0.0742
6 0.0005 0.0120 0.1042 0.1221 0.1244
7 0.0001 0.0034 0.0595 0.1396 0.1659
8 0 0.0009 0.0298 0.1396 0.1797
9 0.0002 0.0132 0.1241 0.1597
10 0 0.0053 0.0993 0.1171
11 0.0019 0.0722 0.0710
12 0.0006 0.0481 0.0355
13 0.0002 0.0296 0.0146
14 0.0001 0.0169 0.0049
15 0 0.0090 0.0013
16 0.0045 0.0003
17 0.0021 0
18 0.0009
19 0.0004
20 0 0 0 0.0002 0
Mean 1 2 4 8 8
St.Dev. 1 1.414 2 2.828 2.191

2.5 GEOMETRIC DISTRIBUTION

The geometric distribution arises in the following situation.
Carry out a series of independent trials, the results of which is either 0
or 1.
The probability of a ‘1’ result is constant from trial to trial and is
denoted p.

The outcome X of each trial is independent of all others.
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The result is the number of trials up to the first ‘1°.
With these assumptions, the probability distribution is

Pr(X=r)=Q0-p)'p, r=1,2,3,... (2.3)
and we find that the expectation and variance are

EX)=1/p V(X)=Q1-Dp)/p’

Example 2.4

In a certain factory process inspections are made every half-hour, as a
result of which the process is declared to be either ‘in control’ or ‘out of
control’. The probability of detecting the ‘out of control’ state is p. The
probability distribution of the number of inspection periods until an ‘out
of control’ state is recorded is geometric, with parameter p. (This
assumes that the process remains statistically stable in the period.)

Some values of the geometric distribution are given in Table 2.5.

In SPC work, the geometric distribution usually occurs with a very
low value of p, in which case the tail of the distribution is very long.

Table 2.5 The Geometric distribution

r 1 2 3 4 5 6 7 8
p

0.99 0.99 0.0099 0.0001 O 0 0 0 0
0.95 0.95 0.0475 0.0024 0.0001 O 0 0 0
0.9 0.9 0.09 0.009  0.0009 0.0001 O 0 0
0.8 0.8 0.16 0.032  0.0064 0.0013 0.0003 0.0001 O

0.7 0.7 0.21 0.063  0.0189 0.0057 0.0017 0.0005 0.0002
0.6 0.6 0.24 0.096 0.0384 0.0154 0.0061 0.0025 0.0010
0.5 0.5 0.25 0.125 0.0625 0.0312 0.0156 0.0078 0.0039
0.4 0.4 0.24 0.144 0.0864 0.0518 0.0311 0.0187 0.0112

X 9 10 11 12 13 14 15 16 17
p

099 0 0 0 0 0 0 0 0 0
095 0 0 0 0 0 0 0 0 0
09 0 0 0 0 0 0 0 0 0
08 0 0 0 0 0 0 0 0 0
07 0 0 0 0 0 0 0 0 0
0.6 0.0004 0.0002 0.0001 0 0 0 0 0 0
0.5 0.002 0.001 0.0005 0.0002 0.0001 0.0001 O 0 0

0.4  0.0067 0.0004 0.0024 0.0015 0.0009 0.0005 0.0003 0.0002 0.0001
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2.6 THE NORMAL DISTRIBUTION

Many measurements of continuous variables follow the normal distribu-
tion, which has the shape shown in Fig. 2.1. The reason for this is a
powerful result called the ‘central limit theorem’. Basically it states that
if we add enough effects together, none predominating, then a normal
distribution results. Because of this result, we often find good fits to
practical data by the normal distribution.

Probability density

[
T

n X

Figure 2.1 The normal distribution.

The distribution is symmetrical and bell-shaped and is determined by
its expectation and variance,

EX)=p V(X) =0

and has a probability density function

1 1[x — u)?
L exp{—- . 4
\/(27r)anp{ 2( o ) } (2.4)
We call this an N(u, 0?) distribution. The distribution is such that

Pr(X > p + 3.090) = 0.001
Pr(X > p + 1.960) = 0.025.

Table 2.6 The normal distribution

p= f_:exp(— x2/2)dx/V (27)

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.5 0.6915 0.8413 0.9332 0.9772 0.9938 0.9986 0.99977 0.99997

0.5 0.6 0.7 0.8 0.9 095 0975 0.99 0.999
0 025 052 084 128 164 196 233 3.09

N ™A

For further values see the Appendix tables.
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Other values of probability can be read from Table 2.6. The tables
only give results for the standard normal distribution in which 4 =0 and
o = 1; for other cases of u and o we use the transformation

z=(x - o
and look up z in the tables. Thus,

Pr(x >5.9|u=3,0= 1.5)=Pr(z >%5_31y=0,0= 1)
=Pr(z >1.9u=0,0=1)

= 0.025

2.7 DISTRIBUTIONS DERIVED FROM THE NORMAL
DISTRIBUTION
2.7.1 Sample mean

The distribution of the mean of n observations drawn from a normal
population with expectation u and variance o® is normal with expecta-
tion and variance:

EX)=p V(X)=0%n
(see Fig. 2.2).

Distribution of Original distribution
means of n VIX) = g?
VIX) = o?/n

A

Figure 2.2 Sampling from the normal distribution.

This result is used a great deal in the sequel. Because of the ‘central
limit theorem’ the distribution of means are very often normal even if
the original distribution is markedly non-normal.
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2.7.2 Sample variance

The distribution of s?, the sample variance drawn independently from a
N(u, 0%) population is such that (n — 1)s*/o® has a y?_; distribution.
Tables of the y* distribution are given in Table 2.7, and methods of
inference based on this are given in elementary statistics texts.

Table 2.7 The x2 distribution

Degrees of Lower percentage Upper percentage
freedom  points points

1% 5% 10% 5% 1% 0.1%
3 0.115 0.352 6.25 7.81 11.34 16.27
4 0.297 0.711 7.78 9.49 13.28 18.47
5 0.554 1.15 9.24 11.07 15.09 20.52

For further values see the Appendix tables.

The amount of information on which the sample variance is calculated
is called the degrees of freedom. For a sample of n observations, there
are only n—1 independent differences, and so n — 1 degrees of
freedom.

2.7.3 The sample range
The distribution of the sample range
R = (maxx;) — (minx;)

of n independent observations from an N(u, 0%) population is not so
easy to represent. Tables of the distribution are given in Table 2.8.

Table 2.8 Percentage points of the distribution of the relative range (range/o)

Sample 99.0 95.0 5.0 2.5 1.0 0.1
size

3 0.19 0.43 3.31 3.68 4.12 5.06
4 0.43 0.76 3.63 3.98 4.40 5.31
5 0.66 1.03 3.86 4.20 4.60 5.48

For further values see the Appendix tables.
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From this table we see that, for example, in a sample of size 5, 98% of
sample ranges will fall in the interval

(0.660, 4.600)

Ranges can be used to estimate o, instead of using the sample
standard deviation. The method is simply to get the sample range, and
divide by the factor d, given in Table 2.9. (This is often referred to as
d, in the literature.)

Table 2.9 Conversion of range to standard deviation

n d, n d, n d, n dy

2 1.128 6 2.534 10 3.078 14 3.407
3 1.683 7 2.704 11 3.173 15 3.472
4 2.059 8 2.847 12 3.258 16 3.532
5 2.326 9 2.970 13 3.336 17 3.588

Example 2.5
If our data is

21 1.7 24 19 26
then we have
range =2.6 — 1.7 = 0.9
0 =09+ 2326 = 0.387

2.8 APPLICATION OF RESULTS - A SIMPLE CONTROL
CHART

In a certain production process, titanium buttons were being produced.
Samples of four were drawn from the process every 15 minutes, and
measurements of hardness (DPN) made on each button. The data for 25
samples are given in Table 2.10, together with the means and ranges of
each sample.

Data of this kind are usually part of a process control procedure, and
our intention is to distinguish between

(1) those samples such that the variation can be adequately accounted
for by random variation, and

(2) those samples which indicate that some special cause of variation is
likely to be present.
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Table 2.10 Hardness measurements of titanium buttons

Sample Hardness (DPN) Mean Range
number x) (R)
1 125.8 128.4 129.0 121.0 126.1 8.0
2 125.2 127.0 130.4 124.6 126.8 5.8
3 121.8 126.8 127.2 129.8 126.6 8.0
4 131.0 130.0 127.2 127.0 128.8 4.0
5 128.6 122.8 125.4 126.4 125.8 5.8
6 122.0 123.8 131.2 121.8 124.7 9.4
7 122.9 129.3 126.2 128.8 126.8 6.4
8 120.2 130.0 125.6 144.0 130.0 23.8
9 124.8 123.7 130.2 128.8 126.9 6.5
10 127.0 126.4 122.2 129.0 126.2 6.8
11 131.8 127.6 123.8 123.2 126.6 8.6
12 129.8 125.6 128.2 127.6 127.8 4.2
13 127.6 125.6 128.2 126.8 127.1 2.6
14 124.2 122.8 124.8 124.6 124.1 2.0
15 125.4 129.4 123.6 127.2 126.4 5.8
16 130.8 122.8 125.4 126.2 126.3 8.0
17 127.4 131.0 123.0 122.8 126.1 8.2
18 124.8 122.6 122.8 123.6 123.5 22
19 123.8 130.0 128.4 130.0 128.1 6.2
20 128.8 141.2 138.8 136.2 136.3 12.4
21 126.4 123.8 128.8 129.6 127.2 5.8
22 130.8 127.4 126.0 125.2 127.4 5.6
23 129.6 128.4 123.2 125.8 126.8 6.4
24 124.4 127.0 130.0 122.8 126.1 7.2
25 129.2 126.2 128.0 123.2 126.7 6.0
Totals 3175.0 175.6

When we get samples of type (2), we carry out some investigation of
the process in order to control it. Now if we look at Fig. 2.3 and Fig 2.4
we see that samples 8 and 20 seem to show unusual behaviour.
However, there are other samples which we might question, and we
obviously need some rule to help us to interpret charts such as Figs. 2.3

and 2.4.

We approach this by assuming that for most of the time, sampling the
process is just like drawing samples from a single normal population.
The results of the previous section enable us to draw boundaries which

will contain almost all of the data, under normal conditions.

Clearly, in any practical case we would test the normality assumption
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Figure 2.3 Plot of means of titanium hardness data.
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Figure 2.4 Plot of ranges of titanium hardness data.

before proceeding. Furthermore, we shall soon see that the underlying
process is often more complex than our simple model allows. For the
present we assume a normal population and proceed to estimate u and o
for the population representing our ‘hardness’ data.

The best estimate of u is given by the overall average,

@ = 3175/25 = 127.0

where [i means ‘estimate of u’.
A good estimate of o can be obtained by using the average range and
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this is shown below. Another estimate of o could be obtained by
calculating the variances within groups, and then combining these. This
would be a slightly more efficient estimate of ¢ than the range estimate,
but the gain in efficiency is quite small for samples of size 4.

Table 2.8 shows the percentage points of the distribution of the range
(effectively for o = 1, so we multiply by o to use it). Thus, for example,
for samples of size four, ranges greater than 3.980 only occur with a
probability 0.025, and only 0.1% of sample ranges are greater than
5.310.

Now we return to the data in Table 2.10 and we proceed as follows:

Total of 25 ranges 175.6

Average range 7.024

Constant (sample size = 4) 2.059

Estimate of o 7.024 = 2.059 = 3.41.

Based on this value of o, and using Table 2.8, we see that only 0.1% of
ranges is greater than

5310 = 5.31 x 3.41 = 18.1

The range for group 8, at 23.8, is much greater than this. It is most
unlikely that such a value could occur by chance, and there is very
strong evidence that some assignable cause of variation is present in this
particular sample.

Group 20, with a range of 12.4, is only 12.4/3.41 = 3.630. This is not
very unusual, as it is at the upper 5% point (Fig. 2.5). Thus deviations
of range from the average of such a size could occur in 5% of occasions

Ll

Probability density

. — > 5%

LI RS LN BN B B B R |
124
Range
Figure 2.5 Distribution of sample ranges for samples of size 4 taken from a
normal distribution with o = 3.41.
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at the upper end, and 5% of occasions at the lower end of the
distribution.

Based on these results, we would be best to recalculate our estimate
of o omitting the result from group 8. (We might also omit sample 20,
provided there is a good process explanation for its unusual value.) We
have results as follows:

Total of 24 ranges 151.8 (175.6 — 23.8)
Average range 6.33

Constant (sample size = 4) 2.059

Estimate of o 6.33 + 2.059 = 3.07

We now find that sample 20 looks more extreme, but perhaps not so
much so that it should be omitted. Thus our final estimate of o is 3.07.

We know that in samples of size 4, the sample means will have a
normal distribution with a standard error of 0/\/n, so with 6 =3.07,
and n =4, we have

8/Vn =3.07/V4 = 1.535
For any normal distribution about 99.7% lies within +3 standard

deviations of the mean, so that we expect 99.7% of sample means to lie
between

(overall average) +3 x (standard error of mean of 4)
which is
127 £3 X 1.535 = 122.4 to 131.6

If we draw lines on Fig. 2.3 at these values, we have boundaries
which we expect to be crossed on only 0.3% of occasions if our
population is still the same normal population. We see from Fig. 2.6

-

4 (o]
%) -.
& 1 Upper action limit
S 13167 131
s : o
> ; ° o ° oo
fo}
§ 1270 $oo5——095 oo 55 1270
g 1 % .
- (o]
122.4 ] 1224

Lower action limit

TTT T T T T T T T T

L T
0 5 10 15 20 25
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Figure 2.6 A simple Shewhart chart.
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that the mean for sample 20 is well above the upper boundary, showing
that there is clear evidence of the presence of some special cause of
variation at this point in the process.

The boundaries are called action boundaries, and the way the chart is
used is to take action on the process whenever a point lies outside these
action boundaries. This type of chart was introduced by Walter A.
Shewhart (1931), and a similar pair of action boundaries can be defined
for the range chart. We shall develop this idea below.

Returning to Fig. 2.6, we see that the mean for sample 20 is well
above the upper action boundary, so that we suspect the presence of a
‘special cause’ at this point. Provided investigation gives resonable
grounds for a special cause, this sample should be omitted from the data
used to estimate u and o. The reasoning is that, since a special cause
was present, that sample is not representative of the population we are
estimating. The recalculation of fi and & is left as an exercise. This
recalculation is usually done when the chart is set up, and when the
process capability is being reassessed.

Note: Some statisticians follow the method given in the British
Standard, which puts the limits at £3.09 standard errors, equivalent to
the 99.8% level. There is very little to choose between the two
practices.

2.9 TESTING FOR NORMALITY

Since many of the methods which follow assume normality, it is useful
to have a check on this assumption. A simple test for normality is to
draw a normal probability plot. (Tests for binomial and Poisson distribu-
tions are given in Chapter 10.)

Example 2.6

The data in Table 2.11 are measurements of resistance of 30 compon-
ents from the same batch. In Fig 2.7 we show a histogram of the data,
and Fig. 2.8 shows a cumulative distribution.

Table 2.11 Measurements of resistance of 30 components

999.1 1003.2 1002.1 999.2 989.7 1006.7
1012.2 996.4 1000.2 995.3 1009.7 993.4
998.1 997.9 1003.1 1002.6 1001.8 996.5
992.8 1006.5 1004.5 1000.3 1014.5 998.6

989.4 1002.9 999.3 994.7 1007.6 1000.9
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Figure 2.7 Histogram for Example 2.6.
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Figure 2.8 Cumulative distribution of the data of Example 2.6.
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In order to see if the normal distribution fits we proceed as follows:

METHOD SUMMARY 2.1
Checking for normality — using normal probability paper

Step 1 Order the data from smallest to largest.

Step 2 Put alongside each measurement its order number, r.

Step 3 Calculate p = 2r — 1)/2n.

Step4 Using special normal probability paper plot p on the
vertical axis against the measurements.

Table 2.12 Calculations for normal
probability plot

Observation r p=02r—1)/2n
989.4 1 0.01667
989.7 2 0.05
992.8 3 0.09833
993.4 4 0.1167
994.7 5 0.15
995.3 6 0.1833
996.4 7 0.2167
996.5 8 0.25
997.9 9 0.2833
998.1 10 0.3167
998.6 11 0.35
999.1 12 0.3833
999.2 13 0.4166
999.3 14 0.45

1000.2 15 0.4833

1000.3 16 0.5166

1000.9 17 0.55

1001.8 18 0.5833

1002.1 19 0.6167

1002.6 20 0.65

1002.9 21 0.6833

1003.1 22 0.7166

1003.2 23 0.75

1004.5 24 0.7833

1006.5 25 0.8167

1006.7 26 0.85

1007.6 27 0.8833

1009.7 28 0.9167

1012.2 29 0.95

1014.5 30 0.9833
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The reasoning behind this test is as follows. Table 2.12 lists the
cumulative frequency distribution of the observations, and if this is
plotted out we get the S-shaped curve of Fig. 2.8. By plotting the
observations against the value of Z, for which the standard Normal tail
probability is p we get a straight line when the data is normal. The
standard deviation of the data can be calculated from the slope of the
line.

Steps 1-3 are illustrated in Table 2.12 for the resistance data of
Example 2.6, and the resulting probability plot is shown in Fig. 2.9.

For some other methods of testing normality see Wetherill et al.
(1986).
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Figure 2.9 Normal probability plot for Example 2.6.

2.9.1 Discussion

The importance of getting a good fit for the distribution model used
arises from the fact that in SPC we deal a lot with tail area properties of
the distributions. For example, in section 2.8, the operation of the
simple Shewhart chart depends on the proportion of observations
beyond three standard deviations from the mean.

If non-normality is detected, some search for the reason needs to be
conducted, and to ask questions such as the following:

(1) Is the non-normality due to ‘outliers’ or ‘rogue values’?

(2) Has there been a merging of several different streams of produc-
tion prior to the measurement point, so that these streams really
need to be considered separately?
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(3) Is the non-normality due to the fact that the measurement is down
to the detectable limit?

(4) Is there a time effect, so that the process wanders in level over
time, giving rise to a non-normal distribution overall.

If the basic distribution (allowing for these points) is non-normal, then
a simple transformation can be tried as a means of restoring normality.
See Wetherill et al. (1986) for a discussion, but frequently the logarithm,
square root or reciprocal transformation works.

Procedures for testing the goodness of fit of binomial or Poisson
distributions are dealt with in Chapter 10.

2.10* THE NORMAL APPROXIMATION TO THE
BINOMIAL DISTRIBUTION

In many SPC applications, the normal distribution is used as an
approximation to the binomial distribution, so that instead of calculat-
ing, say

4
Prx =4 = 3(1) -
the normal distribution with expectation np and variance {np(1 - p)} is
used so that we calculate
X — 2
Tl
o

4
Pr(X =4) = f_m“\—/—(——zlni‘c‘;exp{—

where u=np and o’ = {np(1 — p)}, perhaps including a ‘continuity
correction’, to allow for the discreteness of the binomial distribution, so
that the upper limit is 4.5, not 4.0.

Following this approach, a simple control chart for binomial data
would be obtained by treating it as normal, putting the target at np, and
the action lines at

np £ 3V{np(1 - p)}.

A discussion of the normal approximation to the binomial distribution
is given by Uspensky (1937), who gives a correction formula, and Hald
(1952, 1978) carried out further studies. Hald points out that for p
outside the range

(n+1D)l<p<nfin+1)

the binomial distribution is steadily increasing or decreasing, and the
normal approximation cannot fit. Hald suggests that the normal approxi-
mation be limited to the range
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np(l —p)>9
though he comments that this ‘does not result in the same accuracy for
different corresponding values of n and p determined from the formula
np(1 —p)=9. (Uspensky suggests that np(le—p)=25.) Table 2.13
below gives some values of exact and approximate probabilities close to
limits given by Hald’s formula.

Table 2.13 Exact and approximate probabilities such that Pr(X < C) < P; for
values of n and p close to np(1 —p) =9

Approx. Approx.
n )4 Correct C with corr. without corr.
P = 0.05
909 0.01 0.0195 3 0.0312 0.0212
459 0.02 0.0476 4 0.0594 0.0421
189 0.05 0.0380 4 0.0493 0.0345
100 0.10 0.0237 4 0.0334 0.0226
P =095
909 0.01 0.9226 13 0.9292 0.9038
459 0.02 0.9188 13 0.9251 0.8986
189 0.05 0.9468 14 0.9540 0.9356
100 0.10 0.9274 14 0.9332 0.9088
P =0.01
909 0.01 0.0056 2 0.0140 0.0090
459 0.02 0.0051 2 0.0130 0.0083
189 0.05 0.0037 2 0.0102 0.0064
100 0.10 - - -
P =0.99
909 0.01 0.9883 16 0.9932 0.9894
459 0.02 0.9876 16 0.9927 0.9885
189 0.05 0.9855 16 0.9907 0.9856
100 0.10 0.9990 3 0.9940 0.9902

There are obvious difficulties in making the comparison, but there is
reasonable evidence to support use of Hald’s formula as a limit.

2.11* NORMAL APPROXIMATION TO THE POISSON
DISTRIBUTION

This follows similar reasoning to the previous section. Instead of
calculating, say
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4
Pr(X = 4) = De ™ u'/r!
r=0
the normal approximation

Pr(X =4) = f_wv(zlﬂ)“exp{

is used, possibly with the ‘continuity correction’. A standard result is to
limit this approximation so that u—3Vu=0, or u=9. Table 2.14
below gives some values.

(X - “)Z}dx

Table 2.14 Exact and approximate probabilities such that Pr(X < C) <P, for
various values of u

Normal approximation

u P C Exact with corr. without corr.
6 0.99 11 0.9799 0.9876 0.9794
6 0.95 9 0.9168 0.9235 0.8897
6 0.05 1 0.0174 0.0331 0.0206
6 0.01 0 0.0012 0.0123 0.0071
9 0.99 16 0.9889 0.9938 0.9902
9 0.95 13 0.9261 0.9332 0.9088
9 0.05 3 0.0212 0.0334 0.0227
9 0.01 2 0.0062 0.0151 0.0098

20 0.99 30 0.9865 0.9906 0.9873

20 0.95 27 0.9475 0.9532 0.9412

20 0.05 12 0.0390 0.0468 0.0368

20 0.01 9 0.0050 0.0094 0.0069

The binomial and Poisson distributions are considered further in
Chapter 10. For further information see Uspensky (1937) or Hald (1952,
1978).

EXERCISES 2A
1. What model would you expect to apply in the following examples?

(a) The number of misprints on one page of a daily newspaper.
(b) The number of accidents per week on a particular stretch of
motorway.
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(¢) The number of packs of a certain product which are less than
the nominal weight, out of 100 produced per day.
(d) The time you take to reach work each day.

2. Obtain some data sets representing countable, attribute and continu-
ous data from processes you are connected with. Plot the data out,
and try to interpret the more extreme variations.

3. There are 16 sets of data given in Tables 2.15 and 2.16 (20 values in
each set), from each of 3 distributions, A, B and C. Construct a
normal probability plot for one or more of the sets for each of A, B
and C, and determine whether any of these distributions is normal.

Table 2.15

Al A2 A3 A4 AS A6 A7 A8

2.63 3.75 3.67 1.94 1.42 4.24 3.96 3.75

4.93 2.33 2.77 3.22 3.84 2.81 3.97 2.13

3.20 2.66 3.28 2.67 4.20 2.21 2.56 3.23

3.36 2.59 2.34 4.58 3.44 4.60 2.26 3.73

2.54 2.22 3.76 3.87 1.24 1.71 3.84 2.66

2.97 1.66 3.95 3.12 2.16 3.06 4.28 3.50

4.94 2.13 3.63 0.60 1.50 3.34 3.30 2.42

4.23 3.51 3.29 2.53 1.68 3.95 4.01 3.57

1.61 2.21 4.77 3.88 3.04 3.52 2.21 3.56

2.25 1.38 1.93 2.29 2.12 2.41 0.98 2.70

4.19 3.00 3.93 3.02 3.26 5.08 3.32 1.97

2.98 2.38 0.16 2.71 1.82 3.70 2.61 3.43

3.09 3.29 1.98 2.82 2.89 3.06 2.46 3.28

2.80 2.08 3.00 2.94 4.40 2.54 1.90 4.15

5.19 2.07 2.63 2.43 2.52 1.70 4.34 3.62

1.75 2.60 2.04 3.56 322 2.39 3.44 2.26

3.62 3.03 4.01 3.61 3.10 3.51 1.82 2.56

1.16 2.16 4.24 3.45 2.02 3.73 4.42 1.22

2.90 2.87 1.43 4.06 2.10 3.24 1.73 3.49

1.34 2.25 3.15 2.19 1.99 2.51 2.89 3.36
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Table 2.16
Bl B2 B3 B4 C1 2 c3 c4

428 810 3.54 0.30 043  3.81 0.77 0.84
329  4.04 281 2.19 143 0.67 2.06 2.73
307 238 475 1.38 431 043 0.91 6.61
816 938 071 3.26 178  0.63 3.94 2.72
731 012 317 133 203 1.30 2.56 0.48
341 082 033 6.54 1.50 231 0.54 0.17
760 465  0.46 4.35 025  0.29 473 0.49
090 146 1.77 4.92 0.74 036 0.87 0.46
630 247  0.67 3.27 0.8  0.31 2.99 0.19
235 1.83 420 1.82 111 033 1.19 0.96
171 105 185 2.84 091  0.86 0.85 1.02
941 371 836 3.20 0.67  0.48 0.52 0.75
052 237 143 0.37 254  3.86 1.04 1.61
537 166 645 2.06 121 1.64 4.39 1.75
1.08 040  6.15 6.59 10.48  2.30 0.13 0.50
213 3.09 225 2.85 021  2.63 5.87 0.41
748 203 0.67 0.73 166  1.10 0.11 0.62
294 7.05  0.85 1.61 0.18  2.29 2.08 1.75
284 1.64 5.12 3.65 195 186 1.03 6.36
148 254 215 1.15 214 2.02 0.12 0.31

4. Plot the percentage points of the y* distribution on normal probabil-
ity paper for 5, 10 and 30 degrees of freedom.

5. How would you provide numerical measures of the quality of the
service provided by the following?

(a) The service at an industrial canteen.
(b) Post office mail.

(c) Telephone directory enquires.

(d) A supermarket checkout.

6. Tins of soup are being filled on average with 377 g, the standard
deviation being 1.4 g. What proportion of tins contain less than
375 g? What average fill weight is required to ensure that no more
than 0.1% of tins contain less than 375 g?

7 When it is stable a process produces items that have an average



Exercises 37

dimension of 46.75 mm and standard deviation of 0.26 mm. Upper
and lower specification limits for this dimension are 46.1 mm and
47.4 mm. Assuming that the distribution of values is normal, what
proportion of items will be outside specification?

Titanium buttons have been found to have an average measured
hardness of 127.0 and a standard deviation of 3.4.

(a) What proportion of individual buttons will have hardness
measurements outside the limits (121.8, 132.2)?

(b) If four buttons at a time are measured what is the probability
that the mean hardness of this group will lie outside the above
limits?

What assumptions are you making, and do you think they are
justifiable?

EXERCISES 2B

1.

Assume that you have data available in the form of Table 2.10, with
n observations per group, and k groups, and that the data is
independently and normally distributed with mean pu and variance
0. Let action lines be placed at Ag/Vn from the target mean
(assumed zero).

(a) Show that the probability of action in any group is
oS o)

g g

(b) Define the run length as the number of groups up to and
including the first action point. Show that the distribution of run
length is geometric with parameter p.

(c) Obtain the average run length (ARL) for the Shewhart chart for
means, when the constant A = 3.

For the geometric distribution show that
Pr(R=n)=1- (1 - p)~*.
Hence find the values of p for which
Pr(R = n) =095

for n =10, 20, 30, 40, 50. Compare the values of E(R) for these
values of p, and comment on the skewness of the distribution.
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3.

A large batch of items is submitted for inspection, and the items are
classified as effective or defective. The proportion defective in the
batch is 6. Items are sampled at random until exactly ¢ defectives
have been found. Show that the probability that this occurs at the
nth item is

n—1 c n—c

(c _ 1)6 1-190

for n=c, ¢c+1, .... (Hint: the last item sampled must be a
defective.)

Suppose that the probability that an event occurs in the interval (¢,
t+ 06T) is A 6t, and denoted by P.(¢) the probability that there
have been x events up to time ¢. Show that

P.(t + 8T) = P,(t)(1 — A dt) + P,_(t)A 6¢, x=12,...
and
P,(t + Oty = P,(t)(1 —4 61).
Hence show that

i DT
P(t)=¢e A T

which is the Poisson distribution.

Verify some of the calcualtions in sections 2.10 and 2.11 on the
normal approximation to the binomial and Poisson distributions.
Extend these to lower values of n.

If accidents in a building are assumed to occur randomly with an
average rate of 42 per year, what is the chance that there will be no
accidents in April? What is the chance that there will be no more
than one accident in April?

In a sample of size 100 from a batch with a failure rate of 15% what
is the probability of

(a) exactly 18 failures?
(b) no more than 6 failures?
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Process variation

3.1 REASONS FOR PROCESS VARIATION

For the present we shall concentrate on situations where the variable of
interest is a continuous variable, and we shall deal with countable and
attribute data later.

All industrial processes display variation, and there are many different
reasons for it, such as:

(1) Variational noise. This is the variation we observe between product
manufactured under the same conditions and specifications.

(2) Causes external to the process, such as environmental temperature,
humidity, etc.

(3) Process causes. These are due to the process itself, such as build-up
of waste products, ageing of a catalyst, variation of loading of a kiln
etc.

(4) Assignable causes of variation. This variation may be due to the
quality of batches of raw material, incorrect setting of equipment,
etc.

The procedure adopted in SPC is to try to separate variation that we
ordinarily expect of a process, from that which may be due to special or
assignable causes. This is usually done by keeping charts for the process
average level and the process spread (as outlined briefly in Chapter 2).
In the following sections we describe the types of pattern we might see
for charts of sample means. Somewhat similar remarks can be made
about charts for process spread. We shall suppose that charts are made
by plotting the means of groups of n observations, and we shall suppose
that the n observations are sampled close together in time or space (or
both). Sometimes observations can only be made singly, so that n =1,
and this happens frequently in the process industries. Much of the
following discussion is relevant to both cases.
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3.2 TYPES OF PROCESS VARIATION

Industrial processes display a wide variety of types of variation. In
general, the component manufacturing industries have processes which
display much simpler types of variation than the process industries. The
following are examples.

(1) Simple random variation
Figure 3.1 shows the pattern of group means we would expect if our
data was in fact sampled from a normal population with mean u and
standard deviation 0. Most of the observations will fall within the
limits u * 3.090. Occasional ‘special’ or ‘assignable’ causes of vari-
ation will cause departures from this pattern.
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Figure 3.1 Process variation -~ random variation.

(2) Short- and long-term variation - all random
Frequently we may find that when we plot our data, the process
mean varies much more than it should, based on the within-sample
variation; a test for this will be given in section 3.6. There are two
types of this that arise. Figure3.2 shows a random pattern of
changes in the mean, and Figure 3.3 shows some evidence of
correlation between neighbouring values.

(3) Short- and long-term variation - cycles
Recurring cycles may be due to rotation of apparatus or machinery
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Observation
1

.
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Figure 3.2 Process variation — extra variation in the mean.

Observation
1

0 10 20 30 40
Sample number

Figure 3.3 Process variation — autocorrelation present.

used in the process, environmental changes such as temperature,
worker fatigue, or sometimes to the merging of subassemblies (see
Fig.3.4).
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Observation

(4) Trends
Trends may be due to causes such as gradual deterioration of

equipment, ageing of catalysts, the accumulation of waste products

(Fig. 3.5).
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Figure 3.4 Process variation — recurring cycles.

10 20 30 40 50 60 70 80 90 100
Sample number

Figure 3.5 Process variation — trends.
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(5) Sudden jumps
Sudden jumps may be due to new batches of raw material, changes
in workers or equipment or modifications to the process (Fig. 3.6).

Observation
1

0 10 20 30 40 50 60 70 80 90 100
Sample number

Figure 3.6 Process variation — sudden jumps.

The simple Shewhart chart given in Section2.8 assumed simple
random variation only. It is clear that some amendment to the method
is needed to deal with the other types of variation.

3.3 SOME MODELS FOR PROCESS VARIATION

It is helpful to have some theoretical models on which to base our study
of SPC techniques. The following subsections give a few simple models.

3.3.1 Simple random variation

The simplest situation is where we have simple normal variation,
satisfying the model.

22, .., k

, 2, i, R (3.1)

where n is the number of observations in a group, k is the number of

Model 1 Xj = U+ owe; ; _=__ 11
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groups, u is the overall mean, o% is the (within-group) variance, and &;
are independent N(0, 1) variables. The sample means will have a
distribution N(u, o%/n), and Fig.3.1 shows a typical plot of these.
Evidence that special causes are present is given by values of means
different to what we expect from an N(u, o%/n) distribution.

3.3.2 Between- and within-group variation

Often in an industrial process, the variation of group means will be
more than we expect from Model1. The process parameters, such as
kiln temperatures, etc., may vary slightly introducing exra variation,
which affects the whole of each group. An appropriate model is:

i=12,...,k

=12 .. .n (3-2)

Model 2 X; = U+ Ogw; + OwE;
where 03 is the between-group variance, and ; are independent N 0,1
variates. A typical plot of group means %; is shown in Fig.3.2. (In
statistical notation a dot denotes summation over a suffix and a bar an
averaging.)

For Model 2 we see that
Vixy) = o3 + o% (3.3)
V(%) = o} + (o%/n) (34

These results are important for charting methods. The important feature
is that increasing the group size n reduces the amount of within-group
variation in the sample mean, but does not affect the berween-group
component.

3.3.3 Simple autocorrelated model

Often we find that for process industries, successive groups of observa-
tions are correlated, showing a pattern such as that in Fig. 3.3. This may
be due to the fact that process parameters, such as pressures, tem-
peratures, etc. vary rather slowly. A suitable model might be:

Model 3 x;=p+ W, + owg; 3.5)
where

W, = pW,_; + opw; (3.6)
and

W0=0.
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The parameter p (—1=p=1) determines the correlation between
groups.
The asymptotic variance of (3.6) is easily determined,

V(W) = p’V(W) + o}

V(W) = o3/(1 = p?). (3.7
Therefore we find that
Vi) = —2 4 o (3.8)
x;)=—————+o0 .

voa-e T

2 2

(4] Ow
Vi,)=———+ — 3.9
=T (3.9)

3.3.4 Simple Markov chain model

A simple model for data of type 5 in section3.2 can be built up as
follows. We think of the system as being in one of k states, where each
state represents a given value for the mean of the process. At each
sample point there may be interchange between the states, but one of
these is an ‘absorbing’ state, representing an out of control process,
which remains out of control until repaired. There is no interchange
from an absorbing state.

The transition probabilities between one state and the next can be
represented by a matrix called the transition matrix in which the rows
represent the current state and the columns the next state:

Next state
1 2 k
1 Pu Pn Pk
Present state Pn Px Do
k Pr Pra Dk

Since there must be a transition somewhere, we have
k
Zpij =1L
j=1

for each i. If k is the absorbing state, py, = 1, and all other py; are zero.

Typically in SPC, we may expect there to be high probabilities of
staying in the current state, whatever that is, so that all p; are close to
one, and we may often find the remainder of the transition probability
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for each row i is taken up by transfers to nearby states, rather than
further away ones.

A fairly realistic process model can be developed using a model of
this type. Let the initial state be represented by a vector V,, then the
probability distribution of the next state is obtained by multiplying the
initial state vector by the matrix of transition probabilities, so that

V, = PV,
Similarly we have
V2 = PVl, etc.

It can be shown that whatever the starting state (except the absorbing
state), the probability distribution of states eventually settles down to V,
where V is the solution of the equation

V = PV.

From this result it is possible to calculate the variances of individual
results and group means, but the calculation is not as simple as in
previous cases.

3.3.5 Discussion

It is often difficult to fit a specific model to a process, particularly with
more complex processes, and there are several reasons for this:

(1) There is rarely enough data collected under standard conditions.

(2) Frequently there are many variables or parameters of the process
whose effects are incompletely understood. In a complex process it
can be a major task to attempt to sort these effects out.

(3) Some of the most important process parameters may be impossible,
expensive or time-consuming to measure.

(4) A complex process may not be stable enough to fit a simple model.

However, it is very important to have a general knowledge of the
types of variation present. The only way of doing this is to collect data
on important process variables and carry out analyses such as those
given later in this chapter.

It would also be of interest to have theoretical results on the
properties of methods under the types of variation given above which
are alternatives to the simple random variation model.

3.4 SAMPLING ERROR AND MEASUREMENT ERROR

It is important to note that both sampling error and measurement error
can exist, in addition to the types of variation described earlier in this
chapter.

Sampling error occurs whenever a particular sample drawn does not
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give the same result as a sample drawn slightly differently. For example,
if the product is a powder packed in bags, samples drawn from different
parts of the bag may give consistently different results. If the product is
produced on a conveyor belt, samples drawn from the middle or sides of
the belt may give consistently different results. We shall not discuss this
topic further in this volume.

Measurement error is often ignored or unrecognized. Sometimes
process control systems, introduced to control variation automatically,
can actually cause variation because they base their results on observa-
tions which have considerable measurement error in them.

The effect of measurement error can be seen as follows. Suppose we
observe a variable which is normally distributed with mean u and
variance 02, but that it is observed with measurement error with
variance o2. Then the actual observation will have a variance (0% + a?)
(Fig. 3.7). Thus the inflation of the standard deviation o, by error with
standard deviation o, is V(1 + 02/02); see Table3.1 for some values.
We see that measurement error is not very serious unless o, > 0,/2. We
shall ignore measurement error in most of what follows.

A strong warning must be given at this point. Measurement error is
often totally ignored, and there have been many cases in practice where

True distribution

</

Observed distribution

Figure 3.7 Measurement error.

Table 3.1 Inflation of standard deviation due to measurement error

0e/0, 0 0.5 0.75 1.00 2.50
Factor 1 1.12 1.25 1.41 1.58
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the variation displayed by charts is mostly measurement error. The only
way of being sure is to carry out an experiment. (Similar remarks can be
made about sampling error.)

3.5 STUDYING PROCESS VARIATION

3.5.1 Methods of data analysis

At the end of section 3.3 we said that the only way of seeing what kind
of variation is present in a process is to collect data and study it. In this
section we give some good graphical techniques which can pick up the
kind of variations described earlier in the chapter. Frequently it is very
simple techniques which are most useful, particularly when results need
to be presented to people with little statistical knowledge. We shall
assume here that histograms, scatter plots, normal probability plots etc,
are used as appropriate. Some other methods will be given in Chapter 4.

Once the data has been plotted, it is important to study process logs
etc. in order to try to interpret the variation observed. This data analysis
phase usually proves to be very productive, and frequently substantial
sources of variation are detected and eliminated.

3.5.2 The use of moving-averages to smooth data

This is a method of smoothing a data plot so that cycles, trends, etc. can
be seen more clearly. We describe here the arithmetic moving-average,
or running mean. It is not necessarily the best for all purposes.

Suppose we have many successive samples, and a value (possibly a
sample mean or range) for each. The method of constructing a running
mean of 5 at a time is given in Method Summary 3.1.

METHOD SUMMARY 3.1

Calculating running means

Step1 Take first 5 values.

Step2 Find the average.

Step3 Plot this value at the mid-time point (i.e. at the 3rd time
plot).

Step4 Drop the 1st value, include the 6th.

Step5 Find the average.

Step 6 Plot at mid-time point (4th).

Step7 Drop the 2nd value, include the 7th, etc.
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If one smoothing operation does not appear to remove enough
haphazard variation, then repeat it two or three times. Try to take care
not to smooth too much, as this loses essential detail.

Example 3.1

In the manufacture of phenol, carbonyl species occur and should be
kept to a minimum, certainly less than 200 ppm. The data given in
Table 3.2 are from successive batches of phenol, and Figs. 3.8-10 show
plots of the original data unsmoothed and after two stages of smoothing
by the process outlined in Method Summary 3.1.

Table 3.2 Phenol data (ppm of carbonyl species)

139 115 120 120 126 84 76 100 100 98
80 76 9% 112 69 54 61 66 35 30
35 40 35 59 66 55 30 32 29 66
46 60 55 48 48 67 125 99 79 90
90 97 101 105 95 95 145 145 150 160

175 170 170 162 162 111 101 106 99 105

107 93 103 125 119 145 147 166 155 160

115 169 163 64 118 116 99 100 107 97
99 100 99 87 70 61 60 69

Carbony! species (PPM)

20 T T T T L T 1 1

T
0 10 20 30 40 50 60 70 80 90
Sample number

Figure 3.8 Phenol example. Plot of original carbonyl data.
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Figure 3.9 Phenol example. Plot of carbonyl data, smoothed once by 5-step

moving average.
180 q
160
140
120
100
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Carbonyl species (PPM)
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20

0
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10 20 30 40 50 60 70 80 90
Sample number

Figure 3.10 Phenol example. Plot of carbonyl! data, smoothed twice by 5-step

moving average.

One alternative is to smooth using running medians rather than
running means. The medians are easier to calculate, and less sensitive to
‘rogue’ observations.
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The number of sampling points over which we smooth, which was 5 in
Method Summary 3.1, needs to be chosen with some care. Too large a
value of this constant will result in a plot which doesn’t follow trends
quickly enough, whereas too small a value will result in too much
scatter.

If there are n observations per sampling point, and a moving average
of k means is plotted, then under normality the standard error of the
moving average points is o,/V(kn). We would want this standard error
to be about half the size of any interesting difference we wished to
detect. In practice, therefore, we would fix on the smallest ‘interesting
difference’ that we want to detect, D, and put

D = 20,/V(kn)
kn = 40%/D*

Frequently » is fixed from practical considerations, so this helps us to
determine k. However, k must not be too large or there would be
considerable delays in reaching conclusions about the data.

The moving-average plot is a good way of detecting cycles, trends or
autocorrelated variation. However, some care needs to be taken over
putting too much credence on the results; see Exercise 3A.5. Smoothing
can easily induce patterns into otherwise random data.

3.5.3 CuSum plotting

Cumulative sum plotting is a very useful technique to highlight changes
in the process average level. The idea is simply to subtract the overall
mean from the data, and then cumulate the differences. As an illustra-
tion, we use the data in Table 3.3, and to make the arithmetic easier, a

Table 3.3 Weights (in grams) of capsules taken every 30 seconds from a
manufacturing process that is working steadily

5.22 5.02 5.23 4.93 4.75
4.95 4.97 5.30 5.12 4.83
5.20 4.85 5.05 5.27 4.65
5.41 5.20 4.34 5.03 4.86
5.20 4.73 5.28 5.21 4.82
5.02 5.08 5.09 5.61 5.14
5.11 4.61 5.11 4.38 4.94
5.26 4.78 5.27 5.06 5.23
5.27 5.45 5.54 4.46 4.97

4.73 4.75 4.95 5.04 5.14
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‘reference value’ of 5 has been subtracted from each observation,
instead of the overall sample mean, and the first few CuSum calcula-

tions are shown in Table 3.4.

The CuSum plot is shown in Fig.3.11; if 0.24 is added to each
observation after number 25, the dotted line curve shows the resulting
plot. Clearly, a change in the mean will be represented by a change in
slope of the CuSum plot. A horizontal trace implies the overall mean
(or reference value) holds. Any deviation from the reference value will
be show up by a change of slope from the horizontal.

Table 3.4 Calculation of the CuSum for the first 6

values from Table 3.3 T = 5.0

Observation Observation — Cumulative sum
reference value of column 2
5.22 +0.22 +0.22
4.95 -0.05 +0.17
5.20 +0.20 +0.37
5.41 +0.41 +0.78
5.20 +0.20 +0.98
5.02 +0.02 +1.00
8 —_
(b)
7 .
6 - .
5 -
£
2 4 -
3
(@]

0+
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10 25

T

LA S S A e

30 35

Observation number

Figure 3.11 CuSum chart of Table 3.3 data; (a) original data, (b) with 0.24 added

to each of the last 25 observations.
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By using the CuSum plot, it is often possible to detect clearly when
changes in the process average level occurred. This is of particular
value, because an indication of when changes occurred assists consider-
ably in diagnosing the causes of the changes.

In order to estimate the value of a changed mean, we pick two sample
points, s and ¢, as in Fig. 3.12. We then read off the cumulative sums,

Cusum

Observation number

Mean
1

T LAARAAAAS | T T T T LASRRAAAA] T 1

0 8 16 24 32 40 48 56 64 72 80 88
Observation number

Figure 3.12 Estimating changed means from CuSum plots: (a) CuSum plot;
(b) rough plot of mean values from (a). This is called a ‘Manhattan diagram’.
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C, and C,. The new value of the mean is then
(reference value) + (C, — C,)/(t — ).

A useful idea is to plot the values of the changed mean as a
‘Manhattan diagram’ - see the examples to follow. This is all summar-
ized in Method Summary 3.2.

METHOD SUMMARY 3.2

Basic rule for CuSum plotting

Step1 Calculate (observation — reference values).

Step2 Plot cumulative values of these differences.

Step3 Determine the points at which the slope changes visually.
Step4 Plot a Manhattan diagram of the process mean values.

CuSum charts are of particular value in detecting sudden changes due
to changes of operating conditions or due to new batches of raw
material, etc.

(a) Other uses of CuSums
CuSum charts can also be used to detect changes in process spread (see
below). The method is to use grouped data, and work on, say ranges of
the groups. The average range is subtracted as the reference value.

For further information on CuSum plotting see Woodward and
Goldsmith (1964).

3.5.4 Examining process spread

Moving averages and CuSum plots can also be used to examine process
spread.

If the original data is taken in groups, then the ranges or standard
deviations of these can be plotted. Moving averages or CuSum plots
could then be made to see if the amount of process spread changed over
time.

For ‘one-at-a-time’ data, we have to plot the differences of successive
observations, and moving-average plots could be made of these values.
If CuSum plots were to be used for plotting changes in process spread of
one-at-a-time data, then the differences of successive (independent)
pairs would have to be plotted in the first instance.

Changes in process spread tend to be less frequent than changes in
process average level, so that rather less effort is usually put into these
kinds of plot.
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Yet another way of examining process spread is to chart the differ-
ences of actual observations from a ‘smoothed’ average level. Tukey
calls the resulting plots the plots of the ‘smooth’ and of the ‘rough’. A
detailed discussion of this and other useful plotting techniques is given
in Tukey (1977).

3.5.5 Conclusion

In data from complex processes, cycles, trends and autocorrelation are
frequently present. In addition, sudden changes of level will be found
which can be traced to new batches of raw material, changes of
operating conditions, or other special or assignable causes. The first step
in implementing SPC is to detect these types of variation, and eliminate
them if possible. Simple methods, such as those given in this chapter,
are frequently adequate. The amount of work involved in data collection
and presentation may be considerable though, and the assistance from a
suitable statistical or SPC computer package will often be required.

3.6 ESTIMATING THE PROCESS AVERAGE LEVEL AND
VARIATION - GROUPED DATA

3.6.1 Introduction

We shall assume here that there is both within- and between-group
variation, defined by o, and o of Model2 in section3.3.2, and an
important step is to estimate these and the process average level u. This
approach can be used even if autocorrelation is present, such as Model 3
of section3.3.3. Once the process average level and variation are
estimated we can proceed to the analysis of process capability (see
Chapter 4) and the construction of charts. We shall suppose that groups
of varying numbers n; of observations are taken at frequent intervals,
and we use the notation

Group 1 x5, X1, - .+, X1y, n, observations
2 X1, Xy ey Xop, n, observations
etc. for k groups.

It is most convenient if group sizes are equal, that is n, = n,, etc., but
in practice this is not always achievable.

A vital assumption here is that the groups of observations are all from
a common source. Sometimes we have a nested sampling scheme as
shown in Fig. 3.13. Here there are three groups sampled from three
machines. This structure leads to a more complicated situation, and we
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Machines

Groups

Figure 3.13 A nested sampling scheme.

shall not discuss it directly. Some of the methods below apply with
modification.

3.6.2 Estimating the within-group variation

From each group we obtain the within-group standard deviation
= \/{E (xy — %)*/(n; = 1)}

j=t

where
= E Xij
j=t

is the sample mean of the ith group. A combined estimate of o, is now

Z(n - /E(n — 1) (3.10)

which is simply the square root of the average s? if all the group sizes
are equal. An alternative method when the group sizes are equal would
be to use the range estimate, as set out in section 2.7.3. In making this
estimate, any groups which have been identified as being subject to a
‘special’ cause of variation should be excluded, and they should also be
excluded from the tests following in this section. These points are given
in Method Summaries 3.3 and 3.4.

METHOD SUMMARY 3.3

Estimation of u and o,, by the ‘¢’ method: grouped or blocked data

Step1 Collect at least 20 groups of n observations each; let these
observations be denoted x;;, j =1,2,...,n;i=1,2,.. ., k.
Step2 Calculate the group means and variances
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X, = zxij/n
j=1
s7= (x5 = %.)%/(n = 1).
j=1

k
Step3 Calculate the overall average ¥ 2

Step4 Calculate the overall estimate s,, of ow,

: J[;s%/k]
Notes

(1) If the group sizes are unequal we use the following formula in
Step 4.

Z(H = s /2('1 - 1)]

where
st = E(xij - %)% /(n; = 1).
=1

and n; are the group sizes.

(2) Groups for which s; is unusually large should be excluded
provided a special cause can be found which accounts for the
extra variation.

METHOD SUMMARY 3.4

Estimation of u and o, by the range method: grouped or blocked
data

Step1 Collect at least 20 groups of n observations each; let these
observations be denoted x;, j=1,2, ..., n;i=1,2, ...,
k.

Step2 Calculate the group means and ranges

n
X = Exij/n
j=1

R, = (Maxx;) — (Minx;).
J ]

l] >

k
Step3 Calculate the overall average ¥, = > %, /k
i=1

Step4 Calculate the average range
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k
R = D R/k.
i=1
Step5 Obtain an estimate of o from the formula
8. = R/d,

where values of d, are the factors for converting ranges to
estimates of standard deviation. These factors are given in
Table 2.9 of the Appendix Tables.

Notes

(1) All groups must be of the same size.

(2) Normality is assumed.

(3) Note (2) of Method Summary 3.3 applies.

3.6.3 Estimating the between-group variation

The obvious estimate is to use the ordinary standard deviation formula
on the k group means,

p = \/{z(x - )k~ 1)} (3.11)
where
X, = ngij/kn

is the overall average. The quantity sg will contain contributions from
both between- and within-sample variation. For Model 2 of section 3.3.2
we have

E(sg) = V(o + 03/n)

but this is nearly an equality.

However, the between-group variation may be affected by some
special cause, which leads to the whole of one group being an outlier.
Provided a special cause can be found, the group should be excluded
from the calculations.

In order to estimate the component of variation due to the between-
group component alone, we have to subtract the within-group compon-
ent. We therefore use the formula

6g = V{s} — si/n} (3.12)

If this quantity in the brackets is negative, we take Gy to be zero.
However, we obviously need a formal test of whether or not there is
between-group variation, and this is given in the next section.
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It is important to distinguish between the degrees of freedom in the
estimates s, and sg. The degrees of freedom for s, given in (3.10) is
Y(n; — 1) whereas the degrees of freedom for sy is only (k — 1). Thus
s, is based on a lot more information, and this factor has to be taken

w

into account when testing for additional variation; see the next section.

3.6.4 Overall test for additional variation (all n; equal)

If a process is in control and all of the data are sampled from a single
normal distribution, then if the within-group standard deviation is o,
we should find that s, estimates o,, but that sg estimates o,/Vn, the
standard deviation of a mean. The procedure is therefore to compute
the ratio

(ns%/s2) (3.13)

and if this is greater than one, there is some evidence of the presence of
additional variability, although such extra variability could be due to
control actions on the process. The values in Table 3.5 give the critical
values of the ratio (3.13) for the 5% probability level.

If the ratio (ns3/s2) is greater than the appropriate value in Table 3.5,
given the group size and number of groups taken, then the extra
variability is significant at the 5% probability level. Critical values for a
larger range of group sizes (n) and numbers of groups (k) can be found
by looking up the 5% critical value in F-tables for (k — 1) and k(n — 1)
degrees of freedom; see the Appendix tables.

Table 3.5 Critical values of ns}/s2 (F-test)

Sample No. of samples (k)
size
(n) 5 10 15 20 25 30 40 60 8 100 200 500

5.19 3.03 243 2.14 197 1.85 1.70 1.54 1.45 1.39 1.26 1.16
348 2.40 2.04 1.85 1.74 1.66 1.55 1.43 1.37 1.32 1.22 1.13
3.06 223 1.96 1.76 1.66 1.59 1.50 1.40 1.34 1.30 1.20 1.13
2.87 213 1.86 1.72 1.63 1.56 1.47 1.38 1.32 1.28 1.20 1.12
276 2.09 1.82 1.69 1.60 1.54 1.46 1.37 1.31 1.28 1.19 1.12
2.69 2.05 1.80 1.67 1.59 1.52 1.45 136 1.31 1.27 1.19 1.12
2.65 2.01 1.78 1.66 1.58 1.52 1.44 1.35 1.30 1.27 1.18 1.11
2.61 1.99 1.77 1.65 1.57 1.51 1.44 1.35 1.30 1.26 1.18 1.11
259 198 1.76 1.64 1.56 1.51 1.43 1.35 1.30 1.26 1.18 1.11

SO0 JONWN A~ WN

[u—y
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METHOD SUMMARY 3.5

Estimation of the between-group variation oy

Step1 Carry out Method Summary 3.3 or 3.4 to obtain X, and
Oy
Step2 Calculate

k
b= 2(F. — %) /(k = 1).
i=1
Step3 Calculate the ratio ns3/6%, and see if there is significant
evidence of between-group variability.
Step4 If Step 3 gives a significant result, use as the estimate 0y
o = V[sg — 83/n].
Note
(1) Note (2) of Method Summary 3.3 applies.
(2) If the ratio ns}/6?2 is greater than one but not significant, some
account of this may have to be taken when constructing charts.

3.6.5 A worked example

Example 3.2
15 groups were taken, each of size 2, with the results given in Table 3.6.
For this data the overall mean is x . = 26.784 and the standard deviation

Table 3.6 Illustration of test for extra variation

Group Data Mean s.d.

1 39.5 30.0 34.75 6.718
2 27.0 25.5 26.25 1.061
3 28.5 14.5 21.5 9.899
4 30.5 24.0 27.25 4.596
5 19.5 17.0 18.25 1.768
6 32.5 25.0 28.75 5.303
7 23.5 325 28.0 6.364
8 34.0 29.0 31.5 3.536
9 27.0 31.0 29.0 2.828
10 14.5 25.5 20.0 7.778
11 24.0 26.0 25.0 1.414
12 29.0 31.5 30.25 1.786
13 19.5 29.5 24.5 7.071
14 23.5 25.0 24.25 1.061

38.0 27.0 325 7.778

—_
9]
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of these means is sy =4.650. The average standard deviation within
groups is
se = V[% (6.718% + 1.061% + ... + 7.778%)] = 5.384.

Thus 2s3/s% is 1.492. It is greater than 1, suggesting that there is some
additional variation.

The critical value for the table n =2, k=15 is 2.43. Thus the
additional variation is not significant in this case and could have been
produced by chance. It may be that there really is some additional
variation but we do not have sufficient data to be sure of this. Ideally
more data would be collected to try and confirm whether there is some
additional variability.

Discussion

Some processes can be modelled by the simple random variation model
of Model1 of section3.3 when they are in control. In such a case a
significant between-groups component of variation probably represents
special causes of variation such as machine wear, etc. Other industrial
processes, particularly in the process industries, are much more compli-
cated and the other models of section 3.3 may apply.

In setting up control charts we need to be able to distinguish between
ordinary variation of the process, about which we can do little, and
‘special’ causes of variation which are due to specific problems, and can
be eliminated. We shall take up this discussion again in later chapters,
but the test for additional variation given above is the start of the
analysis. It is often useful to identify one of the models in section 3.3
which might reasonably apply in normal running.

3.6.6 Test for the presence of autocorrelation

A simple way to test for autocorrelation is to calculate the sequence of
means of groups, ¥, ¥,, ..., and plot successive values on a scatter
plot, X, versus X,, X, versus X3, etc. Correlation will be readily seen in
the plot.

A more precise way is to calculate the autocorrelations,

k—s k
r, = {El(" - % )&y — x)}/{El(x - f..f}

for s=1, 2, 3, ..., where s is the lag at which the correlation is
calculated. Any value outside the range +2/Vk can be regarded as
significant. Generally we expect higher correlations for small values of
the lag.

For more details on testing for autocorrelation see Chatfield (1984) or
Wetherill et al (1986).
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3.6.7 Estimation of standard error of group means

One quantity needed to set up control or CuSum charts is the standard
error of the group mean, o.. As we saw in section 3.3, the formula for
0. depends on what type of model is appropriate for our problem. Most
SPC methodology assumes that only simple random variation is present.
While this may be valid for the component manufacturing field, it is
certainly not true for the process industries. However, the first step is to
estimate the within-group standard deviation, oy, and check for be-
tween-group variation as given in Method Summary 3.5.

If only simple random variation is present, then the standard error of
a group mean is o, = 0,/ Vn.

However, if extra variation is present, then o, needs to be estimated
by directly calculating the standard deviation of the group means
(omitting groups accounted for by special causes), which we denote sg:

o= 50 = S - 2 - ).

Some care needs to be taken about this step. Clearly, if ‘extra’
variation is allowed for at the stage of setting up the charts, then our
action lines are going to be spread out further. If this extra variation is
inevitable, that is satisfactory, but otherwise our charting would be less
powerful.

METHOD SUMMARY 3.6

Estimating the standard error of group means

Step1 Estimate the within-group standard deviation o, by
Method Summary 3.3 or 3.4.

Step2 Use Method Summary 3.5 to test for significant between-
group variation.

Step3 If Method Summary 3.5 gives a significant result, examine
the data to see if there are outlying group means for which
a special cause of variation can be found. If such a cause
can be found, delete these groups and recalculate.

Step4 If there is no between-group variation the standard error of
group means 0, is estimated as

8. = s,/ Vn.
If there is significant between-group variation we use

66 = §B.
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For the example worked out in section 3.6.5 the test for between-
group variation is not significant, so a valid estimate of o, is

6, = 5,/V2 = 3.807

based on 15 groups X 1= 15degrees of freedom. The estimate
sg = 4.650 is based on 14 degrees of freedom.

In most cases the difference between the degrees of freedom of the
estimates is much greater. For example, with 15 groups and 3 observa-
tions per group s, has 30 against 14 for sg.

3.7 ESTIMATING THE PROCESS AVERAGE LEVEL AND
VARIATION - ONE-AT-A-TIME DATA

A deeper discussion of one-at-a-time data will be given in Chapter 6, but
here we give two common methods for estimating the process average
level and variation. One-at-a-time data arises frequently in the process
industries, where the measurement process is expensive. It also arises
sometimes because there is essentially only one observation that can be
made. If we are measuring the purity of a chemical produced in a batch
process, both measurement errors and sampling variation due to taking
different samples of the product from a batch may be negligible. The
methods given in section 3.6 for estimating o, are not appropriate, and
the following methods can be used instead.

3.7.1 Rational blocking

In some applications one-at-a-time data can be blocked by batch, shift,
or some other criterion. The objective of this blocking should be such
that substantial changes in process average level tend to occur between
the blocks rather than within them. Under these circumstances, the
within-block variation will adequately represent the process variability
oy, and the methods of section 3.6 can be used for estimation.
Defective blocking can mask changes, since a block average may then
contain observations from different population means, and the estima-
tion of oy, is inflated. However, when it can be used, rational blocking is
a convenient way of dealing with one-at-a-time data.

3.7.2 Difference of pairs method

One method of estimating o, which can be used is to treat the
difference of successive pairs of observations as ranges of two. Following
the method given in section 2.7.3 this leads to the formula
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Sa= {2|di|/(k - 1)}/1.128

where
di =X — X

and k is the number of observations. Clearly, if some observations are
outlying and are found to be due to some special cause, the differences
involving these can be excluded. There is further discussion of this
method in Chapter 6.

METHOD SUMMARY 3.7

Estimation of u and o, for one-at-a-time data

Step1 Collect at least 50 observations; let these be denoted x;,
i=1,2,..., k.
Step2 Use the overall average to estimate u, and put

k—1
0, = {Eld,-i/(k - 1)}/1.128
i=1

Notes

(1) Normality is assumed.

(2) Any points for which a special cause can be found should be
excluded.

(3) Do not use the method if there is any obvious trend in the
data as the estimate 3§, will underestimate the true variability.

Example 3.3

In the manufacture of an engineering plastic a single laminate was
sampled, and put into a machine to test for strength. The results of 25
successive observations are as follows:

140.18 140.00 139.98 136.86 139.38 140.74 139.38
141.12 139.46 140.86 140.10 139.54 140.26 139.08
138.34 140.72 138.80 138.42 138.84 141.90 139.64
140.24 141.28 140.70 140.94

Following Method Summary 3.7 we have

Observation 140.18 140.00 139.98 136.86 139.38 140.74
Difference -0.18 -0.02 -3.12 2.52 1.36

We find ’ > |d;| = 30.2 and

8, = (30.2/24) + 1.128 = 1.1154.
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Charting methods

Provided a rational blocking can be used, charts for one-at-a-time data
can be constructed as for grouped data, and this is discussed in
Chapter 5. Other methods of charting for one-at-a-time data are given in
Chapter 6.

EXERCISES 3A

1. Carry out graphical analyses and tests for extra variation on the data
you collected in Exercise 2A.2.

2. The Melt Flow Index of polypropathene is measured on a single
sample taken from predefined bags, so that readings are taken once
per tonne, regardless of the method of shipment to the customer.
The MFI specification for this grade is 4.5 = MFI =< 6.5. Table 3.7
shows MFI readings taken from several production campaigns to
make the same grade of polypropathene. Carry out two 3-step
moving averages of the data.

Table 3.7 Polypropathene melt flow index

Bagno. MFI Bagno. MFI Bagno. MFI Bagno. MFI

1 5.75 21 4.69 41 5.73 61 5.21
2 5.30 ] 22 4.35 42 5.68 62 5.36
3 5.21 23 5.30 43 5.52 63 4.86
4 4.91 24 5.11 44 5.57 64 5.83
5 5.45 25 5.01 45 5.49 65 5.57
6 4.98 26 5.00 46 5.21 66 5.75
7 5.36 27 5.33 47 5.77 67 6.19
8 5.43 28 4.93 48 5.69 68 5.86
9 5.18 29 4.42 49 5.44 69 5.67
10 5.47 30 4.78 50 5.67 70 5.44
11 4.96 31 4.88 51 5.49 71 5.18
12 5.01 32 4.63 52 5.75 72 5.15
13 4.73 33 5.12 53 6.06 73 5.37
14 4.67 34 4.92 54 5.68 74 5.40
15 4.34 35 5.05 55 5.57 75 5.30
16 5.95 36 5.27 56 5.80 76 4.86
17 5.54 37 5.27 57 5.50 77 4.83
18 5.48 38 5.19 58 5.38 78 4.65
19 4.85 39 5.72 59 5.26 79 4.72

20 4.78 40 5.55 60 5.31 80 4.74
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Process variation

The data given in Table 3.8 are from a single-stage continuous
chemical process in which raw materials A and B are reacted
together to form a product C. The reaction is exothermic and water
cooling is used to control the reaction temperature to 160 °C. The
raw materials A and B are both delivered by tanker from which they
are run into small stock tanks. There are two stock tanks for each
raw material and they are filled and emptied alternately. A full stock

Table 3.8 Data for CuSum exercise

Sample Efficiency Comment Sample Efficiency Comment
1 45.2 34 45.8
2 46.2 35 42.8
3 45.5 36 45.5
4 43.7 37 42.8
5 47.0 38 44.5
6 44.6 39 42.9
7 44.2 40 45.3

-8 46.0 41 45.2
9 44.5 42 45.4 New batch of A
10 45.1 43 45.8
11 46.9 44 45.5
12 44.1 45 45.5
13 42.6 46 44.9
14 43.9 47 44.0
15 45.1 48 45.0
16 45.2 49 46.4
17 44.4 50 46.1
18 47.6 51 4.3
19 44.6 52 44.4
20 46.3 53 47.0 Plant shut down
21 44.9 54 40.9
22 43.4 New batch of B 55 422
23 44.7 56 45.0
24 44.6 57 45.3
25 46.3 58 44.9
26 422 59 47.5
27 44.7 60 44.9
28 45.2 61 45.4
29 44.8 62 46.1
30 44.0 63 46.6
31 44.2 64 45.4
32 45.5 65 45.3

45.2 66 44.9 New batch of B




Table 3.8 (cont.)

Sample Efficiency Comment

Sample Efficiency Comment

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

46.4
44.8
45.2
46.8
45.5
46.6
47.5
45.0
46.8
44.8
45.2
45.7
45.4
45.0
44.4
44.4
44.8
45.4
43.8
45.6
44.6
45.1
43.1
44.7
47.4
43.6
44.7
46.0
43.9
44.8
46.6
44.6
45.8
44.8
44.5
43.2
46.2
44.7
44.6
43.7
44.9
45.9
44.5

New batch of A

New batch of B

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

46.3
44.5
4.5
45.8
43.6
43.8
44.5
42.2
46.3
46.1
45.1
46.3
471
45.3
44.7
46.5
45.4
47.4
45.0
443

44.1

46.3
452
46.4
45.5
46.8
44.8
45.5
46.0
45.9
45.8
46.5
45.1
45.6
46.9
45.7
45.0
45.3
46.2
47.4
45.2

New batch of A

Blockage in
cooling water
line.

High
temperatures.

New batch of B
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tank contains about two weeks’ supply of raw material, and each
stock tank full is termed a batch. The plant occasionally has to be
shut down for cleaning. The product from the plant is sampled and
analysed every shift, and the last 150 observations are tabled together
with an indication of when new batches of raw material were started
and when other plant upsets occurred.

Plot the data on a CuSum chart (using a reference value of 45).
Remembering that it is changes of inclination which indicate changes
in the mean, try to interpret your graph. Also plot a Manhattan
diagram.

4. Carry out a one-at-a-time estimation of o, on the data given in
Exercise 3A.2.

5. Generate (or select from tables) 50 random normal deviates. Smooth
twice using a 5-step moving average, and plot the result. Also plot
the original data.

EXERCISES 3B
This exercise deals with the models of section 3.3.

1. (a) Generate 20 sets of 5 observations from one of the following:
(i) Model1 u=35,0,=1
(ii) Model2 u=S5,0,=1,08 =0.5
(iii) Model3 u=35,0,=1,05=04,p=03
(iv) Model 4 u=15,0,=1,05 =04,p=07
(b) Calculate %, s? for each group. Plot the group means and
compare the results.
(c) Obtain a combined estimate of within-group variance, s2.
(d) Obtain the variance of the 20 group means, treating these as
single observations. Denote this s3.
(e) Carry out an F-test, nsg/ss.
(f) Calculate s,. Carry out a test for autocorrelation.

2. Show that two successive smoothings by 3-step moving averages is
equivalent to one operation with a weighted moving average, with

weights

1
s 9-

N=] ]

12 3
9> Qs ['EJ
Similarly, explore the effect of the following smoothing operations:

(a) Two S-step smoothings.
(b) A 3-step followed by a 5-step smoothing.
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(c) A 5-step followed by a 3-step smoothing.

If all original observations are distributed independently N(u,0?),
find the correlation between:

(a) Two successive points from one 3-step smoothing.

(b) Two successive points from two 3-step smoothings.



4
Process capability

4.1 INITIAL PROCESS CAPABILITY STUDIES

In a process capability study we examine the variability in important
product characteristics, and study the extent to which the process is
capable of producing product which conforms to specification. The study
involves considering questions such as:

(1) What are the contributions to the variability of the product?
(2) Where and why does defective quality arise in the process?

(3) Where and how can this be detected?

(4) What is the process capability index (see sections 4.3 and 4.4)?
(5) What control actions can be taken on a process?

(6) What is the effect of these actions?

(7) What type of control is appropriate, and where?

A fundamental problem to tackle is the decision as to what variables
to measure, and how many charts to set up. Ideally we want to take
measurements which will help us to pinpoint causes of process variation.
For example, if we only take measurements at the end of the process
then we may have charts with so many possible causes of variation that
they are difficult to interpret and use. Also the detection of a problem
at an intermediate stage of a process will not only occur earlier than
detection at an end point, but can also save added-on costs to product
that is not of acceptable standard. For example, in making integrated
electronic networks the resistances of a sample of items are measured
after printing, firing and trimming (Stage 1) and before adding connec-
tors, inductances and condensers (Stage2). The cost of the items is
much less at Stage 1 than at Stage 2. One objective of our initial studies
therefore should be to enable us to decide what to measure and plot.

There will usually be three stages in an initial process capability study:

(1) A study of the whole process as a system, and a listing of its
variables.

(2) Data collection at specified points in the process.

(3) An analysis of the data.
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In the first stage we would want at least an outline flow chart of the
system. The variables (or parameters) of the system need to be classified
as:

Input variables:  These relate to the amounts, qualities and
properties of input material

Process variables: These are pressures, cycle times, temperatures,
etc. of the process.

Product variables: These are purity, strength, dimensional or other
measurements on the product.

Other vital questions to assess at this stage, relate to the amount of
control which is possible on the variables listed. It is worth noting that
in some systems there are really important parameters which are very
difficult to measure, and ways of doing this may have to be drawn up.
In continuous processes there may be automatic controllers built in, and
the presence of these must be noted. It will rarely be possible to
monitor more than a small number of these variables, so a ‘brainstorm-
ing’ exercise needs to be carried out, and decisions made on what to
observe.

The data-collecting phase may need special effort. Several variables
may need to be monitored, possibly at various points in the process. If
sampling can be done in groups, then groups of at least four at a time
should be taken. The time frequency of the observations needs to be
sufficient to study the rate and manner in which process variation
occurs.

Finally, the data should be analysed using methods such as those
given in the previous chapter, and the process capability established.

The procedure we have just described is sometimes rather easy to do,
and this is especially true in the component manufacturing area. For the
process industries, such as chemical, it can be very difficult. A typical
situation in the process industries is that we may have 5-10 product
variables, but 200-400 process or input variables, and often there is
little hard information about the relationships between the input and
process variables, such as temperatures, purity of the catalyst, and the
product variables, such as hardness, tensile strength. We shall come
back to this later.

After the initial process capability study we set up Shewhart or
CuSum charts, and operate these for some time. As the charts are used
some special causes of variation in the process, sometimes called
assignable causes of variation, will be identified and either eliminated or
controlled. The very operation of the charts often changes the properties
of the process, so that after a while it is necessary to carry out a fresh
study of process capability, and reset the charts; see Fig. 4.1.
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Initial study of
process capability

Set up Shewhart or
CuSum charts

Reassessment of
process capability

Figure 4.1 Procedure for setting up SPC.

METHOD SUMMARY 4.1

Summary of steps in a process capability analysis
The steps involved in a process capability study are as follows:

Step 1 Draw a flow chart of the process as a system.

Step 2 Determine the input, process and product variables. Be
aware of important variables or parameters not measured.

Step3 Carry out a ‘brainstorming’ exercise, and summarize the
results in ‘cause-and-effect’ diagrams.

Step 4 Data acquisition.

Step 5 Graphical analyses using moving-average charts, CuSum
charts, histograms, etc.

Step 6 Carry out a process capability analysis of important product
variables. This should include a histogram of results over a
period of time, and estimates of the process capability
indices.

4.1.1 Essential conclusions from data analysis

As a result of the data analysis stage of the process capability analysis
the following results or decisions are needed:

(1) What variables to chart.

(2) Some idea as to the manner in which the process goes out of
control, such as by drifts or by sudden jumps, or cycles.

(3) An estimate of the standard error o, and of the overall mean pu.

(4) Some idea as to how quickly the process goes out of control. This
will be one of the factors determining sampling frequency.
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(5) Estimates of the process capability indices; see sections 4.3 and 4.4.

The essential parts of a process capability analysis are graphical and
other analyses of many of the variables. The definitions of the process
capability indices are complicated by the presence of the types of
variation listed in section3.2. We therefore introduce the process
capability indices in the simplest situation — simple random variation
only — and then indicate generalizations and complications later in the
chapter.

4.2 SHEWHART CONTROL LIMITS AND SPECIFICATION
LIMITS OR TOLERANCES

Let us return once more to the titanium hardness measurement data,
described in section 2.8, and we shall assume that only simple random
variation is present. We established in section 2.8 that the process was
producing buttons with hardness measurements resulting in a normal
population with mean 127.0 and standard deviation 3.07. Also, in
section 2.8 we constructed a Shewhart control chart for sample means of
four buttons, which controlled the sample means within

127.0 £ 3 x 22
V4

i.e. 122.4 and 131.6.

If the process mean remains absolutely in control, virtually all sample
means will lie within these limits, and virtually all individual values will
lie within about 3 standard deviations of the process mean, i.e. within

127.0 £ 3 x 3.07
— 117.8, 136.2.

The distribution of sample means and of individual values is shown in
Fig. 4.2

Now quite distinct from the distribution of means or of individual
values, there may be specification or tolerance limits on the individual
values which are fixed by physical requirements on the product. Sup-
pose, for example, that the specification limits were set at the extreme
range of the individual values set above, viz. (117.8, 136.2), then there
would be about 3 items per thousand outside specification. For most
(but not all) production processes this would be an acceptable quality
level, and we might congratulate ourselves on having a capable and
well-controlled process. Notice that the Shewhart control limits are
always inside the tolerance limits, except when the sample size is 1.
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Figure 4.2 Relation between control limits and specification limits: process mean
in control.

But there is no guarantee that the process mean will remain ab-
solutely constant. Supposing it moves out to 129, say, as in Fig. 4.3. The
sample means will now generally be higher than the target value of 127,
but at each sample point there is in fact only a 4% chance of having a
mean that goes outside the control limit. It could take very many
samples (on average 25) before action is signalled. Meanwhile the
change in process mean is also causing 1% of individual values to fall
outside the tolerance levels. For some types of products this would be
an intolerably high failure rate, especially if it goes undetected for such
a long time.

Consider also the following example.

Example 4.1
Suppose we have a process with a mean of 140 and a standard deviation
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Figure 4.3 Process mean at 129.

of 5.0. Specification limits are set at 130 and 150. Groups of four
observations are sampled, so that the standard error of the mean is
5/V/4 =2.5. The upper action limits for a Shewhart X-chart are set at

140 + 3 x 2.5 = 147.5

which is well within the tolerances. However, when the mean is at 140,
the number of standard deviations away of the upper specification limit
is

(150 — 140)/5 = 2.0

in terms of the distribution of individual values. From Normal tables we
see that 2.3% of the product is beyond this. An equal amount will lie
below the low specification limit. Change in the process mean will result
in less product being out of specification at one boundary, but this will
be outweighed by a greater proportion being out of specification at the
other.
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Clearly the relationship between process variability and specification
limits determines the extent of non-conformance. This is called relative
capability; see the next section.

4.3 RELATIVE CAPABILITY

For the following discussion, we shall continue to assume that we are in
the case of the simplest situation of section3.2 — when our process
results display random variation from a single normal population, with
at most occasional ‘rogue’ points due to special causes. Extensions of
the argument to other patterns of variation mentioned in section 3.2 will
be discussed later.

Consider a process for which the specification limits are set at 110 and
146, a specification width of 36. Suppose also that the process spread
o, = 6. Nearly all of a Normal distribution is contained within *3a,, of
the mean, so that if the process mean could be held stationary at exactly
128, the individual values would vary between

128 £ 3 x 6 = 110, 146.

That is, the specification limits are precisely 60, wide. As discussed in
the previous section, if we operated a simple Shewhart control chart
centred on 128 we would be sure to get some defective product, because
it is impossible to hold the process mean exactly stationary.

If in fact we had o, = 3 instead of o, = 6, then the specification limits
would be 120, wide. This would give us freedom to allow the process
mean to vary, and yet still keep almost all of the product between the
specification limits.

For a third case, suppose o, = 9, then the specification limits are only
40, wide, and whatever we do, we shall get a considerable amount of
defective product. These three cases are depicted in Fig. 4.4. We say
that these three cases show medium, high and low capability respect-
ively.

It is clear from this discussion that a rather critical quantity is the
width of the specification limits with respect to o,,. We define capability
indices for a simple random process as follows:

Process capability index
C, = (allowable range)/60,,

The denominator of C, is the range covering 99.7% of the distribu-
tion, and this can be used as a more general definition of C,,.

A C, value of less than one is unsatisfactory — we have low capability.
A C, value of between 1.0 and 1.60 shows medium relative capability,
and a C, value of more than 1.60 shows high relative capability.
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Figure 4.4 Process capability: (a) medium; (b) high; (c) low.
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Example 4.2
For our titanium button example we found an estimate of u to be 127.0,
and of o,, to be 3.07.

If specification limits are at 110 and 146 we have

allowable range = 146 — 110 = 36
C, = 36/(6 x 3.07) = 1.95

We should emphasize that we have been talking about standard
deviations, not means. Thus, for example, even in case (b) of Fig. 4.4,
we may still get bad product if the mean is not set appropriately (see
Fig. 4.5). Partly for this reason, we also define a process performance
index.

Lower Upper
specification specification
limit limit
4
-1
.1
> —
= -
] 4
o
2 4
.E -—
<}
2 -
o 4
o
T A T T T T T 1 1 1
110 128 146

Figure 4.5 High relative capability, but uncontrolled mean.

Process performance index

Cox = Minimum of
(upper specified limit — process mean)/30,,
and
(process mean — lower specified limit)/30,,
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Example 4.3
For our titanium button example we have

(upper limit — process mean)/30 = (146 — 127)/3 x 3.07
= 2.06

(process mean — lower limit)/30 = (127 — 110)/3 x 3.07
= 1.85

Cp = 1.85

One-sided specification limit

A very common case in industry is to have a one-sided specification
limit, as when an impurity must not exceed more than a given number
of parts per million. The process capability index has no meaning in
such a case, and it is quite incorrect to use zero or some other artificial
limit in order to achieve a ‘standard’ looking result. However, the
process performance index is readily defined as

Cpx = (specification limit — process mean)/30,,

for an upper specification limit. The denominator is interpreted as half
the range covering 99.7% of the distribution.

The process performance index is also more useful in more complex
situations, as when the process variation exhibits cycles, regular trends,
etc. See section 4.4.2.

Although these indices can be very useful in process capability
studies, one should guard against putting too much reliance on them.
They depend on having good estimates of the process standard devi-
ation, and for C, the process mean as well. Unless our process has
been brought into control, our estimates of these values may have
sizeable errors, or may not be stable. In addition, the process variation
may not be a simple Normal distribution, and the indices will need
modification; see section 4.4.1.

Further, we are depending rather heavily on the property of the
Normal distribution that nearly all of it lies within £30. Some slight
deviation from Normality could wreck that. Notwithstanding these
points, the coefficients C, and C can be useful in assessing a process,
and are widely used by companies discussing quality.

Capability indices have been defined assuming Normality, but they
can be generalized to situations where the data are distributed non-
Normally. If we realize that 60 represents the actual process range when
the data are Normal, then the actual process range can be calculated for
any data, however distributed. We simply cut off 1.5 in 1000 of the
distribution at each end; see Fig. 4.6.
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Figure 4.6 Capability indices for non-Normal data.

4.4 PROCESS CAPABILITY INDICES FOR MORE
COMPLEX PROCESS MODELS
4.4,1 Between- and within-group variation

We return to the model and notation defined in section 3.6, and in
addition allow measurement error of variance o%. Measurement error
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can only be ascertained by duplicated (blind) analyses, and we shall
assume this to have been done, yielding an estimate 7.
For Model 2 of section 3.3, with between- and within-group variances
0% and o2, we find
o2 o>
V(x;) =0k +—+— 4.1
(%) = oh + — + 4.1)
whereas the variance of individual observations is
V(x;) = 0§ + 03 + oh (4.2)

Now if there is measurement error 0%, the estimates given in section 3.6
must be modified:

02 = max {0, s2 — 02} (4.3)

1
0% = max {0, s3 — ;(6%, + 63)} 4.9

The capability index is redefined:
C, = (allowable range)/6 V(0§ + 03) (4.5)
and the performance index is

(upper specification limit — u)/3V/(0% + 02)

Cyx = mi
pk = min {(u — lower specification limit)/3V/ (03 + 02)

(4.6)
where we use the estimates fi, 02, 03.

We see that in these estimates (4.3)-(4.6) the measurement error has
been subtracted. This is a safe procedure only if the process average
level is adequately controlled.

When we come to putting in the action lines for the control chart, we
need the standard error of the mean, (4.1), which has measurement
error included. This can lead on occasions to action lines for a control
chart which appear to be beyond specification limits. This is a safe
procedure only if we are sure of our model and estimates; alternative
methods are given in Chapter 9.

The methods of this section can be used if an autocorrelated error
model holds.

4.4.2 Cyclic variation

It will be sufficient to discuss the estimation of process capability indices
for cyclic data; similar principles apply to other models.

Suppose we have regular or irregular cycles in the data as shown in
Fig. 4.7. It is clear that because of the cycles, the overall distribution of



82 Process capability

Upper specification_limit

Lower specification limit

Figure 4.7 Cyclic data.

group means is not Normal, and it is not appropriate to use the
procedures of section 3.6 to estimate 0% and o%. The overall distribution
of the means will be more nearly rectangular, and the standard
capability index has no meaning.

However, a performance index can be calculated, by taking the
extreme positions of the cycles as estimates of u. Since at this point we
are only interested in keeping the local variation clear of the limits, only
0% is appropriate, and we revert to the performance index given in
section 4.3, possibly corrected for measurement error.

It is a little unfortunate that capability indices have such a strong
foothold in industry since they are fraught with difficulties as shown
previously. In particular when companies report and compare capability
indices, one can not be certain that C, and C,, have been calculated on
the same basis. A better indicator of performance would be to record a
histogram of six months’ production and a calculation of the amount of
non-conforming product.

4.5 HOW TO HANDLE LOW CAPABILITY PROCESSES
There are several possible ways of dealing with having a low-C,, process:

(1) Examine if there is any measurement error in the testing apparatus,
so that our estimated o, is ‘inflated’.

(2) Examine if the specification limits can be widened.

(3) Use the process as it stands, but screen out defective product using
outgoing sampling inspection. This is not usually very effective.

(4) Set up a team to try to find ways of improving the process, so that
g, is reduced.
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(5) Use a control chart in the hope of improving process capability.
Process variation often decreases when control charts are used.

Example 4.4

Suppose we have a process such that the lower and upper specification
limits are 100 and 150, and that the process mean and standard
deviation are 140 and 5.0 respectively. We have

C, = (150 — 100)/5 X 6 = 1.67

indicating a medium capability process. However, the process perform-
ance index is the smaller of

(140 — 100)/3 x 5=2.67 and (150 — 140)/3 x 5 = 0.67

so that Cy = 0.67. This value indicates that, because of the value of the
process mean a considerable amount of scrap is being produced. We can
improve C, considerably by adjusting the process mean.

EXERCISES 4A

1. Carry out a process capability study on the sets of data you collected
in Exercise 2A.2.

2. The observations given in Table 4.1 are measurements of tensile
strength on three pieces of plastic taken once per shift. The lower
and upper specification limits are 5 and 10 respectively. Carry out a
process capability study.

EXERCISES 4B

1. Assuming that the original data are all independently N(u,0?%), show
how to calculate 95% confidence intervals for &,, and for C,. How
much data is required to estimate 95% confidence intervals for C, to
within 0.1?
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Table 4.1 Tensile strength measurements for 30 shifts

Shift Mean s.d.
1 9.0 8.3 8.9 8.73 0.38
2 6.5 6.4 7.1 6.67 0.38
3 7.2 7.1 6.9 7.07 0.15
4 8.6 8.4 7.6 8.20 0.53
5 7.2 8.1 7.7 7.67 0.45
6 6.9 6.7 6.9 6.83 0.12
7 6.8 8.4 7.0 7.40 0.87
8 7.3 7.0 7.2 7.17 0.15
9 7.8 7.2 7.5 7.50 0.30

10 6.3 6.2 7.1 6.53 0.49

11 6.3 6.4 5.9 6.20 0.26

12 5.5 6.7 7.8 6.67 1.15

13 7.4 7.0 6.8 7.07 0.31

14 5.9 7.0 7.3 6.73 0.74

15 6.4 6.3 7.6 6.77 0.72

16 6.4 6.7 7.0 6.70 0.30

17 7.3 7.9 8.0 7.73 0.38

18 6.3 7.2 7.2 6.90 0.52

19 7.5 9.0 7.5 8.00 0.87

20 8.3 8.2 7.5 8.00 0.44

21 7.2 5.8 6.8 6.60 0.72

22 7.4 7.4 6.5 7.10 0.52

23 8.9 8.3 7.7 8.30 0.60

24 6.2 7.5 7.1 6.93 0.67

25 7.5 8.3 7.9 7.90 0.40

26 7.7 7.8 7.8 7.77 0.06

27 7.5 6.5 7.1 7.03 0.50

28 6.6 8.5 7.4 7.50 0.95

29 6.4 5.6 6.5 6.17 0.49

30 8.0 7.6 7.2 7.60 0.40
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Basic Shewhart control charts
for continuous variables

5.1 INTRODUCTION

The idea of the control chart is to operate a simple mechanism for
controlling the average level and spread of a process. A minimum of
two charts is required, one to control process average level and one to
control process spread, but sometimes several charts are necessary. In
the sections below we discuss the control of process average level and
process spread separately. In addition, we limit ourselves in this chapter
to data which has been selected in groups, or to one-at-a-time data
which has been blocked in a suitable way; see section 3.7. More details
about one-at-a-time data are given in Chapter 6. We shall also assume
here that our data is subject to underlying random variation which is
normally distributed; see below.

5.1.1 In control — out of control

In any production process, some variation in quality is unavoidable, and
the theory behind the control chart originated by Dr W. A. Shewhart is
that this variation can be divided into two categories, random variation,
and variation due to special or assignable causes. Variations in quality
which are due to causes over which we have some degree of control,
such as a different quality of raw material, or new and unskilled workers
are called special causes of variation. The random variation is the
variation in quality which is the result of many complex causes, the
result of each cause being slight. By and large nothing can be done
about this source of variation except to modify the process.

If data from a process are such that they might have come from a
single distribution (frequently Normal), having certain desired properties
such as a mean in a specified range, the process is said to be in control.
If, on the other hand, variation due to one or more special causes is
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present, the process is said to be out of control. The Shewhart control
chart is a simple device which enables us to define this state of statistical
control more precisely, and which also enables us to judge when it has
been attained.

Processes Objective of charts
A process is said to be either To  BRING

IN CONTROL Processes IN CONTROL
or

OUT OF CONTROL KEEP

Figure 5.1 Objective of charting.

The definition of ‘in control’ is rather too naive, particularly for the
process industries, when the models of sections 3.3.2 and 3.3.3 may be
appropriate, and there may be cycles in the data. In this case the
definition of ‘in control’ needs to be extended to cover these models,
unless of course, we wish to detect and eliminate these extra sources of
variation. The key point is that we are trying to find out if the process is
statistically stable, or if extra sources of variation are present. Even
statistically stable processes may come under investigation if they have
low capability.

It is assumed, of course, that when there is evidence that special
causes of variation are present, some action is initiated so that these
causes can be traced and eliminated; this is usually the main aim of
operating a quality control chart. Gradually, extra sources of variation
are eliminated. There is now a long history of widespread industrial
applications in which the control chart works, is seen to operate in this
way and is of very great value.

5.1.2 Sampling risks

When operating SPC we take small samples from the process at regular
intervals and plot, say, the mean and the range on a chart. As a result,
we conclude that the process is either in control or out of control. If the
process is out of control, this may be due to a change in process average
level, or process spread, or due to a particular problem at a specified
time point.
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Because of the variation inherent in sampling, the average levels and
the spreads as indicated by the samples will vary from sample to sample
even if the true process average and spread are constant. This gives rise
to two dangers when sample observations are plotted on a control chart.

When charts indicate OUT OF CONTROL we take ACTION.
Otherwise we LEAVE THEM ALONE.

Type I risk

Taking action when no change has occured.

Type II risk

Not taking action when a real change has occured.

Figure 5.2 Risks involved in charting.

These are as follows:

Type I risk: The risk that a legitimately extreme sample will give a
spurious ‘action’ decision when no change has occurred
in the process.

Type II risk: The risk that a sample will fall within the control limits
although there has been a real change in the process;
the change is not signalled. (The size of this risk will get
smaller as the size of the change increases.)

The design of a control chart is a compromise between these two
opposing risks. Different practices have grown up about the design of
the charts, and the risks involved. It is usual to have

3.09 standard errors (probability)

action lines at 3.00 standard errors (popular)

from the mean. One point beyond the action line is regarded as a signal

for action. The British Standard recommendation is 3.09 standard

errors, corresponding to the Normal distribution 0.001 point, and

American (and some British) practices have chosen 3.00. The two

practices are deeply entrenched, and there is not much between them.
Another common practice is to have

1.96 standard errors (probability)

warning lines at 2.00 standard errors (popular)
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from the mean. Two successive points beyond the warning lines is
regarded as a signal for action.

The reason for the two different practices on the limits is as follows.
In other charts it is standard to put the action limits at the 0.1% points,
and the warning limits at the 2.5% points, and this happens in range
charts, etc. It would seem inconsistent not to do this for the X-chart,
and this argument leads to using 1.96 and 3.09 as multipliers. However,
in practice o is nearly always unknown, and has to be estimated, and
the normality assumption may not hold. In the face of these uncertain-
ties, it seems rather pedantic to use 1.96 and 3.09, so that they are
rounded off to 2 and 3. It should be noted that the use of ‘popular’
rather than ‘probability’ limits considerably reduces the average run
length when the process is on target (see section5.4). In the methods
given below both ‘probability’ and ‘popular’ factors will be given.

In addition to using action and warning lines, other rules are
sometimes employed, and reference will be made to these below and in
Chapter 8. Considerable care has to be taken about using some of these
extra rules, as they can increase the type I risk to unacceptable levels.

5.1.3 Shewhart control charts — the set-up phase

The use of Shewhart control charts can be divided into two phases:

(1) the set-up phase, which we review here,
(2) and the operational phase, which we review in section 6.6.3.

In between these two sections, we give the technical details of the
different charts, how to construct and use them, and how to choose
between the different options available.

The set-up phase of a Shewhart control chart is shown in Fig. 5.3. We
now make some detailed comments on each of the boxes in that figure.

Box 1 Data collection. Usually special data must be collected, and
rather more than is needed for routine chart operation; see Chapter 4.
Box 2 Process capability studies. These are discussed in Chapter 4. It is
very desirable to identify the types of process variation which are likely
to occur; see section 3.3.

Box 3 Estimation. See sections 3.6 and 3.7.

Box 4 Low capability. See section 4.5.

Box 5 Medium capability. Here we operate control charts, and expect
the process to improve to a high-capability process.

Box 6 High capability. Here the process mean need not be controlled
so closely; see Chapter 9.
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(1) Set up a plan to collect, record
and plot data. Choose initial
subgroup size and frequency

(2) Carry out process capability
study (Chapter 4)

\

]

(3) Obtain good estimates of u, ¢
and g, for the process

\

(4) Low capability
processes

R5) Medium capability processeq

(6) High capability
processes

1

\

Investigate

(7) Choose group size and sampling
frequency for main chart

To Chapter 9

(8) Choose the type of chart for
controlling the average level
and spread of the process

(9) Choose scales and calculate
limits for charts

Figure 5.3 Shewhart control charts — the set-up phase.

Box 7 Group size and sampling frequency. These are discussed later.
For the moment we assume either that observations are made singly,
with an obvious way to group the data such as by shift, process run,
etc., or that observations are taken in groups at a time. Sampling should
be frequent enough to enable us to detect changes in the average
process level or spread reasonably quickly.
Box 8 Choice of chart type. We describe and discuss the choice later.

Box 9 Choosing scales and calculating limits. For the Shewhart chart see

sections 5.2 and 5.3.

5.1.4 An example

We shall use the following example throughout the chapter.
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Example 5.1

In the manufacture of an engineering plastic, five laminates were
sampled and put into a machine to test for strength. Laminates were
taken once a shift from the production line, and the results in Tables 5.1
relate to ‘transverse flexure strength’.

Table 5.1 Engineering plastic strength data

Shift Observation Mean Median Std dev Range
1 140.1 1394 1435 1414 136.5 140.18 140.1 2.582 7.0
2 1400 137.4 140.8 140.5 141.3 140.00 140.5 1.528 3.9
3 1389 139.6 141.0 141.7 138.7 139.98 139.6 1.318 3.0
4 137.1 136.0 136.0 133.7 1415 136.86 1360 2.875 7.8
5 143.1 1412 138.5 137.0 137.1 139.38 138.5 2.683 6.1
6 1405 138.7 1402 142.0 1423 140.74 140.5 1.461 3.6
7 139.8 1414 1379 137.8 140.0 139.38 139.8 1.527 3.6
8 1395 140.5 141.0 142.1 142.5 141.12 141.0 1.213 3.0
9 137.8 1425 138.5 140.3 138.2 139.46 138.5 1.950 4.7

10 1441 1423 138.0 140.8 139.1 140.86 140.8 2.442 6.1

11 1403 139.7 1435 138.0 139.0 140.10 139.7 2.085 5.5

12 1412 139.4 139.2 1389 139.0 139.54 139.2 0.948 2.3

13 1404 1384 139.2 140.1 143.2  140.26 140.1 1.822 4.8

14 139.2 139.4 1379 141.4 1375 139.08 139.2 1.532 3.9

15 137.7 1358 1385 141.6 138.1 138.34 138.1 2.096 5.8

16  137.7 1419 1409 141.7 141.4 140.72 141.4 1.730 4.2

17 137.6 1389 139.1 141.8 136.6  138.80 138.9 1.961 5.2

18 137.8 136.6 139.6 139.0 139.1  138.42 139.0 1.213 3.0

19 140.5 138.2 139.8 136.1 139.6 138.84 139.6 1.744 4.4

20 141.0 1433 141.7 1430 1405 141.90 141.7 1.223 2.8

21  137.6 137.3 1412 138.8 143.3  139.64 138.8 2.558 6.0

22 1385 1414 1425 138.7 140.1  140.24 140.1 1.723 4.0

23 143.1 138.6 142.1 140.5 142.1 141.28 142.1 1.764 4.5

24 140.0 1385 1425 1422 1403  140.70 140.3 1.657 4.0

25 1409 143.1 138.3 142.8 139.6  140.94 140.9 2.055 4.8

Totals 3496.76 3494.4 114.0

Estimation of u and o from the data in Table 5.1

Case (i): ‘0’ method
X = 3496.76/25 = 139.87
6, = V{(2.582% + 1.528% + - .. + 2.0552)/25}
= V/(89.6516/25) = 1.8937
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Case (ii): range method

X = 3496.76/25 = 139.87
R =(7.0+39+ - +48)/25=114/25 = 4.56
n =5,d, =232,

so that

6, = 4.56/2.326 = 1.9605

A test for the presence of extra variation is not significant, and the
standard error of the mean is

o, = 0,/Vn
which is estimated as
6. = 6,/Vn = 1.9605/V/5 = 0.8768
for the range estimate of o,,.

Note: Tt will be found that when control charts are plotted, sample 4 is
beyond the action limits. Any such points should be omitted and the
calculations redone provided a special cause of variation is found (see
section 5.2.2).

5.2 CONTROL CHARTS FOR AVERAGE LEVEL

In this section we set out how to construct and use an X-chart for
controlling the average level of a process. Alternative charts will be
discussed in the next chapter.

5.2.1 X-charts: chart construction

The construction of an X-chart relies on having good estimates fi of the
process average level and 0. of the standard error of the group means.
These estimates are derived either from data from process capability
studies, or from fresh data. If data from process capability studies is
used we must make quite sure that conditions have not changed in the
interval since the studies were carried out. Fresh data may be more
representative of current process performance but at least 20 groups or
blocks of data should be collected. Sometimes we may be given target
values of y and o, to use for chart construction. We shall assume that
the sample size n and sampling interval have been chosen. Further
advice on choosing these quantities is given later. The construction of an
X-chart follows the reasoning given in section5.1.2, and is set out in
Method Summary 5.1.
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METHOD SUMMARY 5.1

Construction of X-chart

Step 1 Obtain estimates of the process average level, fi, and the
process variability, and also obtain the estimated standard
error of group means, ..

Step 2 Choose the scale of the chart so that fi is near the centre,
and so that the scale covers approximately *+46, from f,
where n is the sample size at each sampling point.

Step 3 Mark the action lines at fi = 3.096, (probability);
fi = 36, (popular)

Step 4 Mark the warning lines at fi = 1.965, (probability)
fi + 26, (popular)

5.2.2 TIllustration of construction methods given in section 5.2.1

Here we construct a chart using the data of Example 5.1 as fresh data
from our process. The procedure is the same whether the o or ‘range’
methods are used to estimate o. We shall use the range-method
estimate:

Step 1 From section 5.1.4, X = 139.87, and &, = 0.8768.
Step 2 Centre the chart at, say 140. The scale should cover 140 + 46,, or
about 136 to 144.
Step 3 Action limits:
139.87 + 3.09 X 0.8768 = 137.16, 142.58 (probability)
139.87 £ 3 x 0.8768 = 137.24, 142.50 (popular)
Step 4 Warning limits:
139.87 + 1.96 x 0.8768 = 138.15, 141.59 (probability)
136.87 £ 2 x 0.8768 = 138.12, 141.62 (popular)

The chart is shown in Fig. 5.4, with the data plotted. Since the process
is found to be out of control at group 4, a search for a special cause of
variation should be undertaken. If a special cause is found, group 4
should be omitted and the calculations repeated. This is left as an
exercise.

5.2.3 X-charts: interpretation

It is important to use charts for control of average level and spread of a
process together, and section5.5 deals with this. In this section we
consider some of the basic rules for interpreting the X-chart.
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Figure 5.4 X chart

(a) Assumptions of X-chart
The method assumes

(1) that the distribution of the data is Normal, or at least approximately
$0;

(2) that the group sizes are equal;

(3) that all groups will be weighted equally;

(4) that the observations are independent.

The action to be taken when these assumptions do not hold is set out in
section 5.5. Normality is not usually very important.

(b) Basic rules for X-chart
The X-chart is regarded as showing evidence that a special or assignable
cause of variation is present when either of the following hold:

(1) one point is outside the action limits;
(2) two successive points are outside the same warning limit.

Either of these show evidence of an assignable cause provided
checking shows that it was not due to miscalculation. These are
illustrated in the Fig. 5.5(a) and (b).

Some others also use the following rules but these drastically affect
the properties of the chart:
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Figure 5.5 Assignable causes of variation: (a) action signal by rule (1); (b) action
signal by rule (2); (c) action signal by rule (3); (d) action signal by rule (4).

(3) seven successive points on one side of the mean;
(4) seven successive points either increasing or decreasing.

A discussion of the value of these extra rules is given in Chapter 8.
The chief problem is that these rules drastically increase the chance of
false alarms — type 1 errors.

5.3 CHARTS FOR CONTROL OF (WITHIN-GROUP)
PROCESS SPREAD

5.3.1 Range charts — construction

There are two ways of setting up the range chart — the ‘range’ method
and the ‘0’ method. If process capability data are used to get an
estimate of oy, then this is fed into the appropriate step of the o
method. These methods are set out below.

METHOD SUMMARY 5.2

Construction of a range chart by the range method

Step I Obtain the average range R either from process capability
studies data, or from at least 20 groups of fresh data.

Step 2 Choose the scale of the range chart so that the range goes
down to zero, and up to about twice the largest range
observed in the trial data sets.
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Step 3 Mark the action and warning limits on the chart:

Lower action limit: D\R
Upper action limit: D,R
Lower warning limit: DsR
Upper warning limit: D,R

where the D, D,, D; and D, values are given in Table 5.2
and in the Appendix tables.
Notes 1. Step 1 is as for the X-chart — the same data are used.
2. The factors given in Table 5.2 are obtained from the
distribution of the range in Normal samples, and from the
conversion factors from range to estimates of o.

Table 5.2 Factors for constructing range charts from an average range D, D5,

D37 D4

Group size  Action lines Warning lines

n D1 D2 D3 D4
2 0.00 4.12 0.04 2.81
3 0.04 2.9 0.18 2.17
4 0.10 2.58 0.29 1.93
S 0.16 2.36 0.37 1.81
6 0.21 222 0.42 1.72
7 0.26 2.12 0.46 1.66
8 0.29 2.04 0.50 1.62
9 0.33 1.99 0.52 1.58

10 0.35 1.94 0.54 1.55

Note: The action and warning lines are obtained by multiplying these factors by the
average range. The action lines use D, and D, and the warning lines use D; and D,.

METHOD SUMMARY 5.3

Construction of a range chart by the ‘o’ method

Step 1 Obtain an estimate of o, either from process capability
studies data, or from at least 20 groups of fresh data (Note:
Use oy, not o,)

Step 2 Use the factors from Table 5.3, and multiply by &,, to find
where to plot the action and warning limits. The scale
should be chosen to extend to about 50% greater than the
upper action limit.

Note Step 1 is as for the X-chart — the same data are used.
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Table 5.3 Factors for constructing range charts from an estimate of o (Ds, Dy,
D 7 D 8)

Group size Action lines Warning lines

n D5 D5 D7 Dg
2 0.00 4.65 0.04 3.17
3 0.06 5.06 0.30 3.68
4 0.20 5.31 0.59 3.98
5 0.37 5.48 0.85 4.20
6 0.53 5.62 1.07 4.36
7 0.69 5.73 1.25 4.49
8 0.83 5.82 1.41 4.60
9 0.97 5.90 1.55 4.70
10 1.08 5.97 1.67 4.78

Note: The action and warning lines are obtained by multiplying these factors by an
estimate of o. The action lines are D5 and Dg, and the warning lines use d; and Ds.

5.3.2 Illustration of construction methods for range chart

Here we use the range method as set out in Method Summary 5.2.

Stepl R = 114.0/25 = 4.56
Step 3 Factors from Table 5.2 are for n = 5, so we have

Lower action limit: 0.16 x 4.56 = 0.73
Upper action limit: 2.36 X 4.56 = 10.76
Lower warning limit: 0.37 X 4.56 = 1.69
Upper warning limit: 1.81 x 4.56 = 8.25

The chart for Example 5.1 data is shown in Fig. 5.6.

5.3.3 Range charts — interpretation

(a) Assumptions of the range chart
The method assumes

(1) that the distribution of the data is Normal;

(2) that the group sizes are equal;

(3) that all groups will be weighted equally;

(4) that the groups are independent of each other;

(5) that all between-group variation is due to special causes.

The last point is particularly important. Since the methods plot
within-group ranges or standard deviations, between-group variability is
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Figure 5.6 Construction of a range chart.

not detected. Methods for doing this will be discussed in the next
chapter.

Normality can be quite critical for the range chart, and also lack of
independence between groups. Sometimes lack of Normality can be
corrected by use of a simple transformation.

(b) Basic rules for the range chart

These rules are the same as for the X-chart, given in section 5.2.3; see
Fig. 5.7. Larger ranges mean an increase in the process spread. A range
below the lower action limit may indicate one of the following:

(1) The process spread has reduced and the charts may need rescaling.

UAL

(a) Action at point 7 — below lower action limit
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UAL

(b) Action at point 6 ~ above upper warning limit

Figure 5.7 Illustration of use of range chart.

(2) The measurement apparatus has jammed.
(3) There is a mistake in the calculations.

5.3.4 Standard deviation charts

These are very similar to the range charts, except that standard
deviations are calculated and plotted for each group. That is, we follow

Table 5.4 Factors for constructing deviation charts from an estimate of standard
deviation (Dgy, D1y, D11, D)

Group size Action lines Warning lines
Dy Dy Dy Dy
2 0.00 3.29 0.00 2.24
3 0.00 2.63 0.16 1.92
4 0.09 2.33 0.27 1.77
5 0.15 2.15 0.35 1.67
6 0.21 2.03 0.41 1.60
7 0.25 1.93 0.45 1.55
8 0.29 1.86 0.49 1.51
9 0.33 1.81 0.52 1.48
10 0.36 1.76 0.55 1.45
11 0.38 1.72 0.57 1.43
12 0.41 1.69 0.59 1.41

Note: The action and warning lines are obtained by multiplying these factors by an
estimate of o,.
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the ‘0’ method of Section 5.3.1 above, but then use Table 5.4 to get the
factors:

lower action limit: D,a,
upper action limit: D 6,
lower warning limit: D, &,
upper warning limit: D6,

The interpretation and use of the standard deviation chart is the same
as for the range chart. It is more efficient than the range chart, and
particularly so if the group size is larger than about 8.

The factors in Table 5.4 are obtained from the distribution of
standard deviations in Normal samples.

5.3.5 Control of between-group spread

If the test for extra variation set out in section3.6.3 shows extra
variation present, then this variation also needs controlling. Clearly, the
methods given in section 5.3.1-4 only control the within-group variation.

Control of between-group variation can be affected by calculating a
moving-range chart or a moving-standard-deviation chart, based on the
group means. This is set out in the next chapter, along with other
similar types of control chart. The commonly used method is to operate
an X and R or s chart, as set out above, but for the process industries
this needs to be supplemented by methods given in the next chapter.

5.4 THE AVERAGE RUN LENGTH

In order to design our charts in a more precise way, and in order to
compare properties of alternative charts we need to introduce the
concept of run length. The run length is the number of observations
plotted on the charts until an ‘out of control’ signal is given. Run
lengths are usually calculated assuming that observations are sampled
independently from a specific population, and here we assume that there
is simple random variation only.

Suppose we operate a Shewhart X-chart where 0 =1 and we use a
group size of 4, sampled, say every 10 minutes. Suppose also that the
target mean is zero, and this is made the centre of the X-chart, but that
the process mean is 1. How many groups will be sampled before a signal
is given that the mean is off target? Figure 5.8 shows the control charts
for three computer simulations of the randomly generated groups that
could result from this situation. The number of groups to an ‘out of
control’ signal is called the run length.



* Run length = 5

Run length = 2

Run length = 2

Figure 5.8 Simulation of an X chart.
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The actual run length observed on any trial will obviously differ due
to random variation. The average of the three trials we have seen is 3.
For our example this means that an average 30 minutes’ production
would elapse before this change in process mean was discovered. The
long run average — taken over a very large number of trials — can be
calculated theoretically and this is called the average run length (ARL).
Some of the theory is given in the next section and in Chapter 8.

It is helpful to carry out some simulation trials in order to see how the
run length varies, and the exercises at the end of the chapter set this
out.

The ARL curves will tell us how many groups, on average, will have
to be sampled, before a given change in the process mean is detected.
Figure 5.9 shows the ARL curve of the X-chart, see also Table 5.5.

400
300 —

200 —

100 —
70 —
50 —
30 —
20 —

10 —

Average run length

1 4]
0 0.5 1 1.5 2 2.5 3

Deviation from target in standard errors

Figure 5.9 ARL curve of the X chart.

We see from Table 5.5 that if the true mean of the process differs
from the target value by the amount a/Vn, so that 6/(c/Vn) is 1.0,
then on average 26.35 groups will be sampled until an ‘out of control’
signal is given. We see that 6/(o/Vn) has to be about 2.5 before the
ARL is reduced to 2.47. We can use ARL charts to study the properties
of any scheme we propose, and to help guide us on a choice of sample
size and sampling frequency.
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Table 5.5 ARL for deviations of various sizes 6 from the target value

Deviation in standard ARL

error units 8/(o/Vn) Probability limits Popular limits
0 320 278

0.5 108.03 100.60

1.0 26.35 25.61

1.5 8.92 8.78

2.0 4.14 4.07

2.5 2.47 2.41

Example 5.2

Suppose we know o =1, and that we wish to detect a change in the
mean of 0.5 units within about 20-25minutes. If we sample every
5 minutes, we want an ARL of about 4 or 5 at 8 = 0.5. From Table 5.5
we see that we must have 6/(a/Vn) at about 2.0, so

0.5Vn =2
n=16

This is a large group, and we may wish to investigate sampling more
frequently than every 5 minutes, if this is practicable. Otherwise we may
have to consider relaxing our requirements.

5.5 SPECIAL PROBLEMS

The charting methods given in this chapter are based on certain
assumptions. The action to be taken when these are not valid is as
explained in Sections 5.5.1-2.

5.5.1 Non-normality

Basically, non-normality does not matter much for controlling process
average level, provided the group size is at least four, but it can affect
charts for control of spread markedly. Frequently investigations will
show that non-normality is due to some way in which the process is
operated, such as due to the merging of streams, and this can be
corrected. Failing this, it is often possible to transform data to normality
by using a simple transformation such as logarithm, square root, etc.

If there is non-normality and this cannot be corrected or transforma-
tions used, then the methods given are readily transferred to another
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distribution. The procedure involved would be to collect sufficient data
to fit a distribution, and then fit action and warning lines at the
appropriate percentage points.

5.5.2 Unequal numbers in groups

If the numbers in the groups change, it is a simple matter to change the
limits, as shown in Fig. 5.10.

Control
limits

- .
Time

q
4

Figure 5.10 Change of group size.

5.5.3 Correlation

It is clear that if successive group means are correlated, as for example
in model3 of section3.3, the Shewhart chart could be affected
markedly. Vasilopoulos and Stamboulis (1978) have shown how to alter
the decision limits for a simple autoregressive model. However, the
extra variation caused by an autoregressive model would be likely to be
detected by the test of section 3.6.4. This would lead to &, being based
on variation between group means rather than on the within-group
estimate. The procedures given above can therefore cope with autocor-
relation with one exception. The use of warning limits should be
discontinued in the presence of autocorrelation — positive autocorrela-
tion will lead to too many false alarms.
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A thorough study of this aspect of Shewhart charts does not seem to
have been attempted.

5.6* SOME THEORETICAL RESULTS FOR SHEWHART
CHARTS

5.6.1 Shewhart chart with action lines only

In this section we assume simple random variation only, and derive
some theoretical results on the average run length. Further results will
be given in Chapter 8.

First we deal with a Shewhart chart for means with action lines only,
as set out in section 2.8. Suppose we take observations in groups of n at
a time, which we denote X, j=1,2,...,n, i=1,2,.... The group
means X; = Z,X;/n are plotted on a chart with upper and lower action
limits at xy,, x . If all observations are independently and identically
distributed with an N(u,0%) distribution, then the probability of being
outside the action limits is

XLA

p= _m%exp {—n(x — w?/20°}dx

©

+ xUA%—exp {-n(x — w?/20%}dx

XA — M U — Xya

- o872 + o2 1)

It is clear that the distribution of run length R is geometric with
parameter p, see section 2.5. This means that the ARL is

ARL =ER) =1/p
and the variance of the run length distribution is
V(R) = (1 - p)/p?

If the chart is set up in the standard way using the exact u and o, then
p =0.002, so that

E(R)=500 and V(R) = 249500

and the standard deviation of R is 499.5. The highly skewed nature of
the geometric distribution needs to be taken note of, and Table 5.6
illustrates this. If charts are being designed using ARL as a basis, this
point about the shape of the run-length distribution needs to be watched
carefully.
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Table 5.6 Illustrations of the geometric distribution

Percentage points

p Mean Variance 50% 90% 95%
0.1 10 90 7 22 29
0.05 20 380 14 45 59
0.01 100 9900 69 230 299
0.005 200 39800 139 460 598
0.001 1000 999000 693 2302 2995

5.6.2 Shewhart chart with warning lines

We now consider the modified Shewhart chart with warning lines,
operated by the rules set out in section5.2.3. That is, action is taken
when one point is outside the action line or two successive points
outside the warning lines. Let pg, p, and p, be the probability of sample
means falling in the regions shown in Fig.5.11, and let the run lengths
from points within these regions be Ly, L, and L,.

UAL
UwL Py
Target Po
LWL
LAL P2

Figure 5.11 Shewhart chart with warning lines.

By taking one observation, we easily generate the following equ-
ations:

Ly=1+poLo+ piL, + poL,
L,=1+poLy+ p,L,
L,=1+poLoy+ piL,
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We then easily obtain

Lo=Q+p,+py+pw2)/1d —po—pip2 = PoP1 — PoP2 — PoP1P2)
(5.2)

In this expression, the ps are functions like (5.1) when the data are IID
normal. However, it is relatively easy to work out the ARL for any
distribution, so long as the Xs are independent and identically dis-
tributed. Some values of the ARLs for the standard chart with bound-
aries at £3.090/Vn and £1.960/Vn (‘probability’ limits), and £30/Vn
and +20/Vn (‘popular’ limits) are given in Table 5.5.

In Table 5.7 we show the ARL for the standard (probability)
boundaries, and the ARLs which apply if the estimate of o is under- or
overestimated by 10%. This table clearly shows a very dramatic effect,
and shows the importance of obtaining a good estimate of o.

Table 5.8 shows the ARLs which apply to the standard (probability)

Table 5.7 ARLs for standard (probability) boundaries for errors in &

o/o

Mean 1 (exact) 0.9 1.10

0 320.00 125.95 884.00
0.25 222.85 93.91 571.79
0.50 108.03 50.92 247.34
0.75 51.50 26.86 106.40
1.00 26.35 15.06 49.49
1.50 8.92 597 14.12
2.00 4.14 3.12 5.72
2.50 2.46 2.02 3.09
3.00 1.75 1.52 2.05

Table 5.8 ARLs for standard (probability) boundaries with a x2 distribution

D.F. of 42

Mean 20 60 120 0

0 146.53 219.79 259.06 320.00
0.25 89.18 124.35 146.76 222.85
0.50 54.44 68.70 77.14 108.03
0.75 33.65 38.88 41.76 51.50
1.00 21.18 22.81 23.66 26.35
1.50 9.09 8.98 8.94 8.92
2.00 4.49 4.33 4.27 4.14
2.50 2.62 2.55 253 2.46

3.00 1.80 1.78 1.77 1.75
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scheme if the points plotted have a x* rather than a normal distribution;
see also Fig. 5.12. The coefficients of skewness are

20d.f:0.63 60 d.f : 0.37 120 d.f: 0.26

While the effect of skewness is not as severe as the effect of errors in 6,
there is still a very strong effect, even for quite small skewness in the
distribution. This leads us to conclude that severe skewness of the
original population could be important if the group size is small.

200 — Normal distribution

Average run length

0 0.5 1 1.5 2 2.5 3

Deviation from target in standard errors

Figure 5.12 Effect of skewness on the Shewhart chart.

5.6.3 The position of the warning lines

By using equation (5.2) we can vary the values of p, and p; to get the
same ARL when the process is on target. There are two limiting cases:

(1) No ‘warning’ region. Here we have
po= (Lo = 1)/L,

where L, is the ARL when the process is on target. This leads to
boundaries at a distance 2.955 standard errors from the target, for
LO = 320.
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(2) No ‘action’ region, but simply a warning region. Here we have

which gives p; = 0.0403 for L, = 320, and this is at 1.747 standard
errors from the target.

Table 5.9 gives the ARL for these two limiting cases and for some
intermediate ones. We see that broadening the warning region increases
the ARL at large distances from the target, and reduces the ARL for
small distances from the target. In fact broadening the warning region a
little from the standard position improves the ARL curve for small
deviations without paying too high a price at high deviations. This is
evidence that the warning region should not be set narrower than the
standard (probability) positions. In fact the standard British chart
achieves a good result at high deviations from the target, and perhaps
the price being paid for this is too high.

Table 5.9 Shewhart chart with warning lines: Position of the boundaries

Values of py, p; and position of action limits (see Fig. 5.11)

Prob(action) 0.0032 0.002 0.0015 0.001 0.0005 0

Do 0.9968 0.9500 0.9407 0.9327 0.9257 0.9194
D1 0 0.0240 0.0289 0.0331 0.0368 0.0403
Warning 2.955 1.96 1.92 1.83 1.78 1.75
line
Action line 2.955 3.09 2.03 3.29 3.48 o
ARL
Mean
0 320.00 320.00 320 00 320.00 320.00 320.00
0.25 244.59 222.85 217.67 213.83 211.25 210.80
0.50 136.69 108.03 102.70 99.03 96.73 96.67
0.75 72.32 51.50 48.42 46.42 45.27 45.56
1.00 39.49 26.35 24.77 23.80 23.30 23.71
1.50 13.73 8.92 8.52 8.31 8.27 8.66
2.00 5.89 4.14 4.05 4.03 4.08 4.45
2.50 3.08 2.46 2.46 2.50 2.58 2.96
3.00 1.93 1.75 1.77 1.82 1.91 2.36

If Shewhart charts are to be used, rather than CuSum charts, then
several sets of boundaries could easily be prepared, which have good
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properties at different deviations of the mean from the target. However,
it would be reasonable to argue from the results of Table 5.9 that the
differences are small.

5.6.4 A modified scheme

Page (1955) studied the effect of variations in the type of rule used in
the Shewhart chart, but only a limited number of calculations were
reported.
The following rule is suggested: Take action if one point is outside the
action limits, or two out of three points outside the same warning limit.
The ARL function for this rule can be derived in a similar way to the
method used in section 5.6.2, and we have the formula

14+ 1+ po)p1 + p2) + 2p1p2(1 + po)?
{1 =po—= P21+ po)* + pp1p2(1 — p¥) — pip1 + P2)}

Ly,=

After some calculation, it was found that warning and action bound-
aries at £2.17 and £3.04 standard errors gave the following results:

Mean 0 025 05 1 1.5 2 2.5 3
ARL 320 226.1 1113 272 9.2 4.2 2.5 1.8

This shows no improvement over the previous boundaries.

We therefore reach the conclusion that the standard positions for the
boundaries is a satisfactory compromise. For significant improvements it
is desirable to run a Shewhart chart in combination with a moving-aver-
age chart, or else a snub-nosed CuSum scheme.

5.7* CHARTS FOR CONTROL OF PROCESS SPREAD

The theory for obtaining properties of charts for control of process
spread follows the methods described above for control of process
average level. The ARL formula is the same (5.2), but the p;s involve
the distribution of the range or standard deviation. Much less work has
been done in this area. A comparison of range and standard deviation is
given by Tuprah and Ncube (1987). Some of their results are given in
Table 5.10 below. Tables showing the effect of non-normality or correla-
tion do not seem to be available.
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Table 5.10 ARL values for Shewhart control charts with warning lines

k 5 10 15 20

R-chart S-chart R-chart S-chart R-chart S-chart R-chart S-chart
UWL 3.97 1.5829 4.577 1.3984 4.984 1.3213 5.1060 1.278
UAL 5.00 19702 5.530 1.6463 5.800 1.518 5.9920 1.443
o

1.0 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00

1.1 63.40 60.00 50.00 41.70 43.80 32.40 39.90 26.50
1.2 27.20 2510 18.40 1440 1490 10.00 12.80 7.60
1.3 14.40  13.20 9.00 6.90 7.00 4.70 5.90 3.60
1.4 8.90 8.20 5.30 4.10 4.10 2.90 3.50 2.20
1.5 6.20 5.70 3.70 2.80 2.80 2.10 2.40 1.70
1.6 4.60 4.30 2.80 2.30 2.20 1.70 1.90 1.40
1.7 3.60 3.40 2.20 1.90 1.80 1.40 1.60 1.20
1.8 3.00 2.80 1.90 1.60 1.50 1.30 1.40 1.10
1.9 2.60 2.40 1.70 1.40 1.40 1.20 1.20 1.10
2.0 2.30 2.20 1.50 1.30 1.30 1.10 1.20 1.00

UWL is the Shewhart upper warning line, and UAL is the Shewhart upper action line.

EXERCISES 5A

1. Simulation exercises. This exercise can be carried out by a group of
five people, each of whom selects one of the numbered data sets
given in Appendix B. The objective of the exercise is to investigate-
the variation in run lengths which occur as a result of the preceding
rules, and the same data sets will be used in Chapter7 to compare
average run lengths of Shewhart and CuSum -charts. (However,
better results may be obtained by using a group of at least a dozen
people).

Suppose that you are manager of a process, and you wish to set up
Shewhart X-charts on the basis of one of the initial data sets marked
I1, I2 etc. Having set up your chart, now run the corresponding data
sets A, B, C, D through your chart until action is given or until the
end of the dataset. Record the run length to (and including) the
action point, and try to estimate from the plots where the processes
changed.

2. Set up Shewhart X and range charts for the data set you collected in
Exercise 2A.2.

3. Design some simple simulation trials to estimate the effect of
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autocorrelation and non-normality on the ARL properties of the
Shewhart X chart, range chart and standard deviation charts.

. Assuming that there is no extra variation, the estimate of &, for the

chart for means is 6/Vn. The action and warning lines are then
placed at:

Popular limits Probability limits
Action lines X+ AD X+ Agon0
Warning lines Xt AB X * AypsO

where A =3/Vn, A;=2/Vn, Agps =1.96/Vn, and
Agoor = 3.09/Vn.

If the charts are to be constructed directly from the average range,
the corresponding limits are placed at

f+A'R, i+ AR
for the popular action and warning lines, where
A’ =3/d,Vn, A, =2/d,Vn,
and R is the average range within groups.
Calculate a table of values of A, A, Aggps, Ao, and the

corresponding A’, A1, Aggs, Aoe for n from 1 to 10 in unit steps.
Tables of these values occur in standard works on quality control.

EXERCISES 5B

1.

Set up a Shewhart X-chart with action and warning lines, and use
n=1, o=1, u=0. Select data from a table of random normal
deviates, add 1.5 to each number, and plot. Terminate when action is
signalled and count the run length. Repeat a few times. Calculate the
average and variance of the run length.

Suppose you want to operate a Shewhart chart with action lines only,
but achieve the same in-control ARL as in the standard chart with
probability limits, which is 320. What distance should the action
boundaries be from the target? Calculate the ARL function, and
compare it with the results given in section 5.4.

Suppose you are going to use a Shewhart chart with warning lines,
but modify the rules so that action is taken when one point is outside
the action limits, or two successive points outside either warning
limit. Obtain the formula corresponding to (5.2) in section 5.6.2.
Calculate the ARL function and compare your results with those in
section 5.4.
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4. In a certain industrial process, it is known that o =4, and it is
desirable to detect a difference in mean of 4 units in about
60 minutes. Currently sampling is every 15 minutes.

(a) What group size should be used?

(b) Approximately how frequently must the sampling be performed
if the producer wishes to be 90% sure of picking up the change
in one hour?

5. Show that for an on target mean, formula (5.2) reduces to

Lo = (1+ pp)/(1 = po — p1 = Pop1)s
hence verify the formula in section 5.6.3(2).

6. Design Shewhart control charts with both action and warning lines,
with in-control ARLs of 200 and 500. How will you decide the
position of the warning lines?



6

Extensions to Shewhart charts
for one-at-a-time data

6.1 ONE-AT-A-TIME SAMPLING

6.1.1 Circumstances giving rise to one-at-a-time sampling

One-at-a-time data arises frequently in practice, especially in the process
industries. In the component manufacturing field, many individual
components are produced, and each stands on its own merits. It is then
easy to sample a group of » at a time to get information about the
process average level and process spread. In continuous processes
typically a rather different situation applies. The instantaneous variation
of the chemical, fluid, etc., may be quite small, but the process varies
gently in time for many reasons often incompletely understood. For a
process of this type, selecting a group of observations close together in
time will only represent measurement or sampling error, which may be
negligible. In order to be able to get close control of such a process over
time, it is necessary to use rational blocking or moving averages. Charts
of individual values will not detect the kind of slow drifts experienced.
In this chapter the construction of ‘moving’ type charts is described, but
there are some preliminary points to settle first.

It is convenient to think first in terms of Model 2 of section 3.3, where
there is both between- and within-group variation, with variances 0%
and o7, respectively. Here 0% represents variation in the process average
level over time, and o the local or sampling variation. The variance of
a group of n observations taken at one point in time is

V(%;) = ok + d2/n (6.1)
whereas the variance of a mean of n observations sampled singly over a
period is

V(%) = (o3 + 03)/n (6.2)

showing that one-at-a-time sampling is more efficient. However, two
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points should be made. Firstly local variation, 0%, may well be crucially
important, rather than variation of the process average level over time
since in some cases the latter might be subject to some rough control.
At least two observations need to be sampled at a time even to estimate
0%, and rather more than two observations are really needed.

Secondly, the cost of sampling a group of observations is often much
less than the cost of obtaining the same number of single observations.
The sampling cost is made up of staff costs, machinery costs, cost of
disturbance to the production line etc., and the actual cost of using
these facilities to obtain, say, five observations rather than one, is often
much less than five times the cost of a single observation.

The key reason why observations are often sampled in groups for SPC
is that control of process spread is critical, and grouped observations are
necessary to estimate process spread. In the process industries, or in
other applications where there is substantial between-group variability,
one-at-a-time sampling is often more appropriate. Control of process
spread can then be achieved through a moving-range or moving-stan-
dard-deviation chart; see section 6.4.

For the process industries, Model 3 of section3.3.3 may be more
appropriate than Model 2, and here the gain for one-at-a-time sampling
is less obvious. Correlation between observations tends to produce a
result closer to the ‘grouped’ observations variance (6.1) than (6.2).

6.1.2 Some alternative charting methods

If the group size is small, or perhaps one, the charting methods given in
Chapter 5 cannot be used effectively. For example, although we can
construct a Shewhart chart for group size n =1, the limits are very
wide, so that the chart has little power. Some alternative approaches
when the group size is small or one are as follows.

(1) Rational blocking
In this method we artificially block the data by shift, batch, day etc.
as described in section 3.7.1. We hope to have some rational method
of doing this, so that special causes of variation occur between
rather than within groups. Once blocked data has been achieved,
the charting methods of Chapter 5 can be used. Although this is a
very simple way of getting round the problem, an unfortunate
choice of blocking can mask changes, and inflated estimates of
spread can also result, leading to wide limits.

(2) Moving-averages, moving ranges
The alternative to rational blocking is to use moving averages or
moving ranges. Two types of moving-average chart are given later in
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this chapter. The disadvantage of any moving-average chart is that
action is necessarily delayed by the averaging.

A key problem with one-at-a-time data is the estimation of the
standard error o, of the points being plotted, and this was discussed
briefly in section3.7. In the next section we consider the problem of
estimating o, for one-at-a-time data again. There is obviously no way of
estimating o, directly unless observations are replicated, at least for a
period, although the ‘estimation by differences’ method given in sec-
tion 3.7.2 may get close to it. On the other hand, other methods given
below give results much closer to o, directly. Because of the confusion
about what is being estimated, the suffixes o, o, 0. will be dropped
while the methods are presented.

The underlying problem here is much deeper than the following
discussion suggests. An approach based on a more appropriate model
needs to be tried. However, the methods given below give satisfactory
results in practice.

6.2 ESTIMATION OF 0 FOR ONE-AT-A-TIME DATA

In this section we consider again the estimation of ¢ for one-at-a-time
data, and take this on from section3.7. In order to illustrate the
methods we use the data of section 5.1.4, and treat the group means as
if they were single observations. (This will enable us to get charts which
we can easily compare with those in Chapter 5.)

If a rational blocking exists, a o estimate based on this should be
calculated. However, it may be useful to compare it with estimates given
below. Any large discrepancy merits investigation.

Example 6.1 Engineering plastic strength data

In the manufacture of an engineering plastic, a single laminate was
sampled and put into a machine to test for strength. The laminates were
taken five times a shift from the production line, and the results in
Table 6.1 relate to ‘transverse flexure strength’. In the following sections
we use the column of means as if they were single observations.

6.2.1 The overall o estimate

One easy estimate of o is simply to use all of our data together, and
calculate the overall standard deviation to get &. Clearly, any points
representing special causes should be omitted, and the easiest way of
finding this out is to set up trial charts based on all the data. Any point
out of control should be investigated with a view to omitting it.
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Table 6.1 Engineering plastic strength data

Shift Mean Median Std dev Range
1 140.1 1394 1435 1414 136.5 140.18 140.1 2.582 7.0
2 1400 1374 140.8 1405 141.3  140.00 140.5 1.528 3.9
3 1389 139.6 141.0 141.7 138.7 139.98 139.6 1.318 3.0
4 137.1 136.0 136.0 133.7 141.5 136.86 136.0 2.875 7.8
5 1431 141.2 1385 137.0 137.1  139.38 138.5 2.683 6.1
6 140.5 138.7 1402 142.0 1423  140.74 140.5 1.461 3.6
7 139.8 1414 1379 137.8 140.0 139.38 139.8 1.527 3.6
8 139.5 140.5 141.0 142.1 1425 141.12 141.0 1.213 3.0

9 137.8 1425 1385 1403 138.2 139.46 138.5 1.950 4.7
10 1441 1423 138.0 140.8 139.1 140.86 140.8 2.442 6.1
11  140.3 139.7 1435 138.0 139.0 140.10 139.7 2.085 5.5
12 1412 1394 1392 1389 139.0 139.54 139.2 0.948 2.3
13 1404 1384 1392 140.1 143.2  140.26 140.1 1.822 4.8
14 1392 1394 1379 1414 1375 139.08 139.2 1.532 3.9
15 1377 135.8 138.5 141.6 138.1 138.34 138.1 2.096 5.8
16  137.7 1419 1409 141.7 1414 140.72 1414 1.730 4.2
17 137.6 1389 139.1 141.8 136.6 138.80 138.9 1.961 5.2
18 137.8 136.6 139.6 139.0 139.1 138.42 139.0 1.213 3.0
19 1405 1382 139.8 136.1 1396 138.84 139.6 1.744 4.4
20 141.0 1433 141.7 143.0 1405 141.90 141.7 1.223 2.8
21 137.6 137.3 1412 138.8 143.3 139.64 138.8 2.558 6.0
22 1385 1414 1425 138.7 140.1 140.24 140.1 1.723 4.0
23 1431 138.6 142.1 1405 142.1 141.28 142.1 1.764 4.5
24 140.0 138.5 1425 1422 1403 140.70 140.3 1.657 4.0
25 1409 143.1 1383 1428 139.6  140.94 140.9 2.055 4.8

Totals 3496.76 3494.4 114.0

This estimate of o will obviously be inflated by a considerable amount
of ‘between-sample’ variation, if any is present. As such, it is a useful
upper boundary in guiding us to what & to use.

For the data given in Table 6.1, we find that the overall & is 1.110, if
the group means are treated as if they were single observations.

If there are marked changes of level, so that the data can be split into
two or more segments, then the segments should be treated separately,
and the G estimates combined using the formula (3.10).

6.2.2 Use of moving ranges

In section 3.7.2 we obtained an estimate of ¢ for one-at-a-time data by
treating differences of successive observations as if they were ranges of
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two observations. This method is readily extended and we could get
another estimate by using ranges of successive groups of three observa-
tions, or of four observations, etc. The method is set out in Method
Summary 6.1, and the results can be plotted as shown in Figure 6.1.

Estimate of o

Group number

Figure 6.1 Example of moving-range estimates of o.

If ranges of two are used to get an estimate of o (successive
differences), there will probably not be much ‘between-sample’ variation
in the estimate of o, but if we use ranges of three or more to estimate
o, the estimate will tend to be inflated. Therefore if a plot of & against
the number of points in the moving-range (2, 3, 4 etc.) is relatively flat,
there is little evidence of between-sample variation. If the curve is
sharply rising, as in Fig. 6.1, some examination should be made for the
causes of the extra between-sample variation. This may lead to consider-
able difficulty in deciding which estimate to use in setting up Shewhart
charts, and we discuss this below.

METHOD SUMMARY 6.1

Estimation of ¢ by moving-ranges of k points

Step 1 Calculate the moving-ranges for groups of size k (for k =2,
3,4, ...). Use at least 25 observations, and preferably 50 or

100.
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Step2 Sum the absolute values of the ranges and divide by the
number of ranges (not observations).

Step 3 Divide the result of Step2 by the appropriate factor from
Table 2.9.

Step 4 Tabulate the results for groups of size 2, 3, 4, ... as in
Table 6.2.

Notes

(1) Differences due to special causes should be excluded. This can
be done by constructing a trial Shewhart chart.

(2) This method should not be used if there is an obvious trend in
the data which can be attributed to ageing of a catalyst,
machine wear, etc.

(3) If there are missing observations, groups containing these
should be deleted.

(4) You will get a different estimate if you re-sample using a
different time interval.

Table 6.2 Moving-range estimate of o

Size of
moving
range 2 3 4 5 6 7

o 1.115 1.102 1.133 1.110 1.111 1.104

Size of
moving
range 8 9 10 1 12

1.098 1.089 1.091 1.094 1.086

()

6.2.3 Examples

Example 6.2 Engineering plastic strength data

The above procedure was carried out for shift means of the example
strength data of Table6.1, and the estimates of o are shown in
Table 6.2. These estimates are flat, so there is no evidence of the
presence of any between-sample variation. The overall & is 1.110 which
is about the same. One reason for this is that the data were generated
by artificially sampling a Normal distribution.
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Example 6.3 Water content of antifreeze data
The data in Table 6.3 below represent the water content of successive
batches of antifreeze, and a plot of the data is given in Fig. 6.2. The
results of the moving-range estimates of ¢ are given in Table 6.4,

Table 6.3 Water content (in ppm) of batches of antifreeze

2.23 2.53 2.62 2.63 2.58 2.44 2.49 2.34 2.95
2.54 2.60 2.45 2.17 2.58 2.57 2.44 2.38 2.23
2.23 2.54 2.66 2.84 2.81 2.39 2.56 2.70 3.00
2.81 2.77 2.89 2.54 2.98 2.35 2.53
3_
2.9 1
2.8
ﬁé 2.7 4
€ 2.6 1
o Mean
% 2.4 4
=
2.3 1
2.2 4
21 T T 1T © 1 T T L T 1
0246810121416182022242628303234

Table 6.4 Estimates of o for antifreeze data

Observation number

Figure 6.2 Analysis of antifreeze.

Size of

moving

range 2 3 4 5 6 7

o 0.179 0.190 0.196 0.202 0.202 0.204
Size of

moving

range 8 9 10 11 12

o 0.207 0.212 0.213 0.214 0.217
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The overall & = 0.220. The moving-range estimates increase steadily,
representing the fact that more between-sample variation is included in
0 as the ‘size’ of the moving range increases, 2, 3, 4, . . .. Clearly, as the
size increases further, we would expect 0 to settle down at a value close
to the overall &.

6.2.4 Discussion

The fact is that the estimation of o for one-at-a-time data has not been
thoroughly studied. Some national and international standards give the
method of successive differences described in section 3.7.2, and this is
what has been used in the past. If there is no evidence of additional
long-term variation, as in our first example, this is the preferred
method.

In the second example moving-range estimates for sizes 2, 3, 4, ...
gave increasing estimates of o. This is presumably because there are
relatively long-term changes occurring to or within the production
process, and the extent of these is more likely to be seen in a range of 4
or 6 successive points than in only 2. it is also clear from this that if the
successive difference method is used, but sampling points are set much
further apart in time, then this also will lead to an inflated estimate of
o.

For data such as Example 6.3, where there is considerable between-
sample variation, it will be necessary to think carefully about what & to
use to set up a Shewhart or a CuSum chart to control process average
level. The choice may lie between

(1) Regarding current overall variability as acceptable, and setting up
charts using a large estimate of 0. This method will tend to lose
power in detecting changes.

(2) Regarding the short-term variability as an achievable goal, setting
up charts using a small estimate of o, and identifying and removing
the causes of long-term variability. This method may lead to
frequent false alarms.

The advice of a statistician may be very helpful, but will not entirely
remove the need to make this choice.

Charts for control of spread are generally less problematic, as a o
estimate can be used which is appropriate to the time span over which
variability is being calculated, and this is generally fairly short.
However, the above arguments may still apply if o estimates increase
rapidly for different sizes of the moving-range group.
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6.3 DETAILS OF FURTHER CONTROL CHARTS FOR
CONTROL OF PROCESS AVERAGE LEVEL

In Chapter 5 we only studied the straightforward X and R or o charts.
The purpose of this section is to give some details of further types of
control chart which have been mentioned earlier in this chapter.
Moving-average and moving-range charts are especially useful for one-
at-a-time data.

The construction methods given below apply for groups of size n, but
for one-at-a-time data put n = 1 throughout. We shall assume that the
process capability study has been carried out, and that estimates of the
process variability are available. We shall denote the group means by
X, X 5, ... and the estimate of standard error of the X is denoted &,
(see section3.6.7). If we have one-at-a-time sampling, 0, is simply an
estimate of o obtained by the methods outlined in section 6.2. The
following subsections assume that this estimate . is available.

6.3.1 Moving-average charts

In the moving-average chart, we plot the averages of the last k groups
of size n, as shown in Fig. 6.3. The points on the time axis represent
times at which groups of size n are taken. For a moving average of 3s,
these averages are represented at the middle of the three points, as
shown. For a moving average of 4s, the averages fall half-way between
two time points at which groups are sampled. The points for moving
averages of 4s are recorded at the centre points of the lines shown in
Fig. 6.3; some example calculations are given in Table 6.5.

Moving average of 3s Moving average of 4s

3 o E o
2 4 1
<—o—>
c 14 o o o a
3 <——> <>
S —
S ot= s
2 D
8 -1 a a
_2—< a a
-3 5

Observation number

Figure 6.3 Moving averages.
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Points are lost at the start and finish of a moving-average chart,
because there is not enough data to complete the chart. If desired, these
missing points could be filled in with the averages of the points available
at the ends, but if this is done, the action limits calculated below should
be disregarded for these points. In a moving-average chart, only action
lines are used because successive moving averages are highly correlated.

The usual method of constructing charts, given below, ignores the
dependence between successive moving averages.

6.3.2 Construction of a moving-average chart

Following the discussion in section 6.3.1 the method is set out in Method
Summary 6.2.

METHOD SUMMARY 6.2

Construction of a moving-average chart

Step 1 (Grouped or blocked data) Obtain estimates of the process
average level, fi, and process variability, and also obtain the
estimated standard error of group means J,.

Step I (One-at-a-time data) Obtain an estimate of the process
average level, fi. Also obtain an estimate of the process
variability using Method Summary 6.1, and choose a suit-
able &, for charting.

Step2 Choose the scale of the chart so that fi is near the centre,
and so that the scale covers approximately +48./V/(k).

Step 3 Mark the action lines at fi + 3.096./V/(k).

Note

(1) This assumes that all groups are of the same size.

An alternative to disregarding the first few points is to plot the
moving averages of 2, 3, ... points, etc., until k points are available. If
this method is used the corresponding action lines have to be recalcul-
ated at each point until £ points are available.

Example 6.4 Illustration of moving-average chart
Step1 Suppose we are given pu=140, 0=2, n=5, k=3, then
0. =2/V5=0.89.
Step 2 Scale chart to cover 140 £ 40./V/(k) = 140 + 4 x 0.89/V3
= 137.94, 142.06.
Step3 Action lines: 140 + 3.09 x 0.89/V3 =138.4,141.6
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Figure 6.4 Construction of a moving-average chart.

6.3.3 Moving-average charts: interpretation and use

The points given in section 5.2.3 for X-charts are all applicable here,
except that there are no warning limits.

Moving-average charts are usually used particularly when ‘groups’
have to be of size one or two, so that the resulting control limits are
wide. The disadvantage is that because averages are taken over a period
of time, there may be a delay before lack of control is detected.
Furthermore, suppose we are averaging over four groups, then if just
one of the group means is out of control, this can easily be swamped by
averaging with three other group means which are in control.

Moving-average charts can be used successfully if the following
conditions are all satisfied:

(i) The group size is limited for some reason.
(2) The true mean changes rather slowly.
(3) The process spread is fairly stable.

The construction method given above ignores the correlation between
successive moving-averages. It assumes that if the standard error of a
point is 0., then the moving average of k of these points will overall
have a Normal distribution with standard error o./Vk. However,
correlation considerably affects run-length properties, and this is dis-
cussed in section 6.7.2.
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6.3.4 Exponentially weighted moving-average charts (EWMA charts)

The exponentially weighted moving-average chart is particularly useful
either when we have one-at-a-time data, or else when great precision is
needed to detect small changes. Basically the method is to form a new
moving-average at each sampling point by calculating a weighted aver-
age of the new value and the previous moving-average. Therefore in the
exponentially weighted moving-average chart all of the past data has
some effect on the current value, but it rapidly loses influence. The
details are given in Method Summary 6.3 (we assume that an estimate
of o, is available). The implied weights on observations are given in
Table 6.7.

METHOD SUMMARY 6.3

Construction of exponentially weighted moving-average charts

Step 1 (Grouped or blocked data) Obtain estimates of the process
average level, fI, and process variability, and also obtain the
estimated standard error of group means &..

Step I (One-at-a-time data) Obtain an estimate of the process
average level, fi. Also obtain an estimate of the process
variability using Method Summary 6.1, and choose a suit-
able 0, for charting.

Step2 Choose a value for p in the range 0.1-0.5. This is the
amount of weight put on the current value.

Step 3 Choose a starting value, k,, as either the overall mean or a
target value.

Step 4 Calculate and plot the moving average k; using the formula

ki = P}?i + (1 = pkiwy
where the X, are group means, or for one-at-a-time data,

single values.
Step 5 Use action limits only, and place them at

ux A6,

where the A, values are given in Table 6.6.

We see from Table 6.7 that with p = 0.5 the weight on a group drops
down markedly after 3 or 4, but with p = 0.1, the weights decrease
rather slowly. The choice of p in any particular case depends on how
much weight is required on past group means.
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Table 6.6 Factors for constructing exponentially weighted moving-average charts
from an estimate of o(A)

Group size
)/ 1 2 3 4 5 6 7 8

0.05 0.495 0350 0286 0247 0221 0202 0.187 0.175
0.10 0.709 0.501 0.409 0.355 0.317 0.289 0.268 0.250
0.15 0.880 0.622 0.508 0.440 0.394 0359 0.333 0.311
0.20 1.030 0.728 0.595 0.515 0.461 0.420 0.389 0.364
0.25 1.168 0.826 0.674 0.584 0.522 0.477 0.422 0.413
0.30 1.298 0918 0.750 0.649 0.581 0.530 0.491  0.459
0.35 1.423 1.006 0.822 0.712 0.637 0.581 0.538  0.503
0.40 1.545 1.093 0.892 0.773 0.691 0.631 0.584 0.546
0.45 1.665 1.177 0.961 0.833 0.745 0.680 0.629  0.589
0.50 1.784 1.262 1.030 0.892 0.798 0.728 0.674 0.631

Notes: (1) The action lines are obtained by multiplying these factors by an estimate of o.
(2) The first 6 observations should be ignored when making decisions about in or
out of control.
(3) The values are 3.0902V{p/n(2 — p)}.

Table 6.7 Implied weights for exponentially weighted moving averages

Current Number of previous observations
)4 observation 1 2 3 4 5
0.5 0.5 0.25 0.125 0.0625 0.0312 0.0156
0.2 0.2 0.16 0.128 0.1024 0.0819 0.0655
0.1 0.1 0.09 0.081 0.0729 0.0656 0.0590

Exponentially weighted moving-average charts are particularly useful
with processes which have slowly drifting means, rather than those
which are liable to sudden jumps.

6.3.5 Exponentially weighted moving-averages: starting-up problems

The factors given in Table 6.6 are based on the asymptotic variance of
m;. If we write the asymptotic variance V(k), then we have

V(k) = p?V(X)) + (1 = p)’V(k)
leading to

V(k) = (2—ij()?,.) - n—é’—‘ip—). (6.3)
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However, if we start with a fixed k,, then we have
V(k) = p*o®/n
V(ky) = [p? + p*(1 — p)*]o*/n
V(ks) = [p? + p*(1 — p)* + p*(1 — p)*]0%/n, etc.

The convergence of these to the asymptotic formula given above can
sometimes be rather slow, see Table 6.8, especially if p is rather small.

Table 6.8 Tendency of standard error of k; to the asymptotic formula

Standard error of k; at observation

p 2 4 6 8 10 Asymptotic
0.05 0.069 0.093 0.109 0.120 0.128 0.160
0.10 0.135 0.173 0.194 0.207 0.215 0.229
0.20 0.256 0.304 0.322 0.329 0.331 0.333
0.30 0.366 0.408 0.417 0.419 0.420 0.420

Owing to this feature, it is unwise to take much notice of an out of
control signal given within the first few observations when starting up an
EWMA chart.

6.4 CONTROL OF PROCESS SPREAD

6.4.1 Moving-range charts

We have already discussed moving ranges in section 6.2, and a plot of
moving ranges can be made in order to control process spread. For
one-at-a-time data, a moving-range chart or a moving-standard-deviation
chart is the only way of controlling process spread. However, one of
these charts may be useful with grouped data, as an extra chart, if there
is a substantial between-group variation. In this case we plot the moving
range of the group means.

METHOD SUMMARY 6.4

Construction of moving-range chart

Step 1 Determine k, the number of sampling points the range is
taken over. This is often determined by practical considera-
tions.
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P

Step2 (One-at-a-time data) Obtain an estimate & of the process
spread by using moving ranges of k points; see Method
Summary 6.1.

Step 2 (Grouped or blocked data) Obtain an estimate G, of the
standard error of group means; see Method Summary 3.6.

Step 3 Choose the scale of the moving-range chart so that the
range goes down to zero, and up to about twice the largest
range observed.

Step 4 Mark the action limits on the chart:

Lower action limit Ds&
Upper action limit D¢0
where D5 and Dg are given in Table 5.3.
There are no warning limits on a moving-range chart.

The interpretation of a moving-range chart is as for a range chart; see
section 5.3.3. A crucial point is the choice of k, the number of sampling
points that the range is taken over. As k increases, more between-sam-
ple variation will inflate the ranges. The choice of k is determined by
practical considerations of the type of variation it is intended to control.

We notice again that this construction ignores the dependence be-
tween successive moving ranges.

6.4.2 Moving-standard-deviation charts

Instead of using moving ranges, we could use moving standard devi-
ations, and otherwise the procedure is as given in section 6.4.1. Again
only action lines are used, and the factors Dy and D, from Table 5.4
are used. The quantities plotted are the moving standard deviations.

There is very little to choose between a moving-range chart and a
moving-standard-deviation chart, except that the former are more
clearly understood by process staff.

6.5 CHOICE OF CHARTING METHOD

6.5.1 Choice between charts for control of average level

Here we summarize some of the advantages and disadvantages of the
alternative Shewhart charts for controlling the average level of a
process. In Chapter 7 we introduce CuSum charts, and then give some
discussion about an overall choice of chart. In the process industries,
where both sudden movements and sudden drifts occur, there is value in
keeping both an X chart and a moving-average chart.
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X charts
Advantages (1) Good at detecting sudden jumps in average level
(2) Well used and reliable
(3) Easy to understand
Disadvantages (1) Rather slow to detect drifts in average level
(2) Not very good at picking out small changes in
average level.
Moving-average charts
Advantages (1) Better than X charts at detecting slow drifts
(2) Can be used when group size n is small, and when
n=1
Disadvantages (1) Delays in responding to sudden jumps in average
level.
Exponentially weighted moving-average charts
Advantages (1) Good at detecting slow drifts
(2) Can be used with small group sizes, and when n =1
Disadvantages (1) Delays in responding to sudden jumps.

For one-at-a-time, individual charts (n =1 in the methods given in
Chapter 5) are sometimes used, for example when data is infrequent,
and moving averages would cause undue delay. A moving-average chart
or EWMA chart should then be used as well.

6.5.2 Charts for control of process spread

If the data is one-at-a-time, then the moving-range chart is the only one
usable. If the data is grouped or blocked, ordinary range or standard
deviation charts should be used. However, even in this case, a moving-
range chart based on group averages will help to keep control of
between-sample variation, if there is any.

The choice of charting method will be discussed again after CuSum
charts have been explained; see Chapter 7.

6.6 PRACTICAL USE OF SHEWHART AND
MOVING-AVERAGE CHARTS

6.6.1 Relation between ‘control’ and process capability

A process is said to be ‘in control’ if there is no evidence from either
the chart for control of average level or the chart for control of process
spread that assignable causes of variation may be present. It is impor-
tant to note that we can have a process in control, but producing
defective quality material because of low relative capability (see
Fig. 6.5). The reverse can be true when the process is of high capability.
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Figure 6.5 Control and capability of processes.

6.6.2 Out of control!

When the charts show an ‘out of control’ point which is not due to
miscalculation, we may have evidence from either or both of the charts
for average level and the chart for process spread. Apart from the
specific rules given in previous sections, there may be other obviously
non-random patterns in the plots. For example, we may have too much
clustering of the data in the centre of the chart, or too much clustering
towards the extremes. Alternatively, we may observe ‘cycles’ in the
charts.

The great value of the charts is that they show when to set up
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procedures to look for special causes of variation (which may involve
stopping the process) and when to leave the process alone. By seeing
whether there is evidence of a shift in level, or spread, or both, and by
seeing whether this is a sudden change or a steady drift, we can get
some clues as to the possible cause. The step of ‘problem-hunting’ for
special causes of variation is expensive and time-consuming — but not so
expensive as bad product!

In some industries, indications of when to leave a process alone are as
valuable as indications of when to search for a special cause.

6.6.3 Shewhart and moving-average control charts — the operational
phase

Here we continue the discussion started in section 5.1.3, and assume
that the ‘set-up’ phase of Shewhart control charts has been completed.
Figure 6.6 shows the flow of the operational phase.

(1) Calculate trials charts
based on trial data set

f

(2) Search for special causes

of variation if any points
signal action \

) (3) Special causes present —I

(4) Routine use of charts.
Omit relevant samples and

r recalculate charts \\

\ (5) Special causes present.

Initiate action on process

(6) No ‘out of control points’
Periodic reassessment of
process capability

!

(7) Periodic reassessment of
sample size and frequency

i

—L(8) Recalculate charts ]

Figure 6.6 Shewhart control charts — the operational phase.
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Box 1 We assume that at least 20 groups of observations are available
(or at least 50 observations for one-at-a-time data), and that trial limits
are calculated as given in sections 5.2, 5.3, 6.3 and 6.4.

Boxes 2 and 3 If any of the ‘trial’ groups shows an out of control signal
on any of the charts and a special cause of variation is found to be
present, then this group should be omitted and the limits recalculated.
We should beware of discarding data we simply do not like, but by
omitting groups where a special cause is known we will get a better
estimate of the underlying process spread. In particular, the process
spread should be in control before we can proceed much further.

Box 4 Once satisfactory limits are established, we use the charts as
specified.

Box 5 If a special cause of variation is present, we must initiate action
on the process.

Boxes 6-8 If there are no ‘out of control’ points, periodic checks should
be made on the process, to examine the process capability, and to see if
the limits need recalculating. Occasionally, we need reviews of the
choice of sample size and frequency.

6.7* PROPERTIES OF EWMA AND MA CHARTS

6.7.1 The average run length of EWMA charts

We shall operate the EWMA scheme of section 6.3.4, with my=u, a
target value of zero, and o = 1. Action limits are placed at +h. Then
the first observation leads to

m; = (1 - pu + px;.

If this is beyond %4, a decision is reached, but otherwise a point in the
continuation region is reached. In this way, the ARL function L(u) is
seen to satisfy

L(u) = Pr{|(1 = p)u + px| > h)

- J'(1(1—17)14+px\<h} {1+ L((1 = p)u + px)}f(x) dx

which is
1" y—(1- p)u)
L = —_ -~ 7
() =1+ pf_hL(y)f( » dy. (6.4)

This is a Fredholm integral equation of the second kind. Crowder (1987)
has tabulated the solutions of this equation. He also showed how to
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extend the methods to obtain other properties of the run-length distribu-
tion.

Crowder (1987) showed an interesting property of EWMA schemes.
Notwithstanding a design which gives a long ARL when on target, there
can still be a substantial probability of a false signal within the first few
observations. This is the ‘starting problem’ discussed in section 6.3.5.
Unfortunately, the theory given above goes through most easily when a
constant action limit is used.

6.7.2 Properties of moving-average (MA) charts

To get ARLs of MA charts we adopt the following procedure. A
moving-average scheme of k points is used, and a single action limit put
at h. The target is taken as zero, and observations X; are assumed to be
N(0,1).
Now define
yi= (1 + - +x)fk
Vir1 = (X2 + -+ x)/(k + 1)
so that the ARL of a one-sided scheme is
L= P(y,>h) + 2Py < h, ys1 > h) + - -
+ kP(yk < h; cees Yok—1 < h; Yok > h)
+(k+ DP(ye < h,...,yu <h yyus1 > h),

then it can be shown (Kuhbier, personal correspondence) that this can
be rewritten as follows. Define

p1= Py, <h)
Pr= Pk <h Y1 < h)

Pe=POr <h ...,ypu1<h)
then the ARL is
L=(01-p)+2p:—p2)+ -+ k@1 —Pr)
p
+ ———((k + Dps-1 — kpy). (6.5)
Pk-1 — Pk

This formula involves a great deal of computing, so it is not a
practical method for large values of k. The method can be extended, in
principle, to cover observations which are not independent, but come
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from an autoregressive process, but again there are computational
problems. An approximation is given by Lai (1974), but this also
involves the calculation of multivariate normal integrals.

The formula (6.5) can be extended to deal with the two-sided case,
but the computational problems are then worse. It seems likely that the
formula given by De Bruyn (1968) for combining the ARL of two
one-sided schemes can be used as an approximation,

1 1 1
- = + —
L L* L'
where L" and L' are the ARLs for the upper and lower boundaries.

There are a number of practical situations where moving-average
charts might be useful, and some quicker, more approximate method of
obtaining ARLs would be invaluable.

6.7.3 Properties of moving-range and moving-standard-deviation charts

‘Moving’ charts for control of process spread are likely to be very
sensitive to the assumptions of normality, independence, etc., and to the
presence of autocorrelation. There is need for a thorough study of this
type of chart.

EXERCISES 6A

1. The melt flow index of a plastic is measured on a single sample taken
from pre-defined bags, so that readings are taken once per tonne,
regardless of the method of shipment to the customer.

The MFT specification for this grade is 4.5 =MFI = 6.5.

Table 6.9 gives MFI readings taken from several production
campaigns to make the same grade of the product. Finish the
calculations and set up control charts to control process average level
and process spread.

2. Use the data sets in Appendix B to set up and plot moving-average
charts. Use the means given as if they were single observations. Set
up the chart using the ‘I’ datasets, then run the corresponding
datasets A, B, C, D until action is given, or until the end of the data
set. Count the run lengths as the number of the original means used.
Compare your results with those you obtained in Exercise SA.1.



Table 6.9 Melt Flow Index

Bag Mov. Av.  Smoothed Bag Mov. Smoothed

No. MFI 3 point Twice No. MFI Av. Twice
1 575 41 5.73 565 5.65
2 530 5.42 42 5.68 5.64 5.63
3 521 5.14 5.25 43 5.52 559 5.59
4 4091 5.19 5.15 44 5.57 553 551
5 545 5.11 5.19 45 5.49 542 5.48
6 4.98 5.26 5.21 46 5.21 549 5.49
7 536 5.26 5.28 47 5.77 556 5.56
8 543 5.32 5.31 48 5.69 5.63 5.60
9 518 5.36 5.30 49 5.44 560 5.59

10 5.47 5.20 5.24 50 5.67 5.53 5.59

11  4.96 5.15 5.08 51 5.49 5.64 5.65
12 5.01 4.90 4.95 52 5.75 577 5.74

13 4.73 4.80 4.76 53 6.06 583 5.79

14 4.67 4.58 4.79 54 5.68 577 5.76

15 434 4.99 4.95 55 5.57 5.68 5.69

16 5.95 5.28 5.31 56 5.80 562 5.62

17 5.54 5.66 5.41 57 5.50 5.56 5.52
18 5.48 5.29 5.33 58 5.38 538 5.42

19 4.85 5.04 5.03 59 5.26 532 532

20 4.78 4.77 4.81 60 5.31 526 5.29

21 4.69 4.61 4.72 61 5.21 529 523

22 435 4.78 4.77 62 5.36 5.14 5.26

23 5.30 4.92 4.95 63 4.86 535 5.30

24 5.11 5.14 5.03 64 5.83 542 5.50

25  5.01 5.04 5.10 65 5.57 572 5.66

26 5.00 5.11 5.08 66 5.75 584 5.83

27 5.33 5.09 5.03 67 6.19 593 5.89

28 4.93 4.89 4.90 68 5.86 5.91

29 442 4.71 4.77 69 5.67

30 4.78 4.69 4.72 70 5.44

31 4.88 4.76 4.78 71 5.18

32 4.63 4.88 4.84 72 5.15

33 512 4.89 4.93 73 5.37

34 492 5.03 5.00 74 5.40

35  5.05 5.08 5.10 75 5.30

36 527 5.20 5.17 76 4.86

37 527 5.24 5.28 77 4.83

38  5.19 5.39 5.37 78 4.65

39 572 5.49 5.52 79 4.72

40 5.55 5.67 5.60 80 4.74
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EXERCISES 6B

1. Most one-at-a-time data in the process industries is autocorrelated.
Set up a simple simulation study to examine the effect of autocorrela-
tion on the methods given in section 6.2 for estimating o.

2. Use the variance results given in section 6.3.5 to work out improved
boundaries for use at the start of an EWMA chart, instead of using
the asymptotic variance throughout.

3. Set up a simulation experiment to determine the ARL curve of
moving-average and EWMA charts. Take care to define your starting
rule carefully, until the asymptotic boundaries are reached. If the
run-length distribution is approximately geometric, how many trials
will be needed to determine the ARL to within 1%? (It is suggested
that you only try those situations where the ARL is short; for
example, when the mean has shifted one or two standard errors from
the target.)
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Cumulative sum techniques
for continuous variables

7.1 INTRODUCTION

7.1.1 The value of CuSums

In the 1960s an alternative to the Shewhart chart was devised based on
cumulative sum plotting, and we have already introduced this method in
Chapter 3. Basically, it is simply a different way for deciding when a
process is or is not in control. Practical use of CuSums is therefore in
the same context as Shewhart charts, and the ‘set-up phase’ described in
section 5.1.3, and the need to periodically reassess process capability
(section 6.6.3), apply as before.

CuSum charting has been used a great deal in industry, and some
published examples are given, for example, in Woodward and Gold-
smith (1964). Changes of mean are shown up in CuSum charts by
changes of inclination of the chart, and it is this which gives CuSum
charts their greater visual impact. For example, Fig. 7.1 shows again the
CuSum plot of the example in section 3.5.3, with 0.24 added to the last
25 observations, and there is very clear evidence of a change in the
mean at about observation 25. Figure 7.2 shows the same data, plotted
on a standard Shewhart chart, and there is no evidence of a change.

In Chapter 3 we were using CuSums on past data, but in this chapter
we are using CuSums on new data, in order to detect changes. With
past data there is no problem over scaling the chart, as we can simply
scale appropriately. With new data, some convention on scaling is
necessary and we discuss this next. An estimate of o, is needed, and this
may be relatively straightforward, if it is appropriate to use Ow/Vn, or
may involve the use of one of the methods of estimation discussed in
Chapter 3 or 6. We shall assume that an estimate of o, of the standard
error of the points is available.



Cusum
»
1

0 AT T T

0 5 10 15 20 25 30 35 40 45 50
Observation number

Figure 7.1 A CuSum plot for the data of the example in Section 3.5.3.
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Figure 7.2 A time plot of the capsule weights given on page 51 but with 0.24 g
added to each of the last 25 observations.
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7.1.2 Choice of scale for plotting a CuSum

Visual interpretation of CuSum charts is very important. To make this
as easy as possible we require a good choice for the relationship
between the scales of the horizontal and vertical axes. The following is
recommended for most applications, although there may sometimes be
good reasons for choosing other relationships. The idea behind this rule
is that inclinations of 45° are easiest to see, so we try and arrange that
shifts likely to be of importance, that is shifts of the mean of about 20,
have an inclination of about 45°. The rule is set out in Method Summary
7.1 (Fig. 7.3).

Cusum

+ -
This distance, equal to 1 horizontal unit,
to be about 2o,

n T T T T — T T —T n
9

0 1 2 3 4 5 6 7 8

Observation number

Figure 7.3 Scaling a CuSum chart.

METHOD SUMMARY 7.1

Scaling a CuSum plot

Stepl Choose any convenient interval for the horizontal axis
(sample index number, days, batches, etc.)

Step2 Mark off one unit of this interval on the vertical scale
(cumulative sum).

Step3 Let this distance represent approximately 2o, units, where
o, is the standard error of the observations on which the
CuSum is calculated. (Since it is important that the scale
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should be easy to use, then in practice this distance
represents a round number between 1o, and 30, units.)

Even with a good choice of scale there are sometimes problems in
plotting when the CuSum plot moves off the top or the bottom of the
chart. The absolute position of the chart is not important; it can all be
shifted up or down on the page without affecting its properties or the
conclusions to be drawn. So for some appropriate earlier sampling point
define a new starting point for the CuSum (this may or may not be
zero). Calculate and plot all subsequent values from this point, in
parallel with the original (see Fig. 7.4). Drop the original plot when this
seems appropriate. Alternatively, the plot may be drifting because the
target value used for calculation is not the same as the process mean. In
this case it may be that a different target value should be used.
However, this depends on the use to which the plot is to be put.

j Original
- With new cusum
£ starting value
o A
3
8}
i I
|
|
0 T T —
I
. With new
E 7 ) target value
2, '

Figure 7.4 Coping with CuSums going off the chart.

7.1.3 V-masks for CuSums to control process average level

Shewhart charts are used with a simple decision rule (the action and
warning lines) to see when the process is out of control, requiring
corrective action, and when the process should be left alone.

CuSums can also be used with decision rules to decide when a shift in
process average has occurred. The simplest CuSum decision rule uses a
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truncated V-mask. The International Standard suggests a ‘standard
mask’, but others can be constructed, and their design will be discussed
later. The mask is shown in Fig. 7.5. The datum point A is placed on
the latest CuSum value, and an out of control signal is given when the
previous trace crosses the arms of the mask. The vertical half-distance,
AB or AC is termed the decision interval, H = ho.. The two sloping
lines, BD, CE, are the decision lines. They may be extended indefinitely
beyond D or E if required.

B Decision
intervals

Figure 7.5 Truncated V-mask for CuSum charts.

In the standard V-mask h =35 and f = %, so that the decision interval
H is 50.. The slope of the arms is then determined by setting the
distance F = %ae, so that DY = YE = 100,, where Y is 10 sample
intervals before the datum point A. Other possible choices for - and f
will be discussed later.

Notice that a line of constant slope less than that of the arms of the
mask will never cross the mask, so that the slopes of the arms relate to
minimum ‘interesting’ changes in the mean. The ‘decision interval’ H
allows for some random scatter about the plot.

METHOD SUMMARY 7.2

Setting up a CuSum V-mask

Step 1 Scale your plot as in Method Summary 7.1.

Step2 Draw a vertical line equal to a distance 2H on your chosen
scale. Draw a horizontal line through the middle of this.

Step3 Move back 10 steps, and draw a vertical line of length
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(2H + 20F), centred on the same horizontal line as in Step
2.

Step4 Join up your points to make a V-mask. Transfer this to a
piece of acetate sheet for use as you plot data.

Using the V-mask
The method of using the V-mask is given in Method Summary 7.3; see
Fig. 7.6. Obviously the shift in mean may have occurred some time
before it is signalled. Estimation of the point of change and of its
magnitude can be made from the CuSum chart, by simply looking to see
when the chart changed its slope.

Figure 7.6 Use of a V-mask.

METHOD SUMMARY 7.3

Using a CuSum V-mask

Step1 Plot the latest points on your graph, using Method Sum-
mary 3.2, with the estimated mean as reference value.

Step2 Put the centre point of the truncated V-mask on the latest
datum.

Step3 If the lower arm (or its extension) crosses the trace, an
increase in mean is signalled.

Step4 1f the upper arm (or its extension) crosses the trace,
decrease in mean is signalled.

7.1.4 Average run lengths and comparison of charts for control of
process average level

If a large change in mean occurs it will cause a large average change in
gradient of the CuSum, which in turn will lead to a rapid decision. A
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smaller change in mean will generally have to persist for much longer
before it is detected. If the process is on target all the time only a very
unusual pattern of random behaviour will cause the CuSum to cross the
decision lines, so that the average run length will be large. The ARL
curve of the standard CuSum scheme is given in Fig. 7.7. (For the SN
reference in the chart see the reference to the ‘snub-nosed’ scheme
below.)

2004 W\

\\ Shewhart scheme

100+

50 A

> SN scheme N ~-

1 T T T T T 1

0 1 2 3
Deviation from target in standard errors

Figure 7.7 ARL curve of Shewhart and CuSum chart.

As there are many possible choices of the parameters 4 and f of the
V-mask, leading to different ARL curves, it is difficult to compare
CuSum and Shewhart schemes precisely. However, the standard CuSum
V-mask can be thought of as a good equivalent to the ordinary
Sherwhart chart with either ‘probability’ or ‘popular’ limits. Figure 7.7
also shows the ARL curve for the Shewhart chart with probability
limits. The comparison between these ARL curves is a good general
summary of the comparison between Shewhart and CuSum charts. The
following observations are useful.

If the process mean is:

(1) on target, the Shewhart chart is more likely to signal a warning
than a CuSum chart;



Introduction 145

(2) between about jo. and 1}o, from the target, the CuSum chart
detects this much more quickly than the Shewhart chart;

(3) more than 30 from the target, the Shewhart chart often detects this
more quickly than CuSum chart. (It may take at least two or three
observations on a CuSum to spot a slope, whereas one very bad
point can signal action on a Shewhart chart.)

Clearly the CuSum chart has much better properties than the Shew-
hart chart except for very large changes in mean. However, this can
itself be compensated for by using different shapes for the V-mask; see
section 7.1.5.

7.1.5 Alternative shapes for the mask

Bissell (1979) showed that some improvement in the ARL properties of
the CuSum scheme can be obtained by using a semi-parabolic mask,
shown in Fig. 7.8; see Table 7.1. The ARL curve in Fig. 7.7 shows
greatly improved properties.

Rowlands et al. (1982) showed that a much simpler and almost
equivalent procedure is to superimpose two or more V-masks, as shown
in Fig. 7.9, leading to a snub-nosed V-mask. They conclude their studies
by showing that superimposing two masks is enough to achieve nearly
optimal results. Some of the results in Table 7.2 are drawn from
Rowlands e al. (1982). We see that the ordinary V-mask gives very
good ARL properties over a limited range of values for shifts of the
mean. The semi-parabolic mask has good properties over a wider range,
but the snub-nosed scheme is as good, and is easier to operate; see
section 7.1.7. The snub-nosed scheme (2), which superimposes (h =5,
f=0.5) with (A =2.05, f=1.3) is a good equivalent of the ordinary
Shewhart charts for ordinary use. Alternatively, the snub-nosed scheme
(3) has a slightly higher on-target ARL.

Figure 7.8 Semi-parabolic CuSum mask.
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Figure 7.9 Snub-nosed V-mask.

Table 7.2 Parameters for constructing a semi-parabolic CuSum mask

Distance from datum Half-width of mask at i
(sample intervals) (units of a,)
i Y
0 1.25
1 3.1
2 4.65 Y = 1.25 + 2i — 0.15:2
3 5.9
4 6.85
5 7.5
6 8.0
7 8.5
8 9.0
9 9.5 Y =5+0.51
10 10.0
15 12.5
20 15.0

Note: The equations may be used for construction of the mask if required.

7.1.6 Sample size and sampling frequency

All the above discussion has been in terms of o, the standard error of
sample means. The sample of size n is drawn at intervals from the
process, and provided there is no additional between-group variability
the value of n determines the actual sensitivity of the CuSum, since,

o, being the standard deviation of process variability.
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In addition, it must be said that all ARL values above depend quite
critically on the assumption that the sample means have a Normal
distribution. There is no guarantee that this is indeed true for the
individual values from the process, but we stated in Chapter 2 that the
central limit theorem operates to confer normality on averages. To
ensure this it is thought that there should be a minimum of 4 in the
sample, or more if it is known that there is evidence of appreciable
non-normality in the distribution of individual observations. With this as
a lower bound, we can choose a sample size based on the following
reasoning. The ARL at 1.50, is seen to be about 6 on Fig. 7.7. If we
choose n so that 1.50, is the smallest change of importance, this will
give us an ARL of about 6.

Let M be the actual change in level of mean that is important. Then
choose n so that

M = 1.50,
that is
1.50,]?
n = [ ]

Let the minimum length of time for which such a change might
persist, or the time for which it is tolerable, be D. Choose a sampling
interval <D /6. Clearly, either or both of these requirements may need
modifying depending on cost and practicality.

For one-at-a-time data, or data where there is substantial between-
group variability, the only flexibility we might have is in the sampling
frequency. If we assume that a change of 1.50, has an ARL of about 6,
we can adjust the sampling frequency accordingly. Extra care needs to
be taken over non-normality for one-at-a-time data.

7.1.7 The decision interval scheme for a CuSum

The plotted CuSum using a V-mask is an excellent visual device.
However, it may be necessary to computerize the maintenance of
CuSums, and the decision-interval scheme allows this and is exactly
equal to the plotted CuSum above. (For the snub-nose CuSum scheme,
two of the following decision interval schemes have to be superimp-
osed.) The procedure is detailed in Method Summary 7.4.

The scheme works for a one-sided test, so two decision interval
schemes must be operated to check for increases or decreases in the
mean. The basic idea is to cumulate a sum using a specially chosen
reference value, and ignore negative values of this score (for increases in
the mean). That is, we calculate

S,+1 = max {0, S; + (obs. — reference)}.
In the description of Method Summary 7.4, the decision interval, & and
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slope, f, are as defined in section 7.1.3, but the use of these parameters
is slightly different.

METHOD SUMMARY 7.4

Decision interval CuSum schemes

Stepl Set K,=T+ F
Set K,=T—-F
where T is the reference value used for a CuSum plot, and
F = fo, is the slope of the arms of the V-mask.
To detect increases in process average level:
Step2 Set CuSum Cl1 at zero.
Step3 Accumulate the CuSum using K as reference value.
If the CuSum becomes negative return to Step 2.
If the CuSum reaches or exceeds the decision interval
H = ho, this constitutes an action signal.
To detect decreases in process average level:
Step4 Set CuSum C2 at zero.
Step5 Accumulate the CuSum using K, as reference value.
If the CuSum becomes positive return to Step 4.
If the CuSum reaches or falls below the value —H this
constitutes an action signal.
CuSums for increase and for decrease in the mean can be run
simultaneously.

H / Upper_decision boundary

é

Observation number

T Ww\ ALUTARY

Lower decision boundary

c2

T T T T T T T T

0 10 20 30 40 50 60 70 80 90 1 OO
Observation number

Figure 7.10 Two-sided decision interval scheme.
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If a two-sided decision interval scheme is calculated and plotted, it
will look something like Fig. 7.10. A worked example for a one-sided
scheme will clarify it.

Worked example

As an example we return to the data given in Table 3.3, but with 0.24
added to the last 25 values. The target value for this data was 5.0 and
the standard deviation 0.3. Some of the calculations are given in Table
7.3; check these values. The plot for detecting increases in the mean is
shown in Fig. 7.11; the plot for detecting decreases in the mean can also
be made but does not signal action.

Clearly the ordinary CuSum plot has the better visual impact, but the
decision interval scheme is easier on a computer. One solution is to use
the decision interval scheme until action is signalled, and then get a
retrospective plot of the last 50 or 100 data points.

Table 7.3 Calculations for the decision in-
terval scheme

T=5.0 K,=5.15
0.=03 - { K, =485
h=35 H=15

f=1

Observation C1 C2
5.22 0.07 0
4.95 0 0
5.20 0.05 0
5.41 0.31 0
5.20 0.36 0
5.02 0.23 0
5.11 0.19 0
5.26 0.30 0
5.27 0.42 0
4,73 0 -0.12
5.02 0 0
4.97 0 0
4.85 0 0
5.20 0.05 0
4.73 0 -0.12
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Figure 7.11 Decision interval CuSum plot for the data of page 51, with 0.24
added to the last 25 data points.

7.1.8 Equivalence of CuSum plot and decision interval CuSum schemes

In order to see the equivalence, consider a trace which crosses the lower
arm of the V-mask, as in Fig. 7.12.

Figure 7.12 Intersection of lower arm of V-mask.

The arm of the V-mask has slope F. If the increment to the CuSum
plot (x — T) is less than F, this is less than the slope of the V-mask and
there will never be a signal. On the decision interval scheme (for
increases in the mean), there will never be any signal if (x — K;)
remains negative. These statements are equivalent if K; = T + F.
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A signal is given on the CuSum plot if for any s,
Et:(x - T)>sF+ H.
t=s
This is equivalent to

t

Sx-T-F)>H

t—=s
which is the rule used in the decision interval scheme. The two schemes
are therefore exactly equivalent (the result for schemes for decreases in
the mean follow in a similar way).

The above argument can be extended to see intuitively why the
V-mask works. A change of mean level means a change in inclination of
the trace. The V-mask detects changes of slope, but the decision interval
allows for a certain amount of random scatter about the trace. For a
large change in the mean, the slope of the trace will be steep, and only
a few observations will be required to reach an action point. If the
change in the mean is small, the slope of the trace will be low, and a
large number of observations are required to reach action.

7.1.9 Comparison of CuSum with some other charting methods

Table 7.4 shows a comparison of ARLs of CuSum schemes with
exponetially weighted moving-average or arithmetic running-mean
charts. In fact the EWMA chart with p = } and the running-mean chart
with k = 4 are not the best ones possible, but are the ones available in
the paper by Roberts (1966). It is in fact possible to construct such
charts with similar ARL properties to CuSum charts at specified
deviations of the mean from target, but p or k must be chosen in
advance. With the CuSum chart, no such prior choice is necessary, and
the plot works well for a range of deviations of the mean from target.

Table 7.4 ARL values for given deviations from the target value

Deviation from EWMA Arithmetic CuSum schemes

target value (Geometric  running

(multiples of &.) mean) mean h = +2.00 h = +5.00
p=1} k=4 f=%*1310 f= %0500

0 480.0 480.0 480.0 480.0

0.5 46.0 72.0 117.0 37.0

1.0 5.3 5.8 6.9 5.9

2.0 3.6 3.7 3.7 4.3

2.5 2.7 29 2.4 3.5
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7.1.10 Summary of the advantages and disadvantages of CuSum

(a) Advantages

(1) Improvement in efficiency over Shewhart in region 0.50, to 2.0c,.
ARL properties above 20, greatly improved by using semi-para-
bolic or snub-nosed mask.

(2) Change in mean detected visually by change in slope.

(3) Point of change located easily — useful in determining cause of
change.

(4) Use when measurement is moderately/very expensive and simpli-
city is not so important.

(5) Can be used when observations are available singly.

(b) Disadvantages

(1) More complex to use.

(2) If there are lots of charts either different V-masks are required, or
inconvenient scales will be used for some charts.

(3) When the process mean changes, then either the CuSum runs off
the chart, or else the target value is changed and the chart is
discontinuous. In either case other changes are less obvious. (This
can be a problem with the analysis of past data.)

(4) Changes in the process mean are detected most easily when the
CuSum is usually running level. If the CuSum shows a small
change in the mean, and no adjustment is made, changes are less
easy to spot.

(5) Do not use CuSum when measurements are cheap and extreme
simplicity is required (saved cost of CuSum may ‘buy’ increased
sample size/frequency).

7.2 CuSum CHARTS FOR CONTROL OF AVERAGE LEVEL

7.2.1 Parameters for the six alternative standard CuSum decision rules

The basic CuSum scheme, with 2 =5, f =0.5 is a very good one to use
if we wish to detect changes in mean of between 0.750, and 1.50, from
the target value quickly, and yet have long ARLs (say 700-1000) when
the process is actually on target. But in practice we may be more
concerned about a different size of departure from target, or may be
prepared to accept more frequent false alarms in order to achieve earlier
detection of real change.
We shall define the following:

L, is the ARL when the process is running at a mean of y,, the
acceptable quality level (process average/target value);
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L, is the ARL when the process is at the rejectable quality level
B
U, — U, is then the critical shift from the target value.

The International Standard gives six alternative sets of h, f which
optimize the performance of the chart for critical shifts of different sizes.
Half of these — the C1 schemes — ensure that L, is quite high, while the
other half — C2 schemes have a much lower ARL when the process is
actually on target. The parameters are shown in Table 7.5, and the
masks are shown in Fig. 7.13.

Table 7.5 CuSum parameters for alternative decision rules

Critical shift from C1 schemes C2 schemes
target, in units of (L, 700-1000) (L, 140-200)
standard error (o,) h f h f
(a) <0.75 8 0.25 5 0.25
(b) 0.75to 1.5 5 0.50 3.5 0.5
(c)>15 2.5 1.0 1.8 1.0
- 2o >
== . .
80,4 ~~_T_
b
40,
Cc
C1 scheme 0 1 C2 scheme
- 403 -
-80, 1 -
- _: =120, -
o 8 6 4 2 0 0 8 6 4 2 0

Figure 7.13 Masks for C1 and C2 schemes. Extracts from British Standards are
reproduced with the permission of BSI.

A comparison of ARLs is made among the three C1 schemes and
with S1 (Shewhart chart with action and warning limits at 3.090. and
1.960, respectively). The three C2 schemes are compared among
themselves and with S2 (Shewhart chart with action and warning limits
of 2.650, and 1.650, respectively). These are shown in Table 7.6. The
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ARL, given in this table are calculated on a one-sided basis. The boxed
regions show the regions in which the ARLs are good relative to the
others.

In section 7.4, as an appendix to this chapter, nomograms are
included for designing other CuSum schemes with specific characterist-
ics. However, it is anticipated that the six given above will probably be
sufficient for a majority of cases, and that in practice C1 (b) will often
be found to be the most useful. If so, there is the great advantage that,
provided scaling is carried out as described in section 7.1.2, the masks
used for different charts will be very similar or identical. Users will then
develop a feel for the look of an in-control chart which is very useful in
diagnosing trouble.

7.2.2 Summary of steps for setting up CuSum charts for control of
average level

We shall assume that the set-up phase (see section 5.1) has been
completed to the point where we have decided to use a CuSum chart
and need to select and set up the particular chart for use.

METHOD SUMMARY 7.5

Setting up CuSum charts

Step1 Obtain data from the capability study or as fresh data.
Inspect the data for special causes of variation. Test for
Normality.

Step2  Estimate o, the standard error of group means (if these
are plotted) or of individual values. See sections 3.6, 3.7
and 6.2 for a full discussion.

Step3  Choose a suitable reference value T, using one of
(1) the value of i obtained from the data of Step 1;

(2) an (achievable) target value.

Step4  Choose one of the six standard sets of parameters 4 and f
(see section 7.2.1). If in doubt use the standard scheme
h=5, f=0.5.

Step5 Choose between a CuSum plot or a decision interval
scheme. The two schemes are exactly equivalent in their
ARL properties.

Step 6a  CuSum plot.

Set up the scale of the chart (section 7.1.2) and draw the
V-mask (section 7.1.3) using 8., 4 and f.
Calculate and plot the CuSum with reference value T'.
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Step 6b Decision interval scheme
Calculate the CuSum Cl1 with reference value
K, =T + f6.. Keep it non-negative.
Calculate the CuSum C2 with reference value
K, =T — f6.. Keep it non-positive.
Action is signalled if the size of either reaches or exceeds
h=ho..
Note
A degree of non-normality is not critical with grouped data, but
more serious with one-at-a-time data

(a) Chart interpretation
When the plot goes over the lower (or upper) arm of the V-mask, there
is evidence that the process average level has increased (or decreased).
A search for an assignable cause of variation should then be made.

The time at which the process started to change is seen on the chart,
and the slope of the chart shows the new process average.

Erratic behaviour of the chart probably indicates that the process
spread has increased.

(b) Replotting
Periodically it will be necessary to revise a CuSum chart because of a
change in the process average level or the process spread.

7.2.3 Observations one-at-a-time

CuSum charts are particularly valuable for the case where observations
occur one at a time, such as one per shift, one per hour, etc. In that
case our usual estimate of ¢ cannot be used, but the methods given in
sections 3.7 and 6.2 can be used to estimate o.. Fig. 7.14 shows a typical
example of one-at-a-time data; in this case oil content has been
determined for successive batches of product.

7.3 CuSum CHARTS FOR CONTROL OF PROCESS SPREAD

7.3.1 The distribution of ranges or standard deviations

As with the Shewhart charts for control of process spread, there is both
a range and standard deviation method available here, but there is also
a third method, based upon a transformation.

The difficulty with CuSum charts for process spread is that for
realistic sample sizes the distribution of range or standard deviation
estimates is skew, as shown in Fig. 7.15.
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-

Cusum
1

Observation number

Figure 7.14 CuSum plot for single observation example.

Probability density

—-—r—r— T T T 7 T T T

Range or standard deviation

Figure 7.15 Distribution of range or standard distribution.

This means that, if we consider differences of range from its average,
then the increases in this range are much larger than the decreases. As a
result of this, we ought really to use CuSum charts with asymmetrical
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arms. However, as increases in ¢ are what we are looking for, usually
only the lower arm is used; see Fig. 7.16. If we do use a symmetrical
mask based on the parameter values to follow, then tests for decreases
in o as shown by the mask are somewhat conservative, especially for
very small group sizes.

10F

Figure 7.16 Mask for range chart.

As with Shewhart charts, non-Normality has a much greater effect on
charts for range or s.d. than it does on X-charts, and a test for
Normality of the original data is important before setting up the charts.

The three methods are described first, then we discuss the choice.

7.3.2 CuSum scheme for ranges

METHOD SUMMARY 7.6

CuSum scheme for ranges

Stepl  Collect at least 20 groups of n observations each, where »
is usually between 4 and 6. Test the data for Normality,
using a Normal plot or otherwise.

Step2a Calculate the range of each group, and the average range
over the groups.

R = (sum of group ranges)/(no. of groups).

Use this as the target value Rr.

Step2b  Alternatively, estimate the within-group standard devi-
ation, 0,, and set Rt = d,0,; see Table 2.9 for values of
d,.

Step3  Choose whether to use a C1 or a C2 scheme. (See Table
7.8 for ARL properties.)

Step4a Scale the vertical axis so that one horizontal unit repre-
sents approximately a,Ry. Construct a mask (lower arm
only) with parameters
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H = hRy decision interval
F= fRy slope of decision line

where a,, h and f are taken from Table 7.7. Use Ry as
the reference value for the CuSum.

Step4b Alternatively, operate a one-sided decision interval
scheme, (see section 7.1.6) with parameters

H = hRy decision interval
F = kRy reference value

where h and k are taken from Table 7.7.
Notes
(1) Group sizes must be constant to run this chart.
(2) Normality should be checked periodically.

Table 7.7 CuSum schemes for range in samples from a Normal population.
Extracts from British Standards are reproduced with the permission of BSI

Sample size, n 2 3 4 5 6 8 10
dn 1.128 1.693  2.059 2326 2534 2.847 3.078
a, 1.5 1.0 0.85 0.75 0.65 0.55 0.5
h 2.5 1.75 1.25 1.0 0.85 0.55 0.5
C1 { k 1.85 1.55 1.5 1.45 1.45 1.4 1.35
f 0.85 0.55 0.5 0.45 0.45 0.4 0.35
h 2.5 1.75 1.25 1.0 0.85 0.55 0.5
C2 { k 1.55 1.35 1.3 1.3 1.3 1.25 1.25
f 0.55 0.35 0.3 0.3 0.3 0.25 0.25

Table 7.8 ARL data for CuSum range schemes. Extracts from British Standards
are reproduced with the permission of BSI

Sample Type of ARLs for mean range at stated multiples of k

size scheme 1.0 1.12 1.25 1.6 2.0 2.5 32 4.0
2 C1 779 170 66 16 7.2 43 3.0 2.3
C2 170 63 30 10 5.5 3.6 2.7 2.1
3 C1 893 165 49 9.6 4.5 2.8 2.0 1.6
C2 196 52 21 65 3.6 2.4 1.8 1.5
4 Cl 918 145 39 7.1 33 2.1 1.6 1.30

C2 157 39 15 47 2.7 1.9 1.46 1.24
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Table 7.8 (cont.)

Sample Type of ARLs for mean range at stated multiples of k

size scheme 1.0 1.12 1.25 1.6 2.0 2.5 3.2 4.0
5 C1 771 116 30 56 2.7 1.8 1.36 1.16
C2 179 39 14 40 23 1.6 1.30 1.13
6 C1 942 131 31 50 2.4 1.6 1.26 1.10
C2 204 40 13 36 20 1.45 120 1.07
8 C1 893 111 25 40 2.0 1.37 113 1.04
(07 162 29 10 28 1.7 1.26 1.09 1.02
10 C1 635 77 17 32 1.7 1.22 107 1.01
C2 184 30 9.2 26 152 117 1.05 1.01

(a) Interpretation of the chart

For a CuSum plot scheme, there is evidence that the process spread has
increased when the lower arm of the mask cuts the plot on chart. A
search for an assignable cause of variation should then be made.

(b) Assumptions
This chart assumes:

(1) that the underlying distribution is Normal,
(2) that the groups are of equal size;
(3) that points are weighted equally.

All methods of control of process spread are sensitive to Normality.
Periodically, a Normal plot should be made, by the method given in
Chapter 2. If there is any doubt, a statistician should be consulted. It
could be that a simple transformation of the data, such as square root or
logarithm, will render the data Normal.

It is difficult to take account of varying group sizes in a CuSum plot,
and this is one of the limitations of the scheme.

7.3.3 CuSum scheme for standard deviations

METHOD SUMMARY 7.7

CuSum scheme for standard deviations

Step 1  Collect at least 20 groups of n observations each, where
n is usually between 4 and 6. Test the data for Normal-

1ty.
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Step 2

Step 3

Step 4a

Step 4b

Notes

Calculate the standard deviation s; for each group.
Calculate the estimate of o, using the formula

oy = VIZ(n — DsH/Xn = )],

Choose between the Cl and C2 schemes. (A table of
ARL properties is given in Table 7.10.)

Scale the vertical axis so that one horizontal unit repre-
sents approximately a,0,. Construct a mask (lower arm
only) with parameters

H= ho, decision interval

F= fo, slope of decision line
where a,, h and f are obtained from Table 7.9. Use &,
as the reference value for the CuSum.

Alternatively, operate a decision interval scheme (see
section 7.1.6), with parameters

H = hé,

K = ko,

where h and k are taken from Table 7.9.

(1) Group sizes can vary a little.
(2) Normality should be checked periodically.

Table 7.9 CuSum schemes for standard deviation in samples from a Normal

population. Extracts from British Standards are reproduced with the permission

of BSI

Sample size,n 2 3 4 5 6 8 10 12 15 20

a,
h
Cl{k
f
h
Cz{k

f

1.5 1.0 085 075 065 055 05 045 04 035

20 16 115 09 08 06 05 04 035 03
.5 135 135 135 132 13 13 13 127 123
05 035 035 035 032 03 03 03 027 023

20 16 115 09 08 06 05 04 035 03
1.25 115 1.2 12 12 12 12 12 118 1.16
025 015 02 02 02 02 02 02 018 0.16
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Table 7.10 ARL data for deviation schemes. Extracts from British Standards are
reproduced with the permission of BSI

Sample Type of ARLs at stated multiples of the set standard deviation

size scheme 1.0 1.12  1.25 1.6 2.0 2.5 3.2 4.0
2 C1 920 190 72 16 7.4 4.4 3.0 2.3
C2 185 67 32 10 5.6 3.7 2.6 2.1
3 C1 920 160 48 9.4 4.4 2.8 2.0 1.6
C2 155 43 19 6.7 3.7 2.4 1.8 1.5
4 C1 840 130 35 6.6 32 2.1 1.5 1.28
C2 180 41 16 4.7 2.6 1.8 1.4 1.23
5 C1 820 110 28 5.2 2.6 1.7 1.31 1.14
C2 155 33 12 3.7 2.2 1.5 1.24 1.11
6 C1 850 99 23 4.3 2.2 1.5 1.20 <1.1
C2 190 33 11 3.3 1.9 1.4 1.15 <1.1
8 C1 720 74 17 3.2 1.7 1.25 <1.1 -1
C2 180 27 8.7 2.6 1.55 1.19 <11 -1
10 C1 930 78 15 2.8 1.5 1.15 -1 -1
C2 200 25 7.6 2.2 14 1.10 —»1 —1
12 C1 840 67 13 2.3 1.33 <1.1 -1 -1
C2 170 21 6.3 1.9 1.23 <1.1 -1 -1
15 Cl 860 56 9.7 2.0 1.20 <1.1 -1 -1
C2 170 18 5.2 1.6 1.13 -1 -1 -1
20 C1 810 40 6.9 1.6 <1.1 -1 -1 -1
C2 166 17 4.6 1.37 <1.1 -1 —1 —1

7.3.4 CuSum scheme for standard deviations based on transformations

BS 5703, Part 3, section 7.5.2, gives a CuSum method for standard
deviations based on the transformation

y = (s/0)%6%

which turns out to be nearly Normal for group sizes n = 3-20. See BS
5703 for values of the constants for charting.

7.3.5 Choice between plotting methods

The gain in efficiency by using CuSums for control of process spread is
less than that for control of process average level, and Table 7.11 shows
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Table 7.11 Average run length at different multiples of Ry for ranges in groups
of size 4

Scheme Multiples of Rt

1.0 1.12 1.25 1.6 2.0
C1 918 145 39 7.1 3.3
S1 640 138 44 8.1 3.4
C2 157 39 15 4.7 2.7
S2 166 49 20 52 2.7

a comparison of Shewhart and CuSum schemes for selected parameters.
However, there is a substantial gain in visual interpretation. In addition,
CuSum schemes enable us to estimate local averages, and to see more
clearly when a given change in the process spread started.

For hand plotting, ranges have the advantage of simplicity. The
standard deviation scheme is slightly more efficient, but more prone to
errors in calculation for hand plotting.

7.3.6 Control of process spread with one-at-a-time data

For one-at-a-time data, suppose the observations are x, x,, X3, ...,
then we arbitrarily break the data into independent groups, and obtain
ranges or standard deviations of the groups. For example, if our data is

1.2 46 38 29 17 32

then for groups of size 2, and when using ranges, we have

observations 4.6 3.8 3.2 Note
1.2 2.9 1.7 Independent groups!

34 09 15

and then proceed as in section 7.3.2. We would usually use group sizes
in the range 2-6. A similar procedure holds for using standard devi-
ations of the groups.

For grouped data where there is between-group variation an addi-
tional chart for spread should be set up using the method discussed
above for one-at-a-time data, working on the group means.

7.4* NOMOGRAM FOR CuSums

The six sets of CuSum decision parameters (%, k) given Table 7.5 will
be sufficient for most purposes. If other choices are required, Fig. 7.17
gives a nomogram, reprinted from Goel and Wu (1971), which should
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be used as given below. Suppose the observations are normally dis-
tributed with an unknown mean u and a known or estimated standard
deviation o. The observations are sampled in groups of size n so that
the standard error of the mean ¥ is o/Vn.

METHOD SUMMARY 7.8

Design of one-sided CuSum scheme

Stepl Choose an acceptable quality level (AQL), u,, and a
desired ARL at this level, L,. Also choose a rejectable
quality level, y,, and a desired ARL at this level, L,.

Step2 Set the reference value K = (y, + u,)/2.

Step3 Enter the contour nomogram at the intersection of L, and
L., and read off 4’ and f’ from the vertical and horizontal
axes.

Step4 Calculate the implied value of n’ = (4f'20?)/(u, — u,)>.
Round this up or down to an interger value n, and
recalculate f, where

f=lua = wlVn/20.

Step5 Re-enter the contour nomogram at this value of f, and
read off a series of possibilities for L, and corresponding
h.

Step 6 Decide on a particular set of (h, f) to use from the sets of
values arising from the two methods of rounding in Step 4.

Example 7.1
Suppose u, =2.5, L, =600, y, =0, L, =6 and 0 =3.5. Then K = 1.25,
and we have A’ = 3.58, f = 0.67. This leads to

n' = (4 x 0.67* x 3.5%)/2.52 = 3.52.

For n =3, f=0.62 and we could have L, =600 with & =3.87 and
L, =6.7, or we could have L, =6 and h =3.32, L, =300. A decision
must be made between these values.

If the ARLs at the AQL and the RQL are not pre-specified, then the
next Method Summary gives a suitable procedure.

METHOD SUMMARY 7.9
Design of one-sided CuSum scheme from limited information

Step1 Given u,, u, and o, calculate
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f =l — wlVnRo

for several suitable values of » (integral).

Step2 Enter the nomogram at these values of f and tabulate
alternative schemes.

Step3 Choose between the sets of (4, f, r) given.

Example 7.2

For the values y, =2.5, 4, =0, 0 =3.5 as in Example 7.1, the values in
Table 7.12 can be obtained. A choice must be made between these
options.

Table 7.12 Illustration of Method Summary 7.9

n f =t — wlVn/20 L, L, h

1 0.357 100 9.4 3.58
200 11.7 4.41

2 0.505 100 6.0 2.83
200 7.3 3.46
300 8.0 3.89

3 0.619 100 4.6 2.44
200 5.5 2.98
300 6.0 3.32
400 6.4 3.57

METHOD SUMMARY 7.10

Calculation of ARL curve of a one-sided CuSum scheme
Step1 Given h, n, o and reference value K, draw a vertical line
at k, and obtain the L,, L, corresponding to

f=dVnjo

for a series of values of d.
Step2 For a scheme for detecting increases in the mean, the ARL
is L, at (K —d) and L, at (K + d).

Example 7.3
For h=25, n=1, o0=1, K=1, the following ARL values are
obtained:

U 0 0.5 1.0 1.5 2.0
ARL 700 70 13.4 5.4 3.2
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In order to use the nomogram, calculate the ARL of a two-sided

CuSum scheme, using the formula

1_1.1
L L, L,

where L, and L, are the ARLs of the upper and lower schemes.

Although this nomogram has a limited range of & values, it is very

accurate. For other nomograms, some with greater range, see Bissell
(1969), BS 5703, and Kemp (1962).

EXERCISES 7A

1.

4

Construct a standard V-mask from the initial data set used for the
simulation exercise of Chapter 5.

Continue the plot of a CuSum for the means of run A from that
same process, applying the V-mask to each point as it is plotted.
Stop when action is signalled, and note the run length. Look back at
your CuSum plot and try to determine the point at which the chart
first seemed to slope up or down (not necessarily the corner point).

Repeat the above for process runs B, C and D. Compare the run
lengths for each process run with those obtained for a Sherwhart X
chart in Chapter 5. For a class exercise, compare the average run
lengths. How much easier is it to detect the point of change with
CuSum charts?

Carry out the decision interval scheme calculations for process run
A of the data sets in Appendix B.

Draw the standard snub-nosed V-mask, and try it on the first few
results from Set A of Question 1. Compare your results. For the
first set, work out how to carry out this procedure by operating two
parallel decision interval schemes.

. The data in Table 7.13 were obtained one-at-a-time from a process.

Table 7.13

10.1 99 102 9.1 103 94 101 99 106 95 9.6 93 99

92 102 87 9.8 104 11.1 102 10.1 105 9.2 10.1 10.8 10.3
100 92 105 101 9.7 96 79 11.0 103 10.7 106 9.5 11.6
1.7 10.1 93 107 92 88 94 112 94 88 119 93 11.8
86 102 120 9.7 109 9.1 107 133 9.7 9.1 102 11.5 10.7
83 119 70 8.0 115 87 98 7.6 116 106 7.1 9.8 9.1
105 75 89 86 88 93 11.7 96 79 104 105 9.0
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The s.d. of this process when in control is estimated to be &, = 0.8.
Set up a CuSum decision interval scheme for ranges of 2 or 3 or 4
or 5 at a time, and determine when the process goes out of control.

Set up a CuSum scheme for standard deviation of groups of 2, 3, 4
or 5 at a time for the data given in Question 4.

EXERCISES 7B

1.

Given u, =120, L,=500, u, =124, L., =4, o0=4, determine a
one-sided CuSum scheme.

If 0=1 in Question 1, how closely can the requirements be
achieved?

Given n =1, o=1, find two-sided CuSum schemes corresponding
to
(a u,=0,L, =200, 4. =2,L. =3

(b) u,=0,L, =400, =2,L, =3.
Discuss the use of these and Example 7.3 as alternatives to a
standard Shewhart chart, in place of the ‘standard’ V-mask.

Design a set of simulation trials to verify the ARL results for the
snub-nosed V-mask given in section 7.1.5.



8 *
Further theoretical results on

control charts for continuous
variables

8.1 INTRODUCTION

In this chapter we give some further theoretical results on properties of
the charting methods. The derivation of run length properties of CuSum
schemes is given, but it is convenient first to discuss some methods

which give further information on the properties of Shewhart charts.

In practice there are several factors affecting the choice of charting

methods:

(1) The run length distribution and average run length curve under
simple distribution shift or scale changes. There is some evidence
that most run length distributions are close to geometric, so that

interest centres on the ARL curve.

(2) Ease of use and interpretation. Control charts have to be used by
factory staff, management, and others who are not trained statisti-
cally. Some charts, such as the CuSum, are not used as frequently
as they might be because of the complexities of use and interpre-
tion. For a similar reason, extra rules to improve the power of the

Shewhart chart are also less frequently used than they might be.

(3) Sensitivity to departures from assumptions. Most charting methods
assume independent and identically distributed normal random

variables. While the X chart is reasonably robust to departures
from normality, charts for control of process spread are not, and
when there are specification limits (see Chapter 9) normality can
be important. Further, there are often serial correlations or cyclic
patterns in industrial data, and the effects of these need to be

investigated.

(4) The power of various charts to detect more complex patterns than

simple shift or scale changes.
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It is perhaps surprising that there are a number of gaps in our current
knowledge of these points.

8.2 THE EFFECT OF DEPARTURES FROM ASSUMPTION
ON MOMENTS OF ¥ AND s?2

Suppose we have independent random variables X,, X, ..., with
E(X)=p, V(X) = 0?, and coefficients of skewness and kurtosis y; and
v2- (For an explanation see the references listed in section 2.2.) We now
define

X = ;(Xi — w/n
then it is easy to show that
E(X)=0 V(X) = o°/n Y1(X) = y1/Vn Y2(X) = y2/n

This simply restates the well-known central limit theorem property
that when we are dealing with sample means, non-normality of the
original distribution doesn’t matter much. However, care has to be
taken due to the small sample sizes used in SPC work.

We also find that for the sample variance

st = E(Xi - X)Z/(” -1

then
E(s?) o®

and

20° (1 e U] 1)) 8.1)

Vi) = (7——15 2n

so that kurtosis can considerably inflate the variance of s, and this
effect does not disappear as sample sizes increase.

If now we assume that successive observations have a correlation p,
then we find

EX)=0
V(X) = "72 1+ 2p(1 - %)] (8.2)

and
E(s?) = d*(1 - 2p/n) (8.3)
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Thus when we have positive autocorrelation, the variance of the mean
is inflated, whereas the sample variance gives an underestimate of o°.
The general conclusions for charting are as follows.

(a) Control of process average level

Skewness and kurtosis are likely to have very little effect, even with
samples of sizes as small as 5. Positive autocorrelation will lead to too
many false positives, when boundaries are based on independence.

(b) Control of process spread

Kurtosis of the original distribution can have a large effect on V(s?).
Positive autocorrelation will lead to far too many false positives in range
or standard deviation charts.

It should be noted that if we are dealing with charts for specification
limits, see Chapter 9, then non-normality will be very important. The
properties of charts for specification limits depend on the distribution of
individual values, rather than of process means.

8.3 SHEWHART CHARTS - MARKOV CHAIN APPROACH

The methods given in section 5.6 can be used to obtain ARL results for
Shewhart charts for a variety of distributions. In order to obtain more
detailed results on run length properties, a different approach is
necessary. The following method, given by Brook and Evans (1972) is of
interest, and it leads on to methods usable for a study of CuSum chart

properties.

8.3.1 Shewhart chart with warning lines

A Shewhart chart with warning lines can be represented as a simple
Markov chain with four states:

State 0: Current point is in the main plotting region.

State 1: Current point is in the lower warning region, and the previous
point was not.

State 2: Current point is in the upper warning region and the previous
point was not.

State 3: Current point signals action by either one point outside the
action limits or two successive points in the same warning
region.

State 3 is said to be an absorbing state since at this point the
procedure stops (with action being signalled).
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The probabilities of points falling in three of the regions is as shown
in Fig. 5.9. These probabilities will depend on the specific distribution
being assumed.

The transition matrix can now be written:

Final state

- | 0 1 2 3

Initial 0| po D1 )22 D3

state 1| po 0 j 2 Py + p3) (8.4)
2| po D1 0 (P2 + p3)
3 0 0 0 1

We write this transition matrix as P, and we denote the probability
distribution of states at step n as S,,. This consists of four elements —
one for each state — which we label as follows:

St = S S Se Sy
Then we have

Su = PS-1) = P"S, (8.5)

where 8 g, is the distribution of initial states. If X is the number of steps
to an action signal, then

Pr(X = x) = S,
For example, suppose we start in State 0, so that S, = (1,0,0,0,),

and suppose that the distribution of observations is exactly on target,
then

po =0.95, p, = p, = 0.024, p, = 0.002,

where pj3 is the probability of a point falling in the action region, and by
using (8.5) we have

Sty = (0.950, 0.024, 0.024, 0.002)  Pr(X = 1) = 0.002000
Sty = (0.948, 0.023, 0.023, 0.005)  Pr(X = 2) = 0.005148

Sty = (0.945, 0.023, 0.023, 0.008) Pr(X = 3) = 0.008260
etc.

This particular calculation is tedious, and liable to numerical errors for
large run lengths.

Another way of doing the calculations is as follows. If we always have
the absorbing states as the last state, then we can partition P

P= [R, ﬂ (8.6)
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and since the rows of P add to unity we have

p=(1-R) (8.7)
from which it follows that

pr = B' a "IR')IJ (8.9)

Therefore if we write
F,=(1-R"1 (8.9)

then the first element of F, gives the cumulative probability for runs of
length r starting from State 0. The results of some calculations per-
formed on this basis are shown in Table 8.1. This demonstrates the
highly skewed nature of the distribution, and also the closeness of the
approximating geometric distribution.

Table 8.1 Run length distribution for the Shewhart chart (probability limits)

Prob {run length < r} Geometric distribution
Run Shift in mean (standard error units)
length 0 0.5 1.0 0 0.5 1.0

20 0.0597 0.1670 0.5368 0.0607 0.1697 0.5387
40 0.1168 0.3089 0.7893 0.1177 0.3107 0.7872
60 0.1705 0.4267 0.9042 0.1712 0.4277 0.9019
80 0.2209 0.5244 0.9564 0.2215 0.5248 0.9547
100 0.2682 0.6054 0.9802 0.2687 0.6055 0.9791
150 0.3743 0.7526 0.9972 0.3747 0.7522 0.9970
200 0.4650 0.8449 0.9996 0.4653 0.8443 0.9996
250 0.5426 0.9028 0.9999 0.5427 0.9022 0.9999

300 0.6089 0.9391 0.6090 0.9386
350 0.6657 0.9618 0.6656 0.9614
400 0.7141 0.9761 0.7141 0.9758
500 0.7910 0.9906 0.7909 0.9904
600 0.8472 0.9963 0.8471 0.9962
1000 0.9564 0.9999 0.9563 0.9999

8.3.2 Expectation and variance of run length distributions

The Markov chain approach of the previous section can be extended to
evaluate the expectation and variance of the run length distribution
directly. Write the factorial moments of the run length, starting from a
state i, as
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u = E{X;(X; - 1) ... (X; —s + 1)} = E{X©)

Now a run length of r is the same as a step of one followed by a
run-length of (r — 1), so that

u = Y rOPr(X; = r)

® H-1

= Er(‘)Ep,jPr(Xi =r-1),
i=0

r=s J=

where p;; is the transition probability of going from state i to state j in
one step. The absorbing state is taken as H and state 1 as the initial
state. Now we have

r®) = (r —=1)© + 567D

so that
H-1

u) = %p,-,-{u}” + s}
=

In matrix form this equation is
(1 = R)u® = sRu~Y (8.10)

For s = 1 we have
(I-Ru=1

so that the first element of (I — R)™'1 is the average run length starting
from the initial state.

Once p has been evaluated, (8.10) can be used to calculate other
moments. We write (8.10)

p® =s{(1 = R)"'R}u‘~D
=s{(1 = R)™! = DutD (8.11)

This last equation is easy to calculate; to get the next moment a
simple matrix multiplication is required and multiplication by a constant.

The material in sections 8.3.1 and 8.3.2 can be used in a very general
setting, and the properties of many types of SPC scheme can be
evaluated using these results.

The results in Table 8.2 demonstrate that the standard deviation is
approximately what we would expect if the actual run length distribution
were exactly geometric.
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Table 8.2 Expectation and variance of run length distribution for the Shewhart
X chart with warning lines (probability limits)

Mean Expectation Std. deviation Std. deviation
if geometric

0 320.00 319.15 319.49
0.5 108.03 107.09 107.53
1.0 26.35 25.39 25.85
1.5 8.92 7.97 8.40
2.0 4.14 3.23 3.61
2.5 2.46 1.59 1.90
3.0 1.75 0.91 1.14

8.3.3 Supplementary runs rules

Champ and Woodall (1987) have used a Markov chain model to
calculate the ARL of a Shewhart chart using supplementary rules. The
procedure is as follows.

The rules are all expressed in the form that k; of the last m;
observations fall in the range (a;, b;), assuming unit variance, and a zero
mean when on target. This is denoted T(k;, m;, a;, b;), and is called the
rule C;. Many of the suggested ways of operating a Shewhart chart can
be expressed as using a combination of the rules, C;u C;U Gy, - - .
The rules considered are shown in Table 8.3.

Table 8.3 Champ and Woodall’s rules

Rule 1: C,={T(1,1, —», =3), T(1, 1, 3, »)}.

Rule 2: C, ={T(2,3, -3, -2), T2, 3, 2, 3)}.

Rule 3: C;={T4,5, -3,-1),T4,5,1,3)}.

Rule 4: C, = {T(8,38, -3,0), T8, 8,0, 3)}.

Rule 5: Cs ={T(2,2,-3,-2),T(2,2,2,3)}.

Rule 6: Ce = {T(5, 5, -3, -1), T(5, 5, 1, 3)}.

Rule 7: C,={T(1,1, —=, =3.09), T(1, 1, 3.09, »)}.
Rule 8: Cs = {T(2, 3, —3.09, —1.96), T(2, 3, 1.96, 3.09)}.
Rule 9: Co = {T(8, 8, —3.09, 0), T(8, 8, 0, 3.09)}.

For example, rule C, states that two out of the last three observations
fall in the ranges (—3, —2) or (2,3). As rules of the type C, are used,
the authors define a vector

wi = (Wi,l, LIRS Wi,m,_,)
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where

W, = 1 if the jth previous observation was in (a;, b;),
= () otherwise.

They also define
X=X s Xim-1)

where X;; = W, if Z},_;(1 — W) <m; — k; + 1 so that the X, have 1s
only where an observation can contribute to an out of control signal.
Then for ¢ rules, a vector

Xi oo X,

represents the transient states.

From this basis, the methods follow those of Brook and Evans (1972),
to obtain ARLs and some other properties of run length distributions.
The calculations are all performed using independent, identically dis-
tributed normal random variables, and it is to be noted that some
commonly occurring rules, such as seven points increasing or decreasing,
are not covered by these methods.

Table 8.4 shows the results, and some important features stand out.
In particular, a combination of rules such as C, or C, dramatically
increases the false alarm rate. As these rules are popular in some
circles, this point needs to be noted.

Table 8.5 shows how the ARLs of Table 8.4 compare with a simple
Shewhart chart with action boundaries only, set so as to give the same
false alarm rate when the process is on target. We see that employment
of these extra rules can considerably increase the power of the charts to
detect moderate changes, sometimes at the cost of reduced power to
detect large changes. Again we see that the rules C; and C,, highlighted
above, behave particularly badly in this respect.

8.4 CUMULATIVE SUM CHARTS

8.4.1 Exact theory

In order to work out properties of CuSum charts we use the decision
interval scheme of section 7.1.7, which we note is exactly equivalent to
the CuSum plot scheme.

Another point is that if we operate decision interval schemes for both
upper and lower sides, then we can show that

1 1 1
= +
(ARL) combined (ARL) upper (ARL)Iower

This enables us to study the ARL of a one-sided scheme separately.

(8.12)
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The decision interval scheme can be considered as a sequence of
sequential probability ratio tests; (for a description of and references to
this see Wetherill and Glazebrook (1986)). Let the variable z denote the
distance from the lower boundary of the scheme, so that the two
boundaries are at z =0 and z = H. A single test is defined as a path
starting at a value z satisfying 0 = z < H, and ending at the upper or
lower boundary; in the degenerate case the path may be one point only.
For such a test let

P(z) = probability that a test starting at z ends at z <0
N(z) = average sample number of a test starting at z.

The decision interval scheme is a series of such tests, and terminates
with the first test to cross the upper boundary. Let L(z) denote the
ARL of a decision interval scheme in which the first test starts at the
point z, but all subsequent tests start at the lower boundary.

We have usually discussed only CuSum schemes in which the observa-
tions are normally distributed, but to be general we denote the
probability density function of the observations by f(x), and cumulative
distribution by F(x). The CuSum scheme proceeds by observing x, and
if the current score is z, the new score is

z+x—-K ifx=K -z
or 0 fx<K - z.

We begin by considering a single test starting from a score z, and obtain
a formula for P(z). If one observation is taken, there are three
possibilities, as indicated in Table 8.6.

Table 8.6 Score used in derivation of ARL formula

Observation New score Outcome

Hx=K-z 0 Test ends at lower boundary
RQ)K-z=x=H+K-z z+x-K Test in progress
Byx=H+K-z H Test ends at upper boundary

The probability of the first event is F(K — z). If the second event
happens, there is a further probability P(y), for every y =z +x — K,
0 <y < H, ending at the lower boundary. The last event is irrelevant to
P(z). Therefore we have the equation

h
P(z)=F(K - z) + fOP(y)f(y + K — z)dy (8.13)
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In a similar way we can obtain the equations

h
NiEZ)=1+ fON(y)f(y + K — z)dy (8.14)

and
h
L(z)=1+ L0O)F(K —z) + fOL(y)f(y + K —-2z)dy (8.15)

Equations (8.13) and (8.14) have been described by Page (1954), and
Page (1961) and Kemp (1958) gave numerical methods for solving them.

The ARL of the decision interval scheme is L(0), and once P(0) and
N(0) are obtained by solving (8.18) and (8.19), L(0) can be obtained
from the formula

L(0) = N(0)/{1 — P(0)} (8.16)

instead of by solving (8.15) directly. This formula can be derived as
follows. In a decision interval scheme the number of sequential tests has
the geometric distribution

(PO} {1 - P(O)}, s=1,2,....

Thus on average there are {1 — P(0)}~! sequential tests in a single run
of a decision interval scheme of which just one terminates on the upper
boundary. If N(0)*, N(0)' are the average sample numbers of sequential
tests terminating on the upper and lower boundary respectively, the
ARL of the decision interval scheme is

N S S
L(0) = N(O)* + {1 ~70) l}N(O)‘

1 u 1
= 1——P(0){(1 - P(0))N(0)* + P(0)N(0)'}
_ N
11— P(0)°

Now the ARL is the expectation of the distribution of run length, and
it is very useful to have a formula for it. However, further information
about the run length distribution can easily be obtained. Let
p(n, z) = probability that a test starting at z has run length n, then by
following an argument similar to that leading to (8.18) we have

A
p(n,z) =pn —1,0F(k — z) + fop(n - Ly)f(y + k —z)dy.

(8.17)
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Denote the moment generating function of the run length distribution
by ¢(z,1)

Pz, 1) = ;p(n, z)e™

then from (8.17) we have
e'Pp(z,t) =1—Fh+ k —z)+ ¢0, t)F(k — z)

h
+ fo¢(y, DfG + k = 2)dy. (8.18)

By successively differentiating (8.18) and putting t =0 we can obtain
integral equations for the moments of the run length distribution. Ewan
and Kemp (1960) also obtained an approximation for the variance of the
run length distribution,

V(n) = L*0) + V(N)/{1 — P(0)} (8.19)

where V(N) is the variance of the sample number of single sequential
test, and the approximation is valid when P(0) is close to unity. The
authors also conjectured that a close approximation to the run length
distribution is

p(n, 0) = L;O) exp{—u}. (8.20)

L(0)

Throughout this theory, we have assumed that the observations x are
continuous, but the methods used can be followed through in the
discrete case also. Ewan and Kemp (1960) gave values of the ARL for
the case when the observations have a Poisson distribution, as well as
for the normal distribution case.

8.4.2 Johnson’s approximate approach

Johnson (1961) gave an approximate approach for a CuSum chart with a
V-mask, which arrives at some remarkably simple answers.

We first reverse a CuSum chart, and look at it as if it were proceeding
backwards. Figure 8.1 shows approximately how Fig. 7.6 would be
reversed. The method is now to regard the outer arms of the V-mask as
boundaries of a test of three simple hypotheses using the sequential
probability ratio test (Wetherill and Glazebrook 1986).

Suppose we have three hypotheses, that observations are independ-
ently and normally distributed with distributions as follows:

H_,: N(=b0, d%); H,: N(0, 0?); H;: N(do, 0?).
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IR I N (N SN SRR N |
7 6 5 4 3 2 1 0

Observation number

Figure 8.1 Johnson’s approach to V-mask theory.

Suppose, further, that we want a probability (1 — 2a,) of accepting H,
if it is true, and a probability (1 — ;) of accepting H, or H_, if they
are true; then the boundaries for the sequential probability ratio test of
these hypotheses are as illustrated in Fig. 8.2.

The outer boundaries are

“ 1
gx,- = gloge{(l - a;)/ay} + ion|o (8.21)

Accept H,
Ix
N Accept
///N Observation number

Accept H,

/N

Figure 8.2 Sequential tests of three hypotheses.
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and
= 1
lei = — —gloge{(l — o))y} + ionlo (8.22)

Now the outer boundaries of the V-mask in Fig 7.5, using the current
point as origin, are

>x = 20(h + nf) (8.23)
and
>x = —20(h + nf) (8.24)

where 20 is the scale factor of the CuSum chart and where H = ho, and
F = fo, see Chapter 7. It follows that if we identify (8.21) with (8.23)
and (8.22) with (8.24), we shall have a V-mask in which, approximately,
the probability of a path crossing an outer boundary is 2a,, when the
process is in control. By identifying these pairs of equations we obtain

f =06/ (8.25)
h =log.{(1 — ay)/ay}/20 (8.26)

Unfortunately « in this last equation is difficult to interpret, since there
is no ‘accept H, boundary on Fig. 7.5. However, since a; is usually
small, we have

h = —log.(ay)/20 (8.27)

These results can be used in the following way. First decide on the
least change in the mean which it is desired to detect with reasonable
certainty; let the standardized value, standardized by o, be 6. We must
now decide on the greatest tolerable probability, 2a,, of false indica-
tions of lack of control; values near 0.002 are traditional for this in
control chart work. Use of (8.25) and (8.27) now give 6 and h
corresponding to this pair of (d, @p). The properties of the selected
(h, ) can be checked from tabulated ARL curves, and modified if they
are not satisfactory.

Johnson points out that this theory throws some further light on
CuSum charts. Since CuSum charts are like a two-sided sequential
probability ratio test (SPRT) without a middle boundary, and there is
no decision to ‘accept H,’, a path which would have been terminated on
an SPRT could go on and cross one of the decision boundaries.
Therefore paths which cross the decision boundaries a long way from
the vertex should be regarded with suspicion.



Cumulative sum charts 185

8.4.3 Markov chain approach

Brook and Evans (1972) used the Markov chain approach described in
section 8.3 to obtain a very good approximation to the ARL of a
one-sided decision interval scheme. The idea is simply to approximate
the normal distribution by a set of discrete (equidistant) values. In this
way we get a finite set of states, and the calculations proceed as
described earlier.

Let there be ¢ states, E, to E,, with the last being the absorbing state,
corresponding to an action signal. If the width of the grouping interval is
, then action corresponds to a score greater than (¢t — 3)w, so that

H=(-)o, o=2H/2t-1).

Let the distribution of the observations Z be normal with mean y and
variance one. Then the decision interval scheme accumulates values of
(Z — K) where K is the reference value. We can therefore write
X=Z-K, so that X is normal with mean pu=y— K, and unit
variance. The distribution of X is then discretized by calculating the
standard normal distribution at the (2¢ — 1) points.

(a-w,(a—-—w+o(a—uw+20..,a-—w+Qt-2wo=H—-yu

where a = —(H — w). The lowest of these values is the distance from
E,_; to Eg, and the highest is the distance from E to Ey.
The transition matrix can now be written in the form

E, E, ... E

E,
E,
E,
and the last row and column correspond to the absorbing state, as
before.
Brook and Evans report that reasonable results were obtained for
t =5, and that r = 10 gave three significant figure accuracy.

As a modification, it is suggested that the calculation be performed at
several ¢ values and that the approximation

ARL = A + B/t + C/t*

be fitted and then used to extrapolate to large values of ¢.
This Markov chain method is an excellent way of examining the ARL
for cumulative sum charts.
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8.4.4 Proof of equation (8.12)

Figure 8.3 shows a decision interval scheme, and once a decision
boundary is crossed, the chart automatically restarts at zero. It can
easily be shown that if, say, the upper decision boundary is crossed,
plotting on the lower chart will have terminated at the ‘in control’
boundary; see Exercise 8B.4. Therefore this automatic resetting of the
scheme has no effect on the plotting.

Upper decision boundary

T

h
/\ /_\ r
Observation number
T 1 1 1 1 | ) T T 1 U U 1 T T T
0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 ‘
h

Lower decision boundary

Figure 8.3 Series of two-sided decision interval schemes.

Let S, S; and S, be the run lengths of the upper, lower and two-sided
decision interval schemes respectively, and let L., L, and L, be the
corresponding ARLSs for an in control process. Then clearly

Sy = min(S,, §)
and
Ly = E(S) = E(S) + E(S1 — S0
L, + E{S, — S8 > S, }Pr(S, > S)),

since S| — S, = 0. Since the lower scheme restarts from the zero bound-
ary when the upper scheme terminates, and by independence, we have

E{Sl - St|Sl > St} = L,

I
il

Therefore we obtain
Ll = Lt + LIPr(Sl > St)
L,=Lj1-Pr(S,>S)] =LPr(S, =8).
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Similarly we obtain
L,=L,Pr(S,=S,).
Now we have

Pr(S, = S,) + Pr(S, = 5) = 1

so that
Lt Lt
L—u + zl- =1
or
1_1 .1
L, L, L/

This proof is due to Rowlands (personal communication).

8.4.5 Sensitivity to departures from assumptions

Before employing CuSums too widely, it is important to have some
appreciation of the effect of deviations from the various assumptions.

Firstly, a value of o has to be assumed, and it is quite clear that the
effect of departures from the assumed value on the ARL can be
dramatic; see comments on this in De Bruyn (1968, pp.44, 45).
Overestimation of ¢ increases the ARL, and underestimation reduces it.
Great care must be taken over the choice of o.

Bissell (1969) studied the effect of skewness of the underlying
distribution, and provided a nomogram to assess the effect on the ARL.
His general conclusion is intuitively clear from the way in which CuSum
cumulations arise. At the RQL, most of the distribution contributes to
the cumulations, and the effect of skewness is very small, but the
position is different at the AQL. For positive skewness, the proportion
(and mean) of observations contributing to cumulations will increase,
while at the same time the proportion (and mean) of observations
detracting from cumulations will decrease. The result is that positive
skewness can seriously reduce the ARL at the AQL. By similar
reasoning, negative skewness increases the ARL at the AQL.

The effect of serial correlation between observations has been studied
by Goldsmith and Whitfield (1961) using simulation, and by Johnson
and Bagshaw (1974) and Bagshaw and Johnson (1975) by theoretical
means. Tables 8.7 and 8.8 were obtained by Rowlands (1976). These
tables illustrate the general conclusions obtained. They are derived for a
first order autocorrelated model, given by equation (3.6). The conclu-
sions are as follows:
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(1) Positive autocorrelation reduces the ARL, and negative autocorrela-

tion increases it.
(2) The effect of autocorrelation is slight at the RQL, but quite

dramatic at the AQL.

Table 8.7 Run length distribution for a one-sided CuSum scheme. Data from a
first order autocorrelated process. (h =2,0=1,u— K =1)

p=08 p=06 p=02 p=00 p=-02p=-0.6p=-038

S

0.1587  0.1587  0.1587  0.1587  0.1587  0.1587  0.1587
0.3413  0.3431  0.3560  0.3665  0.3794  0.4139  0.4398
0.1478  0.1726  0.2215 0.2451  0.2682  0.3125  0.3315
0.0825 0.1011  0.1217 0.1241  0.1211  0.0967  0.0685
0.0552  0.0660 0.0659 0.0579  0.0466  0.0158  0.0028
0.0406  0.0453  0.0353  0.0263  0.0169  0.0022  0.0001
0.0314  0.0320 0.0190 0.0118  0.0060  0.0003

0.0251  0.0229 0.0123  0.0053  0.0021

0.0204  0.0164  0.0055  0.0024  0.0007

10 0.0167 0.0118 0.0030  0.0011  0.0003

11 0.0138  0.0085 0.0016 0.0005  0.0001

12 0.0114  0.0061  0.0009  0.0002

13 0.0095 0.0044  0.0005 0.0001

14 0.0078  0.0031  0.0002

15 0.0065  0.0023  0.0001

O 00 1NN W -

ARL 4.18 3.45 2.90 2.74 2.61 2.40 2.32

Table 8.8 ARL of a one-sided CuSum scheme. Data with mean on target, but
with first order autocorrelated process (h =2, o =1)

Standard Lower Upper
p ARL deviation Mode quartile Median quartile
0.8 88 88 3 25 60 122
0.6 79 77 3 22 54 107
0.4 101 99 4 29 70 138
0.2 151 149 5 43 105 207
0.0 258 256 S 74 179 355
-0.2 458 457 5 131 317 633
-0.4 665 664 4 191 460 920
-0.6 715 714 2 205 495 990
-0.8 952 952 1 274 659 1319

(Note: The run length distribution is not unimodal when p = —0.8; besides the mode at
n = 1 there are lesser modes at n =4, 6, 8, 10 and 12.)
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Johnson and Bagshaw (1974) say: ‘Our primary conclusion is that the
CuSum test is not robust with respect to departures from independence.
The use of CuSum tests is now widespread, and the presence of serial
correlation common so that attention should be drawn to the seriousness
of this lack of robustness.’

8.5 CHARTS FOR CONTROL OF PROCESS SPREAD

The theory for obtaining properties of charts for control of process
spread follows the methods described above for control of process
average level, but much less work has been done in this area. A
comparison of range, standard deviation and CuSum charts is given by
Tuprah and Ncube (1987). Some of their results are given in Tables 8.9
and 8.10. The schemes are designed for 0 =1 and the ARLs at set
values of o are given. These results demonstrate that CuSums do not
gain so much over Shewhart charts in comparison with charts for control
of process average level. They also show that CuSum charts for standard
deviation are more sensitive to small changes of process spread than
CuSum charts for range.

Table 8.9 ARL values for Shewhart control charts with warning lines

Group

size 5 10 15 20
R-chart S-chart R-chart S-chart R-chart S-chart R-chart S-chart

UWL 3.97 1.5829 4.577 1.3984 4.984 1.3213 5.1060 1.278

UAL 5.00 1.9702 5.530 1.6463 5.800 1.518 5.9920 1.443

o

1.0 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00

1.1 63.40 60.00 50.00 41.70 43.80 3240 3990 26.50
1.2 2720 2510 1840 1440 1490 10.00 12.80 7.60
1.3 14.40 13.20 9.00 6.90 7.00 4.70 5.90 3.60
1.4 8.90 8.20 5.30 4.10 4.10 2.90 3.50 2.20
1.5 6.20 5.70 3.70 2.80 2.80 2.10 2.40 1.70
1.6 4.60 4.30 2.80 2.30 2.20 1.70 1.90 1.40
1.7 3.60 3.40 2.20 1.90 1.80 1.40 1.60 1.20
1.8 3.00 2.80 1.90 1.60 1.50 1.30 1.40 1.10
1.9 2.60 2.40 1.70 1.40 1.40 1.20 1.20 1.10
2.0 2.30 2.20 1.50 1.30 1.30 1.10 1.20 1.00

UWL is the Shewhart upper warning line, and UAL is the Shewhart upper action line.
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Table 8.10 ARL values for CuSum procedures

Group
size 5 10 15 20

R-chart S-chart R-chart S-chart R-chart S-chart R-chart S-chart
H 3.20 2.66 3.50 2.45 4.20 2.20 4.80 1.60
K 2.80 1.48 2.86 1.56 2.90 2.00 3.08 2.50
o
1.0 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00
1.1 46.00 42.50 40.10 3820 3550 32.00 30.30 25.00
1.2 21.20 1670 15.60 12.20 10.40 8.00 8.00 5.50
1.3 10.10 9.50 9.00 7.40 6.80 5.00 4.40 3.80
1.4 5.20 4.00 3.20 2.20 2.00 1.25 1.20 1.10
1.5 2.50 2.00 1.80 1.50 1.20 1.12 1.10 1.05
1.6 1.80 1.50 1.20 1.10 1.08 1.02 1.00 1.00
1.7 1.20 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

EXERCISES 8B

1.

Refer back to the details in Ewan and Kemp (1960) and show how
to evaluate the ARL for a CuSum scheme on variances of normally

distributed data.

Study how to set about a thorough investigation into the effects of
deviations from assumptions, such as non-normality and serial
correlation upon the run length distribution of a decision interval
scheme.

All our treatment of CuSum schemes has assumed that observations
are taken in groups of n at equally spaced intervals. Set out a model
for examining an optimum choice of group size and sampling
interval. (You may be guided by similar work referred to in earlier
chapters.)

For the two-sided decision interval scheme discussed in section
7.1.7, let the two reference values be k. Show that if plotting on
one chart ends at a decision boundary, plotting on the other must
have ended at the ‘in control’ boundary. (See Kemp (1981), p.151.)
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Set out the Markov chain model for deriving the ARL of a
Shewhart chart with action lines at +30/Vn, and warning lines at
+20/Vn. Action is to be signalled if one point is beyond the action
line or two out of three points in the same warning region.

One rule which has been proposed for Shewhart charts is to take
action if one point is over the action lines, or else if there are seven
successive increasing or decreasing points. Set out a simulation study
to compare the effects of this rule with action lines only.
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The design of control charts
from specification limits

9.1 SINGLE SPECIFICATION LIMITS

9.1.1 Single specification limits — objectives

We frequently find industrial processes where there are single specifica-
tion limits, such as the following:

(1) The tensile strength of a test piece of polymer laminate should be
greater than a given limit.

(2) The percentage purity of a chemical must be greater than 99.5%

(3) The amount of a specific impurity in a chemical product should be
less than 20 parts per million.

(4) The average weight of filled packets must be greater than a given
limit.

The objective of statistical process control in cases such as these just
given may be simply to keep the process well clear of the given limit.
We may not need to attempt statistical control of the process in the
sense we have discussed earlier. However, we should be clear before
using the methods given below that this is what we want. There can be
an advantage in attempting statistical control by Shewhart or CuSum
charts, even where there is only one specification limit, or where there
is high capability. The methods of this chapter apply particularly where
the process capability is large, and we can afford to look at specification
limits.

In the first part of this chapter we shall assume a single upper
specification limit, such as case (3) above, and describe how to set up
plans for this. The design of plans for a single lower specification limit
are similar. We shall let the specification limit be the zero of the scale,
and measure distances from it, as in Fig. 9.1.
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The methods given here are fairly sensitive to the assumption of
Normality, and if this is in doubt, rather greater margins need to be left.
A Normality check should always be carried out when using these
methods.

We shall assume that the process produces observations which are
independently and identically distributed with a variance o®, and we
shall assume that an estimate of o is available; see the next section for a
discussion about this.

The procedures given below all use control charts, rather than
cumulative sum charts. Cumulative sum charts can also be designed,
using nomograms such as those given in section 7.4; see also Woodward
and Goldsmith (1964). However, control charts have a great popularity
in practice because of the simplicity of operation.

Finally, the examples given above show that there are two types of
requirement. In many situations the requirement is that each individual
measurement, or each item produced if it is separate items, are within
the specification. Secondly, there are situations where it is satisfactory to
have the process average within specification.

9.1.2 What is o?

The question as to what the relevant o is turns out to be a deeper
question than we might think. In a typical situation there may be several
separate components of variation:

(1) Local random variation, reflecting the fact that it is very rarely
possible to produce items or material with exactly the same weight,
tensile strength, percentage of water, etc., continously.

(2) Measurement and sampling error, which is often more substantial
than it is thought to be. Many laboratory tests and measurements
are thought to be precise, but in fact have an error variance.

(3) Variations in the mean of the process. Industries with more
complex processes often show autocorrelated or other variations in
the mean; see section 3.3.3.

(4) Inter-laboratory error. Sometimes it is crucial that a customer’s
measurement of the percentage of an impurity, etc., is within
specification. This variation can be estimated only by carrying out
actual tests in a designed experiment. Again, this source of
variation is often much greater than it is thought to be.

All of these components of variation can be estimated, but only by an
appropriately designed experiment. Clearly, if we have one-at-a-time
data it will be impossible to separate some of these components of
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variation. In the next section we discuss the choice between these
components for scaling our charts.

9.1.3 Discussion

The easiest way to discuss this is to take some specific examples. In a
practical case it would be important to look at some data before
deciding.

(1) Suppose we have discrete items such as packets or bags, which are
filled, and the quantity to control is weight. Here the relevant o is
likely to reflect the natural distribution of filled weights resulting
from the apparatus. Obviously, the objective is that all filled
weights satisfy a specification.

(2) Suppose we have antifreeze, tested for ppm of water. We assume
that the measurement error is small, but the mean of the process
varies in a general autocorrelated manner. The objective is that no
measurement shall be out of specification. Here the relevant o is
the one reflecting the variation of the observations over time, and
not the local variation, which may be smaller.

(3) Suppose the important requirement for antifreeze is that it must be
tested in a customer’s laboratory and found to be within specifica-
tion. Here the appropriate variation is the inter-laboratory vari-
ation.

What is really required is for a variety of real situations to be studied
and modelled, and these models would include different components of
variation. The treatment given below is simplified, but satisfactory for
many applications. A deeper study of this problem has not been
attempted.

Warning: Before proceeding, it should be noted that the methods
given in this chapter are particularly sensitive to non-Normality.

9.2 SINGLE SPECIFICATION LIMITS: CHART FOR
MEANS
9.2.1 Design requirements

The type of method we shall be using is as follows. Suppose we have a
single specification limit; then we take groups of n observations at
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regular intervals, and plot the means, as in Fig. 9.1. Then we have a
simple rule to decide when to take action, such as when a sample mean
goes beyond the action boundary in Fig. 9.1. The ARL curve for this
type of procedure has the shape shown in Fig. 9.2, but the ARL curves
will be different for different group sizes n and different distances ko

i,

Specification limit

Observation
X
Q

* Action limit

Observation number

Figure 9.1 A procedure for a single specification limit.

ARL

Distance from action limit

Figure 9.2 ARL curve for single specification limit procedure.
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of the action boundary from the specification limit. We need some way
of choosing one particular scheme, and therefore one particular ARL
curve from the set of all possible.

Ideally, we would like a very steep ARL curve, but this cannot be
achieved without a very large group size, n. We have to take risks in
order to achieve a practicable procedure. We have to accept a low risk
of false alarms, and also a risk of not detecting a real change for a long
time. The problem of design is how to set these risks, and we approach
this using the ARL concept.

We suppose that we have rather narrow-minded producers and
consumers, who put requirements on what they want. The producer is
only interested in ensuring that when his process average level and
process spread are such that if there is only a small probability p, of the
distribution beyond the specification limits, then the ARL is at least L,.
From Normal tables we can equate this probability p, to a distance Z, o
of the mean from the specification limit, so that p =1 — ¢(Z,), where
¢(Z) is the standard normal integral.

For example, suppose a producer decides that if only 0.001 is beyond
the specification limit, the ARL must be at least 500. For a probability
0.001 beyond specification, the process mean must be 3.09020 from the
specification limit.

Notation
Probability beyond spec. = 0.001 Da
Producer’s risk point | Process mean = 3.0902¢ Z,0
ARL = 500 L,

Similarly, we suppose a narrow-minded consumer who insists that if
the probability beyond specification is p, then the ARL must be no
more than L,. Again, we can give an equivalent position for the process
mean which gives a probability p, beyond the specification limit.

For example, if the probability beyond specification is 0.01, the
consumer may set L, = 5. We then have

Notation
Probability beyond spec. = 0.01 Dr
Consumer’s risk point{ Process mean = 2.32630 Z,0
L, =5 L.

The distances Z, and Z, are not used in the approximate solution
method given next, but are required for the more exact method and for
the theory.
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9.2.2 Single specification limit: action limit for x only. (Approximate
solution)

Suppose that observations are taken in groups of n at a time, and that a
single action limit is placed at a distance k 0 from the specification
limit. Later in the chapter (section 9.2.5) a more efficient procedure is
introduced, which uses a warning limit as well. However, there are
many industrial situations in which the introduction of a warning limit as
well as an action limit and a specificiation limit causes too much
complication, so that the method below is used. The approximate
method and nomogram given in this subsection is based on work by
Wilrich (1970) and uses the theory given in section 9.2.4.

METHOD SUMMARY 9.1

Single specification limit. Position of action limit

Step1 Determine a producers risk point (p,, L,) and consumers
risk point (p,, L,) as outlined in section 9.2.1.

Step2 Draw lines on the nomogram joining p, to L, and p, to
L.. The intersection gives the values of the sample size n
and the distance k, for the action limit, on the appropriate
scales.

Step2’ (Alternative) Given either a producers risk point or a
consumers risk point and a sample size, the nomogram Fig.
9.3 can be used to plot the ARL curve.

Example 9.1

For the problem set in section 9.2.1 we have p,=0.001, L, =500,
p:=0.01, L, =5. By following through Steps 1 and 2 above we get
n="7, ko =2.02. This might seem a large group size, and if so, we
might go back and revise our requirements in order to lower it.

This method might also be used as an approximation for a one-sided
running average chart, with one-at-a-time data. The theory in section
9.2.4 is based on independence, which is clearly not true if running
averages are used. However, exact calculations for a one-sided running
average chart have not yet been evaluated.

9.2.3 Single specification limit: action limit ¥ only

The purpose of this subsection is to give a more accurate algorithm for
finding the sample size and the position of the action limit for the
problem studied in section 9.2.1. The theory is given in section 9.2.4.
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METHOD SUMMARY 9.2

Single specification limit. Position of action limit (More accurate
method)

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Notes

Decide on a producers risk point (p,, L,), and obtain the
equivalent process mean value Z, o; see section 9.2.1.
Decide on a consumers risk point (p;, L;), and obtain the
equivalent process mean value, Z, 0.

Find the Normal variates corresponding to

q. = 1/La and q: = 1/Lr

Let these be Z,, and Z, respectively.
Use a group size n as the lowest integer greater than

h = (an - ZQr)z/(Z a ZPr)Z'
Put the action limit at k, o, where
ka=2, — an/\/n. 9.1)

Plot running means of n (or group means of n) on the
chart. Search for a special cause when one point is above
the action limit.

(1) Step 4 may well result in a value of n which is too large. In
this case a compromise will have to be reached on the design
requirements. Either L, must be reduced, or L, increased, or
both.

(2) If observations are sampled in groups of »n at a time, and we
plot running averages of k means of these groups, the
corresponding formula in Step 5 is

ka= 2, ~— Z,/V(kn).

(3) The ARLs are calculated on a basis of independent sampling,
rather than running averages. They are likely to underesti-
mate the true ARL by about one-third.

Example 9.2
For the example in section 9.2.1, we have

Producers risk point:  p, = 0.001 Mean = 3.09020 L, = 500
Consumers risk point: p, = 0.01 Mean = 2.32630 L, =35
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then we have
q. = 0.002 an = 2.8782
q. = 0.20 Z, =0.8416

leadington = 7.11 or n = 8, and k, = 2.07.

9.2.4* Single specification limit: action limit for ¥ only (Derivation)

Suppose that observations are taken in groups of » at a time and that an
action limit is placed at a distance k,o from the specification limit. Let
the mean of the observations be uo, then the probability of being
beyond the limits is p(u, k4, n) where

pu, ka, n) =1 = @{(u— kp)Vn} = ®{(ka —~ Vn} (9.2)
The distribution of run length until a point is beyond the action limit
is geometric:
Pr(r)=(1-p)p
where p = p(u, ka,n), so that the expectation and variance of the run
length are
ER) =1)p
V(R) = (1 - p)/p*

In order to satisfy the design requirements we require an ARL of L,
when u=Z,, and an ARL of L, when u=Z, . If we put
q,=1/L, and q.=1/L, (9.3)
then we must satisfy
p(u, ka,n) =gq
for (u, q) set at (Z,,0,q,) and (Z,,0, q,) (see Fig. 9.4), which leads to

Z, =(Z, - ki) Vn 9.4)
and
Z, =(Z, —ka)Vn 9.95)
or
n=(Z, = Z,)/(2,, - Z,) (9.6)
and

ka=2Z, —Z,/Vn 9.7)
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/ Specification limit

Action limit

Observation

Observation number

Figure 9.4 Action limit for a specification limit.

Owing to discreteness it will not be possible to solve these exactly. It
turns out better to satisfy (9.4) rather than (9.5) for defining k5. Once
an n and k , are chosen, the exact ARL for the plan is given by (9.2).

Typically, when this method is used in practice, a value of n will
emerge that is too large. The engineer will then have to modify his
requirements, by changing the ARLs required, or by increasing the
sampling frequency.

9.2.5 Single specification limit: one-sided X chart

If we have data sampled in groups of n at a time, a one-sided X chart
can be used. In an ordinary X chart, the distance between the warning
and action boundaries is

(3.09 — 1.96)0/Vn = 1.130/Vn.

For reasons which will be clear later, we preserve this distance. The
crucial question is how far to put the action boundary from the
specification limit. We denote this distance kpo (see Fig. 9.5) and we
wish to choose kg and the group size r to satisfy design requirements.
Basically, the method used in the previous section can be repeated.

The one-sided chart is used in the usual way — one point outside the
action limit or two successive points outside the warning limits gives a
signal to take action on the process.
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Observation

/ Specification limit

Action limit

___________________________________

Observation number

Figure 9.5 One-sided X chart.

METHOD SUMMARY 9.3

Single specification limit. One-sided X-chart (More accurate

method)

Step 1
Step 2
Step 3

Step 4

Step 5

Note

Decide on a producers risk point (p,, L,) and obtain the
equivalent process mean value Z, o; see section 9.2.1.
Decide on a consumers risk point (p,, L) and obtain the
equivalent process mean value, Z, 0.

From Table 9.1 or Fig. 9.6 read off the standardized Z;,

and Z; corresponding to L, and L,.
Use a group size n, where n is the lowest integer greater

than
n=(Z, - ZL,)Z/(Z . Zp,)z'
Put the action limit at kgo where
kg = Z,, — Z;,/Vn

Step 4 may frequently result in a group size which is unacceptably
large, and then we shall have to compromise on the design
requirements.




Table 9.1 ARL values for one-sided X chart

Mean ARL Mean ARL Mean ARL

0 1.67 2.88 295.5 3.21 1014.8
0.1 1.76 2.90 317.4 3.22 1055.2
0.2 1.86 2.92 341.0 3.23 1097.3
0.3 1.99 2.94 366.6 3.24 1141.2
0.4 2.13 2.96 394.4 3.25 1187.0
0.5 2.29 2.98 424.3 3.26 1234.7
0.6 2.49 3.00 456.8 3.27 1284.4
0.7 2.71 3.01 474.0 3.28 1336.3
0.8 2.99 3.02 492.0 3.29 1390.3
0.9 3.31 3.03 510.6 3.30 1446.7
1.0 3.71 3.04 530.0 3.31 1505.5
1.1 4.19 3.05 550.2 3.32 1566.8
1.2 4.78 3.06 571.3 3.33 1630.7
1.3 5.52 3.07 593.2 3.34 1697.4
1.4 6.44 3.08 616.0 3.35 1766.9
1.5 7.60 3.09 639.7 3.36 1839.5
1.6 9.08 3.10 664.5 3.37 1915.2
1.7 11.00 3.11 690.2 3.38 1994.1
1.8 13.49 3.12 717.0 3.39 2076.4
1.9 16.77 3.13 745.0 3.40 2162.4
2.0 21.15 3.14 774.1 3.42 2345.6
2.70 158.5 3.15 804.4 3.44 2545.1
2.75 187.7 3.16 835.9 3.46 2762.5
2.80 223.0 3.17 868.8 3.48 2999.2
2.82 239.1 3.18 903.1 3.50 3257.3
2.84 265.6 3.19 938.8 3.55 4008.8
2.86 275.2 3.20 976.0 3.60 4942.2
Example 9.3

For the example in section 9.2.1 we have

L, =500 Z,=3.025

L.=5

Z.=122

leading ton = 5.58 or n = 6 and ky = 1.86.
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Figure 9.6 ARL curve for one-sided X chart.

9.2.6* Single specification limit. Derivation of one-sided X chart

The method here is very similar to that in previous sections. First we
establish a relationship between the process mean p and the ARL, and
then we determine the sample size n, and the constant kp as before.

Let us denote

Do = probability of a point below the warning limit
p1 = probability of a point between the action and warning limit
p, = probability of a point above the action limit
L, = ARL of a process started by a point below the warning limit
L, = ARL of a process started by a point between the action

and warning limits.

Then we have

Ly=1+ poLo + p1L,
L, =1+ pyL,.
This leads to
Ly=1+p)/1 = po—Ppo) (9-8)

This formula assumes that we take at least one observation.
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For the system we have defined, with a process mean of (uo/Vn)
above the action limit,

po=1- ¢(—p— 1.13) 9.9)
p1=¢(—p + 1.13) — ¢(—p) (9.10)

A plot of the ARL for the one-sided X chart is shown in Fig. 9.6,
and some values are given in Table 9.1. The figure and table are plotted
in terms of the variable u, which is the distance of the mean from the
action limit, in standard error units. We can therefore read off the
distances, Z, and Z, corresponding to ARL values of L, and L,
respectively. Thus we have

(Z,, - kg)Vn = Z,

(Zpr - kB)\/n = Z,
leading to
n=(Z,- 2)(z, - Z,)’ (9.11)
and
ks = Z, — Z,/Vhn. 9.12)

Again, a convenient way of using this method would be by a
nomogram but a suitable chart is not yet available.

9.2.7 Single specification limit. Chart for maximum values

Wilrich (1970) also gave a maximum value chart for use in the single
specification limit case. An action line is drawn such that action is taken
when the maximum value crosses the line. The theory is similar to that
given previously. Clearly, this method is very sensitive to the presence
of outliers, but may nevertheless be useful in the correct circumstances.
We refer to the source paper for details.

9.3 DOUBLE SPECIFICATION LIMITS:
HIGH-CAPABILITY PROCESSES

At this point we introduce a discussion ahout the use of control charts
for high-capability processes. We suppose that we have specification
limits, U and L, such that any measurement outside these represents a
defective. The estimates of between- and within-group variance will be
assumed to have been made, and the correct value for chart plotting,
0., obtained. The discussion in this section applies only when U — L is
rather greater than 65.. In this situation it is not necessary to control



206 The design of control charts from specification limits

the process average level as closely as in the ordinary Shewhart chart.
Again, the point made in section 9.1.1 should be considered, whether
we ought to insist on statistical control anyway. However, there are
situations when it is appropriate to allow a greater variation of the
process, but keep it well within the specification limits.

It is necessary to go into this topic in some detail, as industrial
manuals are extant in which an unsatisfactory approach is put forward,
notwithstanding objections raised by Hill (1956). We first describe this
(unsatisfactory) method, and the objections to it.

Let the specification limits be U and L as shown in Fig. 9.7. If the
mean of the process is at B, then only 0.1% of the items will have
measurements above U, and we may consider the upper specification to
be met. Therefore, B and C are regarded as limiting positions for the
process mean level. Following the usual method for Shewhart charts,
evidence that the process mean is above B is shown by a group average
above A, where A —B is 3.090/Vn. (Some people use a distance
1.960/V'n.) The lower limit follows similarly, and the modified control

Distribution of Distribution of

measurements
on items group averages
U
e
/ |
\ C
/ _____ ;
L

Figure 9.7 Standard deviation of modified control limits.
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limits are A and D. If the specified tolerance U — L is only 6.18¢0 wide,
the lines B and C are identical, and the modified limits reduce to the
ordinary action for Shewhart charts (but without warning limits).

The main fallacy in this argument is that the original action limits for
Shewhart charts are based on the concept of statistical control, whereas
with modified control limits, the process mean is allowed to wander, and
we no longer have control. Thus in the Shewhart control chart, a point
near (but inside) the action limits is taken as evidence that the process is
still in control, and the true mean is less than the observed mean. With
modified control charts we have no basis for assuming that the true
mean is at all less than the observed mean. Therefore by using the
modified limits of Fig. 9.7, the process mean would be allowed to rise
above B without any action being deemed necessary, and a considerable
proportion of non-conforming product could be produced.

It is somewhat surprising that the modified limits are placed outside
the limiting positions for the process mean. By doing so we arrive at the
paradox that by increasing the group size, n, the modified limits would
be placed further away from the tolerances!!

Further objection to the theory outlined above is that it depends
heaviliy on Normality. The Shewhart X chart is a technique for
controlling a mean, and no assumptions are made about the tolerance
satisfied by individual items. The above theory in contrast depends
rather heavily on tail area probabilities of the Normal distribution, and
so is sensitive to the Normality assumption.

Hill (1956) pointed out that many authors have recognized the
objections to the standard approach to modified limits, and stressed the
need for extra caution. Hill suggested that the modified limits should be
placed so that if the process mean reached the positions B or C in Fig.
9.7, there is only a 5% probability of not taking action. This leads to
placing the modified limits at a position 1.6450/V'n inside B and C. The
width of these modified limits is therefore

(U — L) — 2(3.09 + 1.645/Vn)ao.

If these limits are narrower than ordinary limits, that is less than
6.180/V'n, then the best we can do is to use the ordinary limits.
Therefore we use ordinary limits whenever

(U + L)/o < (6.18 + 9.47/V/n).

The procedure is therefore as follows. Use action limits only, and place
them

(3.09 + 1.645/\V/n)o

inside the specification limits U and L. Take action to search for an
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Table 9.2 Values for modified control charts
n 3.09 + 1.645/Vn

4.25
4.04
3.91
3.83
3.76
3.7
3.67
3.64
3.61

SO 00 I N W

[y

assignable cause of variation whenever any point is outside these new
limits.

An alternative approach to this problem has been proposed in a draft
British Standard of 1989. However, the method given in the next section
seems to be preferable.

9.4 DOUBLE SPECIFICATION LIMITS: AN
ALTERNATIVE APPROACH

The problem studied in section 9.3 has been looked at by several
authors, including Freund (1957) and Duncan (1974); see also Mont-
gomery (1985). These authors use an action boundary only, with the
distance from the specification limits set to achieve a specified probabil-
ity of taking action for a fixed n and given mean.

A better approach seems to be to use action and warning limits at
each of the specification limits, designed in the manner set out in section
9.2.5. The chart suggested is shown in Fig. 9.8. Although this chart
looks like a standard X chart, the difference is that the boundaries are
positioned by their distance from the specification limits, and the
distance between the warning limits is more than 2 X 1.965/Vn.

The chart is drawn up with action limits at a distance Co from the
specification limits. The distance between the warning and action limits
is kept to 1.130/Vn, the distance in a standard X chart.

The chart is used in the usual way; an action signal is given whenever
there are two successive points between the action and warning limits,
or one point over the action limits. As statistical control in its usual
sense is not being applied, and the process is allowed to wander in the
central region, the use of warning limits is especially worthwhile.

If process capability is high, then the limits can be designed using the
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Upper specification limit

Upper action [imit

Observation

Lower action limit

Lower specification limit

Observation number

Figure 9.8 Control chart for high-capability processes.

method of section 9.2.5 at each end. However, if process capability is
not quite so high the ARL at one boundary is affected by the presence
of the other.

The ARL formula for a chart such as that given in Fig. 9.8 was
derived in section 5.6.2, leading to

Lo=(1+ p; + py + p1p2)/(1 = po — poP1 — PoP2 = P1P2 — PoP1P2)
(9.13)

where

Do = probability of a point in the central region
D1 = probability of a point between the upper action and warning limits
p, = probability of a point between the lower action and warning limits.

If we have symmetry, with the starting mean at the centre of the
central region, then p; = p,, and

Lo=0+p)/1=po=p1—powp1) (9.14)

There is a simple relationship between the ARL of the two-sided
scheme and the ARLs of one-sided scheme given in (9.14). Let the
ARLs of the one-sided upper and lower schemes, run separately by L,
and L, then it can be shown that

— === (9.15)
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This result also follows from a general result by De Bruyn (1968).
Clearly, if either L, or L, are large, the ARL function for the one-sided
scheme is a good approximation in the two-sided case.

A satisfactory method of designing the boundaries shown in Fig. 9.8 is
therefore as follows:

(1) Decide on producers’ and consumers’ risk points for each specifica-
tion limit.

(2) If the process mean for the two producers’ risk points are more
than 60 apart, and do not overlap, then it is satisfactory to use the
single limit method at each end.

(3) If condition (2) is not satisfied, then we should settle on a common
producers risk point. The single limit method can now be used,
with the ARL at the producers risk point equal to double that
desired.

Clearly, when the two producers’ risk points get closer, even the
ARLs at the consumers’ risk points will be affected by the presence of
the other limit, and it will be necessary to use formula (9.15).

EXERCISES 9A

1. Derive action limit only schemes for the following sets of para-
meters.

Da 0.001 0.001 0.002 0.01 002 0.01 0.01
L, 400 300 500 500 500 500 300

p. 001 001 001 005 005 005 0.05
L, 7 10 5 5 5 3 5

2. Derive one-sided X chart schemes for the sets of parameters given
in Question 1.

EXERCISES 9B

1. Design a set of simulation experiments to assess the effect of
non-normality on the methods given in this chapter.

2. Derive the ARL curve of the maximum value chart, as follows.
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Assume that variables are independently and normally distributed
with mean u and variance 0%, and that observations are taken in
groups of n. The action line is to be put at a distance k.o from the
specification limit. Show that

ARL = 1/Pr{at least one sample value beyond action line}

and obtain an expression for the required probability (see Wilrich
1970).
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Control of discrete data
Processes

10.1 INTRODUCTION

10.1.1 Types of discrete data chart

We have considered how to operate Shewhart control charts and CuSum
charts on continuous data, and now we turn to discrete data. We
consider two types of data, attribute data and countable data, which we
described in section2.1, and the following examples illustrate these
types of data.

Example 10.1

In the production of chips of an engineering plastic, 2-kg samples are
taken from the production and examined for ‘longs’. ‘Longs’ are unusual
shapes, and if there are too many the product does not meet its
specification. Fifty such samples of chips were taken at regular intervals,
and the number of samples not meeting specification noted. (Note that
although the following data represent a high proportion of defective
samples, this can occur in two situations. Firstly, the process may be out
of control. Secondly, the specifications can be artificially tightened for
testing purposes, so as to give a greater chance of detecting changes in
the process.) The numbers of defective samples are as follows:

2 11 18 11 10 16 9 11 14 15
1 9 10 13 12 8 12 13 10 12
13 16 12 18 16 10 16 10 12 14

Each result in Example 10.1 represents the number of samples out of
50 which are defective; this is attribute data.
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Example 10.2

At a later stage in the process referred to in Example 10.1, the process
had been brought under control. Instead of merely recording whether
each sample was in or out of specification, counts were recorded for the
numbers of ‘longs’ in pairs of samples (i.e. 4 kg of material). The
numbers were as follows:

11 8 13 11 13 17 25 23 11 16
9 15 10 16 12 8 9 15 4 12
12 12 15 17 14 17 12 12 7 16

Each result in Example 10.2 represents the number of events of a
given type, ‘longs’, which occur in a set amount of material. This is
countable data.

In Example 10.1 the results can only be one of the integers 0 to 50,
and we might expect the binomial distribution to apply. In Example 10.2
the result can be any positive integer, and might conceivably be quite
large; we might expect the Poisson distribution to apply. The Poisson
distribution might also be expected to apply if for example we record
the number of reportable accidents in a week. The Poisson distribution
applies to events distributed randomly in space or time.

Observed results can be recorded and charted in one of two ways:

Total number of observations
Number of observations per item or per unit interval.

In Example 10.1 the results quoted are totals, whereas per sample we
would get

12/50 = 0.24, 11/50 = 0.22, 18/50 = 0.36, etc.

Similarly, the results given in Example 10.2 are totals for 4 kg of
material, whereas the results per kilogram would be one quarter of
those shown.

It is possible to make control charts based on each of these methods
of recording results, so we have four possibilities:

Total Per item/unit

Attribute data np charts  p charts
Countable data ¢ charts u charts

These charts are described below.
When the size of the sample is always the same each time the test is
carried out then either type of chart can be used; one is a constant
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multiple of the other. In this case it is usually preferable to use a control
chart for total number (¢ or mp), as it avoids one step in the
calculations. If the sample size varies at all then the chart must control
observations per item, or per unit of sample size (1 or p charts).

Since charts of this kind need to be revised as quality improves, and
part of this revision may involve an adjustment in sampling size and
frequency it may be that in practice we are nearly always dealing in the
long run with a situation of varying sample size, so that for ease of
comparison the proportional chart (4 or p) may be preferable even
though it is not essential. Nevertheless, we describe first how to set up
charts for total count, and then how to adapt them.

10.1.2 Samples — how and when to take them

Discrete data charts need larger samples than charts based on continu-
ous measurements, and this is especially true for attribute charts.
However, the taking of an observation is frequently so much easier and
quicker for discrete data charts that they are very frequently used.

BS 5701 has some good practical advice on sampling. It suggests that
if the likelihood of producing a defective is high, then it is better to
sample after each stage of production. If defectives appear rather rarely,
several stages of production can be inspected together.

Two popular methods of sampling are ‘random sampling’ and ‘last-off
sampling’. Random sampling is preferred, and is much less likely to miss
vital changes in product quality. Last-off sampling is much easier to
administrate, and can be used with care.

BS 5701 suggests that sample sizes should be such that on average
between 1 and 3 defectives occur in each sample but this is not always
practicable or desirable in every situation. In setting the frequency of
sampling it is necessary to bear two factors in mind:

(1) There should be very little chance of defective quality developing
and disappearing between samples.

(2) Sampling costs should be considered alongside the cost of defective
quality when this develops immediately after a sample.

BS 5701 suggests that initially, the sample size and frequency be set so
that about 5% of output is inspected. (It indicates that reasons may
occur for wide departure from this rule.)

10.1.3 Important assumptions

In most accounts of discrete data charts it is usual to assume that
attribute data has a binomial distribution, and that countable data has a
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Poisson distribution. These distributions will arise if both the following
are true:

(1) All occurrences of the counted event or attribute are independent.
(2) When the process is on target the average rate (or average probabil-
ity) of occurrence of an event is constant.

However, an essential step is to check whether or not the binomial or
Poisson models are valid; see below. This leads to a rather different
approach to charting to that usually recommended for these types of
data.

(a) Poisson variables

If we are satisfied that the Poisson distribution applies in a situation
such as that set out in Example 10.2, then we can construct charts
similar to the Shewhart charts of Chapter5 very easily. There are two
ways of proceeding:

(1) Use the exact theory of the Poisson distribution to set action limits
at the outer 0.001 probability levels, and warning limits at the outer
0.025 probability levels. The calculation is made easier by using the
following relationship between the Poisson and y* distributions.

P= Ee‘”% = Pri{y > 2udf =2(x + 1)}  (10.1)
0 .

Therefore, for example, if we want P = 0.999 then we must have

1= Jxboeo (d.f. = 2( x + 1))

(2) The Poisson distribution tends to normality for large y, so that an
approximation is to use the normal distribution with expectation u
and variance u. This particular approximation is widely used in SPC,
but in fact is not particularly good unless u is quite large. Other
normal approximations could be used, but no others have found
favour in SPC circles as yet.

(b) Binomial variables
For the binomial distribution, we can proceed in similar ways:

(1) Use exact theory based on summation of binomial probabilities.
This is very rarely done, as many SPC applications are designed
without the aid of computers. Clearly, it would be very easy to write
an algorithm which calculated ‘exact’ limits for situations where the
binomial distribution applies.

(2) Use the Poisson approximation to the binomial distribution.
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E(?) pl-prT= Ee“"”("—p)—r (10.2)

0 0 r!

This is a very common method, and is used later in this chapter.

(3) Use the normal approximation to the binomial distribution, so that
we have expectation (np) and variance np(1 — p). This approxima-
tion is not particularly good even for moderate n, and its popular
use in SPC leads sometimes to action limits outside the range of the
binomial variable, such as negative.

(c) Discussion

It is very important to test the validity of the binomial or Poisson
distribution assumptions because of the likely presence of between-
group variation. For example, in the binomial case it is almost incon-
ceivable that p is held absolutely constant in an industrial process. The
extra variation in p will inflate the observed variance of the data. It is
therefore important to carry out the dispersion test, given in the next
section, to check the distributional fit.

If the dispersion test is significant, and the binomial or Poisson
models do not apply, then our next route is to see if the data is
nevertheless approximately normal, though with an inflated variance
over the theoretical models.

If neither binomial or Poisson nor the normal distribution give a good
enough fit to the data, special methods will have to be constructed.

At this point we should emphasize again that ‘inflated’ variances
should not be just calmly accepted, and charts drawn with widened
limits. In every case a close examination of the data and process should
be made to see if the inflated variances are due to causes which can be
removed.

10.1.4 The dispersion test

The dispersion test is a very good general test for the binomial or
Poisson distribution. The procedure is simply to calculate the ratio

observed variance X (no. of observations — 1
D = .( ; ) (10.3)
theoretical variance

and refer this to tables of the yx* distribution on a two-sided test. The
theoretical variances are

Binomial: np(1 — p)

Poisson: u
where p and u will have to be estimated from the data. The relevant x*
distribution is for
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degrees of freedom = (number of observations) — 1,  (10.4)
and x* tables are given in the Appendix tables.

Example 10.3
For 10.1 we obtain

f=1247 s*=7.15 s =2.67

An estimate of p is therefore p = 12.47/50 = 0.249.
The ratio (10.3) is therefore

D =7.15 x 29/50 x 0.249 x 0.751 = 22.18

on 29 d.f. This is not significant, and there is no reason to suspect the
assumptions made in the binomial distribution are violated.

Example 10.4
For 10.2 we have

£ =13.07 s2=19.237 s =4.39
An estimate of u is i = ¥ = 13.07, so that the ratio D is
D = 19.237 x 29/13.07 = 42.68

on 29 d.f. This is just beyond the upper 5% point, so that we might be a
bit doubtful about the validity of the Poisson distribution in Exam-
ple 10.2. We would usually require D to reach the 2}% points at either
end of the range to be regarded as significant. In a practical case we
would look back to see if some of the results, such as the two large
ones, 23 and 25, were due to some special cause.

In the notes given below, we shall use Examples 10.1 and 10.2 as
illustrations, disregarding the results of this dispersion test. This will
enable us to explore the difference between the methods. By the
dispersion test, both data sets are consistent with their theoretical
distributions.

When we do the dispersion test, we are testing agreement of the
observed and theoretical variances. It is therefore of interest to calculate
the ratio

observed variance

theoretical variance

(10.5)

If this ratio is not in the range 0.8 to 1.25, then we ought to look rather
carefully at the data set to try to understand the cause of this. The ratio
V is more readily interpreted than the ratio D, which is simply a scaled
version.

For Example 10.2 above, the ratio V is
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V = 19.237/13.07 = 1.47

so that the observed variance is nearly 50% more than the theoretical
figure. This is certainly cause for investigation, even though the signific-
ance is doubtful.

10.2 SHEWHART CHARTS FOR COUNTABLE DATA
(c AND u)

10.2.1 Which method?

The first step is to calculate the mean and variance of the data, estimate
u, and to carry out the dispersion test. We usually use fi =%, but if
sample sizes are not equal, then we use

i = (total count)/(total sample size) = ¢.

An estimate of the sample variance when there are different sample
sizes is obtained by calculating the sample variances for groups of data
of each sample size, and then combine them using formula (3.10). We
shall denote the sample variance s2.

If the Poisson distribution fits, then for small values of fi we can use
the ‘exact’ method outlined in section 10.1.3, and tables are provided
below. For larger values of fi it is necessary to use the normal
approximation.

If the Poisson distribution does not fit, then we should check whether
the normal distribution fits, using the observed variance, rather than the
theoretical variance. We also need to check that fi > 38, or a negative
lower action limit will result.

This is set out in Fig. 10.1, and we see that if for some reason the
normal distribution does not fit then special methods will need to be
created.

If this situation arises, the first step is to uncover the reason for the
non-Normality. Sometimes, for example, non-Normality is due to the
mixing of several populations, and these can be separated. If the
non-Normality is inherent in the data, a transformation to normality can
be used.

Methods A, B and C below assume that the sample size (2 kg of chips
in Example 10.1) is constant.

10.2.2 Method A: Shewhart chart construction for small values of ¢
(Poisson distribution)

If ¢ or np are small the Normal approximation method of constructing
charts is inaccurate, and the method set out in Method Summary 10.1
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Countable data

[ Dispersion test]

Poisson Over- or under-
distribution fits dispersion
u<20 u>20 Is Normal
approximation
| satisfactory? T~ No
: Yes [ special
Set up Use Normal ¥ methods
chart as in approximation "
Method A Method B Is 4>307 ———No
|
Yes
Use Normal
approximation
Method C

Figure 10.1 Which chart for countable data?

should be used. An alternative is to use moving-average charts, and this
may be preferred in some circumstances. The method is based on the
Poisson distribution, but it can also be used (as an approximation) for
Binomial variables.

METHOD SUMMARY 10.1

Shewhart chart for countable data (small values of ¢)

Step 1 Estimate the mean ¢ and variance of the data, and carry out
the dispersion test of section 10.1.4. Proceed only if the
result is not significant.

Step2 Look up Table 10.1(a) for ¢ in the ‘¢ interval’ line. The
corresponding ‘value’ beneath is the limit.
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Steps 3-5 Repeat the procedure of Step2 for the upper warning
limit, the lower warning and action limits, using Ta-
ble 10.1(b), (c), (d) respectively.

There are several points to note about this procedure:

(1) For marginal cases, round them up for upper limits and down
for lower limits. Thus 0.191 corresponds to an upper action
limit of 4.

(2) For values of ¢ beyond the table revert to the normal approxi-
mation method.

(3) For binomial variables with p = 0.1, replace ¢ by np.

Example 10.5

As an example of Method A we use the data of Example 10.2, and in
Example 10.4 we established that ¢ = 13.07. On following through the
steps of Method Summary 10.1 we get

Upper action limit = 26 Lower warning limit
Upper warning limit = 22 Lower action limit

I
W N

Il

10.2.3 Method B: Shewhart chart construction for large values of ¢
(Poisson distribution)

This method is based on the normal approximation to the Poisson
distribution, and is set out in Method Summary 10.2.

METHOD SUMMARY 10.2

Shewhart chart for countable data (large values of ¢)

Step 1 Carry out Step 1 of Method A (section 10.2.2).

Step 2 Scale the chart so that the vertical axis extends between
about ¢ + 4\V/¢. Mark in ¢ on the chart.

Step 3 Calculate the action limits and mark them on the chart.

Action limits: ¢ + 3.09V¢ (probability)
or: ¢ +3Ve (popular)

(If the lower limit is negative you should use Method A).
Step 4 Calculate and mark on the warning limits.

Warning limits: ¢ + 1.96V¢ (probability)

or: ¢ +2V¢ (popular)
Step 5 Plot the initial data counts on the chart if this is appropri-
ate. If an assignable cause of variation is found for any
extreme group omit it from the calculations and revise the
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chart accordingly.

Example 10.6

Although Example 10.2 data does not fall within the rules for using
Method Summary 10.2 (Method B) we shall continue this example, in
order to show the differences between the boundaries. We obtain, using
probability limits,

Upper action limit ¢ +3.09Ve =24.24
Upper warning limit ¢+ 1.96Ve =20.15
Lower warning limit ¢—196Ve = 5.98
Lower action limit ¢—-3.09VvVe = 1.90

The limits and data are shown in Fig. 10.2.

26 4
24
22 A
b0 I e
18 1

16 o o o

14 1 e Mean

12 o ooo oo

Observation
q
g

10 4 o

8 a a

B - — = — m e —— .
4 4 o

0 T T T T
0 5 10 15 20 25 30

—r ——— T —r

Observation number

Figure 10.2 A Shewhart ¢ chart.

If the data of Example 10.2 was being used to set up charts, then an
examination of point seven would be made to see if a special cause was
present. If so, this point would be omitted and the limits recalculated.

10.2.4 Method C: Shewhart chart construction for countable data with
large value of ¢ when the Poisson distribution does not apply

If the dispersion test has shown that the dispersion of the data is either
too large or too small to use the Poisson distribution as a model it may
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first be worth investigating why this is so. If a cause cannot be found, or
is not removable, Shewhart charts may still be set up using the Normal
approximation, provided this is a reasonable approximation.

METHOD SUMMARY 10.3

Shewhart chart for countable data (over or under dispersion)

Step1 Use a Normal probability plot (section 2.9) to check that
the approximation is reasonable.

Step 2 Calculate the average ¢ and s, as described in section 10.2.1.

Step 3 Scale the chart so that the vertical axis extends between
c tis,.

Step 4 Put action limits on the chart at

¢ +3.09s, (probability)
or ¢ + 3s, (popular)

If the lower limit is negative it is advisable to consult a .
statistician for guidance.
Step 5 Put warning limits at

¢ +1.96s, (probability)
c*

or 2s, (popular)

If the lower warning limit is negative this is definitely not an
appropriate chart. Consider using a moving-average chart to
solve this problem. Otherwise consult a statistician.

Step 6 Plot the data, and recalculate limits if any extreme point has
an assignable cause of variation.

Example 10.7
We continue using Example 10.2 for illustration even though Method A
is appropriate. The limits are as follows:

Upper action limit ¢ + 3.09s, = 26.64
Upper warning limit ¢ + 1.96s, = 21.67
Lower warning limit ¢ — 1.96s, = 4.46

Lower action limit ¢ — 3.09s. = (no value)

10.2.5 Shewhart u charts

Countable data might arise from observing the number of special
features in a given amount of material, as in Example 10.1, or from
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counting the number of defects on a sample of items. We shall call the
amount of material, or number of items, the sample size. In Methods A,
B and C we assumed a constant sample size, but in practice the sample
size often varies. It is then best to use a u chart, in which results are
presented per unit amount of material or per item. In section 10.1 we
indicated that there might be other reasons for preferring a u chart.

The construction of a u chart is simple. A chart for total count based
on the average sample size is constructed using the Methods A, B or C
as appropriate. All action and warning limits are then scaled down to
present the results on a per unit basis. Thus if the average sample size is
t and the average count is ¢, the Normal approximation method gives
action lines for total counts at ¢ + 3V/¢, so that action limits for a u
chart are at

(€ £3Ve)/t = a +3V(a/t)

where @ = &/t; see Fig. 10.3.

UAL
UwL

3.09/(u/T)

or 3/(0/T)
Target u

1.96/(0/%)

LWL or 2Y(U/t)
LAL

Figure 10.3 A Shewhart & chart when ¢ is large and the Poisson distribution is
appropriate.

Provided the sample size does not vary by more than 25%, only one
set of limits can be used. When there is greater variation in the sample
size it is necessary to recalculate the limits for each sample size. This
results in a chart such as in Fig. 10.4.
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Observation

Observation number

Figure 10.4 A & chart with varying sample size.

10.2.6 Moving-average charts for ¢ or u

If the average rate of occurrence of defects or other events is low the
sampling interval may contain very few such events. It may then be
appropriate or even essential to use a moving-average chart for ¢ (or
equivalently for u) so that sample intervals are effectively added
together. The steps below are appropriate for moving averages of k
sample points at a time.

METHOD SUMMARY 10.4

Moving-average charts for countable data (k steps)

Step 1 Estimate ¢ for a single sampling interval as before (sec-
tion 10.2.2) and test whether the Poisson distribution is
appropriate.

Step 2 Choose the appropriate method of setting up a Shewhart
chart (see Fig. 10.1) for data with a mean of k¢.

Step 3 Calculate action limits only (warning limits are not used in
moving-average charts) using the method selected in Step 2,
and a mean count of k¢.
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Step 4 Divide these limits by k to obtain the action limit for a
moving-average c¢ chart. If required, divide again by ¢ to
obtain limits for a u chart.

10.3 SHEWHART CHARTS FOR ATTRIBUTE DATA (np
AND p)

10.3.1 Estimation

The methods here are very similar to those given in section 10.2.1 for
countable data, and the reasoning will not be repeated. The only
difference is that ‘exact’ methods based on actual calculations with the
binomial distribution are not usually recommended. When rp is small,
and the dispersion test is not significant, the Poisson approximation is
usually satisfactory, so that Method A of section 10.2.2 can be used.

An overall estimate of p is obtained by using

p = (total no. of defects)/(total sample size),

omitting any group of data for which a special cause is known. The
dispersion test is carried out as in section 10.1.4, and the flow chart for
choosing the appropriate chart is shown in Fig. 10.5; see also sec-
tion 10.1.3. We shall denote the standard deviation of the observed
counts by s,.

10.3.2 Shewhart chart construction for np or p, for data from a binomial
distribution with small values of np

Using the value of ¢ = np go through the steps set out in section 10.2.2.
This will give a chart for monitoring the actual count (np) of non-con-
forming items in equal-sized samples. If a chart for monitoring the
proportion p is preferred - as it often will be, see section 10.1 — then all
action and warning limits are divided by the sample size n.

If samples are of somewhat different sizes, use the average sample
size 71 as the divisor. However, this is reasonable only if sample size
varies by about 25% either way of 77, otherwise limits must be calculated
separately for the different sample sizes.

Strictly speaking the method of section 10.2.2 is for Poisson data only,
but the approximation is reasonable provided p is small (= 0.1). If you
have data for which this is not true you can use the method of
section 10.3.3 if np =10, but otherwise special methods may need
constructing.
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l Attribute datow

l Dispersion testw

Binomial Over- or under-
distribution fits dispersion
np <20 np > 20 Is Normal
approximation
Is p<0.1? satisfactory? \No
| N
No Yes Special
/ Yes ¥ methods
Special Use Normal Is np>30
methods approximation No
Set up chart Method D Yes
as in Method A
Use Normal
Method  Section approximation
A 10.3.1/10.2.2 Method E
D 1033
£ 10.3.4

Figure 10.5 Which chart for attribute data?

Example 10.8
For Example 10.1 data we have p = 0.2493, n = 50, so that np = 12.47.
Method A is appropriate, and gives the following boundaries:

I
N

Upper action limit =26 Lower warning limit
Upper warning limit = 21 Lower action limit

To construct a p chart these values are divided by 50.
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10.3.3 Method D: Shewhart chart construction for Binomial data when
np is large

This method uses the normal approximation to the binomial distribu-
tion, and it is summarized in Method Summary 10.5.

METHOD SUMMARY 10.5

np charts using the normal approximation to the binomial
distribution

Step 1 Calculate p as in section 10.3.1 and check that the binomial
distribution is appropriate, and that np = 10 and preferably
np = 20.

Step 2 Scale the chart so that the vertical axis extends

p chart  between p + 4V(p/n)
np chart between np + 4V(np).

Step 3 Set the action limits as follows:
Probability Popular
p chart P £3.09V{p(1 — p)/n} P £3V{p(l — p)/n}
np chart np *3.09V{np(1 — p)} np =3V{np(1 - p)}.

If the lower limit is negative use the method of sec-
tion 10.3.2 to set up the chart.
Step 4 Set warning limits as follows:

Probability Popular
pchart P +1.96V{p(1 — p)/n} p £2V{p(l — p)/n}
np chart np *1.96V{np(l — p)} np £2V{np(l — p)}

Example 10.9
We continue using Example 10.1 data for illustration even though
Method A is appropriate. The limits are as follows:

Upper action limit 21.92 0.438
Upper warning limit 18.46 0.369
Lower warning limit 6.47 0.129
Lower action limit 3.01 0.060

The limits and data are plotted in Figs. 10.6 and 10.7.

It is clear from the calculations done on Examples 10.1 and 10.2 that
the normal approximation method can be substantially in error at small
values of nf.
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Figure 10.6 An np chart for the data of Example 10.1.
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Figure 10.7 A p chart for the data of Example 10.1.

10.3.4 Method E: Shewhart chart construction for attribute data when
np is large and the binomial distribution is not appropriate

Over-dispersion can often occur in what we might expect to be bino-
mially distributed data. This is generally due to the fact that the true
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proportion defective varies from batch to batch or from day to day.
Underdispersion is seldom seen for such data, but may occasionally
occur. In either case it may be well worth the effort of investigating the
reason for such under- or overdispersion, as this may lead to ways of
reducing the overall proportion of non-conforming items being pro-
duced.

Shewhart charts are set up as in Method Summary 10.6, using the
Normal approximation.

METHOD SUMMARY 10.6

np charts using a direct normal approximation

Step I Use a Normal probability plot (section 2.9) to check that
the proposed approximation is reasonable.

Step 2 Calculate p and s, as in section 10.3.1.

Step 3 The scale of the vertical axis should cover the range

p chart p *ds/n
np chart np * 4s..

Step 4 Action limits are calculated:

Probability Popular
p chart p + 3.09s./n p * 3s./n
np chart np = 3.09s, np * 3s.

If the lower limit is negative this may not be an appropriate
way to set up the chart.
Step 5 Warning limits are set:

Probability Popular
p chart p = 1.96s./n P/ 2s./n
np chart np £ 1.96s, np = 2s.

If the lower limit is negative this is not the right way to set
up a Shewhart chart. Consult a statistician.

10.3.5 Moving-total and moving-average proportion charts for p

As with the ¢ chart it may be that a single sample contains so few
non-conforming items that it is not possible to set up a satisfactory
Shewhart chart for individual samples. Again, using a moving-total or
moving-average effectively increases the sample size. The disadvantage
is that a sudden large increase in the proportion defective may be
averaged out, and so not detected immediately.



232 Control of discrete data processes

METHOD SUMMARY 10.7

Moving-average p or np charts

Step 1 Choose the (average) size n of individual samples, and k,
the number of samples in the moving total or moving
average.

Step 2 Obtain suitable data from the process, calculate ¢ and s,,
for individual samples of size n, and hence calculate p and
V (equation (10.5)).

Step 3 Use this if V # 1.

If knp = 3Vks,, then set action limits for charts thus:

Probability Popular
Moving total knp + 3.095,Vk knp *+ 3s.Vk
Moving average proportion p * 3.09s.,/nVk p * 3s./nVk

Step4 Use this if V = 1.
(a) If knp <20 and if p = 0.1
Use Table 10.1 with ¢ = knp, to set action limits for a
moving-total chart. Divide these by kn to give limits for
a moving-average proportion.
(b) If knp > 10, with no restriction on p action lines are

set:
Probability Popular
Moving total knp = 3.09V{knp(l — p)} knp = 3V{knp(1 — p)}
Moving ~ p + 3.09¢{————”p(1 = p)} P 3¢{*———"”(1 - p)}
average kn kn
proportion

10.4 CuSum CHARTS FOR COUNTABLE DATA: GENERAL
POINTS

10.4.1 Introduction

The International Standard on CuSum charts listed in section 13.5
contains a detailed discussion of the application of CuSums to countable
or attributable data, and it contains much practical advice. Sec-
tions 10.4-10.6 of this book follow that standard closely.

However, it applies only to situations where the assumptions underly-
ing the Poisson distribution are valid, namely

(1) constant size of observation interval;
(2) independence of events;
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(3) constant average rate of occurrence of events.

It is important to use the dispersion test to check whether these
assumptions are reasonable. This can be considered as the equivalent of
testing for additional components of variation for continuous measure-
ments, as discussed in Chapter 3.

If it is found that the ratio V lies outside the range 0.8 to 1.25 this
should be investigated. If the causes of extra variation are not found, or
they are found but cannot yet be eliminated, the method of section 10.7
should be used to set up CuSum charts.

Scaling

The general convention used is that the distance between samples on the
horizontal scale represents 20, units on the vertical scale. In the context
of countable or attribute data, this leads to using the following theoret-
ical values for o,:

Countable data  Poisson distribution 6.=Ve
Attribute data Binomial distribution 8, V[np(1l — p)]

where ¢ is the estimated mean of the Poisson distribution, and p is the
estimated proportion with the attribute, for attribute data. Note that
when ¢ (or np) is less than 1 special rules apply (see Step5 of
section 10.5.2).

10.4.2 Form of mask

The distributions arising with countable and attribute data are usually
skew, so that a symmetrical mask as used in Chapter 7 is not appropri-
ate. In any case, for countable and attribute data it is nearly always
increases in the mean which are critical. For these reasons, a one-sided
mask is suggested as shown in Fig. 10.8, so that only increases in the
mean are detected. The parameters of the mask are H, the decision
interval, and F the slope per unit. The other parameter often quoted is
the reference value K = C1 + F, where Cr is the target value.

Figure 10.8 Mask for countable and attribute data.
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10.4.3 Decision rules

The International Standard referred to gives two sets of parameters for
CuSum schemes - one set, the C1 schemes, when the ARL is about
1000 when the process is on target and the other set, the C2 schemes,
when the ARL is about 200 for a process on target. A very large
number of schemes could be constructed, but those tabulated by the
International Standard should be satisfactory for most purposes. If the
rates of occurrence of countable or attribute data is very large, the
Normal approximation can be used, so that we revert to the methods of
section 7.2, and specific rules are given below.

For both countable and attribute data detailed tables are needed for
implementation, and it is impracticable to give more than a limited
number of sets of parameters. For this reason, interpolation may be
required in the schemes given below. As the manner of using the table
of parameters is more complicated than for CuSums with continuous
variables, we discuss this first, and then list the detailed steps involved
in running a scheme. In each case there is the possibility of using a
CuSum plot, or a decision interval scheme.

10.5 CuSum CHARTS FOR COUNTABLE DATA

10.5.1 Use of tables

Obtain the process average ¢, in a similar way to that described in
section 10.2.1. Any group for which there is an identifiable cause of
variation should be omitted. Check that V = s2/¢ = 1.

In order to select a CuSum scheme we need to choose a target value
for the process average number of defects or counts, Cy. This will
usually be the process average ¢, but it may be some other value that
we expect to be able to achieve; for example, certain preferred values of
Cr are given in Table 10.2 and one of these might be used if it is close
toc.

Table 10.2 CuSum parameters for countable data

Event rate at CuSum parameters for C1I ~ CuSum parameters for C2
AQL schemes schemes
Cr H K H K
0.1 1.5 0.75 2 0.25
0.125 2.5 0.5 2.5 0.25
0.16 3.0 0.5 2 0.5
0.2 3.5 0.5 2.5 0.5

0.25 4.0 0.5 3 0.5




CuSum charts for countable data 235

Table 10.2 (cont.)

Event rate at CuSum parameters for C1I ~ CuSum parameters for C2
AQL schemes schemes
Cr H K H K
0.32 3.0 1.0 4 0.5
0.4 2.5 1.5 3 1
0.5 3 1.5 2 1.5
0.64 *3.50r 4 1.5 2 2.0
0.8 5 1.5 35 1.5
1.0 5 2 5 1.5
1.25 4 3 5 2
1.6 5 3 4 3
2.0 *7 or 8 3 5 3
2.5 7 4 5 4
3.2 7 5 5 5
4.0 8 6 6 6
5.0 9 7 7 7
6.4 9 9 9 8
8.0 9 11 9 10
10.0 11 13 11 12
10 11 13 11 12
15 16 18 11 18
20 20 23 14 23
25 24 28 17 28

Table 10.2 shows two sets of CuSum schemes, C1 and C2, appropriate
to a range of values of C;. The procedure for choosing a set of
parameters, H and K, is given in Method Summary 10.8.

METHOD SUMMARY 10.8

CuSum charts for countable data: Choosing parameters

Step1 Choose Cr, and decide upon C1 or C2 schemes.

Step 2a For Crp in the range (0.1 to 10.0), choose a line of the
table close to the observed value ¢. It should be satisfac-
tory to use the Cy value listed in the table, rather than ¢.
Record H and K.

Step 2b For Cr in the range 10-25 use linear interpolation between
the lines of the table, rounding both H and K in the same
way to integers (i.e. both rounded up or both rounded
down). It may be better to choose a value of Cr to make
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calculations easier, such as an integer value, or a Cy listed
in the table.

Step2¢ For Cp greater than 25 use CuSum schemes for Normally
distributed variables with target C; and o, = VCr. It
should be noted that CuSum schemes for Poisson variables
designed in this way have ARLs about 40% lower at target
than those for Normally distributed data.

10.5.2 Operating a CuSum scheme for countable data

The method of operation is set out in Method Summary 10.9, and an
example chart is shown in Fig. 10.9.

METHOD SUMMARY 10.9

Operating a CuSum scheme for countable data

Step I The set-up phase is very similar to that set out in section
5.1.3. When this is completed we shall usually have avail-
able at least 20 groups of n observations each, with records
of the numbers of counts or defects, c;, ¢,, ..., Cy-

Step 2 Calculate the process average

¢ = (Zc;)/(No. of groups).

Any group for which an assignable cause of variation is
identified should be omitted from the calculation.

Step 3 Settle on a set of parameters Cy, H and K as outlined in
section 10.5.1.

Step4 Decide on whether to use a CuSum plot or a decision
interval scheme.

Step 5 Scale the plots so that one unit on the horizontal scale
represents 2V Cr units on the vertical scale, provided
Cr>1. If C;y <1, mark the horizontal scale in intervals of
the quantity

greatest integer in 1/Cr

and then mark the vertical scale in intervals of the same
length as the horizontal scale, but mark them successive
even integers from zero, 0, 2, 4, . . ..
Note
The scaling in Step 5 arises because with very low Cr, a large
number of samples are taken to obtain (on average) one
count. The suggested scaling for Ct <1 is more appropriate
for this situation.
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The problem giving rise to Fig. 10.9 was actually electrostatic sparking,
which interrupted the process and caused deterioration in the product.
The chief changes in the plot seem to be due to coincidental changes in
filtration, and due to operations done during a plant shut-down. In fact
product grade changes (Z72, Z46, etc.) might also be responsible.

The ability of CuSum plots to pinpoint the time when a change
occurred is very helpful, but doesn’t entirely remove the ambiguity when
several changes to the process are made close together in time.

10.6 CuSum CHARTS FOR ATTRIBUTE DATA

The situation here is very similar to the case for countable data outlined
in section 10.5. We assume that we take groups of n observations at a
time, and record the numbers ry, r,, ..., ryy of defectives or the
numbers with the attribute in question. The next step is to calculate

p; =r/n and p = (Zr;)/{n X (no. of groups)}.

The difficulty with attribute data is that there are two parameters, n
and p, for the data as compared with one, the mean, for countable data.
Because of this, the construction of comprehensive tables would be
impracticable. Fortunately, two approximations deal with a majority of
situations.

Case1p <0.1. In this situation, the CuSum schemes for countable data
may be used, with ¢ =np. This will cover the majority of practical
applications.

Case 2 np > 20. In this situation CuSum schemes based on the Normal
approximation may be used. Values of 4 and f are chosen from
Table 7.5 as for a Normally distributed variable, and used as follows:

H =hV{np(1 - p)}
K =np + fV{np(1 - p)}
and H and K are rounded to the nearest integers.

Case 3 other values of n and p. Here a special table is necessary, and
reference should be made to the International Standard.

il

10.7 CuSum PLOTS FOR COUNTABLE OR ATTRIBUTE
DATA WHEN THE POISSON OR BINOMIAL
DISTRIBUTION DOES NOT APPLY

All methods given in section 10.4-6 are sensitive to the assumptions
given in section 10.4.1. But it may often be the case that one or more of
these assumptions is invalid. In particular, the likelihood of an event or
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of a defective item may not be constant over the long term. Indeed, in
many cases it can be argued that if the process were genuinely in control
the defective rate can often be controlled so as to be negligible. While
this is a desirable goal to aim for we do require realistic control charts
to operate on the way.
If calculation of the ratio

V= ST% or *A—s—%—,\—
¢ np(l-p)
gives a value that is appreciably different from 1 the causes should first
be investigated. If it is not currently possible to identify and/or remove
the cause of under- or overdispersion, then a CuSum chart can be set up
as follows, provided that ¢ is at least 1j times as great as s,, and
preferably appreciably larger than this.

METHOD SUMMARY 10.10

CuSum charts for countable and attribute data when Poisson or
binomial distribution does not apply

Step 1 Calculate ¢ and s,. Check that ¢ > 11s,.
Step2 Set up a one-sided or two-sided CuSum plot or decision
interval scheme with

T
H
F

I
\:-ﬁl

K= T+F

where the parameters 4 and f are obtained from Table 7.5,

depending on the approximate ARL properties required.
Step 3 To obtain a CuSum chart for u or for p divide each of the

parameters T, H, F and K by ¢ or by n as appropriate.

10.8 COMPARISON OF SHEWHART AND CuSum
SCHEMES

The gain in ARL is not so great with countable or attribute data as with
continuous data. However, there is some gain, and the visual interpreta-
tion of CuSum charts etc., also give the CuSum schemes advantages.
Alternatively a moving-total or moving-average chart may be more
straightforward to operate and could have similar ARL properties to a
CuSum scheme if k is chosen appropriately.
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EXERCISES 10.A

1. For the situation described in Example 10.2 it has been decided that
in future 1-kg samples will be taken, but that the chart should be set
up to record longs per kilogram. Set up the chart.

2. Carry out a study of the accuracy of the Normal approximation
method for the Poisson distribution, using a range of values of ¢.

3. Set up CuSum charts from the data given in Examples 10.1 and 10.2.

EXERCISE 10.B
1. A property of the Poisson distribution is the equality
Pr(X = x|mean = u) = Pr(y? > 2u[2(x + 1) d.f.).
Use this to check the validity of Table 10.1.



11
Sampling inspection

11.1 INTRODUCTION

11.1.1 Where inspection?

In any industrial process there are three points at which we can attempt
to control the outgoing quality, as pictured diagrammatically in Fig.
11.1.

Input Process Output
Raw materials Sold or
or output of passed to
previous stage next stage

Figure 11.1 Sites for sampling inspection.

The methods we have been considering are all attempts to control the
output from a process, by observing it, and by taking control actions on
it. The other points at which some control can be exercised are to
inspect the input and output; see Fig. 11.1.

Input. We can inspect the input to ensure that it is of sufficiently high
quality. It is clearly a waste of money to process material which is of
substandard quality at the input stage.

Output. We can inspect the output to attempt to filter out the
non-conforming material, or in order to grade it for sale.

Attempts to filter out non-conforming quality at the output stage are
costly, and not very effective. Wherever possible, input inspection
should be avoided by making special agreements with the supplier so
that he installs appropriate SPC methods, and so that data are obtained
from his output inspection. Frequently, however, needless losses are
incurred by failing to carry out adequate incoming inspection. Satisfac-
tory agreements with suppliers are not always possible.
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The following examples illustrate some uses of sampling inspection:

Example 11.1

Child-proof screw caps are delivered packed in large cartons. A number
of these are taken out and tested on a standard bottle before deciding
whether the carton is to be used or rejected. Each cap can be classified
as conforming or non-conforming to a given specification.

Example 11.2

At certain factory bags of pellets of catalyst are submitted to incoming
inspection. Typically, three variables are measured: crushing strength,
amount of activity and pore size. The crushing strength and activity
levels must meet given specifications, and the pore size distribution must
be satisfactory; or the bag is rejected.

Example 11.3

In the manufacture of a pharmaceutical product, there is a small
percentage of byproduct in the final production material after going
through a purification process. The percentage byproduct is measured
by a chromatographic analysis. The percentage of byproduct must be
kept within limits for the product to be released.

In the first two examples, the inspection is fairly cheap compared with
the costs involved in Example 11.3. The examples also illustrate both
incoming and outgoing inspection.

In this chapter we give a brief overview of sampling inspection, and
discuss sampling inspection by attributes. For more information consult
Schilling (1982) or Wetherill (1977); for theory of sampling inspection by
attriutes see Hald (1976).

Before proceeding, we need some terminology. A batch or lot is a
collection of produced items, or an amount of produced material, which
is passing through an inspection station as a unit. These are usually
packaged or bagged together. As a result of inspection, we sentence the
batch, which means that we accept it or reject it, or perhaps accept it or
sell it at a reduced price, etc. For the most part, we consider inspection
by attributes (see below) of batches of items. Usually, each batch is
sentenced on the basis of a sample of items.

11.1.2 Sampling inspection or 100% inspection

In industry it is sometimes necessary to defend inspection by samples
against 100% inspection, and to explain why sample procedures are
reliable. Clearly there are some situations in which 100% inspection is
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desired rather than sampling inspection, but such situations are infre-
quent. The reasons why sample methods are preferred are as follows:

(1) We never require absolutely accurate information about a batch or
quantity of goods to be sentenced. Thus in Example 11.1 it would
be sufficient to estimate the percentage of non-conforming types in
the batch to within }% or so. Complete inspection in Example 11.1
would be an unnecesary waste of time and labour. For the purpose
of sentencing the batch, an estimate of the fraction non-conforming
is quite sufficient.

(2) A point allied to (1) is that under the usual assumptions, the
standard error of an estimate reduces as the number of observa-
tions increases, approximately as the reciprocal of the square root
of the number of observations. Therefore in order to halve the
standard error we must take four times as many observations.
Beyond a certain point it is either impractical or not worth while
achieving greater accuracy.

(3) Even if the entire batch is inspected in Example 11.1 say, we still
do not have an absolute accurate estimate of the fraction non-con-
forming unless inspection is perfect. In industrial situations inspec-
tion is very rarely perfect and Hill (1962) quotes a probability of
0.9 as being ‘not unreasonable’ for the probability of recognising
defects by visual inspection. Some experiments have indicated that
if inspectors are faced with batches for 100% inspection, then the
inspection tends to be less accurate than if sample methods are
used.

(4) In some cases, such as in Example 11.3, inspection by laboratory
analysis is very costly and 100% inspection is obviously ruled out.

Another case of this is destructive testing, as in testing of artillery
shells.

One situation where 100% inspection is appropriate is when it can be
arranged cheaply by some automatic device. More usually sample
methods will be appropriate.

When sample methods are employed we shall usually make the
assumption that sampling is random. Thus in Example 11.1 a sample
should be taken in such a way that every item in the batch is equally
likely to be taken. In practice this assumption is rarely satisfied and this
has to be taken into account when drawing up a plan.

Sometimes it is possible to stratify the items to be sentenced, and use
this to draw up a more efficient sample procedure. For example, in the
transport of bottled goods in cartons, the bottles next to the face of the
carton are more likely to be damaged than those in the interior. In this
case it would be better to define two strata, one being those bottles next
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to a face of the carton, and the other stratum being the remainder. A
procedure which sampled these strata separately would be more efficient
than a straight random sample. To the authors’ knowledge very little use
has been made of this kind of device.

11.1.3 Flow chart for acceptance inspection

In any realistic assessment of alternative sampling inspection plans, the
mechanics of the actual situation into which a sampling plan fits must be
considered in some detail. In many papers we find that important —
even drastic — assumptions are made, both implicity and explicitly, as to
the manner in which a plan works. In this section we do not attempt to
give a complete catalogue of inspection situations, but we aim to give
sufficient to form a basis.

Input streams Output streams

1 ——\ /_—> 1
2——__| Inspection [ — ~2
' station :

— T

Figure 11.2 An inspection situation.

Consider the following situation. Batches of approximately N items
reach an inspection station through one of I streams. For a consumer,
these streams might be different production lines; it is possible that the
most common case is I = 1. The quality of batches in the streams may
or may not be correlated with the quality of other neighbouring batches
in the same stream or in other streams. It is also possible that these
input streams may have different states; for example, a production
process may be either in control or out of control. It seems obvious that
when several states exist in the input streams, the inspection plan should
be specially designed to deal with this.

At the inspection station a sample of items is selected from some or
all of the batches and the samples are inspected. Each batch is then
sentenced, and placed in one of the J output streams.

If there are only two output streams, these are usually referred to as
the accepted and the rejected batches. (A better term for rejected
batches might be ‘not accepted’.) For final inspection by a producer, the
accepted batches are those passes on for sale to customers. There are
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many possibilities for the rejected lots, and some of these are set out in
Fig. 11.3, some of which is taken from Hald (1960). However, this
diagram is really appropriate when items are simply classified as
effective or defective. More frequently there might be different types of
non-conformity, and different action taken on each type.

Rejected batches

|

-

Sorted Not sorted
Conforming Non-conforming ~ Scrapped Reprocessed. All items
items or sold at sent back without sorting

reduced price to some previous stage
of production

Y
Non-conformities Non-conformities
scrapped or sold at  repaired or
reduced price reprocessed
(a)
Rejected batches
l
=
Sorted Not slorted
]
Conforming Non-conforming Scrapped or used Returned to
items items for less profitable supplier
l purpose
Y R
Non-conformities Non-conformities
scrapped or used returned to
for less profitable supplier
purpose
(b)

Figure 11.3 Some possible courses of action on rejected batches: (a) final inspec-
tion by a producer; (b) inspection by a consumer.

In some applications of inspection plans there may be more than two
output streams. For example, there may be two grades of accepted
batches, for different uses, or for sale at different prices. Similarly, there
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could be two grades of rejected batches. However, such plans would
often be considered unduly complicated, and liable to lead to gross
errors on the part of the inspector. Here we consider two output
streams and call them accepted and rejected batches.

Another point with regard to the flow chart, Fig. 11.2, is to specify
which parts of this chart work at a given rate, and which parts can work
at varying rates. For final inspection by a producer, the input streams
are fixed, but for inspection by a consumer, the quantity usually fixed is
the number of accepted batches passed. In addition to either of these
possibities, the labour and resources available at the inspection station
will usually be fixed, and variable only in a long-term sense.

The purpose for which inspection is being applied also needs to be
considered in some detail. For a producer, some possible aims are:

(1) to satisfy some requirement for a National or International
Standard,

(2) to grade batches for sale;

(3) to prevent non-conforming batches being passed on to customers;

(4) to provide information from which a quality control plan can be
operated.

The aims for a consumer might be:

(5) to confirm that the quality of goods supplied is up to standard;

(6) to prevent non-conforming batches being passed on to a production
process,

(7) to grade batches for different uses;

(8) to encourage the producer to provide the quality desired (Hill
1960). This purpose can only be achieved if the consumer uses a
substantial part of the supplier’s output.

It is probable that in many situations in which sampling inspection plans
are applied, the aims are not easy to define precisely.

We can see throughout this discussion that inspection by a producer is
in general very different from that by a consumer.

An extended discussion of some case studies of quality control
practices arising in industry is given by Chiu and Wetherill (1975).

11.2 CLASSIFICATION OF INSPECTION PLANS

Any system of classifying inspection plans is unsatisfactory in that
borderline categories exist. Nevertheless it will be found useful to have
some classification system. We shall first list different inspection situ-
ations and then give alternative sampling plans.
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11.2.1 Inspection situations

(a) Batch inspection or continuous product inspection

Batch inspection occurs when we have items presented in bags or
cartons, as in Example 11.1, and it is desired to pass sentence on each
bag of items together, and not on each individual item. If on the other
hand we have continuous powder or a production line of continuously
produced small items such as chips of plastic and items are not treated
in batches for sentencing, then we have continuous product inspection.
The essential distinction is whether items are batched for inspection
purposes or not; often with a continuous production process, items are
batched for inspection purposes. With batch inspection there is no need
for any order in the batches presented, although sometimes there is an
order, and this information can be used; see below. Example 11.4
illustrates one of the earliest types of continuous sampling plans (CSP);
batch inspection plans are illustrated later in this section.

Example 11.4 Dodge plan

At the outset inspect every item until i successive conforming items are
found. Then inspect every nth item until a non-conforming item is
found, at which point 100% inspection is restored.

(b) Rectifying inspection or acceptance inspection

If, say, batches of items are presented for sentencing, and the possible
decisions are, say, accepted or rejected, or accept or sell at a reduced
price, etc., we have acceptance inspection. Rectifying inspection occurs
when one of the possible decisions is to sort out the non-conforming
items from a batch and adjust or rectify them, or else replace them.
That is, with rectifying inspection, the proportion of defective items may
be changed.

(c) Inspection by attributes or inspection by variables

Inspection by attributes occurs when items are classified simply as
conforming or non-conforming, or when mechanical parts are checked
by go-no-go gauges. The opposite of this is inspection by variables
when the result of inspection is a measurement of length, crushing
strength, weight, the purity of a chemical, etc. An intermediate classifi-
cation between these is when items are graded. There is frequently a
choice between inspection by attributes or by variables, and also a
choice of the number of such characteristics inspected. The choice
between these depends on the cost of inspection, the type of labour
employed, and also on the assumptions which can be made about the
probability distribution of the measured quantities. Recently, Baillie
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(1989) has introduced some multivariate plans which are mixed at-
tributes and variables plans.

11.2.2 Alternative sampling plans

We shall be mainly concerned here with batch inspection plans. Exam-
ple 11.4 illustrates a continuous production inspection plan. An inter-
mediate situation occurs when items are batched in order from a
production process.

It is then possible to operate serial sampling plans or deferred
sentencing sampling plans, in which the sentence on a batch depends not
only on the results on the batch itself, but also on results from preceding
or following batches. The plans described below all treat each batch
independently; the effect of operating such plans as serial sampling plans
would be to modify the sentencing rules depending on the results of
inspection on neighbouring batches. As an example, a possible rule
would be to inspect n items from each batch, and to accept if either
there were no non-conforming items in the current batch, or one
non-conforming item and no non-conforming items in the previous k
batches.

(a) Single sampling plan
Suppose we have batches of items presented, and items are to be
classified merely as conforming or non-conforming to a set standard. A
single sampling plan consists of selecting a fixed random sample of n
items from each batch for inspection, and then sentencing each batch
depending upon the results. If the sentence is to be either accept or
reject the batch, then each batch is accepted if the number of non-con-
forming items r found in the n items is less than or equal to the
acceptance number, c. We summarize as follows:

Single sampling plan:

(1) select n items, 1
(2) accept batch if number of non-conforming items =< c, (11.1)
(3) reject batch if number of non-conforming items > ¢ + 1 J

For inspection by variables we have a corresponding sentencing rule.
There is no need for the restriction to two terminal decisions and we
could have, for example, accept, reject, or sell at a reduced price.

Example 11.5

For batch inspection, one possible sampling plan might be to use a
single sampling plan with n =30, ¢ =2. That is, if there are two or
fewer non-conforming items in the sample, the batch is accepted.
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(b) Double sampling plan

In this plan a first sample of »n; items is drawn, as a result of which we
may either accept the batch, reject it, or else take a further sample of n,
items. If the second sample is taken, a decision to accept or reject the
batch is taken upon the combined results.

Example 11.6
A double sampling plan for use instead of the plan in Example 11.5
might be as follows. Select 12 items from the batch and

(1) accept the batch if there are no non-conforming items,

(2) reject the batch if there are 3 or more non-conforming items,

(3) select another sample of 24 items if there are 1 or 2 non-conform-
ing items.

When the second sample is drawn, we count the number of non-con-

forming items in the combined sample of 36 items and

(4) accept the batch if number of non-conforming items = 2
(5) reject the batch if number of non-comforming items > 3.

A natural extension of double sampling plans is to have multiple
sampling plans, with many stages. It is difficult to see how double or
multiple sampling plans would be used when there are more than two
terminal decisions, unless more than one attribute (or variable) is
measured and a much more complex sentencing rule introduced.

(c) Sequential sampling plan

A further extension of the multiple sampling idea is the full sequential
sampling plan. In this plan, items are drawn from each batch one by
one, and after each item a decision is taken as to whether to accept the
batch, reject the batch, or sample another item. A simple method of
designing sequential sampling plans was discovered by Professors G. A.
Barnard and A. Wald during the 1939-45 war. An essential point is that
the sample size is not fixed in advance, but it depends on the way the
results turn out.

Sequential sampling plans can save a substantial amount of inspection
effort, although the overall gain in efficiency is often not great unless
inspection is expensive, as is the case in Example 11.3, concerning
chromatographic analysis. Another characteristic of plans where sequen-
tial sampling can give great gains in efficiency is when the incoming
quality is very variable. Here, Example 11.2 provides just such a
situation, as the pellets being examined may come from different
producers and be of variable quality.

The theory of sequential sampling plans is discussed by Wetherill and
Glazebrook (1986) and will not be discussed further in this text.
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11.2.3 Discussion

We have described many different types of inspection situations and
inspection plans, and a number of questions arise. What are the relative
merits of different types of plan? How should the sample sizes and
acceptance numbers be chosen, and upon what principles? In attempting
to answer these questions we should consider carefully the aims for
which the inspection plan was instituted. There are several different
schemes for selecting sampling plans, appropriate to different situations.
Before describing some alternative sampling schemes, we outline some
properties of sampling plans.

11.3 SOME PROPERTIES OF SAMPLING PLANS

11.3.1 The OC-curve

This section is concerned with inspection situations in which the items
are classified as either conforming or non-conforming, and where the
items are presented in batches. One of the most important properties of
a sampling plan is the operating characteristic curve.

Suppose batches of quality 6 are presented (so that 6 is the propor-
tion which is non-conforming) and the single sample plan (11.1) of
section 11.2.2 is used. That is, n items are selected at random from each
batch, and a batch is accepted if ¢ or fewer non-conforming items are
found in it.

Then if the batch is large it follows that the probability that a batch of
quality 6 will be accepted is given by the binomial distribution and is

P(6) = go ('r’)e'(l — o) (11.2)

P(6)

0 6 1

Figure 11.4 The OC-curve.
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This function is illustrated in Fig. 11.4. Clearly, when 8 = 0, all batches
are accepted and P(6) =1. As 0 increases P(6) decreases, until it is
zero at 6 = 1 (it will be negligible long before 6 = 1). This curve, shown
in Fig. 11.4 is called the operating characteristic curve, or OC-curve.

0 e' 6

Figure 11.5 An ideal OC-curve.

For any given sampling plan, the OC-curve can be calculated, and
compared with what we think the OC-curve should be like. Ideally, we
might wish to have an OC for which all batches with 8 < 6’ were
accepted, and all others rejected. This would be

J19<0

FO) =10 6>0

and is shown in Fig. 11.5. This OC-curve is impossible to achieve
without almost 100% inspection. An alternative specification would be
to set

J19<0
mm:l 9’ < @

0 6>¢

leaving the region (6', 6'’) in which we do not mind what happens. This
is shown in Fig. 11.6.

Unfortunately, even this alternative formulation cannot be achieved
without almost 100% sampling. A formulation which can be achieved is
as follows. We specify a good quality, 6;, at which we require the
sampling plan to accept batches with a probability greater than (1 — ).

Pr(accept batches of quality 6;) = 1 — « (11.3)
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P(©) \

0 e 6" 6

Figure 11.6 An alternative form of ideal OC curve.

We call this the producers’ risk point, and it represents the risk of the
producer having good-quality product rejected.

We also specify a poor quality, 6,, at which we require the sampling
plan to reject batches with a probability greater than (1 — f8). Alternat-
ively we write

Pr(accept batches of quality 8,) = (11.4)

We call this the consumers’ risk point. The risk of a consumer
accepting quality poorer than 6, is set to be at most . By specifying the
producers’ and consumers’ risk points (Fig.11.7) we are setting two
points on the OC-curve. These concepts suppose rather narrow-minded
producers and consumers, but even so, they help to fix what is required
of a sampling plan. No real producer or consumer could define his
requirements quite so narrowly.

1 Ty oroducer’s risk
1 I et i bdad -
]
1
]
1
1
O] |
T :
]
]
]
'
]
]
1
'
B _____ T ................... =-___ Consumer’s risk
0 6, 6,

Figure 11.7 Producer’s and consumer’s risks.



Some properties of sampling plans 253

As an example, suppose that in a certain process batches of product
are subject to acceptance inspection. We may set 8 = 0.5% as conform-
ing product, which we want accepted 98% of the time:

Pr(accept batches with 0.5% non-conforming items) = 0.98.

Similarly we may set 8 = 3% as non-conforming product, which we
want rejected 95% of the time:

Pr(reject batches with 3% non-conforming items) = 0.95.

The indifference quality

Finally, one quantity sometimes used in sampling inspection is the
indifference quality. It is the quality of batches which, when submitted
for inspection, is accepted only 50% of the time. It is denoted 6, s,.

Pr(accept batches of quality 8,5,) = 0.50.

An approximate rule which may be useful for any single sampling
plan is given by

Bos0 = (c + $)/n (11.5)

For a derivation of this see Wetherill and Kollerstrom (1979); see also
Exercise 11.B.1.

11.3.2 The average run length

This concept was introduced in Chapters 7-9 when we dealt with
Shewhart and CuSum charts; it has found widespread application in
industry.

Suppose we have continuous production inspection (of single items),
or else batch inspection of an ordered sequence of batches, then the run
length is defined as the number of batches (or items) sampled until one
is rejected. The distribution of run length for any sampling plan is
positively skew with a very long tail. Often we do not consider the
whole run length distribution, but limit consideration to the average run
length or ARL.

Suppose that we have batch inspection using a plan which accepts
each batch independently of others with an OC-curve P(6). Then the
probability that a run length of r batches is observed is

(PO H1-PO), r=1,2,... (11.6)

and the ARL is 1/{1 — P(6)}. In this situation, therefore, the OC-curve
and the ARL function are exactly equivalent. However, it can be argued
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(particularly in some situations) that the ARL is more directly meaning-
ful. The ARL tells us how much of a given quality is accepted on
average, before some action is taken.

In some sampling plans, the plans are altered according to the process
average as determined from sampling. For such plans the ARL and
OC-curve may not be directly equivalent, and the ARL appears to be
the more meaningful concept. Another situation when the ARL should
be used is when we have plans which are being used for process control,
for the ARL shows how frequently corrective action is initiated. In
other cases it may be helpful to use both the ARL and the OC-curve
concepts. Many of the published tables for sampling inspection, such as
British Standard tables, emphasize the OC-curve concept.

Finally, we note that it is sometimes useful to distinguish between the
average sample run length (ASRL), which is the average of the number
of sampling points, and the average article run length (AARL), which is
the average of the number of items sampled or observations taken.

11.3.3 The process curve

The long run distribution of the quality of batches of items arriving at
the inspection station is called the process curve. Now in practice, batch
quality may vary in some way similar to the patterns of variation shown
in section 3.2, and contain periodic effects, etc., but this is usually
ignored in batch inspection, partly on the grounds that it is very difficult
in practice to obtain information on the process. With continuing
production inspection, there is no meaning to the process curve without
either arbitrarily batching it, or else bringing in the stochastic element.
A typical process curve is shown as the full line curve in Fig. 11.8.

Probability density

_—
/ \___// -~

Percent non-conforming items

Figure 11.8 Typical process curve for percentage non-conforming.
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The act of sampling and sentencing batches of material filters out the
bad quality to some extent, and produces a more satisfactory distribu-
tion such as the dotted curve in Fig. 11.8.

For various practical reasons, data on the process curve is often very
difficult to get. However, some vague knowledge is required in order to
design a sampling inspection plan. We need to know roughly how likely
it is that batches of any given quality will occur, in order to decide how
much protection we need at various levels.

11.3.4* Mood’s theorem

An important result which throws some light on the importance of the
process curve was derived by Mood (1943). He showed that when the
probability of a defective is constant, there is no correlation between the
quality of batches accepted and rejected by a sampling scheme. One
conclusion which we can draw from this result is that there is no point in
sampling when the batch quality is stable (except, maybe, to reject the
entire production). Sampling makes sense only with variable quality. We
therefore need to take care about schemes worked out on a basis of
stable production. The proof follows, for those interested in it.

Consider a single sample plan for fraction non-conforming, from
batches of size N. Any given batch quality can be represented by a
point on the batch line in Fig. 11.9, and any sample result is represented
by a point on the sample line. Consider a batch of qualilty represented
by the point P, then the probability that the sample result is given by Q
is

_no.ofpaths OPviaQ  (n\[(N-n\|[N
Pr(QIP) = total no. of paths OP (b> (B - b)/(B)

y

Batch line
xty=N

Sample line
x+ty =n

Fi6,8)

Number of non-conforming
items

X
Number of conforming items

Figure 11.9 Illustration of Mood’s theorem.
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Now suppose that the process curve is binomial:

N
(B )ps e

corresponding to stable production at a probability p of a defective.
Then the total probability of obtaining a batch and sample represented
by P and Q respectively is

B R A e

This last statement shows that the sample result (g, b) is statistically
independent of the quality of the remainder of the batch (G —g,
B — b). In particular, b is statistically independent of (B — b).

Mood actually found that the correlation between b and B — b is zero
for a binomial process curve, and negative and positive for leptokurtic
(sharp peaked) and platykurtic (flat topped) process curves respectively.

What Mood’s result shows is that if the production process is such
that there is a constant probability of obtaining a non-conforming item,
and if a sample is drawn, then the distributions of quality in the sample
and in the remainder of the batch are independent. Therefore batches
selected because of poor quality in the sample will not tend to be worse
than accepted batches.

11.4 METHODS OF CHOOSING SAMPLING PLANS FOR
ATTRIBUTES

11.4.1 The producer’s and consumer’s risk point method

In this book we shall use the term sampling system to refer to a set of
principles used to determine sampling plans, resulting in a collection or
table of individual sampling plans indexed ready for use. There are
various sampling systems available, each appropriate in certain circum-
stances, and we discuss the underlying principles of some of these
below.

Suppose that we have large batches of items presented for acceptance
inspection, where the items are classified as conforming or non-conform-
ing, then the sampling plan (11.1) has two parameters to be fixed, the
sample size n and the acceptance number c; clearly we need two
equations to determine these quantities. One way of obtaining two
equations is to pick two points on the OC-curve, and determine n and ¢
so that the OC-curve of our plan goes through (or very near to) these
points. Following our discussion in section 11.3.1 one convenient pair of
points to choose is the producers’ risk point (11.3) and the consumers’



Methods of choosing sampling plans for attributes 257

risk point (11.4); these points are shown on Fig. 11.7. In this section we
follow through an approximate method of determining a sampling plan
in this way. Clearly, since the binomial distribution applies, we have
discreteness problems, and it will not usually be possible to satisfy any
pair of inequalities exactly. A range of possible sample sizes results; see
below. The steps are set out below and the first two involve the choice
of the producer’s and consumer’s risk points. We settle on good quality
such that we want the risk of rejection to be small, e.g. with material at
only 1% non-conforming we may want the risk of rejection to be less
than 3%. We also settle on poor quality such as 5% non-conforming,
and require the risk of acceptance to be small, say 2%. This means that
for our example we have (6, =1%, a =3%; 6,=5%, B=2%). The
appropriate values for particular applications can be judged with experi-
ence.

The theory of the method is discussed in section 11.4.2, but it is based
on firstly using the Poisson distribution as an approximation to the
binomial, and secondly, using a known relation between Poisson proba-
bilities and the y* distribution.

METHOD SUMMARY 11.1

Producer’s and consumer’s risk method of determining attribute
sampling plans

Step 1 Determine the producers’ risk point 8; and producers’ risk
a.

Step2 Determine the consumers’ risk point 6, and consumers’
risk S.

Step3 Look up Table 11.1 to find the smallest value of ¢
satisfying r(c) < 6,/6;.

Step4 Look up the x* tables, Table 11.2, and calculate the
interval

2
Kb n< ﬁ
26, 26,

where the x* values are looked up for 2(c + 1) degrees of
freedom. (Note: this inequality must be true in the order
stated, and not in the reverse direction.)

Step5 Any n in the interval given in Step 4 solves the problem. If
there is no integral value of n in the interval, increase ¢ by
1 and repeat Step 4. A convenient choice for » is the
smallest value.

Step 6 The sampling is given by n, ¢ so determined.




Table 11.1 Values of r(c) for the producer’s and consumer’s risk point method

(a) @ = 0.100 (b) @ = 0.050
1-p 1-8

0.900 0.950 0.975 0.990 0.900 0.950 0.975 0.990

o
o

44.89 58.40 71.92 89.78
1095 13.35 15.68 18.68
651 7.70 884 10.28
489 567 642 1735
406 465 520 5.8
355 402 447 502
321 3.60 398 444
296 330 362 4.02
277 3.07 336 371

21.85 2843 3501 43.71
731 892 1048 12.48
483 571 656 7.63
383 444 502 576
329 376 421 477
294 334 370 4.16
270 304 335 374
253 28 310 344
239 266 290 320
228 252 275 3.02 262 28 315 346

10 219 242 262 287 250 275 298 327

11 212 233 251 274 11 240 263 284 310

12 206 225 242 .64 12 231 253 273 297

13 200 218 235 255 13 224 24 263 285

14 1.95 212 228 247 14 218 237 254 275

15 1.91 2.07 222 240 15 212 230 247  2.66

16 1.87 2.03 217 2.34 16 207 224 240 259

17 1.84 199 212 229 17 203 219 234 252

18 1.81 195 2.08 2.24 18 1.99 215 229 246

19 1.78 1.92 2.04 219 19 1.95 210 224 240

20 1.76  1.89 2.01 215 20 192 207 220 235

O 00NN bW PO
—
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(c) @ = 0.025 (d) &« = 0.010
1-p 1-8

0.900 0.950 0.975 0.990 c 0.900 0.950 0.975 0.990

S

229.10 298.07 367.04 458.21
26.18 3193 37.51 44.69
12.21 14.44 16.57 19.28

812 942 10.65 12.20

90.95 118.33 145.70 181.89 0

16.06  19.59 23.00 27.41 1
860 10.18 11.68 13.59 2
6.13 711 8.04 922 3

4.92 564 631 7.15 4 625 7.16 801 9.07
4.21 477 530 595 5 520 589 654 7.34
3.74 421 464 518 6 452 508 560 6.25
341 381 418 4.63 7 405 452 496 551
3.16 351 3.83 4.23 8 370 412 449 496
2.96 328 356 3.92 9 344 380 414 455
2.81 3.09 335 3.67 10 323 356 385 4.22
2.68 269 317 347 11 306 335 363 3.96
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(c) « = 0.025 (d) « = 0.010
1-8 1-8

c 0.900 0.950 0.975 0.990 c 0.900 0.950 0.975 0.990

12 2.57 281 3.03 3.30 12 292 319 344 374
13 2.48 270 290 3.15 13 2.80 3.05 328 3.56
14 2.40 261 2.8 3.03 14 269 293 314 340
15 2.33 253 271 292 15 260 282 302 327
16 2.27 245 262 2.83 16 252 273 229 315
17 2.21 239 255 274 17 245 2,65 283 3.05
18 2.16 233 249 267 18 239 258 275 296
19 2.12 228 243 2.6l 19 234 252 268  2.87
20 2.08 224 238 255 20 229 246 261 280

Table 11.2 Percentage points of the y? distribution

Degrees of  Probability in percent

freedom 99.0 95.0 10.0 5.0 1.0 0.1
1 0.03157 0.00393 271 3.84 6.63 20.83
2 0.0201 0.103 4.61 5.99 9.21 13.81
3 0.115 0.352 6.25 7.81 11.34 16.27
4 0.297 0.711 7.78 9.49 13.28 18.47
5 0.554 1.15 9.24 11.07 15.09 20.52
6 0.872 1.64 10.64 12.59 16.81 22.46
7 1.24 2.17 12.02 14.07 18.48 24.32
8 1.65 2.73 13.36 15.51 20.09 26.12
9 2.09 3.33 14.68 16.92 21.67 27.88
10 2.56 3.94 15.99 18.31 23.21 29.59
11 3.05 4.57 17.28 19.68 24.73 31.26
12 3.57 5.23 18.55 21.03 26.22 32.91
14 4.66 6.57 21.06 23.68 29.14 36.12
16 5.81 7.96 23.54 26.30 32.00 39.25
18 7.01 9.39 25.99 28.87 34.81 42.31
20 8.26 10.85 28.41 31.41 37.57 45.31
22 9.54 12.34 30.81 33.92 40.29 48.27
24 10.86 13.85 33.20 36.42 42.98 51.18
26 12.20 15.38 35.56 38.89 45.64 54.05
28 13.56 16.93 37.92 41.34 48.28 56.89
30 14.95 18.49 40.26 43.77 50.89 59.70

For d.f. > 30, treat V(2y?) as approximately Normally distributed with mean
{2 X (d.f.) — 1} and unit standard deviation.
The entry for 99.0 per cent, d.f. = 1 is 0.000157.
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Example 11.7
Suppose we choose

Producer’s risk point §; = 0.01 Producer’s risk 0.05
Consumer’s risk point 8, = 0.04 Consumer’s risk 0.05

then we have 8,/6; = 4, and so

Step3 Use ¢ = 6 since r(6) = 3.60 < 4.

Step 4 y%s for 2(c + 1) = 14d.f. is 6.57
x59s for 2(c + 1) = 14d.f. is 23.68
x:-p/20, = 23.68/0.08 = 296.0
%%/20, = 6.57/0.02 = 328.5

Step5 Any n in the interval 296 < n <328 will be satisfactory.
Suggest n = 300.
Step 6 The sampling plan is n = 300, ¢ = 6.

This sampling plan will give a risk of less than 5% of rejecting batches
with 1% conforming items, and a 5% chance of accepting batches with
4% non-conforming items.

We notice that the producer’s and consumer’s risk points specified in
Example 11.7 have led to an extremely large sample size. If this were a
practical case, we would seek to modify the risk points and try again,
etc., until we arrived at a sampling plan which was felt to be ‘reason-
able’. This type of iterative process can be defended on the grounds that
one is trying to balance the cost of sampling against the costs of wrong
decisions. For any batch of quality 8, the probability that it will be
accepted is given by the OC-curve. Thus by looking at the OC-curve,
we can see the probability that poor quality will be accepted and good
quality rejected. The probabilities of these wrong decisions can be
reduced — but only by increasing the sample size and so increasing
sampling costs. The essential point about the balancing of costs referred
to here is that it is not formalized. The final decision on a sampling plan
is made subjectively, by someone with a detailed knowledge of the
set-up.

A number of tables of sampling plans have been constructed based
upon principles rather similar to the above. Peach (1947) listed sampling
plans for which the producer’s and consumer’s risks were both set at
0.05. Horsnell (1954) tabulated plans for producer’s risks of 0.01 or 0.05
and consumer’s risks of 0.01, 0.05 or 0.10.
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The most comprehensive set of tables of this kind is provided by Hald

and Kousgaard (1967). Essentially they give tables of

2(”)9’(1 - @) =P

n=0\"
for ¢ in steps 1 from 0 to 100, 15 values of P, and values of
0 < 6 <0.50. Simple illustrations are given of the use of these tables to
obtain a single sampling plan with set producer’s and consumer’s risks.

Two main criticisms can be levelled at the producer’s and consumer’s
risks method of determining sampling plans. The first is that, except in
very small batch sizes, the resulting plans are independent of the batch
size. Since the costs of wrong decisions increase with batch size, it is
obvious that the probabilities of error («, ) should reduce with increas-
ing batch size.

The second criticism is that it is in general rather difficult to choose
the parameters (6., «; 6,, B). If we are dealing with an endless sequence
of batches, the OC-curve points could be expressed as ARLs which
might have more meaning, but the choice has to be made in consulta-
tion with production staff and others who do not appreciate the full
depth of the concepts involved.

It is important to realize that the OC-curve does not give the
proportion of batches of any given quality among accepted batches,
since it is necessary to use the process curve to obtain this quantity. The
probability distribution of 8 among accepted batches is clearly the result
of the effect of sampling, given by the OC-curve, on the input quality,
which is represented by the process curve. The effect of a sampling plan
is to change the distribution of batch quality from the (input) process
curve to a similar distribution but with some of the defective quality
filtered out. When using an OC-curve sampling scheme we have to keep
this in mind. Figure 11.10 illustrates the effect of a sampling plan.

11.4.2 Theory behind the method given in section 11.4.1

The crux of the problem is to find the smallest values of (n, c¢) satisfying
(11.3) and (11.4). Owing to the discreteness of the binomial distribution
it may not be possible to satisfy them exactly, and we can restate them
as

Z(':)Bi(l -0 =1l-a (11.7)

0

%('Z)BE(I - 6)"" = (11.8)
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Process curve OC-curve
o )
T Iy
e e

Output quality of accepted batches
proportional to P(G)R(6)

6

Figure 11.10 Effect of a sampling inspection plan.

We need to find a pair of values (n, c) satisfying these inequalities, and
an approximate solution can be obtained as follows. (See Hald (1967)
for a further discussion of the method given here, together with
approximate solutions etc.).

First we replace the binomial terms by Poisson terms for the same

means, to obtain
c

Se " no) r=1-«a (11.9)
0

4

>e"%n6,) /r! = B (11.10)

0

Now the cumulative Poisson distribution can be related to the cumulat-
ive x* distribution since we can show by integration by parts that

1(" <
;j fetdt = e m'[r! (11.11)
Jm 0
and hence that
Sem’fr! = Pr{)? > 2m|2(c + 1) d.f.} (11.12)
0

since the integral on the left-hand side of (11.11) is the probability that
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¥ is greater than 2m, for a x distribution having 2(c + 1) degrees of
freedom. Inequalities (11.7) and (11.8) are therefore equivalent to

Pr{y? >2n0,2(c+ 1) df}=1- «
Pr{)* > 2n6,]2(c + 1) d.f.} = B.

If we denote the 100a-percentile of the y* distribution with 2(c + 1)
degrees of freedom by x2, then these inequalities are

2n0, < x (11.13)
2n0; = xi_. (11.14)
If we now put
r(c) = xi-p/xa
then c is the smallest value satisfying
r(c — 1) > 60,/6, > r(c).
We can solve (11.13) and (11.14) for n to get
X_p/20, < n < x220, (11.15)

with the x%s having 2(c + 1) degrees of freedom. Any # in the interval
(11.15) will solve the problem, and we can choose which inequality
(11.13) or (11.14) is nearer to being satisfied as an equality, by choice of
n nearer to one or other limit. If (11.15) does not contain an integral
value of n, we must increase ¢ and obtain a new interval.

In this way a sampling plan approximately satisfying the original
requirements is easily obtained, and tables of r(c) and of y* percentage
points are given in the Appendix tables. Once an (n, c¢) is determined,
an approximate OC-curve can be plotted using standard y* percentage
points and equation (11.12).

11.4.3 A simple semi-economic scheme (ASSES)

Wetherill and Chiu (1974) have followed up some theoretical work by
proposing a very simple but highly efficient scheme.

A theoretical investigation of sampling plans, based on an economic
approach of minimizing costs, shows that an important parameter is the
break-even quality, p,. This is the quality such that it is equally costly to
accept or reject the batch. Further theoretical investigations have shown
that an optimum sampling plan should have

¢ = npg

or to a better approximation
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c=npy— 3. (11.16)

This can be used to determine a sampling plan, and the theory of the
method is given in the next section. The underlying idea is to fix two
points on the OC-curve, one of them being the producer’s risk at the
process averge p, and the other being the indifference quality, defined
in section 11.3.1, which we put equal to p, from (11.16). A crucial step
in the method is to determine p, by economic criteria.

METHOD SUMMARY 11.2

A simple semi-economic scheme

Step 1 Determine the break-even quality, p,, and the process
average, p.

Step 2 Choose the producer’s risk, @, at the process average, p.

Step 3 Look up Table 11.3 to find the smallest value of ¢ such
that the table entry is greater than or equal to p/p,.

Step 4 Use the formula

n=(c+3)/po

Table 11.3 Values for ASSES

c a =0.005 0.01 0.025 0.05
0 0.0072 0.0145 0.0365 0.0740
1 0.0617 0.0885 0.1443 0.2117
2 0.1263 0.1631 0.2314 0.3058
3 0.1831 0.2242 0.2968 0.3721
4 0.2308 0.2738 0.3476 0.4218
5 0.2711 0.3149 0.3883 0.4608
6 0.3055 0.3494 0.4220 0.4926
7 0.3352 0.3789 0.4503 0.5191
8 0.3613 0.4046 0.4747 0.5416
9 0.3844 0.4271 0.4960 0.5611
10 0.4051 0.4472 0.5147 0.5782
11 0.4236 0.4652 0.5314 0.5934
12 0.4405 0.4814 0.5464 0.6070

Example 11.7
Suppose we have a=0.025, p,=0.05, 5 =0.02, then we find
p/po=0.40, c = 6. Hence n = 134.
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This sampling scheme is very easy to apply, and does have the virtue
of making the indifference quality approximately equal to the break-
even quality.

11.4.4 Dodge and Romig’s schemes

Dodge and Romig (1929, 1959) pioneered sampling inspection from
about 1920 onwards, and they proposed two different schemes, both
assuming that rectifying inspection is involved. That is, they assume that
rejected batches are 100% sorted, and all non-conforming items re-
placed or rectified.

One approach was through a quantity they defined as the lot
tolerance percent defective (LTPD), which is ‘some chosen limiting
value of per cent defective in a lot’, respresenting what the consumer
regards as borderline quality. The tables always used LTPD with a
consumer’s risk of 0.10, so that the LTPD is effectively the quality
corresponding to a consumer’s risk of 0.10. However, the LTPD only
gives us one restriction, and two are required to determine a single
sample plan. For the second restriction, Dodge and Romig minimized
the average amount of inspection at the process average and subject to
the LTPD, values of (n, c¢) were chosen to minimize the average amount
of inspection at the process average quality, 6.

The other approach Dodge and Romig used involved a quantity
defined as the average outgoing quality limit, AOQL. To obtain this we
notice that if on average I items per batch are rectified, an average of
N — I remain unrectified. The average outgoing quality is therefore

AOQ = (N - I)§/N.

It is readily seen that the AOQ has a graph roughly as shown in Fig.
11.11 and passes through a maximum with respect to 6, and there is an

Average outgoing quality

o

e

Figure 11.11 The average outgoing quality limit.



266 Sampling inspection

upper limit to the average outgoing percent defective called the AOQL.

In the second approach, Dodge and Romig produce sampling plans
having set values of the AOQL, which also minimize the average
amount of inspection at the process average. If all rejected batches are
100% inspected and an average quality guarantee is satisfactory, the
AOQL approach may be a good scheme to use.

Some criticisms of Dodge and Romig’s methods are given by Hill
(1962). In particular he criticizes the AOQL concept as being very
sensitive to imperfect inspection, as there then may be no upper limit to
the AOQ.

11.4.5 Defence sampling plans

A series of developments starting in World War II has resulted in an
International Standard. As this is used a great deal, a separate chapter
is devoted to it (Chapter 13).

EXERCISES 11.A
1. Work out attribute sampling schemes for the data in Table 11.4.

Table 11.4 Parameter settings for sampling schemes

6, o 6, B n c
0.01 5% 0.04 5%
0.01 5% 0.05 5%
0.01 5% 0.06 5%
0.01 5% 0.04 10%
0.01 5% 0.05 10%
0.01 5% 0.06 10%

2. Use ASSES for the parameters given in Table 11.5.

Table 11.5 Parameter settings for sampling schemes

p o Po n c

0.01 5% 0.025
0.015 5% 0.025
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EXERCISES 11.B

1.

Check the indifference quality level formula (11.5) by finding the
values of m for which

>e"m’[r! = 0.50

0
for c =0, 1, 2, 3. A simple iteration scheme can be used starting
with the values

m=c+ 3.

Check the derivation of Table 11.3 (section 11.4.3) as follows. We
require

[
>e™my"/rl=1—a« for m = np,
0

and

e ™my"/rl = 0.50  for my = np,.

0
Use (11.12) to relate these to x* variables, and hence find the values
for the ratio

P/po = my/my.

The Poisson summation approximates the binomial,
: n r n-r C -m . r
P=3(")pra - py = Semmrn
0

for r = np. Given that for ¢ =0, m =0.0513 gives P =0.95 and
that for ¢ =1, m = 0.355 also gives P = 0.95, carry out calculations
to check the Poisson approximation to the binomial distribution, for
small values of n.

Use the Markov chain methods of Chapter 8 to investigate the ARL
properties of the following sampling plan:

(1) inspect 10 items at random and classify as conforming or
non-conforming

(2) accept if there are no non-conforming items in the current batch

(3) accept if there is one non-conforming item in the current batch
and none in the previous three batches,

(4) otherwise reject.
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Define the following states:

State 1: no non-conforming items in the current batch

State 2: one non-conforming item in the current batch and none
in the previous batch

State 3: one non-conforming item in the current batch and none
in the previous two batches

State 4: current batch accepted

State 5: current batch rejected.

Define the run length as the number of batches to a rejection, and
assume that all items have a constant probability p of being
defective.

5. Show that for a single sample rectifying inspection plan with sample
size n and batch size N the AOQL is approximately

S —v-mp AN — n)p}"{IN —
AOQL = | 3e™™ r!np H Nn]p'

0

Calculate and plot the AOQL for a simple plan.

6. (a) Show that when an attributes acceptance inspection scheme is
run with a zero acceptance number (¢ = 0), then the OC-curve
is convex throughout.

(b) A modification for zero acceptance plans suggested by Dodge
(1955), is as follows:
Accept the batch if no non-conforming items are found.
Reject the batch if two or more non-conforming items are
found.
For one non-conforming item, accept the batch only if the
previous i batches are free of non-conforming items.
Evaluate the OC-curve for these plans for i =1, 3, 5. (These
are called chain sampling plans.)
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Inspection by variables

12.1 INTRODUCTION

In the previous chapter we concentrated on sampling inspection by
attributes, when inspected items are simply classified as conforming or
non-conforming. When our quality characteristic is a continuous vari-
able, we may be able to operate an ‘inspection by variables’ plan. We
shall assume that the underlying distribution of the quality characteristic
is Normal and that there is a range of the quality characteristic from L
to U, in which the quality is acceptable (one-sided limits being special
cases of this). The way inspection by variables operates is that the
sentencing of a batch depends on the observed X and s of the sample,
and not on the number of non-conforming items. Consider the following
example.

Example 12.1

The following data are measurements of crushing strength of 16 catalyst
pellets, which are subject to incoming inspection. The specification is
that the strengths of pellets should be between 90 and 140 kg. On the
basis of this sample, it is desired to accept or reject the batch.

120.6 108.1 99.8 115.6 118.2 107.3
126.6 102.1 101.4 91.2 106.8 101.2

106.1 103.1 97.0 114.0

It can be shown that this data is consistent with the distribution of
quality measurements for the whole batch being Normal, with mean
fi = x¥ = 107.4 and standard deviation  =s = 9.39,

This distribution is shown in Fig. 12.1, and it is readily checked that
3.2% of the distribution lies below the lower limit and the percentage
above the upper limit is negligible. If the total percentage non-conform-
ing is regarded as too high, then we reject the batch. This gives a
general idea of how inspection by variables plans were originally
developed. The theory below approaches the topic by an analogous but
more appropriate method.
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Lower specification
limit 90 kg

Upper specification
limit 140 kg

107.4

Figure 12.1 Inspection by variables — using data from Example 12.1.

There are some advantages and disadvantages of inspection by vari-
ables plans. The chief advantage is that because we are using informa-
tion more efficiently, the sample size necessary can be reduced consider-
ably. There is also much greater information about the process than if
simply a conforming/non-conforming classification is used.

The disadvantages of inspection by variables plans are as follows:

(1) Firstly, they depend rather heavily on Normality.

(2) Most of the available reference material concerns itself with one
measured quality characteristic at a time, as multivariate methods
have only recently been developed.

(3) The taking of measurements usually requires a higher technical
level for the inspection staff.

(4) We could easily get a batch rejected, because of an excessive
predicted proportion non-conforming, based on Normality, without
there being an actual defective in the observed sample, and
Example 12.1 illustrates this.

The key advantage of inspection by variables plans is that much more
accurate information on batch quality is available from much smaller
sample sizes so that, with appropriate safeguards, variables plans are
well worth considering, and should be used more frequently than they
are.

In the discussion below we deal with four cases, which lead to
increasing complexity of the plans:

(1) single specification limit, 0 known

(2) single specification limit, 0 unknown
(3) double specification limit, 0 known
(4) double specification limit, o unknown.
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An International Standard for inspection by variables exists, ISO 3951
(corresponding to BS 6002), and this is based on very similar principles
to the standard for attributes inspection. They are both described in
Chapter 13.

The sections below do not follow the International Standards method
and instead the approach is to choose two points on the OC-curve, and
find a plan which fits. All methods in effect reject batches when the
estimated fraction non-conforming is too large, but for single specifica-
tion limits, a direct estimation of the fraction non-conforming can be
avoided; see below.

For a single specification limit, non-conforming material is defined as
material with values above a limit U (or below a limit L). There is
therefore a simple relationship between the (theoretical) mean and
standard deviation of the material and the fraction non-conforming, p.
With this in mind, producer’s and consumer’s risk points (p,, &), (p,, B)
can be defined as in section 11.3.1.

A simple decision rule is to reject batches when the sample mean is
too large (for an upper limit) or too small (for a lower limit). The
problem is then to find the sample size and acceptance limit for the
mean which give us (approximately) the risks we require. The derivation
is given in section 12.2.2, but the method is given in section 12.2.1.

The relationship between the fraction non-conforming and the para-
meters (4, o) of the normal distribution are slightly more complicated in
the double limits situation, but similar principles apply. We have to
distinguish in the double limits case between satisfying a restriction on
the overall fraction non-conforming, and satisfying separate restrictions
on the fraction non-conforming at each end. The double limits case is
dealt with in section 12.5.

For some theoretical work relevant to the material in this chapter see
Bravo (1980; 1981), Wetherill and Kollerstrom (1979), and Baillie (1987;
1988).

12.2 SINGLE SPECIFICATION LIMIT, 0 KNOWN

12.2.1 Statement of the method

Following the discussion given in the previous chapter, we shall adopt a
producer’s and consumer’s risk approach to designing a sampling plan
and we shall discuss only the design of single sampling plans. It is clear
from section 12.1 that, for a single upper specification limit U, an
appropriate decision rule is to accept if the sample mean & satisfies

X+ ko=U for some constant k. (12.1)
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We shall denote the sample size for a o-known plan by n,. For a single
lower specification limit we accept if

- ky,o=L. (12.2)

With this formulation, we wish to choose our parameters (k,, n,) to
satisfy two requirements:

Producer’s risk  If the fraction non-conforming is p,, we wish to accept
the batch with a probability (1 — &), where p, and « are small.
Consumer’s risk If the fraction non-conforming is p, > p;, we wish to
accept the batch with a probability no more than 3, where f is small.

As we noted in the previous chapter, the constants (p;, @) (p,, B)
can be rather difficult to choose, and often some iterative procedure is
adopted. Once the engineer sees the consequences of choosing a
particular set (p;, a; p,, ), in terms of sample size, he may wish to
modify his choices.

A solution to this problem of choosing (n,, k;) to satisfy (p;, a; p,,
B) is set out in Method Summary 12.1, and the derivation is given in
section 12.2.2. The nomogram is from Wilrich (1970).

METHOD SUMMARY 12.1
Inspection by variables, single specification limit, c known

Step1 Choose a quality level p; at which the probability of
acceptance is required to be (1 — &) and a quality level p,
at which the probability of acceptance is required to be £
(p; is smaller than p, and (1 — «) is greater than f§).

Step2 Use the nonogram in Fig. 12.2 to find the point of
intersection of the lines joining p; with (1 — &) and p,
with S.

Step3 Read off the value of k on the appropriate scale.

Step4 Read off the sample size n, on the appropriate scale.

Step5 Accept the batch if either

X—kso=L for a lower specification limit
or

X+k,o0=U for an upper specification limit.
Otherwise reject the batch.
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Figure 12.2 Nomogram for inspection by variables, single specification limits, ¢

unknown.
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Example 12.2
If (p;=0.01, 1-—a=0.99) and (p, =0.07, 8=0.05) then we obtain
n, =22, k, = 1.82. The method of using the nomogram is shown in Fig.

12.3.
\ 1o
/
/
/

/
P Y ___/

Figure 12.3 Use of nomogram for ¢ known and for ¢ unknown.

12.2.2* Derivation of method for single specifaction limit, o known

Let us suppose that our measurements are normally distributed with
unknown mean u and known variance o. Suppose also that there is a
single specification limit U, and that we take a single sample of size n,
resulting in a mean . The fraction non-conforming in the batch is then

- Jw—l—ex _x - w 1’
P=ly V(2r)o P 20°
where v = (U — u)/o. Another way of stating this is that for the fraction

non-conforming to be p, the mean u must be at

u=U - vo. (12.3)

)dx =1- @((U - w)/o) = ®(-v)

Now the decision rule is to accept if
X+ ko<U
and if the probability of this is P we have
P =Pr(x + k,o0 < U)
= Pr{z < (U — p — k,0)Vn,/o}

where z has a standard normal distribution. Therefore



Single specification limit, ¢ unknown 275
P = ®&(w) (12.4)

where w = V(n,)(U — u— k,0)/o. Another way of stating this is that
for the sample mean to be accepted with probability P the mean u must
be at

u=U-ky,o—wa/Vn, (12.5)
where w is given by (12.4). By equating (12.3) and (12.5) we obtain
v="k,+ w/Vn,.

This equation must hold for the two points (p;, P;) and (p,, P,). By
solving these two equations for n, and k, we obtain

wi; — wy\2 DiW, — DyWw
n6=(—-1——2) and ka=(—1—2—2——1) (12.6)
Uy — 0y Wy — Wy

where
v; = _q)_l(Pi) and W, = q)_l(Pi)- (12.7)

In practice n, will have to be rounded up to the nearest integer, and
this will mean that the OC-curve will pass approximately through the
producer’s and consumer’s risk points. Once n, and k, are set, the
actual OC-curve is given by (12.4), where u has to be related to p by
(12.3).

12.3 SINGLE SPECIFICATION LIMIT, 0 UNKNOWN

12.3.1 Statement of the method

The approach here is very similar to that used in section 12.2.1 for the
o-known case, but using an estimated value of o. The underlying theory
is rather more complicated, and this is set out in section 12.3.2. The
sample size is denoted ng, and the decision rules are given in Step 5 of
Method Summary 12.2. The nomogram given in Fig. 12.4 is from
Wilrich (1970).

METHOD SUMMARY 12.2

Inspection by variables, single specification limit, o unknown

Step 1 Choose a quality level p; at which the probability of
acceptance is required to be 1 — o and a quality level p,
at which the probability of acceptance is required to be S
(py is smaller than p, and 1 — « is greater than f3.)
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Step 2 Use the nomogram of Fig. 12.4 to find the point of

intersection of the lines joining p; with 1 — o and p, with
B.

Step 3 Read off the value of k on the appropriate scale.

Step 4 Read off the sample size n, on the appropriate scale. (This
generally gives a higher sample size than for o known, and
this allows for the uncertainty of our knowledge of the
standard deviation.)

Step 5 Accept the batch if either

X — ks =L  for alower specification limit
or
X+ ks=U for an upper specification limit.

Otherwise reject the batch.

Example 12.3
If (p,=0.01, P,=0.99), and (p,=0.07, P,=0.05), then we obtain
n, =60, k,=1.83.

12.3.2* Derivation of method for single specification limit, ¢ unknown

The assumptions here are similar to those in section 12.2.2 except that o
is unknown. Again we will assume a single upper specification limit U,
and the decision rule is to accept if

I+ ks=U. (12.8)
The probability of acceptance is
P=Pi(x = U - ks) = Pr{(Z + ONY/H* = —Vn.k} (12.9)
where
Z = Vny(x — w)/o is standard normal

Y = fs?/o? is a ¥’ random variable
with f degrees of freedom

6 = Vnyu— U)o = Vnd(p)
where ®(x) is the standard Normal distribution and

f=m-1.

Equation (12.9) can be rewritten
P = Pi(T; = Vnk|é) (12.10)
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where T represents a non-central ¢+ random variable with f degrees of
freedom and non-centrality parameter 8. This distribution is complicated
to work with, but an approximation developed by Hamaker (1979), see
also Wetherill and Kollerstrom (1979), enables us to obtain a solution.

If o were known a batch would be accepted if, based on a sample of
size n,, we get ¥ = U — k,o for some constant k,. The o-known and
o-unknown cases will have practically the same OC-curve if n, and k;
are adjusted such that ¥ + ks has the same mean and variance as
X + k,o with sample size n,. By equating the mean and variance of
X + ks respectively with the mean and variance of ¥ + k,0 we get,
approximately,

ks =V{(3n, — 3)(3n, — 4)}k, (12.11)
and
ng ={1 + 3nk/(6n, — 8)}n,. (12.12)
A method given by Enkawa (1980), starts with
ng= 1+ k%2)n,

and iterates. Equations (12.11) and (12.12) show how the parameters n;
and k, of the plan for unknown variance must change from the o-known
plan in order to get approximately the same OC-curve. We see that the
sample size has to be increased by a factor in excess of (1 + k%/2).

Flesselles (1985) has shown that a direct solution of (12.11) and
(12.12) is given by

ng=n,+ (u + V(u? + 24v))/12 (12.13)
where
u=3n,k:-2)+8
and
v =3n2k2
and then
k, = k,V{(Bn, — 3)/(3n, — 4)}. (12.14)

Using Hamaker’s approximation we can now easily calculate the
probability of acceptance as follows:

P =P@E + kg < Ulng, u, 0) = P(X + k,0 < Uln,) = ®(6)
(12.15)

where
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U—-u-— ksa\/{(3ns - 4)/(3)15 — 3)}
o[(1 + 3nk2/(6n, — 8))/n "

If the fraction non-conforming is p the probability of acceptance is
written

p = ®(6,),
where
6, =12, - kV{(Bn, — 4)/(3n, — 3}/ + 3n.k%/(6n, — 8))/n}"?
and where Z,, is defined by the relation
®(Z,)=1-p.

12.4 ESTIMATION OF FRACTION NON-CONFORMING,
SINGLE SPECIFICATION LIMIT

12.4.1 Statement of the method, ¢ known

In sections 12.2 and 12.3 the decision rule used to sentence the batch
depends on the value of the sample mean, as in (12.1). An alternative is
to use the sample data to estimate the fraction non-conforming in the
batch, and then sentence the batch on the basis of the estimated fraction
non-conforming.

If the measurements are normally distributed N(u, o) with a single
upper specification limit U, the fraction non-conforming is the area
under the normal curve to the right of U,

Pu = @(u - U)/o)

Since u is unknown, we can use the sample mean ¥ as an estimate of Us
and we might think of using

o((x - U)/o)

to estimate the fraction non-conforming. This is not the best estimate,
and it turns out better to use

. x -0 \/ n
= .
P ( | ey (12.16)
where ®(x) is looked up in standard normal tables, and similarly
. (L - %) \/ n
=0 .
pr ( Pl ey (12.17)

for a single lower limit. These estimates are ‘uniformly minimum
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variance unbaised estimates’, and the derivation is given by Lieberman
and Resnikoff (1955).
For a single upper specification limit, we could accept provided
p.=p* (12.18)
for some chosen p*. Now if we denote by Z, the normal deviate
corresponding to p,
pP= (D(—Zp)

then (12.18) is equivalent to

(SN s) =2

or
X+ (Zp*\/((nT_l)))o =U. (12.19)

In order for this procedure to be identical to (12.1) we must have
k, = Zp*\/((n—;lz). (12.20)

Similarly, for a single lower specification limit we obtain

i- (zp\/(ﬂg—l)))a = L. (12.21)

This results in the following method summaries. An advantage of this
approach is that the procedure involves a direct estimation of the
fraction non-conforming, which is a meaningful quantity.

METHOD SUMMARY 12.3

Inspection by variables, single specification limit, 0 known. Fraction
non-conforming method

Step 1 Determine n, and k, using Method Summary 12.1. Also
determine p* as the tail area normal probability cor-
responding to

Z = koVIn/(n - 1)].

o= o 5[ 5

for an upper specification limit

Step 2 Calculate
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o= o5 Hets)

for a lower specification limit

and

by using standard normal tables of ®(x).
Step 3 Accept the batch if

Py = p* or pL=rp*

respectively.

12.4.2* Derivation of the estimate, 0 known

The derivation (Lieberman and Resnikoff, 1955) is a straightforward
application of the Rao-Blackwell lemma. We are given a sample mean
X based on n observations, and we assume a single upper specification
limit U. We let y be dependent on the first observation, defining

Oifx, =U
y = (12.22)
1 otherwise.

Then a crude estimate of the fraction non-conforming is y, and this is
clearly unbiased. Since ¥ is the sufficient statistic, the uniformly mi-
nimum variance unbiased estimate is given by

p=EQlD) (12.23)

by the Rao-Blackwell lemma. Now it is easily shown that the joint
distribution of (y, x) is
n_( (- %°

n -
8029 = rovV(n = D) e"p{ 207\ 71 (7:1—))}

Therefore the conditional distribution of y given X is

o 1 _n(y = %)° n
how = V(@2n)o eXp{ 20%(n - 1)}\/((n - 1))' (12.24)

By using this we see that (12.23) becomes

H = JJOL (_ﬁ dt
P= )yven P\ 72

Xz(U;f)\/((nﬁl))‘

This establishes the method given in Method Summary 12.3.

where
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12.4.3 Statement of the method, 0 unknown

This method follows using methods similar to the other cases. Unfortun-
ately the mathematics involved is complex, and an extra approximation
is necessary: see the derivation in the next section.

METHOD SUMMARY 12.4

Inspection by variables, single specification limit, 0 unknown.
Fraction non-conforming method

Step 1 Determine n, and kg using Method Summary 12.2. Also
determine p* as the tail area normal probability cor-
responding to

Z . = kV(nf(n, — 1))

Step 2 Calculate Q, = (U — ¥)/s, or Q, = (¥ — L)/s for an upper
or lower specification limit respectively.
Step 3 Calculate
ﬁ =1- (I)(A'SQS)

where A, = V{(2n, — 1)/(2n, — Q?)} and accept the batch
if p < p*.

12.4.4* Derivation of the estimate, 0 unknown

The derivation of the estimate for the o-unknown case follows the same
principles as for the o-known case of section 12.4.2. We again use the
Rao-Blackwell lemma, and obtain a minimum variance unbiased esti-
mate of p, by taking expectations of an estimate based on the first
observation y, (12.22). The sufficient statistics are now

£=ox/n, st=20—-0(n-1)

p = E(y|%, s%). (12.25)

In order to do this calculation we need the joint distribution of (y, ¥,
s2), and then the conditional distribution A(y|%, s*). The details are
given in Lieberman and Resnikoff (1955), but the conditional distribu-
tion is
I'(n —2)
8@ = o - 221"
where z = 1 + (£ — y)Vn/2s(n — 1). This is a symmetrical beta distribu-

[v/2-11-1(1 — z)[(n/2)—1]—1, 0=z=1 (12.26)
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tion with both parameters {(n/2) — 1}, which we denote B((n/2) — 1).
The estimator is therefore

max{0,(1/2)—(U—%)Vn/2s(n—1) n
p = fo d/s(z - 1) (12.27)

for a single upper specification limit, and
max{0,(1/2)— (- L)V n/2s(n—1)

p= JO d/)’(% - 1) (12.28)

for a single lower specification limit.
The approximation stated in Method Summary 12.4 was given by
Wilrich and Hennings (1987) based on the work of Stange (1961).

12.5 DOUBLE SPECIFICATION LIMIT, 0 KNOWN

12.5.1 Double specification limits: discussion

The design of sampling plans for double specification limits is rather
more complicated than we might expect. The chief problem is that
under certain combinations of (u, o), we can get non-conforming
product at both ends of the range. This in turn means that we cannot
simply combine two single specification limit plans, unless U and L are
sufficiently far apart in terms of o. It also means, and this is a deeper
point, that there is a limiting value of o such that whatever u, the
quality is at best equal to that desired, and considerably worse for other
values of u and larger values of o. Thus there is a limiting value of ¢
such that batches can be rejected, whatever the value of the process
mean.

Small o, good quality

Large 6, poor quality

T T
U L

Figure 12.5 Double specification limits.
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Another important question concerns the decision rule to be used. It
is clear that the key quantity is the total fraction non-conforming,

P=Py+phL (12.29)
and a decision rule can be formed on this basis, so that we accept
provided p < p*, say. With this decision rule, the OC-curve depends
not just on the true value of p, the fraction non-conforming, but also on
the particular values of y and o.

A straightforward application of the rule (12.29), using (12.16) and
(12.17), leads to boundaries in the (¥, o) plane as in Fig. 12.6. The
acceptance region is to the left of the boundary shown.

1.0
x-L

-L
0.9

C =i

0.8

0.7 N

O.e \

%

0.3 4
/

0.2
0.1
o)
0 005 040 0.15 020 0.25 030 035 040
g
Uu-L

Figure 12.6 Double specification limit boundary (incorrect). Crown copyright.
Reproduced by permission of the Controller of HMSO.
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It can be shown that the OC-curve for this type of plan is as given in
Fig. 12.7, and the OC-curve is not a curve, but a very broad band. This
is clearly unsatisfactory, and is a feature of most published plans up
until 1988. This was studied by Bravo (1984) who proposed a couple of
possible revisions, and Baillie (1988) advised of specific revisions to
published plans.

1.0

0.9

0.8

0.7

0.6

Percent of lots expected to be accepted (Pa)

0.2

0.1

o)

o 005 0.10 015 020 0.25 030 0.35 040
Process quality (in fraction non-conforming)

Figure 12.7 Band of OC-curves for decision rule (12.29). Crown copyright.
Reproduced by permission of the Controller of HMSO.

The correct procedure is to use decision rule (12.29) coupled with a
limit on the value of o. If it is desired to have plans with an AQL p,,
then if
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(U - L)/20 > Zp1/2

then the batch quality is worse than the AQL anyway, even if the
process mean is centred between U and L. The boundaries such as Fig.
12.6 should therefore be terminated at the maximum process standard
deviation

ou = (U = L)2Z,p. (12.30)

Some typical boundaries are shown in Fig. 12.8, and this results in much
tighter bands of OC-curves, see Fig. 12.9. The acceptance region is to

1.0 ,
XL % AQL
U=L 0.10
0.9 \\\ L— 1 0.25]
L 0.65
\§_ gfé- 1.50
0.8 — _+— 1400
. § %><—10.00
07 N <
N\\\\\\ N
N
0.5
0.4
L/
0.3 A / / A
/ /<% AQL
115.00
0.2 < 6.50
] 250
/ "~ 700
7 0.40
0.1 ——— :
B - 0.15
~{0.065
0 i
O 005 040 015 0.20 0.25 0.30 0.35 0.40
g
o=

Figure 12.8 Boundaries for double specification limits (correct). Crown copy-
right. Reproduced by permission of the Controller of HMSO.
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the left of the boundaries; for further details, see Baillie (1988). Charts
like Fig. 12.8, with accompanying tables, are being issued in the second
edition of ISO 3951.

0.9

0.8

0.7
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Process quality (in fraction non-conforming)

Figure 12.9 Band of OC curves for a typical boundary from Fig. 12.8. Crown
copyright. Reproduced by permission of the Controller of HMSO.

12.5.2 Statement of the method

The method given here is based on the work of Bravo (1980, 1981,
1984), Baillie (1988), Duncan (1974), and Schilling (1982).
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METHOD SUMMARY 12.5

Inspection by variables, double specification limit, o known

Stepl Choose a quality level p; at which the probability of
acceptance is required to be 1 — a, and a quality level p,
at which the probability of acceptance is required to be S

(p; is smaller than p, and 1 — « is greater than ).
Step2 Check that

and reject the batch outright if this is not satisfied.

Step3 Determine n, and k, using Method Summary 12.1. Also
determine p* as the tail area normal probability cor-

responding to
Zp* = ka\/[no/(na - 1)]

Step4 Calculate Z, = (U — L)/20, and find the value p, from

normal tables. If

Po = pi/4 use two separate single specification limit plans

Do = p;  reject the batch without sampling.

Otherwise, proceed to Step 5.
Step5 Use the decision rule to accept if p < p*, where

P=Pu+tpL
and py and p; are given by (12.16) and (12.17).

12.5.3 Derivation

The reasoning behind the method is given in section 12.5.1. It is readily
seen that the estimate of the combined fraction non-conforming is

p=Dpy+h.

where py and p; are derived in section 12.4.

When o is very small, the existence of, say the lower limit L, is
irrelevant to determining the boundary in Fig. 12.8 for the upper
specification limit. Therefore the boundaries in Fig. 12.8 must tend to

(12.1) and (12.2) at small values of o.

Finally, we restate the argument showing that the boundaries of Fig.
12.6 leading to the OC-curve of Fig. 12.7, and are wrong. For any given

o, there are limits for the mean,

¥ <E<ZXy
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such that batches are accepted for values of ¥ between them. The
OC-curve is therefore

P(y, 0) = ®{Vn(Zy — w/o} - {Vn(x, - w/o}

Now for values of ¢ close to the apex of the curve in Fig. 12.6, the
limits (X, X;) are very close together, and eventually identical. For any
such value of o, the probability of acceptance is small or zero.
Therefore the OC-curve has the general shape shown in Fig. 12.7; for
further details see Baillie (1988).

12.6 DOUBLE SPECIFICATION LIMIT, 0 UNKNOWN

The general outline of sampling by variables for double specification
limits and ¢ unknown is rather similar to the discussion in section 12.5
for ¢ known and the derivation is similar to that discussed in section
12.4.4, based on the work of Lieberman and Resnikoff (1955). Method
Summary 12.6 depends on an approximation given by Wilrich and
Hennings (1987).

METHOD SUMMARY 12.6

Inspection by variables, double specification limit,  unknown

Step 1 Choose a quality level p; at which the probability of
acceptance is required to be 1 — « and a quality level
p2(> p1) at which the probability of acceptance is re-
quired to be £.

Step 2 Apply Method Summary 12.4 to both the upper and lower
specification limits separately to obtain p, and p; respect-
ively. (The n, and k, are identical.)

Step 3 Accept the batch if

Pu+ PL=pb<p*

12.7 MULTIVARIATE SAMPLING PLANS

There are many situations where the conformity of a product depends
simultaneously on several variables, and it is unsatisfactory to deal with
these variables separately. For example, when considering the accuracy
of firing a missile at a target, at least two dimensions must be studied
simultaneously. Baillie (1987) has studied the multivariate case extens-
ively for both the situations when the variables are independent and
dependent. The dependent case is complicated, and needs special
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computer software to run it, and will not be discussed further here. In
contrast, the multivariate independent case is very simple, and can be
dealt with by reference to previous Method Summaries.

Let there be k variables, and denote the estimate for the fraction
non-conforming in the jth variable by p;, where this estimate is
obtained as in Method Summaries 12.5 or 12.6 for ¢ known and
unknown respectively. Then for independence, the estimate of the
overall fraction non-conforming is

k
po=1-1110 - p). (12.31)
i=1

The decision rule is to accept the batch if p, < p*, for some chosen p*.

Baillie (1987) shows that the bands of OC-curves for this type of plan
are narrow, particularly for o unknown, except for high AQL values in
small sample sizes, and is independent of k. Therefore a plan is
designed as for one variable only, but it is then used using the estimate
(12.31).

EXERCISES 12A
1. Obtain o-known and o-unknown sampling plans for the sets of

parameters shown in Table 12.1.

Table 12.1 Parameter settings for sampling schemes

P1 o P2 B

0.01 5% 0.04 5%
0.01 5% 0.03 5%
0.01 2% 0.04 5%
0.01 5% 0.04 2%

0.02 5% 0.03 5%




13
Standard sampling systems

13.1 INTRODUCTION

A series of sampling systems have been developed during and since
World War II for use in military contracts, and are now established as
British, American and International Standards. They are all based on
similar principles.

The first step was that a table was drawn up which in effect fixes the
relationship between batch size and sample size to be one of three or
five purely arbitrary functions. The sample sizes were made to increase
with batch size in a manner thought to be reasonable.

Next the concept of acceptable quality level (AQL) was introduced,
but the actual definition of this differs in the different schemes. The
Statistical Research Group tables (Freeman et al., 1948) fixed the AQL
as the quality for which the probability of acceptance was 0.95.
Unfortunately this has some undesirable consequences: since the sample
size is already fixed, this automatically determines the sampling plan,
and some rather large consumers’ risks result. Other sampling systems,
such as the US Army Service Forces tables (1944), MIL-STD-105 (A, B,
C, D), and the British DEF-131 (Hill, 1962), have let the probability of
acceptance at the AQL vary in a rather unsystematic way, so as to share
the risks between producer and consumer more equitably. The most
satisfactory definition of AQL is the one used in the current Interna-
tional Standard, (ISO 2859), that it is the maximum percentage defect-
ive which can be considered satisfactory as a process average. That is,
the AQL is a property required of the product. The variation of the
probability of acceptance at AQL is considerable, ranging from 0.80 for
the lowest sample sizes to 0.99 for the largest.

Finally, all of the defence sampling tables use switching rules. The
idea is that watch is kept on the inspection results, and according to
certain rules, a much stricter form of inspection called ‘tightened’
inspection is introduced if necessary. The introduction of tightened
inspection produces a wholesale change of the OC-curve along the lines
shown in Fig. 13.1. This puts considerable pressure on the producer,
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since even goods of AQL quality would be rejected much more
frequently. It should be clear that a major part of the quality assurance
given by the schemes lies in the use of this switching rule pressure tactic.
A producer is forced to send goods of AQL quality or better, to have
them accepted at a satisfactory rate, and to avoid tightened inspection.

Fraction defective

Figure 13.1 OC-curves for normal (N) and tightened (T) inspection.

The switching rules currently in use are as follows.

(1) Normal to tightened inspection: When 2 out of S successive
batches are rejected.

(2) Tightened to normal inspection: When 5 consecutive batches are
accepted at tightened inspection.

It should be clear that the effect of the above rules is quite stringent,
since it is rather more difficult to satisfy tightened inspection than
normal. There are also switches to ‘reduced’ inspection, applicable when
quality is very good. The rules used for switching have varied. Ideally, a
watch should be kept on the process average, such as by a CuSum chart,
but this was criticized as being too complicated.

A good description of a modern scheme, together with some tables, is
readily accessible in the paper by Hill (1962), to which readers are
referred for further details. A complete description of the schemes,
together with tables for use is given in the International Standard ISO
2859 (see BS 6000 and 6001). The description of the procedures below is
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based on the International Standards; for a list of Standards and their
equivalents see Appendix C.

There are two main criticisms of this approach. One obvious point is
the arbitrariness of the batch-sample size relationship. There is no
theoretical backing of any of the relationships used although they are
‘reasonable’. A rather more important criticism, however, is that the
switching rules pressure tactic is not always practicable. There may not
be an indefinite sequence of batches, and the consumer may not be in a
position to exert much pressure on the producer. (A government
department is usually in a different position.) However, in places where
switching rules can be used, the defence sampling systems method pays
off well.

Double, multiple and sequential sampling plans are available in the
international standards listed in Appendix C. In this chapter we only
consider single sampling plans.

13.2 STATEMENT OF METHOD FOR INSPECTION BY
ATTRIBUTES

The statement given below is a brief summary, and reference should be
made to the appropriate standard for further details.

METHOD SUMMARY 13.1
Inspection by attributes using ISO 2859 (BS 6001)

Step1 Choose a sample size code letter appropriate to your batch
size, using Table 13.1. (General inspection level II is
usually used.)

Step2 Choose normal, tightened and reduced sampling plans
using Tables 13.2—-4.

Step3 Operate the plans, starting with normal inspection, using
the switching rules.

Example 13.1

If we have batch size = 2000, General inspection level II, then the Code
letter is K. For an AQL of 1% the sample size is 125 and the
acceptance numbers are:

normal inspection, c=3
tightened inspection, ¢ = 2.

The reduced inspection plan is n = 50, ¢ = 1.
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Table 13.1 Sample size code letters
Extracts from British Standards are reproduced with the permission of BSI.

Lot or batch size Special inspection levels General instpection levels
S-1 S-2 S-3 S-4 I I I
2-8 A A A A A A B
9-15 A A A A A B C
16-25 A A B B B C D
26-50 A B B C C D E
51-90 B B C C C E F
91-150 B B C D D F G
151-280 B C D E E G H
281-500 B C D E F H J
501-1200 C C E F G J K
1201-3200 C D E G H K L
3201-10000 C D F G J L M
10001-35000 C D F H K M N
35001-150000 D E G J L N P
150 001-500 000 D E G J M P Q
500001 and over D E H K N Q R

A good description of the inspection levels and how to choose them is
given in the appropriate standard. The tables allow for ‘defects per unit’
as well as percent defective, so the AQL values extend as shown.

13.3 INSPECTION BY VARIABLES (ISO 3951)

The method here is very similar to that described in the previous section
for attribute inspection. There are two approaches:

s method: for use when o is estimated;
o method: for use when o is considered known.

In each case methods are given for single or double specification limits.
The notation used here is as given in Chapter 12. The plans given here
are broadly equivalent to attributes plans with the same AQL, so an
approximate comparison of sample sizes is easily achieved. In the tables
below, only the s method is given, and for other tables see the full
Standard. The double specification limits case used a chart in which
(x, s) or (X, o) are plotted; only one such chart is given here, and again
for more details see the full Standard.
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METHOD SUMMARY 13.2

Inspection by variables, s method (ISO 3951)

Step1 Choose a sample size code letter using Table 13.5. (Gen-
eral inspection level II is usually used.)

Step2 Determine the sample sizes and acceptability constants k,
for normal tightened and reduced inspection using Tables
13.6-13.8.

Step3 For a single upper specification limit U, accept the batch if
Oy = k,, where

Oy=(U - f)/s

For a single lower specification limit L accept the batch if
Q; = k,, where

Q,=(x - L)/s.

For double specification limits plot (¥,s) in a specially
prepared chart (see for example Fig. 12.8).

Note 1t is essential to check the data for normality and for outliers.

Example 13.2

As an illustration we continue the problem given in Example 13.1, with
a batch size of 2000 and an AQL of 1%. For General inspection level
II, the appropriate code letter is K. From Tables 13.6-13.8 we have

normal inspection n =150 ki =193
tightened inspection n =50 ks = 2.08
reduced inspection n =20 k, = 1.69.

The saving in sample size over attribute inspection is seen to be very
considerable. The o-known plans give an even greater saving, with a
sample size of 17 for normal inspection. Provided the assumptions hold,
the variables and attributes plans give almost the same OC-curve.

13.4 INTERNATIONAL STANDARDS FOR PROCESS AND
QUALITY CONTROL

A lot of work has been done in recent years in providing National and
International Standards for the application of statistical methods to
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industry. The standards cover a wide area, including terminology,
sampling materials, data analysis, acceptance sampling and statistical
process control. Students who propose to apply statistical methods to
industry should have some knowledge of these standards, and an
abbreviated list appears in Appendix C.

Table 13.5 Sample size code letters for inspection by variables. Extracts from the
British Standards are reproduced with the permission of BSI.

special inspection levels General inspection levels
Lot size
S-3 S-4 | Il n
2-8 9 C
9-15 l B D
16-25 B C E
26-50 C D E
51-90 B D E G
91-150 C E F H
151-280 B D F G I
281-500 C E G H/I* J
501-1 200 D F H J K
1201-3200 E G | K L
3201-10 000 F H J L M
10 001-35 000 G | K M N
35 001-150 000 H J L N P
150 001-500 000 | M P '
500 001 and over J L N . »

*Use H for lot size 281-400 and | for Iot size 401-500

Notes (1) The code letters and inspection levels in this
standard correspond to those given in BS 6001; they
are not indentical with those given in MIL STD 414.

(2) Symbol
There is no suitable sampling plan in this area; use
l the first sampling plan below or above the arrow.

This refers to both the sample size and acceptability
constant k (or k).



Table 13.6 Single sampling plans for normal inspection (master table): ‘s’
method. Extracts from the British Standards are reproduced with the permission
of BSI.

Sample Acceptable quality levels (normal inspection)
Sillz‘f:rde SZ’;ZIe 010 [ 015 | 025 | 040 | 065 | 100 | 150 | 250 | 400 | 650 | 10.00
ks ks ke ke ks ks ks ks ks ks ke

B 3 l l 112 | 0958 | 0.765 | 0.566
c 4 145 | 134 | 1147 | 101 | 0814 | 08617
D 5 165 | 153 | 1.40 | 124 | 107 | 0874 | 0675
E 7 200 | 188 | 175 | 162 | 150 | 133 | 1.15 | 0.955 | 0.755
F 10 224 | 211 | 198 | 184 ] 172 | 158 | 141 | 123 | 1.03 | 0828
G 15 242 | 232 | 220 | 206 | 191 | 179 | 165 | 147 | 130 | 1.00 | 0886
H 20 247 | 236 | 224 | 211 | 196 | 182 | 169 | 151 | 133 | 112 | 0917
| 25 250 | 240 | 226 | 214 | 198 | 185 | 172 | 153 | 135 | 1.14 | 0936
J 35 254 | 245 | 231 | 218 | 203 | 189 | 176 | 157 | 139 | 1.18 | 0969
K 50 260 | 250 | 235 | 222 | 208 | 193 | 1.80 | 161 | 142
L 75 266 | 255 | 241 | 227 | 212 | 198 | 1.84 | 165 | 146
M 100 269 | 258 | 243 | 229 | 214 | 200 | 186 | 167 | 148
N 150 273 | 261 | 247 | 233 | 218 | 203 | 189 | 1.70 [q1.51
P 200 273 | 262 | 247 | 233 | 218 | 204 | 189 [§1.70[ [1.51

Notes (1) All AQL values are in percent defective.

(2) The code letters and inspection levels in this standard
correspond to those given in BS 6001; they are not identical
with those given in MIL STD 414.

Symbols
l There is no suitable sampling plan in this area; use the first

@

sampling plan below the arrow. This refers to both
the sample size and acceptability constant k; (or k).

but at the expense of a large sample. At the discretion of
the responsible authority the next plan above the arrow may
be used.

_I_ The heavy lines indicate the boundary of the equivalent
attribute sampling plans in BS 6001.

ﬁ The plan given in this area gives a high degree of security



Table 13.7 Single sampling plans for tightened inspection (master

table): ‘s’

method. Extracts from the British Standards are reproduced with the permission
of BSI.
Sample Acceptable quality levels (tightened inspection)
size code Sample
letter size 0.10 | 0.15 | 0.25 0.40 0.65 1.00 150 | 250 | 400 | 6.50 | 10.00
K | ke | ke |k | ok | ok | ok | ok | k| K ks

B 3 l ‘ 1.12 | 0.958 | 0.765
o] 4 1.45 1.34 117 | 1.01 0.814
D 5 1.65 1.53 1.40 1.24 1.07 0.874
E 7 2.00 | 1.88 1.75 1.62 150 | 1.33 | 1.15 | 0.955
F 10 224 | 2.11 1.98 1.84 1.72 1.58 | 1.41 1.23 1.03
G 15 253 | 242 232 | 220 | 2.06 1.91 179 | 165 | 147 1.30 1.09
H 20 258 | 247 236 | 224 | 211 1.96 1.82 169 | 1.51 1.33 1.12
| 25 261 2.50 240 | 226 | 2.14 1.98 185 | 1.72 1.53 1.35 1.14
J 35 265 | 254 245 | 2.31 218 2.03 189 | 1.76 1.57 1.39 1.18
K 50 2.7 2.60 250 | 235 | 222 2.08 1.93 | 1.80 1.61 1.42
L 75 277 | 266 255 | 2.41 2.27 212 198 | 1.84 | 165 1.46
M 100 2.80 | 2.69 258 | 243 | 229 214 | 2.00 | 186 | 167 148
N 150 2.84 | 273 2.61 247 | 233 218 | 2.03 | 1.89 170 1.51
P 200 285 | 273 2.62 247 | 233 218 | 2.04 |'|1.89[ | |1.70( | [1.51

Notes (1) All AQL values are in percent defective.
(2) The code letters and inspection levels in this standard

correspond to those given in BS 6001; they are not identical
with those given in MIL STD 414.

(3} Symbols

There is no suitable sampling plan in this area; use the first

l sampling plan below the arrow. This refers to both
the sample size and acceptability constant & (or k).

0

The plan given in this area gives a high degree of security
but at the expense of a large sample. At the discretion of
the responsible authority the next plan above the arrow may
be used.

I" The heavy lines indicate the boundary of the equivalent

attribute sampling plans in BS 6001.



Table 13.8 Single sampling plans for reduced inspection (master table):
s method. Extracts from the British Standards are reproduced with the permis-
sion of BSI.

Sample sample Acceptable quality levels
S‘Z,:t‘:;de size 0.10 | 0.15 0.25 0.40 0.65 1.00 1.50 250 4.00 6.50 | 10.00
ks ks ks ks ks ks ks ks ks ks ks
B 3 1.12 0.958 0.765 0.566 0.341
C 3 1.12 0.958 0.765 0.566 0.341
N IR N . ﬂ_

D 3 1.12 0.958 0.765 0.566 0.341
E 3 N 1.12 0.958 0.765 0.566 0.341
F 4 1.45 1.34 1.17 1.01 0.814 0.617 0.393
G 5 a B 1.65 1.53 1.40 124 1.07 0.874 0.675 0.455
H 7 2.00 1.88 1.75 1.62 1.50 1.33 1.15 0.955 0.755 0.536
1 10 2.24 2.1 1.98 1.84 1.72 1.58 1.41 1.23 1.03 0.828 0.611
J 15 2.32 2.20 2.06 1.91 1.79 1.65 1.47 1.30 1.09 0.886 0.664
K 20 2.36 2.24 2.11 1.96 1.82 1.69 1.51 1.33 1.12 0.917
L 25 2.40 2.26 214 1.98 1.85 1.72 1.53 1.35 1.14 0.936 |
M 35 2.45 2.31 2.18 2.03 1.89 1.76 157 1.39 1.18 0.969
N 50 2.50 2.35 222 2.08 1.93 1.80 161 1.42 1.21 1.00
P 75 2.55 241 2.27 212 1.98 1.84 1.65 1.46 1.24 1.08

Notes (1) All AQL values are in percent defective.
(2) The code letters and inspection levels in this standard
correspond to those given in BS 6001; they are not identical
with those given in MIL STD 414,
(3) Symbols
There is no suitable sampling plan in this area; use the first
sampling plan below the arrow. This refers to both
the sample size and acceptability constant k; (or k).

but at the expense of a large sample. At the discretion of
the responsible authority the next plan above the arrow may
be used.

_J'— The heavy lines indicate the boundary of the equivalent
attribute sampling plans in BS 6001.

U The plan given in this area gives a high degree of security



14*
Adaptive sampling plans

14.1 BASIC DESCRIPTION AND AIMS

In section 11.2.1 we drew a distinction between batch inspection and
continuous production inspection, and we explained that the latter deals
with the inspection of either truly continuous material such as nylon
thread, or else of conveyorized production of separate items such as
chocolate bars. The material of Chapters 11-13 relate to batch inspec-
tion. However, a special set of inspection plans, usually known as
continuous (or adaptive) sampling plans (CSP), has been introduced for
use in continuous production inspection.

The earliest CSP, introduced by Dodge (1943), has already been
described in Example 11.4, and this plan is referred to as CSP-1. In
CSP-1 there are two levels of inspection, 100% inspection and an
inspection rate of 1/n, and there is a simple rule to determine when to
change between these levels. Variations on this basic plan are either to
use a more complex rule for changing inspection levels, or else to
introduce more levels.

One possible approach to continuous production inspection is to
group the product artificially in batches. It is frequently necessary to
group the material for transit purposes; these groups could be used as
batches for inspection. However, any artificial batching may have
unfortunate results. Firstly, the operation of artificially batched sampling
plans can lead to the possibility of rejecting items not yet produced.
Secondly, when inspection involves disassembly, or is time-consuming,
many practical difficulties arise, such as storage problems. Nevertheless,
artificial batching of continuous output is used as a method of reducing
the problems of designing inspection plans to that described in
Chapter 11. In the present chapter we discuss sampling plans suitable
when artificial batching is not appropriate.

A producer operating a continuous sampling plan such as CSP-1 may
have any or all of three different aims in view:

(1) Product screening. The aim of this case has been emphasized
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throughout Chapter 11. The product is to be sorted, usually into
two grades, an acceptable grade and one which needs to be
rejected or rectified.

(2) Process trouble shooting. This was discussed in Chapters 5-10.
Typically, the assumption is that product quality is occasionally
disturbed by ‘assignable causes of variation’, which can be traced
and eliminated.

(3) Adaptive control. Here the inspection results are to be used to
indicate the precise amount of any adjustment needed to the
process in order to keep quality up to standard.

The original work by Dodge (1943), and much work since, such as
Dodge and Torrey (1951a), Lieberman and Solomon (1955), has empha-
sized product screening although process trouble shooting is also in
view. The term adaptive control was used by Box and Jenkins (1962,
1963), but some earlier work by Girshick and Rubin (1952), Bishop
(1957, 1960) and a large literature on control theory is relevant. Savage
(1959) designed a plan specifically for trouble shooting. General reviews
of the literature are given by Bowker (1956), Chiu and Wetherill (1973),
Duncan (1974, Chapter 17), Liberman (1965), and Phillips (1969).

14.2 CSP-1 AND THE AOQL CRITERION
It is convenient here to restate the CSP-1 sampling plan.

CSP-1 Inspect every item until i successive items are found free of
defects, and then inspect at a rate of one in every nth item. When a
defective item is found, revert to 100% inspection, and continue until i
successive items are found free of defects.

Dodge required the sampling at a rate 1 in n to be carried out by
stratified random selection so as to ensure an unbiased sample. In
practice inspectors are likely to select approximately every nth item, but
it is wise to vary this interval a little.

The way that the CSP-1 and similar plans operate is to vary the
inspection rate as quality varies. Clearly, a theoretical model is required
to give a guide on how the inspection rate varies with p, for various
choices of n and i.

In most theoretical treatments of CSP-1 the following three assump-
tions are made.

Assumption] All defectives found during inspection are rectified or
replaced by good items.

Assumption 2 Inspection is perfect, i.e. mistakes in identifying defect-
ives are never made.
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Assumption 3 Theoretical calculations are made on the assumption that
the process is producing defectives with probability p, and
that the probability that any item is defective is indepen-
dent of the quality of other items.

Assumption 1 is often realistic, but if it is not, account of this can be
taken in the theory. Assumption?2 is unrealistic and we shall have to
discuss this later. Assumption3 is effectively that the process is in a
steady state and provided that we realize the implications, it is realistic
enough to proceed with some simple theory.

In the next section we show that on these three assumptions, the
average fraction of production inspected is

F(p) = 1/{1 + (n — 1)¢‘} (14.1)

where ¢ =1—p. On Assumption 1, the average outgoing proportion
defective is therefore

1
Outgoing proportion defective = p {1 - A }
{1+ (n - 1q'}
- g’
__p(n=14q — (14.2)
{1+ -1q'}

It should be stressed that this formula assumes a constant p; if p has,
say, a cyclic variation, quite a different result will hold.

Now (14.2) has approximately the shape shown in Fig. 14.1. For low
p, the outgoing proportion defective is low. For high p, the average

Average outgoing proportion defective

Proportion defective produced p

Figure 14.1 Operation of CSP-1.
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fraction of production inspection is high, and again the outgoing
proportion defective is low. For intermediate values of p, there is a
maximum value to the average outgoing proportion defective for a given
n and i, and this is defined as the average outgoing quality limit,
AOQL.

The AOQL is the maximum of (14.2), and by differentiation we find
that this is at a value p = p;, where

(+Dpr—-1=@r-DA-py™ (14.3)
and by inserting this we find that the AOQL is
AOQL = (n = 1)(1 — p,)*V/i (14.4)

which can be regarded as a function of n and i.

Figure 14.2 shows approximately how the AOQL is related to n and
i. Dodge suggested that a producer be asked to specify an AOQL, so
that this sets a relationship between n and i. The final choice of n and i
was to be made on practical considerations such as the work load on
inspectors, and it may be best to have an i no greater than a small
multiple of the number of units on the production line at any time.

This method of designing a CSP-1 has certainly been used a great deal
since Dodge suggested it. However, let us reflect on how artificial is the
concept of the AOQL.:

- o,
a0l AOQL = 10%

351 AOQL = 5%
30

20 AOQL = 3%

15

AOQL 1%

10 15 20 25 30 35 40 45 50 55 60
i

Figure 14.2 Relation between AOQL, »n and i.
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(1) The AOQL is an upper limit to the proportion defective only in a
long-run average sense. In the short run, a sudden deterioration of
quality could lead to a large number of defectives being passed
before a defective was found on inspection. This should clearly be
borne in mind when choosing n; see section 14.4.

(2) We have made Assumption 3, that the process is in control. If the
process has varying quality, with changes exactly in phase with
changes in the inspection level, the AOQL no longer applies.

(3) The quality, p, of the uninspected production process at which the
AOQL is obtained may be known to occur only very rarely.

(4) We have made Assumption?2. If defective items are only recogn-
ized with a probability of, say 0.90 or 0.95, Fig.14.1 does not
apply, and instead we have Fig. 14.3. This situation is therefore
likely to make nonsense of the whole AOQL concept. Hill (1962)
has stressed that the AOQL concept is particularly sensitive to the
assumption that inspection is perfect.

Average outgoing proportion
defective

Proportion defective produced P

Figure 14.3 The CSP-1 when inspection is not perfect.

Notwithstanding these criticisms, it should be emphasized that the
CSP-1 has been successfully designed and used in the way Dodge
suggested, although there is clearly a need for other design criteria.

14.3 THEORY OF CSP-1

In this section we derive the theory of CSP-1 on the three assumptions
stated in the previous section.

The first step is to break up the run of inspected items at every
defective. Dodge calls these short sequences ‘terminal defect sequences’,
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and the following are examples; O stands for a good item and X for a
defective (Table 14.1).

Table 14.1

Sequence Probability Length
X p 1

0X pq 2
00X pq> 3
00...0X pq’ (G+1

Once a defective has been observed, 100% inspection is started and
continued until a sequence of i good items is observed. Before this
occurs, a series of terminal defect sequences may occur of length less
than or equal to i. The probability of a terminal defect sequence of
length less than or equal to i is

i-1

>pg =1-4' =P, say. (14.5)
r=0
The number of terminal defective sequences in a run of 100% inspection
has a geometric distribution (1— P)P", r=0, 1, 2, ...; the average
number of such sequences is therefore
E()=>r(l-P)PP=P/(1-P)=(1-4g)/q. (14.6)

Now the average length of a terminal defect sequence of length less
than or equal to i is

i-1 i .

1-4'1+ pi)
T=——>(r+1)pq = —_— (14.7)

(1-4)r=0 p(1 - ¢q)
The average length of a run of 100% inspection is therefore

TE() +i=(1 - q")/pq'. (14.8)
The number of periodic samples taken in between runs of 100%
inspection has the geometric distribution pg’~!, r=1, 2, .... The

average number of items passed in such an interval is therefore

norpg ' =n/p. (14.9)
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The average number of items produced between the start of success-
ive runs of 100% inspection is therefore

(1 - 4)pq' +njp
while the amount inspection in such an interval is
(1 - 4)/pq" + 1p.
The average fraction inspected is therefore
1-4)/pq +1 1
_( qi)/pqi /p _ . (14.10)
1-4qYpg +nfp 1+ (n-1q

This is the formula quoted in (14.1), from which (14.2)—(14.4) follow.
When interpreting this result, reference should be made to the
criticisms listed at the end of the previous section.

14.4 THE AEDL CRITERION

In section 14.2 we remarked that if there was a sudden deterioration of
quality, a number of defective items could be passed by the CSP-1
before 100% inspection was instituted. Hillier (1964) proposed another
measure, the average extra defectives limit (AEDL), the purpose of
which is to put a limit on the average number of defectives passed upon
such a deterioration of quality. The AEDL criterion can be used along
with the AOQL to select a particular CSP-1.

Suppose a process is producing defectives with probability p,, and
suddenly it changes to producing defectives with probability p; > p,. Let
D be the number of uninspected defectives among the next L items
after this deterioration of quality. Then for an AOQL of 8, the average
extra number of defectives passed above the limit prescribed by the
AOQL is

{E(D) — 6L}

and this will be a function of p,, p;, and L. The AEDL, written D, , is
defined as

D; = max {E(D) — 6L}. (14.11)

po.p1,L

For the CSP-1, Hillier shows that (14.11) achieves its maximum for
po=0,p;=1,and L = L*, where

L* = log{(l - n) 1og{” - 1}/6}/log{n - 1}. (14.12)

Hillier shows that the AEDL for CSP-1 is then




310 Adaptive sampling plans
n—1

Lh=(n—1%l—{ }U}—BL* if L* >0

=0 if L* < 0. (14.13)

In a particular case there may be reason to use a value of L other
than (14.12), for example, if items are packaged in batches of a given
size. This draws attention to the fact that the AEDL is a number of
defectives calculated over a somewhat arbitrary length of production.

The other criticisms of the AOQL criterion made at the end of
section 14.2 will be found to apply also to the AEDL. In particular the
values po=0 and p; =1 at which the AEDL is calculated are both
rather unlikely values for the proportion defective. However, the use of
the AEDL together with the AOQL would seem to be a better method
of choosing a particular CSP-1 than the use of the AOQL alone, and
Hillier gives a simple example. The AEDL provides a method of
choosing n, by using (14.13).

Hillier suggests that this method of choosing a CSP-1 can be improved
further if account is taken of the probability distribution of D for given
values of L. It would then be possible to make the probability that D is
less than a given number to be greater than a specified value. See
Hillier (1964) for details of this method. Unfortunately there is very
little published information on the probability distribution of D; see
Hillier (1961, 1964).

14.5 DECISION-THEORY APPROACH TO CSP-1

Anscombe (1958) gives a critique of the AOQL approach to choosing a
CSP-1, and discusses an approach based on costs. He points out that the
AOQL concept is very artificial, and would not usually correspond to
what a user required of a continuous sampling plan. The problem is
basically an economic one of balancing inspection costs against the costs
of passing defective items. The usual objection to an economic approach
is that the cost data may be difficult to obtain. However, Anscombe
says: ‘What is important is that we realise what the problem really is,
and solve that problem as well as we can, instead of inventing a
substitute problem that can be solved exactly but is irrelevant.” If the
cost of passing defectives is known only roughly, then an approximate
solution to the problem will be satisfactory, provided we are solving the
real problem.

Admittedly, there are other aims in inspection besides the strict
economic aim of limiting the amount of bad material passed, but this
aim is likely to be the over-riding one. The approach adopted by
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Anscombe requires very little economic information, but this small
amount is vital.

We shall again make the three assumptions listed in section 14.2. Let
the cost of inspection be k cost units, where the unit of costs is the
excess cost of passing a defective item above the cost of rectifying it or
replacing it during inspection. The cost of 100% inspection is therefore
k per item produced, and the cost of passing production without
inspection is p per item produced. By this model therefore, it would be
best to carry out 100% inspection if k < p, and best not to inspect at all
if k> p. In practice the proportion defective, p varies, and a sampling
plan is operated.

If we operate a CSP-1, the cost of this plan per item produced is

C = (cost of inspection) + (cost of passing defective items)

= k X (fraction inspected) + p X (fraction not inspected)
or

C=Fk+(l-F)p (14.14)

where F is given by (14.1). As indicated above, the best possible action
if we knew p is

forp <k, C=p (F = 0in (14.14))
and
forp >k, C=k (F = 1in (14.14)).

The excess cost AC over the best possible action is therefore

_ ) (k=p)F p<k
AC = { (p— k)1 —F) p>k (14.15)

Anscombe now simplifies the problem by inserting an arbitrary rule
which appears to be near optimum. Since the best possible action
changes from no inspection to 100% inspection at p = k, it is reasonable
to choose F = } when p = k. By inserting this rule into (14.1) we obtain

(n-11-k)y=1 (14.16)

which can be used to calculate i for a given n and k. If k is given, there
remains only one parameter of the CSP-1, namely n, which we wish to
optimize.

The next step is to find the average value of AC over the process
curve for p, assuming that p varies slowly enough for (14.2) to remain
valid. Anscombe introduced a further approximation here, by using a
uniform distribution for p in the range (0,2k). (If the variation of p
does not span the point p = k, the optimum will be either no inspection
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or 100% inspection. Furthermore it turns out that for a wide range of
distributions the value of E(AC) obtained is not very different from that
obtained under the uniform distribution.) By numerical integration,
Anscombe now checks that the empirical formula

E(AC) = 0.3k/Vn (14.17)

holds very well.

In order to be able to determine an optimum for n» we must introduce
one further factor in the costs. Equation (14.17) will give an approxi-
mation to the long-run costs of a CSP-1 at a stable value of p. When p
changes, a further cost arises, called a transition cost. This is the cost of
the extra defectives passed after a sudden deterioration of quality, and
before the CSP-1 changes to 100% inspection. If p changes suddenly
from a very small value to a very large value, at a random point in an
inspection interval, then on average slightly less than n/2 defectives will
be passed. Anscombe showed that n/2 is a good approximation to the
average transition cost under more general conditions.

If sudden deteriorations of quality occur on average once in every M
items produced, the average transition costs are n/2M per item pro-
duced.

The total cost of operating the CSP-1 is therefore approximately

0.3k n

+ — .
vn T o (14.18)
and by differentiating we find that the optimum choice of » is

n = (0.3kM)¥?. (14.19)

In obtaining this result we have used the rule f=1} at p =k, the
uniform distribution as an approximation to the process curve, the
empirical approximation (14.17), and the approximations to the transi-
tion costs. Further investigation shows that none of these approxima-
tions have much effect on the solution. The important quantities are M,
the average interval between sudden deteriorations of quality, and

cost of inspecting an item
excess cost of passing a defective ’

It is interesting that in the methods suggested earlier in this chapter
for choosing a CSP-1, neither £ nor M were mentioned, and these are
the quantities upon which an optimum solution strongly depends.

14.6 MODIFICATIONS TO CSP-1

Over the years various modifications have been suggested to CSP-1.
Dodge and Torrey (1951a) suggested the following two plans:
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CSP-2 Proceed as in CSP-1 except that, once partial inspection is
instituted, 100% inspection is only introduced when two defectives occur
spaced less than m items apart.

This plan is less likely to revert to 100% inspection because of
isolated defectives than is the CSP-1, and the number of abrupt changes
of inspection level will also be reduced. However, there is a higher risk
of accepting short runs of poor quality, and so CSP-3 is suggested.

CSP-3 Proceed as in CSP-2 except that when a defective is found, the
next four items are inspected.

The theory of these two plans follows a similar pattern to the theory
given in section 14.3 for CSP-1, although in each case it is more
complicated.

Another line of development attempts to devise plans which guaran-
tee an AOQL without assuming statistical control of the process. The
starting point of these investigations is a paper by Lieberman (1953),
who examined the AOQL of the CSP-1 without the assumption of
control. It is not difficult to see that this is attained by a process which
produces good items throughout periods of 100% inspection, and
defectives throughout periods of partial inspection. Periods of 100%
inspection are therefore exactly i items long, and the average number of
items produced between the start of such periods is (n +i). One
defective item will be inspected, and consequently replaced by a good
item. The average fraction defective remaining after inspection is
therefore (n — 1)/(n + i), which can be considerably greater than (14.2).
For a formal proof of this formula, see Derman et al. (1959). When
interpreting this result, however, it is important to take note of the
pathological nature of the production process model which produces it.

Derman et al. (1959) present two variants of CSP-1 which have
improved properties when control is not assumed.

CSP-4 Proceed as in CSP-1 except that partial inspection is carried out
by separating production into segments of size n, and taking one item at
random from each segment. When a defective is found, the remaining
n — 1 items in the segment are eliminated from the production process,
and 100% inspection started with the first item of the following
segment.

The idea of CSP-4 is that there is a reluctance to pass a segment of
production in which a defective is found. Items eliminated from the
production process might be sorted and the good items used as a stock
for replacing defectives found in inspection. A more realistic plan would
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be to allow the good items from this ‘eliminated’ segment to be passed,
and so we have CSP-5.

CSP-5 Proceed as in CSP-4 except that all items in a segment in which
a defective is found are sorted.

The modifications given in CSP-4 and CSP-5 result in a more
complicated set-up when control is not assumed. The production process
model giving the AOQL is no longer the trivial one described earlier for
CSP-1. The theory is not simple, and we refer readers to the source
paper. In practice, Derman et al. (1959) suggest that CSP-4 and CSP-5
plans should be chosen using the CSP-1 formula derived under the
assumption of control.

Another important type of plan is the multilevel plan, discussed by
Lieberman and Solomon (1954), and we shall designate this MLP-1.

MLP-1 Proceed as in CSP-1 except as follows. If in partial inspection i
successive items are found free of defects, reduce the inspection rate
from 1/n to 1/n%. In this way, several inspection levels can be used.
When a defective is found, revert to 100% inspection.

Usually MLP-1 will be used with between two and six levels.
Lieberman and Solomon (1954) obtained the AOQL for two levels and
for an infinite number of levels, and gave a method of interpolation for
other levels. Clearly, a whole range of different types of multilevel plan
is possible, but no systematic study of the possibilities seems to have
been undertaken.

In nearly all of the work an AOQL approach is adopted, and the
AEDL criterion has only been applied to CSP-1. Anscombe’s decision-
theory approach, described in section 14.5, has not been extended to
cover other plans. That is, with very few exceptions, Dodge’s original
formulation of the continuous inspection problem has not been ques-
tioned.

Read and Beattie (1961) give a plan of the same general type as
CSP-1, but modified to fit their practical conditions. The inspection rate
on line is held constant, and the product is artificially batched. Depend-
ing on the results of inspection, some batches are set aside for 100%
inspection later. This plan forms a link between the Dodge type
continuous inspection plans, and batch inspection plans discussed ear-
lier.

A collection of continuous sampling plans, indexed for use as a
United States Army military standard, is available as MIL-STD-1235
(ORD). This standard is currently being revised, and for a description
and discussion of the revision principles see Banzhaf and Bruger (1970),
Duncan (1974), and Grant and Leavenworth (1972).
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14.7 PROCESS TROUBLE SHOOTING

So far we have been concentrating mostly on the product screening
aspect of continuous inspection. Girshick and Rubin (1952), in an
important paper, gave a Bayes approach to process trouble shooting,
and we briefly describe their theory below.

The production process is assumed to be either in a good state (state
1), or a bad state, (state 2). After every item produced there is a
probability g that the process will move from state 1 to 2, but once in
state 2, the process remains in that state until it is brought to repair.
Girshick and Rubin derive an optimum rule for deciding when to put
the process in repair. If the process is put into repair when it is in state
1, it is said to be in state 3, and if it is put into repair from state 2, it is
said to be in state 4. When the process is put into states3 or 4, it
remains there for n; time units, j = 3, 4, where one time unit is the time
for one item to be produced. Two cases are considered:

(1) 100% inspection is operated and the problem is merely to find the
optimum rule for deciding when to put the process in repair.

(2) Sampling inspection can be used, so that the optimum rule must also
specify when items are to be inspected.

These two cases are discussed separately below.

The quality of each item produced is represented by a variable x, and
the probability density function of x is taken to be f;(x), j = 1,2, for
states 1 or 2 respectively. The value of an item of quality x is V(x), and
the cost per unit time of the repair states is ¢;, j = 3,4. The model is
now precisely defined, and we have to find the decision rules which
maximize income per unit time. This model is sufficiently general and
realistic to be used as a means of comparing various continuous
inspection procedures, but no such comparisons have yet been made.

When the production process is in use, the vital question is to decide
whether it is in state 1 or state 2. Clearly, the optimum decision rule will
depend on the posterior probability that the next item will be produced
in state 1. For case (1) above and when the kth item has just been
inspected this probability is

_ (1 = g)qi-1f1(xx)
Gr-1f1(x) + (1 = qu_1) faxy)

where go=1-g. (The denominator is the probability that x, is

observed, and the numerator is the probability that x; is produced in

state 1, and that the process remains in state 1 for the (k + 1)th item.)
Girshick and Rubin showed that the optimum rule is to put the

i (14.20)
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process in repair whenever g, <gq*. This is equivalent to putting the
process in repair whenever Z; = a*, where

Zi=y(1+ Z,y), Zoy=0, (14.21)
and

yi= fole)/{1 = @)fi(xi)}- (14.22)

The parameter a* has to be chosen to maximize income per unit time,
and this involves solving an integral equation.

When sampling inspection can be used, the argument and result are
very similar. The optimum rule is again defined in terms of Z;, where
yi is given by (14.21) if the kth item is inspected and by

ye=(0-g"7" (14.23)

if the kth item is not inspected. Girshick and Rubin show that the
optimum rule is to inspect items whenever

b* SZk <a*,

to put the process in repair when Z, =a*, and to pass production
without inspection whenever Z, < b*. Again the constants b* and a*
have to be chosen to maximize income per unit time, and this involves
solving integral equations.

In both cases the integral equations are very difficult to solve, and
detailed calculations do not appear to have been carried out.

14.8 ADAPTIVE CONTROL

There is now a very large literature on control theory, and this text
would be incomplete without a brief introduction to it. Those interested
in pursuing the topic further should read the general accounts by
Barnard (1959), Lieberman (1965), White (1965), Box and Jenkins
(1962, 1976), and Pandit and Wu (1983) and the references contained in
these. The following account is largely based on Box and Jenkins
(1962).

Suppose a process is sampled at equal time intervals, and that
provided no adjustments are made to the process the observation at the
jth sample point is

Zj = 6]- + U,

where u; are the errors which are normally and independently dis-

tributed with a variance o2 and 6; follows some stochastic process.
Adjustments can be made to the process at each sample point, and

the aim of these adjustments is to keep 6; at a target value, which we
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may without loss of generality take to be zero. If the total adjustment
applied at the jth sample point is X;, the observation made is the
apparent deviation from the target value, which is

e =2, —X; =6, - X; +u; = ¢ +u,

where ¢; is the actual deviation from the target value.

Suppose adjustments have been made on some basis or other, and
that we have data X, X,, X3, ..., X, and e}, e, e3, .. ., e;, then our
problem is to determine the increment x;,; to apply to the adjustment at
the (j + 1)th sample point, so that the total adjustment is then

Xj = X; + xj41.

We are assuming, of course, that adjustments can be applied at every
sample point without extra cost.
Let the loss caused by an actual deviation from target of & be

proportional to 8]2; then we must determine x;,; to be a linear function

of ¢;, €;_, . . ., which means that we must determine x,.;,
X1 =0 — 8, =Dwe_, (14.24)
r=0

where the w,s are chosen so that §i+1 is the minimum mean square
error estimate of 6,,;. In fact the central problem as stated here is seen
to be equivalent to the problem of predicting the coming value of 6;,;.
The problem can therefore be restated as the problem of determining
weights u, so that

0,41 = %ﬂrzj—r (14.25)

is the minimum mean square error predictor of 6;,,. (Again, a linear
function is assumed for simplicity.) This implies, of course, a relation-
ship between the w,s and the py,s.

So far we have said nothing about the stochastic process to be
assumed for 6;, and it would be unrealistic to assume that it was
stationary. Suppose that 6; can be separated into two components,

0, =m; + ¢,

where m; is a sequence of known means, and where ¢; is a first-order
autoregressive process,

Gj+1 = pP; + ;i

where the 7; are independently and normally distributed with a variance
of,. In a practical case the m; would not be known, but we first obtain
the optimum weights assuming them to be known.
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A further simplification is introduced by assuming the weights u, to be
zero for r = h, for some specified h. With these assumptions the

covariance matrix of z; = (z;, Zj_1, . . ., Zj—p+1) IS
2, 2 ) 3 2
P092+20u f; O% , PO
— 2 .2
T=| pop pog + 0,  p°oy

where 03 = 03/(1 — p?).
Box and Jenkins (1962) show that the weights u; which give the
minimum mean square error predictor are

u=T"p (14.26)
where ¢’ = (4, Wy, - .., Up—1) and p' = (p, P%, ..., p"), and where we
use the estimate

h
0js1 = mj + Eur(zf_r - mj—r)' (14.27)
r=0

Now if the m; are not known, we shall have to use the estimate
(14.25), and there will be a bias. However, if the m; follows a
polynomial of degree k, constraints can be imposed on the weights u, so
that the bias is zero. The optimum weights can now be found subject to
these constraints, but the result is rather complicated to state, and we
refer the reader to Box and Jenkins (1962). The authors evaluate the
optimum constrained predictors for some simple cases, and show that
they are such that a good approximation to the optimum change x;,, is

Xiv1 = Y—lAej + Yo€; + leoej_r (1428)

or a simple generalization of it. Box and Jenkins then examine the
stochastic process for which an adjustment of the type (14.28) would be
optimum, and they consider methods of estimating the parameters of
this process from data. All this theory therefore leads to the following
empirical approach; a process model is fitted to past data, so determin-
ing a set of parameters y_;, Yo, Y1, - . ., and then an adjustment of the
type (14.28) is used, inserting the fitted parameters. An interesting
paper by Hunter (1986) shows the value of the exponentially weighted
moving average in this context.

The discussion in Box and Jenkins (1962) is more general than the
discussion given above, but the authors state that some of the more
general results are unlikely to be used because of their complexity. In a
subsequent paper, Box and Jenkins (1963) again consider the above
problem, but with the introduction of a cost for being off target and a
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cost for making a change; the optimum plan then involves making
adjustments to the process less frequently.

Further developments would be of interest. For example, it may be
desirable to vary the inspection rate depending upon the results.
Another point which does not seem to be adequately cleared up is the
relationship of the methods suggested in this section to adaptive control
by CuSum methods, and some remarks by Barnard in the discussion of
Box and Jenkins (1962) relate to this. Barnard suggests that CuSum
methods may be preferred because of simplicity in cases where com-
puters are not available to do the calculations, but that in certain
circumstances, CuSum methods may be slightly better anyway.

14.9 USE OF CuSum TECHNIQUES

A general question is opened up by the closing remarks of the last
section, relating to the possibility of basing continuous sampling plans
on CuSum techniques. One such plan is given by Beattie (1968) in an
important paper dealing with patrol inspection, when an inspector is
asked to cover a large area of a factory taking small samples.

One plan proposed by Beattie (1962, 1968) is as follows. The
inspector makes periodic inspections and on each occasion he selects n
items, finding d; defectives, i =1,2,.... A CuSum is now plotted for
3(d; — k), where k is some reference value, as shown in Fig. 14.4. The
stream of product is accepted while plotting is on the lower chart. When

(Product subjected to

Product further inspection) product
e | s I L e
val ‘ I~ accepted | T~ accepted
°“e_s°} “1011-101213-11-2-1-11-1
h+h 7
6 o
5
h 4 ;
3 |
2
1 o—0
n P S N 1 M WD
0 5 10 15

Observation number

Figure 14.4 A two-stage semi-continuous plan (a combination of CuSum charts).
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the plot on the lower chart reaches the decision interval, the product is
rejected, and plotting is started on the upper chart. Plotting on the
upper chart continues until the decision interval is reached, when the
stream of product is again accepted, and plotting on the lower chart
restarted.

The rejected product is separated into lots, and a single sample plan
applied to each lot. The plan therefore operates in rather a similar way
to the CSP-1. In general only periodic samples of size n are taken, but
periods of acceptance sampling of lots are required, when quality
deteriorates.

Clearly, when acceptance sampling is being operated, a double or
sequential sampling plan can be used instead of a single sampling plan.

For theoretical purposes let us suppose that production is artificially
separated into lots, and that m such lots pass in between inspection
periods by the patrol inspector. In calculating ARLs, we shall use this
lot size as a unit.

The CuSum chart just described is similar to that described in
section 7.1.7. Let z be the score on the lower chart and L(z, p) be the
ARL for a starting score of z, where p is the proportion defective. Then
by following the discrete analogue of (8.15) we have

k—z h-1
L(z,p)=1+ L(O,p)gof(x) + glL(x)f(y +k —2z) (14.29)

where
fw) = () pra -y

which is the probability that x defectives are found in the first sample of
size n. Equation (14.29) can be solved to obtain L(0,p). Similarly we
can obtain the ARL L'(0, p) of the upper chart. The probability P, that
lot inspection is not used, is then seen to be

Py(p) = L(0,p)/AL(0,p) + L'(0,p)}. (14.30)

If the lot inspection plan leads to acceptance with a probability P,(p),
the total probability of acceptance is

P.(p) = Pi(p) + {1 = P1(p)} P2(p). (14.31)

If the sample size for the lot inspection plan is n’, the average sample
number per lot inspected is

ASN = n/m + n'(1 — P)). (14.32)
Expressions (14.31) and (14.32) are functions of n, n', h, h’', k, p,
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and the acceptance number for the lot inspection plan. In choosing a
particular plan Beattie suggests using OC-curve considerations, together
with consideration of the average sample number (ASN) at the expected
quality level. However, there are clearly other schemes for choosing a
particular plan, and this aspect does not appear to have been thoroughly
investigated.

For further work on this type of use of CuSum charts see Beattie
(1968), Prairie and Zimmer (1970), and Rai (1971); the last two of these
references relate to inspection by variables.

14.10 SKIP-LOT SAMPLING PLANS

This chapter would not be complete without a brief mention of an
important type of sampling plan introduced by Dodge (1956), see also
Perry (1973).

The idea is to use a combination of CSP-1 and a reference sampling
plan. At the outset, the reference sampling plan is used on every batch.
When i successive batches are accepted under normal inspection, we
move to skip-lot inspection, in which only every nth batch is inspected.
As soon as a batch is rejected normal inspection of every batch is
resumed. The important feature of this plan is that it is self-adaptive, in
varying the inspection load according to submitted quality. In this
respect skip-lot plans are a competitor of defence sampling schemes, and
for a comparison see Lenz and Wilrich (1978), and Lenz and Rendtel
(1984).

EXERCISES 14B

1. Discuss how CuSum charts might be used for the continuous
sampling problems mentioned in section 14.1.

2. Check the derivation of (14.3) and (14.4) from (14.2).

3. Examine how the properties of CSP-1 (section 14.2) are altered
when inspection is imperfect, and find the conditions under which
there is a true maximum to the average outgoing quality.

4. Examine numerically the relationship (14.16) for k = 0.05.

5. Show that an approximation to (14.16) is

ki = log.n.
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6.

Make the three assumptions listed in section 14.2, and find the
formulae equivalent to (14.1) and (14.2) for CSP-2 and CSP-3, when
k = i. See Bowker (1956).

Find g, in terms of Z, and g; see section 14.7.
In the theory of section 14.7, the quality x of each item is assumed

to be observed exactly. What happens if the quality of each item is
observed with error?
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Some further topics

15.1 COMPUTING

15.1.1 General points

In the early stages of learning SPC it is quite crucial that there be a
hands-on pencil-and-paper approach. This is necessary in order that the
topics be properly learned, to ensure that those studying gain the
confidence necessary to apply the methods themselves, and in order to
get the feel of data. In practice computer packages are often required
for serious applications. One reason for this, for example, is that it is
usually necessary to create a database of results to enable staff to
pinpoint more easily the source of quality problems. A second reason is
that the computational speed of a computer and its ability to generate
graphics quickly allow several SPC methods to be carried out simultan-
eously and transparently to the user. For example, simultaneous diag-
nostic checks for Normality, Shewhart chart and CuSum analysis,
carried out automatically by computer, would be of great benefit, yet
would be tortuous if attempted by hand.

It should be noted that the sort of computer packages we refer to will
most frequently be used by people who are not trained statisticians, who
are not always clear about the appropriate techniques to use, and who
are not aware of pitfalls. This implies certain general requirements of a
good SPC package.

There are two situations in which SPC can be carried out and which
are fundamentally different. In turn, these situations require quite
different computer solutions.

One situation is where SPC is being used to monitor a process and
give control action signals in ‘real time’. Real time can have many
meanings depending on the industry and process in question but is likely
to apply where adjustments to the process must be carried out on a
time-scale from seconds, up to about 10 minutes. Here the SPC im-
plementation on computers must automatically warn of out of control
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situations by visual and audible alarms. The SPC procedures are thus
assessing process measurements as they are received via the instrument
—-computer interface. The need for real-time response poses further
problems where there are many critical process variables to be con-
trolled. Here an operator will require a computer screen or output
device which continuously provides a current status report of all
variables. In addition, the ability to request more detailed information
on a specified variable is important. This information includes a control
chart of recent data and perhaps an up-to-date assessment of capability.

An SPC package designed for this function will either be a bespoke
system which performs only that SPC methodology chosen by an SPC
manager, for example X, o charts, or be a general SPC package which
provides a wide range of options from which the preferred options have
been selected and fixed by a responsible manager.

Any SPC implementation which is not operated in real time, as
described above, is not actually being used from process control in the
literal sense. SPC is frequently used for retrospective analysis of process
data, though this could involve data only 15 minutes old or up to many
hours. The use of this methodology by production managers to assess
process performance over weeks or months is also a perfectly legiti-
mate application of SPC. In fact this form of SPC application is most
likely in process industries where knowing how to identify what has
caused a problem and then responding with a control action can be very
complex.

A computer system for this form of SPC will operate with a data
storage (management information) system. Examination of data will
require the system user to request an appropriate period of production
data and then SPC analysis will be initiated. Thus, in contrast to
real-time applications, here SPC analysis is only instigated on demand
and not automatically observation by observation. The purpose of SPC
use by supervisors, foremen or quality engineers is likely to be to view
longer-term trends in process performance and its capability which will
stimulate process investigation studies.

To carry out thorough analysis of process data a wide range of SPC
and statistical tools will be required. The useful SPC system will
therefore allow access to a suite of modules for distribution checking,
analysis of variation, time-series analysis, multiple regression etc. To
make full use of such facilities the SPC system should have an easy
interface to the plant information system. Information data bases
typically installed as part of process control computer systems often
allow little facility to examine data collected. They operate as data
sinks. Computerized SPC can give these data a raison d’étre!
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15.1.2 Requirements for SPC packages

Following the above discussion, we suggest the following requirements
for a good SPC package.

User interface. This needs to be very user friendly, and have adequate
on-line help and guidance. An interface was designed at the University
of Kent, UK, in connection with a multiple regression package, and a
survey analysis program for the developing countries (Wetherill et al.
1985a, 1985b, 1986), although developments in computing would facili-
tate improvements.

Data structures. A considerable amount of research went into the design
of the data structures for the survey analysis program referred to above.
Similarly, the data structures and database for process control need to
be carefully worked out, especially in the process industries where vast
amounts of data on many variables accumulate rapidly.

Validation of data input. A considerable amount of work has been done
on data quality control in the survey analysis context. This work was
started in Statistics Canada and the US Bureau of the Census and the
work can be accessed through Wetherill et al (1985b), and Wetherill and
Gerson (1987). The methods can be applied whenever there is an
multivariate dataset in which relationships between the variables can be
used for editing. In the survey analysis context, imputation is often
used, and this would not normally be used in process control, but
unusual records can be flagged for action.

Expert system checking and guidance. The regression program referred
to above contains built-in diagnostic checks for normality, outliers,
multicollinearity, etc., the results of these checks being simple messages.
A similar approach needs to be adopted for SPC to include checks for
distribution, including normality, checks for long-term and short-term
variation, autocorrelation, cyclic behaviour, etc. These checks should be
transparent, and any messages simple. In addition, there should be
built-in guidance using a rule-based expert system to lead people to the
correct choice of scheme. An approach similar to that used in Williams
(1988) for experimental design, could be used. A simple guidance
system for sampling inspection is discussed in Wetherill and Curram
(1984).

Other points. It needs to be recognized that the SPC techniques
themselves are only part of the story. An expert system is really
required to assist in the problem of identification, problem analysis, and
process capability stages.
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15.1.3 Outline of an SPC system

A brief outline of a basic SPC system is as follows:

(1) Data acquisition and data editing. There should be adequate facili-
ties to acquire data in various ways, including from automatic data
collection devices. Simple editing and data transformation methods
should be provided. Means of sampling from large data sets are
also required.

(2) Exploratory data analysis. The process capability analysis phase
involves use of a range of EDA techniques, including CuSums. For
the less experienced, some expert system features would be invalu-
able here including automated methods of picking out outliers,
turning points, and underlying relationships.

(3) Distribution and model fitting. The package should be able to
identify the appropriate model, check for normality, etc., and
check for long-term and short-term variation and autocorrelation.
The process capability can then be established. Where there is
long-term variation, there needs to be a dialogue with the customer
about this. It should not be simply ‘assumed’.

(4) Choice of SPC techniques. At this stage the package should have
an expert system section, using knowledge already gained, to help
guide customers towards appropriate techniques and away from
inappropriate ones.

(5) Charting. Charting methods should cope with variable numbers of
observations in groups, one-at-a-time data, and they should incor-
porate automatic reassessment of process capability. Most process
industry applications have many variables, and the package should
be capable of monitoring many variables in parallel, each on
several charts.

(6) Reporting facility. A report generating facility is required.

This is a basic system. In a moderate-sized industry, database hand-
ling problems frequently occur. Also, it has been clear at various stages
of this book that the use of SPC is closely connected with the design of
experiments, analysis of variance, regression, multivariate analysis and
other statistical techniques. The package therefore needs smooth linking
to suitable packages for these techniques. It is now possible to write
software which is simple to use, and yet which does include validity
checks, expert guidance, etc. Unfortunately, few existing packages come
anywhere near this standard. In many cases it is even difficult to get
them to produce the correct charts.
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15.2 ECONOMIC APPROACHES TO THE DESIGN OF
CHARTS AND SAMPLING PLANS

It is clearly recognized that the design of SPC charts and sampling plans
is basically an economic problem, of balancing the costs of inspection
effort against the costs of producing defective material. A great deal of
research has been carried out into models and methods for designing
charts and sampling plans from an economic viewpoint, mostly using a
Bayesian approach. This field is omitted from the present text for
several reasons:

(1) A large part of the financial gain is obtained by applying the
procedures as given. The extra benefit from applying economically
optimum plans is often much smaller.

(2) The economic design of the procedures usually requires the assess-
ment of costs such as the cost of passing on defective material to
customers, which can be very difficult to estimate.

(3) The present volume is already large enough, and the extra material
is highly mathematical.

The work on economic approaches makes very interesting reading,
and could be of value in the future, coupled with expert system
approaches, and adequate algorithms to calculate and solve the equa-
tions and formulae. Those interested should consult Chiu and Wetherill
(1973), Wetherill and Chiu (1975), Chiu (1973) and Collani (1989).

15.3 SOME FURTHER CHARTING METHODS

15.3.1 Double CuSums

Davies and Goldsmith (1972) introduce what they call ‘Double
CuSums’, for the situation where the element size varies. For example,
suppose that the planned production of some factory is constant for the
next few months, then an ordinary CuSum chart can be used to check
the differences of actual production from a target level. However, with
seasonally dependent products, the planned production would vary. This
can be allowed for in a CuSum chart by letting the interval on the x-axis
vary.

Another example for Double CuSums is when the production of a
commodity is subject to ‘breaks’, but that the production rate varies due
to fluctuations in demand. A Double CuSum can be used to check for
differences in the rate of the breaks.

As a further example, suppose we have routine sampling inspection of
discrete items, but that a multiple sampling plan is used because
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inspection is expensive. For long-term monitoring of the fraction non-
conforming a CuSum can be used, but the numbers of items sampled at
each time point varies.

The Double CuSum procedure is extremely simple. The x axis unit is
allowed to vary to allow for the different numbers of units sampled,
different planned production rates, etc.

Let the x axis units be x; and the observations y;, and let T be the
target value for the observations for unit x. The double CuSum plots

Z(y,- — Tx;) against Exi.

The x’s are usually measured without error, but the variance of the
observations will usually depend on x;. The most common situation is
given by

V(y,) = x;0%

For scaling, it is necessary to pick on a typical x;, and scale the chart
accordingly. For further information on double CuSums see Davies and
Goldsmith (1972) or Bissell (1973).

15.3.2 Regression control charts

For the most part we have assumed that any process being controlled is
basically stationary, apart from isolated out of control conditions. In
practice this is sometimes not the case. For example, if a catalyst ages
and has to be renewed, or if a tool wears and has to be replaced, then
there will be a continuous trend in the results.

One way of dealing with this is to estimate the regression, and put the
action and warning lines either side of this, as in Figure 15.1. Another
way of handling the problem is to take out the regression, or other
fitted model, and plot the residuals. In this case it is also necessary to
keep a plot of the actual means, since a series of small changes,
modelled by a regression, could easily take the means beyond specifica-
tion limits. In theory, complex models, including cycles and auto-
correlated behaviour, can be handled the same way, but checks on the
fitted model also need to be carried out. Models fitted by robust
techniques appear to be most suited to such applications.

15.3.3 Difference control charts

Sometimes the results of tests vary from time to time, either due to
environmental conditions, or due to the need to reset a testing ap-
paratus each time. Grubbs (1946) suggested using the ‘difference control
chart’ for such situations.



Some further charting methods 329

Mean

Time

Figure 15.1 A regression control chart.

The method is simply to keep some material to use as a ‘standard’.
Tests are then performed by sampling m units from the standard, and n
units from current production. A control chart is then based on the
difference between the standard and current sample means.

If the sample means are X¥; and %, for the standard and current
results, with individual variances o? and o? respectively, then the

quantity plotted is (¥, — ¥.), which has a variance
Vx, —x.) = (Gg/m + O'g/n)’

and this is used in the construction of charts.
When the difference control chart is used, the range or standard
deviation chart is kept using current results only, as usual.

15.3.4 Confidence interval charts

As an alternative to ordinary control charts, a chart can be plotted with
each sample mean, and its associated 95% or 99.8% confidence interval.
The chart is regarded as giving an out of control signal whenever the
confidence intervals cross specification limits.

One advantage of these charts is that they give an accurate picture of
our knowledge about a process mean. The width of the confidence
interval is also of interest in showing how precise our knowledge of the
process mean is.
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15.4 MULTIVARIATE METHODS

15.4.1 Hotelling’s T? methods

It frequently occurs that material is judged on several variables simultan-
eously, such as tensile strength in different directions, thickness, etc.,
and clearly these variables are likely to be related.

Suppose we observe a vector variable x, with a mean vector g and
covariance matrix Z. Then Jackson and Morris (1957), Jackson (1959)
and Jackson and Mudhalkar (1979) suggested using a plot of Hotelling’s
T? values, where

T? = n(uy — £)'Z 7 (ny — %)
and where u, is the target mean vector. Murphy (1987) shows clearly
why such a plot is better than keeping parallel individual value plots.
When the mean is on target T? has a y? distribution on p degrees of
freedom, where p is the number of dimensions, so that an out of control
signal is given when T? > K, for some K.

The difficulty with the T? plot is that it gives no indication of which
variable or variables are causing the problem. Jackson (1980) suggested
keeping principal component plots and individual value plots as well,
but this collection of plots can be very difficult to interpret. A better
method is given by Murphy (1987), who suggests an approach based on
discrimination, in which the variables are partitioned into a subset
thought to be causing the problem, and then calculating the difference
between the T? statistics based on full and subset variables.

A key difficulty with these suggestions is that of using such plots in
the plant control room or on the shop floor, but some developments of
these methods may be easier to use and interpret. It should be noted
that all T?> methods will be sensitive to the assumed value of the
covariance matrix.

15.4.2 CuSum methods

Woodall and Ncube (1985) suggested keeping p independent CuSums,
and simply taking action as soon as the first action signal occurred. With
this structure, the run length is the minimum of p separate run lengths.
The authors discuss the derivation of the ARL curve, and give some
results for two variables.

Healy (1987) shows that CuSums are simply sequential likelihood
ratio procedures, and by using this derivation, CuSums are easily
extended to the multivariate case. However, this approach gets back to
one of the difficulties of T2, of finding out which of the variables is
causing the trouble.
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It seems clear that further work needs to be done on multivariate
charting methods. In the process industries the key multivariate problem
is not that of charting, but of relating the product variables to the many
process variables, and hence instituting some control.



Appendix A

Statistical tables

Table 1 Cumulative distribution function of the standard normal distribution

(a) For x in 0.1 intervals

x P X P X P

0.0 0.5000 1.3 0.9032 2.6 0.9953
0.1 0.5398 1.4 0.9192 2.7 0.9965
0.2 0.5793 1.5 0.9332 2.8 0.9974
0.3 0.6179 1.6 0.9452 2.9 0.9981
0.4 0.6554 1.7 0.9554 3.0 0.9987
0.5 0.6915 1.8 0.9641 3.1 0.9990
0.6 0.7257 1.9 0.9713 3.2 0.9993
0.7 0.7580 2.0 0.9772 33 0.9995
0.8 0.7881 2.1 0.9821 34 0.99966
0.9 0.8159 2.2 0.9861 3.5 0.99977
1.0 0.8413 2.3 0.9893 3.6 0.99984
1.1 0.8643 2.4 0.9918 3.7 0.99989
1.2 0.8849 2.5 0.9938 3.8 0.99993




(b) For x in 0.01 intervals

X P X P X P

1.60 0.9452 1.87 0.9693 2.14 0.9838
1.61 0.9463 1.88 0.9699 2.15 0.9842
1.62 0.9474 1.89 0.9706 2.16 0.9846
1.63 0.9484 1.90 0.9713 2.17 0.9850
1.64 0.9495 1.91 0.9719 2.18 0.9854
1.65 0.9505 1.92 0.9726 2.19 0.9857
1.66 0.9515 1.93 0.9732 2.20 0.9861
1.67 0.9525 1.94 0.9738 2.21 0.9865
1.68 0.9535 1.95 0.9744 2.22 0.9868
1.69 0.0545 1.96 0.9750 2.23 0.9871
1.70 0.9554 1.97 0.9756 2.24 0.9875
1.71 0.9564 1.98 0.9761 2.25 0.9878
1.72 0.9573 1.99 0.9767 2.26 0.9881
1.73 0.9582 2.00 0.9772 2.27 0.9884
1.74 0.9591 2.01 0.9778 2.28 0.9887
1.75 0.9599 2.02 0.9783 2.29 0.9890
1.76 0.9608 2.03 0.9788 2.30 0.9893
1.77 0.9616 2.04 0.9793 2.31 0.9896
1.78 0.9625 2.05 0.9798 2.32 0.9898
1.79 0.9633 2.06 0.9803 2.33 0.9901
1.80 0.9641 2.07 0.9808 2.34 0.9904
1.81 0.9649 2.08 0.9812 2.35 0.9906
1.82 0.9656 2.09 0.9817 2.36 0.9909
1.83 0.9664 2.10 0.9821 2.37 0.9911
1.84 0.9671 2.11 0.9826 2.38 0.9913
1.85 0.9678 2.12 0.9830 2.39 0.9916
1.86 0.9686 2.13 0.9834 2.40 0.9918

The function tabulated is

1
V(2r)

Pr(X > x) = f e~ 2% dx = P/100



Table 2 Percentiles of the standard normal distribution

N

P X P X P X

50 0 10 1.2816 2 2.0537
40 0.2533 6 1.5548 1 2.3263
30 0.5244 5 1.6449 0.5 2.5758
20 0.8416 3 1.8808 0.1 3.0902
15 1.0364 2.5 1.9600 0.05 3.2905

This table gives one-sided percentage points,

P/100 = f

1

V(2r)

e~ gy

The two-sided percentage appropriate to any x is 2P.



Table 3 Percentage points of the ¢-distribution

—>p
¥
t
Degrees of  Probability in per cent
freedom (v) 20 10 5 2 1 0.1
1 3.08 6.31 1271  31.82 63.66 636.62
2 1.89 2.92 4.30 6.96 9.92 31.60
3 1.64 2.35 3.18 4.54 5.84 12.92
4 1.53 2.13 2.78 3.75 4.60 8.61
5 1.48 2.01 2.57 3.36 4.03 6.87
6 1.44 1.94 2.45 3.14 371 5.96
7 1.42 1.89 2.36 3.00 3.50 5.41
8 1.40 1.86 2.31 2.90 3.36 5.04
9 1.38 1.83 2.26 2.82 3.25 4.78
10 1.37 1.81 2.23 2.76 3.17 4.59
11 1.36 1.80 2.20 2.72 3.11 4.44
12 1.36 1.78 2.18 2.68 3.05 4.32
13 1.35 1.77 2.16 2.65 3.01 4.22
14 1.34 1.76 2.14 2.62 2.98 4.14
15 1.34 1.75 2.13 2.60 2.95 4.07
20 1.32 1.72 2.09 2.53 2.85 3.85
25 1.32 1.71 2.06 2.48 2.79 3.72
30 1.31 1.70 2.04 2.46 2.75 3.65
40 1.30 1.68 2.02 2.42 2.70 3.55
60 1.30 1.67 2.00 2.39 2.66 3.46
120 1.29 1.66 1.98 2.36 2.62 3.37
© 1.28 1.64 1.96 2.33 2.58 3.29

This table gives two-sided percentage points,
P/100 = 2 fxv)ax
where f(x|v) is the p.d.f. of the ¢-distribution.

For one-sided percentage points the percentages shown should be
halved.



Table 4 Percentage points of the y? distribution

P%“
X
Degrees of  Probability in per cent
freedom (v) 1 5 90 95 99 100
1 0.03157 0.00393 2.71 3.84 6.63  20.83
2 0.0201 0.103 4.61 5.99 9.21 13.81
3 0.115 0.352 6.25 7.81 11.34 16.27
4 0.297 0.711 7.78 9.49 1328 1847
5 0.554 1.15 924 11.07 15.09 20.52
6 0872 1.64 10.64 1259 16.81 22.46
7 1.24 217 12.02 14.07 18.48 24.32
8 1.65 273 1336 1551  20.09 26.12
9 2.09 333 1468 1692 21.67 27.88
10 2.56 3.94 1599 1831 2321 29.59
11 3.05 4.57 17.28 19.68 24.73  31.26
12 3.57 5.23 1855 21.03 26.22 3291
14 4.66 6.57 21.06 23.68 29.14 36.12
16 5.81 7.96 23.54 2630 32.00 39.25
18 7.01 9.39 2599 28.87 3481 4231
20 826 10.85 2841 3141 3757 4531
22 9.54 1234 30.81 3392 40.29 48.27
24 10.86 13.85 3320 3642 4298 51.18
26 1220 1538 3556 38.89 4564 54.05
28 13.56 16.93 3792 4134 4828 56.89
30 1495 18.49 40.26 4377 50.89 59.70

The table gives the percentage points y*, where
P/100 = [ g(rIv)dy

where g(y|v) is the probability density function of the x* distribution.
For v>30, V(2)?) is approximately normally distributed with mean
(2v— 1) and unit variance.
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340 Appendix A

The table gives for various degrees of freedom, v;, v,, the values of F
such that

F
P = lOOth(z|v1, v,)dz

where h(z|v;, v,) is the probability density function of the F-ratio.

Table 6 Conversion of range to standard deviation

n d, n d, n d, n d,

2 1.128 6 2.534 10 3.078 14 3.407
3 1.683 7 2.704 11 3.173 15 3.472
4 2.059 8 2.847 12 3.258 16 3.532
5 2.326 9 2.970 13 3.336 17 3.588

An estimate of o of a normal population can be obtained by dividing
the range of a sample size n, or the average range of a set of samples of
the same size n, by d,,.

Table 7 Percentage points of the distribution of the relative range
(range/o)

Sample

size 0.1 1.0 2.5 5.0 90 95.0 97.5 99.0 99.9
2 0.00 002 0.04 0.09 233 277 317 3.64 4.65
3 0.06 019 030 043 290 331 3.68 412 5.06
4 020 043 059 0.76 3.24 3.63 398 440 531
5 037 066 0.8 1.03 348 38 420 4.60 548
6 0.54 087 1.06 125 3.66 4.03 436 476 5.62
7 069 105 125 144 381 4.17 449 488 573
8 0.83 120 141 1.60 3.93 429 461 499 58
9 096 134 155 174 4.04 439 470 5.08 590
10 1.08 147 167 1.8 413 447 479 516 597
11 1.20 1.58 1.78 197 421 455 486 523 6.04

12 130 1.68 1.88 2.07 4.28 462 492 529 6.09




Table 8 Table of values sampled from a Normal distribution with mean zero
and standard deviation one

-0.73
-0.17
0.40
1.19
0.85
1.18
-0.29
1.43
1.34
0.75
-1.07
0.53
-1.52
-0.45
—0.87
-1.51
1.01
-0.02
0.71
0.29
1.82
0.54
—-0.16
1.52
-0.16
-0.76
-0.07
-0.34
1.41
1.13
1.20
—0.63
3.98
-0.28
-0.21
-2.12
-0.53
-1.60
-0.71
0.91
1.14
0.22
—0.06

-2.09
—-0.15
—-0.03
-0.18
0.06
1.23
0.46
0.12
-0.85
0.21
—-0.50
2.73
0.36
0.73
0.86
-1.70
0.12
0.01
0.39
0.67
2.23
0.72
-1.25
0.00
0.21
0.36
1.00
0.95
-0.23
0.38
-1.21
1.60
0.13
-1.10
0.37
—-0.61
0.28
-0.91
-0.41
0.57
0.12
—0.96
0.24

0.31
0.36
-1.50
0.56
—-0.08
0.76
-0.24
1.26
1.26
-1.04
0.05
0.76
-1.20
—-0.07
2.03
0.81
-1.35
-0.18
0.38
1.08
-1.07
0.96
0.16
-1.32
-0.33
0.59
2.20
—0.48
—-0.52
0.22
0.24
0.53
-1.21
-0.78
0.32
1.88
0.67
-0.91
0.24
—-0.70
—1.46
0.60
—-1.41

0.25
-2.19
—0.54
—0.08
—-2.36
—-0.48
—0.54

0.60
-0.19

0.61

0.05
-0.33
-1.33

1.50
-0.37
—1.67

0.74
—-0.02
—0.86

1.53
-1.32

1.44

1.32
-1.13
-0.93

0.95

0.66
-0.33
-1.30

0.07
—0.59

0:77

0.89
—0.42

1.06

0.98

0.08

0.38

0.11
—-0.22

0.64
—0.80

1.10

-0.92
—-0.76
-0.29
—1.66
-1.42
-1.88
-1.49
0.42
0.41
0.20
—-1.60
1.73
-0.71
0.84
0.23
-1.75
-1.84
0.68
-0.26
0.06
-1.01
—-1.06
-1.27
0.36
-1.24
1.19
—0.39
0.80
-0.71
-0.90
1.38
0.65
—0.58
1.10
1.69
0.39
-1.26
0.06
-0.37
—0.26
0.44
-0.73
0.24

—-0.09
0.47
-1.07
0.23
1.30
0.12
0.92
0.67
-0.14
0.25
-1.72
-0.10
-1.73
1.76
—2.30
0.35
—-0.18
0.34
-1.93
-1.20
0.34
-0.34
-0.34
0.14
—-0.58
—-0.46
-0.87
0.45
0.41
0.36
—-0.83
-0.13
—0.64
-1.03
0.84
1.03
-0.39
-0.29
0.79
—-0.76
0.91
2.65
-0.22

27
-1.44
-0.41

0.87

0.08

0.58

0.61
-1.34

0.32

1.01

0.21
-1.07
-1.22
-1.83

0.20

0.19

0.82

0.43

0.53
—-0.16

0.59
-0.24

1.83
—-1.59

1.09

1.37
—-1.05
-0.13

0.78
—-0.67
-0.44

0.42
—-0.61

1.28

0.88
—1.50

0.76
—1.46
—0.46
-1.53
-0.23
-0.44

0.06

-0.14
—0.40
0.14
0.62
—-0.36
0.20
-2.14
0.03
1.19
1.13
2.15
-0.57
1.04
—0.60
-0.37
—-0.86
1.74
—0.59
0.96
-2.14
-0.32
1.61
2.26
—-0.30
-0.82
0.06
0.83
—-0.39
-1.76
0.72
0.07
-1.13
—-0.10
-0.24
1.34
-1.82
—0.53
0.42
—-0.05
—-0.01
1.69
—0.81
—3.38




Table 8 (cont.)

0.49
—-0.99
0.60
-0.47
—-1.00
0.95
1.00
0.49
—-0.65
-1.51
1.41
-1.34
—-0.54
-2.35
0.84
2.29
—-0.60

1.38
0.09
0.23
—-0.63
0.07
1.85
—0.49
0.25
-2.09
-0.79
—-0.99
0.57
-1.61
-1.32
-0.20
—1.44
1.27

-0.52
0.22
-0.07
0.56
-1.26
0.32
-0.25
-0.55
0.50
-0.91
-0.12
-1.61
0.13
0.84
0.00
0.05
0.58

-0.82
0.72
-0.49
0.13
0.59
-0.29
0.57
0.09
0.84
0.75
0.66
-0.27
0.40
-0.23
—-0.14
-0.45
-0.01

0.20
1.51
-1.19
—0.40
0.31
-0.77
-0.73
0.96
-1.09
0.21
0.75
-0.78
-0.95
—-0.47
-1.16
-0.71
0.67

-0.91
1.64
0.72
0.22

-1.68

-0.55
0.77

-0.17
0.80

-0.87

-0.21
0.10

-1.59
0.22
0.28

-0.47

-0.92

1.02
-1.34
-0.15
-0.17
-0.63
—-0.56
-0.07
-0.09

0.16

1.80

0.29

0.93
-1.19
—0.66
-1.05

0.51

0.90

—0.47
-0.17
—0.48
1.36
1.00
~1.44
1.73
1.79
-0.03
1.86
-1.62
—0.58
-0.82
0.24
0.60
0.65
1.64




Table 9 List of working tables and nomograms in text

Table 5.2 Factors for constructing range charts from an average range, (D1,
D,, D3, Dy)

Table 5.3  Factors for constructing range charts from an estimate of ¢ (Ds, Ds,
D 7> D 8)

Table 5.4 Factors for constructing standard deviation charts from an estimate
of standard deviation (Dg, D1y, D11, Dy3)

Table 6.6 Factors for constructing exponentially weighted moving-average
charts from an estimate of ¢ (A,)

Table 7.5 CuSum parameters for alternative decision rules

Table 7.7 CuSum schemes for range in samples from a Normal population

Table 7.9 CuSum schemes for standard deviation in samples from a Normal
population

Fig. 9.3 Nomogram for single specification limit, action line only

Table 9.1 ARL values for one-sided X chart

Table 10.1 Control limits for countable and attribute data

Table 11.1 Values of r(c) for the producers’ and consumers’ risk point method

Table 11.3 Values for ASSES

Fig. 12.2 Nomogram for inspection by variables, single specification limits, o
known

Fig. 12.4 Nomogram for inspection by variables, single specification limit, o
unknown

Table 13.1 Sample size code letters

Table 13.2 Single sampling plans for normal inspection (master table)

Table 13.3 Single sampling plans for tightened inspection (master table)

Table 13.4 Single sampling plans for reduced inspection (master table)

Table 13.5 Sample size code letters for inspection by variables

Table 13.6 Single sampling plans for normal inspection (master table): ‘s’
method

Table 13.7 Single sampling plans for tightened inspection (master table): ‘s’
method

Table 13.9 Single sampling plans for reduced inspection (master table): ‘s’
method




Appendix B

Data sets for sampling
experiment

SAMPLING EXPERIMENT

DATASET NUMBER 11 NAME
Sample DATA Mean SD
no.
1 133 125 134 126 129.5 4.7
2 145 127 127 137  134.0 8.7
3 126 137 133 127 130.8 5.2
4 132 140 138 139 1373 3.6
5 129 117 124 138 127.0 8.8
6 126 134 139 123  130.5 7.3
7 128 137 124 134  130.8 5.9
8 136 123 127 127 128.3 5.5
9 123 131 131 139 131.0 6.5
10 125 128 132 135 130.0 4.4
11 137 125 130 138 1325 6.1
12 121 128 132 138  129.8 7.1
13 133 131 125 130 129.8 34
14 131 130 124 121  126,5 4.8
15 129 118 132 123 1255 6.2
16 129 128 120 134 1278 5.8
17 125 130 127 129 127.8 2.2
18 134 126 121 135 129.0 6.7
19 128 123 127 136  128.5 5.4
20 130 117 123 131 1253 6.6
21 132 126 133 135 1315 3.9
22 124 125 137 135 1303 6.7
23 129 139 124 139 132.8 7.5
24 119 124 123 126 123.0 2.9
25 132 117 127 125 1253 6.2
26 133 136 130 137 134.0 3.2

27 130 126 127 130 1283 2.1

Range

18
1

21
16
13
13

10
13
17

10
14
14

14
13
14

13
15

15



Data sets for sampling experiment 345

Sample DATA Mean SD Range
no.

28 128 140 131 125 131.0 6.5 15

29 116 124 124 132 124.0 6.5 16

30 136 127 143 133 1348 6.7 16
SEED = 6238

SAMPLING EXPERIMENT

DATASET NUMBER 1 2 NAME
Sample DATA Mean SD Range
no.
1 133 127 134 127 1303 3.8 7
2 129 131 129 133  130.5 1.9 4
3 141 135 122 130 132.0 8.0 19
4 134 136 133 143  136.5 4.5 10
5 131 127 132 138 1320 4.5 11
6 117 133 134 134 1295 83 17
7 128 129 117 130 126.0 6.1 13
8 134 130 121 117 1255 7.9 17
9 133 129 131 131 131.0 1.6 4
10 129 141 127 123  130.0 7.7 18
11 135 122 131 124  128.0 6.1 13
12 122 133 130 129  128.5 4.7 11
13 133 128 136 132 1323 33 8
14 128 131 134 134 131.8 2.9 6
15 132 130 145 127 1335 7.9 18
16 142 122 133 135 133.0 8.3 20
17 133 122 125 133 1283 5.6 11
18 133 130 120 135 129.5 6.7 15
19 128 124 137 121 127.5 7.0 16
20 131 115 128 120 1235 7.3 16
21 133 132 132 135 133.0 1.4 3
22 132 132 127 125 129.0 3.6 7
23 139 132 134 132 1343 33 7
24 118 128 133 135 1285 7.6 17
25 141 130 118 131  130.0 9.4 23
26 128 139 132 134 1333 4.6 1
27 131 124 135 129 129.8 4.6 11
28 129 124 125 122 125.0 2.9 7
29 116 132 126 125 124.8 6.6 16
30 129 134 135 142 1350 5.4 13

SEED = 4205
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DATASET NUMBER 13

Sample DATA
no.

O 00 O\ WU W=

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

SEED = 9441

131
126
134
129
137
128
118
132
133
139
141
132
140
129
132
122
136
122
136
131
121
113
128
119
122
126
133
132
138
138

134
128
128
138
131
130
126
133
131
122
129
128
141
136
140
125
131
135
126
121
133
140
133

125.

131
147
134
124
127
129

SAMPLING EXPERIMENT

127
130
138
123
128
129
118
135
133
133
129
133
126
135
125
132
126
132
124
130
128
138
132
134
130
138
123
128
132
131

128
121
124
125
121
129
128
135
126
135
124
137
141
142
127
132
133
133
137
126
127
117
129
138
123
135
127
130
133
135

NAME

Mean

130.0
126.3
131.0
128.8
129.3
129.0
122.5
133.8
130.8
132.3
130.8
132.5
137.0
135.5
131.0
127.8
131.5
130.5
130.8
127.0
127.3
127.0
130.5
129.0
126.5
136.5
129.3
128.5
132.5
133.3

SD

32
3.9
6.2
6.7
6.7
0.8
5.3
1.5
33
7.3
7.2
3.7
7.3
53
6.7
5.1
4.2
5.8
6.7
4.5
4.9
14.0
2.4
8.6
4.7
8.7
5.2
34
4.5
4.0

Range

14
15
16

10

17
17

15
13
15
10
10
13
13
10
12
27

19

21
11

11



Data sets for sampling experiment 347

SAMPLING EXPERIMENT

DATASET NUMBER I 4 NAME
Sample DATA Mean SD Range
no.
1 129 138 137 128 133.0 52 10
2 127 125 133 126  127.8 3.6 8
3 127 130 133 125 128.8 3.5 8
4 123 125 126 127 1253 1.7 4
5 131 127 132 135 131.3 33 8
6 126 115 127 128 124.0 6.1 13
7 133 125 120 134 1280 6.7 14
8 134 130 130 127 130.3 2.9 7
9 123 128 122 133 126.5 51 11
10 127 137 131 137 1330 4.9 10
1 143 133 118 139 1333 11.0 25
12 131 132 135 118 129.0 7.5 17
13 134 122 131 138 1313 6.8 16
14 138 127 124 126  128.8 6.3 14
15 123 132 129 145 1323 9.3 22
16 131 131 142 139 135.8 5.6 11
17 129 137 130 127 130.8 4.3 10
18 129 138 134 138 134.8 4.3 9
19 132 139 120 138 1323 8.7 19
20 127 125 128 131  127.8 2.5 6
21 133 129 128 137 131.8 4.1 9
22 131 129 131 137 132.0 3.5 8
23 134 130 125 141 1325 6.8 16
24 125 136 128 122 127.8 6.0 14
25 133 140 126 135 133.5 5.8 14
26 126 141 144 125 1340 9.9 19
27 129 126 129 125 1273 2.1 4
28 119 137 121 130 126.8 8.3 18
29 136 142 132 132 1355 4.7 10
30 126 131 135 128 1300 3.9 9

SEED = 1866
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DATASET NUMBER I 5

Sample DATA

1 129
2 138
3 130
4 126
5 135
6 132
7 130
8 142
9 129
10 143
1 128
12 128
13 137
14 124
15 123
16 130
17 139
18 126
19 139
20 126
21 135
22 131
23 125
24 120
25 135
26 136
27 124
28 125
29 126
30 134

SEED = 1607

136
132
136
129
118
127
118
131
129
116
128
132
121
129
134
133
130
130
125
128
143
123
123
136
128
117
118
124
123
135

SAMPLING EXPERIMENT

129
137
133
122
139
133
142
138
128
126
124
128
123
130
124
137
124
126
133
123
136
120
138
129
139
137
134
133
127
135

138
144
132
132
132
129
128
121
132
117
125
138
126
130
123
136
130
130
130
138
120
134
132
127
132
137
127
125
140
128

NAME

Mean

133.0
137.8
132.8
127.3
131.0
130.3
129.5
133.0
129.5
125.5
126.3
131.5
126.8
128.3
126.0
134.0
130.8
128.0
131.8
128.8
133.5
127.0
129.5
128.0
133.5
131.8
125.8
126.8
129.0
133.0

SD

4.7
4.9
2.5
4.3
9.1
2.8
9.8
9.2
1.7
12.5
2.1
4.7
7.1
2.9
5.4
32
6.2
2.3
59
6.5
9.7
6.6
6.9
6.6
4.7
9.8
6.7
4.2
7.5
3.4

Range

12

10
21

24
21

27

10
16

1
15

14
15
23
14
15
16
1
20
16

17



Data sets for sampling experiment 349

SAMPLING EXPERIMENT
DATASET NUMBER A 1 NAME
Sample DATA Mean
no.
1 130 133 123 136  130.5

2 121 127 139 126 1283
3 129 130 122 128 127.3
4 141 116 124 132 1283
5 136 126 138 124  131.0
6 123 133 126 122 126.0
7 125 127 141 124 1293
8 132 131 128 130 1303

9 120 131 125 126 1255
10 139 139 119 127 131.0
11 147 131 126 138 1355
12 129 137 135 135 1340
13 130 133 133 130 131.5
14 128 141 132 133 1335
15 133 134 141 123 1328
16 130 126 134 136  131.5
17 136 125 132 136 132.3
18 131 133 118 141  130.8
19 135 131 121 137 131.0
20 130 127 138 130 1313
21 127 140 137 131  133.8
22 131 142 127 128 1320
23 129 123 139 136  131.8
24 132 129 135 127  130.8
25 130 130 126 132 129.5
26 135 136 135 131 1343
27 144 134 130 123  132.8
28 135 141 147 129  138.0
29 138 139 129 133 1348
30 146 132 138 139  138.8
31 139 129 136 136 135.0
32 137 132 142 139 1375
33 134 126 133 135 1320
34 136 126 140 119  130.3
35 129 121 130 133 1283
36 135 132 136 133  134.0
37 134 136 128 136  133.5
38 123 139 120 136 129.5
39 139 136 133 140 137.0

40 135 119 134 131  129.8
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Sample DATA Mean
no.

41 134 140 138 127 1348
42 135 130 132 121 1295
43 128 137 132 135  133.0
44 140 138 133 133 136.0
45 128 134 133 139 1335
46 132 130 141 129  133.0
47 143 129 128 127 131.8
48 138 134 135 133  135.0
49 142 140 127 134 1358
50 137 125 136 128 1315

SAMPLING EXPERIMENT

DATASET NUMBER A 2 NAME

Sample DATA Mean

no
1 127 134 134 133 132.0
2 117 136 125 142 130.0
3 121 131 131 127 1275
4 123 123 139 127 128.0
5 135 126 127 125 1283
6 140 138 123 128 1323
7 131 126 127 134 1295
8 124 131 131 135 1303
9 125 128 123 127  125.8

10 132 132 131 128 130.8

11 136 136 129 127 132.0
12 135 131 137 130 1333
13 141 127 124 131  130.8
14 131 128 121 144 131.0
15 148 126 128 128 1325
16 133 128 127 138 1315
17 128 136 133 134 1328
18 124 136 145 135 135.0
19 122 141 131 138 133.0
20 134 124 122 122 1255
21 133 134 132 125 1310
22 129 132 124 136 1303
23 133 130 141 133 1343
24 127 129 135 132 130.8
25 121 130 137 130 1295

26 125 129 129 126 1273



Data sets for sampling experiment 351

Sample DATA Mean
no.

27 132 144 128 138 1355
28 135 135 125 138 1333

29 130 145 132 127 1335
30 139 133 133 126 132.8
31 138 129 128 110 126.3
32 144 131 138 138 137.8
33 142 141 122 132 1343
34 139 129 137 125 1325
35 134 132 127 127 130.0
36 133 135 143 147 1395

37 137 133 137 130 1343
38 134 125 136 130 131.3

39 141 141 135 135 138.0
40 144 131 128 125 1320
41 134 132 142 139 136.8
42 132 134 140 127 1333
43 130 126 134 143 1333

44 131 130 127 124  128.0
45 133 132 125 131 1303
46 138 123 137 124 1305
47 132 132 137 134  133.8
48 131 137 136 127 1328

49 145 129 132 131 1343
50 128 130 140 135 1333
SAMPLING EXPERIMENT
DATASET NUMBER A 3 NAME
Sample DATA Mean
no.
1 128 125 135 124  128.0

2 138 125 139 126 132.0
3 134 121 120 129 126.0
4 120 147 138 122 131.8
5 125 130 136 126 129.3
6 129 136 132 127 131.0
7 124 141 143 129 1343
8 128 122 119 133 1255
9 136 127 132 131 131.5
10 124 122 129 129  126.0
1 142 122 151 130 136.3
12 133 126 122 130 127.8
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Sample DATA
no.

13 135 131
14 139 134
15 143 141
16 139 137
17 138 129
18 143 140
19 137 140
20 124 134
21 127 130
22 134 122
23 139 123
24 125 131
25 125 147
26 146 130
27 134 143
28 145 140
29 138 140
30 127 130
31 129 140
32 133 131
33 132 133
34 130 141
35 133 139
36 133 124
37 130 133
38 134 145
39 128 137
40 138 131
41 131 131
42 136 126
43 137 132
44 134 124
45 126 133
46 126 137
47 126 139
48 131 136
49 125 120

50 122 138

132
134
135
139
140
127
142
127
131
135
127
137
130
125
144
138
120
126
135
121
135
141
136
131
133
130
123
133
129
130
135
125
127
136
140
136
129
122

131
142
141
138
140
139
134
130
137
143
127
131
130
138
136
134
133
135
146
128
143
134
137
127
136
127
126
134
132
134
131
125
132
132
140
137
133
135

Mean

132.3
137.3
140.0
138.3
136.8
137.3
138.3
128.8
131.3
133.5
129.0
131.0
133.0
134.8
139.3
139.3
132.8
129.5
137.5
128.3
135.8
136.5
136.3
128.8
133.0
134.0
128.5
134.0
130.8
131.5
133.8
127.0
129.5
132.8
136.3
135.0
126.8
129.3



Data sets for sampling experiment 353

SAMPLING EXPERIMENT

DATASET NUMBER A 4 NAME
Sample DATA Mean
no.

1 130 128 133 129  130.0

2 141 132 129 124 1315
3 118 140 130 134 130.5
4 136 137 141 131  136.3
5 135 128 129 137 1323
6 129 136 130 129 131.0
7 121 128 130 138 129.3
8 130 130 124 136  130.0

9 125 123 130 124 1255
10 131 119 129 128 126.8
11 134 134 131 129 1320
12 130 130 124 132 129.0
13 134 132 133 149 137.0
14 134 135 127 139 133.8
15 132 132 122 127 1283
16 129 135 140 137 1353
17 126 127 133 132 129.5
18 126 134 126 138 131.0
19 133 121 133 130 129.3
20 129 131 134 130 131.0
21 136 139 134 144 1383
22 132 132 139 132 1338
23 139 135 132 125 132.8
24 126 132 117 135 127.5
25 135 138 137 129 134.8
26 129 142 136 131 1345
27 134 127 135 137 1333
28 137 142 128 132 1348
29 147 121 132 131 132.8
30 136 126 134 134 1325
31 130 137 128 132 131.8
32 137 130 140 138  136.3
33 134 142 116 133 1313
34 134 123 126 130 1283
35 131 128 133 134 1315
36 129 134 128 122 1283
37 138 135 129 131 1333
38 128 142 138 121 1323
39 133 126 139 130 132.0

40 136 112 125 126 124.8
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Sample DATA Mean
no.

41 133 143 140 121 134.3
42 137 131 140 132 135.0
43 129 130 132 134 1313
44 136 132 139 141 137.0
45 128 137 143 132 135.0
46 125 137 127 137  131.5
47 138 128 139 129 1335
48 131 130 145 137  135.8
49 130 138 135 135 1345

50 127 135 136 139 1343

SAMPLING EXPERIMENT

DATASET NUMBER A 5 NAME

Sample DATA Mean

no
1 129 127 132 118  126.5
2 130 133 117 132 128.0
3 136 134 123 142  133.8
4 133 130 125 136 131.0
5 133 139 121 133 1315
6 120 121 123 122 1238
7 116 136 132 130 1285
8 125 130 133 128  129.0
9 131 133 132 128 131.0

10 127 121 132 127 126.8

11 133 140 139 134 136.5
12 134 134 141 133 1355
13 120 149 134 133 1340
14 130 127 132 146  133.8
15 141 129 128 132 1325
16 130 134 128 132 131.0
17 133 143 148 130 1385
18 131 136 134 133 1335
19 131 125 127 129  128.0
20 136 140 134 140 1375
21 143 136 123 130 133.0
22 131 122 133 138 131.0
23 127 140 126 137 1325
24 143 133 144 135 138.8
25 130 137 137 133 1343

26 128 133 138 134 1333
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Sample DATA Mean
no.

27 132 141 145 127  136.3
28 137 139 132 118 1315
29 134 144 137 136 137.8
30 133 134 132 136 133.8
31 131 131 125 128  128.8
32 132 137 136 133 1345
33 141 133 137 132 1358
34 139 135 130 128 133.0
35 144 130 133 135 1355
36 134 145 116 131 1315
37 131 131 128 120 1275
38 132 131 139 131 1333
39 132 142 135 133 1355
40 138 135 134 128 133.8
41 135 126 130 141 1330
42 135 129 132 131 1318
43 128 135 129 133 1313
44 130 133 137 134 1335
45 130 127 133 136 1315
46 136 133 124 139  133.0
47 149 133 135 135 138.0
48 140 124 136 136 134.0
49 129 131 137 139  134.0

50 138 135 133 128 1335

SAMPLING EXPERIMENT

DATASET NUMBER B 1 NAME
Sample DATA Mean
no.

1 131 119 119 118 121.8
2 122 128 126 139  128.8
3 130 130 127 120 126.8
4 126 117 139 123 1263
5 128 130 132 125  128.8
6 128 131 125 133 1293
7 139 123 129 133 131.0
8 130 130 128 126  128.5
9 135 126 124 124 1273
10 131 122 129 128 127.5
11 123 135 129 110 1243
12 128 118 122 130 1245
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Sample DATA
no.

13 124 129
14 123 113
15 121 127
16 130 136
17 127 115
18 123 111
19 124 135
20 122 130
21 124 127
22 126 124
23 120 119
24 135 117
25 127 116
26 132 124
27 129 123
28 118 120
29 127 130
30 127 126
31 125 113
32 127 124
33 121 116
34 131 116
35 133 126
36 125 117
37 130 124
38 126 124
39 124 119
40 119 121
41 127 125
42 122 122
43 116 125
44 128 123
45 116 113
46 131 119
47 120 125
48 124 119

49 117 121
50 118 110

117
118
125
124
122
127
132
119
119
125
129
126
122
136
121
139
120
118
125
117
134
125
111
137
124
118
116
127
124
120
127
121
123
122
121
118
125
117

122
116
119
127
122
126
122
126
127
130
129
124
130
125
131
137
130
132
123
115
125
118
132
116
122
120
122
124
127
125
137
123
121
132
126
116
122
121

Mean

123.0
117.5
123.0
129.3
121.5
121.8
128.3
124.3
124.3
126.3
124.3
125.5
123.8
129.3
126.0
128.5
126.8
125.8
121.5
120.8
124.0
122.5
125.5
123.8
125.0
122.0
120.3
122.8
125.8
122.3
126.3
123.8
118.3
126.0
123.0
119.3
121.3
116.5



Data sets for sampling experiment 357

SAMPLING EXPERIMENT

DATASET NUMBER B 2 NAME
Sample DATA Mean
no.

1 127 137 144 121 1323

2 141 135 139 135 1375
3 124 120 136 119 1248
4 129 125 146 135  133.8
5 136 132 133 124 1313
6 125 137 131 122 128.8
7 120 133 128 124 1263
8 137 123 125 131  129.0
9 126 123 122 126 1243
10 127 123 119 127 1240

1 123 122 127 121 1233
12 114 125 123 131 1233
13 110 117 120 118 116.3
14 116 132 128 126 1255
15 133 126 121 113 1233

16 134 121 134 136 1313
17 117 133 125 124 1248
18 132 116 112 122 120.5

19 127 134 122 137  130.0
20 122 122 130 136 127.5
21 128 128 114 128 1245
22 116 124 124 123  121.8
23 122 115 133 119 = 1223
24 132 125 118 112 121.8
25 117 122 121 125 1213
26 123 119 124 118 121.0

27 121 114 122 123 1200
28 130 115 128 130  125.8

29 130 132 114 112 1220
30 129 131 119 119 124.5
31 129 127 120 118 1235
32 122 116 121 122 1203
33 126 123 127 123 124.8
34 18 122 121 121 1205
35 108 131 127 121 121.8
36 121 110 124 123 119.5

37 129 123 124 118 1235
38 122 133 128 129 1280
39 123 127 130 137 129.3
40 125 113 130 122 1225
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Sample DATA Mean
no.

41 137 128 126 117 127.0
42 128 131 126 126 1278
43 128 133 119 122 1255
44 122 121 120 121 121.0
45 120 127 116 125 1220
46 125 126 127 117  123.8
47 117 123 124 124 122.0

48 127 120 133 118 1245
49 117 122 126 127  123.0
50 130 120 119 127 1240

SAMPLING EXPERIMENT

DATASET NUMBER B 3 NAME

Sample DATA Mean

no
1 133 130 124 130 129.3
2 126 139 132 136 1333
3 134 129 143 117 1308
4 139 129 120 127 128.8
5 140 137 130 118 1313
6 132 124 133 134 1308
7 126 127 128 123  126.0
8 128 130 134 136 132.0
9 122 134 129 124 1273
10 131 118 123 128 125.0
11 126 128 120 128 1255
12 120 118 122 123 120.8
13 120 131 119 121  122.8
14 128 123 117 139  126.8
15 129 121 123 129 1255
16 126 124 116 124 1225
17 121 124 116 132 1233
18 125 126 129 127  126.8
19 114 127 134 126 1253
20 124 131 130 120 1263
21 124 132 127 119 1255
22 134 133 132 135 1335
23 130 123 132 119 126.0
24 127 122 118 129 1240
25 111 108 121 133 1183
26 120 125 126 128 124.8
27 125 119 121 126 122.8
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Sample DATA Mean
no.

28 135 125 128 127  128.8
29 129 130 113 120 123.0
30 131 120 122 130 125.8
31 128 133 116 127  126.0
32 124 116 125 138 125.8
33 125 121 124 135 1263
34 133 138 120 124  128.8

35 122 126 126 120 1235
36 123 123 123 130 1248

37 123 125 128 127  125.8
38 128 125 142 118 1283
39 121 122 127 122 1230
40 115 119 121 119 1185
41 119 128 115 126 1220
42 113 121 118 122 1185
43 123 130 119 124 1240
44 118 126 116 125 121.3
45 120 119 125 122 1215
46 119 118 120 119 119.0
47 114 132 116 128 1225
48 127 125 115 116 120.8
49 127 118 133 129  126.8
50 124 114 123 117 1195

SAMPLING EXPERIMENT

DATASET NUMBER B 4 NAME
Sample DATA Mean
no.

1 130 125 128 127 1275

2 128 124 133 132 1293
3 124 132 128 129 1283
4 114 131 132 137 1285
5 128 137 133 124  130.5
6 129 140 123 136 132.0
7 117 122 126 131 1240
8 129 123 137 118 126.8

9 116 118 129 125 1220
10 116 120 125 122 120.8
11 128 128 132 137 1313
12 124 122 118 124 122.0

13 127 117 113 117 1185
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Sample DATA
no.

14 128 126
15 120 123
16 122 123
17 123 126
18 125 114
19 121 119
20 121 123
21 129 127
22 120 124
23 117 131
24 135 131
25 130 126
26 124 119

27 117 133
28 120 120

29 113 124
30 117 121
31 114 124
32 123 129
33 120 128
34 130 138
35 109 125

36 124 133
37 122 124

38 123 113
39 131 138
40 129 117
41 125 128
42 127 117
43 113 126
44 127 124
45 120 129
46 126 118
47 122 123
48 131 132
49 138 130

50 117 134

130
122
128
113
129
128
120
125
130
125
121
122
125
132
127
130
125
125
128
132
134
128
123
123
120
119
131
133
120
116
122
116
119
122
119
126
124

129
122
130
132
128
128
121
111
122
130
130
118
127
129
121
131
130
122
131
129
115
125
120
124
123
114
135
110
132
114
116
119
128
113
130
118
122

Mean

128.3
121.8
125.8
123.5
124.0
124.0
121.3
123.0
124.0
125.8
129.3
124.0
123.8
127.8
122.0
124.5
123.3
121.3
127.8
127.3
129.3
121.8
125.0
123.3
119.8
125.5
128.0
124.0
124.0
117.3
122.3
121.0
122.8
120.0
128.0
128.0
124.3
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SAMPLING EXPERIMENT
DATASET NUMBER B 5 NAME
Sample DATA Mean
no.
1 129 125 134 134 1305

2 123 128 130 123 126.0
3 137 129 140 126 133.0
4 135 125 120 122 1255
5 124 138 134 132 1320
6 139 129 118 135 1303
7 125 125 129 122 1253
8 138 124 133 124 1298

9 128 114 117 115 1185
10 115 125 124 124 1220
1 123 127 122 120 123.0
12 133 129 125 129  129.0
13 116 117 133 117 1208
14 137 122 124 124 1268
15 121 123 120 132 124.0
16 127 121 125 128 1253
17 121 115 128 117 1203
18 118 115 122 129 121.0
19 125 122 121 131 1248
20 127 120 117 130 1235
21 124 124 135 120 125.8
22 107 125 131 123 1215
23 124 118 137 125 126.0
24 121 127 129 137 1285
25 123 130 125 123 1253
26 127 123 124 119 1233
27 119 125 128 131  125.8
28 125 137 129 122 1283
29 123 129 130 122 126.0
30 123 129 133 136 130.3
31 121 129 122 129 1253
32 133 126 130 121  127.5
33 135 125 118 127  126.3
34 122 126 120 122 1225
35 132 129 122 116 1248
36 110 133 120 118 120.3
37 123 117 132 132 126.0
38 120 127 129 125 1253
39 129 130 127 121  126.8

40 131 118 129 122 1250



362 Appendix B

Sample DATA Mean
no.

41 132 120 126 114  123.0
42 119 118 129 130 124.0
43 120 119 129 129 1243
44 130 126 127 139  130.5
45 121 127 116 131 123.8
46 118 124 128 127 1243
47 133 126 118 124 1253
48 120 124 127 130 1253
49 128 122 130 126 126.5
50 130 133 124 123 1275

SAMPLING EXPERIMENT

DATASET NUMBER C 1 NAME
Sample DATA Mean
no.

1 127 136 134 123  130.0

2 125 134 121 132 128.0
3 124 131 128 124  126.8
4 130 130 129 129  129.5
5 137 136 125 128 1315
6 133 137 139 119 1320
7 141 136 133 136  136.5
8 129 142 136 136  135.8

9 128 120 121 111 120.0
10 117 130 119 110 119.0
11 129 121 125 123 1245
12 117 125 127 138  126.8
13 119 122 125 121 121.8
14 131 132 121 122 1265
15 121 122 116 119 1195
16 128 121 120 133 1255
17 117 127 127 122 1233
18 124 127 121 129 1253
19 16 115 130 129 1225
20 120 122 120 118 120.0
21 124 124 127 118 1233
22 116 128 126 122 123.0
23 125 123 122 132 1255
24 123 124 125 136 127.0
25 118 121 131 115 1213

26 125 118 118 122 120.8
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Sample DATA Mean
no.
27 128 119 123 122 123.0
28 117 111 127 119 1185
29 130 124 127 112 1233
30 115 127 122 118 120.5
31 126 113 118 128 1213
32 129 133 119 117 1245
33 133 122 116 105 119.0
34 126 127 125 118 1240
35 112 126 118 126  120.5
36 122 116 118 125 1203
37 114 110 116 117 1143
38 130 122 122 122 1240
39 118 124 112 121  118.8
40 117 125 123 130  123.8
41 116 121 113 125 118.8
42 126 119 108 116 117.3
43 118 123 118 119 119.5
44 121 128 123 119 1228
45 117 105 130 114 116.5
46 110 123 126 122 1203
47 122 123 121 122 122.0
48 127 128 119 115 1223
49 124 129 119 122 1235
50 114 124 117 128 120.8
SAMPLING EXPERIMENT

DATASET NUMBER C 2 NAME
Sample DATA Mean
no.

1 132 123 130 127 128.0

2 135 125 122 126 1270
3 130 135 129 120 1285
4 132 136 105 126  124.8
5 128 128 126 124  126.5
6 123 121 133 121 1245
7 116 130 128 134 127.0
8 125 134 120 135 1285

9 125 110 119 118 118.0
10 110 119 120 129 1195
11 127 131 125 129  128.0

12 123 124 108 134 122.3
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Sample DATA
no.

13 119 125
14 118 120
15 122 124
16 113 114
17 122 128
18 132 116
19 126 124
20 119 121
21 127 127
22 114 107
23 122 128
24 123 116
25 128 117
26 123 112
27 117 118
28 135 125
29 127 119
30 114 125
31 118 123
32 126 111
33 115 128
34 18 117
35 120 133
36 113 126
37 132 119
38 126 122
39 123 122
40 121 129
41 124 118
42 132 122
43 125 123
44 122 115
45 119 123
46 102 122
47 121 124
48 118 116
49 121 117

50 127 120

117
110
117
118
122
123
114
126
123
127
124
120
123
124
118
122
111
124
114
123
122
133
116
106
135
123
125
121
114
124
122
127
119
117
116
118
121
113

120
119
116
123
115
120
118
123
119
119
119
119
122
139
119
118
116
124
115
122
122
123
124
123
123
115
121
110
121
127
118
133
122
124
125
113
120
112

Mean

120.3
116.8
119.8
117.0
121.8
122.8
120.5
122.3
124.0
116.8
123.3
119.5
122.5
124.5
118.0
125.0
118.3
121.8
117.5
120.5
121.8
122.8
123.3
117.0
127.3
121.5
122.8
120.3
119.3
126.3
122.0
124.3
120.8
116.3
121.5
116.3
119.8
118.0



Data sets for sampling experiment 363

SAMPLING EXPERIMENT

DATASET NUMBER C 3 NAME
Sample DATA Mean
no.
1 128 127 130 127 1280
2 123 130 129 129 1278
3 130 129 132 134 131.3
4 129 116 132 131 1270
5 129 131 140 130 1325
6 130 123 128 129 1275
7 133 129 136 123 130.3
8 139 127 136 128 1325
9 125 114 118 113 1175
10 117 121 112 129 119.8
11 131 124 123 121 1248
12 123 116 127 124 1225
13 121 118 122 115 119.0
14 125 116 126 118 121.3
15 11s 121 125 127 1220
16 123 120 126 109 119.5
17 119 114 120 125 1195
18 108 126 139 111  121.0
19 122 102 109 131 116.0
20 125 122 121 117 1213
21 121 119 123 123 1215
22 123 119 116 122 1200
23 114 118 132 132 1240
24 120 126 123 126  123.8
25 128 122 117 122 1223
26 124 121 124 121 1225
27 122 125 125 126 1245
28 129 123 128 123 1258
29 124 130 122 111 121.8
30 112 122 122 124 1200
31 133 119 111 111 1185
32 128 129 117 126  125.0
33 113 131 124 116 121.0
34 113 121 125 125 121.0
35 109 122 124 124 119.8

36 120 115 123 115 1183
37 115 120 116 120 117.8

38 132 121 119 128  125.0
39 123 117 114 118 118.0
40 118 117 127 121  120.8

41 126 122 125 114  121.8
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Sample DATA Mean
no.

42 118 120 114 130 1205
43 117 115 123 125  120.0
44 119 130 113 118 120.0
45 130 122 112 125 1223
46 131 116 118 117 1205
47 121 125 124 100 1175
48 126 118 128 121 1233
49 128 122 125 119 1235
50 130 123 119 125 1243

SAMPLING EXPERIMENT

DATASET NUMBER C 4 NAME
Sample DATA Mean
no.

1 128 126 126 135 128.8

2 138 134 124 135 132.8
3 142 136 121 134 1333
4 126 128 128 125  126.8
5 129 131 129 123 1280
6 135 122 133 130 130.0
7 138 119 139 126 130.5
8 129 135 138 127 1323
9 129 116 115 117 1193

10 13 127 127 122 1223
11 121 136 128 124 1273
12 105 125 126 134 1225
13 15 120 128 131 1235
14 117 124 113 120 1185
15 114 131 119 117 1203
16 128 116 122 125 122.8
17 115 127 118 122 1205
18 125 118 116 121  120.0

19 120 118 129 125 123.0
20 123 119 120 112 1185

21 120 113 114 105 113.0
22 125 114 119 126 121.0
23 122 113 123 111 1173
24 115 128 116 122 1203
25 121 119 110 127 1193

26 109 118 120 120 116.8
27 120 127 120 132 1248



Data sets for sampling experiment 367

Sample DATA Mean
no.

28 121 132 108 119  120.0
29 123 113 116 118 117.5
30 116 124 116 123  119.8
31 132 126 125 125 127.0
32 124 114 136 119 1233
33 126 119 124 125 1235
34 125 124 114 110 1183
35 127 121 122 114 121.0
36 114 118 115 106 1133
37 124 130 127 129 1275
38 122 124 132 120 1245
39 117 114 114 114 1148
40 124 121 115 123 120.8
41 118 110 127 135 1225
42 127 119 118 115 119.8
43 114 121 123 118 119.0
44 119 124 113 124 1200
45 121 128 119 123  122.8
46 122 126 122 124  123.5
47 125 127 124 116 123.0
48 124 116 128 115 120.8
49 124 112 129 114  119.8
50 123 121 128 127  124.8

SAMPLING EXPERIMENT

DATASET NUMBER C 5 NAME
Sample DATA Mean
no.

1 132 118 134 131 1288

2 127 115 139 137 129.5
3 132 127 132 139 1325
4 133 129 138 127  131.8
5 129 129 136 131 1313
6 127 129 128 144 1320
7 138 139 124 130 132.8
8 130 133 131 127 1303

9 118 119 111 110 1145
10 120 121 131 126  124.5
11 130 114 126 117 121.8
12 120 116 113 129 119.5

13 122 114 127 116 119.8
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Sample DATA
no.

14 122 117
15 119 119
16 116 121
17 117 118
18 130 114

19 127 117
20 121 120
21 116 136

22 124 120
23 135 110
24 108 121

25 122 121
26 132 121
27 111 108
28 122 121

29 122 127
30 121 130
31 118 122
32 131 116
33 121 120
34 113 124
35 131 115
36 115 125
37 127 124
38 123 112
39 112 124
40 125 119

41 115 121
42 126 124
43 123 117
44 120 123
45 117 117

46 120 119
47 120 120
48 132 115
49 111 118
50 131 123

126
119
124
135
123
122
113
121
113
131
128
126
130
123
120
127
119
120
113
118
125
115
115
109
129
119
116
119
115
113
120
124
121
128
130
110
119

122
113
125
111
111
117
113
125
115
119
118
120
117
135
111
115
127
113
115
118
122
122
117
117
120
119
128
122
130
125
116
132
127
123
119
113
121

Mean

121.8
117.5
121.5
120.3
119.5
120.8
116.8
124.5
118.0
123.8
118.8
122.3
125.0
119.3
118.5
122.8
124.3
118.3
118.8
119.3
121.0
120.8
118.0
119.3
121.0
118.5
122.0
119.3
123.8
119.5
119.8
122.5
121.8
122.8
124.0
113.0
123.5



Data sets for sampling experiment 369
SAMPLING EXPERIMENT

DATASET NUMBER D 1 NAME
Sample DATA Mean
no.

1 133 131 123 120 126.8

2 134 128 133 131 1315
3 128 140 133 128 132.3
4 131 120 134 132 1293
5 121 139 129 133 1305
6 132 128 128 129 1293
7 129 128 134 128 129.8
8 132 135 133 127 131.8

9 126 129 131 123 1273
10 131 129 129 123 1280
11 132 123 130 138 130.8
12 139 136 136 126 1343
13 135 139 119 126 129.8
14 135 137 128 119  129.8
15 133 123 130 135 1303
16 133 133 135 133 1335
17 133 136 130 120 129.8
18 15 131 135 127 1270
19 137 127 131 133 1320
20 134 135 132 133 1335
21 135 141 126 133 133.8
22 127 125 125 123 125.0
23 143 131 133 126 133.3
24 134 136 128 134 1330
25 130 142 139 126 1343
26 119 130 135 132 1290
27 129 139 127 119 1285
28 126 136 133 137 1330
29 120 137 129 137 130.8
30 125 129 126 125 1263
31 128 133 132 130 1308
32 128 125 130 140 130.8
33 129 127 127 134 1293
34 139 134 120 127  130.0
35 125 122 126 133 126.5
36 126 116 127 134 125.8
37 139 146 136 129 1375
38 130 136 125 127  129.5
39 124 128 131 138 130.3

40 136 133 126 129 1310
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Sample DATA Mean
no.

41 134 140 126 141 1353
42 125 136 126 141  132.0
43 131 121 129 127 127.0
44 129 138 140 123 1325
45 134 142 128 139  135.8
46 129 133 136 137 1338
47 133 137 119 133 1305
48 136 122 135 128 1303

49 134 126 150 130 135.0
50 135 132 133 130 1325

SAMPLING EXPERIMENT

DATASET NUMBER D 2 NAME
Sample DATA Mean
no.

1 128 121 135 138 130.5

2 138 138 128 115  129.8
3 132 125 127 132 129.0
4 135 123 129 131 1295
5 129 127 128 128  128.0
6 139 119 127 125 1275
7 121 128 121 130 125.0
8 127 127 135 139 1320

9 133 129 129 131 1305
10 123 143 130 122 1295
1 133 135 140 135 137.0
12 126 137 131 131 1313
13 134 146 135 134 1373
14 126 129 123 131 1273
15 127 133 133 126  129.8
16 144 137 139 131 137.8

17 138 148 129 123 1345
18 136 129 134 140 1348
19 133 133 134 134 1335
20 126 134 128 128 129.0
21 145 125 135 127 1330
22 139 136 118 128 1303
23 140 138 128 133 1348
24 132 135 123 126 129.0
25 135 136 127 127 1313
26 132 128 134 134  132.0
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Sample DATA Mean
no.
27 125 136 130 141 1330
28 140 133 128 129 1325
29 122 128 132 124 126.5
30 131 133 131 128 130.8
31 132 124 143 132 132.8
32 138 138 127 134 1343
33 129 123 129 127 0 1270
34 140 137 141 136 1385
35 130 123 126 128  126.8
36 123 125 136 144 132.0
37 136 137 137 132 1355
38 134 123 129 151 1343
39 129 128 141 137 1338
40 123 125 136 135 129.8
41 135 143 139 127 136.0
42 145 128 125 138  134.0
43 126 137 118 135 129.0
44 126 130 134 125 128.8
45 126 131 119 128 126.0
46 126 124 127 133 1275
47 134 131 135 129 1323
48 131 126 134 137 132.0
49 132 129 126 137 131.0
50 124 120 143 130  129.3

SAMPLING EXPERIMENT

DATASET NUMBER D 3 NAME
Sample DATA Mean
no.
1 129 126 135 147 1343
2 132 128 131 124 128.8
3 135 127 122 130 1285
4 131 140 119 128 129.5
S 135 140 129 133 134.3
6 125 147 138 132 1355
7 122 128 125 117 123.0
8 131 134 127 141 133.3
9 130 124 124 125 125.8
10 131 140 129 128 1320
1 128 123 131 133 128.8
12 126 143 139 127  133.8

13 135 143 135 126 1348
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Sample DATA
no.

14 129 124
15 142 124
16 132 133
17 129 135
18 136 127
19 137 131
20 133 137
21 132 124
22 127 137
23 138 127
24 136 128
25 133 127
26 131 141
27 126 125
28 140 132
29 120 126
30 130 130
31 142 140
32 130 138
33 133 121
34 133 135
35 133 128
36 133 127
37 142 133
38 130 128
39 133 140
40 130 128
41 136 135
42 127 126
43 143 128
44 139 135
45 136 140
46 126 139
47 137 133
48 121 130

49 123 137
50 125 133

141
139
132
134
134
132
124
123
140
134
129
137
127
145
133
135
131
135
134
142
121
126
136
131
139
126
132
137
148
125
137
130
129
134
135
133
139

131
136
127
127
142
131
135
134
135
131
139
137
133
133
128
134
133
133
150
119
124
145
135
127
131
137
129
135
136
133
138
120
133
139
124
136
139

Mean

131.3
135.3
131.0
131.3
134.8
132.8
132.3
128.3
134.8
132.5
133.0
133.5
133.0
132.3
133.3
128.8
131.0
137.5
138.0
128.8
128.3
133.0
132.8
133.3
132.0
134.0
129.8
135.8
134.3
132.3
137.3
131.5
131.8
135.8
127.5
132.3
134.0



Data sets for sampling experiment 373

SAMPLING EXPERIMENT

DATASET NUMBER D 4 NAME
Sample DATA Mean
no.

1 129 134 135 132 1325

2 132 124 124 135 1288
3 124 140 126 130  130.0
4 126 133 131 129  129.8
5 134 121 128 136  129.8
6 139 128 135 123 1313
7 118 130 126 131 1263
8 126 128 129 136  129.8

9 133 127 117 137 1285
10 128 123 133 142 1315
11 130 123 128 133 1285
12 140 135 141 139  138.8
13 121 118 130 137  126.5
14 142 134 144 140 140.0
15 126 127 124 121 1245
16 142 144 124 130 135.0
17 130 137 138 135 135.0
18 130 132 129 124 128.8
19 131 134 130 127 130.5
20 133 138 132 122 1313
21 130 130 131 127  129.5
22 126 134 133 138 1328
23 132 134 129 133 132.0
24 130 130 130 134 131.0
25 135 127 137 127 1315
26 129 120 124 125 1245
27 135 134 148 138  138.8
28 134 138 129 127 132.0
29 137 154 133 128 138.0
30 126 144 127 143  135.0
31 132 135 121 136 131.0
32 134 131 129 136 1325
33 123 132 122 133 1275
34 125 139 138 132 1335
35 129 132 124 141 1315
36 130 131 126 134 1303
37 124 129 139 132 131.0
38 133 135 133 134  133.8
39 132 130 118 136  129.0

40 133 138 145 132 1370
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Sample DATA Mean
no.

41 139 123 126 137 1313
42 140 132 124 129 131.3
43 137 135 130 112 1285
44 137 125 139 125 1315
45 130 119 132 131  128.0
46 133 145 129 134 1353
47 134 124 131 129 129.5
48 143 127 128 131  132.3
49 132 132 122 131 1293
50 134 143 130 132 134.8

SAMPLING EXPERIMENT

DATASET NUMBER D 5 NAME

Sample DATA Mean

no
1 129 135 129 133 1315
2 131 140 122 139 1330
3 126 141 144 125 1340
4 138 132 134 124 1320
5 126 128 125 127 1265
6 134 125 139 126 131.0
7 133 131 123 139 1315
8 128 132 134 138 133.0
9 138 132 135 129 1335
10 135 135 124 143 1343
11 132 136 132 131 1328
12 135 138 133 127 1333
13 130 122 134 130 129.0
14 133 129 136 142 135.0
15 129 137 138 126 1325
16 142 131 132 130 133.8
17 126 124 138 132 130.0
18 121 138 136 145 1350
19 138 128 142 122 1325
20 136 129 132 142 1348

21 132 133 138 120 1308
22 135 131 130 138 1335
23 131 128 125 133 1293
24 129 134 144 124 1328
25 128 129 128 132 1293

26 127 128 117 135 126.8
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Sample DATA Mean
no.

27 142 132 127 130 132.8
28 134 139 131 134 1345
29 131 136 126 130 130.8
30 134 131 128 133  131.5
31 129 133 135 139  134.0
32 126 135 125 129 128.8
33 132 144 137 132 136.3
34 136 130 134 126 131.5
35 130 108 128 120 121.5
36 126 127 136 134  130.8
37 124 132 131 130 129.3
38 136 137 126 143 1355
39 130 127 127 130 1285
40 132 127 143 135 1343
41 133 134 135 139 1353
42 134 134 127 143 1345
43 128 128 124 145 131.3
44 136 129 129 134  132.0

45 127 126 133 128 128.5
46 123 123 129 133  127.0
47 135 135 140 134  136.0
48 131 132 123 126 128.0
49 141 129 132 125 131.8
50 135 131 130 134 1325
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National and international
standards relating to quality
control

Much of the area of application of statistical methods to industry is
covered by some useful national and international standards. The
following list gives the reference numbers of those related to material in
this volume. References are given to International (ISO), American
(ANSI), British (BS), German (DIN) and Japanese (JIS) standards. In
addition there are Draft International Standards (DIS) and Draft
Proposals (DP). They are listed under the ISO reference, where
applicable, with the following symbols relating to whether or not they
are identical to the ISO standard:

= completely identical
= technically equivalent
# related but not equivalent

1. GENERAL TERMINOLOGY AND SYMBOLS

ISO 3534: 1977 Statistics — Vocabulary and symbols
= BS 5532: Part 1: 1978 Statistical terminology. Part 1. Glossary of
terms relating to probability and general terms relating to statistics
# JIS Z 8101-1981: Glossary and terms used in quality control
ISO/DP 3534-1 Statistics — Vocabulary and symbols — Part 1: Probability
and general statistical terms
ISO/DIS 3534-2 Statistics — Vocabulary and symbols — Part 2. Statistical
quality control
ISO 3534-3: 1985 Statistics — Vocabulary and symbols — Part 3: Design
of experiments
= BS 5532: Part 3: 1986 Statistical terminology. Part3. Glossary of
terms relating to the design of experiments
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ISO 8402: 1986 Quality — Vocabulary
= BS 4778: Part 1: 1987 Quality vocabulary. Part 1. International
terms
= DIN 55 350 Teil 11 (5/87) Begriffe der Qualititssicherung und
Statistik; Grundbegriffe der Qualititssicherung
ANSI/ASQC A2-1987 Terms, symbols and definitions for acceptance
sampling
ANSI/ASQC A3-1987 Quality systems terminology

2. ACQUISITION AND INTERPRETATION OF
STATISTICAL DATA

ISO 377: 1985 Wrought steel — Selection and preparation of sample and
test pieces
# BS 1837: 1970 Methods for the sampling of iron, steel, permanent
magnet alloys and ferro-alloys
ISO 1988: 1975 Hard coal — Sampling
= BS 1017: Part 1: 1977 Methods for sampling of coal and coke. Part
1. Sampling of coal
ISO 2309: 1980 Coke — Sampling
# BS 1017: Part 2: 1960 (1988) Methods for sampling of coal and
coke. Part 2. Sampling of coke
ISO 2602: 1980 Statistical interpretation of test results — Estimation of the
mean — Confidence interval
= BS 2846: Part 2: 1981 Statistical interpretation of data. Part 2.
Estimation of the mean: confidence interval
# JIS Z 9051-1963: Interval estimation of the population mean
(standard deviation unknown)
ISO 2854: 1976 Statistical interpretation of data — Techniques of estima-
tion and tests relating to means and variances
= BS 2846: Part 4: 1976 Statistical interpretation of data. Part 4.
Techniques of estimation and tests relating to means and variances
= DIN 55 303 Teil 2 (5/84) Statistiche Auswertung von Daten;
Testverfahren und Vertrauensbereiche fiir Erwartungswerte und Varian-
zen
# JIS Z 9042-1962: Significance test of the difference between the
population mean and a given value (standard deviation known, one-
sided)
# JIS Z 9043-1962: Significance test of the difference between the
population mean and a given value (standard deviation known, two-
sided)
# JIS Z 9044-1962: Significance test of the difference between the
population mean and a given value (standard deviation unknown,
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one-sided)
# JIS Z 9045-1962: Significance test of the difference between the
population mean and a given value (standard deviation unknown,
two-sided)
# JIS Z 9046-1965: Significance test of the difference between two
population means (standard deviation known, one-sided)
# JIS Z 9047-1979: Significance test of the difference between two
population means (standard deviation known, two-sided)
# JIS Z 9048-1979: Significance test of the difference between two
population means (standard deviation unknown, one-sided)
# JIS Z 9049-1965: Significance test of the difference between two
population means (standard deviation unknown, two-sided)
# JIS Z 9052-1963: Interval estimation of the difference between two
population means (standard deviation known)
# JIS Z 9053-1963: Interval estimation of the difference between two
population means (standard deviation unknown)
# JIS Z 9054-1966: Significance test of equality of the population
variance and a given value (one-sided)
# JIS Z 9055-1966: Significance test of equality of the population
variance and a given value (two-sided)
# JIS Z 9056-1979: Significance test of equality of two population
variances (one-sided)
# JIS Z 9057-1966: Significance test of equality of two population
variances (two-sided)
# JIS Z 9058-1966: Interval estimation of the population variance
# JIS Z 9059-1966: Interval estimation of the population variance
ratio
ISO 3165: 1976 Sampling of chemical products for industrial use — Safety
in sampling
# BS 5309: Part 1: 1976 Methods for sampling chemical products. Part
1. Introduction and general principles
ISO 3207: 1975 Statistical interpretation of data — Determination of a
statistical tolerance interval
= BS 2846: Part 3: 1975 Statistical interpretation of data. Part 3.
Determination of a statistical tolerance interval
= DIN 55 303 Teil 5 (2/87) Statistiche Auswertung von Daten,
Bestimmung eines statistichen Anteilsbereichs
ISO 3301-1975 Statistical interpretation of data — Comparison of two
means in the case of paired observations
= BS 2846:. Part 6: 1976 Statistical interpretation of data. Part 6.
Comparison of two means in the case of paired observations
ISO 3494-1976 Statistical interpretation of data — Power of tests relating
to means and variances
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= BS 2846: Part 5: 1977 Statistical interpretation of data. Part 5.
Power of tests relating to means and variances
= DIN 55 303 Teil 2 (5/84) Statistiche Auswertung von Daten;
Testverfahren und Vertranensbereich fiir Erwartungswerte und Varian-
zen
ISO 4259: 1979 Petroleum products — Determination and application of
precision data in relation to methods of test
= BS 4306: 1981 (1988) Method for determination and application of
precision data in relation to methods of test for petroleum products
ISO/DIS 5479 Normality tests
= BS 2846: Part 7: 1984 Statistical interpretation of data. Part 7. Tests
for departure from normality
= DIN ISO 5479 Test auf Normalverteilung
ISO 5725: 1986 Precision of test methods — Determination of repeatability
and reproducibility for a standard test method by inter-laboratory tests
= BS 5497: Part 1: 1987 Precision of test methods. Part 1. Guide for
the determination of repeatability and reproducibility for a standard test
method by inter-laboratory tests
= DIN ISO 5725 Prdizision von Mefverfahren; Ermittlung der Wieder-
hol — und Vergleichprizision von festgelegten Mefverfahren durch
Ringversuche
# JIS Z 8402-1974: General rules for permissible tolerance of chemical
analysis and physical test
ISO/DIS 7585 Statistical interpretation of data — Comparison of a
proportion with a given value
ISO/DP 7868 Estimation of a proportion
ISO/DP 7874 Applications of statistical methods in standardization and
specifications (Guide)
ISO/DP 7912 Comparison of two proportions
ISO 8213: 1986 Chemical products for industrial use — Sampling tech-
niques — Solid chemical products in the form of particles varying from
powders to coarse lumps
# BS 5309: Part 4: 1976 Methods for sampling chemical products. Part
4. Sampling of solids
ISO/DIS 8595 Interpretation of statistical data — Estimation of a median
ANSI/ASQC E2-1984 Guide to inspection planning
BS 2846: Part 1: 1975 Statistical interpretation of data. Part 1. Routine
analysis of quantitative data
JIS Z 9041-1968: Presentation and reduction of data
BS 2987: 1958 Notes on the application of statistics to paper testing
BS 3518: Part 5: 1966 (1984) Methods of fatigue testing. Part 5. Guide to
the application of statistics
BS 4237: 1967 Report on the reproducibility of methods of chemical
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analysis used in the iron and steel industry

BS 5309: Part 2: 1976 Methods for sampling chemical products. Part 2.
Sampling of gases

BS 5309: Part 3: 1976 Methods for sampling chemical products. Part 3.
Sampling of liquids

BS 5324: 1976 Guide to the application of statistics to rubber testing

BS 6143: 1981 Guide to the determination and use of quality related costs
JIS Z 9031-1956: Random sampling methods

JIS Z 9050-1963: Interval estimation of the population mean (standard
deviation known)

3. ACCEPTANCE SAMPLING

ISO/DP 2859 Part 0 Sampling procedures for inspection by attributes —
Introduction to the ISO 2859 attribute sampling system (Revision of I1SO
2859 Addendum 1)

# JIS Z 9001-1980: General rules for sampling inspection procedure
ISO 2859-1: 1989 Sampling procedures for inspection by attributes — Part
1: Sampling plans indexed by acceptable quality level (AQL) for lot-by-
lot inspection

# ANSI/ASQC Z1.4-1981 Sampling procedures and tables for inspec-

tion by attributes

= BS 6001: Part 1: 1972 Sampling procedures and tables for inspection

by attributes. Part 1. Specification for sampling plans indexed by

acceptable quality level (AQL) for lot-by-lot inspection

# JIS Z 9002-1956: Single sampling inspection plans for desired

operating characteristics by attributes

# JIS Z 9015-1980: Sampling inspection procedures and tables by

attributes with severity adjustment (receiving inspection where a con-

sumer can select suppliers)
ISO 2859-2: 1985 Sampling procedures for inspection by attributes — Part
2: Sampling plans indexed by limiting quality (LQ) for isolated lot
inspection

= BS 6001: Part 2: 1984 Sampling procedures for inspection by

attributes. Part 2. Specification for sampling plans indexed by limiting

quality (LQ) for isolated lot inspection

= DIN 40 080 Teil 2 Annahmestichprobempriifung anhand der Anzahl

fehlerhafter Einheiten oder Fehler (Attributpriifung); Nach der riickzu-

weisenden Qualititsgrenzlage (LQ) geordnete Stichprobenanweisungen
fiir die Priifung einzeliner Lose
ISO/DIS 2859-3.2: Sampling procedures and charts for inspection by
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attributes — Skip lot sampling procedures
= ANSI S1-1987 An attribute skip-lot sampling program
= BS 6001: Part 3: 1986 Sampling procedures for inspection by
attributes. Part 3. Specification for skip-lot procedures
ISO 3951-1989 Sampling procedures and charts for inspection by vari-
ables for percent nonconforming
# ANSI Z1.9-1980 Sampling procedures and tables for inspection by
variables for percent non-conforming
# BS 6002: 1979 Sampling procedures and charts for inspection by
variables for percent defective
# 00DIN ISO 3951 Verfahren und Tabellen fiir Stichprobenpriifungen
auf den Anteil fehlerhafter Einheiten in Prozent anhand quantitativer
Merkmale (Variablenpriifung)
# JIS Z 9003-1979: Single sampling inspection plans having desired
operating characteristics by variables (standard deviation known)
# JIS Z 9004-1983: Single sampling inspection plans having desired
operating characteristics by variables (standard deviation unknown and
single limit specified)
ISO 5022-1979 Shaped refractory products — Sampling and acceptance
testing
= BS 6065: 1981 Methods for sampling and acceptance testing of
shaped refractory products
ISO/DIS 8422.2 Sequential sampling plans for inspection by attributes
(proportion of non-conforming items, and mean number of non-confor-
mities per unit)
# JIS Z 9009-1962: Sequential sampling inspection plans having
desired operating characteristics by attributes
ISO/DIS 8423.2 Sequential sampling plans for inspection by variables for
percent non-conforming (known standard deviation)
# JIS Z 9010-1979: Sequential sampling inspection plans having
desired operating characteristics by variables (standard deviation
known)
ISO/DP 8550 Guide for selection of an acceptance sampling system,
scheme or plan for inspection of discrete items in lots (to be published as
a Technical Report)
BS 2635: 1955 Drafting specifications based on limiting the number of
defectives permitted in small samples
JIS Z 9006-1956: Single sampling inspection plans with screening by
attributes
JIS Z 9008-1958: Continuous sampling inspection plans for continuous
production by attributes
JIS Z 9011-1963: Single sampling inspection plans by attributes with
adjustment
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4. STATISTICAL PROCESS CONTROL

ISO/Draft TR 7871 Introduction to cumulative sum charts
ISO/DIS 7873 Control charts for arithmetic average with warning limits
ISO/DIS 7870 Control charts — General guide and introduction
ISO/DIS 7966 Acceptance control charts
ISO/DIS 8258 Shewhart control charts

= JIS Z 9021-1954: Control chart method

# JIS Z 9022-1959: Median control chart

# JIS Z 9023-1963: x control chart
ANSI/ASQC A1-1987 Definitions, symbols, formulas and tables for
control charts
ANSI/ASQC B1-1986 Guide for quality control charts
ANSI/ASQC B2-1986 Control chart method for analyzing data
ANSI/ASQC B3-1986 Control chart method of controlling quality dur-
ing production
BS 600: 1935 Application of statistical methods to industrial standardiza-
tion and quality control
BS 2564: 1955 Control chart technique when manufacturing to a specifi-
cation, with special reference to articles machined to dimensional toler-
ances
BS 5700: 1984 Guide to process control using quality control chart
methods and CuSum techniques
BS 5701: 1980 Guide to number-defective charts for quality control
BS 5703: Part 1: 1980 Guide to data analysis and quality control using
CuSum techniques. Part 1. Introduction to CuSum charting
BS 5703: Part 2: 1980 Guide to data analysis and quality control using
CuSum techniques. Part 2. Decision rules and statistical tests for CuSum
charts and tabulations
BS 5703: Part 3: 1981 Guide to data analysis and quality control using
CuSum techniques. Part 3. CuSum methods for process/quality control by
measurement
BS 5703: Part 4: 1982 Guide to data analysis and quality control using
CuSum techniques. Part 4. CuSums for counted/attributes data
JIS Z 8206-1982: Graphical symbols for process chart

5. QUALITY MANAGEMENT

ISO 9000: 1987 Quality management and quality assurance standards —
Guidelines for selection and use
= ANSI/ASQC Q90-1987 Quality management and quality assurance
standards — Guidelines for selection and use
= BS 5750: Part 0: Section 0.1: 1987 Quality systems. Part 0. Principal
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concepts and applications. Section 0.1. Guide to selection and use
= DIN ISO 9000 (5/87) Leitfaden zur Auswahl und Anwendung der
Normen zu Qualititsmanagement, Elementen eines Qualititssicherungs-
systems und zu Qualitdtssicherungs-Nachweisstufen
ISO 9001: 1987 Quality systems — Model for quality assurance in
design/development, production, installation and servicing
= ANSI/ASQC Q91-1987 Quality systems — Model for quality assur-
ance in design/development, production, installation and servicing
= BS 5750: Part 1: 1987 Quality systems. Part 1. Specification for
design/development, production, installation and servicing
= DIN ISO 9001 (5/87) Qualititssicherungssysteme; Qualititssi-
cherungs-Nachweisstufe fiir Entwicklung und Konstruktion, Produk-
tion, Montage und Kundendienst
ISO 9002: 1987 Quality systems — Model for quality assurance in
production and installation
= ANSI/ASQC Q92-1987 Quality systems — Model for quality assur-
ance assurance in production and installation
= BS 5750: Part 2: 1987 Quality systems. Part 2. Specification for
production and installation
= DIN ISO 9002 (5/87) Qualititssicherungssysteme; Qualitiitssi-
cherungs-Nachweisstufe fiir Produktion und Montage
ISO 9003: 1987 Quality systems — Model for quality assurance in final
inspection and test
= ANSI/ASQC Q93-1987 Quality systems — Model for quality assur-
ance in final inspection and test
= BS 5750: Part 3: 1987 Quality systems. Part 3. Specification for final
inspection and test
= DIN ISO 9003 (5/87) Qualititssicherungssysteme; Qualitiitssi-
cherungs-Nachweisstufe fiir Endprufungen
ISO 9004: 1987 Quality management and quality system elements —
Guidelines
= ANSI/ASQC Q94-1987 Quality management and quality system
elements — Guidelines
= BS 5750: Part 0: Section 0.2: 1987 Quality systems. Part (. Principal
concepts and applications. Section 0.2. Guide to quality management
and quality system elements
= DIN ISO 9004 (5/87) Qualititsmanagement und Elemente eines
Qualititssicherungssystems; Leitfaden
ANSI/ASQC C1-1985 Specifications of general requirements for a qual-
ity program, REVISED EDITION
ANSI/ASQC Q1-1986 Generic guidelines for auditing of quality systems
ANSI/ASQC Z1.15-1979 Generic guidelines for quality systems
BS 5750: Part 4: 1981 Quality systems — Guide to the use of BS 5750:
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Part 1 ‘Specification for design, manufacture and installation’

BS 5750: Part 5: 1981 Quality systems — Guide to the use of BS 5750:
Part 2 ‘Specification for manufacture and installation’

BS 5750: Part 6: 1981 Quality systems — Guide to the use of BS 5750:
Part 3 ‘Specification for final inspection and test’
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AARL, see Average article run
length
Absorbing state 175
Acceptable quality level 166, 291
Acceptance inspection 38. 14
flow chart for 244-6
Acceptance number 248
Accident data 17
Action boundaries 28
Action limits, see Action lines
Action lines 27, 87
Adaptive control
adaptive sampling
plans 316-19
definition 304
Adaptive sampling plans
adaptive control 316-19
basics 303-4
CSP-1 304-12
CSP-1 modifications 312-14
CuSum techniques 319-21
process trouble shooting 315-16
skip-lot plans 321
AEDL, see Average extra
defectives limit
AEDL criterion
CSP-1 309-10
Antifreeze 120, 194
AOQ, see Average outgoing
quality
AOQL, see Average outgoing
quality limit
AOQL criterion
CSP-1 304-7
AQL, see Acceptable quality level
ARL, see Average run length

ARL
batch inspection 253-4
curves 144
CuSum charts 143-5
decision rule data 155
EWMA charts 133-4
ARL formula
CuSum charts 181
high-capability process 209
modified 110
Shewart chart 105-6
ARL table
one-sided X chart 202-3
ASN, see Average sample number
ASRL, see Average sample run
length
ASSES, see Simple semi-economic
scheme
Assignable causes 39, 71, 85
Attribute data 212
binomial distribution 14-15
control limits table 220-1
definition 11-12
Autocorrelation 41, 44, 135, 137,
188
test for 61
Automatic controllers 71
Autoregressive model 104
Autoregressive process 135
Average article run length 254
Average extra defectives limits
(definition) 309
Average level
charts for 91-5
choice of chart 129-30
Average outgoing quality 265



Average outgoing quality limit 265
Average run length 37, 100-3
see also ARL
Average sample number 321
Average sample run length
(ASRL) 254

Batch 242
Between-group spread, control
of 100
Between-group variation 44, 80-1,
98, 164
estimation of 58-9
estimation of o 117
Binomial distribution
basics 14
normal approximation 32-3,
215, 229
Poisson approximation 215-16
Shewhart charts 227-30
Binomial variables
discrete data charts 215-16
Blocked data 56, 57
Break-even quality 263
British Standard 28, 87, 109, 208,
291
see also Appendix C; BS
BS 5701 214
BS 5703 163, 168
BS 6000 292
BS 6001 292, 293
BS 6002 271

Capability indices 76

Capability index 81

Capability , relative 76-80

Catalyst ageing 119

C-charts 213, 214, 223

Central limit theorem 20, 21, 148,
171

Chart design
economic approaches 327

Index 393

Charting
choice of method 170-1
objectives of 86
Chisquare distribution 22
table for 259, 336
Computer interface 324
Computing for SPC 323-6
Confidence interval charts 329
Consumer’s risk point 196, 252
Continuity correction 34
Continuous data 12
Continuous process 114
Continuous sample plans 303
Control chart
choice of 129-30
design from
specifications 192-211
simple 23-8
Correlation 104-5, 115
Countable data 12, 15-18, 212,
213
control limits table 220-1
Covariance matrix 318, 330
CSP, see Continuous sampling
plans
CSP-1 303
CSP-1
AEDL criterion 309-10
AOQL criterion 304-7
decision theory 310-12
modifications to 312-14
skip-lot sampling 321
theory of 307-9
CSP-2 313
CSP-3 313
CSP-4 313
CSP-5 314
Cumulative distribution 29
CuSum
appraisal 153
decision interval
scheme 148-51, 151-2
double 327-8
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CuSum (cont.)
nomogram for 164-8
other charting methods 152-3
CuSum charts
ARL exact theory 177-82
assumptions 161
attribute data 238
for average level 153-7
average run length 143-5
comparison with Shewhart
charts 163-4, 239
for continuous variables 13869
countable data 232-8
decision rule parameters 153-6
discrete data 238-9
interpretation 157, 161
Johnson’s approximation 182-5
multivariate methods 330-1
one-at-a-time data 157
parameters for countable
data 234-5
for process spread 157-64
scaling of 140-1
sensitivity to assumptions 187-9
the value of 138-9
V-mask, see V-mask
CuSum plotting
basics 51-4
reference value 52
CuSum scheme
ARL curve 167
one-sided 166
for ranges 159-61
for standard deviations 161-3
transformations 163
CuSum techniques
adaptive sampling 319-21
Cyclic variation 42, 81-2

Data analysis
methods of 48-55
Data smoothing
moving-averages 48—81

Data structures 325
Decision interval
V-mask 142
Decision lines
V-mask 142
Decision theory
CSP-1 310-12
DEF-131 192
Degrees of freedon (D.F.) 22, 59
Destructive testing 243
D.F., see Degrees of freedom
Difference control charts 328-9
Difference of pairs method 63—4
Discrete data charts
assumptions 214-16
dispersion test 216-18
sampling 214
type of 212-14
Discrete data processes, control
of 212-40
Dispersion test 21618
Distribution
chisquare, see Chisquare
distribution
cumulative 29
F, see F-distribution
run length, see Run length
distribution
sample mean, see Sample mean
sample range, ee Sample range
sample variance 22
t, see T-distribution
Dodge and Romig’s
schemes 265-6
Dodge plan 247
Double specification limits 283-9
Double specification limits
alternative approach 208-10
high-capability processes 205-8
o unknown 289
DPN 23

Economic approaches
design of charts 327



EDA, see Exploratory data
analysis
Environmental changes 41
EWMA charts
ARL length 133-4
comparison to CuSum 152
construction of 126-7
factors for 127
properties 133-4
starting-up problems 127
weights for 127
Expectation 13
Expert system 325
Exploratory data analysis 326
Exponentially weighted
moving-average charts, see
EWMA charts

F-distribution 59
table for 337-40
Fraction non-conforming
double specification limits 284
single specification
limits 279-83
Fredholm integral 133

General inspection level 11 293,
298
Geometric distribution
ARL 105
definition 18-19
Go/no-go gauges 247
Group means
standard error 62
Group size, change of 104
Grouped data
estimation 55-63

Hamaker approximation 278
Hardness measurements 24
Histogram 29

Hotelling’s T? methods 330

Index 395

In control 85-6, 130
Indifference quality 253
Input streams 244
Input variables 71
Inspection
acceptance 247
by attributes 247, 293
batch 247
continuous product 247
normal, see Normal inspection
rectifying 247
reduced, see Reduced inspection
tightened, see Tightened
inspection
by variables 247, 268-90
Inspection plans, classification
of 246-50
Instrument interface 324
Inter-laboratory error 193, 194
International Standard 271, 291
see also Appendix C; ISO
CuSum chart decision rules 154
CuSum charts 232
CuSum mask 142
ISO 2859 291, 292, 293
ISO 3951 271, 287

Kurtosis, coefficients of 171

Last-off sampling 214

Long run average 102

Long term variation 40

Lot, see Batch

Lot tolerance percent
defective 265

LTPD, see Lot tolerance percent
defective

Machine wear 61, 119

Manhattan diagram 53, 54

Markov chain 45-6, 191, 267
Champ and Woodall’s rules 176
CuSum charts 185
Shewhart charts 172-7
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Masks
semi-parabolic, see
Semi-parabolic mask
snub-nosed, see Snub-nosed
V-mask
V-mask, see V-mask
Mean, sample 13
Measurement error 46-8, 80,
193-4
Melt flow index (MFI) 65, 135
MFI, see Melt flow index
MIL-STD-105 291
MIL-STD 1235 (ORD) 314
MLP-1 314
Mood’s theorem 255-6
Moving-average charts
appraisal 130
for average level 1224
for c or u 225-7
construction 124
for p or np 231-2
properties 133-5
use of 125, 130-3
Moving-averages 115-16
data smoothing 48-51
weighted 68
Moving range chart 115
for process spread 128-9
properties 135
Moving ranges
estimation of o 117-21
Moving standard deviation
chart 115
for process spread 129
properties 135
Multivariate data 12
Multivariate methods 7, 330-1
Multivariate plans 248
Multivariate sampling
plans 289-90

Nested sampling scheme 55

Nomogram
for CuSum 156, 164-8
for inspection by variables 273,
276
single specification limit 197,
198
Non-normality 1, 103-4, 148, 189
Normal approximation to
binomial, see Binomial
distribution
Normal approximation to Poisson,
see Poisson distribution
Normal distribution
definition 20-1
standard normal 21
table for 332-3, 334
Normal inspection 292
table for 295, 300
Normality testing 28-31
NP charts 213, 214, 229

OC-curve

ideal 251

double specification 285
OC, see Operating characteristic
One-at-a-time data

estimation of o 116-21

process average level 63-5

process spread 164

sources 114-15
One-at-atime sampling 114-22
One-sided X-chart

ARL curve 203

ARL values 202-3

single specification limit 201-5
One-sided specification limit 29
Operating characteristic 250-6
Outliers 31
Out of control 85-6, 131-2
Output streams 244
Over dispersion

discrete data 224



P charts 213-14, 230
Performance index 78, 81
Phenol 49
Poisson distribution
basics 15-18
normal approxiation 33-4, 215,
222-3
relation to cumulative y?
distribution 262
relation to x? distribution 215
Shewhart charts 218-23
Poisson variables
discrete data charts 215
Polypropathene 65
Population 13
Probability distribution 13
Probability plot 28-31
Process
causes 39
curve 254-5
industries 6-7, 62, 71
variables 71
Process average level
charts for 122-8, 143-5
control of 121, 172
estimation 55-63
Process capability 70-84
analysis 72
in complex process 80-3
high 76-7
index 76
low 76-7, 82-3
medium 76-7
relation to control 130-1
Process spread
charts for 110-11, 130, 189-90
control of 95-100, 115, 128-9,
172
examination 54-5
moving range charts 128-9
moving standard deviation
charts 129
one-at-a-time data 164

Index 397

Process, stable 86
Process trouble shooting 304
adaptive sampling 315-16
Process variation 39-69
estimation 55-63
models for 43-6
Producer’s risk point 196, 252
Product screening 303-4
Product variables 71

Quality assurance 292

Radioactive emissions 16
random sampling 214
Random variation 40-3, 44, 85,
193
Range, see Sample range
Range chart
assumptions 97-8
basic rules 98-9
construction 95-7
interpretation 97-9
range method 95-6
o method 96
table of factors 96, 97
Range to standard deviation 23,
91
Rao-Blackwell lemma 281
Rational blocking 63, 115, 116
Real time 323
Reduced inspection 292
table for 297, 302
Regression
control charts 328
multiple 7
Rejectable quality level 166
Relative capability 76-80
Relative range distribution, table
for 340
Resistance, electrical 29, 31
Resistors, electrical 70
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Risk point
consumer’s, see Consumer’s risk
point
producer’s, see Producer’s risk
point
Risks
type I 87
type II 87
RQL, see Rejectable quality level
Run length
concept 100
Run length distribution 105, 134
approximation to geometric
distribution 174, 175
expectation of 174-6
variance of 174-6
Running mean charts
comparison to CuSum 152
Running means, calculation
of 48-51

Sample mean
definition 13
distribution 21, 73

Sample range
distribution 22-3, 26

Sample size
code letters 294-9
Shewhart charts 102

Sample variance
distribution 22

Sampling
cost 115
error 46-8, 193
inspection 214-68
risks 86-8

Sampling frequency
CuSum charts 147-8
Shewhart charts 89, 102

Sampling, last off, see Last off
sampling

Sampling plan design
ASSES 263-5

Sampling plan design (cont.)
Defence standards 266
Dodge and Romig’s

schemes 265-6
risk point method 256-63

Sampling plans

adaptive, see Adaptive sampling
plans

alternatives 248

ARL 253-4

deferred sentencing 248

double 249

economic approaches 327

Mood’s theorem 255-6

nultivariate 289-90

OC-curve 250-6

process curve 254-5

properties 250-6

sequential 249

serial 248

single, see Single sampling plans

Sampling, random, see Random
sampling

Sampling size
Cusum charts 147-8

Sampling systems
standard, see Standard sampling

systems

Screening 3-4

S.D., see Standard deviation

Sequential probability ratio
test 184

Semi-parabolic masks 145
parameters for 147

Shewhart chart
action lines only 105-6
ARL formula 105-6
attribute data 227-31
basics 23-8
continuous variables 85-113
countable data 218-27
effect of skewness 108
Markov chain 172-7



Shewhart chart (cont.)
modified 110
non-normality 103-4
one-at-a-time data 114-37
operational phase 132-3
set up 88-9
specification limits 73-6
use of 130-3
with warning lines 106-8, 172-4
Short term variation 40
Single sampling plans 248
‘normal’ inspection table 295,
300
‘reduced’ inspection table 297,
302
‘tightened’ inspection table 296,
301 .
Simple semi economic scheme
(ASSES)
basics 263-5
exercise 266
table of values 264
Single specification limit 192-205
fraction non-conforming 279-83
objectives 192-3
one-sided X chart 201-5
o known 271-5
o unknown 275-9
Single specification limit chart
action limit only 197-201
design requirements 194-6
for max values 205
for means 194-205
Skewness, coefficients of 108, 171
Skip-lot sampling 321
Snub-nosed V-mask 144, 145, 147
SPC
definition 2-3
development of 1
factors affecting success of 8§-10
methodology 6-7
off-line 3, 4-6
on-line 3-4

Index 399

SPC(cont.)
packages 325
preventative 3-4
set-up procedure 72
system outline 326-7
Specification limits
applied to Shewhart charts 73-6
one-sided 79
single, see Single specification
limits
Spread, charts for control of 121
SPRT, see Sequential probability
ratio test
Standard deviation
definition 13
overall estimate 116
range method of estimation 23,
91
Standard deviation charts 99-100
factors for 99
Standards, see Appendix C
Standard sampling systems
inspection by attributes 293
introduction 291-3
Switching rules 291, 292

Target value 91, 141, 152
T-distribution, table for 335
Testing, destructive 243
Tightened inspection, 291, 292
table for 296, 301
Tolerances applied to Shewhart
charts 73-6
Transformation 103, 157
Transition matrix 45, 173, 185
Transverse flexure strength 90,
116
Trends
process variation 42
Truncated V-mask 142
Type I risk 87
Type II risk 87
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U-charts 213, 214
Unequal numbers, charts for 104
US Army Service Forces
tables 291
User interface 325

Variables
input 10
process 10
product 10
Variance 14
Variation, additional 59-60
Variation noise 39
Variation, cyclic, see Cyclic
variation
V-mask
decision interval shceme 151-2
for process average level 142-3

V-mask (cont.)
setting up 142-3
use of 143

Warning lines 87
position of 108-10
Weighted moving-average 68
Weights for EWMA charts 127
Within group variation 44, 80-1
estimation of 56-8

X charts
appraisal 130
assumptions of 93
basic rules 93-5
construction 91-2
interpretation 92-5
range method 92
o method 92-3





