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Preface 

Statistical process control (SPC) is now recognized as having a very 
important role to play in modern industry. Our aim in this book has 
been to present SPC techniques in a simple and clear way, and also to 
present some of the underlying theory and properties of the techniques. 

This volume arises partly out of a revision of Wetherill (1977), and 
partly out of experience in teaching and implementing SPC at industrial 
sites, especially with ICI. It would have been impossible to come to our 
present understanding of this field without the joint efforts of industry 
and university. 

A number of features of this book are new: 

(1) The special emphasis on process industry problems, including one
at-a-time data. 

(2) The discussion of between and within-group variation, and the 
effects of this on charting and on process capability analysis. 

(3) The derivation of the properties of the techniques has not been 
gathered together before. 

(4) The presentation of sampling by variables contains many new 
features. 

The techniques themselves are presented in a very simple way by 
using 'method summaries', and these could be a basis for training when 
SPC is implemented. 

W e hope that this volume will be used in courses in universities and 
polytechnics. Some of the more mathematical sections and chapters are 
marked with an asterisk, and these can be omitted at first reading. It is 
important to get a good intuitive grasp of the subject before delving into 
the theory. Two sets of exercises are provided at the ends of chapters. 
Those labelled 'A' explore the techniques themselves whereas those 
under 'B' are more mathematical or theoretical. A separate and parallel 
volume is being produced, Statistical Process Contra! - a Manual for 
Practitioners, which avoids theoretical aspects, and which covers prac
tical issues omitted from this text. 

The book divides into two major areas. Chapters 1-10 largely deal 
with charting, and Chapters 11-14 with sampling inspection. 



x1v Preface 

Modern industry is very complex, particularly the process industries. 
It is important for some of the SPC staff to have an understanding of 
the properties of SPC techniques under a variety of assumptions. 
Surprisingly enough, there are many points which need further research, 
and some of these are pointed out in the text. 

We are indebted to many people in the production of this book. The 
initiatives of Total Quality of ICI Chemieals and Polymers and ICI 
Films lead to a 'Teaching Company Scheme' in SPC between ICI and 
the University of Newcastle upon Tyne. This scheme covered six 
projects and gave the university staff inside experience of the problems 
of implementing SPC. Discussions with ICI staff and Teaching Company 
Associates have helped. Further discussions with ICI staff at SPC 
courses have deepened our understanding. 

Although this volume arises partly out of a revision of Wetherill 
(1977), and much of the writing has been done by G. B. Wetherill, 
much has been done in collaboration with ICI, especially D. W. Brown, 
in writing an SPC manual for the company. The emphasis on problems 
associated with process industries owes a lot to DWB and contributions 
from ICI. 

Colleagues Marion Gersan and Jim Rowlands in the Iudustrial Statist
ics Research Unit at the University of Newcastle upon Tyne have helped 
enormously. There have been numerous discussions on methodology 
and approach as we studied the implementation of SPC at various sites. 

We are indebted to Mr W. Dobson for producing many of the 
diagrams and the sampling datasets. We are also grateful to Mr S. King 
for help with proof-reading. 

Appendix C contains a list of National and International Standards 
relating to quality control. It is the first time that such a list has been 
available. The authors have made every effort to check the list but 
cannot vouch for inaccuracies or omissions. Students intending to work 
in the quality area ought to be familiar with the major Standards. The 
authors are indebted to David Baillie, with the help of John Mallaby of 
the British Standards Institution, and Tsuneo Yokoh of the Japanese 
Standards Association for provision of this list. 

This project has taken a lot of time and energy, but it is one which we 
feel has been very worthwhile. We hope that the book proves to be 
useful and interesting to others. 

G. Barrie W etherill 
Don W. Brown 
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Statistical process control 

1.1 DEVELOPMENT OF SPC 

Statistical process control and allied techniques of sampling inspection 
and quality control were developed in the 1920s. In May 1924, Walter 
A. Shewhart of Bell Telephone Laboratories developed the first sketch 
of a modern control chart. Work by him, H. F. Dodge, H. G. Romig, 
W. J. Jennett and others continued apace. In 1931 a crucial paper on 
the new techniques was presented to the Royal Statistical Society, which 
stimulated interest in the UK. 

SPC was used extensively in World War II bothin the UK andin the 
USA, but lost its importance as industries converted to peacetime 
production. However people in the West taught it to the Japanese, and 
W. E. Deming in particular made a big impact in Japan in the 1950s. 
Japanese industry applied SPC widely and proved that SPC saves money 
and attracts customers. US and UK industries are now being forced to 
introduce it in order to compete with the Japanese. 

As part of the UK National Quality Campaign, a group representing 
UK industrial interests went to Hong Kong, Japan and the USA in the 
summer of 1984. As a result of their visits, all members of the group 
became alarmed at the competition faced by UK industry, and were 
especially convinced about the need for a radical reappraisal of our 
attitude to quality. The Japanese philosophy is that good quality 
products sell, tonsistent good quality leads to greater productivity, and 
that there is no conflict between price and quality. One of the Japanese 
who spoke to the group explained that 'It would take you ten years to 
get to where we are ... and we know you won 't do it!' 

The Japanese have applied very successfully the statistical techniques 
they learned in the West from Deming, Juran and others. The message 
is clear: these techniques must be applied widely in the West. 
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1.2 WHAT SPC IS AND IS NOT 

Statistical process control is not a magic formula for curing all produc
tion ills; it is a very useful tool to be used in promoting and maintaining 
the health of a commercial or industrial enterprise. Although many of 
the statistical ideas originated in Britain and America, they have been 
grossly under-used and misunderstood for many years. It is the Japanese 
who have seen the important contribution of SPC within industry and 
combined it with a totally different approach to quality and to manage
ment. The result is slowly filtering through to the West chiefly via the 
USA. 

Although we shall not always need to differentiate in this text it is 
worth noting here that SPC is used: 

(1) To improve quality (in the Crosby sense of conformance to require
ments; for details see the references). 
When information about production and control over it Ieads to the 
reduction or elimination of non-conforming product this can lead to: 
(a) Reduced manufacturing costs, due to less 

• Scrap 
• Added value to defective product 
• Rescheduling 
• Inspection/re-work 

(b) Increased reputation/customer satisfaction 
(c) Tighter specification Iimits and hence improved product claims. 

(2) To increase yield (or maintain yield at reduced cost). 
In many chemical and some other process industries it is important 
to maximize output value relative to inputs. Small differences in 
yield may have a significant effect on profit, so it is as important to 
capitalize on positive causes of variation as to detect and eliminate 
those causes that have a negative effect. 

. A very important part of this process is the role played by measure
ment. It is necessary for us to have some data measuring the quality of 
our output, data on quality costs, data on how a process is performing, 
etc. This Ieads directly to the use of statistics. Statistical methods for 
process control have been taught for about 60 years now, and there are 
many examples of how important and successful statistical process 
control can be. Simple statistical methods can be used in order to: 

(1) Have evidence of what a process is doing, and what it is likely to 
do. 

(2) Provide an assessment of the quality levels your process is currently 
capable of meeting. 

(3) Tell when to look for trouble and when not to. 
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(4) Provide clues as to where trouble is likely to occur. 
(5) Help towards an understanding of the operation of the system and 

so help in making improvements to the process or product. 

The results of the statistical methods must be interpreted by the 
operating staff, using their experience, perceptions and common sense. 
They are not blind tools, but they are extremely helpful in the context 
of a managentent system committed to achieving quality and product
ivity. 

1.3 ON-LINE SPC METHODS 

SPC methods can be described as on-line or off-line. We deal first with 
on-line methods, which again divide into two types, screening or 
preventative and these can be seen in Fig. 1.1. · 

Preventative 
action on 
process 

Data on 
process 

Data on 
output 

Screening 
or corrective 

action on output 

Figure 1.1 Controlling a process. 

In screening, we inspect the output, and if the quality is not 
satisfactory, we screen out the substandard items for reworking, for 
selling at a reduced price or for scrap. This is usually done by a system 
of sampling inspection, and can be done by methods discussed in 
Chapters 11-14. Screening for quality is usually very expensive, and not 
recommended. 

In preventative SPC methods we inspect the process, and try to use 
process control to avoid defective items being produced. Typical preven
tative SPC methods are: 
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(1) Shewhart control charts for process variables (Chapters 5 and 6). 
(2) CuSum control charts for process variables (Chapter 7). 
(3) Sampling inspection of input material (Chapters 11-13). 
(4) Continuous production inspection of product (Chapter 14). 

Same people cantrast control charts, as preventative methods, with 
sampling inspection as a screening procedure. This distinction is not 
correct. Control charts can be used as a screening mechanism, and 
sampling inspection can be used in a preventative manner. But the 
importance of on-line SPC methods lies in their use as preventative 
procedures. 

SPC methods concentrate on trying to control process average level 
and process spread. In particular, process spread or variability is a 
special enemy of quality, and needs to be tackled with some vigour. 
Indeed the vast majority of discussions on quality between manufac
turers, their customers and suppliers is centred araund the consistency of 
feedstocks and products. 

1.4 OFF-LINE PROCESS CONTROL 

This is often the next stage on from on-line SPC, although ideally it 
should be built into designing and setting up a product and its 
production process from the start. 

The aim is to reduce or remove the effect of potential causes of 
variability by modifying the process, or the product, so making it less 
sensitive to these causes. This generally requires skill and ingenuity from 
a team of people with different expertise, one of whom will be a 
statistician. lt is not possible to give general rules or simple guidelines, 
but in a short introduction the following examples may help illustrate 
the possibilities. This type of use of experimental design has been 
pushed by Taguchi (1985, 1986a, 1986b). 

Example 1.1 
A number of different factors were postulated as possible causes of 
variability in large ceramic insulators. A properly designed experiment 
was carried out to determine which of these had significant effects. This 
identified firing temperature (which could be different in different parts 
of the kiln, depending on loading etc.) as a major factor. A programme 
of work was put in hand to find a ceramic mix that would be less 
sensitive. In addition, one of the lesser sources of variationwas found to 
be the length of time that elapsed between manufacture of an insulator 
and firing. (A firing batch would be collected over a period of time.) 
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This was largely eliminated by setting up a small holding store with a 
suitable atmosphere. 

Example 1.2 
Gorsky (1987) reported an experiment run at some Ford Motor Com
pany plants. The problern concerned the 3.8L V6 camshaft, and there 
were two objectives: 

(1) To reduce the percent carbide content variation, lobe to lobe, on a 
given camshaft. 

(2) To achieve higher lobe hardness. 

A brainstorming session was held in order to identify factors worthy 
of study in an experiment. Two sorts of factors were identified, tooling 
factors and process factors. 

The tooling factors affect the configuration of the machine. Five 
factors were selected, each at two Ievels, and it was decided to perform 
a fractional factorial experiment of eight runs, in order to find the 
optimum configuration. 

The process factors represent 'noise', which are more difficult or 
impossible to control. Six such factors were identified, each at two 
Ievels, and a fractional factorial experiment of sixteen runswas selected. 

Under the system proposed by Taguchi (1986b), each of the tooling 
factor runs was performed at each combination of noise factors. For full 
details see the original article, but in all about 1500 camshafts were 
made. 

The objective of the analysis was to find a combination of tooling 
factors which achieved the objectives consistently across the noise 
factors. Because the experiments were of the fractional factorial type, 
confirmatory runs had tobe made before implementing the conclusions. 

Example 1.2 illustrates the contrast between what Taguchi calls 
'control' and 'noise' factors. By carefully designed experiments it is 
possible to find control factor combinations which perform consistently 
weil across the less well-controlled noise factors. In Example 1.1 a 
change to the product was necessary to achieve the objectives, whereas 
in Example 1.2 the change is more to the process. 

Example 1.3 
Becknell (1987) reported an experiment run on throttle bodies for the 
Ford Motor Company. The component was die cast, and although 
quality was satisfactory from most points of view, it was subject to gas 
porosity voids which affect visual quality. A brainstorming session was 
held after which seven factors were selected for examination. These 
were metal cleanliness, shot size, spray pattern, intensification, profile 
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velocity, die temperature and metal temperature. Each of these factors 
was selected at two levels, but a fractional factorial experiment of only 
eight runs was used. The optimum combination of factor levels was 
tested in a confirmatory run. The results achieved a 73% reduction in 
visual porosity, and an estimated annual saving of over ±:200000. 

Off-line quality control employs a considerable amount of experi
mental design work, and some special types of design favoured by 
Taguchi. There is now a very large Iiterature on this topic: see for 
example American Supplier Institute (1987). 

In some cases the use of off-line quality control may eliminate the 
need for on-line methods, but in most cases on-line methods are a vital 
part of the quality initiative. The text to follow concentrates on on-line 
methods. 

1.5 SPC METHODOLOGY 

SPC should be seen as an objective statistical analysis of process 
variation and its causes. Often large gains can be made by using quite 
simple statistical methods. The difference between decisions made on a 
basis of facts and data rather than gut-feel and intuition can be 
enormous. 

In some industries of the component manufacturing type, filling lines, 
etc., the charting methods which form much of the book can be readily 
applied. It is sometimes obvious what to plot on the chart, such as a 
dimension, and it may also be reasonably clear what to do when a 
'process out of control' signal is given. 

In other industries, particularly in the process industries, the situation 
is very complicated and it is not at all clear what to plot, nor what to do 
at 'out of control' signals. 

In process industries the processes involve recycling, automatic control 
loops, and many stages of mixing, blending or interaction. Typically, a 
process industry has: 

(1) About 10 variables defining the quality of the product. 
(2) About 200-500 process parameters or variables. 
(3) About 30 variables defining quality and amounts of input raw 

material. 

There is frequently only vague knowledge of the relationships between 
many of these variables. 

An SPC study into such a process involves much more than charting, 
and based on our experience we suggest the following stages. Greater 
discussion will be given in the companion volume Statistical Process 
Contra!- a Manual for Practitioners. 
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Stage 1 Process flow 
1.1 Draw a schematic diagram of the flow of the process, and note the 

stages or phases in the process. 
1.2 Study the flow of data from the process. Note where and when this 

data is stored, communication links, etc. 

Stage 2 Determine the problern 
2.1 Collect peoples' opinions about the problem, including the cus

tomer. 
2.2 Determine the important product variables, whether or not they are 

measured. 
2.3 Collect and analyse data on these variables using moving averages, 

CuSums, and process capability studies (Chapters 2-4). 
2.4 Calculate the costs of non-conforming product. 
2.5 Interpret the data using process log books, and by consultation with 

process engineers and operators. 

Stage 3 Explore the process 
3.1 Collect information about the process: 

(a) Known from technical sources and reports 
(b) Relationships or material believed, sometimes strongly 
(c) Conjectures and opinions. 

3.2 Break the process down into modules, if possible, and decide on 
any extra data necessary to achieve this. 

3.3 Collect data available from quality control or other routine opera
tions. Decide on extra data required and collect it. 

3.4 Analyse and interpret the data using graphs, CuSum plots, multiple 
regression or multivariate statistical methods. 

3.5 Design and carry out experiments on the plant in order to test and 
establish empirical or theoretical models. 

3.6 Choose the types of SPC charts to use and decide where to put 
them. 

3. 7 Implement SPC. This stage will often involve training, and some 
sort of 'public relations' exercise with staff. 

A key point with a complex system is to break the process into 
modules. Multivariate methods such as principal components can be 
used to trace back variations through the process. Often some time
series analysis will also be required. 

The experimental design stage is often essential, for without it there is 
insufficient knowledge of the process to implement SPC. 

This section has mentioned numerous statistical techniques not 
covered in this book, such as experimental design, multivariate analysis 
or time-series analysis. For these we refer readers to standard texts. 
Versions of texts adapted to the quality field do not seem yet to exist. 
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1.6 OTHER FACTORS AFFECTING THE SUCCESS OF SPC 

The technical side of SPC is clearly essential in gathering information 
about processes, setting up control charts, and showing how quality or 
yield can be improved and then maintained at a high level. But as the 
Japanese have shown, and as practitioners of SPC and quality manage
ment such as Crosby and Deming have also realized, there is a great 
deal more to it than technical expertise. 

The company has to be prepared to make substantial inputs of 
training, capital and equipment where these are shown to be beneficial. 
It is also essential to have a management philosophy and structure which 
permits and encourages workers at all levels to work for high-quality 

Input of skills 
at many Ieveis 

On-line SPC 

Establish what the 
process is capable of 

producing 

I 
Detect and prevent the 

effect of occasional large 
sources of variation 

l 
Quality 

and 
yield 

l 
Modify the product 

or manufacturing process 

I 
ldentify sources of 

variability 

Input of new 
equipment, 

training 

Figure 1.2 Factors affecting the success of SPC. 
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productiono The success of SPC and other quality initiatives in Japan, 
and its Iack of success in Britain and the USA where the techniques 
originated, is thought to be very largely due to a failure on our part to 
develop our own industrial philosophy and strategieso In particular, 
successful management of the work-force, both skilled and unskilled, 
depends on an understanding of what the company is, and the reasons 
that people will work weil within it. 

Many people depend on the continued health and profitability of a 
I arge company 0 Those directly involved include personal investors, both 
large and smail, pension funds etco, but the structure and wealth of 
society is also affected because of direct taxation of the company, 
taxation of its employees, and the maintenance of the many service 
industries catering for employeeso 

But the people who have the greatest stake in the present and future 
weil-being of the company are the people who work for it at every Ievel. 
They make substantial inputs of time and effort and require satisfactory 
returns, not ail of which are financial. 

Although people will often work Ionger hours (and sometimes harder) 
for more money, for the majority of people this is not a motive for a 
high standard of worko To achieve this latter, a person must be 
motivated by a sense of achievement and of self-wortho Most of us 
motivate ourselves quite weil over long periods of time and in remark
ably difficult conditionso This is especiaily true if we are in a position to 
see that the work we are doing is weil done or has a value of its own, 
including the value of providing for ourselves and for our dependentso 
But we do also need external appreciation of various kinds if we are to 
continue to think and work to the best of our abilityo Awards for quality 
improvement (as suggested by Crosby) are one part of this, and so is the 
appreciation shown 'little and often' by superiors or within a peer groupo 
This is one of the important requirements that management cannot 
afford to overlook in a quality improvement exercise, or they will find 
that the programme is relatively short-lived in its effectivenesso In 
particular if the 'appreciation' of management is shown by making 
workers redundant as a result of improved quality or lower production 
costs, then sensible people who see coileagues treated in this way will 
know how to react to subsequent quality driveso Redeployment and 
retraining cost money, but not as much as is lost by demoralizing the 
work-force at alllevelso 

In the final analysis the company is a highly sophisticated tool for 
shaping our society 0 lts importance lies only in the effects it has on large 
numbers of different peopleo Like many tools the edges are inclined to 
get blunt and require sharpening, parts wear and need replacingo And 
the first and most important step in doing this is to perceive the needo 
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1. 7 OUTUNE OF THE BOOK 

This book is intended to be accessible to people at a range of levels, 
including technical management in industry and statistics, engineering 
and mathematics undergraduates on degree and degree-level courses. 
Chapters 1-7 and 10 ( omitting starred sections) should be accessible to a 
wide range of readers, provided the material contained in Chapter 2 is 
studied in detail. Chapters 8, 9 and 11 onwards are at a higher technical 
level. 

Two sets of exercises have been provided at the ends of chapters; 
those marked 'A' are general data exercises to be done by everyone. 
Exercises marked 'B' are intended to be more mathematical, and to 
enable readers to achieve a deeper understanding of the techniques. The 
exercises should not be skipped. 

Most of the techniques used are presented in a very simple step-by
step summary form, called Method summaries. These summaries should 
make the techniques quite clear, and they should be used as a basis of 
training when SPC is implemented. 

EXERCISES 1A 

1. Write out a detailed flow chart for a process that you are familiar 
with. List separately the 
(a) Input variables. Variables connected with the input raw mater

ials. 
(b) Process variables. Variables which describe process conditions. 
(c) Product variables. Variables which describe the quality of the 

product. 

Discuss the possible points in this process at which SPC charting, 
sampling inspection, or off-line quality control might be applied. 
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Same basic distributions 

2.1 INTRODUCTION 

2.1.1 Layoutofthis chapter 

A large part of this book is taken up with the construction of various 
types of control chart, and with the derivation of some of the properties 
of these charts. All of these charts are based on an underlying model for 
the data, and in this chapter we review the main models used. In section 
2.1.2 we describe the types of data we meet, and we shall need models 
to cover these. Also, in section 2.2 and to some extent in section 2. 7 a 
list of basic results is given. In fact, a large part of the book can be 
understood with a fairly shallow understanding of these ideas. 

A revision of the binomial, Poisson, geometric and normal distribu
tions is given in sections 2.3-7. Those familiar with the material on 
distributions should read sections 2.1 and 2.9, with sections 2.10 and 
2.11 as optional. 

Scientists interested mainly in the applications need not study the 
detailed theory but should read the basic definitions in each section. 

2.1.2 Types of data 

There are three main types of data: attribute, countable and continuous 
data. 

(a) Attribute data 
In attribute data, each item of data is classified as belonging to one of a 
number of categories, and the most common case is when there are just 
two categories. Examples are as follows: 

(1) An article on a production line is inspected and classified as either 
effective or defective. 

(2) A sample of a chemical is inspected and analysed for the percen
tage of a certain impurity. This result is simply recorded as either 
within or not within specified tolerances. 
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(3) A sample of 200 invoices is inspected, and each invoice is classified 
as correct or incorrect. 

(4) In inspection at an electronics factory, it is recorded which of five 
'setting stations' produced a given item. 

(b) Countahle data 
Countahle data arises when each data item is the count of the number 
of faults, accidents etc. for a given length of time or quantity of 
material. For countable data, Observationsrange over the values 0, 1, 2, 
... , and examples are as follows: 

(1) A sample of plastic chips are inspected, and the number of 
misshapen pieces recorded. 

(2) In the production of electronic equipment, final production was 
subject to strict inspection. The number of defects for each item 
inspected was noted. 

(3) A sample of 200 invoices was inspected and the number of errors 
in each noted. 

( c) Continuous data 
Many variables are measured on a continuous scale such as the 
following: 

(1) The hardness of a metal, or of a plastic. 
(2) The tensile strength of a piece of plastic. 
(3) The water content, in parts per million, of a sample of antifreeze. 
(4) The weight of a powder packed in a capsule or container. 

( d) Multivariate data 
Most SPC methods to date deal with one variable at a time, whereas in 
fact most practical situations are multivariate. For example, in the 
manufacture of film, a set of variables which describes the product 
might include hardness, profile, luminescence, yellowness. Similarly, a 
set of variables describing the process might include the shift number, 
batch number, processing times at various stages, critical temperatures, 
draw ratios, etc. For the same application, a further collection of 
variables might describe the quality and amounts of input raw materials. 
H is often vital to keep a clear distinction between these input, process 
and product variables. 

Multivariate data is especially common in applications in the process 
industries, but multivariate SPC methods are not yet well developed. 

2.2 SOME BASIC DEFINITIONS 

We have just described some kinds of data which we shall meet in 
statistical process control. In order to proceed we shall need some basic 
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ideas and definitions. A full explanation of these can be found in books 
on elementary statistics, such as Chatfield (1984) or Wetherill (1982). 

Suppose we take samples of 1 kg from successive batches of produc
tion of an engineering plastic, and examine them for longs (unusual
shaped pieces). The numbers of longs for successive batches might be 

0, 3, 0, 1, 2, 1, 1, 0, 2, 5, ... 

If we let the successive results be denoted x 1, x 2 , •.. , then for the 
first n we can calculate the sample mean 

i = 2:xJn 

and the sample variance 

or the standard deviation s, which is the square root of the variance. 
We regard any data set, such as a collection of 100 successive results, 

as a random sample from a population. For the example we are 
considering the population is summarized by the relative frequency table 
for a very large set of results taken under the same conditions. (In 
practice, it is not possible to sample under identical conditions due to 
variations in the process; we shall discuss this later.) Models for 
populations are probability distributions. For countable data, as in our 
example above, a suitable probability distribution is a set of values p(r), 
for r = 0, 1, 2, ... , suchthat p(r);:: 0 and 

LP(r) = 1 

For continuous data, a suitable probability distribution is defined by a 
probability density function f(x) such that f(x) ;:: 0, 

{J(x)dx = 1 

and the probability of getting a result between L and U is 

u 
Lt(x)dx. 

Examples of these distributions are given in the following sections of 
this chapter. 

The mean of the population, rather than the sample, is called the 
expectation, and is defined by 
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E(r) = 2: rp(r) 

for countable data, and by 

E(X) = I xf(x) dx 

for continuous data. The variance of the population is given by 

V(X) = I (x - fl)2f(x) dx 

where 11 is the expectation. These quantities can be regarded as the 
sample mean and variance, but calculated for the whole population 
rather than for a sample. 

2.3 ATTRIBUTE DATA- BINOMIAL DISTRIBUTION 

The most common distribution which arises for attribute data is the 
binomial distribution. This arises in the following situation: 

Carry out n independent trials, the result of which is either 0 or 1. 
The probability of a '1' result is constant from trial to trial and is 
denoted p. 
The outcome X of each trial is independent of all others. 
With these assumptions, the probability distribution of the number of 

'1' results is 

Pr(X = r) = (;)pr(1- py-r, r = 0, 1, ... , n (2.1) 

and some values are given in Table 2.1. 
For this distribution we find that the expectation and variance are 

E(X) = np, V(X) = np(1 - p ). 

The binomial distribution approaches the normal distribution as 
n ~ oo. The normal distribution is discussed in section 2.6, and the 
normal approximation to the binomial distribution is studied in section 
2.10. 

Example 2.1 Acceptance inspection 
As batches of items come into a production line, a sample of 20 items is 
selected and the number defective counted. The distribution of the 
observed number of defects will be binomial, theoretically. We find that 

Pr(Numberofdefectives = r) = (2~)pr(1- p)zo-r 
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Table 2.1 Binomial distribution for a selection of p-values with n = 20 

p 0.05 0.10 0.20 0.40 
r 

0 0.3585 0.1216 0.0115 0.0000 
1 0.3774 0.2702 0.0576 0.0005 
2 0.1887 0.2852 0.1369 0.0031 
3 0.0596 0.1901 0.2054 0.0123 
4 0.0133 0.0898 0.2182 0.0350 
5 0.0022 0.0319 0.1746 0.0746 
6 0.0003 0.0089 0.1091 0.1244 
7 0 0.0020 0.0545 0.1659 
8 0.0004 0.0222 0.1797 
9 0.0001 0.0074 0.1597 

10 0 0.0020 0.1171 
11 0.0005 0.0710 
12 0.0001 0.0355 
13 0 0.0146 
14 0.0049 
15 0.0013 
16 0.0003 
17 0 
18 
19 
20 0 0 0 0 

Mean 1.00 2.00 4.00 8.00 
St.Dev. 0.975 1.342 1.789 2.191 

where p is the probability of a defective. This is the basis of acceptance 
inspection, and will be discussed later. 

A 'model' of the binomial distribution can be made as follows. 
Suppose we have a container with discs in it, a proportion p of which 
are labelled '1' and the rest '0'. To simulate the binomial distribution 
with, say n = 10, take 10 separate drawings, replacing the disc each 
time. Record the total number of '1' responses. This is precisely the 
same as drawing 10 items from a batch with replacement, a proportion 
p of which are defective. 

2.4 COUNTABLE DATA- POISSON DISTRIBUTION 

Countahle data occurs very frequently, and one of the most common 
distributions which applies is the Poisson distribution. This distribution 
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applies when certain 'events' occur at random in time or space, and the 
observation recorded is the number of events in a given interval. 

Examples of cases where the Poisson distribution applies are the 
number of incoming telephone calls to an exchange in a five-minute 
period, and the number of 'specks' pergram of a powder. 

In general, let the expected number of 'events' in a unit time interval 
be f-l, so that the probability of an event in the interval (t, t + öt) is 1-l öt, 
independently of events in other time intervals. From these assumptions 
it can be shown that the probability distribution of the number, X, of 
events in a given (unit) time interval is 

Pr(X = r) = e- 1111' /r!, r = 0, 1, 2, . . . (2.2) 

For this distribution we find that the expectation and variance are 
both f-l. 

The Poisson distribution approximates the Normal distribution for 
large f-l, and the Normal approximation to the Poisson distribution is 
studied in section 2.11. 

A historic data set which fit the Poisson distribution will illustrate the 
basic idea. 

Example 2.2 Radioactive emissions 
The emission of a-particles from a radioactive source are events which 
are independent of each other, and completely randomly distributed in 
time. Rutherford et al. (1920) reported the results of observing the 
number of emissions from each of 2608 periods of 7.5 seconds, and the 
results are shown in Table 2.2. 

Table 2.2 The number of emissions from a radioactive source 

No. of emissions Frequency Poisson distribution, 11 = 3.870 
Probability 2608 X Prob 

0 57 0.0209 54.399 
1 203 0.0807 210.523 
2 383 0.1562 407.361 
3 525 0.2015 525.496 
4 532 0.1949 508.418 
5 408 0.1509 393.515 

6 273 0.0973 253.817 

7 139 0.0538 140.325 

8 45 0.0260 67.882 

9 27 0.0112 29.189 
10 

1n 11 0.0066 17.075 

12 
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The Poission distribution can be worked out theoretically, and it 
depends on one parameter, fl, which we set equal to the average i. In 
column 4 of Table 2.2 we show the fitting Poisson distribution, and 
there is very good agreement. A formal statistical test can be done to 
show that the agreement is within what we might expect from random 
variation. 

The point about Example 2.2 is that it is an example where the 
assumptions of the Poisson distribution do seem to hold. When we go to 
industrial data we often have reasons to doubt that the assumptions 
hold. 

Example 2.3 
Data was collected on the number of accidents in a certain factory each 
month for four years. Table 2.3 shows a comparison with a Poisson 
distribution of the same mean (3.354 per month). 

Table 2.3 Accidents per month for 48 months 

No. of accidents Frequency Poisson distribution, f-l = 3.354 
Probability 48 X Prob 

0 3 0.0349 1.68 
1 5 0.1172 5.63 
2 7 0.1965 9.43 
3 12 0.2197 10.55 
4 7 0.1843 8.84 
5 9 0.1236 5.93 
6 2 0.0691 3.31 
7 3 0.0331 1.59 

~8 0 0.0216 1.04 

Although the agreement with the Poisson distribution is fairly good in 
Example 2.3, there are reasons to doubt the Poisson fit. For example, 
winter may be worse than summer for accidents, and the rate is likely to 
depend on the man-hours worked. The occurrence of an accident may 
make others more careful so that accidents are not independent of each 
other. In fact, the Poisson distribution often fits accident data surpris
ingly well. 

If now we consider the distribution of the number of 'specks' in a 
kilogram of a powder from an industrial process, then for the Poisson 
distribution to hold we would need to assume that the production 
conditions hold constant over the period during which the data was 
collected, and this may well be unlikely. We would be likely to see a 
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greater dispersion in the data than a Poisson distribution would allow. 
However, the Poisson distribution fits many situations very well. It can 
also be used as an approximation to the binomial distribution when n is 
large and p is small, by setting f.1. = np. In Table 2.4 some Poisson 
distribution are tabulated, and also one case of a binomial distribution, 
showing the close approximation to a Poisson distribution. 

Table 2.4 The Poisson distribution 

Binomial 
r 11 = 1 2 4 8 n = 20 p = 0.4 np = 8 

0 0.3679 0.1353 0.0183 0.0003 0.0000 
1 0.3679 0.2707 0.0733 0.0027 0.0005 
2 0.1839 0.2707 0.1463 0.0107 0.0031 
3 0.0613 0.1804 0.1954 0.0286 0.0123 
4 0.0153 0.0902 0.1954 0.0573 0.0350 
5 0.0031 0.0361 0.1563 0.0912 0.0742 
6 0.0005 0.0120 0.1042 0.1221 0.1244 
7 0.0001 0.0034 0.0595 0.1396 0.1659 
8 0 0.0009 0.0298 0.1396 0.1797 
9 0.0002 0.0132 0.1241 0.1597 

10 0 0.0053 0.0993 0.1171 
11 0.0019 0.0722 0.0710 
12 0.0006 0.0481 0.0355 
13 0.0002 0.0296 0.0146 
14 0.0001 0.0169 0.0049 
15 0 0.0090 0.0013 
16 0.0045 0.0003 
17 0.0021 0 
18 0.0009 
19 0.0004 
20 0 0 0 0.0002 0 

Mean 1 2 4 8 8 
St.Dev. 1 1.414 2 2.828 2.191 

2.5 GEOMETRIC DISTRIBUTION 

The geometric distribution arises in the following situation. 
Carry out a series of independent trials, the results of which is either 0 
or 1. 
The probability of a '1' result is constant from trial to trial and is 
denoted p. 

The outcome X of each trial is independent of all others. 
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The result is the number of trials up to the first '1'. 
With these assumptions, the probability distribution is 

Pr(X = r) = (1 - p)'-1 p, r = 1, 2, 3, ... 

and we find that the expectation and variance are 

E(X) = 1/p V(X) = (1 - p)jp 2 

Example 2.4 

(2.3) 

In a certain factory process inspections are made every half-hour, as a 
result of which the process is declared to be either 'in control' or 'out of 
control'. The probability of detecting the 'out of control' state is p. The 
probability distribution of the number of inspection periods until an 'out 
of control' state is recorded is geometric, with parameter p. (This 
assumes that the process remains statistically stable in the period.) 

Samevalues of the geometric distribution are given in Table 2.5. 
In SPC work, the geometric distribution usually occurs with a very 

low value of p, in which case the tail of the distribution is very lang. 

Table 2.5 The Geometrie distribution 

X 1 2 3 4 5 6 7 8 

0.99 0.99 0.0099 0.0001 0 0 0 0 0 
0.95 0.95 0.0475 0.0024 0.0001 0 0 0 0 
0.9 0.9 0.09 0.009 0.0009 0.0001 0 0 0 
0.8 0.8 0.16 0.032 0.0064 0.0013 0.0003 0.0001 0 
0.7 0.7 0.21 0.063 0.0189 0.0057 0.0017 0.0005 0.0002 
0.6 0.6 0.24 0.096 0.0384 0.0154 0.0061 0.0025 0.0010 
0.5 0.5 0.25 0.125 0.0625 0.0312 0.0156 0.0078 0.0039 
0.4 0.4 0.24 0.144 0.0864 0.0518 0.0311 0.0187 0.0112 

X 9 10 11 12 13 14 15 16 17 

0.99 0 0 0 0 0 0 0 0 0 
0.95 0 0 0 0 0 0 0 0 0 
0.9 0 0 0 0 0 0 0 0 0 
0.8 0 0 0 0 0 0 0 0 0 
0.7 0 0 0 0 0 0 0 0 0 
0.6 0.0004 0.0002 0.0001 0 0 0 0 0 0 
0.5 0.002 0.001 0.0005 0.0002 0.0001 0.0001 0 0 0 
0.4 0.0067 0.0004 0.0024 0.0015 0.0009 0.0005 0.0003 0.0002 0.0001 
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2.6 THE NORMAL DISTRIBUTION 

Many measurements of continuous variables follow the normal distribu
tion, which has the shape shown in Fig. 2.1. The n;ason for this is a 
powerful result called the 'central Iimit theorem'. Basically it states that 
if we add enough effects together, none predominating, then a normal 
distribution results. Because of this result, we often find good fits to 
practical data by the normal distribution. 

J.l. X 

Figure 2.1 The normal distribution. 

The distribution is symmetrical and bell-shaped and is determined by 
its expectation and variance, 

E(X) = /l, V(X) = a2 

and has a probability density function 

1 { 1(x - /l) 2
} 

Y(21T)a exp -2 -a- · (2.4) 

We call this an N(/l, a2) distribution. The distribution is suchthat 

Pr(X > ll + 3.09a) = 0.001 

Pr(X > ll + 1.96a) = 0.025. 

Table 2.6 The normal distribution 

p = f"exp(- x2/2)dx/v'(2:rc) 

z 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 
p 0.5 0.6915 0.8413 0.9332 0.9772 0.9938 0.9986 0.99977 0.99997 

p 0.5 0.6 0.7 0.8 0.9 0.95 0.975 0.99 0.999 
z 0 0.25 0.52 0.84 1.28 1.64 1.96 2.33 3.09 

For further values see the Appendix tables. 
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Other values of probability can be read from Table 2.6. Th~ tables 
only give results for the standardnormal distribution in which 11- =0 and 
a = 1; for other cases of 11- and a we use the transformation 

z = (x - !1-)/a 

and look up z in the tables. Thus, 

Pr(x > 5.94111- = 3, a = 1.5) = Pr(z > 5·9:.; 3 111- = 0, a = 1) 

= Pr(z > 1.96111- = 0, a = 1) 

= 0.025 

2. 7 DISTRIBUTIONS DERIVED FROM THE NORMAL 
DISTRIBUTION 

2.7.1 Sampie mean 

The distribution of the mean of n observations drawn from a normal 
population with expectation 11- and variance a2 is normal with expecta
tion and variance: 

E(X) = 11-

(see Fig. 2.2). 

Distribution of 

means of n 
V(X) = u2fn 

J..l. 

V(X) = a2/n 

Original distribution 
V(X)::: u 2 

Figure 2.2 Sampling from the normal distribution. 

This result is used a great deal in the sequel. Because of the 'central 
limit theorem' the distribution of means are very often normal even if 
the original distribution is markedly non-normal. 
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2. 7.2 Sampie variance 

The distribution of s 2 , the sample variance drawn independently from a 
N(f.l, a2) population is such that (n - 1)s2/a2 has a in-1 distribution. 
Tables of the i distribution are given in Table 2. 7, and methods of 
inference based on this are given in elementary statistics texts. 

Table 2. 7 The x2 distribution 

Degrees of Lower percentage 
freedom points 

3 
4 
5 

1% 
0.115 
0.297 
0.554 

5% 
0.352 
0.711 
1.15 

Upper percentage 
points 

10% 
6.25 
7.78 
9.24 

5% 
7.81 
9.49 

11.07 

For further values see the Appendix tables. 

1% 
11.34 
13.28 
15.09 

0.1% 
16.27 
18.47 
20.52 

The amount of information on which the sample variance is calculated 
is called the degrees of freedom. For a sample of n Observations, there 
are only n - 1 independent differences, and so n - 1 degrees of 
freedom. 

2. 7.3 The sample range 

The distribution of the sample range 

R = (maxxi) - (minxi) 

of n independent observations from an N(f.l, a 2) population is not so 
easy to represent. Tables of the distribution are given in Table 2.8. 

Table 2.8 Percentage points of the distribution of the relative range (range/a) 

Sample 99.0 95.0 5.0 2.5 1.0 0.1 
size 

3 0.19 0.43 3.31 3.68 4.12 5.06 
4 0.43 0.76 3.63 3.98 4.40 5.31 
5 0.66 1.03 3.86 4.20 4.60 5.48 

For further values see the Appendix tables. 
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From this table we see that, for example, in a sample of size 5, 98% of 
sample ranges will fall in the interval 

(0.66a, 4.60a) 

Ranges can be used to estimate a, instead of using the sample 
standard deviation. The method is simply to get the sample range, and 
divide by the factor dn given in Table 2.9. (This is often referred to as 
d 2 in the literature.) 

Table 2.9 Conversion of range to standard deviation 

n dn 

2 1.128 
3 1.683 
4 2.059 
5 2.326 

Example 2.5 
If our data is 

then we have 

n dn n dn 

6 2.534 10 3.078 
7 2.704 11 3.173 
8 2.847 12 3.258 
9 2.970 13 3.336 

2.1 1.7 2.4 1.9 2.6 

range = 2.6 - 1.7 = 0.9 

& = 0.9 -:- 2.326 = 0.387 

n dn 

14 3.407 
15 3.472 
16 3.532 
17 3.588 

2.8 APPLICATION OF RESULTS- A SIMPLE CONTROL 
CHART 

In a certain production process, titanium buttans were being produced. 
Sampies of four were drawn from the process every 15 minutes, and 
measurements of hardness (DPN) made on each button. The data for 25 
samples are given in Table 2.10, tagether with the means and ranges of 
each sample. 

Data of this kind are usually part of a process control procedure, and 
our intention is to distinguish between 

(1) those samples such that the variation can be adequately accounted 
for by random variation, and 

(2) those samples which indicate that some special cause of variation is 
likely tobe present. 
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Table 2.10 Hardness measurements of titanium buttons 

Sampie Hardness (DPN) Mean Range 
number (.i) (R) 

1 125.8 128.4 129.0 121.0 126.1 8.0 
2 125.2 127.0 130.4 124.6 126.8 5.8 
3 121.8 126.8 127.2 129.8 126.6 8.0 
4 131.0 130.0 127.2 127.0 128.8 4.0 
5 128.6 122.8 125.4 126.4 125.8 5.8 
6 122.0 123.8 131.2 121.8 124.7 9.4 
7 122.9 129.3 126.2 128.8 126.8 6.4 
8 120.2 130.0 125.6 144.0 130.0 23.8 
9 124.8 123.7 130.2 128.8 126.9 6.5 

10 127.0 126.4 122.2 129.0 126.2 6.8 
11 131.8 127.6 123.8 123.2 126.6 8.6 
12 129.8 125.6 128.2 127.6 127.8 4.2 
13 127.6 125.6 128.2 126.8 127.1 2.6 
14 124.2 122.8 124.8 124.6 124.1 2.0 
15 125.4 129.4 123.6 127.2 126.4 5.8 
16 130.8 122.8 125.4 126.2 126.3 8.0 
17 127.4 131.0 123.0 122.8 126.1 8.2 
18 124.8 122.6 122.8 123.6 123.5 2.2 
19 123.8 130.0 128.4 130.0 128.1 6.2 
20 128.8 141.2 138.8 136.2 136.3 12.4 
21 126.4 123.8 128.8 129.6 127.2 5.8 
22 130.8 127.4 126.0 125.2 127.4 5.6 
23 129.6 128.4 123.2 125.8 126.8 6.4 
24 124.4 127.0 130.0 122.8 126.1 7.2 
25 129.2 126.2 128.0 123.2 126.7 6.0 

Totals 3175.0 175.6 

When we get samples of type (2), we carry out some investigation of 
the process in order to control it. Now if we Iook at Fig. 2.3 and Fig 2.4 
we see that samples 8 and 20 seem to show unusual behaviour. 
However, there are other samples which we might question, and we 
obviously need some rule to help us to interpret charts such as Figs. 2.3 
and 2.4. 

We approach this by assuming that for most of the time, sampling the 
process is just like drawing samples from a single normal population. 
The results of the previous section enable us to draw boundaries which 
will contain almost all of the data, under normal conditions. 

Clearly, in any practical case we would test the normality assumption 
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Figure 2.4 Plot of ranges of titanium hardness data. 

before proceeding. Furthermore, we shall soon see that the underlying 
process is often more complex than our simple model allows. For the 
present we assume a normal population and proceed to estimate 11 and a 
for the population representing our 'hardness' data. 

The best estimate of 11 is given by the overall average, 

{1 = 3175/25 = 127.0 

where {1 means 'estimate of 11'. 
A good estimate of a can be obtained by using the average range and 
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this is shown below. Another estimate of a could be obtained by 
calculating the variances within groups, and then combining these. This 
would be a slightly more efficient estimate of a than the range estimate, 
but the gain in efficiency is quite small for samples of size 4. 

Table 2.8 shows the percentage points of the distribution of the range 
(effectively for a = 1, so we multiply by a to use it). Thus, for example, 
for samples of size four, ranges greater than 3.98a only occur with a 
probability 0.025, and only 0.1% of sample ranges are greater than 
5.31a. 

Now we return to the data in Table 2.10 and we proceed as follows: 

Total of 25 ranges 
Average range 
Constant (sample size = 4) 
Estimate of a 

175.6 
7.024 
2.059 
7.024 ..;- 2.059 = 3.41. 

Basedon this value of a, and using Table 2.8, we see that only 0.1% of 
ranges is greater than 

5.31a = 5.31 x 3.41 = 18.1 

The range for group 8, at 23.8, is much greater than this. It is most 
unlikely that such a value could occur by chance, and there is very 
strong evidence that some assignable cause of variation is present in this 
particular sample. 

Group 20, with a range of 12.4, is only 12.4/3.41 = 3.63a. This is not 
very unusual, as it is at the upper 5% point (Fig. 2.5). Thus deviations 
of range from the average of such a size could occur in 5% of occasions 

,----- 5% 

12.4 
Range 

Figure 2.5 Distribution of sample ranges for samples of size 4 taken from a 
normal distribution with a = 3.41. 
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at the upper end, and 5% of occasions at the lower end of the 
distribution. 

Based on these results, we would be best to recalculate our estimate 
of a omitting the result from group 8. (We might also omit sample 20, 
provided there is a good process explanation for its unusual value.) We 
have results as follows: 

Total of 24 ranges 
Average range 
Constant (sample size = 4) 
Estimate of a 

151.8 (175.6 - 23.8) 
6.33 
2.059 
6.33 -:- 2.059 = 3.07 

We now find that sample 20 Iooks more extreme, but perhaps not so 
much so that it should be omitted. Thus our final estimate of a is 3.07. 

We know that in samples of size 4, the sample means will have a 
normal distribution with a standard error of a/v'n, so with & = 3.07, 
and n = 4, we have 

&/v'n = 3.07/v'4 = 1.535 

For any normal distribution about 99.7% lies within ±3 standard 
deviations of the mean, so that we expect 99.7% of sample means to lie 
between 

(overall average) ±3 x (standard error of mean of 4) 

which is 
127 ±3 x 1.535 = 122.4 to 131.6 

If we draw lines on Fig. 2.3 at these values, we have boundaries 
which we expect to be crossed on only 0.3% of occasions if our 
population is still the same normal population. We see from Fig. 2.6 
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that the mean for sample 20 is well above the upper boundary, showing 
that there is clear evidence of the presence of some special cause of 
variation at this point in the process. 

The boundaries are called action boundaries, and the way the chart is 
used is to take action on the process whenever a point lies outside these 
action boundaries. This type of chart was introduced by Walter A. 
Shewhart (1931), and a similar pair of action boundaries can be defined 
for the range chart. W e shall develop this idea below. 

Returning to Fig. 2.6, we see that the mean for sample 20 is well 
above the upper action boundary, so that we suspect the presence of a 
'special cause' at this point. Provided investigation gives resonable 
grounds for a special cause, this sample should be omitted from the data 
used to estimate f.1 and a. The reasoning is that, since a special cause 
was present, that sample is not representative of the population we are 
estimating. The recalculation of {1 and a is left as an exercise. This 
recalculation is usually done when the chart is set up, and when the 
process capability is being reassessed. 

Note: Same statisticians follow the method given in the British 
Standard, which puts the Iimits at ±3.09 standard errors, equivalent to 
the 99.8% Ievel. There is very little to choose between the two 
practices. 

2.9 TESTING FOR NORMALITY 

Since many of the methods which follow assume normality, it is useful 
to have a check on this assumption. A simple test for normality is to 
draw a normal probability plot. (Tests for binomial and Poisson distribu
tions are given in Chapter 10.) 

Example 2.6 
The data in Table 2.11 are measurements of resistance of 30 compon
ents from the same batch. In Fig 2.7 we show a histogram of the data, 
and Fig. 2.8 shows a cumulative distribution. 

Table 2.11 Measurements of resistance of 30 components 

999.1 1003.2 1002.1 999.2 989.7 1006.7 
1012.2 996.4 1000.2 995.3 1009.7 993.4 
998.1 997.9 1003.1 1002.6 1001.8 996.5 
992.8 1006.5 1004.5 1000.3 1014.5 998.6 
989.4 1002.9 999.3 994.7 1007.6 1000.9 
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In order to see if the normal distribution fits we proceed as follows: 

METROD SUMMARY 2.1 

Checking for normality - using normal probability paper 

Step 1 Order the data from smallest to largest. 
Step 2 Put alongside each measurement its order number, r. 
Step 3 Calculate p = (2r - 1)/2n. 
Step 4 Using special normal probability paper plot p on the 

vertical axis against the measurements. 

Table 2.12 Calculations for normal 
probability plot 

Observation r 

989.4 
989.7 
992.8 
993.4 
994.7 
995.3 
996.4 
996.5 
997.9 
998.1 
998.6 
999.1 
999.2 
999.3 

1000.2 
1000.3 
1000.9 
1001.8 
1002.1 
1002.6 
1002.9 
1003.1 
1003.2 
1004.5 
1006.5 
1006.7 
1007.6 
1009.7 
1012.2 
1014.5 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

p = (2r- 1)/2n 

0.01667 
0.05 
0.09833 
0.1167 
0.15 
0.1833 
0.2167 
0.25 
0.2833 
0.3167 
0.35 
0.3833 
0.4166 
0.45 
0.4833 
0.5166 
0.55 
0.5833 
0.6167 
0.65 
0.6833 
0.7166 
0.75 
0.7833 
0.8167 
0.85 
0.8833 
0.9167 
0.95 
0.9833 
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The reasoning behind this test is as follows. Table 2.12 lists the 
cumulative frequency distribution of the Observations, and if this is 
plotted out we get the S-shaped curve of Fig. 2.8. By plotting the 
observations against the value of Zp for which the standard Normal tail 
probability is p we get a straight line when the data is normal. The 
standard deviation of the data can be calculated from the slope of the 
line. 

Steps 1-3 are illustrated in Table 2.12 for the resistance data of 
Example 2.6, and the resulting probability plot is shown in Fig. 2.9. 

For some other methods of testing normality see Wetherill et al. 
(1986). 
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Figure 2.9 Normal probability plot for Example 2.6. 

2.9.1 Discussion 

The importance of getting a good fit for the distribution model used 
arises from the fact that in SPC we deal a lot with tail area properties of 
the distributions. For example, in section 2.8, the operation of the 
simple Shewhart chart depends on the proportion of observations 
beyond three standard deviations from the mean. 

If non-normality is detected, some search for the reason needs to be 
conducted, and to ask questions such as the following: 

(1) Is the non-normality due to 'outliers' or 'rogue values'? 
(2) Has there been a merging of several different streams of produc

tion prior to the measurement point, so that these streams really 
need to be considered separately? 
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(3) Is the non-normality due to the fact that the measurement is down 
to the detectable limit? 

(4) Is there a time effect, so that the process wanders in Ievel over 
time, giving rise to a non-normal distribution overall. 

If the basic distribution (allowing for these points) is non-normal, then 
a simple transformation can be tried as a means of restoring normality. 
See Wetherill et al. (1986) for a discussion, but frequently the logarithm, 
square root or reciprocal transformation works. 

Procedures for testing the goodness of fit of binomial or Poisson 
distributions are dealt with in Chapter 10. 

2.10* THE NORMAL APPROXIMATION TO THE 
BINOMIAL DISTRIBUTION 

In many SPC applications, the normal distribution is used as an 
approximation to the binomial distribution, so that instead of calculat
ing, say 

Pr(X :54)= ±(n) p'(1- Pt-' 
r=O r 

the normal distribution with expectation np and variance {np(1 ~ p)} is 
used so that we calculate 

Pr( X :::; 4) = f"' v'(~n)a exp {-[X; Ii r}dx 

where f.l = np and a2 = { np(1 - p)}, perhaps including a 'continuity 
correction', to allow for the discreteness of the binomial distribution, so 
that the upper Iimit is 4.5, not 4.0. 

Following this approach, a simple control chart for binomial data 
would be obtained by treating it as normal, putting the target at np, and 
the action lines at 

np ± 3v'{np(1 - p)}. 

A discussion of the normal approximation to the binomial distribution 
is given by Uspensky (1937), who gives a correction formula, and Hald 
(1952, 1978) carried out further studies. Hald points out that for p 
outside the range 

(n + 1)-1 < p < n/(n + 1) 

the binomial distribution is steadily increasing or decreasing, and the 
normal approximation cannot fit. Hald suggests that the normal approxi
mation be limited to the range 
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np(l- p) > 9 

though he comments that this 'does not result in the same accuracy for 
different corresponding values of n and p determined from the formula 
np(l- p) = 9.' (Uspensky suggests that np(le-p) ~ 25.) Table 2.13 
below gives some values of exact and approximate probabilities close to 
limits given by Hald's formula. 

Table 2.13 Exact and approximate probabilities such that Pr(X < C) < P; for 
values of n and p close to np(1- p) = 9 

Approx. Approx. 
n p Correct c with corr. without corr. 

p = 0.05 
909 0.01 0.0195 3 0.0312 0.0212 
459 0.02 0.0476 4 0.0594 0.0421 
189 0.05 0.0380 4 0.0493 0.0345 
100 0.10 0.0237 4 0.0334 0.0226 

p = 0.95 
909 0.01 0.9226 13 0.9292 0.9038 
459 0.02 0.9188 13 0.9251 0.8986 
189 0.05 0.9468 14 0.9540 0.9356 
100 0.10 0.9274 14 0.9332 0.9088 

p = 0.01 
909 0.01 0.0056 2 0.0140 0.0090 
459 0.02 0.0051 2 0.0130 0.0083 
189 0.05 0.0037 2 0.0102 0.0064 
100 0.10 

p = 0.99 
909 0.01 0.9883 16 0.9932 0.9894 
459 0.02 0.9876 16 0.9927 0.9885 
189 0.05 0.9855 16 0.9907 0.9856 
100 0.10 0.9990 3 0.9940 0.9902 

There are obvious difficulties in making the comparison, but there is 
reasonable evidence to support use of Hald's formula as a limit. 

2.11 * NORMAL APPROXIMATION TO THE POISSON 
DISTRIBUTION 

This follows similar reasoning to the previous section. Instead of 
calculating, say 
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4 

Pr(X ::54) = 2.e-~'f-{ /r! 
r=O 

the normal approximation 

Pr( X ::54) = fooV(~n)tJ exp {(X: tl)2} dx 

is used, possibly with the 'continuity correction'. A standard result is to 
Iimit this approximation so that tJ-3YtJ2=Ü, or tJ2=9. Table 2.14 
below gives some values. 

Table 2.14 Exact and approximate probabilities such that Pr( X < C) < P, for 
various values of 11 

Normal approximation 
11 p c Exact with corr. without corr. 

6 0.99 11 0.9799 0.9876 0.9794 
6 0.95 9 0.9168 0.9235 0.8897 
6 0.05 1 0.0174 0.0331 0.0206 
6 0.01 0 0.0012 0.0123 0.0071 

9 0.99 16 0.9889 0.9938 0.9902 
9 0.95 13 0.9261 0.9332 0.9088 
9 0.05 3 0.0212 0.0334 0.0227 
9 0.01 2 0.0062 0.0151 0.0098 

20 0.99 30 0.9865 0.9906 0.9873 
20 0.95 27 0.9475 0.9532 0.9412 
20 0.05 12 0.0390 0.0468 0.0368 
20 0.01 9 0.0050 0.0094 0.0069 

The binomial and Poisson distributions are considered further in 
Chapter 10. For further information see Uspensky (1937) or Hald (1952, 
1978). 

EXERCISES 2A 

1. What model would you expect to apply in the following examples? 

(a) The number of misprints on one page of a daily newspaper. 
(b) The number of accidents per week on a particular stretch of 

motorway. 
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( c) The number of packs of a certain product which are less than 
the nominal weight, out of 100 produced per day. 

(d) The time you take to reach work each day. 

2. Obtain some data sets representing countable, attribute and continu
ous data from processes you are connected with. Plot the data out, 
and try to interpret the more extreme variations. 

3. There are 16 sets of data given in Tables 2.15 and 2.16 (20 values in 
each set), from each of 3 distributions, A, B and C. Construct a 
normal probability plot for one or more of the sets for each of A, B 
and C, and determine whether any of these distributions is normal. 

Table 2.15 

Al A2 A3 A4 A5 A6 A7 AB 

2.63 3.75 3.67 1.94 1.42 4.24 3.96 3.75 
4.93 2.33 2.77 3.22 3.84 2.81 3.97 2.13 
3.20 2.66 3.28 2.67 4.20 2.21 2.56 3.23 
3.36 2.59 2.34 4.58 3.44 4.60 2.26 3.73 
2.54 2.22 3.76 3.87 1.24 1.71 3.84 2.66 
2.97 1.66 3.95 3.12 2.16 3.06 4.28 3.50 
4.94 2.13 3.63 0.60 1.50 3.34 3.30 2.42 
4.23 3.51 3.29 2.53 1.68 3.95 4.01 3.57 
1.61 2.21 4.77 3.88 3.04 3.52 2.21 3.56 
2.25 1.38 1.93 2.29 2.12 2.41 0.98 2.70 
4.19 3.00 3.93 3.02 3.26 5.08 3.32 1.97 
2.98 2.38 0.16 2.71 1.82 3.70 2.61 3.43 
3.09 3.29 1.98 2.82 2.89 3.06 2.46 3.28 
2.80 2.08 3.00 2.94 4.40 2.54 1.90 4.15 
5.19 2.07 2.63 2.43 2.52 1.70 4.34 3.62 
1.75 2.60 2.04 3.56 3.22 2.39 3.44 2.26 
3.62 3.03 4.01 3.61 3.10 3.51 1.82 2.56 
1.16 2.16 4.24 3.45 2.02 3.73 4.42 1.22 
2.90 2.87 1.43 4.06 2.10 3.24 1.73 3.49 
1.34 2.25 3.15 2.19 1.99 2.51 2.89 3.36 
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Table 2.16 

Bl B2 B3 B4 Cl C2 C3 C4 

4.28 8.10 3.54 0.30 0.43 3.81 0.77 0.84 
3.29 4.04 2.81 2.19 1.43 0.67 2.06 2.73 
3.07 2.38 4.75 1.38 4.31 0.43 0.91 6.61 
8.16 9.38 0.71 3.26 1.78 0.63 3.94 2.72 
7.31 0.12 3.17 1.33 2.03 1.30 2.56 0.48 
3.41 0.82 0.33 6.54 1.50 2.31 0.54 0.17 
7.60 4.65 0.46 4.35 0.25 0.29 4.73 0.49 
0.90 1.46 1.77 4.92 0.74 0.36 0.87 0.46 
6.30 2.47 0.67 3.27 0.89 0.31 2.99 0.19 
2.35 1.83 4.20 1.82 1.11 0.33 1.19 0.96 
1.71 1.05 1.85 2.84 0.91 0.86 0.85 1.02 
9.41 3.71 8.36 3.20 0.67 0.48 0.52 0.75 
0.52 2.37 1.43 0.37 2.54 3.86 1.04 1.61 
5.37 1.66 6.45 2.06 1.21 1.64 4.39 1.75 
1.08 0.40 6.15 6.59 10.48 2.30 0.13 0.50 
2.13 3.09 2.25 2.85 0.21 2.63 5.87 0.41 
7.48 2.03 0.67 0.73 1.66 1.10 0.11 0.62 
2.94 7.05 0.85 1.61 0.18 2.29 2.08 1.75 
2.84 1.64 5.12 3.65 1.95 1.86 1.03 6.36 
1.48 2.54 2.15 1.15 2.14 2.02 0.12 0.31 

4. Plot the percentage points of the i' distribution on normal probabil
ity paper for 5, 10 and 30 degrees of freedom. 

5. How would you provide numerical measures of the quality of the 
service provided by the following? 

(a) The service at an industrial canteen. 
(b) Post office mail. 
(c) Telephone directory enquires. 
( d) A supermarket checkout. 

6. Tins of soup are being filled on average with 377 g, the standard 
deviation being 1.4 g. What proportion of tins contain less than 
375 g? What average fill weight is required to ensure that no more 
than 0.1% oftins contain less than 375 g? 

7 When it is stable a process produces items that have an average 
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dimension of 46.75 nun and standard deviation of 0.26 mm. Upper 
and lower specification limits for this dimension are 46.1 mm and 
47.4 mm. Assurn.ing that the distribution of values is normal, what 
proportion of items will be outside specification? 

8. Titanium buttans have been found to have an average measured 
hardness of 127.0 and a standard deviation of 3.4. 

(a) What proportion of individual buttans will have hardness 
measurements outside the limits (121.8, 132.2)? 

(b) If four buttons at a time are measured what is the probability 
that the mean hardness of this group will lie outside the above 
lirn.its? 

What assumptions are you making, and do you think they are 
justifiable? 

EXERCISES 2B 

1. Assurne that you have data available in the form of Table 2.10, with 
n observations per group, and k groups, and that the data is 
independently and normally distributed with mean IJ. and variance 
a'l. Let action lines be placed at Aa/Yn from the target mean 
( assumed zero). 

(a) Show that the probability of action in any group is 

p = ~ IJ.~ n - A) + q,( -J.t: n - A). 
(b) Define the run length as the number of groups up to and 

including the first action point. Show that the distribution of run 
length is geometric with parameter p. 

(c) Obtain the average run length (ARL) for the Shewhart chart for 
means, when the constant A = 3. 

2. For the geometric distribution show that 

Pr(R s; n) = 1- (1- p)n+I. 

Hence find the values of p for which 

Pr(R s; n) = 0.95 

f<?r n = 10, 20, 30, 40, 50. Compare the values of E(R) for these 
values of p, and conunent on the skewness of the distribution. 
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3. A large batch of items is submitted for inspection, and the items are 
classified as effective or defective. The proportion defective in the 
batch is (). ltems are sampled at random until exactly c defectives 
have been found. Show that the probability that this occurs at the 
nth item is 

(n - 1)ec(1 - e)n-c 
c - 1 

for n = c, c + 1, .... (Hint: the last item sampled must be a 
defective.) 

4. Suppose that the probability that an event occurs in the interval ( t, 
t + DT) is i\. Dt, and denoted by Px( t) the probability that there 
have been x events up to time t. Show that 

Px(t + oT) = Px(t)(1 - i\. Dt) + Px_ 1(t)i\. Dt, 

and 

Hence show that 

which is the Poisson distribution. 

X= 1, 2, ... 

5. Verify some of the calcualtions in sections 2.10 and 2.11 on the 
normal approximation to the binomial and Poisson distributions. 
Extend these to lower values of n . 

6. If accidents in a building are assumed to occur randomly with an 
average rate of 42 per year, what is the chance that there will be no 
accidents in April? What is the chance that there will be no more 
than one accident in April? 

7. In a sample of size 100 from a batch with a failure rate of 15% what 
is the probability of 

(a) exactly 18 failures? 
(b) no more than 6 failures? 
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Process variation 

3.1 REASONS FOR PROCESS VARIATION 

For the present we shall concentrate on situations where the variable of 
interest is a continuous variable, and we shall deal with countable and 
attribute data later. 

All industrial processes display variation, and there are many different 
reasons for it, such as: 

(1) Variational noise. This is the variation we observe between product 
manufactured under the same conditions and specifications. 

(2) Causes external to the process, such as environmental temperature, 
humidity, etc. 

(3) Process causes. These are due to the process itself, such as build-up 
of waste products, ageing of a catalyst, variation of loading of a kiln 
etc. 

(4) Assignable causes of variation. This variation may be due to the 
quality of batches of raw material, incorrect setting of equipment, 
etc. 

The procedure adopted in SPC is to try to separate variation that we 
ordinarily expect of a process, from that which may be due to special or 
assignable causes. This is usually done by keeping charts for the process 
average level and the process spread (as outlined briefly in Chapter 2). 
In the following sections we describe the types of pattern we might see 
for charts of sample means. Somewhat similar remarks can be made 
about charts for process spread. We shall suppose that charts are made 
by plotting the means of groups of n observations, and we shall suppose 
that the n observations are sampled close together in time or space ( or 
both). Sometimes observations can only be made singly, so that n = 1, 
and this happens frequently in the process industries. Much of the 
following discussion is relevant to both cases. 
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3.2 TYPES OF PROCESS VARIATION 

Industrial processes display a wide variety of types of variation. In 
general, the component manufacturing industries have processes which 
display much simpler types of variation than the process industries. The 
following are examples. 

(1) Simple random variation 
Figure 3.1 shows the pattern of group means we would expect if our 
data was in fact sampled from a normal population with mean p, and 
standard deviation a. Most of the observations will fall within the 
Iimits p, ± 3.09a. Occasional 'special' or 'assignable' causes of vari
ationwill cause departures from this pattern. 
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Figure 3.1 Process variation - random variation. 

(2) Short- and long·term variation - all random 
Frequently we may find that when we plot our data, the process 
mean varies much more than it should, based on the within-sample 
variation; a test for this will be given in section 3.6. There are two 
types of this that arise. Figure 3.2 shows a random pattern of 
changes in the mean, and Figure 3.3 shows some evidence of 
correlation between neighbouring values. 

(3) Short- and long-term variation - cycles 
Recurring cycles may be due to rotation of apparatus or machinery 
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Figure 3.2 Process variation - extra variation in the mean. 
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Figure 3.3 Process variation - autocorrelation present. 
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used in the process, environmental changes such as temperature, 
worker fatigue, or sometimes to the merging of subassemblies (see 
Fig. 3.4). 
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Figure 3.4 Process variation- recurring cycles. 

(4) Trends 

90 100 

Trends may be due to causes such as gradual deterioration of 
equipment, ageing of catalysts, the accumulation of waste products 
(Fig. 3.5). 
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Figure 3.5 Process variation - trends. 
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( 5) Sudden jumps 
Sudden jumps may be due to new batches of raw material, changes 
in workers or equipment or modifications to the process (Fig. 3.6). 
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Figure 3.6 Process variation - sudden jumps. 

The simple Shewhart chart given in Section 2.8 assumed simple 
random variation only. It is clear that some amendment to the method 
is needed to deal with the other types of variation. 

3.3 SOME MODELS FOR PROCESS VARIATION 

It is helpful to have some theoretical models on which to base our study 
of SPC techniques. The following subsections give a few simple models. 

3.3.1 Simple random variation 

The simplest situation is where we have simple normal variation, 
satisfying the model. 

Modell 
i = 1, 2, ... , k 
j = 1, 2, ... , n (3.1) 

where n is the number of Observations in a group, k is the number of 
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groups, f1 is the overall mean, a~ is the (within-group) variance, and E;j 

are independent N(O, 1) variables. The sample means will have a 

distribution N(f.l, a~/n), and Fig. 3.1 shows a typical plot of these. 

Evidence that special causes are present is given by values of means 

different to what we expect from an N(f.l, a~/n) distribution. 

3.3.2 Between- and within-group variation 

Often in an industrial process, the variation of group means will be 

more than we expect from Modell. The process parameters, such as 

kiln temperatures, etc., may vary slightly introducing extra variation, 

which affects the whole of each group. An appropriate model is: 

Model2 
i = 1, 2, ... , k 
j = 1, 2, ... , n 

(3.2) 

where a~ is the between-group variance, and W; are independent N(O, 1) 

variates. A typical plot of group means i;. is shown in Fig. 3.2. (In 

statistical notation a dot denotes summation over a suffix and a bar an 

averaging.) 

For Model 2 we see that 

V(x;j) = a~ + a~ 

V(i;.) = a~ + (aMn) 

(3.3) 

(3.4) 

These results are important for charting methods. The important feature 

is that increasing the group size n reduces the amount of within-group 

variation in the sample mean, but does not affect the between-group 

component. 

3.3.3 Simple autocorrelated model 

Often we find that for process industries, successive groups of Observa

tions are correlated, showing a pattern such as that in Fig. 3.3. This may 

be due to the fact that process parameters, such as pressures, tem

peratures, etc. vary rather slowly. A suitable model might be: 

Model] (3.5) 

where 

(3.6) 

and 

Wo= 0. 
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The parameter p ( -1 :6 p ::;; 1) determines the correlation between 
groups. 

The asymptotic variance of (3.6) is easily determined, 

V(W) = p2V(W) + a~ 

V(W) = a~/(1 - p2). (3.7) 

Therefore we find that 

(3.8) 

(3.9) 

3.3.4 Simple Markov chain model 

A simple model for data of type 5 in section 3.2 can be built up as 
follows. We think of the system as being in one of k states, where each 
state represents a given value for the mean of the process. At each 
sample point there may be interchange between the states, but one of 
these is an 'absorbing' state, representing an out of control process, 
which remains out of control until repaired. There is no interchange 
from an absorbing state. 

The transition probabilities between one state and the next can be 
represented by a matrix called the transition matrix in which the rows 
represent the current state and the columns the next state: 

Next state 
1 2 k 

1 Pn P12 P1k 

Present state 2 P21 Pzz Pzk 

k Pkl Pkz Pkk 

Since there must be a transition somewhere, we have 
k 

LPii = 1. 
j=l 

for each i. If k is the absorbing state, Pkk = 1, and all other Pki are zero. 
Typically in SPC, we may expect there to be high probabilities of 

staying in the current state, whatever that is, so that all Pii are close to 
one, and we may often find the remainder of the transition probability 
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for each row i is taken up by transfers to nearby states, rather than 
further away ones. 

A fairly realistic process model can be developed using a model of 
this type. Let the initial state be represented by a vector V0 , then the 
probability distribution of the next state is obtained by multiplying the 
initial state vector by the matrix of transition probabilities, so that 

V1 = PVo. 
Similarly we have 

V2 = PV 1, etc. 

It can be shown that whatever the starting state ( except the absorbing 
state), the probability distribution of states eventually setdes down to V, 
where V is the solution of the equation 

V= PV. 

From this result it is possible to calculate the variances of individual 
results and group means, but the calculation is not as simple as in 
previous cases. 

3.3.5 Discussion 

It is often difficult to fit a specific model to a process, particularly with 
more complex processes, and there are several reasons for this: 

(1) There is rarely enough data collected under standard conditions. 
(2) Frequently there are many variables or parameters of the process 

whose effects are incompletely understood. In a complex process it 
can be a major task to attempt to sort these effects out. 

(3) Some of the most important process parameters may be impossible, 
expensive or time-consuming to measure. 

(4) A complex process may not be stable enough to fit a simple model. 

However, it is very important to have a generat knowledge of the 
types of variation present. The only way of doing this is to collect data 
on important process variables and carry out analyses such as those 
given later in this chapter. 

It would also be of interest to have theoretical results on the 
properties of methods under the types of variation given above which 
are alternatives to the simple random variation model. 

3.4 SAMPLING ERROR AND MEASUREMENT ERROR 

It is important to note that both sampling error and measurement error 
can exist, in addition to the types of variation described earlier in this 
chapter. 

Sampling error occurs whenever a particular sample drawn does not 
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give the same result as a sample drawn slightly differently. For example, 
if the product is a powder packed in bags, samples drawn from different 
parts of the bag may give consistently different results. If the product is 
produced on a conveyor belt, samples drawn from the middle or sides of 
the belt may give consistently different results. We shall not discuss this 
topic further in this volume. 

Measurement error is often ignored or unrecognized. Sometimes 
process control systems, introduced to control variation automatically, 
can actually cause variation because they base their results on Observa
tions which have considerable measurement error in them. 

The effect of measurement error can be seen as follows. Suppose we 
observe a variable which is normally distributed with mean !l and 
variance a~, but that it is observed with measurement error with 
variance a~. Then the actual observation will have a variance ( a~ + a~) 
(Fig. 3.7). Thus the inflation of the standard deviation a0 by error with 
standard deviation ae is v'(l + a;ja~); see Table 3.1 for some values. 
We see that measurement error is not very serious unless ae > a0 j2. We 
shall ignore measurement error in most of what follows. 

A strong warning must be given at this point. Measurement error is 
often totally ignored, and there have been many cases in practice where 

~ Observed distribution 

Figure 3. 7 Measurement error. 

Table 3.1 Inflation of standard deviation due to measurement error 

0 
1 

0.5 
1.12 

0.75 
1.25 

1.00 
1.41 

2.50 
1.58 
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the variation displayed by charts is mostly measurement error. The only 
way of being sure is to carry out an experiment. {Similar remarks can be 
made about sampling error.) 

3.5 STUDYING PROCESS VARIATION 

3.5.1 Methods of data analysis 

At the end of section 3.3 we said that the only way of seeing what kind 
of variation is present in a process is to collect data and study it. In this 
section we give some good graphical techniques which can pick up the 
kind of variations described earlier in the chapter. Frequently it is very 
simple techniques which are most useful, particularly when results need 
to be presented to people with little statistical knowledge. We shall 
assume here that histograms, scatter plots, normal probability plots etc, 
are used as appropriate. Some other methods will be given in Chapter 4. 

Once the data has been plotted, it is important to study process logs 
etc. in order to try to interpret the variation observed. This data analysis 
phase usually proves to be very productive, and frequently substantial 
sources of variation are detected and eliminated. 

3.5.2 The use of moving-averages to smooth data 

This is a method of smoothing a data plot so that cycles, trends, etc. can 
be seen more clearly. We describe here the arithmetic moving-average, 
or running mean. It is not necessarily the best for all purposes. 

Suppose we have many successive samples, and a value {possibly a 
sample mean or range) for each. The method of constructing a running 
mean of 5 at a time is given in Method Summary 3.1. 

METHOD SUMMARY 3.1 

Calculating running means 

Step 1 Take first 5 values. 
Step 2 Find the average. 
Step3 Plot this value at the mid-time point (i.e. at the 3rd time 

plot). 
Step4 Drop the 1st value, include the 6th. 
Step 5 Find the average. 
Step6 Plot at mid-time point (4th). 
Step 7 Drop the 2nd value, include the 7th, etc. 
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If one smoothing operation does not appear to remove enough 
haphazard variation, then repeat it two or three times. Try to take care 
not to smooth too much, as this loses essential detail. 

Example 3.1 
In the manufacture of phenol, carbonyl species occur and should be 
kept to a minimum, certainly less than 200 ppm. The data given in 
Table 3.2 are from successive batches of phenol, and Figs. 3.8-10 show 
plots of the original data unsmoothed and after two stages of smoothing 
by the process outlined in Method Summary 3.1. 

Table 3.2 Phenol data (ppm of carbonyl species) 

139 115 120 120 126 84 76 100 100 98 
80 76 96 112 69 54 61 66 35 30 
35 40 35 59 66 55 30 32 29 66 
46 60 55 48 48 67 125 99 79 90 
90 97 101 105 95 95 145 145 150 160 

175 170 170 162 162 111 101 106 99 105 
107 93 103 125 119 145 147 166 155 160 
115 169 163 64 118 116 99 100 107 97 
99 100 99 87 70 61 60 69 
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Figure 3.8 Phenol example. Plot of original carbonyl data. 
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Figure 3.9 Phenol example. Plot of carbonyl data, smoothed once by 5-step 
moving average. 
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Figure 3.10 Phenol example. Plot of carbonyl data, smoothed twice by 5-step 
moving average. 

One alternative is to smooth using running medians rather than 
running means. The medians are easier to calculate, and less sensitive to 
'rogue' observations. 
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The number of sampling points over which we smooth, which was 5 in 
Method Summary 3.1, needs to be chosen with some care. Too large a 
value of this constant will result in a plot which doesn't follow trends 
quickly enough, whereas too small a value will result in too much 
scatter. 

If there are n observations per sampling point, and a moving average 
of k means is plotted, then under normality the standard error of the 
moving average points is aw/Y(kn). We would want this standard error 
to be about half the size of any interesting difference we wished to 
detect. In practice, therefore, we would fix on the smallest 'interesting 
difference' that we want to detect, D, and put 

D = 2aw/Y(kn) 

kn = 4a~/D 2 

Frequently n is fixed from practical considerations, so this helps us to 
determine k. However, k must not be too large or there would be 
considerable delays in reaching conclusions about the data. 

The moving-average plot is a good way of detecting cycles, trends or 
autocorrelated variation. However, some care needs to be taken over 
putting too much credence on the results; see Exercise 3A.5. Smoothing 
can easily induce patterns into otherwise random data. 

3.5.3 CuSum plotting 

Cumulative sum plotting is a very useful technique to highlight changes 
in the process average level. The idea is simply to subtract the overall 
mean from the data, and then cumulate the differences. As an illustra
tion, we use the data in Table 3.3, and to make the arithmetic easier, a 

Table 3.3 Weights (in grams) of capsules taken every 30 seconds from a 
manufacturing process that is working steadily 

5.22 
4.95 
5.20 
5.41 
5.20 
5.02 
5.11 
5.26 
5.27 
4.73 

5.02 
4.97 
4.85 
5.20 
4.73 
5.08 
4.61 
4.78 
5.45 
4.75 

5.23 
5.30 
5.05 
4.34 
5.28 
5.09 
5.11 
5.27 
5.54 
4.95 

4.93 
5.12 
5.27 
5.03 
5.21 
5.61 
4.38 
5.06 
4.46 
5.04 

4.75 
4.83 
4.65 
4.86 
4.82 
5.14 
4.94 
5.23 
4.97 
5.14 
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'reference value' of 5 has been subtracted from each observation, 
instead of the overall sample mean, and the first few CuSum calcula
tions are shown in Table 3.4. 

The CuSum plot is shown in Fig. 3.11; if 0.24 is added to each 
observation after nurober 25, the dotted line curve shows the resulting 
plot. Clearly, a change in the mean will be represented by a change in 
slope of the CuSum plot. A horizontal trace implies the overall mean 
( or reference value) holds. Any deviation from the reference value will 
be show up by a change of slope from the horizontal. 
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Table 3.4 Calculation of the CuSum for the first 6 
values from Table 3.3 T = 5.0 

Observation 

5.22 
4.95 
5.20 
5.41 
5.20 
5.02 

Observation - Cumulative sum 
reference value of column 2 

+0.22 
-0.05 
+0.20 
+0.41 
+0.20 
+0.02 

: 

+0.22 
+0.17 
+0.37 
+0.78 
+0.98 
+1.00 

Observation number 

(b) 

(a) 

Figure 3.11 CuSum chart of Table 3.3 data; (a) original data, (b) with 0.24 added 
to each of the last 25 observations. 
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By using the CuSum plot, it is often possible to detect clearly when 
changes in the process average level occurred. This is of particular 
value, because an indication of when changes occurred assists consider
ably in diagnosing the causes of the changes. 

In order to estimate the value of a changed mean, we pick two sample 
points, s and t, as in Fig. 3.12. We then read off the cumulative sums, 

E 
:::J 
CJl 
:::J 
u 

c: 
0 
Q) 

::::: 

(a) 

0 

(b) 

0 

8 

8 

t - s 

16 24 32 40 48 56 64 72 80 88 
Observation number 

16 24 32 40 48 56 64 72 80 88 
Observation number 

Figure3.12 Estimating changed means from CuSum plots: (a) CuSum plot; 
(b) rough plot of mean values from (a). This is called a 'Manhattan diagram'. 
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C1 and Cs. The new value of the mean is then 

(reference value) + (Cr - C.)/(t - s). 

A useful idea is to plot the values of the changed mean as a 
'Manhattan diagram' - see the examples to follow. This is all summar
ized in Method Summary 3.2. 

METROD SUMMARY 3.2 

Basic rule for CuSum plotting 

Step I Calculate ( observation - reference values). 
Step 2 Plot cumulative values of these differences. 
Step 3 Determine the points at which the slope changes visually. 
Step 4 Plot a Manhattao diagram of the process mean values. 

CuSum charts are of particular value in detecting sudden changes due 
to changes of operating conditions or due to new batches of raw 
material, etc. 

(a) Other uses of CuSums 
CuSum charts can also be used to detect changes in process spread ( see 
below). The method is to use grouped data, and work on, say ranges of 
the groups. The average range is subtracted as the reference value. 

For further information on CuSum plotting see Woodward and 
Goldsmith (1964). 

3.5.4 Examining process spread 

Moving averages and CuSum plots can also be used to examine process 
spread. 

If the original data is taken in groups, then the ranges or standard 
deviations of these can be plotted. Moving averages or CuSum plots 
could then be made to see if the amount of process spread changed over 
time. 

For 'one-at-a-time' data, we have to plot the differences of successive 
observations, and moving-average plots could be made of these values. 
If CuSum plots were to be used for plotting changes in process spread of 
one-at-a-time data, then the differences of successive (independent) 
pairs would have tobe plotted in the first instance. 

Changes in process spread tend to be less frequent than changes in 
process average Ievel, so that rather less effort is usually put into these 
kinds of plot. 
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Yet another way of examining process spread is to chart the differ
ences of actual observations from a 'smoothed' average level. Tukey 
calls the resulting plots the plots of the 'smooth' and of the 'rough'. A 
detailed discussion of this and other useful plotting techniques is given 
in Tukey (1977). 

3.5.5 Conclusion 

In data from complex processes, cycles, trends and autocorrelation are 
frequently present. In addition, sudden changes of level will be found 
which can be traced to new batches of raw material, changes of 
operating conditions, or other special or assignable causes. The first step 
in implementing SPC is to detect these types of variation, and eliminate 
them if possible. Simple methods, such as those given in this chapter, 
are frequently adequate. The amount of work involved in data collection 
and presentation may be considerable though, and the assistance from a 
suitable statistical or SPC computer package will often be required. 

3.6 ESTIMA TING THE PROCESS AVERAGE LEVEL AND 
VARIATION- GROUPED DATA 

3.6.1 lntroduction 

We shall assume here that there is both within- and between-group 
variation, defined by aw and as of Model2 in section 3.3.2, and an 
important step is to estimate these and the process average level {l. This 
approach can be used even if autocorrelation is present, such as Model3 
of section 3.3.3. Once the process average level and variation are 
estimated we can proceed to the analysis of process capability (see 
Chapter 4) and the construction of charts. We shall suppose that groups 
of varying numbers ni of observations are taken at frequent intervals, 
and we use the notation 

Group 1 x 11 , X1z, ... , X1n 1 

2 Xzl, Xzz, · · ., Xzn 2 

etc. for k groups. 

n 1 Observations 
n2 observations 

It is most convenient if group sizes are equal, that is n1 = n2 , etc., but 
in practice this is not always achievable. 

A vital assumption here is that the groups of Observations are all from 
a common source. Sometimes we have a nested sampling scheme as 
shown in Fig. 3.13. Here there are three groups sampled from three 
machines. This structure leads to a more complicated situation, and we 
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Machines 

Groups 

Figure 3.13 A nested sampling scherneo 

shall not discuss it directlyo Some of the methods below apply with 
modification 0 

3.6.2 Estimating the within-group variation 

From each group we obtain the within-group standard deviation 

where 

s; = ~{%cxij- xY/(n; -1)} 
n; 

X;, = LXij 
j=l 

is the sample mean of the ith groupo A combined estimate of aw is now 

sw = ~{~(n;- 1)sf/2.(n;- 1)} (3010) 

which is simply the square root of the average sf if all the group sizes 
are equal. An alternative method when the group sizes are equal would 
be to use the range estimate, as set out in section 207030 In making this 
estimate, any groups which have been identified as being subject to a 
'special' cause of variation should be excluded, and they should also be 
excluded from the tests following in this sectiono These points are given 
in Method Summaries 303 and 3.40 

METROD SUMMARY 3o3 

Estimation of p and uw by the 'u' method: grouped or blocked data 

Step I Collect at least 20 groups of n observations each; Iet these 
observations be denoted X;j, j = 1, 2, 0 0 0' n; i = 1, 2, 0 0 0' ko 

Step 2 Calculate the group means and variances 
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n 

i;. = 2.x;)n 
j=l 

n 

SJ = L(X;j - i;Y/(n - 1). 
j=l 

k 

Step 3 Calculate the overall average x.. = L.x; ./ k. 
i=l 

Step 4 Calculate the Overall estimate Sw of aw, 

Notes 
(1) If the group sizes are unequal we use the following formula in 

Step 4. 

where 
n; 

s7= L(X;j- ii)2/(n;- 1). 
j=l 

and n; are the group sizes. 
(2) Groups for which S; is unusually large should be excluded 

provided a special cause can be found which accounts for the 
extra variation. 

METHOD SUMMARY 3.4 

Estimation of I' and llw by the range method: grouped or blocked 
data 

Step I Collect at least 20 groups of n Observations each; Iet these 
observations be denoted xij• j = 1, 2, ... , n; i = 1, 2, ... , 
k. 

Step 2 Calculate the group means and rang es 
n 

i · = ""x .. jn '· LJ lf 
j=l 

R; = (Maxx;j) - (Minx;j). 
J J 

k 

Step 3 Calculate the overall average x .. = L.x ;,/ k. 
i=l 

Step 4 Calculate the average range 
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k 

R = "iRJk. 
i=l 

Step 5 Obtain an estimate of a from the formula 

aw = R/dn 

where values of dn are the factors for converting ranges to 
estimates of standard deviation. These factors are given in 
Table 2.9 of the Appendix Tables. 

Notes 
(1) All groups must be of the same size. 
(2) Normality is assumed. 
(3) Note (2) of Method Summary 3.3 applies. 

3.6.3 Estimating the between-group variation 

The obvious estimate is to use the ordinary standard deviation formula 
on the k group means, 

sB = ~{~(x;.- x.Y/(k- 1)} (3.11) 

where 

x = "' "'x/kn . . L.JL.J l} 

is the overall average. The quantity sB will contain contributions from 
both between- and within-sample variation. For Model 2 of section 3.3.2 
we have 

E(sB) ::::; Y(a~ + a~/n) 
but this is nearly an equality. 

However, the between-group variation may be affected by some 
special cause, which Ieads to the whole of one group being an outlier. 
Provided a special cause can be found, the group should be excluded 
from the calculations. 

In order to estimate the component of variation due to the between
group component alone, we have to subtract the within-group compon
ent. W e therefore use the formula 

aB= Y{s~- s~/n} (3.12) 

If this quantity in the brackets is negative, We take aB to be zero. 
However, we obviously need a formal test of whether or not there is 
between-group variation, and this is given in the next section. 
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lt is important to distinguish between the degrees of freedom in the 
estimates Sw and s 8 . The degrees of freedom for Sw given in (3.10) is 
I::(n; - 1) whereas the degrees of freedom for s8 is only (k - 1). Thus 
s w is based on a lot more information, and this factor has to be taken 
into account when testing for additional variation; see the next section. 

3.6.4 Overall test for additional variation (all ni equal) 

If a process is in control and all of the data are sampled from a single 
normal distribution, then if the within-group standard deviation is aw, 

we should find that Sw estimates aw, but that s8 estimates aw/Y n, the 
standard deviation of a mean. The procedure is therefore to compute 
the ratio 

(3.13) 

and if this is greater than one, there is some evidence of the presence of 
additional variability, although such extra variability could be due to 
control actions on the process. The values in Table 3.5 give the critical 
values of the ratio (3.13) for the 5% probability Ievel. 

If the ratio (ns~/s~) is greater than the appropriate value in Table 3.5, 
given the group size and number of groups taken, then the extra 
variability is significant at the 5% probability Ievel. Critical values for a 
larger range of group sizes ( n) and numbers of groups ( k) can be found 
by looking up the 5% critical value in F-tables for (k- 1) and k(n- 1) 
degrees of freedom; see the Appendix tables. 

Table 3.5 Critical values of nsMs~ (F-test) 

Sampie No. of samples (k) 
size 
(n) 5 10 15 20 25 30 40 60 80 100 200 500 

2 5.19 3.03 2.43 2.14 1.97 1.85 1.70 1.54 1.45 1.39 1.26 1.16 
3 3.48 2.40 2.04 1.85 1.74 1.66 1.55 1.43 1.37 1.32 1.22 1.13 
4 3.06 2.23 1.96 1.76 1.66 1.59 1.50 1.40 1.34 1.30 1.20 1.13 
5 2.87 2.13 1.86 1.72 1.63 1.56 1.47 1.38 1.32 1.28 1.20 1.12 
6 2.76 2.09 1.82 1.69 1.60 1.54 1.46 1.37 1.31 1.28 1.19 1.12 
7 2.69 2.05 1.80 1.67 1.59 1.52 1.45 1.36 1.31 1.27 1.19 1.12 
8 2.65 2.01 1.78 1.66 1.58 1.52 1.44 1.35 1.30 1.27 1.18 1.11 
9 2.61 1.99 1.77 1.65 1.57 1.51 1.44 1.35 1.30 1.26 1.18 1.11 

10 2.59 1.98 1.76 1.64 1.56 1.51 1.43 1.35 1.30 1.26 1.18 1.11 
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METROD SUMMARY 3.5 

Estimation of the between-group variation u8 

Stepl Carry out Method Summary 3.3 or 3.4 to obtain .i", and 
fjw· 

Step 2 Calculate 
k 

s~ = 2:(x;. - x.Y/Ck- 1). 
i=l 

Step 3 Calculate the ratio ns~/a~, and see if there is significant 
evidence of between-group variability. 

Step 4 If Step 3 gives a significant result, use as the estimate &B 

OB = Y(s~ - a~/n]. 
Note 
(1) Note (2) of Method Summary 3.3 applies. 
(2) If the ratio ns~/a~ is greater than one but not significant, some 

account of this may have to be taken when constructing charts. 

3.6.5 A worked example 

Example3.2 
15 groups were taken, each of size 2, with the results given in Table 3.6. 
For this data the overall mean is x .. = 26.784 and the standard deviation 

Table 3.6 Illustration of test for extra variation 

Group Data Mean s.d. 

1 39.5 30.0 34.75 6.718 

2 27.0 25.5 26.25 1.061 

3 28.5 14.5 21.5 9.899 

4 30.5 24.0 27.25 4.596 

5 19.5 17.0 18.25 1.768 

6 32.5 25.0 28.75 5.303 

7 23.5 32.5 28.0 6.364 

8 34.0 29.0 31.5 3.536 

9 27.0 31.0 29.0 2.828 

10 14.5 25.5 20.0 7.778 

11 24.0 26.0 25.0 1.414 

12 29.0 31.5 30.25 1.786 

13 19.5 29.5 24.5 7.071 

14 23.5 25.0 24.25 1.061 

15 38.0 27.0 32.5 7.778 
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of these means is sB = 4.650. The average standard deviation within 
groups is 

Sw = V[fs (6.7182 + 1.0612 + ... + 7.7782)] = 5.384. 

Thus 2s~/s; is 1.492. lt is greater than 1, suggesting that there is some 
additional variation. 

The critical value for the table n = 2, k = 15 is 2.43. Thus the 
additional variation is not significant in this case and could have been 
produced by chance. It may be that there really is some additional 
variation but we do not have sufficient data to be sure of this. Ideally 
more data would be collected to try and confirm whether there is some 
additional variability. 

Discussion 
Some processes can be modelled by the simple random variation model 
of Modell of section 3.3 when they are in control. In such a case a 
significant between-groups component of variation probably represents 
special causes of variation such as machine wear, etc. Other industrial 
processes, particularly in the process industries, are much more compli
cated and the other models of section 3.3 may apply. 

In setting up control charts we need to be able to distinguish between 
ordinary variation of the process, about which we can do little, and 
'special' causes of variation which are due to specific problems, and can 
be eliminated. We shall take up this discussion again in later chapters, 
but the test for additional variation given above is the start of the 
analysis. lt is often useful to identify one of the models in section 3.3 
which might reasonably apply in normal running. 

3.6.6 Test for the presence of autocorrelation 

A simple way to test for autocorrelation is to calculate the sequence of 
means of groups, x~> x2 , ••• , and plot successive values on a scatter 
plot, x 1 versus x 2 , x 2 versus x 3 , etc. Correlation will be readily seen in 
the plot. 

A more precise way is to calculate the autocorrelations, 

rs = {~<xt.- x .. )(xt+s- x.J}/{~<xt.- x.Y} 
for s = 1, 2, 3, ... , where s is the lag at which the correlation is 
calculated. Any value outside the range ±2/Vk can be regarded as 
significant. Generally we expect higher correlations for small values of 
the lag. 

For more details on testing for autocorrelation see Chatfield (1984) or 
Wetherill et al (1986). 
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3.6. 7 Estimation of standard error of group means 

One quantity needed to set up control or CuSum charts is the standard 
error of the group mean, ae. As we saw in section 3.3, the formula for 

ae depends on what type of model is appropriate for our problem. Most 
SPC methodology assumes that only simple random variation is present. 

While this may be valid for the component manufacturing field, it is 
certainly not true for the process industries. However, the first step is to 
estimate the within-group standard deviation, aw, and check for be
tween-group variation as given in Method Summary 3.5. 

If only simple random variation is present, then the standard error of 
a group mean is ae = aw/v'n. 

However, if extra variation is present, then ae needs to be estimated 
by directly calculating the standard deviation of the group means 
(omitting groups accounted for by special causes), which we denote sB: 

ae =SB= ~{L(.ii.- x.Y/(k- 1)}. 
Some care needs to be taken about this step. Clearly, if 'extra' 

variation is allowed for at the stage of setting up the charts, then our 
action lines are going to be spread out further. If this extra variation is 
inevitable, that is satisfactory, but otherwise our charting would be less 
powerful. 

METROD SUMMARY 3.6 

Estimating the standard error of group means 

Step I Estimate the within-group standard deviation aw by 
Method Summary 3.3 or 3.4. 

Step2 Use Method Summary 3.5 to test for significant between
group variation. 

Step 3 If Method Summary 3.5 gives a significant result, examine 
the data to see if there are outlying group means for which 
a special cause of variation can be found. If such a cause 
can be found, delete these groups and recalculate. 

Step 4 If there is no between-group variation the standard error of 
group means ae is estimated as 

ae = Sw/Yn. 
If there is significant between-group variation we use 
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For the example worked out in section 3.6.5 the test for between
group variation is not significant, so a valid estimate of ae is 

Oe = Sw/Y2 = 3.807 

based on 15 groups x 1 = 15 degrees of freedom. The estimate 
sB = 4.650 is based on 14 degrees of freedom. 

In most cases the difference between the degrees of freedom of the 
estimates is much greater. For example, with 15 groups and 3 Observa
tionsper group Sw has 30 against 14 for sB. 

3.7 ESTIMATING THE PROCESS AVERAGE LEVEL AND 
VARIATION- ONE-AT-A-TIME DATA 

A deeper discussion of one-at-a-time data will be given in Chapter 6, but 
here we give two common methods for estimating the process average 
Ievel and variation. One-at-a-time data arises frequently in the process 
industries, where the measurement process is expensive. lt also arises 
sometimes because there is essentially only one observation that can be 
made. If we are measuring the purity of a chemical produced in a batch 
process, both measurement errors and sampling variation due to taking 
different samples of the product from a batch may be negligible. The 
methods given in section 3.6 for estimating aw are not appropriate, and 
the following methods can be used instead. 

3.7.1 Rational blocking 

In some applications one-at-a-time data can be blocked by batch, shift, 
or some other criterion. The objective of this blocking should be such 
that substantial changes in process average Ievel tend to occur between 
the blocks rather than within them. Under these circumstances, the 
within-block variation will adequately represent the process variability 
aw, and the methods of section 3.6 can be used for estimation. 
Defective blocking can mask changes, since a block average may then 
contain observations from different population means, and the estima
tion of aw is inflated. However, when it can be used, rational blocking is 
a convenient way of dealing with one-at-a-time data. 

3. 7.2 Difference of pairs method 

One method of estimating aw which can be used is to treat the 
difference of successive pairs of Observations as ranges of two. Following 
the method given in section 2. 7.3 this Ieads to the formula 
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where 

and k is the number of observations. Clearly, if some observations are 
outlying and are found to be due to some special cause, the differences 
involving these can be excluded. There is further discussion of this 
method in Chapter 6. 

METROD SUMMARY 3.7 

Estimation of p, and uw for one-at-a-time data 

Step 1 Collect at least 50 observations; let these be denoted X;, 

i = 1, 2, ... , k. 
Step 2 Use the overall average to estimate fl, and put 

aw = {~:ld;l/(k- 1)}/1.128 

Notes 
(1) Normality is assumed. 
(2) Any points for which a special cause can be found should be 

excluded. 
(3) Do not use the method if there is any obvious trend in the 

data as the estimate aw will underestimate the true variability. 

Example 3.3 
In the manufacture of an engineering plastic a single laminate was 
sampled, and put into a machine to test for strength. The results of 25 
successive observations are as follows: 

140.18 140.00 139.98 136.86 139.38 140.74 139.38 

141.12 139.46 140.86 140.10 139.54 140.26 139.08 

138.34 140.72 138.80 138.42 138.84 141.90 139.64 

140.24 141.28 140.70 140.94 

Following Method Summary 3.7 we have 

Observation 
Difference 

We find 

140.18 140.00 139.98 136.86 139.38 140.74 
-0.18 -0.02 -3.12 2.52 1.36 

2:ld;l = 30.2 and 

aw = (30.2/24) + 1.128 = 1.1154. 
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Charting methods 
Provided a rational blocking can be used, charts for one-at-a-time data 
can be constructed as for grouped data, and this is discussed in 
Chapter 5. Other methods of charting for one-at-a-time data are given in 
Chapter6. 

EXERCISES 3A 

1. Carry out graphical analyses and tests for extra variation on the data 
you collected in Exercise 2A.2. 

2. The Melt Flow Index of polypropathene is measured on a single 
sample taken from predefined bags, so that readings are taken once 
per tonne, regardless of the method of shipment to the customer. 
The MFI specification for this grade is 4.5 ::s: MFI ::s: 6.5. Table 3.7 
shows MFI readings taken from several production campaigns to 
make the same grade of polypropathene. Carry out two 3-step 
moving averages of the data. 

Table 3. 7 Polypropathene melt flow index 

Bagno. MFI Bagno. MFI Bagno. MFI Bagno. MFI 

1 5.75] 21 4.69 41 5.73 61 5.21 
2 5.30 22 4.35 42 5.68 62 5.36 
3 5.21 23 5.30 43 5.52 63 4.86 
4 4.91 24 5.11 44 5.57 64 5.83 
5 5.45 25 5.01 45 5.49 65 5.57 
6 4.98 26 5.00 46 5.21 66 5.75 
7 5.36 27 5.33 47 5.77 67 6.19 
8 5.43 28 4.93 48 5.69 68 5.86 
9 5.18 29 4.42 49 5.44 69 5.67 

10 5.47 30 4.78 50 5.67 70 5.44 
11 4.96 31 4.88 51 5.49 71 5.18 
12 5.01 32 4.63 52 5.75 72 5.15 
13 4.73 33 5.12 53 6.06 73 5.37 
14 4.67 34 4.92 54 5.68 74 5.40 
15 4.34 35 5.05 55 5.57 75 5.30 
16 5.95 36 5.27 56 5.80 76 4.86 
17 5.54 37 5.27 57 5.50 77 4.83 
18 5.48 38 5.19 58 5.38 78 4.65 
19 4.85 39 5.72 59 5.26 79 4.72 
20 4.78 40 5.55 60 5.31 80 4.74 
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3. The data given in Table 3.8 are from a single-stage continuous 
chemical process in which raw materials A and B are reacted 
together to form a product C. The reaction is exotherrnie and water 
cooling is used to control the reaction temperature to 160 °C. The 
raw materials A and B are both delivered by tanker from which they 
are run into small stock tanks. There are two stock tanks for each 
raw material and they are filled and emptied alternately. A full stock 

Table 3.8 Data for CuSum exercise 

Sampie Efficiency Comment Sampie Efficiency Comment 

1 45.2 34 45.8 
2 46.2 35 42.8 
3 45.5 36 45.5 

4 43.7 37 42.8 
5 47.0 38 44.5 
6 44.6 39 42.9 

7 44.2 40 45.3 

8 46.0 41 45.2 

9 44.5 42 45.4 New batch of A 
10 45.1 43 45.8 

11 46.9 44 45.5 

12 44.1 45 45.5 
13 42.6 46 44.9 
14 43.9 47 44.0 
15 45.1 48 45.0 
16 45.2 49 46.4 

17 44.4 50 46.1 
18 47.6 51 42.3 
19 44.6 52 44.4 
20 46.3 53 47.0 Plant shut down 
21 44.9 54 40.9 

22 43.4 New batch of B 55 42.2 

23 44.7 56 45.0 

24 44.6 57 45.3 

25 46.3 58 44.9 

26 42.2 59 47.5 

27 44.7 60 44.9 

28 45.2 61 45.4 

29 44.8 62 46.1 

30 44.0 63 46.6 
31 44.2 64 45.4 

32 45.5 65 45.3 

33 45.2 66 44.9 New batch of B 



Table 3.8 ( cont. ) 

Sampie Efficiency Comment Sampie Efficiency Comment 

67 46.4 110 46.3 
68 44.8 111 44.5 
69 45.2 112 42.5 
70 46.8 113 45.8 
71 45.5 114 43.6 
72 46.6 115 43.8 
73 47.5 116 44.5 
74 45.0 117 42.2 
75 46.8 118 46.3 New batch of A 
76 44.8 119 46.1 
77 45.2 120 45.1 
78 45.7 121 46.3 
79 45.4 New batch of A 122 47.1 
80 45.0 123 45.3 
81 44.4 124 44.7 
82 44.4 125 46.5 
83 44.8 126 45.4 
84 45.4 127 47.4 
85 43.8 128 45.0 Biockage in 
86 45.6 129 44.3 cooiing water 
87 44.6 Iine. 
88 45.1 130 44.1 High 
89 43.1 temperatures. 
90 44.7 131 46.3 
91 47.4 132 45.2 
92 43.6 133 46.4 
93 44.7 134 45.5 
94 46.0 135 46.8 
95 43.9 136 44.8 
96 44.8 137 45.5 
97 46.6 138 46.0 New batch of B 
98 44.6 139 45.9 
99 45.8 140 45.8 

100 44.8 New batch of B 141 46.5 
101 44.5 142 45.1 
102 43.2 143 45.6 
103 46.2 144 46.9 
104 44.7 145 45.7 
105 44.6 146 45.0 
106 43.7 147 45.3 
107 44.9 148 46.2 
108 45.9 149 47.4 
109 44.5 150 45.2 
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tank contains about two weeks' supply of raw material, and each 
stock tank full is termed a batch. The plant occasionally has to be 
shut down for cleaning. The product from the plant is sampled and 
analysed every shift, and the last 150 observations are tabled together 
with an indication of when new batches of raw material were started 
and when other plant upsets occurred. 

Plot the data on a CuSum chart ( using a reference value of 45). 
Remernhering that it is changes of inclination which indicate changes 
in the mean, try to interpret your graph. Also plot a Manhattao 
diagram. 

4. Carry out a one-at-a-time estimation of aw on the data given in 
Exercise 3A.2. 

5. Generate (or select from tables) 50 random normal deviates. Smooth 
twice using a 5-step moving average, and plot the result. Also plot 
the original data. 

EXERCISES 3B 

This exercise deals with the models of section 3.3. 

1. (a) Generate 20 sets of 5 observations from one of the following: 
(i) Modell 11 = 5, aw = 1 

(ii) Model 2 11 = 5, aw = 1, aB = 0.5 
(iii) Model 3 11 = 5, aw = 1, aB = 0.4, p = 0.3 
(iv) Model 4 11 = 5, aw = 1, aB = 0.4, p = 0.7 

(b) Calculate i, s2 for each group. Plot the group means and 
compare the results. 

(c) Obtain a combined estimate of within-group variance, s~. 
( d) Obtain the variance of the 20 group means, treating these as 

single observations. Denote this s~. 
(e) Carry out an F-test, ns~/s~. 
(f) Calculate s A. Carry out a test for autocorrelation. 

2. Show that two successive smoothings by 3-step moving averages is 
equivalent to one operation with a weighted moving average, with 
weights 

1 2 3 2 1 
g, g, g, g, 9· 

Similarly, explore the effect of the following smoothing operations: 
(a) Two 5-step smoothings. 
(b) A 3-step followed by a 5-step smoothing. 
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(c) A 5-step followed by a 3-step smoothing. 

3. lf all original observations are distributed independently N({L,a2), 

find the correlation between: 
(a) Two successive points from one 3-step smoothing. 
(b) Two successive points from two 3-step smoothings. 
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Process capability 

4.1 INITIAL PROCESS CAPABILITY STUDIES 

In a process capability study we examine the variability in important 
product characteristics, and study the extent to which the process is 
capable of producing product which conforms to specification. The study 
involves considering questions such as: 

(1) What are the contributions to the variability of the product? 
(2) Where and why does defective quality arise in the process? 
(3) Where and how can this be detected? 
(4) What is the process capability index (see sections 4.3 and 4.4)? 
(5) What control actions can be taken on a process? 
(6) What is the effect of these actions? 
(7) What type of control is appropriate, and where? 

A fundamental problern to tackle is the decision as to what variables 
to measure, and how many charts to set up. Ideally we want to take 
measurements which will help us to pinpoint causes of process variation. 
For example, if we only take measurements at the end of the process 
then we may have charts with so many possible causes of variation that 
they are difficult to interpret and use. Also the detection of a problern 
at an intermediate stage of a process will not only occur earlier than 
detection at an end point, but can also save added-on costs to product 
that is not of acceptable standard. For example, in making integrated 
electronic networks the resistances of a sample of items are measured 
after printing, firing and trimming (Stage 1) and before adding connec
tors, inductances and condensers (Stage 2). The cost of the items is 
much less at Stage 1 than at Stage 2. One objective of our initial studies 
therefore should be to enable us to decide what to measure and plot. 

There will usually be three stages in an initial process capability study: 

(1) A study of the whole process as a system, and a listing of its 
variables. 

(2) Data collection at specified points in the process. 
(3) An analysis of the data. 
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In the first stage we would want at least an outline flow chart of the 
system. The variables ( or parameters) of the system need to be classified 
as: 

Input variables: These relate to the amounts, qualities and 
properties of input material 

Process variables: These are pressures, cycle times, temperatures, 
etc. of the process. 

Product variables: These are purity, strength, dimensional or other 
measurements on the product. 

Other vital questions to assess at this stage, relate to the amount of 
control which is possible on the variables listed. It is worth noting that 
in some systems there are really important parameters which are very 
difficult to measure, and ways of doing this may have to be drawn up. 
In continuous processes there may be automatic controllers built in, and 
the presence of these must be noted. It will rarely be possible to 
monitor more than a small number of these variables, so a 'brainstorm
ing' exercise needs to be carried out, and decisions made on what to 
observe. 

The data-collecting phase may need special effort. Several variables 
may need to be monitored, possibly at various points in the process. If 
sampling can be done in groups, then groups of at least four at a time 
should be taken. The time frequency of the observations needs to be 
sufficient to study the rate and manner in which process variation 
occurs. 

Finally, the data should be analysed using methods such as those 
given in the previous chapter, and the process capability established. 

The procedure we have just described is sometimes rather easy to do, 
and this is especially true in the component manufacturing area. For the 
process industries, such as chemical, it can be very difficult. A typical 
situation in the process industries is that we may have 5-10 product 
variables, but 200-400 process or input variables, and often there is 
little hard information about the relationships between the input and 
process variables, such as temperatures, purity of the catalyst, and the 
product variables, such as hardness, tensile strength. We shall come 
back to this later. 

After the initial process capability study we set up Shewhart or 
CuSum charts, and operate these for some time. As the charts are used 
some special causes of variation in the process, sometimes called 
assignable causes of variation, will be identified and either eliminated or 
controlled. The very operation of the charts often changes the properties 
of the process, so that after a while it is necessary to carry out a fresh 
study of process capability, and reset the charts; see Fig. 4.1. 
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Figure 4.1 Procedure for Setting up SPC. 

METHOD SUMMARY 4.1 

Summary of steps in a process capability analysis 

The steps involved in a process capability study are as follows: 

Step 1 Draw a flow chart of the process as a System. 
Step 2 Determine the input, process and product variables. Be 

aware of important variables or parameters not measured. 
Step 3 Carry out a 'brainstorming' exercise, and summarize the 

results in 'cause-and-effect' diagrams. 
Step 4 Data acquisition. 
Step 5 Graphical analyses using moving-average charts, CuSum 

charts, histograms, etc. 
Step 6 Carry out a process capability analysis of important product 

variables. This should include a histogram of results over a 
period of time, and estimates of the process capability 
indices. 

4.1.1 Essential conclusions from data analysis 

As a result of the data analysis stage of the process capability analysis 
the following results or decisions are needed: 

(1) What variables to chart. 
(2) Some idea as to the manner in which the process goes out of 

control, such as by drifts or by sudden jumps, or cycles. 
(3) An estimate of the standard error ae and of the overall mean tl· 
(4) Some idea as to how quickly the process goes out of control. This 

will be one of the factors determining sampling frequency. 
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(5) Estimates of the process capability indices; see sections 4.3 and 4.4. 

The essential parts of a process capability analysis are graphical and 
other analyses of many of the variables. The definitions of the process 
capability indices are complicated by the presence of the types of 
variation listed in section 3.2. We therefore introduce the process 
capability indices in the simplest situation - simple random variation 
only - and then indicate generalizations and complications later in the 
chapter. 

4.2 SHEWHART CONTROL LIMITSAND SPECIFICATION 
LIMITS OR TOLERANCES 

Let us return once more to the titanium hardness measurement data, 
described in section 2.8, and we shall assume that only simple random 
variation is present. We established in section 2.8 that the process was 
producing buttons with hardness measurements resulting in a normal 
population with mean 127.0 and standard deviation 3.07. Also, in 
section 2.8 we constructed a Shewhart control chart for sample means of 
four buttons, which controlled the sample means within 

i.e. 122.4 and 131.6. 

3.07 
127.0 ± 3 X ~ 

If the process mean remains absolutely in control, virtually all sample 
means will lie within these limits, and virtually all individual values will 
lie within about 3 standard deviations of the process mean, i.e. within 

127.0 ± 3 X 3.07 

- 117.8, 136.2. 

The distribution of sample means and of individual values is shown in 
Fig. 4.2. 

Now quite distinct from the distribution of means or of individual 
values, there may be specification or tolerance limits on the individual 
values which are fixed by physical requirements on the product. Sup
pose, for example, that the specification limits were set at the extreme 
range of the individual values set above, viz. (117.8, 136.2), then there 
would be about 3 items per thousand outside specification. For most 
(but not all) production processes this would be an acceptable quality 
level, and we might congratulate ourselves on having a capable and 
well-controlled process. Notice that the Shewhart control limits are 
always inside the tolerance limits, except when the sample size is 1. 
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Figure 4.2 Relation between control Iimits and specification Iimits: process mean 
in control. 

But there is no guarantee that the process mean will remain ab
solutely constant. Supposing it moves out to 129, say, as in Fig. 4.3. The 
sample means will now generally be high er than the target value of 127, 
but at each sample point there is in fact only a 4% chance of having a 
mean that goes outside the control limit. It could take very many 
samples ( on average 25) before action is signalled. Meanwhile the 
change in process mean is also causing 1% of individual values to fall 
outside the tolerance levels. For some types of products this would be 
an intolerably high failure rate, especially if it goes undetected for such 
a lang time. 

Consider also the following example. 

Example 4.1 
Suppose we have a process with a mean of 140 and a standard deviation 
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Figure 4.3 Process mean at 129. 
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of 5.0. Specification Iimits are set at 130 and 150. Groups of four 
observations are sampled, so that the standard error of the mean is 
5/Y4 = 2.5. The upper action limits for a Shewhart X-chart are set at 

140 + 3 X 2.5 = 147.5 

which is well within the tolerances. However, when the mean is at 140, 
the number of standard deviations away of the upper specification Iimit 
is 

(150 - 140)/5 = 2.0 

in terms of the distribution of individual values. From Normal tables we 
see that 2.3% of the product is beyond this. An equal amount will lie 
below the low specification limit. Change in the process mean will result 
in less product being out of specification at one boundary, but this will 
be outweighed by a greater proportion being out of specification at the 
other. 
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Clearly the relationship between process variability and specification 
Iimits determines the extent of non-conformance. This is called relative 
capability; see the next section. 

4.3 RELATIVE CAPABILITY 

For the following discussion, we shall continue to assume that we are in 
the case of the simplest situation of section 3.2 - when our process 
results display random variation from a single normal population, with 
at most occasional 'rogue' points due to special causes. Extensions of 
the argument to other patterns of variation mentioned in section 3.2 will 
be discussed later. 

Consider a process for which the specification Iimits are set at 110 and 
146, a specification width of 36. Suppose also that the process spread 
aw = 6. Nearly all of a Normal distribution is contained within ±3aw of 
the mean, so that if the process mean could be held stationary at exactly 
128, the individual values would vary between 

128 ± 3 X 6 = 110, 146. 

That is, the specification Iimits are precisely 6aw wide. As discussed in 
the previous section, if we operated a simple Shewhart control chart 
centred on 128 we would be sure to get some defective product, because 
it is impossible to hold the process mean exactly stationary. 

If in fact we had aw = 3 instead of aw = 6, then the specification Iimits 
would be 12aw wide. This would give us freedom to allow the process 
mean to vary, and yet still keep almost all of the product between the 
specification Iimits. 

For a third case, suppose aw = 9, then the specification Iimits are only 
4aw wide, and whatever we do, we shall get a considerable amount of 
defective product. These three cases are depicted in Fig. 4.4. We say 
that these three cases show medium, high and low capability respect
ively. 

lt is clear from this discussion that a rather critical quantity is the 
width of the specification Iimits with respect to aw. We define capability 
indices for a simple random process as follows: 

Process capability index 

cp = (allowable range)/6aw 

The denominator of CP is the range covering 99.7% of the distribu
tion, and this can be used as a more general definition of CP. 

A C P value of less than one is unsatisfactory - we have low capability. 
A CP value of between 1.0 and 1.60 shows medium relative capability, 
and a CP value of more than 1.60 showshigh relative capability. 
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Figure4.4 Process capability: (a)medium; (b)high; (c)low. 
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Example 4.2 
For our titanium button example we found an estimate of f..l tobe 127.0, 
and of aw tobe 3.07. 

If specification Iimits are at 110 and 146 we have 

allowable range = 146 - 110 = 36 

cp = 36/(6 x 3.07) = 1.95 

W e should emphasize that we have been talking about standard 
deviations, not means. Thus, for example, even in case (b) of Fig. 4.4, 
we may still get bad product if the mean is not set appropriately ( see 
Fig. 4.5). Partly for this reason, we also define a process performance 
index. 

~ ·;; 
c 
Cl) ..., 
~ 
:0 
0 

-8 ... 
0.. 

Lower 
specification 

Iimit 

110 128 

Upper 
specification 

Iimit 

146 

Figure 4.5 High relative capability, but uncontrolled mean. 

Process performance index 

Cpk = Minimum of 
(upper specified limit - process mean)/3aw 
and 
(process mean - lower specified limit)/3aw 
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Example 4.3 
For our titanium button example we have 

(upper Iimit - process mean)/3a = (146 - 127)/3 x 3.07 
= 2.06 

(process mean - lower limit)/3a = (127 - 110)/3 x 3.07 
= 1.85 

cpk = 1.85 

One-sided specification Iimit 
A very common case in industry is to have a one-sided specification 
Iimit, as when an impurity must not exceed more than a given number 
of parts per million. The process capability index has no meaning in 
such a case, and it is quite incorrect to use zero or some other artificial 
Iimit in order to achieve a 'standard' looking result. However, the 
process performance index is readily defined as 

cpk = (specification Iimit - process mean)/3aw 

for an upper specification Iimit. The denominator is interpreted as half 
the range covering 99.7% of the distribution. 

The process performance index is also more useful in more complex 
situations, as when the process variation exhibits cycles, regular trends, 
etc. See section 4.4.2. 

Although these indices can be very useful in process capability 
studies, one should guard against putting too much reliance on them. 
They depend on having good estimates of the process standard devi
ation, and for Cpt. the process mean as weil. Unless our process has 
been brought into control, our estimates of these values may have 
sizeable errors, or may not be stable. In addition, the process variation 
may not be a simple Normal distribution, and the indices will need 
modification; see section 4.4.1. 

Further, we are depending rather heavily on the property of the 
Normal distribution that nearly all of it lies within ±3a. Some slight 
deviation from Normality could wreck that. Notwithstanding these 
points, the coefficients cp and cpk can be useful in assessing a process, 
and are widely used by companies discussing quality. 

Capability indices have been defined assuming Normality, but they 
can be generalized to situations where the data are distributed non
Normally. If we realize that 6a represents the actual process range when 
the data are Normal, then the actual process range can be calculated for 
any data, however distributed. We simply cut off 1.5 in 1000 of the 
distribution at each end; see Fig. 4.6. 
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Figure 4.6 Capability indices for non-Normal data. 
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4.4 PROCESS CAPABILITY INDICES FOR MORE 
COMPLEX PROCESS MODELS 

4.4.1 Between- and within-group variation 

We return to the model and notation defined in section 3.6, and in 
addition allow measurement error of variance a~. Measurement error 
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can only be ascertained by duplicated (blind) analyses, and we shall 
assume this to have been done, yielding an estimate a~. 

For Model 2 of section 3.3, with between- and within-group variances 
a~ and a~, we find 

whereas the variance of individual observations is 

V(x;j) = a~ + a~ + a~ 

(4.1) 

(4.2) 

Now if there is measurement error a~, the estimates given in section 3.6 
must be modified: 

a2 = max {0 s 2 - a2 } w ' w m 

The capability index is redefined: 

cp = (allowable range)/6v'(a~ + a~) 

and the performance index is 

C _ . {(upper specification Iimit- f.l)/3v'(a~ + a~) 
pk - mm (f.l- lower specification limit)/3v'(a~ + a~) 

where we use the estimates P,, a~, a~. 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

We see that in these estimates (4.3)-(4.6) the measurement error has 
been subtracted. This is a safe procedure only if the process average 
Ievel is adequately controlled. 

When we come to putting in the action lines for the control chart, we 
need the standard error of the mean, (4.1), which has measurement 
error included. This can Iead on occasions to action lines for a control 
chart which appear to be beyond specification Iimits. This is a safe 
procedure only if we are sure of our model and estimates; alternative 
methods are given in Chapter 9. 

The methods of this section can be used if an autocorrelated error 
model holds. 

4.4.2 Cyclic variation 

It will be sufficient to discuss the estimation of process capability indices 
for cyclic data; similar principles apply to other models. 

Suppose we have regular or irregular cycles in the data as shown in 
Fig. 4. 7. It is clear that because of the cycles, the overall distribution of 
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Uoper specification Iimit 

Lower specificotion Iimit 

Figure 4. 7 Cyclic data. 

group means is not Normal, and it is not appropriate to use the 
procedures of section 3.6 to estimate a~ and a~. The overall distribution 
of the means will be more nearly reetangular, and the standard 
capability index has no meaning. 

However, a performance index can be calculated, by taking the 
extreme positions of the cycles as estimates of f.l. Since at this point we 
are only interested in keeping the local variation clear of the Iimits, only 
a~ is appropriate, and we revert to the perfor~ance index given in 
section 4.3, possibly corrected for measurement error. 

It is a little unfortunate that capability indices have such a strong 
foothold in industry since they are fraught with difficulties as shown 
previously. In particular when companies report and compare capability 
indices, one can not be certain that CP and Cpk have been calculated on 
the same basis. A better indicator of performance would be to record a 
histogram of six months' production and a calculation of the amount of 
non-conforming product. 

4.5 HOW TO HANDLE LOW CAPABILITY PROCESSES 

There are several possible ways of dealing with having a low-CP process: 

(1) Examine if there is any measurement error in the testing apparatus, 
so that our estimated aw is 'inflated'. 

(2) Examine if the specification Iimits can be widened. 
(3) Use the process as it stands, but screen out defective product using 

outgoing sampling inspection. This is not usually very effective. 
(4) Set up a team to try to find ways of improving the process, so that 

aw is reduced. 
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(5) Use a control chart in the hope of improving process capability. 
Process variation often decreases when control charts are used. 

Example 4.4 
Suppose we have a process such that the lower and upper specification 
Iimits are 100 and 150, and that the process mean and standard 
deviation are 140 and 5.0 respectively. We have 

cp = (150 - 100)/5 x 6 = 1.67 

indicating a medium capability process. However, the process perform
ance index is the smaller of 

(140 - 100)/3 X 5 = 2.67 and (150 - 140)/3 X 5 = 0.67 

so that Cpk = 0.67. This value indicates that, because of the value of the 
process mean a considerable amount of scrap is being produced. We can 
improve C pk considerably by adjusting the process mean. 

EXERCISES 4A 

1. Carry out a process capability study on the sets of data you collected 
in Exercise 2A.2. 

2. The Observations given in Table 4.1 are measurements of tensile 
strength on three pieces of plastic taken once per shift. The lower 
and upper specification Iimits are 5 and 10 respectively. Carry out a 
process capability study. 

EXERCISES 4B 

1. Assuming that the original data are all independently N(f1,a2), show 
how to calculate 95% confidence intervals for &w, and for CP. How 
much data is required to estimate 95% confidence intervals for C P to 
within 0.1? 



84 Process capability 

Table 4.1 Tensile strength measurements for 30 shifts 

Shift Mean s.d. 

1 9.0 8.3 8.9 8.73 0.38 
2 6.5 6.4 7.1 6.67 0.38 
3 7.2 7.1 6.9 7.07 0.15 
4 8.6 8.4 7.6 8.20 0.53 
5 7.2 8.1 7.7 7.67 0.45 
6 6.9 6.7 6.9 6.83 0.12 
7 6.8 8.4 7.0 7.40 0.87 
8 7.3 7.0 7.2 7.17 0.15 
9 7.8 7.2 7.5 7.50 0.30 

10 6.3 6.2 7.1 6.53 0.49 
11 6.3 6.4 5.9 6.20 0.26 
12 5.5 6.7 7.8 6.67 1.15 
13 7.4 7.0 6.8 7.07 0.31 
14 5.9 7.0 7.3 6.73 0.74 
15 6.4 6.3 7.6 6.77 0.72 
16 6.4 6.7 7.0 6.70 0.30 
17 7.3 7.9 8.0 7.73 0.38 
18 6.3 7.2 7.2 6.90 0.52 
19 7.5 9.0 7.5 8.00 0.87 
20 8.3 8.2 7.5 8.00 0.44 
21 7.2 5.8 6.8 6.60 0.72 
22 7.4 7.4 6.5 7.10 0.52 
23 8.9 8.3 7.7 8.30 0.60 
24 6.2 7.5 7.1 6.93 0.67 
25 7.5 8.3 7.9 7.90 0.40 
26 7.7 7.8 7.8 7.77 0.06 
27 7.5 6.5 7.1 7.03 0.50 
28 6.6 8.5 7.4 7.50 0.95 
29 6.4 5.6 6.5 6.17 0.49 
30 8.0 7.6 7.2 7.60 0.40 
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Basic Shewhart control charts 
for continuous variables 

5.1 INTRODUCTION 

The idea of the control chart is to operate a simple mechanism for 
controlling the average Ievel and spread of a process. A minimum of 
two charts is required, one to control process average Ievel and one to 
control process spread, but sometimes several charts are necessary. In 
the sections below we discuss the control of process average Ievel and 
process spread separately. In addition, we Iimit ourselves in this chapter 
to data which has been selected in groups, or to one-at-a-time data 
which has been blocked in a suitable way; see section 3.7. More details 
about one-at-a-time data are given in Chapter 6. We shall also assume 
here that our data is subject to underlying random variation which is 
normally distributed; see below. 

5.1.1 In control- out of control 

In any production process, some variation in quality is unavoidable, and 
the theory behind the control chart originated by Dr W. A. Shewhart is 
that this variation can be divided into two categories, random variation, 
and variation due to special or assignable causes. Variations in quality 
which are due to causes over which we have some degree of control, 
such as a different quality of raw material, or new and unskilled workers 
are called special causes of variation. The random variation is the 
variation in quality which is the result of many complex causes, the 
result of each cause being slight. By and large nothing can be done 
about this source of variation except to modify the process. 

If data from a process are such that they might have come from a 
single distribution (frequently Normal), having certain desired properties 
such as a mean in a specified range, the process is said to be in control. 
If, on the other hand, variation due to one or more special causes is 
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present, the process is said to be out of control. The Shewhart control 
chart is a simple device which enables us to define this state of statistical 
control more precisely, and which also enables us to judge when it has 
been attained. 

Processes Objective of charts 

A process is said to be either To 
BRING! 

Processes IN CONTROL 

KEEP 
or 

IN CONTROL 

OUT OF CONTROL 

Figure 5.1 Objective of charting. 

The definition of 'in control' is rather too naive, particularly for the 
process industries, when the models of sections 3.3.2 and 3.3.3 may be 
appropriate, and there may be cycles in the data. In this case the 
definition of 'in control' needs to be extended to cover these models, 
unless of course, we wish to detect and eliminate these extra sources of 
variation. The key point is that we are trying to find out if the process is 
statistically stable, or if extra sources of variation are present. Even 
statistically stable processes may come under investigation if they have 
low capability. 

It is assumed, of course, that when there is evidence that special 
causes of variation are present, some action is initiated so that these 
causes can be traced and eliminated; this is usually the main aim of 
operating a quality control chart. Gradually, extra sources of variation 
are eliminated. There is now a long history of widespread industrial 
applications in which the control chart works, is seen to operate in this 
way and is of very great value. 

5.1.2 Sampling risks 

When operating SPC we take small samples from the process at regular 
intervals and plot, say, the mean and the range on a chart. As a result, 
we conclude that the process is either in cantrot or out of control. If the 
process is out of control, this may be due to a change in process average 
level, or process spread, or due to a particular problern at a specified 
time point. 
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Because of the variation inherent in sampling, the average Ievels and 
the spreads as indicated by the samples will vary from sample to sample 
even if the true process average and spread are constant. This gives rise 
to two dangers when sample Observations are plotted on a control chart. 

When charts indicate OUT OF CONTROL we take ACTIOn 

Otherwise we LEAVE THEM ALONE. 

Type I risk 

Taking action when no change has occured. 

Type II risk 

Not taking action when a real change has occured. 

Figure 5.2 Risks involved in charting. 

These are as follows: 

Type I risk: The risk that a legitimately extreme sample will give a 
spurious 'action' decision when no change has occurred 
in the process. 

Type // risk: The risk that a sample will fall within the control Iimits 
although there has been a real change in the process; 
the change is not signalled. (The size of this risk will get 
smaller as the size of the change increases.) 

The design of a control chart is a compromise between these two 
opposing risks. Different practices have grown up about the design of 
the charts, and the risks involved. lt is usual to have 

action lines at 
3.09 standard errors (probability) 
3.00 standard errors (popular) 

from the mean. One point beyond the action line is regarded as a signal 
for action. The British Standard recommendation is 3.09 standard 
errors, corresponding to the Normal distribution 0.001 point, and 
American (and some British) practices have chosen 3.00. The two 
practices are deeply entrenched, and there is not much between them. 

Another common practice is to have 

warning lines at 1.96 standard errors (probability) 
2.00 standard errors (popular) 
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from the mean. Two successive points beyond the warning lines is 
regarded as a signal for action. 

The reason for the two different practices on the Iimits is as follows. 
In other charts it is standard to put the action Iimits at the 0.1% points, 
and the warning Iimits at the 2.5% points, and this happens in range 
charts, etc. lt would seem inconsistent not to do this for the X-chart, 
and this argument Ieads to using 1.96 and 3.09 as multipliers. However, 
in practice a is nearly always unknown, and has to be estimated, and 
the normality assumption may not hold. In the face of these uncertain
ties, it seems rather pedantic to use 1.96 and 3.09, so that they are 
rounded off to 2 and 3. It should be noted that the use of 'popular' 
rather than 'probability' Iimits considerably reduces the average run 
length when the process is on target ( see section 5.4). In the methods 
given below both 'probability' and 'popular' factors will be given. 

In addition to using action and warning lines, other rules are 
sometimes employed, and reference will be made to these below and in 
Chapter 8. Considerable care has to be taken about using some of these 
extra rules, as they can increase the type I risk to unacceptable Ievels. 

5.1.3 Shewhart control charts- the set-up phase 

The use of Shewhart control charts can be divided into two phases: 

(1) the set-up phase, which we review here, 
(2) and the operational phase, which we review in section 6.6.3. 

In between these two sections, we give the technical details of the 
different charts, how to construct and use them, and how to choose 
between the different options available. 

The set-up phase of a Shewhart control chart is shown in Fig. 5.3. We 
now make some detailed comments on each of the boxes in that figure. 

Box 1 Data collection. Usually special data must be collected, and 
rather more than is needed for routine chart operation; see Chapter 4. 
Box 2 Process capability studies. These are discussed in Chapter 4. lt is 
very desirable to identify the types of process variation which are likely 
to occur; see section 3.3. 
Box 3 Estimation. See sections 3.6 and 3.7. 
Box 4 Low capability. See section 4.5. 
Box 5 Medium capability. Here we operate control charts, and expect 
the process to improve to a high-capability process. 
Box 6 High capability. Here the process mean need not be controlled 
so closely; see Chapter 9. 



( 1) Set up a plan to collect, record 
and plot data. Choose initial 
subgroup size and frequency 

(2) Carry out process capability 
study (Chapter 4) 

(3) Obtain good estimates of f.J., a 
and ae for the process 

(5) Medium Copability processes 

(7) Choose group size and sampling 
frequency for main chart 

(8) Choose the type of chart for 
Controlling the average Ievei 
and spread of the process 

(9) Choose scales and calculate 
Iimits for charts 
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Figure 5.3 Shewhart control charts- the set-up phase. 

Box 7 Group size and sampling frequency. These are discussed later. 
For the moment we assume either that observations are made singly, 
with an obvious way to group the data such as by shift, process run, 
etc., or that observations are taken in groups at a time. Sampling should 
be frequent enough to enable us to detect changes in the average 
process level or spread reasonably quickly. 
Box 8 Choice of chart type. We describe and discuss the choice later. 
Box 9 Choosing scales and calculating Iimits. For the Shewhart chart see 
sections 5.2 and 5.3. 

5.1.4 An example 

We shall use the following example throughout the chapter. 
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Example 5.1 
In the manufacture of an engineering plastic, five Iaminates were 
sampled and put into a machine to test for strength. Laminates were 
taken once a shift from the production line, and the results in Tables 5.1 
relate to 'transverse flexure strength'. 

Table 5.1 Engineering plastic strength data 

Shift Observation Mean Median 

1 140.1 139.4 143.5 141.4 136.5 140.18 140.1 
2 140.0 137.4 140.8 140.5 141.3 140.00 140.5 
3 138.9 139.6 141.0 141.7 138.7 139.98 139.6 
4 137.1 136.0 136.0 133.7 141.5 136.86 136.0 
5 143.1 141.2 138.5 137.0 137.1 139.38 138.5 
6 140.5 138.7 140.2 142.0 142.3 140.74 140.5 
7 139.8 141.4 137.9 137.8 140.0 139.38 139.8 
8 139.5 140.5 141.0 142.1 142.5 141.12 141.0 
9 137.8 142.5 138.5 140.3 138.2 139.46 138.5 

10 144.1 142.3 138.0 140.8 139.1 140.86 140.8 
11 140.3 139.7 143.5 138.0 139.0 140.10 139.7 
12 141.2 139.4 139.2 138.9 139.0 139.54 139.2 
13 140.4 138.4 139.2 140.1 143.2 140.26 140.1 
14 139.2 139.4 137.9 141.4 137.5 139.08 139.2 
15 137.7 135.8 138.5 141.6 138.1 138.34 138.1 
16 137.7 141.9 140.9 141.7 141.4 140.72 141.4 
17 137.6 138.9 139.1 141.8 136.6 138.80 138.9 
18 137.8 136.6 139.6 139.0 139.1 138.42 139.0 
19 140.5 138.2 139.8 136.1 139.6 138.84 139.6 
20 141.0 143.3 141.7 143.0 140.5 141.90 141.7 
21 137.6 137.3 141.2 138.8 143.3 139.64 138.8 
22 138.5 141.4 142.5 138.7 140.1 140.24 140.1 
23 143.1 138.6 142.1 140.5 142.1 141.28 142.1 
24 140.0 138.5 142.5 142.2 140.3 140.70 140.3 
25 140.9 143.1 138.3 142.8 139.6 140.94 140.9 

Totals 3496.76 3494.4 

Estimation offland a from the data in Table 5.1 

Case (i): 'a' method 
x = 3496.76/25 = 139.87 
Ow = V { (2.5822 + 1.5282 + · · • + 2.0552)/25} 

== v(89.6516/25) = 1.8937 

Std dev Range 

2.582 7.0 
1.528 3.9 
1.318 3.0 
2.875 7.8 
2.683 6.1 
1.461 3.6 
1.527 3.6 
1.213 3.0 
1.950 4.7 
2.442 6.1 
2.085 5.5 
0.948 2.3 
1.822 4.8 
1.532 3.9 
2.096 5.8 
1.730 4.2 
1.961 5.2 
1.213 3.0 
1.744 4.4 
1.223 2.8 
2.558 6.0 
1.723 4.0 
1.764 4.5 
1.657 4.0 
2.055 4.8 

114.0 
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Case (ii): range method 

X = 3496.76/25 = 139.87 
R. = (7.0 + 3.9 + ... + 4.8)/25 = 114/25 = 4.56 
n = 5, dn = 2.326, 

so that 
Ow = 4.56/2.326 = 1.9605 

A test for the presence of extra variation is not significant, and the 
standard error of the mean is 

which is estimated as 

&e = &w/Yn = 1.9605/\15 = 0.8768 

for the range estimate of aw. 

Note: It will be found that when control charts are plotted, sample 4 is 
beyond the action limits. Any such points should be omitted and the 
calculations redone provided a special cause of variation is found (see 
section 5.2.2). 

5.2 CONTROL CHARTSFORA VERAGE LEVEL 

In this section we set out how to construct and use an X-chart for 
contraHing the average level of a process. Alternative charts will be 
discussed in the next chapter. 

5.2.1 X-charts: chart construction 

The construction of an X-chart relies on having good estimates f1 of the 
process average level and &e of the standard error of the group means. 
These estimates are derived either from data from process capability 
studies, or from fresh data. If data from process capability studies is 
used we must make quite sure that conditions have not changed in the 
interval since the studies were carried out. Fresh data may be more 
representative of current process performance but at least 20 groups or 
blocks of data should be collected. Sometimes we may be given target 
values of {l and ae to use for chart construction. We shall assume that 
the sample size n and sampling interval have been chosen. Further 
advice on choosing these quantities is given later. The construction of an 
X-chart follows the reasoning given in section 5.1.2, and is set out in 
Method Summary 5 .1. 
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METROD SUMMARY 5.1 

Construction of X-chart 

Step I Obtain estimates of the process average level, jl, and the 
process variability, and also obtain the estimated standard 
error of group means, &e. 

Step 2 Choose the scale of the chart so that jl is near the centre, 
and so that the scale covers approximately ±4&e from jl, 
where n is the sample size at each sampling point. 

Step3 Mark the action lines at jl ± 3.09&e (probability); 
jl ± 3&e (popular) 

Step 4 Mark the warning lines at jl ± 1.96&e (probability) 
jl ± 2&e (popular) 

5.2.2 Illustration of construction methods given in section 5.2.1 

Here we construct a chart using the data of Example 5.1 as fresh data 
from our process. The procedure is the same whether the a or 'range' 
methods are used to estimate a. We shall use the range-method 
estimate: 

Stepl From section 5.1.4, X= 139.87, and &e = 0.8768. 
Step2 Centre the chart at, say 140. The scale should cover 140 ± 4&e, or 

about 136 to 144. 
Step 3 Action limits: 

139.87 ± 3.09 x 0.8768 = 137.16, 142.58 (probability) 
139.87 ± 3 x 0.8768 = 137.24, 142.50 (popular) 

Step4 Warning limits: 
139.87 ± 1.96 x 0.8768 = 138.15, 141.59 (probability) 
139.87 ± 2 x 0.8768 = 138.12, 141.62 (popular) 

The chart is shown in Fig. 5.4, with the data plotted. Since the process 
is found to be out of control at group 4, a search for a special cause of 
variation should be undertaken. If a special cause is found, group 4 
should be omitted and the calculations repeated. This is left as an 
exercise. 

5.2.3 X-charts: interpretation 

It is important to use charts for control of average level and spread of a 
process together, and section 5.5 deals with this. In this section we 
consider some of the basic rules for interpreting the X-chart. 
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(1) that the distribution of the data is Normal, or at least approximately 
so; 

(2) that the group sizes are equal; 
(3) that all groups will be weighted equally; 
(4) that the observations are independent. 

The action to be taken when these assumptions do not hold is set out in 
section 5.5. Normality is not usually very important. 

(b) Basic ru/es for X-chart 
The X-chart is regarded as showing evidence that a special or assignable 
cause of variation is present when either of the following hold: 

(1) one point is outside the action Iimits; 
(2) two successive poillts are outside the same warning Iimit. 

Bither of these show evidence of an assignable cause provided 
checking shows that it was not due to miscalculation. These are 
illustrated in the Fig. 5.5(a) and (b). 

Some others also use the following rules but these drastically affect 
the properties of the chart: 
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Figure 5.5 Assignable causes of variation: (a) action signal by rule (1); (b) action 
signal by rule (2); (c) action signal by rule (3); (d) action signal by rule (4). 

(3) seven successive points on one side of the mean; 
(4) seven successive pointseither increasing or decreasing. 

A discussion of the value of these extra rules is given in Chapter 8. 
The chief problern is that these rules drastically increase the chance of 
false alarms - type 1 errors. 

5.3 CHARTS FüR CONTROL OF (WITHIN-GROUP) 
PROCESS SPREAD 

5.3.1 Rangecharts- construction 

There are two ways of setting up the range chart - the 'range' method 
and the 'a' method. If process capability data are used to get an 
estimate of aw, then this is fed into the appropriate step of the a 
method. These methods aresetout below. 

METHOD SUMMARY 5.2 

Construction of a range chart by the range method 

Step I Obtain the average range R either from process capability 
sturlies data, or from at least 20 groups of fresh data. 

Step 2 Choose the scale of the range ~hart so that the range goes 
down to zero, and up to about twice the largest range 
observed in the trial data sets. 
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Step 3 Mark the action and warning limits on the chart: 

Lower action limit: D 1R 
Upper action limit: D 2R 
Lower warning limit: D 3R 
Upper warning limit: D 4R 

where the Db D 2 , D 3 and D 4 values are given in Table 5.2 
and in the Appendix tables. 

Notes 1. Step 1 is as for the X-chart- the same data are used. 
2. The factors given in Table 5.2 are obtained from the 

distribution of the range in Normal samples, and from the 
conversion factors from range to estimates of a. 

Table 5.2 Factors for constructing range charts from an average range D1. D 2, 
D 3, D4 

Group size Action lines W arning lines 
n D1 D2 D3 D4 

2 0.00 4.12 0.04 2.81 
3 0.04 2.99 0.18 2.17 
4 0.10 2.58 0.29 1.93 
5 0.16 2.36 0.37 1.81 
6 0.21 2.22 0.42 1.72 
7 0.26 2.12 0.46 1.66 
8 0.29 2.04 0.50 1.62 
9 0.33 1.99 0.52 1.58 

10 0.35 1.94 0.54 1.55 

Note: The action and warning lines are obtained by multiplying these factors by the 
average range. The action lines use D 1 and D 2 , and the warning lines use D 3 and D 4 • 

METHOD SUMMARY 5.3 

Construction of a range chart by the 'a' method 

Step 1 Obtain an estimate of aw either from process capability 
studies data, or from at least 20 groups of fresh data (Note: 
Use aw, not ae) 

Step2 Use the factors from Table 5.3, and multiply by &w to find 
where to plot the action and warning limits. The scale 
should be chosen to extend to about 50% greater than the 
upper action limit. 

Note Step 1 is as for the X-chart- the same data are used. 
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Table5.3 Factors for constructing range charts from an estimate of a (D 5, D6, 
D7, Ds) 

Group size Action lines Warning lines 
n Ds D6 D1 Ds 

2 0.00 4.65 0.04 3.17 
3 0.06 5.06 0.30 3.68 
4 0.20 5.31 0.59 3.98 
5 0.37 5.48 0.85 4.20 
6 0.53 5.62 1.07 4.36 
7 0.69 5.73 1.25 4.49 
8 0.83 5.82 1.41 4.60 
9 0.97 5.90 1.55 4.70 

10 1.08 5.97 1.67 4.78 

Note: The action and waming lines are obtained by multiplying these factors by an 
estimate of a. The action lines are D 5 and D 6 , and the warning lines use d7 and D 8• 

5.3.2 Illustration of construction methods for range chart 

Herewe use the range method as setout in Method Summary 5.2. 

Step 1 R = 114.0/25 = 4.56 
Step3 Factors from Table 5.2 are for n = 5, so we have 

Lower action limit: 
Upper action limit: 
Lower warning limit: 
Upper warning Iimit: 

0.16 X 4.56 = 0.73 
2.36 X 4.56 = 10.76 
0.37 X 4.56 = 1.69 
1.81 X 4.56 = 8.25 

The chart for Example 5.1 data is shown in Fig. 5.6. 

5.3.3 Range charts - interpretation 

(a) Assumptions of the range chart 
The method assumes 

(1) that the distribution of the data is Normal; 
(2) that the group sizes are equal; 
(3) that all groups will be weighted equally; 
(4) that the groups are independent of each other; 
(5) that all between-group variation is due to special causes. 

The last point is particularly important. Since the methods plot 
within-group ranges or standard deviations, between-group variability is 
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Figure 5.6 Construction of a range chart. 

not detected. Methods for doing this will be discussed m the next 
chapter. 

Normality can be quite critical for the range chart, and also lack of 
independence between groups. Sometimes lack of Normality can be 
corrected by use of a simple transformation. 

(b) Basic rules for the range chart 
These rules are the same as for the X-chart, given in section 5.2.3; see 
Fig. 5.7. Larger ranges mean an increase in the process spread. A range 
below the lower action limit may indicate one of the following: 

(1) The process spread has reduced and the charts may need rescaling. 

u~ 
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(b) Action at point 6 - above upper warning Iimit 

Figure 5. 7 Illustration of use of range chart. 

(2) The measurement apparatus has jammed. 
(3) There is a mistake in the calculations. 

5.3.4 Standard deviation charts 

These are very similar to the range charts, except that standard 
deviations are calculated and plotted for each group. That is, we follow 

Table 5.4 Factors for constructing deviation charts from an estimate of standard 
deviation (D9, Dw, Du, D12) 

Group size Action lines Warning lines 
D9 Dw Du D12 

2 0.00 3.29 0.00 2.24 
3 0.00 2.63 0.16 1.92 
4 0.09 2.33 0.27 1.77 
5 0.15 2.15 0.35 1.67 
6 0.21 2.03 0.41 1.60 
7 0.25 1.93 0.45 1.55 
8 0.29 1.86 0.49 1.51 
9 0.33 1.81 0.52 1.48 

10 0.36 1.76 0.55 1.45 
11 0.38 1.72 0.57 1.43 
12 0.41 1.69 0.59 1.41 

Note: The action and warning lines are obtained by multiplying these factors by an 
estimate of aw. 
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the 'a' method of Section 5.3.1 above, but then use Table 5.4 to get the 
factors: 

lower action limit: 
upper action limit: 
lower warning limit: 
upper warning limit: 

D9fJw 

Dwfiw 

Du &w 
D 12Gw 

The interpretation and use of the standard deviation chart is the same 
as for the range chart. It is more efficient than the range chart, and 
particularly so if the group size is larger than about 8. 

The factors in Table 5.4 are obtained from the distribution of 
standard deviations in Normal samples. 

5.3.5 Control of between-group spread 

If the test for extra variation set out in section 3.6.3 shows extra 
variation present, then this variation also needs controlling. Clearly, the 
methods given in section 5.3.1-4 only control the within-group variation. 

Control of between-group variation can be affected by calculating a 
moving-range chart or a moving-standard-deviation chart, based on the 
group means. This is set out in the next chapter, along with other 
similar types of control chart. The commonly used method is to operate 
an X and R or s chart, as set out above, but for the process industries 
this needs to be supplemented by methods given in the next chapter. 

5.4 THE AVERAGE RUN LENGTH 

In order to design our charts in a more precise way, and in order to 
compare properties of alternative charts we need to introduce the 
concept of run length . The run length is the number of observations 
plotted on the charts until an 'out of control' signal is given. Run 
lengths are usually calculated assuming that observations are sampled 
independently from a specific population, and here we assume that there 
is simple random variation only. 

Suppose we operate a Shewhart X-chart where a = 1 and we use a 
group size of 4, sampled, say every 10 minutes. Suppose also that the 
target mean is zero, and this is made the centre of the X-chart, but that 
the process mean is 1. How many groups will be sampled before a signal 
is given that the mean is off target? Figure 5.8 shows the control charts 
for three computer simulations of the randomly generated groups that 
could result from this situation. The number of groups to an 'out of 
control' signal is called the run length. 
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Figure 5.8 Simulation of an X chart. 
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The actual run length observed on any trial will obviously differ due 
to random variation. The average of the three trials we have seen is 3. 
For our example this means that an average 30 minutes' production 
would elapse before this change in process mean was discovered. The 
long run average - taken over a very large number of trials - can be 
calculated theoretically and this is called the average run length (ARL). 
Some of the theory is given in the next section and in Chapter 8. 

It is helpful to carry out some simulation trials in order to see how the 
run length varies, and the exercises at the end of the chapter set this 
out. 

The ARL curves will tell us how many groups, on average, will have 
to be sampled, before a given change in the process mean is detected. 
Figure 5.9 shows the ARL curve of the X-chart, see also Table 5.5. 
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Figure 5.9 ARL curve oftheX chart. 

We see from Table 5.5 that if the true mean of the process differs 
from the target value by the amount a/Vn, so that ej(a/Vn) is 1.0, 
then on average 26.35 groups will be sampled until an 'out of control' 
signal is given. We see that ej(a/Vn) has tobe about 2.5 before the 
ARL is reduced to 2.47. We can use ARL charts to study the properties 
of any scheme we propose, and to help guide us on a choice of sample 
size and sampling frequency. 
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Table 5.5 ARL for deviations of various sizes () from the target value 

ARL Deviation in standard 
error units ej(a/Vn) Probability limits Popular limits 

0 
0.5 
1.0 
1.5 
2.0 
2.5 

Example 5.2 

320 
108.03 
26.35 
8.92 
4.14 
2.47 

278 
100.60 
25.61 
8.78 
4.07 
2.41 

Suppose we know a = 1, and that we wish to detect a change in the 
mean of 0.5 units within about 20-25 minutes. If we sample every 
5 minutes, we want an ARL of about 4 or 5 at 8 = 0.5. From Table 5.5 
we see that we must have 8/(a/v'n) at about 2.0, so 

0.5v'n = 2 
n = 16 

This is a large group, and we may wish to investigate sampling more 
frequently than every 5 minutes, if this is practicable. Otherwise we may 
have to consider relaxing our requirements. 

5.5 SPECIAL PROBLEMS 

The charting methods given in this chapter are based on certain 
assumptions. The action to be taken when these are not valid is as 
explained in Sections 5.5.1-2. 

5.5.1 Non-normality 

Basically, non-normality does not matter much for Controlling process 
average Ievel, provided the group size is at least four, but it can affect 
charts for control of spread markedly. Frequently investigations will 
show that non-normality is due to some way in which the process is 
operated, such as due to the merging of streams, and this can be 
corrected. Failing this, it is often possible to transform data to normality 
by using a simple transformation such as logarithm, square root, etc. 

If there is non-normality and this cannot be corrected or transforma
tions used, then the methods given are readily transferred to another 
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distribution. The procedure involved would be to collect sufficient data 
to fit a distribution, and then fit action and warning lines at the 
appropriate percentage points. 

5.5.2 Unequal numbers in groups 

If the numbers in the groups change, it is a simple matter to change the 
limits, as shown in Fig. 5.10. 

A 8 

Figure 5.10 Change of group size. 

5.5.3 Correlation 

Time 

( Control 
) Iimits 

lt is clear that if successive group means are correlated, as for example 
in model3 of section 3.3, the Shewhart chart could be affected 
markedly. Vasilopoulos and Stamboulis (1978) have shown how to alter 
the decision limits for a simple autoregressive model. However, the 
extra variation caused by an autoregressive model would be likely to be 
detected by the test of section 3.6.4. This would lead to ae being based 
on variation between group means rather than on the within-group 
estimate. The procedures given above can therefore cope with autocor
relation with one exception. The use of warning limits should be 
discontinued in the presence of autocorrelation - positive autocorrela
tion willlead to too many false alarms. 
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A thorough study of this aspect of Shewhart charts does not seem to 
have been attempted. 

5.6* SOME THEORETICAL RESULTS FüR SHEWHART 
CHARTS 

5.6.1 Shewhart chart with action lines only 

In this section we assume simple random variation only, and derive 
some theoretical results on the average run length. Further results will 
be given in Chapter 8. 

First we deal with a Shewhart chart for means with action lines only, 
as set out in section 2.8. Suppose we take observations in groups of n at 
a time, which we denote X;j, j = 1, 2, ... , n, i = 1, 2, .... The group 
means X;= 2..jX;jn are plotted on a chart with upper and lower action 
Iimits at xuA, xLA- If all observations are independently and identically 
distributed with an N(!f,a2) distribution, then the probability of being 
outside the action Iimits is 

It is clear that the distribution of run length R is geometric with 
parameter p, see section 2.5. This means that the ARL is 

ARL = E(R) = 1/p 

and the variance of the run length distribution is 

V(R) = (1 - p )/p 2 

If the chart is set up in the standard way using the exact 11 and a, then 
p = 0.002, so that 

E(R) = 500 and V(R) = 249500 

and the standard deviation of R is 499.5. The highly skewed nature of 
the geometric distribution needs to be taken note of, and Table 5.6 
illustrates this. If charts are being designed using ARL as a basis, this 
point about the shape of the run-length distribution needs to be watched 
carefully. 
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Table 5.6 Illustrations of the geometric distribution 

Percentage points 
p Mean Variance 50% 90% 95% 

0.1 10 90 7 22 29 
0.05 20 380 14 45 59 
0.01 100 9900 69 230 299 
0.005 200 39800 139 460 598 
0.001 1000 999000 693 2302 2995 

5.6.2 Shewhart chart with warning lines 

We now consider the modified Shewhart chart with warning lines, 
operated by the rules set out in section 5.2.3. That is, action is taken 
when one point is outside the action line or two successive points 
outside the warning lines. Let p 0 , p 1 and p 2 be the probability of sample 
means falling in the regions shown in Fig. 5.11, and let the run lengths 
from points within these regions be L 0 , L 1 and L 2. 

UAL 

UWL P, 

Target Po 

LWL 

LAL 
p2 

Figure 5.11 Shewhart chart with warning lines. 

By taking one observation, we easily generate the following equ
ations: 

Lo = 1 +PoLo + P1L1 + pzLz 

L1 = 1 +PoLo + pzLz 

L 2 = 1 + poL o + p 1 L 1 
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We then easily obtain 

Lo = (1 + P1 + Pz + PlPz)/(1 -Po - P1P2 - PoP1 - PoP2 - PoPlPz) 
(5.2) 

In this expression, the ps are functions like (5.1) when the data are IID 
normal. However, it is relatively easy to work out the ARL for any 
distribution, so long as the Xs are independent and identically dis
tributed. Some values of the ARLs for the standard chart with bound
aries at ±3.09a/Vn and ±1.96a/Vn ('probability' limits), and ±3a/Vn 
and ±2a/Vn ('popular' limits) are given in Table 5.5. 

In Table 5.7 we show the ARL for the standard (probability) 
boundaries, and the ARLs which apply if the estimate of a is under- or 
overestimated by 10%. This table clearly shows a very dramatic effect, 
and shows the importance of obtaining a good estimate of a. 

Table 5.8 shows the ARLs which apply to the standard (probability) 

Table 5. 7 ARLs for standard (probability) boundaries for errors in & 

&ja 
Mean 1 (exact) 0.9 1.10 

0 320.00 125.95 884.00 
0.25 222.85 93.91 571.79 
0.50 108.03 50.92 247.34 
0.75 51.50 26.86 106.40 
1.00 26.35 15.06 49.49 
1.50 8.92 5.97 14.12 
2.00 4.14 3.12 5.72 
2.50 2.46 2.02 3.09 
3.00 1.75 1.52 2.05 

Table 5.8 ARLs for standard (probability) boundaries with a x2 distribution 

D.F. of x2 

Mean 20 60 120 00 

0 146.53 219.79 259.06 320.00 
0.25 89.18 124.35 146.76 222.85 
0.50 54.44 68.70 77.14 108.03 
0.75 33.65 38.88 41.76 51.50 
1.00 21.18 22.81 23.66 26.35 
1.50 9.09 8.98 8.94 8.92 
2.00 4.49 4.33 4.27 4.14 
2.50 2.62 2.55 2.53 2.46 
3.00 1.80 1.78 1.77 1.75 
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scheme if the points plotted have a i rather than a normal distribution; 
seealso Fig. 5.12. The coefficients of skewness are 

20 d.f: 0.63 60 d.f: 0.37 120 d.f : 0.26 

While the effect of skewness is not as severe as the effect of errors in a, 
there is still a very strong effect, even for quite small skewness in the 
distribution. This leads us to conclude that severe skewness of the 
original population could be important if the group size is small. 
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Figure 5.12 Effect of skewness on the Shewhart chart. 

5.6.3 The position of the warning lines 

By using equation ( 5 .2) we can vary the values of p 0 and p 1 to get the 
same ARL when the process is on target. There are two limiting cases: 

(1) No 'warning' region. Herewe have 

Po = (Lo - 1)/Lo 

where L 0 is the ARL when the process is on target. This leads to 
boundaries at a distance 2.955 standard errors from the target, for 
L 0 = 320. 
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(2) No 'action' region, but simply a warning region. Here we have 

P1 = {1 + Y(l + 8Lo)}/4Lo 

which gives p 1 = 0.0403 for L 0 = 320, and this is at 1.747 standard 
errors from the target. 

Table 5.9 gives the ARL for these two limiting cases and for some 
intermediate ones. We see that broadening the warning region increases 
the ARL at large distances from the target, and reduces the ARL for 
small distances from the target. In fact broadening the warning region a 
little from the standard position improves the ARL curve for small 
deviations without paying too high a price at high deviations. This is 
evidence that the warning region should not be set narrower than the 
standard (probability) positions. In fact the standard British chart 
achieves a good result at high deviations from the target, and perhaps 
the price being paid for this is too high. 

Table 5.9 Shewhart chart with warning lines: Position of the boundaries 

Values of p 0 , p 1 and position of action Iimits ( see Fig. 5.11) 

Prob(action) 0.0032 0.002 0.0015 0.001 0.0005 0 
Po 0.9968 0.9500 0.9407 0.9327 0.9257 0.9194 
P1 0 0.0240 0.0289 0.0331 0.0368 0.0403 
Warning 2.955 1.96 1.92 1.83 1.78 1.75 
line 
Action line 2.955 3.09 2.03 3.29 3.48 00 

ARL 
Mean 

0 320.00 320.00 320 00 320.00 320.00 320.00 
0.25 244.59 222.85 217.67 213.83 211.25 210.80 
0.50 136.69 108.03 102.70 99.03 96.73 96.67 
0.75 72.32 51.50 48.42 46.42 45.27 45.56 
1.00 39.49 26.35 24.77 23.80 23.30 23.71 
1.50 13.73 8.92 8.52 8.31 8.27 8.66 
2.00 5.89 4.14 4.05 4.03 4.08 4.45 
2.50 3.08 2.46 2.46 2.50 2.58 2.96 
3.00 1.93 1.75 1.77 1.82 1.91 2.36 

If Shewhart charts are to be used, rather than CuSum charts, then 
several sets of boundaries could easily be prepared, which have good 
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properties at different deviations of the mean from the target. However, 
it would be reasonable to argue from the results of Table 5.9 that the 
differences are small. 

5.6.4 A modified scheme 

Page (1955) studied the effect of variations in the type of rule used in 
the Shewhart chart, but only a limited number of calculations were 
reported. 

The following rule is suggested: Take action if one point is outside the 
action limits, or two out of three points outside the same warning limit. 

The ARL function for this rule can be derived in a similar way to the 
method used in section 5.6.2, and we have the formula 

1 + (1 + Po)(pl + P2) + 2pJ.P2(1 + Po)2 

La = {1 -Po - PlP2(1 + Po)2 + PoPlP2(1 - PÖ) - pÖ(p1 + P2)} 

After some calculation, it was found that warning and action bound
aries at ±2.17 and ±3.04 standard errors gave the following results: 

Mean 
ARL 

0 
320 

0.25 
226.1 

0.5 
111.3 

1 
27.2 

1.5 
9.2 

2 
4.2 

2.5 
2.5 

This shows no improvement over the previous boundaries. 

3 
1.8 

W e therefore reach the conclusion that the standard positions for the 
boundaries is a satisfactory compromise. For significant improvements it 
is desirable to run a Shewhart chart in combination with a moving-aver
age chart, or else a snub-nosed CuSum scheme. 

5.7* CHARTS FüR CONTROL OF PROCESS SPREAD 

The theory for obtaining properties of charts for control of process 
spread follows the methods described above for control of process 
average level. The ARL formula is the same (5.2), but the p;s involve 
the distribution of the range or standard deviation. Much less work has 
been done in this area. A comparison of range and standard deviation is 
given by Tuprah and Ncube (1987). Same of their results are given in 
Table 5.10 below. Tables showing the effect of non-normality or correla
tion do not seem to be available. 
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Table 5.10 ARL values for Shewhart control charts with warning lines 

k 5 10 15 20 
R-chart S-chart R-chart S-chart R-chart S-chart R-chart S-chart 

UWL 3.97 1.5829 4.577 1.3984 4.984 1.3213 5.1060 1.278 
UAL 5.00 1.9702 5.530 1.6463 5.800 1.518 5.9920 1.443 
a 

1.0 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 
1.1 63.40 60.00 50.00 41.70 43.80 32.40 39.90 26.50 
1.2 27.20 25.10 18.40 14.40 14.90 10.00 12.80 7.60 
1.3 14.40 13.20 9.00 6.90 7.00 4.70 5.90 3.60 
1.4 8.90 8.20 5.30 4.10 4.10 2.90 3.50 2.20 
1.5 6.20 5.70 3.70 2.80 2.80 2.10 2.40 1.70 
1.6 4.60 4.30 2.80 2.30 2.20 1.70 1.90 1.40 
1.7 3.60 3.40 2.20 1.90 1.80 1.40 1.60 1.20 
1.8 3.00 2.80 1.90 1.60 1.50 1.30 1.40 1.10 
1.9 2.60 2.40 1.70 1.40 1.40 1.20 1.20 1.10 
2.0 2.30 2.20 1.50 1.30 1.30 1.10 1.20 1.00 

UWL is the Shewhart upper warning line, and UAL is the Shewhart upper action line. 

EXERCISES 5A 

1. Simulation exercises. This exercise can be carried out by a group of 
five people, each of whom selects one of the numbered data sets 
given in Appendix B. The objective of the exercise is to investigate
the variation in run lengths which occur as a result of the preceding 
rules, and the same data sets will be used in Chapter 7 to compare 
average run lengths of Shewhart and CuSum charts. (However, 
better results may be obtained by using a group of at least a dozen 
people). 

Suppose that you are manager of a process, and you wish to set up 
Shewhart X-charts on the basis of one of the initial data sets marked 
11, 12 etc. Having set up your chart, now run the corresponding data 
sets A, B, C, D through your chart until action is given or until the 
end of the dataset. Record the run length to ( and including) the 
action point, and try to estimate from the plots where the processes 
changed. 

2. Set up Shewhart X and range charts for the data set you collected in 
Exercise 2A.2. 

3. Design some simple simulation trials to estimate the effect of 
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autocorrelation and non-normality on the ARL properties of the 
Shewhart X chart, range chart and standard deviation charts. 

4. Assuming that there is no extra variation, the estimate of &e for the 
chart for means is &/Vn. The action and warning lines are then 
placed at: 

Action lines 
W arning lines 

Popular Limits 
x ± Aa 
i ± A 1a 

Probability Limits 
i ± Ao.oo1& 
i ± Ao.ozsO 

where A = 3/Vn, A 1 = 2/Vn, A 0.025 = 1.96/Vn, and 
Ao.oo1 = 3.09/Vn. 

If the charts are to be constructed directly from the average range, 
the corresponding limits are placed at 

i ±A'R, 
for the popular action and warning lines, where 

A' = 3/dn Vn, A1 = 2/dn Vn, 

and R is the average range within groups. 
Calculate a table of values of A, A 1> A 0.025 , A 0.001 , and the 

corresponding A ', A 1, A 0.025 , A0.01 for n from 1 to 10 in unit steps. 
Tables of these values occur in standard works on quality control. 

EXERCISES SB 

1. Set up a Shewhart X-chart with action and warning lines, and use 
n = 1, a = 1, f.i = 0. Select data from a table of random normal 
deviates, add 1.5 to each number, and plot. Terminate when action is 
signalled and count the run length. Repeat a few times. Calculate the 
average and variance of the run length. 

2. Suppose you want to operate a Shewhart chart with action lines only, 
but achieve the same in-control ARL as in the standard chart with 
probability limits, which is 320. What distance should the action 
boundaries be from the target? Calculate the ARL function, and 
compare it with the results given in section 5.4. 

3. Suppose you are going to use a Shewhart chart with warning lines, 
but modify the rules so that action is taken when one point is outside 
the action limits, or two successive points outside either warning 
limit. Obtain the formula corresponding to (5.2) in section 5.6.2. 
Calculate the ARL function and compare your results with those in 
section 5.4. 
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4. In a certain industrial process, it is known that a = 4, and it is 
desirable to detect a difference in mean of 4 units in about 
60 minutes. Currently sampling is every 15 minutes. 
(a) What group size should be used? 
(b) Approximately how frequently must the sampling be performed 

if the producer wishes to be 90% sure of picking up the change 
in one hour? 

5. Show that foranon target mean, formula (5.2) reduces to 

La = (1 + Pt)/(1 - Po - Pt - PoPt), 

hence verify the formula in section 5.6.3(2). 

6. Design Shewhart control charts with both action and warning lines, 
with in-control ARLs of 200 and 500. How will you decide the 
position of the warning lines? 
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Extensions to Shewhart charts 
for one-at-a-time data 

6.1 ONE-AT-A-TIME SAMPLING 

6.1.1 Circumstances giving rise to one-at-a-time sampling 

One-at-a-time data arises frequently in practice, especially in the process 
industries. In the component manufacturing field, many individual 
components are produced, and each stands on its own merits. It is then 
easy to sample a group of n at a time to get information about the 
process average Ievel and process spread. In continuous processes 
typically a rather different situation applies. The instantaneous variation 
of the chemical, fluid, etc., may be quite small, but the process varies 
gently in time for many reasons often incompletely understood. For a 
process of this type, selecting a group of observations close tagether in 
time will only represent measurement or sampling error, which may be 
negligible. In order to be able to get close control of such a process over 
time, it is necessary to use rational blocking or moving averages. Charts 
of individual values will not detect the kind of slow drifts experienced. 
In this chapter the construction of 'moving' type charts is described, but 
there are some preliminary points to settle first. 

It is convenient to think first in terms of Model2 of section 3.3, where 
there is both between- and within-group variation, with variances a~ 
and a~ respectively. Here a~ represents variation in the process average 
Ievel over time, and a~ the local or sampling variation. The variance of 
a group of n observations taken at one point in time is 

V(ii.) = a~ + a~/n (6.1) 

whereas the variance of a mean of n Observations sampled singly over a 
period is 

V(ii.) = (at + a~)/n (6.2) 

showing that one-at-a-time sampling is more efficient. However, two 
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points should be made. Firstly local variation, a~, may weil be crucially 
important, rather than variation of the process average Ievel over time 
since in some cases the latter might be subject to some rough control. 
At least two observations need to be sampled at a time even to estimate 
a~, and rather more than two observations are really needed. 

Secondly, the cost of sampling a group of observations is often much 
less than the cost of obtaining the same number of single Observations. 
The sampling cost is made up of staff costs, machinery costs, cost of 
disturbance to the production line etc., and the actual cost of using 
these facilities to obtain, say, five observations rather than one, is often 
much less than five times the cost of a single Observation. 

The key reason why observations are often sampled in groups for SPC 
is that control of process spread is critical, and grouped observations are 
necessary to estimate process spread. In the process industries, or in 
other applications where there is substantial between-group variability, 
one-at-a-time sampling is often more appropriate. Control of process 
spread can then be achieved through a moving-range or moving-stan
dard-deviation chart; see section 6.4. 

For the process industries, Model 3 of section 3.3.3 may be more 
appropriate than Model 2, and here the gain for one-at-a-time sampling 
is less obvious. Correlation between observations tends to produce a 
result closer to the 'grouped' observations variance (6.1) than (6.2). 

6.1.2 Some alternative charting methods 

If the group size is small, or perhaps one, the charting methods given in 
Chapter 5 cannot be used effectively. For example, although we can 
construct a Shewhart chart for group size n = 1, the limits are very 
wide, so that the chart has little power. Some alternative approaches 
when the group size is small or one are as follows. 

(1) Rational blocking 
In this method we artificially block the data by shift, batch, day etc. 
as described in section 3. 7.1. We hope to have some rational method 
of doing this, so that special causes of variation occur between 
rather than within groups. Once blocked data has been achieved, 
the charting methods of Chapter 5 can be used. Although this is a 
very simple way of getting round the problem, an unfortunate 
choice of blocking can mask changes, and inflated estimates of 
spread can also result, leading to wide Iimits. 

(2) Moving-averages, moving ranges 
The alternative to rational blocking is to use moving averages or 
moving ranges. Two types of moving-average chart are given later in 



116 Extensions to Shewhart charts for one-at-time data 

this chapter. The disadvantage of any moving-average chart is that 
action is necessarily delayed by the averaging. 

A key problern with one-at-a-time data is the estimation of the 
Standard error ae of the points being plotted, and this was discussed 
briefly in section 3. 7. In the next section we consider the problern of 
estimating ae for one-at-a-time data again. There is obviously no way of 
estimating aw directly unless observations are replicated, at least for a 
period, although the 'estimation by differences' method given in sec
tion 3.7.2 may get close to it. On the other hand, other methods given 
below give results much closer to ae directly. Because of the confusion 
about what is being estimated, the suffixes aw, aB, ae will be dropped 
while the methods are presented. 

The underlying problern here is much deeper than the following 
discussion suggests. An approach based on a more appropriate model 
needs to be tried. However, the methods given below give satisfactory 
results in practice. 

6.2 ESTIMATION OF a FOR ONE-AT-A-TIME DATA 

In this section we consider again the estimation of a for one-at-a-time 
data, and take this on from section 3.7. In order to illustrate the 
methods we use the data of section 5.1.4, and treat the group means as 
if they were single observations. (This will enable us to get charts which 
we can easily compare with those in Chapter 5.) 

If a rational blocking exists, a a estimate based on this should be 
calculated. However, it may be useful to compare it with estimates given 
below. Any large discrepancy merits investigation. 

Example 6.1 Engineering plastic strength data 
In the manufacture of an engineering plastic, a single Iaminate was 
sampled and put into a machine to test for strength. The Iaminates were 
taken five times a shift from the production line, and the results in 
Table 6.1 relate to 'transverse flexure strength'. In the following sections 
we use the column of means as if they were single observations. 

6.2.1 The overall a estimate 

One easy estimate of a is simply to use all of our data tagether, and 
calculate the overall standard deviation to get &. Clearly, any points 
representing special causes should be omitted, and the easiest way of 
finding this out is to set up trial charts based on all the data. Any point 
out of control should be investigated with a view to omitting it. 
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Table 6.1 Engineering plastic strength data 

Shift Mean Median Std dev Range 

1 140.1 139.4 143.5 141.4 136.5 140.18 140.1 2.582 7.0 
2 140.0 137.4 140.8 140.5 141.3 140.00 140.5 1.528 3.9 
3 138.9 139.6 141.0 141.7 138.7 139.98 139.6 1.318 3.0 
4 137.1 136.0 136.0 133.7 141.5 136.86 136.0 2.875 7.8 
5 143.1 141.2 138.5 137.0 137.1 139.38 138.5 2.683 6.1 
6 140.5 138.7 140.2 142.0 142.3 140.74 140.5 1.461 3.6 
7 139.8 141.4 137.9 137.8 140.0 139.38 139.8 1.527 3.6 
8 139.5 140.5 141.0 142.1 142.5 141.12 141.0 1.213 3.0 
9 137.8 142.5 138.5 140.3 138.2 139.46 138.5 1.950 4.7 

10 144.1 142.3 138.0 140.8 139.1 140.86 140.8 2.442 6.1 
11 140.3 139.7 143.5 138.0 139.0 140.10 139.7 2.085 5.5 
12 141.2 139.4 139.2 138.9 139.0 139.54 139.2 0.948 2.3 
13 140.4 138.4 139.2 140.1 143.2 140.26 140.1 1.822 4.8 
14 139.2 139.4 137.9 141.4 137.5 139.08 139.2 1.532 3.9 
15 137.7 135.8 138.5 141.6 138.1 138.34 138.1 2.096 5.8 
16 137.7 141.9 140.9 141.7 141.4 140.72 141.4 1.730 4.2 
17 137.6 138.9 139.1 141.8 136.6 138.80 138.9 1.961 5.2 
18 137.8 136.6 139.6 139.0 139.1 138.42 139.0 1.213 3.0 
19 140.5 138.2 139.8 136.1 139.6 138.84 139.6 1.744 4.4 
20 141.0 143.3 141.7 143.0 140.5 141.90 141.7 1.223 2.8 
21 137.6 137.3 141.2 138.8 143.3 139.64 138.8 2.558 6.0 
22 138.5 141.4 142.5 138.7 140.1 140.24 140.1 1.723 4.0 
23 143.1 138.6 142.1 140.5 142.1 141.28 142.1 1.764 4.5 
24 140.0 138.5 142.5 142.2 140.3 140.70 140.3 1.657 4.0 
25 140.9 143.1 138.3 142.8 139.6 140.94 140.9 2.055 4.8 

Totals 3496.76 3494.4 114.0 

This estimate of a will obviously be inflated by a considerable amount 
of 'between-sample' variation, if any is present. As such, it is a useful 
upper boundary in guiding us to what & to use. 

For the data given in Table 6.1, we find that the overall & is 1.110, if 
the group means are treated as if they were single observations. 

If there are marked changes of level, so that the data can be split into 
two or more segments, then the segments should be treated separately, 
and the & estimates combined using the formula (3.10). 

6.2.2 Use of moving ranges 

In section 3.7.2 we obtained an estimate of a for one-at-a-time data by 
treating differences of successive Observations as if they were ranges of 
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two observations. This method is readily extended and we could get 
another estimate by using ranges of successive groups of three observa
tions, or of four observations, etc. The method is set out in Method 
Summary 6.1, and the results can be plottedas shown in Figure 6.1. 
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2 3 4 5 6 7 8 9 10 11 12 13 

Group number 

Figure 6.1 Example of moving-range estimates of a. 

If ranges of two are used to get an estimate of a (successive 
differences), there will probably not be much 'between-sample' variation 
in the estimate of a, but if we use ranges of three or more to estimate 
a, the estimate will tend to be inflated. Therefore if a plot of & against 
the number of points in the moving-range (2, 3, 4 etc.) is relatively flat, 
there is little evidence of between-sample variation. If the curve is 
sharply rising, as in Fig. 6.1, some examination should be made for the 
causes of the extra between-sample variation. This may lead to consider
able difficulty in deciding which estimate to use in setting up Shewhart 
charts, and we discuss this below. 

METHOD SUMMARY 6.1 

Estimation of u by moving-ranges of k points 

Step 1 Calculate the moving-ranges for groups of size k (for k = 2, 
3, 4, ... ). Use at least 25 observations, and preferably 50 or 
100. 
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Step 2 Sum the absolute values of the ranges and divide by the 
number of ranges (not observations). 

Step 3 Divide the result of Step 2 by the appropriate factor from 
Table 2.9. 

Step 4 Tabulate the results for groups of size 2, 3, 4, ... as in 
Table 6.2. 

Notes 
(1) Differences due to special causes should be excluded. This can 

be done by constructing a trial Shewhart chart. 
(2) This method should not be used if there is an obvious trend in 

the data which can be attributed to ageing of a catalyst, 
machine wear, etc. 

(3) If there are missing Observations, groups containing these 
should be deleted. 

(4) You will get a different estimate if you re-sample using a 
different time interval. 

Table 6.2 Moving-range estimate of a 

Size of 
moving 
range 2 3 4 5 6 7 

a 1.115 1.102 1.133 1.110 1.111 1.104 

Size of 
moving 
range 8 9 10 11 12 

a 1.098 1.089 1.091 1.094 1.086 

6.2.3 Examples 

Example 6.2 Engineering plastic strength data 
The above procedure was carried out for shift means of the example 
strength data of Table 6.1, and the estimates of a are shown in 
Table 6.2. These estimates are flat, so there is no evidence of the 
presence of any between-sample variation. The overall a is 1.110 which 
is about the same. One reason for this is that the data were generated 
by artificially sampling aNormal distribution. 
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Example 6.3 Water content of antifreeze data 
The data in Table 6.3 below represent the water content of successive 
batches of antifreeze, and a plot of the data is given in Fig. 6.2. The 
results of the moving-range estimates of a are given in Table 6.4. 

Table 6.3 Water content (in ppm) of batches of antifreeze 
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Figure 6.2 Analysis of antifreeze. 

Table 6.4 Estimates of a for antifreeze data 

Size of 
moving 
range 

Size of 
moving 
range 

2 

0.179 

8 

0.207 

3 

0.190 

9 

0.212 

4 5 

0.196 0.202 

10 11 

0.213 0.214 

6 7 

0.202 0.204 

12 

0.217 
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The overall a = 0.220. The moving-range estimates increase steadily, 
representing the fact that more between-sample variation is included in 
a as the 'size' of the moving range increases, 2, 3, 4, .... Clearly, as the 
size increases further, we would expect a to settle down at a value close 
to the overall &. 

6.2.4 Discussion 

The fact is that the estimation of a for one-at-a-time data has not been 
thoroughly studied. Some national and international standards give the 
method of successive differences described in section 3.7.2, and this is 
what has been used in the past. If there is no evidence of additional 
long-term variation, as in our first example, this is the preferred 
method. 

In the second example moving-range estimates for sizes 2, 3, 4, ... 
gave increasing estimates of a. This is presumably because there are 
relatively long-term changes occurring to or within the production 
process, and the extent of these is more likely to be seen in a range of 4 
or 6 successive points than in only 2. It is also clear from this that if the 
successive difference method is used, but sampling points are set much 
further apart in time, then this also will Iead to an inflated estimate of 
a. 

For data such as Example 6.3, where there is considerable between
sample variation, it will be necessary to think carefully about what a to 
use to set up a Shewhart or a CuSum chart to control process average 
Ievel. The choice may lie between 

(1) Regarding current overall variability as acceptable, and setting up 
charts using a large estimate of a. This method will tend to lose 
power in detecting changes. 

(2) Regarding the short-term variability as an achievable goal, setting 
up charts using a small estimate of a, and identifying and removing 
the causes of long-term variability. This method may Iead to 
frequent false alarms. 

The advice of a statistician may be very helpful, but will not entirely 
remove the need to make this choice. 

Charts for control of spread are generally less problematic, as a a 
estimate can be used which is appropriate to the time span over which 
variability is being calculated, and this is generally fairly short. 
However, the above arguments may still apply if a estimates increase 
rapidly for different sizes of the moving-range group. 
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6.3 DETAILS OF FURTHER CONTROL CHARTS FOR 
CONTROL OF PROCESS AVERAGE LEVEL 

In Chapter 5 we only studied the Straightforward X and R or a charts. 
The purpose of this section is to give some details of further types of 
control chart which have been mentioned earlier in this chapter. 
Moving-average and moving-range charts are especially useful for one
at-a-time data. 

The construction methods given below apply for groups of size n, but 
for one-at-a-time data put n = 1 throughout. We shall assume that the 
process capability study has been carried out, and that estimates of the 
process variability are available. We shall denote the group means by 
xj, x2, ... and the estimate of Standard error of the X; is denoted Oe 
(see section 3.6.7). If we have one-at-a-time sampling, oe is simply an 
estimate of a obtained by the methods outlined in section 6.2. The 
following subsections assume that this estimate Oe is available. 

6.3.1 Moving-average charts 

In the moving-average chart, we plot the averages of the last k groups 
of size n, as shown in Fig. 6.3. The points on the time axis represent 
times at which groups of size n are taken. For a moving average of 3s, 
these averages are represented at the middle of the three points, as 
shown. For a moving average of 4s, the averages fall half-way between 
two time points at which groups are sampled. The points for moving 
averages of 4s are recorded at the centre points of the lines shown in 
Fig. 6.3; some example calculations are given in Table 6.5. 

Moving averege of 3s Moving averege af 4s 
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Figure 6.3 Moving averages. 
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Points are lost at the start and finish of a moving-average chart, 
because there is not enough data to complete the chart. If desired, these 
missing points could be filled in with the averages of the points available 
at the ends, but if this is done, the action limits calculated below should 
be disregarded for these points. In a moving-average chart, only action 
lines are used because successive moving averages are highly correlated. 

The usual method of constructing charts, given below, ignores the 
dependence between successive moving averages. 

6.3.2 Construction of a moving-average chart 

Following the discussion in section 6.3.1 the method is setout in Method 
Summary 6.2. 

METROD SUMMARY 6.2 

Construction of a moving-average chart 

Step 1 (Grouped or blocked data) Obtain estimates of the process 
average Ievel, jl, and process variability, and also obtain the 
estimated standard error of group means Oe· 

Step 1 (One-at-a-time data) Obtain an estimate of the process 
average Ievel, jl. Also obtain an estimate of the process 
variability using Method Summary 6.1, and choose a suit
able Oe for charting. 

Step 2 Choose the scale of the chart so that fl is near the centre, 
and so that the scale covers approximately ±4oe/v'(k). 

Step3 Mark the action lines at fl ± 3.09oe/v'(k). 
Note 
(1) This assumes that all groups are of the same size. 

An alternative to disregarding the first few points is to plot the 
moving averages of 2, 3, ... points, etc., until k points are available. If 
this method is used the corresponding action lines have to be recalcul
ated at each point until k points are available. 

Example 6.4 Illustration of moving-average chart 
Step 1 Suppose we are given !l = 140, a = 2, n = 5, k = 3, then 

ae = 2/v'S = 0.89. 
Step2 Scale chart to cover 140 ± 4ae/v'(k) = 140 ± 4 x 0.89/v'3 

= 137.94, 142.06. 
Step3 Action lines: 140 ± 3.09 x 0.89/v'3 = 138.4, 141.6 
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Figure 6.4 Construction of a moving-average chart. 

6.3.3 Moving-average charts: interpretation and use 

The points given in section 5.2.3 for X-charts are all applicable here, 
except that there are no warning Iimits. 

Moving-average charts are usually used particularly when 'groups' 
have to be of size one or two, so that the resulting control limits are 
wide. The disadvantage is that because averages are taken over a period 
of time, there may be a delay before Iack of control is detected. 
Furthermore, suppose we are averaging over four groups, then if just 
one of the group means is out of control, this can easily be swamped by 
averaging with three other group means which are in control. 

Moving-average charts can be used successfully if the following 
conditions are all satisfied: 

(1) The group size is limited for some reason. 
(2) The true mean changes rather slowly. 
(3) The process spread is fairly stable. 

The construction method given above ignores the correlation between 
successive moving-averages. It assumes that if the standard error of a 
point is ae, then the moving average of k of these points will overall 
have a Normal distribution with standard error ae/Yk. However, 
correlation considerably affects run-length properties, and this is dis
cussed in section 6.7.2. 
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6.3.4 Exponentially weighted moving-average charts (EWMA charts) 

The exponentially weighted moving-average chart is particularly useful 
either when we have one-at-a-time data, or else when great precision is 
needed to detect small changes. Basically the method is to form a new 
moving-average at each sampling point by calculating a weighted aver
age of the new value and the previous moving-average. Therefore in the 
exponentially weighted moving-average chart all of the past data has 
some effect on the current value, but it rapidly loses influence. The 
details are given in Method Summary 6.3 (we assume that an estimate 
of ae is available ). The implied weights on observations are given in 
Table 6.7. 

METHOD SUMMARY 6.3 

Construction of exponentially weighted moving-average charts 

Step I (Grouped or blocked data) Obtain estimates of the process 
average level, P,, and process variability, and also obtain the 
estimated standard error of group means &e. 

Step I (One-at-a-time data) Obtain an estimate of the process 
average level, P,. Also obtain an estimate of the process 
variability using Method Summary 6.1, and choose a suit
able &e for charting. 

Step 2 Choose a value for p in the range 0.1-0. 5. This is the 
amount of weight put on the current value. 

Step 3 Choose a starting value, k 0 , as either the overall mean or a 
target value. 

Step 4 Calculate and plot the moving average k; using the formula 

k; = pX; + (1 - p)k;-1 

where the X; are group means, or for one-at-a-time data, 
single values. 

Step 5 U se action limits only, and place them at 

{t±Alae 

where the A 1 values are given in Table 6.6. 

We see from Table 6.7 that with p = 0.5 the weight on a group drops 
down markedly after 3 or 4, but with p = 0.1, the weights decrease 
rather slowly. The choice of p in any particular case depends on how 
much weight is required an past group means. 
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Table 6.6 Factors for constructing exponentially weighted moving-average charts 
from an estimate of a(A1) 

Group size 
p 1 2 3 4 5 6 7 8 

0.05 0.495 0.350 0.286 0.247 0.221 0.202 0.187 0.175 
0.10 0.709 0.501 0.409 0.355 0.317 0.289 0.268 0.250 
0.15 0.880 0.622 0.508 0.440 0.394 0.359 0.333 0.311 
0.20 1.030 0.728 0.595 0.515 0.461 0.420 0.389 0.364 
0.25 1.168 0.826 0.674 0.584 0.522 0.477 0.422 0.413 
0.30 1.298 0.918 0.750 0.649 0.581 0.530 0.491 0.459 
0.35 1.423 1.006 0.822 0.712 0.637 0.581 0.538 0.503 
0.40 1.545 1.093 0.892 0.773 0.691 0.631 0.584 0.546 
0.45 1.665 1.177 0.961 0.833 0.745 0.680 0.629 0.589 
0.50 1.784 1.262 1.030 0.892 0.798 0.728 0.674 0.631 

Notes: (1) The action lines are obtained by multiplying these factors by an estimate of a. 
(2) The first 6 Observations should be ignored when making decisions about in or 

out of control. 
(3) The values are 3.0902V{p/n(2- p)}. 

Table 6. 7 lmplied weights for exponentially weighted moving averages 

Current Number of previous observations 
p observation 1 2 3 4 5 

0.5 0.5 0.25 0.125 0.0625 0.0312 0.0156 
0.2 0.2 0.16 0.128 0.1024 0.0819 0.0655 
0.1 0.1 0.09 0.081 0.0729 0.0656 0.0590 

Exponentially weighted moving-average charts are particularly useful 
with processes which have slowly drifting means, rather than those 
which are liable to sudden jumps. 

6.3.5 Exponentially weighted moving-averages: starting-up problems 

The factors given in Table 6.6 are based on the asymptotic variance of 
m;. If we write the asymptotic variance V(k), then we have 

V(k) = p 2V(X;) + (1 - p)2V(k) 

leading to 

p - pa2 
V(k) = (2 _ p) V(X;) = n(2 _ p). (6.3) 
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However, if we start with a fixed k 0 , then we have 

V(ki) = p 2a2/n 
V(kz) = [pz + pz(l - p)z]az/n 

V(k 3) = [p 2 + p 2(1- p) 2 + p 2(1- p)4]a2/n, etc. 

The convergence of these to the asymptotic formula given above can 
sometimes be rather slow, see Table 6.8, especially if p is rather small. 

Table 6.8 Tendency of standard error of ki to the asymptotic formula 

Standard error of ki at observation 
p 2 4 6 8 10 Asymptotic 

0.05 0.069 0.093 0.109 0.120 0.128 0.160 
0.10 0.135 0.173 0.194 0.207 0.215 0.229 
0.20 0.256 0.304 0.322 0.329 0.331 0.333 
0.30 0.366 0.408 0.417 0.419 0.420 0.420 

Owing to this feature, it is unwise to take much notice of an out of 
control signal given within the first few observations when starting up an 
EWMA chart. 

6.4 CONTROL OF PROCESS SPREAD 

6.4.1 Moving-range charts 

We have already discussed moving ranges in section 6.2, and a plot of 
moving ranges can be made in order to control process spread. For 
one-at-a-time data, a moving-range chart or a moving-standard-deviation 
chart is the only way of controlling process spread. However, one of 
these charts may be useful with grouped data, as an extra chart, if there 
is a substantial between-group variation. In this case we plot the moving 
range of the group means. 

METROD SUMMARY 6.4 

Construction of moving-range chart 

Step 1 Determine k, the number of sampling points the range is 
taken over. This is often determined by practical considera
tions. 
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Step 2 (One-at-a-time data) Obtain an estimate & of the process 
spread by using moving ranges of k points; see Method 
Summary 6.1. 

Step 2 (Grouped or blocked data) Obtain an estimate &e of the 
standard error of group means; see Method Summary 3.6. 

Step 3 Choose the scale of the moving-range chart so that the 
range goes down to zero, and up to about twice the largest 
range observed. 

Step 4 Mark the action Iimits on the chart: 
Lower action Iimit D 5& 
Upper action Iimit D 6& 

where D 5 and D 6 are given in Table 5.3. 
There are no warning Iimits on a moving-range chart. 

The interpretation of a moving-range chart is as for a range chart; see 
section 5.3.3. A crucial point is the choice of k, the number of sampling 
points that the range is taken over. As k increases, more between-sam
ple variation will inflate the ranges. The choice of k is determined by 
practical considerations of the type of variation it is intended to control. 

We notice again that this construction ignores the dependence be
tween successive moving ranges. 

6.4.2 Moving-standard-deviation charts 

Instead of using moving ranges, we could use moving standard devi
ations, and otherwise the procedure is as given in section 6.4.1. Again 
only action lines are used, and the factors D 9 and D 10 from Table 5.4 
are used. The quantities plotted are the moving standard deviations. 

There is very little to choose between a moving-range chart and a 
moving-standard-deviation chart, except that the former are more 
clearly understood by process staff. 

6.5 CHOICE OF CHARTING METHOD 

6.5.1 Choice between charts for control of average Ievel 

Here we summarize some of the advantages and disadvantages of the 
alternative Shewhart charts for controlling the average Ievel of a 
process. In Chapter 7 we introduce CuSum charts, and then give some 
discussion about an overall choice of chart. In the process industries, 
where both sudden movements and sudden drifts occur, there is value in 
keeping both an X chart and a moving-average chart. 
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X charts 
Advantages (1) Good at detecting sudden jumps in average Ievel 

(2) Well used and reliable 
(3) Easy to understand 

Disadvantages (1) Rather slow to detect drifts in average Ievel 
(2) Not very good at picking out small changes in 

average Ievel. 
Moving-average charts 
Advantages (1) Better than X charts at detecting slow drifts 

(2) Can be used when group size n is small, and when 
n=1 

Disadvantages (1) Delays in responding to sudden jumps in average 
Ievel. 

Exponentially weighted moving-average charts 
Advantages (1) Good at detecting slow drifts 

(2) Can be used with small group sizes, and when n = 1 
Disadvantages (1) Delays in responding to sudden jumps. 

For one-at-a-time, individual charts (n = 1 in the methods given in 
Chapter 5) are sometimes used, for example when data is infrequent, 
and moving averages would cause undue delay. A moving-average chart 
or EWMA chart should then be used as well. 

6.5.2 Charts for control of process spread 

If the data is one-at-a-time, then the moving-range chart is the only one 
usable. If the data is grouped or blocked, ordinary range or standard 
deviation charts should be used. However, even in this case, a moving
range chart based on group averages will help to keep control of 
between-sample variation, if there is any. 

The choice of charting method will be discussed again after CuSum 
charts have been explained; see Chapter 7. 

6.6 PRACTICAL USE OF SHEWHART AND 
MOVING-A VERAGE CHARTS 

6.6.1 Relation between 'control' and process capability 

A process is said to be 'in control' if there is no evidence from either 
the chart for control of average Ievel or the chart for control of process 
spread that assignable causes of variation may be present. It is impor
tant to note that we can have a process in control, but producing 
defective quality material because of low relative capability (see 
Fig. 6.5). The reverse can be true when the process is of high capability. 
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I 

Figure 6.5 Control and capability of processes. 

6.6.2 Out of control! 

When the charts show an 'out of control' point which is not due to 
miscalculation, we may have evidence from either or both of the charts 
for average level and the chart for process spread. Apart from the 
specific rules given in previous sections, there may be other obviously 
non-random patterns in the plots. For example, we may have too much 
dustering of the data in the centre of the chart, or too much dustering 
towards the extremes. Alternatively, we may observe 'cydes' in the 
charts. 

The great value of the charts is that they show when to set up 
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procedures to look for special causes of variation (which may involve 
stopping the process) and when to leave the process alone. By seeing 
whether there is evidence of a shift in level, or spread, or both, and by 
seeing whether this is a sudden change or a steady drift, we can get 
some clues as to the possible cause. The step of 'problem-hunting' for 
special causes of variation is expensive and time-consuming - but not so 
expensive as bad product! 

In some industries, indications of when to leave a process alone are as 
valuable as indications of when to search for a special cause. 

6.6.3 Shewhart and moving-average control charts - the operational 
phase 

Here we continue the discussion started in section 5.1.3, and assume 
that the 'set-·up' phase of Shewhart control charts has been completed. 
Figure 6.6 shows the flow of the operational phase. 

( 1) Calculate trials charts 
based on trial data set 

(2) Search for special causes 
of variation if any points 
signal action 

(6) No 'out of control points' 
Periodic reassessment of 
process capability 

(7) Periodic reassessment of 
sample size and frequency 

(8) Recalculate charts 

(5) Special causes present. 
lnitiate action on process 

Figure 6.6 Shewhart control charts - the operational phase. 
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Box 1 We assume that at least 20 groups of observations are available 
(or at least 50 observations for one-at-a-time data), and that trial Iimits 
are calculated as given in sections 5.2, 5.3, 6.3 and 6.4. 
Boxes 2 and 3 If any of the 'trial' groups shows an out of control signal 
on any of the charts and a special cause of variation is found to be 

present, then this group should be omitted and the Iimits recalculated. 

We should beware of discarding data we simply do not like, but by 

omitting groups where a special cause is known we will get a better 

estimate of the underlying process spread. In particular, the process 

spread should be in control before we can proceed much further. 
Box 4 Once satisfactory limits are established, we use the charts as 

specified. 
Box 5 If a special cause of variation is present, we must initiate action 

on the process. 
Boxes 6-8 If there are no 'out of control' points, periodic checks should 

be made on the process, to examine the process capability, and to see if 

the limits need recalculating. Occasionally, we need reviews of the 
choice of sample size and frequency. 

6.7* PROPERTIES OF EWMA AND MA CHARTS 

6.7.1 The average run length of EWMA charts 

We shall operate the EWMA scheme of section 6.3.4, with m 0 = u, a 

target value of zero, and a2 = 1. Action limits are placed at ±h. Then 
the first observation Ieads to 

If this is beyond ±h, a decision is reached, but otherwise a point in the 
continuation region is reached. In this way, the ARL function L(u) is 
seen to satisfy 

L(u) = Pr{/(1 - p)u + px/ > h} 

+ J {1 + L((1- p)u + px)}f(x) dx 
{1(1-p)u+pxl<h) 

which is 

L(u) = 1 + _!__Jh L(y)f (y - (1 - p)u) dy. (6.4) 
p -h p 

This is a Fredholm integral equation of the second kind. Crowder (1987) 

has tabulated the solutions of this equation. He also showed how to 
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extend the methods to obtain other properties of the run-length distribu
tion. 

Crowder {1987) showed an interesting property of EWMA schemes. 
Notwithstanding a design which gives a long ARL when on target, there 
can still be a substantial probability of a false signal within the first few 
observations. This is the 'starting problem' discussed in section 6.3.5. 
Unfortunately, the theory given above goes through most easily when a 
constant action Iimit is used. 

6. 7.2 Properties of moving-average (MA) charts 

To get ARLs of MA charts we adopt the following procedure. A 
moving-average scheme of k points is used, and a single action Iimit put 
at h. The target is taken as zero, and Observations X; are assumed to be 
N(O, 1). 

Now define 

Yk = (xl + · · · + xk)jk 

Yk+l = (xz + · · · + xk+l)/(k + 1) 

so that the ARL of a one-sided scheme is 

L = P(yk > h) + 2P(yk < h, Yk+l > h) + · · · 

+ kP(yk < h, ... , Yzk-l < h, Yzk > h) 

+ (k + 1)P(yk < h, ... , Yzk < h, Yzk+l > h), 

then it can be shown (Kuhbier, personal correspondence) that this can 
be rewritten as follows. Define 

P1 = P(yk < h) 

Pz = P(yk < h, Yk+l < h) 

Pk = P(yk < h, ... , Y2k-l < h) 

then the ARL is 

L = {1 - Pl) + 2(pl - pz) + · · · + k(pk-l - Pk) 

Pk + ((k + 1)Pk-l - kpk). 
Pk-l - Pk 

(6.5) 

This formula involves a great deal of computing, so it is not a 
practical method for large values of k. The method can be extended, in 
principle, to cover Observations which are not independent, but come 
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from an autoregressive process, but again there are computational 
problems. An approximation is given by Lai (1974), but this also 
involves the calculation of multivariate normal integrals. 

The formula (6.5) can be extended to deal with the two-sided case, 
but the computational problems are then worse. lt seems likely that the 
formula given by De Bruyn (1968) for combining the ARL of two 
one-sided schemes can be used as an approximation, 

1 1 1 -=-+
L Lu L 1 

where Lu and L 1 are the ARLs for the upper and lower boundaries. 
There are a number of practical situations where moving-average 

charts might be useful, and some quicker, more approximate metbad of 
obtaining ARLs would be invaluable. 

6. 7.3 Properties of moving-range and moving-standard-deviation charts 

'Moving' charts for control of process spread are likely to be very 
sensitive to the assumptions of normality, independence, etc., and to the 
presence of autocorrelation. There is need for a thorough study of this 
type of chart. 

EXERCISES 6A 

1. The melt flow index of a plastic is measured on a single sample taken 
from pre-defined bags, so that readings are taken once per tonne, 
regardless of the metbad of shipment to the customer. 

The MFI specification for this grade is 4.5:::; MFI:::; 6.5. 
Table 6.9 gives MFI readings taken from several production 

campaigns to make the same grade of the product. Finish the 
calculations and set up control charts to control process average level 
and process spread. 

2. Use the data sets in Appendix B to set up and plot moving-average 
charts. Use the means given as if they were single observations. Set 
up the chart using the 'I' datasets, then run the corresponding 
datasets A, B, C, D until action is given, or until the end of the data 
set. Count the run lengths as the number of the original means used. 
Campare your results with those you obtained in Exercise 5A.1. 



Table 6.9 Melt Flow Index 

Bag Mov. Av. Smoothed Bag Mov. Smoothed 

No. MFI 3 point Twice No. MFI Av. Twice 

1 5.75 J 41 5.73 5.65 5.65 

2 5.30 5.42] 
42 5.68 5.64 5.63 

3 5.21 5.14 5.25 43 5.52 5.59 5.59 

4 4.91 5.19 5.15 44 5.57 5.53 5.51 

5 5.45 5.11 5.19 45 5.49 5.42 5.48 

6 4.98 5.26 5.21 46 5.21 5.49 5.49 

7 5.36 5.26 5.28 47 5.77 5.56 5.56 

8 5.43 5.32 5.31 48 5.69 5.63 5.60 

9 5.18 5.36 5.30 49 5.44 5.60 5.59 

10 5.47 5.20 5.24 50 5.67 5.53 5.59 

11 4.96 5.15 5.08 51 5.49 5.64 5.65 

12 5.01 4.90 4.95 52 5.75 5.77 5.74 

13 4.73 4.80 4.76 53 6.06 5.83 5.79 

14 4.67 4.58 4.79 54 5.68 5.77 5.76 

15 4.34 4.99 4.95 55 5.57 5.68 5.69 

16 5.95 5.28 5.31 56 5.80 5.62 5.62 

17 5.54 5.66 5.41 57 5.50 5.56 5.52 

18 5.48 5.29 5.33 58 5.38 5.38 5.42 

19 4.85 5.04 5.03 59 5.26 5.32 5.32 

20 4.78 4.77 4.81 60 5.31 5.26 5.29 

21 4.69 4.61 4.72 61 5.21 5.29 5.23 

22 4.35 4.78 4.77 62 5.36 5.14 5.26 

23 5.30 4.92 4.95 63 4.86 5.35 5.30 

24 5.11 5.14 5.03 64 5.83 5.42 5.50 

25 5.01 5.04 5.10 65 5.57 5.72 5.66 

26 5.00 5.11 5.08 66 5.75 5.84 5.83 

27 5.33 5.09 5.03 67 6.19 5.93 5.89 

28 4.93 4.89 4.90 68 5.86 5.91 

29 4.42 4.71 4.77 69 5.67 

30 4.78 4.69 4.72 70 5.44 

31 4.88 4.76 4.78 71 5.18 

32 4.63 4.88 4.84 72 5.15 

33 5.12 4.89 4.93 73 5.37 

34 4.92 5.03 5.00 74 5.40 

35 5.05 5.08 5.10 75 5.30 

36 5.27 5.20 5.17 76 4.86 

37 5.27 5.24 5.28 77 4.83 

38 5.19 5.39 5.37 78 4.65 

39 5.72 5.49 5.52 79 4.72 

40 5.55 5.67 5.60 80 4.74 
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EXERCISES 6B 

1. Most one-at-a-time data in the process industries is autocorrelated. 
Set up a simple simulation study to examine the effect of autocorrela
tion on the methods given in section 6.2 for estimating a. 

2. Use the variance results given in section 6.3.5 to work out improved 
boundaries for use at the start of an EWMA chart, instead of using 
the asymptotic variance throughout. 

3. Set up a simulation experiment to determine the ARL curve of 
moving-average and EWMA charts. Take care to define your starting 
rule carefully, until the asymptotic boundaries are reached. If the 
run-length distribution is approximately geometric, how many trials 
will be needed to determine the ARL to within 1%? (It is suggested 
that you only try those situations where the ARL is short; for 
example, when the mean has shifted one or two standard errors from 
the target.) 



7 

Cumulative sum techniques 
for continuous variables 

7.1 INTRODUCTION 

7.1.1 The value of CuSums 

In the 1960s an alternative to the Shewhart chart was devised based on 
cumulative sum plotting, and we have already introduced this method in 
Chapter 3. Basically, it is simply a different way for deciding when a 
process is or is not in control. Practical use of CuSums is therefore in 
the same context as Shewhart charts, and the 'set-up phase' described in 
section 5.1.3, and the need to periodically reassess process capability 
(section 6.6.3), apply as before. 

CuSum charting has been used a great deal in industry, and some 
published examples are given, for example, in Woodward and Gold
smith (1964). Changes of mean are shown up in CuSum charts by 
changes of inclination of the chart, and it is this which gives CuSum 
charts their greater visual impact. For example, Fig. 7.1 shows again the 
CuSum plot of the example in section 3.5.3, with 0.24 added to the last 
25 Observations, and there is very clear evidence of a change in the 
mean at about observation 25. Figure 7.2 shows the same data, plotted 
on a standard Shewhart chart, and there is no evidence of a change. 

In Chapter 3 we were using CuSums on past data, but in this chapter 
we are using CuSums on new data, in order to detect changes. With 
past data there is no problern over scaling the chart, as we can simply 
scale appropriately. With new data, some convention on scaling is 
necessary and we discuss this next. An estimate of Oe is needed, and this 
may be relatively straightforward, if it is appropriate to use &w/Yn, or 
may involve the use of one of the methods of estimation discussed in 
Chapter 3 or 6. We shall assume that an estimate of Oe of the standard 
error of the points is available. 
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Figure 7.1 A CuSum plot for the data of the example in Section 3.5.3. 
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Figure 7.2 A time plot of the capsule weights given on page 51 but with 0.24 g 
added to each of the last 25 observations. 
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7.1.2 Choice of scale for plotting a CuSum 

Visual interpretation of CuSum charts is very important. To make this 
as easy as possible we require a good choice for the relationship 
between the scales of the horizontal and vertical axes. The following is 
recommended for most applications, although there may sometimes be 
good reasons for choosing other relationships. The idea behind this rule 
is that inclinations of 45° are easiest to see, so we try and arrange that 
shifts likely to be of importance, that is shifts of the mean of about 2ae, 
have an inclination of about 45°. The rule is set out in Method Summary 
7.1 (Fig. 7.3). 
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Figure 7.3 Scaling a CuSum chart. 

METROD SUMMARY 7.1 

Scaling a CuSum plot 

8 9 10 

Step 1 Choose any convenient interval for the horizontal axis 
(sample index number, days, batches, etc.) 

Step 2 Mark off one unit of this interval on the vertical scale 
(cumulative sum). 

Step 3 Let this distance represent approximately 2ae units, where 
ae is the standard error of the observations on which the 
CuSum is calculated. (Since it is important that the scale 
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should be easy to use, then in practice this distance 
represents a round number between lae and 3ae units.) 

Even with a good choice of scale there are sometimes problems in 
plotting when the CuSum plot moves off the top or the bottarn of the 
chart. The absolute position of the chart is not important; it can all be 
shifted up or down on the page without affecting its properties or the 
conclusions to be drawn. So for some appropriate earlier sampling point 
define a new starting point for the CuSum (this may or may not be 
zero). Calculate and plot all subsequent values from this point, in 
parallel with the original (see Fig. 7.4). Drop the original plot when this 
seems appropriate. Alternatively, the plot may be drifting because the 
target value used for calculation is not the same as the process mean. In 
this case it may be that a different target value should be used. 
However, this depends on the use to which the plot is to be put. 
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Figure 7.4 Coping with CuSums going off the chart. 

7 .1.3 V -masks for CuSums to control process average Ievel 

Shewhart charts are used with a simple decision rufe (the action and 
warning lines) to see when the process is out of control, requiring 
corrective action, and when the process should be left alone. 

CuSums can also be used with decision rules to decide when a shift in 
process average has occurred. The simplest CuSum decision rule uses a 
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truncated V-masko The International Standard suggests a 'standard 
mask', but others can be constructed, and their design will be discussed 
later. The mask is shown in Figo 7050 The datum point A is placed on 
the latest CuSum value, and an out of control signal is given when the 
previous trace crosses the arms of the masko The vertical half-distance, 
AB or AC is termed the decision interval, H = h a e 0 The two sloping 
lines, BD, CE, are the decision lines 0 They may be extended indefinitely 
beyond D or E if requiredo 

10:1 
H r- ------- ------ ----- ------- , ~~:~~~~: 

10y 9 8 7 6 5 4 3 2 1 7 
c 

E 

Figure 7oS Truncated V -mask for CuSum chartso 

In the standard V-mask h = 5 and f = L so that the decision interval 
H is 5aeo The slope of the arms is then determined by setting the 
distance F = !ae, so that DY = YE = 10ae, where Y is 10 sample 
intervals before the datum point Ao Other possible choices for h and f 
will be discussed later. 

Notice that a line of constant slope less than that of the arms of the 
mask will never cross the mask, so that the slopes of the arms relate to 
minimum 'interesting' changes in the meano The 'decision interval' H 
allows for some random scatter about the plot. 

METROD SUMMARY 702 

Setting up a CuSum V -mask 

Step 1 Scale your plot as in Method Summary 7 ol. 
Step 2 Draw a vertical line equal to a distance 2 H on your chosen 

scaleo Draw a horizontalline through the middle of thiso 
Step 3 Move back 10 steps, and draw a vertical line of length 
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(2H + 20F), centred on the same horizontalline as in Step 
2. 

Step4 Join up your points to make a V-mask. Transfer this to a 
piece of acetate sheet for use as you plot data. 

Using the V-mask 
The method of using the V-mask is given in Method Summary 7.3; see 
Fig. 7.6. Obviously the shift in mean may have occurred some time 
before it is signalled. Estimation of the point of change and of its 
magnitude can be made from the CuSum chart, by simply looking to see 
when the chart changed its slope. 

Figure 7.6 Use of a V-mask. 

METHOD SUMMARY 7.3 

Using a CuSum V -mask 

Step 1 Plot the latest points on your graph, using Method Sum
mary 3.2, with the estimated mean as reference value. 

Step 2 Put the centre point of the truncated V-mask on the latest 
datum. 

Step3 If the lower arm (or its extension) crosses the trace, an 
increase in mean is signalled. 

Step 4 If the upper arm ( or its extension) crosses the trace, 
decrease in mean is signalled. 

7.1.4 Averagerun lengths and comparison of charts for control of 
process average Ievel 

If a large change in mean occurs it will cause a large average change in 
gradient of the CuSum, which in turn will Iead to a rapid decision. A 
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smaller change in mean will generally have to persist for much Ionger 
before it is detected. If the process is on target all the time only a very 
unusual pattern of random behaviour will cause the CuSum to cross the 
decision lines, so that the average run length will be large. The ARL 
curve of the standard CuSum scheme is given in Fig. 7.7. (For the SN 
reference in the chart see the reference to the 'snub-nosed' scheme 
below.) 

500 

200 \ 
\ Shewhart scheme 

100 'y/ 
50 \ 

\ 
\ 

_j \ 
ct:: 20 \ 
<( \ 

10 \ 
CuSum \ 

"\ scheme 
5 " ,"\ 

/',~ 
2 SN scheme '',, 

-.::: 

1 
0 2 3 

Deviation from target in standard errors 

Figure 7. 7 ARL curve of Shewhart and CuSum chart. 

As there are many possible choices of the parameters h and f of the 
V-mask, leading to different ARL curves, it is difficult to compare 
CuSum and Shewhart schemes precisely. However, the standard CuSum 
V-mask can be thought of as a good equivalent to the ordinary 
Sherwhart chart with either 'probability' or 'popular' limits. Figure 7. 7 
also shows the ARL curve for the Shewhart chart with probability 
limits. The comparison between these ARL curves is a good general 
summary of the comparison between Shewhart and CuSum charts. The 
following observations are useful. 

If the process mean is: 

(1) on target, the Shewhart chart is more likely to signal a warning 
than a CuSum chart; 
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(2) between about iae and tiae from the target, the CuSum chart 
detects this much more quickly than the Shewhart chart; 

(3) more than 3a from the target, the Shewhart chart often detects this 
more quickly than CuSum chart. (It may take at least two or three 
observations on a CuSum to spot a slope, whereas one very bad 
point can signal action on a Shewhart chart.) 

Clearly the CuSum chart has much better properties than the Shew
hart chart except for very large changes in mean. However, this can 
itself be compensated for by using different shapes for the V-mask; see 
section 7.1.5. 

7 .1.5 Alternative shapes for the mask 

Bisseil (1979) showed that some improvement in the ARL properties of 
the CuSum scheme can be obtained by using a semi-parabolic mask, 
shown in Fig. 7.8; see Table 7.1. The ARL curve in Fig. 7.7 shows 
greatly improved properties. 

Rowlands et al. (1982) showed that a much simpler and almost 
equivalent procedure is to superimpose two or more V-masks, as shown 
in Fig. 7.9, leading to a snub-nosed V-mask. They conclude their studies 
by showing that superimposing two masks is enough to achieve nearly 
optimal results. Some of the results in Table 7.2 are drawn from 
Rowlands et al. (1982). We see that the ordinary V-mask gives very 
good ARL properties over a limited range of values for shifts of the 
mean. The semi-parabolic mask has good properties over a wider range, 
but the snub-nosed scheme is as good, and is easier to operate; see 
section 7.1.7. The snub-nosed scheme (2), which superimposes (h = 5, 
f = 0.5) with (h = 2.05, f = 1.3) is a good equivalent of the ordinary 
Shewhart charts for ordinary use. Alternatively, the snub-nosed scheme 
(3) has a slightly higher on-target ARL. 

Figure 7.8 Semi-parabolic CuSum mask. 
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Figure 7.9 Snub-nosed V-mask. 

Table 7.2 Parameters for constructing a semi-parabolic CuSum mask 

Distance from datum 
(sample intervals) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
15 
20 

Half-width of mask at i 
(units of Oe) 
y 

1.25 
3.1 
4.65 
5.9 
6.85 
7.5 
8.0 
8.5 
9.0 
9.5 

10.0 
12.5 
15.0 

I y = 1.25 + 2i - 0.15i2 

y = 5 + 0.51 

Note: The equations may be used for construction of the mask if required. 

7 .1.6 Sampie size and sampling frequency 

All the above discussion has been in terms of ae, the standard error of 
sample means. The sample of size n is drawn at intervals from the 
process, and provided there is no additional between-group variability 
the value of n determines the actual sensitivity of the CuSum, since, 

O'w 
0' = -

e v'n 

O'w being the standard deviation of process variability. 
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In addition, it must be said that all ARL values above depend quite 
critically on the assumption that the sample means have a Normal 
distribution. There is no guarantee that this is indeed true for the 
individual values from the process, but we stated in Chapter 2 that the 
central limit theorem operates to confer normality on averages. To 
ensure this it is thought that there should be a minimum of 4 in the 
sample, or more if it is known that there is evidence of appreciable 
non-normality in the distribution of individual observations. With this as 
a lower bound, we can choose a sample size based on the following 
reasoning. The ARL at l.Sae is seen to be about 6 on Fig. 7.7. If we 
choose n so that l.Sae is the smallest change of importance, this will 
give us an ARL of about 6. 

Let M be the actual change in Ievel of mean that is important. Then 
choose n so that 

that is 

n = [l.~wr 
Let the mmtmum length of time for which such a change might 

persist, or the time for which it is tolerable, be D. Choose a sampling 
interval ~D/6. Clearly, either or both of these requirements may need 
modifying depending on cost and practicality. 

For one-at-a-time data, or data where there is substantial between
group variability, the only flexibility we might have is in the sampling 
frequency. If we assume that a change of l.Sae has an ARL of about 6, 
we can adjust the sampling frequency accordingly. Extra care needs to 
be taken over non-normality for one-at-a-time data. 

7.1.7 The decision interval scheme for a CuSum 

The plotted CuSum using a V-mask is an excellent visual device. 
However, it may be necessary to computerize the maintenance of 
CuSums, and the decision-interval scheme allows this and is exactly 
equal to the plotted CuSum above. (For the snub-nose CuSum scheme, 
two of the following decision interval schemes have to be superimp
osed.) The procedure is detailed in Method Summary 7.4. 

The scheme works for a one-sided test, so two decision interval 
schemes must be operated to check for increases or decreases in the 
mean. The basic idea is to cumulate a sum using a specially chosen 
reference value, and ignore negative values of this score (for increases in 
the mean). That is, we calculate 

Si+1 = max {0, Si + (obs. - reference)}. 

In the description of Method Summary 7 .4, the decision interval, h and 
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slope, f, are as defined in section 7.1.3, but the use of these parameters 
is slightly different. 

METHOD SUMMARY 7.4 

Decision interval CuSum schemes 

Step 1 Set K 1 = T + F 
Set K 2 = T- F 
where T is the reference value used for a CuSum plot, and 
F = fae is the slope of the arms of the V-mask. 

To detect increases in process average level: 
Step2 Set CuSum Cl at zero. 
Step 3 Accumulate the CuSum using K 1 as reference value. 

If the CuSum becomes negative retum to Step 2. 
If the CuSum reaches or exceeds the decision interval 
H = hae this constitutes an action signal. 

To detect decreases in process average level: 
Step 4 Set CuSum C2 at zero. 
Step 5 Accumulate the CuSum using K 2 as reference value. 

If the CuSum becomes positive retum to Step 4. 
If the CuSum reaches or falls below the value - H this 
constitutes an action signal. 

CuSums for increase and for decrease in the mean can be run 
simultaneously. 

H U er decision bounda 

0 
0 10 20 30 40 50 60 70 80 90 100 

Observation number 

0 

N 
u 

-H 
Lower decision boundary 

0 10 20 30 40 50 60 70 80 90 100 
Observation number 

Figure 7.10 Two-sided decision interval scheme. 
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If a two-sided decision interval scheme is calculated and plotted, it 
will look something like Fig. 7.10. A worked example for a one-sided 
scheme will clarify it. 

Worked example 
As an example we return to the data given in Table 3.3, but with 0.24 
added to the last 25 values. The target value for this data was 5.0 and 
the standard deviation 0.3. Some of the calculations are given in Table 
7.3; check these values. The plot for detecting increases in the mean is 
shown in Fig. 7.11; the plot for detecting decreases in the mean can also 
be made but does not signal action. 

Clearly the ordinary CuSum plot has the better visual impact, but the 
decision interval scheme is easier on a computer. One solution is to use 
the decision interval scheme until action is signalled, and then get a 
retrospective plot of the last 50 or 100 data points. 

Table 7.3 Calculations for the decision in-
terval scheme 

T = 5.0 l l K 1 = 5.15 
ae = 0.3 K 2 = 4.85 
h=5 H = 1.5 
!=~ 

Observation Cl C2 

5.22 0.07 0 
4.95 0 0 
5.20 0.05 0 
5.41 0.31 0 
5.20 0.36 0 
5.02 0.23 0 
5.11 0.19 0 
5.26 0.30 0 
5.27 0.42 0 
4.73 0 -0.12 
5.02 0 0 
4.97 0 0 
4.85 0 0 
5.20 0.05 0 
4.73 0 -0.12 
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1.6 

1.5 Decision boundar 

1.4 

1.3 

1.2 

1.1 

1 

0.9 

u 0.8 

0.7 
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0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 5 10 15 20 25 30 

Observation number 

Figure 7.11 Decision interval CuSum plot for the data of page 51, with 0.24 
added to the last 25 data points. 

7.1.8 Equivalence of CuSum plot and decision interval CuSum schemes 

In order to see the equivalence, consider a trace which crosses the lower 
arm of the V-mask, as in Fig. 7.12. 

Figure 7.12 Intersection of lower arm of V-mask. 

The arm of the V-mask has slope F. If the increment to the CuSum 
plot (x - T) is less than F, this is less than the slope of the V-mask and 
there will never be a signal. On the decision interval scheme (for 
increases in the mean), there will never be any signal if (x - K 1) 

remains negative. These Statementsare equivalent if K 1 = T + F. 
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A signal is given on the CuSum plot if for any s, 
t 

L(x - T) > sF + H. 
t-s 

This is equivalent to 
t 

L(X - T - F) > H 
t-s 

which is the rule used in the decision interval scheme. The two schemes 
are therefore exactly equivalent (the result for schemes for decreases in 
the mean follow in a similar way). 

The above argument can be extended to see intuitively why the 
V-mask works. A change of mean level means a change in inclination of 
the trace. The V-mask detects changes of slope, but the decision interval 
allows for a certain amount of random scatter about the trace. For a 
large change in the mean, the slope of the trace will be steep, and only 
a few observations will be required to reach an action point. If the 
change in the mean is small, the slope of the trace will be low, and a 
large number of Observations are required to reach action. 

7.1.9 Comparison of CuSum with some other charting methods 

Table 7.4 shows a comparison of ARLs of CuSum schemes with 
exponetially weighted moving-average or arithmetic running-mean 
charts. In fact the EWMA chart with p = ~ and the running-mean chart 
with k = 4 are not the best ones possible, but are the ones available in 
the paper by Roberts (1966). It is in fact possible to construct such 
charts with similar ARL properties to CuSum charts at specified 
deviations of the mean from target, but p or k must be chosen in 
advance. With the CuSum chart, no such prior choice is necessary, and 
the plot works well for a range of deviations of the mean from target. 

Table 7.4 ARL values for given deviations from the target value 

Deviation from EWMA Arithmetic CuSum schemes 
target value (Geometrie running 
(multiples of 8e) mean) mean h = ±2.0a h = ±5.0a 

p =! k=4 f = ±1.3la f = ±0.50a 

0 480.0 480.0 480.0 480.0 
0.5 46.0 72.0 117.0 37.0 
1.0 5.3 5.8 6.9 5.9 
2.0 3.6 3.7 3.7 4.3 
2.5 2.7 2.9 2.4 3.5 
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7.1.10 Summary of the advantages and disadvantages of CuSum 

(a) Advantages 
(1) Improvement in efficiency over Shewhart in region 0.5ae to 2.0ae. 

ARL properties above 2ae greatly improved by using semi-para
bolic or snub-nosed mask. 

(2) Change in mean detected visually by change in slope. 
(3) Point of change located easily - useful in determining cause of 

change. 
(4) Use when measurement is moderately/very expensive and simpli

city is not so important. 
(5) Can be used when observations are available singly. 

(b) Disadvantages 
(1) More complex to use. 
(2) If there are lots of charts either different V-masks are required, or 

inconvenient scales will be used for some charts. 
(3) When the process mean changes, then either the CuSum runs off 

the chart, or eise the target value is changed and the chart is 
discontinuous. In either case other changes are less obvious. (This 
can be a problern with the analysis of past data.) 

(4) Changes in the process mean are detected most easily when the 
CuSum is usually running Ievel. If the CuSum shows a small 
change in the mean, and no adjustment is made, changes are less 
easy to spot. 

(5) Do not use CuSum when measurements are cheap and extreme 
simplicity is required (saved cost of CuSum may 'buy' increased 
sample size/frequency). 

7.2 CuSum CHARTS FOR CONTROL OF AVERAGE LEVEL 

7.2.1 Parameters for the six alternative standard CuSum decision rules 

The basic CuSum scheme, with h = 5, f = 0.5 is a very good one to use 
if we wish to detect changes in mean of between 0.75ae and 1.5ae from 
the target value quickly, and yet have long ARLs (say 700-1000) when 
the process is actually on target. But in practice we may be more 
concerned about a different size of departure from target, or may be 
prepared to accept more frequent false alarms in order to achieve earlier 
detection of real change. 

We shall define the following: 

La is the ARL when the process is running at a mean of f.-la, the 
acceptable quality Ievel (process average/target value); 
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Lr is the ARL when the process is at the rejectable quality level 
/1-r; 

11-r - !1-a is then the critical shift from the target value. 

The International Standard gives six alternative sets of h , f which 
optimize the performance of the chart for critical shifts of different sizes. 
Half of these - the Cl schemes - ensure that La is quite high, while the 
other half - C2 schemes have a much lower ARL when the process is 
actually on target. The parameters are shown in Table 7.5, and the 
masks are shown in Fig. 7.13. 

Table 7.5 CuSum parameters for alternative decision rules 

Critical shift from 
target, in units of 
standard error ( ae) 

(a) < 0.75 
(b) 0.75 to 1.5 
(c) > 1.5 

10 8 6 4 

Cl schemes 
(La 700-1000) 

h f 

8 
5 
2.5 

2 0 

0.25 
0.50 
1.0 

12a, 

aa, 

4a, 

0 

-4a, 

-aa, 

-12a, 

C2 schemes 
(La 140-200) 

h f 

5 
3.5 
1.8 

0.25 
0.5 
1.0 

10 8 6 4 2 0 

Figure 7.13 Masks for Cl and C2 schemes. Extracts from British Standards are 
reproduced with the permission of BSI. 

A comparison of ARLs is made among the three Cl schemes and 
with Sl (Shewhart chart with action and warning Iimits at 3.09ae and 
l.96ae respectively). The three C2 schemes are compared among 
themselves and with S2 (Shewhart chart with action and warning Iimits 
of 2.65ae and 1.65ae respectively). These are shown in Table 7.6. The 
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ARL, given in this table are calculated on a one-sided basis. The boxed 
regions show the regions in which the ARLs are good relative to the 
others. 

In section 7.4, as an appendix to this chapter, nomograms are 
included for designing other CuSum schemes with specific characterist
ics. However, it is anticipated that the six given above will probably be 
sufficient for a majority of cases, and that in practice Cl (b) will often 
be found to be the most useful. If so, there is the great advantage that, 
provided scaling is carried out as described in section 7 .1.2, the masks 
used for different charts will be very similar or identical. Users will then 
develop a feel for the look of an in-control chart which is very useful in 
diagnosing trouble. 

7 .2.2 Summary of steps for setting up CuSum charts for control of 
average Ievel 

We shall assume that the set-up phase ( see section 5.1) has been 
completed to the point where we have decided to use a CuSum chart 
and need to select and set up the particular chart for use. 

METROD SUMMARY 7.5 

Setting up CuSum charts 

Step 1 Obtain data from the capability study or as fresh data. 
Inspect the data for special causes of variation. Test for 
Normality. 

Step 2 Estimate ae, the Standard error of group means (if these 
are plotted) or of individual values. See sections 3.6, 3.7 
and 6.2 for a full discussion. 

Step 3 Choose a suitable reference value T, using one of 
(1) the value of p obtained from the data of Step 1; 
(2) an (achievable) target value. 

Step 4 Choose one of the six standard sets of parameters h and f 
(see section 7.2.1). If in doubt use the standard scheme 
h = 5, f = 0.5. 

Step 5 Choose between a CuSum plot or a decision interval 
scheme. The two schemes are exactly equivalent in their 
ARL properties. 

Step 6a CuSum plot. 
Set up the scale of the chart (section 7.1.2) and draw the 
V-mask (section 7.1.3) using ae, h and f. 
Calculate and plot the CuSum with reference value T. 
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Step 6b Decision interval scheme 

Note 

Calculate the CuSum Cl with reference value 
K 1 = T + fae. Keep it non-negative. 
Calculate the CuSum C2 with reference value 
K 2 = T- fae. Keep it non-positive. 
Action is signalled if the size of either reaches or exceeds 
h = hae. 

A degree of non-normality is not critical with grouped data, but 
more serious with one-at-a-time data 

(a) Chart interpretation 
When the plot goes over the lower (or upper) arm of the V-mask, there 
is evidence that the process average level has increased (or decreased). 
A search for an assignable cause of variation should then be made. 

The time at which the process started to change is seen on the chart, 
and the slope of the chart shows the new process average. 

Erratic behaviour of the chart probably indicates that the process 
spread has increased. 

(b) Replotting 
Periodically it will be necessary to revise a CuSum chart because of a 
change in the process average level or the process spread. 

7 .2.3 Observations one-at-a-time 

CuSum charts are particularly valuable for the case where observations 
occur one at a time, such as one per shift, one per hour, etc. In that 
case our usual estimate of a cannot be used, but the methods given in 
sections 3.7 and 6.2 can be used to estimate ae. Fig. 7.14 shows a typical 
example of one-at-a-time data; in this case oil content has been 
determined for successive batches of product. 

7.3 CuSum CHARTS FOR CONTROL OF PROCESS SPREAD 

7.3.1 The distribution of ranges or standard deviations 

As with the Shewhart charts for control of process spread, there is both 
a range and standard deviation method available here, but there is also 
a third method, based upon a transformation. 

The difficulty with CuSum charts for process spread is that for 
realistic sample sizes the distribution of range or standard deviation 
estimates is skew, as shown in Fig. 7.15. 
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Observation number 

Figure 7.14 CuSum plot for single observation example. 

Range or standerd deviotion 

Figure 7.15 Distribution of range or standard distribution. 

This means that, if we consider differences of range from its average, 
then the increases in this range are much larger than the decreases. As a 
result of this, we ought really to use CuSum charts with asymmetrical 
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arms. However, as increases in a are what we are looking for, usually 
only the lower arm is used; see Fig. 7.16. If we do use a symmetrical 

mask based on the parameter values to follow, then tests for decreases 
in a as shown by the mask are somewhat conservative, especially for 
very small group sizes. 

Figure 7.16 Mask for range chart. 

As with Shewhart charts, non-Normality has a much greater effect on 
charts for range or s.d. than it does on X-charts, and a test for 
Normality of the original data is important before setting up the charts. 

The three methods are described first, then we discuss the choice. 

7 .3.2 CuSum scheme for ranges 

METROD SUMMARY 7.6 

CuSum scheme for ranges 

Step 1 Collect at least 20 groups of n observations each, where n 
is usually between 4 and 6. Test the data for Normality, 
using aNormal plot or otherwise. 

Step 2a Calculate the range of each group, and the average range 
over the groups. 

R = (sum of group ranges)/(no. of groups). 

Use this as the target value RT. 
Step 2b Alternatively, estimate the within-group standard devi

ation, aw and set RT = dnaw; see Table 2.9 for values of 
dn. 

Step 3 Choose whether to use a Cl or a C2 scheme. (See Table 
7.8 for ARL properties.) 

Step 4a Scale the vertical axis so that one horizontal unit repre
sents approximately anRT. Construct a mask (Iower arm 
only) with parameters 
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decision interval 

F = fRT slope of decision line 

where an, h and f are taken from Table 7.7. Use RT as 
the reference value for the CuSum. 

Step 4b Alternatively, operate a one-sided decision interval 
scheme, (see section 7.1.6) with parameters 

Notes 

decision interval 

reference value 

where h and k are taken from Table 7. 7. 

(1) Group sizes must be constant to run this chart. 
(2) Normality should be checked periodically. 

Table 7. 7 CuSum schemes for range in samples from a Normal population. 
Extracts from British Standards are reproduced with the permission of BSI 

Sampie size, n 2 3 4 5 6 8 10 

dn 1.128 1.693 2.059 2.326 2.534 2.847 3.078 
an 1.5 1.0 0.85 0.75 0.65 0.55 0.5 

Cl { z 2.5 1.75 1.25 1.0 0.85 0.55 0.5 
1.85 1.55 1.5 1.45 1.45 1.4 1.35 

f 0.85 0.55 0.5 0.45 0.45 0.4 0.35 

C2 { z 
2.5 1.75 1.25 1.0 0.85 0.55 0.5 
1.55 1.35 1.3 1.3 1.3 1.25 1.25 

f 0.55 0.35 0.3 0.3 0.3 0.25 0.25 

Table 7.8 ARL data for CuSum range schemes. Extracts from British Standards 
are reproduced with the permission of BSI 

Sampie Type of ARLs for mean range at stated multiples of k 
size scheme 1.0 1.12 1.25 1.6 2.0 2.5 3.2 4.0 

2 Cl 779 170 66 16 7.2 4.3 3.0 2.3 
C2 170 63 30 10 5.5 3.6 2.7 2.1 

3 Cl 893 165 49 9.6 4.5 2.8 2.0 1.6 
C2 196 52 21 6.5 3.6 2.4 1.8 1.5 

4 Cl 918 145 39 7.1 3.3 2.1 1.6 1.30 
C2 157 39 15 4.7 2.7 1.9 1.46 1.24 
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Table 7.8 ( cont.) 

Sampie Type of ARLs for mean range at stated multiples of k 
size scheme 1.0 1.12 1.25 1.6 2.0 2.5 3.2 4.0 

5 Cl 771 116 30 5.6 2.7 1.8 1.36 1.16 
C2 179 39 14 4.0 2.3 1.6 1.30 1.13 

6 Cl 942 131 31 5.0 2.4 1.6 1.26 1.10 
C2 204 40 13 3.6 2.0 1.45 1.20 1.07 

8 Cl 893 111 25 4.0 2.0 1.37 1.13 1.04 
C2 162 29 10 2.8 1.7 1.26 1.09 1.02 

10 Cl 635 77 17 3.2 1.7 1.22 1.07 1.01 
C2 184 30 9.2 2.6 1.52 1.17 1.05 1.01 

(a) Interpretation of the chart 
For a CuSum plot scheme, there is evidence that the process spread has 
increased when the lower arm of the mask cuts the plot on chart. A 
search for an assignable cause of variation should then be made. 

(b) Assumptions 
This chart assumes: 

(1) that the underlying distribution is Normal; 
(2) that the groups are of equal size; 
(3) that points are weighted equally. 

All methods of control of process spread are sensitive to Normality. 
Periodically, a Normal plot should be made, by the method given in 
Chapter 2. If there is any doubt, a statistician should be consulted. It 
could be that a simple transformation of the data, such as square root or 
logarithm, will render the data Normal. 

It is difficult to take account of varying group sizes in a CuSum plot, 
and this is one of the limitations of the scheme. 

7 .3.3 CuSum scheme for standard deviations 

METHOD SUMMARY 7.7 

CuSum scheme for standard deviations 

Step 1 Collect at least 20 groups of n observations each, where 
n is usually between 4 and 6. Test the data for Normal
ity. 
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Step 2 Calculate the standard deviation s; for each group. 
Calculate the estimate of aw, using the formula 

Step 3 Choose between the Cl and C2 schemes. (A table of 
ARL properties is given in Table 7.10.) 

Step 4a Scale the vertical axis so that one horizontal unit repre
sents approximately an &w. Construct a mask (lower arm 
only) with parameters 

decision interval 

slope of decision line 

where an, h and f are obtained from Table 7.9. Use &w 
as the reference value for the CuSum. 

Step 4b Alternatively, operate a decision interval scheme (see 
section 7.1.6), with parameters 

K = kaw 

where h and k are taken from Table 7. 9. 

Notes 
(1) Group sizes can vary a little. 
(2) Normality should be checked periodically. 

Table 7.9 CuSum schemes for standard deviation in samples from a Normal 
population. Extracts from British Standards are reproduced with the permission 
of BSI 

Sampie size, n 2 3 4 5 6 8 10 12 15 20 

an 1.5 1.0 0.85 0.75 0.65 0.55 0.5 0.45 0.4 0.35 

Ciu 
2.0 1.6 1.15 0.9 0.8 0.6 0.5 0.4 0.35 0.3 
1.5 1.35 1.35 1.35 1.32 1.3 1.3 1.3 1.27 1.23 
0.5 0.35 0.35 0.35 0.32 0.3 0.3 0.3 0.27 0.23 

cz); 
2.0 1.6 1.15 0.9 0.8 0.6 0.5 0.4 0.35 0.3 
1.25 1.15 1.2 1.2 1.2 1.2 1.2 1.2 1.18 1.16 
0.25 0.15 0.2 0.2 0.2 0.2 0.2 0.2 0.18 0.16 
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Table 7.10 ARL data for deviation schemes. Extracts from British Standards are 
reproduced with the permission of BSI 

Sampie Type of ARLs at stated multiples of the set standard deviation 
size scheme 1.0 1.12 1.25 1.6 2.0 2.5 3.2 4.0 

2 Cl 920 190 72 16 7.4 4.4 3.0 2.3 
C2 185 67 32 10 5.6 3.7 2.6 2.1 

3 Cl 920 160 48 9.4 4.4 2.8 2.0 1.6 
C2 155 43 19 6.7 3.7 2.4 1.8 1.5 

4 Cl 840 130 35 6.6 3.2 2.1 1.5 1.28 
C2 180 41 16 4.7 2.6 1.8 1.4 1.23 

5 Cl 820 110 28 5.2 2.6 1.7 1.31 1.14 
C2 155 33 12 3.7 2.2 1.5 1.24 1.11 

6 Cl 850 99 23 4.3 2.2 1.5 1.20 <1.1 
C2 190 33 11 3.3 1.9 1.4 1.15 <1.1 

8 Cl 720 74 17 3.2 1.7 1.25 <1.1 ~1 

C2 180 27 8.7 2.6 1.55 1.19 <1.1 ~1 

10 Cl 930 78 15 2.8 1.5 1.15 ~1 ~1 

C2 200 25 7.6 2.2 1.4 1.10 ~1 ~1 

12 Cl 840 67 13 2.3 1.33 <1.1 ~1 ~1 

C2 170 21 6.3 1.9 1.23 <1.1 ~1 ~1 

15 Cl 860 56 9.7 2.0 1.20 <1.1 ~1 ~1 

C2 170 18 5.2 1.6 1.13 ~1 ~1 ~1 

20 Cl 810 40 6.9 1.6 <1.1 ~1 ~1 ~1 

C2 166 17 4.6 1.37 <1.1 ~1 ~1 ~1 

7 .3.4 CuSum scheme for standard deviations based on transformations 

BS 5703, Part 3, section 7.5.2, gives a CuSum method for standard 
deviations based on the transformation 

y = (s/a)0.625 

which turns out to be nearly Normal for group sizes n = 3-20. See BS 
5703 for values of the constants for charting. 

7 .3.5 Choice between plotting methods 

The gain in efficiency by using CuSums for control of process spread is 
less than that for control of process average Ievel, and Table 7.11 shows 
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Table7.11 Average run length at different multiples of RT for ranges in groups 
of size 4 

Scheme Multiples of R T 

1.0 1.12 1.25 1.6 2.0 

Cl 918 145 39 7.1 3.3 
Sl 640 138 44 8.1 3.4 

C2 157 39 15 4.7 2.7 
S2 166 49 20 5.2 2.7 

a comparison of Shewhart and CuSum schemes for selected parameters. 
However, there is a substantial gain in visual interpretation. In addition, 
CuSum schemes enable us to estimate local averages, and to see more 
clearly when a given change in the process spread started. 

For hand plotting, ranges have the advantage of simplicity. The 
standard deviation scheme is slightly more efficient, but more prone to 
errors in calculation for hand plotting. 

7 .3.6 Control of process spread with one-at-a-time data 

For one-at-a-time data, suppose the observations are x 1, x 2 , x 3 , •.• , 

then we arbitrarily break the data into independent groups, and obtain 
ranges or standard deviations of the groups. For example, if our data is 

1.2 4.6 3.8 2.9 1.7 3.2 

then for groups of size 2, and when using ranges, we have 

observations 4.6 3.8 3.2 Note 

1.2 
3.4 

2.9 
0.9 

1.7 
1.5 

Independent groups! 

and then proceed as in section 7.3.2. We would usually use group sizes 
in the range 2-6. A similar procedure holds for using standard devi
ations of the groups. 

For grouped data where there is between-group variation an addi
tional chart for spread should be set up using the method discussed 
above for one-at-a-time data, working on the group means. 

7.4* NOMOGRAM FOR CuSums 

The six sets of CuSum decision parameters (h, k) given Table 7.5 will 
be sufficient for most purposes. If other choices are required, Fig. 7.17 
gives a nomogram, reprinted from Goel and Wu (1971), which should 
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be used as given belowo Suppose the Observations are normally dis
tributed with an unknown mean 11 and a known or estimated standard 
deviation ao The observations are sampled in groups of size n so that 
the standard error of the mean .X is a /V n 0 

METHOD SUMMARY 708 

Design of one-sided CuSum scheme 

Step I Choose an acceptable quality Ievel (AQL), fla, and a 
desired ARL at this Ievel, Lao Also choose a rejectable 
quality Ievel, fln and a desired ARL at this Ievel, Lro 

Step 2 Set the reference value K = (!la + !lr)/20 
Step3 Enter the contour nomogram at the intersection of L. and 

Ln and read off h' and f' from the vertical and horizontal 
axeso 

Step4 Calculate the implied value of n' = (4f' 2 a 2)/(!1a- 11r)2 o 
Round this up or down to an interger value n, and 
recalculate f, where 

f = lila - !lrl V n/2ao 

Step 5 Re-enter the contour nomogram at this value of f, and 
read off a series of possibilities for La and corresponding 
ho 

Step 6 Decide on a particular set of ( h, f) to use from the sets of 
values arising from the two methods of rounding in Step 40 

Example 7.1 
Suppose fla = 205, La= 600, flr = 0, Lr = 6 and a = 3o5o Then K = 1.25, 
and we have h' = 3o58, f = 0067 0 This Ieads to 

n' = (4 X 00672 X 3o52)/2o52 = 3o52o 

For n = 3, f = 0062 and we could have La= 600 with h = 3o87 and 
Lr = 607, or we could have Lr = 6 and h = 3032, La= 3000 A decision 
must be made between these valueso 

If the ARLs at the AQL and the RQL are not pre-specified, then the 
next Method Summary gives a suitable procedureo 

METHOD SUMMARY 709 

Design of one-sided CuSum scheme from limited information 

Step I Given fla, flr and a, calculate 
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f = l.ua- .Ur1Yn/2a 

for several suitable values of n (integral). 
Step 2 Enter the nomogram at these values of f and tabulate 

alternative schemes. 
Step3 Choose between the sets of (h, f, n) given. 

Example 7.2 
For the values .Uu = 2.5, .Ur= 0, a = 3.5 as in Example 7.1, the values in 
Table 7.12 can be obtained. A choice must be made between these 
options. 

Table 7.12 Illustration of Method Summary 7.9 

n f = lflu - flr1Yn/2a Lu Lr h 

1 0.357 100 9.4 3.58 
200 11.7 4.41 

2 0.505 100 6.0 2.83 
200 7.3 3.46 
300 8.0 3.89 

3 0.619 100 4.6 2.44 
200 5.5 2.98 
300 6.0 3.32 
400 6.4 3.57 

METHOD SUMMARY 7.10 

Calculation of ARL curve of a one-sided CuSum scheme 
Step 1 Given h, n, a and reference value K, draw a vertical line 

at h, and obtain the La, Lr corresponding to 

f = dV'n/a 
for a series of values of d. 

Step 2 For a scheme for detecting increases in the mean, the ARL 
is La at (K- d) and Lr at (K + d). 

Example 7.3 
For h = 2.5, n = 1, a = 1, K = 1, the following ARL values are 
obtained: 

.u 
ARL 

0 
700 

0.5 
70 

1.0 
13.4 

1.5 
5.4 

2.0 
3.2 
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In order to use the nomogram, calculate the ARL of a two-sided 
CuSum scheme, using the formula 

1 1 1 -==-+
L Lu LI 

where Lu and L 1 are the ARLs of the upper and lower schemes. 
Although this nomogram has a limited range of h values, it is very 

accurate. For other nomograms, some with greater range, see Bissen 
(1969), BS 5703, and Kemp (1962). 

EXERCISES 7 A 

1. Construct a standard V-mask from the initial data set used for the 
simulation exercise of Chapter 5. 

Continue the plot of a CuSum for the means of run A from that 
same process, applying the V-mask to each point as it is plotted. 
Stop when action is signalled, and note the run length. Look back at 
your CuSum plot and try to determine the point at which the chart 
first seemed to slope up or down (not necessarily the corner point). 

Repeat the above for process runs B, C and D. Compare the run 
lengths for each process run with those obtained for a Sherwhart X 
chart in Chapter 5. For a dass exercise, compare the average run 
lengths. How much easier is it to detect the point of change with 
CuSum charts? 

2. Carry out the decision interval scheme calculations for process run 
A of the data sets in Appendix B. 

3. Draw the standard snub-nosed V-mask, and try it on the first few 
results from Set A of Question 1. Compare your results. For the 
first set, work out how to carry out this procedure by operating two 
parallel decision interval schemes. 

4. The data in Table 7.13 were obtained one-at-a-time from a process. 

Table 7.13 

10.1 9.9 10.2 9.1 10.3 9.4 10.1 9.9 10.6 9.5 9.6 9.3 9.9 
9.2 10.2 8.7 9.8 10.4 11.1 10.2 10.1 10.5 9.2 10.1 10.8 10.3 

10.0 9.2 10.5 10.1 9.7 9.6 7.9 11.0 10.3 10.7 10.6 9.5 11.6 
11.7 10.1 9.3 10.7 9.2 8.8 9.4 11.2 9.4 8.8 11.9 9.3 11.8 
8.6 10.2 12.0 9.7 10.9 9.1 10.7 13.3 9.7 9.1 10.2 11.5 10.7 
8.3 11.9 7.0 8.0 11.5 8.7 9.8 7.6 11.6 10.6 7.1 9.8 9.1 

10.5 7.5 8.9 8.6 8.8 9.3 11.7 9.6 7.9 10.4 10.5 9.0 
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The s.d. of this process when in control is estimated to be aw = 0.8. 
Set up a CuSum decision interval scheme for ranges of 2 or 3 or 4 
or 5 at a time, and determine when the process goes out of control. 

5. Set up a CuSum scheme for standard deviation of groups of 2, 3, 4 
or 5 at a time for the data given in Question 4. 

EXERCISES 7B 

1. Given fl.a = 120, La= 500, fl.r = 124, Lr = 4, a = 4, determine a 
one-sided CuSum scheme. 

2. If a = 1 in Question 1, how closely can the requirements be 
achieved? 

3. Given n = 1, a = 1, find two-sided CuSum schemes corresponding 
to 

(a) fl.a = 0, La = 200, fl.r = 2, Lr = 3 

(b) fl.a = 0, La = 400, fl.r = 2, Lr = 3. 
Discuss the use of these and Example 7.3 as alternatives to a 
standard Shewhart chart, in place of the 'standard' V-mask. 

4. Design a set of simulation trials to verify the ARL results for the 
snub-nosed V-mask given in section 7.1.5. 



8* 

Further theoretical results on 
control charts for continuous 
variables 

8.1 INTRODUCTION 

In this chapter we give some further theoretical results on properties of 
the charting methods. The derivation of run length properties of CuSum 
schemes is given, but it is convenient first to discuss some methods 
which give further information on the properties of Shewhart charts. 

In practice there are several factors affecting the choice of charting 
methods: 

(1) The run length distribution and average run length curve under 
simple distribution shift or scale changes. There is some evidence 
that most run length distributions are close to geometric, so that 
interest centres on the ARL curve. 

(2) Ease of use and interpretation. Control charts have to be used by 
factory staff, management, and others who are not trained statisti
cally. Same charts, such as the CuSum, are not used as frequently 
as they might be because of the complexities of use and interpre
tion. For a similar reason, extra rules to improve the power of the 
Shewhart chart are also less frequently used than they might be. 

(3) Sensitivity to departures from assumptions. Most charting methods 
assume independent and identically distributed normal random 
variables. While the X chart is reasonably robust to departures 
from normality, charts for control of process spread are not, and 
when there are specification limits (see Chapter 9) normality can 
be important. Further, there are often serial correlations or cyclic 
patterns in industrial data, and the effects of these need to be 
investigated. 

( 4) The power of various charts to detect more complex patterns than 
simple shift or scale changes. 
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It is perhaps surprising that there are a number of gaps in our current 
knowledge of these points. 

8.2 THE EFFECT OF DEPARTURES FROM ASSUMPTION 
ON MOMENTS OF i AND s 2 

Suppose we have independent random variables X 1, X 2 ••• , with 
E(X) = t-t, V(X) = a2 , and coefficients of skewness and kurtosis y1 and 
y2 • (For an explanation see the references listed in section 2.2.) We now 
define 

n 

X = L(X; - t-t)/n 
1 

then it is easy to show that 

E(X) = 0 

This simply restates the well-known central Iimit theorem property 
that when we are dealing with sample means, non-normality of the 
original distribution doesn't matter much. However, care has to be 
taken due to the small sample sizes used in SPC work. 

W e also find that for the sample variance 

then 

and 

V(s 2) = 2a4 
( 1 + Y2(n - 1)) 

(n - 1) 2n 
(8.1) 

so that kurtosis can considerably inflate the variance of s 2 , and this 
effect does not disappear as sample sizes increase. 

If now we assume that successive Observations have a correlation p, 
then we find 

E(X) = o 

V(X) = : [ 1 + 2p( 1 - ~)] (8.2) 

and 

(8.3) 
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Thus when we have positive autocorrelation, the variance of the mean 
is inflated, whereas the sample variance gives an underestimate of a2 • 

The general conclusions for charting are as follows. 

(a) Contra! of process average Ievel 
Skewness and kurtosis are likely to have very little effect, even with 
samples of sizes as small as 5. Positive autocorrelation will lead to too 
many false positives, when boundaries are based on independence. 

(b) Contra! of process spread 
Kurtosis of the original distribution can have a large effect on V(s 2). 

Positive autocorrelation will lead to far too many false positives in range 
or standard deviation charts. 

It should be noted that if we are dealing with charts for specification 
limits, see Chapter 9, then non-normality will be very important. The 
properties of charts for specification limits depend on the distribution of 
individual values, rather than of process means. 

8.3 SHEWHART CHARTS- MARKOV CHAIN APPROACH 

The methods given in section 5.6 can be used to obtain ARL results for 
Shewhart charts for a variety of distributions. In order to obtain more 
detailed results on run length properties, a different approach is 
necessary. The following method, given by Brook and Evans (1972) is of 
interest, and it leads on to methods usable for a study of CuSum chart 
properties. 

8.3.1 Shewhart chart with warning lines 

A Shewhart chart with warning lines can be represented as a simple 
Markov chain with four states: 

State 0: Current point is in the main plotting region. 
State 1: Current point is in the lower warning region, and the previous 

point was not. 
State 2: Current point is in the upper warning region and the previous 

pointwas not. 
State 3: Current point signals action by either one point outside the 

action limits or two successive points in the same warning 
region. 

State 3 is said to be an absorbing state since at this point the 
procedure stops (with action being signalled). 
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The probabilities of points falling in three of the regions is as shown 
in Fig. 5. 9. These probabilities will depend on the specific distribution 
being assumed. 

The transition matrix can now be written: 

Final state 
0 1 2 3 

Initial 0 Po Pr P2 P3 
state 1 Po 0 P2 (pr + P3) (8.4) 

2 Po Pr 0 (p2 + P3) 
3 0 0 0 1 

We write this transition matrix as P, and we denote the probability 
distribution of states at step n as S(n)· This consists of four elements -
one for each state- which we label as follows: 

S<nl = (S<nlo' S<nl!' S<nlz• S<nh). 
Then we have 

(8.5) 

where S(o) is the distribution of initial states. If Xis the number of steps 
to an action signal, then 

Pr(X $ x) = S<xk 

For example, suppose we start in State 0, so that S(o) = (1, 0, 0, 0,), 
and suppose that the distribution of observations is exactly on target, 
then 

Po = 0.95, Pr = P2 = 0.024, P3 = 0.002, 

where p 3 is the probability of a point falling in the action region, and by 
using (8.5) we have 

S(1J = (0.950, 0.024, 0.024, 0.002) 

S(,J = (0.948, 0.023, 0.023, 0.005) 

S(,J = (0.945, 0.023, 0.023, 0.008) 
etc. 

Pr(X $ 1) = 0.002000 

Pr(X $ 2) = 0.005148 

Pr(X $ 3) = 0.008260 

This particular calculation is tedious, and liable to numerical errors for 
large run lengths. 

Another way of doing the calculations is as follows. If we always have 
the absorbing states as the last state, then we can partition P 

(8.6) 
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and since the rows of P add to unity we have 

p = (I - R)l (8.7) 
from which it follows that 

pr = [~' (8.8) 

Therefore if we write 

F, = (I - R')l (8.9) 

then the first element of F, gives the cumulative probability for runs of 
length r starting from State 0. The results of some calculations per
formed on this basis are shown in Table 8.1. This demonstrates the 
highly skewed nature of the distribution, and also the closeness of the 
approximating geometric distribution. 

Table 8.1 Run length distribution for the Shewhart chart (probability limits) 

Prob { run length < r} Geometrie distribution 
Run Shift in mean (standard error units) 
length 0 0.5 1.0 0 0.5 1.0 

20 0.0597 0.1670 0.5368 0.0607 0.1697 0.5387 
40 0.1168 0.3089 0.7893 0.1177 0.3107 0.7872 
60 0.1705 0.4267 0.9042 0.1712 0.4277 0.9019 
80 0.2209 0.5244 0.9564 0.2215 0.5248 0.9547 

100 0.2682 0.6054 0.9802 0.2687 0.6055 0.9791 
150 0.3743 0.7526 0.9972 0.3747 0.7522 0.9970 
200 0.4650 0.8449 0.9996 0.4653 0.8443 0.9996 
250 0.5426 0.9028 0.9999 0.5427 0.9022 0.9999 
300 0.6089 0.9391 0.6090 0.9386 
350 0.6657 0.9618 0.6656 0.9614 
400 0.7141 0.9761 0.7141 0.9758 
500 0.7910 0.9906 0.7909 0.9904 
600 0.8472 0.9963 0.8471 0.9962 

1000 0.9564 0.9999 0.9563 0.9999 

8.3.2 Expectation and variance of run length distributions 

The Markov chain approach of the previous section can be extended to 
evaluate the expectation and variance of the run length distribution 
directly. Write the factorial moments of the run length, starting from a 
state i, as 
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/l}sl = E {X;(Xi - 1) ... (Xi - s + 1)} = E {x<sl} 

Now a run length of r is the same as a step of one followed by a 
run-length of (r- 1), so that 

r=s 

H-1 

= .Z:r<s) 2:PijPr(Xi = r - 1), 
r=s j=O 

where Pij is the transition probability of going from state i to state j in 
one step. The absorbing state is taken as H and state 1 as the initial 
state. Now we have 

so that 

r<s) = (r -1)(s) + sr<s- 1) 

H-1 

llls) = 2:Pij{ll}'l + SJ1}'-1l}. 
j=O 

In matrix form this equation is 

(I - R).u<sl = sR.u<s-1) 

For s = 1 we have 

(I - R).u = 1 

(8.10) 

so that the first element of (I - R)-11 is the average run length starting 
from the initial state. 

Once .u has been evaluated, (8.10) can be used to calculate other 
moments. We write (8.10) 

.u<sl = s{(l - R)-1R}.u<s-1l 

= s{(l - R)-1 - l}.u<s-1) (8.11) 

This last equation is easy to calculate; to get the next moment a 
simple matrix multiplication is required and multiplication by a constant. 

The material in sections 8.3.1 and 8.3.2 can be used in a very general 
setting, and the properties of many types of SPC scheme can be 
evaluated using these results. 

The results in Table 8.2 demoostrate that the standard deviation is 
approximately what we would expect if the actual run length distribution 
were exactly geometric. 
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Table 8.2 Expectation and variance of run length distribution for the Shewhart 
X chart with warning lines (probability Iimits) 

Mean Expectation Std. deviation Std. deviation 
if geometric 

0 320.00 319.15 319.49 
0.5 108.03 107.09 107.53 
1.0 26.35 25.39 25.85 
1.5 8.92 7.97 8.40 
2.0 4.14 3.23 3.61 
2.5 2.46 1.59 1.90 
3.0 1.75 0.91 1.14 

8.3.3 Supplementary runs rules 

Champ and Woodall (1987) have used a Markov chain model to 
calculate the ARL of a Shewhart chart using supplementary rules. The 
procedure is as follows. 

The rules are all expressed in the form that k; of the last m; 

observations fall in the range (a;, b;), assuming unit variance, and a zero 
mean when on target. This is denoted T(k;, mh a;, b;), and is called the 
rule C;. Many of the suggested ways of operating a Shewhart chart can 
be expressed as using a combination of the rules, C; u Cj u Cb 
The rules considered are shown in Table 8.3. 

Table 8.3 Champ and Woodall's rules 

Rule 1: 
Rule 2: 
Rule 3: 
Rule 4: 
Rule 5: 
Rule 6: 
Rule 7: 
Rule 8: 
Rule 9: 

C1 = {T(1, 1, -oo, -3), T(1, 1, 3, oo)}. 
C2 = {T(2, 3, -3, -2), T(2, 3, 2, 3)}. 
C3 = {T(4, 5, -3, -1), T(4, 5, 1, 3)}. 
C4 = {T(8, 8, -3, 0), T(8, 8, 0, 3)}. 
C5 = {T(2, 2, -3, -2), T(2, 2, 2, 3)}. 
C6 = {T(5, 5, -3, -1), T(5, 5, 1, 3)}. 
C7 = {T(l, 1, -oo, -3.09), T(1, 1, 3.09, oo)}. 
C8 = {T(2, 3, -3.09, -1.96), T(2, 3, 1.96, 3.09)}. 
C9 = {T(8, 8, -3.09, 0), T(8, 8, 0, 3.09)}. 

For example, rule C2 states that two out of the last three observations 
fall in the ranges ( -3, -2) or (2, 3). As rules of the type C2 are used, 
the authors define a vector 

W; = (W;,r. .. . , W;,m,_) 
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where 

W;j = 1 if the jth previous observationwas in (a;, b;), 
= 0 otherwise. 

They also define 
X;= (X; 1> ••• , X; m-r) 

' ' ' 

where X·= W. · if L 1h. - 1(1- W. h) < m - k· + 1 so that the X. have 1s l,] l,j - l, l l l,j 

only where an observation can contribute to an out of control signal. 
Then fort rules, a vector 

represents the transient states. 
From this basis, the methods follow those of Brook and Evans (1972), 

to obtain ARLs and some other properties of run length distributions. 
The calculations are all performed using independent, identically dis
tributed normal random variables, and it is to be noted that some 
commonly occurring rules, such as seven points increasing or decreasing, 
arenot covered by these methods. 

Table 8.4 shows the results, and some important features stand out. 
In particular, a combination of rules such as C7 or C9 dramatically 
increases the false alarm rate. As these rules are popular in some 
circles, this point needs to be noted. 

Table 8.5 shows how the ARLs of Table 8.4 compare with a simple 
Shewhart chart with action boundaries only, set so as to give the same 
false alarm rate when the process is on target. We see that employment 
of these extra rules can considerably increase the power of the charts to 
detect moderate changes, sometimes at the cost of reduced power to 
detect large changes. Again we see that the rules C7 and C9 , highlighted 
above, behave particularly badly in this respect. 

8.4 CUMULATIVE SUM CHARTS 

8.4.1 Exact theory 

In order to work out properties of CuSum charts we use the decision 
interval scheme of section 7 .1. 7, which we note is exactly equivalent to 
the CuSum plot scheme. 

Another point is that if we operate decision interval schemes for both 
upper and lower sides, then we can show that 

1 1 1 ----- = + ----
( ARL) combined ( ARL )upper ( ARL )Jower 

(8.12) 

This enables us to study the ARL of a one-sided scheme separately. 
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The decision interval scheme can be considered as a sequence of 
sequential probability ratio tests; (for a description of and references to 
this see Wetherill and Glazebrook (1986)). Let the variable z denote the 
distance from the lower boundary of the scheme, so that the two 
boundaries are at z = 0 and z = H. A single test is defined as a path 
starting at a value z satisfying 0 ::::: z < H, and ending at the upper or 
lower boundary; in the degenerate case the path may be one point only. 
For such a test let 

P(z) = probability that a test starting at z ends at z < 0 

N(z) = average sample number of a test starting at z. 

The decision interval scheme is a series of such tests, and terminates 
with the first test to cross the upper boundary. Let L(z) denote the 
ARL of a decision interval scheme in which the first test starts at the 
point z , but all subsequent tests start at the lower boundary. 

We have usually discussed only CuSum schemes in which the observa
tions are normally distributed, but to be general we denote the 
probability density function of the observations by f(x ), and cumulative 
distribution by F(x). The CuSum scheme proceeds by observing x, and 
if the current score is z, the new score is 

z + X - K if X ~ K - z 
or 0 if X~ K- z. 

We begin by considering a single test starting from a score z, and obtain 
a formula for P(z). If one observation is taken, there are three 
possibilities, as indicated in Table 8.6. 

Table 8.6 Score used in derivation of ARL formula 

Observation 

(1) x :S K - Z 

(2) K - z ::s x ::s H + K - z 
(3) X ~H + K- z 

New score 

0 
z+x-K 
H 

Outcome 

Test ends at lower boundary 
Test in progress 
Test ends at upper boundary 

The probability of the first event is F(K- z). If the second event 
happens, there is a further probability P(y ), for every y = z +x - K, 
0 < y < H, ending at the lower boundary. The last event is irrelevant to 
P(z). Therefore we have the equation 

h 

P(z) = F(K- z) + f0 P(y)f(y + K- z)dy (8.13) 
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In a similar way we can obtain the equations 
h 

N(z) = 1 + J0 N(y)f(y + K- z)dy 

and 

(8.14) 

h 

L(z) = 1 + L(O)F(K - z) + fo L(y)f(y + K - z) dy (8.15) 

Equations (8.13) and (8.14) have been described by Page (1954), and 
Page (1961) and Kemp (1958) gave numerical methods for solving them. 

The ARL of the decision interval scheme is L(O), and once P(O) and 
N(O) are obtained by solving (8.18) and (8.19), L(O) can be obtained 
from the formula 

L(O) = N(0)/{1 - P(O)} (8.16) 

instead of by solving (8.15) directly. This formula can be derived as 
follows. In a decision interval scheme the number of sequential tests has 
the geometric distribution 

{P(O)}<s-1){1 - P(O)}, s = 1, 2, .... 

Thus on average there are {1 - P(O)} - 1 sequential tests in a single run 
of a decision interval scheme of which just one terminates on the upper 
boundary. If N(O)u, N(0)1 are the average sample numbers of sequential 
tests terminating on the upper and lower boundary respectively, the 
ARL of the decision interval scheme is 

L(O) = N(O)u + L _ ~(O) - 1 }N(0)1 

1 _ ~(O) {(1 - P(O))N(O)u + P(O)N(0)1} 

N(O) 
1 - P(O). 

Now the ARL is the expectation of the distribution of run length, and 
it is very useful to have a formula for it. However, further information 
about the run length distribution can easily be obtained. Let 
p(n, z) = probability that a test starting at z has run length n, then by 
following an argument similar tothat leading to (8.18) we have 

h 

p(n, z) = p(n- 1, O)F(k- z) + J0 p(n- 1, y)f(y + k- z)dy. 

(8.17) 
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Denote the moment generating function of the run length distribution 
by cp(z, t) 

cp(z, t) = LP(n, z)ent 
1 

then from (8.17) we have 

e-1cp(z, t) = 1- F(h + k - z) + cp(O, t)F(k- z) 
h 

+ Jo cp(y, t)f(y + k- z)dy. (8.18) 

By successively differentiating (8.18) and putting t = 0 we can obtain 
integral equations for the moments of the run length distribution. Ewan 
and Kemp (1960) also obtained an approximation for the variance of the 
run length distribution, 

V(n) = L 2(0) + V(N)/{1 - P(O)} (8.19) 

where V(N) is the variance of the sample nurober of single sequential 
test, and the approximation is valid when P(O) is close to unity. The 
authors also conjectured that a close approximation to the run length 
distribution is 

1 { (n - 1)} 
p(n, 0) = L(O) exp - L(O) . (8.20) 

Throughout this theory, we have assumed that the observations x are 
continuous, but the methods used can be followed through in the 
discrete case also. Ewan and Kemp (1960) gave values of the ARL for 
the case when the observations have a Poisson distribution, as well as 
for the normal distribution case. 

8.4.2 Johnson's approximate approach 

Johnson (1961) gave an approximate approach for a CuSum chart with a 
V-mask, which arrives at some remarkably simple answers. 

We first reverse a CuSum chart, and look at it as if it were proceeding 
backwards. Figure 8.1 shows approximately how Fig. 7.6 would be 
reversed. The method is now to regard the outer arms of the V-mask as 
boundaries of a test of three simple hypotheses using the sequential 
probability ratio test (Wetherill and Glazebrook 1986). 

Suppose we have three hypotheses, that observations are independ
ently and normally distributed with distributions as follows: 

H_ 1: N(-oa, a2); H 0 : N(O, a2); H 1: N(oa, a2). 
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7 3 2 
Observation number 

0 

Figure 8.1 Johnson's approach to V-mask theory. 

Suppose, further, that we want a probability (1 - 2a0) of accepting H 0 

if it is true, and a probability (1- a 1) of accepting H 1 or H _1 if they 
are true; then the boundaries for the sequential probability ratio test of 
these hypotheses are as illustrated in Fig. 8.2. 

The outer boundaries are 

(8.21) 

I:x 

Observation number 

Accept H, 

Figure 8.2 Sequential tests of three hypotheses. 
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and 

(8.22) 

Now the outer boundaries of the V-mask in Fig 7.5, using the current 
point as origin, are 

:Z:x = 2a(h + nf) (8.23) 

and 

:Z:x = -2a(h + nf) (8.24) 

where 2a is the scale factor of the CuSum chart and where H = ha, and 
F =ja; see Chapter 7. It follows that if we identify (8.21) with (8.23) 
and (8.22) with (8.24), we shall have a V-mask in which, approximately, 
the probability of a path crossing an outer boundary is 2a0 , when the 
process is in control. By identifying these pairs of equations we obtain 

f = b/4 

h = loge{(l - a 1)/ao}/2a 

(8.25) 

(8.26) 

Unfortunately CY1 in this last equation is difficult to interpret, since there 
is no 'accept H 0' boundary on Fig. 7.5. However, since a 1 is usually 
small, we have 

(8.27) 

These results can be used in the following way. First decide on the 
least change in the mean which it is desired to detect with reasonable 
certainty; let the standardized value, standardized by a, be b. We must 
now decide on the greatest tolerable probability, 2a0 , of false indica
tions of lack of control; values near 0.002 are traditional for this in 
control chart work. Use of (8.25) and (8.27) now give e and h 

corresponding to this pair of ( b, a 0). The properties of the selected 
(h, 8) can be checked from tabulated ARL curves, and modified if they 
are not satisfactory. 

Johnson points out that this theory throws some further light on 
CuSum charts. Since CuSum charts are like a two-sided sequential 
probability ratio test (SPRT) without a middle boundary, and there is 
no decision to 'accept H 0', a path which would have been terminated on 
an SPRT could go on and cross one of the decision boundaries. 
Therefore paths which cross the decision boundaries a long way from 
the vertex should be regarded with suspicion. 
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8.4.3 Markov chain approach 

Brook and Evans (1972) used the Markov chain approach described in 
section 8.3 to obtain a very good approximation to the ARL of a 
one-sided decision interval scheme. The idea is simply to approximate 
the normal distribution by a set of discrete (equidistant) values. In this 
way we get a finite set of states, and the calculations proceed as 
described earlier. 

Let there be t states, E 0 to En with the last being the absorbing state, 
corresponding to an action signal. If the width of the grouping interval is 
w, then action corresponds to a score greater than (t - !}w, so that 

H = (t- !)w, w = 2H/(2t - 1). 

Let the distribution of the observations Z be normal with mean y and 
variance one. Then the decision interval scheme accumulates values of 
(Z- K) where K is the reference value. We can therefore write 
X = Z - K, so that X is normal with mean 11 = y - K, and unit 
variance. The distribution of X is then discretized by calculating the 
standard normal distribution at the (2t- 1) points. 

(a - 11), (a - 11) + w, (a - 11) + 2w, .. , (a - 11) + (2t - 2)w = H - 11 

where a = -(H- w). The lowest of these values is the distance from 
E1_ 1 to E0 , and the highest is the distance from E0 to EH. 

The transition matrix can now be written in the form 

Eo E1 Et 

Eo 
Er 

Et 

and the last row and column correspond to the absorbing state, as 
before. 

Brook and Evans report that reasonable results were obtained for 
t = 5, and that t = 10 gave three significant figure accuracy. 

As a modification, it is suggested that the calculation be performed at 
several t values and that the approximation 

ARL = A + B/t + C/t2 

be fitted and then used to extrapolate to large values of t. 
This Markov chain method is an excellent way of examining the ARL 

for cumulative sum charts. 
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8.4.4 Proof of equation (8.12) 

Figure 8.3 shows a decision interval scheme, and once a decision 
boundary is crossed, the chart automatically restarts at zero. 1t can 
easily be shown that if, say, the upper decision boundary is crossed, 
plotting on the lower chart will have terminated at the 'in control' 
boundary; see Exercise 8B.4. Therefore this automatic resetting of the 
scheme has no effect on the plotting. 

Upper decision boundary 

z: l 
Observation number 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

_"=7 __ :s;:~~l 
Lower decision boundary 

Figure 8.3 Series of two-sided decision interval schemes. 

Let Su, S1 and S1 be the run lengths of the upper, lower and two-sided 
decision interval schemes respectively, and let Lu, L 1 and L 1 be the 
corresponding ARLs for an in control process. Then clearly 

Sy = min(Su, SI) 

and 

LI = E(SI) = E(St) + E(SI - St) 

= Lu+ E{S1 - S1IS1 > S1}Pr(SJ > S1), 

since S1 - S1 ;;,: 0. Since the lower scheme restarts from the zero bound
ary when the upper scheme terminates, and by independence, we have 

E{S1 - S1IS1 > S1} = L1. 

Therefore we obtain 

L1 = L 1 + L 1Pr(S1 > S1) 

L 1 = L 1[1- Pr(S1 > S1)] = L 1Pr(St = S1). 
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Similarly we obtain 

Now we have 

so that 

or 

1 1 1 -=-+-. 
Lt Lu LI 

This proof is due to Rowlands (personal communication). 

8.4.5 Sensitivity to departures from assumptions 

Before employing CuSums too widely, it is important to have some 
appreciation of the effect of deviations from the various assumptions. 

Firstly, a value of a has to be assumed, and it is quite clear that the 
effect of departures from the assumed value on the ARL can be 
dramatic; see comments on this in De Bruyn (1968, pp.44, 45). 
Overestimation of a increases the ARL, and underestimation reduces it. 
Great care must be taken over the choice of a. 

Bissell (1969) studied the effect of skewness of the underlying 
distribution, and provided a nomogram to assess the effect on the ARL. 
His general conclusion is intuitively clear from the way in which CuSum 
cumulations arise. At the RQL, most of the distribution contributes to 
the cumulations, and the effect of skewness is very small, but the 
position is different at the AQL. For positive skewness, the proportion 
(and mean) of observations contributing to cumulations will increase, 
while at the same time the proportion (and mean) of observations 
detracting from cumulations will decrease. The result is that positive 
skewness can seriously reduce the ARL at the AQL. By similar 
reasoning, negative skewness increases the ARL at the AQL. 

The effect of serial correlation between observations has been studied 
by Goldsmith and Whitfield (1961) using simulation, and by Johnson 
and Bagshaw (1974) and Bagshaw and Johnson (1975) by theoretical 
means. Tables 8.7 and 8.8 were obtained by Rowlands (1976). These 
tables illustrate the general conclusions obtained. They are derived for a 
first order autocorrelated model, given by equation (3.6). The conclu
sions are as follows: 
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(1) Positive autocorrelation reduces the ARL, and negative autocorrela
tion increases it. 

(2) The effect of autocorrelation is slight at the RQL, but quite 
dramatic at the AQL. 

Table 8. 7 Run length distribution for a one-sided CuSum scheme. Data from a 
first order autocorrelated process. (h = 2, a = 1, 1-l- K = 1) 

n p = 0.8 p = 0.6 p = 0.2 p = 0.0 p = -0.2 p = -0.6 p = -0.8 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

0.1587 
0.3413 
0.1478 
0.0825 
0.0552 
0.0406 
0.0314 
0.0251 
0.0204 
0.0167 
0.0138 
0.0114 
0.0095 
0.0078 
0.0065 

ARL 4.18 

0.1587 
0.3431 
0.1726 
0.1011 
0.0660 
0.0453 
0.0320 
0.0229 
0.0164 
0.0118 
0.0085 
0.0061 
0.0044 
0.0031 
0.0023 

3.45 

0.1587 
0.3560 
0.2215 
0.1217 
0.0659 
0.0353 
0.0190 
0.0123 
0.0055 
0.0030 
0.0016 
0.0009 
0.0005 
0.0002 
0.0001 

2.90 

0.1587 
0.3665 
0.2451 
0.1241 
0.0579 
0.0263 
0.0118 
0.0053 
0.0024 
0.0011 
0.0005 
0.0002 
0.0001 

2.74 

0.1587 
0.3794 
0.2682 
0.1211 
0.0466 
0.0169 
0.0060 
0.0021 
0.0007 
0.0003 
0.0001 

2.61 

0.1587 
0.4139 
0.3125 
0.0967 
0.0158 
0.0022 
0.0003 

2.40 

0.1587 
0.4398 
0.3315 
0.0685 
0.0028 
0.0001 

2.32 

Table 8.8 ARL of a one-sided CuSum scheme. Data with mean on target, but 
with first order autocorrelated process (h = 2, a = 1) 

p 

0.8 
0.6 
0.4 
0.2 
0.0 

-0.2 
-0.4 
-0.6 
-0.8 

ARL 

88 
79 

101 
151 
258 
458 
665 
715 
952 

Standard Lower 
deviation Mode quartile Median 

88 3 25 60 
77 3 22 54 
99 4 29 70 

149 5 43 105 
256 5 74 179 
457 5 131 317 
664 4 191 460 
714 2 205 495 
952 1 274 659 

Upper 
quartile 

122 
107 
138 
207 
355 
633 
920 
990 

1319 

(Note: The run length distribution is not unimodal when p = -0.8; besides the mode at 
n = 1 there are lesser modes at n = 4, 6, 8, 10 and 12.) 
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Johnson and Bagshaw (1974) say: 'Our primary conclusion is that the 
CuSum test is not robust with respect to departures from independence. 
The use of CuSum tests is now widespread, and the presence of serial 
correlation common so that attention should be drawn to the seriousness 
of this lack of robustness.' 

8.5 CHARTS FüR CONTROL OF PROCESS SPREAD 

The theory for obtaining properties of charts for control of process 
spread follows the methods described above for control of process 
average Ievel, but much less work has been done in this area. A 
comparison of range, standard deviation and CuSum charts is given by 
Tuprah and Ncube (1987). Some of their results are given in Tables 8.9 
and 8.10. The schemes are designed for a = 1 and the ARLs at set 
values of a are given. These results demoostrate that CuSums do not 
gain so much over Shewhart charts in comparison with charts for control 
of process average Ievel. They also show that CuSum charts for standard 
deviation are more sensitive to small changes of process spread than 
CuSum charts for range. 

Table 8.9 ARL values for Shewhart control charts with warning lines 

Group 
size 5 10 15 20 

R-chart S-chart R-chart S-chart R-chart S-chart R-chart S-chart 
UWL 3.97 1.5829 4.577 1.3984 4.984 1.3213 5.1060 1.278 
VAL 5.00 1.9702 5.530 1.6463 5.800 1.518 5.9920 1.443 
a 

1.0 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 
1.1 63.40 60.00 50.00 41.70 43.80 32.40 39.90 26.50 
1.2 27.20 25.10 18.40 14.40 14.90 10.00 12.80 7.60 
1.3 14.40 13.20 9.00 6.90 7.00 4.70 5.90 3.60 
1.4 8.90 8.20 5.30 4.10 4.10 2.90 3.50 2.20 
1.5 6.20 5.70 3.70 2.80 2.80 2.10 2.40 1.70 
1.6 4.60 4.30 2.80 2.30 2.20 1.70 1.90 1.40 
1.7 3.60 3.40 2.20 1.90 1.80 1.40 1.60 1.20 
1.8 3.00 2.80 1.90 1.60 1.50 1.30 1.40 1.10 
1.9 2.60 2.40 1.70 1.40 1.40 1.20 1.20 1.10 
2.0 2.30 2.20 1.50 1.30 1.30 1.10 1.20 1.00 

UWL is the Shewhart upper warning line, and UAL is the Shewhart upper action line. 
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Table 8.10 ARL values for CuSum procedures 

Group 
size 5 10 15 20 

R-chart S-chart R-chart S-chart R-chart S-chart R-chart S-chart 
H 3.20 2.66 3.50 2.45 4.20 2.20 4.80 1.60 
K 2.80 1.48 2.86 1.56 2.90 2.00 3.08 2.50 
a 

1.0 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 
1.1 46.00 42.50 40.10 38.20 35.50 32.00 30.30 25.00 
1.2 21.20 16.70 15.60 12.20 10.40 8.00 8.00 5.50 
1.3 10.10 9.50 9.00 7.40 6.80 5.00 4.40 3.80 
1.4 5.20 4.00 3.20 2.20 2.00 1.25 1.20 1.10 
1.5 2.50 2.00 1.80 1.50 1.20 1.12 1.10 1.05 
1.6 1.80 1.50 1.20 1.10 1.08 1.02 1.00 1.00 
1.7 1.20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
1.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
1.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

EXERCISES 8B 

1. Refer back to the details in Ewan and Kemp (1960) and show how 
to evaluate the ARL for a CuSum scheme on variances of normally 
distributed data. 

2. Study how to set about a thorough investigation into the effects of 
deviations from assumptions, such as non-normality and serial 
correlation upon the run length distribution of a decision interval 
scheme. 

3. All our treatment of CuSum schemes has assumed that observations 
are taken in groups of n at equally spaced intervals. Set out a model 
for examining an optimum choice of group size and sampling 
interval. (Y ou may be guided by similar work referred to in earlier 
chapters.) 

4. For the two-sided decision interval scheme discussed in section 
7 .1. 7, let the two reference values be ± k. Show that if plotting on 
one chart ends at a decision boundary, plotting on the other must 
have ended at the 'in control' boundary. (See Kemp (1981), p.151.) 
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5. Set out the Markov chain model for deriving the ARL of a 
Shewhart chart with action lines at ±3a/Vn, and warning lines at 
±2a/Vn. Action is to be signalled if one point is beyond the action 
line or two out of three points in the same warning region. 

6. One rule which has been proposed for Shewhart charts is to take 
action if one point is over the action lines, or else if there are seven 
successive increasing or decreasing points. Set out a simulation study 
to compare the effects of this rule with action lines only. 
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The design of control charts 
from specification limits 

9.1 SINGLE SPECIFICATION LIMITS 

9.1.1 Single specification Iimits- objectives 

We frequently find industrial processes where there are single specifica
tion limits, such as the following: 

(1) The tensile strength of a test piece of polymer laminate should be 
greater than a given limit. 

(2) The percentage purity of a chemical must be greater than 99.5% 
(3) The amount of a specific impurity in a chemical product should be 

less than 20 parts per million. 
(4) The average weight of filled packets must be greater than a given 

limit. 

The objective of statistical process control in cases such as these just 
given may be simply to keep the process weil clear of the given limit. 
W e may not need to attempt statistical control of the process in the 
sense we have discussed earlier. However, we should be clear before 
using the methods given below that this is what we want. There can be 
an advantage in attempting statistical control by Shewhart or CuSum 
charts, even where there is only one specification limit, or where there 
is high capability. The methods of this chapter apply particularly where 
the process capability is large, and we can afford to look at specification 
limits. 

In the first part of this chapter we shall assume a single upper 
specification limit, such as case (3) above, and describe how to set up 
plans for this. The design of plans for a single lower specification limit 
are similar. We shall let the specification limit be the zero of the scale, 
and measure distances from it, as in Fig. 9.1. 
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The methods given here are fairly sensitive to the assumption of 
Normality, and if this is in doubt, rather greater margins need tobe left. 
A Normality check should always be carried out when using these 
methods. 

We shall assume that the process produces observations which are 
independently and identically distributed with a variance a2 , and we 
shall assume that an estimate of a is available; see the next section for a 
discussion about this. 

The procedures given below all use control charts, rather than 
cumulative sum charts. Cumulative sum charts can also be designed, 
using nomograms such as those given in section 7.4; see also Woodward 
and Goldsmith (1964). However, control charts have a great popularity 
in practice because of the simplicity of operation. 

Finally, the examples given above show that there are two types of 
requirement. In many situations the requirement is that each individual 
measurement, or each item produced if it is separate items, are within 
the specification. Secondly, there are situations where it is satisfactory to 
have the process average within specification. 

9.1.2 What is o'? 

The question as to what the relevant a is turns out to be a deeper 
question than we might think. In a typical situation there may be several 
separate components of variation: 

(1) Local random variation, reflecting the fact that it is very rarely 
possible to produce items or material with exactly the same weight, 
tensile strength, percentage of water, etc., continously. 

(2) Measurement and sampling error, which is often more substantial 
than it is thought to be. Many Iabaratory tests and measurements 
are thought tobe precise, but in fact have an error variance. 

(3) Variations in the mean of the process. Industries with more 
complex processes often show autocorrelated or other variations in 
the mean; see section 3.3.3. 

(4) Inter-laboratory error. Sometimes it is crucial that a customer's 
measurement of the percentage of an impurity, etc., is within 
specification. This variation can be estimated only by carrying out 
actual tests in a designed experiment. Again, this source of 
variation is often much greater than it is thought to be. 

All of these components of variation can be estimated, but only by an 
appropriately designed experiment. Clearly, if we have one-at-a-time 
data it will be impossible to separate some of these components of 
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variation. In the next section we discuss the choice between these 
components for scaling our charts. 

9 .1.3 Discussion 

The easiest way to discuss this is to take some specific examples. In a 
practical case it would be important to look at some data before 
deciding. 

(1) Suppose we have discrete items such as packets or bags, which are 
filled, and the quantity to control is weight. Here the relevant a is 
likely to reflect the natural distribution of filled weights resulting 
from the apparatus. Obviously, the objective is that all filled 
weights satisfy a specification. 

(2) Suppose we have antifreeze, tested for ppm of water. We assume 
that the measurement error is small, but the mean of the process 
varies in a general autocorrelated manner. The objective is that no 
measurement shall be out of specification. Here the relevant a is 
the one reflecting the variation of the Observations over time, and 
not the local variation, which may be smaller. 

(3) Suppose the important requirement for antifreeze is that it must be 
tested in a customer's laboratory and found to be within specifica
tion. Here the appropriate variation is the inter-laboratory vari
ation. 

What is really required is for a variety of real situations to be studied 
and modelled, and these models would include different components of 
variation. The treatment given below is simplified, but satisfactory for 
many applications. A deeper study of this problern has not been 
attempted. 

Warning: Before proceeding, it should be noted that the methods 
given in this chapter are particularly sensitive to non-Normality. 

9.2 SINGLE SPECIFICATION LIMITS: CHART FüR 
ME ANS 

9.2.1 Design requirements 

The type of method we shall be using is as follows. Suppose we have a 
single specification limit; then we take groups of n Observations at 
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regular intervals, and plot the means, as in Fig. 9.1. Then we have a 
simple rule to decide when to take action, such as when a sample mean 
goes beyond the action boundary in Fig. 9.1. The ARL curve for this 
type of procedure has the shape shown in Fig. 9.2, but the ARL curves 
will be different for different group sizes n and different distances k A a 

c 
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QJ 
rn 

.Q 
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* * * * * * * * * 
* 

Observation number 

Action Iimit 

Figure 9.1 A procedure for a single specification limit. 

Distance from action Iimit 

Figure 9.2 ARL curve for single specification limit procedure. 
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of the action boundary from the specification limit. We need some way 
of choosing one particular scheme, and therefore one particular ARL 
curve from the set of all possible. 

ldeally, we would like a very steep ARL curve, but this cannot be 
achieved without a very large group size, n. We have to take risks in 
order to achieve a practicable procedure. We have to accept a low risk 
of false alarms, and also a risk of not detecting a real change for a long 
time. The problern of design is how to set these risks, and we approach 
this using the ARL concept. 

We suppose that we have rather narrow-minded producers and 
consumers, who put requirements on what they want. The producer is 
only interested in ensuring that when his process average level and 
process spread are such that if there is only a small probability p a of the 
distribution beyond the specification limits, then the ARL is at least La. 
From Normal tables we can equate this probability Pa to a distance zp.a 

of the mean from the specification limit, so that p = 1- cp(Zp), where 
cp(Z) is the standardnormal integral. 

For example, suppose a producer decides that if only 0.001 is beyond 
the specification limit, the ARL must be at least 500. For a probability 
0.001 beyond specification, the process mean must be 3.0902a from the 
specification limit. 

Notation l Probability beyond spec. = 0.001 p a 

Producer's risk point Process mean = 3.0902a Zp,a 
ARL = 500 La 

Similarly, we suppose a narrow-minded consumer who insists that if 
the probability beyond specification is p r' then the ARL must be no 
more than L,. Again, we can give an equivalent position for the process 
mean which gives a probability p r beyond the specification limit. 

For example, if the probability beyond specification is 0.01, the 
consumer may set Lr = 5. We then have 

Notation l Probability beyond spec. = 0.01 Pr 
Consumer's risk point Process mean = 2.3263a ZP,a 

L, = 5 L, 

The distances Zp, and Zp, are not used in the approximate solution 
method given next, but are required for the more exact method and for 
the theory. 
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9.2.2 Single specification Iimit: action Iimit for x only. (Approximate 
solution) 

Suppose that observations are taken in groups of n at a time, and that a 
single action Iimit is placed at a distance k A a from the specification 
Iimit. Later in the chapter (section 9.2.5) a more efficient procedure is 
introduced, which uses a warning Iimit as weil. However, there are 
many industrial situations in which the introduction of a warning Iimit as 
weil as an action Iimit and a specificiation Iimit causes too much 
complication, so that the method below is used. The approximate 
method and nomogram given in this subsection is based on work by 
Wilrich (1970) and uses the theory given in section 9.2.4. 

METHOD SUMMARY 9.1 

Single specification Iimit. Position of action Iimit 

Step 1 Determine a producers risk point (p a, La) and consumers 
risk point (Pn Lr) as outlined in section 9.2.1. 

Step2 Draw lines on the nomogram joining Pa to La and Pr to 
Lr. The intersection gives the values of the sample size n 
and the distance kA for the action Iimit, on the appropriate 
scales. 

Step2' (Alternative) Given either a producers risk point or a 
consumers risk point and a sample size, the nomogram Fig. 
9.3 can be used to plot the ARL curve. 

Example 9.1 
For the problern set in section 9.2.1 we have Pa== 0.001, La== 500, 
Pr== 0.01, Lr == 5. By foilowing through Steps 1 and 2 above we get 
n == 7, k A == 2.02. This might seem a large group size, and if so, we 
might go back and revise our requirements in order to lower it. 

This method might also be used as an approximation for a one-sided 
running average chart, with one-at-a-time data. The theory in section 
9.2.4 is based on independence, which is clearly not true if running 
averages are used. However, exact calculations for a one-sided running 
average chart have not yet been evaluated. 

9.2.3 Single specification Iimit: action Iimit i only 

The purpose of this subsection is to give a more accurate algorithm for 
finding the sample size and the position of the action Iimit for the 
problern studied in section 9.2.1. The theory is given in section 9.2.4. 
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METHOD SUMMARY 9.2 

Single specification Iimit. Position of action Iimit (More accurate 
method) 

Step I Decide on a producers risk point (pa, La), and obtain the 
equivalent process mean value ZP,a; see section 9.2.1. 

Step2 Decide on a consumers risk point (Pn Lr), and obtain the 
equivalent process mean value, zp,a. 

Step 3 Find the Normal variates corresponding to 

and 

Let these be Zq, and Zq, respectively. 
Step 4 U se a group size n as the lowest integer greater than 

n = (Zq,- Zqi/(Zp,- Zpi· 

Step 5 Put the action Iimit at k A a, where 

kA = zp,- Zqjv'n. (9.1) 

Step 6 Plot running means of n ( or group means of n) on the 
chart. Search for a special cause when one point is above 
the action Iimit. 

Notes 

(1) Step 4 may weil result in a value of n which is too large. In 
this case a compromise will have to be reached on the design 
requirements. Bither La must be reduced, or Lr increased, or 
both. 

(2) If Observations are sampled in groups of n at a time, and we 
plot running averages of k means of these groups, the 
corresponding formula in Step 5 is 

kA = zp, - Zqjv'(kn). 

(3) The ARLs are calculated on a basis of independent sampling, 
rather than running averages. They are likely to underesti
mate the true ARL by about one-third. 

Example 9.2 
For the example in section 9.2.1, we have 

Producers risk point: 
Consumers risk point: 

Pa= 0.001 
Pr= 0.01 

Mean = 3.0902a La = 500 
Mean = 2.3263a Lr = 5 
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then we have 
q a = 0.002 Zq, = 2.8782 
qr = 0.20 Zq, = 0.8416 

leading to n = 7.11 or n = 8, and kA = 2.07. 

9.2.4* Single specification Iimit: action Iimit for i only (Derivation) 

Suppose that Observations are taken in groups of n at a time and that an 
action limit is placed at a distance k A a from the specification limit. Let 
the mean of the observations be fi-V, then the probability of being 
beyond the limits is p(f.l-, kA, n) where 

p(f.l-, kA, n) = 1 - <l>{(f.l-- kA)Vn} = <l>{(kA - f.I-)Vn} (9.2) 

The distribution of run length until a point is beyond the action limit 
is geometric: 

Pr(r) = (1- p)'-1p 

where p = p(f.l-, kA, n), so that the expectation and variance of the run 
length are 

E(R) = 1/p 

V(R) = (1 - p )jp 2 

In order to satisfy the design requirements we require an ARL of La 
when f1- = Za, and an ARL of Lr when f1- = Zp,· If we put 

qa = 1/La and qr = 1/Lr (9.3) 

then we must satisfy 

p(f.l-, kA, n) = q 

for (f.l-, q) set at (Zpp, qa) and (Zpp, qr) (see Fig. 9.4), which leads to 

(9.4) 

and 

(9.5) 

or 

(9.6) 

and 

(9.7) 
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Figure 9.4 Action limit for a specification limit. 

Owing to discreteness it will not be possible to solve these exactly. It 
turns out better to satisfy (9.4) rather than (9.5) for defining kA. Once 
an n and kA are chosen, the exact ARL for the plan is given by (9.2). 

Typically, when this method is used in practice, a value of n will 
emerge that is too large. The engineer will then have to modify bis 
requirements, by changing the ARLs required, or by increasing the 
sampling frequency. 

9.2.5 Single specification Iimit: one-sided i chart 

If we have data sampled in groups of n at a time, a one-sided X chart 
can be used. In an ordinary X chart, the distance between the warning 
and action boundaries is 

(3.09- 1.96)a/v'n = 1.13a/v'n. 

For reasons which will be clear later, we preserve this distance. The 
crucial question is how far to put the action boundary from the 
specification limit. We denote this distance ksa (see Fig. 9.5) and we 
wish to choose ks and the group size n to satisfy design requirements. 
Basically, the metbad used in the previous section can be repeated. 

The one-sided chart is used in the usual way - one point outside the 
action Iimit or two successive points outside the warning Iimits gives a 
signal to take action on the process. 
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Figure 9.5 One-sided X chart. 

METROD SUMMARY 9.3 

Single specification Iimit. One-sided X-chart (More accurate 
method) 

Step I Decide on a producers risk point (pa, La) and obtain the 
equivalent process mean value Zp,a; see section 9.2.1. 

Step2 Decide on a consumers risk point (Pn Lr) and obtain the 
equivalent process mean value, zp,a. 

Step3 From Table 9.1 or Fig. 9.6 read off the standardized ZL, 
and ZL, corresponding to La and Lr. 

Step 4 Use a group size n, where n is the lowest integer greater 
than 

n = (ZL,- ZL) 2/(Zp,- ZPJ2 • 

Step 5 Put the action limit at kBa where 

kB = Zp,- ZLjVn 

Note 

Step 4 may frequently result in a group size which is unacceptably 
large, and then we shall have to compromise on the design 
requirements. 



Table 9.1 ARL values for one-sided X chart 

Mean ARL Mean ARL Mean ARL 

0 1.67 2.88 295.5 3.21 1014.8 
0.1 1.76 2.90 317.4 3.22 1055.2 
0.2 1.86 2.92 341.0 3.23 1097.3 
0.3 1.99 2.94 366.6 3.24 1141.2 
0.4 2.13 2.96 394.4 3.25 1187.0 
0.5 2.29 2.98 424.3 3.26 1234.7 
0.6 2.49 3.00 456.8 3.27 1284.4 
0.7 2.71 3.01 474.0 3.28 1336.3 
0.8 2.99 3.02 492.0 3.29 1390.3 
0.9 3.31 3.03 510.6 3.30 1446.7 
1.0 3.71 3.04 530.0 3.31 1505.5 
1.1 4.19 3.05 550.2 3.32 1566.8 
1.2 4.78 3.06 571.3 3.33 1630.7 
1.3 5.52 3.07 593.2 3.34 1697.4 
1.4 6.44 3.08 616.0 3.35 1766.9 
1.5 7.60 3.09 639.7 3.36 1839.5 
1.6 9.08 3.10 664.5 3.37 1915.2 
1.7 11.00 3.11 690.2 3.38 1994.1 
1.8 13.49 3.12 717.0 3.39 2076.4 
1.9 16.77 3.13 745.0 3.40 2162.4 
2.0 21.15 3.14 774.1 3.42 2345.6 
2.70 158.5 3.15 804.4 3.44 2545.1 
2.75 187.7 3.16 835.9 3.46 2762.5 
2.80 223.0 3.17 868.8 3.48 2999.2 
2.82 239.1 3.18 903.1 3.50 3257.3 
2.84 265.6 3.19 938.8 3.55 4008.8 
2.86 275.2 3.20 976.0 3.60 4942.2 

Example9.3 
For the example in section 9.2.1 we have 

La = 500 Za = 3.025 
Lr = 5 Zr = 1.22 

leading to n = 5.58 or n = 6 and kB = 1.86. 
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Figure 9.6 ARL curve for one-sided X chart. 

9.2.6* Single specification Iimit. Derivation of one-sided X chart 

The method here is very similar to that in previous sections. First we 
establish a relationship between the process mean fl and the ARL, and 
then we determine the sample size n, and the constant kB as before. 

Let us denote 

p 0 = probability of a point below the warning Iimit 
p 1 = probability of a point between the action and warning Iimit 
p 2 = probability of a point above the action Iimit 
L 0 = ARL of a process started by a point below the warning Iimit 
L 1 = ARL of a process started by a point between the action 

and warning Iimits. 

Then we have 

This leads to 

Lo = (1 + P1)/(1 -Po - PlPo) 

This formula assumes that we take at least one observation. 

(9.8) 
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For the system we have defined, with a process mean of (t-ta/v' n) 
above the action limit, 

Po= 1- cp(-t-t- 1.13) 

P1 = cp( -1-l + 1.13) - cp( -t-t) 

(9.9) 

(9.10) 
A plot of the ARL for the one-sided X chart is shown in Fig. 9.6, 

and some values are given in Table 9.1. The figure and table are plotted 
in terms of the variable /-l, which is the distance of the mean from the 
action limit, in standard error units. We can therefore read off the 
distances, Za and Zr corresponding to ARL values of La and Lr 
respectively. Thus we have 

leading to 

and 

(Zp, - kB)Vn = Za 

(Zp,- kB)Vn = Zr 

(9.11) 

(9.12) 

Again, a convenient way of using this method would be by a 
nomogram but a suitable chart is not yet available. 

9.2. 7 Single specification Iimit. Chart for maximum values 

Wilrich (1970) also gave a maximum value chart for use in the single 
specification limit case. An action line is drawn such that action is taken 
when the maximum value crosses the line. The theory is similar to that 
given previously. Clearly, this metbad is very sensitive to the presence 
of outliers, but may nevertheless be useful in the correct circumstances. 
We refer to the source paper for details. 

9.3 DOUBLE SPECIFICATION LIMITS: 
HIGH-CAPABILITY PROCESSES 

At this point we introduce a discussion ahout the use of control charts 
for high-capability processes. We suppose that we have specification 
Iimits, U and L, such that any measurement outside these represents a 
defective. The estimates of between- and within-group variance will be 
assumed to have been made, and the correct value for chart plotting, 
ae, obtained. The discussion in this section applies only when U- L is 
rather greater than 6ae. In this situation it is not necessary to control 
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the process average level as closely as in the ordinary Shewhart chart. 
Again, the point made in section 9.1.1 should be considered, whether 
we ought to insist on statistical control anyway. However, there are 
situations when it is appropriate to allow a greater variation of the 
process, but keep it well within the specification limits. 

It is necessary to go into this topic in some detail, as industrial 
manuals are extant in which an unsatisfactory approach is put forward, 
notwithstanding objections raised by Hill (1956). We first describe this 
(unsatisfactory) method, and the objections to it. 

Let the specification limits be U and L as shown in Fig. 9.7. If the 
mean of the process is at B, then only 0.1% of the items will have 
measurements above U, and we may consider the upper specification to 
be met. Therefore, B and C are regarded as limiting positions for the 
process mean level. Following the usual method for Shewhart charts, 
evidence that the process mean is above B is shown by a group average 
above A, where A-B is 3.09a/v'n. (Some people use a distance 
1. 96a /v' n.) The lower limit follows similarly, and the modified control 

Distribution of 
measurements 

on items 

Distribution of 
group averages 

U---4~------------------------,_ ______ __ 

L--~r---------------------------+---------

Figure 9. 7 Standard deviation of modified controllimits. 



Double specification limits: high-capability processes 207 

limits are A and D. If the specified tolerance U - L is only 6.18a wide, 
the lines B and C are identical, and the modified Iimits reduce to the 
ordinary action for Shewhart charts (but without warning Iimits). 

The main fallacy in this argument is that the original action Iimits for 
Shewhart charts are based on the concept of statistical control, whereas 
with modified controllimits, the process mean is allowed to wander, and 
we no Ionger have control. Thus in the Shewhart control chart, a point 
near (but inside) the action Iimits is taken as evidence that the process is 
still in control, and the true mean is less than the observed mean. With 
modified control charts we have no basis for assuming that the true 
mean is at all less than the observed mean. Therefore by using the 
modified Iimits of Fig. 9. 7, the process mean would be allowed to rise 
above B without any action being deemed necessary, and a considerable 
proportion of non-conforming product could be produced. 

It is somewhat surprising that the modified Iimits are placed outside 
the limiting positions for the process mean. By doing so we arrive at the 
paradox that by increasing the group size, n, the modified Iimits would 
be placed further away from the tolerances!! 

Further objection to the theory outlined above is that it depends 
heaviliy on Normality. The Shewhart X chart is a technique for 
controlling a mean, and no assumptions are made about the tolerance 
satisfied by individual items. The above theory in contrast depends 
rather heavily on tail area probabilities of the Normal distribution, and 
so is sensitive to the Normality assumption. 

Hili (1956) pointed out that many authors have recognized the 
objections to the standard approach to modified Iimits, and stressed the 
need for extra caution. Hili suggested that the modified Iimits should be 
placed so that if the process mean reached the positions B or C in Fig. 
9. 7, there is only a 5% probability of not taking action. This Ieads to 
placing the modified Iimits at a position l.645a/v'n inside B and C. The 
width of these modified Iimits is therefore 

(U- L)- 2(3.09 + 1.645/v'n)a. 

If these Iimits are narrower than ordinary Iimits, that is less than 
6.18a/v'n, then the best we can do is to use the ordinary Iimits. 

Therefore we use ordinary Iimits whenever 

(U + L)/a < (6.18 + 9.47/v'n). 

The procedure is therefore as follows. Use action Iimits only, and place 
them 

(3.09 + 1.645/Yn)a 

inside the specification limits U and L. Take action to search for an 
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Table 9.2 Values for modified control charts 
n 3.09 + 1.645/Vn 

2 
3 
4 
5 
6 
7 
8 
9 

10 

4.25 
4.04 
3.91 
3.83 
3.76 
3.71 
3.67 
3.64 
3.61 

assignable cause of variation whenever any point is outside these new 
limits. 

An alternative approach to this problern has been proposed in a draft 
British Standard of 1989. However, the method given in the next section 
seems to be preferable. 

9.4 DOUBLE SPECIFICATION LIMITS: AN 
ALTERNATIVE APPROACH 

The problern studied in section 9.3 has been looked at by several 
authors, including Freund (1957) and Duncan (1974); see also Mont
gomery (1985). These authors use an action boundary only, with the 
distance from the specification limits set to achieve a specified probabil
ity of taking action for a fixed n and given mean. 

A better approach seems to be to use action and warning limits at 
each of the specification limits, designed in the manner set out in section 
9.2.5. The chart suggested is shown in Fig. 9.8. Although this chart 
looks like a standard X chart, the difference is that the boundaries are 
positioned by their distance from the specification limits, and the 
distance between the warning limits is more than 2 X 1. 96a /v' n. 

The chart is drawn up with action limits at a distance Ca from the 
specification limits. The distance between the warning and action limits 
is kept to 1.13a/v'n, the distance in a standard X chart. 

The chart is used in the usual way; an action signal is given whenever 
there are two successive points between the action and warning limits, 
or one point over the action limits. As statistical control in its usual 
sense is not being applied, and the process is allowed to wander in the 
central region, the use of warning limits is especially worthwhile. 

If process capability is high, then the Iimits can be designed using the 
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Figure 9.8 Control chart for high-capability processes. 

method of section 9.2.5 at each end. However, if process capability is 
not quite so high the ARL at one boundary is affected by the presence 
of the other. 

The ARL formula for a chart such as that given in Fig. 9.8 was 
derived in section 5.6.2, leading to 

Lo= (1 + P1 + Pz + PlPz)/(1 - Po - PoP1 - PoPz - P1Pz - PoP1Pz) 

(9.13) 

where 

p 0 = probability of a point in the central region 
p 1 = probability of a point between the upper action and warning limits 
p 2 = probability of a point between the lower action and warning limits. 

If we have symmetry, with the starting mean at the centre of the 
central region, then p 1 = p 2, and 

Lo = (1 + Pl)/(1 -Po - P1 -PoP!) (9.14) 

There is a simple relationship between the ARL of the two-sided 
scheme and the ARLs of one-sided scheme given in (9.14). Let the 
ARLs of the one-sided upper and lower schemes, run separately by Lu 
and L 1, then it can be shown that 

1 1 1 
(9.15) -=-=-

L 
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This result also follows from a general result by De Bruyn (1968). 
Clearly, if either Lu or L 1 are large, the ARL function for the one-sided 
scheme is a good approximation in the two-sided case. 

A satisfactory method of designing the boundaries shown in Fig. 9.8 is 
therefore as follows: 

(1) Decide on producers' and consumers' risk points for each specifica
tion Iimit. 

(2) If the process mean for the two producers' risk points are more 
than 6a apart, and do not overlap, then it is satisfactory to use the 
single Iimit method at each end. 

(3) If condition (2) is not satisfied, then we should settle on a common 
producers risk point. The single Iimit method can now be used, 
with the ARL at the producers risk point equal to double that 
desired. 

Clearly, when the two producers' risk points get closer, even the 
ARLs at the consumers' risk points will be affected by the presence of 
the other Iimit, and it will be necessary to use formula (9.15). 

EXERCISES 9A 

1. Derive action Iimit only schemes for the following sets of para
meters. 

0.001 
400 

0.01 
7 

0.001 
300 

0.01 
10 

0.002 0.01 
500 500 

0.01 0.05 
5 5 

0.02 
500 

0.05 
5 

0.01 
500 

0.05 
3 

0.01 
300 

0.05 
5 

2. Derive one-sided X chart schemes for the sets of parameters given 
in Question 1. 

EXERCISES 9B 

1. Design a set of simulation experiments to assess the effect of 
non-normality on the methods given in this chapter. 

2. Derive the ARL curve of the maximum value chart, as follows. 
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Assurne that variables are independently and normally distributed 
with mean fl and variance a2 , and that observations are taken in 
groups of n. The action line is to be put at a distance k ca from the 
specification limit. Show that 

ARL = I/Pr{ at least one sample value beyond action line} 

and obtain an expression for the required probability (see Wilrich 
1970). 



10 

Control of discrete data 
processes 

10.1 INTRODUCTION 

10.1.1 Types of discrete data chart 

W e have considered how to operate Shewhart control charts and CuSum 
charts on continuous data, and now we turn to discrete data. We 
consider two types of data, attribute data and countable data, which we 
described in section 2.1, and the following examples illustrate these 
types of data. 

Example 10.1 
In the production of chips of an engineering plastic, 2-kg samples are 
taken from the production and examined for 'longs'. 'Longs' are unusual 
shapes, and if there are too many the product does not meet its 
specification. Fifty such samples of chips were taken at regular intervals, 
and the number of samples not meeting specification noted. (Note that 
although the following data represent a high proportion of defective 
samples, this can occur in two situations. Firstly, the process may be out 
of control. Secondly, the specifications can be artificially tightened for 
testing purposes, so as to give a greater chance of detecting changes in 
the process.) The numbers of defective samples are as follows: 

12 11 18 11 10 
11 9 10 13 12 
13 16 12 18 16 

16 9 
8 12 

10 16 

11 
13 
10 

14 
10 
12 

15 
12 
14 

Bach result in Example 10.1 represents the number of samples out of 
50 which are defective; this is attribute data. 
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Example 10.2 
At a later stage in the process referred to in Example 10.1, the process 
had been brought under control. Instead of merely recording whether 
each sample was in or out of specification, counts were recorded for the 
numbers of 'longs' in pairs of samples (i.e. 4 kg of material). The 
numbers were as follows: 

11 8 13 11 13 
9 15 10 16 12 

12 12 15 17 14 

17 25 23 
8 9 15 

17 12 12 

11 
4 
7 

16 
12 
16 

Each result in Example 10.2 represents the number of events of a 
given type, 'longs', which occur in a set amount of material. This is 
countable data. 

In Example 10.1 the results can only be one of the integers 0 to 50, 
and we might expect the binomial distribution to apply. In Example 10.2 
the result can be any positive integer, and might conceivably be quite 
large; we might expect the Poisson distribution to apply. The Poisson 
distribution might also be expected to apply if for example we record 
the number of reportable accidents in a week. The Poisson distribution 
applies to events distributed randomly in space or time. 

Observed results can be recorded and charted in one of two ways: 

Total number of Observations 
Number of observations per item or per unit interval. 

In Example 10.1 the results quoted are totals, whereas per sample we 
would get 

12/50 = 0.24, 11/50 = 0.22, 18/50 = 0.36, etc. 

Similarly, the results given in Example 10.2 are tatals for 4 kg of 
material, whereas the results per kilogram would be one quarter of 
those shown. 

It is possible to make control charts based on each of these methods 
of recording results, so we have four possibilities: 

Attribute data 
Countahle data 

Total 

np charts 
c charts 

These charts are described below. 

Per item/unit 

p charts 
u charts 

When the size of the sample is always the same each time the test is 
carried out then either type of chart can be used; one is a constant 
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multiple of the other. In this case it is usually preferable to use a control 
chart for total number ( c or np), as it avoids one step in the 
calculations. If the sample size varies at all then the chart must control 
observations per item, or per unit of sample size (u or p charts). 

Since charts of this kind need to be revised as quality improves, and 
part of this revision may involve an adjustment in sampling size and 
frequency it may be that in practice we are nearly always dealing in the 
long run with a situation of varying sample size, so that for ease of 
comparison the proportional chart (u or p) may be preferable even 
though it is not essential. Nevertheless, we describe first how to set up 
charts for total count, and then how to adapt them. 

10.1.2 Sampies-how and when to take them 

Discrete data charts need larger samples than charts based on continu
ous measurements, and this is especially true for attribute charts. 
However, the taking of an observation is frequently so much easier and 
quicker for discrete data charts that they are very frequently used. 

BS 5701 has some good practical advice on sampling. lt suggests that 
if the likelihood of producing a defective is high, then it is better to 
sample after each stage of production. If defectives appear rather rarely, 
several stages of production can be inspected together. 

Two popular methods of sampling are 'random sampling' and 'Iast-off 
sampling'. Random sampling is preferred, and is much less likely to miss 
vital changes in product quality. Last-off sampling is much easier to 
administrate, and can be used with care. 

BS 5701 suggests that sample sizes should be such that on average 
between 1 and 3 defectives occur in each sample but this is not always 
practicable or desirable in every situation. In setting the frequency of 
sampling it is necessary to bear two factors in mind: 

(1) There should be very little chance of defective quality developing 
and disappearing between samples. 

(2) Sampling costs should be considered alongside the cost of defective 
quality when this develops immediately after a sample. 

BS 5701 suggests that initially, the sample size and frequency be set so 
that about 5% of output is inspected. (It indicates that reasons may 
occur for wide departure from this rule.) 

10.1.3 Important assumptions 

In most accounts of discrete data charts it is usual to assume that 
attribute data has a binomial distribution, and that countable data has a 
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Poisson distribution. These distributions will arise if both the following 
are true: 

(1) All occurrences of the counted event or attribute are independent. 
(2) When the process is on target the average rate ( or average probabil

ity) of occurrence of an event is constant. 

However, an essential step is to check whether or not the binomial or 
Poisson models are valid; see below. This leads to a rather different 
approach to charting to that usually recommended for these types of 
data. 

( a) Poisson variables 
If we are satisfied that the Poisson distribution applies in a situation 
such as that set out in Example 10.2, then we can construct charts 
similar to the Shewhart charts of Chapter 5 very easily. There are two 
ways of proceeding: 

(1) Use the exact theory of the Poisson distribution to set action limits 
at the outer 0.001 probability levels, and warning limits at the outer 
0.025 probability levels. The calculation is made easier by using the 
following relationship between the Poisson and i distributions. 

X f.lr 
P = _Le-~"-1 = Pr{i > 2fl,ld.f. = 2(x + 1)} (10.1) 

o r. 

Therefore, for example, if we want P ;:::: 0.999 then we must have 

f.l:::; h~.999 (d.f. = 2( X + 1)) 

(2) The Poisson distribution tends to normality for large f.l, so that an 
approximation is to use the normal distribution with expectation f.l 
and variance f.l· This particular approximation is widely used in SPC, 
but in fact is not particularly good unless f.l is quite large. Other 
normal approximations could be used, but no others have found 
favour in SPC circles as yet. 

(b) Binomial variables 
For the binomial distribution, we can proceed in similar ways: 

(1) Use exact theory based on summation of binomial probabilities. 
This is very rarely done, as many SPC applications are designed 
without the aid of computers. Clearly, it would be very easy to write 
an algorithm which calculated 'exact' limits for situations where the 
binomial distribution applies. 

(2) Use the Poisson approximation to the binomial distribution. 
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±(n) p'(l _ p)n-r = ±e-np(np)' 
o r o r! 

(10.2) 

This is a very common method, and is used later in this chapter. 
(3) Use the normal approximation to the binomial distribution, so that 

we have expectation (np) and variance np(l- p). This approxima
tion is not particularly good even for moderate n, and its popular 
use in SPC Ieads sometimes to action Iimits outside the range of the 
binomial variable, such as negative. 

(c) Discussion 
It is very important to test the validity of the binomial or Poisson 
distribution assumptions because of the likely presence of between
group variation. For example, in the binomial case it is almost incon
ceivable that p is held absolutely constant in an industrial process. The 
extra variation in p will inflate the observed variance of the data. It is 
therefore important to carry out the dispersion test, given in the next 
section, to check the distributional fit. 

If the dispersion test is significant, and the binomial or Poisson 
models do not apply, then our next route is to see if the data is 
nevertheless approximately normal, though with an inflated variance 
over the theoretical models. 

If neither binomial or Poisson nor the normal distribution give a good 
enough fit to the data, special methods will have to be constructed. 

At this point we should emphasize again that 'inflated' variances 
should not be just calmly accepted, and charts drawn with widened 
Iimits. In every case a close examination of the data and process should 
be made to see if the inflated variances are due to causes which can be 
removed. 

10.1.4 The dispersion test 

The dispersion test is a very good general test for the binomial or 
Poisson distribution. The procedure is simply to calculate the ratio 

observed variance x (no. of Observations - 1) 
D = theoretical variance 

(10.3) 

and refer this to tables of the i distribution on a two-sided test. The 
theoretical variances are 

Binomial: np(l - p) 
Poisson: f.1 

where p and f.1 will have to be estimated from the data. The relevant i 
distribution is for 
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degrees of freedom = (number of Observations) - 1, 

and i tables are given in the Appendix tables. 

Example 10.3 
For 10.1 we obtain 

i = 12.47 s 2 = 7.15 s = 2.67 

An estimate of p is therefore p = 12.47/50 = 0.249. 
The ratio (10.3) is therefore 

D = 7.15 X 29/50 X 0.249 X 0.751 = 22.18 

(10.4) 

on 29 d.f. This is not significant, and there is no reason to suspect the 
assumptions made in the binomial distribution are violated. 

Example 10.4 
For 10.2 we have 

i = 13.07 s 2 = 19.237 s = 4.39 

An estimate of 1-l is p = i = 13.07, so that the ratio D is 

D = 19.237 X 29/13.07 = 42.68 

on 29 d.f. This is just beyond the upper 5% point, so that we might be a 
bit doubtful about the validity of the Poisson distribution in Exam
ple 10.2. We would usually require D to reach the 2~% points at either 
end of the range to be regarded as significant. In a practical case we 
would look back to see if some of the results, such as the two large 
ones, 23 and 25, were due to some special cause. 

In the notes given below, we shall use Examples 10.1 and 10.2 as 
illustrations, disregarding the results of this dispersion test. This will 
enable us to explore the difference between the methods. By the 
dispersion test, both data sets are consistent with their theoretical 
distributions. 

When we do the dispersion test, we are testing agreement of the 
observed and theoretical variances. It is therefore of interest to calculate 
the ratio 

V = observed variance 
theoretical variance 

(10.5) 

If this ratio is not in the range 0.8 to 1.25, then we ought to look rather 
carefully at the data set to try to understand the cause of this. The ratio 
V is more readily interpreted than the ratio D, which is simply a scaled 
version. 

For Example 10.2 above, the ratio V is 
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V = 19.237/13.07 = 1.47 

so that the observed variance is nearly 50% more than the theoretical 
figure. This is certainly cause for investigation, even though the signific
ance is doubtful. 

10.2 SHEWHART CHARTS FOR COUNTABLE DATA 
(c AND u) 

10.2.1 Which method? 

The first step is to calculate the mean and variance of the data, estimate 
f.l, and to carry out the dispersion test. We usually use p = i, but if 
sample sizes are not equal, then we use 

P = (total count)/(total sample size) = c. 
An estimate of the sample variance when there are different sample 
sizes is obtained by calculating the sample variances for groups of data 
of each sample size, and then combine them using formula (3.10). We 
shall denote the sample variance s ~. 

If the Poisson distribution fits, then for small values of p we can use 
the 'exact' method outlined in section 10.1.3, and tables are provided 
below. For larger values of P it is necessary to use the normal 
approximation. 

If the Poisson distribution does not fit, then we should check whether 
the normal distribution fits, using the observed variance, rather than the 
theoretical variance. We also need to check that p > 3&, or a negative 
lower action Iimit will result. 

This is set out in Fig. 10.1, and we see that if for some reason the 
normal distribution does not fit then special methods will need to be 
created. 

If this situation arises, the first step is to uncover the reason for the 
non-Normality. Sometimes, for example, non-Normality is due to the 
mixing of several populations, and these can be separated. If the 
non-Normality is inherent in the data, a transformation to normality can 
be used. 

Methods A, B and C below assume that the sample size (2 kg of chips 
in Example 10.1) is constant. 

10.2.2 Method A: Shewhart chart construction for small values of c 
(Poisson distribution) 

lf c or np are small the Normal approximation method of constructing 
charts is inaccurate, and the method set out in Metbad Summary 10.1 
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Set up 
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Method A 
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Countable data 

JJ.>20 

Use Normal 
approximation 

Method B 

No 

Yes 

lls+a71-l -No 

Yes 
~ 

Use Normal 
approximation 

Method C 

Figure 10.1 Which chart for countable data? 

should be used. An alternative is to use moving-average charts, and this 
may be preferred in some circumstances. The method is based on the 
Poisson distribution, but it can also be used (as an approximation) for 
Binomial variables. 

METHOD SUMMARY 10.1 

Shewhart chart for countable data (small values of i:) 

Step 1 Estimate the mean c and variance of the data, and carry out 
the dispersion test of section 10.1.4. Proceed only if the 
result is not significant. 

Step2 Look up Table 10.1(a) for c in the 'c interval' line. The 
corresponding 'value' beneath is the Iimit. 
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Steps 3-5 Repeat the procedure of Step 2 for the upper warning 
Iimit, the lower warning and action Iimits, using Ta
ble 10.1(b), (c), (d) respectively. 

There are several points to note about this procedure: 
(1) For marginal cases, round them up for upper Iimits and down 

for lower Iimits. Thus 0.191 corresponds to an upper action 
Iimit of 4. 

(2) For values of c beyond the table revert to the normal approxi
mation method. 

(3) For binomial variables with p ::s 0.1, replace c by np. 

Example 10.5 
As an example of Method A we use the data of Example 10.2, andin 
Example 10.4 we established that c = 13.07. On following through the 
steps of Method Summary 10.1 we get 

Upper action Iimit 
Upper warning Iimit 

= 26 
= 22 

Lower warning Iimit 
Lower action Iimit 

=6 
=3 

10.2.3 Method B: Shewhart chart construction for large values of c 
(Poisson distribution) 

This method is based on the normal approximation to the Poisson 
distribution, and is set out in Method Summary 10.2. 

METROD SUMMARY 10.2 

Shewhart chart for countable data (large values of c) 

Step 1 Carry out Step 1 of Method A (section 10.2.2). 
Step 2 Scale the chart so that the vertical axis extends between 

about c ± 4Vc. Mark in c on the chart. 
Step 3 Calculate the action Iimits and mark them on the chart. 

Action Iimits: c ± 3.09v'c 
or: c ± 3Vc 

(probability) 
(popular) 

(If the lower Iimit is negative you should use Method A). 
Step 4 Calculate and mark on the warning Iimits. 

Warning Iimits: c ± 1.96Vc (probability) 
or: c ± 2Vc (popular) 

Step 5 Plot the initial data counts on the chart if this is appropri
ate. If an assignable cause of variation is found for any 
extreme group omit it from the calculations and revise the 
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chart accordingly. 

Example 10.6 
Although Example 10.2 data does not fall within the rules for using 
Method Summary 10.2 (Method B) we shall continue this example, in 
order to show the differences between the boundaries. We obtain, using 
probability Iimits, 

Upper action Iimit 
Upper warning Iimit 
Lower warning Iimit 
Lower action Iimit 

c + 3.09v'c = 24.24 
c + 1.96v'c = 20.15 
c - 1.96v'c = 5.98 
c - 3.09v'c = 1.90 

The Iimits and data are shown in Fig. 10.2. 

26 

24 
0 UAL 

0 

22 

20 -------------------------------------~~~ 
18 

0 0 0 
c 16 0 

0 0 0 

:;::; 0 0 0 
0 14 > .._ 

0 Meon 
Q) 

12 "' 0 0 0 0 0 0 
_Q 

0 
10 

0 0 0 

0 

0 0 

8 0 0 

0 

6 
LWL 

4 0 

2 LAL 

0 
0 5 10 15 20 25 30 

Observation number 

Figure 10.2 A Shewhart c chart. 

If the data of Example 10.2 was being used to set up charts, then an 
examination of point seven would be made to see if a special cause was 
present. If so, this point would be omitted and the Iimits recalculated. 

10.2.4 Method C: Shewhart chart construction for countable data with 
large value of i: when the Poisson distribution does not apply 

If the dispersion test has shown that the dispersion of the data is either 
too large or too small to use the Poisson distribution as a model it may 
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first be worth investigating why this is so. If a cause cannot be found, or 
is not removable, Shewhart charts may still be set up using the Normal 
approximation, provided this is a reasonable approximation. 

METHOD SUMMARY 10.3 

Shewhart chart for countable data (over or under dispersion) 

Step 1 Use a Normal probability plot (section 2.9) to check that 
the approximation is reasonable. 

Step 2 Calculate the average c and sc as described in section 10.2.1. 
Step 3 Scale the chart so that the vertical axis extends between 

c ± 4sc. 
Step 4 Put action Iimits on the chart at 

c ± 3.09sc (probability) 
or c ± 3sc (popular) 

If the lower Iimit is negative it is advisable to consult a . 
statistician for guidance. 

Step 5 Put warning Iimits at 

c ± l.96sc 
or c ± 2sc 

(probability) 
(popular) 

If the lower warning Iimit is negative this is definitely not an 
appropriate chart. Consider using a moving-average chart to 
solve this problem. Otherwise consult a statistician. 

Step 6 Plot the data, and recalculate Iimits if any extreme point has 
an assignable cause of variation. 

Example 10.7 
We continue using Example 10.2 for illustration even though Method A 
is appropriate. The Iimits are as follows: 

Upper action Iimit c + 3.09sc = 26.64 
Upper warning Iimit c + l.96sc = 21.67 
Lower warning Iimit c - l.96sc = 4.46 

Lower action Iimit c - 3.09sc = (no value) 

10.2.5 Shewhart u charts 

Countahle data might arise from observing the number of special 
features in a given amount of material, as in Example 10.1, or from 
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counting the number of defects on a sample of items. We shall call the 
amount of material, or number of items, the sample size. In Methods A, 
B and C we assumed a constant sample size, but in practice the sample 
size often varies. It is then best to use a u chart, in which results are 
presented per unit amount of material or per item. In section 10.1 we 
indicated that there might be other reasons for preferring a u chart. 

The construction of a u chart is simple. A chart for total count based 
on the average sample size is constructed using the Methods A, B or C 
as appropriate. All action and warning limits are then scaled down to 
present the results on a per unit basis. Thus if the average sample size is 
t and the average count is c, the Normal approximation method gives 
action lines for total counts at c ± 3 V c, so that action limits for a u 
chart are at 

(c ± 3Vc)/t = ü ± 3-v'(ü/t) 

where ü = c/t; see Fig. 10.3. 

UAL 

UWL 

-Targ_et u 

LWL 

LAL 

3. 09 /(ü/f) 
r 3 /(ü/f) 0 

1.96 /(ü/f) 
2/(ü/f) or 

Figure 10.3 A Shewhart ü chart when c is large and the Poisson distribution is 
appropriate. 

Provided the sample size does not vary by more than 25%, only one 
set of limits can be used. When there is greater variation in the sample 
size it is necessary to recalculate the limits for each sample size. This 
results in a chart such as in Fig. 10.4. 
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c 
0 

:;::; 
0 

~ 
Ql 
rn 
.0 
0 

Observation number 

Figure 10.4 A ü chart with varying sample size. 

10.2.6 Moving-average charts for c or u 

If the average rate of occurrence of defects or other events is low the 
sampling interval may contain very few such events. 1t may then be 
appropriate or even essential to use a moving-average chart for c ( or 
equivalently for u) so that sample intervals are effectively added 
together. The steps below are appropriate for moving averages of k 
sample points at a time. 

METROD SUMMARY 10.4 

Moving-average charts for countable data (k steps) 

Step 1 Estimate c for a single sampling interval as before (sec
tion 10.2.2) and test whether the Poisson distribution is 
appropriate. 

Step 2 Choose the appropriate method of setting up a Shewhart 
chart (see Fig. 10.1) for data with a mean of kc. 

Step 3 Calculate action limits only (warning limits are not used in 
moving-average charts) using the method selected in Step 2, 
and a mean count of kc. 
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Step 4 Divide these Iimits by k to obtain the action Iimit for a 
moving-average c chart. If required, divide again by t to 
obtain Iimits for a u chart. 

10.3 SHEWHART CHARTS FüR ATTRIBUTE DATA (np 
AND p) 

10.3.1 Estimation 

The methods here are very similar to those given in section 10.2.1 for 
countable data, and the reasoning will not be repeated. The only 
difference is that 'exact' methods based on actual calculations with the 
binomial distribution are not usually recommended. When n p is small, 
and the dispersion test is not significant, the Poisson approximation is 
usually satisfactory, so that Method A of section 10.2.2 can be used. 

An overall estimate of p is obtained by using 

p = (total no. of defects)/(total sample size), 

omitting any group of data for which a special cause is known. The 
dispersion test is carried out as in section 10.1.4, and the flow chart for 
choosing the appropriate chart is shown in Fig. 10.5; see also sec
tion 10.1.3. We shall denote the standard deviation of the observed 
counts by s c. 

10.3.2 Shewhart chart construction for np or p, for data from a binomial 
distribution with small values of nfi 

Using the value of c = nß go through the steps set out in section 10.2.2. 
This will give a chart for monitaring the actual count (np) of non-con
forming items in equal-sized samples. If a chart for monitaring the 
proportion p is preferred- as it often will be, see section 10.1 - then all 
action and warning Iimits are divided by the sample size n. 

If samples are of somewhat different sizes, use the average sample 
size ii as the divisor. However, this is reasonable only if sample size 
varies by about 25% either way of ii, otherwise Iimits must be calculated 
separately for the different sample sizes. 

Strictly speaking the method of section 10.2.2 is for Poisson data only, 
but the approximation is reasonable provided ß issmall (:5 0.1). If you 
have data for which this is not true you can use the method of 
section 10.3.3 if nß::.::: 10, but otherwise special methods may need 
constructing. 
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D 10.3.3 
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Figure 10.5 Which chart for attribute data? 

Example 10.8 

No 

Special 
methods 

No 

For Example 10.1 data we have p = 0.2493, n =50, so that np = 12.47. 
Method Ais appropriate, and gives the following boundaries: 

Upper action Iimit 
Upper warning Iimit 

= 26 
= 21 

Lower warning Iimit 
Lower action Iimit 

To construct a p chart these values are divided by 50. 

=5 
=2 
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10.3.3 Method D: Shewhart chart construction for Binomial data when 
np is large 

This method uses the normal approximation to the binomial distribu
tion, and it is summarized in Method Summary 10.5. 

METROD SUMMARY 10.5 

np charts using the normal approximation to the binomial 
distribution 

Stepl Calculate p as in section 10.3.1 and checkthat the binomial 
distribution is appropriate, and that np 2: 10 and preferably 
np 2:20. 

Step 2 Scale the chart so that the vertical axis extends 

p chart between p ± 4Y(ß/n) 
np chart between np ± 4Y(nß). 

Step 3 Set the action limits as follows: 
Probability 

p chart p ± 3.09Y{p(l- ß)/n} 
np chart np ± 3.09Y{nß(1- p)} 

Popular 
p ± 3Y{jJ(1 - ß)/n} 
np ± 3Y{nß(1 - ß)}. 

If the lower limit is negative use the method of sec
tion 10.3.2 to set up the chart. 

Step 4 Set warning limits as follows: 

p chart 
np chart 

Example 10.9 

Probability 
p ± 1.96Y{p(1 - ß)/n} 
np ± 1.96Y{nß(1 - ß)} 

Popular 
p ± 2Y{p(1 - ß)/n} 
np ± 2Y{nß(1 - ß)} 

We continue using Example 10.1 data for illustration even though 
Method A is appropriate. The limits are as follows: 

Upper action limit 
Upper warning limit 
Lower warning limit 
Lower action limit 

21.92 
18.46 
6.47 
3.01 

The limits and data are plotted in Figs. 10.6 and 10.7. 

0.438 
0.369 
0.129 
0.060 

It is clear from the calculations done on Examples 10.1 and 10.2 that 
the normal approximation method can be substantially in error at small 
values of np. 
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Figure 10.6 An np chart for the data of Example 10.1. 
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Figure 10.7 A p chart for the data of Example 10.1. 

10.3.4 Method E: Shewhart chart construction for attribute data when 
nfi is large and the binomial distribution is not appropriate 

Over-dispersion can often occur in what we might expect to be bino
mially distributed data. This is generally due to the fact that the true 
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proportion defective varies from batch to batch or from day to day. 
Underdispersion is seldom seen for such data, but may occasionally 
occur. In either case it may be weil worth the effort of investigating the 
reason for such under- or overdispersion, as this may lead to ways of 
reducing the overall proportion of non-conforming items being pro
duced. 

Shewhart charts are set up as in Method Summary 10.6, using the 
Normal approximation. 

METHOD SUMMARY 10.6 

np charts using a direct normal approximation 

Step I Use a Normal probability plot (section 2.9) to check that 
the proposed approximation is reasonable. 

Step 2 Calculate p and sc as in section 10.3.1. 
Step 3 The scale of the vertical axis should cover the range 

p chart 
np chart 

Step 4 Action Iimits are calculated: 

p chart 
np chart 

Probability 
p ± 3.09sc/n 
np ± 3.09sc 

p ± 4sc/n 
np ± 4sc. 

Popular 
p ± 3sc/n 
np ± 3sc 

If the lower Iimit is negative this may not be an appropriate 
way to set up the chart. 

StepS Warning Iimits are set: 

p chart 
np chart 

Probability 
p ± l.96sc/n 
np ± l.96sc 

Popular 
p / 2sc/n 
np ± 2sc 

If the lower Iimit is negative this is not the right way to set 
up a Shewhart chart. Consult a statistician. 

10.3.5 Moving-total and moving-average proportion charts for p 

As with the c chart it may be that a single sample contains so few 
non-conforming items that it is not possible to set up a satisfactory 
Shewhart chart for individual samples. Again, using a moving-total or 
moving-average effectively increases the sample size. The disadvantage 
is that a sudden large increase in the proportion defective may be 
averaged out, and so not detected immediately. 
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METROD SUMMARY 10.7 

Moving-average p or np charts 

Step 1 Choose the ( average) size n of individual samples, and k, 
the number of samples in the moving total or moving 
average. 

Step 2 Obtain suitable data from the process, calculate c and s0 

for individual samples of size n, and hence calculate p and 
V (equation (10.5)). 

Step 3 Use this if V =I= 1. 
If knp 2: 3Vks0 then set action Iimits for charts thus: 

Probability Popular 
Moving total 
Moving average proportion 

knp ± 3.09scYk knp ± 3scYk 
p ± 3.09sc/nVk p ± 3sc/nVk 

Step 4 Use this if V = 1. 
(a) If knp < 20 and if p :::; 0.1 

Use Table 10.1 with c = knp, to set action Iimits for a 
moving-total chart. Divide these by kn to give Iimits for 
a moving-average proportion. 

(b) If knp > 10, with no restriction on p action lines are 
set: 

Probability Popular 
Moving total knp ± 3.09V{knp(1 - p)} knp ± 3V{knp(1 - ß)} 

Moving p ± 3.09~{ np(~n- p)} 
average 

p ± 3~{ np(~n- p)} 
proportion 

10.4 CuSum CHARTS FüR COUNTABLE DATA: GENERAL 
POINTS 

10.4.1 Introduction 

The International Standard on CuSum charts listed in section 13.5 
contains a detailed discussion of the application of CuSums to countable 
or attributable data, and it contains much practical advice. Sec
tions 10.4-10.6 of this book follow that standard closely. 

However, it applies only to situations where the assumptions underly
ing the Poisson distribution are valid, namely 

(1) constant size of observation interval; 
(2) independence of events; 
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(3) constant average rate of occurrence of events. 

1t is important to use the dispersion test to check whether these 
assumptions are reasonable. This can be considered as the equivalent of 
testing for additional components of variation for continuous measure
ments, as discussed in Chapter 3. 

If it is found that the ratio V lies outside the range 0.8 to 1.25 this 
should be investigated. If the causes of extra variation are not found, or 
they are found but cannot yet be eliminated, the method of section 10.7 
should be used to set up CuSum charts. 

Scaling 
The general convention used is that the distance between samples on the 
horizontal scale represents 2ae units on the vertical scale. In the context 
of countable or attribute data, this Ieads to using the following theoret
ical values for ae: 

Countahle data 
Attribute data 

Poisson distribution 
Binomial distribution 

oe = Vc 
Oe Y[np(1 - p)] 

where c is the estimated mean of the Poisson distribution, and p is the 
estimated proportion with the attribute, for attribute data. Note that 
when c (or np) is less than 1 special rules apply (see Step 5 of 
section 10.5.2). 

10.4.2 Form of mask 

The distributions arising with countable and attribute data are usually 
skew, so that a symmetrical mask as used in Chapter7 is not appropri
ate. In any case, for countable and attribute data it is nearly always 
increases in the mean which are critical. For these reasons, a one-sided 
mask is suggested as shown in Fig. 10.8, so that only increases in the 
mean are detected. The parameters of the mask are H, the decision 
interval, and F the slope per unit. The other parameter often quoted is 
the reference value K = CT + F, where CT is the target value. 

10F 

Figure 10.8 Mask for countable and attribute data. 
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10.4.3 Decision rules 

The International Standard referred to gives two sets of parameters for 
CuSum schemes - one set, the Cl schemes, when the ARL is about 
1000 when the process is on target and the other set, the C2 schemes, 
when the ARL is about 200 for a process on target. A very large 
number of schemes could be constructed, but those tabulated by the 
International Standard should be satisfactory for most purposes. If the 
rates of occurrence of countable or attribute data is very large, the 
Normal approximation can be used, so that we revert to the methods of 
section 7.2, and specific rules are given below. 

For both countable and attribute data detailed tables are needed for 
implementation, and it is impracticable to give more than a limited 
number of sets of parameters. For this reason, interpolation may be 
required in the schemes given below. As the manner of using the table 
of parameters is more complicated than for CuSums with continuous 
variables, we discuss this first, and then Iist the detailed steps involved 
in running a scheme. In each case there is the possibility of using a 
CuSum plot, or a decision interval scheme. 

10.5 CuSum CHARTS FOR COUNTABLE DATA 

10.5.1 Use of tables 

Obtain the process average c, m a similar way to that described in 
section 10.2.1. Any group for which there is an identifiable cause of 
variation should be omitted. Checkthat V= s~/c = 1. 

In order to select a CuSum scheme we need to choose a target value 
for the process average number of defects or counts, CT. This will 
usually be the process average c, but it may be some other value that 
we expect to be able to achieve; for example, certain preferred values of 
CT are given in Table 10.2 and one of these might be used if it is close 
to c. 

Table 10.2 CuSum parameters for countable data 

Event rate at CuSum parameters for Cl CuSum parameters for C2 
AQL schemes schemes 

CT H K H K 

0.1 1.5 0.75 2 0.25 
0.125 2.5 0.5 2.5 0.25 
0.16 3.0 0.5 2 0.5 
0.2 3.5 0.5 2.5 0.5 
0.25 4.0 0.5 3 0.5 
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Table 10.2 ( cont.) 

Event rate at CuSum parameters for Cl CuSum parameters for C2 
AQL schemes schemes 
CT H K H K 

0.32 3.0 1.0 4 0.5 
0.4 2.5 1.5 3 1 
0.5 3 1.5 2 1.5 
0.64 *3.5 or 4 1.5 2 2.0 
0.8 5 1.5 3.5 1.5 
1.0 5 2 5 1.5 
1.25 4 3 5 2 
1.6 5 3 4 3 
2.0 *7 or 8 3 5 3 
2.5 7 4 5 4 
3.2 7 5 5 5 
4.0 8 6 6 6 
5.0 9 7 7 7 
6.4 9 9 9 8 
8.0 9 11 9 10 

10.0 11 13 11 12 

10 11 13 11 12 
15 16 18 11 18 
20 20 23 14 23 
25 24 28 17 28 

Table 10.2 shows two sets of CuSum schemes, Cl and C2, appropriate 
to a range of values of CT. The procedure for choosing a set of 
parameters, H and K, is given in Method Summary 10.8. 

METROD SUMMARY 10.8 

CuSum charts for countable data: Choosing parameters 

Step 1 Choose CT, and decide upon Cl or C2 schemes. 
Step2a For CT in the range (0.1 to 10.0), choose a line of the 

table close to the observed value c. It should be satisfac
tory to use the CT value listed in the table, rather than c. 
Record H and K. 

Step 2b For CT in the range 10-25 use linear interpolation between 
the lines of the table, rounding both H and K in the same 
way to integers (i.e. both rounded up or both rounded 
down). It may be better to choose a value of CT to make 
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calculations easier, such as an integer value, or a CT listed 
in the table. 

Step 2c For CT greater than 25 use CuSum schemes for Normally 
distributed variables with target CT and ae = V CT. It 
should be noted that CuSum schemes for Poisson variables 
designed in this way have ARLs about 40% lower at target 
than those for Normally distributed data. 

10.5.2 Operating a CuSum scheme for countable data 

The method of operation is set out in Method Summary 10.9, and an 
example chart is shown in Fig. 10.9. 

METROD SUMMARY 10.9 

Operating a CuSum scheme for countable data 

Step I The set-up phase is very similar to that set out in section 
5.1.3. When this is completed we shall usually have avail
able at least 20 groups of n observations each, with records 
of the numbers of counts or defects, c1 , c2 , ••. , c20 • 

Step 2 Calculate the process average 

c = (Lc;)/(No. of groups). 

Any group for which an assignable cause of variation is 
identified should be omitted from the calculation. 

Step 3 Settle on a set of parameters CT, H and K as outlined in 
section 10.5.1. 

Step 4 Decide on whether to use a CuSum plot or a decision 
interval scheme. 

Step 5 Scale the plots so that one unit on the horizontal scale 
represents 2Y CT units on the vertical scale, provided 
CT > 1. If CT < 1, mark the horizontal scale in intervals of 
the quantity 

Note 

greatest integer in 1/ CT 

and then mark the vertical scale in intervals of the same 
length as the horizontal scale, but mark them successive 
even integers from zero, 0, 2, 4, .... 

The scaling in Step 5 arises because with very low CT, a large 
number of samples are taken to obtain ( on average) one 
count. The suggested scaling for CT < 1 is more appropriate 
for this situation. 
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The problern giving rise to Fig. 10.9 was actually electrostatic sparking, 
which interrupted the process and caused deterioration in the product. 
The chief changes in the plot seem to be due to coincidental changes in 
filtration, and due to operations done during a plant shut-down. In fact 
product grade changes (Z72, Z46, etc.) might also be responsible. 

The ability of CuSum plots to pinpoint the time when a change 
occurred is very helpful, but doesn't entirely remove the ambiguity when 
several changes to the process are made close together in time. 

10.6 CuSum CHARTS FOR ATTRIBUTE DATA 

The situation here is very similar to the case for countable data outlined 
in section 10.5. We assume that we take groups of n observations at a 
time, and record the numbers r 1 , r 2 , ••. , r 20 of defectives or the 
numbers with the attribute in question. The next step is to calculate 

p; = rjn and p = (Lr;)/{n x (no. of groups)}. 

The difficulty with attribute data is that there are two parameters, n 
and p, for the data as compared with one, the mean, for countable data. 
Because of this, the construction of comprehensive tables would be 
impracticable. Fortunately, two approximations deal with a majority of 
situations. 

Case 1 p < 0.1. In this situation, the CuSum schemes for countable data 
may be used, with c = np. This will cover the majority of practical 
applications. 
Case 2 np > 20. In this situation CuSum schemes based on the Normal 
approximation may be used. Values of h and f are chosen from 
Table 7.5 as for a Normally distributed variable, and used as follows: 

H = hv'{np(1- p)} 
K = np + fv'{np(1 - p)} 

and H and K are rounded to the nearest integers. 
Case 3 other values of n and p. Here a special table is necessary, and 
reference should be made to the International Standard. 

10.7 CuSum PLOTS FOR COUNTAHLE OR ATTRIBUTE 
DATA WHEN THE POISSON OR BINOMIAL 
DISTRIBUTION DOES NOT APPL Y 

All methods given in section 10.4-6 are sensitive to the assumptions 
given in section 10.4.1. But it may often be the case that one or more of 
these assumptions is invalid. In particular, the likelihood of an event or 
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of a defective item may not be constant over the long term. Indeed, in 
many cases it can be argued that if the process were genuinely in control 
the defective rate can often be controlled so as to be negligible. While 
this is a desirable goal to aim for we do require realistic control charts 
to operate on the way. 

If calculation of the ratio 
s2 s2 

V = ~ or ~(1 c ~) 
c np - p 

gives a value that is appreciably different from 1 the causes should first 
be investigated. If it is not currently possible to identify and/or remove 
the cause of under- or overdispersion, then a CuSum chart can be set up 
as follows, provided that c is at least 1i times as great as S0 and 
preferably appreciably larger than this. 

METHOD SUMMARY 10.10 

CuSum charts for countable and attribute data when Poisson or 
binomial distribution does not apply 

Step 1 Calculate c and sc. Check that c > 1isc-
Step 2 Set up a one-sided or two-sided CuSum plot or decision 

interval scheme with 

T=c 
H = hsc 
F = fsc 
K=T+F 

where the parameters h and f are obtained from Table 7.5, 
depending on the approximate ARL properties required. 

Step 3 To obtain a CuSum chart for u or for p divide each of the 
parameters T, H, Fand K by t or by n as appropriate. 

10.8 COMPARISON OF SHEWHART AND CuSum 
SCHEMES 

The gain in ARL is not so great with countable or attribute data as with 
continuous data. However, there is some gain, and the visual interpreta
tion of CuSum charts etc., also give the CuSum schemes advantages. 
Alternatively a moving-total or moving-average chart may be more 
straighttorward to operate and could have similar ARL properties to a 
CuSum scheme if k is chosen appropriately. 
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EXERCISES 10.A 

1. For the situation described in Example 10.2 it has been decided that 
in future ~-kg samples will be taken, but that the chart should be set 
up to record longs per kilogram. Set up the chart. 

2. Carry out a study of the accuracy of the Normal approximation 
method for the Poisson distribution, using a range of values of c. 

3. Set up CuSum charts from the data given in Examples 10.1 and 10.2. 

EXERCISE 10.B 

1. A property of the Poisson distribution is the equality 

Pr(X ::5 xlmean = f.l) = Pr(f > 2f112(x + 1) d.f.). 

Use this to check the validity of Table 10.1. 



II 

Sampling inspection 

11.1 INTRODUCTION 

11.1.1 Where inspection? 

In any industrial process there are three points at which we can attempt 
to control the outgoing quality, as pictured diagrammatically in Fig. 
11.1. 

1------~·~1 Process ....__ __ ___. Input 

Raw materials 
or output of 
previous stage 

t------~·~1 Output 

Sold or 
passed to 
next stage 

Figure 11.1 Sites for sampling inspection. 

The methods we have been considering are all attempts to control the 
output from a process, by observing it, and by taking control actions on 
it. The other points at which some control can be exercised are to 
inspect the input and output; see Fig. 11.1. 

Input. We can inspect the input to ensure that it is of sufficiently high 
quality. lt is clearly a waste of money to process material which is of 
substandard quality at the input stage. 
Output. We can inspect the output to attempt to filter out the 
non-conforming material, or in order to grade it for sale. 

Attempts to filter out non-conforming quality at the output stage are 
costly, and not very effective. Wherever possible, input inspection 
should be avoided by making special agreements with the supplier so 
that he installs appropriate SPC methods, and so that data are obtained 
from his output inspection. Frequently, however, needless Iosses are 
incurred by failing to carry out adequate incoming inspection. Satisfac
tory agreements with suppliers are not always possible. 
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The following examples illustrate some uses of sampling inspection: 

Example 11.1 
Child-proof screw caps are delivered packed in large cartons. A number 
of these are taken out and tested on a standard bottle before deciding 
whether the carton is to be used or rejected. Each cap can be classified 
as conforming or non-conforming to a given specification. 

Example 11.2 
At certain factory bags of pellets of catalyst are submitted to incoming 
inspection. Typically, three variables are measured: crushing strength, 
amount of activity and pore size. The crushing strength and activity 
Ievels must meet given specifications, and the pore size distribution must 
be satisfactory; or the bag is rejected. 

Example 11.3 
In the manufacture of a pharmaceutical product, there is a small 
percentage of byproduct in the final production material after going 
through a purification process. The percentage byproduct is measured 
by a Chromatographie analysis. The percentage of byproduct must be 
kept within Iimits for the product to be released. 

In the first two examples, the inspection is fairly cheap compared with 
the costs involved in Example 11.3. The examples also illustrate both 
incoming and outgoing inspection. 

In this chapter we give a brief overview of sampling inspection, and 
discuss sampling inspection by attributes. For more information consult 
Schilling (1982) or Wetherill (1977); for theory of sampling inspection by 
attriutes see Hald (1976). 

Before proceeding, we need some terminology. A batch or lot is a 
collection of produced items, or an amount of produced material, which 
is passing through an inspection station as a unit. These are usually 
packaged or bagged together. As a result of inspection, we sentence the 
batch, which means that we accept it or reject it, or perhaps accept it or 
sell it at a reduced price, etc. For the most part, we consider inspection 
by attributes (see below) of batches of items. Usually, each batch is 
sentenced on the basis of a sample of items. 

11.1.2 Sampling inspection or 100% inspection 

In industry it is sometimes necessary to defend inspection by samples 
against 100% inspection, and to explain why sample procedures are 
reliable. Clearly there are some situations in which 100% inspection is 
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desired rather than sampling inspection, but such situations are infre
quent. The reasons why sample methods are preferred are as follows: 

(1) We never require absolutely accurate information about a batch or 
quantity of goods to be sentenced. Thus in Example 11.1 it would 
be sufficient to estimate the percentage of non-conforming types in 
the batch to within ~% or so. Complete inspection in Example 11.1 
would be an unnecesary waste of time and labour. For the purpose 
of sentencing the batch, an estimate of the fraction non-conforming 
is quite sufficient. 

(2) A point allied to (1) is that under the usual assumptions, the 
standard error of an estimate reduces as the nurober of observa
tions increases, approximately as the reciprocal of the square root 
of the nurober of observations. Therefore in order to halve the 
standard error we must take four times as many observations. 
Beyond a certain point it is either impractical or not worth while 
achieving greater accuracy. 

(3) Even if the entire batch is inspected in Example 11.1 say, we still 
do not have an absolute accurate estimate of the fraction non-con
forming unless inspection is perfect. In industrial situations inspec
tion is very rarely perfect and Hili (1962) quotes a probability of 
0.9 as being 'not unreasonable' for the probability of recognising 
defects by visual inspection. Some experiments have indicated that 
if inspectors are faced with batches for 100% inspection, then the 
inspection tends to be less accurate than if sample methods are 
used. 

(4) In some cases, such as in Example 11.3, inspection by Iabaratory 
analysis is very costly and 100% inspection is obviously ruled out. 
Another case of this is destructive testing, as in testing of artillery 
shells. 

One situation where 100% inspection is appropriate is when it can be 
arranged cheaply by some automatic device. More usually sample 
methods will be appropriate. 

When sample methods are employed we shall usually make the 
assumption that sampling is random. Thus in Example 11.1 a sample 
should be taken in such a way that every item in the batch is equally 
likely to be taken. In practice this assumption is rarely satisfied and this 
has to be taken into account when drawing up a plan. 

Sometimes it is possible to stratify the items to be sentenced, and use 
this to draw up a more efficient sample procedure. For example, in the 
transport of bottled goods in cartons, the bottles next to the face of the 
carton are more likely to be damaged than those in the interior. In this 
case it would be better to define two strata, one being those bottles next 
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to a face of the carton, and the other stratum being the remainder. A 
procedure which sampled these strata separately would be more efficient 
than a straight random sample. To the authors' knowledge very little use 
has been made of this kind of device. 

11.1.3 Flow chart for acceptance inspection 

In any realistic assessment of alternative sampling inspection plans, the 
mechanics of the actual situation into which a sampling plan fits must be 
considered in some detail. In many papers we find that important -
even drastic - assumptions are made, both implicity and explicitly, as to 
the manner in which a plan works. In this section we do not attempt to 
give a complete catalogue of inspection situations, but we aim to give 
sufficient to form a basis. 

Input streams Output streams 

I------/ 
..,__ _____ J 

Figure 11.2 An inspection situation. 

Consider the following situation. Batches of approximately N items 
reach an inspection station through one of I streams. For a consumer, 
these streams might be different production lines; it is possible that the 
most common case is I = 1. The quality of batches in the streams may 
or may not be correlated with the quality of other neighbouring batches 
in the same stream or in other streams. It is also possible that these 
input streams may have different states; for example, a production 
process may be either in control or out of control. lt seems obvious that 
when several states exist in the input streams, the inspection plan should 
be specially designed to deal with this. 

At the inspection station a sample of items is selected from some or 
all of the batches and the samples are inspected. Each batch is then 
sentenced, and placed in one of the J output streams. 

lf there are only two output streams, these are usually referred to as 
the accepted and the rejected batches. (A better term for rejected 
batches might be 'not accepted'.) For final inspection by a producer, the 
accepted batches are those passes on for sale to customers. There are 
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many possibilities for the rejected lots, and some of these are set out in 
Fig. 11.3, some of which is taken from Hald (1960). However, this 
diagram is really appropriate when items are simply classified as 
effective or defective. More frequently there might be different types of 
non-conformity, and different actiontakenon each type. 

Rejected batches 

I 
• • Sorted Not sorted 

~ 
I 

~ + 
Conforming Non-conforming Scrapped 

items 

Non-conformities 
scrapped or sold at 
reduced price 

(a) 

l 
+ 

or sold at 
reduced price 

Non-conformities 
repaired or 
reprocessed 

Rejected batches 

+ 
Reprocessed. All iterr,s 
sent back without sorting 
to some previous stage 
of production 

Sorted 
I 

Not sorted 
I 

t ~ t ~ 
Conforming Non-conforming Scrapped or used Returned to 
items items for less profitable supplier 

! purpese 
• .------L------,. 

Non-conformities Non-conformities 
scrapped or used returned to 
for less profitable supplier 
purpese 

(b) 

Figure 11.3 Some possible courses of action on rejected batches: (a) final inspec
tion by a producer; (b) inspection by a consumer. 

In some applications of inspection plans there may be more than two 
output streams. For example, there may be two grades of accepted 
batches, for different uses, or for sale at different prices. Similarly, there 
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could be two grades of rejected batches. However, such plans would 
often be considered unduly complicated, and liable to lead to gross 
errors on the part of the inspector. Here we consider two output 
streams and call them accepted and rejected batches. 

Another point with regard to the flow chart, Fig. 11.2, is to specify 
which parts of this chart work at a given rate, and which parts can work 
at varying rates. For final inspection by a producer, the input streams 
are fixed, but for inspection by a consumer, the quantity usually fixed is 
the number of accepted batches passed. In addition to either of these 
possibities, the labour and resources available at the inspection station 
will usually be fixed, and variable only in a long-term sense. 

The purpose for which inspection is being applied also needs to be 
considered in some detail. Fora producer, some possible aims are: 

(1) to satisfy some requirement for a National or International 
Standard; 

(2) to grade batches for sale; 
(3) to prevent non-conforming batches being passed on to customers; 
(4) to provide information from which a quality control plan can be 

operated. 

The aims for a consumer might be: 

(5) to confirm that the quality of goods supplied is up to standard; 
( 6) to prevent non-conforming batches being passed on to a production 

process, 
(7) to grade batches for different uses; 
(8) to encourage the producer to provide the quality desired (Hili 

1960). This purpose can only be achieved if the consumer uses a 
substantial part of the supplier's output. 

It is probable that in many situations in which sampling inspection plans 
are applied, the aims are not easy to define precisely. 

We can see throughout this discussion that inspection by a producer is 
in general very different from that by a consumer. 

An extended discussion of some case studies of quality control 
practices arising in industry is given by Chiu and Wetherill (1975). 

11.2 CLASSIFICATION OF INSPECTION PLANS 

Any system of classifying inspection plans is unsatisfactory in that 
borderline categories exist. Nevertheless it will be found useful to have 
some classification system. We shall first list different inspection situ
ations and then give alternative sampling plans. 
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11.2.1 lnspection situations 

(a) Batch inspection or continuous product inspection 
Batch inspection occurs when we have items presented in bags or 
cartons, as in Example 11.1, and it is desired to pass sentence on each 
bag of items together, and not on each individual item. lf on the other 
hand we have continuous powder or a production line of continuously 
produced small items such as chips of plastic and items are not treated 
in batches for sentencing, then we have continuous product inspection. 
The essential distinction is whether items are batched for inspection 
purposes or not; often with a continuous production process, items are 
batched for inspection purposes. With batch inspection there is no need 
for any order in the batches presented, although sometimes there is an 
order, and this information can be used; see below. Example 11.4 
illustrates one of the earliest types of continuous sampling plans (CSP); 
batch inspection plans are illustrated later in this section. 

Example 11.4 Dodge plan 
At the outset inspect every item until i successive conforming items are 
found. Then inspect every nth item until a non-conforming item is 
found, at which point 100% inspection is restored. 

(b) Rectifying inspection or acceptance inspection 
lf, say, batches of items are presented for sentencing, and the possible 
decisions are, say, accepted or rejected, or accept or sell at a reduced 
price, etc., we have acceptance inspection. Rectifying inspection occurs 
when one of the possible decisions is to sort out the non-conforming 
items from a batch and adjust or rectify them, or else replace them. 
That is, with rectifying inspection, the proportion of defective items may 
be changed. 

( c) Inspection by attributes or inspection by variables 
Inspection by attributes occurs when items are classified simply as 
conforming or non-conforming, or when mechanical parts are checked 
by go-no-go gauges. The opposite of this is inspection by variables 
when the result of inspection is a measurement of length, crushing 
strength, weight, the purity of a chemical, etc. An intermediate classifi
cation between these is when items are graded. There is frequently a 
choice between inspection by attributes or by variables, and also a 
choice of the number of such characteristics inspected. The choice 
between these depends on the cost of inspection, the type of labour 
employed, and also on the assumptions which can be made about the 
probability distribution of the measured quantities. Recently, Baillie 
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(1989) has introduced some multivariate plans which are mixed at
tributes and variables plans. 

11.2.2 Alternative sampling plans 

We shall be mainly concerned here with batch inspection plans. Exam
ple 11.4 illustrates a continuous production inspection plan. An inter
mediate situation occurs when items are batched in order from a 
production process. 

It is then possible to operate serial sampling plans or deferred 
sentencing sampling plans, in which the sentence on a batch depends not 
only on the results on the batch itself, but also on results from preceding 
or following batches. The plans described below all treat each batch 
independently; the effect of operating such plans as serial sampling plans 
would be to modify the sentencing rules depending on the results of 
inspection on neighbouring batches. As an example, a possible rule 
would be to inspect n items from each batch, and to accept if either 
there were no non-conforming items in the current batch, or one 
non-conforming item and no non-conforming items in the previous k 
batches. 

(a) Single sampling plan 
Suppose we have batches of items presented, and items are to be 
classified merely as conforming or non-conforming to a set standard. A 
single sampling plan consists of selecting a fixed random sample of n 
items from each batch for inspection, and then sentencing each batch 
depending upon the results. If the sentence is to be either accept or 
reject the batch, then each batch is accepted if the number of non-con
forming items r found in the n items is less than or equal to the 
acceptance number, c. We summarize as follows: 

Single sampling plan: 

(1) 
(2) 
(3) 

select n items, l 
accept batch if number of non-conforming items :::; c, J 
reject batch if number of non-conforming items > c + 1 

(11.1) 

For inspection by variables we have a corresponding sentencing rule. 
There is no need for the restriction to two terminal decisions and we 
could have, for example, accept, reject, or sell at a reduced price. 

Example 11.5 
For batch inspection, one possible sampling plan might be to use a 
single sampling plan with n = 30, c = 2. That is, if there are two or 
fewer non-conforming items in the sample, the batch is accepted. 
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(b) Double sampling plan 
In this plan a first sample of n 1 items is drawn, as a result of which we 
may either accept the batch, reject it, or else take a further sample of n2 

items. If the second sample is taken, a decision to accept or reject the 
batch is taken upon the combined results. 

Example 11.6 
A double sampling plan for use instead of the plan in Example 11.5 
might be as follows. Select 12 items from the batch and 

(1) accept the batch if there are no non-conforming items, 
(2) reject the batch if there are 3 or more non-conforming items, 
(3) select another sample of 24 items if there are 1 or 2 non-conform-

ing items. 

When the second sample is drawn, we count the number of non-con
forming items in the combined sample of 36 items and 

(4) accept the batch if number of non-conforming items ::::; 2 
(5) reject the batch if number of non-comforming items > 3. 

A natural extension of double sampling plans is to have multiple 
sampling plans, with many stages. It is difficult to see how double or 
multiple sampling plans would be used when there are more than two 
terminal decisions, unless more than one attribute (or variable) is 
measured and a much more complex sentencing rule introduced. 

( c) Sequential sampling plan 
A further extension of the multiple sampling idea is the full sequential 
sampling plan. In this plan, items are drawn from each batch one by 
one, and after each item a decision is taken as to whether to accept the 
batch, reject the batch, or sample another item. A simple method of 
designing sequential sampling planswas discovered by Professors G. A. 
Barnard and A. Wald during the 1939-45 war. An essential point is that 
the sample size is not fixed in advance, but it depends on the way the 
results turn out. 

Seqtiential sampling plans can save a substantial amount of inspection 
effort, although the overall gain in efficiency is often not great unless 
inspection is expensive, as is the case in Example 11.3, concerning 
Chromatographie analysis. Another characteristic of plans where sequen
tial sampling can give great gains in efficiency is when the incoming 
quality is very variable. Here, Example 11.2 provides just such a 
situation, as the pellets being examined may come from different 
producers and be of variable quality. 

The theory of sequential sampling plans is discussed by W etherill and 
Glazebrook (1986) and will not be discussed further in this text. 
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11.2.3 Discussion 

We have described many different types of inspection situations and 
inspection plans, and a number of questions arise. What are the relative 
merits of different types of plan? How should the sample sizes and 
acceptance numbers be chosen, and upon what principles? In attempting 
to answer these questions we should consider carefully the aims for 
which the inspection plan was instituted. There are several different 
schemes for selecting sampling plans, appropriate to different situations. 
Before describing some alternative sampling schemes, we outline some 
properties of sampling plans. 

11.3 SOME PROPERTIES OF SAMPLING PLANS 

11.3.1 The OC-curve 

This section is concerned with inspection situations in which the items 
are classified as either conforming or non-conforming, and where the 
items are presented in batches. One of the most important properties of 
a sampling plan is the operating characteristic curve. 

Suppose batches of quality (} are presented (so that (} is the propor
tion which is non-conforming) and the single sample plan (11.1) of 
section 11.2.2 is used. That is, n items are selected at random from each 
batch, and a batch is accepted if c or fewer non-conforming items are 
found in it. 

Then if the batch is large it follows that the probability that a batch of 
quality (} will be accepted is given by the binomial distribution and is 

P((}) = ~0 (;)w(1- e)n-r (11.2) 

0 e 

Figure 11.4 The OC-curve. 
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This function is illustrated in Fig. 11.4. Clearly, when 8 = 0, all batches 
are accepted and P( 8) = 1. As 8 increases P( 8) decreases, until it is 
zero at 8 = 1 (it will be negligible long before 8 = 1). This curve, shown 
in Fig. 11.4 is called the operating characteristic curve, or OC-curve. 

P(e) 

0 e' e 

Figure 11.5 An ideal OC-curve. 

For any given sampling plan, the OC-curve can be calculated, and 
compared with what we think the OC-curve should be like. Ideally, we 
might wish to have an OC for which all batches with 8 < 8' were 
accepted, and all others rejected. This would be 

I 1 8 < 8' 
P(8) =1 0 8 > 8' 

and is shown in Fig. 11.5. This OC-curve is impossible to achieve 
without almost 100% inspection. An alternative specification would be 
toset 

I 1 8 < 8' 
P( 8) = 8' < 8" l 0 8 > 8" 

leaving the region ( 8', 8' ') in which we do not mind what happens. This 
is shown in Fig. 11.6. 

Unfortunately, even this alternative formulation cannot be achieved 
without almost 100% sampling. A formulation which can be achieved is 
as follows. We specify a good quality, 81, at which we require the 
sampling plan to accept batches with a probability greater than (1 - a). 

Pr(accept batches of quality 81) ::::: 1 - a (11.3) 
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Figure 11.6 An alternative form of ideal OC curve. 

We call this the producers' risk point, and it represents the risk of the 
producer having good-quality product rejected. 

We also specify a poor quality, 82, at which we require the sampling 
plan to reject batches with a probability greater than (1 - ß). Alternat
ively we write 

Pr( accept batches of quality 82) ::5 ß (11.4) 

We call this the consumers' risk point. The risk of a consumer 
accepting quality poorer than 82 is set to be at most ß. By specifying the 
producers' and consumers' risk points (Fig.11.7) we are setting two 
points on the OC-curve. These concepts suppose rather narrow-minded 
producers and consumers, but even so, they help to fix what is required 
of a sampling plan. No real producer or consumer could define his 
requirements quite so narrowly. 
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Figure 11.7 Producer's and consumer's risks. 
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As an example, suppose that in a certain process batches of product 
are subject to acceptance inspection. We may set () = 0.5% as conform
ing product, which we want accepted 98% of the time: 

Pr(accept batches with 0.5% non-conforming items) = 0.98. 

Similarly we may set () = 3% as non-conforming product, which we 
want rejected 95% of the time: 

Pr(reject batches with 3% non-conforming items) = 0.95. 

The indifference quality 
Finally, one quantity sometimes used in sampling inspection is the 
indifference quality. It is the quality of batches which, when submitted 
for inspection, is accepted only 50% of the time. It is denoted 8050 • 

Pr(accept batches of quality 8050) = 0.50. 

An approximate rule which may be useful for any single sampling 
plan is given by 

8o.so = (c + D/n (11.5) 

For a derivation of this see Wetherill and Kollerström (1979); see also 
Exercise 1l.B.l. 

11.3.2 The average run length 

This concept was introduced in Chapters 7-9 when we dealt with 
Shewhart and CuSum charts; it has found widespread application in 
industry. 

Suppose we have continuous production inspection (of single items), 
or eise batch inspection of an ordered sequence of batches, then the run 
length is defined as the number of batches ( or items) sampled until one 
is rejected. The distribution of run length for any sampling plan is 
positively skew with a very long tail. Often we do not consider the 
whole run length distribution, but limit consideration to the average run 
length or ARL. 

Suppose that we have batch inspection using a plan which accepts 
each batch independently of others with an OC-curve P(8). Then the 
probability that a run length of r batches is observed is 

{P(ß)}'-1{1 - P(8)}, r = 1, 2, ... (11.6) 

and the ARL is 1/{1- P(8)}. In this situation, therefore, the OC-curve 
and the ARL function are exactly equivalent. However, it can be argued 
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(particularly in some situations) that the ARL is more directly meaning
ful. The ARL tells us how much of a given quality is accepted on 
average, before some action is taken. 

In some sampling plans, the plans are altered according to the process 
average as determined from sampling. For such plans the ARL and 
OC-curve may not be directly equivalent, and the ARL appears to be 
the more meaningful concept. Another situation when the ARL should 
be used is when we have plans which are being used for process control, 
for the ARL shows how frequently corrective action is initiated. In 
other cases it may be helpful to use both the ARL and the OC-curve 
concepts. Many of the published tables for sampling inspection, such as 
British Standard tables, emphasize the OC-curve concept. 

Finally, we note that it is sometimes useful to distinguish between the 
average sample run length (ASRL), which is the average of the number 
of sampling points, and the average article run length (AARL), which is 
the average of the number of items sampled or observations taken. 

11.3.3 The process curve 

The long run distribution of the quality of batches of items arriving at 
the inspection station is called the process curve. Now in practice, batch 
quality may vary in some way similar to the patterns of variation shown 
in section 3.2, and contain periodic effects, etc., but this is usually 
ignored in batch inspection, partly on the grounds that it is very difficult 
in practice to obtain information on the process. With continuing 
production inspection, there is no meaning to the process curve without 
either arbitrarily batching it, or else bringing in the stochastic element. 
A typical process curve is shown as the fullline curve in Fig. 11.8. 

Figure 11.8 Typical process curve for percentage non-conforming. 
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The act of sampling and sentencing batches of material filters out the 
bad quality to some extent, and produces a more satisfactory distribu
tion such as the dotted curve in Fig. 11.8. 

For various practical reasons, data on the process curve is often very 
difficult to get. However, some vague knowledge is required in order to 
design a sampling inspection plan. We need to know roughly how likely 
it is that batches of any given quality will occur, in order to decide how 
much protection we need at various Ievels. 

11.3.4* Mood's theorem 

An important result which throws some light on the importance of the 
process curve was derived by Mood (1943). He showed that when the 
probability of a defective is constant, there is no correlation between the 
quality of batches accepted and rejected by a sampling scheme. One 
conclusion which we can draw from this result is that there is no point in 
sampling when the batch quality is stable (except, maybe, to reject the 
entire production). Sampling makes sense only with variable quality. We 
therefore need to take care about schemes worked out on a basis of 
stable production. The proof follows, for those interested in it. 

Consider a single sample plan for fraction non-conforming, from 
batches of size N. Any given batch quality can be represented by a 
point on the batch line in Fig. 11.9, and any sample result is represented 
by a point on the sample line. Consider a batch of qualilty represented 
by the point P, then the probability that the sample result is given by Q 
is 

Pr(QIP) = no. of paths OP via Q = (nb) (BN=nb)/(NB) 
total no. of paths OP 
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Figure 11.9 Illustration of Mood's theorem. 
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Now suppose that the process curve is binomial: 

corresponding to stable production at a probability p of a defective. 
Then the total probability of obtaining a batch and sample represented 
by P and Q respectively is 

(N) B G(n)(N - n);(N) = (n) b g (N - n) B-b G-g Bpq b B-b B bpq B-bp q. 

This last statement shows that the sample result (g, b) is statistically 
independent of the quality of the remainder of the batch ( G - g, 
B - b). In particular, b is statistically independent of ( B - b). 

Mood actually found that the correlation between b and B - b is zero 
for a binomial process curve, and negative and positive for leptokurtic 
(sharp peaked) and platykurtic (flat topped) process curves respectively. 

What Mood's result shows is that if the production process is such 
that there is a constant probability of obtaining a non-conforming item, 
and if a sample is drawn, then the distributions of quality in the sample 
and in the remainder of the batch are independent. Therefore batches 
selected because of poor quality in the sample will not tend to be worse 
than accepted batches. 

11.4 METHODS OF CHOOSING SAMPLING PLANS FüR 
ATTRIBUTES 

11.4.1 The producer's and consumer's risk point method 

In this book we shall use the term sampling system to refer to a set of 
principles used to determine sampling plans, resulting in a collection or 
table of individual sampling plans indexed ready for use. There are 
various sampling systems available, each appropriate in certain circum
stances, and we discuss the underlying principles of some of these 
below. 

Suppose that we have large batches of items presented for acceptance 
inspection, where the items are classified as conforming or non-conform
ing, then the sampling plan (11.1) has two parameters to be fixed, the 
sample size n and the acceptance number c; clearly we need two 
equations to determine these quantities. One way of obtaining two 
equations is to pick two points on the OC-curve, and determine n and c 
so that the OC-curve of our plan goes through ( or very near to) these 
points. Following our discussion in section 11.3.1 one convenient pair of 
points to choose is the producers' risk point (11.3) and the consumers' 



Methods of choosing sampling plans for attributes 257 

risk point (11.4); these points areshownon Fig. 11.7. In this section we 
follow through an approximate method of determining a sampling plan 
in this way. Clearly, since the binomial distribution applies, we have 
discreteness problems, and it will not usually be possible to satisfy any 
pair of inequalities exactly. A range of possible sample sizes results; see 
below. The steps are set out below and the first two involve the choice 
of the producer's and consumer's risk points. We settle on good quality 
such that we want the risk of rejection to be small, e.g. with material at 
only 1% non-conforming we may want the risk of rejection to be less 
than 3%. We also settle on poor quality such as 5% non-conforming, 
and require the risk of acceptance to be small, say 2% . This means that 
for our example we have (01 =1%, a=3%; 02 =5%, ß=2%). The 
appropriate values for particular applications can be judged with experi
ence. 

The theory of the method is discussed in section 11.4.2, but it is based 
on firstly using the Poisson distribution as an approximation to the 
binomial, and secondly, using a known relation between Poisson proba
bilities and the i distribution. 

METROD SUMMARY 11.1 

Producer's and consumer's risk method of determining attribute 
sampling plans 

Step I Determine the producers' risk point 01 and producers' risk 
a. 

Step2 Determine the consumers' risk point 02 and consumers' 
risk ß. 

Step3 Look up Table 11.1 to find the smallest value of c 
satisfying r(c) < 82/81. 

Step4 Look up the X: tables, Table 11.2, and calculate the 
interval 

xi-ß < n < .ia 
202 201 

where the i values are looked up for 2(c + 1) degrees of 
freedom. (Note: this inequality must be true in the order 
stated, and not in the reverse direction.) 

Step 5 Any n in the interval given in Step 4 solves the prob lern. If 
there is no integral value of n in the interval, increase c by 
1 and repeat Step 4. A convenient choice for n is the 
smallest value. 

Step 6 The sampling is given by n, c so determined. 



Table 11.1 Values of r(c) for the producer's and consumer's risk point method 

(a) a = 0.100 (b) U' = 0.050 
1-ß 1-ß 

c 0.900 0.950 0.975 0.990 c 0.900 0.950 0.975 0.990 

0 21.85 28.43 35.01 43.71 0 44.89 58.40 71.92 89.78 
1 7.31 8.92 10.48 12.48 1 10.95 13.35 15.68 18.68 
2 4.83 5.71 6.56 7.63 2 6.51 7.70 8.84 10.28 
3 3.83 4.44 5.02 5.76 3 4.89 5.67 6.42 7.35 
4 3.29 3.76 4.21 4.77 4 4.06 4.65 5.20 5.89 
5 2.94 3.34 3.70 4.16 5 3.55 4.02 4.47 5.02 
6 2.70 3.04 3.35 3.74 6 3.21 3.60 3.98 4.44 
7 2.53 2.82 3.10 3.44 7 2.96 3.30 3.62 4.02 
8 2.39 2.66 2.90 3.20 8 2.77 3.07 3.36 3.71 
9 2.28 2.52 2.75 3.02 9 2.62 2.89 3.15 3.46 

10 2.19 2.42 2.62 2.87 10 2.50 2.75 2.98 3.27 
11 2.12 2.33 2.51 2.74 11 2.40 2.63 2.84 3.10 
12 2.06 2.25 2.42 2.64 12 2.31 2.53 2.73 2.97 
13 2.00 2.18 2.35 2.55 13 2.24 2.44 2.63 2.85 
14 1.95 2.12 2.28 2.47 14 2.18 2.37 2.54 2.75 
15 1.91 2.07 2.22 2.40 15 2.12 2.30 2.47 2.66 
16 1.87 2.03 2.17 2.34 16 2.07 2.24 2.40 2.59 
17 1.84 1.99 2.12 2.29 17 2.03 2.19 2.34 2.52 
18 1.81 1.95 2.08 2.24 18 1.99 2.15 2.29 2.46 
19 1.78 1.92 2.04 2.19 19 1.95 2.10 2.24 2.40 
20 1.76 1.89 2.01 2.15 20 1.92 2.07 2.20 2.35 

(c) a = 0.025 ( d) U' = 0.010 
1-ß 1-ß 

c 0.900 0.950 0.975 0.990 c 0.900 0.950 0.975 0.990 

0 90.95 118.33 145.70 181.89 0 229.10 298.07 367.04 458.21 
1 16.06 19.59 23.00 27.41 1 26.18 31.93 37.51 44.69 
2 8.60 10.18 11.68 13.59 2 12.21 14.44 16.57 19.28 
3 6.13 7.11 8.04 9.22 3 8.12 9.42 10.65 12.20 
4 4.92 5.64 6.31 7.15 4 6.25 7.16 8.01 9.07 
5 4.21 4.77 5.30 5.95 5 5.20 5.89 6.54 7.34 
6 3.74 4.21 4.64 5.18 6 4.52 5.08 5.60 6.25 
7 3.41 3.81 4.18 4.63 7 4.05 4.52 4.96 5.51 
8 3.16 3.51 3.83 4.23 8 3.70 4.12 4.49 4.96 
9 2.96 3.28 3.56 3.92 9 3.44 3.80 4.14 4.55 

10 2.81 3.09 3.35 3.67 10 3.23 3.56 3.85 4.22 
11 2.68 2.69 3.17 3.47 11 3.06 3.35 3.63 3.96 



(c) a' = 0.025 (d) a' = 0.010 

1-ß 1- ß 

c 0.900 0.950 0.975 0.990 c 0.900 0.950 0.975 0.990 

12 2.57 2.81 3.03 3.30 12 2.92 3.19 3.44 3.74 

13 2.48 2.70 2.90 3.15 13 2.80 3.05 3.28 3.56 
14 2.40 2.61 2.80 3.03 14 2.69 2.93 3.14 3.40 
15 2.33 2.53 2.71 2.92 15 2.60 2.82 3.02 3.27 
16 2.27 2.45 2.62 2.83 16 2.52 2.73 2.29 3.15 
17 2.21 2.39 2.55 2.74 17 2.45 2.65 2.83 3.05 
18 2.16 2.33 2.49 2.67 18 2.39 2.58 2.75 2.96 
19 2.12 2.28 2.43 2.61 19 2.34 2.52 2.68 2.87 
20 2.08 2.24 2.38 2.55 20 2.29 2.46 2.61 2.80 

Table 11.2 Percentage points of the x2 distribution 

Degrees of Probability in percent 
freedom 99.0 95.0 10.0 5.0 1.0 0.1 

1 0.03157 0.00393 2.71 3.84 6.63 20.83 
2 0.0201 0.103 4.61 5.99 9.21 13.81 
3 0.115 0.352 6.25 7.81 11.34 16.27 
4 0.297 0.711 7.78 9.49 13.28 18.47 

5 0.554 1.15 9.24 11.07 15.09 20.52 
6 0.872 1.64 10.64 12.59 16.81 22.46 
7 1.24 2.17 12.02 14.07 18.48 24.32 
8 1.65 2.73 13.36 15.51 20.09 26.12 
9 2.09 3.33 14.68 16.92 21.67 27.88 

10 2.56 3.94 15.99 18.31 23.21 29.59 
11 3.05 4.57 17.28 19.68 24.73 31.26 
12 3.57 5.23 18.55 21.03 26.22 32.91 
14 4.66 6.57 21.06 23.68 29.14 36.12 
16 5.81 7.96 23.54 26.30 32.00 39.25 
18 7.01 9.39 25.99 28.87 34.81 42.31 
20 8.26 10.85 28.41 31.41 37.57 45.31 
22 9.54 12.34 30.81 33.92 40.29 48.27 
24 10.86 13.85 33.20 36.42 42.98 51.18 
26 12.20 15.38 35.56 38.89 45.64 54.05 
28 13.56 16.93 37.92 41.34 48.28 56.89 
30 14.95 18.49 40.26 43.77 50.89 59.70 

For d.f. > 30, treat V(2x2) as approximately Normally distributed with mean 
{2 X (d.f.)- 1} and unit standard deviation. 
The entry for 99.0 per cent, d.f. = 1 is 0.000157. 
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Example 11.7 
Suppose we choose 

Producer's risk point 81 = 0.01 

Consumer's risk point 82 = 0.04 

then we have 82/81 = 4, and so 

Producer's risk 0.05 

Consumer's risk 0.05 

Step3 Use c = 6 since r(6) = 3.60 < 4. 

Step 4 XÖ.os for 2(c + 1) = 14d.f. is 6.57 

XÖ. 95 for 2(c + 1) = 14d.f. is 23.68 

XI-ß/282 = 23.68/0.08 = 296.0 

ia/281 = 6.57/0.02 = 328.5 

Step 5 Any n in the interval 296 s::: n s::: 328 will be satisfactory. 
Suggest n = 300. 

Step 6 The sampling plan is n = 300, c = 6. 

This sampling plan will give a risk of less than 5% of rejecting batches 
with 1% conforming items, and a 5% chance of accepting batches with 
4% non-conforming items. 

We notice that the producer's and consumer's risk points specified in 
Example 11.7 have led to an extremely large sample size. If this were a 
practical case, we would seek to modify the risk points and try again, 
etc., until we arrived at a sampling plan which was felt to be 'reason
able'. This type of iterative process can be defended on the grounds that 
one is trying to balance the cost of sampling against the costs of wrang 
decisions. For any batch of quality 8, the probability that it will be 
accepted is given by the OC-curve. Thus by looking at the OC-curve, 
we can see the probability that poor quality will be accepted and good 
quality rejected. The probabilities of these wrang decisions can be 
reduced - but only by increasing the sample size and so increasing 
sampling costs. The essential point about the balancing of costs referred 
to here is that it is not formalized. The final decision on a sampling plan 
is made subjectively, by someone with a detailed knowledge of the 
set-up. 

A number of tables of sampling plans have been constructed based 
upon principles rather similar to the above. Peach (1947) listed sampling 
plans for which the producer's and consumer's risks were both set at 
0.05. Horsnell (1954) tabulated plans for producer's risks of 0.01 or 0.05 
and consumer's risks of 0.01, 0.05 or 0.10. 
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The most comprehensive set of tables of this kind is provided by Hald 
and Kousgaard (1967). Essentially they give tables of 

±(n)8'(1- et-r = p 
n=O r 

for c in steps 1 from 0 to 100, 15 values of P, and values of 
0 < e < 0.50. Simple illustrations are given of the use of these tables to 
obtain a single sampling plan with set producer's and consumer's risks. 

Two main criticisms can be levelled at the producer's and consumer's 
risks method of determining sampling plans. The first is that, except in 
very small batch sizes, the resulting plans are independent of the batch 
size. Since the costs of wrang decisions increase with batch size, it is 
obvious that the probabilities of error (a, ß) should reduce with increas
ing batch size. 

The second criticism is that it is in general rather difficult to choose 
the parameters (81> a; 82 , ß). lf we are dealing with an endless sequence 
of batches, the OC-curve points could be expressed as ARLs which 
might have more meaning, but the choice has to be made in consulta
tion with production staff and others who do not appreciate the full 
depth of the concepts involved. 

lt is important to realize that the OC-curve does not give the 
proportion of batches of any given quality among accepted batches, 
since it is necessary to use the process curve to obtain this quantity. The 
probability distribution of e among accepted batches is clearly the result 
of the effect of sampling, given by the OC-curve, on the input quality, 
which is represented by the process curve. The effect of a sampling plan 
is to change the distribution of batch quality from the (input) process 
curve to a similar distribution but with some of the defective quality 
filtered out. When using an OC-curve sampling scheme we have to keep 
this in mind. Figure 11.10 illustrates the effect of a sampling plan. 

11.4.2 Theory behind the method given in section 11.4.1 

The crux of the problern is to find the smallest values of ( n, c) satisfying 
(11.3) and (11.4). Owing to the discreteness of the binomial distribution 
it may not be possible to satisfy them exactly, and we can restate them 
as 

(11.7) 

(11.8) 
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Process curve 

Output quality of accepted batches 
proportional to P(8)R(8) 

e 

OC-curve 

Figure 11.10 Effect of a sampling inspection plan. 

We need to find a pair of values (n, c) satisfying these inequalities, and 
an approximate solution can be obtained as follows. (See Hald (1967) 
for a further discussion of the method given here, together with 
approximate solutions etc.). 

First we replace the binomial terms by Poisson terms for the same 
means, to obtain 

c 

2:e-n 11'(n81)' /r! 2:: 1 - lY 

0 
c 

2:e-n 82(n8zY /r! 2:: ß 
0 

(11.9) 

(11.10) 

Now the cumulative Poisson distribution can be related to the cumulat
ive i distribution since we can show by integration by parts that 

(11.11) 

and hence that 
c 

2:e-mm'/r! = Pr{i' > 2ml2(c + 1) d.f.} (11.12) 
0 

since the integral on the left-hand side of (11.11) is the probability that 
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I is greater than 2m, for a I distribution having 2( c + 1) degrees of 
freedom. Inequalities (11.7) and (11.8) are therefore equivalent to 

Pr{i' > 2n81l2(c + 1) d.f.} 2: 1 - lY 

Pr{i- > 2n82l2(c + 1) d.f.} ::s ß. 
lf we denote the 100a-percentile of the I distribution with 2(c + 1) 
degrees of freedom by x;, then these inequalities are 

2n 81 ::s x; (11.13) 

2n82 2: XI-ß· (11.14) 

lf we now put 

r(c) = xLß;x; 
then c is the smallest value satisfying 

r(c - 1) > 82/8 1 > r(c). 

We can solve (11.13) and (11.14) for n to get 

xLi28z :s: n :s: x;/281 (11.15) 

with the i-s having 2(c + 1) degrees of freedom. Any n in the interval 
(11.15) will solve the problem, and we can choose which inequality 
(11.13) or (11.14) is nearer to being satisfied as an equality, by choice of 
n nearer to one or other Iimit. If ( 11.15) does not contain an integral 
value of n, we must increase c and obtain a new interval. 

In this way a sampling plan approximately satisfying the original 
requirements is easily obtained, and tables of r( c) and of I percentage 
points are given in the Appendix tables. Once an (n, c) is determined, 
an approximate OC-curve can be plotted using standard t percentage 
points and equation (11.12). 

11.4.3 A simple semi-economic scheme (ASSES) 

Wetherill and Chiu (1974) have followed up some theoretical work by 
proposing a very simple but highly efficient scheme. 

A theoretical investigation of sampling plans, based on an economic 
approach of minimizing costs, shows that an important parameter is the 
break-even quality, p 0 . This is the quality such that it is equally costly to 
accept or reject the batch. Further theoretical investigations have shown 
that an optimum sampling plan should have 

or to a better approximation 
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(11.16) 

This can be used to determine a sampling plan, and the theory of the 
method is given in the next section. The underlying idea is to fix two 
points on the OC-curve, one of them being the producer's risk at the 
process averge p, and the other being the indifference quality, defined 
in section 11.3.1, which we put equal to p 0 from (11.16). A crucial step 
in the method is to determine p 0 by economic criteria. 

METHOD SUMMARY 11.2 

A simple semi-economic scheme 

Step 1 Determine the break-even quality, p 0 , and the process 
average, p. 

Step 2 Choose the producer's risk, er, at the process average, p. 
Step 3 Look up Table 11.3 to find the smallest value of c such 

that the table entry is greater than or equal to pjp0 . 

Step 4 Use the formula 

n = (c + Ü/Po· 

Table 11.3 Values for ASSES 

c (Y =0.005 0.01 0.025 0.05 

0 0.0072 0.0145 0.0365 0.0740 
1 0.0617 0.0885 0.1443 0.2117 
2 0.1263 0.1631 0.2314 0.3058 
3 0.1831 0.2242 0.2968 0.3721 
4 0.2308 0.2738 0.3476 0.4218 
5 0.2711 0.3149 0.3883 0.4608 
6 0.3055 0.3494 0.4220 0.4926 
7 0.3352 0.3789 0.4503 0.5191 
8 0.3613 0.4046 0.4747 0.5416 
9 0.3844 0.4271 0.4960 0.5611 

10 0.4051 0.4472 0.5147 0.5782 
11 0.4236 0.4652 0.5314 0.5934 
12 0.4405 0.4814 0.5464 0.6070 

Example 11.7 
Suppose we have er= 0.025, p 0 = 0.05, f5 = 0.02, then we find 
f5/p 0 = 0.40, c = 6. Hence n = 134. 



Methods of choosing sampling plans for attributes 265 

This sampling scheme is very easy to apply, and does have the virtue 
of making the indifference quality approximately equal to the break
even quality. 

11.4.4 Dodge and Romig's schemes 

Dodge and Romig (1929, 1959) pioneered sampling inspection from 
about 1920 onwards, and they proposed two different schemes, both 
assuming that rectifying inspection is involved. That is, they assume that 
rejected batches are 100% sorted, and all non-conforming items re
placed or rectified. 

One approach was through a quantity they defined as the lot 
tolerance percent defective (LTPD), which is 'some chosen limiting 
value of per cent defective in a lot', respresenting what the consumer 
regards as borderline quality. The tables always used LTPD with a 
consumer's risk of 0.10, so that the LTPD is effectively the quality 
corresponding to a consumer's risk of 0.10. However, the LTPD only 
gives us one restriction, and two are required to determine a single 
sample plan. For the second restriction, Dodge and Romig minimized 
the average amount of inspection at the process average and subject to 
the LTPD, values of (n, c) were chosen to minimize the average amount 
of inspection at the process average quality' e. 

The other approach Dodge and Romig used involved a quantity 
defined as the average outgoing quality limit, AOQL. To obtain this we 
notice that if on average I items per batch are rectified, an average of 
N-I remain unrectified. The average outgoing quality is therefore 

AOQ = (N- I)e/N. 

lt is readily seen that the AOQ has a graph roughly as shown in Fig. 
11.11 and passes through a maximum with respect to e, and there is an 

---------- AOQL 

e 

Figure 11.11 The average outgoing quality limit. 
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upper limit to the average outgoing percent defective called the AOQL. 
In the second approach, Dodge and Romig produce sampling plans 

having set values of the AOQL, which also minimize the average 
amount of inspection at the process average. lf all rejected batches are 
100% inspected and an average quality guarantee is satisfactory, the 
AOQL approach may be a good scheme to use. 

Some criticisms of Dodge and Romig's methods are given by Hili 
(1962). In particular he criticizes the AOQL concept as being very 
sensitive to imperfect inspection, as there then may be no upper Iimit to 
the AOQ. 

11.4.5 Defence sampling plans 

A series of developments starting in World War II has resulted in an 
International Standard. As this is used a great deal, a separate chapter 
is devoted to it (Chapter 13). 

EXERCISES ll.A 

1. Work out attribute sampling schemes for the data in Table 11.4. 

Table 11.4 Parameter settings for sampling schemes 

(Jl (l' (}2 ß n 

0.01 5% 0.04 5% 
0.01 5% 0.05 5% 
0.01 5% 0.06 5% 
0.01 5% 0.04 10% 
0.01 5% 0.05 10% 
0.01 5% 0.06 10% 

2. Use ASSES for the parameters given in Table 11.5. 

Table 11.5 Parametersettings for sampling schemes 

0.01 
0.015 

5% 
5% 

Po 

0.025 
0.025 

n c 

c 
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EXERCISES 11. B 

1. Check the indifference quality level formula (11.5) by finding the 
values of m for which 

c 

Le-mmr /r! = 0.50 
0 

for c = 0, 1, 2, 3. A simple iteration scheme can be used starting 
with the values 

m = c + ~· 

2. Check the derivation of Table 11.3 (section 11.4.3) as follows. We 
require 

and 

c 

Le-m'm1' /r! = 1 - a 
0 

c 

Le-m0m0 ' /r! = 0.50 
0 

for m1 = nfio 

for m 0 = npo. 

Use (11.12) to relate these to i variables, and hence find the values 
for the ratio 

3. The Poisson summation approximates the binomial, 

p = ±(n)p'(1 - p)n-r = ±e-m m' /r! 
o r o 

for r = np. Given that for c = 0, m = 0.0513 gives P = 0.95 and 
that for c = 1, m = 0.355 also gives P = 0.95, carry out calculations 
to check the Poisson approximation to the binomial distribution, for 
small values of n. 

4. Use the Markov chain methods of Chapter 8 to investigate the ARL 
properties of the following sampling plan: 

(1) inspect 10 items at random and classify as conforming or 
non-conforming 

(2) accept if there are no non-conforming items in the current batch 
(3) accept if there is one non-conforming item in the current batch 

and none in the previous three batches, 
(4) otherwise reject. 
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Define the following states: 

State 1: no non-conforming items in the current batch 
State 2: one non-conforming item in the current batch and none 

in the previous batch 
State 3: one non-conforming item in the current batch and none 

in the previous two batches 
State 4: current batch accepted 
State 5: current batch rejected. 

Define the run length as the number of batches to a rejection, and 
assume that all items have a constant probability p of being 
defective. 

5. Show that for a single sample rectifying inspection plan with sample 
size n and batch size N the AOQL is approximately 

AOQL = [~e-(N-n)p {(N ~,n)p Y][N ~ n r· 
Calculate and plot the AOQL for a simple plan. 

6. (a) Show that when an attributes acceptance inspection scheme is 
run with a zero acceptance number (c = 0), then the OC-curve 
is convex throughout. 

(b) A modification for zero acceptance plans suggested by Dodge 
(1955), is as follows: 
Accept the batch if no non-conforming items are found. 
Reject the batch if two or more non-conforming items are 
found. 
For one non-conforming item, accept the batch only if the 
previous i batches are free of non-conforming items. 
Evaluate the OC-curve for these plans for i = 1, 3, 5. (These 
are called chain sampling plans.) 
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Inspection by variables 

12.1 INTRODUCTION 

In the previous chapter we concentrated on sampling inspection by 
attributes, when inspected items are simply classified as conforming or 
non-conforming. When our quality characteristic is a continuous vari
able, we may be able to operate an 'inspection by variables' plan. We 
shall assume that the underlying distribution of the quality characteristic 
is Normal and that there is a range of the quality characteristic from L 
to U, in which the quality is acceptable ( one-sided limits being special 
cases of this). The way inspection by variables operates is that the 
sentencing of a batch depends on the observed i and s of the sample, 
and not on the number of non-conforming items. Consider the following 
example. 

Example 12.1 
The following data are measurements of crushing strength of 16 catalyst 
pellets, which are subject to incoming inspection. The specification is 
that the strengths of pellets should be between 90 and 140 kg. On the 
basis of this sample, it is desired to accept or reject the batch. 

120.6 

126.6 

106.1 

108.1 

102.1 

103.1 

99.8 

101.4 

97.0 

115.6 

91.2 

114.0 

118.2 

106.8 

107.3 

101.2 

lt can be shown that this data is consistent with the distribution of 
quality measurements for the whole batch being Normal, with mean 
j1 = i = 107.4 and Standard deviation 0 = S = 9.39. 

This distribution is shown in Fig. 12.1, and it is readily checked that 
3.2% of the distribution lies below the lower limit and the percentage 
above the upper limit is negligible. If the total percentage non-conform
ing is regarded as too high, then we reject the batch. This gives a 
general idea of how inspection by variables plans were originally 
developed. The theory below approaches the topic by an analogaus but 
more appropriate method. 
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Lower specification 
Iimit 90 kg 

107.4 

Upper specification 
Iimit 140 kg 

Figure 12.1 Inspection by variables - using data from Example 12.1. 

There are some advantages and disadvantages of inspection by vari
ables plans. The chief advantage is that because we are using informa
tion more efficiently, the sample size necessary can be reduced consider
ably. There is also much greater information about the process than if 
simply a conforming/non-conforming classification is used. 

The disadvantages of inspection by variables plans are as follows: 

(1) Firstly, they depend rather heavily on Normality. 
(2) Most of the available reference material concerns itself with one 

measured quality characteristic at a time, as multivariate methods 
have only recently been developed. 

(3) The taking of measurements usually requires a higher technical 
level for the inspection staff. 

(4) We could easily get a batch rejected, because of an excessive 
predicted proportion non-conforming, based on Normality, without 
there being an actual defective in the observed sample, and 
Example 12.1 illustrates this. 

The key advantage of inspection by variables plans is that much more 
accurate information on batch quality is available from much smaller 
sample sizes so that, with appropriate safeguards, variables plans are 
weil worth considering, and should be used more frequently than they 
are. 

In the discussion below we deal with four cases, which lead to 
increasing complexity of the plans: 

(1) single specification limit, a known 
(2) single specification limit, a unknown 
(3) double specification limit, a known 
(4) double specification limit, a unknown. 
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An International Standard for inspection by variables exists, ISO 3951 
(corresponding to BS 6002), and this is based on very similar principles 
to the standard for attributes inspection. They are both described in 
Chapter 13. 

The sections below do not follow the International Standards method 
and instead the approach is to choose two points on the OC-curve, and 
find a plan which fits. All methods in effect reject batches when the 
estimated fraction non-conforming is too large, but for single specifica
tion limits, a direct estimation of the fraction non-conforming can be 
avoided; see below. 

For a single specification limit, non-conforming material is defined as 
material with values above a limit U ( or below a limit L). There is 
therefore a simple relationship between the (theoretical) mean and 
standard deviation of the material and the fraction non-conforming, p. 
With this in mind, producer's and consumer's risk points (p r. a), (p 2 , ß) 
can be defined as in section 11.3.1. 

A simple decision rule is to reject batches when the sample mean is 
too large (for an upper limit) or too small (for a lower limit). The 
problern is then to find the sample size and acceptance limit for the 
mean which give us (approximately) the risks we require. The derivation 
is given in section 12.2.2, but the method is given in section 12.2.1. 

The relationship between the fraction non-conforming and the para
meters (/1-, a) of the normal distribution are slightly more complicated in 
the double limits situation, but similar principles apply. We have to 
distinguish in the double limits case between satisfying a restriction on 
the overall fraction non-conforming, and satisfying separate restrictions 
on the fraction non-conforming at each end. The double limits case is 
dealt with in section 12.5. 

For some theoretical work relevant to the material in this chapter see 
Bravo (1980; 1981), Wetherill and Kollerström (1979), and Baillie (1987; 
1988). 

12.2 SINGLE SPECIFICATION LIMIT, a KNOWN 

12.2.1 Statement of the method 

Following the discussion given in the previous chapter, we shall adopt a 
producer's and consumer's risk approach to designing a sampling plan 
and we shall discuss only the design of single sampling plans. It is clear 
from section 12.1 that, for a single upper specification limit U, an 
appropriate decision rule is to accept if the sample mean i satisfies 

for some constant k a· (12.1) 
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We shall denote the sample size for a a-known plan by n 0 • For a single 
lower specification Iimit we accept if 

(12.2) 

With this formulation, we wish to choose our parameters (ka, na) to 
satisfy two requirements: 

Producer's risk lf the fraction non-conforming is p 1, we wish to accept 
the batch with a probability (1 - a), where p 1 and a are small. 
Consumer's risk lf the fraction non-conforming is p 2 > p 1 , we wish to 
accept the batch with a probability no more than ß, where ß is small. 

As we noted in the previous chapter, the constants (p 1, a) (p 2 , ß) 
can be rather difficult to choose, and often some iterative procedure is 
adopted. Once the engineer sees the consequences of choosing a 
particular set (Pb a; p 2 , ß), in terms of sample size, he may wish to 
modify his choices. 

A solution to this problern of choosing (nm ka) to satisfy (p 1, a; p 2 , 

ß) is set out in Method Summary 12.1, and the derivation is given in 
section 12.2.2. The nomogram is from Wilrich (1970). 

METROD SUMMARY 12.1 

Inspection by variables, single specification Iimit, a known 

Step 1 Choose a quality level p 1 at which the probability of 
acceptance is required to be (1 - a) and a quality level p 2 

at which the probability of acceptance is required to be ß 
(p 1 is smaller than p 2 and (1 - a) is greater than ß). 

Step 2 Use the nonogram in Fig. 12.2 to find the point of 
intersection of the lines joining p 1 with (1 - a) and p 2 

with ß. 
Step 3 Read off the value of k on the appropriate scale. 
Step 4 Read off the sample size n a on the appropriate scale. 
Step 5 Accept the batch if either 

x- k 0 a?: L for a lower specification limit 

or 

x + k 0 a::S. U for an upper specification limit. 
Otherwise reject the batch. 
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Figure 12.2 Nomogram for inspection by variables, single specification limits, a 
unknown. 
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Example 12.2 
If CP1 = 0°01, 1- a = 0°99) and (p 2 = 0007, ß = 0005) then we obtain 
na = 22, ka = 1.820 The method of using the nomogram is shown in Figo 
12030 

(1 -a) 
/ 

/ 

p2 
/ 

/ ....... / 
....... ...":::_ 

/ ...... ....... 
/ ...... ....... 

ß 
/ 

p1 

Figure 12.3 Use of nomogram for a known and for a unknowno 

12.2.2* Derivation of method for single specifaction Iimit, a known 

Let us suppose that our measurements are normally distributed with 
unknown mean 11 and known variance a 2 0 Suppose also that there is a 
single specification limit U, and that we take a single sample of size n a' 

resulting in a mean x 0 The fraction non-conforming in the batch is then 

P = r v(~n)a exp (- (x ;a:)2) dx = 1 - <I>((U - !1)/a) = <I>( -u) 

where u = ( U - !1)/ao Another way of stating this is that for the fraction 
non-conforming to be p, the mean 11 must be at 

11 = U- uao 

Now the decision rule is to accept if 

X+ kaa < U 

and if the probability of this is P we have 

P = Pr(x + k aa < U) 

= Pr{z < (U- !1- kaa)Yna/a} 

where z has a standard normal distributiono Therefore 

(12o3) 
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p = .P(w) (12.4) 

where w = Y(na)(U- 11- kaa)/a. Another way of stating this is that 
for the sample mean to be accepted with probability P the mean 11 must 
be at 

11 = U- kaa- wa/Yna (12.5) 

where w is given by (12.4). By equating (12.3) and (12.5) we obtain 

V = ka + w/Yna. 

This equation must hold for the two points (Pb P 1) and (p 2 , P2). By 
solving these two equations for n a and k a we obtain 

na = ( wl - w2 r and ka = ( v1w2 - v2w1) (12.6) 
vl - v2 w2- wl 

where 

V; = -$-l(p;) and W; = .p-1(P;). (12.7) 

In practice na will have to be rounded up to the nearest integer, and 
this will mean that the OC-curve will pass approximately through the 
producer's and consumer's risk points. Once na and ka are set, the 
actual OC-curve is given by (12.4), where 11 has to be related to p by 
(12.3). 

12.3 SINGLE SPECIFICATION LIMIT, a UNKNOWN 

12.3.1 Statement of the method 

The approach here is very similar to that used in section 12.2.1 for the 
a-known case, but using an estimated value of a. The underlying theory 
is rather more complicated, and this is set out in section 12.3.2. The 
sample size is denoted n., and the decision rules are given in Step 5 of 
Method Summary 12.2. The nomogram given in Fig. 12.4 is from 
Wilrich (1970). 

METHOD SUMMARY 12.2 

Inspection by variables, single specification Iimit, a unknown 

Step I Choose a quality level p 1 at which the probability of 
acceptance is required to be 1 - a and a quality level p 2 

at which the probability of acceptance is required to be ß 
( p 1 is smaller than p 2 and 1 - a is greater than ß.) 
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Step 2 Use the nomogram of Fig. 12.4 to find the point of 
intersection of the lines joining p 1 with 1 - a and p 2 with 
ß. 

Step 3 Read off the value of k on the appropriate scale. 
Step 4 Read off the sample size n. on the appropriate scale. (This 

generally gives a higher sample size than for a known, and 
this allows for the uncertainty of our knowledge of the 
standard deviation.) 

Step 5 Accept the batch if either 

for a lower specification limit 

or 

for an upper specification limit. 

Otherwise reject the batch. 

Example 12.3 
If (p 1 = 0.01, P 1 = 0.99), and (p 2 = 0.07, P2 = 0.05), then we obtain 
n. = 60, k. = 1.83. 

12.3.2* Derivation of method for single specification Iimit, a unknown 

The assumptions here are similar to those in section 12.2.2 except that a 
is unknown. Again we will assume a single upper specification limit U, 
and the decision rule is to accept if 

i + k.s :::; U. (12.8) 

The probability of acceptance is 

P = Pr(i:::; U - k.s) = Pr{(Z + b)/(Y/[) 112 :::; -Vn.k.} (12.9) 

where 

Z = Vn.(i - f.-t)/a is standardnormal 

Y = fs 2/a2 is a i random variable 
with f degrees of freedom 

b = Vn.(f.-t- U)/a = Vn.ct>-1(p) 

where ct>(x) is the standard Normal distribution and 

f = (n.- 1). 
Equation (12.9) can be rewritten 

P = Pr(Tt 2: Ynklb) (12.10) 
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where Tt represents a non-central t random variable with f degrees of 
freedom and non-centrality parameter o. This distribution is complicated 
to work with, but an approximation developed by Hamaker (1979), see 
also Wetherill and Kollerström (1979), enables us to obtain a solution. 

If a were known a batch would be accepted if, based on a sample of 
size n 0 , we get i :s U- k 0 a for some constant k 0 • The a-known and 
a-unknown cases will have practically the same OC-curve if n5 and ks 
are adjusted such that i + k 5s has the same mean and variance as 
i + kaa with sample size n 0 • By equating the mean and variance of 
i + k 5s respectively with the mean and variance of i + kaa we get, 
approximately, 

ks =Y{(3ns - 3)(3ns - 4)}k 0 

and 

ns ={1 + 3n 8k'l~/(6ns - 8)}n 0 • 

A method given by Enkawa (1980), starts with 

ns = (1 + k;j2)na 

(12.11) 

(12.12) 

and iterates. Equations (12.11) and (12.12) show how the parameters ns 
and ks of the plan for unknown variance must change from the a-known 
plan in order to get approximately the same OC-curve. We see that the 
sample size has to be increased by a factor in excess of (1 + k;/2). 

Fiesseiles (1985) has shown that a direct solution of (12.11) and 
(12.12) is given by 

n 8 = n 0 + (u + Y(u 2 + 24v))/12 (12.13) 

where 

u = 3n 0 (k; - 2) + 8 

and 

and then 

ks = ka Y{(3ns - 3)/(3ns - 4)}. (12.14) 

Using Hamaker's approximation we can now easily calculate the 
probability of acceptance as follows: 

P = P(i + k 8s :S Uin" f.l, a) = P(i + kaa :s Ulna) = <P(O) 

(12.15) 

where 
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(J = U - f.l- k 8 aY{(3n 8 - 4)/(3n 8 - 3)} 
a[(l + 3nsk;/(6n 8 - 8))/nsJl/2 

If the fraction non-conforming is p the probability of acceptance is 
written 

where 

8P = [Zp- k 8 Y{(3n 8 - 4)/(3n 8 - 3)}]/{(1 + 3n 8k;/(6ns- 8))/n8 } 1/2 

and where Z P is defined by the relation 

<I>(Zp) = 1- p. 

12.4 ESTIMATION OF FRACTION NON-CONFORMING, 
SINGLE SPECIFICATION LIMIT 

12.4.1 Statement of the method, a known 

In sections 12.2 and 12.3 the decision rule used to sentence the batch 
depends on the value of the sample mean, as in (12.1). An alternative is 
to use the sample data to estimate the fraction non-conforming in the 
batch, and then sentence the batch on the basis of the estimated fraction 
non-conforming. 

If the measurements are normally distributed N(f.l, a) with a single 
upper specification limit U, the fraction non-conforming is the area 
under the normal curve to the right of U, 

Pu = <l>((f.l- U)/a) 

Since f.l is unknown, we can use the sample mean i as an estimate of f.l, 
and we might think of using 

<l>((i - U)/a) 

to estimate the fraction non-conforming. This is not the best estimate, 
and it turns out better to use 

Pu = <l>((x - U) 1( n )) 
a \j (n - 1) 

(12.16) 

where <l>(x) is looked up in standard normal tables, and similarly 

PL = <I>((L- .X) 1( n )) 
a \j (n - 1) 

(12.17) 

for a single lower limit. These estimates are 'uniformly minimum 
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variance unbaised estimates', and the derivation is given by Lieberman 
and Resnikoff (1955). 

For a single upper specification Iimit, we could accept provided 

Pu :'5 p* (12.18) 

for some chosen p*. Now if we denote by ZP the normal deviate 
corresponding to p, 

then (12.18) is equivalent to 

( (x - U)) !( n ) < _ Z • 
a \j (n - 1) - P 

or 

(12.19) 

In order for this procedure tobe identical to (12.1) we must have 

f((n - 1)) 
ka=ZP*\j n . (12.20) 

Similarly, for a single lower specification Iimit we obtain 

_ ( !((n - 1))) > x - Z p* \j n a - L. (12.21) 

This results in the following method summaries. An advantage of this 
approach is that the procedure involves a direct estimation of the 
fraction non-conforming, which is a meaningful quantity. 

METROD SUMMARY 12.3 

Inspection by variables, single specification limit, a known. Fraction 
non-conforming method 

Step 1 Determine na and ka using Method Summary 12.1. Also 
determine p* as the tail area normal probability cor
responding to 

Z p* = ka v'[n/(n - 1)]. 

Step 2 Calculate 

Pu= 4>((x ~ U) ~((n: 1))) 
for an upper specification Iimit 
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and 

ih =<I>( (L ~ i) ~((n: 1))) 
for a lower specification limit 

by using standardnormal tables of <I>(x). 
Step 3 Accept the batch if 

Pu s p* 

respectively. 

or 

12.4.2* Derivation of the estimate, a known 

The derivation (Lieberman and Resnikoff, 1955) is a Straightforward 
application of the Rao-Blackwelllemma. We are given a sample mean 
i based on n observations, and we assume a single upper specification 
limit U. We let y be dependent on the first observation, defining 

{
0 if x 1 s U 

y= 
1 otherwise. 

(12.22) 

Then a crude estimate of the fraction non-conforming is y, and this is 
clearly unbiased. Since i is the sufficient statistic, the uniformly mi
nimum variance unbiased estimate is given by 

ß = E(yjx) (12.23) 

by the Rao-Blackwell lemma. Now it is easily shown that the joint 
distribution of (y, x) is 

g(y, x) = 2n:av~- 1) exp{- 2:2 (<x- 11)2 + 7n ~ iK)}· 
Therefore the conditional distribution of y given i is 

h(yjx) = v(;n:)a exp { ;a~n-~)12)}~((n : 1)). (12.24) 

By using this we see that (12.23) becomes 

p = ( V(~n:) exp (- ~ )dt 
where 

This establishes the method given in Method Summary 12.3. 
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12.4.3 Statement of the method, a unknown 

This method follows using methods similar to the other cases. Unfortun

ately the mathematics involved is complex, and an extra approximation 

is necessary: see the derivation in th~ next section. 

METROD SUMMARY 12.4 

Inspection by variables, single specification Iimit, a unknown. 

Fraction non-conforming method 

Step I Determine n 8 and ks using Method Summary 12.2. Also 
determine p* as the tail area normal probability cor
responding to 

Z p* = ks Y(nj(ns - 1)). 

Step 2 Calculate Qs = (U- x)/s, or Q 5 = (x- L)/s for an upper 
or lower specification limit respectively. 

Step 3 Calculate 

P = 1 - <l>(AsQs) 

where A8 = Y{(2n 8 - 1)/(2n8 - QD} and accept the batch 

if ß < p*. 

12.4.4* Derivation of the estimate, a unknown 

The derivation of the estimate for the a-unknown case follows the same 

principles as for the a-known case of section 12.4.2. We again use the 
Rao-Blackwell lemma, and obtain a minimum variance unbiased esti
mate of ß, by taking expectations of an estimate based on the first 

observation y, (12.22). The sufficient statistics are now 

x = 'LxJn, 

(12.25) 

In order to do this calculation we need the joint distribution of (y, x, 

s2), and then the conditional distribution h(y lx, s2). The details are 

given in Lieberman and Resnikoff (1955), but the conditional distribu

tion is 

g(z) = r(n - 2) z[(n/2)-1]-1(1 - z)[(n/2)-1]-1 0::::: z ::::: 1 (12 26) 
{r(n - 2)/2} 2 ' · 

where z =! + (x- y)Yn/2s(n- 1). This is a symmetrical beta distribu-
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tion with both parameters {(n/2)- 1}, which we denote ß((n/2)- 1). 
The estimator is therefore 

lmax{O,(l/2)-(U-x)Vn/2s(n-l} ( n ) 
p = dß-- 1 

0 2 
(12.27) 

for a single upper specification Iimit, and 
~ (max{O,(l/2)-(x-L)Yn/2s(n-1) ( n ) 
P = Jo dß 2- 1 (12.28) 

for a single Iower specification Iimit. 
The approximation stated in Method Summary 12.4 was given by 

Wilrich and Hennings (1987) based on the work of Stange (1961). 

12.5 DOUBLE SPECIFICATION LIMIT, a KNOWN 

12.5.1 Double specification Iimits: discussion 

The design of sampling plans for double specification Iimits is rather 
more complicated than we might expect. The chief problern is that 
under certain combinations of (f.l, a), we can get non-conforming 
product at both ends of the range. This in turn means that we cannot 
simply combine two single specification Iimit plans, unless U and L are 
sufficiently far apart in terms of a. It also means, and this is a deeper 
point, that there is a limiting value of a such that whatever f.l, the 
quality is at best equal to that desired, and considerably worse for other 
values of f.1 and !arger values of a. Thus there is a limiting value of a 
such that batches can be rejected, whatever the value of the process 
mean. 

Large cr, poor quality 

u L 

Figure 12.5 Double specification Iimits. 
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Another important question concerns the decision rule to be used. It 
is clear that the key quantity is the total fraction non-conforming, 

p = p U + p L (12.29) 

and a decision rule can be formed on this basis, so that we accept 
provided p < p*, say. With this decision rule, the OC-curve depends 
not just on the true value of p, the fraction non-conforming, but also on 
the particular values of f1 and a. 

A Straightforward application of the rule (12.29), using (12.16) and 
(12.17), Ieads to boundaries in the (i, a) plane as in Fig. 12.6. The 
acceptance region is to the left of the boundary shown. 
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1t can be shown that the OC-curve for this type of plan is as given in 
Fig. 12.7, and the OC-curve is not a curve, but a very broad band. This 
is clearly unsatisfactory, and is a feature of most published plans up 
until 1988. This was studied by Bravo (1984) who proposed a couple of 
possible revisions, and Baillie (1988) advised of specific revisions to 
published plans. 
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The correct procedure is to use decision rule (12.29) coupled with a 
Iimit on the value of a. If it is desired to have plans with an AQL p 1, 

then if 
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(U - L)/2a > Z Pl/2 

then the batch quality is worse than the AQL anyway, even if the 
process mean is centred between U and L. The boundaries such as Fig. 
12.6 should therefore be terminated at the maximum process standard 
deviation 

aM = (U - L)/22 pJ/Z· (12.30) 

Same typical boundaries are shown in Fig. 12.8, and this results in much 
tighter bands of OC-curves, see Fig. 12.9. The acceptance region is to 
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the left of the boundaries; for further details, see Baillie (1988). Charts 
like Fig. 12.8, with accompanying tables, are being issued in the second 
edition of ISO 3951. 
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12.5.2 Statement of the method 

The method given here is based on the work of Bravo (1980, 1981, 
1984), Baillie (1988), Duncan (1974), and Schilling (1982). 
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METROD SUMMARY 12.5 

Inspection by variables, double specitication Iimit, a known 

Step I Choose a quality Ievel p 1 at which the probability of 
acceptance is required to be 1 - a, and a quality Ievel p 2 

at which the probability of acceptance is required to be ß 
(p 1 is smaller than p 2 and 1 - a is greater than ß). 

Step 2 Check that 

a :s aM = (U - L)/2Z pJ'l 

and reject the batch outright if this is not satisfied. 
Step3 Determine n 0 and ka using Method Summary 12.1. Also 

determine p* as the tail area normal probability cor
responding to 

Z p* = ka V[n 0 /(n 0 - 1)]. 

Step4 Calculate Z Po= (U- L)/2a, and find the value p 0 from 
normal tables. If 

Po :s p 1/4 use two separate single specification Iimit plans 

Po ;::: p 1 reject the batch without sampling. 

Otherwise, proceed to Step 5. 
Step5 Use the decision rule to accept if p < p*, where 

P =Pu+ PL 
and Pu and p L are given by (12.16) and (12.17). 

12.5.3 Derivation 

The reasoning behind the method is given in section 12.5.1. It is readily 
seen that the estimate of the combined fraction non-conforming is 

p=pu+PL 
where p u and p L are derived in section 12.4. 

When a is very small, the existence of, say the lower Iimit L, is 
irrelevant to determining the boundary in Fig. 12.8 for the upper 
specification Iimit. Therefore the boundaries in Fig. 12.8 must tend to 
(12.1) and (12.2) at small values of a. 

Finally, we restate the argument showing that the boundaries of Fig. 
12.6 leading to the OC-curve of Fig. 12.7, and are wrong. For any given 
a, there are Iimits for the mean, 

xL<x<xu 
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such that batches are accepted for values of .X between them. The 
OC-curve is therefore 

P(!l, a) = <I>{Yn(.Xu- !1-)/a}- <I>{Yn(.XL- !1-)/a} 

Now for values of a close to the apex of the curve in Fig. 12.6, the 
limits (.XL, .Xu) are very close together, and eventually identical. For any 
such value of a, the probability of acceptance is small or zero. 
Therefore the OC-curve has the general shape shown in Fig. 12.7; for 
further details see Baillie (1988). 

12.6 DOUBLE SPECIFICATION LIMIT, a UNKNOWN 

The general outline of sampling by variables for double specification 
Iimits and a unknown is rather similar to the discussion in section 12.5 
for a known and the derivation is similar to that discussed in section 
12.4.4, based on the work of Lieberman and Resnikoff (1955). Method 
Summary 12.6 depends on an approximation given by Wilrich and 
Hennings (1987). 

METROD SUMMARY 12.6 

Inspection by variables, double specification Iimit, a unknown 

Step 1 Choose a quality level p 1 at which the probability of 
acceptance is required to be 1 - a and a quality Ievel 
p 2(> p 1) at which the probability of acceptance is re
quired tobe ß. 

Step 2 Apply Method Summary 12.4 to both the upper and lower 
specification Iimits separately to obtain p u and p L respect
ively. (The n 5 and ks are identical.) 

Step 3 Accept the batch if 

Pu+ PL = P < ß*. 

12.7 MULTIVARIATE SAMPLING PLANS 

There are many situations where the conformity of a product depends 
simultaneously on several variables, and it is unsatisfactory to deal with 
these variables separately. For example, when considering the accuracy 
of firing a missile at a target, at least two dimensions must be studied 
simultaneously. Baillie (1987) has studied the multivariate case extens
ively for both the situations when the variables are independent and 
dependent. The dependent case is complicated, and needs special 
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computer software to run it, and will not be discussed further here. In 
contrast, the multivariate independent case is very simple, and can be 
dealt with by reference to previous Method Summaries. 

Let there be k variables, and denote the estimate for the fraction 
non-conforming in the jth variable by p j' where this estimate is 
obtained as in Method Summaries 12.5 or 12.6 for a known and 
unknown respectively. Then for independence, the estimate of the 
overall fraction non-conforming is 

k 

Po = 1 - f1(1 - Pi). (12.31) 
i=l 

The decision rule is to accept the batch if Po < p*, for some chosen p*. 
Baillie (1987) shows that the bands of OC-curves for this type of plan 

are narrow, particularly for a unknown, except for high AQL values in 
small sample sizes, and is independent of k. Therefore a plan is 
designed as for one variable only, but it is then used using the estimate 
(12.31). 

EXERCISES 12A 

1. Obtain a-known and a-unknown sampling plans for the sets of 
parameters shown in Table 12.1. 

Table 12.1 Parameter settings for sampling schemes 

P1 Cl' P2 ß 

0.01 5% 0.04 5% 
0.01 5% 0.03 5% 
0.01 2% 0.04 5% 
0.01 5% 0.04 2% 
0.02 5% 0.03 5% 
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Standard sampling systems 

13.1 INTRODUCTION 

A series of sampling systems have been developed during and since 
World War II for use in military contracts, and are now established as 
British, American and International Standards. They are all based on 
similar principles. 

The first step was that a table was drawn up which in effect fixes the 
relationship between batch size and sample size to be one of three or 
five purely arbitrary functions. The sample sizes were made to increase 
with batch size in a manner thought to be reasonable. 

Next the concept of acceptable quality Ievel (AQL) was introduced, 
but the actual definition of this differs in the different schemes. The 
Statistical Research Group tables (Freeman et al., 1948) fixed the AQL 
as the quality for which the probability of acceptance was 0.95. 
Unfortunately this has some undesirable consequences: since the sample 
size is already fixed, this automatically determines the sampling plan, 
and some rather large consumers' risks result. Other sampling systems, 
such as the US Army Service Forces tables (1944), MIL-STD-105 (A, B, 
C, D), and the British DEF-131 (Hili, 1962), have Iet the probability of 
acceptance at the AQL vary in a rather unsystematic way, so as to share 
the risks between producer and consumer more equitably. The most 
satisfactory definition of AQL is the one used in the current Interna
tional Standard, (ISO 2859), that it is the maximum percentage defect
ive which can be considered satisfactory as a process average. That is, 
the AQL is a property required of the product. The variation of the 
probability of acceptance at AQL is considerable, ranging from 0.80 for 
the lowest sample sizes to 0.99 for the largest. 

Finally, all of the defence sampling tables use switching rules. The 
idea is that watch is kept on the inspection results, and according to 
certain rules, a much stricter form of inspection called 'tightened' 
inspection is introduced if necessary. The introduction of tightened 
inspection produces a wholesale change of the OC-curve along the lines 
shown in Fig. 13.1. This puts considerable pressure on the producer, 
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since even goods of AQL quality would be rejected much more 
frequently. It should be clear that a major part of the quality assurance 
given by the schemes lies in the use of this switching rufe pressure tactic. 
A producer is forced to send goods of AQL quality or better, to have 
them accepted at a satisfactory rate, and to avoid tightened inspection. 

T N 

F raction defective 

Figure 13.1 OC-curves for normal (N) and tightened (T) inspection. 

The switching rules currently in use are as follows. 

(1) Normal to tightened inspection: When 2 out of 5 successive 
batches are rejected. 

(2) Tightened to normal inspection: When 5 consecutive batches are 
accepted at tightened inspection. 

It should be clear that the effect of the above rules is quite stringent, 
since it is rather more difficult to satisfy tightened inspection than 
normal. There are also switches to 'reduced' inspection, applicable when 
quality is very good. The rules used for switching have varied. Ideally, a 
watch should be kept on the process average, such as by a CuSum chart, 
but this was criticized as being too complicated. 

A good description of a modern scheme, tagether with some tables, is 
readily accessible in the paper by Hill (1962), to which readers are 
referred for further details. A complete description of the schemes, 
tagether with tables for use is given in the International Standard ISO 
2859 (see BS 6000 and 6001). The description of the procedures below is 
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based on the International Standards; for a list of Standards and their 
equivalents see Appendix C. 

There are two main criticisms of this approach. One obvious point is 
the arbitrariness of the batch-sample size relationship. There is no 
theoretical backing of any of the relationships used although they are 
'reasonable'. A rather more important criticism, however, is that the 
switching rules pressure tactic is not always practicable. There may not 
be an indefinite sequence of batches, and the consumer may not be in a 
position to exert much pressure on the producer. (A government 
department is usually in a different position.) However, in places where 
switching rules can be used, the defence sampling systems method pays 
off well. 

Double, multiple and sequential sampling plans are available in the 
international standards listed in Appendix C. In this chapter we only 
consider single sampling plans. 

13.2 STATEMENT OF METHOD FOR INSPECTION BY 
ATTRIBUTES 

The statement given below is a brief summary, and reference should be 
made to the appropriate standard for further details. 

METHOD SUMMARY 13.1 

Inspection by attributes using ISO 2859 (BS 6001) 

Step 1 Choose a sample size code letter appropriate to your batch 
size, using Table 13.1. (General inspection Ievel II is 
usually used.) 

Step 2 Choose normal, tightened and reduced sampling plans 
using Tables 13.2-4. 

Step 3 Operate the plans, starting with normal inspection, using 
the switching rules. 

Example 13.1 
If we have batch size = 2000, General inspection level II, then the Code 
letter is K. For an AQL of 1% the sample size is 125 and the 
acceptance numbers are: 

normal inspection, c = 3 
tightened inspection, c = 2. 

The reduced inspection plan is n = 50, c = 1. 
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Table 13.1 Sample size code letters 
Extracts from British Standards are reproduced with the permission of BSI. 

Lot or batch size Special inspection levels General instpection levels 

S-1 S-2 S-3 S-4 I II III 

2-8 A A A A A A B 
9-15 A A A A A B c 

16-25 A A B B B c D 
26-50 A B B c c D E 
51-90 B B c c c E F 
91-150 B B c D D F G 

151-280 B c D E E G H 
281-500 B c D E F H J 
501-1200 c c E F G J K 

1201-3200 c D E G H K L 
3 201-10000 c D F G J L M 

10 001-35 000 c D F H K M N 
35 001-150 000 D E G J L N p 

150 001-500 000 D E G J M p Q 

500 001 and over D E H K N Q R 

A good description of the inspection Ievels and how to choose them is 
given in the appropriate standard. The tables allow for 'defects per unit' 
as weil as percent defective, so the AQL values extend as shown. 

13.3 INSPECTION BY VARIABLES (ISO 3951) 

The method here is very similar to that described in the previous section 
for attribute inspection. There are two approaches: 

s method: for use when a is estimated; 
a method: for use when a is considered known. 

In each case methods are given for single or double specification Iimits. 
The notation used here is as given in Chapter 12. The plans given here 
are broadly equivalent to attributes plans with the same AQL, so an 
approximate comparison of sample sizes is easily achieved. In the tables 
below, only the s method is given, and for other tables see the full 
Standard. The double specification Iimits case used a chart in which 
(.X, s) or (.X, a) are plotted; only one such chart is given here, and again 
for more details see the full Standard. 
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298 Standard sampling systems 

METHOD SUMMARY 1302 

Inspection by variables, s method (ISO 3951) 

Step I Choose a sample size code Ietter using Table 13050 (Gen
eral inspection Ievel II is usually used 0) 

Step 2 Determine the sample sizes and acceptability constants ks 
for normal tightened and reduced inspection using Tables 
1306-13080 

Step 3 For a single upper specification Iimit U, accept the batch if 
Qu 2: k" where 

Qu == (U- x)/so 

For a single lower specification Iimit L accept the batch if 
QL 2: k 5 , where 

QL == (x - L)/so 

For double specification Iimits plot (x, s) in a specially 
prepared chart (see for example Figo 12o8)o 

Note 1t is essential to check the data for normality and for outlierso 

Example 13.2 
As an illustration we continue the problern given in Example 1301, with 
a batch size of 2000 and an AQL of 1% 0 For General inspection Ievel 
II, the appropriate code Ietter is Ko From Tables 1306-1308 we have 

normal inspection 
tightened inspection 

reduced inspection 

n == 50 
n == 50 
n == 20 

ks == 1.93 
ks == 2008 
ks == 1.690 

The saving in sample size over attribute inspection is seen to be very 
considerableo The a-known plans give an even greater saving, with a 
sample size of 17 for normal inspectiono Provided the assumptions hold, 
the variables and attributes plans give almost the same OC-curveo 

13.4 INTERNATIONAL STANDARDS FüR PROCESSAND 
QUALITY CONTROL 

A lot of work has been done in recent years in providing National and 
International Standards for the application of statistical methods to 
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industry. The standards cover a wide area, including terminology, 
sampling materials, data analysis, acceptance sampling and statistical 
process control. Students who propose to apply statistical methods to 
industry should have some knowledge of these standards, and an 
abbreviated list appears in Appendix C. 

Table 13.5 Sampie size code Ietters for inspection by variables. Extracts from the 
British Standards are reproduced with the permission of BSI. 

Lot size 
special inspection Ieveis General inspection Ievels 

S-3 S-4 I 

2-8 

I I. 9-15 
16-25 B 

26-50 c 
51-90 B D 
91-150 c E 

151-280 B D F 
281-500 c E G 
501-1 200 D F H 

1 201-3 200 E G I 
3 201-10 000 F H J 

10 001-35 000 G I K 

35 001-150 000 H J L 
150 001-500 000 I K M 
500 001 and over J L N 

• Use H for Iot size 281-400 and I for Iot size 401-500 
Notes (1) The code letters and inspection Ieveis in this 

standard correspond to those given in BS 6001; they 
arenot indentical with those given in MIL STD 414. 

(2) Symbol 

l There is no suitable sampling plan in this area; use 
the first sampling plan below or above the arrow. 
This refers to both the sample size and acceptability 
constant k8 (or kul· 

II 111 ... c 
B D 

c E 

D E 
E G 

F H 

G I 
H/1* J 
J K 

K L 

L M 
M N 

N p 
p t ..... 



Table 13.6 Single sampling plans for normal inspection (master table): 's' 
method. Extracts from the British Standards are reproduced with the permission 
of BSI. 

Sampie 
Acceptable quality Ieveis (normal inspection) 

Sampie 
size code size 0.10 0.15 0.25 0.40 0.65 1.00 

Ietter 

8 

c 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

p 

Notes (1) 
(2) 

(3) 

k, k, k, k, k, k, 

3 

l l I I • 4 1.45 

5 1 65 1.53 

r----
7 2 00 1 88 1 75 1.62 

t--
10 2.24 2.11 1.98 1.84 1.72 

15 2.42 2.32 2.20 2.06 1.91 1.79 -
20 2.47 2.36 2.24 2.11 1.96 1.82 

25 2.50 2.40 2.26 2.14 1.98 1.85 

35 2.54 2.45 2.31 2.18 2.03 1.89 

r----
50 2.60 2.50 2.35 2.22 2.08 1.93 

75 2.66 2.55 2.41 2.27 2.12 1.98 

100 2.69 2.58 2.43 2.29 2.14 2.00 

150 2.73 2.61 2.47 2.33 2.18 2.03 

200 2.73 2.62 2.47 2.33 2.18 2.04 

All AQL values are in percent defective. 
The code letters and inspection Ieveis in this standard 
correspond to those given in BS 6001; they are not identical 
with those given in MIL STD 414. 
Symbols • 
l} 

There is no suitable sampling plan in this area; use the first 
sampling plan below the arrow. This refers to both 
the sample size and acceptability constant k5 (or kcr). 

The plan given in this area gives a high degree of security 
but at the expense of a large sample. At the discretion of 
the responsible authority the next plan above the arrow may 
be used. 

The heavy lines indicate the boundary of the equivalent 
attribute sampling plans in BS 6001. 

1.50 2.50 

k, k, 

• 1.12 

r--
1.34 1.17 

1.40 1.24 

1.50 1.33 

1.58 1.41 

1.65 1.47 

1.69 1.51 

1.72 1.53 

1.76 1.57 

1.80 1.61 

1.84 1.65 

1.86 1.67 

1.89 1.70 

1.89 ~ 

4.00 6.50 10.00 

k, k, k, 

0.958 0.765 0.566 

1.01 0.814 0.617 

1.07 0.874 0.675 

1.15 0.955 0.755 

1.23 1.03 0.828 

1.30 1.09 0.886 

1.33 1.12 0.917 

1.35 1.14 0.936 

1.39 1.18 0.969 

1.42 1.21 1.00 

1.46 1.24 ~ 
1.48 12;; 1.05 

1:f 1.29 1.07 

1.29 1.07 1 



Table 13.7 Single sampling plans for tightened inspection (master table): 's' 
method. Extracts from the British Standards are reproduced with the permission 
of BSI. 

Sampie Acceptable quality Ieveis {tightened inspection) 

size code Sampie 
size 0.10 0.15 0.25 0.40 0.65 1.00 1.50 

Ietter 
k, k, k, k, k, k, k, 

B 3 

~J-l I I • c 4 1.45 

D 5 1.65 1.53 
r---

E 7 2.00 1.88 1.75 1.62 

r--
F 10 2.24 2.11 1.98 1.84 1.72 

G 15 2.53 2.42 2.32 2.20 2.06 1.91 1.79 

r---
H 20 2.58 2.47 2.36 2.24 2.11 1.96 1.82 

I 25 2.61 2.50 2.40 2.26 2.14 1.98 1.85 

J 35 2.65 2.54 2.45 2.31 2.18 2.03 1.89 

r--
K 50 2.71 2.60 2.50 2.35 2.22 2.08 1.93 -
L 75 2.77 2.66 2.55 2.41 2.27 2.12 1.98 

M 100 2.80 2.69 2.58 2.43 2.29 2.14 2.00 

N 150 2.84 2.73 2.61 2.47 2.33 2.18 2.03 

p 200 2.85 2.73 2.62 2.47 2.33 2.18 2.04 

Notes (1) All AQL values are in percent defective. 
(2) The code letters and inspection Ieveis in this standard 

correspond to those given in BS 6001; they are not identical 
with those given in MIL STD 414. 

(3) Symbols 

I 
u 

There is no suitable sampling plan in this area: use the first 
sampling plan below the arrow. This refers to both 
the sample size and acceptability constant ks (or krrl· 

The plan given in this area gives a high degree of security 
but at the expense of a large sample. At the discretion of 
the responsible authority the next plan above the arrow may 
be used. 

The heavy lines indicate the boundary of the equivalent 
attribute sampling plans in BS 6001. 

2.50 4.00 

k, k, 

• 1.12 

-
1.34 1.17 

1.40 1.24 

1.50 1.33 

1.58 1.41 

1.65 1.47 

1.69 1.51 

1.72 1.53 

1.76 1.57 

1.80 1.61 

1.84 1.65 

1.86 1.67 
f--

1.89 er ~ 

f89r 0 

6.50 10.00 

k, k, 

0.958 0.765 

1.01 0.814 

1.07 0.874 

1.15 0.955 

1.23 1.03 

1.30 1.09 

1.33 1.12 

1.35 1.14 

1.39 1.18 

1.42 1.21 

......... 1.46 1.24 

1A8 1.26 

1.51 1.29 

1.51 1.29 



Table 13.8 Single sampling plans for reduced inspection (master table): 
s method. Extracts from the British Standards are reproduced with the permis
sion of BSI. 

Sampie 
Acceptable quality Ieveis 

sizecode 
Sampie 

0.10 0.15 0.25 0.40 0.65 size Ietter 
k, k, k, k, k, 

8 3 

I c 3 
H- f- I-

D 3 

E 3 

1--
F 4 1.45 

f--
G 5 1.65 1.53 

1----
H 7 2.00 1.88 1.75 1.62 

...--
I 10 2.24 2.11 1.98 1.84 1.72 

J 15 2.32 2.20 2.06 1.91 1.79 

1----
K 20 2.36 2.24 2.11 1.96 1.82 

L 25 2.40 2.26 2.14 1.98 1.85 

M 35 2.45 2.31 2.18 2.03 1.89 

N 50 2.50 2.35 2.22 2.08 1.93 

p 75 2.55 2.4) 2.27 2.12 1.98 

Notas (1) All AOL values are in percent defective. 
(2) The code letters and inspection Ievels in this standard 

correspond to those given in BS 6001; they arenot identical 
with those given in MIL STD 414. 

(3) Symbols 

I 
u 

There is no suitable sampling plan in this area; use the first 
sampling plan below the arrow. This refers to both 
the sample size and acceptability constant ks (or k0 .}. 

The plan given in this area gives a high degree of security 
but at the expense of a !arge sample. At the discretion of 
the responsible authority the next plan above the arrow may 
be used. 

The heavy lines indicate the boundary of the equivalent 
attribute sampling plans in BS 6001. 

1.00 1.50 

k, k, 

=I-
1.12 

1.12 

1.12 

1.12 

1.34 1.17 

1.40 1.24 

1.50 1.33 

1.58 1.41 

1.65 1.47 

1.69 1.51 

1.72 1.53 

1.76 1.57 

1.80 1.61 

1.84 1.65 

2.50 4.00 6.50 10.00 

k, k, k, k, 

0.958 0.765 0.566 0.341 

~ 

0.958 0.765 0.566 0.341 

0.958 0.765 0.566 0.341 

0.958 0.765 0.566 0.341 

1.01 0.814 0.617 0.393 

1.07 0.874 0.675 0.455 

1.15 0.955 0.755 0.536 

1.23 1.03 0.828 0.611 

1.30 1.09 0.886 0.664 

1.33 1.12 0.917 0.695 

~ 
1.35 1.14 0.936 G 
1.39 1.18 ~ 0.745 

1--
1.42 er 1.00 0.774 

1--

~ 1.03 0.804 4 



14* 

Adaptive sampling plans 

14.1 BASIC DESCRIPTION AND AIMS 

In section 11.2.1 we drew a distinction between batch inspection and 
continuous production inspection, and we explained that the latter deals 
with the inspection of either truly continuous material such as nylon 
thread, or else of conveyorized production of separate items such as 
chocolate bars. The material of Chapters 11-13 relate to batch inspec
tion. However, a special set of inspection plans, usually known as 
continuous (or adaptive) sampling plans (CSP), has been introduced for 
use in continuous production inspection. 

The earliest CSP, introduced by Dodge (1943), has already been 
described in Example 11.4, and this plan is referred to as CSP-1. In 
CSP-1 there are two levels of inspection, 100% inspection and an 
inspection rate of 1/n, and there is a simple rule to determine when to 
change between these levels. Variations on this basic plan are either to 
use a more complex rule for changing inspection levels, or else to 
introduce more levels. 

One possible approach to continuous production inspection is to 
group the product artificially in batches. It is frequently necessary to 
group the material for transit purposes; these groups could be used as 
batches for inspection. However, any artificial batching may have 
unfortunate results. Firstly, the operation of artificially batched sampling 
plans can lead to the possibility of rejecting items not yet produced. 
Secondly, when inspection involves disassembly, or is time-consuming, 
many practical difficulties arise, such as Storage problems. Nevertheless, 
artificial batching of continuous output is used as a method of reducing 
the problems of designing inspection plans to that described in 
Chapter 11. In the present chapter we discuss sampling plans suitable 
when artificial batching is not appropriate. 

A producer operating a continuous sampling plan such as CSP-1 may 
have any or all of three different aims in view: 

(1) Product screening. The aim of this case has been emphasized 
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throughout Chapter 11. The product is to be sorted, usually into 
two grades, an acceptable grade and one which needs to be 
rejected or rectified. 

(2) Process trouble shooting. This was discussed in Chapters 5-10. 
Typically, the assumption is that product quality is occasionally 
disturbed by 'assignable causes of variation', which can be traced 
and eliminated. 

(3) Adaptive control. Here the inspection results are to be used to 
indicate the precise amount of any adjustment needed to the 
process in order to keep quality up to standard. 

The original work by Dodge (1943), and much work since, such as 
Dodge and Torrey (1951a), Lieberman and Solomon (1955), has empha
sized product screening although process trouble shooting is also in 
view. The term adaptive control was used by Box and Jenkins (1962, 
1963), but some earlier work by Girshick and Rubin (1952), Bishop 
(1957, 1960) and a large Iiterature on control theory is relevant. Savage 
(1959) designed a plan specifically for trouble shooting. General reviews 
of the Iiterature are given by Bowker (1956), Chiu and Wetherill (1973), 
Duncan (1974, Chapter 17), Liberman (1965), and Phillips (1969). 

14.2 CSP-1 AND THE AOQL CRITERION 

1t is convenient here to restate the CSP-1 sampling plan. 

CSP-1 Inspect every item until i successive items are found free of 
defects, and then inspect at a rate of one in every nth item. When a 
defective item is found, revert to 100% inspection, and continue until i 

successive items are found free of defects. 

Dodge required the sampling at a rate 1 in n to be carried out by 
stratified random selection so as to ensure an unbiased sample. In 
practice inspectors are likely to select approximately every nth item, but 
it is wise to vary this interval a little. 

The way that the CSP-1 and similar plans operate is to vary the 
inspection rate as quality varies. Clearly, a theoretical model is required 
to give a guide on how the inspection rate varies with p, for various 
choices of n and i. 

In most theoretical treatments of CSP-1 the following three assump

tions are made. 

Assumption 1 All defectives found during inspection are rectified or 
replaced by good items. 

Assumption 2 Inspection is perfect, i.e. mistakes in identifying defect
ives are never made. 
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Assumption 3 Theoretical calculations are made on the assumption that 
the process is producing defectives with probability p, and 
that the probability that any item is defective is indepen
dent of the quality of other items. 

Assumption 1 is often realistic, but if it is not, account of this can be 
taken in the theory. Assumption 2 is unrealistic and we shall have to 
discuss this later. Assumption 3 is effectively that the process is in a 
steady state and provided that we realize the implications, it is realistic 
enough to proceed with some simple theory. 

In the next section we show that on these three assumptions, the 
average fraction of production inspected is 

F(p) = 1/{1 + (n - 1)qi} (14.1) 

where q = 1 - p. On Assumption 1, the average outgoing proportion 
defective is therefore 

Outgoing proportion defective = p {1 - 1 . } 
{1 + (n - 1)q'} 

p(n - l)qi 
(14.2) 

It should be stressed that this formula assumes a constant p; if p has, 
say, a cyclic variation, quite a different result will hold. 

Now (14.2) has approximately the shape shown in Fig. 14.1. For low 
p, the outgoing proportion defective is low. For high p, the average 

~ 
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c 

_Q ..... 
g_ 
~ 
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AOQL 

~----------------------------~~p-----
Proportion defective produced 

Figure 14.1 Operation of CSP-1. 
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fraction of production inspection is high, and again the outgoing 
proportion defective is low. For intermediate values of p, there is a 
maximum value to the average outgoing proportion defective for a given 
n and i, and this is defined as the average outgoing quality limit, 
AOQL. 

The AOQL is the maximum of (14.2), and by differentiation we find 
that this is at a value p = p1, where 

(i + 1)p 1 - 1 = (n - 1)(1 - p 1)i+l 

and by inserting this we find that the AOQL is 

AOQL = (n - 1)(1 - p 1)i+1ji 

which can be regarded as a function of n and i. 

(14.3) 

(14.4) 

Figure 14.2 shows approximately how the AOQL is related to n and 
i. Dodge suggested that a producer be asked to specify an AOQL, so 
that this sets a relationship between n and i. The final choice of n and i 
was to be made on practical considerations such as the work load on 
inspectors, and it may be best to have an i no greater than a small 
multiple of the number of units on the production line at any time. 

This method of designing a CSP-1 has certainly been used a great deal 
since Dodge suggested it. However, let us reflect on how artificial is the 
concept of the AOQL: 

AOQL = 3% 

AOQL= 1% 

10 15 20 25 30 35 40 45 50 55 60 

Figure 14.2 Relation between AOQL, n and i. 
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(1) The AOQL is an upper limit to the proportion defective only in a 
long-run average sense. In the short run, a sudden deterioration of 
quality could Iead to a large nurober of defectives being passed 
before a defective was found on inspection. This should clearly be 
bornein mind when choosing n; see section 14.4. 

(2) We have made Assumption 3, that the process is in control. If the 
process has varying quality, with changes exactly in phase with 
changes in the inspection Ievel, the AOQL no Ionger applies. 

(3) The quality, p, of the uninspected production process at which the 
AOQL is obtained may be known to occur only very rarely. 

(4) We have made Assumption 2. If defective items are only recogn
ized with a probability of, say 0.90 or 0.95, Fig. 14.1 does not 
apply, and instead we have Fig. 14.3. This situation is therefore 
likely to make nonsense of the whole AOQL concept. Hili (1962) 
has stressed that the AOQL concept is particularly sensitive to the 
assumption that inspection is perfect. 

Proportion defective produced 

Figure 14.3 The CSP-1 when inspection is not perfect. 

Notwithstanding these cntlcisms, it should be emphasized that the 
CSP-1 has been successfully designed and used in the way Dodge 
suggested, although there is clearly a need for other design criteria. 

14.3 THEORY OF CSP-1 

In this section we derive the theory of CSP-1 on the three assumptions 
stated in the previous section. 

The first step is to break up the run of inspected items at every 
defective. Dodge calls these short sequences 'terminal defect sequences', 
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and the following are examples; 0 stands for a good item and X for a 
defective (Table 14.1). 

Table 14.1 

Sequence Probability Length 

X p 1 
OX pq 2 
0 0 X pq2 3 

00 ... 0 X pqi (i + 1) 

Once a defective has been observed, 100% inspection is started and 
continued until a sequence of i good items is observed. Before this 
occurs, a series of terminal defect sequences may occur of length less 
than or equal to i. The probability of a terminal defect sequence of 
length less than or equal to i is 

i-1 

LPqr = 1 - qi = P, say. (14.5) 
r=O 

The number of terminal defective sequences in a run of 100% inspection 
has a geometric distribution (1- P)P', r = 0, 1, 2, ... ; the average 
number of such sequences is therefore 

E(l) = 'Lr(1 - P)P' = P/(1 - P) = (1- q;)jqi. (14.6) 

Now the average length of a terminal defect sequence of length less 
than or equal to i is 

T = 1 ~( ) r _ 1 - qi(1 + pi) 
---.-.6 r + 1 pq - . . 
(1 - q') r=O p(1 - q') 

(14.7) 

The average length of a run of 100% inspection is therefore 

(14.8) 

The number of periodic samples taken in between runs of 100% 
inspection has the geometric distribution pqr- 1, r = 1, 2, . . . . The 
average number of items passed in such an interval is therefore 

n'Lrpq'- 1 = n/p. (14.9) 
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The average number of items produced between the start of success
ive runs of 100% inspection is therefore 

(1 - q;)jpq; + n/p 

while the amount inspection in such an interval is 

The average fraction inspected is therefore 

F = (1 - q;)jpq; + 1/p = 1 
(1 - q;)jpq; + n/p 1 + (n - 1)q; 

(14.10) 

This is the formula quoted in (14.1), from which (14.2)-(14.4) follow. 
When interpreting this result, reference should be made to the 

criticisms listed at the end of the previous section. 

14.4 THE AEDL CRITERION 

In section 14.2 we remarked that if there was a sudden deterioration of 
quality, a number of defective items could be passed by the CSP-1 
before 100% inspection was instituted. Hillier (1964) proposed another 
measure, the average extra defectives limit (AEDL), the purpose of 
which is to put a limit on the average number of defectives passed upon 
such a deterioration of quality. The AEDL criterion can be used along 
with the AOQL to select a particular CSP-1. 

Suppose a process is producing defectives with probability p 0 , and 
suddenly it changes to producing defectives with probability p 1 > p 0 • Let 
D be the number of uninspected defectives among the next L items 
after this deterioration of quality. Then for an AOQL of 8, the average 
extra number of defectives passed above the limit prescribed by the 
AOQL is 

{E(D)- 8L} 

and this will be a function of p 0 , PI> and L. The AEDL, written DL, is 
defined as 

DL = max {E(D)- 8L}. 
po,p~oL 

(14.11) 

For the CSP-1, Hillier shows that (14.11) achieves its maximum for 
p 0 = 0, p 1 = 1, and L = L *, where 

(14.12) 

Hillier shows that the AEDL for CSP-1 is then 
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DL= (n- 1){1- { n: 1 r·}- 8L* if L* > 0 

=0 if L * ::::; 0. (14.13) 

In a particular case there may be reason to use a value of L other 
than (14.12), for example, if items are packaged in batches of a given 
size. This draws attention to the fact that the AEDL is a number of 
defectives calculated over a somewhat arbitrary length of production. 

The other criticisms of the AOQL criterion made at the end of 
section 14.2 will be found to apply also to the AEDL. In particular the 
values p 0 = 0 and p 1 = 1 at which the AEDL is calculated are both 
rather unlikely values for the proportion defective. However, the use of 
the AEDL tagether with the AOQL would seem to be a better method 
of choosing a particular CSP-1 than the use of the AOQL alone, and 
Hillier gives a simple example. The AEDL provides a method of 
choosing n, by using (14.13). 

Hillier suggests that this method of choosing a CSP-1 can be improved 
further if account is taken of the probability distribution of D for given 
values of L. It would then be possible to make the probability that D is 
less than a given number to be greater than a specified value. See 
Hillier (1964) for details of this method. Unfortunately there is very 
little published information on the probability distribution of D; see 
Hillier (1961, 1964). 

14.5 DECISION-THEORY APPROACH TO CSP-1 

Anseambe (1958) gives a critique of the AOQL approach to choosing a 
CSP-1, and discusses an approach based on costs. He pointsout that the 
AOQL concept is very artificial, and would not usually correspond to 
what a user required of a continuous sampling plan. The problern is 
basically an economic one of balancing inspection costs against the costs 
of passing defective items. The usual objection to an economic approach 
is that the cost data may be difficult to obtain. However, Anscombe 
says: 'What is important is that we realise what the problern really is, 
and solve that problern as weil as we can, instead of inventing a 
substitute problern that can be solved exactly but is irrelevant.' If the 
cost of passing defectives is known only roughly, then an approximate 
solution to the problern will be satisfactory, provided we are solving the 
real problem. 

Admittedly, there are other aims in inspection besides the strict 
economic aim of limiting the amount of bad material passed, but this 
aim is likely to be the over-riding one. The approach adopted by 



Decision-theory approach to CSP-1 311 

Anscombe requires very little economic information, but this small 
amount is vital. 

We shall again make the three assumptions listed in section 14.2. Let 
the cost of inspection be k cost units, where the unit of costs is the 
excess cost of passing a defective item above the cost of rectifying it or 
replacing it during inspection. The cost of 100% inspection is therefore 
k per item produced, and the cost of passing production without 
inspection is p per item produced. By this model therefore, it would be 
best to carry out 100% inspection if k < p, and best not to inspect at all 
if k > p. In practice the proportion defective, p varies, and a sampling 
plan is operated. 

If we operate a CSP-1, the cost ofthisplan per item produced is 

or 

C = (cost of inspection) + (cost of passing defective items) 

= k x (fraction inspected) + p x (fraction not inspected) 

C = Fk + (1 - F)p (14.14) 

where Fis given by (14.1). As indicated above, the best possible action 
if we knew p is 

for p < k, C = p (F = 0 in (14.14)) 

and 

for p > k, C = k (F = 1 in (14.14)). 

The excess cost A.C over the best possible action is therefore 

_ { (k - p )F p < k 
A.C - (p - k )(1 - F) p > k" (14.15) 

Anscombe now simplifies the problern by inserting an arbitrary rule 
which appears to be near optimum. Since the best possible action 
changes from no inspection to 100% inspection at p = k, it is reasonable 
to choose F = ~ whenp = k. By inserting this rule into (14.1) we obtain 

(n - 1)(1 - k); = 1 (14.16) 

which can be used to calculate i for a given n and k. If k is given, there 
remains only one parameter of the CSP-1, namely n, which we wish to 
optimize. 

The next step is to find the average value of A.C over the process 
curve for p, assuming that p varies slowly enough for (14.2) to remain 
valid. Anscombe introduced a further approximation here, by using a 
uniform distribution for p in the range (0, 2k). (If the variation of p 
does not span the point p = k, the optimum will be either no inspection 
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or 100% inspection. Furthermore it turns out that for a wide range of 
distributions the value of E(.!lC) obtained is not very different from that 
obtained under the uniform distribution.) By numerical integration, 
Anscombe now checks that the empirical formula 

E(.!lC) = 0.3k/Yn (14.17) 

holds very well. 
In order to be able to determine an optimum for n we must introduce 

one further factor in the costs. Equation (14.17) will give an approxi
mation to the long-run costs of a CSP-1 at a stable value of p. When p 
changes, a further cost arises, called a transition cost. This is the cost of 
the extra defectives passed after a sudden deterioration of quality, and 
before the CSP-1 changes to 100% inspection. If p changes suddenly 
from a very small value to a very large value, at a random point in an 
inspection interval, then on average slightly less than n/2 defectives will 
be passed. Anscombe showed that n/2 is a good approximation to the 
average transition cost under more general conditions. 

lf sudden deteriorations of quality occur on average once in every M 
items produced, the average transition costs are n/2M per item pro
duced. 

The total cost of operating the CSP-1 is therefore approximately 
0.3k n 
Vn + 2M (14.18) 

and by differentiating we find that the optimum choice of n is 

n = (0.3kM) 312 • (14.19) 

In obtaining this result we have used the rule f = ! at p = k, the 
uniform distribution as an approximation to the process curve, the 
empirical approximation (14.17), and the approximations to the transi
tion costs. Further investigation shows that none of these approxima
tions have much effect on the solution. The important quantities are M, 
the average interval between sudden deteriorations of quality, and 

k = cost of inspecting an item 
excess cost of passing a defective 

It is interesting that in the methods suggested earlier in this chapter 
for choosing a CSP-1, neither k nor M were mentioned, and these are 
the quantities upon which an optimum solution strongly depends. 

14.6 MODIFICATIONS TO CSP-1 

Over the years various modifications have been suggested to CSP-1. 
Dodge and Torrey (1951a) suggested the following two plans: 
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CSP-2 Proceed as in CSP-1 except that, once partial inspection is 
instituted, 100% inspection is only introduced when two defectives occur 
spaced less than m items apart. 

This plan is less likely to revert to 100% inspection because of 
isolated defectives than is the CSP-1, and the number of abrupt changes 
of inspection Ievel will also be reduced. However, there is a higher risk 
of accepting short runs of poor quality, and so CSP-3 is suggested. 

CSP-3 Proceed as in CSP-2 except that when a defective is found, the 
next four items are inspected. 

The theory of these two plans follows a similar pattern to the theory 
given in section 14.3 for CSP-1, although in each case it is more 
complicated. 

Another line of development attempts to devise plans which guaran
tee an AOQL without assuming statistical control of the process. The 
starting point of these investigations is a paper by Lieberman (1953), 
who examined the AOQL of the CSP-1 without the assumption of 
control. It is not difficult to see that this is attained by a process which 
produces good items throughout periods of 100% inspection, and 
defectives throughout periods of partial inspection. Periods of 100% 
inspection are therefore exactly i items long, and the average number of 
items produced between the start of such periods is (n + i). One 
defective item will be inspected, and consequently replaced by a good 
item. The average fraction defective remaining after inspection is 
therefore (n - 1)/(n + i), which can be considerably greater than (14.2). 
For a formal proof of this formula, see Derman et al. (1959). When 
interpreting this result, however, it is important to take note of the 
pathological nature of the production process model which produces it. 

Derman et al. (1959) present two variants of CSP-1 which have 
improved properties when control is not assumed. 

CSP-4 Proceed as in CSP-1 except that partial inspection is carried out 
by separating production into segments of size n, and taking one item at 
random from each segment. When a defective is found, the remaining 
n - 1 items in the segment are eliminated from the production process, 
and 100% inspection started with the first item of the following 
segment. 

The idea of CSP-4 is that there is a reluctance to pass a segment of 
production in which a defective is found. Items eliminated from the 
production process might be sorted and the good items used as a stock 
for replacing defectives found in inspection. A more realistic plan would 
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be to allow the good items from this 'eliminated' segment to be passed, 
and so we have CSP-5. 

CSP-5 Proceed as in CSP-4 except that all items in a segment in which 
a defective is found are sorted. 

The modifications given in CSP-4 and CSP-5 result in a more 
complicated set-up when control is not assumed. The production process 
model giving the AOQL is no Ionger the trivial one described earlier for 
CSP-1. The theory is not simple, and we refer readers to the source 
paper. In practice, Derman et al. (1959) suggest that CSP-4 and CSP-5 
plans should be chosen using the CSP-1 formula derived under the 
assumption of control. 

Another important type of plan is the multilevel plan, discussed by 
Lieberman and Solomon (1954), and weshall designate this MLP-1. 

MLP-1 Proceed as in CSP-1 except as follows. If in partial inspection i 
successive items are found free of defects, reduce the inspection rate 
from 1/n to 1/n 2• In this way, several inspection Ievels can be used. 
When a defective is found, revert to 100% inspection. 

Usually MLP-1 will be used with between two and six Ievels. 
Lieberman and Solomon (1954) obtained the AOQL for two Ievels and 
for an infinite number of Ievels, and gave a method of interpolation for 
other Ievels. Clearly, a whole range of different types of multilevelplan 
is possible, but no systematic study of the possibilities seems to have 
been undertaken. 

In nearly all of the work an AOQL approach is adopted, and the 
AEDL criterion has only been applied to CSP-1. Anscombe's decision
theory approach, described in section 14.5, has not been extended to 
cover other plans. That is, with very few exceptions, Dodge's original 
formulation of the continuous inspection problern has not been ques
tioned. 

Read and Beattie (1961) give a plan of the same general type as 
CSP-1, but modified to fit their practical conditions. The inspection rate 
on line is held constant, and the product is artificially batched. Depend
ing on the results of inspection, some batches are set aside for 100% 
inspection later. This plan forms a link between the Dodge type 
continuous inspection plans, and batch inspection plans discussed ear
lier. 

A collection of continuous sampling plans, indexed for use as a 
United States Army military standard, is available as MIL-STD-1235 
(ORD). This standard is currently being revised, and for a description 
and discussion of the revision principles see Banzhaf and Bruger (1970), 
Duncan (1974), and Grant and Leavenworth (1972). 
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14.7 PROCESS TROUBLE SHOOTING 

So far we have been concentrating mostly on the product Screening 
aspect of continuous inspection. Girshick and Rubin (1952), in an 
important paper, gave a Bayes approach to process trouble shooting, 
and we briefly describe their theory below. 

The production process is assumed to be either in a good state (state 
1), or a bad state, (state 2). After every item produced there is a 
probability g that the process will move from state 1 to 2, but once in 
state 2, the process remains in that state until it is brought to repair. 
Girshick and Rubin derive an optimum rule for deciding when to put 
the process in repair. If the process is put into repair when it is in state 
1, it is said to be in state 3, and if it is put into repair from state 2, it is 
said to be in state 4. When the process is put into states 3 or 4, it 
remains there for ni time units, j = 3, 4, where one time unit is the time 
for one item tobe produced. Two cases are considered: 

(1) 100% inspection is operated and the problern is merely to find the 
optimum rule for deciding when to put the process in repair. 

(2) Sampling inspection can be used, so that the optimum rule must also 
specify when items aretobe inspected. 

These two cases are discussed separately below. 
The quality of each item produced is represented by a variable x, and 

the probability density function of x is taken to be [j(x), j = 1, 2, for 
states 1 or 2 respectively. The value of an item of quality x is V(x), and 
the cost per unit time of the repair states is ci, j = 3, 4. The model is 
now precisely defined, and we have to find the decision rules which 
maximize income per unit time. This model is sufficiently general and 
realistic to be used as a means of comparing various continuous 
inspection procedures, but no such comparisons have yet been made. 

When the production process is in use, the vital question is to decide 
whether it is in state 1 or state 2. Clearly, the optimum decision rule will 
depend on the posterior probability that the next item will be produced 
in state 1. For case (1) above and when the kth item has just been 
inspected this probability is 

(14.20) 

where q 0 = 1 - g. (The denominator is the probability that x k is 
observed, and the numerator is the probability that xk is produced in 
state 1, and that the process remains in state 1 for the (k + 1)th item.) 

Girshick and Rubin showed that the optimum rule is to put the 
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process in repair whenever q k :s; q *. This is equivalent to putting the 
process in repair whenever zk ~ a*, where 

Z 0 = 0, (14.21) 

and 

(14.22) 

The parameter a* has to be chosen to maximize income per unit time, 
and this involves solving an integral equation. 

When sampling inspection can be used, the argument and result are 
very similar. The optimum rule is again defined in terms of Zb where 
Yk is given by (14.21) if the kth item is inspected and by 

Yk = (1 - g)-1 (14.23) 

if the kth item is not inspected. Girshick and Rubin show that the 
optimum rule is to inspect items whenever 

b* :s; zk < a*, 

to put the process in repair when zk ~ a*' and to pass production 
without inspection whenever Zk < b*. Again the constants b* and a* 
have to be chosen to maximize income per unit time, and this involves 
solving integral equations. 

In both cases the integral equations are very difficult to solve, and 
detailed calculations do not appear to have been carried out. 

14.8 ADAPTIVE CONTROL 

There is now a very large Iiterature on control theory, and this text 
would be incomplete without a brief introduction to it. Those interested 
in pursuing the topic further should read the general accounts by 
Bamard (1959), Lieberman (1965), White (1965), Box and Jenkins 
(1962, 1976), and Pandit and Wu (1983) and the references contained in 
these. The following account is largely based on Box and Jenkins 
(1962). 

Suppose a process is sampled at equal time intervals, and that 
provided no adjustments are made to the process the observation at the 
jth sample point is 

Zj = (Jj + uj, 

where uj are the errors which are normally and independently dis
tributed with a variance a~ and (Jj follows some stochastic process. 

Adjustments can be made to the process at each sample point, and 
the aim of these adjustments is to keep (Jj at a target value, which we 
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rnay without loss of generality take to be zero. If the total adjustrnent 
applied at the jth sarnple point is Xi, the observation rnade is the 
apparent deviation frorn the target value, which is 

ej = Zj - Xj = (}j - Xj + Uj = Ei + Uj, 

where ei is the actual deviation frorn the target value. 
Suppose adjustrnents have been rnade on sorne basis or other, and 

that we have data X 1, X2, X 3, ... , Xi, and e1o ez, e3, ... , ei, then our 
problern is to determine the incrernent xi+l to apply to the adjustrnent at 
the (j + 1)th sarnple point, so that the total adjustrnent is then 

xj+l = xi + xj+l· 

We are assurning, of course, that adjustrnents can be applied at every 
sarnple point without extra cost. 

Let the loss caused by an actual deviation frorn target of ei be 
proportional to ef; then we rnust deterrnine xi+l to be a linear function 
of ei, ei_1, ••• , which rneans that we rnust determine xi+l• 

00 

(14.24) 

where the w,s are chosen so that oj+l is the rninirnurn rnean square 
error estirnate of (}i+l· In fact the central problern as stated here is seen 
to be equivalent to the problern of predicting the corning value of (}i+l· 
The problern can therefore be restated as the problern of deterrnining 
weights 1-lr so that 

00 

(Jj+l = L 1-lrZj-r (14.25) 
r=O 

is the rninirnurn rnean square error predictor of (}i+l· (Again, a linear 
function is assumed for sirnplicity.) This irnplies, of course, a relation
ship between the w,s and the tJ,S. 

So far we have said nothing about the stochastic process to be 
assurned for Oi, and it would be unrealistic to assurne that it was 
stationary. Suppose that (}i can be separated into two cornponents, 

(Ji = mi + lj>i, 

where mi is a sequence of known rneans, and where lj>i is a first-order 
autoregressive process, 

4>j+l = plj>j + 'Y/j 

where the 'Y/i are independently and norrnally distributed with a variance 
a;. In a practical case the mi would not be known, but we first obtain 
the optirnurn weights assurning thern to be known. 
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A further simplification is introduced by assuming the weights f.lr to be 
zero for r :::::: h, for some specified h. With these assumptions the 
covariance matrix of zj = (Zj, Zj-b ... , Zj-h+ 1) is 

.. '] ... 

where a~ = a~/(1 - p2). 

Box and Jenkins (1962) show that the weights f.lj which give the 
minimum mean square error predictor are 

", = r- 1p (14.26) 

where p' = (f.lo, f.11 , ••. , f.lh- 1) and p' = (p, p2 , ••. , ph), and where we 
use the estimate 

h 

8j+1 = mj+1 + Lf.l,(Zj-r - mj_,). (14.27) 
r=O 

Now if the mj are not known, we shall have to use the estimate 
(14.25), and there will be a bias. However, if the mj follows a 
polynomial of degree k, constraints can be imposed on the weights f.lr so 
that the bias is zero. The optimum weights can now be found subject to 
these constraints, but the result is rather complicated to state, and we 
refer the reader to Box and Jenkins (1962). The authors evaluate the 
optimum constrained predictors for some simple cases, and show that 
they aresuchthat a good approximation to the optimum change xj+1 is 

Xj+1 = Y-1~ej + Yoej + Y1Lej-r (14.28) 
r=O 

or a simple generalization of it. Box and Jenkins then examine the 
stochastic process for which an adjustment of the type (14.28) would be 
optimum, and they consider methods of estimating the parameters of 
this process from data. All this theory therefore leads to the following 
empirical approach; a process model is fitted to past data, so determin
ing a set of parameters y _1, y0 , y b ... , and then an adjustment of the 
type (14.28) is used, inserting the fitted parameters. An interesting 
paper by Hunter (1986) shows the value of the exponentially weighted 
moving average in this context. 

The discussion in Box and Jenkins (1962) is more general than the 
discussion given above, but the authors state that some of the more 
general results are unlikely to be used because of their complexity. In a 
subsequent paper, Box and Jenkins (1963) again consider the above 
problem, but with the introduction of a cost for being off target and a 
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cost for making a change; the optimum plan then involves making 
adjustments to the process less frequently. 

Further developments would be of interest. For example, it may be 
desirable to vary the inspection rate depending upon the results. 
Another point which does not seem to be adequately cleared up is the 
relationship of the methods suggested in this section to adaptive control 
by CuSum methods, and some remarks by Barnard in the discussion of 
Box and Jenkins (1962) relate to this. Barnard suggests that CuSum 
methods may be preferred because of simplicity in cases where com
puters are not available to do the calculations, but that in certain 
circumstances, CuSum methods may be slightly better anyway. 

14.9 USE OF CuSum TECHNIQUES 

A general question is opened up by the closing remarks of the last 
section, relating to the possibility of basing continuous sampling plans 
on CuSum techniques. One such plan is given by Beattie (1968) in an 
important paper dealing with patrol inspection, when an inspector is 
asked to cover a large area of a factory taking small samples. 

One plan proposed by Beattie (1962, 1968) is as follows. The 
inspector makes periodic inspections and on each occasion he selects n 
items, finding d; defectives, i = 1, 2, .... A CuSum is now plotted for 
~(d; - k), where k is some reference value, as shown in Fig. 14.4. The 
stream of product is accepted while plotting is on the lower chart. When 
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Figure 14.4 A two-stage semi-continuous plan (a combination of CuSum charts). 
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the plot on the lower chart reaches the decision interval, the product is 
rejected, and plotting is started on the upper chart. Plotting on the 
upper chart continues until the decision interval is reached, when the 
stream of product is again accepted, and plotting on the lower chart 
restarted. 

The rejected product is separated into lots, and a single sample plan 
applied to each lot. The plan therefore operates in rather a similar way 
to the CSP-1. In general only periodic samples of size n are taken, but 
periods of acceptance sampling of lots are required, when quality 
deteriorates. 

Clearly, when acceptance sampling is being operated, a double or 
sequential sampling plan can be used instead of a single sampling plan. 

For theoretical purposes let us suppose that production is artificially 
separated into lots, and that m such lots pass in between inspection 
periods by the patrol inspector. In calculating ARLs, we shall use this 
lot size as a unit. 

The CuSum chart just described is similar to that described in 
section 7 .1. 7. Let z be the score on the lower chart and L (z, p) be the 
ARL for a starting score of z, where p is the proportion defective. Then 
by following the discrete analogue of (8.15) we have 

k-z h-l 

L(z,p) = 1 + L(O,p)2J(x) + "LL(x)f(y + k- z) (14.29) 
x=O x=l 

where 

which is the probability that x defectives are found in the first sample of 
size n. Equation (14.29) can be solved to obtain L(O,p). Similarly we 
can obtain the ARL L 1 (0, p) of the upper chart. The probability P, that 
lot inspection is not used, is then seen to be 

P 1(p) = L(O,p)j{L(O,p) + L 1(0,p)}. (14.30) 

If the lot inspection plan leads to acceptance with a probability P2(p), 
the total probability of acceptance is 

(14.31) 

If the sample size for the lot inspection plan is n 1 , the average sample 
number per lot inspected is 

ASN= n/m + n 1(1 - P 1). (14.32) 

Expressions (14.31) and (14.32) are functions of n, n 1
, h, h 1

, k, p, 
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and the acceptance number for the lot inspection plan. In choosing a 
particular plan Beattie suggests using OC-curve considerations, tagether 
with consideration of the average sample number (ASN) at the expected 
quality level. However, there are clearly other schemes for choosing a 
particular plan, and this aspect does not appear to have been thoroughly 
investigated. 

For further work on this type of use of CuSum charts see Beattie 
(1968), Prairie and Zimmer (1970), and Rai (1971); the last two of these 
references relate to inspection by variables. 

14.10 SKIP-LOT SAMPLING PLANS 

This chapter would not be complete without a brief mention of an 
important type of sampling plan introduced by Dodge (1956), see also 
Perry (1973). 

The idea is to use a combination of CSP-1 and a reference sampling 
plan. At the outset, the reference sampling plan is used on every batch. 
When i successive batches are accepted under normal inspection, we 
move to skip-lot inspection, in which only every nth batch is inspected. 
As soon as a batch is rejected normal inspection of every batch is 
resumed. The important feature of this plan is that it is self-adaptive, in 
varying the inspection load according to submitted quality. In this 
respect skip-lot plans are a competitor of defence sampling schemes, and 
for a comparison see Lenz and Wilrich (1978), and Lenz and Rendtel 
(1984). 

EXERCISES 14B 

1. Discuss how CuSum charts might be used for the continuous 
sampling problems mentioned in section 14 .1. 

2. Check the derivation of (14.3) and (14.4) from (14.2). 

3. Examine how the properties of CSP-1 (section 14.2) are altered 
when inspection is imperfect, and find the conditions under which 
there is a true maximum to the average outgoing quality. 

4. Examine numerically the relationship (14.16) for k = 0.05. 

5. Show that an approximation to (14.16) is 

ki =logen. 
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6. Make the three assumptions listed in section 14.2, and find the 
formulae equivalent to (14.1) and (14.2) for CSP-2 and CSP-3, when 
k = i. See Bowker (1956). 

7. Find qk in terms of Zk and g; see section 14.7. 

8. In the theory of section 14. 7, the quality x of each item is assumed 
to be observed exactly. What happens if the quality of each item is 
observed with error? 
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Some further topics 

15.1 COMPUTING 

15.1.1 Generalpoints 

In the early stages of learning SPC it is quite crucial that there be a 
hands-on pencil-and-paper approach. This is necessary in order that the 
topics be properly learned, to ensure that those studying gain the 
confidence necessary to apply the methods themselves, and in order to 
get the feel of data. In practice computer packages are often required 
for serious applications. One reason for this, for example, is that it is 
usually necessary to create a database of results to enable staff to 
pinpoint more easily the source of quality problems. A second reason is 
that the computational speed of a computer and its ability to generate 
graphics quickly allow several SPC methods to be carried out simultan
eously and transparently to the user. For example, simultaneaus diag
nostic checks for Normality, Shewhart chart and CuSum analysis, 
carried out automatically by computer, would be of great benefit, yet 
would be tortuous if attempted by hand. 

It should be noted that the sort of computer packages we refer to will 
most frequently be used by people who are not trained statisticians, who 
are not always clear about the appropriate techniques to use, and who 
are not aware of pitfalls. This implies certain general requirements of a 
good SPC package. 

There are two situations in which SPC can be carried out and which 
are fundamentally different. In turn, these situations require quite 
different computer solutions. 

One situation is where SPC is being used to monitor a process and 
give control action signals in 'real time'. Real time can have many 
meanings depending on the industry and process in question but is likely 
to apply where adjustments to the process must be carried out on a 
time-scale from seconds, up to about 10 minutes. Here the SPC im
plementation on computers must automatically warn of out of control 
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situations by visual and audible alarms. The SPC procedures are thus 
assessing process measurements as they are received via the instrument 
--computer interface. The need for real-time response poses further 
problems where there are many critical process variables to be con
trolled. Here an operator will require a computer screen or output 
device which continuously provides a current status report of all 
variables. In addition, the ability to request more detailed information 
on a specified variable is important. This information includes a control 
chart of recent data and perhaps an up-to-date assessment of capability. 

An SPC package designed for this function will either be a bespoke 
system which performs only that SPC methodology chosen by an SPC 
manager, for example X, a charts, or be a general SPC package which 
provides a wide range of options from which the preferred options have 
been selected and fixed by a responsible manager. 

Any SPC implementation which is not operated in real time, as 
described above, is not actually being used from process cantrot in the 
literal sense. SPC is frequently used for retrospective analysis of process 
data, though this could involve data only 15 minutes old or up to many 
hours. The use of this methodology by production managers to assess 
process performance over weeks or months is also a perfectly legiti
mate application of SPC. In fact this form of SPC application is most 
likely in process industries where knowing how to identify what has 
caused a problern and then responding with a control action can be very 
complex. 

A computer system for this form of SPC will operate with a data 
storage (management information) system. Examination of data will 
require the system user to request an appropriate period of production 
data and then SPC analysis will be initiated. Thus, in contrast to 
real-time applications, here SPC analysis is only instigated an demand 
and not automatically observation by observation. The purpose of SPC 
use by supervisors, foremen or quality engineers is likely to be to view 
Ionger-term trends in process performance and its capability which will 
stimulate process investigation studies. 

To carry out thorough analysis of process data a wide range of SPC 
and statistical tools will be required. The useful SPC system will 
therefore allow access to a suite of modules for distribution checking, 
analysis of variation, time-series analysis, multiple regression etc. To 
make full use of such facilities the SPC system should have an easy 
interface to the plant information system. Information data bases 
typically installed as part of process control computer systems often 
allow little facility to examine data collected. They operate as data 
sinks. Computerized SPC can give these data a raison d'etre! 



Computing 325 

15.1.2 Requirements for SPC packages 

Following the above discussion, we suggest the following requirements 
for a good SPC package. 

User interface. This needs to be very user friendly, and have adequate 
on-line help and guidance. An interface was designed at the University 
of Kent, UK, in connection with a multiple regression package, and a 
survey analysis program for the developing countries (W etherill et al. 
1985a, 1985b, 1986), although developments in computing would facili
tate improvements. 

Data structures. A considerable amount of research went into the design 
of the data structures for the survey analysis program referred to above. 
Similarly, the data structures and database for process control need to 
be carefully worked out, especially in the process industries where vast 
amounts of data on many variables accumulate rapidly. 

Validation of data input. A considerable amount of work has been done 
on data quality control in the survey analysis context. This work was 
started in Statistics Canada and the US Bureau of the Census and the 
work can be accessed through Wetherill et al (1985b), and Wetherill and 
Gerson (1987). The methods can be applied whenever there is an 
multivariate dataset in which relationships between the variables can be 
used for editing. In the survey analysis context, imputation is often 
used, and this would not normally be used in process control, but 
unusual records can be flagged for action. 

Expert system checking and guidance. The regression program referred 
to above contains built-in diagnostic checks for normality, outliers, 
multicollinearity, etc., the results of these checks being simple messages. 
A similar approach needs to be adopted for SPC to include checks for 
distribution, including normality, checks for long-term and short-term 
variation, autocorrelation, cyclic behaviour, etc. These checks should be 
transparent, and any messages simple. In addition, there should be 
built-in guidance using a rule-based expert system to Iead people to the 
correct choice of scheme. An approach similar to that used in Williams 
(1988) for experimental design, could be used. A simple guidance 
system for sampling inspection is discussed in W etherill and Curram 
(1984). 

Other points. It needs to be recognized that the SPC techniques 
themselves are only part of the story. An expert system is really 
required to assist in the problern of identification, problern analysis, and 
process capability stages. 
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15.1.3 Outline of an SPC system 

A brief outline of a basic SPC system is as follows: 

(1) Data acquisition and data editing. There should be adequate facili
ties to acquire data in various ways, including from automatic data 
collection devices. Simple editing and data transformation methods 
should be provided. Means of sampling from large data sets are 
also required. 

(2) Exploratory data analysis. The process capability analysis phase 
involves use of a range of EDA techniques, including CuSums. For 
the less experienced, some expert system features would be invalu
able here including automated methods of picking out outliers, 
turning points, and underlying relationships. 

(3) Distribution and model fitting. The package should be able to 
identify the appropriate model, check for normality, etc., and 
check for long-term and short-term variation and autocorrelation. 
The process capability can then be established. Where there is 
long-term variation, there needs to be a dialogue with the customer 
about this. It should not be simply 'assumed'. 

( 4) Choice of SPC techniques. At this stage the package should have 
an expert system section, using knowledge already gained, to help 
guide customers towards appropriate techniques and away from 
inappropriate ones. 

(5) Charting. Charting methods should cope with variable numbers of 
observations in groups, one-at-a-time data, and they should incor
porate automatic reassessment of process capability. Most process 
industry applications have many variables, and the package should 
be capable of monitaring many variables in parallel, each on 
several charts. 

(6) Reporting facility. Areport generating facility is required. 

This is a basic system. In a moderate-sized industry, database hand
ling problems frequently occur. Also, it has been clear at various stages 
of this book that the use of SPC is closely connected with the design of 
experiments, analysis of variance, regression, multivariate analysis and 
other statistical techniques. The package therefore needs smooth linking 
to suitable packages for these techniques. It is now possible to write 
software which is simple to use, and yet which does include validity 
checks, expert guidance, etc. Unfortunately, few existing packages come 
anywhere near this standard. In many cases it is even difficult to get 
them to produce the correct charts. 
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15.2 ECONOMIC APPROACHES TO THE DESIGN OF 
CHARTS AND SAMPLING PLANS 

1t is clearly recognized that the design of SPC charts and sampling plans 
is basically an economic problem, of balancing the costs of inspection 
effort against the costs of producing defective material. A great deal of 
research has been carried out into models and methods for designing 
charts and sampling plans from an economic viewpoint, mostly using a 
Bayesian approach. This field is omitted from the present text for 
several reasons: 

(1) A large part of the financial gain is obtained by applying the 
procedures as given. The extra benefit from applying economically 
optimum plans is often much smaller. 

(2) The economic design of the procedures usually requires the assess
ment of costs such as the cost of passing on defective material to 
customers, which can be very difficult to estimate. 

(3) The present volume is already large enough, and the extra material 
is highly mathematical. 

The work on economic approaches makes very interesting reading, 
and could be of value in the future, coupled with expert system 
approaches, and adequate algorithms to calculate and solve the equa
tions and formulae. Those interested should consult Chiu and Wetherill 
(1973), Wetherill and Chiu (1975), Chiu (1973) and Collani (1989). 

15.3 SOME FURTHER CHARTING METHODS 

15.3.1 Double CuSums 

Davies and Goldsmith (1972) introduce what they call 'Double 
CuSums', for the situation where the element size varies. For example, 
suppose that the planned production of some factory is constant for the 
next few months, then an ordinary CuSum chart can be used to check 
the differences of actual production from a target Ievel. However, with 
seasonally dependent products, the planned production would vary. This 
can be allowed for in a CuSum chart by letting the interval on the x-axis 
vary. 

Another example for Double CuSums is when the production of a 
commodity is subject to 'breaks', but that the production rate varies due 
to fluctuations in demand. A Double CuSum can be used to check for 
differences in the rate of the breaks. 

As a further example, suppose we have routine sampling inspection of 
discrete items, but that a multiple sampling plan is used because 
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inspection is expensive. For long-term monitaring of the fraction non
conforming a CuSum can be used, but the numbers of items sampled at 
each time point varies. 

The Double CuSum procedure is extremely simple. The x axis unit is 
allowed to vary to allow for the different numbers of units sampled, 
different planned production rates, etc. 

Let the x axis units be X; and the observations y;, and let T be the 
target value for the Observations for unit x. The double CuSum plots 

against 

The x's are usually measured without error, but the variance of the 
observations will usually depend on X;. The most common situation is 
given by 

V(y;) = X;a2. 

For scaling, it is necessary to pick on a typical X;, and scale the chart 
accordingly. For further information on double CuSums see Davies and 
Goldsmith (1972) or Bissell (1973). 

15.3.2 Regression control charts 

For the most part we have assumed that any process being controlled is 
basically stationary, apart from isolated out of control conditions. In 
practice this is sometimes not the case. For example, if a catalyst ages 
and has to be renewed, or if a tool wears and has to be replaced, then 
there will be a continuous trend in the results. 

One way of dealing with this is to estimate the regression, and put the 
action and warning lines either side of this, as in Figure 15.1. Another 
way of handling the problern is to take out the regression, or other 
fitted model, and plot the residuals. In this case it is also necessary to 
keep a plot of the actual means, since a series of small changes, 
modelled by a regression, could easily take the means beyond specifica
tion limits. In theory, complex models, including cycles and auto
correlated behaviour, can be handled the same way, but checks on the 
fitted model also need to be carried out. Models fitted by robust 
techniques appear to be most suited to such applications. 

15.3.3 Difference control charts 

Sometimes the results of tests vary from time to time, either due to 
environmental conditions, or due to the need to reset a testing ap
paratus each time. Grubbs (1946) suggested using the 'difference control 
chart' for such situations. 
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Time 

Figure 15.1 A regression control chart. 

The method is simply to keep some material to use as a 'standard'. 
Tests are then performed by sampling m units from the standard, and n 
units from current production. A control chart is then based on the 
difference between the standard and current sample means. 

If the sample means are i s and i c for the standard and current 
results, with individual variances a; and a~ respectively, then the 
quantity plotted is (is - ic), which has a variance 

V(.is - .ic) = (a;jm + aUn), 

and this is used in the construction of charts. 
When the difference control chart is used, the range or standard 

deviation chart is kept using current results only, as usual. 

15.3.4 Confidence interval charts 

As an alternative to ordinary control charts, a chart can be plotted with 
each sample mean, and its associated 95% or 99.8% confidence interval. 
The chart is regarded as giving an out of control signal whenever the 
confidence intervals cross specification Iimits. 

One advantage of these charts is that they give an accurate picture of 
our knowledge about a process mean. The width of the confidence 
interval is also of interest in showing how precise our knowledge of the 
process mean is. 
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15.4 MULTIVARIATE METHODS 

15.4.1 Hotelling's T2 methods 

It frequently occurs that material is judged on several variables simultan
eously, such as tensile strength in different directions, thickness, etc., 
and clearly these variables are likely to be related. 

Suppose we observe a vector variable x, with a mean vector p and 
covariance matrix I. Then Jackson and Morris (1957), Jackson (1959) 
and Jackson and Mudhaikar (1979) suggested using a plot of Hotelling's 
T2 values, where 

T2 = n(p0 - i)'I-1(Po - i) 

and where p0 is the target mean vector. Murphy (1987) shows clearly 
why such a plot is better than keeping parallel individual value plots. 
When the mean is on target T2 has a t distribution on p degrees of 
freedom, where p is the number of dimensions, so that an out of control 
signal is given when T2 > K, for some K. 

The difficulty with the T2 plot is that it gives no indication of which 
variable or variables are causing the problem. Jackson (1980) suggested 
keeping principal component plots and individual value plots as well, 
but this collection of plots can be very difficult to interpret. A better 
method is given by Murphy (1987), who suggests an approach based on 
discrimination, in which the variables are partitioned into a subset 
thought to be causing the problem, and then calculating the difference 
between the T 2 statistics based on full and subset variables. 

A key difficulty with these suggestions is that of using such plots in 
the plant control room or on the shop floor, but some developments of 
these methods may be easier to use and interpret. It should be noted 
that all T2 methods will be sensitive to the assumed value of the 
covariance matrix. 

15.4.2 CuSum methods 

Woodall and Ncube (1985) suggested keeping p independent CuSums, 
and simply taking action as soon as the first action signal occurred. With 
this structure, the run length is the minimum of p separate run lengths. 
The authors discuss the derivation of the ARL curve, and give some 
results for two variables. 

Healy (1987) shows that CuSums are simply sequential likelihood 
ratio procedures, and by using this derivation, CuSums are easily 
extended to the multivariate case. However, this approach gets back to 
one of the difficulties of T 2, of finding out which of the variables is 
causing the trouble. 
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It seems clear that further work needs to be done on multivariate 
charting methods. In the process industries the key multivariate problern 
is not that of charting, but of relating the product variables to the many 
process variables, and hence instituting some control. 



Appendix A 

Statistical tables 

Table 1 Cumulative distribution function of the standard normal distribution 
(a) For x in 0.1 intervals 

X p X p X p 

0.0 0.5000 1.3 0.9032 2.6 0.9953 
0.1 0.5398 1.4 0.9192 2.7 0.9965 
0.2 0.5793 1.5 0.9332 2.8 0.9974 
0.3 0.6179 1.6 0.9452 2.9 0.9981 
0.4 0.6554 1.7 0.9554 3.0 0.9987 
0.5 0.6915 1.8 0.9641 3.1 0.9990 
0.6 0.7257 1.9 0.9713 3.2 0.9993 
0.7 0.7580 2.0 0.9772 3.3 0.9995 
0.8 0.7881 2.1 0.9821 3.4 0.99966 
0.9 0.8159 2.2 0.9861 3.5 0.99977 
1.0 0.8413 2.3 0.9893 3.6 0.99984 
1.1 0.8643 2.4 0.9918 3.7 0.99989 
1.2 0.8849 2.5 0.9938 3.8 0.99993 



(b) For x in 0.01 intervals 

X p X p X 

1.60 0.9452 1.87 0.9693 2.14 
1.61 0.9463 1.88 0.9699 2.15 
1.62 0.9474 1.89 0.9706 2.16 
1.63 0.9484 1.90 0.9713 2.17 

1.64 0.9495 1.91 0.9719 2.18 

1.65 0.9505 1.92 0.9726 2.19 
1.66 0.9515 1.93 0.9732 2.20 
1.67 0.9525 1.94 0.9738 2.21 

1.68 0.9535 1.95 0.9744 2.22 
1.69 0.0545 1.96 0.9750 2.23 

1.70 0.9554 1.97 0.9756 2.24 
1.71 0.9564 1.98 0.9761 2.25 
1.72 0.9573 1.99 0.9767 2.26 
1.73 0.9582 2.00 0.9772 2.27 
1.74 0.9591 2.01 0.9778 2.28 
1.75 0.9599 2.02 0.9783 2.29 
1.76 0.9608 2.03 0.9788 2.30 
1.77 0.9616 2.04 0.9793 2.31 
1.78 0.9625 2.05 0.9798 2.32 
1.79 0.9633 2.06 0.9803 2.33 
1.80 0.9641 2.07 0.9808 2.34 
1.81 0.9649 2.08 0.9812 2.35 
1.82 0.9656 2.09 0.9817 2.36 
1.83 0.9664 2.10 0.9821 2.37 
1.84 0.9671 2.11 0.9826 2.38 
1.85 0.9678 2.12 0.9830 2.39 
1.86 0.9686 2.13 0.9834 2.40 

The function tabulated is 

i oo 1 
Pr( X > X) = --e -(l/2)x2 dx = P /100 

X V(21l') 

p 

0.9838 
0.9842 
0.9846 
0.9850 
0.9854 
0.9857 
0.9861 
0.9865 
0.9868 
0.9871 
0.9875 
0.9878 
0.9881 
0.9884 
0.9887 
0.9890 
0.9893 
0.9896 
0.9898 
0.9901 
0.9904 
0.9906 
0.9909 
0.9911 
0.9913 
0.9916 
0.9918 



Table 2 Percentiles of the standard normal distribution 

X 

p X p X p X 

50 0 10 1.2816 2 2.0537 
40 0.2533 6 1.5548 1 2.3263 
30 0.5244 5 1.6449 0.5 2.5758 
20 0.8416 3 1.8808 0.1 3.0902 
15 1.0364 2.5 1.9600 0.05 3.2905 

This table gives one-sided percentage points, 

P /100 = (_l_e -(l/2lx' dx. 
Jx Y(27T) 

The two-sided percentage appropriate to any x is 2P. 



Table 3 Percentage points of the t-distribution 

p 

Degrees of Probability in per cent 
freedom (v) 20 10 5 2 1 0.1 

1 3.08 6.31 12.71 31.82 63.66 636.62 
2 1.89 2.92 4.30 6.96 9.92 31.60 
3 1.64 2.35 3.18 4.54 5.84 12.92 
4 1.53 2.13 2.78 3.75 4.60 8.61 
5 1.48 2.01 2.57 3.36 4.03 6.87 
6 1.44 1.94 2.45 3.14 3.71 5.96 
7 1.42 1.89 2.36 3.00 3.50 5.41 
8 1.40 1.86 2.31 2.90 3.36 5.04 
9 1.38 1.83 2.26 2.82 3.25 4.78 

10 1.37 1.81 2.23 2.76 3.17 4.59 
11 1.36 1.80 2.20 2.72 3.11 4.44 
12 1.36 1.78 2.18 2.68 3.05 4.32 
13 1.35 1.77 2.16 2.65 3.01 4.22 
14 1.34 1.76 2.14 2.62 2.98 4.14 
15 1.34 1.75 2.13 2.60 2.95 4.07 
20 1.32 1.72 2.09 2.53 2.85 3.85 
25 1.32 1.71 2.06 2.48 2.79 3.72 
30 1.31 1.70 2.04 2.46 2.75 3.65 
40 1.30 1.68 2.02 2.42 2.70 3.55 
60 1.30 1.67 2.00 2.39 2.66 3.46 

120 1.29 1.66 1.98 2.36 2.62 3.37 
00 1.28 1.64 1.96 2.33 2.58 3.29 

This table gives two-sided percentage points, 

P/loo = 2{tcxlv)dx 

where f(x I v) is the p.d.f. of the t-distribution. 
For one-sided percentage points the percentages shown should be 

halved. 



Table 4 Percentage points of the x2 distribution 

Degrees of Probability in per cent 
freedom (v) 1 5 90 95 99 100 

1 0.03157 0.00393 2.71 3.84 6.63 20.83 
2 0.0201 0.103 4.61 5.99 9.21 13.81 
3 0.115 0.352 6.25 7.81 11.34 16.27 
4 0.297 0.711 7.78 9.49 13.28 18.47 

5 0.554 1.15 9.24 11.07 15.09 20.52 
6 0.872 1.64 10.64 12.59 16.81 22.46 
7 1.24 2.17 12.02 14.07 18.48 24.32 
8 1.65 2.73 13.36 15.51 20.09 26.12 
9 2.09 3.33 14.68 16.92 21.67 27.88 

10 2.56 3.94 15.99 18.31 23.21 29.59 
11 3.05 4.57 17.28 19.68 24.73 31.26 
12 3.57 5.23 18.55 21.03 26.22 32.91 
14 4.66 6.57 21.06 23.68 29.14 36.12 
16 5.81 7.96 23.54 26.30 32.00 39.25 
18 7.01 9.39 25.99 28.87 34.81 42.31 
20 8.26 10.85 28.41 31.41 37.57 45.31 
22 9.54 12.34 30.81 33.92 40.29 48.27 
24 10.86 13.85 33.20 36.42 42.98 51.18 
26 12.20 15.38 35.56 38.89 45.64 54.05 
28 13.56 16.93 37.92 41.34 48.28 56.89 
30 14.95 18.49 40.26 43.77 50.89 59.70 

The table gives the percentage points X:, where 
x2 

P /100 = Jo g(ylv) dy 

where g(y I v) is the probability density function of the X: distribution. 
For v > 30, v'(2r) is approximately normally distributed with mean 

(2v- 1) and unit variance. 
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The table gives for various degrees of freedom, v1, v2 , the values of F 
suchthat 

F 

p = 100!0 h(zlvl, Vz)dz 

where h(zlv1, v2) is the probability density function of the F-ratio. 

Table 6 Conversion of range to standard deviation 

n dn n dn n dn n dn 

2 1.128 6 2.534 10 3.078 14 3.407 
3 1.683 7 2.704 11 3.173 15 3.472 
4 2.059 8 2.847 12 3.258 16 3.532 
5 2.326 9 2.970 13 3.336 17 3.588 

An estimate of a of a normal population can be obtained by dividing 
the range of a sample size n, or the average range of a set of samples of 
the same size n, by dn. 

Table 7 Percentage points of the distribution of the relative range 
(range/a) 

Sampie 
size 0.1 1.0 2.5 5.0 90 95.0 97.5 99.0 99.9 

2 0.00 0.02 0.04 0.09 2.33 2.77 3.17 3.64 4.65 
3 0.06 0.19 0.30 0.43 2.90 3.31 3.68 4.12 5.06 
4 0.20 0.43 0.59 0.76 3.24 3.63 3.98 4.40 5.31 
5 0.37 0.66 0.85 1.03 3.48 3.86 4.20 4.60 5.48 
6 0.54 0.87 1.06 1.25 3.66 4.03 4.36 4.76 5.62 
7 0.69 1.05 1.25 1.44 3.81 4.17 4.49 4.88 5.73 

8 0.83 1.20 1.41 1.60 3.93 4.29 4.61 4.99 5.82 

9 0.96 1.34 1.55 1.74 4.04 4.39 4.70 5.08 5.90 
10 1.08 1.47 1.67 1.86 4.13 4.47 4.79 5.16 5.97 
11 1.20 1.58 1.78 1.97 4.21 4.55 4.86 5.23 6.04 
12 1.30 1.68 1.88 2.07 4.28 4.62 4.92 5.29 6.09 



Table 8 Table of values sampled from a Normal distribution with mean zero 
and standard deviation one 

-0.73 -2.09 0.31 0.25 -0.92 -0.09 2.71 -0.14 
-0.17 -0.15 0.36 -2.19 -0.76 0.47 -1.44 -0.40 

0.40 -0.03 -1.50 -0.54 -0.29 -1.07 -0.41 0.14 
1.19 -0.18 0.56 -0.08 -1.66 0.23 0.87 0.62 
0.85 0.06 -0.08 -2.36 -1.42 1.30 0.08 -0.36 
1.18 1.23 0.76 -0.48 -1.88 0.12 0.58 0.20 

-0.29 0.46 -0.24 -0.54 -1.49 0.92 0.61 -2.14 
1.43 0.12 1.26 0.60 0.42 0.67 -1.34 0.03 
1.34 -0.85 1.26 -0.19 0.41 -0.14 0.32 1.19 
0.75 0.21 -1.04 0.61 0.20 0.25 1.01 1.13 

-1.07 -0.50 0.05 0.05 -1.60 -1.72 0.21 2.15 
0.53 2.73 0.76 -0.33 1.73 -0.10 -1.07 -0.57 

-1.52 0.36 -1.20 -1.33 -0.71 -1.73 -1.22 1.04 
-0.45 0.73 -0.07 1.50 0.84 1.76 -1.83 -0.60 
-0.87 0.86 2.03 -0.37 0.23 -2.30 0.20 -0.37 
-1.51 -1.70 0.81 -1.67 -1.75 0.35 0.19 -0.86 

1.01 0.12 -1.35 0.74 -1.84 -0.18 0.82 1.74 
-0.02 0.01 -0.18 -0.02 0.68 0.34 0.43 -0.59 

0.71 0.39 0.38 -0.86 -0.26 -1.93 0.53 0.96 
0.29 0.67 1.08 1.53 0.06 -1.20 -0.16 -2.14 
1.82 2.23 -1.07 -1.32 -1.01 0.34 0.59 -0.32 
0.54 0.72 0.96 1.44 -1.06 -0.34 -0.24 1.61 

-0.16 -1.25 0.16 1.32 -1.27 -0.34 1.83 2.26 
1.52 0.00 -1.32 -1.13 0.36 0.14 -1.59 -0.30 

-0.16 0.21 -0.33 -0.93 -1.24 -0.58 1.09 -0.82 
-0.76 0.36 0.59 0.95 1.19 -0.46 1.37 0.06 
-0.07 1.00 2.20 0.66 -0.39 -0.87 -1.05 0.83 
-0.34 0.95 -0.48 -0.33 0.80 0.45 -0.13 -0.39 

1.41 -0.23 -0.52 -1.30 -0.71 0.41 0.78 -1.76 
1.13 0.38 0.22 0.07 -0.90 0.36 -0.67 0.72 
1.20 -1.21 0.24 -0.59 1.38 -0.83 -0.44 0.07 

-0.63 1.60 0.53 0;77 0.65 -0.13 0.42 -1.13 
3.98 0.13 -1.21 0.89 -0.58 -0.64 -0.61 -0.10 

-0.28 -1.10 -0.78 -0.42 1.10 -1.03 1.28 -0.24 
-0.21 0.37 0.32 1.06 1.69 0.84 0.88 1.34 
-2.12 -0.61 1.88 0.98 0.39 1.03 -1.50 -1.82 
-0.53 0.28 0.67 0.08 -1.26 -0.39 0.76 -0.53 
-1.60 -0.91 -0.91 0.38 0.06 -0.29 -1.46 0.42 
-0.71 -0.41 0.24 0.11 -0.37 0.79 -0.46 -0.05 

0.91 0.57 -0.70 -0.22 -0.26 -0.76 -1.53 -0.01 
1.14 0.12 -1.46 0.64 0.44 0.91 -0.23 1.69 
0.22 -0.96 0.60 -0.80 -0.73 2.65 -0.44 -0.81 

-0.06 0.24 -1.41 1.10 0.24 -0.22 0.06 -3.38 



Table 8 ( cont. ) 

0.49 1.38 -0.52 -0.82 0.20 -0.91 1.02 -0.47 
-0.99 0.09 0.22 0.72 1.51 1.64 -1.34 -0.17 

0.60 0.23 -0.07 -0.49 -1.19 0.72 -0.15 -0.48 
-0.47 -0.63 0.56 0.13 -0.40 0.22 -0.17 1.36 
-1.00 0.07 -1.26 0.59 0.31 -1.68 -0.63 1.00 

0.95 1.85 0.32 -0.29 -0.77 -0.55 -0.56 -1.44 
1.00 -0.49 -0.25 0.57 -0.73 0.77 -0.07 1.73 
0.49 0.25 -0.55 0.09 0.96 -0.17 -0.09 1.79 

-0.65 -2.09 0.50 0.84 -1.09 0.80 0.16 -0.03 
-1.51 -0.79 -0.91 0.75 0.21 -0.87 1.80 1.86 

1.41 -0.99 -0.12 0.66 0.75 -0.21 0.29 -1.62 
-1.34 0.57 -1.61 -0.27 -0.78 0.10 0.93 -0.58 
-0.54 -1.61 0.13 0.40 -0.95 -1.59 -1.19 -0.82 
-2.35 -1.32 0.84 -0.23 -0.47 0.22 -0.66 0.24 

0.84 -0.20 0.00 -0.14 -1.16 0.28 -1.05 0.60 
2.29 -1.44 0.05 -0.45 -0.71 -0.47 0.51 0.65 

-0.60 1.27 0.58 -0.01 0.67 -0.92 0.90 1.64 



Table 9 List of working tables and nomograms in text 

Table 5.2 

Table 5.3 

Table 5.4 

Table 6.6 

Table 7.5 
Table 7.7 
Table 7.9 

Fig. 9.3 
Table 9.1 
Table 10.1 
Table 11.1 
Table 11.3 
Fig. 12.2 

Fig. 12.4 

Table 13.1 
Table 13.2 
Table 13.3 
Table 13.4 
Table 13.5 
Table 13.6 

Table 13.7 

Factors for constructing range charts from an average range, (D~> 
D 2 , D3 , D 4) 

Factors for constructing range charts from an estimate of a (D5 , D6 , 

D1, Ds) 
Factors for constructing standard deviation charts from an estimate 
of standard deviation (D9, D 10 , Du, D 12) 

Factors for constructing exponentially weighted moving-average 
charts from an estimate of a (A1) 

CuSum parameters for alternative decision rules 
CuSum schemes for range in samples from a Normal population 
CuSum schemes for standard deviation in samples from a Normal 
population 
Nomogram for single specifi_cation Iimit, action line only 
ARL values for one-sided X chart 
Controllimits for countable and attribute data 
Values of r(c) for the producers' and consumers' risk point method 
Values for ASSES 
Nomogram for inspection by variables, single specification Iimits, a 
known 
Nomogram for inspection by variables, single specification Iimit, a 
unknown 
Sampie size code letters 
Single sampling plans for normal inspection ( master table) 
Single sampling plans for tightened inspection ( master table) 
Single sampling plans for reduced inspection (master table) 
Sampie size code letters for inspection by variables 
Single sampling plans for normal inspection (master table): 's' 
method 
Single sampling plans for tightened inspection ( master table): 's' 
method 

Table 13.9 Single sampling plans for reduced inspection (master table): 's' 
method 



Appendix B 

Data sets for sampling 
experiment 

SAMPLING EXPERIMENT 

DATASET NUMBER I 1 NAME 

Sampie DATA Mean SD 
no. 
1 133 125 134 126 129.5 4.7 
2 145 127 127 137 134.0 8.7 
3 126 137 133 127 130.8 5.2 
4 132 140 138 139 137.3 3.6 
5 129 117 124 138 127.0 8.8 
6 126 134 139 123 130.5 7.3 
7 128 137 124 134 130.8 5.9 
8 136 123 127 127 128.3 5.5 
9 123 131 131 139 131.0 6.5 

10 125 128 132 135 130.0 4.4 
11 137 125 130 138 132.5 6.1 
12 121 128 132 138 129.8 7.1 
13 133 131 125 130 129.8 3.4 
14 131 130 124 121 126,5 4.8 
15 129 118 132 123 125.5 6.2 
16 129 128 120 134 127.8 5.8 
17 125 130 127 129 127.8 2.2 
18 134 126 121 135 129.0 6.7 
19 128 123 127 136 128.5 5.4 
20 130 117 123 131 125.3 6.6 
21 132 126 133 135 131.5 3.9 
22 124 125 137 135 130.3 6.7 
23 129 139 124 139 132.8 7.5 
24 119 124 123 126 123.0 2.9 
25 132 117 127 125 125.3 6.2 
26 133 136 130 137 134.0 3.2 
27 130 126 127 130 128.3 2.1 

Range 

9 
18 
11 
8 

21 
16 
13 
13 
16 
10 
13 
17 
8 

10 
14 
14 
5 

14 
13 
14 
9 

13 
15 
7 

15 
7 
4 



Data sets for sampling experiment 345 

Sampie DATA Mean SD Range 
no. 
28 128 140 131 125 131.0 6.5 15 
29 116 124 124 132 124.0 6.5 16 
30 136 127 143 133 134.8 6.7 16 

SEED = 6238 

SAMPLING EXPERIMENT 

DATASET NUMBER I 2 NAME 

Sampie DATA Mean SD Range 
no. 
1 133 127 134 127 130.3 3.8 7 
2 129 131 129 133 130.5 1.9 4 
3 141 135 122 130 132.0 8.0 19 
4 134 136 133 143 136.5 4.5 10 
5 131 127 132 138 132.0 4.5 11 
6 117 133 134 134 129.5 8.3 17 
7 128 129 117 130 126.0 6.1 13 
8 134 130 121 117 125.5 7.9 17 
9 133 129 131 131 131.0 1.6 4 

10 129 141 127 123 130.0 7.7 18 
11 135 122 131 124 128.0 6.1 13 
12 122 133 130 129 128.5 4.7 11 
13 133 128 136 132 132.3 3.3 8 
14 128 131 134 134 131.8 2.9 6 
15 132 130 145 127 133.5 7.9 18 
16 142 122 133 135 133.0 8.3 20 
17 133 122 125 133 128.3 5.6 11 
18 133 130 120 135 129.5 6.7 15 
19 128 124 137 121 127.5 7.0 16 
20 131 115 128 120 123.5 7.3 16 
21 133 132 132 135 133.0 1.4 3 
22 132 132 127 125 129.0 3.6 7 
23 139 132 134 132 134.3 3.3 7 
24 118 128 133 135 128.5 7.6 17 
25 141 130 118 131 130.0 9.4 23 
26 128 139 132 134 133.3 4.6 11 
27 131 124 135 129 129.8 4.6 11 
28 129 124 125 122 125.0 2.9 7 
29 116 132 126 125 124.8 6.6 16 
30 129 134 135 142 135.0 5.4 13 

SEED = 4205 
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SAMPLING EXPERIMENT 

DATASET NUMBER I 3 NAME 

Sampie DATA Mean SD Range 
no. 
1 131 134 127 128 130.0 3.2 7 
2 126 128 130 121 126.3 3.9 9 
3 134 128 138 124 131.0 6.2 14 
4 129 138 123 125 128.8 6.7 15 
5 137 131 128 121 129.3 6.7 16 
6 128 130 129 129 129.0 0.8 2 
7 118 126 118 128 122.5 5.3 10 
8 132 133 135 135 133.8 1.5 3 
9 133 131 133 126 130.8 3.3 7 

10 139 122 133 135 132.3 7.3 17 
11 141 129 129 124 130.8 7.2 17 
12 132 128 133 137 132.5 3.7 9 
13 140 141 126 141 137.0 7.3 15 
14 129 136 135 142 135.5 5.3 13 
15 132 140 125 127 131.0 6.7 15 
16 122 125 132 132 127.8 5.1 10 
17 136 131 126 133 131.5 4.2 10 
18 122 135 132 133 130.5 5.8 13 
19 136 126 124 137 130.8 6.7 13 
20 131 121 130 126 127.0 4.5 10 
21 121 133 128 127 127.3 4.9 12 
22 113 140 138 117 127.0 14.0 27 
23 128 133 132 129 130.5 2.4 5 
24 119 125. 134 138 129.0 8.6 19 
25 122 131 130 123 126.5 4.7 9 
26 126 147 138 135 136.5 8.7 21 
27 133 134 123 127 129.3 5.2 11 
28 132 124 128 130 128.5 3.4 8 
29 138 127 132 133 132.5 4.5 11 
30 138 129 131 135 133.3 4.0 9 

SEED = 9441 



Data sets for sampling experiment 34 7 

SAMPLING EXPERIMENT 

DATASET NUMBER I 4 NAME 

Sampie DATA Mean SD Range 
no. 
1 129 138 137 128 133.0 5.2 10 
2 127 125 133 126 127.8 3.6 8 
3 127 130 133 125 128.8 3.5 8 
4 123 125 126 127 125.3 1.7 4 
5 131 127 132 135 131.3 3.3 8 
6 126 115 127 128 124.0 6.1 13 
7 133 125 120 134 128.0 6.7 14 
8 134 130 130 127 130.3 2.9 7 
9 123 128 122 133 126.5 5.1 11 

10 127 137 131 137 133.0 4.9 10 
11 143 133 118 139 133.3 11.0 25 
12 131 132 135 118 129.0 7.5 17 
13 134 122 131 138 131.3 6.8 16 
14 138 127 124 126 128.8 6.3 14 
15 123 132 129 145 132.3 9.3 22 
16 131 131 142 139 135.8 5.6 11 
17 129 137 130 127 130.8 4.3 10 
18 129 138 134 138 134.8 4.3 9 
19 132 139 120 138 132.3 8.7 19 
20 127 125 128 131 127.8 2.5 6 
21 133 129 128 137 131.8 4.1 9 
22 131 129 131 137 132.0 3.5 8 
23 134 130 125 141 132.5 6.8 16 
24 125 136 128 122 127.8 6.0 14 
25 133 140 126 135 133.5 5.8 14 
26 126 141 144 125 134.0 9.9 19 
27 129 126 129 125 127.3 2.1 4 
28 119 137 121 130 126.8 8.3 18 
29 136 142 132 132 135.5 4.7 10 
30 126 131 135 128 130.0 3.9 9 

SEED = 1866 
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SAMPLING EXPERIMENT 

DATASET NUMBER I 5 NAME 

Sampie DATA Mean SD Range 
no. 
1 129 136 129 138 133.0 4.7 9 
2 138 132 137 144 137.8 4.9 12 
3 130 136 133 132 132.8 2.5 6 
4 126 129 122 132 127.3 4.3 10 
5 135 118 139 132 131.0 9.1 21 
6 132 127 133 129 130.3 2.8 6 
7 130 118 142 128 129.5 9.8 24 
8 142 131 138 121 133.0 9.2 21 
9 129 129 128 132 129.5 1.7 4 

10 143 116 126 117 125.5 12.5 27 
11 128 128 124 125 126.3 2.1 4 
12 128 132 128 138 131.5 4.7 10 
13 137 121 123 126 126.8 7.1 16 
14 124 129 130 130 128.3 2.9 6 
15 123 134 124 123 126.0 5.4 11 
16 130 133 137 136 134.0 3.2 7 
17 139 130 124 130 130.8 6.2 15 
18 126 130 126 130 128.0 2.3 4 
19 139 125 133 130 131.8 5.9 14 
20 126 128 123 138 128.8 6.5 15 
21 135 143 136 120 133.5 9.7 23 
22 131 123 120 134 127.0 6.6 14 
23 125 123 138 132 129.5 6.9 15 
24 120 136 129 127 128.0 6.6 16 
25 135 128 139 132 133.5 4.7 11 
26 136 117 137 137 131.8 9.8 20 
27 124 118 134 127 125.8 6.7 16 
28 125 124 133 125 126.8 4.2 9 
29 126 123 127 140 129.0 7.5 17 
30 134 135 135 128 133.0 3.4 7 

SEED = 1607 



Data sets for sampling experiment 349 

SAMPLING EXPERIMENT 

DATASET NUMBER A 1 NAME 

Sampie DATA Mean 
no. 
1 130 133 123 136 130.5 
2 121 127 139 126 128.3 
3 129 130 122 128 127.3 
4 141 116 124 132 128.3 
5 136 126 138 124 131.0 
6 123 133 126 122 126.0 
7 125 127 141 124 129.3 
8 132 131 128 130 130.3 
9 120 131 125 126 125.5 

10 139 139 119 127 131.0 
11 147 131 126 138 135.5 
12 129 137 135 135 134.0 
13 130 133 133 130 131.5 
14 128 141 132 133 133.5 
15 133 134 141 123 132.8 
16 130 126 134 136 131.5 
17 136 125 132 136 132.3 
18 131 133 118 141 130.8 
19 135 131 121 137 131.0 
20 130 127 138 130 131.3 
21 127 140 137 131 133.8 
22 131 142 127 128 132.0 
23 129 123 139 136 131.8 
24 132 129 135 127 130.8 
25 130 130 126 132 129.5 
26 135 136 135 131 134.3 
27 144 134 130 123 132.8 
28 135 141 147 129 138.0 
29 138 139 129 133 134.8 
30 146 132 138 139 138.8 
31 139 129 136 136 135.0 
32 137 132 142 139 137.5 
33 134 126 133 135 132.0 
34 136 126 140 119 130.3 
35 129 121 130 133 128.3 
36 135 132 136 133 134.0 
37 134 136 128 136 133.5 
38 123 139 120 136 129.5 
39 139 136 133 140 137.0 
40 135 119 134 131 129.8 
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Sampie DATA Mean 
no. 
41 134 140 138 127 134.8 
42 135 130 132 121 129.5 
43 128 137 132 135 133.0 
44 140 138 133 133 136.0 
45 128 134 133 139 133.5 
46 132 130 141 129 133.0 
47 143 129 128 127 131.8 
48 138 134 135 133 135.0 
49 142 140 127 134 135.8 
50 137 125 136 128 131.5 

SAMPLING EXPERIMENT 

DATASET NUMBER A 2 NAME 

Sampie DATA Mean 
no. 
1 127 134 134 133 132.0 
2 117 136 125 142 130.0 
3 121 131 131 127 127.5 
4 123 123 139 127 128.0 
5 135 126 127 125 128.3 
6 140 138 123 128 132.3 
7 131 126 127 134 129.5 
8 124 131 131 135 130.3 
9 125 128 123 127 125.8 

10 132 132 131 128 130.8 
11 136 136 129 127 132.0 
12 135 131 137 130 133.3 
13 141 127 124 131 130.8 
14 131 128 121 144 131.0 
15 148 126 128 128 132.5 
16 133 128 127 138 131.5 
17 128 136 133 134 132.8 
18 124 136 145 135 135.0 
19 122 141 131 138 133.0 
20 134 124 122 122 125.5 
21 133 134 132 125 131.0 
22 129 132 124 136 130.3 
23 133 130 141 133 134.3 
24 127 129 135 132 130.8 
25 121 130 137 130 129.5 
26 125 129 129 126 127.3 
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Sampie DATA Mean 
no. 
27 132 144 128 138 135.5 
28 135 135 125 138 133.3 
29 130 145 132 127 133.5 
30 139 133 133 126 132.8 
31 138 129 128 110 126.3 
32 144 131 138 138 137.8 
33 142 141 122 132 134.3 
34 139 129 137 125 132.5 
35 134 132 127 127 130.0 
36 133 135 143 147 139.5 
37 137 133 137 130 134.3 
38 134 125 136 130 131.3 
39 141 141 135 135 138.0 
40 144 131 128 125 132.0 
41 134 132 142 139 136.8 
42 132 134 140 127 133.3 
43 130 126 134 143 133.3 
44 131 130 127 124 128.0 
45 133 132 125 131 130.3 
46 138 123 137 124 130.5 
47 132 132 137 134 133.8 
48 131 137 136 127 132.8 
49 145 129 132 131 134.3 
50 128 130 140 135 133.3 

SAMPLING EXPERIMENT 

DATASET NUMBER A 3 NAME 

Sampie DATA Mean 
no. 
1 128 125 135 124 128.0 
2 138 125 139 126 132.0 
3 134 121 120 129 126.0 
4 120 147 138 122 131.8 
5 125 130 136 126 129.3 
6 129 136 132 127 131.0 
7 124 141 143 129 134.3 
8 128 122 119 133 125.5 
9 136 127 132 131 131.5 

10 124 122 129 129 126.0 
11 142 122 151 130 136.3 
12 133 126 122 130 127.8 
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Sample DATA Mean 
no. 
13 135 131 132 131 132.3 
14 139 134 134 142 137.3 
15 143 141 135 141 140.0 
16 139 137 139 138 138.3 
17 138 129 140 140 136.8 
18 143 140 127 139 137.3 
19 137 140 142 134 138.3 
20 124 134 127 130 128.8 
21 127 130 131 137 131.3 
22 134 122 135 143 133.5 
23 139 123 127 127 129.0 
24 125 131 137 131 131.0 
25 125 147 130 130 133.0 
26 146 130 125 138 134.8 
27 134 143 144 136 139.3 
28 145 140 138 134 139.3 
29 138 140 120 133 132.8 
30 127 130 126 135 129.5 
31 129 140 135 146 137.5 
32 133 131 121 128 128.3 
33 132 133 135 143 135.8 
34 130 141 141 134 136.5 
35 133 139 136 137 136.3 
36 133 124 131 127 128.8 
37 130 133 133 136 133.0 
38 134 145 130 127 134.0 
39 128 137 123 126 128.5 
40 138 131 133 134 134.0 
41 131 131 129 132 130.8 
42 136 126 130 134 131.5 
43 137 132 135 131 133.8 
44 134 124 125 125 127.0 
45 126 133 127 132 129.5 
46 126 137 136 132 132.8 
47 126 139 140 140 136.3 
48 131 136 136 137 135.0 
49 125 120 129 133 126.8 
50 122 138 122 135 129.3 
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SAMPLING EXPERIMENT 

DATASET NUMBER A 4 NAME 

Sampie DATA Mean 
no. 
1 130 128 133 129 130.0 
2 141 132 129 124 131.5 
3 118 140 130 134 130.5 
4 136 137 141 131 136.3 
5 135 128 129 137 132.3 
6 129 136 130 129 131.0 
7 121 128 130 138 129.3 
8 130 130 124 136 130.0 
9 125 123 130 124 125.5 

10 131 119 129 128 126.8 
11 134 134 131 129 132.0 
12 130 130 124 132 129.0 
13 134 132 133 149 137.0 
14 134 135 127 139 133.8 
15 132 132 122 127 128.3 
16 129 135 140 137 135.3 
17 126 127 133 132 129.5 
18 126 134 126 138 131.0 
19 133 121 133 130 129.3 
20 129 131 134 130 131.0 
21 136 139 134 144 138.3 
22 132 132 139 132 133.8 
23 139 135 132 125 132.8 
24 126 132 117 135 127.5 
25 135 138 137 129 134.8 
26 129 142 136 131 134.5 
27 134 127 135 137 133.3 
28 137 142 128 132 134.8 
29 147 121 132 131 132.8 
30 136 126 134 134 132.5 
31 130 137 128 132 131.8 
32 137 130 140 138 136.3 
33 134 142 116 133 131.3 
34 134 123 126 130 128.3 
35 131 128 133 134 131.5 
36 129 134 128 122 128.3 
37 138 135 129 131 133.3 
38 128 142 138 121 132.3 
39 133 126 139 130 132.0 
40 136 112 125 126 124.8 
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Sampie DATA Mean 
no. 
41 133 143 140 121 134.3 
42 137 131 140 132 135.0 
43 129 130 132 134 131.3 
44 136 132 139 141 137.0 
45 128 137 143 132 135.0 
46 125 137 127 137 131.5 
47 138 128 139 129 133.5 
48 131 130 145 137 135.8 
49 130 138 135 135 134.5 
50 127 135 136 139 134.3 

SAMPLING EXPERIMENT 

DATASET NUMBER A 5 NAME 

Sampie DATA Mean 
no. 
1 129 127 132 118 126.5 
2 130 133 117 132 128.0 
3 136 134 123 142 133.8 
4 133 130 125 136 131.0 
5 133 139 121 133 131.5 
6 129 121 123 122 123.8 
7 116 136 132 130 128.5 
8 125 130 133 128 129.0 
9 131 133 132 128 131.0 

10 127 121 132 127 126.8 
11 133 140 139 134 136.5 
12 134 134 141 133 135.5 
13 120 149 134 133 134.0 
14 130 127 132 146 133.8 
15 141 129 128 132 132.5 
16 130 134 128 132 131.0 
17 133 143 148 130 138.5 
18 131 136 134 133 133.5 
19 131 125 127 129 128.0 
20 136 140 134 140 137.5 
21 143 136 123 130 133.0 
22 131 122 133 138 131.0 
23 127 140 126 137 132.5 
24 143 133 144 135 138.8 
25 130 137 137 133 134.3 
26 128 133 138 134 133.3 
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Sampie DATA Mean 
no. 
27 132 141 145 127 136.3 
28 137 139 132 118 131.5 
29 134 144 137 136 137.8 
30 133 134 132 136 133.8 
31 131 131 125 128 128.8 
32 132 137 136 133 134.5 
33 141 133 137 132 135.8 
34 139 135 130 128 133.0 
35 144 130 133 135 135.5 
36 134 145 116 131 131.5 
37 131 131 128 120 127.5 
38 132 131 139 131 133.3 
39 132 142 135 133 135.5 
40 138 135 134 128 133.8 
41 135 126 130 141 133.0 
42 135 129 132 131 131.8 
43 128 135 129 133 131.3 
44 130 133 137 134 133.5 
45 130 127 133 136 131.5 
46 136 133 124 139 133.0 
47 149 133 135 135 138.0 
48 140 124 136 136 134.0 
49 129 131 137 139 134.0 
50 138 135 133 128 133.5 

SAMPLING EXPERIMENT 

DATASET NUMBER B 1 NAME 

Sampie DATA Mean 
no. 
1 131 119 119 118 121.8 
2 122 128 126 139 128.8 
3 130 130 127 120 126.8 
4 126 117 139 123 126.3 
5 128 130 132 125 128.8 
6 128 131 125 133 129.3 
7 139 123 129 133 131.0 
8 130 130 128 126 128.5 
9 135 126 124 124 127.3 

10 131 122 129 128 127.5 
11 123 135 129 110 124.3 
12 128 118 122 130 124.5 
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Sampie DATA Mean 
no. 
13 124 129 117 122 123.0 
14 123 113 118 116 117.5 
15 121 127 125 119 123.0 
16 130 136 124 127 129.3 
17 127 115 122 122 121.5 
18 123 111 127 126 121.8 
19 124 135 132 122 128.3 
20 122 130 119 126 124.3 
21 124 127 119 127 124.3 
22 126 124 125 130 126.3 
23 120 119 129 129 124.3 
24 135 117 126 124 125.5 
25 127 116 122 130 123.8 
26 132 124 136 125 129.3 
27 129 123 121 131 126.0 
28 118 120 139 137 128.5 
29 127 130 120 130 126.8 
30 127 126 118 132 125.8 
31 125 113 125 123 121.5 
32 127 124 117 115 120.8 
33 121 116 134 125 124.0 
34 131 116 125 118 122.5 
35 133 126 111 132 125.5 
36 125 117 137 116 123.8 
37 130 124 124 122 125.0 
38 126 124 118 120 122.0 
39 124 119 116 122 120.3 
40 119 121 127 124 122.8 
41 127 125 124 127 125.8 
42 122 122 120 125 122.3 
43 116 125 127 137 126.3 
44 128 123 121 123 123.8 
45 116 113 123 121 118.3 
46 131 119 122 132 126.0 
47 120 125 121 126 123.0 
48 124 119 118 116 119.3 
49 117 121 125 122 121.3 
50 118 110 117 121 116.5 
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SAMPLING EXPERIMENT 

DATASET NUMBER B 2 NAME 

Sampie DATA Mean 
no. 
1 127 137 144 121 132.3 
2 141 135 139 135 137.5 
3 124 120 136 119 124.8 
4 129 125 146 135 133.8 
5 136 132 133 124 131.3 
6 125 137 131 122 128.8 
7 120 133 128 124 126.3 
8 137 123 125 131 129.0 
9 126 123 122 126 124.3 

10 127 123 119 127 124.0 
11 123 122 127 121 123.3 
12 114 125 123 131 123.3 
13 110 117 120 118 116.3 
14 116 132 128 126 125.5 
15 133 126 121 113 123.3 
16 134 121 134 136 131.3 
17 117 133 125 124 124.8 
18 132 116 112 122 120.5 
19 127 134 122 137 130.0 
20 122 122 130 136 127.5 
21 128 128 114 128 124.5 
22 116 124 124 123 121.8 
23 122 115 133 119 122.3 
24 132 125 118 112 121.8 
25 117 122 121 125 121.3 
26 123 119 124 118 121.0 
27 121 114 122 123 120.0 
28 130 115 128 130 125.8 
29 130 132 114 112 122.0 
30 129 131 119 119 124.5 
31 129 127 120 118 123.5 
32 122 116 121 122 120.3 
33 126 123 127 123 124.8 
34 118 122 121 121 120.5 
35 108 131 127 121 121.8 
36 121 110 124 123 119.5 
37 129 123 124 118 123.5 
38 122 133 128 129 128.0 
39 123 127 130 137 129.3 
40 125 113 130 122 122.5 
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Sampie DATA Mean 
no. 
41 137 128 126 117 127.0 
42 128 131 126 126 127.8 
43 128 133 119 122 125.5 
44 122 121 120 121 121.0 
45 120 127 116 125 122.0 
46 125 126 127 117 123.8 
47 117 123 124 124 122.0 
48 127 120 133 118 124.5 
49 117 122 126 127 123.0 
50 130 120 119 127 124.0 

SAMPLING EXPERIMENT 

DATASET NUMBER B 3 NAME 

Sampie DATA Mean 
no. 
1 133 130 124 130 129.3 
2 126 139 132 136 133.3 
3 134 129 143 117 130.8 
4 139 129 120 127 128.8 
5 140 137 130 118 131.3 
6 132 124 133 134 130.8 
7 126 127 128 123 126.0 
8 128 130 134 136 132.0 
9 122 134 129 124 127.3 

10 131 118 123 128 125.0 
11 126 128 120 128 125.5 
12 120 118 122 123 120.8 
13 120 131 119 121 122.8 
14 128 123 117 139 126.8 
15 129 121 123 129 125.5 
16 126 124 116 124 122.5 
17 121 124 116 132 123.3 
18 125 126 129 127 126.8 
19 114 127 134 126 125.3 
20 124 131 130 120 126.3 
21 124 132 127 119 125.5 
22 134 133 132 135 133.5 
23 130 123 132 119 126.0 
24 127 122 118 129 124.0 
25 111 108 121 133 118.3 
26 120 125 126 128 124.8 
27 125 119 121 126 122.8 
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Sampie DATA Mean 
no. 
28 135 125 128 127 128.8 
29 129 130 113 120 123.0 
30 131 120 122 130 125.8 
31 128 133 116 127 126.0 
32 124 116 125 138 125.8 
33 125 121 124 135 126.3 
34 133 138 120 124 128.8 
35 122 126 126 120 123.5 
36 123 123 123 130 124.8 
37 123 125 128 127 125.8 
38 128 125 142 118 128.3 
39 121 122 127 122 123.0 
40 115 119 121 119 118.5 
41 119 128 115 126 122.0 
42 113 121 118 122 118.5 
43 123 130 119 124 124.0 
44 118 126 116 125 121.3 
45 120 119 125 122 121.5 
46 119 118 120 119 119.0 
47 114 132 116 128 122.5 
48 127 125 115 116 120.8 
49 127 118 133 129 126.8 
50 124 114 123 117 119.5 

SAMPLING EXPERIMENT 

DATASET NUMBER B 4 NAME 

Sampie DATA Mean 
no. 
1 130 125 128 127 127.5 
2 128 124 133 132 129.3 
3 124 132 128 129 128.3 
4 114 131 132 137 128.5 
5 128 137 133 124 130.5 
6 129 140 123 136 132.0 
7 117 122 126 131 124.0 
8 129 123 137 118 126.8 
9 116 118 129 125 122.0 

10 116 120 125 122 120.8 
11 128 128 132 137 131.3 
12 124 122 118 124 122.0 
13 127 117 113 117 118.5 
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Sampie DATA Mean 
no. 
14 128 126 130 129 128.3 
15 120 123 122 122 121.8 
16 122 123 128 130 125.8 
17 123 126 113 132 123.5 
18 125 114 129 128 124.0 
19 121 119 128 128 124.0 
20 121 123 120 121 121.3 
21 129 127 125 111 123.0 
22 120 124 130 122 124.0 
23 117 131 125 130 125.8 
24 135 131 121 130 129.3 
25 130 126 122 118 124.0 
26 124 119 125 127 123.8 
27 117 133 132 129 127.8 
28 120 120 127 121 122.0 
29 113 124 130 131 124.5 
30 117 121 125 130 123.3 
31 114 124 125 122 121.3 
32 123 129 128 131 127.8 
33 120 128 132 129 127.3 
34 130 138 134 115 129.3 
35 109 125 128 125 121.8 
36 124 133 123 120 125.0 
37 122 124 123 124 123.3 
38 123 113 120 123 119.8 
39 131 138 119 114 125.5 
40 129 117 131 135 128.0 
41 125 128 133 110 124.0 
42 127 117 120 132 124.0 
43 113 126 116 114 117.3 
44 127 124 122 116 122.3 
45 120 129 116 119 121.0 
46 126 118 119 128 122.8 
47 122 123 122 113 120.0 
48 131 132 119 130 128.0 
49 138 130 126 118 128.0 
50 117 134 124 122 124.3 
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SAMPLING EXPERIMENT 

DATASET NUMBER B 5 NAME 

Sampie DATA Mean 
no. 
1 129 125 134 134 130.5 
2 123 128 130 123 126.0 
3 137 129 140 126 133.0 
4 135 125 120 122 125.5 
5 124 138 134 132 132.0 
6 139 129 118 135 130.3 
7 125 125 129 122 125.3 
8 138 124 133 124 129.8 
9 128 114 117 115 118.5 

10 115 125 124 124 122.0 
11 123 127 122 120 123.0 
12 133 129 125 129 129.0 
13 116 117 133 117 120.8 
14 137 122 124 124 126.8 
15 121 123 120 132 124.0 
16 127 121 125 128 125.3 
17 121 115 128 117 120.3 
18 118 115 122 129 121.0 
19 125 122 121 131 124.8 
20 127 120 117 130 123.5 
21 124 124 135 120 125.8 
22 107 125 131 123 121.5 
23 124 118 137 125 126.0 
24 121 127 129 137 128.5 
25 123 130 125 123 125.3 
26 127 123 124 119 123.3 
27 119 125 128 131 125.8 
28 125 137 129 122 128.3 
29 123 129 130 122 126.0 
30 123 129 133 136 130.3 
31 121 129 122 129 125.3 
32 133 126 130 121 127.5 
33 135 125 118 127 126.3 
34 122 126 120 122 122.5 
35 132 129 122 116 124.8 
36 110 133 120 118 120.3 
37 123 117 132 132 126.0 
38 120 127 129 125 125.3 
39 129 130 127 121 126.8 
40 131 118 129 122 125.0 
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Sampie DATA Mean 
no. 
41 132 120 126 114 123.0 
42 119 118 129 130 124.0 
43 120 119 129 129 124.3 
44 130 126 127 139 130.5 
45 121 127 116 131 123.8 
46 118 124 128 127 124.3 
47 133 126 118 124 125.3 
48 120 124 127 130 125.3 
49 128 122 130 126 126.5 
50 130 133 124 123 127.5 

SAMPLING EXPERIMENT 

DATASET NUMBER C 1 NAME 

Sampie DATA Mean 
no. 
1 127 136 134 123 130.0 
2 125 134 121 132 128.0 
3 124 131 128 124 126.8 
4 130 130 129 129 129.5 
5 137 136 125 128 131.5 
6 133 137 139 119 132.0 
7 141 136 133 136 136.5 
8 129 142 136 136 135.8 
9 128 120 121 111 120.0 

10 117 130 119 110 119.0 
11 129 121 125 123 124.5 
12 117 125 127 138 126.8 
13 119 122 125 121 121.8 
14 131 132 121 122 126.5 
15 121 122 116 119 119.5 
16 128 121 120 133 125.5 
17 117 127 127 122 123.3 
18 124 127 121 129 125.3 
19 116 115 130 129 122.5 
20 120 122 120 118 120.0 
21 124 124 127 118 123.3 
22 116 128 126 122 123.0 
23 125 123 122 132 125.5 
24 123 124 125 136 127.0 
25 118 121 131 115 121.3 
26 125 118 118 122 120.8 
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Sampie DATA Mean 
no. 
27 128 119 123 122 123.0 
28 117 111 127 119 118.5 
29 130 124 127 112 123.3 
30 115 127 122 118 120.5 
31 126 113 118 128 121.3 
32 129 133 119 117 124.5 
33 133 122 116 105 119.0 
34 126 127 125 118 124.0 
35 112 126 118 126 120.5 
36 122 116 118 125 120.3 
37 114 110 116 117 114.3 
38 130 122 122 122 124.0 
39 118 124 112 121 118.8 
40 117 125 123 130 123.8 
41 116 121 113 125 118.8 
42 126 119 108 116 117.3 
43 118 123 118 119 119.5 
44 121 128 123 119 122.8 
45 117 105 130 114 116.5 
46 110 123 126 122 120.3 
47 122 123 121 122 122.0 
48 127 128 119 115 122.3 
49 124 129 119 122 123.5 
50 114 124 117 128 120.8 

SAMPLING EXPERIMENT 

DATASET NUMBER C 2 NAME 

Sampie DATA Mean 
no. 
1 132 123 130 127 128.0 
2 135 125 122 126 127.0 
3 130 135 129 120 128.5 
4 132 136 105 126 124.8 
5 128 128 126 124 126.5 
6 123 121 133 121 124.5 
7 116 130 128 134 127.0 
8 125 134 120 135 128.5 
9 125 110 119 118 118.0 

10 110 119 120 129 119.5 
11 127 131 125 129 128.0 
12 123 124 108 134 122.3 
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Sampie DATA Mean 
no. 
13 119 125 117 120 120.3 
14 118 120 110 119 116.8 
15 122 124 117 116 119.8 
16 113 114 118 123 117.0 
17 122 128 122 115 121.8 
18 132 116 123 120 122.8 
19 126 124 114 118 120.5 
20 119 121 126 123 122.3 
21 127 127 123 119 124.0 
22 114 107 127 119 116.8 
23 122 128 124 119 123.3 
24 123 116 120 119 119.5 
25 128 117 123 122 122.5 
26 123 112 124 139 124.5 
27 117 118 118 119 118.0 
28 135 125 122 118 125.0 
29 127 119 111 116 118.3 
30 114 125 124 124 121.8 
31 118 123 114 115 117.5 
32 126 111 123 122 120.5 
33 115 128 122 122 121.8 
34 118 117 133 123 122.8 
35 120 133 116 124 123.3 
36 113 126 106 123 117.0 
37 132 119 135 123 127.3 
38 126 122 123 115 121.5 
39 123 122 125 121 122.8 
40 121 129 121 110 120.3 
41 124 118 114 121 119.3 
42 132 122 124 127 126.3 
43 125 123 122 118 122.0 
44 122 115 127 133 124.3 
45 119 123 119 122 120.8 
46 102 122 117 124 116.3 
47 121 124 116 125 121.5 
48 118 116 118 113 116.3 
49 121 117 121 120 119.8 
50 127 120 113 112 118.0 



Data sets for sampling experiment 365 

SAMPLING EXPERIMENT 

DATASET NUMBER C 3 NAME 

Sampie DATA Mean 
no. 
1 128 127 130 127 128.0 
2 123 130 129 129 127.8 
3 130 129 132 134 131.3 
4 129 116 132 131 127.0 
5 129 131 140 130 132.5 
6 130 123 128 129 127.5 
7 133 129 136 123 130.3 
8 139 127 136 128 132.5 
9 125 114 118 113 117.5 

10 117 121 112 129 119.8 
11 131 124 123 121 124.8 
12 123 116 127 124 122.5 
13 121 118 122 115 119.0 
14 125 116 126 118 121.3 
15 115 121 125 127 122.0 
16 123 120 126 109 119.5 
17 119 114 120 125 119.5 
18 108 126 139 111 121.0 
19 122 102 109 131 116.0 
20 125 122 121 117 121.3 
21 121 119 123 123 121.5 
22 123 119 116 122 120.0 
23 114 118 132 132 124.0 
24 120 126 123 126 123.8 
25 128 122 117 122 122.3 
26 124 121 124 121 122.5 
27 122 125 125 126 124.5 
28 129 123 128 123 125.8 
29 124 130 122 111 121.8 
30 112 122 122 124 120.0 
31 133 119 111 111 118.5 
32 128 129 117 126 125.0 
33 113 131 124 116 121.0 
34 113 121 125 125 121.0 
35 109 122 124 124 119.8 
36 120 115 123 115 118.3 
37 115 120 116 120 117.8 
38 132 121 119 128 125.0 
39 123 117 114 118 118.0 
40 118 117 127 121 120.8 
41 126 122 125 114 121.8 
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Sampie DATA Mean 
no. 
42 118 120 114 130 120.5 
43 117 115 123 125 120.0 
44 119 130 113 118 120.0 
45 130 122 112 125 122.3 
46 131 116 118 117 120.5 
47 121 125 124 100 117.5 
48 126 118 128 121 123.3 
49 128 122 125 119 123.5 
50 130 123 119 125 124.3 

SAMPLING EXPERIMENT 

DATASET NUMBER C 4 NAME 

Sampie DATA Mean 
no. 
1 128 126 126 135 128.8 
2 138 134 124 135 132.8 
3 142 136 121 134 133.3 
4 126 128 128 125 126.8 
5 129 131 129 123 128.0 
6 135 122 133 130 130.0 
7 138 119 139 126 130.5 
8 129 135 138 127 132.3 
9 129 116 115 117 119.3 

10 113 127 127 122 122.3 
11 121 136 128 124 127.3 
12 105 125 126 134 122.5 
13 115 120 128 131 123.5 
14 117 124 113 120 118.5 
15 114 131 119 117 120.3 
16 128 116 122 125 122.8 
17 115 127 118 122 120.5 
18 125 118 116 121 120.0 
19 120 118 129 125 123.0 
20 123 119 120 112 118.5 
21 120 113 114 105 113.0 
22 125 114 119 126 121.0 
23 122 113 123 111 117.3 
24 115 128 116 122 120.3 
25 121 119 110 127 119.3 
26 109 118 120 120 116.8 
27 120 127 120 132 124.8 
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Sampie DATA Mean 
no. 
28 121 132 108 119 120.0 
29 123 113 116 118 117.5 
30 116 124 116 123 119.8 
31 132 126 125 125 127.0 
32 124 114 136 119 123.3 
33 126 119 124 125 123.5 
34 125 124 114 110 118.3 
35 127 121 122 114 121.0 
36 114 118 115 106 113.3 
37 124 130 127 129 127.5 
38 122 124 132 120 124.5 
39 117 114 114 114 114.8 
40 124 121 115 123 120.8 
41 118 110 127 135 122.5 
42 127 119 118 115 119.8 
43 114 121 123 118 119.0 
44 119 124 113 124 120.0 
45 121 128 119 123 122.8 
46 122 126 122 124 123.5 
47 125 127 124 116 123.0 
48 124 116 128 115 120.8 
49 124 112 129 114 119.8 
50 123 121 128 127 124.8 

SAMPLING EXPERIMENT 

DATASET NUMBER C 5 NAME 

Sampie DATA Mean 
no. 
1 132 118 134 131 128.8 
2 127 115 139 137 129.5 
3 132 127 132 139 132.5 
4 133 129 138 127 131.8 
5 129 129 136 131 131.3 
6 127 129 128 144 132.0 
7 138 139 124 130 132.8 
8 130 133 131 127 130.3 
9 118 119 111 110 114.5 

10 120 121 131 126 124.5 
11 130 114 126 117 121.8 
12 120 116 113 129 119.5 
13 122 114 127 116 119.8 
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Sampie DATA Mean 
no. 

14 122 117 126 122 121.8 
15 119 119 119 113 117.5 
16 116 121 124 125 121.5 
17 117 118 135 111 120.3 
18 130 114 123 111 119.5 
19 127 117 122 117 120.8 
20 121 120 113 113 116.8 
21 116 136 121 125 124.5 
22 124 120 113 115 118.0 
23 135 110 131 119 123.8 
24 108 121 128 118 118.8 
25 122 121 126 120 122.3 
26 132 121 130 117 125.0 
27 111 108 123 135 119.3 
28 122 121 120 111 118.5 
29 122 127 127 115 122.8 
30 121 130 119 127 124.3 
31 118 122 120 113 118.3 
32 131 116 113 115 118.8 
33 121 120 118 118 119.3 
34 113 124 125 122 121.0 
35 131 115 115 122 120.8 
36 115 125 115 117 118.0 
37 127 124 109 117 119.3 
38 123 112 129 120 121.0 
39 112 124 119 119 118.5 
40 125 119 116 128 122.0 
41 115 121 119 122 119.3 
42 126 124 115 130 123.8 
43 123 117 113 125 119.5 
44 120 123 120 116 119.8 
45 117 117 124 132 122.5 
46 120 119 121 127 121.8 
47 120 120 128 123 122.8 
48 132 115 130 119 124.0 
49 111 118 110 113 113.0 
50 131 123 119 121 123.5 



Data sets for sampling experiment 369 

SAMPLING EXPERIMENT 

DATASET NUMBER D 1 NAME 

Sampie DATA Mean 
no. 
1 133 131 123 120 126.8 
2 134 128 133 131 131.5 
3 128 140 133 128 132.3 
4 131 120 134 132 129.3 
5 121 139 129 133 130.5 
6 132 128 128 129 129.3 
7 129 128 134 128 129.8 
8 132 135 133 127 131.8 
9 126 129 131 123 127.3 

10 131 129 129 123 128.0 
11 132 123 130 138 130.8 
12 139 136 136 126 134.3 
13 135 139 119 126 129.8 
14 135 137 128 119 129.8 
15 133 123 130 135 130.3 
16 133 133 135 133 133.5 
17 133 136 130 120 129.8 
18 115 131 135 127 127.0 
19 137 127 131 133 132.0 
20 134 135 132 133 133.5 
21 135 141 126 133 133.8 
22 127 125 125 123 125.0 
23 143 131 133 126 133.3 
24 134 136 128 134 133.0 
25 130 142 139 126 134.3 
26 119 130 135 132 129.0 
27 129 139 127 119 128.5 
28 126 136 133 137 133.0 
29 120 137 129 137 130.8 
30 125 129 126 125 126.3 
31 128 133 132 130 130.8 
32 128 125 130 140 130.8 
33 129 127 127 134 129.3 
34 139 134 120 127 130.0 
35 125 122 126 133 126.5 
36 126 116 127 134 125.8 
37 139 146 136 129 137.5 
38 130 136 125 127 129.5 
39 124 128 131 138 130.3 
40 136 133 126 129 131.0 
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Sampie DATA Mean 
no. 
41 134 140 126 141 135.3 
42 125 136 126 141 132.0 
43 131 121 129 127 127.0 
44 129 138 140 123 132.5 
45 134 142 128 139 135.8 
46 129 133 136 137 133.8 
47 133 137 119 133 130.5 
48 136 122 135 128 130.3 
49 134 126 150 130 135.0 
50 135 132 133 130 132.5 

SAMPLING EXPERIMENT 

DATASET NUMBER D 2 NAME 

Sampie DATA Mean 
no. 
1 128 121 135 138 130.5 
2 138 138 128 115 129.8 
3 132 125 127 132 129.0 
4 135 123 129 131 129.5 
5 129 127 128 128 128.0 
6 139 119 127 125 127.5 
7 121 128 121 130 125.0 
8 127 127 135 139 132.0 
9 133 129 129 131 130.5 

10 123 143 130 122 129.5 
11 138 135 140 135 137.0 
12 126 137 131 131 131.3 
13 134 146 135 134 137.3 
14 126 129 123 131 127.3 
15 127 133 133 126 129.8 
16 144 137 139 131 137.8 
17 138 148 129 123 134.5 
18 136 129 134 140 134.8 
19 133 133 134 134 133.5 
20 126 134 128 128 129.0 
21 145 125 135 127 133.0 
22 139 136 118 128 130.3 
23 140 138 128 133 134.8 
24 132 135 123 126 129.0 
25 135 136 127 127 131.3 
26 132 128 134 134 132.0 
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Sampie DATA Mean 
no. 
27 125 136 130 141 133.0 
28 140 133 128 129 132.5 
29 122 128 132 124 126.5 
30 131 133 131 128 130.8 
31 132 124 143 132 132.8 
32 138 138 127 134 134.3 
33 129 123 129 127 127.0 
34 140 137 141 136 138.5 
35 130 123 126 128 126.8 
36 123 125 136 144 132.0 
37 136 137 137 132 135.5 
38 134 123 129 151 134.3 
39 129 128 141 137 133.8 
40 123 125 136 135 129.8 
41 135 143 139 127 136.0 
42 145 128 125 138 134.0 
43 126 137 118 135 129.0 
44 126 130 134 125 128.8 
45 126 131 119 128 126.0 
46 126 124 127 133 127.5 
47 134 131 135 129 132.3 
48 131 126 134 137 132.0 
49 132 129 126 137 131.0 
50 124 120 143 130 129.3 

SAMPLING EXPERIMENT 

DATASET NUMBER D 3 NAME 

Sampie DATA Mean 
no. 
1 129 126 135 147 134.3 
2 132 128 131 124 128.8 
3 135 127 122 130 128.5 
4 131 140 119 128 129.5 
5 135 140 129 133 134.3 
6 125 147 138 132 135.5 
7 122 128 125 117 123.0 
8 131 134 127 141 133.3 
9 130 124 124 125 125.8 

10 131 140 129 128 132.0 
11 128 123 131 133 128.8 
12 126 143 139 127 133.8 
13 135 143 135 126 134.8 
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Sampie DATA Mean 
no. 

14 129 124 141 131 131.3 
15 142 124 139 136 135.3 
16 132 133 132 127 131.0 
17 129 135 134 127 131.3 
18 136 127 134 142 134.8 
19 137 131 132 131 132.8 
20 133 137 124 135 132.3 
21 132 124 123 134 128.3 
22 127 137 140 135 134.8 
23 138 127 134 131 132.5 
24 136 128 129 139 133.0 
25 133 127 137 137 133.5 
26 131 141 127 133 133.0 
27 126 125 145 133 132.3 
28 140 132 133 128 133.3 
29 120 126 135 134 128.8 
30 130 130 131 133 131.0 
31 142 140 135 133 137.5 
32 130 138 134 150 138.0 
33 133 121 142 119 128.8 
34 133 135 121 124 128.3 
35 133 128 126 145 133.0 
36 133 127 136 135 132.8 
37 142 133 131 127 133.3 
38 130 128 139 131 132.0 
39 133 140 126 137 134.0 
40 130 128 132 129 129.8 
41 136 135 137 135 135.8 
42 127 126 148 136 134.3 
43 143 128 125 133 132.3 
44 139 135 137 138 137.3 
45 136 140 130 120 131.5 
46 126 139 129 133 131.8 
47 137 133 134 139 135.8 
48 121 130 135 124 127.5 
49 123 137 133 136 132.3 
50 125 133 139 139 134.0 
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SAMPLING EXPERIMENT 

DATASET NUMBER D 4 NAME 

Sampie DATA Mean 
no. 
1 129 134 135 132 132.5 
2 132 124 124 135 128.8 
3 124 140 126 130 130.0 
4 126 133 131 129 129.8 
5 134 121 128 136 129.8 
6 139 128 135 123 131.3 
7 118 130 126 131 126.3 
8 126 128 129 136 129.8 
9 133 127 117 137 128.5 

10 128 123 133 142 131.5 
11 130 123 128 133 128.5 
12 140 135 141 139 138.8 
13 121 118 130 137 126.5 
14 142 134 144 140 140.0 
15 126 127 124 121 124.5 
16 142 144 124 130 135.0 
17 130 137 138 135 135.0 
18 130 132 129 124 128.8 
19 131 134 130 127 130.5 
20 133 138 132 122 131.3 
21 130 130 131 127 129.5 
22 126 134 133 138 132.8 
23 132 134 129 133 132.0 
24 130 130 130 134 131.0 
25 135 127 137 127 131.5 
26 129 120 124 125 124.5 
27 135 134 148 138 138.8 
28 134 138 129 127 132.0 
29 137 154 133 128 138.0 
30 126 144 127 143 135.0 
31 132 135 121 136 131.0 
32 134 131 129 136 132.5 
33 123 132 122 133 127.5 
34 125 139 138 132 133.5 
35 129 132 124 141 131.5 
36 130 131 126 134 130.3 
37 124 129 139 132 131.0 
38 133 135 133 134 133.8 
39 132 130 118 136 129.0 
40 133 138 145 132 137.0 
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Sampie DATA Mean 
no. 
41 139 123 126 137 131.3 
42 140 132 124 129 131.3 
43 137 135 130 112 128.5 
44 137 125 139 125 131.5 
45 130 119 132 131 128.0 
46 133 145 129 134 135.3 
47 134 124 131 129 129.5 
48 143 127 128 131 132.3 
49 132 132 122 131 129.3 
50 134 143 130 132 134.8 

SAMPLING EXPERIMENT 

DATASET NUMBER D 5 NAME 

Sampie DATA Mean 
no. 
1 129 135 129 133 131.5 
2 131 140 122 139 133.0 
3 126 141 144 125 134.0 
4 138 132 134 124 132.0 
5 126 128 125 127 126.5 
6 134 125 139 126 131.0 
7 133 131 123 139 131.5 
8 128 132 134 138 133.0 
9 138 132 135 129 133.5 

10 135 135 124 143 134.3 
11 132 136 132 131 132.8 
12 135 138 133 127 133.3 
13 130 122 134 130 129.0 
14 133 129 136 142 135.0 
15 129 137 138 126 132.5 
16 142 131 132 130 133.8 
17 126 124 138 132 130.0 
18 121 138 136 145 135.0 
19 138 128 142 122 132.5 
20 136 129 132 142 134.8 
21 132 133 138 120 130.8 
22 135 131 130 138 133.5 
23 131 128 125 133 129.3 
24 129 134 144 124 132.8 
25 128 129 128 132 129.3 
26 127 128 117 135 126.8 
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Sampie DATA Mean 
no. 

27 142 132 127 130 132.8 
28 134 139 131 134 134.5 
29 131 136 126 130 130.8 
30 134 131 128 133 131.5 
31 129 133 135 139 134.0 
32 126 135 125 129 128.8 
33 132 144 137 132 136.3 
34 136 130 134 126 131.5 
35 130 108 128 120 121.5 
36 126 127 136 134 130.8 
37 124 132 131 130 129.3 
38 136 137 126 143 135.5 
39 130 127 127 130 128.5 
40 132 127 143 135 134.3 
41 133 134 135 139 135.3 
42 134 134 127 143 134.5 
43 128 128 124 145 131.3 
44 136 129 129 134 132.0 
45 127 126 133 128 128.5 
46 123 123 129 133 127.0 
47 135 135 140 134 136.0 
48 131 132 123 126 128.0 
49 141 129 132 125 131.8 
50 135 131 130 134 132.5 
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National and international 
standards relating to quality 
control 

Much of the area of application of statistical methods to industry is 
covered by some useful national and international standards. The 
following list gives the reference numbers of those related to material in 
this volume. References are given to International (ISO), American 
(ANSI), British (BS), German (DIN) and Japanese (JIS) standards. In 
addition there are Draft International Standards (DIS) and Draft 
Proposals (DP). They are listed under the ISO reference, where 
applicable, with the following symbols relating to whether or not they 
are identical to the ISO standard: 

- completely identical 
= technically equivalent 
=f. related but not equivalent 

1. GENERAL TERMINOLOGY AND SYMBOLS 

ISO 3534: 1977 Statistics- VocabuTary and symboTs 
== BS 5532: Part 1: 1978 StatisticaT terminoTogy. Part 1. GTossary of 
terms reTating to probability and generaT terms reTating to statistics 
=f. JIS Z 8101-1981: GTossary and terms used in quality cantroT 

ISO/DP 3534-1 Statistics- VocabuTary and symboTs- Part 1: Probability 
and generaT statisticaT terms 
ISO/DIS 3534-2 Statistics- VocabuTary and symboTs- Part 2: StatisticaT 
quality cantroT 
ISO 3534-3: 1985 Statistics - VocabuTary and symboTs - Part3: Design 
of experiments 

== BS 5532: Part 3: 1986 StatisticaT terminoTogy. Part 3. GTossary of 
terms reTating to the design of experiments 
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ISO 8402: 1986 Quality- Vocabulary 
= BS 4778: Part 1: 1987 Quality vocabulary. Part 1. International 
terms 
= DIN 55 350 Teil 11 (5/87) Begriffe der Qualitätssicherung und 
Statistik; Grundbegriffe der Qualitätssicherung 

ANSI/ASQC A2-1987 Terms, symbols and definitions for acceptance 
sampling 
ANS I/ ASQC A3-1987 Quality systems terminology 

2. ACQUISITION AND INTERPRETATION OF 
STATISTICAL DATA 

ISO 377: 1985 Wrought steel- Selection and preparation of sample and 
test pieces 

=I= BS 1837: 1970 Methods for the sampling of iron, steel, permanent 
magnet alloys and ferro-alloys 

ISO 1988: 1975 Hard coal - Sampling 
= BS 1017: Part 1: 1977 Methods for sampling of coal and coke. Part 
1. Sampling of coal 

ISO 2309: 1980 Coke- Sampling 
=I= BS 1017: Part 2: 1960 (1988) Methods for sampling of coal and 
coke. Part 2. Sampling of coke 

ISO 2602: 1980 Statistical interpretation of test results - Estimation of the 
mean - Confidence interval 

= BS 2846: Part 2: 1981 Statistical interpretation of data. Part 2. 
Estimation of the mean: confidence interval 
=I= JIS Z 9051-1963: Interval estimation of the population mean 
(standard deviation unknown) 

ISO 2854: 1976 Statistical interpretation of data - Techniques of estima
tion and tests relating to means and variances 

= BS 2846: Part 4: 1976 Statistical interpretation of data. Part 4. 
Techniques of estimation and tests relating to means and variances 
= DIN 55 303 Teil 2 (5/84) Statistiche Auswertung von Daten; 
Testverfahren und Vertrauensbereiche für Erwartungswerte und Varian
zen 
=I= JIS Z 9042-1962: Significance test of the difference between the 
population mean and a given value (standard deviation known, one
sided) 
=I= JIS Z 9043-1962: Significance test of the difference between the 
population mean and a given value (standard deviation known, two
sided) 
=I= JIS Z 9044-1962: Significance test of the difference between the 
population mean and a given value (standard deviation unknown, 
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one-sided) 
=I= JIS Z 9045-1962: Significance test of the difference between the 
population mean and a given value (standard deviation unknown, 
two-sided) 
=I= JIS Z 9046-1965: Significance test of the difference between two 
population means (standard deviation known, one-sided) 
=I= JIS Z 9047-1979: Significance test of the difference between two 
population means (standard deviation known, two-sided) 
=I= JIS Z 9048-1979: Significance test of the difference between two 
population means (standard deviation unknown, one-sided) 
=I= JIS Z 9049-1965: Significance test of the difference between two 
population means (standard deviation unknown, two-sided) 
=I= JIS Z 9052-1963: Interval estimation of the difference between two 
population means (standard deviation known) 
=I= JIS Z 9053-1963: Interval estimation of the difference between two 
population means (standard deviation unknown) 
=I= JIS Z 9054-1966: Significance test of equality of the population 
variance and a given value (one-sided) 
=I= JIS Z 9055-1966: Significance test of equality of the population 
variance and a given value (two-sided) 
=I= JIS Z 9056-1979: Significance test of equality of two population 
variances (one-sided) 
=I= JIS Z 9057-1966: Significance test of equality of two population 
variances (two-sided) 
=I= JIS Z 9058-1966: Interval estimation of the population variance 
=I= JIS Z 9059-1966: Interval estimation of the population variance 
ratio 

ISO 3165: 1976 Sampling of chemical products for industrial use- Safety 
in sampling 

=I= BS 5309: Part 1: 1976 Methods for sampling chemical products. Part 
1. Introducäon and general principles 

ISO 3207: 1975 Statistical interpretation of data - Determination of a 
statistical tolerance interval 

= BS 2846: Part 3: 1975 Statistical interpretation of data. Part 3. 
Determination of a statistical tolerance interval 
= DIN 55 303 Teil 5 (2/87) Statistiche Auswertung von Daten; 
Bestimmung eines statistichen Anteilsbereichs 

ISO 3301-1975 Statistical interpretation of data - Comparison of two 
means in the case of paired observations 

= BS 2846: Part 6: 1976 Statistical interpretation of data. Part 6. 
Comparison of two means in the case of paired observations 

ISO 3494-1976 Statistical interpretation of data - Power of tests relating 
to means and variances 
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= BS 2846: Part 5: 1977 Statistical interpretation of data. Part 5. 
Power of tests relating to means and variances 
= DIN 55 303 Teil 2 (5/84) Statistiche Auswertung von Daten; 
Testverfahren und Vertranensbereich für Erwartungswerte und Varian
zen 

ISO 4259: 1979 Petroleum products - Determination and application of 
precision data in relation to methods of test 

= BS 4306: 1981 (1988) Method for determination and application of 
precision data in relation to methods of test for petroleum products 

ISO/DIS 5479 Normality tests 
= BS 2846: Part 7: 1984 Statistical interpretation of data. Part 7. Tests 
for departure from normality 
= DIN ISO 5479 Test auf Normalverteilung 

ISO 5725: 1986 Precision of test methods- Determination of repeatability 
and reproducibility for a standard test method by inter-laboratory tests 

= BS 5497: Part 1: 1987 Precision of test methods. Part 1. Guide for 
the determination of repeatability and reproducibility for a Standard test 
method by inter-laboratory tests 
= DIN ISO 5725 Präzision von Meßverfahren; Ermittlung der Wieder
hol - und Vergleichpräzision von festgelegten Meßverfahren durch 
Ringversuche 
=I= JIS Z 8402-1974: General rules for permissible tolerance of chemical 
analysis and physical test 

ISO/DIS 7585 Statistical interpretation of data - Comparison of a 
proportion with a given value 
ISO/DP 7868 Estimation of a proportion 
ISO/DP 7874 Applications of statistical methods in standardization and 
specifications (Guide) 
ISO/DP 7912 Comparison of two proportians 
ISO 8213: 1986 Chemical products for industrial use - Sampling tech
niques - Solid chemical products in the form of particles varying from 
powders to coarse lumps 

=I= BS 5309: Part 4: 1976 Methods for sampling chemical products. Part 
4. Sampling of solids 

ISO/DIS 8595 Interpretation of statistical data- Estimation of a median 
ANSI/ ASQC E2-1984 Guide to inspection planning 
BS 2846: Part 1: 1975 Statistical interpretation of data. Part 1. Routine 
analysis of quantitative data 
JIS Z 9041-1968: Presentation and reduction of data 
BS 2987: 1958 Notes on the application of statistics topaper testing 
BS 3518: Part 5: 1966 (1984) Methods of fatigue testing. Part 5. Guide to 
the application of statistics 
BS 4237: 1967 Report on the reproducibility of methods of chemical 
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analysis used ili the iron and steel industry 
BS 5309: Part 2: 1976 Methods for sampling chemical products. Part 2. 
Sampling of gases 
ßS 5309: Part 3: 1976 Methods for sampling chemical products. Part 3. 
Sampling of liquids 
BS 5324: 1976 Guide to the application of statistics to rubber testing 
BS 6143: 1981 Guide to the determination and use of quality related costs 
JIS Z 9031-1956: Random sampling methods 
JIS Z 9050-1963: Interval estimation of the population mean (standard 
deviation known) 

3. ACCEPTANCE SAMPLING 

ISO/DP 2859 Part 0 Sampling procedures for inspection by attributes -
Introduction to the ISO 2859 attribute sampling system (Revision of ISO 
2859 Addendum 1) 

=I= JIS Z 9001-1980: General rules for sampling inspection procedure 
ISO 2859-1: 1989 Sampling procedures for inspection by attributes- Part 
1: Sampling plans indexed by acceptable quality Ievel (AQL) for lot-by
lot inspection 

=I= AN SI/ ASQC Zl.4-1981 Sampling procedures and tab/es for inspec
tion by attributes 
= BS 6001: Part 1: 1972 Sampling procedures and tables for inspection 
by attributes. Part 1. Specification for sampling plans indexed by 
acceptable quality Ievel (AQL) for lot-by-lot inspection 
=I= JIS Z 9002-1956: Single sampling inspection plans for desired 
operating characteristics by attributes 
=I= JIS Z 9015-1980: Sampling inspection procedures and tables by 
attributes with severity adjustment (receiving inspection where a con
sumer can select suppliers) 

ISO 2859-2: 1985 Sampling procedures for inspection by attributes - Part 
2: Sampling plans indexed by limiting quality (LQ) for isolated lot 
inspection 

= BS 6001: Part 2: 1984 Sampling procedures for inspection by 
attributes. Part 2. Specification for sampling plans indexed by limiting 
quality ( LQ) for isolated Iot inspection 
= DIN 40 080 Teil2 Annahmestichprobemprüfung anhand der Anzahl 
fehlerhafter Einheiten oder Fehler (Attributprüfung); Nach der rückzu
weisenden Qualitätsgrenzlage ( LQ) geordnete Stichprobenanweisungen 
für die Prüfung einzeliner Lose 

ISO/DIS 2859-3.2: Sampling procedures and charts for inspection by 
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attributes - Skip Iot sampling procedures 
= ANSI S1-1987 An attribute skip-lot sampling program 
= BS 6001: Part 3: 1986 Sampling procedures for inspection by 
attributes. Part 3. Specification for skip-lot procedures 

ISO 3951-1989 Sampling procedures and charts for inspection by vari
ables for percent nonconforming 

=I= ANSI Zl.9-1980 Sampling procedures and tables for inspection by 
variables for percent non-conforming 
=I= BS 6002: 1979 Sampling procedures and charts for inspection by 
variables for percent defective 
=I= OODIN ISO 3951 Verfahren und Tabellen für Stichprobenprüfungen 
auf den Anteil fehlerhafter Einheiten in Prozent anhand quantitativer 
Merkmale (Variablenprüfung) 
=I= JIS Z 9003-1979: Single sampling inspection plans having desired 
operafing characteristics by variables (standard deviation known) 
=I= JIS Z 9004-1983: Single sampling inspection plans having desired 
operating characteristics by variables (standard deviation unknown and 
single Iimit specified) 

ISO 5022-1979 Shaped refractory products - Sampling and acceptance 
testing 

== BS 6065: 1981 Methods for sampling and acceptance testing of 
shaped refractory products 

ISO/DIS 8422.2 Sequential sampling plans for inspection by attributes 
(proportion of non-conforming items, and mean number of non-confor
mities per unit) 

=I= JIS Z 9009-1962: Sequential sampling inspection plans having 
desired operating characteristics by attributes 

ISO/DIS 8423.2 Sequential sampling plans for inspection by variables for 
percent non-conforming (known standard deviation) 

=I= JIS Z 9010-1979: Sequential sampling inspection plans having 
desired operating characteristics by variables (standard deviation 
known) 

ISO/DP 8550 Guide for selection of an acceptance sampling system, 
scheme or plan for inspection of discrete items in lots ( to be published as 
a Technical Report) 
BS 2635: 1955 Drafting specifications based on limiting the number of 
defectives permitted in small samples 
JIS Z 9006-1956: Single sampling inspection plans with screening by 
attributes 
JIS Z 9008-1958: Continuous sampling inspection plans for continuous 
production by attributes 
JIS Z 9011-1963: Single sampling inspection plans by attributes with 
adjustment 
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4. STA TISTICAL PROCESS CONTROL 

ISO/Draft TR 7871 Introduction to cumulative sum charts 
ISO/DIS 7873 Cantrotcharts for arithmetic average with warning Iimits 
ISO/DIS 7870 Cantrotcharts- General guide and introduction 
ISO/DIS 7966 Acceptance cantrot charts 
ISO/DIS 8258 Shewhart cantrot charts 

= JIS Z 9021-1954: Contra! chart method 
=I= JIS Z 9022-1959: Median cantrot chart 
=I= JIS Z 9023-1963: x cantrot chart 

ANSI/ ASQC A1-1987 Definitions, symbols, formulas and tab/es for 
cantrot charts 
ANSI/ASQC B1-1986 Guide for quality cantrot charts 
AN SI/ ASQC B2-1986 Cantrot chart method for analyzing data 
ANSI/ ASQC B3-1986 Cantrot chart method of controlling quality dur
ing production 
BS 600: 1935 Application of statistical methods to industrial standardiza
tion and quality cantrot 
BS 2564: 1955 Cantrot chart technique when manufacturing to a specifi
cation, with special reference to articles machined to dimensional toler
ances 
BS 5700: 1984 Guide to process cantrot using quality cantrot chart 
methods and CuSum techniques 
BS 5701: 1980 Guide to number-defective charts for quality cantrot 
BS 5703: Part 1: 1980 Guide to data analysis and quality control using 
CuSum techniques. Part 1. Introduction to CuSum charting 
BS 5703: Part 2: 1980 Guide to data analysis and quality cantrot using 
CuSum techniques. Part 2. Decision rules and statistical tests for CuSum 
charts and tabulations 
BS 5703: Part 3: 1981 Guide to data analysis and quality cantrot using 
CuSum techniques. Part 3. CuSum methods for process/quality cantrot by 
measurement 
BS 5703: Part 4: 1982 Guide to data analysis and quality cantrot using 
CuSum techniques. Part 4. CuSums for counted/attributes data 
JIS Z 8206-1982: Graphical symbols for process chart 

5. QUALITY MANAGEMENT 

ISO 9000: 1987 Quality management and quality assurance standards -
Guidelines for selection and use 

= ANS I/ ASQC 090-1987 Quality management and quality assurance 
standards - Guidelines for selection and use 
= BS 5750: PartO: Section0.1: 1987 Quality systems. PartO. Principal 
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concepts and applications. Section 0.1. Guide to selection and use 
= DIN ISO 9000 (5/87) Leitfaden zur Auswahl und Anwendung der 
Normen zu Qualitätsmanagement, Elementen eines Qualitätssicherungs
systems und zu Qualitätssicherungs-Nachweisstufen 

ISO 9001: 1987 Quality systems - Model for quality assurance in 
designjdevelopment, production, installation and servicing 

= ANSI/ASQC Q91-1987 Quality systems - Model for quality assur
ance in design/development, production, installation and servicing 
= BS 5750: Part 1: 1987 Quality systems. Part 1. Specification for 
design/development, production, installation and servicing 
= DIN ISO 9001 (5/87) Qualitätssicherungssysteme; Qualitätssi
cherungs-Nachweisstufe für Entwicklung und Konstruktion, Produk
tion, Montage und Kundendienst 

ISO 9002: 1987 Quality systems - Model for quality assurance in 
production and installation 

= ANSI/ASQC Q92-1987 Quality systems- Model for quality assur
ance assurance in production and installation 
= BS 5750: Part 2: 1987 Quality systems. Part 2. Specification for 
production and installation 
= DIN ISO 9002 (5/87) Qualitätssicherungssysteme; Qualitätssi
cherungs-Nachweisstufe für Produktion und Montage 

ISO 9003: 1987 Quality systems - Model for quality assurance in final 
inspection and test 

= ANSI/ASQC Q93-1987 Quality systems- Model for quality assur
ance in final inspection and test 
= BS 5750: Part 3: 1987 Quality systems. Part 3. Specification for final 
inspection and test 
= DIN ISO 9003 (5/87) Qualitätssicherungssysteme; Qualitätssi
ch,erungs-Nachweisstufe für Endprufungen 

ISO 9004: 1987 Quality management and quality system elements -
Guidelines 

= ANSI/ASQC Q94-1987 Quality management and quality system 
elements - Guidelines 
= BS 5750: Part 0: Section 0.2: 1987 Quality systems. Part 0. Principal 
concepts and applications. Section 0.2. Guide to quality management 
and quality system elements 
= DIN ISO 9004 (5/87) Qualitätsmanagement und Elemente eines 
Qualitätssicherungssystems; Leitfaden 

ANS I/ ASQC C1-1985 Specifications of generat requirements for a qual
ity program, REVISED EDITION 
ANSI/ ASQC Q1-1986 Generic guidelines for auditing of quality systems 
ANS I/ ASQC Z1.15-1979 Generic guidelines for quality systems 
BS 5750: Part 4: 1981 Quality systems - Guide to the use of BS 5750: 
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Part 1 'Specification for design, manufacture and installation' 
BS 5750: Part 5: 1981 Quality systems - Guide to the use of BS 5750: 
Part 2 'Specification for manufacture and installation' 
BS 5750: Part 6: 1981 Quality systems - Guide to the use of BS 5750: 
Part 3 'Specification for final inspection and test' 
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discrete data 224 



P charts 213-14, 230 
Performance index 78, 81 
Phenol 49 
Poisson distribution 

basics 15-18 
normal approxiation 33-4, 215, 

222-3 
relation to cumulative i" 

distribution 262 
relation to t distribution 215 
Shewhart charts 218-23 

Poisson variables 
discrete data charts 215 

Polypropathene 65 
Population 13 
Probability distribution 13 
Probabilityplot 28-31 
Process 

causes 39 
curve 254-5 
industries 6-7, 62, 71 
variables 71 

Process average Ievel 
charts for 122-8, 143-5 
control of 121, 172 
estimation 55-63 

Process capability 70-84 
analysis 72 
in complex process 80-3 
high 76-7 
index 76 
low 76-7, 82-3 
medium 76-7 
relation to control 130-1 

Process spread 
charts for 110-11, 130, 189-90 
control of 95-100, 115, 128-9, 

172 
examination 54-5 
moving range charts 128-9 
moving standard deviation 

charts 129 
one-at-a-time data 164 

Index 397 

Process, stable 86 
Process trouble shooting 304 

adaptive sampling 315-16 
Process variation 39-69 

estimation 55-63 
models for 43-6 

Producer's risk point 196, 252 
Product screening 303-4 
Product variables 71 

Quality assurance 292 

Radioactive emissions 16 
random sampling 214 
Random variation 40-3, 44, 85, 

193 
Range, see Sampierange 
Range chart 

assumptions 97-8 
basic rules 98-9 
construction 95-7 
interpretation 97-9 
range method 95-6 
a method 96 
table of factors 96, 97 

Range to standard deviation 23, 
91 

Rao-Blackwelllemma 281 
Rational blocking 63, 115, 116 
Real time 323 
Reduced inspection 292 

table for 297, 302 
Regression 

control charts 328 
multiple 7 

Rejectable quality Ievel 166 
Relative capability 76-80 
Relative range distribution, table 

for 340 
Resistance, electrical 29, 31 
Resistors, electrical 70 



398 Index 

Risk point 
consumer's, see Consumer's risk 

point 
producer's, see Producer's risk 

point 
Risks 

type I 87 
type II 87 

RQL, see Rejectable quality Ievel 
Run length 

concept 100 
Run length distribution 105, 134 

approximation to geometric 
distribution 174, 175 

expectation of 174-6 
variance of 174-6 

Running mean charts 
comparison to CuSum 152 

Running means, calculation 
of 48-51 

Sampie mean 
definition 13 
distribution 21, 73 

Sampie range 
distribution 22-3, 26 

Sampie size 
code letters 294-9 
Shewhart charts 102 

Sampie variance 
distribution 22 

Sampling 
cost 115 
error 46-8, 193 
inspection 214-68 
risks 86-8 

Sampling frequency 
CuSum charts 147-8 
Shewhart charts 89, 102 

Sampling, last off, see Last off 
sampling 

Sampling plan design 
ASSES 263-5 

Sampling plan design ( cont.) 
Defence Standards 266 
Dodge and Romig's 

schemes 265-6 
risk point method 256-63 

Sampling plans 
adaptive, see Adaptive sampling 

plans 
alternatives 248 
ARL 253-4 
deferred sentencing 248 
double 249 
economic approaches 327 
Mood's theorem 255-6 
nultivariate 289-90 
OC-curve 250-6 
process curve 254-5 
properties 250-6 
sequential 249 
serial 248 
single, see Single sampling plans 

Sampling, random, see Random 
sampling 

Sampling size 
Cusum charts 147-8 

Sampling systems 
standard, see Standard sampling 

systems 
Screening 3-4 
S.D., see Standarddeviation 
Sequential probability ratio 

test 184 
Semi-parabolic masks 145 

parameters for 147 
Shewhart chart 

action lines only 105-6 
ARL formula 105-6 
attribute data 227-31 
basics 23-8 
continuous variables 85-113 
countable data 218-27 
effect of skewness 108 
Markov chain 172-7 



Shewhart chart ( cont.) 
modified 110 
non-normality 103-4 
one-at-a-time data 114-37 
operational phase 132-3 
set up 88-9 
specification Iimits 73-6 
use of 130-3 
with warning lines 106-8, 172-4 

Short term variation 40 
Single sampling plans 248 

'normal' inspection table 295, 
300 

'reduced' inspection table 297, 
302 

'tightened' inspection table 296, 
301 

Simple semi economic scheme 
(ASSES) 
basics 263-5 
exercise 266 
table of values 264 

Single specification Iimit 192-205 
fraction non-conforming 279-83 
objectives 192-3 
one-sided X chart 201-5 
a known 271-5 
a unknown 275-9 

Single specification Iimit chart 
action Iimit only 197-201 
design requirements 194-6 
for max values 205 
formeans 194-205 

Skewness, coefficients of 108, 171 
Skip-lot sampling 321 
Snub-nosed V-mask 144, 145, 147 
SPC 

definition 2-3 
development of 1 
factors affecting success of 8-10 
methodology 6-7 
off-line 3, 4-6 
on-line 3-4 

SPC(cont.) 
packages 325 
preventative 3-4 
set-up procedure 72 
system outline 326-7 

Specification Iimits 

Index 399 

applied to Shewhart charts 73-6 
one-sided 79 
single, see Single specification 

Iimits 
Spread, charts for control of 121 
SPRT, see Sequential probability 

ratio test 
Standard deviation 

definition 13 
overall estimate 116 
range method of estimation 23, 

91 
Standard deviation charts 99-100 

factors for 99 
Standards, see Appendix C 
Standard sampling systems 

inspection by attributes 293 
introduction 291-3 

Switching rules 291, 292 

Target value 91, 141, 152 
T-distribution, table for 335 
Testing, destructive 243 
Tightened inspection, 291, 292 

table for 296, 301 
Tolerances applied to Shewhart 

charts 73-6 
Transformation 103, 157 
Transitionmatrix 45, 173, 185 
Transverse flexure strength 90, 

116 
Trends 

process variation 42 
Truncated V-mask 142 
Type I risk 87 
Type II risk 87 



400 Index 

U -charts 213, 214 
Unequal numbers, charts for 104 
US Army Service Forces 

tables 291 
Userinterface 325 

Variables 
input 10 
process 10 
product 10 

Variance 14 
Variation, additional 59-60 
Variation noise 39 
Variation, cyclic, see Cyclic 

variation 
V-mask 

decision interval shceme 151-2 
for process average Ievel 142-3 

V-mask (cont.) 
setting up 142-3 
use of 143 

Warning lines 87 
position of 108-10 

Weighted moving-average 68 
Weights for EWMA charts 127 
Within group variation 44, 80-1 

estimation of 56-8 

X charts 
appraisal 130 
assumptions of 93 
basic rules 93-5 
construction 91-2 
interpretation 92-5 
range metbad 92 
a method 92-3 




