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Preface 
Since the pioneering work of Dodge and Romig in the 1920's there has 
grownup a vastliterature on sampling inspection and quality control. 
However, most of the available texts are written for personnel of 
inspection departments, giving practieal details of exactly what 
should be done to operate various plans. Many of these are excellent 
books for their purpose and it is not my intention to attempt to 
replace them, and indeed I would not be qualified to do this. 

My intention in this book has rather been to give a broad coverage 
of the field, with some emphasis on the principles upon which various 
plans are constructed. I have also given a simple treatment of im­
portant background theory. I hope that the book will be suitable for 
courses in Universities and Technical Colleges. 

The lack of a book of this kind is partially responsible for many 
statisticians and operational research workers finishing their training 
with only a smattering of knowledge of this important practical 
field. 

Those interested in pursuing the theoretical aspects will find 
adequate references throughout, and at the end of the book a list of 
papers for further study. -

Exercises are provided at the end of most sections, and some of 
these which may give difficulty are marked with an asterisk. 

I am grateful to a number of colleagues for detailed comments on 
an earlier draft of this book, and I mention particularly Mr A. F. 
Bissell, Dr G. E. G. Campling, Professor D. R. Cox, Mr W. D. Ewan, 
Mr W. A. Hay and Dr D. V. Hinkley. 

Preface to the 
second edition 

G.B.W. 

The principal changes in this edition are that tables, nomograms, 
and explanation have been added throughout so that numerical 
exercises can be set, and the sections on acceptance sampling have 
been rewritten. In chapter 3 I have included both (l·96a, 3·09a) 
and (2a, 3a) limits for control charts, and in chapter 4 I have 
included an explanation of the use of the nomogram for designing 
CUSUM schemes. In numerous places the text has been brought up 
to date with current work. I am indebted to Professor K. W. Kemp 
and the editors of Applied Statistics for permission to reproduce the 
CUSUM nomogram given in Appendix IT. G. B. W. 
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1. Introduction 

1.1 Examples and definitions 
The importance of sampling inspection and quality control pro­
cedures is very widely accepted, and there is a long history of appli­
cations to various branches of industry. The purpose of this book is 
to give a brief account of the procedures available, and to outline the 
principles upon which they are based. Some typical situations are 
illustrated in the following examples. 

Example 1.1 (Griffiths and Rao, 1964). Large batches of electrical 
components have been purchased for manufacture into parts of a 
computer. Each batch contains an unknown proportion of defective 
components which will cause faults at a later stage if passed on to the 
manufacturing process. It was decided that any batch containing 
more than a critical proportion p 0 of defectives should be rejected, 
and that a single sampling plan was to be operated. This plan was to 
select n items from the batch at random, and reject the batch if the 
number of defective items found in the sample were greater than 
some quantity c. 0 0 0 

Example 1.2. Morgan et al. (1951) have described a sampling pro­
cedure used in the grading of milk. Films of milk were prepared on 
slides and viewed under a microscopy. Several microscopic fields 
were observed on each film, and the number of bacterial clumps 
counted. The observations were used to estimate the density of 
bacterial clumps in the milk, and it was this latter quantity which 
determined the grade of the milk. 0 0 0 

Example 1.3. Grant and Leavenworth (1972, pp. 16-27) described 
in detail two situations of the following type. The output of a pro­
duction process is a continuous series of items and the most important 
characteristic of each item can be described by a single measurement, 
such as length, strength, etc. If the production process is operating 
correctly the measurements on the items are approximately nor-
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mally distributed with a certain mean and variance. A sample of 
five items is drawn from the process every hour and measurements 
made on each item. From the results it is required to decide whether 
the process is operating correctly (the term 'in control' is used), or 
whether some kind of corrective action needs to be taken. Sometimes 
in such applications it is also required to decide whether the current 
output should be passed, or whether it needs to be sorted and 
reprocessed, etc. 0 0 0 

Examples l.l and 1.2 illustrate what we call sampling inspection; in 
these examples it is necessary to decide what to do with a given 
quantity of material, e.g. to decide whether to accept or reject a 
hatch of goods. We say that we wish to sentence batches of goods. 

Example 1.3 describes the quality control situation, where the 
interest is more in controlling the production process than sen­
tencing goods. Inevitably there are many situations where the aim is 
both to control a process and sentence goods, so that it is impossible 
to draw a clear boundary between sampling inspection and quality 
control. 

Example 1.2 illustrates a case where, in comparison with Example 
1.1 or perhaps Example 1.3 the observations are relatively expen­
sive. We shall see that this leads to a rather different sampling plan 
being appropriate for Example 1.2. 

There are certain (Jommon features to the three examples. In each 
case procedures are required by which we decide among a small 
number of possible courses of action, and in each case the procedures 
are to use a small sample of observations, and not, for example, 
inspection of every item. Now in industry it is sometimes necessary 
to defend inspection by samples against 100% inspection, and to 
explain why sample procedures are reliable. Clearly there are some 
situations in which 100% inspection is desired rather than sampling 
inspection, but such situations are infrequent. The reasons why 
sample methods are preferred are as follows: 

(i) We never require absolutely accurate information about a 
batch or quantity of goods to be sentenced. Thus in Example l.l 
it would be sufficient to estimate the percentage of defective items 
in the batch to within!% or so. Complete inspection in Example l.l 
would be an unnecessary waste of time and labour, unlflss the aim 
is to sort all the items into good and bad. For the purpose of sen­
tencing the batch, an estimate of the percentage defective is 
quite sufficient. 
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(ii) A point allied to (i) is that under the usual assumptions, the 
standard error of an estimate reduces as the number of observa­
tions increases, approximately as the reciprocal of the square root 
of the number of observations. Therefore in order to halve the 
standard error we must take four times as many observations. 
Beyond a certain point it is either impractical or not worth while 
achieving greater accuracy. 
(iii) Even if the entire batch is inspected in Example 1.1 say, we 
still do not have an absolutely accurate estimate of the percentage 
defective unless inspection is perfect. In industrial situations in­
spection is very rarely perfect and Hill (1962) quotes a probability 
of0·9 as being 'not unreasonable' for the probability of recognizing 
defects by visual inspection. Some experiments have indicated 
that if inspectors are faced with batches for 100% inspection, then 
the inspection tends to be less accurate than if sample methods are 
used. 
( iv) In some cases, such as in Example 1.2, inspection is very costly 
and 100% inspection is obviously ruled out. One case of this is 
destructive testing, as in testing of artillery shells. Another case of 
costly inspection is when complicated laboratory analyses are 
involved. 
One situation where 100% inspection is appropriate is when it can 

be arranged cheaply by some automatic de""ice. More usually sample 
methods will be appropriate. 

When sample methods are employed we shall usually make the 
assumption that sampling is random. Thus in Example 1.1 a sample 
should be taken in such a way that every item in the batch is 
equally likely to be taken. In practice this assumption is rarely 
satisfied and this has to be taken into account when drawing up a 
plan. 

Sometimes it is possible to stratify the items to be sentenced, and 
use this to draw up a more efficient sample procedure. For example, 
in the transport of bottled goods in cartons, the bottles next to the 
face of the carton are more likely to be damaged than those in the 
interior. In this case it would be better to define two strata, one 
being those bottles next to a face of the carton, and the other stratum 
being the remainder. A procedure which sampled these strata 
separately would be more efficient than a straight random sample. 
To the author's knowledge, very little use has been made of this kind 
of device. 
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1.2 Where inspection ? 
In any industrial process there are a number of places where inspec­
tion can and should be carried out. Consider an industrial process 
which produces nominally constant output over long periods of 
time, pictured diagrammatically in Figure l.l. The process may be 
producing continuously, as in nylon spinning, or small components 
may be produced at a high rate, as in light engineering, or produc­
tion may be non-continuous, as, say, of petrol engines, pottery, etc. 
Any such process can be thought of in three parts; the input stage, 
where the raw materials are accepted for the process, the process 
itself, and the output stage, where the product is passed on for sale, 
or for use in the next stage. Sometimes a process can be thought of as 

INPUT 

Row materials 
or output of 
previous stage 

L PROCESS ~-1----111'~ 

Figure 1.1. A typical process. 

OUTPUT 

Sold or 
passed to 
next stage 

being composed of several stages, each as described in Figure 1.1, 
and the output of one stage is the input of the next, and often there 
are several inputs to a process. For example, car bodies are pressed 
and made in one factory, engines manufactured in another, tyres in 
a third, etc., and these are all inputs to the final stage of assembling 
finished cars. 

We can now consider the inspection suitable for each of the three 
parts of the process featured in Figure l.l. 

INPUT. We may inspect the input to ensure that it is of sufficiently 
high quality. For example, in weaving cotton garments, yarn of low 
tensile strength leads to frequent breaks and loom stoppages. Bad 
material may be returned to the vendor, returned for reprocessing, 
scrapped, or set aside for a different use. If the quality offered at 
input is variable, &tmpling inspection here can ~;ave a good deal of 
trouble and money. 

OUTPUT. We may inspect the output to reduce the risk of bad 
quality being passed on and causing loss of prestige and loss of 
money if bad quality items must be replaced. If there is a guarantee, 
the manufacturer will wish to guard against too many claims against 
this. With items such as packets of detergent, it may be necessary to 
reduce the risk of prosecution for selling underweight. Sometimes 
the aim of inspection of the output is to earn some quality seal, such 
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as a British Standards Institution mark. Any output rejected may 
be scrapped, sold as inferior products, or completely sorted and the 
defective items' rectified or replaced. 

PROCESS. It is usually possible to inspect the process itself, some­
times at several points, and check up how it is working. Two different 
aims might be involved with such inspection. Firstly it may be 
possible to use the information to adjust the process and so reduce the 
amount of bad production. Secondly, it may be desirable to sort out 
the bad production and sort or return articles for reprocessing before 
further processing costs are incurred. When the main aim is to con­
trol the process we have the quality control situation. Frequently 
inspection of the process has both process control and product sort­
ing in view. For example, in production of chocolate bars, inspection 
of the process, before wrapping, may lead both to adjustments to the 
process and also to sorting out underweight production for melting 
down and reprocessing. 

When planning any particular inspection plan, it is important to 
bear in mind the various possibilities for inspection. Sometimes in­
spection effort is more worth while at one place than another. The 
type of inspection plan which is appropriate depends on the parti­
cular situation, and the aims in view. 

Exercises 1.2 
1. Decribe a production process with which you are familiar. 
Detail the places in which inspection plans could he operated, and 
describe the action taken on inspection results. 

1 .3 Classification of inspection plans 
Any system of classifying inspection plans is unsatisfactory in that 
borderline categories exist. Nevertheless it will be found useful to 
have some classification system. We shall first list different inspection 
situations and then give alternative sampling plans. 

(a) Inspection situations 
(i) Batch inspection or continuous production inspection. Batch in­
spection occurs when we have items presented in, say, boxes, and it 
is desired to pass sentence on each box of items together, and not on 
each individual item. If on the other hand we have continuous nylon 
thread, or a production line of continuously produced small items 
such as chocolate bars and items are not treated in batches for sen­
tencing, then we have continuous production inspection. The essen-



6 SAMPLING INSPECTION AND QUALITY CONTROL 

tial distinction is whether items are hatched for inspection purposes 
or not; often with a continuous production process, items are hatched 
for inspection purposes. With batch inspection there is no need for 
any order in the batches presented, although sometimes there is an 
order, and this information can be used, see below. Example 1.4 
illustrates one of the earliest types of continuous sampling plans 
(CSP); batch inspection plans are illustrated later in this section. 

Example 1.4. Dodge J?lan. At the outset inspect every item until i 
successive items are found free of defects. Then inspect every nth 
item until a defect is found when 100% inspection is restored. 0 0 0 

(ii) Rectifying inspection or acceptance inspection. If, say, batches of 
items are presented for sentencing, and the possible decisions are, 
say, accept or reject, or accept or sell at a reduced price, etc., we have 
acceptance inspection. Rectifying inspection occurs when one of the 
possible decisions is to sort out the bad items from a batch and 
adjust or rectify them, or else replace them. That is, with rectifying 
inspection, the proportion of defective items may be changed. 

(iii) Inspection by attributes or inspection by variables. Inspection by 
attributes occurs when items are classified simply as effective or 
defective, or when mechanical parts are checked by go-not-go gauges. 
The opposite of this is inspection by variables when the result of 
inspection is a measurement oflength, the voltage at which a voltage 
regulator works, etc. An intermediate classification between these is 
when items are graded. There is frequently a choice between in­
spection by attributes or by variables, and also a choice of the 
number of such variables inspected. The choice between these 
depends on the costs of inspection, the type of labour employed, and 
also on the assumptions which can be made about the probability 
distribution of the measured quantities. 

(b) AUernative sampling plans 
We shall be mainly concerned here with batch inspection plans. 
Example 1.4 illustrates a continuous production inspection plan, and 
other such plans will be described later. An intermediate situation 
occurs when items are hatched in order from a production process. 
It is then possible to operate serial sampling plans or deferred sen­
tencing sampling plans, in which the sentence on a batch depends not 
only on the results on the batch itself, but also on results from neigh­
bouring or following batches. The plans described below all treat 
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each batch independently; the effect of operating such plans as 
serial sampling plans would be to modify the sentencing rules 
depending on the results of inspection on neighbouring batches. 

( i) Single sampling plan. Suppose we have batches of items presented, 
and the items are to be classified merely as effective or defective. A 
single sampling plan consists of selecting a fixed random sample of 
n items from each batch for inspection, and then sentencing each 
batch depending upon the results. If the sentence is to be either 
accept or reject the batch, then each batch would be accepted if the 
number of defectives r found in the n items were less than or equal 
to the acceptance number, c. We summarize as follows: 

Single sampling plan: 

select n items, } 
accept batch if no. of defectives ::;:: c, 
reject batch if no. of defectives :~ c + 1 

(l.l) 

For inspection by variables we have a similar sentencing rule. There 
is no need for the restriction to two terminal decisions and we could 
have; for example, accept, reject, or sell at a reduced price. 

Example 1.5. For the problem of sampling electrical components, 
Example 1.1, a suitable sampling plan might be to use a single 
sampling plan with n = 30, c = 2. D D D 

(ii) Double sampling plan. In this plan a first sample of n1 items is 
drawn, as a result of which we may either accept the batch, reject it, 
or else take a further sample of n2 items. If the second sample is 
taken, a decision to accept or reject the batch is taken upon the 
combined results. 

Example 1.6. A double sampling plan for the electrical component 
sampling problem might be as follows. Select 12 items from the 
batch and 

accept the btttch if there are no defectives, 
reject the batch if there are 3 or more defectives, 
select another sample of 24 items if there are 1 or 2 defectives. 

When the second sample is drawn, we count the number of defectives 
in the combined sample of 36 items and 

accept the batch if no. of defectives ::;:2, 
reject the batch if no. of defectives 2: 3. ODD 
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A natural extension of double sampling plans is to have multiple 
sampling plans, with many stages. It is difficult to see how double or 
multiple sampling plans would be used when there are more than two 
terminal decisions, unless more than one attribute (or variable) is 
measured and a much more complex sentencing rule introduped. 

(iii) Sequential sampling plan. A further extension of the multiple 
sampling idea is the full sequential sampling plan. In this plan, items 
are drawn from each batch one by one, and after each item a decision 
is taken as to whether to accept the batch, reject the batch, or 
sample another item. A simple method of designing sequential 
sampling plans was discovered by Professors G. A. Barnard and 
A. Wald during the 1939-45 war. An essential point is that the sample 
size is not fixed in advance, but it depends on the way the results 
tum out. 

Sequential sampling plans can save a substantial amount of in­
spection effort, although the overall gain in efficiency is often not 
great unless inspection is expensive, as is the case in Example 1.2, 
concerning grading of milk. Another characteristic of plans where 
sequential sampling can give great gain in efficiency is when the in­
coming quality is very variable. Again, Example 1.2 provides just 
such a situation, as the milk being examined comes from many farms 
over a wide area, and is of very variable quality. 

The theory of sequential sampling plans is discussed by Wald 
(1947) and Wetherill (1975), and will not be discussed further in this 
book. 

(c) Discussion 
We have described many different types of inspection situations and 
inspection plans, and a number of questions arise. What are the 
relative merits of different types of plan? How should the sample 
sizes and acceptance numbers be chosen, and upon what principles? 
In attempting to answer these questions we should consider carefully 
the aims for which the inspection plan was instituted. For this reason 
we discuss the inspection situation in greater detail in the next 
section. In succeeding chapters we shall discuss the rival theories 
which have been proposed for the design of sampling plans. 

1.4 Flow chart for acceptance inspection 

In any realistic assessment of alternative sampling inspection plans, 
the mechanics of the actual situation into which a sampling plan 
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fits must be considered in some detail. In many papers we find that 
important - even drastic - assumptions are made, both implicitly 
and explicitly, as to the manner in which a plan works. In this section 
we do not attempt to give a complete catalogue of inspection situ-

INPUT OUTPUT 
STREAMS STREAMS 

4 !--: 2 2 
INSPECTION 

__/ 
STATION 

""----I J 

Figure 1.2. An inspection situation. 

ations, but we aim to give sufficient to form a basis on which to 
judge the remainder of the book. 

Consider the following situation. Batches of approximately N 
items reach an inspection station through one of I streams. For a 
consumer, these streams might be different suppliers, while for a 
producer, the streams might be different production lines; it is pos­
sible that the most common case is I = l. The quality of batches in 
the streams may or may not be correlated with the quality of other 
neighbouring batches in the same stream or in other streams. It is 
also possible that these input streams may have different states; for 
example, a production process may be either in control or out of 
control. It seems obvious that when several states exist in the input 
streams, the inspection plan should be specially designed to deal with 
this. 

At the inspection station a sample of items is selected from some 
or all of the batches and the samples are inspected. Each batch is 
then sentenced, and placed in one of the J output streams. 

If there are only two output streams, these are usually referred to 
as the accepted and the rejected batches. For final inspection by a 
producer, the accepted batches are those passed on for sale to 
customers. There are many possibilities for the rejected lots, and 
some of these are set out in Figure 1.3, some of which is taken from 
Hald (1960). However, this diagram is really appropriate when items 
are simply classified as effective or defective. More frequently there 
might be different types of defective, and different action taken on 
each type. 

In some applications of inspection plans there may be more than 
two output streams. For example, there may be two grades of 
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accepted batches, for different uses, or for sale at different prices. 
Similarly there could be two grades of rejected batches. However, 
such plans would often be considered unduly complicated, and liable 

Final inspection by a producer 

Rejected botches 

+ 
I 

+ 
Sorted Not sorted 

I 
Effective Defective Scrapped or 
items items sold at 

~··~ 
Defectives scrapped Defectives 
or said at reduced repaired or 

price reprocessed 

Inspection by a consumer 

Rejected batches 

+ 
I 

I 

"' 

Reprocessed. All items 
sent back without sorting 
to some previous stage 
of product ion 

Not sorted Sorted 

I 
Effective 
items 

J: 

Defective 
items 

I 
Defectives scrapped 
or used for less 
profitable purpose 

I 
Scrapped or 
used for less 
profitable purpose 

l 
Defectives 
returned 
to supplier 

J, 
Returned to supplier 

Figure 1.3. Some possible courses of action on rejected batches. 

to lead to gross errors on the part of the inspector. Here we consider 
two output streams and can them accepted and rejected batches. 

Another point with regard to the flow chart, Figure 1.2, is to 
specify which parts of this chart work at a given rate, and which 
parts can work at varying rates. For final inspection by a producer, 
the input streams are fixed, but for inspection by a consumer, the 
quantity usually .fixed is the number of acceptable batches passed. 
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In addition to either of these possibilities, the labour and resources 
available at the inspection station will usually be fixed, and variable 
only in a long-term sense. 

The purpose for which inspection is being applied also needs to be 
considered in some detail. For a producer, some possible aims are: 

(a) To satisfy some requirement for the British Standards Insti-
tution, etc. 

(b) To grade batches for sale. 
(c) To prevent bad batches being passed on to customers. 
(d) To provide information from which a quality control plan can 

be operated. 

The aims for a consumer might be: 

(e) To confirm that the quality of goods supplied is up to standard. 
{f) To prevent bad batches being passed on to a production 

process. 
(g) To grade batches for different uses. 
(h) To encourage the producer to provide the quality desired 

(Hill, 1960). This purpose can only be achieved if the con­
sumer uses a substantial part of the supplier's output. 

It is probable that in many situations in which sampling inspection 
plans are applied, the aims are not easy to define precisely. 

We can see throughout this discussion that inspection by a pro­
ducer is in general very different from that by a consumer. 

An extended discussion of some case studies of quality control 
practices arising in industry is given by Chiu and Wetherill (1975). 



2. Acceptance sampling: 
basic ideas 

2.1 The OC-curve 

For the most part this chapter is concerned with inspection situations 
in which the items are classified as either effective or defective, and 
where the items are presented in batches. We introduce here some 
basic concepts and definitions which we shall use in our further dis­
cussion; one of the most important of these concepts is the operating 
characteristic. 

Suppose batches of quality 0 are presented (so that 0 is the pro­
portion which is defective) and the single sample plan ( 1.1) of section 
1.3 is used. That is, n items are selected at random from each batch, 
and a batch is accepted if c or fewer defectives are found in it. 

Then it follows that the probability that a batch of quality 0 will 
be accepted is 

(2.1) 

if the finite population corrections are ignored. This function is illus­
trated in Figure 2.1. Clearly, when 0 = 0, all batches are accepted 
and P(O) = I. As 0 increases P(O) decreases, until it is zero at 0 = 1 
(it will be negligible long before 0 = 1). This curve shown in Figure 
2.1 is called the operating characteristic curve, or OC-curve. 

For any given sampling plan, the OC-curve can be calculated, and 
compared with what we think the OC-curve should be like. Ideally, 
we might wish to have an OC for which all batches with 0 < 0' were 
accepted, and all others rejeeted. This would be 

P(O) == {~ 0 < 0' 
(} > (}' 

and is shown in Figure 2.2. This OC-curve is impossible to achieve 
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Figure 2.1. The 00-curve. 

0 8' 8 

Figure 2.2. An ideal 00-curve. 

without 100% inspection. An alternative specification would be to 
set 

P(O) = {~ () < ()' 
() > ()" ()' < ()" 

leaving the region (0', ()") in which we do not mind what happens. 
This is shown in Figure 2.3. 

Unfortunately even this alternative form of ideal OC-curve is 
impossible without 100% inspection, but we can make a specification 
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0 8' 8H 8 

Figure 2.3. An alternative form of ideal 00-curve. 

which is close to this. Suppose we set P(O) to be close to unity at 
some value 01 of 0, say, 

and set P(O) to be close to zero at some value 02, 

P( 02) = {3, 01 < 02 

1-a 

--------------·--------------~ ' 
Producers risk 

---- -----------------------

I 
I 
I 
I 

p ~---t-------------------1 
I I 

0 81 82 

Figure 2.4. Producer's and consumer's risks. 

(2.2) 

(2.3) 
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then we have a specification we can achieve. It means that we are 
fixing two points on our OC-curve, as shown in Figure 2.4. 

The interpretation put upon these points is to postulate rather 
narrow-minded producers and consumers, as follows. The producer 
is only concerned that satisfactory batches of quality 01 are accepted 
with a high probability (1 - ()().The consumer, on the other hand, 
is only concerned that batches of unsatisfactory quality, say 02, are 
only accepted with a small probability {3. It is realized that no real 
producer or consumer could define his interests so narrowly. 

The points 01 and 02 are described variously. A suitable terminology 
is 

81 - producers 100(1 - ()()to 100()( safe point 
02 - consumers 100(1 - {J) to 100{3 risk point. 

Some ways in which producers' and consumers' risks are used in 
determining sampling plans are indicated in section 2.4. 

Another point on the OC-curve, used by Hamaker and Van Strik 
(1955), is the central point, or indifference quality or point of control, 
00 •60 , such that 

P(00•50) = 0·50. (2.4) 
Hamaker and Van Strik defined equivalence between sampling plans 
by the point of control and the slope of the OC-curve at this point, 
and the authors proceed to compare alternative sampling plans. 
Clearly, there are a number of other ways of defining equivalence 
between sampling plans. 

Exercises 2.1 

I. Calculate and plot the OC-curves for the sampling plans given 
in Examples 1.5 and 1.6. 
2. If we use a single sample plan for per cent defective, and fix the 
producer's and consumer's risk points, we must solve equations (2.2) 
and (2.3) for n and c. Suggest a method of solving these equations 
using the normal approximation to the binomial distribution, and 
obtain the plan for the parameters ()( = {3 = 0·05, 01 = 0·01, 
()2 = 0·05. 

When would the normal approximation method be inaccurate? 

2.2 The average run length 

This concept was introduced by Page (1954); it has since been dis-
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cussed in many papers, and has found widespread application in 
industry. 

Suppose we have continuous production inspection (of single 
items), or else batch inspection of an ordered sequence of batches, 
then the run length is defined as the number of batches (or items) 
sampled until one is rejected. The distribution of run length for any 
sampling plan is positively skew with a very long tail. Often we do 
not consider the whole run length distribution, but limit consider­
ation to the average run length or ARL. 

Suppose that we have batch inspection using a plan which accepts 
each batch independently of others with an OC-curve P(O). Then 
the probability that a run length of r batches is observed is 

r = 1, 2, ... (2.5) 

and the ARL, is 1/{1 - P(O)}. In this situation, therefore, the OC­
curve and the ARL function are exactly equivalent. However, it can 
be argued (particularly in some situations) that the ARL is more 
directly meaningful. The ARL tells us how much of a given quality 
is accepted on average, before some action is taken. 

In some sampling plans, the plans are altered according to the 
process average as determined from sampling. For such plans the 
ARL and OC-curve may not be directly equivalent, and the ARL 
appears to be the more meaningful concept. Another situation when 
the ARL should be used is when we have plans which are being used 
for process control, for the ARL shows how frequently corrective 
action is initiated. In other cases it may be helpful to use both the 
ARL and the OC-curve concepts. 

Finally, we note that it is sometimes useful to distinguish between 
the average Bample run length (ASRL), and the average article run 
length (AARL). 

Exercises 2.2 

1. Calculate the ARL curve for the sampling plans given in Exam­
ples 1.5 and 1.6. (See Exercise 2.1.1.) 
2. Calculate some terms of the distribution (2.5) for several values 
of P, in order to study the shape of the distribution. 

2.3 The process curve 

The long run distribution of the quality of batches of items arriving 
at the inspection station is called the process curve. It is possible that 
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a stochastic process of some kind governs the quality of incoming 
batches, but this is usually ignored in batch inspection, partly on the 
grounds that it is very difficult in practice to obtain information on 
the process. With continuing production inspection, there is no 
meaning to the process curve without either arbitrarily hatching it, 
or else bringing in the stochastic element. A typical process curve is 
shown in Figure 2.5. 

Figure 2.5. Typical process curve for per cent defective. 

Published data on process curves are very scarce, but some data 
were collected by Ford (1951), part of which is quoted by Barnard 
(1954, p. 159). Horsnell (1957) proposes some theoretical models for 
process curves which he says fit practical data quite well, but Bar­
nard says in the discussion following Horsnell's paper (p. 192) that 
data he has seen do not bear the slightest resemblance to Horsnell's 
models. The scarcity of information is due to two reasons: 

(i) Such data are almost always regarded as industrial secrets. 
(ii) Production conditions are sometimes not held constant for 

long enough to accumulate sufficient data. 

Hamaker (1958, pp. 151-4) surveys the theoretical models assumed 
for process curves. The most important are as follows: 

f(O) = K0«(1 - ())11 Champernowne, 1953 
f(O) = (s + 1)(1 - O)• Sittig, 1951 
Pr(O = 0;) =a;, i = 1, 2 Barnard, 1954 
Pr(O = 0;) =a;, i = l, 2, ... , k Generalization of Barnard, 

1954 
Pr(O = 0;) =a;, i = 1, 2, ... , k, where 0£1(1 - 0;) = (O')i/oc 

Wetherill, 1960. 
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The vital question, of course, is to know how accurately we need a 
knowledge of the process curve. The research to date indicates that 
our knowledge of the prior distribution does not need to be very 
precise (Pfanzagl, 1963; Wetherill, 1960; Wetherill and Campling, 
1966) provided that the form of the distribution chosen is reasonable. 

It should be pointed out that in nearly all inspection situations 
some knowledge of the process curve is needed to arrive at a satis­
factory sampling plan, although this knowledge is often used sub­
jectively; see section 2.4. We need to know (roughly) how likely it is 
that batches of any given quality will occur, in order to decide how 
much protection we need at various quality levels. 

Mood's theorem 
An important result which throws some light on the importance of 
the process curve was derived by Mood (1943). 

Consider a single sample plan for fraction defective, from batches 
of size N. Any given batch quality can be represented by a point 
on the batch line in Figure 2.6, and any sample result is represented 
by a point on the sample line. Consider a batch of quality represented 
by the point P, then the probability that the sample result is given 
by Q is 

Pr(Q I P) = no. of paths OP via Q 
total no. of paths OP 

Now suppose that the process curve is binomial 

corresponding to stable production at a probability p of a defective. 
Then the total probability of obtaining a batch and sample repre­
sented by P and Q respectively is 

= (~)pbqg(~ = ~)pB-bqG-o. 
This last statement shows that the sample result (g, b) is statistically 
independent of the quality of the remainder of the batch (G- g, 
B- b). In particular, b is statistically independent of (B- b). 
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Mood actually found that the correlation between b and B - b is 
zero for a binomial process curve, and negative and positive for 
leptokurtic and platykurtic process curves respectively. 

X 
Number of good items 

Figure 2.6. Illustration of Mood's theorem. 

One conclusion which we can draw from this result is that there is 
no point in sampling when the batch quality is stable (except, maybe, 
to reject the entire production). Sampling only makes sense with 
variable quality. We therefore need to take care about schemes 
worked out on a basis of stable production. 

2.4 Methods of choosing sampling plans 
The producer's and Consumer's risk point method 
In this text we shall use the term sampling scheme to refer to a set of 
principles used to determine sampling plans, resulting in a collection 
or table of individual sampling plans indexed ready for use. There 
are a variety of sampling schemes available, each appropriate in 
certain circumstances, and we shall discuss the underlying principles 
of some of these in the next few sections. 

Suppose that we have large batches of items presented for accep­
tance inspection, where the items are classified as effective or defec­
tive, then the sampling plan (1.1) has two parameters to be fixed, 
the sample size n and the acceptance number c; clearly we need two 
equations to determine these quantities. One way of obtaining two 
equations is to pick two points on the OC-curve, and determine nand 
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c so that the 00-curve of our plan goes through (or very near to) 
these points. Following the reasoning of section 2.I, one convenient 

pair of points to choose is the producer's risk point (2.2) and the 
consumer's risk point (2.3); these points are shown in Figure 2.4. 
Owing to the discreteness of the binomial distribution it may not be 
possible to satisfy (2.2) and (2.3) exactly, and we can restate them as 

~ (~)o~(l- 01)n-r ~I- ex (2.6) 

~ ( ~ )o;(I - O~)n-r ::;; p (2.7) 

We need to find a pair of values (n, c) satisfying these inequalities, 
and an approximate solution can be obtained as follows. (See Hald 
(I967) for a further discussion of the method given here, together 
with approximate solutions etc.) 

First we replace the binomial terms in (2.6) and (2.7) by Poisson 
terms for the same means, 

c 2 e·-n6'(n01)' jr! ~ I - ex 
0 
c 

(2.8) 

2 e-n6•(n0 2)' jr! ::;; p (2.9) 
0 

Now the cumulative Poisson distribution can be related to the 

cumulative x2-distribution since we can show by integration by 
parts that 

foo c 

~ tc e-t dt = 2 e-mmr jr! 
C. m 0 

(2.IO) 

and hence that 
c 2 e-mmr jr! = Pr{x2 > 2m 1 2(c + I) d.f.} (2.ll) 
0 

since the integral on the left-hand side of (2.IO) is the probability that 
x2 is greater than 2m, for a x2-distribution having 2(c + I) degrees 
of freedom. Inequalities (2.8) and (2.9) are therefore equivalent to 

Pr{x2 > 2n01 I 2(c + I) d.f.} ~ I - ex (2.I2) 

Pr{x2 > 2n02 l 2(c + I) d.f.} ::;; p (2.13) 

If we denote the IOOcx-percentile of the x2-distribution with 2(c +I) 
degrees of freedom by x!. then these inequalities are 
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2n01 ~ x! 
2n02 ~ X1-P 

If we now put 

r(c) = X~-p/X~ 
then c is the smallest value satisfying 

r(c- 1) > 02/01 > r(c) 
We can solve (2.14) and (2.15) for n to get 

21 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

Xl-p/20 2 ~ n ~ x!/201 (2.18) 
with the x2's having 2(c + 1) degrees of freedom. Any n in the 
interval (2.18) will solve the problem, and we can choose which 
inequality (2.8) or (2.9) is nearer to being satisfied as an equality, by 
choice of n nearer to one or other limit. If (2.18) does not contain 
an integral value of n, we must increase c and obtain a new interval 
(2.18). 

In this way a sampling plan approximately satisfying (2.6) and 
(2.7) is easily obtained, and tables of r(c) and of z2 percentage points 
are given in the Appendix tables. Once an (n, c) is determined, an 
approximate OC-curve can be plotted using standard x2 percentage 
points and equation (2.11). 

Example 2.1. Suppose theparametervaluesare(01 = 0·01, IX= 0·05), 
(0 2 = 0·04, {3 = 0·05), then 02/01 = 4. Looking up Appendix II, 
table 6, we find that c = 6 solves (2.17), giving 

4·02 > 4 > 3·60 
From Appendix II, table 3, we find that the interval for n, (2.18), is 

23·68/0·08 ~ n ~ 6·57 /0·02 
296 ~ n ~ 328·5 

Suppose we use n = 300, c = 6, then the OC-curve is 
e 

P = 2 e-3008 (3000)'/r! 
0 

= Pr{xz > 6000 114 d.f.} 
and a few points on this curve can be plotted using Appendix II, 
table 3. 0 0 0 

It is interesting to notice from Example 2.1 that c = 5 will nearly 
satisfy the requirements. The appropriate n interval is then 

261·3 ~ n ~ 262·8 
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which cannot be satisfied. If we use, say (n = 262, c = 5), then the 
actual risks will be slightly greater than those set. In view of the 
great reduction of sample size, we would probably use this plan in 
this example. 

We notice that the producer's and consumer's risk points specified 
in Example 2.1 have led to an extremely large sample size. If this 
were a practical case, we would seek to modify the risk points and 
try again etc., until we arrived at a sampling plan which is felt to be 
'reasonable'. This type of iterative process can be defended on the 
grounds that one is trying to balance the cost of sampling against 
the costs of wrong decisions. For any batch of quality (), the prob­
ability that it will be accepted is given by the OC-curve. Thus by 
looking at the OC-curve, we can see the probability that poor quality 
will be accepted and good quality rejected. The probabilities of these 
wrong decisions can be reduced - but only by increasing the sample 
size and so increasing sampling costs. The essential point about the 
balancing of costs referred to here is that it is not formalized. The 
final decision on a sampling plan is made subjectively, by someone 
with a detailed knowledge of the set-up. 

A number of tables of sampling plans have been constructed based 
upon principles rather similar to the above. Peach (1947) listed 
sampling plans for which the producer's and consumer's risks were 
both set at 0·05. Horsnell (1954) tabulated plans for producer's 
risks of 0·01 or 0·05 and consumer's risks of 0·01, 0·05, or 0·10. 

The most comprehensive set of tables of this kind is provided by 
Hald and Kousgaard (1966). Essentially they give tables of 

~ (~) ()r(1 - ())n-r = p 

for c = 0(1) 100, 15 values of P, and values of 0 < () < 0·50. Simple 
illustrations are given of the use of these tables to obtain a single 
sampling plan with set producer's and consumer's risks. 

Two main criticisms can be levelled at the producer's and con­
sumer's risks method of determining sampling plans. The first is that, 
except in very small batch sizes, the resulting plans are independent 
of the batch size. (Clearly in very small batch sizes the hypergeometric 
distribution should be used in (2.6) and (2.7).) Since the costs of 
wrong decisions increase with batch size, it is obvious that the pro­
babilities of error (rx, {J) should reduce with increasU;tg batch size. 

The second criticism is that it is in general rather difficult to choose 
the parameters (01, oc; 02, {J). If we are dealing with an endless 
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sequence of batches, the OC-curve points could be expressed as 
ARL's, which might have more meaning, but the choice has to be 
made in consultation with production staff and others who do not 
appreciate the full depth of the concepts involved. 

It is important to realize that the OC-curve does not give the pro­
portion of batches of any given quality among accepted batches, 
since it is necessary to use the process curve to obtain this quantity. 
The probability distribution of () among accepted batches is clearly 

P(()). R(()) I I: P(()) R(()) d() (2.19) 

where P(()) is the OC-curve and R(()) the process curve. Thus the 
proportion of accepted batches having () > 01 is 

J:,P(()) R(()) d() I f:P(()) R(()) d() (2.20) 

The effect of a sampling plan is to change the distribution of batch 
quality from the distribution R(O) which is input, to a distribution 
proportional to P(()) R(()) which is output from the inspection 
station. When using an OC-curve sampling scheme we have to keep 
this in mind. Figure 2.7 illustrates the effect of a sampling plan. 

Process curve 

Output quality of accepted batches 
proportional to P(B) R(B) 

B 

Figure 2.7. Effect of a sampling inspection plan. 

OC-curve 
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Exercises 2.4 

1. Compare the accuracy of the method given in section 2.4 for 
choosing a single sample plan with the normal approximation 
method used in Exercise 2.1.2. 
2. Plot and compare the 00-curves for the two plana suggested for 
Exercise 2.1, (n = 300, c = 6) and (n = 262, c = 5). 
3. Use the Poisson approximation to design a single sample plan for 
the producer's and consumer's risk method with: 

(a) 01 = 0·01, oc = 5%; 
(b) (}1 = 0·01, (X = 5%; 
(c) 01 = 0·01, oc = 5%; 

(}2 = 0·05, {J = 10% 
(}2 = 0·04, {J = 10% 
(}2 = 0·03, {J = 10% 

Finally, write a short note on the effect of changes in the ratio 
01/01 on sample size. (Use Appendix II table 6.) 
4. What is the effect on the calculations given in question 3 of 

(a) reducing {J to 2·5%? 
(b) multiplying 01 and 02 by 2? 
(c) reducing oc to 2·5%? 

2.5 Defence sampling schemes 

A series of sampling schemes have been developed during and since 
the Second World War, for use in military contracts, and they are all 
based on similar principles. 

The first step is that a table was drawn up which in effect fixes 
the relationship between batch size and sample size to be one of 
three or five purely arbitrary functions. The sample sizes were made 
to increase with batch size in a manner thought to be reasonable. 

Next the concept of Acceptable Quality Level (AQL) was intro­
duced, but the actual definition of this differs in the different 
schemes. The SRG tables (Freeman et al., 1948) fixed the AQL as the 
quality for which the probability of acceptance was 0·95. Unfor­
tunately this has some tmdesirable consequences: since the sample 
size is already fixed, this automatically determines the sampling 
plan, and some rather large consumer's risks result. Other sampling 
schemes, such as the U.S. Army Service Forces tables (1944), 
MIL-STD-105 (A, B, C, and D), and the British DEF-131 (Hill, 
1962), have let the probability of acceptance at the AQL vary in a 
rather unsystematic way, so as to share the risks between producer 
and consumer more equitably. The most satisfactory definition of 
AQL is the one used in DEF-131, that it is the maximum percentage 
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defective which can be considered satisfactory as a process average. 
That is, the AQL is a property required of the product. The variation 
of the probability of acceptance at AQL is considerable, ranging from 
0·80 for the lowest sample sizes to 0·99 for the largest. 

Finally, all of the defence sampling tables use switching rules. The 
idea is that watch is kept on the inspection results, and according 
to certain rules, 'tightened' inspection is introduced if necessary. 
The introduction of tightened inspection produces a wholesale 
change of the OC-curve along the lines shown in Figure 2.8. This 
puts considerable pressure on the producer, since even goods of 
AQL quality would be rejected much more frequently. It should be 
clear that a major part of the quality assurance given by the schemes 
lies in the use of this switching rule pressure tactic. A producer is 
forced to send goods of AQL quality or better, to have them accepted 
at a satisfactory rate . 

• :a .. ... e 
a.. 

Percenta11e defective 

Figure 2.8. OC-curves for normal (N) and tightened (T) inspection. 

The rules used for switching have varied. Ideally, a watch should 
be kept on the process average, but this was criticized as being too 
complicated. A frequently used rule is to switch to tightened inspec­
tion if two or more of the last five batches have been rejected. 

A good description of a modern scheme, together with some tables, 
is readily accessible in the paper by Hill (1902), to which readers are 
referred for further details. A complete description of the schemes 
will not be given here. 

There are two main criticisms of the Defence Sampling Schemes 
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method. One obvious point is the arbitrariness of the batch-sample 
size relationship. There is no theoretical backing for any of the 
relationships used. A rather more important criticism, however, is 
that the switching rules pressure tactic is not always practicable. 
There may not be an indefinite sequence of batches, and the con­
sumer may not be in a position to exert much pressure on the 
producer. (A government department is usually in a different posi­
tion.) However, in places where switching rules can be nsed, the 
Defence Sampling Schemes method probably pays off well. 

Particular schemes of this type which are widely used are DEF­
l31A and MIL-STD-l05D. 

2.6 Decision theory schemes 
An alternative scheme for designing a sampling plan is to assess the 
costs and losses involved and try to design the plan so as to minimize 
costs. Increased sampling (which costs more) will reduce losses from 
wrong decisions; hence there will be an economic optimum which can 
be determined. 

Consider Example l.l, the problem concerning electronic com­
ponents. Let the cost of sampling an item be regarded as the unit of 
costs, denote the profit from passing a good item by b, and denote 
the profit (loss) from passing a bad item by -f. In Example l.l 
this latter quantity is the cost of tracing and eliminating faulty 
components. The profit from a batch of size Nand quality 0 is then 

N(l - O)b - NOJ = k(00 - 0) 
say, where k = N(b +f), and 00 = b/(b +f) is the break-even 
quality at which it is just as profitable to accept or reject a batch. 
Clearly, we wish to accept batches for 0 < 00 and reject batches 
having 0 > 00, and the decision losses of wrong decisions can be 
tabulated as follows: 

Decision Quality Loss 

Accept (J > Oo k(O- 00 ) 

Accept (J < Oo 0 
Reject (J > Oo 0 
Reject (J < Oo k(0 0 - 0) 

Suppose the prior distribution of the quality of incoming batches 
for inspection is beta, 

O«-l(I- 0)P--1F(oc + {3)/F({J).F(oc), 0 < 0 <I 
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We shall now show how to determine the values of n and c which 
describe the simple sampling plan for which the expected loss is a 
minimum. As a first step we find the value of c which is optimum 
for a given n. 

For any n and r the posterior loss of rejection is 

J:·k I 0- 00 I OX-1(1 - O)N-1 dO/fJ(X, N) (2.2I) 

where X= rJ. + r and N = n + f3- r. Similarly, the loss of 
acceptance is 

J1 k I 0- 00 I OX-1(I - O)N-1 dOj{J(X, N). (2.22) 
Bo 

To minimize losses, we accept or reject at any point (n, r) according 
to which of (2.2I) and (2.22) is the smaller.\The acceptance number c 
will be where the two are equal. This leads to the equation 

c = (n + rJ. + {3)0 0 - rJ. - !- (2.23) 
As we might expect, c ~ n00• 

The determination of the optimum sample size is more complicated. 
We evaluate the total losses and minimize them for choice of n. 
For a process curve R(O) the losses are 

R = (cost of sampling) + (cost of wrong decisions) 

= n + e k I 0 - Oo I P(O)R(O) dO 
J Bo 

+ J> I 0 - 00 I {I - P(O)}R(O) dO 

= n + J: k(O - 00)P(O) dO + J:•k(0 0 - O)R(O) dO. (2.24) 

The last term in (2.24) is independent of n, and the relationship 
(2.23) should be used to substitute for c in P(O), in the middle term. 
If equation (2.24) is minimized for choice of n we have the optimum 
sample size. 

One useful prior distribution for which the mathematics turns out 
to be reasonably simple was introduced by Barnard (I954). This is 
the two-point binomial prior distribution, where (J takes on one of 
two values, 01 or 02 , with 

Pr(O = 01) = a, Pr(O = 02) = I - a, 0 < a < I. (2.25) 

Single sampling plans for the two-point binomial prior distribution 
were tabulated by Hald (I965). Hald also gives asymptotic and 
approximate formulae for the optimum plans. A simple method of 
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solution is given by Wetherill (1960). 
When using the decision-theory scheme just described, the para­

meters of the prior distribution and of the loss functions will have to 

be estimated. A vital question is therefore to examine how robust 
the economic optimum is to errors in these estimated parameters, 
and this problem was examined by Hald (1965), and Wetherill and 
Campling (1966). The general conclusion is that the optimum is very 
robust to all parameters except the break-even quality 00 and the 
surface is very flat near the optimum for choice of sample size. In 
general, asymptotic formulae can be used instead of exact formulae 
with very little loss, see Hald (1967). 

The main criticisms of the decision-theory schemes concern the 
difficulty of estimating the parameters of the loss functions and of 
the prior distribution. Sometimes production is done in short bursts, 
so that one type of product is made for a week or two, then another, 
and so on. In this situation there may be no knowledge at all of the 

prior distribution. Also, Exercise 1.1 studied above was such that the 
profits and losses could be determined readily. In situations where 
part of the cost of passing bad items is loss of goodwill, a more 
difficult problem arises in determining the losses. The robustness 
studies referred to in the paragraph above are a partial answer to 

these criticisms, provided the break-even quality is determined 
precisely. 

Another argument against decision theory schemes is that they 
assume a constant process curve whereas in some cases one aim of 
inspection is to force the producer to deliver better quality, and 
hence to change the process curve. However, the robustness studies 
have shown that decision theory schemes are not very sensitive to 
the process curve used. In any case, the real question is whether a 
better sampling plan is likely to emerge from a decision theory 
approach than another approach, and not whether the actual 
optimum plan is achieved. Undoubtedly, there are many situations 
where a decision theory approach should be used. 

2.7 A simple semi-economic scheme 

Wetherill and Chiu (1974) have followed up the decision theory work 
by proposing a simple but highly efficient scheme. 

The decision theory work shows that the break-even quality 00 is 
by far the most important parameter, and that under a very wide 
range of conditions we have c ~ n00 , or to a better approximation 

c ~ n00 - 2/3 (2.26) 
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If we obtain an estimate of the break-even quality, this equation 
can be used as the starting point of a sampling scheme. We need one 
more restriction, and the decision theory robustness studies showed 
that it does not particularly matter, within a wide range, concerning 
the determination of sample size. 

It seems intuitively obvious that we ought to concentrate on 
properties of the plan with respect to the quality most frequently 
offered, or the quality required, which we shaU call the AQL here. 
It follows from some work of Hald (1964) that if we make 

Pr (accept batch at AQL) = I -· oc/N (2.27) 

for some oc, where N is the batch size, then the resulting relationship 
between n and N is approximately the same as those obtained 
theoretically for a range of process curves. 

In this scheme therefore we determine 00 from economic con­
siderations, and then use (2.26) and (2.27) to determine a sampling 
plan. Wetherill and Chiu (1974) produced a table to simplify this. 
The only arbitrary choices here are the AQL and oc in (2.27), but this 
enables one to set the probability of acceptance at the quality 
desired. 

Clearly, under this schem~ a producer will have to offer quality of 
about AQL, but it could be slightly worse and still be accepted with 
high probability. 

Exercises 2. 7 

l. By using equation (2.26) and the Poisson approximation formula 
(2.11), find the single sample plan with break-even quality approxi­
mately 00 = 0·03, and a producer's risk of 5% at 0 = 0·01. Plot the 
OC-curve of your sampling plan. 
2. What is your solution to question l if either (a) 00 = 0·05, or 
(b) oc = 2·5%? 

2.8 Dodge and Romig's schemes 

Dodge and Romig (1929, 1959) pioneered sampling inspection from 
about 1920 onwards, and they proposed two different schemes, both 
assuming that rectifying inspection is involved. That is, they assume 
that rejected batches are 100% sorted, and all defective items 
replaced or rectified. 

One approach was through a quantity they defined as the Lot 
Tolerance Percent Defective, LTPD, which is 'some chosen limiting 
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value of per cent defective in a lot', representing what the consumer 
regards as borderline quality. The tables always used LTPD with a 
consumer's risk of 0·10, so that the LTPD is effectively the quality 
corresponding to a consumer's risk of 0·10. However, the LTPD only 
gives us one restriction, and two are required to determine a single 
sample plan. For the second restriction, Dodge and Romig mini­
mized the average amount of inspection at the process average. For 
sample and batch sizes n and N, and acceptance number c, the 
average amount of inspection is 

I= n + (N- n)[1- ~ (~) Or(1- O)n-r] (2.28) 

Subject to the LTPD, values of (n, c) were chosen to minimize I at 
the process average quality, 0. 

The other approach Dodge and Romig used involved a quantity 
defined as the Average Outgoing Quality Limit, AOQL. To obtain 
this we notice that if on average I items per batch are rectified, an 
average of (N - I) remain unrectified. The average outgoing quality 
is therefore 

AOQ = (N- I)O/N (2.29) 

where I is given by (2.28). It is readily seen that the AOQ has a 
graph roughly as shown in Figure 2.9 and passes through a maximum 
with respect to 0, and there is an upper limit to the average outgoing 
percent defective called the AOQL. 
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In the second approach, Dodge and Romig produce sampling 
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Figure 2.9. The average outgoing quality limit. 
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plans having set values of the AOQL, which also minimize the aver­
age amount of inspection at the process average. If all rejected 
batches are 100% inspected and an average quality guarantee is 
satisfactory, the AOQL approach may be a good scheme to use. 

Some criticisms of Dodge and Romig's methods are given by Hill 
(1962). In particular he criticizes the AOQL concept as being very 
sensitive to imperfect inspection, as there then may be no upper 
limit to the AOQ. 

2.9 Other schemes 
There are other schemes for deriving sampling inspection plans, and 
we mention two very briefly. 

Horsnell (1957) has an interesting formulation which is a compro­
mise between methods of sections 2.4 and 2.6 above, and which 
avoids estimating certain costs and losses. He considers inspection 
by a consumer, and fixes the consumer's risk point. Rejected lots are 
reckoned (in the long run) to be a total loss to the consumer, and 
Horsnell minimizes the costs of inspection and the costs of rejected 
lots, per lot accepted, subject to the fixed consumer's risk point. 

A rather similar approach has been adopted by Hald (1964); 
decision losses are minimized for a two-point binomial prior distri­
bution (2.25) subject to one of the following three points on the 
OC-curve being fixed: 

(i) Producer's 5% risk point fixed at ()1 (AQL scheme) 
(ii) Consumer's 10% risk point fixed at () 2 (LTPD scheme) 

(iii) The indifference quality level is fixed at () 0•50 (IQL scheme) 

The sample size can then be chosen to minimize losses, and tables 
are provided to do this. The IQL scheme is a particularly attractive 
one, and Hald (1965) shows that it has a number of very desirable 
properties. The indifference quality level should be chosen equal to 
the break-even quality. 

Hill (1960) put forward an entirely different type of economic 
scheme. One purpose of an inspection plan is taken to be that of 
inducing a manufacturer to change his prior distribution. Improved 
quality costs more, both to manufacturer and consumer. If the 
manufacturer's quality deterioriates, the cost of rejected batches be­
comes prohibitive. A sampling plan is therefore devised such that it 
is to the manufacturer's economic advantage to offer the quality 
desired by the consumer. This scheme is called the economic incentive 
scheme; it implies that the consumer's purchases from the manu-
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facturer are so large that he is willing to make alterations to his 
process specially for him. This may be true for government pur­
chases and certain large industries, but it clearly does not apply 
generally. 

In the discussion given above, it has been assumed that each 
batch is to be sentenced independently of other batches, the only 
break to this rule being the application of 'switching rules' in Defence 
Sampling Schemes. However, some plans have been proposed which 
use the results of inspection on neighbouring batches when senten­
cing any given batch. These plans can only be used if certain condi­
tions are fulfilled, that the batches are part of a continuing supply, 
that the customer has confidence in the supplier not to insert a bad 
batch in a s(lquence, and that there is no reason to believe the batch 
under consideration is of worse quality than the neighbouring 
batches. One plan of this sort was a 'chain sampling plan' devised by 
Dodge (1955). This plan applies where a very small sample size is 
used, with acceptance number c = 0. The idea is simply that a batch 
having one defective in the sample is accepted if the preceding i 
samples are free of defects. 

A more general application of this idea was discussed by Cox 
(1960), who called his plans 'serial sampling plans'. He assumed that 
the process curve was the result of a two-state Markov chain, and he 
showed how decision theory arguments can then be used to obtain 
an acceptance rule which involves the results of sampling on any 
specified neighbouring batches. 

2.10 Discussion 
There is an arbitrary element in any scheme for choosing a sampling 
plan, although this is very much less marked for decision theory 
approaches. In 00-curve schemes everything depends on a suitable 
choice for producer's and consumer's risk points, and this is more 
difficult than one might think, except perhaps for experienced users 
in familiar situations. 

Decision theory schemes are more precise and scientific, leaving 
much less to judgement. However, the process curve and loss func­
tions will have to be chosen, and it is sometimes difficult to obtain 
information about these quantities. Frequently one of the aims of a 
sampling plan is to force modifications to the process curve, whereas 
decision theory plans assume this to be stationary, in a long-term 
sense. These arguments against decision theory schemes lose much 
of their force when we see how robust the optimum loss is to errors 
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in the assumed process curve and loss functions. For the example we 
have discussed, the break-even quality 00 is the only critical para­
meter, and any plan with an acceptance number very different from 
c = n00 is inefficient. Since OC-curve schemes do not attempt to 
estimate 00 it is clear that large errors are possible. This work indi­
cates therefore that an attempt should always be made to estimate 
the break-even quality, even in situations where this might be 
difficult to do. 

In factories where production is carried out in short runs of 
different kinds of product, information on the process curve 
would be virtually impossible to obtain. In this situation a suitable 
compromise would be as follows. The break-even quality 00 is esti­
mated and then the acceptance number put at c = n00• The sample 
size n can then be chosen so that the plan has suitable OC-curve 
properties. With this compromise the difficulty of estimating the 
process curve can be postponed until more information is available. 

Another difficulty with OC-curve schemes, which is also possessed 
by the compromise scheme suggested above, is that the sample size is 
not dependent on the batch size. In decision theory schemes an 
increased batch size leads to increased losses, and thus to increased 
sample size, and this seems intuitively correct. In some OC-curve 
approaches this point is dealt with by using an arbitrary relation 
between batch size and sample size, and although this seems more 
correct it cannot be said to be totally satisfactory. 

Many of the sampling schemes referred to above include double 
and multiple sampling plans, but the discussion has been based on 
single sampling plans so as to concentrate on the underlying prin­
ciples. The usual way to obtain double sampling schemes is to apply 
some arbitrary restrictions so as to reduce the number of parameters 
involved. In some cases, these arbitrary restrictions have not been 
applied in a very sensible way, see Hill (1962), and Hamaker and 
Van Strik (1955). Sequential sampling plans have always followed 
use of the sequential probability ratio test; see Wetherill (1975). 

There is no problem in deriving double and sequential sampling 
plans by the decision theory approach, and for details see Wetherill 
(1975) and Wetherill and Campling (1966). 

The final choice of a samp~ing scheme must be the one which we 
think is likely to lead to a more efficient sampling plan. In some cases 
it may be better to try two or three schemes before deciding on a 
particular plan. 
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Exercises 2.1 0 

1. Write an essay summarizing the advantages and disadvantages 
of the methods of designing attributes sampling inspection plans 
which are discussed in this chapter. 

2.11 Inspection by variables 

(a) General 

So far we have been discussing inspection by attributes, when in­
spected items are simply classified as effective or defective, according 
to whether they do or do not possess certain attributes. When a 
continuous variable can be measured upon which the quality or 
acceptance of an item depends, it may be possible to operate an 
'inspection by variables' plan. This will usually lead to a substantial 
saving of effort over an 'inspection by attributes' plan. 

A good discussion of inspection by variables with theory, tables 
and references, is given by Lieberman and Resnikoff (1955), and 
their tables are reproduced in the U.S. Military Standard 414. A more 
detailed coverage of inspection by variables, including tables, worked 
examples and problems for solution, is given by Duncan (1974). In 
this section we give only a brief discussion of the main principles. 

Consider the following examples, which are quoted by Lieberman 
and Resnikoff. 

Example 2.2. A batch of steel castings is presented for acceptance 
inspection, and any casting with a yield point below 55,000 lb. per 
square inch (p.s.i.) is unacceptable. Six castings were tested and the 
yield points were (in 103 p.s.i.) 

62·0, 61·0, 68·5, 59·5, 65·5, 63·9. 

If certain assumptions are made about the distribution of yield 
points of castings in the batch, the percentage of defectives can be 
estimated and the batch sentenced. D D D 

Example 2.3. A specification for certain electrical components states 
that the resistances must be between 620 and 660 ohms. Measure­
ments on the resistance of a random sample of ten items from a large 
batch give the following results: 

639, 640, 650, 647, 662, 637, 652, 643, 657, 649. 

DOD 
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In Example 2.2 there is a single (lower) specification' limit for 
deciding when an item is acceptable, whereas in Example 2.3 there is 
a double specification limit. We shall discuss Example 2.2 first. 
If there are very large numbers of castings in the batches referred 

to in Example 2.2, we may be able to assume, say, that the distribu­
tion of yield points is approximately normal in each batch. Fre­
quently we find that in such a case variations in quality arise by 
variations in the mean, but the standard deviation a is nearly con­
stant from batch to batch. If we assume a to be constant, we have 
two cases: 

(i) a known from past data, and 
( ii) a unknown. 

When a is unknown we may use either the sample standard deviation 

to estimate a, or else we may use the sample range 
R,. =range= (largest observation) - (smallest observation). 

It can be shown that 

E(R,.) = oc,.a, 
so that an estimate of a can be obtained by dividing R,. by oc,.. 
A short table for conversion of ranges to estimates of a is given in 
Appendix II, table 4; the table gives a,. = lja,.. 

(b) Single specification limit, a known 
Let us consider the simplest situation, and take Example 2.2, 
assuming the distribution of yield points in a hatch to be normal 
with a a = 3·0 X 103 p.s.i. known from past data. The average of 
the six results in Example 2.2 in 63·4, so that using this as an estimate 
of the mean of the batch, the situation is as illustrated in Figure 2.10. 

55·0 63'4 

Defective items = items with yield 
points less than 55·0 :o3 p. s. i. 

Figure 2.10. Eatimation of percentage defective for Example 2.2. 
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We could estimate the percentage of defective items as the propor­
tion of the distribution less than 55·0; this is 

f/J(55'0 - 63'4) = I - f/J(2·8) = 0·0026. 
3·0 

(2.30) 

Lieberman and Resnikoff showed that a better estimate of the per­
centage defectives is obtained by using the formula 

p =I- f/J{(x ~ L)J(n :_ I)}• (2.3I) 

where x is the mean of the observed sample of n, and L is the lower 
specification limit. (Parallel formulae apply for an upper specifica­
tion limit and double specification limits.) For Example 2.2, formula 
(2.3I) gives 

p = I _ (/>{63·4; 55·0 J (~)} = O·OOll. 

Having obtained an estimate of the percentage defective in the 
batch, we can now accept or reject the batch according to whether 
p < p* or p > p*, where p* is some chosen number. 

The sampling plan just described for Example 2.2 involves two 
parameters, the sample size n, and the acceptance percentage p*. 
These two parameters can be chosen according to any of the prin­
ciples outlined in previous sections. One possibility is to use an 
00-curve sampling scheme in which the sampling plan is required 
to accept a proportion (I - IX) of batches which contain 10081% 
.defectives, and accept a proportion f3 of batches which contain 
10002% defectives, where (01, IX), (02, {3) are given. This can be done 
easily, as follows. 

The decision rule is equivalent to accepting when 

where p* = J"" _I_ e-~t· dt. 
z .. • y'(2n) 

This is equivalent to accepting when 

x > L + J(n:;: I)zp•a, 
and xis normally distributed E(x) = fl• V(x) = a2 jn. 

(2.32) 

Now for a batch to contain 10001 % defectives when a is known, 
the mean must be at 
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1-' = L + Ze,a 

= ft1 (say), 

and for a batch to contain 10002 % defectives the mean must be at 

1-' = L + Ze,a 

= ft2 (say). 

We require the probability that (2.32) is true to be (1 - ex) when 
1-l = J-t1 , and {3 when 1-l = J-t 2• Now (2.32) can be written 

(x- f') > (L- 1-l\;n -!- v'(n- 1) Z • (2.33) 
a/v'n a P 

and the quantity on the left-hand side of (2.33) is a standard normal 
variable. The probability of accepting is therefore 

which must be set at (1 - oc) when 1-l = J-t1, and {3 when 1-l = ft2• We 
therefore have to solve the following equations for n and ZP*• 

which gives 

and 

or 

-Ze,v'n-!- y'(n- 1) Zp• = --Za. 

-Ze,v'n-!- y'(n- 1) Zp• = -!-Zp 

n = (Za-!- Zp) 2 

Ze,- Zo 

J(n: 1) Zp• = Ze,- ~n Za., 

J(n -1) 1 -n- Zp• = Ze, + v'n Zp. 

(2.34) 

(2.35) 

(2.36) 

The quantity on the left-hand side of (2.35) and (2.36) is the quantity 
used in the decision rule (2.32). Because of discreteness difficulties 
with n, the solutions of (2.35) and (2.36) will not he identical, and the 
average should be used. 

The 00-curve of the procedure is easy to derive. If there are 
lOOp % defectives in the batch the mean must he at 

J-l = L-!- Z.,a. 

The probability of acceptance is the probability that (2.32) is true, 
which is 
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Pr{x > L + J (n n 1) Zp•a I x N(,_t, a2jn)} 

= 4>{ yn Z11 - y(n - 1) Zp• }. (2.37) 

This is the 00-curve of this procedure. 

(c) DoUble Bpecification limit, a known 
We now consider briefly the case illustrated in Example 2.3, where 
there is a two-sided specification, (L, U) for acceptable components. 

If (U- L)/a is large, say greater than 6, a sampling plan can be 
derived by merely combining two one-sided plans, and all the 
formulae will be approximately correct. However, there is a minimum 

Figure 2 .11. Double specification limit. 

percentage of defectives, corresponding to a mean in the centre of the 
range (L, U); the percentage defectives is then 

24>{(L- U)/2a} (2.38) 

and if ( U - L) /a is small enough, the batch can be rejected outright. 
Hence it is intermediate values of (U- L)ja which cause difficulty, 
and the situation is illustrated in Figure 2.11. In order to proceed 
we need the relationship between the total percentage defectives, 
and the percentages of defectives at each end. 

For our present purpose, put L = 0, U = 1, so that a is represented 
in this scale, and we are interested in 0·25 > a > 0·16. Let a batch 
have a mean at x, then the proportion defective is 

(2.39) 

and the two terms on the right of (2.39) are the proportions defective 
at the two ends. Equation (2.39) is shown in Figure 2.12; clearly the 
curve must be symmetrical about x = (U + L)/2. From a graph 
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such as Figure 2.12, we can find the proportion defective at either 
end for a prescribed value of p. 

Suppose now we require a plan which aecepts a proportion 
(1 - CI) of batches containing 10001 % defectives, and which accepts 
a proportion {J of batches containing 10002 % defectives. From a 
graph such as Figure 2.12 we can find how proportions defective 

p 

(U+ L)/2 

Figure 2.12. Double specification limit: p1·oportion defective. 

01 and 02 are divided between the upper and lower limits by reading 
off x for p = 01 and using the two terms on the right-hand side of 
(2.39) separately. Usually, the larger proportion defective 02 is 
affected very little by the presence of a double limit. Let the pro­
portions be 

01 = 01' + 01" 
02 = Os' + 02'' 

and let 01' > 0/, 02' > 02 ", so that usually 02" will be negligible. 
A sampling plan can now be constructed by combining two single 

specification plans using the parameters (CI, 01'), ({J, 02'), at each end. 
The OC-curve can also be obtained from the single specification 

formula by transforming the percentage defective using (2.39). 

(d) Single specification limit, a unknown 
When a is unknown, our sampling plans must be modified by using 
either the sample standard deviation or the range to estimate a. The 
theory becomes much more complex, and a number of papers have 
been written on it; see Owen (1967), Duncan (1974), and references 
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therein. Here we give only a brief introduction. 
If we have a single lower specification L to satisfy, we could use 

the criterion to accept if 

(x- L)js > k, (2.40) 

and we have to choose k, and sample size n. Suppose we have 
00-curve requirements (oc101), ({3 202), as before, then the probability 
statements we wish to satisfy involve the distribution of the statistic 
in (2.40), which has a non-central t-distribution. Tables of the non­
central t-distribution are available, from which a sampling plan can 
be obtained (see Resnikoff et al. (1957)). A simple approximate pro­
cedure derives from writing (2.40) as 

x-ks>L 

and we treat (x- ks) as approximately normal with mean(,u- ka) 
and variance 

a2(~ + k2)· 
n 2n 

This approximate method leads to the formulae 

k = (Za.Z8, + ZpZo,)/(Za. + Zp)} 
n = (1 + ~)(Za + Zp)2 

2 Zo,- Zo, 
(2.41) 

which are very similar to the a known formulae (see Exercise 2.11.3). 

(e) Douhle specification limit, a unknown 
Unfortunately this case is more complicated still, and we do not get 
an easy solution as we did in the a known case. 

Since a in (2.39) is now unknown, there is a whole range of possible 
divisions of p to upper and lower limit defectives. From this we may 
deduce that the obvious procedure, based on 

(x- L)js :2::: lc, and (U- x)js :2::: k, 

does not have a unique 00-curve. In fact we have a band of 00-
curves, but calculation& have shown this band to be quite narrow. 

Secondly, we may estimate the minimum percentage defectives as 
about 

2~{(L- U)j2s} 

so that the procedure must reject if s is large. (Quite how large, 
depends on x.) 
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However, the main calculations of a sampling plan can be related 
to the single specification plans. A satisfactory sampling plan is 
described in Duncan (1974), with illustrative calculations on the 
derivation. 

(f) Defence sampling schemes for variables 
A set of sampling plans for inspection by variables has been available 
for some time in the form of MIL-STD-414. This sampling scheme is 
based on precisely the same principles as for the attributes case, 
outlined in section 2.5. An AQL must be chosen, and assurance that 
this quality is met depends largely on the use of switching rules to 
and from tightened inspection. 

The tables include (i) known standard deviation plans, (ii) un­
known standard deviation plans, and (·iii) average range plans, all 
for both single and double specification limits. These alternative 
sets of plans are matched to go through the same pair of points on the 
OC-curve. The two points specified are the AQL, at which the OC­
curve varies between 0·89 and 0·99, and the proportion defective 02 

at which the OC-curve is 0·10. The plans are indexed by AQL and 
sample size code letter so that it is easy to pick out three equivalent 
plans. The theory of Lieberman and Resnikoff (1955) is used in 
matching the plans. 

MIL-STD-414 has not proved to be as popular as the parallel 
attributes schemes, and a review is given by Kao (1971). A draft 
British defence sampling scheme is now available, as BS6002 or 
DEF-STAN 05-30, and this scheme is largely a revision of MIL­
STD-414. The fixed relationships between batch size and sample 
size have been improved, and some graphs have been used in the 
presentation, which are a great improvement. The underlying 
principles are essentially the same as those applying in MIL-STD-414. 

(g) Decision theory approach 
A decision theory approach to inspection by variables has been 
discussed by Wetherill (1959), Wetherill and Campling (1966), and 
Fertig and Mann (1974). 

Suppose we take a measurement x on each item, and that the 
distribution of x in any batch is approximately normal with a mean 
f-L and variance a 2• If items are defective when x < L say, we can 
specify utilities such as the following: 
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Decision 

Accept 
Accept 
Reject 
Reject 
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Mea8Urement Utility 

x>L kl 
x<L -kz 
x>L 0 
x<L 0 

The percentage defective can be calculated for any given p and a2• 

The theory now follows the attributes case, discussed in section 2.6. 
It is assumed that p and possibly a2 vary from batch to batch in 
accordance with a prior distribution, which has to be specified. 

The most important result from this approach is that the utilities 
of resulting sampling plans depend very strongly on a break-even 
percentage defective p 0, which turns out to be 

Po = k2/(k1 + k2). 
No other parameter or assumption is as critical as p 0, and this again 
is parallel to the attribute case. The reader is referred to the re­
ferences given above for details. 

(k) General discussion 

Although inspection by variables can lead to complicated theory, 
this cannot really be considered a disadvantage, since the theory can 
be reduced to sets of tables. However, there are more serious 
criticisms. 

(i) It will be necessary to use a separate plan for each measured 
variable, whereas a single attributes plan could be operated. 

( ii) The estimation of percentage defective is carried out assuming 
normality, and depends heavily on tail area properties. Thus the 
normality assumption is critical in estimating a small percentage 
defective. 

(iii) A batch could be inspected and rejected without a single 
defective item having been spotted. A supplier might justifiably 
protest against this. 

Against these criticisms, there are the advantages of better 
information on quality and usually great reductions in inspection 
effort. 

It must be pointed out here, that if C1 is known, an improved 
attributes plan can be worked. The definition of a defective is 
modified to, say 
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X< L + Lla, 
leading to a much larger percentage of 'defectives'. This is called 
increa.sed severity testing. For example, if a= 1, L = 0 and p. = 2·2, 
the batch contains only «P(-2·2) = 1·4% of true defectives, 
whereas if Wf\ used increased severity testing with Ll = 0·40, the batch 
would be regarded as having «P( -1·8) = 4·6% of 'defectives'. This 
type of plan suffers from the disadvantage of other variables plans­
that it depends rather heavily on the normality assumption for the 
relationship between true and 'increased severity' percentage 
defectives. However, a few calculations will show that it can lead to 
a much more efficient plan than an ordinary attributes sampling 
scheme; see Beja and Ladany (1974) for some work on this. 

Exercises 2.11 

l. Use the method of section 2.ll(c) to obtain a sampling plan for 
Example 2.3, assuming a= 9, and for (0 1 = 0·04, ot = 0·05) 
(0 2 = 0·08, fJ = 0·02). 
2. Consider the case set out in section 2.ll(b) above, and obtain the 
inspection for fraction defective plan which has the same producer's 
and consumer's risk points. (You may use the normal approximation 
method of Exercise 2.l.2.)Hence obtain a formula for the ratio of the 
sample sizes for the two methods of inspection. 
3. Check the derivation of equations (2.41) as follows. (The method is 
parallel to that used in section 2.ll(b).) The acceptance criterion is 

x-ks>L 

which can be written 

x - ks - (p. - ka) L - (p. -- ka) 
ay'(1 + lk2)y(1/n) > ay'(1 + lk2)y(1fn)' 

We can now treat the left-hand side as approximately standard 
normal. Hence set nand k so that the probability of acceptance is 
(1- ot) when 

and fJ when 

(p. - L)fa = z6, 
(p. - L)fa = Z6,· 

Also follow the method of section 2.11 (b) to obtain an approximate 
00-curve, by treating (x - ks) as approximately normal. 



3. Control charts 

3.1 Statistical quality control 

In any production process, some variation in quality is unavoidable, 
and the theory behind the control chart originated by Dr W. A. 
Shewhart is that this variation can be divided into two categories, 
random variation, and variation due to assignahle causes. Certain 
variations in quality are due to causes over which we have some 
degree of control, such as a different quality of raw material, or new 
and unskilled workers; we c:all these assignable causes of variation. 
The random variation is the variation in quality which is the result 
of many complex causes, the result of each cause being slight; by and 
large nothing can be done a bout this source of variation except to 
modify the process. 

If data from a process are such that they might have come from 
a single distribution (frequently normal), having certain desired pro­
perties such as a mean in a specified range, the process is said to be 
in control. If on the other hand variation due to one or more assign­
able causes is present, the process is said to be out of control. 

The Shewhart control chart is a simple device which enables us to 
define this state of statistical control more precisely, and which also 
enables us to judge when it has been attained. A sample of a given 
size is taken at frequent intervals, and a chart is kept of, say, the 
sample mean against time. The pattern of the points on the chart 
enables us to judge whether the process is or is not in control. There 
are different types of control chart depending on whether our 
measurement is a continuous variable, or whether we are measuring 
fraction defective, defects per unit, etc., but they are all rather 
similar, and we shall only go into details of the Shewhart control 
charts for variables; see section 3.2. In section 3.6 we briefly describe 
some other control charts. 

As we shall see, the whole philosophy of a process either being in 
control or out of control is too naive, but in many situations it is a 
sufficiently realistic model for our purposes. Little reliance can be 
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placed on precise probability calculations, but instead. we rely on a 
long history of widespread industrial applications in which it is 
found not only that the control chart works, but that it is of very 
great value. Some of the advantages will be discussed in the next 
section. 

It is assumed, of course, that when there is evidence that assign­
able causes of variation are present, these causes can be traced and 
eliminated; this is usually the main aim of operating a quality 
control chart. Sometimes a quality control chart is used to search 
through past data, to see when changes of quality occurred. 

3.2 Simple control charts for variables 

The basic idea of a Shewhart control chart is very simple. Groups of, 
say, four items are drawn from a process at regular intervals, and 
measurements of quality made. Let us suppose that one variable is 
measured, and that we can assume this to have a normal distribution 
under a state of statistical control. The presence of assignable causes 
of variation would then show up in the data as variation outside the 
usual range for a normal variable. This can usually be attributed to 
a change in either /-' or a of the normal distribution for the measured 
variable. If, therefore, we calculate estimates of ,u and a from each of 
our groups of four, and plot these against time, the pattern of the 
points will enable us to detect whether the process is or is not in 
control. 

Table 3.1 shows the results of hardness determinations on 25 
samples of four titanium buttons, the samples being drawn at regular 
intervals from a chemical process (data by kind permission of I.C.I. 
Ltd, Mond Division). The graph of the group means shown in Figure 
3.l(a) is called a control chart for means. In order to keep track of the 
process variability, we could plot the sample variances 

4 

s 2 = L (x;- f) 2/3, 
1 

where x;, i = l, 2, 3, 4 are the observations for a group and xis the 
group mean. This is usually considered unduly complicated, and 
instead a graph is made of the group ranges, where 

R =range = (largest observation) - (smallest observation). 
A control chart for ranges is shown in Figure 3.l(b). 

The range is an inefficient measure of dispersion if the group size is 
much more than 10. If the sample size is large, the efficiency can be 
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Table 3.1 Hardness measurements of titanium buttons 

Set no. Hardness (DPN) Mean Range 
(x) (R) 

·--------~~~ 

1 125·8 128·4 129·0 121·0 126·1 8·0 
2 125·2 127·0 130·4 124·6 126·8 5·8 
3 121·8 126·8 127·0 129·8 126·4 8·0 
4 131·0 130·0 127·2 127·0 128·8 4·0 
5 128·6 122·8 125·4 126·4 125·8 5·8 
6 122·0 123·8 131·2 121·8 124·7 9·4 
7 122·8 129·8 126·2 128·8 126·8 6·4 
8 120·2 130·0 125·6 144·0 130·0 23·8 
9 124·8 123·8 130·2 128·8 126·9 6·4 

10 127·0 126·4 122·2 129·0 126·2 6·8 
11 131·8 127·6 123·8 123·2 126·6 8·6 
12 129·8 125·6 128·2 127·6 127·8 4·2 
13 127·6 125·6 128·2 126·8 127-1 2·6 
14 124·2 122·8 124·8 124·6 124-1 2·0 
15 125·4 129·4 123·6 127·2 126·4 5·8 
16 130·8 122·8 125·4 126·2 126·3 8·0 
17 127·4 131·0 123·0 122·8 126·1 8·2 
18 124·8 122·6 122·8 123·6 123·5 2·2 
19 123·8 130·0 128·4 130·0 128·1 6·2 
20 128·8 141·2 138·8 136·2 136·3 12·4 
21 126·4 123·8 128·8 129·6 127·2 5·8 
22 130·8 127·4 126·0 125·2 127·4 5·6 
23 129·6 128·4 123·2 125·8 126·8 6·4 
24 124·4 127·0 130·0 122·8 126·1 7·2 
25 129·2 126·2 128·0 123·2 126·7 6·0 

Totals 3175·0 175·6 

improved by arbitrarily breaking the sample into groups of size 
5-10, and then averaging the ranges of the groups. This may even be 
worth while doing for sample sizes between 10 and 20. 

The action and warning limits drawn in on Figure 3.1 are an 
essential part of the control charts; the construction and use of the 
limits for the x-chart is as follows. From past data of the process we 
obtain good estimates off-land a, and then we estimate the standard 
error of x, which is a j y'n, where n is the sample size, that is four in 
our example. Then from tables of the normal distribution we find 
that if the process is in control, only one point in a thousand would 

be above f-l + 3·09ajy'n, and only one point in a thousand below 



"' 

140 

135 

120 

115 

(a) x- chart 

"' 
U r action limit 

---------r--------------·--.!!P!'!~rninQiimit .. 
0 0 0 0 e 0 G Q Q 0 Q ~ e 0 0 Q G 8 e 

------~---------L---v----.!:O!.f!!!'rninQ limit 
~oowtr action limit 

r---------------------------------~~ 

110 '--'-----'-----'------'-----..1----~-
5 

18 

16 t 
23·8 

10 15 zo 25 
Observation number 

(b) R-chart 
Upper action I~ 

14 ------------------------------------·------~.P!r_!_O_~~-~~t 

g' 12 
0 

~ 

-K 10 
E 
tl 

8 0 

6 

4 

0 

0 

0 0 

0 

0 
0 0 

0 0 0 
0 

0 

0 

0 
0 

0 

2 -----------------------"--o-------O-----·-----~~-w~~~~_!!~il 
Lower action limit 

0'~==~====~====~====~===~~~ 5 ro ~ ro ~ 

Observation number 

Figure 3.1. Control charts for hardness of titanium buttons. (a) x-chart, 
(b) R-chart. 
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p. - 3·09a j v' n; these are the upper and lower action limits for the 
:f-chart. Therefore if a point falls outside the action limits, there is 
very strong evidence that assignable causes of variation are present, 
and action to trace and eliminate these causes should be initiated. 

In order to improve the sensitivity of the control charts, warning 
limits are drawn in, as shown in Figure 3.1. These limits are usually 
set at p ± 1·96ajy'n, so that when the process is in control one 
point in forty should be above the upper warning limit, and one 
point in forty below the lower warning limit. Two successive points 
outside the warning limits are usually taken to be good evidence that 
assignable causes of variation are present. 

Some people prefer to put the action and warning limits at 
3afv'n and 2afv'n instead of the positions suggested above. There 
is very little difference between these two sets of positions, but the 
two traditions are well established. 

The action and warning limits for the R-chart, Figure 3.l(b), are 
constructed on similar principles, but using the distribution of the 
range in normal samples. This results in the diagram being un­
symmetrical. A short table of percentage points of the range is given 
in the Appendix tables. 

Some people attempt to simplify the calculation of action and 
warning limits for an R-chart by calculating a standard error for 
range, and putting the action and warning limits at ±3 and ±2 
standard errors. However, the simplification achieved is very slight, 
and anomalies arise such as negative lower limits. It seems better to 
use limits based on percentage points of the distribution of the range. 

When setting up control charts, good estimates of p. and a are 
required. At least 25 groups of observations should be obtained, and 
the mean and range of each group calculated. The means and ranges 
are then averaged, and the average of the means taken as an estimate 
of p.. The average of the ranges is converted to an estimate of a by 
using Appendix Table 4. The position of action and warning limits 
can then be calculated. However, if the action and warning limits 
are drawn in, it may happen that some of the 25 groups used are out 
of control; such groups should be deleted and calculation of esti­
mates of p. and a repeated. If too many of the groups fall beyond the 
limits, this is evidence that the process is not in control, and limits 
cannot be calculated. 

For the data shown in Table 3.1 this procedure works out as 
follows: 
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Average range= R = 175·6/25 = 7·024; 
Average hardness= 3175/25 = 127·0; 

Estimate of a= 0·4857 X 7·024 = 3·41. 

(The range factor for the estimate of a is read from Appendix II 
table 4.) The one in a thousand action limits are at 

x ± 3·09 :n = 127·0 ± 3·09 X ?:: = (121·73, 132·27), 

and the warning limits are placed at 

_ a 3·41 X± 1·96 yn = 127·0 ± 1·96 X \14 = (1:~3·66, 130·34). 

Alternatively the positions of the action and warning limits for the 
x-chart may be calculated directly from the average range by using 
the factors of Appendix II table 7. For groups of size four the factors 
are 0·7505 and 0·4760, so that we have 

Action limits: 127 ± 0·7507 x 7·024 = (121·73, 132·27) 
Warning limits: 127 ± 0·4760 x 7·024 = (123·66, 130·34) 

These numerical examples also illustrate the way in which Appendix 
II table 7 has been constructed, since for example, for samples of 
size four we have for action limits 

. 3·09 X 0·4857 
3·09 X (range factor for sample size n)/v'n = 2 

= 0·7505. 
If the action and warning limits are chosen to be at ±3a/v'n and 

±2ajy'n, the factors of Appendix II table 8 are used in place of the 
figures from Appendix II table 7. A similar and more extensive 
table of factors is given by Duncan (1974, Appendix table M). 

For the range chart we read from Appendix II table 5 for the 
0·1 %, 2·5%, 97·5%, and 99·9% limits, sample size four, to obtain 
0·20, 0·59, 3·98, and 5·31, and by multiplying by a we have 0·68, 
2·01, 13·57, and 18·10, which are the positions of the action and 
warning limits shown in Figure 3.1(b). 

From Figure 3.1 we see that sets numbered 8 and 20 show evidence 
of lack of control. If the data of Table 3.1 were being used to set up 
quality control charts, these two sets should be omitted, and the 
boundaries recalculated. This is left as an exercise. 
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It is often found helpful to mark on the chart important changes 
in the process, such as a change of operator, a new batch of material, 
etc., as this may help to trace assignable causes of variation. It may 
also be necessary to recompute the action and warning limits from 
time to time, as either I" or (] changes. 

There are several ways in which lack of control may be indicated 
by the control charts. There may be either a gradual change or a 
sudden change to a new value in either I" or(], or both. Alternatively 
occasional points may fall out of control. Which of these possibilities 
occurs will help to indicate the underlying cause. 

There are several rather arbitrary decisions in the above descrip­
tion. Firstly, we decided to track changes in I" and (] by plotting 
means and ranges; other statistics could be used, but these are the 
main ones. If the group size is much over ten the range is inefficient 
as a measure of variability, and the sample variance or standard 
deviation should be used. 

Another decision is to select a group size, and the interval between 
selecting groups. Large group sizes drawn frequently would give 
good protection, but would cost a lot in inspection. The decision is 
therefore basically an economic one, and we shall discuss this again 
later. For a number of reasons, a group size of four or five is most 
common. The decision depends to some extent on properties of the 
control charts, which is a topic discussed in the next section. 

The position of the warning and action limits is fixed by tradition 
and experience, but there is no reason why different limits should not 
be used in a particular application. 

Exercises 3.2 
1. Recalculate the positions of the action and warning limits for 
Table 3.1 data after sets 8 and 20 have been omitted. Are there now 
any further sets outside the limits? 
2. Calculate the positions of action and warning limits of x- and 
R-charts for the same process as Table 3.1 data but suppose that 
it was decided to take measurements (a) 8 at a time, and (b) 12 at 
a time. 
3. When setting up x- and R-charts it was found that for groups of 
size five 

Overall mean = 54.2, Mean range = 6·714. 
Calculate the position of the limits. 
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4. It has been decided to install quality control charts on a relatively 
new batch process. Three batches are produced each shift, and each 
batch is assessed by a boiling point determination. Owing to a change 
in plant operating procedure, only the results for the last 75 batches 
are relevant to present behaviour and the boiling points of these 
batches are listed in Table l. Construct quality control charts for 
boiling point using these data, and plot the subsequent results given 
in Table 2. Assuming that when disturbances were found they were 
promptly investigated and dealt with, on which occasions should 
investigations have been made? Is there any indication that the 
control charts should be amended? 

Table 1 Original boiling point data 

Shift 
No. Boiling point (0 0) 

1 46·0 45·5 46·5 
2 44·6 47·3 46·0 
3 45·9 44·5 46·2 
4 44·7 43·9 45·5 
5 45·0 45·5 45·6 
6 43·9 46·2 43·6 
7 45·3 45·9 45·5 
8 44·8 45·4 46·7 
9 44·2 44·5 43·8 

10 44·6 45·0 46·0 
11 45·4 44·7 45·3 
12 45·2 45·3 46·1 
13 44·8 46·2 44·4 
14 48·3 47·9 48·1 
15 45·5 47·0 45·4 
16 44·9 47·0 46·5 
17 47·0 46·2 44·7 
18 44·4 47·0 39·9 
19 42·3 46·5 44·1 
20 44·1 46·3 47-5 
21 45·4 46·6 44·1 
22 45·6 45·5 47·5 
23 47·0 47·8 44·1 
24 45·1 46·4 48·1 
25 46·3 45·5 45·0 
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Table 2 Subsequent boiling point data 

Shift Boiling point (°C) 
No. 

26 43·7 46·6 45·7 
27 44·8 44·9 46·1 
28 46·7 44·8 45·6 
29 44·8 45·9 46·7 
30 45·5 44·1 45·1 
31 46·4 45·7 44·8 
32 45·2 45·9 45·2 
33 45·3 46·9 46·0 
34 44·7 45-4 45·8 
35 47·1 45·3 44·6 
36 42·5 45·8 43·7 
37 43·2 44·0 44·2 
38 44·3 45·6 43·5 
39 45·6 44·2 44·7 
40 47·1 45·9 44·1 
41 46·3 43·7 46·2 
42 42·0 47-1 48·1 
43 47·7 44·1 47-1 
44 44·9 46·5 44·1 
45 45·1 44·3 45·1 
46 44·6 45·3 45·8 
47 45·5 45·2 46·4 
48 47·0 44·5 46·5 
49 45·4 45·7 49·9 
50 46·1 47·6 46·7 
51 47·3 46·3 46·5 
52 48·1 47·8 46·0 
53 48·3 47·6 47·5 

3.3 Properties of the charts 
(a) The x-chart 

Mean Range 
(x) (R) 

45·3 2·9 
45·3 1·3 
45·7 1·9 
45·8 1·9 
44·9 1-4 
45·6 1-6 
45·4 0·7 
46·1 1-6 
45·3 1-1 
45·7 2·5 
44·0 3·3 
43·8 1·0 
44·5 2-1 
44·8 1-4 
45·7 3·0 
45·4 2·6 
45·7 6·1 
46·3 3·6 
45·2 2·4 
44·8 0·8 
45·2 1·2 
45·7 1·2 
46·0 2·5 
47·0 4·5 
46·8 1·5 
46·7 1·0 
47·3 2·1 
47·8 0·8 

It will be natural to consider the properties of x-charts and R-charts 
in terms of the OC-curve (see section 2.1) or the ARL function (see 
section 2.2). If only a single pair of limits is used at ±3·09a j yn on 
an x-chart, and we consider only changes in the mean, then the 
OC-curve is 

P(O) = 4>(3·09- Oynja) - 4>( -3·09 - Oynja), (3.1) 

where (j is the deviation of the mean of the process from the target. 
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Usually, one of the terms in this expression is small or negligible. The 
ARL function is 1/(l - P), in terms of numbers of groups, and is 
more directly meaningful in that it tells us how much product, on 
average, passes before a change in the mean is detected. 

The ARL function of the i-chart tends to be rather flat. In order 
to sharpen it up, extra rules for taking action have been considered, 
such as the following. 

(i) As indicated in section 3.2, warning limits are drawn at 
± 1·96a / v' n, and action taken if two consecutive points fall 
outside these. 

(ii) Action is taken if K out of the last N points fall between the 
action and warning limits. 

(iii) A third set of lines is drawn at ±aj-y'n, and action taken if 
three consecutive points fall outside these. 

.. 
There are other more complicated rules: see Page (1961), Grant 

and Leavenworth (1972, pp. 97-8), and Roberts (1966), for a brief 
discussion of these. Rule (i) above is used quite frequently, but the 
others tend to remove one of the chief advantages of Shewhart 
charts- simplicity. Furthermore, these rules do not sharpen up the 
ARL function very much; this can only be done by bringing the 
action and warning limits in towards the mean. 

So far, we have assumed that a in (3.1) is constant. However, both 
changes in the process mean and variance are regarded as indications 
that the process is out of control, and (3.1) should be regarded as 
a function of () and a. Figure 3.3 shows a contour map of the ARL 
function of the i-chart, when just the outer action limits are used. 
The OC-function can be plotted in a similar way, and is left as an 
exercise, see Exercise 3.3.1. It is obvious from Figure 3.3 that the 
i-chart alone gives very little protection against variations in a, 
which is the reason why an R-chart or s2-chart must accompany the 
i-chart. 

It is important to bear in mind here that the point of calculating 
the OC-curve or ARL function is to assist in choosing a group size n, 
and the interval t between taking groups. 'l'he actual ARL for a time 
interval tis tj{ 1 - P(O, a, n) }. Now for a given value of(), we may be 
able to fix an upper limit to the ARL we would desire for our plan, 
and let this value be me, so that 

me = tj{ 1 - P(O, a, n) }, 

or P(O, a, n) = (1 - tjmB). (3.2) 
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Sample size. n 
Action limits only, at ± 3·09 cr/./n 

Distribution of X is N(8, cr'2) 

55 

5 cr'/cr 

Figure 3.3. The ARL function of the x-cha1·t. 

But P(O, a, n) is a function only of Oynja, and a graph of (Oynja) 
against (t/mo) will be essentially the 00-curve. ]'rom such a graph 
a series of possible values oft and n will be clear. A final selection can 
be made on the basis of the ARL when () = 0. 

In many applications of quality control charts, samples of size 4 
or 5 are used. The reasons for this are partly that it is usually better 
to take a smaller sample size frequently than a larger sample size less 
frequently. A further point is that a small sample size keeps down 
the amount of arithmetic necessary for plotting. 

Clearly, a quality control scheme is aiming at an economic balance 
between the costs of inspection and the costs of passing bad material. 
This economic structure can be formalized and studied in a way 
rather parallel to the decision-theory approach to sampling inspec­
tion plans outlined in Chapter 2. Such a theoretical study was 
undertaken by Duncan (1956), and this will be described in the next 
section. 

It should be emphasized that the discussion given above of the 
00-curve and ARL-function of the x-chart has only assumed action 
limits. Page (1955) obtained the ARL-function when warning limits 
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are used in addition to action limits. 
In order to demonstrate the result, let us adopt the following 

notation: 

Po = probability that a point lies between the warning limits; 

p 1 = probability that a point falls between the warning and 
action limits; 

L 0 = ARL given the first point lies between the warning limits; 

L1 = ARL given the first point lies between the warning and 
action limits. 

We assume that all sample means are independently and normally 
distributed with expectation p,, and variance a2 jn, where n is the 
group size. ';rhus p0, p 1, L 0, and L1 are all functions of p, and a. If 
we now consider what happens if one more mean is observed, we 
obtain the equations 

Lo = 1 +PoLo + P1L1 
L 1 = 1 +PoLo 

where unity accounts for the extra mean observed. By solving these 
equations for L0 we obtain 

Lo = (1 + Pl)/(1 -Po - P1Po) 
which is the ARL function with warning limits. 

500 

u'/tr 

Figure 3.4. The ARL funct«m of the B-ohart. 
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(b) The R-chart 
The OC-curve or ARL function of the R-chart is independent of the 
process mean f-t, and depends only on a, so that they are rather 
easier to study than for the x-chart. If a' is the true variance of the 
process, the distribution of Rja' is independent. of a', and given in 
tables. If therefore an R-chart is used with just upper and lower 
action limits Ru, RL, it is merely necessary to look up th.e tables to 
find the probability that (R/a') > Ruor (Rja') < RL. In this way 
the graph shown in Figure 3.4 can be obtained. 

Similar considerations now arise to those given above for the 
x-chart. Extra rules for detecting lack of control can be used. The 
choice of a group size and inspection interval can be chosen on ARL 
considerations, etc. 

(c) General 
The choice of the group size and inspection interval is a very im­
portant aspect of quality control. In making the choice, considera­
tions from both the x-chart and the R-chart should be borne in mind, 
and a compromise made which will be reasonably satisfactory for 
both. However, in some situations, a process will be much more 
likely to go out of control through changes in one of the parameters 
f.l and a rather than both, so that one of the charts will be much 
more important. 

This leads on to a rather unsatisfactory feature of the above theory. 
WhJn a process goes out of control, it is assumed that the distribu­
tion of measurements on the items is still normal, but with a new f.l 
or a (or both). In fact it is quite likely that the distribution may 
become very non-normal, perhaps bimodal, or severely skew. The 
theory should therefore be used as a guide only. ]l}xperience shows 
that it is a sufficiently realistic model in many practical situations. 
Clearly, for any precisely defined model for deviations of the process 
from control, OC-curves and ARL functions could in principle be 
calculated. 

(d) Some advantages of quality control 
The Shewhart control charts are used in a manufacturing process for 
'trouble shooting'. The charts indicate when there is trouble, and 
from the form of the x-chart and R-chart, and from rough indica­
tions of when the trouble started, it may be possible to obtain a 
good guide to the source of the trouble. 

In practice it has been found that the charts are valuable in indi­
cating when to leave a process alone as well as when to take action. 
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Sometimes the charts have revealed that operators attempting to 
correct a process have actually been an assignable cause of quality 
variation. 

There are also some useful by-products of a quality control 
scheme. The continuous set of data on product quality which the 
scheme provides can be used in a number of ways. A periodic 
assessment of departmental performance could be made. A com­
parison of the quality delivered by different suppliers could also be 
made; it could also lead to an improvement of inspection standards, 
and greater quality conciousness on the part of the production team. 

In many factories, Shewhart control charts are being superseded 
by CUSUM schemes, and these are discussed in the next chapter. 
Advantages such as those described above also apply to these 
schemes. 

Exercises 3.3 

I. Plot the GO-function of the x-chart, when both I' and a may vary. 
2. Draw up a table of Oynja against tfmo, from (3.2). 
3. For an x-chart with action and warming limits set at 3·09a/yn 
and 1·96a/yn respectively, calculate the ARL when n = 4, a= 2, 
and the process mean differs from target by one unit. 
4. Find suitable values for the sample size and sampling interval 
for an x-chart so that the ARL (calculated in terms of items pro­
duced) is 50,000 when () = 0, and 150 when 0 = 2. Assume that 
a= 1, and that 10 items are produced per minute. 

3.4 The economic design of x-charts 

The method of designing an x-chart suggested in the previous 
section is rather unsatisfactory since the design problem is basically 
an economic one. An interesting approach to the design of x-charts 
which incorporates costs is given by Duncan (1956) (see also Chiu 
(1973)); the analysis leads to some important qualitative results 
which should be borne in mind, whether or not one wishes to use the 
method in a practical case. 

A sample of size n is drawn from a process every h hours and an 
x-chart plotted. If the process is in control, the distribution of x is 
N(O, a 2 jn), and if the process is not in control the distribution of x 
is still normal with variance a 2 jn, but with a mean of either +~a or 
-~a. Action limits are drawn on the x-chart at ±kajyn, and a 
search is made for an assignable cause if and only if a point falls 
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beyond the action limits. The problem is to choose the parameters 
(h, k, n) to minimize the costs, as described below. The parameter c5 
is considered fixed at a value equal to the sort of deviation it is con­
sidered that the plan should detect. 

The process is assumed to start in control, and the time until an 
assignable cause changes the mean to ±ba has a distribution 
.A.e-u, so that the average time interval to an assignable cause is 
I/ A.. The time taken to plot the points on the ehart is taken to be 
gn, and the average time taken to check and eliminate an assignable 
cause is D. 

If an assignable cause occurs within an interval, the average time 
at which it occurs is 

J:t.A.e-At dt 

J:.Ae-At d; = 

I - (I -j-- .A.h)e-Ah 

(3.3) 

and this approximation will be valid if A. is small and h moderate. 
The probability of detecting an assignable cause is 

P(k, n, o) = lP( -k - oy'n) + lP( -k + oy'n). (3.4) 

The probability of a point outside the action limits when the process 
is in control is 

P(k, n, 0) = ex, say. 

The probability that an assignable cause is detected only on the rth 
sample after it has occurred is P(1 - P)r-l, so that the average 
number of samples taken is 1/P. We can therefore define the average 
cycle length as 

so that 

C = (average time in control) 
+ (average time out of control until detection) 
+ (plotting delay) + (checking delay), 

1 (h .A.h2 h) 0 = I + P + 12 - 2 + gn + D. (3.5) 

The proportion of time the process is in or out of control respectively 
can therefore be written 

{3 = 1/0.A., y = 1 - {3. (3.6) 
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The frequency of assignable causes per hour is simply l/0. The 
expected number of false alarms per hour is 

the expected number of false alarms while process in control 
average cycle length 

ex~ J(i+l)h = 0 L, . iJ.e-·Atdt = exe-Ahj{(l- e-AII)O} 

i=O '" 

~ {3exjh (3. 7) 

We are now ready to define costs: 
T = The cost of searching for an assignable cause when none 

exists. 
W = the cost of checking and eliminating an assignable cause. 
b = the cost per sample of plotting on the x-chart. 
e = the cost of measuring, per item. 

M = the loss in profit when the process is out of control. 
The total average loss L per unit time therefore arises from four 

terms, 

This is 

L = (loss from process when out of control) 
+ (cost of operating the x-chart) 
+ (cost of an assignable cause) 
+ (cost of false positives). 

L =My+ bjh + enfh + W jO + T({3ajh). (3.8) 

This can be written 

L = J.W + J.MB + aTjh + (b +en) (3.9) 
I+ J.B h 

where (1 1 M) B = .W - 1 = p - :2 + 12 h + gn + D. 

A minimum of L exists for choice of (h, k, n) but further approxima­
tions are necessary in order to obtain simple answers. By assuming ex 
and A both small, Duncan obtains the following equations: 

h ~ J{aT + b +en} 
lM(l/P- t) 

on 
(aT+ b)je = P 2{1/P- t) oP- n, 

e-·k•;z = y'(2nn)ej~T. 

{3.10) 

(3.11) 

(3.12) 
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A numerical examination of the solutions yields the following 
conclusions. 

(i) The optimum sample size is largely determined by~. the size 
of the shift which we wish to detect. For ~ = 2 or more, an n 
in the range 2 to 6 will usually be optimum, but for smaller ~ 
much larger sample sizes should be used. 

(ii) The choice of the interval between samples, h, is affected 
mostly by the value of M; the larger M, the smaller h. 

(iii) The value of k is determined largely by T and W; large 
values ofT and W lead to large values of k. 

In particular therefore the analysis is important in revealing the 
situations in which the standard choices of k and n are not appro­
priate. Further results would be of interest, such as an investigation 
into how sharp or flat the optimum is to the parameters of the model. 

Duncan (1971) discusses an extension of the above work to the 
case of several assignable causes, and hence several ~1· He demon­
strates that a near optimum solution can be obtained by using the 
single assignable cause model. An algorithm for comp11ter deter­
mination of the design parameters of an x-chart is given by Goel, 
Jain, and Wu (1968). 

A simplified semi-economic approach to the design of x-charts 
following the general outline of Duncan's work: is given by Chiu 
and Wetherill (1974). One point on the OC-curve can be set arbi­
trarily, and this is the probability that a point lies beyond the con~ 
trollimits, given that the mean has deviated by a specified amount 
from the target value. Tables are provided by which the parameters 
n, h, and k can be determined, which minimize the costs subject to 
this probability restriction. It is demonstrated that in general the 
resulting plan is close to the exact minimum cost plan. 

Exercises 3.4 
1*. Refer to Duncan's paper and check the working from (3.9) to 
(3.10), (3.11) and (3.12). 
2*. Examine the difficulties in carrying through the above analysis 
if a probability distribution is assumed for ~- (Some alteration will 
have to be made to the cost of checking and eliminating an assign­
able cause, W, to make this depend on~.) 
3*. Consider the effect of introducing warning limits on the analysis 
of this section. 
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3.5 Specifications for variables 
So far in our discussion of control charts, we have not mentioned any 
externally specified limits (or tolerances) within which the measure­
ments must lie. The reason for this is that the Shewhart control 
chart is based on the concept of statistical control, and, for example, 
a process mean is controlled by using limits derived using the 
observed variation of the process. Externally applied limits are con­
sidered as largely irrelevant. In discussing the effect of specifications 
we shall refer to two case histories discussed in detail by Grant 
and Leavenworth (1972). 

Example 3.1 (Grant and Leavenworth, 1972, pp. 16-22). The limits 
on the pitch diameter of threads on some aircraft fittings were 
specified as 0·4037 ± 0·0013 inch. Analysis of five measurements 
per hour for twenty hours established that the process variability 
was such that the specified limits could be met reasonably easily. 
(The process standard deviation is about 0·0003 inch.) D D D 

Example 3.2 (Grant and Leavenworth, 1972, pp. 22-7). A rheostat 
knob was produced by plastic moulding using a metal insert pur­
chased from another manufacturer. A critical dimension of the 
knob was given specification limits of 0·140 ± 0·003 inch by the 
engineering department. The analysis of some data showed that the 
process was evidently in control, but that the standard deviation 
of the process itself was slightly more than 0·003 inch. Therefore, 
even if the process was in control with a mean exactly at 0·140 
inch, a large proportion of the production would be considered 
defective. Very little could be done to reduce the process variability, 
which was partly due to the metal insert, but an examination of the 
tolerances showed them to be much more narrow than was neces­
sary and that limits of 0·125 inch to 0·150 inch would be satisfactory. 

DOD 

Let us assume that we have a process in control and that its 
standard deviation can be estimated; different control charts are then 
applicable according to the value of the ratio 

(total specification tolerance)/(standard deviation). (3.13) 
If this ratio is small, say less than 6, then more than 0·2% of 

defective items will be produced even if the process mean is held 
exactly on the target value; the smaller the ratio, the larger the 
minimum proportion of defective items produced. This was found to 
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be the situation initially in Example 3.2. Two lines of approach are 
open: 

( i) attempt to reduce the process variability,, or 
(ii) examine whether the tolerances have been set much more 

narrowly than is necessary. (Sometimes on checking what was 
meant by the tolerances, one finds that 5% limits were 
implied.) 

If neither of these approaches is successful, the best we can do is run 
a control chart and sift out the defectives by inspection. 

If the ratio (3.13) is moderate, say between 6 and 10, the ordinary 
control charts which were described earlier in this chapter should be 
used. 

The final case is when the ratio (3.13) is large, so that it is no 

Distribution of 
measurements on 

items 

Distribution of 
Qroup overages 

u----~----------------------------~---------

L----~----------------------------~---------

Figure 3.5. Standard derivation of modified control limits. 

longer necessary to control the process within the narrow limits 
described earlier, and we can use 'modified control limits'. An 
important paper on the theory of modified control limits is Hill 
(1956), in which the author rejects the 'standard approach' and 
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suggests an alternative. First we shall briefly describe the standard 
theory. 

Let the specified tolerances be U and L as shown in Figure 3.5. If 
the mean of the process is at B, then only 0·1% of the items will 
have measurements above U, and we may consider the upper 
specification to be met. Following the method given in section 3.2, 
evidence that the process mean is above B is shown by a group 
average above A, where AB is 3·09a / yn. (Some people use a distance 
1·96ajyn.) The lower limit follows similarly, and the modified 
control limits are A and D. If the specified tolerance UL is only 
6·18a wide, the lines B and 0 are identical, and the modified limits 
reduce to the ordinary action limits of section 3.2. 

The main fallacy in this argument is that the original action limits 
were based on the concept of statistical control, whereas with modi­
fied control limits, the process mean is allowed to wander, and we no 
longer have control. Thus in the Shewhart control chart, a point 
near (but inside) the action limits is taken as evidence that the pro­
cess is still in control, and the true mean is less than the observed 
mean. With modified control charts we have no basis for assuming 
that the true mean is at all less than the observed mean. Therefore 
by using the modified limits of Figure 3.5, the process mean would be 
allowed to rise above B without any action being deemed necessary, 
and a considerable proportion of defectives could be produced; see 
Exercise 3.5.1. 

It is somewhat surprising that the modified limits are placed out­
side the limiting positions for the process mean. By doing so we 
arrive at the paradox that by increasing the group size, n, the modi­
fied limits would be placed further away from the tolerances. 

A further objection to the theory outlined above is that it depends 
heavily on normality. The Shewhart x-chart is a technique for con­
trolling a mean, and no assumptions are made about the tolerances 
satisfied by individual items. The above theory in contrast depends 
rather heavily on tail area probabilities of the normal distribution, 
and so is sensitive to the normality assumption. 

Hill (1956} points out that many authors have recognized the 
objections to the standard approach to modified limits, and stressed 
the need for extra caution. Hill suggested that the modified limits 
should be placed so that if the process mean reached the positions 
B or 0 in Figure 3.5, there was only a 5% probability of not taking 
action. This leads to placing the modified limits at a position 
1·645afyn inside Band 0. The width of these modified limits is 
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therefore 

(U- L)- 2(3·09 + 1·645/y'n)O'. 

86 

If these limits are narrower than ordinary limits, that is, less than 
6·180'/y'n, then the best we can do is to use the ordinary limits. 
Therefore we use ordinary limits whenever 

(U- L)/0' < (6·18 + 9·47/yn). (3.14) 
One difficulty with the ordinary Shew hart control chart is that it is 

implied that it is practicable to trace and eliminate all causes of 
variations in the process mean (or variability) except the purely 
random variation. The idea is rather that a foreman can just 'twiddle 
a knob' and put things right. Today manufacturing processes are 
becoming increasingly complicated and more extensively automated, 
and this simple approach is frequently untenable. For example, in 

Figure 3.6. Mean weight of chocolate bars. 

the production of chocolate bars, it is not possible to control the 
mean weight in the Shewhart sense. The mean weight seems to 
wander, rather like a first-order autoregressive process (see Appendix 
I), but with assignable causes of variation superimposed; see Figure 
3.6. (These variations are very small.) This sort of behaviour has been 
observed by the author in a number of cases, and frequently either 
little is known about the causes of the oscillations of the process 
mean, or else very little can be done about them. By comparison 
with the within-group variation, even short-term variations of the 
mean may prove to be statistically significant, but often of little 
practical importance. In these situations a 'modified control limit' 
approach is desirable with sufficient warning being given of the 
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process mean approaching the tolerances for action to be taken. The 
method suggested by Hill should therefore be of increasing practical 
importance today. 

A further complication which we have avoided so far is when there 
is appreciable error of measurement in the observations. Some of the 
points arising are brought out in a paper by Desmond (1954) dealing 
with inspection of voltage regulators for private motor-cars. 

The voltage regulators are required to operate in the range 15·8 to 
16·4 volts. At the end of the production line the regulators are 
inspected, and any not working within the tolerance range are passed 
back for resetting. Even under good conditions a large proportion of 
output had to be reset, and an experiment was designed to investi­
gate the sources of error. This experiment revealed a very large 
measurement error, the component of variance due to this being 
0·0511, equal to a standard deviation of 0·226. This error of measure­
ment was superimposed on the natural variation of true regulator 
operating voltages which had a variance of about 0·0435 (standard 
deviation 0·209). This made a total variance of 0·0511 + 0·0435 = 
0·0346, equal to a standard deviation of 0·308. 

Therefore, if an ordinary Shewhart control chart is operated 
centred at 16·1 volts, the action limits are placed at 

16·1 ± 3·09 x 0·308 = 15·15, 17·05 volts. 
However, provided the chart shows that production is in control, it 
can be assumed that 99·8% limits for the true regulator voltage 
measurements are 

16·1 ± 3·09 X 0·209 = 15·45, 16·75. 
(If operating voltages outside this range occur, then a measurement 
error would sooner or later give a point beyond the outer control 
limits.) A Shewhart control chart was therefore run, with extra 
warning lines, and eventually the variances reduced, so that most of 
the production was within the desired limits. 

The above argument sounds rather hazardous, and extra pre­
cautions were taken. Desmond's paper is very clear, including photo­
graphs of the physical set-up, and is well worth reading. 

The problem of components of variance in a quality control 
situation is often overlooked, and demands a deeper investigation 
than anyone seems to have given it. 

Exercises 3.5 
I. Consider the standard approach to modified limits given in 
Figure 3.5, with a= I, n = 4, and U- L = 10. Calculate the ARL 
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when the process mean is at (B + 0), for () = 0, 0·5, 1·0. 
2. Construct a short table of(3·09+1·645jyn) and (6·18+9·47 / yn), 
for use with Hill modified limits, for n = 2 (1) 10. 
3. Consider how to insert warning limits on to the Hill modified 
limits. 
4*. Formulate and examine a model for the economic design of 
modified control limits. 

3.6 Control charts for qualitative data 
In this section we give a very brief account of two other types of 
control chart in current use, and we refer the reader to more exten­
sive accounts elsewhere. The principles of derivation and operation 
of the charts are very similar to those for control charts for variables, 
discussed above. 

(a) Control clu:Lrt for fraction defective 
In a complicated assembly, many variables may be measured, and 
in principle control charts could be kept for each one. An alternative 
is to note simply whether the item is effective or defective as in 
Example 3.3. 

Example 3.3 (Armstrong, 1946). A foundry is continuously producing 
side frames of railway-cars, and a random sample of 50 of each day's 
output is inspected, and the number rejected is noted. 0 0 0 

Samples may be drawn every hour, day, etc., or sometimes there is 
100% inspection, and we simply observe the number of defectives. 
If the sample size is constant, then either the number of defectives 
or the fraction defective is plotted serially, in the usual way; see 
Figure 3.7. 

The action and warning limits should be drawn in using calcula­
tions based on the binomial distribution. However, the sample size 
is usually large enough for the normal distribution to be used as an 
approximation. The standard errors of the number of defects and 
fraction defective are respectively 

v'{ np(1 - p)} and y{p(l - p)jn }, 

where p is the long-run average fraction defective. Action and warn­
ing limits are now drawn in at ±3·09 and ±1·96 standard errors, as 
before. It will be necessary to recalculate the limits periodically, 
especially when a chart is only recently started. 
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Figure 3.7. Control cl~rtfor fraction defective. 

If the sample size varies, then either we must plot the fraction 
defective and recalculate the limits each time, or else plot 

pi-p 
(3.15) 

where pi is the fraction defective of the ith sample, and ni is the 
sample size. The quantity (3.15) should be approximately standard 
normal, so that action and warning limits should be at ±3·09 and 
±1·96 respectively. 

For further information on fraction defective charts, and worked 
examples, see Duncan (1974), Grant and Leavenworth (1972), 
Huitson and Keen (1965), or British Standard 1313 (1947). An 
economic approach to the design of fraction defective charts is 
given by Chiu (1975). 

(b) Control chart for number of defects 
In the inspection of complex assemblies such as motor vehicles, 
aircraft wings, or even in observations such as the number of surface 
defects in a metal sheet, our data can be reduced simply to the 
number of defects per item. Data of this kind are often well fitted by 
the Poisson distribution, although this is not necessarily the case if 
the density of defects is heterogeneous. A control chart could be 
constructed using exact probability calculations from the Poisson 
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distribution, but it is usually satisfactory to treat the number of 
defects, c, a,s an approximately normal variable with a mean m 
and variance ym, where m is the long-run average number of 
defects. 

A control chart is operated by selecting a group of n items ran­
domly at preselected time intervals, and counting the total number 
of defects in the group, c1, c2, •••• The observed values ci are then 
plotted on a chart (Figure 3.8) and action and warning lines put in at 
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Figure 3.8. Control chart for number of defects. 
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±3·09ym and ±1·96ym respectively, as in the construction of 
control charts for fraction defective, Figure 3.7. 

The value of m will have to be estimated from past data, and 
periodically recalculated. 

If for some reason the group size varies, it is better to plot defects 
per item, and keep recalculating the limits. For further practical 
details, with worked examples, see Duncan (1974), Grant and 
Leavenworth (1972), and Huitson and Keen (1965). 

With both fraction defective charts (p-charts) and number o( 

defects charts (c-charts), there is the problem of determining the 
group size and sampling interval, as with normally distributed data; 
see the references for details. 
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Exercises 3.6 

1. A sample of n items is drawn from a production process every 
half-hour, and the fraction defective noted. Assume that you have 
records of, say, 20 groups. What significance test would you apply to 
determine whether there was evidence that the true fraction de­
fective is homogeneous? 

What significance test would you apply if the observation was the 
total number of defects in the group of n items? 
2. If in Figure 3.7 the variable plotted was sin-1 yp, where would 
the action and warning limits be placed? What advantages and 
disadvantages would this method have over that suggested 
above? 

What transformation would you use for a c-chart? 

3. 7 Other types of chart for variables 

In an important paper Roberts (1966) described five types of control 
chart for controlling the mean of normally distributed data, with 
their modifications, and gave a comparison of these based on what is 
essentially the average run length. Of these five types one is the 
ordinary Shewhart x-chart (see section 3.2), and another is the 
CUSUM chart which will be described in the next chapter; the re­
maining three types are briefly described below. 

(a) Moving average charts 
Let x1, x2, ••• , Xn be observations taken at equally spaced intervals, 
then the moving average of index k is 

x,<l•> = (xi-k+I + xi-k+2 + ... + xi)lk. 

This moving average should really be plotted at the mid-point of the 
times represented, but it is common practice to plot against the time 
of the final observation. 

The standard error of the moving average is a I yk, if a2 is the 
variance of observations. Therefore action limits would be placed at 
±3·09a I yk, although any other multiplier could be used instead of 
3·09, if desired. Unless moving averages are separated by more than 
(k- 1) sampling points, the moving averages are correlated, so that 
it is not possible to use any warning lines as in the ordinary Shewhart 
x-chart. Nothing clear can be deduced when successive points are 
near the action limits. 
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The ARL of the moving average chart was investigated by 
Roberts (1959) using simulation on a computer. The moving average 
chart is much better than the Shewhart x-chart at detecting small 
changes from the target value, but less quick at detecting large 
changes, and both of these properties become more extreme as the 
index k increases. Therefore a moving average chart can usually be 
improved by using an ordinary x-chart in addition. 

Moving average charts are particularly suitable where it takes 
some time to produce a single item. Each new observation can be 
added as it arises. A simple graphical technique for calculating the 
moving average chart is described by Roberts (1958). The calcula­
tions are also illustrated by Grant and Leavenworth (1972). 

Some useful bounds on the ARL curve for moving average charts 
are given by Lai (1974). These bounds are often quite close. One 
difficulty with moving average charts is a lack of adequate guidance 
for designing them. 

A similar idea to the moving average chart is the moving range 
chart. (This is not discussed by Roberts, who confines his discussion 
to charts for controlling the mean.) Ranges based on a moving 
group of observations are calculated and plotted 

r; = max (xi-k+l• ... , X;) 

-min (xi-k+l• ... , X;) 

against time. Action limits are constructed in the usual way, but 
warning limits cannot be used because neighbouring moving ranges 
are highly correlated. The calculation of a moving range chart is 
illustrated by Grant and Leavenworth (1972). T'he ARL properties 
do not appear to have been studied. 

(b) Geometric moving average chart 
The geometric moving average is calculated using the fol'llllula 

z, = (1 - r)z;_1 + rx;, 

where z0 = flo• the target value. This can be written 
i 

Z; = (1 - r)'flo + r 2 x,(1 - r)1·-•. 

1=1 

(3.16) 

(3.17) 
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Therefore the variance of zi is 
i-1 

V(zi) = a 2r2 L (1 - r)21 

0 

= a 2r2{1 -- (1 - r)2'}/{1 - (1 - r)2} 

= a2r{ 1 -- (1 - r)2'}/(2 - r). (3.18) 

This variance very quickly approaches its asymptotic value, which 
can be used as an approximation except at small i, 

V(z,) ~ a 2r /(2 - r). (3.19) 

The procedure is therefore to plot Zi against i, and insert action 
limits at, say, ±3·09 times the standard error of Zi, that is at 

/Jo ± 3·090' J (2 r r) 
(For small i, the square root of (3.18) must be used for the standard 
error.) Warning limits cannot be used. 

Bather (1963) showed that the geometric moving average was 
optimum for a first-order autoregressive process. The ARL of the 
geometric moving average chart was examined by Roberts (1959) 
using computer simulation. The ARL properties of the chart are 
similar to those of the moving average chart, and again it is useful to 
keep an f-chart in addition, for quick detection of large changes in 
the mean. 

The geometric moving average chart was suggested by J. W. 
Tukey, and Roberts (1959) described the procedure and gave a 
simple graphical method of plotting the points. 



4. Cumulative sum charts 

4.1 Introduction 
The idea of cumulative plotting follows on naturally from the 
techniques described in the last chapter. We assume that we have 
inspection of a continuous process, and groups of n items are sampled 
at a series of equally spaced time intervals. The aim is to keep the 
process in statistical control, and detect changes in the mean or 
variance of the observations. The ordinary Shewhart x-chart only 
takes the current group of observations into account, and modifica­
tions such as warning limits bring the previous group or two into 
consideration. The geometric moving average and straight moving 
average charts extend the principle of detecting changes by using 
previous observations along with the current point. In cumulative 
sum charts, changes in the mean are detected by keeping a cumula­
tive total of deviations from a reference value. The following artificial 
example illustrates the basic idea. 

The 50 numbers in Table 4.1 are sampled from a normal distri­
bution with mean five and variance unity. If the target value is five, 
the CUSUM chart for these data is shown as the full line curve in 
Figure 4.1. The calculations are illustrated in Table 4.2. 

Table 4.1. Observations for CUSUM 
chart example 

3·80 
5·10 
5·72 
3·70 
3·30 
5·66 
5·33 
5·12 
5·80 
4·44 

3·91 
4·07 
4·89 
5·62 
3·98 
4·67 
5·10 
6·08 
4·74 
4·74 

5·51 
5·42 
5·77 
5·33 
5·23J 
5·57 
5·14 
6·55 
3·33 
4·78 

4·37 
4·19 
4·49 
6·24 
5·75 
5·55 
5·32 
3·96 
6·06 
6·46 

5·01 
6·33 
5·65 
4·71 
5·34 
4·19 
4·38 
4·95 
5·60 
3·45 
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Table 4.2 Calculation of a CUSUM chart 
for Table 4.1 data 

Obseroation 
Observation - Cumulative sum 
target value of column 2 

3·80 -1·20 -1·20 
3·91 -1·09 -2·29 
5·51 +0·51 -1·78 
4·37 -0·63 -2·41 
5·01 +0·01 -2·40 
5·10 +0·10 -2·30 

For the second 25 observations, 0·25 was added to each and the 
CUSUM chart replotted; this curve is shown as the dotted line in 
Figure 4.1. While the mean of the observations is equal to the target 
or reference value, the cumulative sum fluctuates about zero, but as 
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Figure 4.1. CUSUM chart of Table 4.1 data. 

soon as the mean differs from reference, the cumulative sum begins to 
increase or decrease. 

Lettheindividualobservationsbexii =I, 2, ... ,withE(xi) = I-'• 

and a reference value of m. The quantity plotted is L (xi - m), and 

E{ ~(xi- m)} = r(J.t - m) (4.1) 

Therefore the cumulative sum has a slope of (J.t - m) when plotted 
against r, and CUSUM charts are to be interpreted by the average 
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slope of the graph. If the mean p, is equal to the reference value m, 
the graph will have very little evidence of a slope; the slight in­
clination of the full-line graph in Figure 4.1 is due to random 
variation. As soon as the mean p, differs from m, the graph has an 
average inclination of (p,- m); this is shown very clearly by the 
dotted-line graph in Figure 4.1. The positions on a CUSUM chart at 
which the graph has a change of inclination indicate the position of 
possible changes in the mean. 

Since on a CUSUM chart it is inclinations which are important, 
the choice of the scales on the axes should be made with care. A little 
practice shows that a convenient scale is to choose the distance 
representing one unit on the horizontal scale to represent 20' units 
in the vertical direction, where a 2 is variance of the short-term 
variability of the series. (See Ewan, 1963, p. 17, for a discussion of 
the scale factor for use on CUSUM charts.) 

The choice of the reference value must also be made with some 
care, and it is not satisfactory to use the target value of the process. 
If the reference value is not equal to the current mean, the graph 
will slope up or down. This could lead to the graph running off the 
edge of the paper, and much more seriously, to reduced sensitivity 
to changes in the direction of the slope. A CUSUM chart is most 
sensitive to changes from the reference value. 
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Figure 4.2. An x-chart. 
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The value of CUSUM charts in comparison with x-charts can be 
seen by comparing Figure 4.1 with Figure 4.2. In Figure 4.2, an 
x-chart has been plotted for Table 4.1 data, but with the second 25 
observations having 0·25 added. We see that whereas the x-chart 
gives no indication of a change in mean, the CUSUM chart shows this 
clearly. We can expect that small deviations from the reference 
value will show up more quickly (on average) with a CUSUM chart 
than with a Shewhart x-chart. In contrast, large deviations from the 
reference value are likely to show up more quickly with an x-chart 
since it takes at least two or three observations to see an inclination 
on a CUSUM chart. Later in the chapter this comparison will be 
made more precise. Further examples of CUSUM charts and another 
comparison with Shewhart x-charts are given in Woodward and 
Goldsmith (1964, pp. 6-9). 

Before proceeding to a more thorough description and analysis of 
CUSUM techniques, it may be useful to list some applications: 

(i) To detect whether a change in mean level has occurred in a 
continuous process. 

(ii) To detect whether a change in mean level has occurred in a 
continuous process, and estimate the amount of the change. 

(iii) To sort continuous production into categories such as 
effective or defective. 

(iv) To search through a set of past data to see when changes in 
mean level occurred. 

(v) To indicate changes and trends in sales figures, and form part 
of a short-term sales forecasting system. 

The details of these and other applications are given in Woodward 
and Goldsmith (1964). In this chapter we are merely concerned with 
the main principles. 

Exercises 4.1 
1. Obtain some random normal deviates and repeat the calculations 
leading to Figures 4.1 and 4.2. Also try adding 0·15 and 0·40 to the 
second 25 deviates. 
2. Plot the data given below on a CUSUM chart, and, remembering 
that it is changes of inclination which indicate changes in the mean, 
try and interpret your graph. How will you decide upon a suitable 
reference value to use? 

The data are from a single stage continuous chemical process in 
which raw materials A and B are reacted together to form a product 
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C. The reaction is exothermic and water cooling is used to control 
the reaction temperature to l60°C. The raw materials A and Bare 
both delivered by tanker from which they are run into small stock 
tanks. There are two stock tanks for each raw material and they 
are filled and emptied alternately. A full stock tank contains about 
two weeks' supply of raw material, and each stock tank full is 
termed a batch. The plant occasionally has to be shut down for 
cleaning. 

The product from the plant is sampled and analysed every shift, 
and the last 150 observations are tabled below together with an 
indication of when new batches of raw material were started and 
when other plant upsets occurred. 

Calculate the cumulative sum chart of the data and thence 
deduce which factors appear to affect the plant efficiency 

150 consecutive observations of efficiency and 
associated plant events 

Sample Efficiency Comment 
(%) 

1 46·0 
2 45·5 
3 46·5 
4 44·6 
5 47·3 
6 46·0 
7 45·9 
8 44·5 
9 46·2 

10 44·7 
11 43·9 
12 45·5 
13 45·0 
14 45·5 
15 45·6 
16 43·9 
17 46·2 
18 43·6 
19 45·3 
20 45·9 
21 45·5 
22 44·8 New batch of B 
23 45·4 
24 46·7 
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Sample Efficiency Comment 
(%) 

25 44·2 
26 44·5 
27 43·8 
28 44·6 
29 45·0 
30 46·0 
31 45·4 
32 44·7 
33 45·3 
34 45·2 
35 45·3 
36 46·1 
37 44·8 
38 46·2 
39 44·4 
40 47·3 
41 46·9 
42 47·1 New batch of A 
43 45·5 
44 47·0 
45 45·4 
46 44·9 
47 47·0 
48 46·5 
49 47·0 
50 46·2 
51 44·7 
52 44·4 
53 47·0 Plant shut-down 
54 39·9 
55 42·3 
56 46·5 
57 44·1 
58 44·1 
59 46·3 
60 47·5 
61 45·4 
62 46·6 
63 44·1 
64 45·6 
65 45·5 
66 47·5 New batch of B 
67 47·0 
68 47·8 
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Sample Efficiency Comment 
(%) 

69 44·1 
70 45·1 
71 46·4 
72 48·1 
73 46·3 
74 45·5 
75 45·0 
76 46·7 
77 45·2 
78 46·6 
79 45·0 New batch of A 
80 43·0 
81 44·4 
82 45·5 
83 41·9 
84 44·4 
85 45·0 
86 45·0 
87 42·3 
88 43·2 
89 45·3 
90 45·9 
91 44·3 
92 42·9 
93 43·5 
94 43·5 
95 43·4 
96 44·0 
97 43·5 
98 43·8 
99 45·5 

100 45·5 New bateh of B 
101 43·4 
102 43·9 
103 45·0 
104 43·7 
105 42·9 
106 43·9 
107 43·9 
108 43·9 
109 44·5 
110 44·3 
111 44·4 
112 45·8 
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Sample Efficiency Comment 
(%) 

113 44·8 
114 44-1 
115 43·9 
116 44·8 
117 44·9 
118 44·7 New batch of A 
119 46·5 
120 45·7 
121 43·7 
122 46·6 
123 45·7 
124 44·8 
125 44·9 
126 46·1 
127 46·7 
128 44·8 Blockage in 
129 45·6 cooling water 
130 44·8 line. High 
131 45·9 
132 46·7 

temperatures. 

133 45·5 
134 44·1 
135 45-1 
136 46·4 
137 45·7 
138 44·8 New batch of B 
139 45·2 
140 45·9 
141 45·2 
142 45·3 
143 46·9 
144 46·0 
145 44·7 
146 45·4 
147 45·8 
148 47·1 
149 45·3 
150 44·6 
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4.2 Decision rules 
(a) The V-mask 

81 

Suppose that we are going to use a OUSUM chart to detect when 
changes in the mean level have occurred; we could then just plot out 
the chart and look at it to see when corrective action is needed, as 
indicated in section 4.1. Clearly this subjective approach is not very 
satisfactory and there is need of some kind of decision rule to indicate 
when corrective action should be initiated. Two methods are in 
common use. The methods are equivalent, but each has various 
advantages. 

Barnard (1959) suggested that the V-mask be used. A V-shaped 
mask is superimposed on the CUSUM chart, the vertex pointing 
horizontally forwards, and set at a distance d ahead of the most 
recent point, as shown in Figure 4.3. The angle between the obliques 
and the horizontal is denoted by 0. If all the previously plotted points 
fall within the V, the process is assumed to be in statistical control. 
If some of the points cross one of the arms of the V, a search for 
assignable causes of variation is initiated. This is illustrated in 
Figure 4.3. 

The properties of the V-mask depend on the choice of d and 0. In 
his original presentation, Professor Barnard suggested that this 
choice could be made empirically by cutting a variety of masks and 
trying them out on past data. However, Goldsmith and Whitfield 
(1961) evaluated the ARL-curves for a set of V-masks when the 
observations are independently and normally distributed, by using 
Monte-Carlo methods. These ARL-curves can be used in choosing a 
d and() to use in any particular case. 

Johnson (1961) considered the CUSUM chart with a V-mask as 
(approximately) the operation of two sequential probability ratio 
tests in reverse order, and in this way he obtained some approximate 
theoretical results. Johnson also provided some oomparisons of the 
CUSUM chart with the Shewhart chart. The form of these results, 
and the method of using the ARL curves will be discussed later. 

(b) Decision interval schemes 
The main differences between this method of operating a decision 
rule and the one just described are that a graph is not needed, and 
that the decision rule can be used as either a one-sided or a two­
sided test. We describe the one-sided test first. 



(a) Process in control 

Observation number 

(b) Process mean higher than reference value 

Observation number 

(c) Process mean lower than reference value 

I:x: 

Observation number 

Figure 4.3. The UBe of a V-maBk on a OUSUM chart. (a) Process in con­
trol, (b) process mean highe1· than reference value, (c) process mean lower 
than reference value. 
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Suppose the reference value for the process is m, and that we wish 
to guard against the mean level of the observations increasing. 
Choose a new reference value, k, roughly midway between m and the 
quality which it is desired to reject. While all observations are less 
than k, the process is assumed to be in control, and no chart is 
plotted. As soon as a result exceeds k, a CUSUM chart is started, 
using k as a reference value. If the chart reverts to zero, the process 
is assumed to be in control, and no action is required, but if the chart 

8 

0 

Reference value k = 5·10 
Decision interval h = 7·0 

Decision boundary 

Observation number 

Figure 4.4. Decision interval scheme for Table 4.1 data. 

exceeds a value h, some corrective action or a search for assignable 
causes of variation is initiated. The calculations and plotting are 
illustrated in Table 4.3 and Figure 4.4. 

The ARL curves for a set of single-sided decision interval schemes 
have been derived by Ewan and Kemp (1960), assuming the observa­
tions to be independently and normally distributed. The results are 
briefly described in the next section, and these can be used to choose 
the parameters h and k in practical cases. The theory is discussed in 
section 4.4. 

For a two-sided decision rule, two single-sided schemes are run 
concurrently, one for increases and the other for decreases in mean 
level. The ARL of the combined decision rule is obtained from those 
of the one-sided rules by using the following formula, which will be 
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Table 4.3 Illustration of calculations for 
decision interval scheme 

Set 1. k = 5·10, h = 7·0. 

observation 

3·80 
3·91 
5·51 
4·37 
5·01 
5·10 
4·07 
5·42 
4-19 
6·33 
5·72 
4·89 
5·77 
4·49 
5·65 

(x- k) when 
required 

0·41 
-0·73 

0·32 
-0·91 

1·23' 
0·62 

-0·21 
0·67 

-0·61 
0·55 

Set 2. k = 5·75, h = 8·10 

Observation 

3·80 
3·91 
5·51 
4·37 
5·01 
5-10 
4·07 
5·42 
4·19 
6·33 
5·72 
4·89 
5·77 
4·49 
5·65 
3·70 

(x = k) when 
x>k 

0·58 
-0·03 
-0·86 

0·02 
-1·26 

control 

0·41 
-0·32 

0·32 
-0·59 

1·23 
1-85 
1·64 
2·31 
1·70 
2·25 

Control 

0·58 
0·55 

-0·31 
0·02 

-1·24 
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derived in section 4.4, and which is subject to a condition given 
there, 

-:-;-::::-:;:--:-1 __ - 7":-::=l~ + , __ 1 -
(ARL)comblned - (ARL)up1..,. (ARL),o ... ; 

(4.2) 

It is important to notice that with this two-sided scheme, accumula­
tions can be running on both sides concurrently. 

(c) Eqivalence of the two decision rules 
Let us assume that groups of n observations are taken at equally 
spaced time intervals, and let the means of the groups of observa­
tions be x1, i = 1, 2, ... , each having a variance a 2 fn. For simplicity 
put the reference value m = 0. We shall compare a two-sided decision 
interval scheme having parameters hand k, with a V-mask scheme 
having parameters d and e, in which a unit on the horizontal scale is 
equal to two standard errors on the vertical scale, or 2a / yn. 

The decision interval schemes will never indieate a need for cor­
rective action if I xi I < k, however many observations there are. 
The equivalent result for a V-mask scheme is that the increments to 
the CUSUM chart should not cause a slope more extreme than those 
of the V-mask. 

I xi I o 
2afvn <tan . 

Hence if we put 
2a 

k = vn tan(), 

the restrictions would be equivalent. 
The V-mask will indicate a need for corrective action at a point P 

if there is any point Q crossing one of the arms, see Figure 4.5. There­
fore the summation from A to B satisfies 

B L xi> PR = (d tan()+ stan 0)2afvn 
A 

which can be written 

~(x,- ~ntane)>-~ndtanO, (4.3) 

but Pis the first point after Q at which this inequality is satisfied. If 
we put 

2a 
k = vn tan() (4.4) 
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20' 
h= y'ndtan() (4.5) 

equation (4.3) defines a decision interval scheme. Therefore the two 
decision rules are exactly equivalent, and equations (4.4) and (4.5) 
give the relationships between the two sets of parameters, where k 
is measured from m. 

A B 
Ob::.ervatlon number 

Figure 4.5. Equivalence of decision rules for a OUSUM chart. 

The value of the decision interval scheme is that for much of the 
time when production is in control, no score need be kept at all, and 
even when accumulation is in progress, no chart is needed. However, 
the CUSUM chart does provide a very good picture of the behaviour 
of the process, and there may be circumstances when it is desirable 
to plot this and use a V-mask. 

(d) Simplified deciaion rule 
Ewan (1963) described a simplified decision rule which can be used 
instead of a V-mask. It arises because operators tend to test using 
a mask only when they see an apparent change. 

First the operator estimates visually the apparent point of change 
and a line AB is drawn giving the path of the chart up to this point. 
At the estimated point of change a point Cis marked at a distance h 
from this line, and another point Dis plotted n points further on, at a 
distance (h + nk) from the line. (The points C and Dare plotted in the 
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Ix 

Observation number 

Figure 4.6. Simplified CUSUM decision rule. 

direction of the apparent change; it is not necessary to wait for n 
points after an apparent change to plot these points.) If the chart 
crosses CD a change is declared; see Figure 4.6. 

This procedure involves a subjective element in estimating the 
point of change and drawing the original straight line. However, it 
has been found very useful in practice, and combines some of the 
advantages of the two decision rules described above. 

(e) Estimation of a for OUSUM charts 
We shall assume throughout that there is sufficient back data to 
form a good estimate of a for use in setting the scales and the decision 
rule. If observations are sampled in groups, this estimate is easily 
obtained from a pooled estimate of within-group variances or from 
the average of the group ranges. 

If observations are taken singly, then the usual estimate is to base 
the calculation on successive differences, 

n-1 

s2 = 2(n ~ l) ? (x;+l - X;)2. 
•=1 

This estimate is biased if the series of observations are autocorrelated. 
A further complication arises when there are several components 
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of variance present. For example, there may be day-to-day variation, 
and long-term variation over a day, in addition to the short-term 
variation which can be estimated by the methods given above. The 
short-term variance should generally be used in scaling the axes of the 
CUSUM chart, but knowledge of the other components of variance is 
required in setting the decision rule. The vital point is to design the 
chart to be sensitive to the smallest order of change in the mean 
which is regarded as practically important. 

Exercises 4.2 
1. For the data of Exercise 4.1.1 calculate a decision interval scheme 
using k = 2·24, k ::f: 1·12. Also carry out the calculations for the 
equivalent V-mask scheme. 

4.3 Properties of the decision rules 
The ARL-curves of the V-mask have been calculated by Monte­
Carlo methods, and Figure 4.7 gives one of these curves, ford= 2. 
Woodward and Goldsmith (1964) also give ARL-curves ford = 1, 5, 
8, and clearly, as d increases for any given value of tan 0, so does the 
ARL. These ARL-curves assume that the horizontal unit on the 
CUSUM chart is 20' / '\f'n on the vertical axis, but conversion to other 
scales is easy. 

Let us suppose that the group sample size n is given, and see how 
these ARL-curves can be used to choose ad and 0. We could define 
values of the mean at which the quality is acceptable and rejectable; 
these values are denoted AQL and RQL respectively. We must now 
choose the ARL's we desire at these two quality levels, and we denote 
these by L 0 and L1 respectively. We can now search along the graphs 
for a pair (d, 0) which approximately satisfies our requirements. (Not 
all pairs L 0, L1 can lead to a scheme.) If the group size is not specified 
in advance, the choice is more difficult since the scale of Figure 4.7 is 
not fixed. This method of choosing a CUSUM chart is very similar 
to the method set out in section 2.4(a) for choosing a sampling in­
spection plan. 

The choice of a decision interval scheme can be made in similar 
manner as for the V-mask scheme, by fixing the ARL's desired at the 
AQL and the RQL. However, the parameter kin a decision interval 
scheme has an interpretation, and represents a qualityroughlymidway 
between the AQL and RQL. Ewan and Kemp suggest choosing 
k exactly half-way between the AQL and the RQL, and if the group 
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Figure 4.7. ARL-curve of a V-mask with d = 2. Curves are Bhown for 
three values of tan (J. Based on Woodward and Goldsmith 'Cumulative 
Sum Techniques', Fig. 5b (Oliver and Boyd, 1964), by permiBaion of 
I mperiaJ, Chemical Industries Ltd. 

size is fixed, only one ARL, at either the AQL or the RQL, can be 
chosen arbitrarily. If the ARL is fixed at the AQL, the resulting ARL 
at the RQL may turn out to be unacceptable, in which case lc will 
have to be modified (or equivalently, the AQL and RQL). If the 
group size n is not fixed in advance, lc can be chosen midway between 
the AQL and the RQL, and the ARL's can still be specified arbi­
trarily. A nomogram to design decision interval schemes is given 
in Appendix II, and an illustrative example is given in section 4.5. 
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There seems no clear reason why k equal to the average of the 
AQL and RQL should be best, especially since the AQL and the 
RQL are themselves often chosen rather arbitrarily. However, this 
rule does give a very useful starting-point for finding a plan. 

Very little has been said about the choice of group size and sampling 
interval, and an analysis parallel to that given in section 3.4 is 
appropriate. However, the qualitative £onclusions are liable to be the 
same. There is also the possibility that the sampling interval could 
be reduced when quality deteriorates; this type of plan is discussed 
in the next chapter. 

CUSUM chart 

Deviation from target value 

Figure 4.8. ARL-curvejor a CUSUM chart and a Shewart x-chart. 

One difficulty about the results on ARL-curves described in this 
section is that they are derived from the assumption that observa­
tions are independently and normally distributed. In practice, 
observations are sometimes correlated, and may not be normal. 
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Some of the effects of such departures are described briefly by 
Woodward and Goldsmith (1964, pp. 17-18) and Bissell (1969). In 
general, the ARL results are likely to be sufficiently robust to these 
departures to choose a suitable plan for CUSUM: charts on a normal 
variable. 

An interesting question now arises; to see how the ARL-curves of 
Shewhart x-charts and CUSUM charts compare. This problem was 
discussed by Roberts (1966), who also eompared a number of other 
schemes. Roberts's general result was that there was surprisingly 
little difference between the methods. As far as a comparison of the 
CUSUM chart and the Shewhart x-chart is concerned. Figure 4.8 
illustrates the form of the results. The CUSUM chart detects small 
changes more quickly than the x-chart, but the reverse is true for 
large changes; the reason for this was indicated in section 4.1. 

A comparison of the X·Chart and CUSUM chart was also given by 
Johnson (1961), using an approximate argument. The action lines 
for Johnson's x-chart were placed at varying positions, including the 
conventional position. As the action lines are brought in, the x-chart 
gradually becomes superior to the CUSUM chart; see the next 
section for details. 

4.4 Theory of the decision interval scheme 

(a) l?xact theory 
The decision interval scheme illustrated in Figure 4.4 can be con­
sidered as a sequence of sequential probability ratio tests; (for a 
description of and references to this see Wetherill (1975)). Let the 
variable z denote the distance from the lower boundary of the scheme, 
so that the two boundaries are at z = 0 and z = h. A single test is 
defined as a path starting at a value z satisfying 0 :-::;; z < h, and 
ending at the upper or lower boundary; in the degenerate case the 
path may be one point only. For such a test let 

P(z) = probability that a test starting at z ends at z < 0. 
N(z) =average sample number of a test starting at z. 

The decision interval scheme is a series of such tests, and terminates 
with the first test to cross the upper boundary. Let L(z) denote the 
ARL of a decision interval scheme in which the first test starts at the 
point z, but all subsequent tests start at the lower boundary. 

So far in this chapter we have only discussed CUSUM schemes in 
which the observations are normally distributed, but to be general, 
we denote the probability density function of the observations by 
f(x), and cumulative distribution by F(x). The CUSUM scheme 
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proceeds by observing x, and if the current score is z, the new score is 
Z + X - k if X ~ k - Z 

~ 0 Ux~k-L 
We begin by considering a single test starting from a score z, and 

obtain a formula for P(z). If one observation is taken, there are 
three possibilities: 

ObBen~ation New Bcore Outcome 

(i) x < k -z 0 test ends at lower 
boundary 

(ii) k-z<;x<;h+k-z z+x-k test in progress 
(iii) x>h+k-z h test ends at upper 

boundary 

The probability of the first event isF(k - z). If the second event hap­
pens, there is a further probability P(y), for every y = z + x- k, 
0 < y < h, of ending at the lower boundary. The last event is 
irrelevant to P(z). Therefore we have the equation 

P(z) = F(k- z) + J:P(y)f(y + k- z) dy. (4.6) 

In a similar way we can obtain the equations 

N(z) = 1 + J:N(y)f(y + k- z) dy, (4.7) 

and L(z) = 1 + L(O) F(k- z) + J: L(y)f(y + k- z) dy. (4.8) 

Equations (4.6) and (4.7) have been described by Page (1954), and 
Page (1954) and Kemp (1958) ga;ve numerical methods for solving 
them. 

The ARL of the decision interval scheme is L(O), and once P(O) 
and N(O) are obtained by solving (4.6) and (4.7), L(O) can be obtained 
from the formula 

L(O) = N(0)/{1- P(O)} (4.9) 

instead of by solving (4.8) directly. This formula can be derived as 
follows. In a decision interval scheme the number of sequential tests 
has the geometric distribution 

{P(O) }(•-1l{ 1 - P(O) }, s = 1, 2, .... 
Thus on average there are {I - P(0)}-1 sequential tests in a single 
run of a decision interval scheme of which just one terminates on the 
upper boundary. If N(O)", N(0)1 are the average sample numbers of 



CUMULATIVE SUM CHARTS 93 

sequential tests terminating on the upper and lower boundary 
respectively, the ARL of the decision intervali3cheme is 

L(O) = N(O)" + { 1 _
1P(O) - 1 }N(O)I 

= I _ 1P(O){(l- P(O)) N(O)" + P(O) N(0)1} 

N(O) 
=I- P(O)' 

Now the ARL is the expectation of the distribution of run length, 
and it is very useful to have a formula for it. However, further 
information about the run length distribution can easily be obtained. 
Let p(n, z) =probability that a test starting at z has run length n, 
then by following an argument similar to that leading to (4.6) we 
have 

p(n, z) = p(n- l, 0) F(k- z) + J:p(n- l, y)f(y + k- z) dy. 

(4.10) 
Denote the moment generating function of the run length distribu­
tion by .p(z, t) 

co 

cp(z, t) = L: p(n, z) e" 1, 

1 

then from (4.10) we have 
e-1.p(z, t) = l - F(h + k - z) + ¢(0, t) F(k - z) 

+ J:.p(y, t)f(y + k- z) dy. (4.11) 

By successively differentiating (4.11) and putting t = 0 we can 
obtain integral equations for the moments of the run length distri­
bution. Ewan and Kemp (1960) also obtained an approximation for 
the variance of the run length distribution, 

V(n) ~ L2(0) + V(N)/{1 - P(O)}, (4.12) 

where V(N) is the variance of the sample number of a single se­
quential test, and the approximation is valid when P(O) is close to 
unity. The authors also conjectured that a close approximation to the 
run length distribution is 

1 { (n -1)} 
p(n, 0) ~ L(O) exp - L(O) • (4.13) 

Throughout this theory, we have assumed that the observations x 
are continuous, but the methods used can be followed through in the 
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discrete case also. EwanandKemp (1960) gave values of the ARLfor 
the case when the observations have a Poisson distribution, as well 
as for the normal distribution case. 

(b) Johnson's approximate approach 
Johnson (1961) gave an approximate approach for a CUSUM chart 
with a V-mask, which arrives at some remarkably simple answers. 

We first reverse a CUSUM chart, and look at it as if it were pro­
ceeding backwards. Figure 4.9 shows approximately how Figure 

Observation number 

Figure 4.9. Johnson's approach to V-mask theory. 

4.3(a) would be reversed. The method is now to regard the outer 
arms of the V-mask as boundaries of a test of three simple hypo­
theses using the sequential probability ratio test (see Wetherill, 
(1975) and references). 

Suppose we have three hypotheses, that observations are inde­
pendently and normally distributed with distributions as follows: 

H_1 : N(-ba, a 2); H0 : N(O, a2); H1 : N(ba, a2). 

Suppose, further, that we want a probability (1 - 2et0) of accepting 
H 0 if it is true, and a probability (1 - et1) of accepting H1 or H _1 if 
they are true, then the boundaries for the sequential probability 
ratio test of these hypotheses are as illustrated in Figure 4.10. 
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Accept H1 

Observation number 

Accept H1 

Figure 4.10. Sequential teBt.s of three hypothe8e8. 

The outer boundaries are 

~Xt= [~loge{(1- oc1)/ot0} + !<5n]l1 
'-1 

t Xt = -[~loge { (1 - oc1)/ot0 } + l<5n]l1. 
•-1 

and 
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(4.14) 

(4.15) 

Now the outer boundaries of the V-mask in Figure 4.5, using the 
current point as origin, are 

,2: x = 211 tan O(n + d) (4.16) 

and ,2: x = -211 tan O(n +d) (4.17) 

where 211 is the scale factor of the CUSUM chart. It follows that if 
we identify (4.14) with (4.16) and (4.15) with (4.17), we shall have 
a V-mask in which, approximately, the probability of a path crossing 
an outer boundary is 2oc0 , when the process is in control. By identify­
ing these pairs of equations we obtain 

tan() = <5/4 (4.18) 

(4.19) 
Unfortunately oc1 in this last equation is difficult to interpret, since 
there is no 'accept H 0' boundary on Figure 4.5. However, since oc1 is 
usually small, we have 

d ~ -2loge-(~)/<52 • (4.20) 
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These results can be used in the following way. First decide on the 
least change in the mean which it is desired to detect with reasonable 
certainty; let the standardized value, standardized by a, be <5. We 
must now decide on the greatest tolerable probability, 2oeo, of false 
indications of lack of control ; values near 0·002 are traditional for 
this in control chart work. Use of (4.18) and (4.20) now give 0 and d 
corresponding to this pair of (15, oeo). The properties of the selected 
(d, 0) can be checked from tabulated ARL-curves, and modified if 
they are not satisfactory. 

Johnson points out that this theory throws some further light on 
CUSUM charts. Since CUSUM charts are like a two-sided SPRT 
without a middle boundary, and there is no decision to 'accept H 0', 

a path which would have been terminated on an SPRT could go on 
and cross one of the decision boundaries. Therefore paths which 
cross the decision boundaries a long way from the vertex should be 
regarded with suspicion. 

(c) Proof of equation (4.2) 
Let x1, x2, ••• , XN be observations from which a two-sided decision 
interval scheme such as that shown in Figure 4.11 is operated. 

In Figure 4.11, once a decision boundary is crossed, the chart 
automatically restarts at zero. It can easily be shown that if, say, the 
upper decision boundary is crossed, plotting on the lower chart will 
have terminated at the 'in control' boundary: see Exercise 4.4.4. 
Therefore this automatic resetting of the scheme has no effect on the 
plotting. 

Upper decision boundary 

Observation number 

:> 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

"'-..7 

~ 
t 
I 
h 

! 
Lower decision boundary 

Figure 4.11. Series of two-Bided decisWn interval scheme8. 
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Let 
x = number of terminations at a decision boundary 

x., = , , , , the upper decision boundary 
x1 = , , , , ,. lower , , 

then clearly x = x., + Xz, and 

E(x) = E(x.,) + E(x1). 

But E(x.,) = N /(ARL)upper. 

and E(x,) = N /(ARL)tower. 

hence equation (4.2) is obtained. 
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If the parameters for the upper and lower chart are different, say 
(k+, h+) (k-, h-) for the upper and lower charts respectively, then 
Dobben de Bruyn (1968) showed that (4.2) remains true provided 

k+ + k- 2 1 h+ - h-1. 
This condition is necessary and sufficient to establish that, if one 
decision boundary is reached, plotting on the other chart will have 
terminated at the 'in control' boundary. 

Exercises 4.4 

1*. Refer back to the details in Ewan and Kemp (1960) and show 
how to evaluate the ARL for a CUSUM scheme on variances of 
normally distributed data. 
2*. Study how to set about a thorough investigation into the effects 
of deviations from assumptions, such as non-normality and serial 
correlation upon the run length distribution of a decision interval 
scheme. 
3*. All our treatment of CUSUM schemes has assumed that obser­
vations are taken in groups of n at equally spaeed intervals. Set out 
a model for examining an optimum choice of group size and sampling 
interval. (You may be guided by similar work referred to in earlier 
chapters.) 
4*. For the two-sided decision interval scheme discussed in section 
4.4(c), let the two reference values be ±k. Show that if plotting on 
one chart ends at a decision boundary, plotting on the other must 
have ended at the 'in control' boundary. (See Kemp 1961, p. 151.) 

4.5 Use of nomogram to design decision interval schemes 
In Appendix II a nomogram produced by Kemp (1962) has been 
reproduced, and this can be used to derive parameters for operating 
a decision interval scheme. 
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Suppose that in some application discussion with staff establishes 
that a one-sided scheme is required, with 

AQL = 11-10; RQL = 12·66; a= 2; 

L(t-t = 11·10) = 800; L(t-t = 12·66) = 5; 

where L(t-t = 11-10) denotes the ARL at the AQL, etc. If the re. 
ference value is chosen midway between the AQL and RQL this gives 

k = (11-10 + 12·66)/2 = 11·88. 

If a ruler is put across the nomogram corresponding to the two 
ARL's, the other two boundaries are cut at approximately 

hy'n = 3·32, I f-l - k I y'n = 0·78 
(J (J 

but since at the RQL, 

(f-l - k) = 12·66 - 11·88 = 0·78 
then 

y'n/(T = 1, yn = 2 
and hence the required scheme is 

h = 3·32, k = 11·88, n = 4. 
In order to plot the ARL curve, some further values of the ARL 
are required. If we consider f-l = 11·38 or 12·38, then for the same 
decision interval scheme, 

I f-l - k I }fin = 0·5, hy'n = 3·32 
(J (J 

A ruler must now be placed across the nomogram at these values, to 
read off 

L(t-t = ll·38) = 132, L(t-t = 12·38) = 7·2 

A freehand curve can now be drawn by plotting log (ARL) againstp, 
and this will be sufficiently accurate for most purposes. 

In the example used above, the value of n required came out 
exactly to an integral number. Clearly this will not be the case in 
general, and it will be necessary to try out, say, the nearest integral 
value. One of the ARL's will then have to be slightly different from 
the values specified. Alternative possibilities can then be worked by 
calculating the new value of (f-l- k)y'nja, and fixing one of the 
ARL's. 

If a two-sided decision interval scheme is required, we must use 
equation (4.2). Suppose we were given an AQL of ll·IO, and RQL's 
of 9·54 and 12·66 with required ARL's L(1HO) = 400, L(9·54) = 
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L(12·66) = 5·0. Then at the RQL, the ARL is very nearly that 
of a one-sided scheme, but application of (4.2) at the AQL leads 
to L(t-t = 11-10 I one-sided)= 2L(t-t = 11·10 I two-sided). Hence 
we are looking for one-sided schemes with L(t-t = 11·10) = 800, 
L(t-t = 9·54) = L(t-t = 12·66) -::::::: 5·0, and this was the case discussed 
above. 

Before employing the method given above too widely, it is 
important to have some appreciation of the effect of deviations from 
the various assumptions. 

Firstly, a value of a has to be assumed, and it is quite clear that 
the effect of departures from the assumed value on the ARL can be 
dramatic; see comments on this in De Bruyn (1968, pp. 44, 45). 
Overestimation of a increases the ARL, and underestimation reduces 
it. Great care must be taken over the choice of a. 

Bissell (1969) studied the effect of skewness of the underlying 
distribution, and provided a nomogram to assess the effect on the 
ARL. His general conclusion is intuitively clear from the way in 
which CUSUM cumulations arise. At the RQL, most of the distri­
bution contributes to the cumulations, and the effect of skewness is 
very small, but the position is different at the AQL. For positive 
skewness, the proportion (and mean) of observations contributing 
to cumulations will increase, while at the same time the proportion 
(and mean) of observations detracting from cumulations will 
decrease. The result is that positive skewness can seriously reduce 
the ARL at the AQL. By similar reasoning, negative skewness 
increases the ARL at the AQL. 

The effect of serial correlation between observations has been 
studied by Goldsmith and Whitfield (1961) using simulation, and by 
Johnson and Bagshaw (1974) and Bagshaw and Johnson (1975) by 
theoretical means. The general conclusion is similar to the case of 
skewness mentioned. Positive serial correlation tends to reduce the 
ARL, and negative serial correlation tends to increase the ARL. 
Again there is little effect at the RQL, but at the AQL the effect can 
be quite large. Johnson and Bagshaw (1974) say: 'Our primary con­
clusion is that the Cusum test is not robust with respect to depar­
tures from independence. The use of Cusum tests is now widespread, 
and the presence of serial correlation common so that attention 
should be drawn to the seriousness of this lack of robustness.' 
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Exercises 4.5 

1. A one-sided decision interval scheme is run with parameters 
h = 7·6, k = 50, AQL = 47·5, RQL = 52·5, n = 9, a = 8. Sketch 
the ARL curve. 
2. A one-sided decision interval scheme is required where the AQL 
is 4·60, the RQL is 5·20, and the corresponding ARL's are to be 
800 and 4·0 respectively. Samples are taken every 15 minutes, and 
this is fixed, but the sample size can be varied, and the standard 
deviation of observations is 0·667. Find suitable values of h, k, and n. 
3. If in the previous exercise a = 0·80, show that there is no value 
of n which will satisfy the requirements. Examine various possible 
values of h, k, and n which will approximate to a solution. 
4. You are given that the AQL = 0, RQL = 1·96, a/y'n = 1, then: 

(a) if samples of n are taken every hour and L(p, = 0) = 250, 
find the ARL at the RQL; 

(b) if samples of n/2 are taken every half-hour and L(p, = 0) = 
500, find the ARL at the RQL; 

(c) if samples of n/3 are taken every 20 minutes and L(p, = 0) = 
750, find the ARL at the RQL. 

Hence comment on the effect of sampling interval on the ARL 
properties of CUSUM schemes. 
5. Suppose that, for the situation described in Exercise 4.5.2, a 
two-sided decision interval scheme is required where the AQL is 
4·60 with an ARL of 400, and the RQL's are 4·00 and 5·20, with an 
ARL of 4·0. Find suitable values of h, k, and n, and the equivalent 
values of d and() for a V-mask scheme. 

4.6 The economic design of CUSUM control charts 

Taylor (1968) has given a discussion of the economic design of 
CUSUM charts when used for the purpose of controlling a process. 
The model used is similar to the one used by Duncan (1956) for the 
economic design of x-charts. 

Groups of n observations are taken every h hours from a manu­
facturing process. The observations are assumed to be normally 
distributed with a constant variance a 2, and a mean p,0 while the 
process is in control. After a. time T the process goes out of control 
and the mean changes to 

P,1 ==f-lo± flajy'n. 

Therefore fJ measures the change in the mean in standard error units; 
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this assumption has the unfortunate result that we alter the change 
in the process mean by altering n. 

Let M be the number of observations until the process goes out of 
control, so that 

Mh < T < (M + l)h 

and let F be the number of false out-of-control signals given by the 
chart in this time. LetS be the number groups of observations taken 
after the process goes out of control until the chart indicates lack of 
control. Assume that when the chart gives an out-of-control signal, 
the process is shut down for an average timeT., and if the signal is 
not a false alarm, a further time Tr is taken to repair the process. 
Once the process is repaired, the mean is again flo• and the cycle is 
repeated. These cycles are of average length 

Tr + T{E(F) + l} + hE(M -1- S). (4.21) 

We now introduce the cost parameters. Denote: 
p = profit rate per hour when the process is in control 
c = cost , , , , , , , out of control. 

k8 = cost of a search for lack of control 
kr = cost of repairing the process. 

If we assume that the search and repair times are independent of M 
and T, then the average cost per cycle is 

kr + ksE(F + l) + cE{(M + S)h- T}- pE(T). (4.22) 

The expected total cost per hour is (4.22) divided by (4.21), but to be 
of any use, we must evaluate E(F), E(S), and E(M). 

Write E(T) = flT• and assume this known; then as an approxima­
tion take 

E(M) = flpfh - !· (4.23) 

Let the ARL's of the CUSUM chart in control and out of control be 
L(O) and L(£5) respectively. The ARL's L(O) and L(£5) are those 
obtained in the previous section under the assumption that the chart 
starts from zero with the given mean (either flo or fl 1 ). Then we can 
approximate 

and 

E(F) = E(M)jL(O) 

E(S) = L(£5). 

(4.24) 

(4.25) 

The last step involves ignoring the effect of head starts which a chart 
may have when the process goes out of control, and the results of 
some simulation runs are given to justify this. 
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If we use (4.23), (4.24) and (4.25) in (4.22) and (4.21), we obtain for 
the average cost per hour 

kr + k,{l + (pp/h- !)/L(O)}- P#p + ch{L(~)-!} 
G = t'r + T,{l + (pp/h -!)/L(O)} + J.lp + h{L(~) -!} ' (4·26) 

Now if the V-mask is used on the CUSUM chart, L(O) and L(~) 
will be functions of the parameters d and 8 of the mask. We must 
therefore choose (d, 8, n, h) to minimize (4.26}, and this can be done 
fairly readily on a computer by using the approximate formulae for 
L(O) and L(~) given by Goldsmith and Whitfield (1961). 

Taylor simplifies the optimization problem as follows. He argues 
that a choice of 8 such that 

(scale factor) tan 8 = I p1 - Po l/2 
would be approximately optimal (see 4.18) and he gives some 
numerical evidence to support this. If, as sometimes happens, n and 
h are given, the only remaining parameter is d. A simple numerical 
example is given in the paper. 

In any practical case it should be easy to obtain information on 
the average times PT• T., and t' r· If the process is not shut down during 
a search, this could be allowed for. The most unrealistic assumption is 
that concerning the mean of the process, but it would be easy to 
allow for a distribution of out-of-control means over a finite number 
of values, provided some information was available on the true 
distribution of means. 

It would be interesting to have an extensive numerical exploration 
of this optimal solution, in particular to see if certain cost para­
meters, or some functions of them, are really critical. 

4.7 Estimation from CUSUM charts 

The methods given in section 4.2 were merely decision rules for 
deciding when to initiate investigations for assignable causes of 
variation. That is, they are merely rules to say when there is evi­
dence that the mean has changed, and there is no attempt to estimate 
the amount of this change. In many practical situations an estimate 
of the amount of the change is vital in order to give a guide to the 
extent of any adjustment which may be necessary. We shall deal 
first with an estimation method for the decision interval scheme, 
since this is very much simpler than the estimation method for a 
CUSUM plot with a V-mask. 

The crux of the problem is that the mean has probably changed, 
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and at a point which is not known precisely. It is necessary to use 
the CUSUM chart to dictate how much past data should be used in 
making an estimate of the new mean. 

(a) Estimation method for decision interval scheme 
In a decision interval scheme, a series of runs are plotted, some 
terminating at the 'in control' boundary, and others terminating at 
the decision boundary. It is therefore reason1tble to take as an 
estimate of the new mean, the average of the observations which 
compose the run terminating at the decision boundary. This estimate 
is biased, but no correction has been suggested. 

Suppose a two-sided decision interval scheme is operated about 
a central reference value of zero with reference values of ±k for the 
two schemes, then the estimation procedure just suggested has the 
property that it is impossible to obtain an estimate within the range 
( -k, +lc). However, if the estimate is required for some adjustment, 
this inert region will not matter since no decision to apply an estimate 
in this region could be reached. 

No further properties of this estimation procedure have been 
investigated. In particular, if estimation were the main aim and a 
decision rule a secondary consideration, a rather different choice of k 
and lc ought probably to be used. 

(b) Estimation procedure for the V -mask scheme 
A method of estimation for use with a straight CUSUM chart and 
V-mask scheme, must be a means of picking out sections of the chart 

Ix 

Observation number 

}figure 4.12. Estimation from a CUSUM chart. 
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which are of fairly constant inclination. Barnard (1959) suggested 
that a parabolic mask be used for this purpose. 

Brif:!fly, the method is to place the vertex of the parabola over the 
current point, and then rotate the parabola so as to include as many 
of the past points as possible. This is illustrated in Figure 4.12. The 
direction of the axis of the parabola is taken to estimate the mean. 
Clearly, the parabola will tend to include one or two points too many, 
but the bias introduced by this will be small. One counter-measure 
against this is to include as many points as possible, but rotate the 
parabola away from the point which is just not included until it 
passes through one of the points which are included. 

Very little is known about the properties of this method, and 
although a parabola is obviously roughly the right shape, there is no 
certainty that it is the best. Various practical points concerning the 
use of the technique are discussed by Woodward and Goldsmith. 

Lucas (1973) has suggested that a parabolic mask be used instead 
of a V-mask more generally. However, the schemes are more diffi­
cult to apply, and we have not a ready means of designing such 
masks or of determining their properties. 

4.8 Other CUSUM charts 

(a) Control of process variability 
If our data are normally distributed and we wish to control process 
variability, then CUSUM charts can be used for this. If observations 
occur singly, a CUSUM chart can be operated on absolute successive 
differences, 

d, = I x, +1 - X; j. 
If the data are grouped, a CUSUM chart can be operated on ranges, 
sample variances, or on log (sample variance). 

The ARL properties of these various procedures have not been 
obtained, nor have any comparative studies been made. 

(b) Discrete data 
CUSUM charts for binomial and Poisson data have been considered 
by Ewan and Kemp (1960), who also provided information on ARL 
properties of the procedures. A CUSUM scheme for binomial data had 
been considered earlier by Page (1954). 

The intermediate case where data are gauged and assigned a score 
is considered by Page (1962). 
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(c) Other distributions 
Johnson (1966) has considered the use of CUSUM charts to control 
the mean of a Weibull distribution. 

4.9 Conclusions 

One of the vital questions about which we have said very little is a 
comparison between, say, the Shewhart :r-chart and a CUSUM chart. 
It is clear from Figure 4.8 and surrounding discussion that there are 
occasions when each will be preferred, on a basis of the ARL alone. 
It depends largely whether small or large changes in the mean are of 
primary interest. 

There are other considerations which may influence the choice of 
chart to be used in any practical case. An x-chart may be thought 
simpler than a CUSUM chart. Roberts (1966), after a comparative 
study, concludes: 'We suggest that most applications are and will 
continue to be of such a nature as to favour the use of the standard 
x and range control charts ... .'On the other hand, there are many 
large industrial establishments which have changed over completely 
to CUSUM charts. Ewan (1963) gives an excellent discussion of 
various control charts. He suggests that stand1trd control charts 
should be used when extreme simplicity in use is required, or when 
tests are very inexpensive so that improvements in efficiency are of 
small importance. CUSUM charts are more appropriate when tests 
are moderately or very expensive and extreme simplicity in use is 
not so vital, and when it is required to detect quickly sudden but 
sustained changes in the mean. CUSUM charts also show up to con­
siderable advantage when it is of value to have an estimate of the 
point at which a change in the mean occurred. 

The paper by Ewan (1963) is very simple, and should be read by 
all interested in this topic. 



5. Continuous sampling 
plans 

6.1 Basic description and aims 
In section l.3(a) we drew a distinction between batch inspection and 
continuous production inspection, and we explained that the latter 
deals with the inspection of either truly continuous material such as 
nylon thread, or else of conveyorized production of separate items 
such as chocolate bars. The material of Chapters 3 and 4 relates to 
this situation. However, a special set of inspection plans, known as 
continuous sampling plans, has been introduced for use in con­
tinuous production inspection. 

The earliest CSP, introduced by Dodge in 1943, has already been 
described in Example 1.4, and this plan is referred to as CSP-1. In 
CSP-1 there are two levels of inspection, 100% inspection and an 
inspection rate of 1/n, and there is a simple rule to determine when 
to change between these levels. Variations on this basic plan are 
either to use a more complex rule for changing inspection levels, or 
else to introduce more levels. 

One possible approach to continuous production inspection is to 
group the product artificially in batches. It is frequently necessary 
to group the material for transit purposes; these groups could he 
used as batches for inspection. However, any artificial hatching may 
have unfortunate results. Firstly, the operation of artificially hatched 
sampling plans can lead to the possibility of rejecting items not yet 
produced. Secondly, when inspection involves disassembly, or is 
time-consuming, many practical difficulties arise, such as storage 
problems. Nevertheless, artificial hatching of continuous output is 
used as a method of reducing the problem of designing inspection 
plans to that described in Chapter 2. In the present chapter we dis­
cuss sampling plans suitable when artificial hatching is not appro­
priate. 
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A producer operating a continuous sampling plan such as CSP-1 
may have any or all of three different aims in view: 

(i) Product Bcreening. The aim in this case has been emphasized 
throughout Chapter 2. The product is to be sorted, usually into 
two grades, an acceptable grade and one which needs to be 
rejected or rectified. 
(ii) ProceBs trouble shooting. This was discussed in section 3.1. 
Typically, the assumption is that product quality is occasionally 
disturbed by 'assignable causes of variation', which can be traced 
and eliminated. 
(iii) Adaptive control. Here the inspection results are to be used to 
indicate the precise amount of any adjustment needed to the 
process in order to keep quality up to standard. 

The original work by Dodge (1943), and mueh work since, such 
as Dodge and Torrey (1951), Lieberman and Solomon (1955), has 
emphasized product screening although process trouble shooting is 
also in view. The term adaptive control was used by Box and Jenkins 
(1962, 1963), but some earlier work by Girshick and Rubin (1952), 
Bishop (1957, 1960) and a large literature on control theory is 
relevant. Savage (1959) designed a plan specifically for trouble shoot­
ing. General reviews of the literature are given by Bowker (1956), 
Chiu and Wetherill (1973), Duncan (1974, chapter 17), Lieberman 
(1965), and Phillips (1969). 

Exercises 5.1 
l. Discuss how CUSUM charts might he used for the continuous 
sampling problems mentioned in this section. 

5.2 CSP-1 and the AOOL criterion 
It is convenient here to restate the CSP-1 sampling plan. 

OSP-1. Inspect every item until i successive items are found free 
of defects, and then inspect at a rate of one in every nth item. When 
a defective item is found, revert to 100% inspection, and continue 
until i successive items are found free of defects. 0 0 0 

Dodge required the sampling at a rate I inn to be carried out by 
stratified random selection so as to ensure an unbiased sample. In 
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practice inspectors are likely to select approximately every nth item, 
but it is wise to vary this interval a little. 

The way that the CSP-1 and similar plans operate is to vary the 
inspection rate as quality varies. Clearly, a theoretical model is 
required to give a guide on how the inspection rate varies with p, for 
various choices of n and i. 

In most theoretical treatments of CSP-1 the following three 
assumptions are made. 

Assumption (1). All defectives found during inspection are rectified 
or replaced by good items. 
Assumption (2). Inspection is perfect, i.e. mistakes in identifying 
defectives are never made. 
Assumption (3). Theoretical calculations are made on the assump­
tion that the process is producing defectives with probability p, 
and that the probability that any item is defective is independent 
of the quality of other items. 

Assumption (l) is often realistic, but if it is not, account of this can 
be taken in the theory. Assumption (2) is unrealistic and we shall 
have to discuss this later. Assumption (3) is effectively that the pro­
cess is in a steady state and provided that we realize the implications, 
it is realistic enough to proceed with some simple theory. 

In the next section we show that on these three assumptions, the 
average fraction of production inspected is 

F(p) == 1/{l + (n- l)q1} (5.1) 

where q = 1 - p. On Assumption (l), the average outgoing propor­
tion defective is therefore 

Outgoing proportion defective= p{l- {l + (nl- l)qt}} 

p(n- l)q1 

= {l + (n- l)qi}" (5.2) 

It should be stressed that this formula assumes a constant p; if p has, 
say, a cyclic variation, quite a different result will hold. 

Now (5.2) has approximately the shape shown in Figure 5.1. For 
low p, the outgoing proportion defective is low. For high p, the 
average fraction of production inspected is high, and again the out­
going proportion defective is low. For intermediate values of p, there 
is a maximum value to the average outgoing proportion defective 
for a given nand i, and this is defined as the average outgoing quality 
limit, AOQL. 
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Figure 5.1. Operation of OSP-1. 
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AOOL 

The AOQL is the maximum of (5.2), and by differentiation we 
find that this is at a value p = p 1, where 

(i + 1)p1 - 1 = (n- 1)(1 - p 1)1+1 (5.3) 

and by inserting this we find that the AOQL is 

AOQL = (n- 1)(1 -- p1)1+lji, (5.4) 

which can be regarded as a function of n and i. 
Figure 5.2 shows approximately how the AOQL is related to n 

and i. Dodge suggested that a producer be asked to specify an AOQL, 
so that this sets a relationship between n and i. The final choice of n 
and i was to be made on practical considerations such as the work 
load on inspectors, and it may be best to have ani no greater than a 
small multiple of the number of units on the production line at any 
time. 

This method of designing a CSP-1 has certainly been used a great 
deal since Dodge suggested it. However, let us reflect on how arti­
ficial is the concept of the AOQL: 

(i) The AOQL is an upper limit to the proportion defective only in 
a long-run average sense. In the short run, a sudden deterioration of 
quality could lead to a large number of defectives being passed before 
a defective was found on inspection. This should dearly be borne in 
mind when choosing n; see section 5.4. 

(ii) We have made Assumption (3), that the process is in control. 
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Figure 5.2. Relation between AOQL, n and i. 

If the process has varying quality, with changes exactly in phase 

with changes in the inspection level, the AOQL no longer applies. 
(iii) The quality, p, of the uninspected production process at 

which the AOQL is obtained may be known to occur only very rarely. 

(iv) We have made Assumption (2). If defective items are only 

recognized with a probability of, say 0·90 or 0·95, Figure 5.1 does not 

apply, and instead we have Figure 5.3. This situation is therefore 

likely to make nonsense of the whole AOQL concept. Hill (1962) has 

stressed that the AOQL concept is particularly sensitive to the 

assumption that inspection is perfect. 

Notwithstanding these criticisms, it should be emphasized that the 
CSP-1 has been successfully designed and used in the way Dodge 
suggested, although there is clearly a need for other design criteria. 

Exercises 5.2 

l. Check the derivation of (5.3) and (5.4) from (5.2). 
2*. Examine how this theory is altered when inspection is imperfect, 

and find the conditions under which there is a true maximum to the 
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Proportion defective produced 

Figure 5.3. The CSP-1 when inBpection iB not perfect. 

average outgoing quality. 

5.3 Theory of CSP-1 

111 

In this section we derive the theory of CSP-1 on the three assump­
tions stated in the previous section. 

The first step is to break up the run of inspected items at every 
defective. Dodge calls these short sequences 'terminal defect 
sequences', and the following are examples; 0 stands for a good item 
and X for a defective: 

Sequence Probability Length 

X p 1 
ox pq 2 
oox pq2 3 

oo ... ox pqi (i + 1) 

Once a defective has been observed, 100% inspection is started 
and continued until a sequence of i good items is observed. Before 
this occurs, a series of terminal defect sequences may occur of length 
less than or equal to i. The probability of a terminal defect sequence 
of length less than or equal to i is 

i-1 L pq' = 1 - q1 = P, say. (5.5) 
r=O 



112 SAMPLING INSPECTION AND QUALITY CONTROL 

The number of terminal defect sequences in a run of 100% inspection 
has a geometric distribution (1 - P)P', r = 0, 1, 2, ... ; the average 
number of such sequences is therefore 

E(l) = L r(1- P)P' = P/(1- P) = (1- q1)/q'. (5.6) 

Now the average length of a terminal defect sequence of length 
less than or equal to i is 

T = 1 ~ (r + 1) r = {1- q'(1 +pi)}. 
(1 - q') ~ pq p(1 - q') 

r=O 

(5.7) 

The average length of a run of 100% inspection is therefore 

TE(l) + i = (1 - q1)jpq'. (5.8) 

The number of periodic samples taken in between runs of 100% 
inspection has the geometric distribution pqr-1, r = 1, 2, .... The 
average number of items passed in such an interval is therefore 

n L rpq'-1 = njp. (5.9) 

The average number of items produced between the start of suc­
cessive runs of 100% inspection is therefore 

(1 - q1)jpq' + njp 

while the amount inspected in such an interval is 

(1 - q')/pq' + 1/p. 

The average fraction inspected is therefore 

F _ (1 - q')/pq' + 1/p 1 
- (1 - q')/pq' + njp 1 + (n- 1)q'' 

(5.10) 

This is the formula quoted in (5.1), from which (5.2), (5.3) and (5.4) 
follow. 

When interpreting this result, reference should be made to the 
criticisms listed at the end of the previous section. 

5.4 The AEDL criterion 
In section 5.2 we remarked that if there was a sudden deterioration 
of quality, a number of defective items could be passed by the 
CSP-1 before 100% inspection was instituted. Hillier (1964) pro­
posed another measure, the AEDL or Average Extra Defectives 
Limit, the purpose of which is to put a limit on the average number 
of defectives passed upon such a deterioration of quality. The AEDL 
criterion can be used along with the AOQL to select a particular 
CSP-1. 
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Suppose a process is producing defectives with probability p 0, and 
suddenly it changes to producing defectives with probability 
p1 > p0• Let D be the number of uninspected defectives among the 
next L items after this deterioration of quality. Then for an AOQL 
of(), the average extra number of defectives passed above the limit 
prescribed by the AOQL is 

{E(D)- OL} 
and this will be a function of p0, p1, and L. The AEDL, written DL, is 
defined as 

DL = max {E(D)- OL}. (5.11) 
p.,p,L 

For the CSP-1, Hillier shows that (5.11) achieves its maximum for 
Po= 0, p1 =I, and L = L*, where 

L* =log {(1- n) log (n ~ 1) I o} /log (n ~ 1). (5.12) 

Hillier shows that the AEDL for CSP-1 is then 

DL = (n- 1){1- ('!'!'_ n 1r*}- ()L* if L* > 0 

=0 if L* s;; 0. (5.13) 

In a particular case there may be reason to use a value of L other 
than (5.12), for example, if items are packaged in batches of a given 
size. This draws attention to the fact that the AEDL is a number of 
defectives calculated over a somewhat arbitrary length of production. 

The other criticisms of the AOQL criterion made at the end of 
section 5.2 will be found to apply also to the AEDL. In particular 
the values p 0 = 0 and p1 = 1 at which the AEDL is calculated are 
both rather unlikely values for the proportion defective. However, 
the use of the AEDL together with the AOQL would seem to be a 
better method of choosing a particular CSP-1 than the use of the 
AOQL alone, and Hillier gives a simple example. The AEDL pro­
vides a method of choosing n, by using (5.13). 

Hillier suggests that this method of choosing a CSP-1 can be im­
proved further if account is taken of the probability distribution of 
D for given values of L. It would then be possible to make the prob­
ability that D is less than a given number to be greater than a 
specified value. See Hillier (1964) for details of this method. Unfor­
tunately there is very little published information on the probability 
distribution of D; see Hillier (1961, 1964). 
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5.5 Decision-theory approach to CSP-1 

Anscom be (1958) gives a critique of the AOQL approach to choosing 
a CSP-1, and discusses an approach based on costs. He points out 
that the AOQL concept is very artificial, and would not usually cor­
respond to what a user required of a continuous sampling plan. The 
problem is basically an economic one of balancing inspection costs 
against the costs of passing defective items. The usual objection to 
an economic approach is that the cost data may be difficult to obtain. 
However, Anscom be says: 'What is important is that we realize what 
the problem really is, and solve that problem as well as we can, in­
stead of inventing a substitute problem that can be solved exactly 
but is irrelevant.' If the cost of passing defectives is known only 
roughly, then an approximate solution to the problem will be satis­
factory, provided we are solving the real problem. 

Admittedly, there are other aims in inspection besides the strict 
economic aim of limiting the amount of bad material passed, but 
this aim is likely to be the over-riding one. The approach adopted by 
Anscombe requires very little economic information, but this small 
amount is vital. 

We shall again make the three assumptions listed in section 5.2. 
Let the cost of inspection be k cost units, where the unit of costs is 
the excess cost of passing a defective item above the cost of rectifying 
it or replacing it during inspection. The cost of IOO% inspection is 
therefore k per item produced, and the cost of passing production 
without inspection is p per item produced. By this model therefore, 
it would be best to carry out IOO% inspection if k < p, and best not 
to inspect at all if k > p. In practice the proportion defective p 
varies, and a sampling plan is operated. 

If we operate a CSP-1, the cost of this plan per item produced is 
C = (cost of inspection) + (cost of passing defective items) 

= k X (fraction inspected) + p X (fraction not inspected) 

or C = Fk + (1 - F)p (5.14) 

whereF is given by (5.1). As indicated above, the best possible action 
if we knew p is 

and 
for p < k, 
for p > k, 

(F = 0 in (5.14)) 
(F = 1 in (5.14)). 

The excess cost !:l.C over the best possible action is therefore 

!:l.C = {(k - p)F 
(p- k)(1- F) 

p<k 
p >k. (5.15) 
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Anscombe now simplifies the problem by inserting an arbitrary 
rule which appears to be near optimum. Since the best possible 
action changes from no inspection to 100% inspection at p = k, it is 
reasonable to choose F = t when p = k. By inserting this rule into 
(5.1) we obtain 

(n - 1)(1 - k)i = 1, (5.16) 
which can be used to calculate i for a given n and k. If k is given, 
there remains only one parameter of the CSP-1, namely n, which we 
wish to optimize. 

The next step is to find the average value of tl.O over the process 
curve for p, assuming thfl,t p varies slowly enough for (5.2) to remain 
valid. Anscom be introduced a further approximation here, by using 
a uniform distribution for pin the range (0, 2k). (If the variation of p 
does not span the point p = k, the optimum will be either no in­
spection or 100% inspection. Furthermore, it turns out that for a 
wide range of distributions the value of E(tl.O) obtained is not very 
different from that obtained under the uniform distribution.) By 
numerical integration, Anscombe now checks that the empirical 
formula 

E(tl.O) = 0·3kj vn (5.17) 

holds very well. 
In order to be able to determine an optimum for n we must intro­

duce one further factor in the costs. Equation (5.17) will give an 
approximation to the long-run costs of a CSP-1 at a stable value of p. 
When p changes, a further cost arises, called a transition cost. This 
is the cost of the extra defectives passed after a sudden deterioration 
of quality, and before the CSP-1 changes to 100% inspection. If p 
changes suddenly from a very small value to a very large value, at a 
random point in an inspection interval, then on average slightly less 
than n/2 defectives will be passed. Anscombe showed that nj2 is a 
good approximation to the average transition cost under more 
general conditions. 

If sudden deteriorations of quality occur on average once in every 
M items produced, the average transition costs are nj2M per item 
produced. 

The total cost of operating the CSP-1 is therefore approximately 

0·3k + ..!!:.._ vn 2M (5.18) 

and by differentiating we find that the optimum choice of n is 

n = (0·3kM) 312• (5.19) 
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In obtaining this result we have used the rule F = i at p = k, the 
uniform distribution as an approximation to the process curve, the 
empirical approximation (5.17), and the approximations to the 
transition costs. Further investigation shows that none of these 
approximations have much effect on the solution. The important 
quantities are M, the average interval between sudden deteriorations 
of quality, and 

k _ cost of inspecting an item 
- excess cost of passing a defective· 

It is interesting that in the methods suggested earlier in this chap­
ter for choosing a CSP-1, neither k norM were mentioned, and these 
are the quantities upon which an optimum solution strongly depends. 

Exercises 5.5 
l. Examine numerically the relationship (5.16) fork = 0·05. 
2. Show that an approximation to (5.16) is 

ki ~loge n. 
3*. Examine the effect on this theory of inspection being imperfect. 

5.6 Modifications to CSP-1 
Over the years various modifications have been suggested to CSP-1. 
Dodge and Torrey (1951) suggested the following two plans: 

OSP-2. Proceed as in CSP-l except that, once partial inspection 
is instituted, 100% inspection is only introduced when two defectives 
occur spaced less thank items apart. 0 0 0 

This plan is less likely to revert to 100% inspection because of 
isolated defectives than is the CSP-1, and the number of abrupt 
changes of inspection level will also be reduced. However, there is a 
higher risk of accepting short runs of poor quality, and so CSP-3 is 
suggested. 

OSP-3. Proceed as in CSP-2 except that when a defective is found, 
the next four items are inspected. 0 0 0 

The theory of these two plans follows a similar pattern to the 
theory given in section 5.3 for CSP-1, although in each case it is more 
complicated. 

Another line of development attempts to devise plans which 
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guarantee an AOQL without assuming statistical control of the 
process. The starting-point of these investigations is a. paper by 
Lieberman (1953), who examined the AOQL of the CSP-1 without 
the assumption of control. It is not difficult to see that this is attained 
by a process which produces good items throughout periods of 100% 
inspection, and defectives throughout periods of partial inspection. 
Periods of 100% inspection are therefore exactly i items long, and 
the average number of items produced between the start of such 
periods is (n + i). One defective item will be inspected, and conse­
quently replaced by a good item. The average fraction defective 
remainingafterinspectionistherefore (n- 1)/(n + i), which can be 
considerably greater than (5.2). For a formal proof of this formula, 
see Derman et al. (1959). When interpreting this result, however, it is 
important to take note of the pathological nature of the production 
process model which produces it. 

Derman et al. (1959) present two variants ofCSP-1 which have im­
proved properties when control is not assumed. 

CSP-4. Proceed as in CSP-1 except that partial inspection is car­
ried out by separating production into segments of size n, and taking 
one item at random from each segment. When a defective is found, 
the remaining (n- 1) items in the segment are eliminated from the 
production process, and 100% inspected started with the first item 
of the following segment. 0 0 0 

The idea of CSP -4 is that there is a reluctance to pass a segment of 
production in which a defective is found. Items eliminated from the 
production process might be sorted and the good items used as a 
stock for replacing defectives found in inspection. A more realistic 
plan would be to allow the good items from this 'eliminated' segment 
to be passed, and so we have CSP-5. 

CSP-5. Proceed as in CSP-4 except that all items in a segment in 
which a defective is found are sorted. 0 0 0 

The modifications given in CSP-4 and CSP-5 result in a more com­
plicated set-up when control is not assumed. The production process 
model giving the AOQL is no longer the trivial one described earlier 
for CSP-1. The theory is not simple, and we refer readers to the 
source paper. In practice, Derman et al. (1959) suggest that CSP-4 
and CSP-5 plans should be chosen using the CSP-1 formula derived 
under the assumption of control. 
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Another important type of plan is the multilevel plan, discussed by 
Lieberman and Solomon (1954), and we shall designate this MLP-1. 

MLP-1. Proceed as in CSP-1 except as follows. If in partial in­
spection i successive items are found free of defects, reduce the in­
spection rate from 1/n to 1/n2• In this way, severalinspection levels 
can be used. When a defective is found, revert to 100% inspection. 

DOD 

Usually MLP-1 will be used with between two and six levels. 
Lieberman and Solomon (1954) obtained the AOQL for two levels 
and for an infinite number of levels, and gave a method of inter­
polation for other levels. Clearly, a whole range of different types of 
multilevel plan is possible, but no systematic study of the possi­
bilities seems to have been undertaken. 

In nearly all of the work an AOQL approach is adopted, and the 
AEDL criterion has only been applied to CSP -1. Anscom be's decision­
theory approach, described in section 5.5, has not been extended to 
cover other plans. That is, with very few exceptions, Dodge's 
original formulation of the continuous inspection problem has not 
been questioned. 

Read and Beattie (1961) give a plan of the same general type as 
CSP-1, but modified to fit their practical conditions. The inspection 
rate on line is held constant, and the product is artificially hatched. 
Depending on the results of inspection, some batches are set aside 
for 100% inspection later. This plan forms a link between the Dodge 
type continuous inspection plans, and batch inspection plans dis­
cussed earlier. 

A collection of continuous sampling plans, indexed for use as a 
United States Army military standard, is available as MIL-STD-
1235 (ORD). This standard is currently being revised, and for a 
description and discussion of the revision principles see Banzhaf 
and Bruger (1970), Duncan (1974), and Grant and Leavenworth 
(1972). 

Exercises 5.6 

1. Make the three assumptions listed in section 5.2, and find the 
formulae equivalent to (5.1) and (5.2) for CSP-2 and CSP-3, when 
k = i. See Bowker (1956). 
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5.7 Process trouble shooting 
119 

So far we have been concentrating mostly on the product screening 
aspect of continuous inspection. Girshick and Rubin (1952), in an 
important paper, gave a Bayes approach to process trouble shooting, 
and we briefly describe their theory below. 

The production process is assumed to be either in a good state 
(state 1), or a bad state (state 2). After every item produced there is a 
probability g that the process will move from states 1 to 2, but once 
in state 2, the process remains in that state until it is brought to 
repair. Girshick and Rubin derive an optimum rule for deciding 
when to put the process in repair. If the process is put into repair 
when it is in state 1, it is said to be.in state 3, and if it is put into 
repair from state 2, it is said to be in state 4. When the process is put 
into states 3 or 4, it remains there for ni time units, j = 3, 4, where 
one time unit is the time for one item to be produced. Two cases are 
considered : 

(i) 100% inspection is operated and the problem is merely to find 
the optimum rule for deciding when to put the process in 
repair. 

(ii) Sampling inspection can be used, so that the optimum rule 
must also specify when items are to be inspected. 

These two cases are discussed separately below. 
The quality of each item produced is represented by a variable x, 

and the probability density function of xis taken to be /J(x), j = 1, 2, 
for states 1 or 2 respectively. The value of an item of quality x is 
V(x), and the cost per unit time of the repair states is c;,j = 3, 4. The 
model is now precisely defined, and we have to find the decision 
rules which maximize income per unit time. This model is sufficiently 
general and realistic to be used as a means of comparing various con­
tinuous inspection procedures, but no such comparisons have yet 
been made. 

When the production process is in use, the vital question is to 
decide whether it is in state 1 or state 2. Clearly, the optimum 
decision rule will depend on the posterior probability that the next 
item will be produced in state l. For case (i) above ::tnd when the kth 
item has jl:lst been inspected this probability is clearly 

(1 - g)qk-dl(xk) 
qk = qk-tfl(xk) + (l - qk-l)f2(xk) (5·20) 

where q0 = l - g. (The denominator is the probability that xk is 
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observed, and the numerator is the probability that xk is produced in 
state 1, and that the process remains in state 1 for the (k + l)th 
item.) 

Girshick and Rubin showed that the optimum rule is to put the 
process in repair whenever qk ::;; q*. This is equivalent to putting the 
process in repair whenever zk 2 a*, where 

Zk = Yk(l + Zk-1), Z0 = 0, 
and y,, = j 2(xk)/{ (1 - g)fi(xk) }. 

(5.21) 

(5.22) 

The parameter a* has to be chosen to maximize income per unit 
time, and this involves solving an integral equation. 

When sampling inspection can be used, the argument and result 
are very similar. The optimum rule is again defined in terms of 
Zk, where Yk is given by (5.21) if the kth item is inspected and 

!lk = (1 - g)-l (5.23) 

if the kth item is not im;pected. Girshick and Rubin show that the 
optimum rule is to inspect items whenever 

b*::;; zk <a*, 
to put the process in repair when zk 2 a*' and to pass production 
without inspection whenever Zk < b*. Again the constants b* and 
a* have to be chosen to maximize income per unit time, and this 
involves solving integral equations. 

In both cases the integral equations are very difficult to solve, and 
detailed calculations do not appear to have been carried out. 

Exercises 5.7 
l. Find qk in terms of Zk and g. 
2*. In the above theory, the quality x of each item is assumed to be 
observed exactly. What happens if the quality of each item is 
observed with error? 

5.8 Adaptive control 
There is now a very large literature on control theory, and this 
volume would be incomplete without a brief introduction to it. 
Those interested in pursuing the topic further should read the general 
accounts by Barnard (1959), Lieberman (1965), and White (1965), 
and the references contained in these papers. The following account is 
largely based on Box and Jenkins (1962). 

Suppose a process is Bampled at equal time intervals, and that 



CONTINUOUS SAMPLING PLANS 121 

provided no adjustments are made to the process the observation at 
the jth sample point is 

Zj = (}; + 'Uj, 

where u; are the errors which are normally and independently dis­
tributed with a variance a~, and 0; follows some stochastic process. 

Adjustments can be made to the process at each sample point, and 
the aim of these adjustments is to keep ();at a target value, which we 
may without loss of generality take to be zero. If the total adjust­
ment applied at thejth sample point is X;, the observation made is 
the apparent deviation from the target; value, which is 

e; = z;- X;=();- X;+ u; = E; + u;, 
where E; is the actual deviation from the target value. 

Suppose adjustments have been made on some basis or other, and 
that we have data X 1, X 2, X 3, .•• , X.i, and e1, e2, e3 , ••• , e;, then 
our problem is to determine the increment X;+ 1 to apply to the ad­
justment at the (j + 1 )th sample point, so that the total adjustment 
is then 

X;+r =X;+ :r;+1• 

We are a8suming, of course, that adjustments can be applied at 
every sample point without extra cost. 

Let the loss caused by an actual deviation from target of E; 

be proportional to €~, then we must determine xi+1 so that 
E(();+ 1 - Xr1-1) 2 is minimized. If we take X;+ 1 to be a linear function 
of e;, e;_ 1, ... , this means that we must determine X;+ 1, 

00 

~ ~ "\-< 
X;+I = ();+ 1 -(); = L.~ Wre;-r (5.24) 

r=O 

where the wr's are chosen so that i)i+l is the minimum mean square 
error estimate of ();+ 1 • In fact the central problem as stated here is 
seen to be equivalent to the problem of predicting the coming value 
of 0;+1• The problem can therefore be restated as the problem of 
determining weights f-lr so that 

ca 

0;+1 = L f-lrZ;-r (5.25) 
r=O 

is the minimum mean square error predictor of ();+ 1• (Again, a linear 
function is assumed for simplicity.) This implies, of course, a relation­
ship between the wr's and the p,'s. 

So far we have said nothing about the stochaBtic process to be 
assumed for 0;, and it would be unrealistic to as:mme that it was 



122 SAMPLING INSPECTION AND QUALITY CONTROL 

stationary. Suppose that 01 can be separated into two components, 

01 = m1 + rf>1, 

where m1 is a sequence of known means, and where r/>1 is a first-order 
autoregressive process, 

where the 'Y); are independently and normally distributed with a 
variance a~. In a practical case the m1 would not be known, but we 
first obtain the optimum weights assuming them to be known. 

A further simplification is introduced by assuming the weights flr 

to be zero for r ;;:: h, for some specified h. With these assumptions the 
covariance matrix of z; = (zl;' Z;-1, ... , Z;-n+1) is 

p2a~ paa~ 

pa~ +a~ p2a~ 
... ) ... 

where a~ = a~/(1 - p2). 
Box and Jenkins (1962) now show that the weights fli which give 

the minimum mean square error predictor are 
!L = T-1p (5.26) 

where !J.1 = (fl0, fl1, ... , fl!t- 1) and p' = (p, p2, ... , ph), and where 
we use the estimate 

" 
oi+l = mi+l + L flr(Z;-r- m;_,.). (5.27) 

r=O 

Now if them; are not known, we shall have to use the estimate 
(5.25), and there will be a bias. However, if the m1 follows a poly­
nomial of degree k, constraints can be imposed on the weights flr so 
that the bias is zero. The optimum weights can now be found subject 
to these constraints, but the result is rather complicated to state, and 
we refer the reader to Box and Jenkins (1962). The authors evaluate 
the optimum constrained predictors for some simple cases, and show 
that they are such that a good approximation to the optimum change 
X;+1 is 

co 

xi+l = Y-li}.e; + YoeJ + Yl L e;-r, (5.28) 
r=O 

or a simple generalization of it. Box and Jenkins then examine the 
stochastic process for which an adjustment of the type ( 5.28) would 
be optimum, and they consider methods of estimating the para­
meters of this process from da,ta. All this theory therefore leads to 
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the following empirical approach; a process model is fitted to past 
data, so determining a set of parameters y_ 1, y0 , y1, ... , and then an 
adjustment of the type ( 5.28) is used, inserting the fitted parameters. 

The discussion in Box and Jenkin!> (1962) is more general than the 
discussion given above, but the authors state that some of the more 
general results are unlikely to be used because of their complexity. In 
a subsequent paper, Box and Jenkins (1963) again consider the above 
problem, but with the introduction of a cost for being off target and 
a cost for making a change; the optimum plan then involves making 
adjustments to the process less frequently. 

Further developments would be of interest. ]for example, it may 
be desirable to vary the inspection rate depending upon the results. 
Another point which does not seem to be adequately cleared up is 
the relationship of the methods suggested in this section to adaptive 
control by CUSUM methods, and some remarks by Barnard in the 
discussion of Box and Jenkins (1962) relate to this. Barnard suggests 
that CUSUM methods may be preferred because of simplicity in 
cases where computers are not available to do the calculations, but 
that in certain circumstances, CUSUM methods may be slightly 
better anyway. 

5.9 Use of CUSUM techniques 
A general question is opened up by the closing remarks of the last 
section, relating to the possibility of basing continuous sampling 
plans on CUSUM techniques. One such plan is given by Beattie 
(1968) in an important paper dealing with patrol inspection, when an 
inspector is asked to cover a large area of a factory taking small 
samples. 

One plan proposed by Beattie (1962, 1968) is as follows. The 
inspector makes periodic inspections and on each occasion he selects 
n items, finding di defectives, i = l, 2, .... A CUSUM is now 
plotted for~ (di - k), where k is some reference value, as shown in 
Figure 5.4. The stream of product is accepted while plotting is on 
the lower chart. When the plot on the lower chart reaches the 
decision interval, the product is rejected, and plotting is started on 
the upper chart. Plotting on the upper chart continues until the 
decision interval is reached, when the stream of product is again 
accepted, and plotting on the lower chart restarted. 

The rejected product is separated into lots, and a single sample 
plan applied to each lot. The plan therefore operates in rather a 
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similar way to the CSP-l. In general only periodic samples of size n 
are taken, but periods of acceptance sampling of lots are required, 
when quality deteriorates. 

(Product -t 
+-Product accepted--•t+---~-~ubJected to-- -Product accepted~ 

} 
further mspect!on) 

Values of 
d _ k -1 0 1 I -1 0 2 1 3 -1 1 -2 -1 -1 1 -1 

I 

h 

0 

' 
' 
' ------------~-------

' ' ' ' 

---- _______ , _____ _ 

------o------o-----

5 10 

Observation number 

' 

' ' ' ' +-------o------
: 
' 

15 

Figure 5.4. A two-stage semi-continttous plan. (A combination of 0 US U M 
charts.) 

Clearly, when acceptance sampling is being operated, a double or 
sequential sampling plan can be used instead of a single sampling 
plan. 

For theoretical purposes let us suppose that production is arti­
ficially separated into lots, and that m such lots pass in between in­
spection periods by the patrol inspector. In calculating ARL's, we 
shall use this lot size as a unit. 

The CUSUM chart just described is slightly different from the two­
sided CUSUM chart described in section 4.2, in that only one chart 
is used at a time. Let z be the score on the lower chart and L(z, p) be 
the ARL for a starting score of z, where p is the proportion defective. 
~hen by following the diserete analogue of (4.8) we have 

k-z h-1 

L(z, p) = 1 + L(O, p) 2J(x) + 2 L(x)f (y+k-z) (5.29) 
<1:=0 X=l 

where J(x) = "0.,p"'(l - p)"-"' 
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which is the probability that x defectives are found in the first 
sample of size n. Equation (5.29) can be solved to obtain L(O, p). 
Similarly we can obtain the ARL L'(O, p) of the upper chart. The 
probability P, that lot inspection is not used, is then seen to be 

P1(p) = L(O, p)j{L(O, p) + L'(O, p) }. (5.30) 

If the lot inspection plan leads to acceptance with a probability 
P 2(p), the total probability of acceptance is 

Pa(P) = Pt(P) + {1- .Pt(P)}.P2(p). (5.31) 

If the sample size for the lot inspection plan is n', the average 
sample number per lot inspected is 

ASN = njm + n'(l - P1). (5.32) 

Expressions (5.31) and (5.32) are functions of n, n', h, h', k, p, and 
the acceptance number for the lot inspection plan. In choosing a 
particular plan Beattie suggests using OC-curve considerations, to­
gether with consideration of the ASN a1; the expected quality level. 
However, there are clearly other schemes for choosing a particular 
plan, and this aspect does not appear to have been thoroughly in­
vestigated. 

For further work on this type of use of CUSUM charts see Beattie 
(1968), Prairie and Zimmer (1970), and Rai (1971); the last two of 
these references relate to inspection by variables. 



Papers and books for further 
reading 

General reference 
Duncan (1974). Includes numerical examples, exercises, and sampling 

tables. 

Chapter 2 Acceptance sampling 
Practical background: Hill (1962). Papers by Tippett and Hamaker in 

Applied Statistics, 8, 19156. Chiu and Wetherill (1975). 
Serial sampling schemes: Cox (1960). 
Double sampling: Hamaker and Van Strik (1955). Wetherill and 

Campling (1966). 
Multiple sampling plans: Wilson and Burgess (1971). 
Theoretical papers: Barnard (1954). Guenther (1971). Hald (1960). 

Horsnell (1957). Page (1954). 
Review paper: Wetherill and Chiu (1975). 
Inspection by variables: Fertig and Mann (1974). Lieberman and 

Resnikoff (1955). Owen (1964, 1967, 1968, 1969). 

Chapter 3 . Control charts 
Practical background: Grant and Leavenworth (1972). 
Specifications for variables: Hill (1956). 
Theoretical: Duncan (1956). Page (1955). Schmidt and Taylor (1973). 

Also see King (1952). 

Chapter 4 Cumulative sum charts 
Simple exposition: Kemp (1962). 
Practical background: Ewan (1963). Traux (1961). Woodward and 

Goldsmith (1964). 
Deviations from assumptions: Bissell (1969). 
Comparison of charts: Ewan (1963). Roberts (1966). 
Derivation of properties: Brook and Evans (1972). Kemp (1971). 

DeBruyn (1968). 
Theoretical papers: Barnard (1959). Taylor (1968). 

Chapter 5 Continuous sampling plans 
See the references at the end of section 5.1, the beginning of section 5.8, 

and the end of section 5.9. 
General description: Dodge (1970). Grant and Leavenworth (1972). 
Multilevel continuous plans: Derman et al. (1957). Lieberman and Solo­

mon (1955). Sackrowit,z (1972). 
Economic viewpoint: Chiu and Wetherill (1973). Kao (1972). 



Appendix I. Theoretical 
models for industrial 
processes 

Consider an industrial process in which a sequence of items is pro­
duced, and suppose that a quality measurement is made on the items. 
Let the measurements be denoted xl, x2, ... ) then in many cases 
the distribution of X will be approximately normal but with a mean 
fl(t) which tends to drift or change with time. 

The Dodge model for an industrial process was discussed in Chap­
ter 3, and this assumes that fl(t) is constant until changed by some 
assignable cause. We remarked in Chapter 3 that this model is rather 
unrealistic, and in many processes the fl(t) tends to wander around a 
central stationary value, as in Figure 3.6. A more realistic mathe­
matical model is to put 

Yt = fl(t) - (} 
and let Yt be a first-order autoregressive process, 

Yt = AYt- 1 + Zt, t =' l, 2, 3, ... , 
where Zt is a random error term and A is a constant less than unity. 
This process is such that the current value Y 1 has two components, 
one arising from the current value of the process at the previous time 
point (t- l), and the other being a random error term. Let 
E(Zt) = 0, V(Zt) = a 2, and let the Zt's be independent. 

If this model were simulated, we would see that for A < 1, the 
marginal distribution Yt tends to settle down to a stable form (nor­
mally distributed) with E(Yt) = 0, V(Yt) = a 2/(l- A2). Therefore 
this model for fl(t), t = I, 2, 3, ... , leads to fl(t) having a normal 
distribution with E{ft(t)} = (), V{ft(l)} =' a 2 /(l -· A2 ). 

The actual process for fl(t) would look something like Figure 3.6, 
and measurements of quality of individual items would be distri­
buted about this mean with some other variance, say w 2 • 

It is easy to check that in this model, the correlat,ion between, say, 
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p.(t) and p.(t + n) is An. Again this is realistic in terms of an actual 
process - the quality of items in a sequence tends to be correlated. 

Barnard (1959) put forward a different model for an industrial 
process. He suggested that ft(t) be regarded as constant until it is dis­
turbed by some event, and that the time interval between events has 
an exponential distribution with p.d.f. ote-""'. At these events, the 
mean of the process is sampled from a normal distribution, with say, 
mean () and variance a2• This mode) leads to a series of abrupt and 
irregular changes in ft(t). If desired, this kind of model could be 
superimposed on the autoregressive model, to simulate large abrupt 
changes caused by assignable causes of variation. 

It is very difficult to say much in general about theoretical models 
for processes, as many different types of stochastic process are no 
doubt encountered in practice. The one point which does stand out 
is that as processes become more complicated, the simple Dodge 
model becomes more and more inadequate. 



Appendix II. Statistical tables 

Table 1 Cumulative di8tribution junction of the stanclard normal distribution 
(a) For x in 0·1 intervals 

X 4i (x) X 4i (x) X 4i (x) 

0·0 0·5000 1·3 0·9032 2·6 0·9953 
0·1 0·5398 1·4 0·9192 2·7 0·9965 
0·2 0·5793 1·5 0·9332 2·8 0·9974 
0·3 0·6179 1·6 0·9452 2·9 0·9981 
0·4 0·6554 1·7 0·9554 3·0 0·9987 
0·5 0·6915 1·8 0·9641 3·1 0·9990 
0·6 0·7257 1·9 0·9713 3·2 0·9993 
0·7 0·7580 2·0 0·9772 3·3 0·9995 
0·8 0·7881 2·1 0·9821 3·4 0·99966 
0·9 0·8159 2·2 0·9861 3·5 0·99977 
1·0 0·8413 2·3 0·9893 3·6 0·99984 
J.l 0·8643 2·4 0·9918 3·7 0·99989 
1·2 0·8849 2·5 0·9938 3·8 0·99993 
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(b) For x in 0·01 intervals 

X g; (x) X 4> (x) X 4> (x) 

1·60 0·9452 1·87 0·9693 2·14 2·9838 
1·61 0·9463 1·88 0·9699 2:15 0·9842 
1·62 0·9474 1·89 0·9706 2·16 0·9846 
1·63 0·9484 1·90 0·9713 2·17 0·9850 
1·64 0·9495 1·91 0·9719 2·18 0·9854 
1·65 0·9505 1·92 0·9726 2·19 0·9857 
1·66 0·9515 1·93 0·9732 2·20 0·9861 
1·67 0·9525 1·94 0·9738 2·21 0·9865 
1·68 0·9535 1·95 0·9744 2·22 0·9868 
1·69 0·9545 1·96 0·9750 2·23 0·9871 
1·70 0·9554 1-97 0·9756 2·24 0·9875 
1·71 0·9564 1·98 0·9761 2·25 0·9878 
1·72 0·9573 1·99 0·9767 2·26 0·9881 
1·73 0·9582 2·00 0·9772 2·27 0·9884 
1·74 0·9591 2·01 0·9778 2·28 0·9887 
1·75 0·9599 2·02 0·9783 2·29 0·9890 
1·76 0·9608 2·03 0·9788 2·30 0·9893 
1·77 0·9616 2·04 0·9793 2·31 0·9896 
1·78 0·9625 2·05 0·9798 2·32 0·9898 
1·79 0·9633 2·06 0·9803 2·33 0·9901 
1·80 0·9641 2·07 0·9808 2·34 0·9904 
1·81 0·9649 2·08 0·9812 2·35 0·9906 
1·82 0·9656 2·09 0·9817 2·36 0·9909 
1-83 0·9664 2·10 0·9821 2·37 0·9911 
1·84 0·9671 .2-11 0·9826 2·38 0·9913 
1-85 0·9678 2·12 0·9830 2·39 0·9916 
1·86 0·9686 2·13 0·9834 2·40 0·9918 

Table 2 Percentiles of the stantlarcl normal distribution. 

p X p X p X 

20 0·8416 5 1-6449 2 2·0537 
15 1·0364 4 1·7507 1 2·3263 
10 1·2816 3 1-8808 0·5 2·5758 

6 1·5548 2·5 1·9600 0·1 3·0902 
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Table 4 Conversion of range to standard deviation 

n an n an n an n an 

2 0·8862 6 0·3946 10 0·3249 14 0·2935 
3 0·5908 7 0·3698 11 0·3152 15 0·2880 
4 0·4857 8 0·3512 12 0·3069 16 0·2831 
5 0·4299 9 0·3367 13 0·2998 17 0·2787 

An estimate of 11 of a normal population can be obtained by multiplying 
the range of a sample of size n, or the average range of a set of samples 
of the same size n, by an. 

[Reproduced by permission from Biometrika Tables for Statiticians. 
Pearson and Hartley (Cambridge University Press.)] 

Table 5 Percentage points of the distribution of the relative range (range/a) 

Sample 
s~ze 0·1 1·0 2·5 5·0 90 95·0 97·5 99·0 99·9 

2 0·00 0·02 0·04 0·09 2·33 2·77 3·17 3·64 4·65 
3 0·06 0·19 0·30 0·43 2·90 3·31 3·68 4·12 5·06 
4 0·20 0·43 0·59 0·76 3·24 3·63 3·98 4·40 5·31 
5 0·37 0·66 0·85 1·03 3·48 3·86 4·20 4·60 5·48 
6 0·54 0·87 1·06 1·25 3·66 4·03 4·36 4·76 5·62 
7 0·69 1·05 1·25 1·44 3·81 4·17 4·49 4·88 5·73 
8 0·83 1·20 1·41 1·60 3·93 4·29 4·61 4·99 5·82 
9 0·96 1·34 1·55 1·74 4·04 4·39 4·70 5·08 5·90 

10 1·08 1·47 1·67 1·86 4·13 4·47 4·79 5·16 5·97 
ll 1·20 1·58 1·78 1·97 4·21 4·55 4·86 5·23 6·04 
12 1·30 1·68 1·88 2·07 4·28 4·62 4·92 5·29 6·09 
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Table 7 Factors for construction of x-charts; limits at 5% and 0·2% points 

From standard deviation From average range 

Limit Limit 
Sample Warning Action Warning Action 
size 

2 1·3859 2·1851 1·2282 1·9364 
3 1·1316 1·7841 0·6686 1·0541 
4 0·9800 1·5451 0·4760 0·7505 
5 0·8765 1·3820 0·3768 0·5941 
6 0·8002 1·2616 0·3157 0·4978 
7 0·7408 1·1680 0·2738 0·4319 
8 0·6930 1·0926 0·2434 0·3837 
9 0·6533 1-0300 0·2200 0·3468 

10 0·6198 0·9772 0·2014 0·3175 
11 0·5910 0·9317 0·1803 0·2937 
12 0·5658 0·8921 0·17:16 0·2738 

Table 8 Factors for construction of x-charts; limits at ± 2 and ± 3 times 
standard error 

From standard deviation From average range 

Limit Limit 
Sample Warning Action Warning Action 
size 

2 1·4142 2·1213 1·2533 1·8799 
3 1·154 7 1·7321 0·6822 1·0233 
4 1·0000 1·5000 0·4857 0·7286 
5 0·8944 1·3416 0·384.5 0·5768 
6 0·8165 1·2247 0·3222 0·4833 
7 0·7559 1-1339 0·2795 0·4193 
8 0·7071 1·0607 0·248:! 0·3725 
9 0·6667 1·0000 0·2241i 0·3367 

10 0·6325 0·9487 0·2051) 0·3082 
11 0·6030 0·9045 0·1901. 0·2851 
12 0·5774 0·8660 0·1772 0·2658 
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[Reprinted by permission from Kemp, K. W., Applied Statistics (1962), 
9, 23.] 
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Break-even quality, 26-9,31,33,42 

Chain sampling plan, 32 
Charts (see also Control charts) 

x-chart, 47 
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moving average chart, 70 
geometric moving average, 71 
moving range, 71 
Cusum chart, 7 4 

Components of variance, 66 
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Control charts 
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modifications to, 116-18 

Cumulative sum charts, 73-80 
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Destructive testing, 3 
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Point of control, 15 
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Quality control, 2, 44-52 
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