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Preface

This book is an update of the original book, The Basics of Item Response Theory, by
the first author. The original book by Frank B. Baker was based on the course given
during his tenure at the University of Wisconsin–Madison. It appeared in 1985.
The second edition of the original book by Frank B. Baker appeared in 2001 with
a publisher’s note by Lawrence A. Rudner. About 15 years have passed since the
last revision. So much has happened in the fields of educational measurement and
psychometrics as well as in the statistical computing technology. In the meantime,
we felt that the usefulness of the book would be increased by some further changes.
The main alterations are due to the use of the computing package R for the
illustration purpose and especially for the computer sessions. The treatment of the
original topics over eight chapters has not been changed.

The original object of the book was to make the book to be a tutorial for item
response theory suited to those who possess only a limited knowledge of educational
measurement and psychometrics. We have never lost sight of such an object. The
amendments in this book are not due to any alteration in the original object but
they are necessitated by the development of the statistical computing technology. In
particular, the book now aims at covering both the basics of item response theory
and the use of R for preparing graphical presentation in the item response theory
related writings.

We will be indebted to any reader who calls our attention to errors or obscurities.

Madison, WI, USA Frank B. Baker
Athens, GA, USA Seock-Ho Kim
January 2017
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Introduction

When the original book was first published in 1985, the fields of educational
measurement and psychometrics were in a transitional period. The majority of
practice was based upon the classical test theory developed during the 1920s.
However, a new test theory had been developing over the past 40 years that was
conceptually more powerful than classical test theory. Based upon items rather than
test scores, the new approach was known as item response theory. While the basic
concepts of item response theory are straightforward, the underlying mathematics
is somewhat advanced compared to that of classical test theory. As a result, it is
difficult to examine some of these concepts without performing a large number of
calculations to obtain usable information. The original book was designed to provide
the reader access to the basic concepts of item response theory freed of the tedious
underlying calculations through an Apple II computer program. The second edition
of the original published in 2001 used a version of computer program written in
Visual Basic 5.0 that could be obtained at http://ericae.net/irt. Readers accustomed
to sophisticated statistical and graphics packages might have found it utilitarian,
but nevertheless helpful in understanding various facets of the theory. This book
now uses R that is a freely available programming language for applied statistics
and data visualization. The file folder accompanying the book contains a set of R
functions that implement various facets of the theory. These R functions allow the
reader to explore the theory at the conceptual level.

The book is organized in a building block fashion. It proceeds from the simple to
the complex with each new topic building on the preceding topics. Within each
of the eight chapters, a basic concept is presented, the corresponding computer
session is explained, and a set of exploratory exercises are defined. Readers are then
strongly encouraged to use the computer session to explore the concept through a
series of exercises. A final section of each chapter, called “Things to Notice,” lists
some of the characteristics of the concept that you should have noticed and some
of the conclusions that you should have reached. If you do not understand the logic
underlying something in this section, you can return to the computer session and try
new variations and explorations until clarity is achieved.

xiii
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xiv Introduction

When finished with the book and the computer sessions, the reader should have
a good working knowledge of the fundamentals of item response theory. This book
emphasizes the basics, minimizes the amount of mathematics, and does not pursue
technical details that are of interest only to the specialist. In some sense, you will
be shown only “what you need to know” rather than all the glorious details of the
theory. Upon completion of this book, the reader should be able to interpret test
results that have been analyzed under item response theory by means of programs
such as WINSTEPS (Linacre 2015), BILOG-MG (Zimowski et al. 2002), and
PCLOGIST (Wingersky et al. 1999). Note that WINSTEPS is a current descendant
of BICAL (Wright and Mead 1976), BILOG-MG is the extended version of BILOG
(Mislevy and Bock 1984), and PCLOGIST is the personal computer version of
LOGIST (Wingersky et al. 1982). In order to employ the theory in a practical setting,
the reader should study more advanced books on the applications of the theory such
as Baker and Kim (2004), de Ayala (2009), Embretson and Reise (2000), Nering and
Ostini (2010), Reckase (2009), Thissen and Wainer (2001), and van der Linden and
Glas (2000) as well as some earlier books including Hambleton and Swaminathan
(1984), Hambleton et al. (1991), Wright and Stone (1979), and Hulin et al. (1983).

Getting Started

R is a software package for data analysis and graphical representation. R provides
the language, functions, and the computing environment in one convenient package.
The main uniform resource locator (URL; i.e., webpage) of R is

http://www.r-project.org

You can download R by clicking one of the Comprehensive R Archive Network
(CRAN) mirror sites in

http://cran.r-project.org/mirrors.html

and following the instruction shown on your computer screen for your own operat-
ing system of Linux, Macintosh, or Windows. The base subdirectory contains the
binaries for R. Appendix A contains a brief introductory summary of R.

After installing R on your computer, you can perform all activities shown in
the respective chapters and the computer sessions by typing in the R command
lines exactly shown in the book. Alternatively, for larger R command lines that
may contain R functions in the book, you can obtain and use a zipped file folder
(BIRTRFunctions.zip) that contains R scripts from the publisher’s web site.

http://www.r-project.org
http://cran.r-project.org/mirrors.html


Chapter 1
The Item Characteristic Curve

1.1 Introduction

In many educational and psychological measurement situations there is an under-
lying variable of interest. This variable is often something that is intuitively
understood, such as “intelligence.” People can be described as being bright or
average and the listener has some idea as to what the speaker is conveying about
the object of the discussion. Similarly, one can talk about scholastic ability and
its attributes such as gets good grades, learns new material easily, relates various
sources of information, and uses study time effectively. In academic areas, one can
use descriptive terms such as reading ability and arithmetic ability. Each of these
is what psychometricians refer to as an unobservable or latent trait. While such
a variable is easily described and knowledgeable persons can list its attributes, it
cannot be measured directly as can height or weight, since the variable is a concept
rather than a physical dimension. A primary goal of educational and psychological
measurement is the determination of how much of such a latent trait a person
possesses. Since most of the research has dealt with variables such as scholastic,
reading, mathematical, and arithmetic abilities, the generic term “ability” is used
within item response theory to refer to such latent traits.

If one is going to measure how much of a latent trait a person has, it is necessary
to have a scale of measurement, that is, a ruler having a given metric. For a number
of technical reasons, defining the scale of measurement, the numbers on the scale,
and the amount of the trait that the numbers represent is a very difficult task. For the
purposes of the first six chapters, this problem shall be solved by simply defining
an arbitrary underlying ability scale. It will be assumed that, whatever the ability,
it can be measured on a scale having a midpoint of zero, a unit of measurement
of one, and a range from negative infinity to positive infinity. Since there is a unit
of measurement and an arbitrary zero point, such a scale is referred to as existing
at an interval level of measurement. The underlying idea here is that, if one could
physically ascertain the ability of a person, this ruler would be used to tell how much

© Springer International Publishing AG 2017
F.B. Baker, S.-H. Kim, The Basics of Item Response Theory Using R,
Statistics for Social and Behavioral Sciences, DOI 10.1007/978-3-319-54205-8_1
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2 1 The Item Characteristic Curve

ability a given person has, and the ability of several persons could be compared.
While the theoretical range of ability is from negative infinity to positive infinity,
practical considerations usually limit the range of values from, say, �3 to C3.
Consequently, the discussions in the text and the computer sessions will only deal
with ability values within this range. However, you should be aware that values
beyond this range are possible.

The usual approach taken to measure an ability is to develop a test consisting
of a number of items (i.e., questions). Each of these items measures some facet of
the particular ability of interest. From a purely technical point of view such items
should be free response items where the examinee can write any response that seems
appropriate. The person scoring the test then must decide whether the response
is correct or not. When the item response is determined to be correct, the examinee
receives a score of one, an incorrect answer receives a score of zero, that is, the item
is dichotomously scored. Under classical test theory, the examinee’s raw test score
would be the sum of the scores received on the items in the test. Under item response
theory, the primary interest is in whether an examinee got each individual item
correct or not rather than in the raw test score. This is because the basic concepts of
item response theory rest upon the individual items of a test rather than upon some
aggregate of the item responses such as a test score.

From a practical point of view, free response items are difficult to use in a test.
In particular, they are difficult to score in a reliable manner. As a result, most tests
used under item response theory consist of multiple-choice items. These are scored
dichotomously with the correct answer receiving a score of one and each of the
distractors yielding a score of zero. Items scored dichotomously are often referred
to as binary items.

1.2 The Item Characteristic Curve

A reasonable assumption is that each examinee responding to a test item possesses
some amount of the underlying ability. Thus, one can consider each examinee to
have a numerical value, a score, that places the examinee somewhere on the ability
scale. This ability score will be denoted by the Greek letter theta, � . At each ability
level there will be a certain probability that an examinee with that ability will give
a correct answer to the item. This probability will be denoted by P.�/. In the case
of a typical test item, this probability will be small for examinees of low ability and
large for examinees of high ability. If one plotted P.�/ as a function of ability, the
result would be a smooth S-shaped curve such as shown in Fig. 1.1. The probability
of correct response is near zero at the lowest levels of ability and increases until
at the highest levels of ability the probability of correct response approaches unity.
This S-shaped curve describes the relationship between the probability of correct
response to an item and the ability scale. In item response theory, it is known as the
item characteristic curve. Each item in a test will have its own item characteristic
curve.
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Fig. 1.1 A typical item characteristic curve

The item characteristic curve is the basic building block of item response theory
and all the other constructs of the theory depend upon this curve. Because of this,
considerable attention will be devoted to this curve and its role within the theory.
There are two technical properties of an item characteristic curve that are used to
describe it. The first is the difficulty of the item. Under item response theory, the
difficulty of an item describes where the item functions along the ability scale. For
example, an easy item functions among the low-ability examinees while a hard
item would function among the high-ability examinees; thus, item difficulty is a
location index. The second technical property is the discrimination of an item, which
describes how well an item can differentiate between examinees having abilities
below the item location and those having abilities above the item location. This
property essentially reflects the steepness of the item characteristic curve in its
middle section. The steeper the curve the better the item can discriminate. The flatter
the curve the less the item is able to discriminate since the probability of correct
response at low ability levels is nearly the same as it is at high ability levels. Using
these two descriptors, one can describe the general form of the item characteristic
curve. These descriptors are also used to discuss the technical properties of an item.
It should be noted that these two properties say nothing about whether the item really
measures some facet of the underlying ability or not; that is a question of validity.
These two properties simply describe the form of the item characteristic curve.

1.3 Item Difficulty and Item Discrimination

The idea of item difficulty as a location index will be examined first. In Fig. 1.2,
three item characteristic curves are presented on the same graph. All have the same
level of item discrimination but differ with respect to item difficulty. The left-hand
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Fig. 1.2 Three item characteristic curves with the same item discrimination but different levels of
item difficulty

curve represents an easy item because the probability of correct response is high
for low-ability examinees and approaches 1 for high-ability examinees. The center
curve represents an item of medium item difficulty because the probability of correct
response is low at the lower ability levels, around 0:5 in the middle of the ability
scale, and near 1 at the highest ability level. The right-hand curve represents a hard
item. The probability of correct response is low for most of the ability scale and
increases only when the higher ability levels are reached. Even at the highest ability
level shown (i.e., � D 3) the probability of correct response is only 0:8 for the most
difficult item.

The concept of item discrimination is illustrated in Fig. 1.3. This figure contains
three item characteristic curves having the same item difficulty but differing with
respect to item discrimination. The upper curve on the positive ability range has a
high level of item discrimination since the curve is quite steep in the middle where
the probability of correct response changes very rapidly as ability increases. Just
a short distance to the left of the middle of the curve, the probability of correct
response is much less than 0:5; and a short distance to the right, the probability is
much greater than 0:5. The middle curve represents an item with a moderate level
of item discrimination. The slope of this curve is much less than the previous curve
and the probability of correct response changes less dramatically than the previous
curve as the ability level increases. However, the probability of correct response
is near zero for the lowest-ability examinees and near unity for the highest-ability
examinees. The third curve represents an item with low item discrimination. The
curve has a very small slope and the probability of correct response changes slowly
over the full range of abilities shown. Even at low ability levels, the probability of
correct response is reasonably large and it increases only slightly when high ability
levels are reached. The reader should be warned that although the figures only show
a range of ability from �3 to C3, the theoretical range of ability is from negative
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Fig. 1.4 An item that discriminates perfectly at � D 1:5

infinity to positive infinity. Thus, all item characteristic curves of the type used here
actually become asymptotic to a probability of zero at one tail and to unity at the
other tail. The restricted range employed in the figures is necessary to fit the curves
on the computer screen reasonably and to provide a uniform frame of reference.

One special case is of interest; namely, that of an item with perfect discrimina-
tion. The item characteristic curve of such an item is a vertical line at some point
along the ability scale. Figure 1.4 shows such an item. To the left of the vertical line
at � D 1:5, the probability of correct response is zero and to the right of the line
the probability of correct response is unity. Thus, the item discriminates perfectly
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between examinees whose abilities are above and below an ability score of 1:5. Such
items would be ideal for distinguishing between examinees with abilities just above
and below 1:5. However, such an item makes no distinction among those examinees
with abilities above 1:5 nor among those examinees with abilities below 1:5.

1.4 Verbal Terms of Item Difficulty and Item Discrimination

At the present point in the presentation of item response theory, the goal is to allow
you to develop an intuitive understanding of the item characteristic curve and its
properties. In keeping with this goal, item difficulty and item discrimination will be
defined in verbal terms. Item difficulty will have the following levels:

very easy
easy
medium
hard
very hard

Item discrimination will have the following levels:

none
low
moderate
high
perfect

These terms will be used in the computer session to specify item characteristic
curves.

1.5 Computer Session

The purpose of this session is to enable you to develop a sense of how the shape of
the item characteristic curve is related to item difficulty and item discrimination.
To accomplish this, you will be able to select verbal terms describing the item
difficulty and item discrimination of an item. The computer program R will then
calculate and display the corresponding item characteristic curve on the screen. You
should do examples in this section and exercises in the next section, then try various
combinations of levels of item difficulty and item discrimination and relate these to
the resulting curves. After a bit of such exploratory practice, you should be able to
predict what the item characteristic curve will look like for a given combination of
item difficulty and item discrimination.
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1.5.1 Procedures for an Example Case

When R is ready for input through the R console window, it prints out its prompt
character with an invisible, horizontal space after it:

>

A command line in R will be executed by pressing the enter key:

Enter -

Such a special character that indicates the end of a command line, usually entered
by pressing the enter or return key will be treated as an invisible character here.
When an incomplete command line (e.g., the end of the expression cannot have
occurred yet) gets the enter key, R prints out the continuation prompt character with
an invisible space after it:

+

To improve readability and because a rather long command line can be typed in
without pressing the enter key in the middle, a long command line will not be
separated by the continuation prompt character but will be continued to the next
line with indentation.

The followings are the simplest command lines, each with the R prompt in front,
to display an item characteristic curve for an item with medium item difficulty and
moderate item discrimination:

> theta <- seq(-3, 3, .1)
> bmedium <- 0
> amoderate <- 1
> P <- 1 / (1 + exp(-amoderate * (theta - bmedium)))
> plot(theta, P, type="l")

By pressing the enter key in the end of each line, five times as a total, the computer
will display an item characteristic curve shown in Fig. 1.5 in the graphics window.

By pressing the enter key in the end of the first line, a sequence of numbers (i.e., a
vector) will be created with �3 as a starting number and 3 as an ending number with
an increment of 0:1. The length or the total number of elements of the sequence is
61. The name of such a sequence is given as theta, and it is to be done by using the
assign function <- for which the less than character < and the hyphen character -
cannot be separated with a space. You can read the first line as “theta gets a sequence
of numbers . . .” or “a sequence of numbers . . . is saved under the name theta.” The
first line is equivalent to:

> assign("theta", seq(-3,3,.1))

or

> seq(-3, 3, .1) -> theta
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Fig. 1.5 An example item characteristic curve

Use of spaces is optional in the R command line as shown in seq(-3,3,.1).
Especially, spaces before and after a comma, a left or right parenthesis, an
elementary arithmetic operator (e.g., +, -, *, /), an exponentiation operator (i.e., ^,
**), a common mathematical function (e.g., log, exp, sin, cos, tan, sqrt), a
logical operator (e.g., <, <=, >, >=, ==, !=, &, |), and an assign function (e.g., ->,
<-) are all optional. To improve readability of the code, at least one space can be
put before and after some operators or symbols.

Multiple command lines can be typed in a single line by separating them with a
semicolon. Real numbers in the integer form can be entered with a decimal place
(i.e., a period) in the end of the number, and the number 0 can be added after the
decimal place. The number 0 can be added before the decimal place if the number
is less than unity that is to be expressed as a decimal. The second and third lines of
the above command lines can be combined as:

> bmedium <- 0; amoderate <- 1

Equivelently, we may use the numbers with a decimal place as:

> bmedium <- 0.0; amoderate <- 1.0

The item characteristic curve is a function of ability and item characteristics, that
is, item difficulty and item discrimination. Because ability is a latent variable, it was
denoted by � and the variable name theta was used in the command line. The
item difficulty and item discrimination are denoted as numerical values of b and a,
respectively, and the verbal terms contain the letters b and a as mnemonic clues.
The names of objects in the R command can be constructed with the upper- and
lower-case roman letters as an initial character and the digits and the period as any
non-initial characters. Names of built-in, intrinsic functions and system variables
(e.g., seq, exp, plot, type in the above lines, and c, q, s, t, C, D, F, I, T,
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diff, length, mean, sd, pi, range, rank, time, tree, var, etc.) should
not be used as the names of variables or functions of your own. Note that R is case
sensitive, so the variable P will be different from the variable p unless both are
defined to be equivalent.

The command line

P <- 1 / (1 + exp(-amoderate * (theta - bmedium))))

will create a vector of 61 values of the probabilities of correct response based on the
respective 61 ability points, item difficulty, and item discrimination. We will explore
the exact meaning of this function in the subsequent chapter.

The plot based on the 61 sets of points from the ability variable as the horizontal
axis, abscissa, and the probability of correct response as a vertical axis, ordinate,
can be constructed via:

> plot(theta, P)

With the enter key pressed, the above line can open an R graphics window that
contains the plot of the two variables. The default setting of the function plot will
create a plot with a symbol ı as each point. Because we want to have a plot with
connected lines that ultimately yield a curve, the optional argument type="l"
was added in the earlier command line. Whenever R opens up its graphics window,
it treats the graphics window as a current window. If you want to continue to use
command lines, you may click the R console window (especially the caption on the
top of the R console window or any inside portion of the R console window) to
make it current before you type in a new command line.

You may notice that the number of ticks used in the default setting of the function
plot may not be an appropriate one you want to use in your own figure. The
numbers of ticks in the horizontal and vertical axes can be modified with the use
of the graphical parameters function par and its labels argument lab, for example:

> par(lab=c(7,3,3))

The labels argument was defined by the three parameters in the above line. The set
of the three parameters (i.e., the three numbers separated with two commas in the
combine function c) specifies the number of ticks on the horizontal axes to be 7,
that on the vertical axes to be 3, and the length of characters in the labels to be 3
(but the character length will be most likely ignored in R). If you want to explore
or read the full description of the R function, for example par, you can obtain it by
typing:

> ?par

or

> help(par)

Assuming that your computer is connected to Internet, such a command line will
open up a file in html, the HyperText Markup Language, that explains the function
in a default browser you are using.
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It can be noticed in Fig. 1.5 that the variable names are appeared as the respective
labeling texts along the horizontal and vertical axes. You can change them with the
arguments of, for example, xlab="Ability" and ylab="Probability of
Correct Response" in the function plot. The ranges of the horizontal and
vertical variables can be precisely controlled with the use of the arguments and
parameters of xlim=c(-3,3) and ylim=c(0,1), by specifying the lower limit
number and the upper limit number in the combine or concatenate function c.

The following command lines can be used to obtain Fig. 1.1:

> par(lab=c(7,3,3))
> theta <- seq(-3, 3, .1)
> b <- 0
> a <- 1
> P <- 1 / (1 + exp(-a * (theta - b)))
> plot(theta, P, type="l", xlim=c(-3,3), ylim=c(0,1),

xlab=expression(paste("Ability, ",theta)),
ylab=expression(paste(
"Probability of Correct Response, P(",theta,")")))

As shown in Fig. 1.1, you may use the function expression to add characters in
Greek. We may simply use xlab="Ability" and ylab="Probability of
Correct Response". You can add the main heading on the top of the plot and
the subheading to the bottom of the plot with the arguments in the function plot.
These will be helpful when you are making figures for a presentation purpose. For
example, you may construct a figure (n.b., a figure is not displayed here) that is more
elaborate but nevertheless similar to Fig. 1.5 using the following command lines:

> par(lab=c(7,3,3))
> theta <- seq(-3, 3, .1)
> bmedium <- 0
> amoderate <- 1
> P <- 1 / (1 + exp(-amoderate * (theta - bmedium)))
> plot(theta, P, type="l", xlim=c(-3,3), ylim=c(0,1),

xlab="Ability", ylab="Probability of Correct Response",
main="Figure 1. An Item Characteristic Curve with
Medium Item Difficulty and Moderate Item Discrimination",
sub="See Baker and Kim (2016).")

1.5.2 An R Function for Item Characteristic Curves

It is possible to create your own R functions. Each time the plot of the item
characteristic curve is created, you may notice that a nearly identical set of R
command lines are executed. To avoid the repetition of typing in the same command
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lines, an R function for plotting an item characteristic curve can be constructed.
Consider the following function named iccplot:

> iccplot <- function(b, a) {
par(lab=c(7,3,3))
theta <- seq(-3, 3, .1)
P <- 1 / (1 + exp(-a * (theta - b)))
plot(theta, P, type="l", xlim=c(-3,3), ylim=c(0,1),
xlab="Ability", ylab="Probability of Correct Response")

}

After defining the function, by specifying the numerical values of item difficulty
and item discrimination, a plot of the item characteristic curve can be constructed
in the R graphics window. For example, you may use the following line to obtain
a plot of item characteristic curve with medium item difficulty and moderate item
discrimination:

> iccplot(0, 1)

The two arguments, b and a, are the named actual arguments in R. When the
numerical values are specified without the arguments, R recognizes the first number
to be the value of item difficulty and the second number to be the value of item
discrimination. The arguments in the function can be specified in arbitrary order by
exactly defining them with names. You can obtain the same plot by typing:

> iccplot(a=1, b=0)

Instead of using the numerical values to define item difficulty and item discrim-
ination, the verbal terms described earlier can be used to plot item characteristic
curves. The numerical definitions of the verbal terms for item difficulty are as
follows:

> bveryeasy <- -2.625
> beasy <- -1.5
> bmedium <- 0
> bhard <- 1.5
> bveryhard <- 2.625

The numerical definitions of the verbal terms for item discrimination are as follows:

> anone <- 0
> alow <- 0.4
> amoderate <- 1
> ahigh <- 2.1
> aperfect <- 999

The following command lines now can display two item characteristic curves
in the R graphics window (see Fig. 1.6). Note that you should click the R console
window after pressing the enter key in the end of the first line, that is, after creating
the R graphics window.
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Fig. 1.6 Two item characteristic curves

> iccplot(bmedium, amoderate)
> par(new=T)
> iccplot(beasy, alow)

The first item characteristic curve is for an item with medium item difficulty and
moderate item discrimination. The line

> par(new=T)

is an overlying figures parameter and equivalent to:

> par(new=TRUE)

The line resets a graphics parameter new to be TRUE, meaning that the R graphics
window is treated now as a new graphics device, so it is assumed that there are
currently no plots on it. In such a case, a call to a high-level plotting function
could not erase the canvas of the graphics window before putting up a plot. After
entering the third line, you may notice that the second item characteristic curve
was overlaid on the same graph as the previous curve and you can compare the
two. The new curve is rather flat and has higher probabilities of correct response in
the lower range of abilities than did the previous item characteristic curve. This is
because it was an easier item and low-ability examinees should do well on it. The
low item discrimination shows up in the curve having only a slight bend over the
range of ability scores employed. At the high ability levels the probability of correct
response was somewhat lower than that of the previous item. This is reflection of
the lower discrimination on the new item. When the function is specified without
par(new=T), a new plot is created in the R graphics window.

Note that you can obtain a figure that contains several item characteristic curves.
For example, to obtain Fig. 1.2 you can type the following command lines with
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clicking the console window after the first line and the third line, respectively:

> iccplot(beasy, amoderate)
> par(new=T)
> iccplot(bmedium, amoderate)
> par(new=T)
> iccplot(bhard, amoderate)

1.6 Exercises

For the exercises, it is assumed that you have defined the function iccplot and
the numerical values of the verbal terms of item difficulty and item discrimination
by typing in the respective command lines.

1. An item with easy item difficulty and high item discrimination is to be plotted.

(a) Use the function iccplot to plot an item characteristic curve of an item
with easy item difficulty and high item discrimination.

(b) From the graph it can be seen that the probability of correct response will be
rather high over most of the ability scale. The item characteristic curve will
be steep in the lower part of the ability scale.

(c) After you have studied the curve, make sure to click the R console window
to make it current and to type in a new command line.

(d) The next graph will be plotted in a new graphics window.

2. An item with hard item difficulty and low item discrimination is to be plotted.

(a) Use the function iccplot to plot an item characteristic curve of an item
with hard item difficulty and low item discrimination.

(b) From the graph it can be seen that the probability of correct response will
have a low general level over most of the ability scale. The item characteristic
curve will not be very steep.

(c) After you have studied the curve, make sure to click the R console window
to make it current and to type in a new command line.

(d) The next graph will be plotted in a new graphics window.

3. An item with medium item difficulty and low item discrimination is to be
plotted.

(a) Use the function iccplot to plot an item characteristic curve of an item
with medium item difficulty and low item discrimination.

(b) From the graph it can be seen that the probability of correct response will be
between 0.2 and 0.8 over the range of ability shown. The item characteristic
curve will be nearly linear over the range of ability employed.

(c) After you have studied the curve, make sure to click the R console window
to make it current and to type in a new command line.

(d) The next graph will be plotted in a new graphics window.
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4. In this exercise, all the items will have the same level of item difficulty but
different levels of item discrimination. The intent is to relate the steepness of
the curve to the level of item discrimination.

(a) Use the function iccplot to plot an item characteristic curve of an item
with medium item difficulty and moderate item discrimination.

(b) From the graph it can be seen that the probability of correct response will
be small at low ability levels and large at high ability levels. The item
characteristic curve will be moderately steep in the middle part of the ability
scale.

(c) After you have studied the curve, make sure to click the R console window
to make it current and to type in a new command line.

(d) The next graph will be plotted on the same graph in the graphics window.
Type in:

> par(new=T)

(e) Now repeat steps a through d several times using medium item difficulty
for each item and item discrimination levels of your choice (e.g., none, low,
high, perfect).

(f) The next graph will be plotted in a new graphics window.

5. In this exercise, all the items will have the same level of item discrimination but
different levels of item difficulty. The intent is to relate the location of the item
on the ability scale to its level of item difficulty.

(a) Use the function iccplot to plot an item characteristic curve of an item
with very easy item difficulty and moderate item discrimination.

(b) From the graph it can be seen that the probability of correct response will be
reasonably large over most of the ability scale. The item characteristic curve
will be moderately steep in the lower part of the ability scale.

(c) After you have studied the curve, make sure to click the R console window
to make it current and to type in a new command line.

(d) The next graph will be plotted on the same graph in the graphics window.
Type in:

> par(new=T)

(e) Now repeat steps a through d several times using items with moderate item
discrimination and item difficulty levels of your choice (e.g., easy, medium,
hard, very hard).

(f) The next graph will be plotted in a new graphics window.

6. Experiment with various combinations of item difficulty and item discrimination
of your own choice until you are confident that you can predict the shape of
the item characteristic curve corresponding to the levels chosen. You may find it
useful to make a rough sketch of what you think the curve will look like before
you have the computer display it on the screen.
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1.7 Things to Notice

1. When item discrimination is less than moderate, the item characteristic curve is
nearly linear and appears rather flat.

2. When item discrimination is greater than moderate, the item characteristic curve
is S-shaped and rather steep in its middle section.

3. When item difficulty is less than medium, most of the item characteristic curve
has a probability of correct response that is greater than 0:5.

4. When item difficulty is greater than medium, most of the item characteristic
curve has a probability of correct response less than 0:5.

5. Regardless of the level of item discrimination, item difficulty locates the item
along the ability scale. Therefore item difficulty and item discrimination are
independent of each other.

6. When an item has no item discrimination, all choices of item difficulty yield the
same horizontal line at a value of P.�/ D 0:5. This is because the value of item
difficulty for an item with no item discrimination is undefined.

7. If you have been very observant, you may have noticed the point at which P.�/ D
0:5 corresponds to item difficulty. When an item is easy, this value occurs at a
low ability level. When an item is hard, this value corresponds to a high ability
level.



Chapter 2
Item Characteristic Curve Models

2.1 Introduction

In the first chapter the properties of the item characteristic curve were defined in
terms of verbal descriptors. While this is useful to obtain an intuitive understanding
of item characteristic curves, it lacks the precision and rigor needed by a theory.
Consequently, in this chapter the reader will be introduced to three mathematical
models for the item characteristic curve. These models provide mathematical
equations for the relation of the probability of correct response to ability. Each
model employs one or more item parameters whose numerical values define a
particular item characteristic curve. Such mathematical models are needed if one
is to develop a measurement theory that can be rigorously defined and is amenable
to further growth. In addition, these models and their parameters provide a vehicle
for communicating information about an item’s technical properties. For each of the
three models, the mathematical equation will be used to compute the probability of
correct response at several ability levels. Then the graph of the corresponding item
characteristic curve will be shown. The goal of the chapter is to have you develop a
sense of how the numerical values of the item parameters for a given model relate
to the shape of the item characteristic curve.

2.2 The Two-Parameter Model

Under item response theory the standard mathematical model for the item char-
acteristic curve is the cumulative form of the logistic function. It defines a family
of curves having the general shape of the item characteristic curves shown in the
first chapter. The logistic function was first derived in 1844 by Pierre François
Verhulst and has been widely used in the biological sciences to model the growth
of plants and animals from birth to maturity. It was first used as a model for the
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item characteristic curve in the late 1950s and, because of its simplicity, has become
the preferred model. The equation for the two-parameter logistic model is given in
Eq. (2.1) below:

P.�/ D 1

1 C e�L
D 1

1 C e�a.��b/
; (2.1)

where

e is the base of the natural logarithm that is a constant 2.718,
b is the item difficulty parameter,
a is the item discrimination parameter,1

L D a.� � b/ is the logistic deviate (logit), and
� is an ability level.

This equation represents a family of curves whose individual members are defined
by specific numerical values of the item parameters b and a; hence, it is called the
two-parameter model. It is the model that was used in Chap. 1.

The item difficulty parameter, denoted by b, is defined as the point on the ability
scale at which the probability of correct response to the item is 0.5. The theoretical
range of the values of this parameter is �1 � b � C1 (i.e., a set of extended real
numbers). However, typical values have the range of �3 � b � C3.

Due to the shape of the item characteristic curve, the slope of the curve changes
as a function of the ability level and reaches a maximum value when the ability
level equals the item difficulty parameter. Because of this, the item discrimination
parameter does not represent the general slope of the item characteristic curve as was
indicated in Chap. 1. The technical definition of the item discrimination parameter is
beyond the level of this book. However, a usable definition is that this parameter is
proportional to the slope of the item characteristic curve at � D b. The actual slope
at � D b is a=4 under the two-parameter model, but considering a to be the slope at b
is an acceptable approximation that makes interpretation of the item discrimination
parameter easier in practice. The theoretical range of the values of this parameter is
�1 � a � C1, but the usual range seen in practice is �2:80 to C2:80.

1In much of the item response theory literature, the logistic value of the item discrimination
parameter a is divided by 1:702 or 1:7 to obtain the corresponding normal ogive model value.
This is done to make the two-parameter logistic ogive similar to the normal ogive. However, this
was not done in this book as it introduces two frames of reference for interpreting the numerical
values of the item discrimination parameter. All item parameters in this book and the associated
computer programs are interpreted in terms of the logistic function.
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2.2.1 Computational Example

To illustrate how the two-parameter model is used to compute the points on an item
characteristic curve, consider the following example problem. The values of the item
parameters are:

b D 1:0 is the item difficulty parameter
a D 0:5 is the item discrimination parameter

The illustrative computation is performed at the ability level:

� D �3:0

The first term to be computed is the logistic deviate (logit), L, where:

L D a.� � b/

Substituting the appropriate values yields:

L D 0:5.�3:0 � 1:0/ D �2:0

The next term computed is e raised to the power �L. If you have a pocket calculator
that can compute ex or exp.x/ you can verify this calculation. Substituting yields:

e�L � exp.�L/ D exp.2:0/ D 7:389

Now the denominator of Eq. (2.1) can be computed as:

1 C exp.�L/ D 1 C 7:389 D 8:389

Finally, the value of P.�/ is:

P.�/ D 1=Œ1 C exp.�L/� D 1=8:389 D 0:119

Thus, at an ability level of � D �3:0, the probability of responding correctly to this
item is 0:119.

From the above, it can be seen that computing the probability of correct response
at a given ability level is very easy using the logistic model. Table 2.1 shows the
calculations for this item at seven ability levels evenly spaced over the range of
ability levels from �3 to C3. You should perform the computations at several of
these ability levels to become familiar with the procedure.

Table 2.1 Item characteristic
curve calculations under the
two-parameter model,
b D 1:0 and a D 0:5

Ability, � Logit, L exp.�L/ 1C exp.�L/ P.�/

�3.0 �2.0 7.389 8.389 0.119

�2.0 �1.5 4.482 5.482 0.182

�1.0 �1.0 2.718 3.718 0.269

0.0 �0.5 1.649 2.649 0.378

1.0 0.0 1.000 2.000 0.500

2.0 0.5 0.607 1.607 0.622

3.0 1.0 0.368 1.368 0.731
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Fig. 2.1 The item characteristic curve for the two-parameter model with b D 1:0 and a D 0:5

The item characteristic curve for the item of Table 2.1 is shown in Fig. 2.1. The
vertical dotted line corresponds to the value of the item difficulty parameter.

2.3 The Rasch Model

The next model of interest was first published by the Danish mathematician Georg
Rasch in the 1960s. Rasch approached the analysis of test data from a probability
theory point of view. Although he started from a very different frame of reference,
the resultant item characteristic curve model was a logistic model. In Chap. 8,
Rasch’s approach will be explored in greater detail; our present interest is only
in his item characteristic curve model. Under this model, the item discrimination
parameter of the two-parameter model is fixed at a value of a D 1 for all items and
only the item difficulty parameter can take on different values. Because of this, the
Rasch model is often referred to as the one-parameter logistic model.

The equation for the Rasch model is given by the following:

P.�/ D 1

1 C e�1.��b/
; (2.2)

where

b is the item difficulty parameter and
� is the ability level.

It should be noted that the item discrimination parameter was used in Eq. (2.2). But
because it always has a value of 1 it usually is not shown in the formula.
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2.3.1 Computational Example

Again the illustrative computations for the model will be done for the single ability
level:

� D �3:0

The value of the item difficulty parameter is:

b D 1:0

The first term computed is the logit, L, where:

L D a.� � b/ D � � b

Substituting the appropriate values yields:

L D �3:0 � 1:0 D �4:0

Next, the e raised to the �L term is computed, giving:

exp.�L/ D 54:598

The denominator of Eq. (2.2) can be computed as:

1 C exp.�L/ D 1 C 54:598 D 55:598

Finally, the value of P.�/ can be obtained and is:

P.�/ D 1=Œ1 C exp.�L/� D 1=55:598 D 0:018

Thus, at an ability level of � D �3:0, the probability of responding correctly to this
item is 0:018.

Table 2.2 shows the calculations at seven ability levels. You should perform the
computations at several other ability levels to become familiar with the model and
the procedure.

The item characteristic curve for the item of Table 2.2 is shown in Fig. 2.2. The
vertical dotted line corresponds to the value of the item difficulty parameter.

Table 2.2 Item characteristic
curve calculations under the
Rasch model, b D 1:0

Ability, � Logit, L exp.�L/ 1C exp.�L/ P.�/

�3.0 �4.0 54.598 55.598 0.018

�2.0 �3.0 20.086 21.086 0.047

�1.0 �2.0 7.389 8.389 0.119

0.0 �1.0 2.718 3.718 0.269

1.0 0.0 1.000 2.000 0.500

2.0 1.0 0.368 1.368 0.731

3.0 2.0 0.135 1.135 0.881
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Fig. 2.2 The item characteristic curve for the Rasch model with b D 1:0

2.4 The Three-Parameter Model

One of the facts of life in testing is that examinees will get items correct by guessing.
Thus, the probability of correct response includes a small component that is due
to guessing. Neither of the two previous item characteristic curve models took
the guessing phenomenon into consideration. Birnbaum (1968) modified the two-
parameter logistic model to include a parameter that represents the contribution of
guessing to the probability of correct response. Unfortunately, in so doing, some
of the nice mathematical properties of the logistic function were lost. Nevertheless
the resulting model has become known as the three-parameter logistic model even
though it technically is no longer a logistic model. The equation for the three-
parameter model is:

P.�/ D c C .1 � c/
1

1 C e�a.��b/
; (2.3)

where

b is the item difficulty parameter,
a is the item discrimination parameter,
c is the guessing parameter, and
� is the ability level.

The parameter c is the probability of getting the item correct by guessing alone. It
is important to note that by definition the value of c does not vary as a function of
the ability level. Thus, the lowest and highest ability examinees may have the same
probability of getting the item correct by guessing. The parameter c has a theoretical
range of 0 � c � 1:0, but in practice values above 0:35 are not considered
acceptable, hence the range 0 < c < 0:35 is used here.
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A side effect of using the guessing parameter c is that the definition of the item
difficulty parameter is changed. Under the previous two models, b was the point on
the ability scale at which the probability of correct response was 0:5. But now the
lower limit of the item characteristic curve is the value of c rather than zero. The
result is that the item difficulty parameter is the point on the ability scale where

P.�/ D c C .1 � c/.0:5/ D .1 C c/=2:

This probability is halfway between the value of c and 1:0. What has happened here
is that the parameter c has defined a floor to the lowest value of the probability of
correct response. Thus, the item difficulty parameter defines the point on the ability
scale where the probability of correct response is halfway between this floor and
1:0.

The item discrimination parameter a can still be interpreted as being proportional
to the slope of the item characteristic curve at the point � D b. However, under the
three-parameter model, the slope of the item characteristic curve at � D b is actually
a.1 � c/=4.

While these changes in the definitions of item parameters b and a seem slight,
they are important when interpreting the results of test analyses.

2.4.1 Computational Example

The probability of correct response to an item under the three-parameter model will
be shown for the following item parameter values:

b D 1:5

a D 1:3

c D 0:2

The ability level is:

� D �3:0

The logit is:

L D a.� � b/ D 1:3.�3:0 � 1:5/ D �5:85

Next, the e raised to the �L term is:

exp.�L/ D 347:234

The denominator of the term in the right-hand side of Eq. (2.3) is:

1 C exp.�L/ D 1 C 347:234 D 348:234

Then the right-hand side term yields:

1=Œ1 C exp.�L/� D 1=348:234 D 0:0029
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Up to this point the computations are exactly the same as those for the two-
parameter model with b D 1:5 and a D 1:3. But now the guessing parameter enters
the picture. From Eq. (2.3) we have:

P.�/ D c C .1 � c/.0:0029/

With c D 0:2 the value of P.�/ is:

P.�/ D 0:2 C .1 � 0:2/.0:0029/ D 0:2 C .0:8/.0:0029/ D 0:2 C .0:0023/ D
0:2023

Thus, at an ability level of � D �3:0, the probability of responding correctly to this
item is 0:2023.

Table 2.3 shows the calculations at seven ability levels. Again, you are urged to
perform the above calculations at several other ability levels to become familiar with
the model and the procedure.

The item characteristic curve for the item of Table 2.3 is shown in Fig. 2.3. The
vertical dotted line corresponds to the value of the item difficulty parameter.

Table 2.3 Item characteristic
curve calculations under the
three-parameter model,
b D 1:5, a D 1:3, and
c D 0:2

Ability, � Logit, L exp.�L/ 1C exp.�L/ P.�/

�3.0 �5.85 347.234 348.234 0.202

�2.0 �4.55 94.632 95.632 0.208

�1.0 �3.25 25.790 26.790 0.230

0.0 �1.95 7.029 8.029 0.300

1.0 �0.65 1.916 2.916 0.474

2.0 0.65 0.522 1.522 0.726

3.0 1.95 0.142 1.142 0.900
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Fig. 2.3 The item characteristic curve for the three-parameter model with b D 1:5, a D 1:3, and
c D 0:2
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Fig. 2.4 An item with negative discrimination under the two-parameter model with b D 0 and
a D �0:75

2.5 Negative Discrimination

While most test items will discriminate in a positive manner; that is, the probability
of correct response increases as the ability level increases, some items have negative
discrimination. In such items, the probability of correct response decreases as the
ability level increases from low to high. Figure 2.4 depicts such an item.

Items with negative discrimination occur in two ways. First, the incorrect
response to a two-choice item will always have a negative item discrimination
parameter if the correct response has a positive value. Second, sometimes the correct
response to an item will yield a negative item discrimination parameter. This tells
you that something is wrong with the item. Either it is poorly written or there
is some misinformation prevalent among the high-ability students. In any case, it
is a warning that the item needs some attention. For most of the item response
theory topics of interest, the value of the item discrimination parameter will be
positive. Figure 2.5 shows the item characteristic curves for the correct and incorrect
responses to a binary item.

It should be noted that the two item characteristic curves have the same value
for the item difficulty parameter (b D 1:0) and the item discrimination parameters
have the same absolute value. However, the item discrimination parameters have
opposite signs, with the correct response being positive and the incorrect response
being negative.
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Fig. 2.5 Item characteristic curves for the correct (b D 1:0, a D 0:9) and incorrect responses
(b D 1:0, a D �0:9) to a binary item

Table 2.4 Labels for item
discrimination parameter
values

Verbal label Range of values Typical value

None 0 0.00

Very low 0:01–0:34 0.18

Low 0:35–0:64 0.50

Moderate 0:65–1:34 1.00

High 1:35–1:69 1.50

Very high >1.70 2.00

Perfect C1 C1

2.6 Guidelines for Interpreting Item Parameter Values

In Chap. 1, verbal labels were used to describe the technical properties of an item
characteristic curve. Now the curves can be described via parameters whose numer-
ical values have intrinsic meaning. However, one needs some means of interpreting
the numerical values of the item parameters and conveying this interpretation to a
non-technical audience. Table 2.4 presents the verbal labels used to describe the
item’s discrimination can be related to ranges of values of the item discrimination
parameter.

These relations hold when one interprets the values of the item discrimination
parameter under the logistic model for the item characteristic curve. If the reader
wants to interpret the item discrimination parameter under the normal ogive model,
divide these values by 1:7.

Establishing an equivalent table for the values of the item difficulty parameter
poses some problems. The terms, easy and hard used in Chap. 1, are relative terms
that depend upon some frame of reference. As discussed above, the drawback of
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item difficulty, as defined under classical test theory, was that it was defined relative
to a group of examinees. Thus, the same item could be easy for one group and hard
for another group. Under item response theory, an item’s difficulty is a point on
the ability scale where the probability of correct response is 0:5 for one- and two-
parameter models and .1 C c/=2 for the three-parameter model. Because of this, the
verbal labels used in Chap. 1 have meaning only with respect to the midpoint of the
ability scale.

The proper way to interpret a numerical value of the item difficulty parameter is
in terms of where the item functions on the ability scale. The item discrimination
parameter can be used to add meaning to this interpretation. The slope of the item
characteristic curve is at a maximum at an ability level corresponding to the item
difficulty parameter. Thus, the item is doing its best in distinguishing between
examinees in the neighborhood of this ability level. Because of this, one can speak
of the item functioning at this ability level. For example, an item whose difficulty
is �1 functions among the lower-ability examinees. A value of C1 denotes an item
that functions among higher-ability examinees. Again, the underlying concept is
that the item difficulty is a location parameter.

Under the three-parameter model, the numerical value of the guessing parameter
c is interpreted directly since it is a probability. For example, c D 0:12 simply means
that at all ability levels the probability of getting the item correct by guessing alone
is 0:12.

2.7 Computer Session

The purpose of this session is to enable you to develop a sense of the dependence of
the shape of the item characteristic curve upon the model and the numerical values
of its parameters. You will be able to set the values of the item parameters under each
of the three models and the corresponding item characteristic curve will be shown on
the screen via the computer program R. Choosing these values becomes a function
of what kind of an item characteristic curve one is trying to define. Conversely, given
a set of numerical values of the item parameters for an item characteristic curve,
such as provided by a test analysis, you should be able to visualize the form of the
item characteristic curve. Such visualization is necessary to properly interpret the
technical properties of the item. After doing the exercises and a bit of exploration,
you should be able to visualize the form of the item characteristic curve for any of
the three models given a set of item parameter values.
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Table 2.5 Item characteristic
curve calculations under the
two-parameter model,
b D �1:0 and a D 1:7

Ability, � Logit, L exp.�L/ 1C exp.�L/ P.�/

�3.0 �3.4 29.964 30.964 0.032

�2.0 �1.7 5.474 6.474 0.154

�1.0 0.0 1.000 2.000 0.500

0.0 1.7 0.183 1.183 0.846

1.0 3.4 0.033 1.033 0.968

2.0 5.1 0.006 1.006 0.994

3.0 6.8 0.001 1.001 0.999

2.7.1 Procedures for an Example Case

The followings are the R command lines to obtain and display the values of various
intermediate terms and the probability of correct response under the two-parameter
model with b D �1:0 and a D 1:7:

> theta <- seq(-3, 3, 1)
> b <- -1.0
> a <- 1.7
> L <- a * (theta - b)
> P <- 1 / (1 + exp(-L))
> theta; L; exp(-L); 1 + exp(-L); P

By pressing the enter key in the end of each line, the computer will display the
respective sets of values in the R console window. The values are reported in
Table 2.5.

By pressing the enter key in the end of the first line, a sequence of numbers (i.e.,
a vector) will be created with �3 as a starting number and 3 as an ending number
with an increment of 1. The length or the total number of elements of the sequence
is seven. The name of the sequence is assigned as theta. The second and third
lines define the value of item difficulty parameter to be �1:0 and the value of item
discrimination parameter to be 1:7, respectively. The fourth line defines the logit, L,
which is in fact a vector of size seven. A vector P of points on the item characteristic
curve under the two-parameter model is calculated in the fifth line. Five command
lines are combined with four semicolons in the last line. With the enter key pressed
in the end of the last line, the five sets of values are obtained.

Instead of using the function exp directly, we may create two variables expnl
(i.e., the exponential function of the negative logit) and opexpnl (i.e., one plus the
exponential function of the negative logit) and display the same sets of values:

> theta <- seq(-3, 3, 1)
> b <- -1.0
> a <- 1.7
> L <- a * (theta - b)
> expnl <- exp(-L)
> opexpnl <- 1 + expnl
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> P <- 1 / opexpnl
> theta; L; expnl; opexpnl; P

The R function data.frame can be used to combine the vectors into a single
data frame, and it allows to nicely display the whole values in an organized fashion.
The last command line, assuming that the variables have been created as in the above
example, can be replaced with:

> data.frame(theta, L, expnl, opexpnl, P)

Note that the data frame can be named and displayed by typing its name; for
example:

> table2p5 <- data.frame(theta, L, expnl, opexpnl, P)
> table2p5

The computer will display the table of computations. Study the table for a few
minutes to see the relation between the probability of correct response and the ability
scores.

The item characteristic curve for the item of Table 2.5 can be obtained from the
following command lines (see Fig. 2.6):

> par(lab=c(7,3,3))
theta <- seq(-3, 3, .1)
b <- -1.0
a <- 1.7
P <- 1 / (1 + exp(-a * (theta - b)))
plot(theta, P, type="l", xlim=c(-3,3), ylim=c(0,1),

xlab="Ability", ylab="Probability of Correct Response")
thetai <- b
pthetai <- 1 / (1 + exp(-a * (thetai - b)))
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Fig. 2.6 The item characteristic curve for the two-parameter model with b D �1:0 and a D 1:7
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vliney <- seq(0, pthetai, .01)
vlinex <- b + vliney * 0
lines(vlinex, vliney, lty=2)

The last five lines of the above command lines are used to create the vertical
dotted line that indicates the location of the item difficulty parameter. First, the point
on the ability scale is defined that is the same as the item difficulty, �i D b. The
height or ordinate of the item characteristic curve for �i is obtained as P.�i/. The
vertical line is constructed as the collection of the points between two points on
the graph, that is, from .b; 0/ to .b; P.�i//. That vector that contains values in the
y axis, vliney, is created with the function seq. The vector that contains the
corresponding values in the x axis, vlinex, is created next. This vector contains
a set of constant value b, but its size is the same as that of vliney. The function
lines construct the line on the existing graph in the graphics window from the
collection of two points and depicted it as a dotted line by its optional argument
lty=2.

This item functions at an ability level of �1 and the curve is quite steep at that
ability level. Notice that the curve is nearly flat above an ability of, say, 1:0. In
technical terms it is becoming asymptotic to a value of P.�/ D 1:0. At this juncture
the example case is completed. Note that the graphics window is likely to be the
current window. Hence, if you want to continue to type in more command lines,
make sure that you have clicked the R console window.

2.7.2 An R Function for Item Characteristic Curve
Calculations

It is possible to create an R function for displaying item characteristic curve
calculations. Consider the following function named icccal:

> icccal <- function(b, a, c) {
if (missing(c)) c <- 0
if (missing(a)) a <- 1
theta <- seq(-3, 3, 1)
L <- a * (theta - b)
expnl <- exp(-L)
opexpnl <- 1 + expnl
P <- c + (1 - c) / opexpnl
data.frame(theta, L, expnl, opexpnl, P)

}

It is also possible to create an R function for plotting an item characteristic curve.
Consider the following function named icc:

> icc <- function(b, a, c) {
if (missing(c)) c <- 0
if (missing(a)) a <- 1
par(lab=c(7,3,3))
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theta <- seq(-3, 3, .1)
P <- c + (1 - c) / (1 + exp(-a * (theta - b)))
plot(theta, P, type="l", xlim=c(-3,3), ylim=c(0,1),
xlab="Ability", ylab="Probability of Correct Response")

thetai <- b
pthetai <- c + (1 - c) / (1 + exp(-a * (thetai - b)))
vliney <- seq(0, pthetai, .01)
vlinex <- b + vliney * 0
lines(vlinex, vliney, lty=2)

}

Note that the functions, icccal and icc, are general ones. Both can be used
for the Rasch model as well as the two- and three-parameter models.

After typing in these two functions in the R console window, the example case
for the table of computations and the graph can be constructed by the following two
lines:

> icccal(b=-1.0, a=1.7)
> icc(b=-1.0, a=1.7)

The two command lines are equivalent to:

> icccal(-1.0, 1.7)
> icc(-1.0, 1.7)

and:

> icccal(a=1.7, b=-1.0)
> icc(a=1.7, b=-1.0)

2.8 Exercises

For the exercises, it is assumed that you have defined two functions icccal and
icc by typing them in the R console window.

1. This exercise uses the Rasch model to illustrate how the item difficulty parameter
locates an item along the ability scale.

(a) Set the value of the item difficulty parameter to b D �2:0. Type in the
following command line:

> icccal(b=-2.0)

(b) The computer will display the table of computations. Study the table for a
few minutes to see the relation between the probability of correct response
and the ability scores.

(c) The item characteristic curve will be displayed on the screen by typing in the
following command line:

> icc(b=-2.0)
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(d) This item will function at an ability level of �2:0 and the curve will be
moderately steep at that ability level. Study the plot.

(e) Next, we want to put another item characteristic curve on the same graph.
Type in the following command line:

> par(new=T)

(f) Now set the item difficulty parameter to a value of b D 0:0 and repeat steps
a through c.

(g) This will place a second curve on the graph.
(h) Now repeat steps e through f using the value of b D 2:0 for the item difficulty

parameter.
(i) Now there will be three item characteristic curves on the graph. The three

dotted lines indicate the values of P.�/ D 0:5 of these curves at the ability
levels defined by their values of item difficulty parameters. In the present
example the values of the item difficulty parameters are evenly spaced along
the ability scale.

(j) At this juncture Exercise 1 is completed.

2. This exercise uses the two-parameter model to illustrate the joint effect of item
difficulty and item discrimination upon the shape of item characteristic curve.

(a) Set the values of the item difficulty parameter to b D �2:0 and the item
discrimination parameter to 1:0. Type in the following command line:

> icccal(b=-2.0, a=1.0)

(b) The computer will display the table of computations. Study the table for a
few minutes to see the relation between the probability of correct response
and the ability scores.

(c) The item characteristic curve will be displayed on the screen by typing in the
following command line:

> icc(b=-2.0, a=1.0)

(d) The item characteristic curve is located in the low-ability end of the scale
and it is moderately steep.

(e) Next, we want to put another item characteristic curve on the same graph.
Type in the following command line:

> par(new=T)

(f) Now set the item difficulty parameter to a value of b D 0:0 and the item
discrimination parameter to a value of a D 1:5. Then repeat steps a through
c.

(g) This will place a second curve on the graph.
(h) Now repeat steps e through f using the value of b D 2:0 for the item difficulty

parameter and the value a D 0:5 for the item discrimination parameter.
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(i) You should now have three item characteristic curves displayed on the same
graph. It should be clear that the value of b locates the item on the ability
scale and that a defines the slope. However, in the present example the curves
cross because the values of a are different for each item.

(j) At this juncture Exercise 2 is completed.

3. This exercise illustrates the joint effect of the parameter values under the three-
parameter model.

(a) Set the values of the item parameters to a D 1:0, b D �2:0, and c D 0:10.
Type in the following command line:

> icccal(b=-2.0, a=1.0, c=.10)

(b) The computer will display the table of computations. Study the table for a
few minutes to see the relation between the probability of correct response
and the ability scores.

(c) The item characteristic curve will be displayed on the screen by typing in the
following command line:

> icc(b=-2.0, a=1.0, c=.10)

(d) The item characteristic curve is located in the low-ability end of the scale
and it is moderately steep.

(e) Next, we want to put another item characteristic curve on the same graph.
Type in the following command line:

> par(new=T)

(f) Now set the values of the item parameters to b D 0:0, a D 1:5, and c D 0:20.
Then repeat steps a through c.

(g) This will place a second curve on the graph.
(h) Now repeat steps e through f using the values of b D 2:0, a D 0:5, and

c D 0:30.
(i) At this point you should have three item characteristic curves displayed on

the graph. Again the values of b locate the items along the ability scale. But
the ability level at which P.�/ D 0:5 does not correspond to the value of b but
is slightly lower. Recall that under the three-parameter model, b is the point
on the ability scale where the probability of correct response is .1 C c/=2

rather than 0:5. The slopes of the curves at b reflect the values of a. The
lower tails of the three curves approach their values of c at the lowest levels
of ability. However, this is not apparent for the curve with b D �2:O as the
values of P.�/ are still rather large at � D �3:0.

(j) At this juncture Exercise 3 is completed.

4. The followings are for the additional exercises.

(a) For each model:

(i) Select a set of parameter values, and obtain the calculation table.
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(ii) Predict what the shape of the item characteristic curve will look like. It
can be helpful to make a sketch of the item characteristic curve before
the computer shows it on the screen.

(iii) Obtain the display of the curve (it may help to overlay a few curves to
get a feeling for the relative effects of changing parameter values).

(b) Repeat this process until you know what kind of item characteristic curve
will result from a set of numerical values of the item parameters under each
of the models.

2.9 Things to Notice

1. Under the Rasch2 model, the slope is always the same; only the location of the
item changes.

2. Under the two- and three-parameter models, the value of a must become quite
large (e.g., >1.7) before the curve is very steep.

3. Under the Rasch and two-parameter models, a large positive value of b results
in a lower tail of the curve that approaches zero. But under the three-parameter
model, the lower tail approaches the value of c.

4. Under the three-parameter model, the value of c is not apparent when b < 0 and
a < 1:0. However, if a wider range of values of ability were used, the lower tail
would approach the value of c.

5. Under all models, curves with a negative value of a are the mirror image of curves
with the same values of the remaining parameters and a positive value of a.

6. When b D �3:0, only the upper half of the item characteristic curve appears
on the graph. When b D C3:0, only the lower half of the curve appears on the
graph.

7. The slope of the item characteristic curve is the steepest at the ability level cor-
responding to the item difficulty parameter. Thus, the item difficulty parameter b
locates the point on the ability scale where the item functions best.

8. Under the Rasch and two-parameter models, the item difficulty defines the point
on the ability scale where the probability of correct response for persons of that
ability is 0:5. Under the three-parameter model, the item difficulty parameter
defines the point on the ability scale where the probability of correct response
is halfway between the value of the parameter c and 1:0. Only when c D 0 are
these two definitions equivalent.

2Originally, the Rasch model was referred to as the one-parameter logistic model as the only item
parameter was the item difficulty parameter. In recent years, however, a model in which all items
share a common value of the item discrimination parameter has been also called the one-parameter
logistic model. To avoid confusion, the label Rasch model will be used in this book.



Chapter 3
Estimating Item Parameters

3.1 Introduction

Because the actual values of the parameters of the items in a test are unknown,
one of the tasks performed when a test is analyzed under item response theory is
to estimate these parameters. The obtained item parameter estimates then provide
information as to the technical properties of the test items. To keep matters simple
in the following presentation, the parameters of a single item will be estimated
under the assumption that the examinees ability scores are known. In reality, these
scores are not known, but it is easier to explain how item parameter estimation is
accomplished if this assumption is made.

3.2 Maximum Likelihood Estimation of Item Parameters

In the case of a typical test, a sample of N examinees responds to the J items in the
test. The ability scores of these examinees will be distributed over a range of ability
levels on the ability scale. For present purposes, these examinees will be divided
into, say, G groups along the scale so that all the examinees within a given group
have the same ability level �g and there will be fg examinees within group g, where
g D 1; 2; : : : ; G. Within a particular ability score group, rg examinees answer the
given item correctly. Thus, at an ability level of �g the observed proportion of correct
response is p.�g/ D rg=fg, which is an estimate of the probability of correct response
at that ability level. Now the value of rg can be obtained and p.�g/ computed for each
of the g ability levels established along the ability scale. If the observed proportions
of correct response in each ability group are plotted, the result will be something
like that shown in Fig. 3.1.

© Springer International Publishing AG 2017
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Fig. 3.1 Observed proportions of correct response as a function of ability

The basic task now is to find the item characteristic curve that best fits the
observed proportions of correct response. To do so, one must first select a model
for the curve to be fitted. Although any of the three logistic models could be used,
the two-parameter model will be employed here. The procedure used to fit the curve
is based upon maximum likelihood estimation.

Under the maximum likelihood estimation (MLE) procedure, initial values for
the item parameters, such as b D 0:0 and a D 1:0, are established a priori. Then,
using these estimates the value of P.�g/ is computed at each ability level via the
equation for the item characteristic curve model. The agreement of the observed
value of p.�g/ and the computed value of P.�g/ is determined across all ability
groups. Then, adjustments to the estimated item parameters are found that result
in better agreement between the item characteristic curve defined by the estimated
values of the parameters and the observed proportions of correct response. This
process of adjusting the estimates is continued until the adjustments get so small
that little improvement in the agreement is possible. At this point, the estimation
procedure is terminated and the current values of b and a are the item parameter
estimates. Given these values, the equation for the item characteristic curve is
used to compute the probability of correct response P.�g/ at each ability level
and the item characteristic curve can be plotted. The resulting curve is the item
characteristic curve that best fits the response data for that item. Figure 3.2 shows
an item characteristic curve fitted to the observed proportions of correct response
shown in Fig. 3.1. The estimated values of the item parameters were b D �0:39 and
a D 1:27 (see Appendix B).

An important consideration within item response theory is whether a particular
item characteristic curve model fits the item response data for an item. The
agreement of the observed proportions of correct response and those yielded by the
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Fig. 3.2 Item characteristic curve fitted to the observed proportions of correct response

fitted item characteristic curve for an item is measured by the chi-square goodness-
of-fit index. This index is defined as follows:

�2 D
GX

gD1

fg
Œp.�g/ � P.�g/�2

P.�g/Q.�g/
; (3.1)

where

G is the number of ability groups,
�g is the ability level of group g,
fg is the number of examinees having ability �g

p.�g/ is the observed proportion of correct response for group g,
P.�g/ is the probability of correct response for group g computed from the
item characteristic curve model using the item parameter estimates, and
Q.�g/ D 1 � P.�g/.

If the value of the obtained index is greater than a criterion value, the item
characteristic curve specified by the values of the item parameter estimates does
not fit the data. This can be caused by two things. First, an inappropriate item
characteristic curve model may have been employed. Second, the values of the
observed proportions of correct response are so widely scattered that a good fit,
regardless of model, cannot be obtained. In most tests, a few items will yield large
values of the chi-square index due to the second reason. However, if many items fail
to yield well-fitting item characteristic curves, there may be reason to suspect that
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an inappropriate model has been employed. In such cases, reanalyzing the test under
an alternative model, say the three-parameter model rather than the Rasch model,
may yield better results.

In the case of the item shown in Fig. 3.2, the obtained value of the chi-square
index was 29:97 and the criterion value was 44:99. Thus the two-parameter model
with b D �0:39 and a D 1:27 was a good fit to the observed proportions of correct
response.

The actual maximum likelihood estimation procedure is rather complex mathe-
matically and entails very laborious computations that must be performed for every
item in a test.1 In fact, until computers became widely available, item response
theory was not practical because of its heavy computational demands. For present
purposes, it is not necessary to go into the details of this procedure. It is sufficient to
know that the curve-fitting procedure exists, that it involves a lot of computing, and
that the goodness-of-fit of the obtained item characteristic curve can be measured.
Because test analysis is done by computer, the computational demands of the item
parameter estimation process do not present a major problem today.

3.3 The Group Invariance of Item Parameters

One of the interesting features of item response theory is that the item parameters
are not dependent upon the ability level of the examinees responding to the item.
Thus, the item parameters are what is known as group invariant. This property of the
theory can be described as follows. Assume that you have two groups of examinees
drawn from the same population of examinees. The first group has a range of ability
scores from �3 to �1 with a mean of �2. The second group has a range of ability
scores from C1 to C3 with a mean of C2. Next, the observed proportion of correct
response to a given item is computed from the item response data for every ability
level within each of the two groups. Then, for the first group, the proportions of
correct response are plotted as shown in Fig. 3.3.

The maximum likelihood estimation procedure is then used to fit an item
characteristic curve to the data and numerical values of the item parameter estimates,
b.1/ D �0:39 and a.1/ D 1:27, were obtained. The item characteristic curve
defined by these estimates is then plotted over the range of ability encompassed
by the first group. This curve is shown in Fig. 3.4.

1The likelihood, L, that is the probability of observing a set of rg values from fg given item parame-

ters is maximized as if it is a function of the item parameters: L Dfg Crg

QG
gD1 P.�g/rg Q.�g/.fg�rg/,

where C designates combination. Because item parameters that maximize L also maximize the
logarithm of L, log L is used to find the estimates of item parameters. To find the values of item
parameter estimates that maximize log L, the Newton-Raphson method can be employed. The
partial derivatives as well as the second partial derivatives of log L with respect to every item
parameter for an item are required in the Newton-Raphson method. Using a set of initial values of
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Fig. 3.3 Observed proportions of correct response for group 1
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Fig. 3.4 Item characteristic curve fitted to the group 1 data

This process is repeated for the second group. The observed proportions of
correct response are shown in Fig. 3.5 and the fitted item characteristic curve with
parameter estimates, b.2/ D �0:39 and a.2/ D 1:27, is shown in Fig. 3.6.

the item parameters the iteration in the Newton-Raphson method will be performed until a stable
set of parameter estimates are obtained.
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Fig. 3.5 Observed proportions of correct response for group 2
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Fig. 3.6 Item characteristic curve fitted to the group 2 data

The result of interest is that under these conditions b.1/ D b.2/ and
a.1/ D a.2/; that is, the two groups yield the same values of the item parameters.
Hence, the item parameters are group invariant. While this result may seem a bit
unusual, its validity can be demonstrated easily by considering the process used to
fit an item characteristic curve to the observed proportions of correct response. Since
the first group had a low average ability (�2), the ability levels spanned by group 1
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Fig. 3.7 Item characteristic curve fitted to the pooled data

will encompass only a section of the curve, in this case, the lower left tail of the
curve. Consequently, the observed proportions of correct response will range from
very small to moderate values. When fitting a curve to this data, only the lower tail
of the item characteristic curve is involved. For example, see Fig. 3.4. Since group 2
had a high average ability (C2), its observed proportions of correct response range
from moderate to very near unity. When fitting an item characteristic curve to
this data, only the upper right-hand tail of the curve is involved as was shown
in Fig. 3.6. Now, since the same item was administered to both groups, the two
curve-fitting processes were dealing with the same underlying item characteristic
curve. Consequently, the item parameters yielded by the two analyses should be the
same. Figure 3.7 integrates the two previous diagrams into a single representation
showing how the same item characteristic curve fits the two sets of proportions of
correct response.

The group invariance of the item parameters is a very powerful feature of item
response theory. It says that the values of the item parameters are a property of the
item, not of the group that responded to the item. Under classical test theory, just the
opposite holds. The item difficulty of classical test theory is the overall proportion
of correct response to an item for a group of examinees. Thus, if an item with b D 0

were responded to by a low-ability group, few of the examinees would get it correct.
The classical item difficulty index would yield a low value; say 0:3, as the item
difficulty for this group. If the same item were responded to by a high-ability group,
most of the examinees would get it correct. The classical item difficulty index would
yield a high value; say 0:8, indicating that the item was easy for this group. Clearly,
the value of the classical item difficulty index is not group invariant. Because of this,
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item difficulty, as defined under item response theory is easier to interpret as it has
a consistent meaning that is independent of the group used to obtain its value.

Even though the item parameters are group invariant, this does not mean that
the numerical values of the item parameter estimates yielded by the maximum
likelihood estimation procedure for two groups of examinees, from a common
population, taking the same items will always be identical. The obtained numerical
values will be subject to variation due to sample size, how well-structured the data
is and the goodness-of-fit of the curve to the data. Even though the underlying
item parameter values are the same for two samples, the obtained item parameter
estimates will vary from sample to sample. Nevertheless, the obtained values should
be “in the same ballpark.” The result is that in an actual testing situation, the group-
invariance principle holds but will not be apparent in the several values of the item
parameter estimates obtained for the same items. In addition, the item must be used
to measure the same latent trait for both groups. An item’s parameters do not retain
group invariance when taken out of context; that is, when used to measure a different
latent trait, with examinees from a population for which the test is inappropriate, or
when the two groups were drawn from two different populations of examinees.

The group invariance of the item parameters also illustrates a basic feature of
the item characteristic curve. As stated in earlier chapters, this curve is the relation
between the probability of correct response to the item and the ability scale. The
invariance principle reflects this since the item parameters are independent of the
distribution of examinees over the ability scale. From a practical point of view, this
means that the parameters of the total item characteristic curve can be estimated
from any segment of the curve. The invariance principle is also one of the bases for
test equating under item response theory.

3.4 Computer Session

The purpose of this computer session is twofold. First, it serves to illustrate the
fitting of item characteristic curves to the observed proportions of correct response.
The computer will generate a set of response data, fit an item characteristic curve
to the data under a given model, and then compute the chi-square goodness-of-
fit index. This will enable you to see how well the curve-fitting procedure works
for a variety of data sets and models. Second, this session shows you that the
group invariance of the item parameters holds across models and over a wide
range of group definitions. The session allows you to specify the range of ability
encompassed by each of two groups of examinees. The computer will generate
the observed proportions of correct response for each group and then fit an item
characteristic curve to the data. The values of the item parameters are also reported.
Thus, you can experiment with various group definitions and observe that the group
invariance holds. Example cases and exercises in the next section will be presented
for both of these curve-fitting situations.
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3.4.1 Procedures for an Example of Fitting an Item
Characteristic Curve to Response Data

The followings are the R command lines to display the observed proportion of
correct response for each of 33 ability score levels based on the item characteristic
curve model (i.e., mdl) of your choice:

> theta <- seq(-3, 3, .1875)
> f <- rep(21, length(theta))
> wb <- round(runif(1,-3,3), 2)
> wa <- round(runif(1,0.2,2.8), 2)
> wc <- round(runif(1,0,.35), 2)
> mdl <- 2
> if (mdl == 1 | mdl == 2) { wc <- 0 }
> if (mdl == 1) { wa <- 1 }
> for (g in 1:length(theta)) {

P <- wc + (1 - wc) / (1 + exp(-wa * (theta - wb)))
}

> p <- rbinom(length(theta), f, P) / f
> par(lab=c(7,5,3))
> plot(theta, p, xlim=c(-3,3), ylim=c(0,1),

xlab="Ability", ylab="Probability of Correct Response")

By pressing the enter key in the end of each line, the computer will generate item
parameters and the observed proportions of correct response based on the generated
item parameters. The screen will be similar in appearance to Fig. 3.1.

From the first line, a sequence of ability score levels are created with �3 as a
starting number and 3 as an ending number with an increment of 0:1875. The length
of such a sequence is 33. In the second line the R function length was used to
obtain the length of the sequence for the ability vector and the number or frequency
of examinees for each of the ability score levels is set to be 21. The frequency vector
f will contain a set of 21s for the length of 33. Hence, there are 33 groups and each
group will have 21 examinees. The total number of examinees is 693.

In the next three lines, item parameters are generated from the uniform distribu-
tions. The following lines can also be used:

> wb <- runif(1 -3, 3)
> wa <- runin(1, 0.2, 2.8)
> wc <- runif(1, 0, .35)

The three arguments in generating a random variate using the uniform distribution
(i.e., runif) designate the number of random variates, the minimum of the
distribution, and the maximum of the distribution, respectively. For example, a
random variate will be generated from a uniform distribution from �3 to 3 and then
be defined as an item difficulty parameter wb in the first line. The w in wb indicates
the observed proportions will be generated later “with” the item difficulty parameter.
Similarly, a random variate will be generated from a uniform distribution from 0:2

to 2:8 and be defined as an item discrimination parameter wa. Also the guessing
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parameter wc will be generated from a uniform distribution from 0 to 0:35. It will
be certainly possible to use some other distributions or some other limits of the
uniform distribution to generate the item parameters.

The earlier command lines actually contained the R function round to convert
the generated parameters to be rounded to have only two decimal places. The
function round can allow us to print out the item parameters in an ordered fashion
because they potentially have many decimal places.

The item characteristic curve model is defined with the number of item parame-
ters in the model. The two-parameter model was used in the example by assigning
the number of item parameters to be 2. Although the three item parameters were
initially generated, based on the model specified, the guessing parameter wc and
the item discrimination parameter wa are modified to 0 and 1, respectively. For
the Rasch model and the two-parameter model, the guessing parameter will be
reassigned to be 0 based on the if conditional statement. For the Rasch model,
the item discrimination parameter will be reassigned to be 1 using the if statement.

The vector of the values of the probability of correct response from the specified
model given the ability score level �g and the item parameters will then be generated
and saved as P. The length of P is 33. The random variate based on the binomial
distribution with parameters of f and P for each ability level will then be created.
The vector that contains the observed proportions of correct response will be
obtained and saved as p. The length of p is 33.

In the next line the numbers of ticks in the horizontal and vertical axes are set by
the graphical parameter function with its labels argument (i.e., the number of ticks
on the horizontal axes is 7 and that on the vertical axes is 5). Using the specified
numbers of ticks, the next R function plot will create the plot of the observed
proportions of correct response as a function of ability in the graphics window.
There are 33 points in the graph.

Assume that you have executed the R command lines listed in the beginning
of this subsection. After making the R console window as a current window, the
following command lines will now fit an item characteristic curve to the observed
proportions of correct response and report the chi-square index and the values of
item parameters. The command lines will yield the screen in the graphics window
that is similar in appearance to Fig. 3.2:

> cs <- 0
> for (g in 1:length(theta)) {

v <- f[g] * (p[g] - P[g])^2 / (P[g] - P[g]^2)
cs <- cs + v

}
> cs <- round(cs, 2)
> if (mdl == 1) {

maintext <- paste("Chi-square=", cs, "\n", "b=", wb)
}

> if (mdl == 2) {
maintext <- paste("Chi-square=",cs,"\n","a=",wa,"b=",wb)

}
> if (mdl == 3) {
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maintext <- paste("Chi-square=", cs, "\n",
"a=", wa, "b=", wb, "c=", wc)

}
> par(new="T")
> plot(theta, P, xlim=c(-3,3), ylim=c(0,1), type="l",

xlab="", ylab="", main=maintext)

The first three command lines for cs will obtain the chi-square goodness-of-fit
index defined in Eq. (3.1). The first line initializes the starting value of the chi-square
index cs to be 0. In the next line, for each ability level g, the term will be calculated
and then summed to yield the final value of the chi-square index. The obtained chi-
square index will be rounded to yield a value that has two decimal places.

The three if statements prepare the main text to be printed on the plot of the
item characteristic curve based on the model specified. Both the value of the chi-
square index and the set of item parameters will be printed as the main text on the
graph. The plot of the item characteristic curve based on the item parameters will
be superimposed onto the existing plot.

Note that the item characteristic curve defined by the estimated values of the item
parameters (n.b., in fact, these are not really the estimated values but the parameters
that were used to generate the data) is a good fit to the observed proportions of
correct response. The obtained value of the chi-square index is usually less than the
criterion value from the chi-square distribution. The criterion values at the nominal
˛ D 0:05 significance level for the number of the ability score levels of 33 are
�2.32/ D 46:19 for the Rasch model, �2.31/ D 44:99 for the two-parameter model,
and �2.30/ D 43:77 for the three-parameter model. The exact criterion value of
the chi-square distribution for the two-parameter model can be found by using the
following quantile function of the chi-square distribution in R:

> qchisq(.95, df=31)

3.4.2 Procedures for an Example Case Illustrating Group
Invariance

Assume that the fitting the item characteristic curve has been performed as in
the previous subsection. The followings are the R command lines to display the
observed proportions of correct response over the ability score levels for group 1.
The lower bound of ability for group 1 is specified with t1l that implies theta-
1-lower; the upper bound of ability for group 1 is specified with t1u that implies
theta-1-upper in the following command lines:

> t1l <- -3
> t1u <- -1
> lowerg1 <- 0
> for (g in 1:length(theta)) {

if (theta[g] <= t1l) { lowerg1 <- lowerg1 + 1 }
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}
> upperg1 <- 0
> for (g in 1:length(theta)) {

if (theta[g] <= t1u) { upperg1 <- upperg1 + 1 }
}

> theta1 <- theta[lowerg1:upperg1]
> p1 <- p[lowerg1:upperg1]
> if (mdl == 1) { maintext <- paste("Group 1", "\n") }
> if (mdl == 2) { maintext <- paste("Group 1", "\n") }
> if (mdl == 3) { maintext <- paste("Group 1", "\n") }
> plot(theta1, p1, xlim=c(-3,3), ylim=c(0,1),

xlab="Ability", ylab="Probability of Correct Response",
main=maintext)

By pressing the enter key in the end of each line, the computer will generate
a plot that shows the observed proportions of correct response for group 1 in the
graphics window. The screen will be similar in appearance to Fig. 3.3.

The lower and upper bounds are specified in the two beginning command lines.
The next four lines try to find the appropriate ability score levels contained in the
two given bounds of group 1. Then only the ability score levels within the lower
and upper bounds of group 1 (i.e., t1) will be selected to yield the plot of the
corresponding observed proportions of correct response p1 on the theta scale.

To obtain the plot of an item characteristic curve fitted to the data in the selected
ability score levels of group 1, that also reports the values of the item parameters,
the following R command lines are executed:

> P1 <- P[lowerg1:upperg1]
> if (mdl == 1) {

maintext <- paste("\n", "b=", wb)
}

> if (mdl == 2) {
maintext <- paste("\n", "a=", wa, "b=", wb)

}
> if (mdl == 3) {

maintext <- paste("\n", "a=", wa, "b=", wb, "c=", wc)
}

> par(new="T")
> plot(theta1, P1, xlim=c(-3,3), ylim=c(0,1), type="l",

xlab="", ylab="", main=maintext)

The screen will be similar in appearance to Fig. 3.4.
In order to obtain a graph for group 2 similar in appearance to Fig. 3.5, the

required R command lines are as follows:

> t2l <- 1
> t2u <- 3
> lowerg2 <- 0
> for (g in 1:length(theta)) {

if (theta[g] <= t2l) { lowerg2 <- lowerg2 + 1 }
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}
> upperg2 <- 0
> for (g in 1:length(theta)) {

if (theta[g] <= t2u) { upperg2 <- upperg2 + 1 }
}

> theta2 <- theta[lowerg2:upperg2]
> p2 <- p[lowerg2:upperg2]
> if (mdl == 1) { maintext <- paste("Group 2", "\n") }
> if (mdl == 2) { maintext <- paste("Group 2", "\n") }
> if (mdl == 3) { maintext <- paste("Group 2", "\n") }
> plot(theta2, p2, xlim=c(-3,3), ylim=c(0,1),

xlab="Ability", ylab="Probability of Correct Response",
main=maintext)

In order to obtain a graph for group 2 similar in appearance to Fig. 3.6, the
following R command lines are used:

> P2 <- P[lowerg2:upperg2]
> if (mdl == 1) {

maintext <- paste("\n", "b=", wb)
}

> if (mdl == 2) {
maintext <- paste("\n", "a=", wa, "b=", wb)

}
> if (mdl == 3) {

maintext <- paste("\n", "a=", wa, "b=", wb, "c=", wc)
}

> par(new="T")
> plot(theta2, P2, xlim=c(-3,3), ylim=c(0,1), type="l",

xlab="", ylab="", main=maintext)

After defining the two groups and obtaining the plots with respective proportions
of correct response together with the fitted item characteristic curves, the following
R command lines can be used to obtain a graph for the pooled groups similar in
appearance to Fig. 3.7 ultimately:

> theta12 <- c(theta1, theta2)
> p12 <- c(p1, p2)
> if (mdl == 1) { maintext <- paste("Pooled Groups","\n") }
> if (mdl == 2) { maintext <- paste("Pooled Groups","\n") }
> if (mdl == 3) { maintext <- paste("Pooled Groups","\n") }
> plot(theta12, p12, xlim=c(-3,3), ylim=c(0,1),

xlab="Ability", ylab="Probability of Correct Response",
main=maintext)

> if (mdl == 1) {
maintext <- paste("\n", "b=", wb)

}
> if (mdl == 2) {

maintext <- paste("\n", "a=", wa, "b=", wb)
}
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> if (mdl == 3) {
maintext <- paste("\n", "a=", wa, "b=", wb, "c=", wc)

}
> par(new="T")
> plot(theta, P, xlim=c(-3,3), ylim=c(0,1), type="l",

xlab="", ylab="", main=maintext)

It may be possible to report the value of the chi-square index but not obtained
for the pooled data. Only item parameters are reported in the final plot that contains
the item characteristic curve for the entire ability scale including the portions of
ability score levels outside of the boundary of the ability levels of the two groups.
From the graph in the graphics window, the numerical values of the item parameters
will be identical to those reported for each of the two groups. From this screen it is
clear that the same item characteristic curve has been fitted to both sets of data. This
holds even though there was a range of ability scores (�l to C1) where there were
no observed proportions of correct response to the item.

3.4.3 An R Function for Item Characteristic Curve Fitting

It is possible to create an R function for both generating observed proportions of
correct response and fitting an item characteristic curve based on the model selected.
Consider the following function named iccfit:

> iccfit <- function(mdl) {
theta <- seq(-3, 3, .1875)
f <- rep(21, length(theta))
wb <- round(runif(1,-3,3), 2)
wa <- round(runif(1,0.2,2.8), 2)
wc <- round(runif(1,0,.35), 2)
if (mdl == 1 | mdl == 2) { wc <- 0 }
if (mdl == 1) { wa <- 1 }
for (g in 1:length(theta)) {
P <- wc + (1 - wc) / (1 + exp(-wa * (theta - wb)))

}
p <- rbinom(length(theta), f, P) / f
par(lab=c(7,5,3))
plot(theta, p, xlim=c(-3,3), ylim=c(0,1),
xlab="Ability", ylab="Probability of Correct Response")

cs <- 0
for (g in 1:length(theta)) {
v <- f[g] * (p[g] - P[g])^2 / (P[g] - P[g]^2)
cs <- cs + v

}
cs <- round(cs, 2)
if (mdl == 1) {
maintext <- paste("Chi-square=", cs, "\n", "b=", wb)

}
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if (mdl == 2) {
maintext <- paste("Chi-square=",cs,"\n","a=",wa,"b=",wb)

}
if (mdl == 3) {
maintext <- paste("Chi-square=", cs, "\n",
"a=", wa, "b=", wb, "c=", wc)

}
par(new="T")
plot(theta, P, xlim=c(-3,3), ylim=c(0,1), type="l",
xlab="", ylab="", main=maintext)

}

After typing in the function iccfit in the R console window, the Rasch model
data for the observed proportions of correct response and the corresponding item
characteristic curve can be obtained by typing in:

> iccfit(1)

For the two-parameter model, the command line is:

> iccfit(2)

For the three-parameter model, the command line is:

> iccfit(3)

3.4.4 An R Function for the Group Invariance of Item
Parameters

It is possible to create an R function for illustrating the group invariance of item
parameters. Consider the following function named groupinv:

> groupinv <- function(mdl, t1l, t1u, t2l, t2u) {
if (missing(t1l)) t1l <- -3
if (missing(t1u)) t1u <- -1
if (missing(t2l)) t2l <- 1
if (missing(t2u)) t2u <- 3
theta <- seq(-3, 3, .1875)
f <- rep(21, length(theta))
wb <- round(runif(1,-3,3), 2)
wa <- round(runif(1,0.2,2.8), 2)
wc <- round(runif(1,0,.35), 2)
if (mdl == 1 | mdl == 2) { wc <- 0 }
if (mdl == 1) { wa <- 1 }
for (g in 1:length(theta)) {
P <- wc + (1 - wc) / (1 + exp(-wa * (theta - wb)))

}
p <- rbinom(length(theta), f, P) / f
lowerg1 <- 0
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for (g in 1:length(theta)) {
if (theta[g] <= t1l) { lowerg1 <- lowerg1 + 1 }

}
upperg1 <- 0
for (g in 1:length(theta)) {
if (theta[g] <= t1u) { upperg1 <- upperg1 + 1 }

}
theta1 <- theta[lowerg1:upperg1]
p1 <- p[lowerg1:upperg1]
lowerg2 <- 0
for (g in 1:length(theta)) {
if (theta[g] <= t2l) { lowerg2 <- lowerg2 + 1 }

}
upperg2 <- 0
for (g in 1:length(theta)) {
if (theta[g] <= t2u) { upperg2 <- upperg2 + 1 }

}
theta2 <- theta[lowerg2:upperg2]
p2 <- p[lowerg2:upperg2]
theta12 <- c(theta1, theta2)
p12 <- c(p1, p2)
par(lab=c(7,5,3))
plot(theta12, p12, xlim=c(-3,3), ylim=c(0,1),
xlab="Ability", ylab="Probability of Correct Response")

if (mdl == 1) {
maintext <- paste("Pooled Groups", "\n", "b=", wb)

}
if (mdl == 2) {
maintext <- paste("Pooled Groups","\n","a=",wa,"b=",wb)

}
if (mdl == 3) {
maintext <- paste("Pooled Groups", "\n",

"a=", wa, "b=", wb, "c=", wc)
}
par(new="T")
plot(theta, P, xlim=c(-3,3), ylim=c(0,1), type="l",
xlab="", ylab="", main=maintext)

}

After typing in the function groupinv in the R console window, the Rasch
model data for illustrating the group invariance of the item difficulty parameter can
be done by typing in:

> groupinv(1)

Note that the default values of the lower and upper bounds of group 1 are �3 and
�1, respectively, and that those of group 2 are 1 and 3. The above command line is
equivalent to:

> groupinv(1, -3, -1, 1, 3)
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It is certainly possible to use different sets of the lower and upper bounds for group
1 and group 2 as long as the value of the upper bound is strictly greater than that of
the lower bound with a reasonable width on the ability scale. If the default boundary
values are used for the two-parameter model, the illustration can be done with:

> groupinv(2)

For the three-parameter model with the default boundary values, the command
line is:

> groupinv(3)

3.5 Exercises

For the following three exercises, it is assumed that you have defined the function
iccfit by typing it in the R console window. These exercises enable you to
develop a sense of how well the obtained item characteristic curves fit the observed
proportions of correct response. The criterion value of the chi-square index will
be based on the item characteristic curve model selected (i.e., 46:19 for the Rasch
model, 44:99 for the two-parameter model, and 43:77 for the three-parameter
model). This criterion value actually depends upon the number of ability score levels
used and the number of parameters estimated. Thus, it will vary from situation to
situation. For present purposes it will be sufficient to use these criterion values based
on the 33 ability score levels.

1. Repeat several times the fitting of an item characteristic curve to the response
data generated using the Rasch model.

2. Repeat several times the fitting of an item characteristic curve to the response
data generated using the two-parameter model.

3. Repeat several times the fitting of an item characteristic curve to the response
data generated using the three-parameter model.

3.5.1 Further Exercises

The following exercises enable you to examine the group-invariance principle under
all three item characteristic curve models and for a variety of group definitions. You
may use the function groupinv by executing it in the R console window.

1. Under the two-parameter model (i.e., mdl <- 2), set the following ability
bounds:

Group 1—The lower bound is �2, and the upper bound is C1.
Group 2—The lower bound is �1, and the upper bound is C2.
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Generate the five display graphs (e.g., Figs. 3.3, 3.4, 3.5, 3.6 and 3.7) sequentially
in the graphics window for this example. In case the function groupinv is
employed that will yield only a graph that is similar in appearance to Fig. 3.7, the
following command line can be used:

> groupinv(2, -2, 1, -1, 2)

2. Under the Rasch model (i.e., mdl <- 1), set the following ability bounds:

Group 1—The lower bound is �3, and the upper bound is �1.
Group 2—The lower bound is C1, and the upper bound is C3.

Study the resulting display screens. Then try:

Group 1—The lower bound is �2, and the upper bound is C1.
Group 2—The lower bound is �1, and the upper bound is C2.

3. Under the three-parameter model (i.e., mdl <- 3), set the following ability
bounds:

Group 1—The lower bound is �3, and the upper bound is �1.
Group 2—The lower bound is C1, and the upper bound is C3.

Study the resulting display screens. Then try:

Group 1—The lower bound is �2, and the upper bound is C1.
Group 2—The lower bound is �1, and the upper bound is C2.

4. Now experiment with various combinations of overlapping and nonoverlapping
ability groups in conjunction with each of the three item characteristic curve
models.

3.6 Things to Notice

1. Under all three models, the item characteristic curve based upon the estimated
item parameters was usually a good overall fit to the observed proportions of
correct response. In these exercises, this is more of a function of the manner in
which the observed proportions of correct response were generated than of some
intrinsic property of the item characteristic curve models. However, in most well-
constructed tests the majority of item characteristic curves specified by the item
parameter estimates will fit the data. The lack of fit usually indicates that that
item needs to be studied and perhaps rewritten or discarded.

2. When two groups are employed, the same item characteristic curve will be fitted
regardless of the range of ability encompassed by each of the two groups.

3. The distribution of examinees over the range of abilities for a group was not
considered. Only the ability levels are of interest. How many examinees have
each of these levels does not affect the group-invariance property.
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4. If two groups of examinees are separated along the ability scale and the item has
positive discrimination, the low-ability group involves the lower left tail of the
item characteristic curve. The high-ability group involves the upper right tail.

5. The item parameters were group invariant whether or not the ability ranges of the
two groups overlapped. Thus, overlap is not a consideration.

6. If you were brave enough to define group 1 as the high-ability group and group
2 as the low-ability group, you would have discovered that it made no difference
as to which group was the high-ability group. Thus, group labeling is not a
consideration.

7. The group-invariance principle holds for all three item characteristic curve
models.

8. It is important to recognize that whenever item response data is used, the obtained
item parameter estimates are subject to sampling variation. As a result, the same
test administered to several groups of students will not yield the same numerical
values for the item parameter estimates each time. However, this does not imply
that the group-invariance principle is invalid. It simply means that the principle
is more difficult to observe in real data.



Chapter 4
The Test Characteristic Curve

4.1 Introduction

Item response theory is based upon the individual items of a test, and up to this
point the chapters have dealt with the items one at a time. Now, attention will
be given to dealing with all the items in a test at once. When scoring a test, the
response made by an examinee to each item is dichotomously scored. A correct
response is given a score of 1 and an incorrect response a score of 0; the examinee’s
raw test score is obtained by adding up the item scores. This raw test score will
always be an integer number and will range from 0 to J, where J is the number of
items in the test. If examinees were to take the test again, assuming they did not
remember how they previously answered the items, a different raw test score would
be obtained. Hypothetically, an examinee could take the test a great many times and
obtain a variety of test scores. One would anticipate that these scores would cluster
themselves around some average value. In measurement theory, this value is known
as the true score and its definition depends upon the particular measurement theory.
In item response theory, the definition of a true score according to D.N. Lawley
is used.

4.2 A True Score

The formula for a true score is given in Eq. (4.1) below:

TSi D
JX

jD1

Pj.�i/; (4.1)
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where

TSi is the true score for examinees with ability level �i,
j denotes an item, j D 1; : : : ; J, and
Pj.�i/ depends on the particular item characteristic curve model employed.

The task at hand is to calculate the true score for those examinees having a given
ability level. To illustrate this, the probability of correct response for each item in a
four-item test will be calculated at an ability level of 1:0. This can be done using the
formula for the two-parameter model and the procedures given in Chap. 2. The two-
parameter model for item j is now defined as:

Pj.�/ D 1

1 C expŒ�aj.� � bj/�
� 1

1 C e�aj.��bj/
:

The item discrimination parameters and the item difficulty parameters for the
four-item test are as follows:

Item 1: a1 D 0:5 and b1 D �1:0

Item 2: a2 D 1:2 and b2 D 0:75

Item 3: a3 D 0:8 and b3 D 0:0

Item 4: a4 D 1:0 and b4 D 0:5

With �i D 1:0, the probability of correct response for each item under the two-
parameter model can be obtained as:

P1.1:0/ D 1
1 C expŒ�0:5.1:0 � .�1:0//�

D 0:731058578

P2.1:0/ D 1
1 C expŒ�1:2.1:0 � 0:75/�

D 0:574442516

P3.1:0/ D 1
1 C expŒ�0:8.1:0 � 0:0/�

D 0:689974481

P4.1:0/ D 1
1 C expŒ�1:0.1:0 � 0:5/�

D 0:622459331

The item characteristic curve for item 1 is presented in Fig. 4.1. To make the
process a bit clearer, the dashed lines on the figure show the relation between the
value of �i D 1:0 and P1.1:0/ on the item characteristic curve. Figures 4.2, 4.3 and
4.4 present the respective item characteristic curves for items 2–4.

Now, to get the true score at �i D 1:0, the probabilities of correct response are
summed over the four items:

TSi D 0:731058578C0:574442516C0:689974481C0:622459331 D 2:617934906

Thus, for examinees having an underlying ability of 1:0, their true score on this test
would be 2.62. This score is intuitively reasonable because, at an ability score of 1:0,
each of the item characteristic curves is above 0:5 and the sum of the probabilities
would be large. While no individual examinee would actually get this score, it is the
theoretical average of all the raw test scores that examinees of ability 1:0 would get
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Fig. 4.1 Item characteristic curve for item 1
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Fig. 4.2 Item characteristic curve for item 2

on this test of four items had they taken the test a large number of times. Actual tests
would contain many more items than four, but the true score would be obtained in
the same manner.
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Fig. 4.3 Item characteristic curve for item 3
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Fig. 4.4 Item characteristic curve for item 4

4.3 The Test Characteristic Curve

The calculations performed above were for a single point on the ability scale. This
true score computation can be performed for any point along the ability scale from
negative infinity to positive infinity. The corresponding true scores then could be
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Fig. 4.5 Test characteristic curve

plotted as a function of ability. The vertical axis would be the true scores and would
range from zero to the number of items in the test. The horizontal axis would be the
ability scale. These plotted scores will form a smooth curve and this curve is the test
characteristic curve. Figure 4.5 depicts a typical test characteristic curve for a test
containing four items.

The test characteristic curve is the functional relation between the true score and
the ability scale. Given any ability level, the corresponding true score can be found
via the test characteristic curve. For example, in Fig. 4.5 draw a vertical line at an
ability score of 1:0 upward until the test characteristic curve is intersected. Then,
draw a horizontal line to the left until it intersects the true score scale. This line
yields a true score of 2.62 for an ability score of 1.0.

When the Rasch model or the two-parameter model is used for the J items in
a test, the left tail of the test characteristic curve approaches zero as the ability
score approaches negative infinity; its upper tail approaches the number of items
in the test as the ability score approaches positive infinity. The implication of this
is that under these two models a true score of zero corresponds to an ability score
of negative infinity and a true score of J corresponds to an ability level of positive
infinity. When the three-parameter model is used for the J items in a test, the lower
tail of the test characteristic curve approaches the sum of the guessing parameters
for the test items rather than zero. This reflects the fact that under this model very
low-ability examinees can get a test score greater than zero simply by guessing. The
upper tail of the test characteristic curve still approaches the number of items in the
test. Hence, a true score of J corresponds to an ability of positive infinity under all
three item characteristic curve models.

The primary role of the test characteristic curve in item response theory is to
provide a means of transforming ability scores to true scores. This becomes of
interest in practical situations where the user of the test may not be able to interpret
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an ability score. By transforming the ability score into a true score, the user is
given a number that relates to the number of items in the test. This number is in
a more familiar frame of reference and the user is able to interpret it. However,
those familiar with item response theory, such as you, can interpret the ability score
directly. The test characteristic curve also plays an important role in the procedures
for equating tests.

The general form of the test characteristic curve is that of a monotonically
increasing function. In some cases it has a rather smooth S-shape similar to an
item characteristic curve. In other cases it will increase smoothly, then have a small
plateau before increasing again. However, in all cases it will be asymptotic to a
value of J in the upper tail. The shape of the test characteristic curve depends upon a
number of factors including the number of items, the item characteristic curve model
employed, and the values of the item parameters. Because of this, there is no explicit
formula, other than Eq. (4.1), for the test characteristic curve as there was for the
item characteristic curve. The only way one can obtain the test characteristic curve
is to evaluate the probability of correct response at each ability level for all the items
in the test using a given item characteristic curve model. Once these probabilities
are obtained, they are summed at each ability level and then the sums are plotted to
get the test characteristic curve.

It is very important to understand that the form of the test characteristic curve
does not depend upon the frequency distribution of the examinees’ ability scores
over the ability scale. In this respect, the test characteristic curve is similar to the
item characteristic curve. Both are functional relations between two scales and do
not depend upon the distribution of scores over the scales.

The test characteristic curve can be interpreted in roughly the same terms as
was the item characteristic curve. The ability level corresponding to the mid-true
score (i.e., J=2) locates the test along the ability scale. The general slope of the test
characteristic curve is related to how the value of the true score depends upon the
ability level. In some situations, the test characteristic curve is nearly a straight line
over much of the ability scale. In most tests, however, the test characteristic curve
is nonlinear and the slope is only descriptive for a reduced range of ability levels.
Since there is no explicit formula for the test characteristic curve, there are no simple
parameters for the curve. The mid true score defines the test difficulty in numerical
terms, but the slope of the test characteristic curve is best defined in verbal terms.
For most interpretive uses, these two descriptors are sufficient for discussing a test
characteristic curve that has been plotted and can be visually inspected.

4.4 Computer Session

This session has several purposes. The first is to show the form of the test
characteristic curve and have you develop a feel for how true scores and ability
are related in various tests. The second is to show the dependence of the form of the
test characteristic curve upon the mix of item parameters occurring in the J items of
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the test. The computer session allows you to set the values of the item parameters
for the J items of the test and the computer will plot the resultant test characteristic
curve.

4.4.1 Procedures for an Example Case

This example will illustrate how to obtain a test characteristic curve for a small test.
The followings are the R command lines to obtain true scores for a four-item test
along the ability scale and display the test characteristic curve based on the two-
parameter model on the screen:

> b <- c(-1.0, 0.75, 0.0, 0.5)
> a <- c(0.5, 1.2, 0.8, 0.75)
> theta <- seq(-3, 3, .1)
> ts <- rep(0, length(theta))
> J <- length(b)
> for (j in 1:J) {

P <- 1 / (1 + exp(-a[j] * (theta - b[j])))
ts <- ts + P

}
> plot(theta, ts, type="l", xlim=c(-3,3), ylim=c(0,J),

xlab="Ability", ylab="True Score")

By pressing the enter key in the end of each line, the computer will use the set of
item parameters to obtain the true scores a long the ability scale. The screen in the
graphics window will be similar in appearance to Fig. 4.5.

With the first line, a vector that contains item difficulty parameters for four
items is created. With the second line, a vector that contains item discrimination
parameters for four item is created. Then, the sequence of ability levels is created
with �3 as a starting number and 3 as an ending number with an increment of 0:1.
The length of such a sequence is 61. The true score vector ts is initialized in the
fourth line to have the values of 0 for the same length as ability. The total number of
items was defined as J. In the for loop, the probability of correct response is to be
calculated with each set of item parameters over the ability levels and to be added to
the provisional true score vector. After the looping there are 33 values of true scores
given the ability levels. These values are plotted as the test characteristic curve in
the last command line.

A test characteristic curve for a test with a different number of items under
the two-parameter model can be easily constructed using similar R command lines
but specifying different values of the vectors of item parameters. For example, by
replacing the first two command lines, we can obtain Fig. 4.6 for a five-item test:

> b <- c(-2.0, -1.0, 0.0, 1.0, 2.0)
> a <- c(0.5, 0.75, 1.0, 0.75, 0.5)
> theta <- seq(-3, 3, .1)
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Fig. 4.6 Test characteristic curve for the five-item test

> ts <- rep(0, length(theta))
> J <- length(b)
> for (j in 1:J) {

P <- 1 / (1 + exp(-a[j] * (theta - b[j])))
ts <- ts + P

}
> plot(theta, ts, type="l", xlim=c(-3,3), ylim=c(0,J),

xlab="Ability", ylab="True Score",
main="Test Characteristic Curve")

In the display, the range of true scores has been bounded by zero and the number of
items in the test. Note again that the maximum value of a true score is the number of
items in the test, that is, J. Although the command lines generate similarly looking
graphs to show test characteristic curves based upon different numbers of items, the
true score range on the vertical axis will be accordingly changed.

It should be noted that because the ability range has been restricted arbitrarily to
�3 to C3, the test characteristic curve may not get very close to either its theoretical
upper and lower limits in the plotted curves. You should keep in mind that, had the
ability scale gone from negative infinity to positive infinity, the theoretical limits of
the true scores would have been seen.

The test characteristic curve for this five-item test is very close to a straight line
over the ability range from �2 to C2. Outside these values it curves slightly. Thus,
there is almost a linear relationship here between ability and true scores having a
slope of about 0:5. The small slope reflects the low to moderate values of the item
discrimination parameters. The mid true score of 2:5 occurs at an ability level of
zero, which reflects the average value of the bs.
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4.4.2 An R Function for Test Characteristic Curves

It is possible to create an R function for plotting a test characteristic curve given a
set of item parameters. Consider the following function named tcc:

> tcc <- function(b, a, c) {
J <- length(b)
if (missing(c)) c <- rep(0, J)
if (missing(a)) a <- rep(1, J)
theta <- seq(-3, 3, .1)
ts <- rep(0, length(theta))
for (j in 1:J) {
P <- c[j] + (1 - c[j]) / (1 + exp(-a[j]*(theta-b[j])))
ts <- ts + P

}
plot(theta, ts, type="l", xlim=c(-3,3), ylim=c(0,J),
xlab="Ability", ylab="True Score",
main="Test Characteristic Curve")

}

Note that use of the function tcc requires the vectors of item parameters. After
typing in the function in the R console window, the vectors of item parameters
should be constructed before the function is executed.

For the Rasch model, a test characteristic curve for a five-item test can be
obtained with the function tcc by defining a set of item difficulty parameters as:

> b <- c(-2.0, -1.0, 0.0, 1.0, 2.0)
> tcc(b)

For the two-parameter model, a test characteristic curve for a five-item test can be
obtained after defining the respective vectors of item difficulty parameters and item
discrimination parameters; for example:

> b <- c(-2.0, -1.0, 0.0, 1.0, 2.0)
> a <- c(0.5, 0.75, 1.0, 0.75, 0.5)
> tcc(b, a)

For the three-parameter model, a test characteristic curve for a five-item test can be
obtained after defining the three vectors of item parameters; for example:

> b <- c(-2.0, -1.0, 0.0, 1.0, 2.0)
> a <- c(0.5, 0.75, 1.0, 0.75, 0.5)
> c <- c(.2, .2, .2, .2, .2)
> tcc(b, a, c)

It can be noted that the order of item parameter vectors in the function tcc as a
set of arguments is b, a, and c. The item parameter vectors, however, can be defined
with a different order in the R command line by exactly specifying the arguments
of the function. The last command line in the three-parameter model example is
equivalent to:

> tcc(a=a, b=b, c=c)
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4.5 Exercises

For the following exercises, it is assumed that you have defined the function tcc by
typing it in the R console window.

4.5.1 Using the Rasch Model

1. Obtain the test characteristic curve for a test with ten items by setting all item
difficulty parameters to a value of b D 0:0. The test characteristic curve in this
case looks just like an item characteristic curve for an item with b D 0:0. The
vertical axis ranges from 0 to 10. The mid true score occurs at an ability level of
zero.

2. Obtain the test characteristic curve for a test with ten items using the following
item difficulty parameters:

b1 D �3:0 b2 D �2:5 b3 D �2:0 b4 D �1:5 b5 D �1:0

b6 D �0:5 b7 D 0:0 b8 D 0:5 b9 D 1:0 b10 D 1:5

The resulting test characteristic curve has a nearly linear section from an ability
level of �3 to C1. After this point it bends over slightly as it approaches a score
of J. The mid true score of 5 corresponds to an ability level of �0:6.

3. Obtain the test characteristic curve for a test with ten items using the following
item difficulty parameters:

b1 D �0:8 b2 D �0:5 b3 D �0:5 b4 D 0:0 b5 D 0:0

b6 D 0:0 b7 D 0:5 b8 D 0:5 b9 D 0:5 b10 D 0:8

The test characteristic curve has a well-defined S-shape much like an item
characteristic curve. Only the section near an ability level of zero is linear. The
mid true score of 5 corresponds to an ability score of 0:5.

4.5.2 Using the Two-Parameter Model

1. Obtain the test characteristic curve for a test with five items using the following
item difficulty and item discrimination parameters:

b1 D 0:0 b2 D 0:0 b3 D 0:0 b4 D 0:0 b5 D 0:0

a1 D 0:4 a2 D 0:8 a3 D 0:4 a4 D 0:8 a5 D 0:4



4.5 Exercises 65

The test characteristic curve is nearly a straight line with a rather shallow slope
reflecting the low to moderate values of a. The mid true score of 2:5 occurs, as
expected, at an ability level of 0:0.

2. Obtain the test characteristic curve for a test with five items using the following
item difficulty and item discrimination parameters:

b1 D 1:0 b2 D 1:0 b3 D 1:0 b4 D 1:0 b5 D 1:0

a1 D 1:6 a2 D 1:9 a3 D 1:6 a4 D 1:9 a5 D 1:6

The majority of the test characteristic curve is compressed into a rather small
section of the ability scale. Up to an ability level of �1 the true score is nearly
zero. Beyond an ability level of 2:5, the true score is approaching a value of J.
Between these two limits, the curve has a definite S-shape and the steep slope
reflects the high values of the item discrimination parameters. The mid true score
of 2:5 occurs at an ability level of 1:0. Notice how the difference in average
level of item discrimination parameters in these last two problems shows in the
difference of the steepness of the two curves.

3. Obtain the test characteristic curve for a test with five items using the following
item difficulty and item discrimination parameters:

b1 D �2:0 b2 D �1:5 b3 D �1:0 b4 D �0:5 b5 D 0:0

a1 D 0:4 a2 D 1:7 a3 D 0:9 a4 D 1:6 a5 D 0:8

The test characteristic curve has a moderate S-shape and has a mid true score of
2:5 at an ability level of �0:8, which is not the average value of b but is close
to it.

4.5.3 Using the Three-Parameter Model

1. Obtain the test characteristic curve for a test with five items using the following
item difficulty, item discrimination, and guessing parameters:

b1 D 1:0 b2 D 1:2 b3 D 1:5 b4 D 1:8 b5 D 2:0

a1 D 1:2 a2 D 0:9 a3 D 1:0 a4 D 1:5 a5 D 0:6

c1 D 0:25 c2 D 0:20 c3 D 0:25 c4 D 0:20 c5 D 0:30

The test characteristic curve has a very long lower tail that levels out just above
a true score of 1:2, which is the sum of the values of the parameter c for the five
items. Because of the long lower tail, there is very little change in true scores
from an ability level of �3:0 to 0:0. Above an ability level of zero, the curve
slopes up and begins to approach a true score of J. The mid true score of 2:5
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corresponds to an ability level of about 0:5. Thus, the test functions among the
high-ability examinees even though, due to guessing, low-ability examinees have
true scores just above 1:2.

2. Obtain the test characteristic curve for a test with ten items using the following
item difficulty, item discrimination, and guessing parameters:

b1 D 2:34 b2 D �1:09 b3 D �1:65 b4 D �0:40 b5 D 2:90

b6 D �1:54 b7 D �1:52 b8 D �1:81 b9 D �0:63 b10 D �2:45

a1 D 1:90 a2 D 1:64 a3 D 2:27 a4 D 0:94 a5 D 1:83

a6 D 2:67 a7 D 2:01 a8 D 1:98 a9 D 0:92 a10 D 2:54

c1 D 0:30 c2 D 0:30 c3 D 0:07 c4 D 0:12 c5 D 0:16

c6 D 0:27 c7 D 0:17 c8 D 0:27 c9 D 0:28 c10 D 0:07

Compared to the previous test characteristic curves, this one is quite different.
The curve goes up sharply from an ability level of �3 to �1. Then it changes
quite rapidly into a rather flat line that slowly approaches a value of J. The mid
true score of 5:0 is at an ability level of �1:5, indicating that the test functions
among the low-ability examinees. This reflects the fact that all but two of the
items had a negative value of the parameter b.

3. These are for some exploratory exercises:

(a) Select the number of items of your choice (e.g., J D 10).
(b) Select the item characteristic curve model of your choice (e.g., the three-

parameter model).
(c) Set the vectors of item parameters with the values of your choice.
(d) When the test characteristic curve appears on the screen, try to relate the

shape of the curve and the set of item parameters you used.
(e) Using the same number of items and the same item characteristic model, set

the item parameters to the values of your choice that are different from the
earlier set.

(f) Try to display the new test characteristic curve on the same graph as the
previous curve.

(g) Repeat the process until you can predict what effect the changed item
parameters will have on the form of the test characteristic curve.

4.6 Things to Notice

1. Relation of the true score and the ability level:

(a) Given an ability level, the corresponding true score can be found via the test
characteristic curve.

(b) Given a true score, the corresponding ability level can be found via the test
characteristic curve.

(c) Both the true scores and ability are continuous variables.
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2. Shape of the test characteristic curve:

(a) When J D 1, the true score ranges from 0 to 1 and the shape of the test
characteristic curve is identical to that of the item characteristic curve for the
single item.

(b) The test characteristic curve does not always look like an item characteristic
curve. It can have regions of varying steepness and plateaus. Such curves
reflect a mixture of item parameter values having a large range of values.

(c) The ability level at which the mid true score (J=2) occurs depends primarily
upon the average value of the item difficulty parameters and is an indicator
of where the test functions on the ability scale.

(d) When the values of the item difficulty parameters have a limited range, the
steepness of the test characteristic curve depends primarily upon the average
value of the item discrimination parameters. When the values of the item
difficulty parameters are spread widely over the ability scale, the steepness
of the test characteristic curve will be reduced even though the values of the
item discriminations remain the same.

(e) Under the three-parameter model the lower limit of the true scores is the sum
of the values of the parameter c for the J items of the test.

(f) The shape of the test characteristic curve depends upon the number of items
in the test, the item characteristic curve model and the mix of values of the
item parameters possessed by the J items in the test.

3. It would be possible to construct a test characteristic curve that decreases as
ability increases. To do so would require items with negative item discrimination
for the correct response to the items. Such a test would not be considered to be
a good test because the higher an examinee’s ability level, the lower the score
expected for the examinee.



Chapter 5
Estimating an Examinee’s Ability

5.1 Introduction

Under item response theory, the primary purpose for administering a test to an
examinee is to locate that person on the ability scale. If such an ability measure
can be obtained for each person taking the test, two goals can be achieved. First,
the examinee can be evaluated in terms of how much underlying ability he or she
possesses. Second, comparisons among examinees can be made for purposes of
assigning grades, awarding scholarships, etc. Thus, the focus of this chapter is upon
the examinees and the procedures for estimating an ability score (parameter) for an
examinee.

The test used to measure an unknown latent trait will consist of J items each
of which measures some facet of the trait. In the previous chapters, dealing with
item parameters and their estimation, it was assumed that the ability parameter of
each examinee was known. Conversely, to estimate an examinee’s unknown ability
parameter, it will be assumed that the numerical values of the parameters of the test
items are known. A direct consequence of this assumption is that the metric of the
ability scale will be the same as the metric of the known item parameters. When
the test is taken, an examinee will respond to each of the J items in the test and the
responses will be dichotomously scored. The result will be a score of either 1 or 0

for each item in the test. It is common practice to refer to the item score of 1 or 0

as the examinee’s item response. Thus, the list of 1s and 0s for the J items is called
the examinee’s item response vector. The task at hand is to use this item response
vector and the known item parameters to estimate the examinee’s unknown ability
parameter.
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5.2 Ability Estimation Procedures

Under item response theory, maximum likelihood procedures are used to estimate an
examinee’s ability. As was the case for item parameter estimation, this procedure is
an iterative process. It begins with some a priori value for the ability of the examinee
and the known values of the item parameters. These are used to compute the
probability of correct response to each item for that examinee. Then an adjustment
to the ability estimate is obtained that improves the agreement of the computed
probabilities with the examinee’s item response vector. The process is repeated
until the adjustment becomes small enough that the change in the estimated ability
is negligible. The result is an estimate of the examinee’s ability parameter. This
process is then repeated separately for each examinee taking the test. In Chap. 7, a
procedure will be presented through which the ability levels of all examinees are
estimated simultaneously. However, this procedure is based upon an approach that
treats each examinee separately. Hence, the basic issue is how the ability of a single
examinee can be estimated.

The ability estimation equation for the two-parameter model is shown below:

O�sC1 D O�s �

JX

jD1

ajŒuj � Pj. O�s/�

�
JX

jD1

a2
j Pj. O�s/Qj. O�s/

; (5.1)

where

O�s is the provisional, estimated ability of the examinee within iteration s,
aj is the item discrimination parameter of item j, j D 1; 2; : : : ; J,
uj is the response made by the examinee to item j, where

uj D 1 for a correct response and
uj D 0 for an incorrect response,

Pj. O�s/ is the probability of correct response to item j, under the given item
characteristic curve model, at ability level O� within iteration s, and
Qj. O�s/ D 1 � Pj. O�s/ is the probability of incorrect response to item j, under
the given item characteristic curve model, at ability level O� within iteration s.

The equation has a rather simple explanation. Initially, the O�s on the right side of
the equal sign is set to some arbitrary value, such as 1. The probability of correct
response to each of the J items in the test is calculated at this ability level using
the known item parameters in the given item characteristic curve model. Then the
second term to the right of the equal sign is evaluated. This is the adjustment term,
denoted by � O�s as shown in
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O�sC1 D O�s � � O�s:

The value of O�sC1 on the left side of the equal sign is obtained by subtracting � O�s

from O�s. This value, O�sC1, becomes O�s in the next iteration. The numerator of the
adjustment term contains the essence of the procedure. Notice that Œuj � Pj. O�s/� is
the difference between the examinee’s item response to item j and the probability of
correct response at an ability level of O�s. Now, as the ability estimate gets closer to
the examinee’s ability, the sum of the differences between uj and Pj. O�s/ gets smaller.
Thus, the goal is to find the ability estimate yielding values of Pj. O�s/ for all items
simultaneously that minimizes this sum. When this happens, the � O�s term becomes
as small as possible and the value of O�sC1 will not change from iteration to iteration.
This final value of O�sC1 is then used as the examinee’s estimated ability. The ability
estimate will be in the same metric as the numerical values of the item difficulty
parameters. One nice feature of Eq. (5.1) is that it can be used with all three item
characteristic curve models, although the three-parameter model requires a slight
modification.

A three-item test will be used to illustrate the ability estimation process. Under
the two-parameter model, the known item parameters are:

b1 D �1:0 b2 D 0:0 b3 D 1:0

a1 D 1:0 a2 D 1:2 a3 D 0:8

The examinee’s item responses were:

u1 D 1 u2 D 0 u3 D 1

The a priori estimate of the examinee’s ability is set to O�s D 1:0. Substituting these
values to the two-parameter model,

Pj. O�s/ D 1

1 C expŒ�aj. O�s � bj/�
;

the first iteration yields:

Item j uj Pj. O�s/ Qj. O�s/ ajŒuj � Pj. O�s/� a2
j Pj. O�s/Qj. O�s/

1 1 0:88 0:12 0:1192 0:1050

2 0 0:77 0:23 �0:9222 0:2562

3 1 0:50 0:50 0:4000 0:1600

Sum �0:4030 0:5212

� O�s D �0:4030=.�0:5212/ D 0:7733, and O�sC1 D 1:0 � 0:7733 D 0:2267. This
value O�sC1 becomes O�s in the next iteration.
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The second iteration yields:

Item j uj Pj. O�s/ Qj. O�s/ ajŒuj � Pj. O�s/� a2
j Pj. O�s/Qj. O�s/

1 1 0:77 0:23 0:2268 0:1753

2 0 0:57 0:43 �0:6811 0:3534

3 1 0:35 0:65 0:5199 0:1456

Sum 0:0656 0:6744

� O�s D 0:0656=.�0:6744/ D �0:0972, and O�sC1 D 0:2267 � .�0:0972/ D 0:3239.
Again, this value O�sC1 becomes O�s in the next iteration.

The third iteration yields:

Item j uj Pj. O�s/ Qj. O�s/ ajŒuj � Pj. O�s/� a2
j Pj. O�s/Qj. O�s/

1 1 0:79 0:21 0:2102 0:1660

2 0 0:60 0:40 �0:7152 0:3467

3 1 0:37 0:63 0:5056 0:1488

Sum 0:0006 0:6616

� O�s D 0:0006=.�0:6616/ D �0:0009, and O�sC1 D 0:3239 � .�0:0009/ D 0:3248.
At this point, the process is terminated as the absolute value of the adjustment
(0:0009) is very small. Thus, the examinee’s estimated ability is 0:32.

Unfortunately, there is no way to know the examinee’s actual ability parameter.
The best one can do is to estimate it. However, this does not prevent us from
conceptualizing such a parameter. Fortunately, one can obtain a standard error of
the estimated ability that provides some indication of the precision of the estimate.
The underlying principle is that an examinee, hypothetically, could take the same
test a large number of times, assuming no recall of how the previous test items
were answered. An ability estimate O� would be obtained from each testing. The
standard error is a measure of the variability of the values of O� around the examinee’s
unknown parameter value � . In the present case an estimated standard error can be
computed using the equation given as

SE. O�/ D 1vuut
JX

jD1

a2
j Pj. O�/Qj. O�/

: (5.2)

It is of interest to note that the term under the square root sign is exactly the negative
denominator term in Eq. (5.1). As a result, the estimated standard error can be
obtained as a side product of estimating the examinee’s ability.

In the example given above, it was

SE. O� D 0:32/ D 1=
p

0:6616 D 1:22944624:
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Thus, the examinee’s ability was not estimated very precisely as the standard error,
1.23, is very large. This is primarily due to the fact that only three items were used
here and one would not expect a very good estimate. As will be shown in the next
chapter, the standard error of an examinee’s estimated ability plays an important
role in item response theory.

There are two cases for which the maximum likelihood estimation procedure
fails to yield a finite ability estimate. First, when an examinee answers none of
the items correctly, the corresponding ability estimate is negative infinity. Second,
when an examinee answers all the items in the test correctly, the corresponding
ability estimate is positive infinity. In both of these cases it is impossible to obtain an
ability estimate for the examinee (the computer literally cannot compute a number
as big as infinity). Consequently, the computer programs used to estimate ability
must protect themselves against these two conditions. When they detect either a test
score of zero or a perfect test score, they will eliminate the examinee from further
analysis and set the estimated ability to some symbol such as ****** to indicate
what has happened. Sometimes a fixed set of finite numbers (e.g., � log 2J for a test
score of zero and log 2J for a perfect score) can be arbitrary assigned to these cases.

5.3 Item Invariance of an Examinee’s Ability Estimate

Another basic principle of item response theory is that the examinee’s ability is
invariant with respect to the items used to determine it. This principle rests upon two
conditions: first, all the items measure the same underlying latent trait; second, the
values of all the item parameters are in a common metric. To illustrate this principle,
assume that an examinee has an ability score of zero, which places him at the middle
of the ability scale. Now, if a set of ten items having an average item difficulty
of �2:0 were administered to this examinee, the item responses can be used to
estimate the examinee’s ability, yielding O�1 for this test. Then if a second set of ten
items having an average item difficulty of C1:0 were administered to this examinee,
these item responses can be used to estimate the examinee’s ability, yielding O�2

for this second test. Under the item-invariance principle, O�1 D O�2; that is, the
two sets of items should yield the same ability estimate, within sampling variation,
for the examinee. In addition, there is no requirement that the item discrimination
parameters be the same for the two sets of items. This principle is just a reflection of
the fact that the item characteristic curve spans the whole ability scale. Just as any
subrange of the ability scale can be used in the estimation of item parameters, the
corresponding segments of several item characteristic curves can be used to estimate
an examinee’s ability. Items with a high average item difficulty will have a point on
their item characteristic curves that corresponds to the ability of interest. Similarly,
items with a low average item difficulty will have a point on their item characteristic
curves that corresponds to the ability of interest. Consequently, either set of items
can be used to estimate the ability of examinees at that point. In each set, a different
part of the item characteristic curve is involved, but that is acceptable.
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The practical implication of this principle is that a test located anywhere along the
ability scale can be used to estimate an examinee’s ability. For example, an examinee
could take a test that is “easy” or a test that is “hard” and obtain, on the average, the
same estimated ability. This is in sharp contrast to classical test theory where such
an examinee would get a high score on the easy test, a low score on the hard test,
and there is no way of ascertaining the examinee’s underlying ability. Under item
response theory, the examinee’s ability is fixed and invariant with respect to the
items used to measure it. A word of warning is in order with respect to the meaning
of the word “fixed.” An examinee’s ability is fixed only in the sense that it has a
particular value in a given context. For example, if an examinee took the same test
several times and it could be assumed he or she would not remember the items or the
responses from testing to testing, the examinee’s ability would be fixed. However,
if the examinee received remedial instruction between testings or if there were
carryover effects, the examinee’s underlying ability level would be different for each
testing. Thus, the examinee’s underlying ability level is not immutable. There are a
number of applications of item response theory that depend upon an examinee’s
ability level changing as a function of changes in the educational context.

The item invariance of an examinee’s ability and the group invariance of an
item’s parameters are two facets of what is referred to, generically, as the invariance
principle of item response theory. This principle is the basis for a number of practical
applications of the theory.

5.4 Computer Session

This session has three purposes that result in apparently similar outcomes which
are actually different in their conceptual basis. The first is to show how to obtain the
estimate of the ability parameter under the two-parameter model. A general function
to estimate the ability parameter for all three item characteristic curve models is also
presented in conjunction with the first purpose under the assumption that the values
of item parameters are known.

The second purpose is to illustrate how an examinee’s estimated ability varies
when the same test is taken a number of times. A test consisting of a few items
with known item parameters will be established, the value of the examinee’s ability
parameter will be set, and the computer will generate the examinee’s item responses.
These will be used in Eq. (5.1) to estimate the examinee’s ability. The computer
will then generate a new set of item responses to these same items and another
ability estimate is to be obtained. After several estimates are obtained, the mean
and standard deviation of the estimates will be computed and compared to their
theoretical values. The intent is to allow you to develop a sense of how ability
estimates for a single examinee are distributed under repeated use of the same test.

The third purpose is to illustrate the item invariance of an examinee’s ability.
A small test will be established through the values of its item parameters, the
examinee’s ability will be set, and the computer will generate the examinee’s item
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responses. These will be used in Eq. (5.1) to obtain an ability estimate for the
examinee. Then a new test with a set of different item parameter values will be
established, item responses for the same examinee generated, and another ability
estimate obtained. This process will be repeated for several different tests, resulting
in a set of ability estimates. If the invariance principle holds, all the estimates should
be clustered around the value of the examinee’s ability parameter.

5.4.1 Procedures for an Example Case

This example will illustrate how to obtain an ability estimate for an examinee who
responded to a test with three items. It is assumed that the item parameters under the
two-parameter model are known. The followings are the R command lines to obtain
the ability estimate and the standard error:

> u <- c(1, 0, 1)
> b <- c(-1.0, 0.0, 1.0)
> a <- c(1.0, 1.2, 0.8)
> th <- 1.0
> J <- length(b)
> S <- 10
> ccrit <- 0.001
> for (s in 1:S) {

sumnum <- 0.0
sumdem <- 0.0
for (j in 1:J) {

phat <- 1 / (1 + exp(-a[j] * (th - b[j])))
sumnum <- sumnum + a[j] * (u[j] - phat)
sumdem <- sumdem - a[j]**2 * phat * (1.0 - phat)

}
delta <- sumnum / sumdem
th <- th - delta
cat(paste("th=", th, "\n")); flush.console()
if (abs(delta) < ccrit | s == S) {

se <- 1 / sqrt(-sumdem)
cat(paste("se=", se, "\n")); flush.console()
break

}
}

> th
> se

By pressing the enter key in the end of each line, the computer will perform
iterations to obtain the ability estimate and the accompanying standard error for
an examinee with the given item responses using the known item parameters under
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the two-parameter model. The final values of the ability estimate and the standard
error can be printed out with the last two command lines after finishing the loop.

The first line contains the examinee’s response vector. The next two command
lines are used to set up the known item parameters for the three items. The fourth
line is used to set up an initial value of the O� , th (i.e., theta hat). To match the initial
value to the one used in the illustration in the beginning of this chapter, the value of
1:0 was used here. The fifth line defines the total number of items J to the length
of the vector of the item difficulty parameters. The sixth line sets up the maximum
number of iterations to perform (i.e., 10 in this example). The seventh line defines
the value of the convergence criterion, ccrit, for the iteration. If the absolute value
of the � O�s term is smaller than the specified convergence criterion value (i.e., 0:001

in the above command line), then the iterative process will be terminated.
The for loop in the next line performs the iterations until the change in the

absolute value of the adjustment term reaches to a value smaller than that of the
convergence criterion. After initializing the sum of the numerator and the sum of
the denominator of the adjustment term in Eq. (5.1), the inner for loop will obtain
the values of Pj. O�s/, ajŒuj �Pj. O�s/�, and a2

j Pj. O�s/Qj. O�s/ for each item. After obtaining
these values and finishing the inner for loop, the lines in the subsequent outer for
loop will print out, using the R functions cat and paste, the improved provisional
value of O�sC1 in the R console window. When the convergence criterion has been
met or the iteration reaches the maximum number of iterations, then the standard
error from Eq. (5.2) will be calculated and printed into the R console window.

5.4.2 An R Function to Estimate Ability

It is possible to create an R function to estimate the ability parameter and to obtain
the standard error of the estimate given the item characteristic curve model, the
response vector, and the set of known item parameters. Consider the following
function named ability:

> ability <- function(mdl, u, b, a, c) {
J <- length(b)
if (mdl == 1 | mdl == 2 | missing(c)) {
c <- rep(0, J)

}
if (mdl == 1 | missing(a)) { a <- rep(1, J) }
x <- sum(u)
if (x == 0) {
th <- -log(2 * J)

}
if (x == J) {
th <- log(2 * J)

}
if (x == 0 | x == J) {
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sumdem <- 0.0
for (j in 1:J) {

pstar <- 1 / (1 + exp(-a[j] * (th - b[j])))
phat <- c[j] + (1.0 - c[j]) * pstar
sumdem <- sumdem - a[j]**2 * phat * (1.0 - phat) *
(pstar / phat)**2

}
se <- 1 / sqrt(-sumdem)

}
if (x != 0 & x != J) {
th <- log(x / (J - x))
S <- 10
ccrit <- 0.001
for (s in 1:S) {

sumnum <- 0.0
sumdem <- 0.0
for (j in 1:J) {
pstar <- 1 / (1 + exp(-a[j] * (th - b[j])))
phat <- c[j] + (1.0 - c[j]) * pstar
sumnum <- sumnum + a[j] * (u[j] - phat) *
(pstar / phat)

sumdem <- sumdem - a[j]**2 * phat * (1.0 - phat) *
(pstar / phat)**2

}
delta <- sumnum / sumdem
th <- th - delta
if (abs(delta) < ccrit | s == S) {
se <- 1 / sqrt(-sumdem)
break

}
}

}
cat(paste("th=", th, "\n")); flush.console()
cat(paste("se=", se, "\n")); flush.console()
thse <- c(th, se)
return(thse)

}

The input to the function ability first depends on the item characteristic curve
model, mdl, where the three integers, 1, 2, and 3, are acceptable. The response
vector, u, that is the same length as each of the item parameter vectors is also
required. The set of item parameters dependent upon the model selected is also
required in the default order of b, a, and c. Using the required input variables
as the arguments of the function, the function obtains and prints out the value of
the ability estimate (th= O� ) and the standard error of the ability estimate (se=
SE. O�/). Ultimately the function returns a vector of size two (i.e., thse–theta hat
and standard error) that contains the ability estimate and the standard error of the
ability estimate.
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There are several things that should be explicated. First, unlike the earlier
example the initial value of the ability estimate in the function ability is
log.x=.J � x//, where x is the summed, raw score of the examinee and J is the total
number of items. Second, before setting up the initial ability estimate of the log odds
ratio type, finite ability estimates, � log.2J/ and log.2J/, will be arbitrarily assigned
to the respective values of x D 0 and x D J. This may not be a universally viable
solution to the cases of a raw score of 0 and a perfect raw score of J; � log.2J � 1/

and log.2J � 1/ can also be used. As mentioned earlier, many computer programs
will simply print out a statement that finite ability estimates cannot be obtained
for these cases. With the finite estimates, the standard errors of the estimate can be
obtained for x D 0 and x D J. Third, the standard error of the estimate is not entirely
based on Eq. (5.2) because the three-parameter model requires some modification.
Last, the numerator term in Eq. (5.1) is also modified under the three-parameter
model.

For the example data, the ability estimate and the standard error can be obtained
after defining the function ability, and then type in the following command lines
to the R console window:

> u <- c(1, 0, 1)
> b <- c(-1.0, 0.0, 1.0)
> a <- c(1.0, 1.2, 0.8)
> ability(2, u, b, a)

You may notice that the values of the ability estimate and the standard error from
the function ability are not exactly the same as those from the earlier results.
The different initial values caused the trivial differences.

If you want to make the output from the function ability as a variable, the
last line can be replaced with:

> thse <- ability(2, u, b, a)
> thse

The values contained in the vector thse within the function ability will be
returned, that is, newly created as an R variable with the same name, after executing
the function. The values are displayed by typing in the variable name. You may use
a different name; so instead of using the above command line you may use:

> theta.se <- ability(2, u, b, a)
> theta.se

5.4.3 Procedure for Investigating the Sampling Variability of
Estimated Ability

This example case is to illustrate the sampling variability of a given examinee’s
estimated ability when the same test is administered several times. The model, the
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set of item parameters, and the ability parameter are assumed to be known. The
ability parameter can be randomly generated using an R function instead of being
arbitrarily specified. The R command line

> theta <- rnorm(1, 0, 1)

can be used for which the arguments in the R function rnorm (i.e., randomly
generate normal deviates) designate the number of cases, the mean, and the standard
deviation of the normal distribution. Then the item response vector will be randomly
generated based on the parameters. The generated item response vector will be used
to obtain the ability estimate and the standard error. The process will be replicated
several times. Theoretically, the ability estimates from the replication should be
very close to the ability parameter that was used to generate the data. The standard
deviation of the ability estimates should be very similar to the theoretical standard
error based on the ability parameter. Also the average of the standard errors of
the estimates should be very similar to the theoretical standard error. The function
ability will be employed for each replication, and hence the values of item
parameters are assumed to be known and used as arguments.

The R command lines are as follows:

> mdl <- 2
> theta <- 0.5
> b <- c(-0.5, -0.25, 0.0, 0.25, 0.5)
> a <- c(1.0, 1.5, 0.7, 0.6, 1.8)
> J <- length(b)
> if (mdl == 1 | mdl == 2) { c <- rep(0, J) }
> if (mdl == 1) { a <- rep(1, J) }
> sumdemt <- 0.0
> for (j in 1:J) {

Pstar <- 1 / (1 + exp(-a[j] * (theta - b[j])))
P <- c[j] + (1 - c[j]) * Pstar
sumdemt <- sumdemt - a[j]**2 * P * (1.0 - P) *

(Pstar / P)**2
}

> set <- 1 / sqrt(-sumdemt)
> R <- 10
> thr <- rep(0, R)
> ser <- rep(0, R)
> for (r in 1:R) {

u <- rep(0, J)
for (j in 1:J) {

P <- c[j] + (1 - c[j]) /
(1 + exp(-a[j] * (theta - b[j])))

u[j] <- rbinom(1, 1, P)
}
thse <- ability(mdl, u, b, a, c)
thr[r] <- thse[1]
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ser[r] <- thse[2]
}

> theta
> set
> thr
> mean(thr)
> sd(thr)
> ser
> mean(ser)

The last seven lines will generate the main results. The ability parameter, 0:5,
that we specified in the earlier input line will be printed out in the R console window
from the theta line. The theoretical standard error from the parameter value as if
the parameter is hypothesized to be an estimate will be printed by the next line set
(i.e., standard error–theoretical). Based on the number of replications specified, the
vector that contains the ability estimates from the replications will be printed out
by thr (i.e., theta hat from the replication). The average value of the thr will be
obtained using the R function mean. The observed standard error will be obtained
as the standard deviation of the replicated ability estimates using the R function sd.
The vector that contains the standard errors of the estimates from the replications
will be printed out by ser (i.e., standard error from the replication). The average
value of the standard errors will be calculated in the last line.

Because the function ability contains the command lines to print out the
ability estimate and the standard error to the R console window in each iteration,
the values of thr and ser can also be found in the beginning of the output lines.
If these values from the replications are not wanted, the two lines in the function
ability should be commented out with a symbol # or possibly deleted from the
function before executing it:

# cat(paste("th=", th, "\n")); flush.console()
# cat(paste("se=", se, "\n")); flush.console()

Parts of the output in the R console window from one example run are as follows:

...
> theta
[1] 0.5
> set
[1] 0.7829669
> thr
[1] 0.2622246 -0.2226930 -0.2874176 1.8696771 0.3215108
[6] -0.8031985 0.8995979 1.7040941 0.4412501 0.8995979
> mean(thr)
[1] 0.5084643
> sd(thr)
[1] 0.8548544
> ser
[1] 0.7693594 0.7999961 0.8092524 1.3458059 0.7707814
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[6] 0.9231352 0.8577812 1.2321971 0.7776090 0.8577812
> mean(ser)
[1] 0.9143699
>

Note that the ability parameter, 0:5, is very close to the mean of the ability
estimates, 0:51. The theoretical standard error, 0:78, is somewhat smaller than the
observed standard error obtained from the ability estimates (i.e., 0:85) or the average
value of the standard errors from the ten replications (i.e., 0:91). The number in the
brackets in the R output indicates the order of the elements in a variable or vector.
Such a number is useful especially if the variable is a vector of some length (e.g.,
thr). For example, the sixth value of the ability estimates from the replications is
printed out the right side of [6]. Depending upon the size of the R console window
on the computer screen, the number within the brackets in the second line of the
output for a variable display will be changed. The observed standard error of the
ability estimates should approximate the theoretical value. However, with such a
small number of items and replications, the results will probably deviate somewhat
from their theoretical values.

Although in the example run the mean of the ability estimates is very close to
the ability parameter, each ability estimate does not seem to be very close to the
ability parameter. In addition, other runs due to the random data generation may
yield the mean of the ability estimates that is not really similar to the parameter
value. Also standard errors from the iterations might show somewhat different sizes.
When the number of items is as large as the usual number of items in practical
testing situations, all the estimates will be similar and possibly very close to the
ability parameter value. A large number of items also yields values of standard errors
to be smaller and similar.

5.4.4 Procedure for Investigating the Item Invariance
of an Examinee’s Ability

In this example a given examinee will be administered a number of different tests.
The intent is to illustrate that the estimated abilities should cluster about the value of
the examinee’s ability parameter. The function ability will be employed in each
replication to obtain the ability estimate and the standard error.

The model, the value of the ability parameter, and the number of items in a
test are assumed to be known. The computer will generate the random values of
the item parameters. Using these parameters and the specified item characteristic
curve model, the item response vector will be randomly generated. The examinee’s
ability will be estimated and shown in the R console window accompanied by its
standard error. The process will be replicated several times. The maximum number
of iterations is specified by the value of R. Theoretically, the ability estimates from
replications should be very close to the ability parameter that was used to generate
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the data. The average of the ability estimates can be obtained and compared to the
value of the ability parameter. There should not be a large amount of scatter in the
estimates. Again, due to the small number of items and the limited number of ability
estimates from the replications used, the item invariance of the ability estimate may
not be readily apparent.

The R command lines for an example run are as follows:

mdl <- 2
theta <- 0.5
J <- 5
R <- 10
thr <- rep(0, R)
ser <- ref(0, R)
for (r in 1:R) {
b <- round(runif(J,-3,3), 2)
a <- round(runif(J,0.2,2.8), 2)
c <- round(runif(J,0,.35), 2)
if (mdl == 1 | mdl == 2) { c <- rep(0, J) }
if (mdl == 1) { a <- rep(1, J) }
u <- rep(0, J)
for (j in 1:J) {
P <- c[j] + (1 - c[j]) /

(1 + exp(-a[j] * (theta - b[j])))
u[j] <- rbinom(1, 1, P)

}
thse <- ability(mdl, u, b, a, c)
thr[r] <- thse[1]
ser[r] <- thse[2]

}
theta
thr
mean(thr)

The last three lines will generate the main results. The ability parameter, 0:5, that
we specified in the earlier input line will be printed out in the R console window
from the theta line. Based on the number of replications specified, the vector that
contains the ability estimates from the replications will be printed out by thr (i.e.,
theta hat from the replication). The average value of the thr will be obtained using
the R function mean.

Because the function ability contains the command lines to print out the
ability estimate and the standard error to the R console window in each iteration,
the values of thr and ser can also be found in the beginning of the output lines.
Again, if these values from the replications are not wanted, the two lines in the
function ability should be commented out with a symbol # or possibly deleted
from the function before executing it.
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Parts of the output in the R console window from one example run are as follows:

...
> theta
[1] 0.5
> thr
[1] 1.42668348 -1.26110250 -0.04506560 1.10788283
[5] -0.03994666 2.30258509 -0.20780057 0.59002658
[9] 0.30427844 0.67874115
> mean(thr)
[1] 0.4856282
>

Note that the ability parameter, 0:5, is close to the mean of the ability estimates,
0:49, for this particular example run. However, with such a small number of items
and the limited number of replications, the results will probably deviate somewhat
from their theoretical values. Each ability estimate does not seem to be very close
to the ability parameter. Other runs due to the random data generation may yield
the mean of the ability estimates that is not really similar to the parameter value.
When the number of items is as large as the usual number of items in practical
testing situations, all the estimates will be similar and very close to the ability
parameter value. Also high quality item parameters obtained from narrow ranges
of the uniform distribution (e.g., b values matched with the ability parameter, high
a values, and near-zero c values) may yield the ability estimate that is close to the
ability parameter.

The number of items can be increased by changing the value of J. The item
parameters can also be generated via some other distributions, for example:

b <- rnorm(J, 0, 2)
a <- rlnorm(J, 0, 0.5)
c <- rbeta(J, 41, 161)

In the above specification, values of the item difficulty parameters will be randomly
sampled from the normal distribution with parameters of mean 0 and standard
deviation 2; values of the item discrimination parameters will be randomly sampled
from the lognormal distribution with parameters of mean 0 and standard deviation
0.5; values of the guessing parameters will be randomly sampled from the beta
distribution with parameters of alpha 41 and beta 161 (cf. the mode is .41�1/=.41C
161 � 2/ D 0:2; the mean is 41=.41 C 161/ D 0:202970297).

Better quality item parameters can be generated by changing the arguments in the
respective distributions. For example, assuming that the ability parameter is located
in the middle of the ability scale at 0, we may specify:

b <- rnorm(J, 0, 1)
a <- rlnorm(J, 0, 0.25)
c <- rbeta(J, 401, 1601)
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If only two decimal places are needed for these parameters, then we may use:

b <- round(rnorm(J,0,1), 2)
a <- round(rlnorm(J,0,0.25), 2)
c <- round(rbeta(J,401,1601), 2)

5.5 Exercises

For the following exercises, it is assumed that you have defined the function
ability by typing it in the R console window.

5.5.1 Sampling Variability of Estimated Ability

1. An example case earlier will be performed using the item characteristic curve
model of your choice. The two-parameter model may be a good starting model.

(a) Use the number of items J D 5 and the number of replications R D 10.
(b) Set up the ability parameter to 0:5. Note that you may use a randomly

sampled value instead.
(c) Use the item characteristic curve model that you want to employ.
(d) Since you know the value of the examinee’s ability parameter, choose values

of the item difficulty parameters randomly from a uniform distribution with a
range from �3 to 3. If the two-parameter model is used, choose values of the
item discrimination parameters randomly from a uniform distribution with
a range from 0:2 to 2:8. For the three-parameter model, try to use values of
the guessing parameters randomly selected from a uniform distribution with
a range from 0 to 0:35. You may use the following R command lines:

b <- runif(J, -3, 3)
a <- runif(J, 0.2, 2.8)
c <- runif(J, 0, .35)

Almost equivalently, you may use the following command lines, assuming
that you want to use only two decimal places for the values of item
parameters:

b <- round(runif(J,-3,3), 2)
a <- round(runif(J,0.2,2.8), 2)
c <- round(runif(J,0,.35), 2)

(e) Obtain the ability estimates and standard errors as well as relevant statistics.
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When the summary results are obtained on the R console window, try to write
down values of the ability estimates on a piece of paper so you can use them in
the next exercise.

2. The intent of this exercise is to see if you can improve upon the previous
estimate of the examinee’s ability parameter by proper selection of the test’s item
parameters.

(a) Use the number of items J D 5 and the number of replications R D 10.
(b) Set up the ability parameter to one of the values you have obtained from

the previous exercise (i.e., a number may be close to the original ability
parameter 0:5).

(c) Use the item characteristic curve model that you employed in the previous
exercise.

(d) Since you know the value of the examinee’s ability parameter, choose values
of the item difficulty parameters that are close to this ability parameter
value and use large values of item discrimination parameters. For the three-
parameter model, try to use the guessing parameter values a bit smaller than
0:2.

(e) Obtain the ability estimates and standard errors as well as relevant statistics.

If you chose the item parameter values wisely, the mean of the ability estimates
should have been close to the value of the examinee’s ability parameter. The
observed standard error should have also approximated the theoretical value. If
such was not the case, first, think about some reasons for the lack of match.
You need to keep in mind that the obtained results are subject to considerable
sampling variability due to the small numbers of items being used (increasing J
to 10 or a higher number, say 30, will help) and the limited number of replications
used.

3. Experiment with different types of models and item parameter values to see if
you can determine what influences the distribution of the estimated abilities.

5.5.2 Item Invariance of an Examinee’s Ability

1. The intent of this exercise is to enable you to experiment with the item sets
used to illustrate the item invariance of the ability estimates. Rather than letting
the computer set the values of the item parameters, you can choose your own
values.

(a) Select the item characteristic curve model of your choice (e.g., the three-
parameter model).

(b) Set the ability parameter to a value of your choice (e.g., � D 0:5).
(c) Use the number of items J D 5.
(d) Select the number of replications, say R D 4. You may set up and initialize

the variables that will hold the ability estimates and the standard errors.
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(e) Set up the item parameter values of your own. For example, for the three-
parameter logistic model you may use such command lines as:

b <- c(-0.5, -0.25, 0.0, 0.25, 0.5)
a <- c(1.0, 1.5, 0.7, 0.6, 1.8)
c <- c(.1, .2, .1, .15, .2)

(f) Use R command lines to create an examinee’s item response vector that
contains the randomly generated responses of J D 5 items based on the
ability parameter and the item parameters.

(g) Use the function ability to obtain the returned vector that contains the
values of the ability estimate and the standard error.

(h) Write down the ability estimate and the standard error or try to save the
values onto the variables initialized in step e.

(i) Repeat steps e through h R D 4 times, but using a different set of item
parameters in each replication.

(j) Obtain the average value of the ability estimates from the replications and
compare the value with the ability parameter.

Theoretically, the average value of the estimates should be close to the value of
the examinee’s ability parameter. There should not be a large amount of scatter
in the estimates. Again due to the small number of items and the limited number
of estimates used, the item invariance of the ability estimate may not be readily
apparent.

2. To make things easy for you, you can let the computer generate not only
the ability parameter but also the sets of item parameter values. Repeat the
procedures for Exercise 1. Now the computer will do the tedious job of setting
the item parameters. You may experiment with a large number of items J as well
as a large number of replications R.

5.6 Things to Notice

1. Distribution of estimated ability.

(a) The average value of the estimates is reasonably close to the value of the
ability parameter for the examinee set by the computer program.

(b) When the item difficulties are at or near the examinee’s ability parameter
value, the mean of the estimated abilities will be close to that ability value.

(c) The standard error of the estimates can be quite large when the items are
not located near the ability of the examinee. However, the theoretical values
of the standard errors are also quite large and the obtained standard errors
approximate these values.

(d) When the values of the item discrimination parameters are large, the
standard error of the ability estimates is small. When the item discrimination
parameters are small, the standard error of the ability estimates is large.
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(e) You may have noticed that the number of iterations needed to obtain the
ability estimate varies widely. The closer the item difficulty parameters were
to the examinee’s ability, the fewer the number of iterations needed.

(f) The optimum set of items for estimating an examinee’s ability would have
all its item difficulty parameters equal to the examinee’s ability parameter
and have items with large values for the item discrimination parameters.

2. Item invariance of the examinee’s ability.

(a) The different sets of items can yield values of estimated ability that are near
the examinee’s actual ability level.

(b) The mean value of these estimates generally is a close approximation of the
examinee’s ability parameter. If one used many tests, each having a large
number of items, the mean estimated ability would equal the examinee’s
ability parameter. In addition, these estimates would be very tightly clustered
around the parameter value. In such a situation, it would be very clear that
the item invariance principle holds.

3. Overall observation.

(a) The computer session and exercises have mainly dealt with two facets of
estimating an examinee’s ability that are conceptually distinct but look
similar in certain respects. The first set of examples focused upon the
variability of the ability estimates about the value of the examinee’s ability
parameter. This will serve as the basis for the next chapter, which deals with
how well a test estimates ability over the whole ability scale. The second set
of exercises focused upon the item invariance of an examinee’s estimated
ability. This will serve as part of the basis for Chap. 7 dealing with test
calibration.

(b) The reader should keep in mind that an ability estimate is just another type
of test score, but it is interpreted within the context of item response theory.
Consequently, such ability estimates can be used to compute summary
statistics for groups of examinees and other indices of interest.

4. A final comment: In Chap. 1, the concept of a latent trait was introduced. An
integral part of item response theory is that an examinee can be positioned on the
scale representing this latent trait. Thus, in theory, each examinee has an ability
score (parameter value) that locates that person on the scale. However, in the real
world we cannot obtain the value of the examinee’s ability parameter. The best
one can do is obtain an estimate of it. In the computer session for this chapter,
it was assumed that the ability parameter was known. We could either assign or
generate the value of the examinee’s ability parameter. The specified set of the
ability parameter and the item parameters enabled the R program to generate the
item response vectors used to obtain the ability estimates and hence to illustrate
the theory.



Chapter 6
The Information Function

6.1 Introduction

When you speak of having information, it implies that you know something about
a particular object or topic. In statistics and psychometrics, the term information
conveys a similar, but somewhat more technical, meaning. The statistical meaning of
information is credited to Sir R.A. Fisher, who defined information as the reciprocal
of the variance with which a parameter could be estimated. Thus, if you could
estimate a parameter with precision (i.e., smaller variability), you would know more
about the value of the parameter than if you had estimated it with less precision (i.e.,
larger variability). Statistically, the magnitude of precision with which a parameter is
estimated is inversely related to the size of the variability of the estimates around the
value of the parameter. The variance of the estimators is denoted by �2. The amount
of information, denoted by I, then is given by the formula

I D 1

�2
: (6.1)

In item response theory, our interest is in estimating the value of the ability
parameter for an examinee. The ability parameter is denoted by � and O� is an
estimator of � . In the previous chapter, the standard deviation of the ability estimates
about the examinee’s ability parameter was computed. If this term is squared, it
becomes a variance. The inverted variance is a measure of the precision with which
a given ability level can be estimated. From Eq. (6.1), the amount of information at
a given ability level is the reciprocal of this variance. If the amount of information is
large, it means that an examinee whose true ability is at that level can be estimated
with precision; that is, all the estimates will be reasonably close to the true value. If
the amount of information is small, it means that the ability cannot be estimated with
precision and the estimates will be widely scattered about the true ability. Using the
appropriate formula, the amount of information can be computed for each ability
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Fig. 6.1 An information function

level on the ability scale from negative infinity to positive infinity. Because ability is
a continuous variable, information will also be a continuous variable. If the amount
of information is plotted against ability, the result is a graph of the information
function such as that shown in Fig. 6.1.

Inspection of Fig. 6.1 shows that the amount of information has a maximum at an
ability level of �1:0 and is about 3 for the ability range of �2:0 � � � 0:0. Within
this range, ability is estimated with some precision. Outside this range the amount of
information decreases rapidly and the corresponding ability levels are not estimated
very well. Thus, the information function tells us how well each ability level is
being estimated. It is important for the reader to recognize that the information
function does not depend upon the distribution of examinees over the ability scale.
In this regard, it is like the item characteristic curve and the test characteristic curve.
In a general-purpose test, the ideal information function would be a horizontal
line at some large value of I and all ability levels would be estimated with the
same precision. Unfortunately, such an information function is hard to achieve. The
typical information function looks somewhat like that shown in Fig. 6.1 and different
ability levels are estimated with differing degrees of precision. This becomes of
considerable importance to both the test constructor and the test consumer since it
means that the precision with which an examinee’s ability is estimated by a given
test, depends upon where the examinee’s ability is located on the ability scale.

6.2 Item Information Function

Since it depends upon the individual items composing a test, item response theory
is what is known as an itemized theory. Under the theory, each item of the test
measures the underlying latent trait. As a result the amount of information, based
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Fig. 6.2 An item information function

upon a single item, can be computed at any ability level and is denoted by Ij.�/

where j indexes the item. Because only a single item is involved, the amount of
information at any point on the ability scale is going to be rather small. If the
amount of item information is plotted against ability, the result is a graph of the
item information function such as that shown in Fig. 6.2.

An item measures ability with greatest precision at the ability level corresponding
to the item’s difficulty parameter. The amount of item information decreases as the
ability level departs from the item difficulty and approaches zero at the extremes of
the ability scale.

6.3 Test Information Function

Since a test is used to estimate the ability of an examinee, the amount of information
yielded by the test at any ability level can also be obtained. A test is a set of items;
therefore, the test information at a given ability level is simply the sum of the item
informations at that level. Consequently, the test information function is defined as

I.�/ D
JX

jD1

Ij.�/; (6.2)

where

I.�/ is the amount of test information at an ability level of � ,
Ij.�/ is the amount of information for item j at ability level � , and
J is the number of items in the test.
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Fig. 6.3 A test information function

The general level of the test information function will be much higher than that
for a single item information function. Thus, a test measures ability more precisely
than does a single item. An important feature of the definition of test information
given in Eq. (6.2) is that the more items in the test, the greater the amount of
information. Thus, in general, longer tests will measure an examinee’s ability with
greater precision than will shorter tests. Plotting the amount of test information
against ability yields a graph of the test information function such as that shown
in Fig. 6.3 for a ten-item test.

The maximum value of the test information function in Fig. 6.3 is modest and,
in this example, the amount of information decreases rather steadily as the ability
level differs from that corresponding to the maximum. Thus, ability is estimated
with some precision near the center of the ability scale. However, as the ability
level approaches the extremes of the scale, the amount of test information decreases
significantly.

The test information function is an extremely useful feature of item response
theory. It basically tells you how well the test is doing in estimating ability over the
whole range of ability scores. While the ideal test information function often may
be a horizontal line, it may not be the best for a specific purpose. For example, if
you were interested in constructing a test to award scholarships this ideal may not
be optimal. In this situation, you would like to measure ability with considerable
precision at ability levels near the ability used to separate those who will receive the
scholarship from those who do not. The best test information function in this case
would have a peak at the cutoff score. Other specialized uses of tests could require
other forms of the test information function.
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While an information function can be obtained for each item in a test, this
is rarely done. The amount of information yielded by each item is rather small
and we typically do not attempt to estimate an examinee’s ability with a single
item. Consequently, the amount of test information at an ability level and the test
information function are of primary interest. Since the test information is obtained
by summing the items information at a given ability level, the amount of information
is defined at the item level. The mathematical definition of the amount of item
information depends upon the particular item characteristic curve model employed.
Therefore, it is necessary to examine these definitions under each model.

6.4 Definition of Item Information

6.4.1 Two-Parameter Item Characteristic Curve Model

Under the two-parameter model, the item information function is defined as

Ij.�/ D a2
j Pj.�/Qj.�/; (6.3)

where

aj is the item discrimination parameter for item j,
Pj.�/ D 1=Œ1 C exp.�Lj/�,
Lj D aj.� � bj/,
Qj.�/ D 1 � Pj.�/, and
� is the ability level of interest.

To illustrate the use of Eq. (6.3), the amount of item information will be computed
at seven ability levels for an item having parameter values of bj D 1:0 and aj D 1:5

(see Table 6.1).

Table 6.1 Calculation of item information under the two-parameter
model, bj D 1:0 and aj D 1:5

� Lj exp.�Lj/ Pj.�/ Qj.�/ PjQj a2
j Ij.�/

�3.0 �6.0 403.429 0.002 0.998 0.002 2.25 0.006

�2.0 �4.5 90.017 0.011 0.989 0.011 2.25 0.024

�1.0 �3.0 20.086 0.047 0.953 0.045 2.25 0.102

0.0 �1.5 4.482 0.182 0.818 0.149 2.25 0.336

1.0 0.0 1.000 0.500 0.500 0.250 2.25 0.563

2.0 1.5 0.223 0.818 0.182 0.149 2.25 0.336

3.0 3.0 0.050 0.953 0.047 0.045 2.25 0.102

Note: PjQj D Pj.�/Qj.�/
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This item information function increases rather smoothly as ability increases and
reaches a maximum value of 0:563 at an ability of 1:0. After this point it decreases.
The obtained item information function is symmetrical about the value of the item’s
difficulty parameter. Such symmetry holds for all item information functions under
the Rasch model and the two-parameter model. When only a single item is involved
and the discrimination parameter has a moderate value, the magnitude of the amount
of item information is quite small.

6.4.2 Rasch Item Characteristic Curve Model

Under the Rasch model, the item information is defined as

Ij.�/ D Pj.�/Qj.�/: (6.4)

This is exactly the same as that under the two-parameter model when the value of
the item discrimination parameter is set to 1:0. To illustrate the use of Eq. (6.4), the
amount of item information will be calculated for an item having an item difficulty
parameter of 1:0 (see Table 6.2).

The general level of the amount of information yielded by this item is somewhat
lower than that of the previous example. This is a reflection of the value of the
item discrimination parameter being smaller than that of the previous item. Again,
the item information function is symmetric about the value of the item difficulty
parameter.

6.4.3 Three-Parameter Item Characteristic Curve Model

In Chap. 2, it was mentioned that the three-parameter model does not possess the
nice mathematical properties of the logistic function. The loss of these properties

Table 6.2 Calculation of item information under the Rasch model,
bj D 1:0

� Lj exp.�Lj/ Pj.�/ Qj.�/ PjQj a2
j Ij.�/

�3.0 �4.0 54.598 0.018 0.982 0.018 1.0 0.018

�2.0 �3.0 20.086 0.047 0.953 0.045 1.0 0.045

�1.0 �2.0 7.389 0.119 0.881 0.105 1.0 0.105

0.0 �1.0 2.718 0.269 0.731 0.197 1.0 0.197

1.0 0.0 1.000 0.500 0.500 0.250 1.0 0.250

2.0 1.0 0.368 0.731 0.269 0.197 1.0 0.197

3.0 2.0 0.135 0.881 0.119 0.105 1.0 0.105

Note: PjQj D Pj.�/Qj.�/
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becomes apparent in the complexity of the equation given below for the amount of
item information under this model:

Ij.�/ D a2
j

�
Qj.�/

Pj.�/

� �
.Pj.�/ � cj/

2

.1 � cj/2

�
; (6.5)

where

Pj.�/ D cj C .1 � cj/ � 1=Œ1 C exp.�Lj/�,
Lj D aj.� � bj/, and
Qj D 1 � Pj.�/.

To illustrate the use of these formulas, the computations will be shown for an
item having parameter values of bj D 1:0, aj D 1:5, cj D 0:2. The values of bj and
aj are the same as those for the preceding two-parameter example. The computations
will be performed in detail at an ability level of � D 0:0:

Lj D 1:5.0:0 � 1:0/ D �1:5

exp.�Lj/ D 4:482

1=Œ1 C exp.�Lj/� D 0:182

Pj.�/ D cj C .1 � cj/ � 1=Œ1 C exp.�L/� D 0:2 C 0:8.0:182/ D 0:346

Qj.�/ D 1 � 0:346 D 0:654

Qj.�/=Pj.�/ D 0:654=0:346 D 1:891

.Pj.�/ � cj/
2 D .0:346 � 0:2/2 D .0:146/2 D 0:021

.1 � cj/
2 D .1 � 0:2/2 D .0:8/2 D 0:64

a2
j D .1:5/2 D 2:25

Then,

Ij.�/ D Ij.0:0/ D .2:25/.1:891/Œ.0:021/=.0:64/� D 0:142

Clearly, this is more complicated than the computations for the previous two
models, which are in fact, logistic models. The amount of item information
computations for this item at seven ability levels is shown in Table 6.3.

Table 6.3 Calculation of the amount of item information under the three-
parameter model, bj D 1:0, aj D 1:5, cj D 0:2

� Lj exp.�Lj/ Pj.�/ Qj.�/ Qj=Pj .Pj � cj/
2 Ij.�/

�3.0 �6.0 403.429 0.202 0.798 3.951 0.00000 0.00005

�2.0 �4.5 90.017 0.209 0.791 3.790 0.00008 0.00103

�1.0 �3.0 20.086 0.238 0.762 3.203 0.00144 0.01621

0.0 �1.5 4.482 0.346 0.654 1.891 0.02130 0.14157

1.0 0.0 1.000 0.600 0.400 0.667 0.16000 0.37500

2.0 1.5 0.223 0.854 0.146 0.171 0.42779 0.25699

3.0 3.0 0.050 0.962 0.038 0.039 0.58073 0.08052

Note: Qj=Pj D Qj.�/=Pj.�/ and .Pj � cj/
2 D .Pj.�/� cj/

2
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The shape of this information function is very similar to that for the preceding
two parameter example in which bj D 1:0 and aj D 1:5. However, the general
level of the values for the amount of information is lower. For example, at an ability
level of � D 0:0, the item information was 0:142 under the three-parameter model
and 0:336 under the two-parameter model having the same values of bj and aj. In
addition, the maximum of the information function did not occur at an ability level
corresponding to the value of the difficulty parameter. The maximum occurred at
an ability level slightly higher than the value of bj. Because of the presence of
the terms .1 � cj/ and .Pj.�/ � cj/ in Eq. (6.5), the amount of information under
the three-parameter model will be less than under the two-parameter model having
the same values of bj and aj. When they share common values of aj and bj, the
information functions will be the same when cj D 0. When cj > 0, the three-
parameter model will always yield less information. Thus, the item information
function under the two-parameter model defines the upper bound for the amount
of information under the three-parameter model. This is reasonable, as getting the
item correct by guessing should not enhance the precision with which an ability
level is estimated.

6.5 Computing a Test Information Function

Equation (6.2) defined the test information as the sum of the amounts of item
information at a given ability level. Now that the procedures for calculating the
amount of item information have been shown for the three item characteristic curve
models, the test information function for a test can be computed. To illustrate this
process, a five-item test will be used. The item parameters under the two-parameter
model are as follows:

b1 D �1:0 b2 D �0:5 b3 D 0:0 b4 D 0:5 b5 D 1:0

a1 D 2:0 a2 D 1:5 a3 D 1:5 a4 D 1:5 a5 D 2:0

The amount of item information and the test information may be computed for the
same seven ability levels used in the previous examples (see Table 6.4).

Table 6.4 Calculations for a
test information function
based upon five items

Item information Test

� 1 2 3 4 5 information

�3.0 0.071 0.051 0.024 0.012 0.001 0.159

�2.0 0.420 0.194 0.102 0.051 0.010 0.776

�1.0 1.000 0.490 0.336 0.194 0.071 2.091

0.0 0.420 0.490 0.563 0.490 0.420 2.383

1.0 0.071 0.194 0.336 0.490 1.000 2.091

2.0 0.010 0.051 0.102 0.194 0.420 0.776

3.0 0.001 0.012 0.024 0.051 0.071 0.159
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Fig. 6.4 Test information function for the five items of Table 6.4

Each of the item information functions was symmetric about the value of
each item difficulty parameter. The five item discrimination parameters had a
symmetrical distribution around a value of 1:5. The five item difficulty parameters
had a symmetrical distribution about an ability level of zero. Because of this, the
test information function also was symmetric about an ability of zero. The graph of
this test information function is shown in Fig. 6.4.

The graph of the test information function shows that the amount of information
was relatively flat over the range � D �1 to � D C1; outside of this range the
amount of information decreased rather rapidly. However, in Table 6.4 the values
of the test information varied over the whole ability scale. The apparent flat section
of the plotted test information function in the graph is due to the coarseness and
scattering of the item information functions.

6.6 Interpreting the Test Information Function

While the shape of the desired test information function depends upon the purpose
for which a test is designed, some general interpretations can be made. A test
information function that is peaked at some point on the ability scale measures
ability with unequal precision along the ability scale. Such a test would be best
for estimating the ability of examinees whose abilities fall near the peak of the test
information function. In some tests, the test information function is rather flat over
some region of the ability scale. Such tests estimate some range of ability scores
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with nearly equal precision and outside this range with less precision. Thus, the test
would be a desirable one for those examinees whose ability falls in the given range.

When interpreting a test information function, it is important to keep in mind
the reciprocal relationship between the amount of information and the variability of
the ability estimates. To translate the amount of information into a standard error of
estimate, one need only take the reciprocal of the square root of the amount of test
information:

SE.�/ D 1
p

I.�/
(6.6)

For example, in Fig. 6.4, the maximum amount of test information was 2:383 at
an ability level of 0:0. This translates into a standard error of 0:648, which means
roughly that 68% of the estimates of this ability level fall between �0:648 and
C0:648 (i.e., the 68% confidence interval from 0:0 ˙ 1 � 0I 648). Thus, this ability
level is estimated with a modest amount of precision.

6.7 Computer Session

The purpose of this computer session is to enable you to develop a sense of how the
form of the test information function depends upon the parameters of the items
constituting the test. You will establish the parameter values for the items in a
small test and then the computer will display the test information function on the
screen. You can try different item characteristic curve models to determine how
the choice of model affects the shape of the test information function. Under each
model, different mixes of item parameter values can be used and the resultant test
information function obtained. You should reach the point where you can predict
the form of the test information function from the values of the item parameters.

6.7.1 Procedures for an Example Case

A graph of a test information function will be obtained using the R command lines.
The number of items in the test is set to J D 10, and the item characteristic curve
model is the two-parameter model. The calculation of information requires the item
parameters are known. The values of the item parameters are as follows:

b1 D �0:4 a1 D 1:0

b2 D �0:3 a2 D 1:5

b3 D �0:2 a3 D 1:2

b4 D �0:1 a4 D 1:3
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b5 D 0:0 a5 D 1:0

b6 D 0:0 a6 D 1:6

b7 D 0:1 a7 D 1:6

b8 D 0:2 a8 D 1:4

b9 D 0:3 a9 D 1:1

b10 D 0:4 a10 D 1:7

The R command lines are as follows:

> b <- c(-0.4, -0.3, -0.2, -0.1, 0.0, 0.0, 0.1, 0.2, 0.3, 0.4)
> a <- c(1.0, 1.5, 1.2, 1.3, 1.0, 1.6, 1.6, 1.4, 1.1, 1.7)
> theta <- seq(-3, 3, 0.1)
> J <- length(b)
> ii <- matrix(rep(0, length(theta)*J), nrow=length(theta))
> i <- rep(0, length(theta))
> for (j in 1:J) {

P <- 1 / (1 + exp(-a[j] * (theta - b[j])))
ii[,j] <- a[j]**2 * P * (1.0 - P)
i <- i + ii[,j]

}
> plot(theta, i, xlim=c(-3,3), ylim=c(0,10), type="l",

xlab="Ability", ylab="Information",
main="Test Information Function")

By executing the R command lines, the test information function in Fig. 6.5 will
appear on the screen in the graphics window.

The first two command lines are used to set up the known item parameters for the
ten items. The third line is used to set up the 61 ability points on the ability scale.
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Fig. 6.5 Test information function
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The number of items J will be determined in the fourth line based on the size of the
vector contains the item difficulty parameters. The next two lines are used to set up
the matrix that will contain the values of item information functions (i.e., ii) and
the vector that will contain the values of test information function (i.e., i). The for
loop in the next line performs the computation of item information from the first to
the last item and sums up the item information to obtain the test information. The
item information function for item j is contained in the column j of the matrix ii
(i.e., ii[,j]). The test information function will be plotted by executing the last
command line. Note that the information function will have only positive values.
The maximum value of the vertical axis is arbitrarily set to 10 in the above example.

The test information function is symmetric about an ability level of 0:0, reflecting
the distribution of the item difficulties around zero. The maximum value of the
amount of test information is approximately 4:2, which yields a standard error of
estimate of 0:49. Within the range of ability from �1:0 to C1:0 the amount of test
information is greater than 2:5 and the standard error of estimate is less than 0:63

in this range. Outside of this range the amount of information is smaller, and at an
ability level of �2:0 or C2:0 is only about 1:0. At these points, the standard error
of estimate is 1:0. Since this test has only 10 items, the general level of the test
information function is at a modest value and the precision reflects this.

In addition, using similar R command lines, a demonstration of the calculations
of item information functions and the resulting test information function can be
easily done. For example, values reported in Table 6.4 can be obtained from the
following R command lines:

> b <- c(-1.0, -0.5, 0.0, 0.5, 1.0)
> a <- c(2.0, 1.5, 1.5, 1.5, 2.0)
> theta <- seq(-3, 3, 1)
> J <- length(b)
> ii <- matrix(rep(0, length(theta)*J), nrow=length(theta))
> i <- rep(0, length(theta))
> for (j in 1:J) {

P <- 1 / (1 + exp(-a[j] * (theta - b[j])))
ii[,j] <- a[j]**2 * P * (1.0 - P)
i <- i + ii[,j]

}
> theta; ii; i

6.7.2 An R Function for Test Information Functions

It is possible to create an R function for plotting a test information function given a
set of item parameters. Consider the following function named tif:

> tif <- function(b, a, c) {
J <- length(b)
if (missing(c)) c <- rep(0, J)
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if (missing(a)) a <- rep(1, J)
theta <- seq(-3, 3, 0.1)
ii <- matrix(rep(0, length(theta)*J), nrow=length(theta))
i <- rep(0, length(theta))
for (j in 1:J) {

Pstar <- 1 / (1 + exp(-a[j] * (theta - b[j])))
P <- c[j] + (1 - c[j]) * Pstar
ii[,j] <- a[j]**2 * P * (1.0 - P) * (Pstar / P)**2
i <- i + ii[,j]

}
plot(theta, i, xlim=c(-3,3), ylim=c(0,10), type="l",

xlab="Ability", ylab="Information",
main="Test Information Function")

}

Note that use of the function tif requires the vectors of item parameters. Also
note that the maximum of the information value on the vertical axis of the graph is
arbitrarily set to 10:0.

For the three-parameter model, the actual equation used in the function tif is
not Eq. (6.5) but an equivalent formula,

Ij.�/ D a2
j Pj.�/Qj.�/

�
P�j .�/

Pj.�/

�2

;

where

P�j .�/ D 1=Œ1 C exp.aj.� � bj//�,
Pj.�/ D cj C .1 � cj/P�j .�/, and
Qj.�/ D 1 � Pj.�/.

6.8 Exercises

For the following exercises, it is assumed that you have defined the function tif by
typing it in the R console window.

6.8.1 Using the Two-Parameter Model

1. Obtain a plot of the test information function from a test of 10 items with the
following specifications:

(a) Set all the values of b D 0:0.
(b) Use various values of a that are all greater than 1.0 but less than 1.7.

The test information function will look quite similar to the one in the computer
session.
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2. Obtain a plot of the test information function from a test of 10 items with the
following specifications:

(a) Set all the values of b D 0:0.
(b) Use various values of a that are all less than 1.0 but greater than 0.0.

The test information function will symmetric about zero but will have a much
lower overall level than the previous test information function. Note that you may
use the R command line, par(new=T), to plot the new information function
onto the existing graph.

3. Obtain a plot of the test information function from a test of 10 items with the
following specifications:

(a) Set all the values of b D 0:0.
(b) Use various values of a that are all greater than 1.7. The maximum value you

may use is 2.0.

The test information function will have a maximum greater than that of all of the
previous examples, thus illustrating the dependence of the amount of information
upon the values of the item discrimination parameter.

4. Repeat one of the above examples using a test of five items. For example,

(a) Set all the values of b D 0:0.
(b) Use various values of a that are all greater than 1.7. The maximum value you

may use is 2.0.

The general level of the test information function will be much lower than the
corresponding example. depending on how you choose the values of b and a, the
shape of the curve could be quite similar to the previous case.

6.8.2 Using the Rasch Model

1. Obtain a plot of the test information function from a test of ten items with the
following specification:

(a) Set all the values of the difficulty parameter to some common value other
than zero.

The test information curve will be centered on this common value. The general
level of the amount of information will be modest because the Rasch model fixed
the discrimination parameter at 1:0.

2. Obtain a plot of the test information function from a test of ten items with the
following specification:

(a) Set all the values of b that are equally spaced over the full range of ability
from �3 to C3.

The test information function will be rather flat and the general amount of
information will be rather low.
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6.8.3 Using the Three-Parameter Model

1. Obtain a plot of the test information function from a test of 10 items with the
following specifications:

(a) Select values for b and a that vary in value.
(b) Set the value of c D 0:1 for all items.
(c) Write down the values of b and a so they can be used again.

Take note of the shape and general level of the obtained test information function.
2. Obtain a plot of the test information function from a test of 10 items with the

following specifications:

(a) Use the same values of b and a as the previous problem.
(b) Set all the values of c D 0:35.

The resulting information function will have a shape similar to that of the
previous problem. However, the general level of the amount of test information
will be less than that of the previous example. This illustrates the effect of
guessing upon the precision with which ability is estimated.

6.8.4 Further Exercises

1. Use a model of your choice and select values of the item parameters such that
the test information function approximates a horizontal line. Use a ten-item test.

2. Experiment a bit with different item characteristic curve models, parameter
values, and number of items. To make things easier, you may use R command
lines that lets the computer generate the values of the item parameters.

3. Plot several test information functions on the same graph. It will be helpful to
make rough sketches of the test information functions displayed and notes to
indicate the nature of the mix of item parameter values. The goal is to be able to
predict what the form of the test information function will be from the values of
the item parameters.

6.9 Things to Notice

1. The general level of the test information function depends upon:

(a) The number of items in the test.
(b) The average value of the discrimination parameters of the test items.
(c) Both of the above hold for all three item characteristic curve models.
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2. The shape of the test information function depends upon:

(a) The distribution of the item difficulties over the ability scale.
(b) The distribution and the average value of the discrimination parameters of

the test items.

3. When the item difficulties are clustered closely around a given value, the test
information function is peaked at that point on the ability scale. The maximum
amount of information depends upon the values of the discrimination parameters.

4. When the item difficulties are widely distributed over the ability scale, the test
information function tends to be flatter than when the difficulties are tightly
clustered.

5. Values of a < 1:0 result in a low general level of the amount of test information.
6. Values of a > 1:7 result in a high general level of the amount of test information.
7. Under the three-parameter model, values of the guessing parameter c greater than

zero lower the amount of test information at the low ability levels. In addition,
large values of c reduce the general level of the amount of test information.

8. It is difficult to approximate a horizontal test information function. To do so, the
values of b must be spread widely over the ability scale and the values of a must
be in the moderate to low range and have a U-shaped distribution.



Chapter 7
Test Calibration

7.1 Introduction

For didactic purposes, all of the preceding chapters have assumed that the metric
of the ability scale was known. This metric had a midpoint of zero, a unit of
measurement of 1, and a range from negative infinity to positive infinity. The
numerical values of the item parameters and the examinee’s ability parameters
have been expressed in this metric. While this has served to introduce you to the
fundamental concepts of item response theory, it does not represent the actual
testing situation. When test constructors write an item, they know what trait they
want the item to measure and whether the item is designed to function among
low-, medium-, or high-ability examinees. But it is not possible to determine the
values of the item’s parameters a priori. In addition, when a test is administered to
a group of examinees, it is not known in advance how much of the latent trait each
of the examinees possesses. As a result, a major task is to determine the values of
the item parameters and examinee abilities in a metric for the underlying latent
trait. In item response theory, this task is called test calibration and it provides
a frame of reference for interpreting test results. Test calibration is accomplished
by administering a test to a group of N examinees and dichotomously scoring the
examinees’ responses to the J items. Then mathematical procedures are applied
to the item response data in order to create an ability scale that is unique to
the particular combination of test items and examinees. The values of the item
parameter estimates and the examinees’ estimated abilities are expressed in this
metric. Once this is accomplished, the test has been calibrated and the test results
can be interpreted via the constructs of item response theory.

© Springer International Publishing AG 2017
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7.2 The Test Calibration Process

In 1968, Allan Birnbaum proposed a paradigm for calibrating a test under item
response theory. This paradigm has been implemented in two widely used computer
programs BICAL (Wright and Mead 1976) and LOGIST (Wingersky et al. 1982).
The direct descendant of BICAL is the computer program WINSTEPS (Linacre
2015). Also the personal computer version of LOGIST, PCLOGIST (Wingersky
et al. 1999) is available. The Birnbaum paradigm is an iterative procedure employing
two stages of maximum likelihood estimation and is typically referred to as the joint
maximum likelihood estimation procedure (Baker 1992; Baker and Kim 2004). In
one stage, the parameters of the J items in the test are estimated, and in the second
stage, the ability parameters of the N examinees are estimated. The two stages are
performed iteratively until a stable set of parameter estimates is obtained. At this
point, the test has been calibrated and an ability scale metric defined.

Within the first stage of the Birnbaum paradigm, the estimated ability of each
examinee is treated as if it is expressed in the true metric of the latent trait. Then
the parameters of each item in the test are estimated via the maximum likelihood
procedure discussed in Chap. 3. This is done one item at a time, as an underlying
assumption is that the items are independent of each other. The result is a set of
values for the estimates of the parameters of the items in the test.

The second stage assumes that the item parameter estimates yielded by the
first stage are actually the values of the item parameters. Then, the ability of
each examinee is estimated using the maximum likelihood procedure presented in
Chap. 5. It is assumed that the ability of each examinee is independent of all other
examinees. Hence, the ability estimates are obtained one examinee at a time.

The two-stage process is repeated until some suitable convergence criterion is
met. The overall effect is that the parameters of the J test items and the ability levels
of the N examinees have been estimated simultaneously even though they were done
one at a time. This clever paradigm reduces a very complex estimation problem to
one that can be implemented on a computer.

7.2.1 The Metric Problem

An unfortunate feature of the Birnbaum paradigm is that it does not yield a unique
metric for the ability scale. That is, the midpoint and the unit of measurement of the
obtained ability scale are indeterminate; that is, many different values work equally
well. In technical terms, the metric is unique up to a linear transformation. As a
result, it is necessary to “anchor” the metric via arbitrary rules for determining the
midpoint and the unit of measurement of the ability scale. How this is done is up
to the persons implementing the Birnbaum paradigm in a computer program. In the
BICAL and WINSTEPS computer programs, this anchoring process is performed
after the first stage is completed. Thus, each of two stages within an iteration is
performed using a slightly different ability scale metric. As the overall iterative
process converges, the metric of the ability scale also converges to a particular
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midpoint and a unit of measurement. The crucial feature of this process is that the
resulting ability scale metric depends upon the specific set of items constituting
the test and the responses of a particular group of examinees to that test. It is not
possible to obtain estimates of the examinee’s ability and of the item’s parameters
in the true metric of the underlying latent trait. The best we can do is obtain a metric
that depends upon a particular combination of examinees and test items.

7.3 Test Calibration Under the Rasch Model

There are three different item characteristic curve models to choose from and several
different ways to implement the Birnbaum paradigm. From these, the authors has
chosen to present the approach based upon the Rasch logistic item characteristic
curve model as implemented by Benjamin D. Wright and his co-workers in the
BICAL computer program. Under this model, only the item difficulty parameter is
estimated for each item. The estimation procedures work well with small numbers
of test items and small numbers of examinees. The metric anchoring procedure is
simple and the basic ideas of test calibration are easy to present.

The calibration of a ten-item test administered to a group of 16 examinees will
be used below to illustrate the process. The information presented is based upon
the analysis of data set 1 contained in the computer session. You may elect to work
through this section in parallel with the computer session, but it is not necessary as
all the computer displays will be presented in the text.

The ten-item test is one that has been matched to the average ability of a group of
16 examinees. The examinees’ item responses have been dichotomously scored,
1 for correct and 0 for incorrect. The goal is to use this item response data to
calibrate the test. The actual item response vectors for each examinee are presented
in Table 7.1 and each row represents the item responses made by a given examinee.

In Chap. 5 it was observed that it is impossible to estimate an examinee’s ability
by the maximum likelihood procedure if he or she gets none or all of the test items
correct. Inspection of Table 7.1 reveals that examinee 16 answered all of the items
correctly and must be removed from the data set. Similarly, if an item is answered
correctly by all of the examinees or by none of the examinees, its item difficulty
parameter cannot be estimated. Hence, such an item must be removed from the
data set. In this particular example, no items were removed for this reason. One of
the unique features of test calibration under the Rasch model is that all examinees
having the same number of items correct (the same raw score) will obtain the same
estimated ability. As a result, it is not necessary to distinguish among the several
examinees having the same raw test score. Consequently, rather than using the
individual item responses, all that is needed is the number of examinees at each
raw score answering each item correctly. Because of this and the removing of items,
an edited data set is used as the initial starting point for test calibration procedures
under the Rasch model. The edited data set for this example is presented in Table 7.2.
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Table 7.1 Item responses by examinees for the matched test

Item

Examinee 1 2 3 4 5 6 7 8 9 10 Raw score

1 0 0 1 0 0 0 0 1 0 0 2

2 1 0 1 0 0 0 0 0 0 0 2

3 1 1 1 0 1 0 1 0 0 0 5

4 1 1 1 0 1 0 0 0 0 0 4

5 0 0 0 0 1 0 0 0 0 0 1

6 1 1 0 1 0 0 0 0 0 0 3

7 1 0 0 0 0 1 1 1 0 0 4

8 1 0 0 0 1 1 0 0 1 0 4

9 1 0 1 0 0 1 0 0 1 0 4

10 1 0 0 0 1 0 0 0 1 0 3

11 1 1 0 1 1 1 1 1 1 1 9

12 1 1 1 1 1 1 1 1 1 0 9

13 1 1 1 0 1 0 1 0 0 1 6

14 1 1 1 1 1 1 1 1 1 0 9

15 1 1 0 1 1 1 1 1 1 1 9

16 1 1 1 1 1 1 1 1 1 1 10

Table 7.2 Frequency counts for the edited data (examinee no. 16 eliminated)
for the matched test

Item Score

Score 1 2 3 4 5 6 7 8 9 10 Row sum frequency

1 0 0 0 0 1 0 0 0 0 0 1 1

2 1 0 2 0 0 0 0 1 0 0 4 2

3 2 1 0 1 1 0 0 0 1 0 6 2

4 4 1 2 0 2 3 1 1 2 0 16 4

5 1 1 1 0 1 0 1 0 0 0 5 1

6 1 1 1 0 1 0 1 0 0 1 6 1

7 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0

9 4 4 2 4 4 4 4 4 4 2 36 4

Col. sum 13 8 8 5 10 7 7 6 7 3 74 15

In Table 7.2, the rows are labeled by raw test scores ranging from 1 to 9. The
row marginals (i.e., row sums) are the total number of correct responses made by
examinees with that raw test score. By dividing each row sum by the corresponding
score we can obtain the frequency of the examinees for each score. The columns
are labeled by the item number from 1 to 10. The column marginals (i.e., column
sums) are the total number of correct responses made to the particular item by
the remaining examinees. Under the Rasch model, the only information used in
the Birnbaum paradigm are the frequency totals contained in the row and column
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marginals. This is unique to this model and results in simple computations within the
maximum likelihood estimation procedures employed at each stage of the overall
process.

Given the two frequency vectors (i.e., the column sum vector and the score
frequency vector), the estimation process can be implemented. Initial estimates are
obtained for the item difficulty parameters for the first stage and the metric of the
ability scale must be anchored. Under the Rasch model the anchoring procedure
takes advantage of the fact that the item discrimination parameter is fixed at a value
of one for all items in the test. Because of this, the unit of measurement of the
estimated abilities is fixed at a value of 1. All that remains then is to define the
midpoint of the scale. In the BICAL computer program, the midpoint is defined as
the mean of the estimated item difficulties. In order to have a convenient midpoint
value, the mean item difficulty is subtracted from the value of each item’s difficulty
estimate, resulting in the rescaled mean item difficulty having a value of zero.
Because the item difficulties are expressed in the same metric as the ability scale,
the midpoint and the unit of measurement of the latter have now been determined.
Since this is done between stages, the abilities estimated in the second stage will be
in the metric defined by the rescaled item parameter estimates obtained in the first
stage.

The ability estimate corresponding to each raw test score is obtained in the
second stage using the rescaled item difficulty estimates as if they were the item
difficulty parameters and the vector of the score frequencies. The output of this
stage is an ability estimate for each raw test score in the data set. At this point,
the convergence of the overall iterative process is checked. In the BICAL program,
Wright summed the absolute differences between the values of the item difficulty
parameter estimates for two successive iterations of the paradigm. If this sum was
less than 0:01, the estimation process was terminated. If it was greater than 0:01,
then another iteration was performed and the two stages were done again. Thus, the
process of (1) stage one, (2) anchoring the metric, (3) stage two, and (4) convergence
check is repeated until the criterion is met. When this happens, the current values of
the item and ability parameter estimates are accepted and an ability scale metric has
been defined. The estimates of the item difficulty parameters for the present example
are presented in Table 7.3.

You can verify that the sum of the item difficulties is zero (within rounding
errors). The interpretation of the values of the item parameter estimates is exactly
that presented in Chap. 2. For example, item 1 has an item difficulty of �2:37, which
locates it at the low end of the ability scale. Item 6 has a difficulty of 0:11, which
locates it near the middle of the ability scale. Item 10 has a difficulty of 2:06, which
locates it at the high end of the ability scale. Thus, the usual interpretation of item
difficulty as locating the item on the ability scale holds. Because of the anchoring
procedures used, these values are actually relative to the average item difficulty of
the test for these examinees.

The ability estimate has been reported in Table 7.4 for each score. All examinees
with the same raw score obtained the same ability estimate. For example, exami-
nees 1 and 2 both had raw scores of 2 and obtained an estimated ability of �1:50.
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Table 7.3 Estimated item
difficulty parameters for the
matched test

Item Difficulty

1 �2.37

2 �0.27

3 �0.27

4 0.98

5 �1.00

6 0.11

7 0.11

8 0.52

9 0.11

10 2.06

Table 7.4 Obtained ability
estimates for the matched test

Raw score Ability Score frequency Examinee no.

1 �2.37 1 5

2 �1.50 2 1, 2

3 �0.91 2 6, 10

4 �0.42 4 4, 7, 8, 9

5 0.02 1 3

6 0.46 1 13

7 0.93 0

8 1.50 0

9 2.32 4 11, 12, 14, 15

Note: Examinee 16 has been eliminated

Examinees 4, 7, 8, and 9 had raw scores of 4 and shared a common estimated ability
of �0:42. This unique feature is a direct consequence of the fact that, under the
Rasch model the value of the discrimination parameter is fixed at 1 for all of the
items in the test. This aspect of the Rasch model is appealing to practitioners as they
intuitively feel that examinees obtaining the same raw test score should receive the
same ability estimate. When the two- and three-parameter item characteristic curve
models are used, an examinee’s ability estimate depends upon the particular pattern
of item responses rather than the raw score. Under these models, examinees with the
same item response pattern will obtain the same ability estimate. Thus, examinees
with the same raw score could obtain different ability estimates if they answered
different items correctly.

Examinee 16 was not included in the computations due to being removed
because of a perfect raw score. The ability estimate obtained by a given examinee
is interpreted in terms of where it locates the examinee on the ability scale. For
example, examinee 7 had an estimated ability of �0:42 which places him or her just
below the midpoint of the scale. The ability estimates can be treated just like any
other score. Their distribution over the ability scale can be plotted and the summary
statistics of this distribution can be computed. By weighting the ability estimates
with the respective score frequencies, in the present case this yields a mean of 0:06
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and a standard deviation of 1:57. Thus, examinee 7 had an ability score that was
about 0:23 standard deviations below the mean ability of the group. However, one
would not typically interpret an examinee’s ability score in terms of the distribution
of the scores for the group of examinees. To do so is to ignore the fact that the ability
score can be interpreted directly as the examinee’s position on the ability scale.

7.4 Summary of the Test Calibration Process

The end product of the test calibration process is the definition of an ability scale
metric. Under the Rasch model, this scale has a unit of measurement of 1 and a
midpoint of zero. Superficially this looks exactly the same as the ability scale metric
used in previous chapters. However, it is not the metric of the underlying latent
trait. The obtained metric depends upon the item responses yielded by a particular
combination of examinees and test items being subjected to the Birnbaum paradigm.
Since the true metric of the underlying latent trait cannot be determined, the metric
yielded by the Birnbaum paradigm is used as if it were the true metric. The obtained
item difficulty values and the examinee’s ability are interpreted in this metric. Thus,
the test has been calibrated. The outcome of the test calibration procedure is to locate
each examinee and item along the obtained ability scale. In the present example,
item 5 had a difficulty of �1:00 and examinee 10 had an ability estimate of �0:91.
Therefore, the probability of examinee 10 answering item 5 correctly is slightly less
than 0:5. The capability to locate items and examinees along a common scale is a
powerful feature of item response theory. This feature allows one to interpret the
results of a test calibration within a single framework and provides meaning to the
values of the parameter estimates.

7.5 Computer Session

This computer session is a bit different from those of the previous chapters. Because
it would be difficult for you to create data sets to be calibrated, three sets have been
created for an illustration purpose. Each of these will be used to calibrate a test and
the results will be displayed on the screen. You will simply step through each of the
data sets and calibration results. There are some definite goals in this process. First,
you will become familiar with the input data and how it is edited. Second, the item
difficulty estimates and the examinee’s ability estimates can be interpreted. Third,
the test characteristic curve and test information functions for the test will be shown
and interpreted.

Three different ten-item tests measuring the same latent trait will be used. A
common group of 16 examinees will take all three of the tests. The tests were created
so that the average difficulty of the first test was matched to the mean ability of the
common group of examinees. The second test was created to be an easy test for
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this group. The third test was created to be a hard test for this group. Each of these
test group combinations will be subjected to the Birnbaum paradigm and calibrated
separately. There are two reasons for this approach. First, it illustrates that each test
calibration yields a unique metric for the ability scale. Second, the results can be
used to show the process by which the three sets of test results can be placed on a
common ability scale.

7.5.1 Procedures for the Test Calibration Session: Data Set 1

The following R command lines are needed to calibrate data set 1 for the matched
test presented in Table 7.1:

> rm(list = ls())
> s <- c(13, 8, 8, 5, 10, 7, 7, 6, 7, 3)
> f <- c(1, 2, 2, 4, 1, 1, 0, 0, 4)
> convb <- 0.01; convt <- 0.01; convabd <- 0.01
> J <- length(s); G <- length(f); K <- 25; T <- 10
> b <- log((sum(f) - s) / s)
> b <- b - mean(b)
> oldb <- b
> theta <-seq(1, G, 1)
> for (g in 1:G) { theta[g] <- log(g / (J - g)) }
> for (k in 1:K) {

cat("cycle k=", k, "\n")
for (j in 1:J) {

for (t in 1:T) {
sumfp <- 0
sumfpq <- 0
for (g in 1:G) {
p <- 1 / (1 + exp(-(theta[g] - b[j])))
sumfp <- sumfp + f[g] * p
sumfpq <- sumfpq + f[g] * p * (1 - p)

}
deltab <- (s[j] - sumfp) / sumfpq
b[j] <- b[j] - deltab
if (abs(deltab) < convb) { break }

}
}
b <- b - mean(b)
for (g in 1:G) {

for (t in 1:T) {
sump <- 0
sumpq <- 0



7.5 Computer Session 113

for (j in 1:J) {
p <- 1 / (1 + exp(-(theta[g] - b[j])))
sump <- sump + p
sumpq <- sumpq - p * (1 - p)

}
deltat <- (g - sump) / sumpq
theta[g] <- theta[g] - deltat
if (abs(deltat) < convt) { break }

}
}
abd <- abs(b - oldb)
if (sum(abd) < convabd) { break }
else { oldb <- b }

}
> b <- b * ((J - 1) / J)
> for (j in 1:J) {

cat("b(", j, ")=", b[j], "\n")
}

> for (g in 1:G) {
for (t in 1:T) {

sump <- 0
sumpq <- 0
for (j in 1:J) {
p <- 1 / (1 + exp(-(theta[g] - b[j])))
sump <- sump + p
sumpq <- sumpq - p * (1 - p)

}
deltat <- (g - sump) / sumpq
theta[g] <- theta[g] - deltat
if (abs(deltat) < convt) { break }

}
}

> theta <- theta * ((J - 2) / (J - 1))
> for (g in 1:G) {

cat("theta(", g, ")=", theta[g], "\n")
}

The first line removes the existing objects in workspace. Note that after obtaining
item and ability parameter estimates from the Birnbaum paradigm, the bias correc-
tion methods were applied to the item parameter estimates and then to the ability
estimates.

This ten-item test has a mean difficulty that is matched to the average ability of
the group of 16 examinees. Item response vectors of the 16 examinees are presented
in Table 7.1. Notice that examinee 16 answered all items correctly. After deleting
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examinee 16, the edited data are presented in Table 7.2. Notice that examinee 16
has been eliminated and that no items were eliminated for data set 1. The vector
that contains the column sum for the ten items, s, and the vector that contains the
frequencies for the scores from 1 to 9, f, are the input for the Birnbaum paradigm
to calibrate the test.

By executing the R command lines, the R console window shows the item
difficulty estimates for the matched test, for example:

b( 1 )= -2.36761
b( 2 )= -0.265167
b( 3 )= -0.265167
b( 4 )= 0.9763713
b( 5 )= -0.9975242
b( 6 )= 0.1127705
b( 7 )= 0.1127705
b( 8 )= 0.5210009
b( 9 )= 0.1127705
b( 10 )= 2.059785

The values are the same as those in Table 7.3. The estimated abilities are not for
individual examinees but for the raw score groups ranged from 1 to 9:

theta( 1 )= -2.370017
theta( 2 )= -1.499325
theta( 3 )= -0.9058965
theta( 4 )= -0.4206984
theta( 5 )= 0.02104907
theta( 6 )= 0.4593398
theta( 7 )= 0.9328307
theta( 8 )= 1.501894
theta( 9 )= 2.328257

The ability estimates are the same as those reported in Table 7.4. The ability
estimates of the 15 examinees had a mean of 0:06 and a standard deviation of 1:57.
Notice that examinee 16 did not receive an ability estimate.

Using the item difficulty parameter estimates, the test characteristic curve can be
calculated and displayed in the graphics window for data set 1 (see data set 1 of
Fig. 7.1). Take note of the fact that the mid true score (a true score equal to one-half
the number of items) corresponds to an ability level of 0. This reflects the anchoring
procedure that sets the average item difficulty to zero.

The test information function can also be constructed and displayed in the
graphics window for data set 1 (see data set 1 of Fig. 7.2). The curve is reasonably
symmetric and has a well-defined hump in the middle. The form of the curve
indicates that ability is estimated with the greatest precision in the neighborhood
of the middle of the ability scale. The peak of the test information function occurs at
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Fig. 7.2 Test information functions for the three data sets

a point slightly above the midpoint of the ability scale. This reflects the distribution
of the item difficulty estimates, as there were six items with positive values and only
four with negative values. Thus, there is a very slight emphasis upon positive ability
levels. The maximum amount of information is roughly 2, which is rather small.
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Instead of using the column sums and the score frequencies from the edited data,
the following R command lines can be used to obtain s and f from the original data
by eliminating the examinees with either 0 or perfect score:

> N <- 16
> J <- 10
> U <- matrix(c(

0, 0, 1, 0, 0, 0, 0, 1, 0, 0,
1, 0, 1, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 0, 1, 0, 1, 0, 0, 0,
1, 1, 1, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
1, 1, 0, 1, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 1, 1, 1, 0, 0,
1, 0, 0, 0, 1, 1, 0, 0, 1, 0,
1, 0, 1, 0, 0, 1, 0, 0, 1, 0,
1, 0, 0, 0, 1, 0, 0, 0, 1, 0,
1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 0, 1, 0, 1, 0, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1

), nrow=N, ncol=J, byrow=TRUE)
> f <- unname(table(factor(sort(rowSums(U)),

levels=0:J)))
> f <- f[-1]
> nperfect <- f[J]
> f <- f[-J]
> s <- colSums(U) - nperfect

7.5.2 Data Set 2

This ten-item test was constructed to be an easy test for the common group of 16
examinees. Since the computer procedures for this data set will be exactly the same
as for data set 1, they will not be repeated in detail. Only the significant results
will be noted. For data set 2, item responses of the ten items by 16 examinees are
presented in Table 7.5.
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Table 7.5 Item responses by examinees for the easy test

Item

Examinee 1 2 3 4 5 6 7 8 9 10 Raw score

1 0 0 1 0 0 0 0 0 0 0 1

2 0 1 1 1 0 0 0 1 0 0 4

3 1 0 0 1 0 0 0 0 0 0 2

4 1 1 1 0 0 0 1 0 0 1 5

5 1 1 1 1 0 0 0 0 0 1 5

6 1 1 1 0 1 1 0 0 0 1 6

7 1 1 1 1 1 1 1 1 1 0 9

8 1 1 1 0 1 1 1 0 0 0 6

9 0 1 1 1 1 1 0 1 1 0 7

10 1 0 1 1 1 1 1 0 1 0 7

11 1 1 1 1 1 0 0 1 0 1 7

12 1 1 1 1 1 0 1 1 1 0 8

13 1 1 1 0 1 1 0 0 0 0 5

14 1 1 1 0 1 1 1 1 1 1 9

15 1 1 1 1 1 1 1 1 1 1 10

16 1 1 1 1 1 1 1 1 1 1 10

The R command lines to obtain the vector of column sums and the vector of
frequencies of scores from 1 to 9 by removing both zero and perfect scores are
listed below:

> N <- 16
> J <- 10
> U <- matrix(c(

0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 1, 0, 0, 0, 1, 0, 0,
1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
1, 1, 1, 0, 0, 0, 1, 0, 0, 1,
1, 1, 1, 1, 0, 0, 0, 0, 0, 1,
1, 1, 1, 0, 1, 1, 0, 0, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 0, 1, 1, 1, 0, 0, 0,
0, 1, 1, 1, 1, 1, 0, 1, 1, 0,
1, 0, 1, 1, 1, 1, 1, 0, 1, 0,
1, 1, 1, 1, 1, 0, 0, 1, 0, 1,
1, 1, 1, 1, 1, 0, 1, 1, 1, 0,
1, 1, 1, 0, 1, 1, 0, 0, 0, 0,
1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1

), nrow=N, ncol=J, byrow=TRUE)
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> f <- unname(table(factor(sort(rowSums(U)), levels=0:J)))
> f <- f[-1]
> nperfect <- f[J]
> f <- f[-J]
> s <- colSums(U) - nperfect

Executing the command lines and by typing in the variable names, we can obtain
the values of s and f as follows:

> f
[1] 1 1 0 1 3 2 3 1 2
> s
[1] 11 11 13 8 9 7 6 6 5 5

The values of s and f are based on the edited data; examinees 15 and 16 have been
eliminated for having perfect raw scores.

The obtained item parameter estimates and the ability estimates for the score
groups from 1 to 9 are as follows:

b( 1 )= -1.112752
b( 2 )= -1.112752
b( 3 )= -2.752128
b( 4 )= 0.2047593
b( 5 )= -0.1761493
b( 6 )= 0.5630637
b( 7 )= 0.9155878
b( 8 )= 0.9155878
b( 9 )= 1.277391
b( 10 )= 1.277391

theta( 1 )= -2.525016
theta( 2 )= -1.579138
theta( 3 )= -0.9235425
theta( 4 )= -0.388803
theta( 5 )= 0.08882409
theta( 6 )= 0.5474272
theta( 7 )= 1.023334
theta( 8 )= 1.57362
theta( 9 )= 2.355977

The mean of the estimated item difficulties is zero. Six of the items obtained
positive item difficulty estimates and the distribution of the difficulties is somewhat
U-shaped. By using the score frequencies and the respective ability estimates, the
ability estimates of the 14 examinees had a mean of 0:44 and a standard deviation
of 1:35. It is interesting to note that examinee 9 had a raw score of 4 on the matched
test and obtained an estimated ability of �0:42. On this easy test, the raw score was
7 and the ability estimate was 1:02. Yet the examinee’s true ability is the same in
both cases.
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Table 7.6 Item responses by examinees for the hard test

Item

Examinee 1 2 3 4 5 6 7 8 9 10 Raw score

1 0 0 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0 0 1

3 0 0 0 0 0 0 0 0 0 0 0

4 1 0 0 0 0 1 1 0 0 0 3

5 1 0 0 1 0 0 1 0 0 0 3

6 1 0 0 0 0 0 0 0 0 0 1

7 1 0 1 0 0 0 0 0 0 0 2

8 1 0 1 1 0 0 0 0 0 0 3

9 1 0 0 0 0 0 1 0 0 0 2

10 1 0 0 1 0 0 0 0 1 0 3

11 1 1 1 0 0 1 0 0 1 0 5

12 1 1 1 1 1 1 1 1 0 0 8

13 1 1 0 0 1 1 0 0 1 0 5

14 1 1 1 1 1 1 1 1 0 0 8

15 1 1 1 0 1 1 0 0 1 0 7

16 1 1 1 0 0 1 1 1 1 0 8

The mid true score of the test characteristic curve again corresponds to an ability
level of zero. The form of the test characteristic curve is nearly identical to that of
the first test (see Fig. 7.1). The test information function is symmetric and has a
somewhat rounded appearance (see Fig. 7.2). The maximum amount of information
(2.0) occurred at an ability level of roughly 0:5.

7.5.3 Data Set 3

This ten-item test was constructed to be a hard test for the common group of 16
examinees. Because the computer procedures will be similar to the previous two
examples, only the results of interest will be discussed. Table 7.6 contains the item
responses to the hard test of ten items by the 16 examinees.

Inspection of the table of item response vectors shows that examinees 1 and 3
have raw scores of zero and will be removed. Inspection of the columns reveals
that none of the examinees answered item 10 correctly and it will be removed from
the data set. In addition, after removing the two examinees, item 1 was answered
correctly by all of the remaining examinees. Thus, this item must also be removed.
Upon doing this, examinees 2 and 6 now have raw scores of zero as the only item
they answered correctly was item 1. After removing these two additional examinees
no further editing is needed. Such multiple-stage editing is quite common in test
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calibrating. It should be noted that after editing the data set is smaller than the
previous two and the range of raw scores is now from 1 to 7.

Due to the iterative multiple-stage editing required for data set 3, somewhat
different R command lines are needed to obtain the final vector of the column sums
and the vector of the score frequencies for scores 1 to 7. The R command lines for
data set 3 with a bit more general data editing lines to get the two vectors of s and
f are as follows:

> N <- 16
> J <- 10
> U <- matrix(c(

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 1, 1, 0, 0, 0,
1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 1, 0, 0, 0, 0, 0, 0, 0,
1, 0, 1, 1, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
1, 0, 0, 1, 0, 0, 0, 0, 1, 0,
1, 1, 1, 0, 0, 1, 0, 0, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
1, 1, 0, 0, 1, 1, 0, 0, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
1, 1, 1, 0, 1, 1, 0, 0, 1, 0,
1, 1, 1, 0, 0, 1, 1, 1, 1, 0

), nrow=N, ncol=J, byrow=TRUE)
> u <- U
> oldu <- u
> for (j in 1:J) {

s <- colSums(u)
for (j in length(u[1,]):1) {

if (s[j] == 0 | s[j] == length(u[,1])) {
u <- u[,-j]

}
}
f <- rowSums(u)
for (i in length(u[,1]):1) {

if (f[i] == 0 | f[i] == length(u[1,])) {
u <- u[-i,]

}



7.5 Computer Session 121

}
if (length(oldu[,1]) == length(u[,1]) &

length(oldu[1,]) == length(u[1,])) { break }
else { oldu <- u }

}
> f <- unname(table(factor(sort(rowSums(u)),

levels=1:(length(u[1,])-1))))
> s <- colSums(u)

The above lines yielded two vectors of s and f as:

> s
[1] 6 7 5 4 7 6 3 5
> f
[1] 2 4 0 2 1 1 2

The two vectors are to be used as the input to the Birnbaum paradigm procedure.
The R command lines for the calibration yielded the following estimates:

b( 1 )= -0.29298
b( 2 )= -0.7132503
b( 3 )= 0.1409872
b( 4 )= 0.6059282
b( 5 )= -0.7132503
b( 6 )= -0.29298
b( 7 )= 1.124558
b( 8 )= 0.1409872

theta( 1 )= -1.552674
theta( 2 )= -0.8901916
theta( 3 )= -0.4204405
theta( 4 )= -0.006298059
theta( 5 )= 0.4102034
theta( 6 )= 0.8870681
theta( 7 )= 1.561365

The mean of the eight estimated item difficulties was zero. Four of the items had
positive values of item difficulty estimates. Note that item numbers are based on the
edited data, not based on the original ten items. The original item 8 (item 7 from the
edited data) had a difficulty of 1:12 while the remaining seven item difficulties fell
in the range of �0:71 to C0:61. The 12 examinees used in the test calibration had a
mean of �0:22 and a standard deviation of 1:26.

The test characteristic curve is similar to the previous two and the mid true score
occurs again at an ability level of zero (see Fig. 7.1). But the upper part of the curve
approaches a value of 8 rather than 10. The test information function was nearly
symmetrical about an ability level of roughly 0. The curve was a bit less peaked
than either of the two previous test information functions and its maximum of about
1:8 was slightly lower.
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The reader should ponder a bit as to why the mean ability of the common group
of examinees is not the same for all three calibrations. The item invariance principle
says that they should all be the same. Is the principle wrong or is something else
functioning here? The resolution of this inconsistency is presented after the Things
to Notice section.

7.5.4 An R Function for Calibration of the Rasch Model

It is possible to create an R function for calibration under the Birnbaum paradigm
for the Rasch model. Consider the following function named rasch which requires
two other functions, stage1 and stage2:

> rm(list = ls())

> rasch <- function(s, f) {
J <- length(s); G <- length(f); K <- 25; T <- 10
b <- log((sum(f) - s) / s)
b <- b - mean(b)
oldb <- b
theta <-seq(1, G, 1)
for (g in 1:G) {theta[g] <- log(g / (J - g)) }
for (k in 1:K) {

convabd <- 0.01
cat("cycle k=", k, "\n")
b <- stage1(b, theta, s, f)
b <- b - mean(b)
theta <- stage2(theta, b)
abd <- abs(b - oldb)
if (sum(abd) < convabd) { break }
else { oldb <- b }

}
b <- b * ((J - 1) / J)
for (j in 1:J) {

cat("b(", j, ")=", b[j], "\n")
}
cat("mean(b)=", mean(b), "\n")
cat("sd(b)=", sd(b), "\n")
cat("J=", J, "\n")
theta <- stage2(theta,b)
theta <- theta * ((J - 2) / (J - 1))
for (g in 1:G) {

cat("theta(", g, ")=", theta[g], "\n")
}
cat("mean(theta)=", mean(rep(theta, f)), "\n")
cat("sd(theta)=", sd(rep(theta, f)), "\n")
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cat("N=", sum(f), "\n")
cat("f=", f, "\n")

}

> stage1 <- function(b, theta, s, f) {
J <- length(b); G <- length(theta); T <- 10
for (j in 1:J) {

convb <- 0.01
for (t in 1:T) {
sumfp <- 0
sumfpq <- 0
for (g in 1:G) {
p <- 1 / (1 + exp(-(theta[g] - b[j])))
sumfp <- sumfp + f[g] * p
sumfpq <- sumfpq + f[g] * p * (1 - p)

}
deltab <- (s[j] - sumfp) / sumfpq
b[j] <- b[j] - deltab
if (abs(deltab) < convb) { break }

}
}
return(b)

}

> stage2 <- function(theta, b){
G <- length(theta); J <- length(b); T <- 10
for (g in 1:G) {

convt <- 0.01
for (t in 1:T) {
sump <- 0
sumpq <- 0
for (j in 1:J) {
p <- 1 / (1 + exp(-(theta[g] - b[j])))
sump <- sump + p
sumpq <- sumpq - p * (1 - p)

}
deltat <- (g - sump) / sumpq
theta[g] <- theta[g] - deltat
if (abs(deltat) < convt) { break }

}
}
return(theta)

}

Note that blank lines are used to separate the functions.
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After defining the functions, you can obtain the item and ability estimates by
setting up the input and executing the function rasch. For example, for data 1
the following command lines will perform the calibration of data under the Rasch
model and print out the item and ability estimates in the R console window:

s <- c(13, 8, 8, 5, 10, 7, 7, 6, 7, 3)
f <- c(1, 2, 2, 4, 1, 1, 0, 0, 4)
rasch(s,f)

Note that this function can also be used with the data editing command lines. Note
also that the function rasch will also print out the mean and the standard deviation
of the item parameter estimates as well as those of the ability estimates.

7.6 Exercises

For the following exercises, it is assumed that you have defined the function rasch
by typing it in the R console window.

1. Obtain item and ability estimates for data 1 under the Rasch model.
2. Obtain item and ability estimates for data 2 under the Rasch model.
3. Obtain item and ability estimates for data 3 under the Rasch model.

7.7 Things to Notice

1. In all three calibrations, examinees were removed in the editing process. As a
result, the common group is not quite the same in each of the calibrations.

2. Although the tests were designed to represent tests that were easy, hard, and
matched relative to the average ability of the common group, the results did not
reflect this. Due to the anchoring process, all three test calibrations yielded a
mean item difficulty of zero. For putting the three tests on a common ability
scale (i.e., test equating), see Appendix C.

3. Within each calibration, examinees with the same raw test score obtained the
same estimated ability. However, a given raw score will not yield the same
estimated ability across the three calibrations.

4. Even though the same group of examinees was administered all three tests, the
means and the standard deviations of their ability estimates were different for
each calibration. This can be attributed to a number of causes. The primary reason
is that, due to the anchoring process, the value of the mean estimated abilities is
expressed relative to the mean item difficulty of the test. Thus, the mean difficulty
of the easy test should result in a positive mean ability. The mean ability on the
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hard test should have a negative value. The mean ability on the matched test
should be near zero. The changing group membership also accounts for some
of the differences, particularly when the group was small to start with. Finally,
the overall amount of information is rather small in all three test information
functions. Thus, the ability level of none of the examinees is being estimated very
precisely. As a result, the ability estimate for a given examinee is not necessarily
very close to his or her true ability.

5. The anchoring procedure set the mean item difficulty equal to zero, and thus the
midpoint of the ability scale to zero. A direct consequence of this is that the mid
true score for all three test characteristic curves occurs at an ability level of zero
(see Fig. 7.1). The similarity in the shapes of the curves for the first two data sets
was due to the item difficulties being distributed in an approximately symmetrical
manner around the zero point. The fact that all the items had the same value of the
discrimination parameter (1.0) makes the slopes of the first two curves similar.
The curve for data set 3 falls below those for data sets 1 and 2, as it was based on
only eight items. However, its general shape is similar to the previous two curves
and its mid true score occurred at an ability level of zero.

6. Although the test information functions were similar, there were some important
differences (see Fig. 7.2). The curve for the matched test had the same general
level as that for the easy test. The curve was a bit flatter, indicating this test
maintained its level of precision over a wide range. The test information function
for the hard test had a slightly smaller amount of information at its midpoint.
Thus, it had a bit less precision at this point. The curve was a bit lower than the
other two, indicating it did not hold the same precision over the usual range of
ability.



Chapter 8
Specifying the Characteristics of a Test

8.1 Introduction

During this transitional period in testing practices, many tests have been designed
and constructed using classical test theory principles but have been analyzed via
item response theory procedures. This lack of congruence between the construction
and analysis procedures has resulted in the full power of item response theory
not being exploited. In order to obtain the many advantages of item response
theory, tests should be designed, constructed, analyzed, and interpreted within the
framework of the theory. Consequently, the goal of this chapter is to provide the
reader with experience in the technical aspects of test construction within the
framework of item response theory.

Persons functioning in the role of test constructors do so in a wide variety
of settings. They develop tests for commercial testing companies, governmental
agencies, and school districts. In addition, teachers at all classroom levels develop
tests to measure achievement. In all of these settings, the test-construction process
is usually based upon having a collection of items from which to select those to be
included in a particular test. Such collections of items are known as item pools.
Items are selected from such pools on the basis of both their content and their
technical characteristics; that is, their item parameter values. Under item response
theory, a well-defined set of procedures is used to establish and maintain such item
pools. A special name, item banking, has been given to these procedures. The basic
goal is to have an item pool in which the values of the item parameters are expressed
in a known ability scale metric. If this is done, it is possible to select items from the
item pool and determine the major technical characteristics of a test before it is
administered to a group of examinees. If the test characteristics do not meet the
design goals, selected items can be replaced by other items from the item pool until
the desired characteristics are obtained. Considerable time and money are saved that
would ordinarily be devoted to piloting the test.
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In order to build an item pool, it is necessary first to define the latent trait the items
are to measure, write items to measure this trait, and pilot-test the items to weed out
poor items. After some time, a set of items measuring the latent trait of interest is
available. This large set of items is then administered to a large group of examinees.
An item characteristic curve model is selected, the examinees’ item response data
are analyzed via the Birnbaum paradigm, and the test is calibrated. The ability scale
resulting from this calibration is considered to be the baseline metric of the item
pool. From a test construction point of view, we now have a set of items whose item
parameter values are known, and in technical terms, a “precalibrated item pool”
exists.

8.2 Developing a Test from a Precalibrated Item Pool

Since the items in the precalibrated item pool measure a specific latent trait, tests
constructed from it will also measure this trait. While this may seem a bit odd,
there are a number of reasons for wanting additional tests to measure the same
trait. For example, alternate forms are routinely needed to maintain test security and
special versions of the test can be used to award scholarships. In such cases, items
would be selected from the item pool on the basis of their content and their technical
characteristics to meet the particular testing goals.

The advantage of having a precalibrated item pool is that the parameter values
of the items included in the test can be used to compute the test characteristic curve
and the test information function before the test is administered. This is possible
because neither of these curves depends upon the distribution of examinee ability
scores over the ability scale. Thus, both curves can be obtained once the values
of the item parameters are available. Given these two curves, the test constructor
has a very good idea of how the test will perform before it is given to a group of
examinees. In addition, when the test has been administered and calibrated, test
equating procedures can be used to express the ability estimates of the new group of
examinees in the metric of the item pool.

8.3 Some Typical Testing Goals

In order to make the computer exercises meaningful to you, several types of testing
goals are defined below. These will then serve as the basis for specific types of tests
you will create.

1. Screening tests.

Tests used for screening purposes have the capability to distinguish rather
sharply between examinees whose abilities are just below a given ability
level and those who are at or above that level. Such tests are used to assign
scholarships and to assign students to specific instructional programs such
as remediation or advanced placement.
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2. Broad-range tests.

These tests are used to measure ability over a wide range of underlying
ability scale. The primary purpose is to be able to make a statement about
an examinee’s ability and to make comparisons among examinees. Tests
measuring reading or mathematics are typically broad-range tests.

3. Peaked tests.

Such tests are designed to measure ability quite well in a region of the
ability scale where most of the examinees’ abilities will be located, and
less well outside this region. When one deliberately creates a peaked test,
it is to measure ability well in a range of ability that is wider than that of a
screening test, but not as wide as that of a broad-range test.

8.4 Computer Session

The purpose of this session is to assist you in developing the capability to select
items from a precalibrated item pool to meet a specific testing goal. You will set
the parameter values for the items of a small test in order to meet one of the three
testing goals given above. Then the test characteristic curve and the test information
function will be shown on the screen and you can determine if the testing goal was
met. If not, a new set of item parameters can be selected and the resultant curves
obtained. With a bit of practice, you should become proficient at establishing tests
having technical characteristics consistent with the design goals.

8.4.1 Some Ground Rules

1. It is assumed that the items would be selected on the basis of content as well as
parameter values. For present purposes, the actual content of the items need not
be shown.

2. No two items in the item pool possess exactly the same combination of item
parameter values.

3. The item parameter values are subject to the following constraints:

�3:0 � b � C3:0

0:5 � a � C2:0

0 � c � :35

The values of the discrimination parameter have been restricted to reflect the
range of values usually seen in well-maintained item pools.
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8.4.2 Procedures for an Example Case

You are to construct a ten-item screening test that will separate examinees into two
groups: Those who need remedial instruction and those who don’t, on the ability
measured by the items in the item pool. Students whose ability falls below a value
of �1:0. will receive the instruction.

1. The number of items in the test is J D 10. The number will be determined by
the length of the vector of item difficulty parameters.

2. The item characteristic curve model is the two-parameter model. The number
of the vectors of item parameters will determine the model.

3. Set the following item parameter values for a first test:

Item Difficulty b Discrimination a
1 �1:8 1:2

2 �1:6 1:4

3 �1:4 1:1

4 �1:2 1:3

5 �1:0 1:5

6 �0:8 1:0

7 �0:6 1:4

8 �0:4 1:2

9 �0:2 1:1

10 0:0 1:3

The logic underlying these choices was one of centering the difficulties on the
cut off level of �1:0 and using moderate values of item discrimination. The R
command lines for the first set of item parameter vectors are as follows:

> b1 <- c(-1.8, -1.6, -1.4, -1.2, -1.0,
-0.8, -0.6, -0.4, -0.2, 0.0)

> a1 <- c(1.2, 1.4, 1.1, 1.3, 1.5, 1.0, 1.4, 1.2, 1.1, 1.3)

4. Study the table of item parameters for a moment. If you need to change a value
in the R command lines, you can click the up or down arrow key to show the
command lines you have typed in earlier will appear. You can enter a new value
without typing in all other values.

5. When you are satisfied with the parameter values, you can type in the R
command lines to construct the true score function and a graph of the test
characteristic curve. You may use the function tcc.

6. By executing the R command lines, the test characteristic curve shown in
Fig. 8.1 will appear on the screen in the graphics window.

7. When the test characteristic curve appears on the screen, make note of the
ability level at which the mid true score occurs. Also note the slope of the curve
at that ability level.
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Fig. 8.1 Test characteristic curve for the example
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Fig. 8.2 Test information function for the example

8. You can type in the R command lines to construct the test information function
and to display it in the graphics window. You may use the function tif.

9. By typing in and executing the R command lines, the test information function
will appear on the screen. Note the maximum amount of information and the
ability level at which it occurred. The function is shown in Fig. 8.2.

10. Assuming that you are using the two R functions, tcc and tif, you can
construct the two graphs in the same graphics window. After executing the
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functions and entering the vectors of item parameters, use the following R
command lines:

> par(mfrow = c(2,1))
> tcc(b1, a1)
> tif(b1, a1)

11. On the top of the graphics window, the test characteristic curve will appear. On
the bottom of the graphics window, the test information function will show up.
Thus, you can contrast two graphs to study their relationship. When you are
ready to return to one plot per figure setting, you may use:

> par(mfrow = c(1,1))

12. The design goal was to specify the items of a screening test that would function
at an ability level of �1:0. In general, this goal has been met. The mid true
score corresponded to an ability level of �1:0. The test characteristic curve
was not particularly steep at the cut off level indicating that the test lacked
discrimination. The peak of the information function occurred at an ability level
of �1:0 but the maximum was a bit small. The results suggest that the test was
properly positioned on the ability scale but that a better set of items could be
found. The following changes would improve the test’s characteristics: first,
cluster the values of the item difficulty parameters nearer the cut off level;
second, use larger values of the item discrimination parameters. These two
changes should steepen the test characteristic curve and increase the maximum
amount of information at the ability level of �1:0.

13. Now using the same number of items and the same item characteristic curve
model, a new, second test will be created. The item parameters are as follows:

> b2 <- c(-1.1, -1.0, -1.1, -1.2, -1.0,
-0.8, -0.9, -1.0, -0.9, -1.0)

> a2 <- c(1.9, 1.7, 1.8, 1.6, 1.9, 1.8, 1.9, 1.9, 1.7, 1.6)

Now try to obtain the graph of the test characteristic curve for the first test
and then obtain that of the second test using the R command lined. You can plot
them onto the same graph or two separate graphs can be obtained. For example,
you can plot the two test characteristic curves on the same graph using:

> par(mfrow = c(1,1))
> tcc(b1, a1)
> par(new=T)
> tcc(b2, a2)

When the test characteristic curves appear sequentially, then compare them.
Determine if you have increased the slope of the curve at the ability level �1:0

using the second test.
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14. The two graphs of the test information functions can be plotted on the top and
bottom of the graphics window using the following R command:

> par(mfrow = c(2,1))
> tif(b1, a1)
> tif(b2, a2)

15. When the test information functions appear sequentially, then compare them.
Determine if the maximum amount of information is larger for the second test
than it was for the first test at an ability level of �1:0.

16. If all went well the new set of test items should have improved the technical
characteristics of the test as reflected in the test characteristic curve and the test
information function.

8.5 Exercises

In each of the following exercises, establish a set of item parameters. After you
have seen the test characteristic curve and the test information function, use the R
command lines and to construct a new set of vectors of item parameters by changing
selected item parameter values. Also overlay the new curves on the previous curves.
These procedures will allow you to see the impact of the changes. Repeat this
process until you feel that you have achieved the test specification goal.

1. Construct a ten-item screening test to function at an ability level of C0:75 using
a Rasch model.

2. Construct a broad-range test under the three-parameter model that will have a
horizontal test information function over the ability range of �1:0 to C1:0.

3. Construct a test having a test characteristic curve with a rather small slope and a
test information function that has a moderately rounded appearance. Use either
the two- or three-parameter model.

4. Construct a test that will have a nearly linear test characteristic curve whose mid-
true score occurs at an ability level of zero. Use the Rasch model.

5. Repeat the previous problem using the three-parameter model.
6. Construct a test that will have a horizontal test information function over the

ability range of �2:0 to C2:0 having a maximum amount of information of 2:5.
7. Use the computer session to experiment with different combinations of testing

goals, item characteristic curve models, and numbers of items. The goal is to be
able to obtain test characteristic curves and test information functions that are
optimal for the testing goals. It will be helpful to use the editing feature of the R
(i.e., arrow keys) to change specific item parameter values rather than re-enter a
complete set of item parameter values for each trial.
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8.6 Things to Notice

1. Screening tests.

(a) The desired test characteristic curve has the mid true score at the specified
cut off ability level. The curve should be as steep as possible at that ability
level.

(b) The test information function should be peaked with its maximum at the cut
off ability level.

(c) The values of the item difficulty parameters should be clustered as closely as
possible around the cut off ability of interest. The optimal case is where all
values of the item difficulty parameters are at the cut off point and the values
of the item discrimination parameters are large. However, this is unrealistic
because an item pool rarely contains enough items with common difficulty
values. If a choice among items must be made, select items that yield the
maximum amount of information at the cut off point.

2. Broad-range tests.

(a) The desired test characteristic curve has its mid true score at an ability level
corresponding to the mid-point of the range of ability of interest. Most often
this is an ability level of zero. The test characteristic curve should be linear
for most of its range.

(b) The desired test information function is horizontal over the widest possible
range. The maximum amount of information should be as large as possible.

(c) The values of the item difficulty parameters should be spread uniformly over
the ability scale and as widely as practical. There is a conflict between the
goals of a maximum amount of information and a horizontal test information
function. To achieve a horizontal test information function, items with low to
moderate item discrimination parameters that have a U-shaped distribution
of item difficulty parameters are needed. However, such items yield a rather
low general amount of information and the overall precision will be low.

3. Peaked tests.

(a) The desired test characteristic curve has its mid true score at an ability
level in the middle of the ability range of interest. The curve should have
a moderate slope at that ability level.

(b) The desired test information function should have its maximum at the same
ability level as the mid true score of the test characteristic curve. The test
information function should be rounded in appearance over the ability range
of most interest.

(c) The item difficulty parameters should be clustered around the mid-point of
the ability range of interest, but not as tightly as in the case of a screening
test. The values of the discrimination parameters should be as large as
practical. Items whose values of the item difficulty parameters are within the
ability range of interest should have larger values of the item discrimination
parameters than items whose values of the item difficulty parameters are
outside this range.
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4. Role of item characteristic curve models.

(a) Due to the value of the discrimination parameters being fixed at 1:0, the
Rasch model has a limit placed upon the maximum amount of information
that can be obtained. The maximum amount of item information is 0:25 since
Pj.�/Qj.�/ D 0:25 when Pj.�/ D 0:5. Thus, the theoretical maximum
amount of information for a test under the Rasch model is 0:25 times the
number of items.

(b) Due to the presence of the guessing parameter, the three-parameter model
will yield a more linear test characteristic curve and a test information
function with a lower general level than under the two-parameter model
with the same set of item difficulty and discrimination parameters. The
information function under the two-parameter model is the upper bound for
the information function under the three-parameter model when the values
of b and a are the same.

(c) For test specification purposes, the authors prefer the two-parameter model.

5. Role of the number of items.

(a) Increasing the number of items has little impact upon the general form of
the test characteristic curve if the distribution of the sets of item parameters
remains the same.

(b) Increasing the number of items in a test has a significant impact upon the
general level of the test information function. The optimal situation is a large
number of items having high values of the item discrimination parameters
and a distribution of item difficulty parameters consistent with the testing
goals.

(c) The manner in which the values of the item parameters are paired is an
important consideration. For example, choosing a high value of the item
discrimination parameter for an item whose item difficulty parameter is not
of interest does little in terms of the test information function or the slope
of the test characteristic curve. Thus, the test constructor must visualize both
what the item characteristic curve and the item information function looks
like in order to ascertain its contribution to both the test characteristic curve
and the test information function.



Appendix A
R Introduction

A.1 R Installation

R is a programming environment for data analysis and graphics (Venables et al.
2009; see Appendix A references in the end). R can also be seen as an implemen-
tation of the S language (see Becker and Chambers 1984, 1985; Becker et al. 1988;
Chambers 1998; Chambers and Hastie 1993; Spector 1994). In an everyday ordinary
vernacular, R is simply a free computer program for statistics.

The main website for R is:

http://www.r-project.org

The binary executable files for installing R for Linux, Mac OS X, and Windows can
be obtained via the Comprehensive R Archive Network (CRAN) for which the link
is provided in the main website. Note that the main website contains other relevant
information including the R manuals and a list of the books related to R. The base
distribution package of the 64-bit R for Windows is the program discussed here. The
main uniform resource locator (URL) of the R base distribution is:

https://cran.rstudio.com/bin/windows/base/

By clicking the download link on the web page, the executable file will be saved
in the default download directory of your computer. It took 11 s to download the
executable code using the second author’s office computer. By double clicking
the file and specifying options to choose (e.g., English as the setup language,
clicking the Next button seven times without changing any default specifications,
and clicking the Finish button), you can install R onto your computer.

If properly installed, the R icon can be found in the desktop of the Windows
screen. To invoke R, double click the R icon. When invoked, the computer will
show the R console window that looks like the one presented in Fig. A.1.
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Fig. A.1 The R console window

To quit R, type in

> q()

and press the enter key in the R console window. R shows a question window asking
if you want to “Save work space image?” Only if you have variables and objects to
be continuously used in the next session when you invoke R again, you will click
the Yes button. Otherwise, you may click the No button to exit from the current R
session.

A.2 R Basics

A.2.1 Scalar Arithmetic

R has the usual arithmetic operators:

+ for addition
- for subtraction

* for multiplication
/ for division
O for exponentiation (i.e., raising to a power)
%/% for integer division
%% for remainder from integer division
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There is also an arithmetic operator � for unary minus that is applicable to one
operand (i.e., making a negative value; cf. C can also be used as unary plus). For
example, the following command line (i.e., expression) yields, based on the order
of operations (i.e., O first, � = second, and C � last, from left to right if the orders
are the same), the answer shown in the next line:

> 1 + 2 - 3 * 4 / 5 ^ 6
[1] 2.999232

The number in the brackets (e.g., [1]) indicates the order of elements in the result.
Because we are getting a scalar value, only one number is shown after such a
bracketed number. This will be handy where we operate with vectors instead of
scalars. The order of operations can be changed with the use of parentheses. For
example:

> (1 + 2 - 3) * 4 / 5 ^ 6
[1] 0
> 1 + 2 - (3 * 4 / 5) ^ 6
[1] -188.103
> 1 + (2 - 3) * 4 / 5 ^ 6
[1] 0.999744
> 1 + (2 - 3) * (4 / 5) ^ 6
[1] 0.737856

The portions of the command line beginning with the pound symbol, #, to the end
of the line before pressing the enter key will be treated as a comment. For example:

> 6 + 5 - 4 * 3 / 2 ^ 1 # the answer is [Enter]
[1] 5

Comments can be typed (and ignored) anywhere in the R expressions. Comments
can be very informative explaining the command line or expression to be carried out
by R.

The default number of decimal places is 7. It can be changed with the options
function with the digits argument for which the valid values are 0–22. It should be
noted that there may exist rounding errors when a very larger number of decimal
places, say 22, is employed. For example, 1=3 will yield 0:3333333 in the default
setting, but the following rounding error can occur when a higher precision is
requested:

> options(digits=22)
> 1 / 3
[1] 0.3333333333333333148296

With the same options function in effect, the mathematical constant � can be
obtained using R both directly with the pi command and indirectly with the arc
tangent function:
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> pi
[1] 3.141592653589793115998
> 4 * atan(1)
[1] 3.141592653589793115998

Note that the number obtained may not be consistent with such a number reported
in other sources (e.g., � D 3:141592653589793238462643 from Abramowitz and
Stegun 1964, p. 3). In many practical settings, it will be sufficient to use the default
setting of the number of decimal places, that is:

> options(digits=7)

Other mathematical constants can be obtained using R functions. In fact, nearly
all of the common mathematical functions are available in R with arguments in
parentheses (i.e., parenthetical arguments). For example, mathematical functions
include:

abs absolute value
exp exponential (e to a power)
gamma gamma function
lgamma log of gamma function
log logarithm
log10 logarithm of base 10
sign signum function
sqrt square root
floor largest integer, less than or equal to
ceiling smallest integer, greater than or equal to
trunc truncation to the nearest integer
factorial factorial
lfactorial log of factorial

A full range of logical operators can be used in R:

> greater than
< less than
>= greater than or equal to
<= less than or equal to
== equality
!= non-equality
& elementwise and
| elementwise or
&& control and
|| control or
! unary not
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Trigonometric functions available in R include the followings:

cos cosine
sin sine
tan tangent
acos arc cosine
asin arc sine
atan arc tangent
cosh hyperbolic cosine
sinh hyperbolic sine
tanh hyperbolic tangent
acosh arc hyperbolic cosine
asinh arc hyperbolic sine
atanh arc hyperbolic tangent

In the trigonometric functions, the arguments are in radians instead of degrees. For
example:

> sin(pi / 6)
[1] 0.5
> pi / 6
[1] 0.5235988
> sin(0.5235988)
[1] 0.5
> sin((30 / 180) * pi)
[1] 0.5

When an R command is not grammatically complete but gets the enter key, the
prompt will be changed to a plus sign indicating some additional input is necessary.
After completing the grammatically correct command line and pressing the enter
key, the command will be executed. For example:

> sin(pi / 6
+ )
[1] 0.5

A scalar value or the result from arithmetic operators can be saved as a variable
with the assignment function <-. The value can be listed by typing in the variable
name:

> a <- sin(pi / 6)
> b <- cos(pi / 6)
> c <- sqrt(a ^ 2 + b ^ 2)
> c
[1] 1
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Multiple command lines can be combined by separating them with semicolons.
Spaces are mostly optional in the R commands, but readability will be enhanced
when proper spacing is employed. For example:

> a<-sin(pi/6);b<-cos(pi/6);c<-sqrt(a^2+b^2);c
[1] 1

R can handle operations of complex numbers that have real parts and imaginary
parts albeit not really useful in applied statistical procedures:

> x <- 4 + 2i
> Re(x)
[1] 4
> Im(x)
[1] 2
> y <- 4 - 2i
> x + y
[1] 8+0i
> x * y
[1] 20+0i

A.2.2 Vector Arithmetic

Here, a vector is a single entity consisting of an ordered collection of numbers. After
defining a vector in R, arithmetic operations and functional operations can also be
performed with the vector. To set up a vector named x consisting of four numbers,
namely, 1, 2, 3, and 2, we may use the assign function with the combine/concatenate
function for which the elements are separated with commas:

> x <- c(1, 2, 3, 2)

After defining the vector (i.e., a variable in a statistical sense), the elements of the
vector can be listed by typing in the name of the vector:

> x
[1] 1 2 3 2

The edit function used with the assign function to the same object can be used to
modify and save the elements of the vector. For example,

> x <- c(1, 2, 3, 2)
> x <- edit(x)

will open the R editor window and allow to change the elements. After finishing
editing, a new vector can be constructed either by clicking the File-Save option in
the main R console window or by clicking the close window icon and then pressing
the Yes button in the question dialogue box. Note that the edit function is not limited
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to the vectors but applicable to other objects including a blank vector (n.b., it may
bring up the last object edited by the R editor instead of the blank page):

> x <- edit()

Also note that depending upon the types of objects used in the edit function, the R
data editor window will be used (e.g., for matrices and data.frame) instead of the R
editor window.

Functions for simple statistics for a vector are available in R:

min smallest value
max largest value
range minimum and maximum
mean arithmetic average
var variance
sd standard deviation
sum arithmetic sum
prod product of elements
length number of elements
median 50th percentile
quantile quantiles
cumsum cumulative sum
diff first difference
table frequency table or crosstabulation
summary five number summary or frequencies

In addition, after defining two vectors, the following statistical functions are
available in R:

cor correlation
cov covariance

For example:

> x <- c(1, 2, 3, 2)
> y <- c(1, 3, 2, 2)
> cor(x, y)
[1] 0.5
> cov(x, y)
[1] 0.3333333

Sorting or rearranging of the vector in the ascending or increasing order and in
the descending or decreasing order can be performed using the sort function, for
example:

> x <- c(1, 2, 3, 2)
> sort(x)
[1] 1 2 2 3
> sort(x, decreasing=T)
[1] 3 2 2 1
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A subset of vector can be created by using the order subscripts and their
operations in brackets, for example:

> x <- c(1, 2, 3, 2)
> x[1]
[1] 1
> x[2 : 4]
[1] 2 3 2
> x[-3]
[1] 1 2 2
> x[x < 3]
[1] 1 2 2
> x[x > 2]
[1] 3

Note that the vector can be replaced with the assignment function, for example:

> x <- x[-3]; x
[1] 1 2 2

The elements in a vector are not limited to numbers. A logical vector and a
character vector can be used.

> x <- c(1, 2, 3, 2)
> x < 3
[1] TRUE TRUE FALSE TRUE
> labels <- c("red", "white", "blue", "white"); labels
[1] "red" "white" "blue" "white"
> names(x) <- labels; x

red white blue white
1 2 3 2

> names(x) <- NULL; x
[1] 1 2 3 2

Vectors can be generated and converted to different types using functions in R:

numeric a vector of zeros with the length of the argument
character a vector of blank characters of argument length
logical a vector of FALSE of argument length
seq argument 1 to argument 2 with the increment of argument 3
1 : 4 numbers equivalent to seq(1, 4, 1)
rep replicate argument1 as many times as argument 2
as.numeric conversion to numeric
as.character conversion to string-type
as.logical conversion to logical
factor creating factor from vector
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For example, the followings are very useful ways to construct a sequence of nicely
patterned elements:

> x <- 1 : 4; x
[1] 1 2 3 4
> x <- seq(1, 4, 1); x
[1] 1 2 3 4
> x <- seq(1, 2, 0.2); x
[1] 1.0 1.2 1.4 1.6 1.8 2.0
> x <- rep(1, 4); x
[1] 1 1 1 1
> x <- c(rep(1,4), rep(2,2)); x
[1] 1 1 1 1 2 2

A.2.3 Matrices and Matrix Functions

An array is a collection of data which can be indexed by one or more subscripts.
The vectors discussed in the previous section can be seen as one-dimensional arrays.
Each element in a vector can be referred to as the name with the subscript enclosed
in brackets (e.g., x[1]). Two-dimensional arrays are generally referred to as matrices.
The matrix function is used to create a matrix. For example, a matrix with ones in
the first column and four observations in the second column can be defined and
listed subsequently by:

> X <- matrix(c(1, 1, 1, 1, 1, 2, 3, 2), nrow=4); X
[,1] [,2]

[1,] 1 1
[2,] 1 2
[3,] 1 3
[4,] 1 2

The R commands as well as the names of objects and variables are case sensitive.
The objects X and x, for example, are not the same unless these are defined to be
equivalent. The command line of the above matrix is equivalent to:

> X <- matrix(c(1, 1, 1, 1, 1, 2, 3, 2), ncol=2)
> X <- matrix(c(1, 1, 1, 1, 1, 2, 3, 2), nrow=4, ncol=2)
> X <- matrix(c(1, 1, 1, 2, 1, 3, 1, 2), nrow=4, byrow=T)
> X <- matrix(c(1, 1, 1, 2, 1, 3, 1, 2), ncol=2, byrow=T)
> X <- matrix(c(1,1,1,2,1,3,1,2), nrow=4, ncol=2, byrow=T)

Elements in a matrix can be referred to as the name with the row and column
subscripts enclosed in brackets. For example, with the same matrix defined earlier:

> X[2,2]
[1] 2
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> X[,2]
[1] 1 2 3 2
> X[2,]
[1] 1 2
> X[1 : 2,]

[,1] [,2]
[1,] 1 1
[2,] 1 2

After defining two or more vectors of the same length (i.e., the same number of
elements), a matrix can be constructed by the cbind function:

> u <- c(1, 1, 1, 1)
> x <- c(1, 2, 3, 2)
> X <- cbind(u, x); X

u x
[1,] 1 1
[2,] 1 2
[3,] 1 3
[4,] 1 2

It can be noticed that the default column names in the listing of the matrix are
replaced with the names of the vectors. The equivalent matrix function is:

> X <- matrix(c(1, 1, 1, 1, 1, 2, 3, 2), ncol=2,
dimnames=list(c(),c("u","x")))

Also the row and column names can be specified with the functions of rowname and
colnames, respectively:

> X <- matrix(c(1, 1, 1, 1, 1, 2, 3, 2), ncol=2)
> colnames(X) <- c("u", "x")
> rownames(X) <- c()

After defining vectors of the same length in row wise, a matrix can be constructed
by the rbind function:

> r1 <- c(1, 1); r2 <- c(1, 2); r3 <- c(1, 3); r4 <- c(1, 2)
> X <- rbind(r1, r2, r3, r4); X

[,1] [,2]
r1 1 1
r2 1 2
r3 1 3
r4 1 2
> rownamess(X) <- c()

Note that the row names can be replaced with the default names with the rowname
function as shown in the last line.
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A matrix can also be constructed with the array function, although the array is
not limited to be two-dimensional. For example:

> X <- array(c(1, 1, 1, 1, 1, 2, 3, 2), dim=c(4,2)); X
[,1] [,2]

[1,] 1 1
[2,] 1 2
[3,] 1 3
[4,] 1 2

Once a matrix is defined, the dimension, the number of rows, and the number of
columns of the matrix can be obtained with the following functions:

> dim(X)
[1] 4 2
> nrow(X)
[1] 4
> ncol(X)
[1] 2

The followings are some matrix functions:

chol Cholesky decomposition
crossprod matrix crossproduct
det determinant
diag to create or extract diagonal values
eigen eigenvalues and eigenvectors
outer outer product of two vectors
scale to scale the columns of a matrix
solve inversion or to solve system of linear equations
svd singular value decomposition
qr qr orthogonalization
t to transpose

Based on the usual conforming conditions with scalars and matrices, the element-
wise addition, subtraction, multiplication, and division can be performed. Matrix
multiplication is done with the operator:

%*% matrix multiplication

The following is an example to obtain the estimates of an intercept and a slope
from a simple regression model using the matrix functions and operators:

> X <- array(c(1, 1, 1, 1, 1, 2, 3, 2), dim=c(4,2))
> colnames(X) <- c("u", "x")
> y <- c(1, 3, 2, 2)
> solve(t(X) %*% X) %*% t(X) %*% y
[,1]

u 1.0
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x 0.5
> betahat <- solve(crossprod(X, X)) %*% t(X) %*% y;
> rownames(betahat) <- c("a", "b"); betahat
[,1]

a 1.0
b 0.5
> ypredict <- X %*% betahat; ypredict

[,1]
[1,] 1.5
[2,] 2.0
[3,] 2.5
[4,] 2.0
> yhat <- ypredict[,1]; yhat
[1] 1.5 2.0 2.5 2.0
> residual <- y - yhat; residual
[1] -0.5 1.0 -0.5 0.0

The results from regression analysis in general will be obtained not from the matrix
or vector operations but from the R functions for statistical modeling. Hence, the
above command line illustrations are only for the demonstration and instructional
purpose.

The eigenvalues and eigenvectors from a matrix can be obtained, for example:

> R <- matrix(c(1, .5, 0, .5, 1, .5, 0, .5, 1), nrow=3)
> R

[,1] [,2] [,3]
[1,] 1.0 0.5 0.0
[2,] 0.5 1.0 0.5
[3,] 0.0 0.5 1.0
> eigen(R)
$values
[1] 1.7071068 1.0000000 0.2928932

$vectors
[,1] [,2] [,3]

[1,] 0.5000000 -7.071068e-01 -0.5000000
[2,] 0.7071068 -1.099065e-15 0.7071068
[3,] 0.5000000 7.071068e-01 -0.5000000

A.2.4 Data Frame

A data frame is a two-dimensional array of observations in rows and variables
in columns. Functions such as dim, dimnames, nrow, and ncol will work on data
frames. The attach function for data frames allow that variables contained in the
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data frame can be easily accessed through the variable names. Data frames can be
constructed by the data.frame function:

> x <- c(1, 2, 3, 2)
> y <- c(1, 3, 2, 2)
> X <- data.frame(x, y); X
x y

1 1 1
2 2 3
3 3 2
4 2 2

Variables can be extracted from the data frame or directly referred by declaring the
data frame name and the variable name separated with a dollar sign. For example,
the x vector can be listed with the following commands assuming that the data frame
has been declared as in the earlier command lines:

> X[,1]
> X$x

The names function displays the variable names in the data frame:

> names(X)
[1] "x" "y"

A new variable can be appended to an existing data frame with a dollar sign and a
variable name using the combine function. A variable can be a string variable, for
example:

> X$z <- c("a", "b", "c", "d"); X
x y z

1 1 1 a
2 2 3 b
3 3 2 c
4 2 2 d

A variable can be removed or portions of the variables can be selected as in the
following command lines for the previous data frame X with the three variables:

> X <- X[,-3]
> X <- X[,1 : 2]

These yield the same data frame X with only x and y variables.
The edit function opens the data editor window and allows to edit the data frame

with the spreadsheet-looking data editor. The values of the variables as well as the
variable names can be modified. The data frame can be saved by the clicking of the
close window icon, that is, the exit button positioned in the top, right corner of the
data editor window’s title bar.

It is also possible to construct a data frame by opening up a blank data frame
using the edit function and then entering the necessary values and variable names.
The command line looks:

> X <- edit(data.frame())



150 A R Introduction

Although not terribly useful, the data frame can be saved as an R system file (cf.
that cannot be meaningfully read by other text editors; cf. saveRDS, readRDS) and
retrived or loaded to R:

> save(X, file="X.RData")
> load("X.RData")

The file will be saved in the default, current working directory specified in the
installation process, for example, the exact location of the file can be:

C:\Users\shkim\Documents\X.RData

A data frame can be saved as a file that can be opened with other editor-type
programs as:

> write.table(X, file="X.txt", sep=" ")

The current working directory where the data frame file is to be stored can be found
with the command line

> getwd()

and the directory can be changed to the usual root directory with either of the
following two command lines:

> setwd("C:\\")
> setwd("C:/")

After loading the file, the variables contained in a data frame can be directly
accessed by declaring the attach function:

> attach(X)

A data frame can be removed from the current session with the detach function, for
example:

> detach(X)

If there is an object defined with the same variable name in the attached object,
then due to a hierarchical nature of searching objects in the R workspace the attach
function may not bring up the variable contained in the data frame. Care should be
exercised when the attach function is employed.

A list of currently available objects can be found by the ls function:

> ls()

The objects can be removed by the rm function, for example:

> x <- c(1, 2, 3, 2)
> ls()
[1] "x"
> rm(x)

The entire workspace will be cleared by:

> rm(list=ls())
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A data file written in ASCII or a text file can be read into R using the read.fwf
(i.e., fixed width format) function. Suppose there is a text file named crux.txt with
three variables in each record in the main directory of the computer:

acrux 11
mimosa23
gacrux32
palida22

The lengths based on the numbers of the columns of the three variables are 6, 1,
and 1, respectively. The file can be read in two trivially different ways employing
different directory symbols in the file definitions:

> crux <- read.fwf("c:\\crux.txt", width=c(6,1,1))
> crux

V1 V2 V3
1 acrux 1 1
2 mimosa 2 3
3 gacrux 3 2
4 palida 2 2
> crux <- read.fwf("c:/crux.txt", width=c(6,1,1))
> crux

V1 V2 V3
1 acrux 1 1
2 mimosa 2 3
3 gacrux 3 2
4 palida 2 2

Variables in a text data file can be separated with either blank spaces or commas.
Suppose there is a text file named cruxb.txt with three variables separated with blank
spaces in the main directory of the computer:

acrux 1 1
mimosa 2 3
gacrux 3 2
palida 2 2

The file can be read in with the following command line:

> crux <- read.table("c:/cruxb.txt", sep=" ")

Suppose there is a text file named cruxc.txt with three variables separated with
commas in the main directory of the computer:

acrux,1,1
mimosa,2,3
gacrux,3,2
palida,2,2
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Such a file can be read in with the following command line:

> crux <- read.table("c:/cruxc.txt", sep=",")

Note that the default variable names can be modified with the colnames function,
for example, after reading in the crux file:

> colnames(crux) <- c("name", "x", "y")
> crux

name x y
1 acrux 1 1
2 mimosa 2 3
3 gacrux 3 2
4 palida 2 2

It should be noted that R is not a good program to handle large, practical data sets.
There are better computer programs to use for typical applied statistical analyses
(e.g., SAS, SPSS, etc.). You will get what you paid for from these other programs.

A.2.5 Probability Distributions

Functions for probability distributions can be classified into four different types:
(1) density (i.e., probability density function), (2) probability (i.e., cumulative
density function), (3) quantile, and (4) random sample. A prefix as the first starting
letter is attached to the name of a distribution to construct the four types of
functions. For a normal distribution, the distribution name is abbreviated as norm.
Hence, dnorm, pnorm, qnorm, and rnorm are used to obtain the respective functions
with some specified arguments. Because the normal distribution requires the two
parameters, that is, mean and sd as arguments, the two parameters should be
specified as arguments unless the default standard normal distribution is in play.
For the standard normal distribution, some examples are:

> dnorm(0)
[1] 0.3989423
> pnorm(-1.96)
[1] 0.0249979
> qnorm(0.025)
[1] -1.959964
> rnorm(3)
[1] -0.5514404 0.0889554 0.3656794

Note that a different normal distribution can be used to perform similar tasks. If
the mean of the normal distribution is 100 and the standard deviation of the normal
distribution is 15, then the above operations can be similarly done via:

> dnorm(100, 100, 15)
[1] 0.02659615
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> pnorm((-1.96*15+100), 100, 15)
[1] 0.0249979
> qnorm(0.025, 100, 15)
[1] 70.60054
> rnorm(3, 100, 15)
[1] 108.92949 83.03011 117.58789

The random sampling is performed by resetting the current random number seed
saved in the .Random.seed vector. In case of generating the same sequence of the
randomly sampled values, the following can be performed:

> oldseed <- .Random.seed
> rnorm(3, 100, 15)
[1] 107.21030 79.72381 101.61939
> rnorm(3, 100, 15)
[1] 85.63351 89.31402 94.36237
> .Random.seed <- oldseed
> rnorm(3, 100, 15)
[1] 107.21030 79.72381 101.61939
> rnorm(3, 100, 15)
[1] 85.63351 89.31402 94.36237

It should be noted that the random normal deviates sampled from the execution
of the similar command lines may not be the same as those shown in the above
example. Instead of saving and reusing the computer generated random number
seed, the set.seed function can also be used to control the random sampling (e.g.,
type in set.seed(1234567) before using a random sample function).

R has many probability distributions to use for constructing the four types of
functions. Their names and the parameters that should be used in the ordered
arguments with the default values after the equal signs are as follows:

beta(shape1, shape2) beta
binom(size, prob) binomial
cauchy(location=0, scale=1) Cauchy
chisq(df) chi-square
exp(rate) exponential
f(df1, df2) Snedecor’s F
gamma(shape) gamma
geom(prob) geometric
hyper(m, n, k) hypergeometric
lnorm(meanlog=0, sdlog=1) lognormal
logis(location=0, scale=1) logistic
nbinom(size, prob) negative binomial
norm(mean=0, sd=1) normal
pois(lambda) Poisson
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t(df) Student’s t
unif(min=0, max=1) uniform
weibull(shape) Weibull
wilcox(m, n) Wilcoxon rank sum

An additional argument of a non-centrality parameter ncp can be used for the beta,
chi-square, F, and t distributions. Using these functions, R virtually eliminates the
need of nearly all statistical tables in the elementary, applied statistical textbooks.

The sample function takes a vector and the sample size for its arguments to
perform random sampling. For example:

> x <- rnorm(4); x
[1] -0.2941517 0.7430328 -0.7172012 -1.1930889
> sample(x, 2)
[1] 0.7430328 -0.1712012

A.2.6 Inferential Statistical Methods

A number of functions are available to perform tests of simple statistical hypotheses.
The one-sample t test, for example, can be performed:

> iq <- c(110, 120, 120, 130)
> t.test(iq, mu=100)

One Sample t-test

data: iq
t = 4.899, df = 3, p-value = 0.01628
alternative hypothesis: true mean is not equal to 100
95 percent confidence interval:
107.0077 132.9923
sample estimates:
mean of x

120

The independent two-sample t test with the equal variances assumption (i.e., the
pooled two-sample t test) can be performed, for example:

> x1 <- c(6.5, 6.8, 7.1, 7.3, 10.2)
> x2 <- c(5.8, 5.8, 5.9, 6.0, 6.0,
+ 6.0, 6.3, 6.3, 6.4, 6.5, 6.5)
> t.test(x1, x2, var.equal=T)
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Two Sample t-test

data: x1 and x2
t = 3.22, df = 14, p-value = 0.00617
alternative hypothesis: true difference in means is
not equal to 0

95 percent confidence interval:
0.4820473 2.4052255
sample estimates:
mean of x mean of y
7.580000 6.136364

The independent two-sample t test without the equal variances assumption can be
performed by not employing the var.equal argument.

To change the default confidence level of 0:95, for example, the conf.level = 0.99
argument can be used. For the t-test and for other relevant hypothesis tests, the
alternative argument can be used to change the default two-sided alternative hypoth-
esis into the one-sided alternative hypothesis. The default alternative = two.sided
argument can be modified to either alternative = less or alternative = greater.

In addition to the t.test function, many other simple statistical inferences can be
performed using the following functions:

binom.test exact test for binomial proportions
chisq.test chi-square test for a contingency table
cor.test test of a correlation
fisher.text Fisher’s exact test for contingency tables
friedman.test Friedman’s rank sum test for randomized blocks
kruskal.test Kruskal-Wallis rank sum test
ks.test Kolmogorov-Smirnov test
mantelhaen.test Mantel-Haenszel chi-square test
mcnemar.test McNemar’s chi-square test
prop.test test for proportions
shapiro.test Shapiro-Wilk normality test
var.test folded F test to compare two variances
wilcox.test Wilcoxon rank sum and signed rank sum tests

A.2.7 Statistical Models

Univariate statistical models try to explain or predict the value of one variable
from the values of other variables. The modeling techniques that are available in
R include:
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lm linear model
aov analysis of variance
glm generalized linear model
gam generalized additive model
loess local regression model
tree tree-based model
nls nonlinear model
ms optimization

It is definitely beyond the scope of this appendix to cover the statistical background
for the methods. The online help files and other statistical textbooks should be
consulted for further information (e.g., Everitt and Hothorn 2010; Kabacoff 2011).

The analysis of variance can be performed with the aov function, then the
summary function is used to obtain nicely formatted output:

> y <- c(1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5)
> x <- c(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3)
> output <- aov(y ~ x)
> summary(output)

Df Sum Sq Mean Sq F value Pr(>F)
x 1 8 8.0 13.33 0.00445 **
Residuals 10 6 0.6
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> boxplot(y ~ x)

The aov function alone can generate a brief summary of the analysis of variance
results. Note that the last command line is to get the side-by-side boxplot of the
variable being compared.

The simple regression can be performed and detailed results can be displayed
with the summary function:

> x <- c(1, 2, 2, 3)
> y <- c(1, 3, 2, 2)
> lm(y ~ x)

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x

1.0 0.5

> output <- lm(y ~ x)
> summary(output)
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Call:
lm(formula = y ~ x)

Residuals:
1 2 3 4

-5.000e-01 1.000e+00 -2.776e-17 -5.000e-01

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.0000 1.2990 0.770 0.522
x 0.5000 0.6124 0.816 0.500

Residual standard error: 0.866 on 2 degrees of freedom
Multiple R-squared: 0.25, Adjusted R-squared: -0.125
F-statistic: 0.6667 on 1 and 2 DF, p-value: 0.5

The following three command lines yield the scatterplot of variables x and y, the
available objects within the output, and the residual plot, respectively.

> plot(x, y)
> names(output)
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"
> plot(output$fitted.values, output$residuals)

In multiple regression with x1 and x2 as predictors, after defining the two
variables, x1 and x2, the line can be used to obtain the regression results is:

> summary(lm(y ~ x1 + x2))

The followings are the most commonly used generic functions for extracting
model information:

anova ANOVA table for model comparisons
coef extract the regression coefficients
deviance residual sum of squares
formula extract the model formula
plot produce plots
predict predicted values from the same set of variables
print print a concise version of the object
residuals extract the residuals
step select a suitable model from an information index
summary print a comprehensive summary of the results
vcov returns the covariance matrix of estimates
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In addition, the followings are multivariate statistical procedures in R:

cancor canonical correlation
cmdscale multidimensional scaling
discr linear discriminant analysis
dist calculating a distance matrix
hclust hierarchical clustering
clorder reorder a cluster tree
cutree forming groups from a cluster analysis
labclust labeling a cluster plot
leaps all subsets regression using leaps and bounds
plclust producing a cluster dendogram plot
subtree extracting part of a cluster tree
prcomp principal components analysis

A.2.8 Graphs

Many univariate, bivariate, and multivariate graphs are available in R. It should
noted that there are also numerous options and arguments that can be employed
in generating graphs and figures. Note that not all the functions will generate proper
results. The following command dealing with trivial data, for example, can produce
not really a reasonable figure (n.b., the last two command lines will generate proper
histograms):

> x <- c(1,2,2,3)
> hist(x)
> hist(x, seq(.5,3.5,1))
> hist(x, seq(.5,3.5,1), xlim=c(0,4))

There are three groups of plotting commands in R: (1) high-level plotting
functions to create a new plot on the graphics device, (2) low-level plotting functions
to add more information to an existing plot, and (3) interactive graphics functions
to interactively modify information from an existing plot using a mouse.

The followings are mostly the first group of the procedures to create graphs in R:

plot generic function with many objects
boxplot box and whisker plots
matplot plots of two or more vectors of an equal length
qqnorm quantile–quantile plots
qqline draw a line in qqnorm
qqplot distribution comparison plots
pairs plots of a matrix or data frame
coplot conditioning plots for 3 or more variables
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dotchart construct a dotchart
image plot of three variables
coutour plot of three variables
persp plot of three variables
stem stem and leaf plot

For categorical variables, the following graphical summary can be used:

barplot bar graph
pie pie chart
dotchart frequency summary with dots

Note that the plot command is a general graphical command, and there are
numerous options and arguments to be used. To fully explore the command,

> help(plot)

or

> ?plot

will open up the manual pages of the plot command. One of the best ways to learn
how to use the plot command is by executing the example command lines from the
help pages. You can certainly copy and paste the example command lines from the
manual page to a new script window (i.e., R Editor), modify portions, and execute
the portions of the syntax by highlighting them and clicking the execution icon (i.e.,
the Run line or selection icon). In fact, the example command lines contained in the
manual pages can be executed with the example function. For example, for boxplot:

> example(boxplot)

will show many examples from the manual pages. To learn how to use the graphical
commands in R, remember that a picture is worth ten thousand words and to see is
to believe. The best way to view and to perform some experiments of your own you
can follow the procedure mentioned earlier; starting first with opening of the help
page of the respective command and sequentially executing the example command
lines with some of your own modifications. For a demonstration purpose, you may
also obtain some R graphics capabilities by typing:

> demo(graphics)

Some plots are used with statistical modeling commands. The regression diag-
nostic plots, for example, can be obtained:

> x <- rnorm(100)
> y <- rnorm(100)
> par(mfrow = c(2,2))
> plot(lm(y ~ x))

The high level graphic commands will produce a plot which replaces the previous
one. To open a new graphical output window instead of replacing the previous one,
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the following command line can be used before typing in a new high level graphic
command:

> win.graph()

The followings are some examples of the command lines to list the devices, to
identify the currently active device, to set a specific one as the current device, to
close the current device, and to close all the graphics devices:

> dev.list()
> dev.cur()
> dev.set()
> dev.off()
> graphics.off()

The plot contained in the active R graphics device window can be copied or
saved by right clicking the window. In terms of the saving the content in the R
graphics device window the following seven functions of the respective file types are
available (n.b., the parentheses in the end of the respective file types contain the size
of the file obtained from the example runs; i.e., xyplot with respective extensions of
eps, pdf, wmf, png, jpg, bmp, and tif):

postscript PostScript or Encapsulated PostScript (7KB)
pdf Portable Document Format (5KB)
win.metafile Windows Metafile (15KB)
png Portable network Graphics (3KB)
jpeg Joint Photographic Experts Group (10KB)
bmp Bitmap (227KB)
tiff Tagged Image File Format (676KB)

You can save a resulting plot, for example, by typing in the following command
lines:

> x <- c(1, 2, 3, 2); y <- c(1, 3, 2, 2)
> postscript("xyplot.eps")
> plot(x, y)
> dev.off()

As a real example, Fig. 1.1 in Chap. 1 used the following command lines:

> postscript("BIRTFigure1p1.eps", width=3.5, height=2.5,
pointsize=7)

> par(lab=c(7,3,3))
> theta <- seq(-3, 3, .1)
> b <- 0
> a <- 1
> P <- 1 / (1 + exp(-a * (theta - b)))
> plot(theta, P, type="l", xlim=c(-3,3), ylim=c(0,1),

xlab=expression(paste("Ability, ",theta)),
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ylab=expression(paste(
"Probability of a Correct Response, P(",theta,")")))

> dev.off()

The LaTeX input lines, if you know what this is about, are as follows:

\begin{figure}[ht]
\centering
\includegraphics[scale=0.3,angle=-90]{BIRTFigure1p1.eps}
\caption{A typical item characteristic curve.}
\label{BIRTFigure1p1}
\end{figure}

A.2.9 Missing Values

In R, not available (i.e., NA) is used as a missing value. The following lines show
how the missing values are treated in R:

> x <- c(1, NA, 3, 2); x
[1] 1 NA 3 2
> is.na(x)
[1] FALSE TRUE FALSE FALSE
> sum(!is.na(x))
[1] 3
> newx <- x[!is.na(x)]; newx
[1] 1 3 2
> x[2] <- sum(newx)/sum(!is.na(x)); x
[1] 1 2 2 3

Note also that NaN (i.e., not a number) and Inf (i.e., infinity) are treated as
missing cases.

> x1 <- 0/0
> x2 <- Inf
> x3 <- Inf - Inf
> x <- c(x1, x2, x3, 2); x
[1] NaN NaN NaN 2
> is.na(x)
[1] TRUE TRUE TRUE FALSE

The best way to solve the problem of missing values is prevention of the
occurrence of missing in the data collection process. There is no missing strategy,
none whatsoever, how sophisticate and complicate it can be, that is better than
obtaining complete data. Obviously, there is no royal road for missing.
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A.3 R Packages

As many general purpose statistical computer programs, R consists of packages that
are physically stored in the library of R. A package contains a set of R functions,
data, and compiled code. The command lines that can be used to locate the library
and the list of packages available are as follows:

> .libPaths()
> library()

The packages can be installed and loaded with the command lines. For example, the
MASS package can be accessible by:

> install.packages("MASS")
> library(MASS)

The R package can be loaded from the web site:

http://cran.r-project.org/web/packages

Note that you can also use the Packages button and accompanied options in the R
console window to perform the same operations.

The standard packages include base, datasets, utils, grDevices, graphics, stats,
and methods. There are numerous special packages you can download and install.
For example, the R packages for item response theory modeling include ltm
(Rizopoulos 2006), eRm (Mair and Hatzinger 2007), and mirt (Chalmers 2012). The
use of other than the standard packages has been largely avoided in this appendix.
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Appendix B
Estimating Item Parameters Under the
Two-Parameter Model with Logistic Regression

In Chap. 3 the estimation of item parameters by fitting an item characteristic curve
to the observed proportions of correct response was illustrated by generating item
parameters and the data for the 33 groups of examinees along the ability scale. For
each group there were 21 examinees. As mentioned in the section of maximum
likelihood estimation of item parameters, the actual computation to estimate item
parameters using the Newton-Raphson method will be complicated even though
the ability scores are assumed to be known. For the two-parameter logistic model,
however, it is possible to use logistic regression via an R function glm (i.e.,
generalized linear model). The following example illustrates how to use such an
R function to obtain the estimates of the item difficulty and item discrimination
parameters. It should be noted that the method used in the R function of glm is
the iterative reweighted least squares method instead of the method of maximum
likelihood.

The data generated and used in Fig. 3.1 will be used in this example. In Fig. 3.1,
33 observed proportions of correct response were plotted along the ability scale.
The length of the theta, ability vector was 33. The observed proportions were
based on the random variates generated from the binomial distribution. For each
ability score level, there were 21 examinees yielding fg D 21. The probability
of correct response P.�g/ was obtained with the generated item discrimination
parameter a D 1:27 and the generated item difficulty parameter b D �0:39.
Before obtaining the vector p of the observed proportions of correct response, the
function rbinom(length(theta), f, P) randomly generated the vector
that contains the numbers of examinees with correct response. Assume that we have
saved such a vector by assigning it a name r under the two-parameter model using,
for example, the following command lines:

> theta <- seq(-3, 3, .1875)
> f <- rep(21, length(theta))
> wb <- -0.39
> wa <- 1.27
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> for (g in 1:length(theta)) {
P <- 1 / (1 + exp(-wa * (theta - wb)))

}
> r <- rbinom(length(theta), f, P)

For the data presented in Fig. 3.1, r contained the following 33 numbers:

1, 0, 0, 1, 4, 1, 0, 5, 1, 5, 3, 3, 11, 11, 7,
13, 12, 15, 17, 15, 15, 17, 20, 19, 19, 21, 18, 19, 21, 20,
21, 21, 21

The vector p in the plot was obtained, in essence, by dividing it with f:

> p <- r / f

In logistic regression, the probability of correct response will be modeled as a
function of known ability score levels as:

P.�g/ D 1

1 C expŒ�.ˇ0 C ˇ1�g/�
; (B.1)

where ˇ0 and ˇ1 are the intercept parameter and the weight parameter on the ability
score variable, respectively. Estimates of these parameters are expressed as b0 and
b1. It is clear that under the two-parameter logistic model, a � ˇ1 and b � �ˇ0=ˇ1.

Assume that we have the vectors of r and f as well as theta. The following R
command lines will be used to obtain the logistic regression results:

> glm(cbind(r,f-r) ~ theta, family=binomial)

The obtained results show that b0 D 0:386 and b1 D 1:377. Instead of
calculating the corresponding values of item discrimination and item difficulty
parameter estimates from these values reported in the results from glm, the
following command lines can be used because the estimates may have more than
three decimal places:

> lroutput <- glm(cbind(r,f-r) ~ theta, family=binomial)
> ahat <- summary(lroutput)$coefficients[2]
> bhat <- -summary(lroutput)$coefficients[1] /

summary(lroutput)$coefficients[2]
> ahat; bhat

The estimates of item parameters are Oa D 1:377101 and Ob D �0:2802905. These
estimates are very close to the corresponding item parameters used to generate the
observations, that is, a D 1:27 and b D �0:39.

Note that elements or portions of the output of the R function (e.g., lroutput)
can be seen with the function names, for example:

> names(lroutput)

The elements shown can be extracted with the dollar sign $. If only the numerical
values are needed, then we may use the function summary as shown in the above
command lines.



Appendix C
Putting the Three Tests on a Common Ability
Scale: Test Equating

The principle of the item invariance of an examinee’s ability indicates that an
examinee should obtain the same ability estimate regardless of the set of items used.
However, in the three test calibrations done above this did not hold. The problem is
not in the invariance principle but in the test calibrations. The invariance principle
assumes that the values of the item parameters of the several sets of items are all
expressed in the same ability scale metric. In the present situation there are three
different ability scales, one from each of the calibrations. Because of this, the same
examinee will get three apparently different values of estimated ability rather than
a common value. The intent of the three tests was to have one matched to the mean
ability of the common group of 16 examinees, one to be easy for the group, and
one to be hard for the group. Clearly, the average difficulties of these tests were
intended to be different but the anchoring process forced each test to have a mean
item difficulty of zero. All is not lost, however, as forcing the mean item difficulty
of the test to zero results in the average estimated ability of the group reflecting
the mean of the item difficulties before rescaling. Thus, what had originally been
differences in average difficulty of the three tests now becomes differences in the
mean ability of the common group of examinees.

From the results presented above, the mean of the common group was 0:06 for
the matched test, 0:44 for the easy test, and �0:22 for the hard test. This tells us that
the mean ability from the matched test is about what it should be. The mean from the
easy test tells us that the average ability is above the mean item difficulty of the test,
and this is as it should be. Finally, the mean ability from the hard test is below the
mean item difficulty. Again, this is what one would expect. Since item difficulty and
ability are measured in the same metric, we can use the mean abilities to position
the tests on a common scale. The question then becomes “what scale?,” and the
choice becomes choosing which particular test calibration to use as the baseline.
In the present case, the scale yielded by the calibration of the matched test and the
common group is the most logical choice for a baseline metric. This calibration
yielded a mean ability of 0:06 and a mean item difficulty of zero. In addition, we
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Table C.1 Item difficulties
in the baseline metric

Item Easy test Matched test Hard test

1 �1.50 �2.37 a

2 �1.50 �0.27 �0.01

3 �3.13 �0.27 �0.44

4 �0.18 0.98 0.42

5 �0.56 �1.00 0.88

6 0.18 0.11 �0.44

7 0.53 0.11 �0.02

8 0.53 0.52 1.40

9 0.89 0.11 0.42

10 0.89 2.06 a

Mean �0.38 0.00 0.27
aIndicates a non-finite estimate obtain

know one test was to be easy and one was to be hard. Thus, using the matched
test calibration as the baseline seems appropriate. Because the Rasch model was
used, the unit of measurement for all three calibrations is unity. Therefore, to bring
the easy and hard test results to the baseline metric only involved adjusting for the
differences in midpoints. In the paragraphs below, the results for the easy and hard
tests will be transformed to the baseline metric.

C.1 Easy Test

The shift factor needed is the difference between the mean estimated ability of the
common group on the easy test (0:44) and on the matched test (0:06), which is
0:38 D 0:38255692. To convert the values of the item difficulties for the easy test
to baseline metric one simply subtracts 0:38 from each item difficulty. The resulting
values are shown in Table C.1. Similarly, each examinee’s ability can be expressed
in the baseline metric by subtracting 0:38 from it. The transformed values are shown
in Table C.2.

C.2 Hard Test

The hard test results can be expressed in the baseline metric by using the differences
in mean ability. The shift factor is �0:22 � 0:06, or �0:28 D �0:27712598.
Again, subtracting this value from each of the item difficulty estimates puts them
in the baseline metric. The transformed values are shown in Table C.1. The ability
estimates of the common group yielded by the hard test can be transformed to the
baseline metric of the matched test. This was accomplished by using the same



C.2 Hard Test 169

Table C.2 Ability estimates
of the common group in the
baseline metric

Examinee Easy test Matched test Hard test

1 �2.91 �1.50 a

2 �0.77 �1.50 a

3 �1.96 0.02 a

4 �0.29 �0.42 �0.74

5 �0.29 �2.37 �0.74

6 0.16 �0.91 a

7 1.97 �0.42 �1.50

8 0.16 �0.42 �1.74

9 0.64 �0.42 �1.50

10 0.64 �0.91 �1.74

11 0.64 2.33 0.27

12 1.19 2.33 2.06

13 �0.29 0.46 0.27

14 1.97 2.33 2.06

15 a 2.33 0.75

16 a a 1.29

Mean 0.06 0.06 0.06

SD 1.35 1.57 1.26
a Indicates a non-finite estimate obtain

shift factor as was employed to rescale the item difficulty estimates. The results
of resealing each examinee’s ability estimate to the baseline metric are reported in
Table C.2.

After transformation, the mean item difficulties show the desired relations on the
baseline ability scale. The matched test has a mean at the midpoint of the baseline
ability scale. The easy test has a negative value and the hard test has a positive value.
The average difficulty of both tests is about the same distance from the middle of the
scale. In technical terms we have “equated” the tests, that is, put them on a common
scale.

A number of interesting observations can be drawn from these results. The mean
estimated ability of the common group was the same for all three tests. The standard
deviations of the ability estimates were nearly the same for the easy and hard tests,
and that for the matched test was “in the ballpark.” Although the summary statistics
were quite similar for all three sets of results, the ability estimates for a given
examinee varied widely. The invariance principle has not gone awry; what you are
seeing is sampling variation. The data set for each of the three test calibrations
involved a small number of items (J D 10) and a small number of examinees
(N D 16). As a result, the sampling variability of the item response data will be
quite large and one would not expect the several ability estimates to be the same. In
Chap. 5, the reader was introduced to this concept. In this chapter, you are seeing
it in a practical setting. Given the small size of the data sets it is quite amazing
that the results came out as nicely as they did. This demonstrates rather clearly
the powerful capabilities of the Rasch model and Birnbaum’s maximum likelihood
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estimation paradigm as implemented in the BICAL computer program. Since the
introduction of the Birnbaum paradigm, a number of other more sophisticated
parameter estimation procedures have been developed. See Baker (1992) and Baker
and Kim (2004) for a comprehensive presentation of these methods.

What was accomplished above is known in the field of psychometrics as test
equating. All three of the tests have been placed on a common scale. After equating,
the numerical values of the item parameters can be used to compare where different
items function on the ability scale. The examinees’ estimated abilities also are
expressed in this metric and can be compared. Although it has not been done here,
it is also possible to compute the test characteristic curve and the test information
function for the easy and hard tests in the baseline metric. Technically speaking,
the tests were equated using the common group approach with tests of different
difficulty. The ease with which test equating can be accomplished is one of the major
advantages of item response theory over classical test theory. Kolen and Brennan
(2014) provide a thorough discussion of equating and related techniques under item
response theory and classical test theory.
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