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Preface

Motivated by the fact that adding one or more parameters to a distribution function
makes it richer and more flexible to analyzing data, this book is an attempt to collect
results, using such distributions, that are useful in theory and practice. Furthermore,
the book is devoted to explore some properties of exponentiated distributions (EDs)
and their use in statistical inference. New results are obtained that may be added to
the existing results.

There are several ways of adding one or more parameters to a distribution
function. The simplest way is probably by exponentiating a camulative distribution
function G by a positive real number o.

The ED G” is quite different from the baseline distribution G and needs special
investigation. Exponentiating a distribution function by a positive parameter goes
back to Gompertz (1825) and Verhulst (1838, 1845, 1847). In many cases, while G
accommodates for only monotone hazard rate functions, the ED G* accommodates
for both monotone and non-monotone hazard rate functions. Special attention is
paid to applications in reliability and life testing.

Chapter 1 is an introductory chapter which includes a historical note and pre-
view, generalized order statistics, the uses of asymmetric loss functions, MCMC,
Bayes prediction, and mixtures of EDs.

Inferences (estimations and predictions) and their properties using a general ED
G* are discussed in Chap. 2.

In Chap. 3, G is specified to be Weibull, so that the properties and inference of
the exponentiated Weibull (EW) distribution are presented. In this chapter, related
distributions to the EW distribution and applications are also provided.

In Chap. 4, G is specified to be exponential, so that the properties and inference
of the exponentiated exponential (EE) distribution are presented. In this chapter,
characterization of the EE distribution is given.

In Chap. 5, G is specified to be Burr type XII, so that the properties and inference
of the exponentiated Burr XII (EBXII) distribution are presented. In this chapter,
applications, related distributions, and beta-Burr XII distribution are introduced.
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viii Preface

Chapter 6 discusses the properties and inference of finite mixtures of exponen-
tiated distributions. Particular emphasis is made when the components are EE
distributions.

We wish to express our gratitude to Professor Chris Tsokos for his valuable
suggestions and comments about the manuscript which improved the quality and
presentation of the book. We thank Zager Karssen and Keith Jones of Atlantis Press
for the interesting discussions about the publication of the book.

Summer Research Grant and Sabbatical Leave from Rider University enabled
the second author to complete his part of the work.
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1.1 Historical Note and Preview

There are several ways of adding one or more parameters to a distribution function.
Such an addition of parameters makes the resulting distribution richer and more
flexible for modeling data. A positive parameter was added to a general survival
function (SF) by Marshall and Olkin (1997). In their consideration of a countable
mixture of Pascal(r, p) mixing proportion and positive integer powers of SF, a SF
with two extra parameters was obtained in AL-Hussaini and Ghitany (2005). A new
family of distributions as a countable mixture with Poisson added parameter was
obtained by AL-Hussaini and Gharib (2009).

Adding a parameter by exponentiation goes back to Gompertz (1825), Verhulst
(1838, 1845, 1847). Gompertz suggested the use of a cumulative distribution
function (CDF)

Fi(t) = exp(—oe™"%), —oo<t<oo0, (1.1.1)

which is an exponentiated extreme value distribution exp(—e”/ 7) by « to graduate
mortality tables.

Verhulst (1838) raised his logistic CDF (1 + pe~"/?) " to a positive power o and
used

© Atlantis Press and the authors 2015 1
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2 1 Class of Exponentiated Distributions Introduction

Fy(t) = (14 pe )" —oo<t<oo, (1.1.2)
in Verhulst (1845) and the exponentiated exponential CDF
Fi(t) = (1 — pe™%)* t > alnp, (1.1.3)

in Verhulst (1847) to represent population growth.
Ifin (1.1.3), x=1t/0,p =1, = 1/0 and F = F5 then

F(x)=(1-e™*x>0. (1.1.4)

This is the form that will be used throughout the book. For details on the
exponentiated Gompetrz-Verhulst family, see Ahuja and Nash (1967).

Ahuja and Nash (1967) and several other authors, call such distributions ‘gen-
eralized’ distributions. The word exponentiated rather than generalized may be
more expressive since the latter word could be confused with other generalized
concepts. On the other hand, it is not clear why an addition of a parameter or more
should ‘generalize’ a distribution although the resulting distribution belongs to the
same family with different parameter space.

The exponentiated distribution (ED) G” is flexible enough to accommodate, in
many cases, for both monotone as well as non-monotone hazard rates. In fact, EDs
G* are quite different from G and need special investigation. For example, if G is
exponential such that G(x) = 1 — exp(—fx), then its corresponding PDF g(x) =
fexp(—fx) is monotone decreasing on the positive half of the real line. However,
H(x) = [1 — exp(—px)]* has PDF h(x) = afexp(—px)[1 — exp(—px)]*"", which
is unimodal on [0, 00) with mode at (Inx)/f. Furthermore, while the exponential
distribution G has constant hazard rate f3, it can be shown that the exponentiated
exponential (EE) H has increasing hazard rate (IHR), if o > 1, constant hazard rate
(CHR), if o« = 1, and decreasing hazard rate (DHR) if o< 1.

The function

H(x) = H(x[0) = [G(x[B)]" = [G)]", (L.L5)

where G(x) is a CDF and « is a positive real number, 0 = («, §) € Q, f§is a (vector)
of parameters of G and Q is a parameter space, is known as exponentiated distri-
bution, since G is exponentiated by o. It is also known as proportional reversed
hazard rate model (PRHRM). Notice that the reversed hazard rate function of H is
defined by

Z0) = L nH(x)] =

G g(x)

HCHCC, )f,:,(x) = W = aig(x)
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So that the PRHRF of H is proportional to the PRHRF of G with proportionality
parameter o.

If the power « is a positive integer, the ED is also known as Lehmann alter-
natives, due to Lehmann (1953), who defined the model as a non-parametric class
of alternatives. See Gupta and Gupta (2007).

Remarks

1. If, in (1.1.5), a =1, then H(x) = G(x), the non-exponentiated distribution,
which is also known as baseline distribution.

2. If o = N, a positive integer, N = 1,2, ..., then H(x) = [G(x)]" is the CDF of
the maximum of a random sample of size N drawn from a population whose
CDF is G.

3. Any CDF H can be written in terms of its hazard rate function (HRF), denoted
by A(x) and its PRHRF 1*(x) as follows

So that the SF and PDF are given by

A (%)

_ Ax) A" (x)
R =T+ 7@

and i(x) = A(x)R(x) = 0170

4. AL-Hussaini (2011), constructed a new class of distributions by compounding
the PDF corresponding to the exponentiated SF, given by

b
Ry(x) = [Rg(x)]” with the gamma PDF, given by 7(«) = r}gl) ab1=le=b2 The

resulting PDF takes the form

h(x) = | h(x|o)m(o)do

by
(alRa] ™ 5(0)} o (el

o0

— bgl g(X) / chle—[bz—ln R(;()c)]o:doC

0

InRg(x)] !
b, ’

_ &

where Ag(x) = Rol -
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An extension to the multivariate case was given by the following theorem:

Theorem [AL-Hussaini (2011)] A multivariate PDF of the random vector X =
(X1,...,X,) can be constructed by compounding L with 7t , where

x) = [ [ rxpail )
i=1
Iy (i) = 0:[Re (x)] "™ g(xi), i=1,...,n

and m(a) is the gamma PDF as given before, so that

=" [ﬁ 0,’/10 (xi)] CXP[OC i: 01' In Rg(x,-)] .

Therefore

o]

R (x1,. . x) /L

0

b7 n
= [[] 626 (x)] r%n) / ot exp[—ofby = Y 0;In Re(xi) Hda
o i=1

i=1

=

b
1+n H/lig Xl I—ZyllnRG X, b n, )Cl'>07

where p; = 0;/by, Ag(x;) = g(xi) /Rs(x;).

1.2 Generalized Order Statistics

Kamps (1995a, b) suggested a unification of several important concepts that were
used separately in statistical literature such as ordinary order statistics (OOS), upper
ordinary record values, kth records, Pfeifer records, sequential order statistics and
progressive type II censored order statistics. He called this unification generalized
order statistics (GOS). For details and survey, see Kamps (1995a, b), Cramer and
Kamps (2001), Ahsanullah and Nevzorov (2001), Cramer (2002), AL-Hussaini
(2004).

The PDF of the first r GOSs X7, .. ., X" in a random sample of size n drown from
a population whose CDF, SF and PDF are H(.),Ry(.) and A(.), is given by
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r—1

Sex: (X150 x) = Gy lH [Rez (x:)]™ B (x;)

i=1

[Rer ()" Aoy ),

H ' 0)<x; < - <x,<H'(1).

where X! =X(r,n,k,m), Cry =[l_,vsr=1,...n—1,y,=k+n—i+M,
Mi:zj'.’;ilmj,m:(ml,...,mn,l), n>2, 1<i<n—1,k and m; are real
numbers such that k> 1.

An important special case is that in which m;,=... = m,_; = m. Cramer
(2002) calls this case m-GOS. In this case, the PDF of X* = X(r,n, k,m), the rth
m-GOS, can be shown to be

mw=§%ﬁmm*%mqm@r%xem (12.1)

7, = k4 (m+1)(n —r), A is the set on which fx: (x) is positive and

En(H(x)) = {{1 — R@I™ Y (m+1), m# -1,

—In[R(x)], m=—1.
A special case is that of OOS, in which k = 1 and m = 0. So that C,_; = (nf—')),
The PDF of the rth OOS, denoted by X,.,, is then given by
1 n—r r—1
=———IR h 1—|R . 1.2.2
i) = =gy RO RO~ (RG] (122)

Another special case is that of the ordinary upper record value (OURV), in
which k = 1 and m = —1. In this case, y, = 1 and C, = 1, for all r. So that the PDF
of X' is then given by

fe: (x) = ) h(x)[— InR(x)]". (1.2.3)

More on GOSs can be found in Kamps (1995a). On ordered random variables,
see Ahsanullah and Nevzorov (2001), Ahsanullah and Raqgab (2007).

1.3 Why Use Asymmetric Loss Functions?

Before answering this question, it should be remarked that Bayes analysis and
statistical decisions are so strongly related that it would be “somewhat unnatural to
learn one without the other” Berger (1985).
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Several books, and articles, have been published in Bayes (and empirical Bayes)
theory using different loss functions. Examples of such books are Savage (1954),
Jefferys (1961), Lindley (1965), De Groot (1970), Martz and Waller (1982), Maritz
and Lwin (1989), Bernardo and Smith (1994), Press (2003) and many other ref-
erences (articles and books).

A recent book on Bayes statistics has been written by Savchuk and Tsokos
(2013). The book answers general questions on Bayes theory and discusses para-
metric, quasiparametric and nonparametric Bayes estimation and applied some of
the results in reliability.

The square error loss (SEL) function is given by

{(A) = dN® = d[i(0) — u(0)],

where d is a positive constant, usually taken to be 1, A = &(0) — u(6), u(6) is the
function of 0 to be estimated and #(0) is the SEL estimate of u(8). In this case, it is
well known that the Bayes estimate of u(0), based on SEL function, is the posterior
mean, given by

i1z (0) = E[u(0)|x] = / / u(0)7(0x)d0;. . .dO,, (1.3.1)

where the integrals are taken over the m-dimensional parameter space, 7(0|x) is the
posterior PDF of the vector of parameters given the vector of observations. For
given prior PDF n(0), the posterior PDF 7(0|x) is given by

7(6lx) o L(0,x)m(0) (13.2)

where L(6,x) is a likelihood function (LF).

The SEL function has probably been the most popular loss function used in
literature. The symmetric nature of the SEL function gives equal weight to over-
and under-estimation of the parameters under consideration. However, in life
testing, over estimation may be more serious than under estimation or vice versa.
The 1986 disaster of the space shuttle Challenger, which was participated by the
overestimation of the reliability of key space shuttle components, serves as a dra-
matic example, Feynman (1988), Dalal et al. (1989).

Research has been directed towards asymmetric loss functions. Varian (1975)
suggested the use of linear-exponential (LINEX) loss function to be of the form

{(A) = ble*® — kA — 1], (1.3.3)

where |k| # 0,5 > 0 and A is as before, in which G(0) is the LINEX estimate of
u(0).

Notice that for A = #(0) —u(0) =0, {(A) =0. For a > 0, the loss declines
almost exponentially for A = #(0) — u(6) > 0 and rises approximately linearly
when A = ii(0) — u(0) <0. For k<0, the reverse is true. By expanding e**, {(A)
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can be approximated to the SEL function when A = i(0) — u(0) is small. Without
loss of generality, b may be taken to be equal to 1.
Using LINEX loss function, the Bayes estimate of u(0) is given by

fix (0) = —%lnE[e_"”W)})_c] - —im[ / / &40 2 (0lx)d0,. . d0,]. (1.3.4)

Thompson and Basu (1996) generalized the LINEX loss function to the squared-
exponential (SQUAREX) loss function of the form

L(A) = b[e™ + cA? — kA — 1], (1.3.5)

where ¢ # 0, k, b and A are as before. The SQUAREX loss function reduces to the
LINEX loss function if ¢ = 0. If k = 0, the SQUAREX loss function reduces to the
SEL function, given by (1.3.3).

The Bayes estimate of u(6), based on SQUAREX loss function is given by

l:tsQ(Q) = ﬁLIN(G) + %ln[l “l‘%{l)SEL(H) — ﬁsQ(@)}] (136)

Other asymmetric loss functions were suggested. Among which is that of Zellner
(1994) who introduced the notion of a balanced squared error loss function in the
context of a general linear model to reflect both goodness of fit and precision of
estimation.

1.4 Markov Chain Monte Carlo (MCMC) Method

To use the MCMC method in computing Bayes estimates of o, R(xp), A(xo), at
specific value of Xo, we first notice that the general problem is in evaluating the
integral E,[ = [ $(0)n(0]x)d0, assuming that [|P(0)|n(0]x)d0 <oo, where
n(0|x) is the posterlor PDF of 0 given data. The vector 0 could be of high
dimension. This leads to difficulties in the computation of the integral. The high
dimensionality of the vector 6 remained a problem even with the approximation
forms for the computation of the integral, that were suggested, for example, by
Lindley (1980), Tierney and Kadane (1986). High dimensionality of the vector is
clearly obtained when the distribution considered is finite mixture. On Markov
chain for exploring posteriors, see Tierney (1994).

Markov chain Monte Carlo (MCMC) algorithms such as Metropolis-Hastings
algorithms (and Gibbs sampler as a special case) have become extremely popular in
statistics. The Metropolis-Hastings algorithm was named after Metropolis et al.
(1953), Hastings (1970). Its application in statistics started with the early nineties.

MCMC approaches are so named because one uses the previous values to
randomly generate the next sample value, generating a Markov chain (as the
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transition probabilities between sample values are only a function of the most recent
sample values).

If we can draw samples 0" ..., 0™) from 7(6|x), then Monte Carlo integration
allows us to estimate this expectation by the average: dy = ﬁZL o (09). If we
generate samples using a Markov chain (aperiodic, irreducible and has a stationary
distribution with PDF 7(6|x)), then by the ergodic theorem ¢y — Ex[d(0)], as
N — oo. The estimate (T)N is called an argodic average. Also for such chains, if the
variance of ¢(6) is finite, the central limit theorem holds and convergence occurs
geometrically. Early iterations 0 0™ reflect starting value 0. These iter-
ations are called burn-in. After the burn-in, we say that the chain has ‘converged’.
The burn-in are omitted from the ergodic averages to end up with

1 N

&:N_M > o). (1.4.1)

Methods for determining M are called convergence diagnostics. For details on
the MCMC, see Cowles and Carlin (1996), Gelman and Rubin (1992), Roberts
et al. (1997), Gamerman and Lopes (2006).

Associated Bayesian methods based on MCMC tools and novel model diag-
nostic tools to perform inference based on fully specified models are discussed in
Sinha et al. (2008).

The data set is analyzed by applying the provided Gibbs sampler and Metrop-
olis-Hesting algorithm using: WinBUGS1 .4.

(http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/shtml), which can be downloaded.

1.5 Bayes Prediction

The general problem of prediction may be described as that of inferring the values
of unknown observables (future observations), known as future sample, or func-
tions of such variables, from current available observations, known as informative
sample. According to Geisser (1993), inferring about realizable values not observed
based on values that were observed, is the primary purpose of statistical endeavor.
The problem of prediction can be solved fully within Bayes framework (Geisser
1993). Bernardo and Smith (1994) stated that: “inference about parameters is thus
seen to be a limiting form of predictive inference about observables”.

Different sampling schemes are used in prediction. For example, Dunsmore
(1974) suggested the one-sample scheme to be such that the first r order statistics in
a random sample of size n drawn from a population whose CDF H (.), is considered
to be the informative sample. The future sample is the set of the remaining order
statistics.
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In the two-sample scheme, two independent samples are assumed to be drawn
from the same population, each is ordered and one of the two samples is considered
as the informative sample and the other sample as the future sample.

Lingappaiah (1979) suggested an extension to a series of M + 1 independent
samples. The aim is to predict a statistic in a future sample based on earlier samples
(or stages).

Prediction has its uses in a variety of disciplines such as medicine (medical
prognoses, antibiotic assays and preoperative medical diagnosis), engineering
(machine tool replacement, quality control and maximization of the yield of an
industrial process) and business (determining the difference in future mean per-
formance of competing products and the provision of warranty limits for the future
performance of a specified number of systems). For details on the history of sta-
tistical prediction, analysis and examples, see Aicheson and Dunsmore (1975),
Geisser (1993).

Prediction was reviewed by Patel (1989), Nagaraja (1995), Kaminsky and
Nelson (1998), AL-Hussaini (2000).

1.6 Mixtures of Exponentiated Distribution Functions

The study of homogeneous populations with ‘single component’ distributions was
the main concern of statisticians along history. However, Newcomb (1886), Pear-
son (1894) were two pioneers who approached heterogeneous populations which
can be represented by a ‘finite mixture’ of distributions.

Suppose that F(x|6) is a CDF of x given 6 and Q(6) is a CDF of . The function
H(x), defined by

H(x) = / F(x|0)d0(0), (1.6.1)

was called by Fisher (1936) compound distribution of F and Q. Teicher (1960)
called H a mixture of F and Q. The function F(x|0) is known as kernel and Q(0) as
mixing distribution. If the entire mass of the corresponding measure of Q is con-
fined to only a finite number of points 01, ..., 0, then (1.6.1) becomes a finite
mixture of k components whose CDF is defined by

k
= F(x0)G (1.6.2)
j=1

To simplify notation, write Fj(x) = F(x|0;) and p; = G(0;), so that (1.6.2)
becomes
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k
H(x) = ZPij(x)a (1.6.3)

where p; >0 and Zle pj=1.
In (1.6.3), p; is known as the jth mixing proportion and Fj(x) the jth component.
If Fj(x) is absolutely continuous for all j, so that fj(x) is the corresponding PDF,
then the PDF h(x) of a finite mixture of k components, is given by

k
h(x) = > pifi(x). (1.6.4)
=
If R;(x) is the jth SF, then the SF R(x) of the mixture is given by
k
R(x) =Y piRi(x). (1.6.5)
=

It can be shown that the HRF A4(x) of the mixture H can be written, in terms of
the HRFs of the components 4;(x), j = 1,.. .,k as follows

k
)LH(x) = ij(x)ij(x), (166)
where
_piRikx)
wj(x)fw, j=1,.. k. (1.6.7)

Notice that Z]I.(:l wj(x) = 1.
If the components are exponentiated distributions, then (1.6.3) and (1.6.4)
become, respectively

k k
H(x) = ZPJ‘F]‘(X) = ZP]‘[G]‘(X)]“,
k k
h(x) =Y pifi(x) = 2> pilGi(x)]" ' gi(x)
j=1 J=1

where G;(x) is the jth baseline CDF and g;(x) is its PDF.
The SF and HRF are the same as given by (1.6.5) and (1.6.6) in which the jth SF

and HRF are given by R;(x) = 1 — [G;(x)]" and 4;(x) = %}E’;’]gﬂ Also wj(x) is

given by
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p{1 =[G}

k o’
Yz Pi{1 = [Gi(x)]"}
Details and applications of finite mixtures can be found in Everitt and Hand

(1981), Titterington et al. (1985), McLachlan and Basford (1988), McLachlan and
Peel (2000).

w;(x) = j=1,2,.. .k
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2.1 Introduction

The class of distributions S = {H: H(x) = [G(x)]*}, where H is defined by (1.1.5),
shall be called class of exponentiated distributions. The PDF and SF, corresponding
to H, are given, respectively, by

h(x) = 2[G(x)]" " g(v), (2.1.1)
where g(x) is the PDF corresponding to G(x) and
Ry(x) =1 —[G(x)]". (2.1.2)

© Atlantis Press and the authors 2015 15
E.K. AL-Hussaini and M. Ahsanullah, Exponentiated Distributions,

Atlantis Studies in Probability and Statistics 5,

DOI 10.2991/978-94-6239-079-9_2


http://dx.doi.org/10.2991/978-94-6239-079-9_1

16 2 Basic Properties, Estimation and Prediction ...

In terms of survival functions (SFs) Ry(x) = 1 — H(x) and Rg(x) = 1 — G(x),
corresponding to H(x) and G(x), we could either have

Ry(x) =1 —[1 - Rg(x)]", (2.1.3)
or simply write
Ry (x) = [Rg(x)]". (2.1.4)

Notice that SF (2.1.3) corresponds to CDF (1.1.5) whereas SF Ry (x), in (2.1.4),
is obtained by exponentiating SF Rg(x) by o. If, in (2.1.3), & = N, a positive
integer, the SF of the minimum of N independently, identically distributed (iid)
random variables from G is obtained.

Cramer and Kamps (1996) were concerned with obtaining and studying the
properties of the model parameters in a sequential k-out-of-n structure based on the
exponentiated SF (2.1.4) after indexing the parameter o by i,i=1,...,n and
writing (2.1.4) in terms of the CDF’s. That is

Hix)=1-[1-GW)]"i=1,...n. (2.1.5)

The specific choice of CDF’s, as given by (2.1.5), in the definition of sequential
order statistics with CDF G and positive real numbers o, ..., o, leads to the
following important cases [see Cramer and Kamps (1996)]:

(i) oy =---=o; = ordinary order statistics.
(i) o; =7v;/(n—1i+ 1) = generalized order statistics.
(i) o; =k/(n—i+1)= kth record values.
(iv) oi=(N-+1—i—3"\R)/(n—i+ 1) = progressive type II censoring,
where o; =7;/(n—i+1) and N=n+>,_ Ry, (Ry, ...,R,) is the cen-
soring scheme at the beginning of the experiment.

Nagaraja and Hoffman (2001) used (1.1.5) as a record model and described the
exact as well as the asymptotic distributions of the inter-arrival times of upper
record values from the G* record model when {X,,n> 1} is a sequence of inde-
pendent random variables such that X,, ~ G*. Hoffman and Nagaraja (2000) studied
the model in which X; ~ G* i > 1, are independent random variables assuming that
the number of observations is random and independent of the observations and that
the os are positive constants. They called this model a random G* model. Hoffman
and Nagaraja (2002) introduced the random power record model where for every
n> 1, the joint CDF of X, ..., X, of a sequence {X,,n > 1} of random variables,
not necessarily independent nor identically distributed, is given by

Hy(x1, ... %) = E{G" (x1), ...,G"(xn)},xi ER,i=1,...,n,
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where the expectation is taken with respect to the o's which are assumed to be
almost sure finite positive random variables. They established a hierarchical rela-
tionship between several previously studied record models and showed that this
model incorporates all of them.

2.2 Properties of the Exponentiated Class of Distributions

Motivated by the fact that any (absolutely continuous) SF R¢(x) can be written in
the form

Ri(x) = Rg(x; B) = exp[—u(x; f)] = exp[—u(x)],0<a<x<b<oo, (2.2.1)

where u(x) = —InRg(x), is such that Rg(x) is a SF, so that u(x) is a continuous,
monotone increasing, differentiable function of x such that u(x) — 0 as x — a* and
u(x) — oo as x — b, in which a and b are real numbers that may assume the
values 0 and 00, respectively. We shall use (2.2.1), sometimes, instead of the direct
use of G(x).

Remarks

1. The expression for Rg(x), given by (2.2.1), holds true for any distribution
defined over the whole real line if a is allowed to assume the value —oc.
However, we shall restrict the domain to the positive half of the real line, or
subset of it, as given in (2.2.1), which is more appropriate for x to be used as
time variable.

2. Class (2.2.1) includes all SF’s with positive support (or subset of it). In par-
ticular, it includes among others, the Weibull (exponential and Rayleigh as
special cases), compound Weibull (or Burr type XII), (compound exponential
(or Lomax) and compound Rayleigh as special cases), beta, Pareto I, Gomperz
and compound Gompertz SF’s.

3. Although (2.1.3) and (2.1.4) are both exponentiated models, they are not quite
the same. Substituting (2.2.1) in (2.1.3) and (2.1.4), we obtain, for x > 0,

Ry(x) =1 — {1 —exp[—u(x)]}" (2.2.2)
and
Ry (x) = exp[—oum(x)]. (2.2.3)

Notice that SF (2.2.3) is of the same form as that given by (2.1.4) with, say,
u*(x) = ow(x). So, we shall concentrate on the class of SFs (2.2.2).

4. Ttis easy to see that if Z = — In G(X), where X has CDF H(x) = [G(x)]” then Z
has the exponential distribution with HRF o.
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5. Suppose that H(x) = [G(x)]". Gupta et al. (1998) showed that:
if « > 1 and G admits increasing HRF, then F admits increasing HRF and
if <1 and G admits decreasing HRF, then F admits decreasing HRF.

2.2.1 Moments

The CDF and PDF corresponding to SF (2.2.2) are given, for x > 0, by

H(x) = (1 — exp[—u(x)])*, (2.2.4)
and
h(x) = ol (x) exp[—u(x)]{1 — exp[—u(x)]}*". (2.2.5)

It can be shown that the /th moment of a random variable X following CDF
(2.2.4) is given by

E(X') =0 ¢li(0), (2.2.6)
=1
where
{oc: 1,2,3,...
V=
00, oisapositive non—integral value, (2.2.7)

¢ =(—1yY" Ya(o—1)... (a—j+ 1)/},

/ 1 explu) (2.2.8)
0

In the non-exponentiated case (« = N = 1), the ¢th moment of H(x) = 1 — exp

[—u(x)] is

EXY) =1, (¢) = é/ x"~Vexp[—u(x)]dx.
0
Result (2.2.6) can be shown by observing that integration by parts yields

E(X") = f/xéilRH(x)dx,
0
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where, from (2.2.2), Ry(x) = ZJN | ¢j exp[—ju(x)], ¢; is given by (2.2.8) when o =
N is an integer 21 and Ry (x) = %, ¢jexp[—ju(x)], ¢; is given by (2.2.8) when «

takes positive non-integral values. Substituting Ry (x) in the integral of E(X"), we
obtain (2.2.6).

Remark
1. If j — 1 =i, then (2.2.6) becomes E(X‘) = £ 317, cili(¢),

where

ci=(Da—1)...(a—i)/(i+1) =
= (=1 (a—1)...(a—i)/i,

*
Ciy

o
i+1

Therefore E(X') =
For example, if u(x
positive integer, then

)f DI ,+l11 (0).

fx (the exponential baseline distribution) and v = o is a

x!) E'az <a—'l)<i4l_1>”1.

This result agrees with that given in Gradshteln and Ryshlik (1980), p. 1077.

Table (2.1) gives the /th moment E(X") for some members of class &, where, for
Jj=1,...,v,¢is given by (2.2.8) and v by (2.2.7). The letter E preceding the name
of the distribution stands for exponentiated. The letter C for compound, W for
Weibull, Ray for Rayliegh, Par 1 for Pareto typel and Gomp for Gompertz.

2.2.2 Quantiles

The quantile x, of the absolutely continuous distribution (2.2.4) is given by
_ -1 1/o
xg=u [—In(l —q'%)], (2.2.9)

where u~!(.) is the inverse function of u(.). This is true since the quantile is the
value of x, satisfying ¢ = H(x;) = {1 — exp[—u(x,)]}". Table (2.2) displays the
medians of some members of the exponentiated class . It may be observed that in
the non-exponentiated case (o = 1) the median reduces to median = u~'(In2).
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Table 2.1 /th moments of some members of the exponentiated class &

Distribution u(x) fth moment
B
EW(a, By, B2) By X F<1f+/ﬁ£ﬁz Z/ 1 Ql//&)
EE r(1+¢
(o, B) px wosy (%)
ER. r £/2 v C;
ay(a, B) B (1[;/2/ ) Y (ﬁ)
B r(1+¢, v (i,
ECW (Burr XII) B In(1 + oxPr) <(;//f{[f|> ijl ( %ﬁz)/ﬁl>
(0(7 Blv BZ’ 8)
4 y il (jp,—C
ECE(ELomey) | (400 ey (50)
(o, B, 8)
ECR S r(1+¢/2 r(jp,—t/2
ay(a, B, 3) Bin(1+6x7) (L) 5 (— it >)
EParI(at, B, B,) —In(x/B,)", (x > /%) (g s 5
! =1\ (B-0B]
EBeta(a, B) —In(1 —x%),0<x<1 . cjr )
PA+/B) X | riom
EGomp(a, By, B>) By exp(Brx) B%ZJ‘ﬂ CjIj 0*
ECGomp(«, By, By, 3) Sln [1 + e;’;ﬁ 1] fzj'v:l lef (f)b

L) = Ofo [ln(l + #] [efzdz, z :jﬁl(eﬂzx -1).

f

o [(Bro- 1)+e /’2]

2.2.3 Mode

The logarithm of PDF (2.2.5) is given by
Inh(x) =Ina +Inw'(x) — u(x) 4+ (x — 1)1In [1 —e™™].

So that

0 =u"(x)(1 —e ™) — [ (0)*[1 — (o = L)e ]

The value of x which satisfies this equation is a mode of the PDF, given by
(2.2.5).
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Table 2.2 Medians of some members of the exponentiated class

Distribution u(x) ul(y) Median

EW(a, B, B,) B, xP (v/ )"/ [ln(l B 2,1/1)71/6.} 1/
EE(a. B) px y/B In(1 —2-1/7) /"

ERay (s, B) pe w/p” [in(1 — 2017
ECW(Burr XI1)(o, By, By, 8) | B, In(1 + oxP) [/ — 1)]/h H (1 =272~/ }/o} Vb
ECE(ELomax) (o, B, 8) pln(1 + ox) Leh —1) {(1 2-1/%) =1/ 1} 5
ECRay(a, B, 8) BIn(1 + 0x2) [(e/F — 1)) H (1-271%) “1p }/5] 12
EParI(a, B, B,) —In(x/B) x> gy | gyl i B [1 = 21a]

EBeta(o., B) —In(1 —xP), (0<x<1) | (1 — )/ 0—1/(p)

EGomp(a, By, Bs) Byefx [In(L +y/B1))/ B> ln{l —In(1— 271/«)'//%][/”1
ECGomp(2, By B2, 8) §1n[1 + //f‘/f;l] [In{1+ By (e = 1)}]/Ba ln[l +ﬂ][;2{(1 _2—1/1>*1/‘7_1}] 1/P:

2.2.4 Hazard Rate Function

The hazard rate function (HRF) corresponding to the exponentiated CDF (1.1.5) is
given, for x > 0, by

i) = g = 2T KD a1 €, (i) (22.10)

where Ag(x) = g(x)/Rg(x) and €, (x) = %;EX(;)
Notice that, since G(x) is a CDF on [0, c0), then
If 0<a<1, then —0co< €, (x) <1 = 1— €, (x) > L = Ay(x) > ig(x).

If >1, then =1 < €, (x) <1 = 0<all— €, ()] <1 = 0<Ay(x) <Ag(x).

€, (0)=1and €, (0c0) = lim,__ [%;23)] =21 So that, =1 < €, (x) <1, for

all x € [0,00). Hence, 0 <ol— €, (x)] <1.

By differentiating A (x), given by (2.2.10) with respect to x and simplifying, it
can be shown that, provided that G(x)g'(x) < g*(x),

H has an increasing hazard rate (IHR), if:

o
G*(x)>1-— . 2.2.11
R S (RPN 221
H has a decreasing hazard rate (DHR), if:
o
G*(x)<1— (2.2.12)

1 ={G(x)g'(x)/g*(x)}
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If equality holds, then critical points at which extrema for H(x) may be obtained
and so other shapes for the HRF of H(x) are expected to take place.

2.2.5 Proportional Reversed Hazard Rate Function

The proportional reversed hazard rate function (PRHRF) of H, denoted by 1, (x) is
defined by

(o) = () =

It may be noticed, from (2.2.10), that the HRF /g (x) of H(x) is not proportional
to the HRF /g(x) of G(x). However, the PRHRF A7 (x) of H(x) can be seen to be
proportional to the PRHRF A (x) of G(x). In fact,

con b)) oG ) L .
) = gy =G = Yl (2.2.13)

This is why the exponentiated model is equivalently called PRHRM.

It may also be noted that /7, (x) dx provides the probability of failing in (x — dx, x),
when a unit is found failed at time x. In general, the PRHRF has been found to be
useful in estimating the SF for left censored data.

It can be seen that the CDF H(x) can be written, in terms of the HRF A4 (x) and
PRHRM 2y (x) of H as follows

/IH (X)

HO) = 2t + 150

(2.2.14)
From which, the SF and PDF are given, respectively, by

W
RO = 1) + 150

A3 (%) Ap (x)

and h(x) = Ag(X)R(x) = T+ 5

2.2.6 Density Function of the rth m-Generalized
Order Statistic

The PDF of the rth m-GOS based on an absolutely continuous CDF H (x), whose
SF is Ry(x) and PDF is h(x), and positive numbers 7,, ...,7, is given by (1.2.1).

The following theorem gives an expression for the PDF of the rth m-GOS based
on an exponentiated distribution.
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Theorem 2.1 The PDF of the rth m-GOS based on an exponentiated distribution,
whose CDF H(x) = [1 — e *W]* and SF Ry(x) = 1 — [1 — e M), is given from
(1.2.1) in case (m # —1), by

. _ Cr-i M a—ulx)ye 7l ! —u(x)1 _ a—u(x)ye—1
fo) = gt (1 [ e P) Tl et — )
|

(1 _ [l _ efu(x)](erl)oc) ~ '
(2.2.15)

where C,_1,7, are as given in Chap. 1.
In the case m = —1,y;, = k,C,_; = k', the PDF of the rth OURV is given by

kK
1—1(1-— e*“(x) o k—loml X efu(x) 1— efu(x) o—1
RSV P e T ) (2.2.16)

[—In{1—(1- e*”(x))ﬁ}]rfl’

fi:(x) =

The PDF of the rth ordinary order statistic (OOS) is obtained by setting k =
land m = 0 in (2.2.15), or equivalently by the direct use of (1.2.2), to get

1 —u(x)1a n=r / —ulx —u(x)jo— —u(x)\o\r—
fX,:”(X):m(l—[l—e ()]) OCM()C)C ()[l—e ()] l(l—e ())( 1).
n—r I n—r 1 L
= —1 J - (1 -= —u(x)\o(j+r)=1 1 —u(x)
2,0 (") aa e e mlgen,
= wjh;(x)v
Jj=0
(2.2.17)
where
(—1)n!
0 — 2.2.18
S = == — DR +)) (22.18)
and
1 (x) = a(r + j)u (x)e ™0 (1 — e~ @)=t (2.2.19)

Also, from (2.2.16), the PDF of OURYV is obtained by setting k = 1 and m = —1
to get

fio(x) = o (x)e "0 (1 — e @) [ {1 — (1 — e @)}~ (2.2.20)
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(i) An s-out-of-n structure functions if at least s of its components function, or
equivalently, that the life of the s-out-of-n structure is the (n — s + 1) largest
of the component lifetimes. So, if r is replaced by n — s + 1 in the PDF of the
rth order statistic (2.2.18), we obtain the PDF of life of an s-out-of-n
structure.

n

f;l_ﬁ-l:n(x) = <I’l —s+1

|:1 B efu(x)} o(n—s+1)—1 |:1 B (1 B efu(x))a:|S7l.

(i) The PDFs of a series (n-out-of-n) and parallel (1-out of n) structures are
obtained, for x > 0, from (2.2.21), respectively, as follows:

)(n — 5+ ol (x)e ™™
(2.2.21)

fian(x) = nowd () (1 = e 1= (1= e 0T (2222

Fun(x) = noud (x)e™ (1 — e7@ym1, (2.2.23)

Notice that in the non-exponentiated case (o = 1), fi.,(x) = nu/(x)e ™) and
fam(x) = md (x)e ™0 (1 — e #))"~! which agree with the PDFs of the
minimum and maximum order statistics based on a population with CDF
1 —e W,

(iii) Expression (2.2.17) agrees with the expression obtained by Sarabia and
Castillo (2005), for the PDF of the rth order statistic, with the appropriate
parameters. This expression makes it easy to obtain the corresponding CDF,
SF and moments.

(iv) Mudholkar and Hutson (1996) obtained asymptotic distributions of the
extreme order statistics X;., and X,,,, and the extreme spacings X,., — X1, and
Xon — Xn—1n-

2.3 Estimation of a, R(xy), A(x9) (All Parameters
of G are Known)

2.3.1 Maximum Likelihood Estimation
of a,R(xg), A(xg)

In this section, the parameter o, SF R(x) and HRF A(x), at x, are estimated using
the maximum likelihood (ML) and Bayes methods.
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Suppose that « is the only unknown parameter (that is all of the parameters of
G are known). We are going to show that an unbiased estimator & of o which is also
consistent and asymptotically efficient, is given by

b= (n— 1)/izi. (2.3.1)
i=1

It may be noticed that the transformation Z = — In G(X), where X is distributed
as H(X) = [G(X)]", transforms X to an exponential random variable Zwith HRF o,
denoted by Exp (). In fact

Fz(z) =P[Z<zl =P[-InG(X) <z =P[X > G '(e %)) =1 — Hx[G ' (e )]
=1-e%,z>0

Suppose that X, < --- < X, are the first r order statistics in a random sample of
size n drawn from a population whose CDF is given by H(X) = [G(X)]" (type 1l
censoring). Let Z; = —In G(X;), then Z;.,, > --- > Z,.,, where Z;., is the jth order
statistic of a random sample Zi, . ..,Z, of size n from Exp (o). It then follows that
the LF is given by

r

L(2) o [[ [r)H G

i=1

a 232
o [[Joee™01 — e (232)
i=1
o o(re—xT[l _ e—ocz,]n—r
where z = (z1, ...,z,) and

The log-likelihood function is given, from (2.3.2), by
Llo,x) =InL(a,x) x rina — oT + (n— r) In(1 —e™*).
Differentiating both sides with respect to o and then equating to zero, we obtain

r (n—r)ze %
-——T——"———=0. 234
o 1 —e % ( )
The solution of (2.3.4) is the MLE a,,; of o.. Such solution could not be obtained
analytically and numerical solution may be necessary.



26 2 Basic Properties, Estimation and Prediction ...
In the complete sample case (r = n), it follows, from (2.3.4), that

where Z; = — In[G(X;)] are independently, identically distributed random variables
from the exponential distribution with parameter o.. It then follows that T =) " | Z;
has a gamma (n, o) distribution. Therefore,

n ot n
E T)= | ———1""'e " dt =
(Ba) = E(n/T) / t T'(n) ¢ n_1"
0
So that, from (2.3.5),
R n—1_. n-—1
opmr = " o= T y (236)

is unbiased for o. Furthermore, it can be shown that the distribution (1.1.5) belongs
to the exponential class, so that > | In[G(x;)] is sufficient and complete for o. The
efficiency of the estimator [see, for example, Hogg et al. (2005), p. 324] is given by
1:%;3 =1-2—1,as n — co. Notice that Rao-Cramer lower bound (RCLB) is
the reciprocal of n times Flsher information (o), given by the variance of the score

e =

function. That is, RCLB = nl(a) = m =% and it can be shown that the

n

variance of & is given by V(&) = % The estimator & is unbiased, consistent
. . D

estimator for «. It then follows that /n(& — o) = N(0,a?).

Remarks

1. If all of the parameters are unknown, the MLE’s of the unknown parameters of
G are obtained (by solving the likelihood equations involved) and then substi-
tuted in G to get Z; = — In[G(X;)] and hence Gy

2. The invariance principle of MLEs can be used in estimating the SF and HRF by
replacing the parameters by their estimates.

3. The above estimators of o, R(xg), A(xo), may be of use when G(x) is in ‘standard
form’ or can be transformed to standard form, where all of its parameters are
known and interest is in estimating o.

4. In the complete sample case, the MLE &y, = —n/ Y., InG(X;) agrees with
the result obtained by Gupta and Gupta (2007).

2.3.2 Bayes Estimation of o, R(xy), A(xy)

Assuming that the prior belief of the experimenter about « is gamma (by, by) with
PDF
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n(a) oc o e 0 > 0, (b1, by > 0). (2.3.7)

The posterior PDF is given, from (2.3.2) and (2.3.7) by

(a‘g) x L(OC;g)TE(OC) :Aar+b1flef(b2+T)ac[1 _ efazr]"—r
ey e (2.3.8)
= 7E(OC|§) =A ZjI:O leoC ot CXp[—Tojl O(]v
where
Ty, = by + jrzr + ZZ;‘ (239)
i=1
and A is a normalizing constant, which can be shown to be given by
A= ! (2.3.10)
_F(}’-ﬂ-bl)S()7 e
So = (G —1 2.3.11
0= | 7w |G = (=1 (23.11)
J1=0 \" 05,

and Ty, is given by (2.3.9).
Based on squared error loss function, the Bayes estimators of o, R(xg), 4(xo)
were obtained in AL-Hussaini (2010a), using (1.3.1), as follows

(r+b1)Sl
So ’
RSEL(ZO) = E[R(z0)|zg] =1 — %, (2.3.12)
0

hsr(z0) = E[Azo)l] = %

aspL = E(olz) =

8(z0)

where Sy and Cj, are given by (2.3.11) and A5(z0) = &y

n-r C. n—r n—r oo
Si=) <T+71];+1>S2 => (T'+b1> ZZ < ,HW) (2.3.13)

j1=0 Oji j1=0 L =0 j»=0 ]lJz
Ty, = Toj, —InG(z0), (2.3.14)
Ty, = Toj, — (2 + 1) In G(z0). (2.3.15)

For proof, see AL-Hussaini (2010a). This development shall be called ‘standard
Bayes method’ (SBM).
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Remarks

1. In the complete sample case, the Bayes estimator g, = m based

on the SEL function, agrees with the result obtained by AL-Hussaini (2010b).
2. In the complete sample case, d,y and dggp coincide for non-informative prior of

o (the case in which by = b, = 0).

3. It may be observed that oz — oy, as n — oo, indicating that ogg;, has the

same properties as d,y, for large values of n.

The following theorem gives the Bayes estimates under the LINEX loss func-

tion, using standard Bayes method (SBM).

Theorem 2.2 Based on LINEX loss function, the Bayes estimators of

o, R(x0), A(x0) are given, using (1.3.4), by the following:
1f 1S
iy = ——1 oK do=——In(=L
ArNx - n/e n(o|z)do - n<SO>7
0

i L T pione 1 /s
Rinx (x0) = —;ln/ e Ro* r (o] g)dor = —;ln <2>,
0

A 1
ALN)((X()) = — ;h’l

S
\8
(¢]

1

B

=
3
—
2
2
U
KR

I

|

|

=
N
£
ST |w*
N

where Sy is given by (2.3.11),

ST _ n—r q
b
J1=0 (K + Tojl )r+b1
n—r oo sz C
S5 = e — J ,
/;I; 72! [Ty, = jaIn G(z0)]™""

. [26(z0))" T (r + by +2)
Si-2c (F(r +01)[Toj, = (2 +J3)In G(ZO)VHJ'HZ) ’

where Ty, is given by (2.3.9),

n—r oo

= ZZZ and C = C;C;,C;,

J1=0/2=0j3=0

(2.3.16)

(2.3.17)

(2.3.18)

(2.3.19)

(2.3.20)

(2.3.21)

(2.3.22)
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C;, is given by (2.3.11),

BRIV s — 1
g, =V o (” S ) (2.3.23)

Ja! 73

Proof Such estimators can be seen to be obtained, by using (1.3.4) and the
posterior PDF (2.3.8), as follows:

1 o0
Oy = fgln/ e “n(alz)do
0

n—r

1 00
= _ZInA E C: r+b1—1 —ot[TOjl +;¢]d
K ! j1=0 ! / i ) ’

0
1 %
(%),
K So

where A is given by (2.3.10), So by (2.3.11) and S} by (2.3.19).

o0

A 1
Rinx(20) = _Eln e R n(a)z)do,

0

1 ~[1-{G ()} Ik

:—;ln e Wrln(alz)do,
0

o

1 0 2 )
= —fane”",C— 2*MG@) (g 7)do,
K — Jg' -
=0 0

) oo
1 o0 N K:JZ . n—r B s
=——In E e e’”lnG(Z")AZle oo le T gy,
K J2!
0

J2=0 1=0
1 n—r 00 sz ®
— —;IHA § le E efK.i'/ ar+blflef(TQ,-l —j2 lnG(Zo)xd(x’
=0 =0 J2: 0

1 S5
2ef3)
K SO

where S is given by (2.3.11) and S; by (2.3.20).
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Finally, the LINEX estimator of A4(xo) is given by

. .7
Zinx (20) = _Eln/ e M) (o) z)dot

72=0 ]2'
=t Ul RS 6 [ 6 el
=0 2=y

where 45(z0) = g(20)/[G(z0)] and Cj, is given by (2.3.23).
So that

} x(20) :—éanZCh (20)]

J2=0j3=0

ar+b1 Jrjzflef[Tofl —(j2+j3) In G(Zo)]otda

— 0\8

I'(r+by+j2)
[Toj, — (j2 +Jj3) In G(xo)] """

ijNX ()Co) = — E lIlA Z CM*G ()C())]jz

Therefore

A 1 S5
)LLIN (XO) = — E In (S—z) s

where S is given by (2.3.21), >~ and C by (2.3.22).
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2.4 Estimation of («, fy, ..., Bi), Ru(x¢) and Ag(x)
(All Parameters of H are Unknown)

This section is devoted to the estimation of the vector of parameters («, f§), Ry (xo)
and Ay (xo), where = (f, ..., ;) using the ML and Bayes methods.

2.4.1 Maximum Likelihood Estimation
Of (@, ﬂla ey ﬁk)?RH(xO)’ }“H(xo)

In this section, G is assumed to depend on k-dimensional vector § = (8, ..., ;)
of unknown parameters. So that H will depend on the (k 4 1)-dimensional vector
of unknown parameters (o, ). All parameters are assumed to be positive. In this
case, the LF is given by

L(0:) o [[ [ ACel0)Ra e 0)]"

- (2.4.1)
o [[TAGGalB) g (alB)][1 = {G(x1B)}"
i=1
where x = (xi, ...,x,) are the first r order statistics, 0 = (o, ), f = (By, - -, Bi)>
So that the LLF, denoted by £(6; x) is given by
£(0;x) =InL(0;x) = rlno+ (e — 1) ilnG(xim) + ilng(x,-m) (242)
i=1 i=1 s
+(n=7r)In[l = {G(x/[8)}"]
The likelihood equations (LEs) are then given by
ol n_T - 1Ry (n— r){G(xrm)}C< In G(x,|B)
5, 0= a+;lnG(x,|/3) I (GIRT (2.4.3)
and forj=1, ...k,
ar ~ 1 3GMlB) &~ 1 dglp)
—:0=(a—1
AR Doy I D P ey e

(n— r)(x{G(xrm)}OHI 0G(x,|p)
1—{G(x|B)}" op;
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By solving this system of equations, we obtain the MLEs of «, f3;, ..., ;. The
invariance property of MLEs can then be applied to obtain the MLEs of Ry (xo) and
A (xo), for some xy, by replacing the parameters by their MLEs.

2.4.2 Bayes Estimation of (a,p;, ..., Pr), Ru(x0), Au(x0)

AL-Hussaini (2010a) gave expressions for the Bayes estimators of the parameters,
SF and HRF of H, under the SEL function. In what follows, such estimators are
obtained under LINEX loss function.

Theorem 2.3 Suppose that the CDF G depends on an unknown k-dimensional

vector of parameters f = (f|, ..., Py), so that H depends on the (k + 1) unknown
parameters (o, f3).
Given by
n(0) = n(o, B) = mi(a)m2(P), (2.4.5)
where
(o) oc o~ exp(—byat), (2.4.6)

and 7y(p) is a k-variate PDF. Then

1. The LINEX estimators of the parameters are

~ l %k %k
BNy = —;ln(Sl /5575 (2.4.7)

. 1
Buiwx = ——In(S7'/Sy), v=2,... .k (2.4.8)

2. The LINEX estimators of the SF Ry (x9) and HRF A (xo) are given, for some xo,
by

. 1
RLNX(XO) = _gln(SZiZ/SS*)’ (249)

1
Juwx(x0) = = <In(S;15/S5"), (2.4.10)



2.4 Estimation of (o, f8;,. .., f¢), Ru(xo) ...

where

SS* = nifcjllov Iy = / [W('B’é)TEZ(‘B) dp,

b
Ji=0 Toj, (X, ﬁ)]r+ l

n—r efTO(ﬂ)n
St =G, Ii,= / e gy,
=0 ’ i< + To;, (B)]

n=r ~To(B)—xp,
S:*:ZCJ]IW Ivz/ﬂdﬁv v=2 ... ,k+1,
=0 ’ [Toj, (B)]

n—r *T()(ﬂ)
Stia = ﬂzz Ik+2, 42 = /wdﬁv

0]2 leZ

*ok Jl V+b1 +12)
Sps = ZZZ ler r+b1) Tits,

=0 jo=0j3=0

1)y (B) 4 (x0)}
s = / e [le.ij)]’*’”ffz

dp.

p

B) = WGx|p)+ > Ing(xlp),
i=1 i=1

Ty, (ﬁ) =by + T; (ﬁ)a

T;,(B) = — [Z In G(xi|f) +j1 InG(x,|B) |,
i=1
Tj j, (B) = Toj, — (2+1)In G(Xolﬁ),
Tj jr.js(B) = Toj, (B) — (j2 +Jj3) In G(xo| ).

Proof The LF (2.4.1) can be written as

L(0;x) o< w( Z o exp[—aT; (B)],

33

(2.4.11)

(2.4.12)

(2.4.13)

(2.4.14)

(2.4.15)

(2.4.16)

(2.4.17)

(2.4.18)

(2.4.19)

(2.4.20)

(2.4.21)

where 0 = (o, -, i) w(B) =TTy 75, B) = Ty &2 and T, () is given

by (2.4.18).
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The posterior PDF is given, from (2.4.5) and (2.4.21), by

n(0)x) oc L(0; x)m(0) = Aw(p) ZC ol exp[—aTy;, (B)],  (2.4.22)

J1=0
where A is a normalizing constant, given by

1
CI(r+by)Sy’
o0 (2.4.23)

n—r

ok )

So 7ZC]1IO’ / T r+b1 dp,
Jj1=0 0 0]1

Toj, (B) is given by (2.4.17) and T; (f) by (2.4.18).
It then follows, from (1.3.2), that

1 oo
b = —n / [ & ataprasap
0

1 (o)

=—"In //e"“(Aw m(p ZC o exp[— aTojl(ﬂ)}> dodf
K /3 0 J1=0
1 n—r x®

=—ZIn AZCJ-I/ /ocr”" Yexp[—af{x + To;, (B)}] dod B
A I )
1

=——In [AT(r + b1)S}"]
1

N S** S**
;c n[ 1'/5% }

where S;* is given by (2.4.23),

Lo _ [ w(Bm(p)
g ]Z:%q‘l“ B / [ic + To;, ()] @
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Forv=1, ...k, the LINEX Bayes estimator of f3, is given by
A 1 7
;ln//e bt (o, Blx)dod
B 0
1 x n—r
= _Eln //e"‘ﬂ (Aw nz(ﬁ)ZC- o exp[—aTy;, (ﬁ)]) dodf
/3 0
1 n—r x
— =i |aY G [ Fwpm(p) [ o explaly, (Bldsap
I h=0 g 0
1 -
=——In [AL(r + b1)S;"]
1
=——In [S;‘*/SE;*}
where, for i =2, ..., k+ 1,
n—r —xP;
=0 [To, (B)]

The Bayes estimator of Ry (xg), at some xo, is given by

Since R(xg) =

[o¢]

Ronx(x0) = —%lﬂ//e*()‘“)"ﬂ(%ﬁM) dpdo.

p 0

1 — [G(x0)]”, then
~KR(x0) _ o-r{1-[GE0)"} _ g—r i K2 (G (x0)]”

e —
J2:

j2=0
O 22 In[G(x0)]

- 2!
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Therefore,
1 7 b
RLNX xO _;ln// <AW 7'[2 cha +bl lexp[—(xTojl (ﬁ”)
B 0

12 e%2 In[G(x0)]
e Z !
j2=0

- e Yy / w(h)ma(h)

e L

dodp

/ o o1 1e=alTo; (f)=2In G(XU)]docdﬁ
0

= —lnAe*" Z Z kG, / T, Jr(;)l])rzb dodp

J1=0 j2=0 ]2
_ (M)
K S5
where

T; j,(P) is given by (2.4.19) and S§* by (2.4.23).
The Bayes estimator of Ay(xg), at some xp, is given by ;ILNX(xo) =

lnffe”“ ) 7o, B x)dPdo.

Slnce

K)Jz “;2 [ C<]z 0
- Z Ci[Gxo))”
' J3=

72=0

o0 o0
_ 2 ]2 2 alj23)2In G(xo)
—ZZ Gyl (xo) "o

C, = (—K)’z’ ¢, = (1) (jz 4.-13 - 1>7 7 (x0) = g(x0)
J3
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Therefore,
1 o0
duon) == | | (AW m($ chla’“’l Lexpl- ocTo,lw)})

B o =0

o0 o0

SO GLCL 1 (xo) P el 1 Gl g,

J2=0j3=0

1 n—r oo o0 . '

—emAY > GGG [ wBm B w1

J1=0 j2=0j3=0 s

o0
1(B) = / o Foiti=1 a=alTo; (B)=(a+j3) In Gxo)] 7,
0

I'(r+by +j2)

[le J243 (ﬂ)]r+bl+j2 .

So that

(r+bl +.]2) ,8

r+by+j;
[Tj1~j2,i3 (ﬁ)] o
= —lln % .
K AYS
where, for k =0,1,2,...,
- I(r+by+j2) [ w(xo) ma(p)[4 xo)]j
Siis =D Cls, s = / T dap,
+ Z r+ b 11J2,13 ﬂ +b1+j2

B

and T}, , ;,(B) is given by (2.4.20) and S;* by (2.4.23).

37
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2.5 Bayes One-Sample Prediction of Future Observables
(All Parameters of H are Unknown)

2.5.1 One-Sample Scheme

AL-Hussaini (2010a) obtained 100 (1 — 1) % predictive intervals based on the two-
sample scheme. In the one-sample scheme, the informative sample consists of the
first r order statistics X; < --- < X, of a random sample of size n drawn from a
population whose CDF is H (x). The future sample consists of the remaining order
statistics X, < -+ < X,,. Let ¥y = Xp45,s = 1, ... ,n — r. Write f,(y, |0) to denote
the PDF of the sth unit to fail, given that the rth unit had already failed. Then

F(310) o< [H(y5]0) — H (x,|0)] ™ [1 = H(ys|0))" "
[R(x,|0)] """ n(y,|0)

The binomial expansion of each of the first two terms on the right-hand side then
yields

£(000) Z (ul0)) ™0 o)

[ (xl’w)] (=) (yv‘e)a

0= (a,p),= (B, ..., Pi),D;, and D, are given by

= (D) = () s

Substitution of H(.|0) = [G(.|f)]") and h(.|0) =2 G(.|B)]" " g(.|B) then
yields

—1 n—r—s
£(516) o Z > DyDAG( B )
=0 ]7
r i G s ! s R r 0 " r
[ (1)) {al ,Ey,mﬂ 8OslB)}Re(x,10)] 252)
va D D, oe afs—j1+72)] In G(ys|B)+ir In G(x,|B)]

[Rer (x,]0)] "~ ’>,

* s|B
where 2*(y,|f) = g((}vl‘;ﬁ)]
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The posterior PDF is given, from (2.4.1) and (2.4.3), by

n(0]x) oc L(0; x)m(6) o< [ﬁ h(xi] 0)][Rer (x,10))" "o =" exp(—bao) 2 ()

i=1

= {IL[ G (x| B))" gl B) Yo~ exp(—bao)ma(B) Ry (x,]0)]" "
= (2.5.3)

r

= ([T Gl TGl expl—ba)ms ()R 0"

i=1

= w(B,x)ma(B)o "~  exp{~[b2 — Er: In G(xil B)ock [Rea (x| 0)]"

i=1

where w(p,x) = [T, 4" (xl ).
It follows, from (2.5.2) and (2.5.3), that the predictive density function of Y; is
given by

FOl) = / F(,10)2(01x)d0
[C]

0]20

s—1 n—r—s X
=42 2D D [ Wb 0lpyma(p) [ o e Ptsag
i 0

( +b1_|_ )P "zr:XDlejz/ (ﬁv )j' (ys‘ﬁ)n2( ) ﬁ,

b1+1
Jljz( )}”r v

J1=0 j»=0

(2.5.4)
where 1*(z|f) = G(ZZY;)) and Ty, (f) is given by (2.4.12) and

175, (B) = Toj, — [s = (r —2) In G(s[ B), (2.5.5)

The predictive SF is then given by

PlY; > vlx] = /f*(ysl)ﬁ)dys
s—1 n—r—s (256)
I(r+b+1 Z > DyD,I*(v
=0 jz =0

=AIl'(r+b, + 1)S***(v), v > X,
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where

s =% S DD (), (25.7)
J1=0 j>=0
R S )
1) = ﬁ/ (8, 2)m:(h) / (s

The inner integral of I*(v) is given by

OBy, ) )
/[T* (ﬁ)]r+b|+l » V/[T()jl( ) {S— (]1 _]2)}1HG(yY|ﬁ)]r+b]+l Vs

Jij2

By applying the transformation z = T, (B) — {s — (ji —j2)} InG(y,|f),
dz=—{s —ji +o}2"(ys|B)dys and (v,00) — (z1,22), where z1 = Ty; () —
(s —j1 +2) InG(v|) and zo = Ty, (B)

Therefore
i ysm -1 / —r—b—1
/ TR R
— 1 Z*V*bl 12: 1 [ —r—by _ 7)"7b|]
(r4b1)(s —j1 +j2) . (r+bi)(s—ji+)) % !
_ [Ty (B) """ = [Ty, (B) = {s —j1 +i2} N G(IB) "
(r+b1)(s —j1 +J2) '
So that

. —r=by _ . —fs—j . n N —r—b,
I (v) :/W(ﬁ@)nz(ﬁ) ([TOn (B)] [f:ji[?l)(s{;jlj+j2€2}l G(v|p)] )dﬁ
i

(2.5.8)

Since, from (2.5.6),

1 = P[Ys > x,|x] = AT (r + by + 1)§**(x,), then A = m
where $**(v) is given by (2.5.7).

It then follows, from (2.5.6), that
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PlY, > v|x] = S***(():)) , V> X, (2.5.9)

A 100 (1 — 1) % two-sided predictive interval for the sth future order statistic Y
has lower and upper bounds L and U, given by

Sreorx (xr)

Equivalently, L and U are given by the solution of the following equations

1—(1/2) = PlY, > Llx] = S

and /2 =P[Y;> Ulx] =

(2.5.10)

SHL) — 1= (1/2)5™ () = 0, }
S*H(U) — (1/2)8" (x,) = 0.

where $***(v) is given by (2.5.7).
Remarks

1. The one-sided predictive interval of the form Y, < L is such that
0=S""(L)—(1—-1)8""(x,)
and of the form Y; > U is such that
0=S"(U) —18""(x,).

2. Two-sample scheme

In the case of two-sample scheme, we have two independent samples of sizes n and
m. The informative sample consists of the first » order statistics X; < --- <X, of a
random sample of size n. The future sample is assumed to consist of the order
statistics Y7, =1, ..., m. It is also assumed that all observations are drawn from
the same population whose CDF is H (x) = [G(x)]". Derivations of the estimators
and predictive interval of the future observable Y;,¢ =1, ..., m are the same as in
the one-sample case, by replacing f,(y, |0), given by (2.5.2) by

F(el0) oc [H(yel0)) 7' [1 = Hye| )" h(ye]).

Proceeding as in the one-sample case, we finally obtain the estimators of
o, fi,(i=1,...,k), R(xo) and A (xo) are given by
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b1)S} St
(’.—’_S%aﬁi* ;;l,(iil,...,k),
0

Sy b1)S;
Riw) = 1= 32 () = L0k
s s

o=

(2.5.11)

The predictive SF of the future observable Y,/ =1, ... k, is given by
S*
PlY, > v|x] = "L(V), (2.5.12)
Soz

where, for i = 0,1, ..., k+2,

Z Ljj, and SZ+3—ZZ k341 (2.5.13)

J1=0 J1=0 jo=

I, e "Dy (B)/To" (B)d

B " Dma(B)/Te " (Bydp, i=1, ...k,

Ii+111

i/
Iy, = / ey (B)T5 P ()P,
/
_ / |
B

laq = [ & OmlB)/T5" ()ap (2.5.14)
s = | géfiilfé?%f};fff 5536”*
flaini = / gc(?;f;);,ﬁ:f“((g))dﬁ
tiesjin ) = [ [T (B ) = (T, (8) = (€4 mGlolg)y )
5
e TP, (B)dp. (2.5.15)

To(p) and Ty, (p) are given by (2.4.11) and (2.4.12) and Tj ;,(B) by (2.4.14).
So that the lower and upper bounds L and U of the (1 — t) % predictive interval
of Yy, =1, ...,m are given by the solution of the equations
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Siys(L) = (1= (2/2))S02 =0, } (25.16)
Stis(U) = (1/2)Sp2 = 0,
where
S = i% [M} L, and S}, (v)= nifmié [%} Lysjyy  (2.5.17)
e A Y - e e R o

G :(—1Y1<”.’>,cﬁ:(—1)¥*(mZ), (2.5.18)

J1 J3

Ioj, and I;is, j, are given by (2.5.14) and (2.5.15).
For details, See AL-Hussaini (2010a).

2.6 Numerical Computations Applied to Three Examples

Three examples are given: in one of which the base distribution G is in standard
form (with no parameters involved), the second depends on one parameter f§ and, in
the third, G depends on two parameters (f3,, 5,). The computations using Bayes
method in the three examples are based on the square error loss function.

1. G(x) =1—e™™: the base distribution G does not depend on any unknown
parameters.

2. G(x) = 1 — e P: the base distribution G depends on one parameter. In this case,
the exponentiated distribution depends on the two parameters (a, ).

3. Gx) =1—eh 2. the base distribution depends on two parameters. In this
case, the exponentiated distribution depends on the three parameters («, f5;, ).

Example 2.1 G(x)=1—e*,x>0, so that H(x) = (1 —e™)* where o is
unknown.

e Maximum likelihood estimation
To compute the MLEs of o, R(xy), H(xo) at some xo,

(i) Generate n = 20 uniform (0, 1) random numbers uy, ..., up.
1/o

1

(ii) Compute the corresponding xi, ..., Xy, where x; = —In(1 — u
U; is uniform on the interval (0, 1). Choose o« = 2.5.

(iii) Order the x's and censor at r (r = 20, 18, 15).

(iv) Use (2.34), with G(x)=1—e*, to compute 6&y. The MLEs
&, R(xo), H(xo) and their MSEs are displayed in Table 2.3a—c.

), where
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Table 2.3 n=20,b; =3,b, =0.6,xp = 0.2 and 1,000 repetitions

Parameters | SBM MCMC MLE Actual values
Bayes | MSE Bayes | MSE ML | MSE

(a) r = 20 (complete sample case)

a 2.5890 | 0.0091 2.5780 | 0.0091 2.5920 | 0.0092 25

R(x0) 0.9855 | 8.17 x 107 0.9855 | 8.17 x 107> | 0.9855 [ 8.17 x 10> | 0.986

2(x0) 0.165 |0.006 0.165 |0.006 0.166 | 0.006 0.16

() r=18

a 2.678 |0.0943 2.678 |0.0943 2.6820 | 0.0950 25

R(xo) 0.988 | 0.0001 0.9850 | 0.0001 0.9850 | 0.0001 0.986

A(x0) 0.165 |0.0008 0.165 |0.0008 0.166 | 0.0008 0.16

(©)r=15

a 2.7095 | 0.165 2.7096 | 0.1652 2.7125(0.169 25

R(xo) 0.9980 | 0.0001 0.9833 | 0.0001 0.9840 | 0.0001 0.986

2(x0) 0.1663 | 0.0042 0.1662 | 0.0042 0.1680 | 0.0050 0.16

The following Bayes methods are based on SEL.
e Standard Bayes Method (SBM)

Given by, by and xy, the Bayes estimates &, R(xo), H (xo) are computed by using the
expressions in (2.3.11). Based on 1,000 samples, each of size n = 20, censored at
r=20, 18, 15, when b; = 3,b, = 0.6,xy = 0.2, the average values of the estimates
and their mean square errors (MSEs) over the 1,000 samples are given in
Table 2.3a—c. We mean by the MSE, in the Bayes case, the overall risk function.

e MCMC

The data set is analyzed by applying Gibbs sampler and Metropolis-Hastings
algorithm using WinBUGS 1.4 (http://www.nrc-bsu.cam.ac.uk/bugs/winbugs/
contents.smtm1) which can be downloaded and used.

Step 0: Take some initial guess of a(®).

Step 1: From i = 1 to N, generate () from the posterior PDF 7 («|z), given by
(2.3.8).

Step 2: Calculate the Bayes estimator of o by: & = 1 >°F | o), where M is
the burn-in period.

Step 3: For a given time xp, the Bayes estimators of the SF and HRF are given,
respectively, by



http://www.nrc-bsu.cam.ac.uk/bugs/winbugs/contents.smtm1
http://www.nrc-bsu.cam.ac.uk/bugs/winbugs/contents.smtm1
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and

. N ) (1 — o=20)2" " a0
i(xo):NlM Z <a U-e™) ;-) >,
— M 1—(1—e)
where M is the burn-in period.
The estimates and their MSEs, obtained by the MCMC method, are reported in
Table 2.3a—c. The same parameter, and hyper-parameter values, used in SBM, are
used here and computations are based on 1,000 samples.

e Bayes prediction (two-sample scheme)

The 95 % predictive intervals (t = 0.05),n = 20,r = 20, 18,15 when b; = 3,b, =
0.6 for the first future observable Y| in a sample of size m = 10 future observables,
are obtained by solving the two equations, given by (2.5.11). The intervals are
found to be:

0.0821 <Y, <1.00845, length = 1.0024, (r =20)
0.0854 <Y, <1.0921, length = 1.0067, (r=18)
0.0862<Y;<1.0949, length = 1.0087, (r=15)

where the lower bound of each interval is the average of the lower bounds
L computed to satisfy the first equation of (2.5.16) for each one of the 1,000
samples, respectively and similarly for the upper bounds.

Example 2.2 G(x) =1 —e % x>0, (B > 0), the base distribution G depends on
a single parameter f.

e Maximum likelihood estimation

With k£ = 1, Egs. (2.4.3) and (2.4.4) reduce to only two equations and we write f§
for 5;. The solution of the two equations, using some iteration scheme, such as

Newton-Raphson, yields MLEs &, and f8,;; of & and . The MLEs of Ry (xo) and

;IML(x()) are obtained by applying the invariance property of MLEs. The average
values of the estimates and their mean square errors (MSEs) over the 1,000 samples
are given in Table 2.4a—c.

e Standard Bayes method

Suppose that o and f are independent and that « is distributed as gamma (b, b;)
whose PDF is given by (2.3.7) and f is distributed as gamma (b3, by) whose PDF is
given by

() o< 2 exp(—byf), B >0, (b3, by > 0). (2.6.1)
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Table 2.4 n=20,b; =3,b, =0.6,b3 =2,bs = 3,x9 = 0.2 and 1,000 repetitions

Parameters | SBM MCMC MLE Actual values
Bayes | MSE Bayes | MSE ML | MSE

(@) r = 20 (complete sample case)

a 2.5480 | 0.0254 25261 |0.0071 2.5920 | 0.0092 25

B 1.523 |0.0006 1.519 |0.0004 1.574 |0.0013 15

R(xo) 0.9855 | 8.17 x 107° | 0.9855 [ 8.17 x 107> |0.9855 | 8.17 x 107> | 0.9658

A(x0) 0.3776 | 0.0006 0.3771 | 0.0006 0.3702 | 0.0022 0.3795

M) r=18

a 2.6078 | 0.1325 2.5628 | 0.0442 2.6640 | 0.5821 25

B 1.4523 | 0.0154 1.4569 | 0.0152 1.4491 | 0.0283 15

R(xo) 0.9618 1.2 x 107* [0.9618 | 1.2 x 10™* |0.9608 | 1.5 x 10™* |0.9658

2(x0) 0.3761 | 0.0092 0.3755 | 0.0092 0.3681 | 0.0191 0.3795

(©r=15

a 2.6875 | 0.5960 2.6940 | 0.5573 2.7930 | 0.6956 25

B 1.4375 | 0.0687 1.4436 | 0.0638 1.4017 | 0.0854 1.5

R(xo) 0.9580 | 0.0004 0.9583 | 0.0004 0.9574 | 5.88 x 107 0.9658

2(x0) 0.3758 | 0.0130 0.3750 | 0.0130 0.3651 | 0.0282 0.3795

Accordingly, the Bayes estimators of «, 3, R(xg), A(xo) are given by

b))S; o S5 S35 1
a= US55 gy =1 =5 ) = VRS (560
Y So

The predictive PDF and SF of the future ¢ th observable Y,/ =1, ... k, are
given by
(r + bl)S*

> and P[Y, > v|x] = ),
02 02

[ (velx) =

where, for v=0,1,2,3, S} and S, — SZ(.) are given by (2.5.17) with k = 1.
The integrals 1nvolved are given as follows, from (2.5.17), when k =1 and
na(p) is given by (2.6.1). So that

Iy, = [ [B7 e "D T ()lap,
[

T*(B) = baf + To(B), To(B)
is given by (2.4.11)
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= [ e T T ),
0

by = [ [Be O (B,
/

by = [ e T g,
0

el e T

Ly, _/ Gxlp) jrl;bl+l(ﬂ) dp,
[ gdpp”te "

Isj,;, dap,

/ ot

o0
lej\j, = /
0

Computations are carried out in the same manner as in Example 2.1, with the
obvious changes in which H(x) = [G(x)]*,G(x) = 1 — e, with n = 20, censored
at r = 20, 18, 15, when by =3,by=0.6. So that x; = —In(1 —1;/*), i =
1,...,20, where o and f are chosen to be o = 2.5 and f§ = 1.5. Computations are
also based on chosen values ofxo = 0.2,b; = 3,b, =0.6,b3 =2,by = 3.

e MCMC

1 1

- bi-le T (B g
Ty ) —Crimepy) < 7

In this case, samples are generated from the posterior distributions. Bayes estimates
of o and f and their functions are computed according to the following steps:

Step 0: Take some 1n1t1al guess of o and f, say «(*) and /3
Step 1: Generate (') and [3 from the posterior PDFs, given by

({x|ﬁ ) (OC /3|x) B r+b1 lznl rOC e_aT%(/),)
AT R R B Tt b S G (BT
(o, x) = (“ By G e a7

JoSm (o Blx)dp ST Gy fo B e T T g

where Cj, and Ty, (f) are given by (2.4.12), T*(B) = baff + To(f), To(p) is given
by (2.4.11).
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Step 2: From i =1 to N — 1, generate o) and 0V from 7 (o] B, x) and
7 (B Y, x), respectively.
Step 3: Calculate the Bayes estimates of « and f§ from & = ﬁZfV:M 41 o and

B= N v B, respectively.

For a given x, calculate the Bayes estimates of the SF and HRF from:

1 N

R = 1—(1— — B xqy oD
(x0) N Mi:%; [ (1—e )]
and
~ 1 N a(i) (l) 1— e_ﬂ(t)xO “(i)fle_ﬁ(,-)xo
Axo) = N Z ( B( 2) e .
i=M+1 1—(1—ef")

It may be noted that in Kundu and Gupta (Kundu and Gupta 2008), the Bayes
estimates of the parameters o and f§ (o« and 4 in their notation) were developed in the
complete sample case, assuming that o and f are independent and each has a
gamma prior.

The estimates using the ML method, SBM, MCMC are displayed in
Table 2.4a—c.

e Bayes prediction (two-sample scheme)

The 95 % predictive interval (t = 0.05),n = 20,r = 20, 18,15 when b; = 3,b, =
0.6, b3 = 2,b,4 = 3, for the first future observable Y, in a sample of size m = 10
future observables are found to be

0.0321 <Y, <0.6542, length = 0.6221, (r =20)
0.0412<Y,;<0.7320, length = 0.6908, (r =18)
0.0447 <Y, <0.7397, length = 0.6950, (r=15)

where the lower bound of each interval is the average of the lower bounds L
computed to satisfy the first equation of (2.5.16) for each one of the 1,000 samples,
respectively. Similarly for the upper bounds.

Example 2.3 G(x) =1 —eh x>0, (1, B, > 0), the base (Weibull) distribu-
tion depends on two unknown parameters f3, f3,.

e Maximum likelihood estimation

With k = 2, the system of LEs (2.4.3) and (2.4.4) reduce to three equations in the
three unknowns o, f8,, . By solving such equations, using some iteration method
we obtain the MLEs of these parameters. The MLEs of R(xy) and A(xo) are
computed by applying the invariance property of MLEs.
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e Standard Bayes method

Suppose that o and = (8, 5,) are independent and that o is distributed as gamma
(b1,b2) whose PDF is given by (2.3.7) and f is such that

ma(B) = m3(Ba|B1)m(By)
o [ﬁgrle—/ilﬂz][ﬁ?rle—hsﬂl]’

(2.6.3)
ﬁlmgz > 07 (b3ab47b5 > 0)
x ﬁi’}*lﬁ;u*le*ﬁ](bwrﬁz).
So that the prior PDF of 0, is given, from (2.3.7) and (2.5.17), by
1(0) = 1 () ma(B) o abr =t gt phimte b ambilbsthy) (2.6.4)

According to Theorem 2.3, the Bayes estimators of o, f3;, f,, R(xo), 4 (xo) are
given by

o (r4b)ST S .S D (r + b1)S5
= =1-—=,1 =——"2 (2,65
w= TS =2 =3 R = 1= ) = U 265)
where, for £ = 0,1, ...,5, §; is given by (2.5.13), in which
[3”% 1 b4 La=T"(B1,B2)
10_1'1 // r+;,1 ﬁldﬁZa
0]1
By, B>) = (ﬁu B2) + Bi(bs + Ba),
[3”% 1 b4 La=T"(B1,B2)
Iljl // r+bl+] ﬁldﬁZ’
0]1
7 ooﬁbsﬁbrl =T*(B1.52)
12j1 :// l T,+b1 dﬁldﬁb
0 0 %
[ et phe T ()
13j1 :// ! r12~r+b1 ﬁldﬁb
0 0 O
oo 0
ﬁb371 b4ilefT*(ﬁ]nB2)
I4j1 = // ! zTr+b] dﬁldﬁb
00 b
T b3—1 phs—1 o= T" ()
xo|f1, e
15j1j2 ://g( 0|ﬁ1 ﬁZ) rflerl ﬁldﬁ2>
0 0 G(‘x0|ﬂl7ﬁ2) Ji2 (ﬁl?ﬂz)

In this example, G(x) = 1 — e #1*, so that X; = [~ In(1— Uil/a)]l/ﬁz.
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e MCMC
Bayes estimates of o, f3;, 5, and their functions are computed according to the
following steps:

Step 0: Take some initial guess of o, 8, f,, say o), ﬁgo By
Step 1: Generate a(!), [3(11), Bg” from the posterior PDFs, given, respectively, by

( , Biy Balx)
n(odﬁlvﬁ% ) ﬁ) O( ﬁl,ﬁ2|x)doc

r+b1 lz”l r C e —oToj (B1:P2)
I'(r+bi) Zj]:O le/[TOjl (ﬁlvﬁZ)]H—bl

- (o, By Bolx)
n(ﬁ1|fx,ﬁ2,)_€) fOOOTC o Bl,ﬁ2|x)dﬁl
Z] =0 ]lﬁb3 1 7“T0/1 (pl ﬁz) (ﬁuﬁz)
| C

Ch fO ﬁb3 1 e 7oy (B1.B2)-T (ﬁlvﬁZ)dﬁ17

B (mﬁuﬁzm
mBal Brd) = T B Bl
Zn ' C, b4—le*‘“T0j1(/3“132)7#([;1’52)

::Eiﬁzzcylﬁ) o= To BB~ T (i) g g,

where Cj, is given by (2.3.11), Ty;, () by (2.4.17) and T*(f,, ;) = baf + To(f),
To(p) is given by (2.4.16).

Step 2: Fromi=1to N — 1, generate ol/t!) /3 1) and ﬂz " from ﬂ(d|ﬁ(li>,ﬁ;)a)_€),

m(B, |, 5, x) and n(B,]o, B, x), respectively.
Step 3: Calculate the Bayes estimates of o.f; and f8, from & = 13N | ol
(z') 5 W .
= v i Br and By = ghy 370 By respectively.
For a given x, calculate the Bayes estimates of the SF and HRF from:

1 N

_;<f>x/‘§[) o
R(XO)ZN—M Z [1—(1—e 5 )"

i=M+1

and
(i) _ ‘
o 1 )

f gl
a(,-)ﬂ(li) ﬁ(zi)xggl,l |:1 _ e*ﬁ(ll)xgz ] e*/}(l’)"oz

ol

) 0
i=M+1 i) P
1—%—5%#]
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Table 2.5 n = 20,b; = 3,by = 0.6,b3 = 2,b; = 3,bs = 0.8, x9 = 0.2 and 1,000 repetitions

Parameters SBM MCMC MLE Actual
Bayes ‘ MSE Bayes MSE ML MSE values

(a) r = 20 (complete sample case)

o 24012 |0.0054 |2.4865 0.0005 |2.3122 |0.0731 2.5

B 1.3942 | 0.0121 1.4572 0.0013 1.2647 | 0.0596 1.5

£ 0.6012 |0.0143 |0.5231 0.0018 [0.6412 [0.0596 |0.5

R(xo) 0.8341 0.0002 |0.8333 0.0001 0.8631 0.0012 |0.833

Mxo) 0.8371 0.0082 | 0.8568 0.0023 |0.8134 |0.0121 0.8792

() r=18

o 22143  |0.1251 2.4431 0.0851 2.0122 [0.2845 |25

i 1.2491 0.0649 1.4025 0.0056 1.1831 0.1314 1.5

b 0.6582 [0.0423 |0.6021 0.0214 |0.7342 | 0.0921 0.5

R(xp) 0.8352  [0.0009 |0.8.339 |0.0002 |0.8921 0.0116 |0.833

AMxo) 0.8021 0.0142 | 0.8352 0.0092 ]0.7985 |0.0163 |0.8792

(¢)r=15

o 2.0051 0.3325 |2.4258 0.1369 1.9683 |0.3452 |25

B 1.1638 | 0.1272 1.3253 0.0509 1.1276 | 0.2134 1.5

£ 0.7420 | 0.0883 | 0.6807 0.0655 [0.8535 [0.1049 |0.5

R(xo) 0.8374 |0.0015 |0.8344 0.0016 [0.9840 |0.0145 |0.833

Mxo) 0.7786 | 0.0295 |0.8081 0.0270 | 0.7621 0.0352  |0.8792

where M is the burn-in period.

Computations are carried out as before for n = 20,r = 20, 18,15, = 2.5, , =
1.5,5,=0.5,b; =3,b, =0.6,b3 =2,by = 3,bs = 0.8,xy = 0.2. The estimates
obtained by the above methods and their MSEs are displayed in Table 2.5.

e Bayes prediction (two-sample scheme)

The 95 % predctive intervals, for the first future observable Y| in a sample of size
m =10 future observables, when n=20,r=20,18,150=2.5,6, =
1.5,6, =0.5,by =3,by =0.6,b3 = 2,bsy = 3,bs = 0.8,x9p = 0.2. are obtained by
solving the two equations, given by (2.5.16). The intervals are found to be:

0.00193 <Y, <0.54554, length = 0.54361, (r =20)
0.00215 <Y, <0.57045, length = 0.56830, (r = 18)
0.00309 <Y, <0.58464, length = 0.58155, (r=15)

where the lower bound of each interval is the average of the lower bounds L
computed to satisfy the first equation of (2.5.16) for each one of the 1,000 samples,
respectively and similarly for the upper bounds, where
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Lo _//gx/Ib’l,ﬁz bl ghi=le =T () i

= . s,

" 0 0 Gxé‘ﬁl7ﬁ2)7}1;:bl+l(ﬁl7ﬁ2)
[eelee)

I7j11"3:// {T()jl ﬁlaﬁz)} (r+b1) {T()jl(ﬂlvﬁz) (f+j3)lnG( ‘ﬁlaﬁz)} r+b1):|
0 0
x Bt gyt ) ap ap,.

Remarks

1. It may be noticed, in the three examples, that the Bayes estimates, using the
MCMC, performs best in most cases, in the sense of having smallest MSEs then
comes the estimates using SBM and finally those based on MLEs.

2. Even with censored samples (r = 15), the estimates are still reasonable.

3. Indeed, predictive intervals for Y;,/ =2, ... k, can be obtained as that com-
puted for Y;, by following the same steps.

References

AL-Hussaini, E.K.: Inference based on censored samples from exponentiated populations. Test 19,
487-513 (2010a)

AL-Hussaini, E.K.: On the exponentiated class of distributions. J. Statist. Theory Appl 9, 41-64
(2010b)

Cramer, E., Kamps, U.: Sequential order statistics and k-out-of-n systems with sequentially
adjusted failure rates. Ann. Instit. Statist. Math. 48, 535-549 (1996)

Gradshteln, 1.S., Ryshik, I.M.: Tables of Integrals, Series and Products. Academic Press, New
York (1980)

Gupta, R.C., Gupta, P.L., Gupta, R.D.: Modeling failure time data by Lehmann alternatives.
Commun. Statist. Theory Meth. 27, 887-904 (1998)

Gupta, R.C., Gupta, R.D.: Proportional reversed hazard rate model and its applications. J. Statist.
Plann. Inf. 137, 3525-3536 (2007)

Hoffman, G., Nagaraja, H.N.: Random and Poisson paced record models in the F* set up. J. Appl.
Prob. 37, 374-388 (2000)

Hoffman, G., Nagaraja, H.N.: A random power record model. Statist. Prob. Lett. 56, 345-353
(2002)

Hogg, R.V., McKean, J.W., Craig, A.T.: Introduction to Mathematical Statistics, 6th edn. Prentice
Hall, USA (2005)

Kundu, D., Gupta, R.D.: Generalized exponential distribution: bayes estimations. Comput. Statst.
Data Anal. 52, 1873-1883 (2008)

Mudholkar, G.S., Hutson, A.D.: The exponentiated Weibull family: some properties and a flood
data application. Commun. Statist. Theory Meth. 25, 3059-3083 (1996)

Nagaraja, H.N., Hoffman, G.: Inter-record times in Poisson paced F* models. In: Balakrishnan, N.,
Ibragimov, X. Nevzorov, V.B. (Eds.) Atsymptotic methods in probability and statistics with
applications. Chapter 26, pp. 363-374, Burkhi-user, Boston (2001)

Sarabia, J.M., Castillo, E.: About a class of max-stable families with applications to income
distributions. Metron LXIII, 505-527 (2005)



Chapter 3
Family of Exponentiated Weibull

Distributions

Contents

3.1 INFOAUCHON ... 53

3.2 Properties of the Exponentiated Weibull Family ...........cccoooiiiiiiniiiiiniininieceicneee 55
321 MOMEILS .ttt 55
3.2.2 Mean Residual Life (MRL) Function... 56
3.2.3  QUANTIES. ...eetieiieeiieieceete ettt ettt ettt ettt e e s e st e beesa e beesaeseestenseenaensaenean 61
3204 IMIOES ..ottt ettt et a ettt b et bt et ebe et ettt e b enean 62
325 65
3.2.6 Proportional Reversed Hazard Rate Function ..........c..ceceveeieniiiiininicncnieeen. 66
3.2.7 Density Function of the rth m-Generalized Order Statistic..........cccccevveevreeuennne 67

3.3 Estimation of o, 3, f,, Ru(xo) and Ax(xo), (Allparameters are Unknown) . 69
3.3.1 Maximum Likelihood ESHMAtION .....cc.ccveiruiriiriiniiiiiiiiiici e 69
3.3.2  Fisher Information MatriX.........ceoueruirieniirieniieienieeiei ettt 70
3.3.3 Bayes Estimation of o, f3;, 5, Ru(xo0), Au(xo0) 71

3.4 Bayes Prediction of Future ObServables ...........cccceiririiriiiiinininieieieineseseeeeeeeeiene 72

3.5 Related Distributions to the EW Family ........ccccoeoiiiiininiiiiiiiiecceeeeeeiee 72

3.6 Applications 76

REFETEINCES ...ttt 77

3.1 Introduction

A handbook, by Rinne (2009), covers the Weibull distribution in many of its
aspects. The study of the family of exponentiated Weibull (EW) distributions and
their applications attracted the interest of researchers in the nineties. Such interest is
growing since then.

If the baseline distribution is Weibull (f3,, 5,), with CDF

G(x) =1—exp[-B,x"], x>0, (B,,5,>0), (3.1.1)

then the family of exponentiated Weibull (EW) distributions has CDF

H(x)=(1- exp[—ﬁlxﬁz])a. (3.1.2)
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54 3 Family of Exponentiated Weibull Distributions

We shall write X ~ EW («, 3, ,) to mean that the random variable X follows the
exponentiated Weibull distribution with parameters o, 5, ,. The family of distri-
butions (3.1.2) includes the following important distributions, as special cases,

() p,=1= H(x) = (1 —exp[—fx]) "= X ~ EE(x, ),
(i) B =2= H(x) = (1 — exp[—f1x’]) "= X ~ ERay(x, B),
(i) «=1= H(x) =1—exp[—fx2] = X ~W(B,, ),

(iv) a=1,4=1= H(x) =1 —exp[-fx] = X~ Exp(p),

(V) a=1,p,=2= H(x) = 1 —exp[—f,x°] = X ~Ray(p,)

where, W, Exp, Ray, EE and ERay stand for Weibull, Exponential, Rayleigh,
Exponentiated Exponential and Exponentiated Rayleigh, respectively.
The SF and PDF corresponding to (3.1.2) are given, respectively by

Ry(x) =1 — (1 —exp[-px*]) 7, (3.1.3)
h(x) = of e exp[— i) (1 —exp[—P)) . (3.14)
It then follows, from (3.1.3) and (3.1.4), that the corresponding HRF is given by

) = h(x) O‘(l - eXP[_ﬁlxﬁz])ailﬁlﬂzxﬁrl exp[—pxP]
(%) = 5 o~ T (1~ exp| ) . (3.1.5)

As mentioned before, an ED differs substantially from its baseline distribution.

For example, while the Weibull (f3;, 8,) distribution allows three shapes for the
HRF which are: DHR, if f§, <1, CHR, if §, = 1, IHR, if §, > 1, the EW(a, f;, )
allows two additional shapes for the HRF: BTHR and UBTHR. In fact, Modholkar
et al. (1995) showed that the EW (, 3, f5,) distribution with HRF, given by (3.1.5)
(when 8, = 1) has the following shapes

(i) CHR = B,, if and only if a = B, = 1.
(i) DHR,if 8, <1 and a8, <1.
(ii) IHR, if B, >1 and aff, > 1.
(iv) Bathtub hazard rate (BTHR), if B, > 1 and af3, <1.
(v) Upside down bathtub hazard rate (UBTHR), if B, <1 and of3, > 1.

So, while the Weibull (B, B,) distribution allows for three shapes for the hazard
rate function: DHR if $, <1, CHR if B, = 1 and IHR if B, > 1, the EW(a, By, B,)
allows two additional shapes for the HRF: the BTHR and UBTHR. The figures on
p. 63 show cases (ii)—(v), for different parameter values.
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Remarks

1. The EW distribution has a natural physical interpretation, that if the lifetimes of
n units in a system, connected in parallel, are iid as EW, then the system’s
lifetime is also EW.

3.2 Properties of the Exponentiated Weibull Family
3.2.1 Moments

The CDF, SF and PDF of EW(«, f3,, 8,) distribution are given by (3.1.2), (3.1.3)
and (3.1.4), respectively. The ¢th moment of an ED is given, for / = 1,2, ... by
(2.2.6), where

o0
/ x“~Vexp[—ju(x)]dx.
0
In the EW(a, B, B,) case, u(x) = fx, so that
50 = [ ¥ expl-ifitids
0
By applying the transformation z = x2, the integral then becomes

e ,
L) :_/Zw//sz) Lexp[—jp,zldz

Ba
0

It then follows, from (2.2.6), that

T+ (/B)IN~ ¢
! 2 J
E(X") 762 — g ij/ﬂz’ (3.2.1)
where ¢; and v are given by (2.2.7).
This is the result given in Table 2.1, for the EW (o, 8, f,) distribution.
It may be remarked that if j — 1 =i, then

iy oL+ (/B¢ i
E(X") = B : ;}OJFI)WZ
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and if « is a positive integer, then

al[1+ (£/B2)] "= -1 1
E(Xé) o [/ﬁz : Z <a )(i+1)[{/ﬂz'

i=

This expression agrees with that given in Eq. 5 by Nadarajah et al. (2013) after

renaming the parameters (A = :/C, c=PBy,k=1).

The mean, variance, skewness and kurtosis can be computed by using the
appropriate values of ¢. For details, see Mudholkar and Hutson (1996), Eissa
(2005). Other forms, rather than (3.2.1) were considered by some authors. For
example, Gupta and Kundu (2009) noticed that one can express the /th moment as

follows
1
= “/ [H()_I(Z)]éza_ld&
0

where H; !(z) is the quantile function of a two-parameter Weibull distribution with

parameters (f;, 5,).
More forms for E(X’) can be found in Nadarajah et al. (2013).

3.2.2 Mean Residual Life (MRL) Function

In addition to the important concept of HRF, used in life-testing and reliability,
another important concept is the MRL function m(x), which is defined by

m(x) = E[T — x|T > x], (3.2.2)

where T is a positive r.v. with PDF h(z) and CDF H(z). If R(z) = 1 — H() is the
corresponding SF, then m(x) is given by

[o.¢]

m(x) = / (t — x)h(1)dt/R().

X
Integrating by parts, it can be seen that an alternative definition of m(x) is given

by

m(x) = w (3.2.3)
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If H(x) = [G(x)]”, then R(x) = 1 — [G(x)]", so that (3.2.3) becomes

N (1ot )"t
G

The MRL of the EW(a, f3,, f,) is obtained by substituting the baseline distri-
bution G(r) = 1 — exp(—pB,#) in (3.2.4). In this case

m(x) = (3.2.4)

Joo A1 = [1 = exp(=p,P)]*}dr
R(x) '

(3.2.5)

m(x) =
It can be shown that the MRL of EW(«, f3;, ff,) distribution is given by

> 1W o5 {T(1/B,) — T(1/5,jz0)} "
m(x) - 1— [1 _exp( ﬁlxﬁz)][x s ( 2. )

where ¢; is given by (2.2.8), v by (2.2.7), zo = B1x%>, T'(1/B,) and I'(1/B,, jz) are
the gamma and incomplete gamma functions, as defined by

o0
= [ 'exp(—z)dz,
0

Wwo (3.2.7)
(o, wo) = [ w*Lexp(—w)dw.
0
In fact, the numerator of m(x), in (3.2.5), is given by
[ 1= = expl-pia = Y (3.23)
x J=1
where ¢; is given by (2.2.8), v by (2.2.7) and
. ——
1/B,
Let z=p,tf, then 1= (ﬁ) . (x,00) = (20,00), zo= B> and

/ﬁz
dt = 22" gz
ﬁl/ﬂzﬁ
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So that

oo

2PV expl—jzldz

1//%
LY

20

1/ﬁ2 /ZWZ Lexp| —JZ]dz—/zl/”z‘leXp[—jzr’ Jdz
ﬁ ﬁ 0 0

1 {F(l/ﬁz (1//3271'20)}
ﬂzﬁ:/ﬁz L/ B, jl//’)Z

- W{F(l/ﬁz) D1/ By o)}
2 1

where T'(a) and (e, jwg) are given by (3.2.7) .
Therefore, from (3.2.8) and (3.2.5),

1 & cj )
m(x) = ( )Zlﬂz(]ﬁ )1//;2{ ( /ﬁz) (l/ﬁZa]ZO)}a 20 = ﬁlxﬁz- (3-2-9)

If « is a positive integer, then

() = R(l)z 1y (J ) {CQ/p) T /b)) o

= palip)'"
It may be observed that, if o = 1, then (3.2.9) reduces to the form

m(x) = {T(1/By) =T (1/B5:20)}
ﬁz 1/, CXp(—ﬁlxﬂz)

which is the MRL of the W(f,, §,) distribution.

For the case o is a positive integer, Nassar and Eissa (2003) obtained an
expression for the MRL function using the form H(x) = [1 —exp{—(%)“}]".

By following similar steps, it can be shown that

y 0= ﬁlxﬁ27

E[X"[X > x] = "
n it [{(n+ 1)/B} = T{(n + 1)/Bs.jz0}]  (3.2.10)
+ (n+1)/p, . - i £\ 1% ?
pr B[l = {1 = exp(=f1x2) ]
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where ¢; is given by (2.2.8), v by (2.2.7), zo = B,x*2 and T'(«), I'(e,jz0) are given
by (3.2.6). To see this,

EX"X >x] = W/y

Integrating by parts, we then have

nl,(x)
R(x) ’

E[X"[X > x] = —— ['R(x) + nl,(x)] = " + (3.2.11)

b
R(x)

where

L(x)= [ Y"'R(y)dy

VL= {1 —exp(—, )} dy

- *\8 Tt~

¢ / ¥~ exp(—jBy")dy

j=1

/B
Let z=fy, then y= ([;Ll) 2, (x,00) = (20,00), z0=px" and
dy =2 _ dz. So that

/51//32
”/ﬁz 7/ 1
-3 / (5

g7, ﬁz

T Z / R exp(—jz)dz

1 {(n+1)/B} T{(n+1)/By,jz0}
- ﬁ<1n+1>//32ﬁ2]z;cf[ Jnt D/, : ](n+1)/[i22 .
1 v

= g, 2 Z L IT{(n+ 1)/ B2} = T{(n+ 1)/ Bar 2o},

where v is given by (2.2.7), ¢; by (2.2.8) and, I'(),I"(, ) are as defined by (3.2.6).
So that, if 7, (x) is substituted in (2.2.11), we then have
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nl,(x)

R(x)

N 32 st (C{(n+ 1)/ By} = T{(n + 1)/ 2y jz0}]
BB T — {1 — exp(—f 1)}

EX"X >x] =" +

=x"

Remarks

1. The MRL function, as well as the HRF are important since each of them could
be used to determine a unique corresponding lifetime distribution.

2. As in HRFs, lifetime distributions could exhibit increasing MRL (IMRL),
decreasing MRL (DMRL), decreasing-increasing MRL(bathtub BMRL),
increasing-decreasing MRL (upside down MRL (UMRL) or other shapes such
as decreasing-increasing-decreasing (DIDMRL) or increasing-decreasing-
increasing (IDIMRL) .

3. The MRL and HRF are connected by a relation, given by

1+ m'(x)
m(x)

A(x) (3.2.12)

where A(x) is the HRF, m(x) is the MRLF and m//(x) is the first derivative of
m(x) with respect to x . This follows by observing that, since
[7° R(1)dtR (x)
o 2
[R(x)]

_ [ R(t)dt

m(x) = g

then m'(x) = —1

= m'(x) + 1 = m(x)A(x) and (3.2.18) follows.

4. The relationship between the shapes of the MRL and HRF of a distribution were
studied by Shanbhag (1970), Park (1985), Mi (1995), Ghitany (1998), and Tang
et al. (1999), among others. Some of their results are summarized in the fol-
lowing theorem.

Theorem [Eissa (2005)] For a non-negative continuous r.v. X, with PDF h(x),
finite mean u and differentiable HRF, the MRL is

(i) Constant = p, if X is the exponential distribution.
(i) DMRL (IMRL), if A(x) is increasing (decreasing).
(iii) UMRL (BMRL) with a unique change point x,, if A(x) is bathtub (upside
down bathtub) shape with a unique change point x,, 0 <x,, <x,<oo and
FO)>1(<1).
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It can be shown that if X ~ EW (o, 3, ), then the MRL is given by

-m(x) =By ifo=p =1,

. m(x) is DMRL, if , > 1,af, > 1,

. m(x) is IMRL, if p,<1,af, <1,

m(x) is BMRL with a unique change point x,, if f,<1 and of}, > 1,

. m(x) is UBMRL with a unique change point x,, if f, > 1 and aff, <1.

3.2.3 Quantiles

The quantile x4 of the absolutely continuous distribution (2.2.4) is given, from (2.2.9)
by

x, = u [~ 1In(1 - ¢"%)],

where u~!(.) is the inverse function of u(.).
This is true since the quantile is the value of x, satisfying

q=H(xq) = {1 — exp[—u(xq)]}*.
In particular, the median m of a distribution with CDF H(.) is given by
m=x;=u'[~In(l-27"%).

It may be observed that in the non-exponentiated case (o0 = 1), the median
reduces to

m=u"'(In2).

1/B
For the EW (o, 8, ,) distribution, u(x) = f,x"2 = u~!(y) = (ﬁ) . Substi-
tution in (3.2.6) then yields the qth quantile to be given by

—1/8,1 /P
x, = [m(l - ql/“) ‘} . (3.2.13)
The median of the EW(«, 3, f,) distribution is given by
~1/8,1 /P
Xijp = {m(l _ 2*1/“) } , (3.2.14)

which is the corresponding value obtained in Table 2.2.
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The EW quantile can be useful for fitting the distribution to frequency data using
the method of probability plotting.

3.2.4 Modes

It follows, from (3.1.4), that
Inha(x) = 1n(aff,) + (x — 1) ln(l - exp[f,/)’lxﬂZ]) + (fy — DInx — x>,
Differentiating both sides with respect to x, we obtain

W(x) (- 1)1 o> exp|— ] + (By = Dx! = By x>

h(x) (1 — exp[—p,xP])
=0 = (x— 1) o (exp[B] — 1) +(B, — D" = By o
(3.2.15)

1

The value of x which satisfies this equation is the mode of the EW(a, 8, 5,)
distribution. The following cases are particularly important

1. o =1 [the case of W(f,, f,)]
In this case, (3.2.15) reduces to

0= (B — x~" = By P!

_ 1\ Vb 3.2.16
ﬁ; ﬂ 1> ) ﬁZ > lu ( )
1P2

which agrees with the mode of the W(f,, f5,).
It may be noticed that for f, <1 and af, > 1, the mode of the EW (o, 8, 3,) is
the same as in (3.2.16). The case f, <1,af, <1 corresponds to a monotone
decreasing PDF and that of 5, > 1, af, <1 corresponds to a bathtub shape. See
Fig. 3.1.

2. B, = 1,a > 1 (the case of EE(«, f5)).
In this case, «f5, > 1 and (3.2.15) reduces to

= mode = (

(0 —1)(exp[fx] = 1) '=1=>x= ﬁim o
1
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Fig. 3.1 HRFs of EW((a, f3;, 8,), for different parameter values

Since

2
Inot = —

By

a1 11 3+1 x—1 5+
o+1 3\a+1 S\a+1
see Abramowitz and Stegun (1970), p. 67, then

a1 11 3+1 21 5+
o+1 3\a+1 S\a+1

A first approximation for the mode is obtained by neglecting the powers greater
than one to obtain

1 2
x=—Ino=—

B B
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x:[% [Z; ﬂ (3.2.17)

This is the mode of the EE(a, 8;), when o > 1. If 2 <1, so that af, <1, the
density function is monotone decreasing on the positive half of the real line.
3. 0<f,<1,a> 1, such that o5, > 1

In this case, the density function is unimodal with mode given by

1/62

2(2p,-1) | P2

M, = { [M@H)} ;o af> 1L (3.2.18)
0 af, <1.

7

This mode is obtained by observing that

Z Z o~ 2k 2k
—=1—-= 2 3.2.19
&1 2+Z(2k)!Z ) s (32.19)

k=1

_1 _ 1 . _1 _ 1
where, 1, =¢, 7= -3, V6= V8= 355

The 7y’s are Bernoulli’s numbers.
From (3.2.15),

(o = 1), il

— _1)— B
0= (ﬁ2 1) ﬁ1ﬁ2x + (exp[ﬁlxﬂz] _ l) .

By writing z = B;x and using the first approximation in expansion (3.2.15),
then

0= (b= 1) = Pzt (a= Dfal1 = (/2)] = 2= 2P

B 2(06[3 _1) 1/B,
:‘Ml—{m} w1

It may be noticed that the mode M| and median are equal when there exist values
of f, > 1 and o > 1 such that

Bol20+ (e + 1) In(1 —271/*)] =2 = 0.

For af, <1, the PDF of the EW(a, 8, 5,) is monotone decreasing. The case
0<p,<1,a<1 also leads to a monotone decreasing PDF.

Mudholkar and Hutson (1996) have derived another approximate formula for the
mode, say M, in the case afi, > 1.



3.2 Properties of the Exponentiated Weibull Family 65

The mode M,, for f; = 1, is given by

[— In (3 i _ \/ﬁz(ﬁz — 80 + 2ap, +9a2[32)>] 1/B,

M, = +

2 2u 20,

Eissa (2005) made an extensive computational comparison between M; with M.
Their differences were computed and their decrease (or increase) was observed, by
fixing some of the parameters and changing others. For details, see Eissa (2005) or
Nassar and Eissa (2003).

Using expression (3.2.15), the mode of the EW and EE distributions are given by
(3.2.16) and (2.3.17), respectively. The mode of ERay (e, f3,) distribution, can be

1/2
obtained by taking f, = 2, in (3.2.18), to get the mode = [ﬁlz(‘"afl)} , 200> 1.

3.2.5 Hazard Rate Function

The hazard rate function (HRF) corresponding to the exponentiated CDF (1.1.5) is
given, for x > 0, by

_ @) oGP e () _
T Ry(x) T 1—-[GW)]" [1— €y (¥)]46(x), (3.2.20)

AH (X)

where Jg(x) = g(x)/Rg(x) and €, (x) = %;;S)
If0<a<l, then —co< €, (x) <1 = 1- €, (x) >
)

= ;LH(.X) > /10()().
Ifoczl,then“—;lg €, (X)<1=0<a[l- €, (x)]<1

1
<1 = 0<hg(x) <Ag(x).

(
Notice that, since G(x) is a CDF on [0,00), then &, (0)=1 and
€y (00) = lim [%a;gﬂ =21 So that, 21 < €, (x) <1, for all x € [0,00).
Hence, 0 <o[l— &, (x)] <1.
By differentiating Ag(x), given by (3.2.16) with respect to x and simplifying, it
can be shown that, provided that G(x)g’(x) < g?(x),
H has an increasing hazard rate (IHR), if:

X—00

o
G*(x) >1— . (3.2.21)
1 —{G(x)g'(x)/g*(x)}
H has a decreasing hazard rate (DHR), if:
o
G*(x)<1 (3.2.22)

1 {G(g (/g (x)}
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If equality holds, then critical points at which extrema for H(x) may be obtained
and so other shapes for the HRF of H(x) are expected to take place.
It can be shown that if X ~EW (o, 8, f,), then the HRF Agy(x) is:

(i) CHR = B,,ifand only if a =, = 1.
(ii)) DHR, if f, <1 and aff, <1.
(iii) IHR, if B, > 1 and aff, > 1.
(iv) Bathtub hazard rate (BTHR), if B, > 1 and af3, <1.
(v) Upside down bathtub hazard rate (UBTHR), if B, <1 and of3, > 1.

3.2.6 Proportional Reversed Hazard Rate Function

The proportional reversed hazard rate function (PRHRF) of H, denoted by Aj;(x) is
defined by

Ji(x) = & InH(x)] =

It may be noticed, from (3.2.20), that the HRF Jy(x) of H(x) is not proportional
to the Ag(x) of G(x). However, the PRHRF A;j(x) of H(x) can be seen to be
proportional to the PRHRF A5 (x) of G(x). In fact,

I(x) = = ( = alg(x) (3.2.23)

This is why the exponentiated model is equivalently called PRHRM.

It may also be noted that 4j;(x) dx provides the probability of failing in (x-d x, x),
when a unit is found failed at time x. In general, the PRHRF has been found to be
useful in estimating the SF for left censored data.

It can be seen that the CDF H(x) can be written, in terms of the HRF Ay (x) and
PRHRM /j(x) of H as follows

/lH ()C)

HO) = 700 + i)

(3.2.24)
So that the SF and PDF are given, respective by

W) B _ () Au(x)
Rul) = 70 + ) M) = R ) =
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3.2.7 Density Function of the rth m-Generalized
Order Statistic
If u(x) = p,xP, then (2.2.17) becomes, when m # —1,

(r— l)i;zl+ 1! (1 -1 —exp(=paf)] ")

oy Box " exp(—pxP)[1 — exp(—pxP)) ! (3.2.25)

[1 - (1 — exp(_ﬁlx/iz))(erUq r—1

fr (x) =

From (2.2.17), the PDF of the rth OOS is given by fx,,(x) = > 71"} w;h;(x),
where w; is given by (2.2.18) and

1 (x) = a(r 4+ 7) By Box® exp(—Bix) [ — exp(— )7L (3.2.26)

Also, if m = —1, it follows from (2.2.20 ), that the PDF of OURV is given by

1 1B N
i (09 = [y e P (1 e (32.27)
[~ {1 — (1 — e Py,
e The PDF of the s-out-of-n structure is given, from (2.2.6), by
n By—1 —paP2
Somstin(x) = _ 1 (n—s+ 1)ap fx S
n—s+ (3.2.28)

|:1 _ e_/flxﬁ2:|“(n_s+l)_l [1 _ (l _ e—/flx/fz)a:| S_l'

e The PDFs of a series (n-out-of-n) and parallel (1-out-of-n) structures are
obtained, for x > 0, from (3.2.4), respectively, as follows:

n—1
fino) = maf e I (1= Py 1= (1= e L (3.2.9)
f;l:n(x) = naﬁlﬁzxﬁzilefﬁﬂ/‘z(l — efﬁl"‘/f2 )"ail, (3230)

Notice that in the non-exponentiated case (o0 = 1),
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Jin(x) = ”ﬁ1ﬂ2xﬂrle*ﬁ‘xﬂz,
Jrn(x) = ”ﬁlﬁzxﬁrlefﬁlxﬁz(l - e*ﬁlxﬁz)nfl,

which agree with the PDFs of the minimum and maximum order statistics based on
a population with CDF 1 — e /%2,

1. Expression (3.2.1) agrees with the expression obtained by Sarabia and Castillo
(2005), for the PDF of the rth ordinary order statistic, from EW(«, f8;, ,). This
expression makes it easy to obtain the corresponding CDF, SF, moments and
product moments.

2. Mudholkar and Hutson (1996) obtained asymptotic distributions of the extreme
order statistics Xj., and X,., and the extreme spacings X»., — X;., and
X :n — Xn—1.n- They showed that nt/Ceh)x, approaches in distribution AUC N
where Z is a standard exponential random variable. Also,

W CBx, . — Xy.] — 2V ) _ X1/ Gh)

and

1
(11’1”1)171/ﬂ2 [Xn:n - nflin] - ‘B_ [an — lnX],
2

where (Z, X) has the joint PDF

_ fexp(—z), O<x<z
fzx) = {0, otherwise

Furthermore,
X2:n *Xl n = Op (nl/(“ﬂZ)) and Xn:n - Xn—l n = 0P((lnn)l/ﬁ27l)'

Explicit expressions for single and product moments of order statistics from the
ERay (or, Burr type X) which is [EW(x, 5, =1, , =2)] distribution were
obtained by Ragab (1998). He also obtained expressions for percentiles and sug-
gested an estimate for o that is based on order statistics. Ahmad (2001) gave
recurrence relations for single and product moments of order statistics from doubly
truncated EW distribution. Ahmad and Al-Matrafi (2006) derived recurrence rela-
tions for moments and conditional moments of generalized order statistics from the
EW distribution. Khan et al. (2008) established recurrence relations for single and
product moments of dual generalized order statistics from the EW distribution.
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3.3 Estimation of a, f,, f,, Ru(xo) and iy (xy),
(Allparameters are Unknown)

The case in which o is the only unknown parameter of H shall not be discussed here
and we shall be satisfied with the discussion given in Chap. 2. In this section, all of
the parameters «, 8, 3,, of H are assumed to be unknown.

3.3.1 Maximum Likelihood Estimation

The three LEs, are given, from (2.4.3) and (2.4.4) (when k = 2) by

ol - (n — r){G(x|B)}" InG(x,|B)
3 0= 5 2 MOID T 30
and forj = 1,2,
ot L 3G(x[p) 1 %(xlf)
aﬁ 0= a 1 ;G xl|ﬁ aﬁ - i=1 g('xl|ﬁ) aﬁ]
(3.3.2)

_ (n=n)o{Glxlp)}* " 3G (xp)
I ={G(x|p)}" op;

where £ is the log-likelihood function, given by (2.4.2). The base distribution G is
given by G(x|B) = 1 — exp(—f,x%), B = (B, B) and g(x|B) is the corresponding
PDF of G, given by

g(x|B) = B B> exp(—Bx">).

Substitution of G and g and their derivatives with respect to f§; and f3,, in the
above three LEs, and solving such system, we obtain the MLEs a,;, /31 ML ﬂ2 ML
The MLEs Ry (x0) and 7y (xo) can be computed by applying the invariance
property of MLEs. This system of equations can be solved by using Matlab,
Mathematica or IMSL routine.

In the complete sample case, the three equations reduce to

:7+ZlnGx,|ﬁ

i=1
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and, forj = 1,2,
o LGP N~ 1 dg(nlp)
Ve o st o

where  G(xi[f) = 1 —exp(—fx*) and g(x|B) = pifl> " exp(—p1al*). For
interval estimation and testing hypotheses, it is useful to have explicit expressions
for the elements of Fisher information matrix. Asymptotic normality of MLEs
implies that the distribution of the vector: v/n(& — o, B, — BB — p,) tends to the
distribution of a trivariate random vector with mean zero and variance-covariance
matrix I~!, where [ is Fisher information matrix. So that, 100(1—7)% confidence
intervals for a, 8, f, are given, respectively, by

8 — 226(0) /V/n<a <&+ z.)p6(&) /v/n,

where 6(&) is the estimated standard deviation of &. Variance &, is the diagonal
element in the variance-covariance matrix /=1, that corresponds to o and z; is the
7/2 quantile under the standard normal curve.

3.3.2 Fisher Information Matrix

Qian (2011) obtained the 3 x 3 Fisher information matrix / for 3-parameter EW
distribution under type II censoring. He used F instead of H and the base distri-
bution G is given by

G(x) =1 —exp(x/a)’, (3.3.3)

So that the parameters f5, o are related to §; and 5, (used in this book) by the
relations f8, = (1/0)’, p, = poro = ﬁfl/ﬁz, =5,

Using F(x) = [1 — exp(x/0)¥]*, Qian (2011) obtained the elements of Fisher
information matrix in the following theorem.
Theorem Qian (2011) Let £ — p = F(a,,0) € (0, 1), where a, is the 100 p per-
centile of F(x;0).

For EW family with parameters 0 = (o, f5, O’)T under type Il censoring, we have



3.3 Estimation of o, 8, 85, Ru(xo) .. 71

)4
1 In x
D'oy== /(1
p (0) 062/( +1_x>dx>

2(0) = — / {1+ In[—In(1 — x)]y(x; o)} dx,
0

p]/z

1(0) = a<§)2 / V(s o) d,
0

1/o

10 -0 =% [ (1+ Inx ){1+ln[ In(1 — D] (xs 20} e

o 1—

<1 4 nx >¢(x; o),

o 1 —x*

{14 In[— In(1 — x)]ys (x; o)} (ox; o)™,

< T
(98]
Py
5
N~—
I
~
[39)
W
Q | IS
o3

L my a= D0 (x0)
o) =1 = ()40 i - P

For proof, see Qian (2011).
In the complete sample case (r = n), p = 1. So that the upper limits of all of the
above integrals will be 1.

3.3.3 Bayes Estimation of o, B, B,, Ru(xo), Ag(xo)

e SBM

By using the prior, given by (2.5.18), the Bayes estimators, based on the LINEX

loss function, are given by (2.4.7)—(2.4.10).
Nassar and Eissa (2004) considered Bayes estimation of the two-parameter EW

distribution whose CDF is given by
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F(x) = [1 — exp(—x")]". (3.3.4)

This is a special case of the three-parameter EW (a, 5, 5,) distribution in which
p1 =1,p, = a,a = 0. They estimated the parameters, SF and HRF, based on SEL
and LINEX loss functions for type II censoring and used a subjective prior of the
form:

70, 0) = 11 (2)ma(0]),

where 7;(0]o) is gamma and 7, () is exponential. In their computations, they used
an approximation form due to Lindely(1980).

Singh et al. (2005) considered Bayes estimation of the three-parameter EW
distribution whose CDF takes the form

F(x) = [1 — exp(x/0)]?, (3.3.5)

where the parameters o, 3, o are all positive. They estimated the three parameters
based on SEL and LINEX loss functions for type II censoring and used an
objective, non-informative prior, assuming independence of «, 5, ¢. In their com-
putations, they suggested the use of 16-points Gauss quadrature formula.

e MCMC

Example 3 in Chap. 2 describes the steps to be followed to obtain Bayes estimators,
based on the LINEX loss function, using the MCMC algorithm.

3.4 Bayes Prediction of Future Observables

A 100(1 — 7)% Bayes prediction interval, for the sth future observable (based on
the one-sample scheme), has bounds L and U, given by the solution of (2.5.10). In
the two-sample case, the bounds can be obtained by the solution of (2.5.16). In both
cases, the EW distribution is assumed to be the underlying base line distribution.

In the two-sample case the sample size m of the future sample was assumed to be
fixed.

3.5 Related Distributions to the EW Family

Before discussing relations between the EW and other distributions, we shall first
show how to get the so called beta-G distribution.
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Beta-G Distributions

Given two absolutely continuous CDFs F and G, so that f and g are their
corresponding PDFs, one can obtain a new distribution H by composing

(i) F with G, so that H(x) = F[G(x) is a CDF, (3.5.1)
(i) F with 7j(x) = —InRg(x), so that H(x) = F[ij(x)] is a CDF, or
F with n(x) = —InG(x), so that Ry(x) = Fn(x)] is a SF

Eugene et al. (2002), suggested the use of a PDF, given by

) = Grargy (GO (1= G g(), (352)

where @ and b are positive real numbers, B(a, b) is the beta function and G(x) is a
normal CDF.

With G(x) being a baseline distribution, Eugene et al. (2002) defined a
generalized class of distributions as follows:

G(x)
F) =g [ -0 (3.53)
0

in which G(x) was chosen to be normal.

Differentiating both sides with respect to x, we obtain the PDF h(x), given by
(3.5.2). The CDF F(x) is known as the beta-G distribution. For example, if G is
Weibull, then H(x) is beta-Weibull distribution and so on.

Distributions obtained by composition of this kind, such as the beta-normal,
beta-Fréchet, beta-Gumble, beta-exponential, beta-exponentiated exponential, beta-
Burr type XII, beta-power function, were studied by Eugene et al. (2002),
Nadarajah and Gupta (2005), Nadarajah and Kotz (2006), Barreto-Souza et al.
(2010), Paranoiba et al. (2011) and Cordeiro and Brito (2012).

Two important special cases result from the beta-G distribution:

1. When b =1 in (3.5.4), then
F(x) = [(G(x)]", the CDF of the exponentiated-G distribution.
2. When a =1 in (3.5.2), then

H(x)=1—-[1 — G)]” & Ru(x) = [Re(x)]".
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That is, the SF of H is the exponentiated SF of G.

Relations of the EW distribution to other distributions are given by the
following:

It was indicated, in Sect. 3.1, that the EW(a, 8, 5,) distribution includes as
special cases, EE(a,f;), when f, =1, ERay (a,f,), when p, =2, Wei-
bull(f, f,),when « =1, Exp (f;),when a=1,, =1 and Ray (f;) when
a=1p3,=2.

Chapter 4 is devoted to cover the EE distribution.

The ERay (or, equivalently, Burr Type X) distribution, was considered by
several researchers, among whom are Sartawy and Abu-Salih (1991), Raqab
(1998), Ahmad (2001), Ahmad and Al-Matrafi (2006), Alshunnar et al. (2010) and
Montazer and Shayib (2010).

The following distributions are related to the EW distribution:

1. Carrasco et al. (2008) introduced a generalized modified Weibull distribution
H(x) = [1 —exp{—ax’e”})!, x>0, (3.5.4)

where all of the four parameters «, 3, y, A are positive.
Important distributions result as special cases, for example:

(i) If 2 =0, we get H(x) = [I —exp{—ox’}}’, which is the CDF of the
EW (o, B, 7) distribution.

(i) If p=1,7y=0, we get H(x) = 1 — exp[—ae™], which is the CDF of
extreme value distribution with parameters (o, 1).

(i) If =1, we get H(x) = 1 —exp{—ox’e”}, which is the CDF of the
modified Weibull MW (o, y, A) distribution. See Lai et al. (2003).

(iv) The beta integrated distribution, see Lai et al. (2003), has a CDF of the
form

H(x) = exp[—ax’(1 —dx)‘], O<x<l1ld.

—n

If d =1/n,c =na, then (1 —2%) o exp(Ax), as n — oo. This yields

b Jx

H(x) = exp[—ax"e™],

which is the CDF of the MW(a, b, 1).
2. Famoye et al. (2005) introduced the beta-Weibull distribution, whose PDF is
given, from (3.5.4), by

B

B(a,b) xVexp(—=bpx™)[1 — exp(—=p "), x>0, (3.5.5)

h(x)

If b = 1, PDF (3.5.5) reduces to the EW(a, f3,, 5,).


http://dx.doi.org/10.2991/978-94-6239-079-9_4

3.5 Related Distributions to the EW Family 75

Famoye et al. (2005), Lee et al. (2007), Wahed et al. (2009) and Cordeiro et al.
(2008, 2011a, b) studied the distribution which allows for DHR, IHR, BTHR
and UBTHR functions.

3. Cordeiro et al. (2008) introduced the 4-parameter Kumarswamy-Weibull dis-
tribution whose PDF is given by

_ gy B exp(— )1 — exp(—fia))”!
1= {1~ exp(—fre) ]

where all 4 parameters are positive. Such PDF includes, among others, the
EW(a, f8,, ,), when y = 1. This distribution allows for DHR, IHR, BTHR and
UBTHR functions.

4. Silva et al. (2010), introduced the five-parameter beta-modified Weibull distri-
bution, whose PDF is given, from (3.5.4), by

h(x) , x>0, (35.6)

_ abdx’~1(y + Jx) exp(Ax) exp{ —bdx’ exp(/ix)}]
B(a,b)[1 — exp{—bdx’ exp(/x)}]'

h(x) , x>0, (3.5.7)

where all of the five parameters are positive.
It includes some distributions, among which is the EW(a, 7y, §), that is obtained
by taking b = 1,1 = 0.

5. Alexander et al. (2012) introduced a class of ‘generalized beta-generated dis-
tributions” whose PDF is obtained, from (3.5.4), as

o) = 5oy O W= 6 W6 W) s,
! 3538
= By (GO = G ),

by taking the base distribution to be [G(x)]‘, where all of the parameters are
positive, G(x) is an absolutely continuous CDF and g(x) is the corresponding
PDF.

If ¢ = 1, the PDF reduces to the beta generated PDF.

If a = 1, the PDF reduces to the Kumuraswamy generated PDF.

If b = 1, the PDF reduces to a family of PDFs, among which it includes the
EW PDF (when G(x) is Weibull).

6. Cordeiro and de Castro (2011) introduced a family of Kumuraswamy generated
distribution whose CDF is given by

Hx)=1-[1-G")", x>0, (3.5.9)

where o, § > 0 and G(.) is a CDF.
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The EW CDF is obtained from (3.5.10) by taking § = 1 and G(.) to be Weibull.

Lemonte et al. (2011) introduced the family of exponentiated Kumuraswamy
distributions, generalizing (3.5.10), whose CDF is given by

H(x) = (1-[1- G“(x)]ﬂy, x>0, (3.5.10)

If y=f =1 and G(.) is Weibull, the distribution reduces to the EW CDF.

. Cardeiro et al. (2011c) introduced the family of beta extended Weibull distri-

butions with PDF

k
n() = O 1 exp(—eK () exp(—beK(x)), x>0,  (3.5.11)
B(a,b)
where all parameters are positive, K(x) >0 and k(x) = dliix).

This PDF can be obtained by applying (3.5.4), in which G(x) =1-—
exp(—cK(x)).
If K(x) = x* and b = 1, then

h(x) = acpx’Vexp(—ex)[1 — exp(—ex?)*™", x>0,
which is the PDF of EW(a,c, f3).

Other families of distributions can also be obtained from (3.5.12). It allows for
DHR, IHR, BTHR and UBTHR functions.

. Zaindin and Sarhan (2011) introduced a generalized Weibull distribution whose

CDF is given by
H(x) = [1 —exp(—ox — px)]", x>0, (3.5.12)
This specializes to the EW distribution when o« = 0. It allows for DHR, IHR,

BTHR functions.
Some other relations and generalizations are given in Nadarajah et al. (2013).

3.6 Applications

Applications of the EW model have been widespread. For example: modeling of
extreme value data using floods, statistically optimal accelerated life test plans,
modeling for carbon fibrous composites, modeling tree diameters, modeling firm-
ware system failure, modeling the SF pattern of test subjects after a treatment is
administered to them, modeling of distributions for excess-of-loss insurance data,
software reliability modeling, models for reliability prediction, models for future
toughness, modeling Markovian migration in finance and medicine, estimating the
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number of ozone peaks, modeling bus-motor failure data and mean residual life
computation of (n — k + 1)-out-of-n systems.

In particular the EW family was applied in analyzing bathtub failure data by
Modholkar and Srivastava (1993). This family was also applied to the bus-motor-
failure data in Davis (1952) and to head-and-neck clinical data in Efron (1988), see
modeling extreme value data to analyze the flood of the Floyd River at James, lowa.

Bokhari et al. (2000) suggested statistically optimal life test plans for items
whose lifetime follows the EW distribution under periodic inspection and type I
censoring.

As a failure model, the EW distribution was used in accelerated life tests
applications, see Ahmad et al. (2006).

Ahmad et al. (2008) studied the EW software reliability growth model with
various testing efforts and optimal released efforts and optimal released policy: a
performance analysis.

Jiang (2010) compared between the fitted EW bus-motor-failure data with
competing risk model with parameters being functions of the number of successive
failures.
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4.1 Introduction

As was mentioned, in Chap. 1, that Gompertz (1825) raised the extreme value
distribution to a positive parameter. Verhulst (1847) introduced the following CDF
of a random variable X

F(x)=(1—pe ™ ... x> Inp,

for p, f and o are positive real parameters. Verhulst (1838, 1845, 1847) used this and
the exponentiated logistic distributions in mortality tables to represent population
growth. Gupta and Kundu (1999) used this distribution with p = 1 and called it
“generalized exponential” distribution. Unfortunately Gupta and Kundu did not refer
to the works of Gompertz and Verhulst. In this chapter we will discuss some
inferences of Verhulst distribution and will call this distribution exponentiated
exponential distribution. An absolutely continuous (with respect to Lebesgue mea-
sure) random variable is said to have the exponentiated exponential distribution EED
if the PDF and the corresponding CDF are given, for x > 0, respectively, by
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Fx) = ape P (1 —eP) (4.1.1)
F(x) = (1 —e ™), (4.1.2)

where f and «a are positive parameters.

Many authors studied various properties of the EED. See, for example, Abdel-
Hamid and AL-Hussaini (2009), Ahsanullah et al. (2013), AL-Hussaini (2010,
2011), AL-Hussaini and Hussein (2011), Ellah (2009), Escalante-Sandolva (2007),
Kundu and Pradham (2009), Gupta and Kundu (1999, 2001, 2007), Madi and
Ragab (2007, 2009), Nadarajah and Kotz (2006), Ragab (2002), Ragab and
Ahsanullah (2001), Ragab et al. (2008), Sarhan (2007), Tripathi (2007), and Zheng
(2002), among others. Nadarajah (2011) surveyed the EE distribution.

It was Verhulst (1847), who introduced a distribution with CDF F(x) as

F(x) = (1—pe ™" x> %lnp, (4.1.3)

where p, f and « are real, positive parameters.

Verhulst (1838, 1845, 1847) also presented some distributional results of the
above exponentiated distribution. Gupta and Kundu (1999) gave several distribu-
tional properties of (4.1.3) when p = 1 they called this distribution generalized
exponential distribution. Figure 4.1 gives the PDF of EED(a, ) for a = 0.5, B =1
(Blue), a =2, B =3 (red) and a = 3 and B = 5 (Blue).

PDF

o L

Fig. 4.1 PDF of EED
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Hazard Rate 3 T

Fig. 4.2 Hazard Rate

Figure 4.2 shows the HRF for different values of o when f§ = 1.
Js53(x) — Red, A5 (x) — Black, 4922(x) — Blue
The PRHRF 2*(x) is given as

- flx) _ ape
A (x) :W:m.

The HRF 1, p(x) is given by

) O fx) afe (1 — e hry!
/wz‘ﬁ(x) 1= F(x) o 1 — (1 _ e—/fx)“

If « =1, then A,p(x) = P (the hazard rate of exponential distribution) and if
o < 1, then /l%ﬁ(x) decreases from ©o to § as x goes from 0 to ©o. If a > 1, then
24,p(x) increases from zero to f3 as x goes from 0 to 0.

4.2 Stress-Strength Reliability

Let the strength (or demand) X; and stress (or supply) X, be independent and
distributed as EED(f3|, o) and EED(f,, ;) respectively. The reliability R = P
(X, < X)) is known as stress-strength reliability. So that [see Ragab et al. (2008)]
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R=PX2<X)) = //fxl,xz(?c,y)dxdy

y<x

/ / Jx, ()fx, (z)dzdx

sz fxl

a1 —Ppx\ %2 _
= (1—e ™) de,u=eP~

alﬁ167 lx(l o e*/ﬂx)

S —y

1
o / (1 — u)“l_l(l _ uﬁz/ﬁl)“Zdu.
0

If B,/B; = 0, then

j=0
where
V= {d297172,...: ) ’ (421)
00, o is a positive fraction
G=(~1)o(on—1)... (00 —j+ 1), (4.2.2)
If 6 = 1, then
1
R=o / (1 —w) dy = il
oy + o
0
If 6 = 2, then

1
R=u / (1 — ) (1 + u)du
0

1
= Fi(l —0y;2+o0; +0ap:—1),
P 1( 2 1+ )




4.2 Stress-Strength Reliability

where 2F (a1, az; by : x) is a hypergeometric function given by

= (a1)(@);
2F1(a1,az;b11x)22#xj and (c); =

=0

4.3 Entropy

cle+1)...

85

(c+j—1).

In information theory, entropy is a measure of uncertainty in a random variable. We

will consider here Renyi’s and Shannon entropies.

Renyi’s entropy (Renyi 1961), denoted by Eg(y), is defined by

ln{]of”’(x)dx},
0

ER(y) =

where y > Oandy # 1.
Using the PDF, given in (4.1.1), we have

/f Ydx = (af)’ [ e 7P (1 e’ﬁ")y(Wl)dx.
0 0

By using the transformation u = e ~**, we obtain

00 1

/f’(x)dx =o' p! /u"71(1 —u)* Vay

0 0

=o' B(y,yu—y +1).

So that

Ino + InB(y, yor —
Ex(y) = —In(zf) + (.7

7+ 1)

1=y
If a = 1, then

7In f —In(yp)

Er(y) = 11—

b

(4.3.1)
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which is the Renyi’s entropy of the exponential distribution.
Shannon’s entropy Eg (1951) is defined by

Eg = E(~ Inf(x)
= —In(af) + PE(X) — (2 — 1)E[In(1 = e #¥)]

ﬂm:%ww+n7wam

where y/(z) = d%ln I'(z) = 5_/((;), is the digamma function.
E[In(1 —e ™) =ap [ In(1 — e M)e (1 — e )" ax
0

Let u = e 7, then

E[In(1 —e )] = oc/ln(l —u)(1 —u) 'du
0
1

=
Thus

Es = — In(af) + p(at1) — p(1) + 21

; (43.2)

Shannon’s entropy (4.3.2) is a special case of Reni’s entropy (4.3.1) as y T 1.

4.4 Moments and Cumulants

Suppose that X has EED(a, B) distribution. Let M(¢) be its moment generating
function (MGF). Then

M(t) = rxﬁ/ e[ — e P lax.
0

Using u = e %, then

M(1)

1
oc/u”/ﬁ(l —u)* du
b (4.4.1)

—ocB(l—;,a>, 0<rt<p,
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where

1
/xpll—x
0

Gupta and Kundu (2001, 2007) gave expressions for the mean, variance, third
and fourth central moments of X when X has EED (o, ). Using (4.4.1), we obtain

E(X) =%{w<a+ 1) - (1))

where
) = ST = 50 ) = S,
Plo, i) = 2= 1) - @0 piy,0) = 1

The variance, third central moment, skewness, fourth central moment and kur-
tosis are, respectively

Var(X) = {n* — 6y/(ax + 1)} /{65°}.

This expression is the same as that given before, since y/'(1) = n*/6 implies that

Var(X) =& (¥/(1) = /(2 + 1)). Also

E[{X — BXOY] = {20(3) + ¥z + D}/B,

Skewness = [6v/6{2n(3) + " (x + 1 W/ - o+ 1)}3/2’
E[(x — E00)] = (3 + 60(y/ (o + 1)) —20n2w (o + >
=20y (e + 1)]/ (208"),

where 57(x) = Y%, & and

i=1

9[37* + 60{y' (ot + 1)} — 2072/ (e + 1) — 200" (o + 1)]
[5{m> — 69/ (2 + 1)}’] '

Kurtosis =
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Note that the skewness and kurtosis measures depend only on «. Both
E(X) and Var(X) increase monotonically with o.

We have Var(X>E(X)for allo <1and Var(X) <E(X)foralla > 1. Both
skewness and kurtosis measure decrease monotonically with a. The skewness is
always less than the kurtosis measure for all o.

The cumulant generating function K(z) is defined as

K(t) = InM(z)
It follows, from Eq. (4.4.1), that

K(f) =InT(e+ 1)+ InT(1 —%)—m F(l+o&—é). (4.4.2)

The mth cumulant can be easily obtained from (4.4.2).
For example

" =%[w<1 ) — (1))

1

= EW(I +a) —y/(1)],
1

G
1

Ky = E[W)(l +a) =y (1)]
where (z) = 4[InI(z),"(z) = & (z)] = (;’;,:11 (InT(z)],r =1,2,3,... is the
poly-gamma function. For example, 1'(z) is known as the tri-gamma function,

K2

WP (1 + ) =y (1),

K3

xp(2> (z) the tetra- gamma function and so on. For details, on the poly-gamma
function, see Abramowitz and Stegun (1970).

4.5 Generalized Order Statistics

The PDF of the rth m-generalized order statistics (m-gos) [see Kamps (1995)] based
on EED is given by (4.5.1) in case m # —1 and by (4.5.2), in case m = —1, in
which u(x) = fx. So that,

Form # —1,

Cry _ =Byl —Bx(1 _ —Prye—1
(r—l)!(m—|—1)r_1[1 (L= ape (1 =) (4.5.1)

X (1= {1 = (1 —e frylmiyyt,

Jre(x) =

where C,_1 = yy7,...7, and y; =k + (n—r)(m+ 1) J =1,2,...,n
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For m = —1,

k" —Bx\ark—1 —Bx —pxya—1
fX;(x):(r_—l)![l*(lfe /j)}k ofe ﬂ(lfe ﬁ)

X [=In{1 — (1 —e M)y "

(45.2)

Several important special cases can be obtained from the PDFs of (4.5.1) and
(4.5.2). Among others, the PDFs of ordinary order statistics (ORS) and upper record
value (URV) can be seen to be of the respective forms:

(i) The PDF f,.,(x) of the rth OOS X,., is given by

l’l' By — B\ or— —Bx\o\ T
f,;n(x)zmocﬁe ﬁ(l—e ﬁ) 1(1—(1—6 ﬁ)) .
(4.5.3)
(ii) The PDF fx:(x) of the rth OURV X} is given by
fre(x) = (rfiﬁl)!eﬁxu —e Py {1 — (1 —e ™)' (45.4)

By expanding the last term in (4.5.3), the PDF of the rth OOS can be written in
the form

Fren(x) = b’ (x), (4.5.5)
j=0
where w; = (’:) (n f r_—rjj> ri——Jrlj)’ and
1 () = o(r + j)fe P (1 — e Pyt (45.6)

which is the PDF of EED[u(r + j), f]. So that the PDF of the rth order statistic is a
linear combination of EE densities.

An s-out-of-n structure functions if at least s of its components function.
Equivalently the life of an s-out-of-n structure is the (n — s+ 1) largest of the
component lifetime.

It follows, from (4.5.3), that the PDF of an s-out-of-n structure is given by

| —s s—
fosern) = e (1 — e P (1 (1 — ey

(n—s)l(s—1)!
(4.5.7)
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From (4.5.7), the PDF of n-out-of-n structure (series system) is given by
Finx) = nafe P (1 —e )V (1= (1 — e )", (4.5.8)
The corresponding CDF is given by
Fro(x)=1—[1— (1 —e )" (4.5.9)

Notice that this is the CDF of the minimum of a random sample of size n from
EED with CDF G(x) = (1 —e )" Equivalently, (4.5.9) can be written as
Ry.,(x) = [R(x)]". That is, the SF of the minimum is the SF of EED(a, ).

Also, we have the PDF of 1-out-of-n structure (parallel system), given by

Fon(x) = notfe (1 — e~ Fr)*~1, (4.5.10)
The corresponding CDF is given by
Fun(0) = (1 —eP)™, (45.11)
which is EED(no., f8). This is the CDF of the maximum of a random sample of size n
from EED with CDF G(x) = (1 — e )",

Without loss of generality, we assume § = 1. The moment generating function
(MGF) of the order statistic X,.,, is given by

Mr:n(t) :/e[xfr:n(x)dxa
0

where

_ I’Z' X r—1 _ X n—r X
= i e = PP ).

Substituting F(x) = (1 —e )" and f(x) = afe P (1 —e )" and then
integrating we obtain

Jrn(x)

B nlo =y Cle(r +)I0(1 — 1)
Mea(0) = (r—n)l(n—r)! J,Z(;D] Cla(r+j) —t+1]° (45.12)

where t < 1 and

D; = (—1)f<”_,r>. (4.5.13)
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Differentiating (4.5.12) with respect to ¢ and then putting t = 0, we obtain

n! 1 p, ,

o) = e g e+ )

B0 = e S P ) ()
o (r=n)ln—r— 1) =r+j

— [ (r + o — ¥ (D).

Similarly we can obtain higher moments of the rth order statistic from (4.5.12).
As a special case of (4.5.3),

fn:n(x) = nocﬂe—/fx(l _ e—/ﬁx)nocfl

= X,.. ~ EED(na, ). The corresponding CDF is given by F,.,(x) = (1 — e~ /)"™.
The inverse function of the exponentiated CDF F, given by (4.1.2), is

Fl(x) = —%m(l - ul/“).

So that

-1 _fp-1(1_2
mmﬁw{F (PRl ,J}:l

F(i=) - F (=)

n

Thus by Theorem 2.1.5 of Ahsanullah and Nevzorov (2001), see also Leadbetter
(1987), it follows that with suitable normalizing constants a,, b,

P(Xn:n <a,+ bnx) - eieﬂ, —o0 <X <00,
where
1o

1 1 1
a,=F! <1 —> = —ln<1 -1 —) — Inna

n B n

Ly 1/
bn:—lln 1- 1—l +lln 1-— 1—i —1
B n p ne
Furthermore,
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Thus by Theorem 2.1.5 of Ahsanullah and Nevzorov (2001), it follows that with
proper normalizing constants

PX <Co+dx]=1-e", 0<x<oo,

where
-1 1 —1/a
C,=0andd,=F "|—- ) =n
n
Assuming that ff =1, the joint PDF of any two order statistics X,, and
X;.n(1 <1 <s<n) can be written, for 0 <x<y<oo, as
n—s s—r—1 )
fr,s:n(x y = Cp s Z Z Dz] 1 e r+z)o< 1(1 _ efy)(s—r—_l+1)0<—le7(x+y)
i=0 j=0

n!

e = 0 () ()

For details, see Raqab and Ahsanullah (2001).
The joint moment generating function M, . ,(t;,t;) is given by

Cr,s:n

n—s s—r—j

Mrsn t1t2 —Crsnaz Z l] B S+r) 7l—l‘z)
i=0 j=0
x 3F((s +i)o, (r—|—j)oc,t1;(r—|—j)oc—|—1,(s—|—i)oc—t2+1;1),
L<t) —2,

(4.5.14)

where

s .
e e
qu(S],.. OCp,ﬁl,...7ﬁq7 = 7[7]

and (o) = a(a+1)...(a +j1) =T(a+j)/I(a),j=1,2,....

Using (4.5.14) it can be shown that, for 1 <r<s<n,

““Ef +i)a+k+1—y(1)

EXr‘nXY‘n = Crsin g .
(XnXn) = Crano® Y Diiie s+za+k][<r+1)cx+k]

k=1 i=0 j=0

(For details see Raqab and Ahsanullah 2001).
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4.6 Distributions of Sums S,

Suppose X; and X, are independent and distributed as EED(o4,f5;) and
EED(oz, ,). Let S, = X + X, then the PDF of the function of S, is given by

ﬁﬂ@=i/ﬂM@ﬁﬂx—wdu
0

_ / o e (1 — eyl g o] _ gy algy
0

X
v
— sy, oo et / S el ghrg (1 — Pyl gy,
o /70

0n—1=01,2,...

; and
o0, otherwise

where v = {
&= (~1)(e —1)... (22 — ).

v ) . 1
fs2(x) = oyop e P* Z cje P B (ocl, 1 - %ﬂ »)
Jj=0 !

where 6 =1 —e™#* and B;s(p,q) = fg uP~'(1 — u)du, is the incomplete beta
function.
The corresponding CDF is

If By =, = fand oy = oy = «, then
Foala) = 2B e By, —)),
=0
The corresponding CDF Fs,(x) is given by
Fsy(x) = afe P~ ie_jﬁxBa(le — )

J=0

If a = 1, then
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fs2(x) = pPxe
and the corresponding CDF is
Fs;(x) =1—e ™ — pxe™™, x>0,p>0.

This is the distribution of two identical[y distributed exponential distribution.

4.6.1 Distribution of the Sum S,

LetX:X1 +X2++Xn
We assume without loss of generality p = 1. Let U; =e ™, where X, is
EED(a, 1). Then U; is distributed as B(1, o) and the PDF fy, (1) is given by

Ue X andU = H U; = exp[— in] =e X
i1 i=1

We can write Ue XandU = [, U = exp[— Y., Xi| = e X
The Mellin transformation of Y; is

My (1) = [ ox'(1 —x)* dx

i

o _

F(1+0I'(1+a)
(1414 a)

The Mellin transformation of My(¢) for Y = [[i_, Y; is

[TA+)0(1 +a)]"
MU)‘[ Fa+t+a)]

Using the inverse of the Mellin transformation we can obtain the PDF fy; () of Y
[see for details Gupta and Kundu (1999)] as

folw) = 3 s o +)),
=0
(al)j(OCQ)j

Jon + °‘2>j,
ctVk=3,... j=12,..n=23...

H',': I'(+1) *
where o =0y + -+ + o, Co = ’p(l“ui) G = (g*(‘)ij) G, C12 =

Ck _ (0(|+-~+0(/<7|)_/- J (Wc)j
J (O(1+"'+06k)j i=0 Fil
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INCE))

I(2)

Using the transformation X = — Inu, we obtain the PDF fx(x) of X as

(), = andfy(u: 1,0) = (1 —u)*"".

ZCJ o +j)e ¥ (1 —e )" x> 0.
j=0

4.7 Distribution of the Product and the Ratio

Let P, = XX, where X, and X, are independent and distributed as EED(a, f5;)
and EED(ay, 3;) respectively. Then the PDF of S, is given by

sz( )7 “15‘2ﬁ ﬁz/ [ilv/u(l —e /fzx/u)vz 1 7ﬂ1u(1 _efﬁlu):ﬂ*ldu

—unnh 33 () () 1)(—1)’+f/0?£exp[—w—m+ 1l

— ool ﬁz ( H(” ) S (O N =

where B;(x) is the modified Bessel function of the second kind and B,(x) is given
by

/OC cos tx
) V14 t2
If 5, = p, = fand oy = ap = o then the pdf of S, reduces to

fe,(x) = o* ZZ (O‘l . 1) (“Zj_ 1)(—1)”-"32(2@ i+ 1)+ x),

i=0 j=0
Var(X) = {7 — 6/ (2 + 1)} / {6},

LetR, = % where X, and X are independent and are distributed as EED(o4, f3,)
and EED(oy, f5,) respectively. Then the pdf of R, is given by
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e e}

Jr, (x) = aldzﬁhgz/ ue P (1 — e~rynlemhi(p — ehonlgy
0
=ofp) Z ( . ) j/ oy +ﬁ]”(1 - eﬁ'xu)a'rldu
J=0 0

a0y 062—1 j Ba(j+ 1) Ba(j+ 1) RS
Bix? 212()( > )3(7 Bix +1)[¢ Bix T1=v Bix +oc1)]

The corresponding CDF is

FRz('x) = al—ﬁ3 230: (oczj_ 1)(_1)jB((x1 + 17ﬂ2(]+ 1))

ﬁ1x2 j=0 ﬁlx

If B, = p, = fand oy = ap = «a, then the pdf of R, reduces to
(! jt+1
) =53 m 1 I

and the corresponding CDF

Pt =53 () 0B 1,

4.8 Maximum Likelihood Estimation

Let X ,...,X, be a random sample of EED(«, f§). The log likelihood function can
be written as

(o, B) = nlne+ nlnf — B> " xi + (2 + 1 }:m e M) (4.8.1)
i=1
Differentiating the above equation with respect to «and f§ and equating to zero,

m:g+§im076*5:0 (4.8.2)
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n 1 xje P
%l(a,ﬁ):E—&-(a—i—l)Z(l_ee zm) Zx,—O (4.8.3)

From (4.8.2) we get maximum likelihood estimate (MLE) & of a as a function of

p as
a(p) = n/Zln e Py, (4.8.4)

If B is known, then MLE of a can be obtained from (4.8.2). If both parameters
are unknown, then we can obtain first the estimate of # by maximizing the equation

EB) =1a(p),p) =C—nlnf —nln(— znjln(l _ efﬁx;)

- iln(l —e Py — ﬂixi,
i=1 =1

where C is a constant, independent of . Once the estimate of [ is obtained, we can
use Eq. (4.8.4) to obtain the MLE of a.

Raqgab and Ahsanullah (2001) studied the estimates of location and scale
parameters of the EED distribution with the following PDF

fx) = o000 (] — e Com/o) Tl o< pi<x,, 6> 0. (4.8.5)

Using (4.5.3) we can calculate the variances and covariance’s of X,., and Xj.,.
They gave the best linear estimates (BLUESs) of p and ¢ based on order statistics of
n independent observations having the PDF as given in (4.8.5). They provided
tables for BLUEs of u and ¢ for various values of o.

4.9 Characterization

We will give here a characterization of EED(x, ). The PDF of EED(x, f3) is
f(x) = afeP(1 —e )™ ' x>0, a and B are positive real numbers.

Theorem 4.9.1 Suppose that a random variable X is absolutely continuous (with
respect to Lebesgue measure) with CDF F(x) and PDF f(x). We assume that E(X)
and f'(x) exist, for x € (y,0), y = inf{x : F(x) > 0} and 6 = sup{x: F(x) <1}.
Then E(X|X <x) = g(x)n(x), where
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and

a and f if and only if

flx) = ape P - efﬁx)aq

To prove the theorem, we need the following Lemma 4.9.1.

Lemma 4.9.1 Suppose that X is an absolutely continuous (with respect to
Lebesgue measure) random variable with CDF F(x) and PDF f(x). We assume
y = inf{x|F(x) > 0}, 0 = sup{x|F(x) <1}, E(X) and f(x) exist for all x € (y,9).

IFE(X|X <x) = g(x)A"(x), where g(x) is a differentiable function, and 1" (x) = %

for all x > 0, then we have

X

flx) = Aexp[/ u—g(—(g;’)(u)du]

where A is determined by taking ff f(x)dx = 1.

Proof of Lemma 4.9.1 We have

X

/ uf (u)du ] F(x) = g()f (1)/F ().

Thus

O

Differentiating both sides of the above equation with respect to x, we obtain

xf (x) = g (x)f (x) + g(x0)f" (x).



4.9 Characterization

Simplification, we get

' X)/f(x) =[x — & (x)]/g(x)-

Integrating the above equation, we obtain
[ (1=
u—g'u
f(x) =cexp / (7>du
) &0
7

where ¢ is determined such that | f fx)dx = 1.

Proof of Theorem 4.9.1 Suppose

fx) = ape (1 —e )" x>o0.

Then
e = [ uf /s
0
B o opueFr(1 — e P gy
o afe (1 — e—/"c)“_l
Cx(ef—1) ef ﬁﬂf)’+2
T 1 — efx) Z 9 ’
C[a=1,2,3,... i .
where v = {oo, o thermise and ¢; = (—1)’a(x—1)...(x —j+1).
Suppose that
@ x(efr —1) efr Z (1 — e hiry*2
glx) = — i~ 7
B (D DAL
then
efr(1—e ) M1 —e ) efr(1 —e )
! — —
gx)=x+ P X Py (x P
1 v 1 —Bjx\j+2
( ) ¥,

+ ¢ :
afePe(1 — ehr)*! JZ ! Bj

px
where H(x) = —fi + (71 l)eﬁe,,‘ .

99
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Thus

g (x) =x—g(x)H(x),
and

o— e P
F0F0) = [ - 50 /5(0) = Ho) = —p + E T

Integrating the above equation, we have

X

f(x) AeXp{/H(u)du].

0

Now
r T (o — 1) e
0 0
= —px+ (2—1)In(1 —ePm).
Thus
f) = Ae (1 —e Py,

where 1= [Ye F(1 —e ) au = o5+ This completes the proof of Theorem
49.1. U

For o = 1, EED(1, f8) is an exponential distribution with, x >0 and § > 0. There
are many characterizations of the exponential distribution, see for example
Ahsanullah and Hamedani (2010, Chaps. 5 and 6).
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5.1 Introduction

Analogous to the Pearson system of distributions, Burr (1942) introduced a system
that includes twelve types of CDFs which yield a variety of density shapes. This
system is obtained by considering CDFs satisfying a differential equation which has
a solution, given by

G(x) = [1 +exp{~ / n(x)dx)] ™",

where 1(x) is chosen such that G(x) is a CDF on the real line. Twelve choices for
7(x) made by Burr, resulted in twelve distributions from which types III, X and XII
have been frequently used. The flexibilities of Burr XII distribution were
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investigated by Hatke (1949), Burr and Cislak (1968), Rodrigues (1977),
Tadikamalla (1980). In a different direction, it was Takahasi (1965) who first
noticed that the 3-parameter Burr XII PDF can be obtained by compounding a
Weibull PDF with a gamma PDF. That is, if X|0 ~ Weibull (6, ;) and 8 ~ gamma
(f,, 9), then the compound PDF, is given by

o(x: By o, 0) = / (08 P le 0]

L gm0 g
L($,)o"

) (5.1.1)
= B, P (1 4+ oxP)y BT x>0,

The CDF, SF and HRF of the 3-parameter Burr XII (f3,, 3,,6) are given, for
x > 0, respectively, by

G(x) = G(x; By, B2, 0) = 1 — (1 + oxP1) P2, (5.12)
Ro(x) = Ra(x; i, Bo) = 1 — Glxi fy, B, 0) = (1 + o) P, (5.1.3)

_ 8(BiBrd) _ Opipt! (5.14)

46(x) = 4 (x; By, By 0) = R (x; B, Bay O) 1+ xh

The PDF (5.1.1) of the Burr XII (f3;, f3,, 9) distribution is monotone decreasing
if f; <1 and unimodal with mode x* = (%) v if ;> 1.

It can be seen that the HRF (5.1.4) of the Burr XII (5, f3,,0) distribution is
decreasing if f; <1 and has an UBT shape if ff; > 1. It attains its maximum at
[M} 1/B,

5 .

The Burr XII and its reciprocal Burr III distributions have been used in many
applications such as actuarial science (Embrechts et al. 1977; Klugman 1986),
quantal bio-assay (Drane et al. 1978), economics (McDonald and Richards 1978;
Morrison and Schmittlin 1980; McDonald 1984) forestry (Lindsay et al. 1996),
exotoxicology (Shao 2000), life testing and reliability (Dubey 1972, 1973; Papad-
opoulos 1978; Lewis 1981; Evans and Ragab 1983; Lingappaiah 1983; Jaheen 1990;
AL-Hussaini et al. 1997; Shah and Gokhale 1993; AL-Hussaini and Jaheen 1992,
1994; Moore and Papadopoulos 2000), among others. Khan and Khan (1987), AL-
Hussaini (1991) characterized the Burr XII distribution. Lewis (1981) proposed the
use of the Burr XII distribution as a model in accelerated life test data representing
times to break down of an insulated fluid. Constant partially accelerated life tests for
Burr XII distribution with progressive type two censoring was investigated by
Abdel-Hamid (2009). Prediction of future observables from the Burr XII distribution
was studied by Nigm (1988), AL-Hussaini and Jaheen (1995, 1996), AL-Hussaini
(2003), AL-Hussaini and Ahmad (2003), among others. The extended 3-parameter
Burr XII distribution was applied in flood frequency analysis by Shao et al. (2004).
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5.2 Properties of the Exponentiated Burr XII Distributions
5.2.1 Moments

The /th moment, £ = 1,2, ..., is given by

C(L+¢/B) x~al B, — (¢/B)] .
E(XY = ! : , >/, 5.2.1
( ) 5[/[;1 ; F(]Bz) ]ﬂlﬂZ ( )
where v and c; are given by (2.2.7) and (2.2.8).
This can be shown as follows:
E(X") = Z/xéilRH(x)dx,
0
where
Ry(x) =1 —H(x) =1—-[1 = Rs(x)]" =) ¢Re(x)) = (1 + oxby P
j=1 j=1

where v and ¢; are given by (2.2.7) and (2.2.8) and

x[_l(l + (3x/;1)_jﬁ2dx.

L~
—~
&)
~
I
(=] -
\8

By using the transformation z = (1 4 dx*1)™", we obtain

1
1 .
]](g) /Zlﬂzf([/ﬂl)*l(l _ Z)Wﬂl)_ldz,

~ B0
0
_ L Ty, = (¢/B)IT(E/By)
B (Iip>) 7

provided that jf, , > ¢. So that

E(x[) _ r(lé";/fl/ﬂl) zv:c]r{]l%x;gif/ﬁl)]’ (522)
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which is the same as that obtained in Table 2.1 for the £th moment of the EBurr XII

(a, B, By, ) distribution.

Special Cases

1. If B, =1, then

E(x[) _ F(l + é) icjr[jﬁ2 — é]

- 6! r(]ﬁz) ’ Jﬁz > /L,

J=1

which is the /th moment of the EED (o, 8,). See Table 2.1.
2. If B, =2, then

T(14+4/2) &ellip, — 4/2) .
E xé = ! . ) 2]ﬁ > ‘gv
W) == X gy O
which is the /th moment of the ERay (o, f8,). See Table 2.1.
3. If 6 =1, then

E(xé) _ F(l +€/ﬂl)icjr[jﬁ2 —g/ﬁz}

F(]ﬁ2) ) jﬁlﬁZ >/
j=1

(5.2.3)

(5.2.4)

(5.2.5)

which is the ¢th moment of the EBurrXII (o, 9, f8,) in which the Burr XII

distribution has only two parameters (o, f3,). See Table 2.1.
4. if « =1, 6 =1, then

Eaﬁzémm—wmwmxmm>a

(5.2.6)

which is the /th moment of the two-parameter EBurr XII (f,, 8,) distribution,

see Table 2.1.

5.2.2 Mean Residual Life Function

The MRL m(x) is given by

() = [ Ru(o)ds/Ra (o),
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where the SF Ry(x) is given by

Ri(x)=1—H(x) =1-[1 — Rg(x) Z [Re(x Z 1+ oxP] b,

Therefore

/ Ry(t)dt =Y ¢ili(t)dt,
j=1
X

where

o0

L(x) = / [1+ 6P ) P2qr.

X

Applying the transformation z = [1 4+ &%, then (x,00) — (z0,0), where

1
2 =[1+oh] =L (1-1)] ",

g = l 1/B, i 1_1 1/p—1 _% _ 1 (l_z)l/ﬁl—ld
—\s ﬁl z 22 - ﬁlél//fl Zl//fl-H <

20
/Zfﬁz—l/m—l(l _ Vbl

li(x) =
5151/131 /
B, (B — 1/B1,1/B .
== ZB 51//ﬁ11 / 1)7 ]ﬂlﬁZ > 17
1
where B, ( f Y ldu, is the incomplete beta function.

Therefore the MRLF is glven by

/3 51//} ZCJBZO(Iﬁz /B, 1/By)s BB > 1,

where v, ¢; are given by (2.2.7) and (2.2.8), B,, (i, — 1/f,,1/p) is the incomplete
beta function and zo = (1 + x%1)™"!
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5.2.3 Quantiles

From (2.2.9), where u(x) = f, In(1 + oxP1),
W (y) = [(1/8) exp(y/p) — 1]'/P,
so that the gth quartile is given by
xg = [(1/8){(1 = g"/*) /P — 1))/, (5.2.7)
= Median = x,, = [(1/0){(1 —27Y*)~ /i~ —1})"/F, (5.2.8)

which is the same median value obtained for EBurr XII (o, 81, 8, 0) in Table 2.2
with § = 1.

5.2.4 Mode

The mode M of the PDF h(x) = «[G(x)]*"'g(x) is the value of x which maximizes
h(x). This is equivalent to maximizing In i(x) = Ino + (o + 1) InG(x) + In g(x).
Differentiating both sides with respect to x and then equating to zero, we get

0=y py80) | g0 (5.2.9)
Gx) = 1= (1) = g(x) = Byt (1 + x) P!

gx)  pr—1—(Bifr+ 1)
8(x) x(1+xP) '

So that, from (5.2.9), the mode is the value of x which satisfies

Bafydh (1 4 Py P!
1—(1+xb)P

Br—1— (Bify + D

0=
x(1 + xfr)

(5.2.10)

+(x—=1)

— ﬂl_l_(ﬁlﬁ2+1)xﬂl (5211>

ﬁ] 752
= (14%) S B =1 = (2B B+ DxP

A numerical iterative procedure is required to solve this non-linear equation.
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Remarks

1. If « = 1 Eq. (5.2.10) reduces to the equation

0= —1—=(Bifp+ " =

1
M:|:ﬁ1_1 :| //”17
BBy +1
which is the mode of the two-parameter Burr XII (f;, f8,) distribution when

B> 1.
2. If f; =1, a> 1, then

M:Fm+qwth
fy+1

which is the mode of the ELomax(a, 3,) or ECompE(a., f8,) distribution.
3. If f, =2, o> 1, then

M: |:ﬁl — 1:| l/ﬁla
Bi+1

which is the mode of the ECompRay(a, f3,) distribution.
4. If ﬁz - 1’ O(ﬂl > 1, then

M= {aﬁl—l

1/B,
ﬁ ¥+ 1:| 70631 > 17
1

5. If af; <1, the PDF is monotone decreasing on (0, co).

5.2.5 HRF

The hazard rate function (HRF) corresponding to the exponentiated CDF (1.1.5) is
given, for x > 0 by

_ h(x)

 Ru(x)

BB (1P )P (1) !
B 1—[1— (1 +xb) ) '

)LH(.X)
(5.2.12)

The PDFs and their corresponding HRFs are plotted for different values of the
parameters. See Figs. 5.1 and 5.2.
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Fig. 5.2 The HRF of EBurr(, 8, 7) distribution
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It may be noticed that corresponding to decreasing and unimodal 1IEBurr XII
PDFs, one can obtain DHRF, UBTHRF, DIDHRF.

5.2.6 Proportional Reversed Hazard Rate Function

The PRHREF corresponding to Burr XII distribution is given, from (2.2.13), by

ch(x) _ O(ﬂ2ﬁ1xﬁ171(1 +xﬁl)—/32—l

)L;i](x) = O(/IG(X) = G()C) 1 — (1 -{-x/fl)_ﬁz

(5.2.13)

5.2.7 Density Function of the rth m-Generalized Order
Statistic

Substitution of u(x) = B, In(1 + oxP), u'(x) = L& iy (2.2.15) and (2.2.16)

1+0xP1
yields the PDFs of the rth m-GOS when m # —1 and m = —1, respectively, given

by
m#—1=
x) = Cr . WAR AL
fi ) (r— 1)!(m—i—1)'_l (1 (1= (14 0x) 2] )
(1+0xP) P[0 — (14 onPr)y P! (1 ~-(+ 5xﬁl)-ﬂ2]<m+1>“)

(5.2.14)

=108 B Boxfr !
1+ oxh

r—1

m=-1=
K .
S () :m(1— (1= (14 o) )

(1 — (1 + ox 1)*/*2)“71 [— In{1 — (1— (1+xP))%y

k*laéﬁlﬁzxﬁlfl
1 + oxh
r—1

(5.2.15)

where C,_1,7,,k are as defined in Chap. 2.
The PDF of the rth OOS [k=1,m=0 in (5.2.14)] is given by
Jx., (x) = 20 o (x), where o is given by (2.2.18) and

j=1
Y OB por
/’lj (X) = OC(I’ “r])m

[1— (14 oxPr) Pyl =1,

1+ oxfr)y~F
(1+0x7) (5.2.16)
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Also, from (2.2.20), the PDF of OURYV is given by

L b ! Biy—Pa
P (x) = (r—1! 1+ xh (14 0x™)

[1 —(1+ 5xﬁ1)7ﬁ2r71 {— In{1—(1-(1+ 5)(/51)*[?2)1}}

(5.2.17)

r—1

(i) The PDF of life of an s-out-of-n structure is given by

n
n—s+1

[1= 1+ o) 7]

a0 foxl !

fnferl:n(x) = ( )(I’l -5+ I)W(l + 5x/fl)*ﬁz

s—1

o(n—s+1)—1
[1 (- (1+ 5x/f1)*”2)°‘}

(5.2.18)

(i) The PDFs of a series (n-out-of-n) and parallel (1-out-of-n) structures are
obtained, for x > 0 from (2.2.21), respectively, as follows:

B naéﬂlﬁzxﬁ"l

finx) = (L o) {1 = (1 anh) oyt
L+ o . (5.2.19)
- {1-a+ody P}
nod Py foxfi—! _ B o
ﬁm(x):ﬁ(uaxl) Pl — (14 oxP)y Pyt (5.2.20)

5.3 Estimation: All Parameters of H are Unknown

5.3.1 Maximum Likelihood Estimation
of (a, B1,B,), Ru(x0), Au(xo)

Assuming that (k=2,0=1),0 = («, ), f = (B}, f) so that the LEs, are given
from (2.4.3) and (2.4.4) by

(n — r){G(x[B)}" In G(x[B)
1 - {G(er)}a ,

O:§+;IHG(xi|ﬁ) - (5.3.1)
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0=(x—1) ,Z:Aiﬁ‘ (B) + ZBiﬁ' (B) — K.(0) (53.2)
0= (- 1)ZA,»,;2(ﬁ) +§B,ﬁz(ﬁ) — K, (0), (53.3)
where
) =Gy
Ryl
B0 =gy o e
Ryl T

(n = 1)olGlr, B

KO =160, pr°

The baseline distribution G is given by

G(x|B) =1~ (1+x") " p=(B,,5,)

and g(x|p) is the corresponding PDF of G, given by

g(x|p) = ﬁlﬂzxﬁl‘lu +xﬁ1)—/fz—1.

Substitution of G and g and their derivatives with respect to f§; and f3,, in the

above three LEs, and solving such system, we obtain the MLEs &, B a1, Boyr-
The MLE & of o can be written in the from

> i1 [Bip, (B) — Bip, (P)]
>t [Aip, (B) — Aip, (B)]

oy =1 — (5.3.4)
Once the MLEs BLML,BZML are obtained (by maximizing the log-LF with

respect to f8,, B,), the MLEs Ry (xo), 2n(x0) of Ry(xo), m(xo) at time xo are
computed by applying the invariance property of MLEs.
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5.3.2 Bayes Estimation of (a, B, B,), Ru(xo), An(xo)

Following the same steps of Example 3 in Chap. 2, the Bayes estimates of the para-
meters, SF and HRF for the EBurr XII (o, f8,7) distribution, based on SEL or
LINEX loss functions were developed by AL-Hussaini and Hussein (2011). This
was done using SBM and MCMC methods, as explained in Example 3 of Chap. 2.

Simulation comparisons of various estimation methods are made when n = 20
and censored data (r = 15, 18, 20).

Example 5.1 (Simulation) A random sample of size n = 20 is drawn from EBurr
XII with parameters (o =2.5,f, = 1.5,, =2) according to the expression

) /6
X = [(1 ) 1/’32—1} ' U ~ uniform(0, 1)

An ordered set of data (n = 20) is given by:

0.3163, 0.3703, 0.4688, 0.5366, 0.5440, 0.6469, 0.6626, 0.8013, 0.8207, 0.8495
0.9015, 1.0728, 1.2344, 1.2932, 1.3510, 1.7918, 1.8123, 2.6583, 2.7362, 5.0043

This is a typical sample used. Generating 1,000 of such samples are used in
estimating the parameters, SF and HRF. Suppose that the prior belief of the
experimenter is measured by the PDF given by (2.5.18) with hyper-parameters:
by =0.6, b, =0.6, b3 =2, by = 2, bs = 3. The averages of the estimates over the
1,000 samples are reported in Table 5.1a, b, c.

The Bayes estimates are, generally, better than the MLEs against the prior used,
in the sense of having smaller MSEs, whether using SE or LINEX loss function.
Naturally, by increasing r, the estimates should improve, till the complete sample
case is reached, where the estimates are better than any censored case.

Example 5.2 (Real Life Data) The breaking strength of 64 (=n) single carbon fibers
of length 10 (Lawless 1983, p. 573) are:

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454,
2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2,616, 2,618, 2.624,
2.650, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2 937, 2.977, 2.996,
3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294,
3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3,501, 3.537, 3.554, 3.562, 3.628,
3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020.

In the complete sample case (n = r), the estimates of the parameters, SF, HRF at
Xo = 3 and the corresponding p-values of KS goodness of fit tests are presented in
Table 5.2a. The Bayes estimates (SBM and MCMC) are calculated for the hyper-
parameters b; = 180, b, = 0.6, b3 =2, by = 3, b5 = 2. We have used the same values
for by, b3 by, bs as in the simulation study. To give a value for b;, we have noticed
that the MLE of o is quite large. In the Bayes case, the mean of the gamma (b, b,)
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Fig. 5.3 Empirical CDF, fitted to the complete and censored data of Example 2

prior depends on by, b,. For fixed b, at 0.6, this mean is large if b, is large. After
some fitting trials, we found that b; = 180 gives a good fit. See Fig. 5.3.

Suppose that the test is terminated after the first 55 (=r) observations. The
estimates of the parameters, SF and HRF at x, = 3 and the corresponding p-values
of KS goodness of fit tests are presented in Table 5.2.

5.4 Prediction of Future Observables

A 100 (1 — 7% Bayes prediction interval, for the /th future observable (based on

the one sample scheme), has bounds L and U, given by the solution of (2.5.10).
In the two-sample case, the bounds can be obtained by the solution of (2.5.16).
In both cases the EBurr XII distribution is used.

5.4.1 Random Sample Size

In the two-sample case, the size m of the future sample was assumed to be fixed. If,
however, m is random, Gupta and Gupta (1984) suggested the use of the predictive
PDF of Y; to be given in the form

o0

S plm)f* (velx), (54.1)

m={

f7 (elx) = m

where p(m) is the probability mass function (PMF) of the random variable m and
F*(ve|x) is the predictive PDF of Y, when m is fixed.
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AL-Hussaini and Hussein (2011) considered the case when m has truncated
Poisson mass function with parameter u, given by

m

p(m) = (=)’ m=1,2,3... (5.4.2)

They showed that, in this case, the lower and upper bounds L and U of a 100
(1 — )% predictive interval, for the future order statistic Y, are given by the solution
of the two equations

0= 3 p(m)[S(L)/Sux] — [1 — (/2)] 3 pl(m)
m—t o met , (5.4.3)

0= gép(m)[S(U)/Soz] —(t/2) X p(m

m={

where p(m) is given by (5.4.2), Sq, and S(v) (which are functions of m) are given by

n—r m—{ 00 00
C' C /)71)3+b4 1 b3 1 _TO
So2 = / [ﬁ]’wl s Loy, = / / ; r+b1 dp,dp,
J1=0 =0 0 0
n—r m—{
=25 [Ep e
Jid2
0]2—0 €+‘]
f [ | 1
Bt P iy TGO

X ﬁhﬁ—m lﬁhrleiTndmdﬁza

G =1y (47 ) ana =y (171,

lejz = jljz(ﬂlvﬁZ) = TOjl (ﬁlaﬁZ) - (f +j2)ln G(xi“'ﬁlvﬂZ)v

where

Toj, = Toj, (By, Ba) = b2 — [Z InG(xi|By, B,) +ji1n G(xrlﬁuﬁz)]

= To(B1, f) = [ZIHG (xilBy1: Ba) Zlng(xilﬁl,ﬁz)]
i=1

For details, see AL-Hussaini (2010).
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Table 5.3 One- and two-sample predictive intervals based on simulated data and 1,000
repetitions: (n =20,r = 15,0 = 2.5, , = 1.5, f, = 2) for some future observable

One-sample Two-sample
m-fixed m-random
Y Y, Yio Y Y, Yio Y Y, Yio
L 1.56 1.62 1.88 0.13 0.25 0.37 0.14 0.29 0.30
U 2.59 3.18 6.99 0.82 0.94 1.64 0.89 1.24 1.87
Length 1.03 1.56 5.11 0.69 0.69 1.27 0.75 0.95 1.57

Table 5.4 One-sample predictive intervals (n = 64, r = 55) based on real life data and two-sample
predictive intervals (m = 10 is fixed and m ~ truncated Poisson) for some future observables

One-sample Two-sample
m-fixed m-random
Y Y, Yio Y Y, Yio Y, Y, Yio
L 3.63 3.66 441 0.69 1.38 1.72 0.57 1.06 1.20
U 4.14 4.20 5.03 2.32 3.12 3.52 241 2.98 3.18
Length 0.51 0.54 0.62 1.63 1.74 1.80 1.84 1.92 1.98

Using the same generated sets of data obtained in estimation, the lower and
upper bounds of 95 % predictive intervals of X, =Y, X, 1o =12, X, =Y,
based on one- and two-sample schemes are reported in Table 5.3. In the two-sample
case, the bounds are computed for three of the future observables: Yy, Y», Y19, when
m is fixed (m = 10) and when m has truncated Poisson distribution with parameter
w=10.

The real life data affirm the simulation results, in that whether one- or two-
sample scheme is used and whether m is fixed or random, the lengths of intervals
increase as the index of future observables increase. Comparing the lengths of
predictive intervals when m is fixed and when m is random Table 5.4 shows that the
predictive intervals, using fixed m have shorter lengths than when m is random.

5.5 On Beta—Burr XII Distribution

Adding one or more parameters to a distribution makes it more flexible to analyzing
data. This might have been a motivation for Paraniaba et al. (2011) to study the
beta-Burr XII distribution which has two more parameters than the Burr XII
distribution.

The beta-G distribution has been briefly discussed in Sect. 3.5. The CDF of this
distribution is given by (3.5.5). If G(x) is the CDF of the Burr XII, then the CDF of
the beta-Burr XII distribution is given, for x > 0, by


http://dx.doi.org/10.2991/978-94-6239-079-9_3
http://dx.doi.org/10.2991/978-94-6239-079-9_3

5.5 On Beta—Burr XII Distribution 121

The corresponding PDF is given by

0= [+ O T -+ 077

The five-parameter distribution was investigated and its properties studied. The
distribution was compared with other distributions such as the Burr XII, Weibull,
EW, beta-W and log-logistic distributions. One application of the beta-Burr XII on
life-time data shows that it could provide a better fit than the above mentioned
models used in lifetime data analysis. Paranaiba et al. (2011) derived the moment
generating function (MGF) of the beta-Burr XII distribution and, as a special case,
the MGF of the Burr XII distribution. They provided expressions for the moments,
mean deviations, two representations for the moments of order statistics, Bonferroni
and Lorenz curves and the stress-strength reliability and estimated the model
parameters by using the ML method. For interval estimation of the model param-
eters, they computed the 5 x 5 observed information matrix, / and used the fact that

the asymptotic distribution of /n(0 — 6) is Ns(0,171).

a—1
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6.1 Introduction

The study of homogeneous populations was the main concern of statisticians along
history. However, Newcomb (1886) and Pearson (1894) were two pioneers who
approached heterogeneous populations with ‘finite mixture’ distributions.

With the advent of computing facilities, the study of heterogeneous populations
which is the case with many real world populations (see Titterington et al. 1985),
attracted the interest of several researchers in the last sixty years. Monographs and
books by Everitt and Hand (1981), Titterington et al. (1985), MacLachlan and
Basford (1988), Lindsay (1995) and MacLachlan and Peel (2000), collected and
organized the research done up to the year 2000, analyzed data and gave examples
of possible practical applications in different domains. Reliability and hazard based
on finite mixtures were surveyed by AL-Hussaini and Sultan (2001).

The CDF of a finite mixture of k components is defined by

k
H(x) =) pH;x), (6.1.1)
=1
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124 6 Finite Mixture of Exponentiated Distributions

where, for j = 1,...,k, the mixing proportions p; are non-negative and their sum
adds up to 1. That is, p; >0 and Zjl;lpj = 1. The CDF Hj(x) is known as the jth
component.

In this chapter, concentration will be on the study of a finite mixture of two
exponentiated exponential components. Due to the exponentiation of each com-
ponent by a positive integer, the model is so flexible that it shows different shapes
of HRFs. The CDF, PDF and SF of a mixture of two EEcomponents are given,
respectively, for ¢ = 1 — p by

H(x) = pH,(x) + qH2(x), wherefor j=1,2,

Hi(x) = (1 — e P%), (6.1.2)

h(x) = phy(x) + ghy(x), where forj=1,2,

6.1.3
hj(x) = ajﬁjeiﬁ.fx(l _ e*/f/-X)ot,v, ( )

R(x) = pRy(x) + qRy(x), where forj = 1,2, Ri(x) = 1 — (1 —e )% (6.1.4)

so that the HRF of the mixture is given by

A(x) = B(x) 21 (x) + [1 — B(x)]A2(x), (6.1.5)
where
_ pRi(x) .
B(x) = R0 andforj=1,2

BX

_Bx —Bi* \ o;
B e (l—e )"
Ri(x) 1-(1—e")»

(6.1.6)

6.2 Properties of Finite Mixtures

6.2.1 Moments

The ¢th moment of a finite mixture of k components is given by
‘ k , k
pe= Q) = [hwar = Yop [Fidr=> pu (621
=1 =1

where 1 = [ x'hj(x) dx is the £th moment of the jth component. So that the (th
moment of a finite mixture of k components is given by the finite mixture of the /th
moments of the k components.
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For a finite mixture of k EE(o;, ﬁj), it follows, from (6.2.1) and Table 2.1, that

k k
My = ij/ljz = Z;—Z <ﬂ) (6.2.2)
j=1

Jj=1

where

otherwise

Vi = {% 5 1"2’.“’01‘.1' = (=) oyl — 1)+ (o — i + 1) /il. (6.2.3)

The /th moment of a finite mixture of two EE(a;, ﬁj) components, j = 1, 2 is
given by

py=T(1+0)

ll;l ; (%) + 4 P (C'z)] : (6.2.4)

where, for i =1,...,v; and j = 1,2, ¢;;, and v; are given by (6.2.3).

6.2.2 MRLF

The MRLF m(x) of a finite mixture with k components, in terms of the MRLFs of
the components, is given by

k
=Y Bi(x)m(x), (6.2.5)
j=1
where Bj(x) is given by
B;(x) :p%R(JX) =1,k (6.2.6)

and m;j(x) is the MRLF of the jth component.

This follows by observing that Z]]le B;(x) = Z]k L R ()> 1, so that the MRLF

of a finite mixture is a finite mixture of the MRLFs of the components, with mixing
proportions Bj(x).
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6.2.3 HRF
The HRF of a finite mixture of k£ components, is a finite mixture of the HRFs of the
components with mixing proportions B;j(x), j = 1,..., k. This is so true, since
h(x) Z 1PJ
Ax) = = Bj(x 6.2.7
() =269 = EZ (62.7)

where forj = 1,...,k, 4i(x) = % , hj(x) and R;(x) are the HRE, PDF and SF of the

Jjth component and B(x) is given by Bj(x) = ’%ﬁ)’c), so that Zf:] Bj(x) = 1.
In the particular case, k = 2, the HRF of a mixture of two components, in terms
of the HRFs of the components, is given by

inggzmmmw+&wbw,
pRl(x) qu(x) (6.2.8)
Bl(x): R()C) ) Bz(x)ZI—Bl(x): R(X) ) qzl—p

If

/ = hj(x) _ “jﬁ'eiﬁ’x(l — e*pjx)“j
Alx) = Ri(x) IJ— (1—ePryo (6.2.9)

R (x) and R(x) are given by (6.1.4), then (6.2.8) represents the HRF of a mixture
of two EE components.

It is well known that the exponential distribution has a constant HRF on the
positive half of the real line and that a finite mixture of two exponential distribu-
tions has a decreasing HRF on the same domain. If each of the exponential com-
ponents is exponentiated by a positive parameter, more flexible model is obtained in
that several shapes of the HRF of the mixture are obtained. Figure 6.1 shows six
different shapes of CDFs and their corresponding HRFs of the given vector of
parameters of a mixture of two EEs. Examples of such shapes are:

DHR: (p = 0.9,0, = 0.5,00 = 1.5, §; =2, p, = 3)

IHR: (p = 0.1,00 = 1.5,0p = 3,8, =2, B, = 2)

BHR: (p=0.1,00 = 0.5,00 = 3,8, = 3, B, = 0.5)
UBHR: (P =0.1,0y = 0.5,00 = 1.5, §; =2, p, = 3)
DIDHR: (p = 0.25,01 = 0.5,00 = 3, f, = 0.5, B, = 1.5)
IDIHR: (p = 0.1,y = 2,0 = 3, B, =3, B, = 0.5)
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p=0.9,0,=0.5, 00=15B;=2,B,=3

15 15
10 1 10 ]
i L\ 5 L -
0 0 ' : :
0 0.5 1 1.5 2 0 0.5 1 1.5 2
PDF DHRF
p=0.1, o= 15, O = 3, Bl=2, B2=2
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0.5 1 1 1
0 ' ' ' 0 ' ' '
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0.5 1
0 : ' ' 0 ' ' ' .
0 0.5 1 1.5 2 0 1 2 3 4 5
PDF BHRF

Fig. 6.1 Different shapes of PDFs and their corresponding HRFs D decreasing, I increasing,
B bathtub, UB upside down bathtub, DID decreasing-increasing-decreasing, /DI increasing-
decreasing-increasing

So, a finite mixture of two exponentiated components allows for monotone as
well as non-monotone HRFs.

6.2.4 PRHRF

An expression, similar to that given by (6.2.7) can be obtained for PRHRF as
follows
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Fig. 6.1 (continued)

k
= ZBj(x) a7 (%), (6.2.8)

where for j = 1,...,k, 47 (x) = 1]3]((;)) ;47 (x), hj(x) and Hj(x) are the PRHRF, PDF

and CDF of the jth component and B;(x) is given by Bj(x) = “ "HH(")E))‘), so that

k
>~ B;(x) = L. This is because
=1

k
P(x) = h(x) _ Z] 1PJ Zp] )E;C 2 ( ZB;(X) /lf(x).
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In the particular case, k = 2, the PRHRF of a mixture of two components, in
terms of the PRHRFs of the components, is given by

) = gy = B 1) + B 500,
PG (6:29)
B0 =55 Bt = 1~ B,

If Ri(x) and R(x) are given by (6.1.4), then (6.2.9) represents the PRHRF of two
EE components.

6.3 Point Estimation Based on Balanced Square Error
Loss Function

MLE and Bayes estimates using SEL function are obtained and used in finding
Bayes estimates of the parameters, SF and HRF based on an asymmetric loss
function, known as balanced square error loss function (BSEL).

Ahmadi et al. (2009), suggested the use of the so called balanced square error
loss (BSEL) function, which was originated by Zellner (1994), to be of the form

L*(0,9) = wp (d0,9) + (1 — w) p(0,9), (6.3.1)

where p(0, 6) is an arbitrary loss function, dy is a chosen “target” estimator of 6 and
the weight @ € [0, 1]. The balanced square error loss function (6.3.1) specializes to
various choices of loss functions, such as the absolute error loss, LINEX and
generalizes SEL functions.

If p(6,0) = (6 — 0) is substituted in (6.3.1), we obtain the BSEL function,
given by

L*(0,0) = @ (0 — 30)* + (1 — )(5 — 0)*,
The estimator igsg;, of a function u(6), using BSEL, is given by
I:tBSEL = wﬁML —+ (1 — (,l))l:tsEL7 (632)

where i1y, and itgg;, are the ML and Bayes estimates of u, based on SEL.

Notice that if w = 0 then ﬁBSEL = I:tML and if w = 1 then ﬂBSEL = ilSEL~

The estimator of a function, using BSEL is actually a mixture of the MLE of the
function and the BE, using SEL. Other estimators, such as the least squares esti-
mator may replace the MLE. Also, a LINEX or QUADREX loss function could be
used for p(0, ). Having obtained the MLE and BE based on SEL, the estimators
based on BSEL function are given, from (6.3.2), by
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Paser = opyr + (1 — ©)pser,
tupseL = @iy + (1 — @)diser,
Sopser, = wdomr + (1 — w)dosr,
Bigser = B + (1 — 0)Brses
Bapsr = @B, + (1 — ©) Bagar.
Rgsgr(x0) = oRyr(x0) + (1 — o) Rsgz (x0),

j”BSEL(-XO) = (l)j,ML(.X()) + (l — (,U)ZSEL(X()>.

6.3.1 Maximum Likelihood Estimation

Suppose that r units have failed during the interval (0, x,): r; units from the first
sub-population and r, units from the second such that r; + r, = r and n—r units,
which cannot be identified as to sub-population, are still functioning. Let, for
{=1,2andi=1,...,rs, x; denote the failure time of the ith unit belonging to the
(th sub-population and that x; < xy. The likelihood function (LF) is given by
Mendenhall and Hader (1958), as

I 2
L(0,x) thl(xu) thz(xz,-)[R(xr)]"_r, (6.3.3)
i=1 i=1
where 0 is the vector of parameters involved and x = (xi1,..., X1, X21,- - -

X2r,), Xti < Xo.
By substituting (6.1.3) and (6.1.4) in (6.3.3), we obtain

8t 2
L(0,x) o p" g e oG By exp | =By Y xii— B > xo
i=1 i=1

r O(z*l

H (1— —/J’lxl, -1 H —/12)(2: [R(x)]"". (6.3.4)
i=1

The log-LF is given by

(0,x) =InL(0,x) x riInp+r,Inq + r; Inoy + 11 Inf; + r2Inoy + 12 In B,

4 rn
- ﬁl lei - ﬂz Z)Czi Otl —1 Zln —/fl’(u
i=1 i=1

+ (o — 1) fj In(1 — e %) 4+ (n — r)In[R(x,)]. (6.3.5)
i=1

The MLES pyy, d1mr, domr, B ML BzML» of the five parameters are obtained by
solving the following system of likelihood equations
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or r. r n-—r

%_p q R(x)

In(l — /fm _ (n—rp 1 — e Py [n(] — e~ P
80(1 o +IZ n( € R()Cr) ( € ) n( € )7

o) (n—r)q o\ -
In(1 — e Py — 1 —e Py In(1 — e fov
60(2 +Z: n(l—e R (1 — e P)2In(1 — e o),

r a—Bixii _
X1i€ (n — r)poux; —Bix, i\ —1
0=C _ + (o — 1) - e (1 — e Py
B B +Zx“ : Zl—e*ﬁr‘lf R(x,) ( S

[(1 _ e*ﬁlxr)“l —(1- e*/fzx,)ocz]’

i=1

or* r Xoie —Brx2i (I’l _ r)poczx -
0= i -1 T a—Paxr 1— —Prx\o2—1
0p, ﬁz - ,Z:xz (o )Z 1—eFo  R(x) e (1 —e )™,

where
R(v) = 1 [p(1 D) 4 g1 — o))
The invariance property of MLEs enables us to obtain the MLEs kML(xo) and
a1 (x0) by replacing the parameters by their MLEs in R(xo) and A(xp).
Remarks

1. If n = r (complete sample case), then

A r
pPmL = —
n
A r
omL = ,
erz—l In(l — e‘ﬁlh:)
2
OomL = 10
> In(l - e*ﬂzx2’>
A~ rl
ﬁlML R A A )
Zilzl xll{l — (OCIML — 1) |:e*.31)fh/(1 — e*ﬁlxli):| }
A r2
ﬁ2ML = )

Sy 1= (B — 1) e P/ (1 — e o) | |

2. Tt can be numerically shown that the vector of parameters 0 = (p, oy, 02, B, )
actually maximizes LF (6.3.3). This is done by applying Theorem (7-9) on
p. 153 of Apostol (1957).

3. The parameters of the components are assumed to be distinct, so that the mixture
is identifiable. For the concept of identifiability and examples, see Titterington
et al. (1985), Yokowitz and Spragins (1968), AL-Hussaini and Ahmad (1981)
and Ahmad and AL-Hussaini (1982).
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6.3.1.1 Approximate Confidence Intervals

Let 0 = (0, =p,0, = 01,05 = ap,05 = 8,05 = ,). The observed Fisher infor-
mation matrix (see Nelson 1990), for the MLEs of the parameters is the 5 x 5
symmetric matrix I of the negative second partial derivatives of log-LF (6.3.4) with
respect to the parameters. That is

Rl
I=— (W) (6.3.6)

evaluated at the vector of MLEs 0. The inverse of I is the local estimate of the
asymptotic variance-covariance matrix V of the vector

(01 = P, 02 = dur, 03 = oz, 05 = Bragr, 05 = Borsr)-
That is
V=I"'= (5, (6.3.7)

where §;; is the estimated Cov(@i, @j), i,j=1,...,5.

The observed Fisher information matrix enables us to construct approximate
confidence intervals for the parameters based on the limiting normal distribution.
Following the general asymptotic theory of MLEs, the sampling distribution of
(E)i —0;)/\/6ii,i=1,...,5, can be approximated by a standard normal
distribution.

An approximate two-sided 100 (1 — 1) % confidence interval for 6;, is given by

é,' — 21 — (1/2)\/ 5’55<65<é,‘ + Z1—(¢)2) gi,i=1,...,5, (6.3.8)

where z;—. is the percentile of the standard normal distribution with right-tale
probability of c.

6.3.2 Bayes Estimation

Suppose that an objective, non-informative prior is used, in which p, oy, o, f;, f,
are independent and that p ~ uniform on the interval (0,1), so that the prior PDF is
given by

1

X —.
a1 o,

m(0) (6.3.9)

The following theorem gives expressions for the Bayes estimators, using SEL.
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Theorem 6.1 The Bayes estimators of the parameters, SF and HRF, assuming the
prior given by (6.3.9) and using SEL function are given by:

. St rnSy . 1S3 Sy Ss
== =— == =, =, 6.3.10
PSEL S’ O1SEL Sy O2SEL Sy’ ﬁlSEL So ﬁZSEL So ( )
N Se  » S7
Rewr =1 =22 Jopy = —. 6.3.11
SEL Sy’ SEL So ( )
where
n—r Ji
So = Cjijp Bk, 1,1, ) o
J1=0 /=0
n—r Ji
Sy = lesz(sz +1, Kjljz)IO
j1=0 j2=0
n—r Ji
$p = lez (kavk/uz)
J1=0j2=0
n—r Ji
S3 = Cl/z (kavkjuz)
J1=0 /=0
n—r Ji
Sy = jljz (ka7 kjljz)
J1=0 j>=0
n—r Ji
Ss = uz (kav kjuz)
J1=0j2=0
n—r Ji
Se = 11]2[ (k + 17kj1jz )15 + B(kav kjl]z )]167
J1=0j2=0
n—r Jji 00
§7 = Z Z s 1B (g + 1, Kijojig ) + raBkijy, gy + 1)s,
J1=0 j2=0 j3=0 j4=0
(6.3.12)
afn—r\ (i _ (]
lejz = (_1)“ (]l ) (]2 )7 lejzisj4 = C11]2CJ3147 C13]4 = (]4 )7 (6-3-13)
ki, =ri +j+ 1k, = 7.2 +Jj1 —Jj2 + Lkpj, = 11 +jo + ja, (6.3.14)

Kjijojajs = 12 +J1 —j2 +J3 —

and B(a, b) is the beta function. The integrals involved are given by
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To = Z [Byxi; + In(1 — e Fmn)] + 22: [Boxai + In(1 — e~Poxi))],

=1 i=1

T, =B — [jzlnl—eﬁ'*' Z]nl_eﬁm,}

Ty, = |:(.11 —j2)In(1 — eiﬁ‘x’ Zln (1—e ﬁl’”' :|7

T1=T,—(s+1)In(1 - e*/ﬂXn)’

Ty =T, — (j3—ja)In(1 - efﬁm.)

T3 =To+ frxo+ In(1 - e*/fIXn)’

Ty =T, —jsIn(l - e—/i,xo)

Ts = Tj, — (s —ja+ 1) In(1 — e P2m).

(6.3.16)



6.3 Point Estimation Based on Balanced Square Error Loss Function 135

Proof By expanding the last term in LF (6.3.4), using the binomial expansion, it
follows that

[R(x)]"" = [1 — {p(l — e’ﬁlxr)“' +q(1 - e*ﬁlxr)“ZH

=D > Gupd P explaj In (1 — e ™) + oo (ji — jo)In(1 — e "))

J1=0j2=0

n—r

where Cj,;, is given by (6.3.13). So that

n—r Ji

. 1R gratii—i2 1 QT 12 A2
X E E :lejzp q o' By o5’ B

J1=0j>=0

X eXp[—OClsz - aZlejz - TO]

where Ty, T;

J2

T;,, are given by (6.3.16).

Suppose that the prior PDF is as given by (6.3.9). The posterior is then given by

n(0|x) o< L(0,x)7(0)
= n(0]x)
(6.3.17)

n—r Jji

E E 1 1 1 e T 0T, . —T
—A C“]zpicj2 1 Kjjn— lOCrl 1 r2 ﬁrl 12 1 ol 07

J1=0 jo=

where k;j,, k;,;, are given by (6.3.14) and A is a normalizing constant, given by

n—r ji 7 OOF(
(00 =3 5= €805 00 | [ Hiter?
0 0

J1=0 jo= Jz ]1}2

Xﬁrl lﬁl'z 1 —T()dﬁ dﬁ2
=TI'(r))I'(r2)So,

where Sy is given by (6.3.12) and [, by (6.3.15). It then follows that the Bayes
estimates using SEL function are given by

R Si . AV S3
Pser = E(plx) = e E(o|x) = r1 ==, 8oser = E(oa|x) = rn—,
So So So

BISEL =Efilx) = 7ﬁZSEL = E(Bylx) = %,
So

Rsee(x0) = E[R(x)] = 1 — / [penin (1= 1) - genin (1= )] 0|y

_Ss
So’
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R(xo) [ph(x0) + gh(x0)][1 — {pH1(x0) + qHa(x0)}] "
XO)

Since
11— {pH (50) + ata(x0) )] = i pH (50) + 4 (50)
=33t P B
then
o) = iz Coa? [, (50 [Ha (o)l {pH (30) + g (x0)} (6:3.18)
It then follows that
Jsza (o) = Ef)la] = [ 20)m(012)a0, (6.3.19)

Substitution of (6.3.17) and (6.3.18) in (6.3.19), then finally yields ;ISEL(xO),
where Sy, ..., S7 are given by (6.3.11).

6.4 Numerical Example

6.4.1 Point Estimation of the Parameters, SF and HRF

A sample is generated from the mixture in such a way that x,; <xp, { = 1,2,i =
1,..., ro. We generate 100 samples of size n = 50 each, from a finite mixture of two
exponentiated exponential components, whose PDF is given by (6.1.3), as follows:

1. Generate u; and u, from Uniform (0,1) distribution.
2. For given values of p, a1, 0, 1, f,, generate x according to the expression:

—/}Llln(l—u:/o“)7 u; <p,
x= 1
—/}Lzln(l—ul/xz), u; <p.

An observation x;; belongs to sub-population 1, if u; <p and to sub-population
2, if u;; <p, where the sample is generated from the mixture in such a way that
Xj,'<)€0,j: 1,2,i=1,..., Tj.
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3. Repeat until you get a sample of size n. The observations are ordered and only
the first » = 45 (90 % of n) out of the n = 50 observations are assumed to be
known. Now we have r; observations from the first component of the mixture
and r, observations from the second component (r = r; + r, = 45).

The value xg is chosen to be equal to 1.

The estimates of p, oy, o2, f1, s, Ru(x0), Au(xo) and absolute biases are com-
puted by using the ML and Bayes methods. The Bayes estimates are obtained under
SEL function. An estimator of a function, using BSEL, is actually a mixture
(w =0.2, 0.4, 0.6, 0.8) of the MLE of the function and the BE, using SEL.

The MLEs are computed using the built-in MATLAB® function “ga” to find the
maximum of the log-LF (6.3.5) using the genetic algorithm. This is better than
solving the system of five likelihood equations in the five unknowns, by using some
iteration scheme (Table 6.1).

Nevertheless, the system of equations is needed for the computation of the
asymptotic variance-covariance matrix.

The (arbitrarily) chosen actual population values are p = 0.4,0 = 2,00 =
3,8, =2 and f, = 3. For xy = 1 the actual values for R(xq) and A(xy) are given,
respectively, by 0.1862 and 2.3096.

The estimates of the parameters, SF and HRF under the BSEL function are given
in Table 5.1, for different weights w. It may be noticed that when w = 1, we obtain
the MLEs while the case w = 0, yields the Bayes estimates under SEL function.

Table 6.1 Estimates of the parameters, SF and BSEL function and absolute biases

Estimate w =0 “SEL” w=02 o =04 w=0.6 o =038 o =1“MLE”
p 0.416229 0.416139 0.416049 0.415959 0.415869 0.415779
0.016229 0.016139 0.016049 0.015959 0.015869 0.015779
oy 2.380074 2.432918 2.485761 2.538598 2.591441 2.644284
0.380074 0.432918 0.485761 0.538598 0.591441 0.644284
o 2.712658 2.840706 2.968753 3.096802 3.224850 3.352898
0.287342 0.159294 0.031247 0.096802 0.224850 0.352898
[31 2.371177 2.407887 2.444589 2.481294 2.517997 2.554707
0.371177 0.407887 0.444589 0.481294 0.517997 0.554707
[32 2.586853 2.705871 2.824898 2.943908 3.062934 3.181952
0.413147 0.294129 0.175102 0.056092 0.062934 0.181952
R(xo) 0.253611 0.236527 0.219444 0.202361 0.185277 0.168194
0.067411 0.050327 0.033244 0.016161 0.000923 0.018006
j(xO) 2.106139 2.190786 2.27544 2.360092 2.444747 2.529393
0.203461 0.118814 0.03416 0.050492 0.135147 0.219793
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6.4.2 Interval Estimation of the Parameters

By inverting Fisher information matrix (by computing the second partial derivatives
of the log-likelihood function), given by (6.3.5), evaluated at the vector of MLEs
PuL = 04158, dypy = 2.6443, Gy = 3.3588, Puyw = 2.5547, Py = 3.1819
(w =1 in Table 5.2). The variance-covariance matrix (6.3.6) is found to be

0.00546 —0.0106 0.00941 0.01345  0.01097
1.1651 —0.3266 0.66019 —0.23199

V= 1.0099 —0.23629 0.54097
0.68764 —0.21231
0.49433

So that the asymptotic variances of the estimators of the parameters are given by:

V(p) = 0.00546, V(&;) = 1.1651, V(3,) = 1.0099, V(B,) = 0.68764,

V(B,) = 0.49433

It then follows that approximate 95 % confidence intervals of the parameters are
given, based on 1,000 samples, by

0.2710<p <0.5610, 0.5287 <oy <4.7599, 0.9294 < 3, <4.1800
1.3832 <y <5.3226, 1.8039 < f3, <4.5600.

In this chapter, point estimation of the five parameters, SF and HRF are obtained
when the underlying population is a finite mixture of two exponentiated exponential
components based on the balanced squared error loss function which is a weighted
average of two loss functions: one of which reflects precision of estimation and the
other reflects goodness-of-fit. This asymmetric loss function may be considered as a
compromise between Bayes and non-Bayes estimates.

We have also estimated the parameters of the mixture by obtaining the
asymptotic variance-covariance matrix and hence the approximate confidence
intervals.
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