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Classical statistical theory – hypothesis testing, estimation, and the design of experi-
ments and sample surveys – is mainly the creation of two men: R. A. Fisher (1890–1962) 
and J. Neyman (1894–1981). Their contributions sometimes complemented each other, 
sometimes occurred in parallel, and, particularly at later stages, often were in strong 
opposition. The two men would not be pleased to see their names linked in this way, 
since throughout most of their working lives they detested each other. Nevertheless, 
they worked on the same problems, and through their combined efforts created a new 
discipline.

Fisher’s collected papers have been published in five volumes, in which the ones 
excluding Genetics are numbered 1–291. The complete bibliography, including all 
his books, and pdf files of all papers are now publicly available at http://digital.
library.adelaide.edu.au/coll/special/fisher. The list of books and the numbered sta-
tistical bibliography are included as an Appendix in the present book. All Fisher 
references in the Appendix will be cited by date and will include the bibliography 
number in square brackets if necessary for clarity.

Even more influential than the papers were Fisher’s two great statistical books. 
The first, “Statistical Methods for Research Workers” (SMRW), was published in 
1925, with new editions appearing every few years up to the fourteenth edition, 
which was published posthumously in 1973. This was followed in 1935 by the “The 
Design of Experiments” (DOE), which went through eight editions, the last dated 
1966.

It is these two books that established Fisher as the creator of a new statistical 
methodology, and accordingly we shall here present his work largely through a 
detailed consideration of these volumes.

Neyman’s contributions to this enterprise were contained principally in five 
papers published between 1928 and 1937, three of them jointly with Egon Pearson.  
Neyman too provided a summary statement, his mimeographed “Lectures and 
Conferences on Mathematical Statistics” of 1938, later expanded into a book (1952).  
However, they did not have the impact of Fisher’s books, and in this case we 
shall instead study Neyman’s original papers.  Biographies have been written of 
both men: Fisher’s by his daughter Joan Fisher Box, “R. A. Fisher—the Life of a 

Preface



vi Preface

Scientist” (1978), and Neyman’s (“Neyman—from Life” (1982)) by Constance 
Reid, who had previously published biographies of the mathematicians Hilbert and 
Courant. We shall here focus nearly exclusively on the work, but shall provide a 
chronology of some of the relevant life events as a framework in the next section.

Before proceeding, I should perhaps explain my own relation to, and involve-
ment with, the work of Neyman and Pearson. In 1942, I became a student of Neyman, 
and his teaching of course reflected his own point of view. Fisher’s name was hardly 
ever mentioned. But neither did Neyman point out that most of what he was present-
ing was his own work.

I got to know about this fact only when in 1977 Constance Reid asked me to read 
the Neyman-Pearson correspondence and to summarize it for her, since she had no 
background in statistics.

Later, I became interested in the general recent history of statistics, and in this 
context began to acquaint myself with Fisher’s writings. It did not take me long to 
become aware of his dominating influence and to become an admirer of his genius. 
I gradually came to realize that these two men, Fisher and Neyman, so different in 
background, personality and approach, and so antagonistic to each other in person, 
between them were largely responsible for creating the field of classical statistics. 
The present account is the result of this realization.

Berkeley, CA Erich L. Lehmann
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1.1  The Lives of Fisher and Neyman

As background to a study of their work, this section briefly sketches some of the 
main features of the lives of these two men.

1.1.1  Fisher

 

Ronald Aylmer Fisher was born in 1890, and at an early age showed a special ability 
for mathematics and science. After completing high school, he went to Cambridge 
in 1909 on a fellowship, and in 1912 graduated as a wrangler.1 He remained at 
Cambridge for another year, during which he studied the theory of errors, statistical 
mechanics, and quantum theory.

Chapter 1
Introduction

1 The students doing best in the examinations were designated as wranglers.
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When war broke out in 1914, Fisher volunteered for military service, but was 
rejected because of his poor eyesight and spent the next five years as a high school 
teacher. In 1919, he accepted a position as statistician at Rothamsted Experimental 
Station.2  At first it was a temporary assignment, but after a year it became permanent, 
and Fisher stayed at Rothamsted until 1933. He began by analyzing records that had 
accumulated over many years, but then got involved with ongoing experiments 
and found methods to improve them.

The year 1933 brought the retirement of Karl Pearson as head of the Department 
of Applied Statistics at University College, London, which he had founded. The depart-
ment was then split into the Department of Eugenics headed by Fisher as Galton 
Professor, and the Department of Statistics with Karl Pearson’s son Egon as the head. It 
was an uncomfortable arrangement in which Fisher was barred from teaching statistics.

When World War II broke out in 1939, Fisher’s department was evacuated and 
gradually dispersed. He did not find another position until in 1943 he was appointed 
to the Arthur Balfour Chair of Genetics at Cambridge. He remained in this position 
until his retirement in 1957. The remaining years of his life he spent in Adelaide, 
Australia where he died in 1962.3

1.1.2  Neyman

 

Neyman’s life falls into two quite distinct periods of almost equal length: a European 
period (1894–1938) and an American one (1938–1981). He was born and raised in 
Russia to parents of Polish ancestry. In 1912, he entered the University of Kharkov, 
majoring first in physics and then mathematics. One of his mentors at Kharkov was 
Serge Bernstein,4 who introduced him to probability theory and statistics, neither of 
which he found very interesting.

2 Rothamstead is an agricultural experiment station located at Harpenden, about 25 miles  
north of London. An account of its history is provided in Box (1978, Chap. 4).
3  For a retrospective look at Fisher’s life and work with discussion by many statisticians, see Savage 
(1976).
4 S. N. Bernstein (1880–1968). For an account of the life and work of this teacher of Neyman, see 
Heyde et al. (2001), pp. 339–342.
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In 1921, Neyman went to Warsaw, and there found positions as statistician, first 
at the Agricultural Institute in Bydgoszcz, then at the State Meteorological 
Institute, and finally as assistant at the University of Warsaw and lecturer at the 
University of Krakow. In 1924, he obtained his doctorate with a thesis based on his 
work at Bydgoszcz.

Since no one in Poland was able to evaluate his work, he was given a fellowship 
to work with Karl Pearson, whose department in London was the center of the 
statistical world. The most important result of this year was the connection 
Neyman established with Pearson’s son Egon. Impressed with Neyman’s superior 
mathematical ability, Egon suggested that they might collaborate on some statistical 
problems about which he was thinking.

Neyman had obtained a fellowship for another year, which he was spending in Paris 
to work with Borel, Lebesgue, and Hadamard. In the fall of that year (1926), Egon sent 
him some notes on the proposed project, and this initiated their collaboration. After 
Paris, Neyman returned to Warsaw, where he eked out a precarious living as head of a 
small statistical laboratory and with various consulting jobs. His work with Egon was 
carried out by correspondence and occasional rare visits back and forth.

The situation improved greatly when Egon, now head of his own department, 
was able in 1934 to offer Neyman a position. By 1935, the position had become 
permanent and Neyman could now devote himself to teaching and research without 
the daily struggle for existence. Then, in the fall of 1937, out of the blue, came a 
most surprising letter. Its author, Griffith Evans, Chair of the mathematics department 
at the University of California at Berkeley, was offering Neyman a professorship in 
his department. After some hesitation, Neyman decided to accept. So, starting in the 
fall of 1938, he became a member of the Berkeley faculty and over the years built 
up a first-rate statistics department. He died in Berkeley in 1981.

1.2  Karl Pearson (1857–1936)
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Fisher and Neyman may be considered the architects of a new discipline, but no 
one starts from scratch or works in isolation. In the present section we shall consider 
the contributions of the person who more than any other prepared the ground for 
their work, Karl Pearson.

Two contributions of Pearson that strongly influenced Fisher were the introduction 
of what are now known as Pearson curves (1895) and the later proposal to estimate 
their parameters by the method of moments (1902). This system of curves furnished 
an example of a family of distributions characterized by a few parameters (a term 
not used by Pearson), the generalization of which Fisher used as a fundamental 
concept. The method of moments provided Fisher with an opportunity to show the 
superiority of his maximum likelihood estimators.

Fisher (1922) [18] attests to the influence of Pearson’s work when he refers to:

The development by Pearson of a very extensive system of skew curves, the elaboration of 
a method of calculating their parameters, and the preparation of the necessary tables, a body 
of work which has enormously extended the power of modern statistical practice, and which 
has been, by pertinacity and inspiration alike, practically the work of a single man.

Pearson’s most influential statistical contribution was the 1900 paper in which he 
proposed his c2-test for goodness of fit. A problem of great interest in the nineteenth 
century was to determine whether a given series of observations could be assumed to 
come from a normal distribution. The fit was made by eye and, as Pearson wrote: 
“The comparison in general amounts to a remark – based on no quantitive criterion – 
of how well practice and theory do fit!” This quantification (by means of his c2-
statistic) was Pearson’s crucial innovation.

Concerning it, Fisher, in the passage quoted above, continues: “Of even greater 
importance is the introduction of an objective criterion of goodness of fit. For empir-
ical as the specification of the hypothetical population may be, this empiricism is 
cleared of its dangers if we can apply a rigorous and objective test of the adequacy 
with which the proposed population represents the whole of the available facts.”

A very different but also highly influential publication was Pearson’s 1892 book, 
“The Grammar of Science.” From it, for example, Neyman (1957) learned a central 
aspect of his view of science, “that scientific theories are no more than models of 
natural phenomena.”

However, Pearson’s contribution to statistics extended far beyond these specific 
innovations. He turned himself into the first professional statistician, and his 
department and laboratory became the first such center for statistical research and 
instruction. Of great importance also was the journal Biometrika, which he 
cofounded in 1901 and edited for the next 35 years.

A contemporary document attesting to Pearson’s central role is a letter of June 
1933 (Bennett, 1990, pp. 318–319), written by Major Greenwood on Fisher’s appoint-
ment to the Galton Professorship at the University of London. Greenwood was a 
professor at the same university,5 and welcomed him as a future colleague. He wrote:

5 M. Greenwood (1889–1949) was Professor of epidemiology and Vital Statistics at the London 
School of Hygiene and Tropical Medicine from 1928 to 1945.
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There is, in my opinion, no other man alive worthy to sit in old K. P.’s chair; his mantle has 
descended on your shoulders and a double portion of his spirit is yours. Like all of us, you 
owe him much. If K. P. had never lived, you would have assuredly been one of our foremost 
men of science but very likely your field of work would not have been statistics, but perhaps, 
pure mathematics. …Although K. P. has often enough wounded my feelings and insulted 
my friends, I still love the man and venerate his genius; I should have been sad if his kingdom 
had fallen into the hands of a second-rater.

1.3  William Sealy Gosset (“Student”) (1876–1937)

A second person who exerted a crucial influence on Fisher and – indirectly – on 
Neyman was, surprisingly, not a statistician but a brewer. W. S. Gosset studied 
chemistry at Oxford, and then in 1899 took a job with the brewery Arthur Guinness 
Son and Co., for which he worked until his early death at age 61. He soon found 
himself confronted with a flow of statistical problems he did not know how to handle. 
To educate himself, he read books on the theory of errors and least squares. In 1905, 
he consulted Karl Pearson and later wrote (E.S. Pearson, 1990) that

He was able in about half an hour to put me in the way of learning the practice of nearly all 
the methods then in use.

In 1908, Gosset published, under the pseudonym “Student,” a paper (1908a) which 
initiated a new paradigm. For testing the value of a population mean, it had been 
customary to use a statistic equivalent to what today is called Student’s t, and to refer 
it to the normal distribution. For large samples, this provided a good approximation.

However, Gosset soon realized that for the small samples with which he had to 
work, the approximation was inadequate. He then had the crucial insight that exact 
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results could be obtained by making an additional assumption, namely that the form 
of the distribution of the observations is known. Gosset undertook to determine it 
for the case that the underlying distribution is normal, and he obtained the correct 
result, although he was not able to give a rigorous proof.

The first proof was obtained (although not published) by Fisher in 1912. His 
proof was finally published in 1915 [4], together with the corresponding proof for 
the correlation coefficient that Student had conjectured in a second paper of 
1908(b). Fisher followed this in 1921 [14] with a derivation of the distribution of the 
intraclass correlation coefficient. And then, as a result of constant prodding and urg-
ing by Gosset, he found a number of additional small-sample distributions, and in 
1925 presented the totality of these results in his book, “Statistical Methods for 
Research Workers.”

So far we have mentioned two contributions by Gosset: his path-breaking paper 
of 1908, which was the starting point of Fisher’s new small-sample methodology; 
and his role in getting Fisher to develop this methodology much further than he 
(Fisher) had originally intended. A third equally crucial contribution – this one to 
the Neyman-Pearson theory – will be considered in the next section.

In his 1939 [165] obituary of “Student,” Fisher calls him “one of the most origi-
nal minds in contemporary science,” and he refers to Gosset’s 1908(a) paper as 
providing “a fundamentally new approach to the classical problem of the theory of 
errors, the consequences of which are still only gradually coming to be appreciated 
in the many fields of work to which it is applicable.” Indeed, Student’s t-test continues, 
even today, to be one of the most widely used statistical procedures.

1.4  Egon S. Pearson (1895–1980)
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Egon Pearson, the only son of Karl Pearson (who also had two daughters), 
obtained his degree in mathematics from Cambridge University in 1919, and continued 
with graduate studies in astronomy. In 1921, he joined his father’s Department of 
Applied Statistics in a role akin to today’s teaching assistant. His duties gradually 
increased and in 1926 he began to teach on his own. When his father retired in 1933, 
Egon succeeded him as chair of the Department of Statistics.

After having been trained by Karl Pearson, Egon, particularly after the publication 
in 1925 of Fisher’s “Statistical Methods” book, became aware of the new small-
sample approach of Gosset and Fisher. As he later wrote (1990, p. 77):

In 1925-6, I was in a state of puzzlement, and realized that, if I was to continue an academic 
career as a mathematical statistician, I must construct for myself what might be termed a 
statistical philosophy, which would have to combine what I accepted from K. P.’s large-
sample tradition with the newer ideas of Fisher.

He decided to write to Gosset, and in his 1939 obituary of Gosset recalled that, “I had 
been trying to discover some principle beyond that of practical expediency which 
could justify the use of ‘Student’s’ z.” (This is now called Student’s t.) In his reply, 
Gosset pointed out:

Even if the chance is very small, say .00001, that doesn’t in itself necessarily prove that the 
sample is not drawn randomly from the population [specified by the hypothesis]; what it does 
is to show that if there is any alternative hypothesis which will explain the occurrence of the 
sample with a more reasonable probability, say .05 (such as that it belongs to a different popu-
lation or that the sample wasn’t random or whatever will do the trick), you will be very much 
more inclined to consider that the original hypothesis is not true.” (E. S. Pearson, 1939.)

In his obituary of Gosset, Pearson continues,

Gosset’s reply had a tremendous influence on the direction of my subsequent work, for the 
first paragraph contains the germ of that idea which has formed the basis of all the later joint 
researches of Neyman and myself. It is the simple suggestion that the only valid reason for 
rejecting a statistical hypothesis is that some alternative explains the observed events with 
a greater degree of probability.

So Gosset had done it again. His 1908(a) paper had initiated a whole new way of 
thinking which was realized in Fisher’s small-sample methodology. Now again he 
had supplied the needed key insight – the result was the Neyman-Pearson theory of 
hypothesis testing.

Inspired by Gosset’s suggestion, Pearson started to work out the consequences, 
and soon proposed to Neyman to collaborate on the problem. He thought Neyman 
would be helpful because of his greater mathematical ability. But there may have 
been another reason. Egon realized that he had to break free of his father’s dominance, 
that Karl Pearson would neither approve of nor sympathize with the new direction 
that Egon was taking. Neyman would be able to give him moral support in this 
difficult undertaking. Neyman was especially suitable for this role because as a 
foreigner he was independent of Karl Pearson while Egon’s young colleagues were 
all students of “the professor.”

Thus, in 1926 started a collaboration that was to last for slightly more than a 
decade and which gave us the Neyman-Pearson theory of hypothesis testing. 
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Neyman followed this work with his theories of survey sampling and confidence 
intervals, and later with a new and very influential philosophy of statistics. However, 
in these projects Pearson did not participate.

1.5  Fisher’s Foundations Paper

We continue this introduction with a discussion of Fisher’s 1922 [18] paper, “On the 
mathematical foundations of theoretical statistics.” The reason for considering this 
paper here instead of with Fisher’s other work is its fundamental role in establishing 
the framework for all the later work of Fisher and Neyman.

Stigler (2005) calls it “arguably the most influential article on that subject [theo-
retical statistics] in the twentieth century,” and describes it as “an astonishing work: 
It announces and sketches out a new science of statistics, with new definitions, a new 
conceptual framework and enough hard mathematical analysis to confirm the poten-
tial and richness of this new structure.” And Hald (1998, p. 713), with regard to it, 
states that, “For the first time in the history of statistics, a framework for a frequency-
based general theory of parametric statistical inference was clearly formulated.”

The paper opens with a list of 15 definitions in alphabetical order, of which 
perhaps the most important are: consistency, efficiency, likelihood, optimum, speci-
fication, and sufficiency. These definitions establish a vocabulary for the new 
discipline Fisher was creating.

This list is followed by a brief historical section which Fisher uses to inveigh 
against inverse probability (i.e., the Bayes approach).6 He dismisses it as “a mistake 
(perhaps the only mistake to which the mathematical world has so deeply committed 
itself).”

The body of the paper begins with section 2, “The purpose of statistical method.” 
It states that the task of statistics is to replace the full data by a “relative few quantities, 
which shall adequately represent the whole.” The next sentences are crucial; they set 
up the framework within which statistics was to function for a long time:

This object is accomplished by constructing a hypothetical infinite population, of which the 
actual data are regarded as constituting a random sample. The law of distribution of this 
hypothetical population is specified by relatively few parameters which are sufficient to 
describe it exhaustively in respect of all qualities under discussion.

Such parametric families or models constituted the home for classical statistical 
inference, as it was developed by Fisher and his successors during the next decades. 
The most useful parametric families for this purpose turned out to be not the family 
of Pearson curves, but two families defined by Fisher in 1934 [108]. In modern 
terminology, they are the exponential and transformation (or group) families.

6 The role of inverse probability in the nineteenth century is discussed, for example, in Stigler 
(1986) and Hald (1998).
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This section also contains Fisher’s definition of probability. He says of it that

It is a parameter which specifies a simple dichotomy in an infinite hypothetical population, 
and it represents neither more nor less than the frequency ratio which we imagine such a 
population to exhibit.

He illustrates the concept with the probability of throwing a five with a die. “When 
we say that [this] probably is one-sixth,” he writes, “we must not be taken to mean 
that of any six throws with that die one and only one will necessarily be a five; or 
that of any six million throws, exactly one million will be fives; but that of a hypo-
thetical population of an infinite number of throws, with the die in its original condi-
tion, exactly one-sixth will be fives.” We shall return to Fisher’s view of probability 
in section 6.2 in the context of fiducial probability.

The third section of Fisher’s paper is entitled, “The problems of statistics,” and it 
lists three such problems: specification (i.e., of the model), estimation, and 
distribution.

Of the problems of estimation, Fisher explains that “they involve the choice of 
methods of calculating from a sample…statistics, which are designed to estimate 
the values of the parameters of the hypothetical population.”

The problems of distribution include “discussions of the distribution of statistics 
derived from samples, or in general any functions of quantities whose distribution is 
known.”

Today’s readers will ask with surprise: What about hypothesis testing? Reading 
on, they will find that Pearson’s c2-test and Student’s work are mentioned as examples 
of problems of distribution. To explain why this is the case and how Fisher’s view 
of this issue shifted requires more general considerations and will be postponed to 
the next section.

Having defined the problem of statistics to be the estimation of parameters, 
Fisher in Section 4 (Criteria of estimation) states the properties that he desires for 
his estimators. They are consistency, efficiency, and sufficiency. His concept of con-
sistency differs from that now associated with this term (convergence in probability 
to the true value as the sample size tends to infinity). Instead he requires:

that when applied to the whole population the derived statistic should be equal to the 
parameter.

(This is now called Fisher consistency.)
Since many statistics will satisfy this criterion, Fisher supplements it by requiring 

efficiency, namely:

that in large samples, when the distribution of the statistics tend to normality, that statistic 
is to be chosen which has the least probable error.

Both of these criteria are asymptotic, and two statistics, both of which are consistent 
and efficient, may differ for all finite samples. So Fisher adds the third condition of 
sufficiency:

that the statistic chosen should summarize the whole of the relevant information supplied 
by the sample.
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This leaves the statistician with the task of determining an estimator satisfying these 
criteria. After a section of examples, Fisher takes up this challenge in section 6, entitled, 
“Formal solution of the problems of estimation.”

He begins the section by discussing inverse probability and Bayes’ Theorem and 
then considers the concept of likelihood in the context of a binomial distribution 
with unknown parameter p. He reiterates that about the frequencies of different 
values of p, “we know nothing whatever,” and continues:

We must return to the actual fact that one value of p, of the frequency of which we know 
nothing, would yield the observed result three times as frequently as would another value 
of p. If we need a word to characterize this relative property of different values of p, I suggest 
that we may speak without confusion of the likelihood of one value of p being thrice the 
likelihood of another, bearing always in mind that likelihood is not here used loosely as a 
synonym of probability, but simply to express the relative frequencies with which such 
values of the hypothetical quantity p would in fact yield the observed sample.

He then proposes what he had already suggested earlier in the section on the solution 
of the estimation problem, the method of maximum likelihood, which “consists, then, 
simply of choosing such values of these parameters as have the maximum likelihood.”

Fisher believes that this method satisfies his three criteria, in particular that it 
satisfied the criterion of sufficiency, although he states that he “is not satisfied as to 
the mathematical rigor of any proof which I can put forward to that effect.” He also 
claims that sufficiency implies efficiency.

The paper continues with several sections of examples, elaborations, and com-
parisons with other approaches, but this is the gist of it. Not everything turned out 
to be correct, but basically maximum likelihood estimators are asymptotically effi-
cient. Thus, in this paper Fisher has not only formulated the general problem of opti-
mal estimation, but he has also provided a solution. It is a stunning achievement.

1.6  Estimation and Testing

Let us now return to the question raised in the preceding section of why the only 
statistical inference considered in Fisher’s foundations paper was estimation and 
included no explicit mention of testing, while only a few years later testing became 
his primary focus. To this end, we shall examine certain aspects of two series of 
papers written by Fisher between 1913 and 1925, the year of publication of his 
book, “Statistical Methods for Research Workers,” which we shall consider in some 
detail in Chap. 2.

The two series consist respectively of papers 1, 12, 18, and 42; and 4, 14, 20, 30, 
35, 36, and 43, where the numbers are those assigned to these papers in Fisher’s 
five-volume Collected Papers (see the Appendix).

These two series are of very different nature. The first is concerned with the theory 
of estimation: the choice of an appropriate estimate of an unknown parameter and the 
comparison of different estimates. This series consisted of Fisher’s student paper [1] 
of 1913, in which he proposed maximum likelihood estimation, although not under 
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this name and unaware that he was not the first to suggest this method.7 This was 
followed by [12] in 1920 with a comparison of two estimates of a normal variance 
that led to Fisher’s discovery of sufficiency. This discovery was central to his foun-
dational paper [18] of 1922, which was refined and elaborated on in 1925 with a 
paper [42] simply entitled, “Theory of statistical estimation.” At this point Fisher felt 
that he had now “cleared up the main outstanding difficulties” and had achieved “a 
theory of statistical estimation with some approach to logical completeness.”

The other series is concerned with what Fisher in [18] had called “problems of 
distribution,” i.e., with the determination of the small-sample (“exact”) distribution 
of a number of increasingly complex statistics. These were all derived under the 
assumption that the underlying observations are normally distributed.

The point of view in these papers is quite different from that in the estimation 
series. While there the central problem was that of determining an appropriate 
estimate, here the statistic is given and the difficulty is that of determining its distri-
bution. Another basic difference is that in all but one of the estimation papers Fisher 
is attempting to provide a general theory; on the other hand each of the small-sample 
distribution papers deals with one or more quite specific situations. The statistical 
(inferential) use to be made of these distributions is peripheral in these papers, and 
Fisher’s view on this use seems to have shifted over time.

In the first paper (1915) [4] of the series, he wrote:

“Student,” if I don’t mistake his intentions, desiring primarily a just estimate of the accuracy 
to be ascribed to the mean of a sample…

This despite the fact that Student stated in the introduction to his paper:

The aim of the present paper is to determine the point at which we may use the tables of the 
probability integral [i.e., the large-sample normal approximation] in judging the signifi-
cance of the mean…

In the body of the second (1921) [14] paper, Fisher was still wedded to the estimation 
point of view when he explains:

Thus, in calculating the correlation from a sample, we are making an estimate of the [popu-
lation] correlation. …We wish to make the best possible estimate and to know as accurately 
as possible how far the estimate may be relied upon.

Only at the end of the paper, in an example, is a question of significance raised. 
A p-value is calculated under the hypothesis that the population correlation r = 0.18 
and the difference of the sample value from the hypothetical one is declared to be 
“now much more significantly apparent.” This is essentially a significance test.

The phrase “testing for significance” occurs for the first time in the last (sixth) 
section of a 1922 paper [20]. This section obtains the distribution of regression 
coefficients. Here, referring to tables of Student’s distribution, he states that, “These 
tables are in a suitable form for testing the observed significance of an observed 
regression coefficient.” From then on, exact significance tests rather than estimation 
seem to have been the principal focus of Fisher’s small-sample work.

7 For discussion of and historical background on this approach, see Stigler (2007).
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For example, in the survey paper [36] of 1924, he mentions that the small-sample 
distribution of many important statistics is far from normal and that then

tests of Significance based upon the calculation of a “probable error” or “standard error” are 
inadequate and may be very misleading. In addition to tests of significance, tests of goodness 
of fit also require accurate error functions; both types of tests are constantly required in 
practical research work; the test of goodness of fit may be regarded as a kind of generalized 
test of significance…

To today’s reader, it seems strange that Fisher restricted the term “test of significance” 
to the testing of hypotheses that specify the value of one or more parameters. But in 
any case, there clearly was a shift in his point of view concerning the principal use to 
be made of the small-sample distributions he was deriving.

We can only speculate as to what caused this change. A plausible explanation 
seems to be the new position Fisher took in 1919. From 1914 to 1919, he had been 
teaching high school physics and mathematics. Then in 1919 he accepted an 
appointment as statistician (later chief statistician) at Rothamsted Experiment 
Station, with the initial assignment of studying the massive agricultural data that 
had been accumulated there. In this work he may have found significance testing a 
very useful approach.

This explanation receives some support from Fisher’s first paper [15] of 1921 on 
these data, “Studies in crop variation.” Table II of this paper lists a number of 
p-values and discusses the resulting significance implications, and section 8 is entitled, 
“The significance of an observed term.”

Our discussion so far has been concerned with the shift in Fisher’s focus from 
estimation to testing. Let us now briefly consider why originally he focused so 
exclusively on estimation.

In his undergraduate study at Cambridge, Fisher took a single course in statistics 
and that was on the theory of errors. The standard textbooks on this subject were 
primarily concerned with least squares estimation and the calculation of the probable 
error as a measure of accuracy of the estimates. Thus, significance testing is not 
likely to have played much of a role in this course.

In addition, it would seem that from a naïve, intuitive point of view, estimation is 
a natural first task for statistics. In comparison, testing appears more artificial and 
convoluted. Thus, estimation was a natural starting point for Fisher.



13E.L. Lehmann, Fisher, Neyman, and the Creation of Classical Statistics, 
DOI 10.1007/978-1-4419-9500-1_2, © Springer Science+Business Media, LLC 2011

2.1  The Small-Sample and c2 Papers

We saw in Sect. 1.3 that Student in 1908a brought a new point of view to statistical 
inference by determining the small-sample (exact) distribution of what he called z, 
now called t, under the assumption of normality. Student found the correct form of 
this distribution but was not able to prove it.

In 1912 Ronald Fisher, then still a Cambridge undergraduate, sent Gosset a proof 
using n-dimensional geometry. Gosset, stating that he did not “feel at home in more 
than three dimensions,” sent it on to Karl Pearson, with the suggestion to publish it 
as a note in Biometrika.

However, Pearson replied that, “I do not follow Mr. Fisher’s proof and it is not 
the kind of proof which appeals to me. … Of course, if Mr. Fisher will write a proof 
in which each line flows from the preceding one and define his terms, I will gladly 
consider its publication. Of the present proof I can make no sense.”

Despite this negative reaction, three years later Pearson did accept a paper in 
which Fisher used his geometric method to derive the small-sample distribution 
of the correlation coefficient from a bivariate normal distribution (and in passing 
also that of Student’s t) (1915) [4]. For the case of zero correlation, this distribution 
had been correctly conjectured (but again not proved) by Student in a second 
Biometrika paper, also in 1908 (Student, 1908b).

After 1915, for a number of years Fisher did no further work on such distribu-
tional problems, but he was pulled back to them when investigating the difference 
between the inter- and intraclass correlation coefficients. The distribution of the 
latter was still missing and Fisher derived it by the same geometric method he had 
used previously (Fisher, 1921) [14].

An idea of Fisher’s thinking at the time can be gathered from his 1922 [18] paper 
discussed in Sect. 1.5, where he mentions the “absence of investigation of other 
important statistics, such as regression coefficients, multiple correlations and the 
correlation ratio.” He refers to these problems in the summary of the paper as “still 
affording a field for valuable enquiry by highly trained mathematicians.”

Chapter 2
Fisher’s Testing Methodology
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This passage suggests that Fisher thought these problems to be difficult, and 
that he had no plans to work on them himself. However, in April 1922 [20] he 
received two letters from Gosset that apparently changed his mind. We are lucky 
that these and subsequent letters from Gosset to Fisher (but unfortunately few of 
Fisher’s replies) were preserved and in 1970 were privately published by Gosset’s 
employer, the firm Arthur Guinness Son and Co. (Gosset, 1970).

In the first of the letters mentioned, Gosset pleaded: “But seriously, I want to 
know what is the frequency distribution of r s

x
/s

y
 for small samples, in my work 

I want that more than the r distribution now happily solved.”
Fisher’s solution to this problem (together with that of the two-sample problem) 

appeared in the Journal of the Royal Statistical Society in 1922 [20]. The paper is 
primarily concerned with a different problem, that of testing the goodness of fit of 
regression lines. At the end, Fisher appends a section which in view of the dates 
must have been added at the last moment. Fisher acknowledges in this section that:

an exact solution of the distribution of regression coefficients…has been outstanding for 
many years; but the need for its solution was recently brought home to the writer by corre-
spondence with “Student,” whose brilliant researches in 1908 form the basis of the exact 
solution.

The solution to Gosset’s problem turned out to be surprisingly easy. It consisted 
essentially in showing that the regression coefficients had the same structure as 
Student’s t, and hence were distributed according to Student’s distribution, however 
with the degrees of freedom in the denominator reduced by one in the case of simple 
linear regression, and by more if more than one variable is involved. The argument 
was so simple that Fisher was able to send it to Gosset by return mail.

Gosset’s second letter followed within a few days. It was a short note, saying:

I forgot to put another problem to you in my last letter, that of the probable error of the 
partial Correlation

Regression

ì ü
í ý
î þ

coefficients in small samples.

Using once more the geometric method, Fisher was able to reduce the partial correla-
tion to the total correlation based on a smaller sample. He sent this solution to 
Gosset without much delay and published it in a short note in 1924 [35].

In the same year, Fisher gave a lecture1 at the International Congress of 
Mathematics in Toronto, “On a distribution yielding the error functions of several 
well-known statistics” [36]. The distribution in question, which Fisher called the 
general z-distribution, is equivalent to that of the ratio of two independent c2-based 
estimates of a common variance, required for the analysis of variance. This talk and 
a 1925 paper on “Applications of ‘Student’s’ distribution” outlined the new testing 
methodology Fisher had developed during the preceding decade and of which he 
wrote an account in a book that will be discussed in the next sections.

The small-sample papers reviewed in the present section constitute the second 
series mentioned in Sect.1.6. It should be pointed out that between 1922 and 1924, 

1 The Proceedings were not published until 1928.
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Fisher also published a third series consisting of papers 19, 31, and 34 on c2-tests of 
goodness of fit. In the first of these he corrected Pearson’s error regarding degrees 
of freedom2 and noted that his proof applies to c2-tests in “all cases in which the 
frequencies observed are connected with those expected by a number of relations, 
beyond their restriction to the same total frequency.”

The next paper is concerned with the special case of a 2 × 2 table where Fisher 
shows that when the margins are fixed so that the whole table is determined by 
the entry in any one of the four cells, the c2-statistic for testing independence has a 
limiting c2-distribution with one degree of freedom, rather than three as Pearson 
had claimed.

Finally, paper 34 of 1924 deals with goodness of fit tests in which some 
parameters have to be estimated. Here, Fisher finds that the c2-distribution with the 
appropriate number of degrees of freedom is valid provided the parameters are 
estimated efficiently, and hence in particular when the estimators used are either 
maximum likelihood or minimum chi-squared.

2.2  “Statistical Methods for Research Workers” I

The impulse to write a book on the statistical methodology he had developed 
came not from Fisher himself but from D. Ward Cutler, one of the two editors of a 
series of “Biological Monographs and Manuals” being published by Oliver and 
Boyd. We owe this information to a letter Fisher wrote in 1950 to Robert Grant, 
then a director of Oliver and Boyd (Bennett, 1990, pp. 317–318.) In this letter, 
he also points out that writing the book did not require new research but, “I only had 
to select and work out in expository detail the examples of the different methods 
proposed. It was often quite a job to find a good example.”

The book came out in 1925 with the title, “Statistical Methods for Research 
Workers” (SMRW), and it revolutionized the practice of statistics. The opening 
introductory chapter lays out Fisher’s vision of statistics. He states that

statistics may be regarded as (i) the study of populations, (ii) as the study of variation, 
(iii) as the study of methods of the reduction of data.

In the latter category, he again mentions, as he had done in his 1922 [18] founda-
tional paper, that the problems arising in this reduction can be divided into three 
types: problems of specification, estimation, and distribution.

He goes on to discuss the role of probability in this work, and to attack the 
method of “inverse probability” (what today we would call the Bayesian approach), 
stating his “personal conviction…that the theory of inverse probability is founded 
upon an error, and must be wholly rejected.” As an alternative, he suggests that “the 

2 A careful analysis of Pearson’s evolving progress on this issue is given in Chap. 19, “Karl Pearson 
and degrees of freedom,” of Stigler (1999).
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mathematical quantity which appears to be appropriate for measuring our preference 
among different possible populations” is that of likelihood.

Next, he defines a number of concepts of the theory of estimation, such as consis-
tency, efficiency, sufficiency, and maximum likelihood.

It comes as somewhat of a surprise when the next section of the introduction 
entitled “the scope of this book” states that

the prime object of this book is to put into the hands of research workers…the means of applying 
statistical tests accurately to numerical data accumulated in their own laboratories…

and later refers to

the exact distributions with the use of which this book is chiefly concerned…

Thus, the book does not primarily deal with estimation but with significance testing. In 
fact, estimation is never again mentioned.

Under these circumstances, one wonders why the introduction mentions distri-
butions as the second principal concern of statistics rather than testing. As was 
already indicated in Sect. 1.6, this is actually quite reasonable. Unlike estimation, 
where the choice of an appropriate estimate was the central problem, the corre-
sponding issue for testing did not arise for Fisher. Assuming normality, the choice 
of test statistic was intuitively obvious to him, and once its distribution had been 
obtained, the test consisted simply of declaring significance for observations in 
the appropriate tail of the distribution. Thus, the only serious problem was that of 
distribution, i.e., of determining the distribution of the test statistic.

The introduction concludes with a brief discussion of the tables “which form a 
part essential to the use of the book.”

The introductory chapter is followed by two preparatory chapters on diagrams 
and distributions respectively. The latter introduces the reader to various aspects of 
three basic distributions: the normal, Poisson, and binomial.

Chapter IV deals with c2-tests of goodness of fit, independence, and homogene-
ity. After reminding the reader that such tests were already used in the preceding 
chapter to test the goodness of fit of Poisson and binomial distributions, Fisher 
states that the general class of problems for which it is appropriate is “the compari-
son of the number actually observed to fall into any number of classes with the 
numbers which upon some hypothesis are expected.” The proposed test statistic, 
denoted by c2, is the sum over all the classes of x2/m where “m is the number 
expected and m + x the number observed in any class.”

Fisher points out that “the more closely the observed numbers agree with those 
expected the smaller c2 will be; in order to utilize the table it is necessary to know the 
value of n with which the table is to be entered. The rule for finding n is that n is equal 
to the number of degrees of freedom in which the observed series may differ from the 
hypothetical; in other words, it is equal to the number of classes the frequencies in 
which may be filled up arbitrarily.” This definition, which an uninitiated reader may 
have found somewhat cryptic, is made clearer through a number of examples.

There still remains an important piece of business (relating to the table) to 
deal with before the tests are illustrated by means of seven examples covering 
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twelve pages. A table of the c2-distribution had been published in 1902 in Biometrika, 
but it was protected by copyright and Fisher could not get permission to reprint it. 
So instead of giving a table of the probability3

 
( )2 ,= ³P P xc  

he tabled x as a function of P for selected values of P between 0.99 and 0.01. He 
comments that:

In preparing this table we have borne in mind that in practice we do not want to know the 
exact value of P for any observed c2, but, in the first place, whether or not the observed 
value is open to suspicion. If P is between .1 and .9 there is certainly no reason to suspect 
the hypothesis tested. If it is below .02 it is strongly indicated that the hypothesis fails to 
account for the whole of the facts. We shall not often be astray if we draw a conventional 
line at .05 and consider that higher values of c2 indicate a real discrepancy.

This statement has been quoted in full because of its great influence. Fisher’s rec-
ommendation of 5% as a fixed standard took hold and, for good or ill, has permeated 
statistical practice. Its advantages and disadvantages have been much discussed and 
will be compared with a more flexible alternative approach in Chap. 3.

Fisher gives further support to the proposal in the examples which illustrate the 
c2-test in a number of representative situations. In the first of these, in particular, he 
finds a p-value between 0.01 and 0.02 and concludes: “If we take P = 0.05 as the limit 
of significant deviation, we shall say that in this case the deviations from expectation 
are significant.”

The c2-chapter concludes with a section on the partitioning of c2 into components 
“to test the separate components of a discrepancy.” This foreshadows the analysis of 
variance treated in the last chapter of the book.

2.3  “Statistical Methods for Research Workers” II

The four chapters described so far make up nearly half of SMRW. The second half 
is concerned with the “exact” small-sample tests which are the avowed purpose of the 
book. Chapter V in particular deals with the problems for which the t-distribution 
provides the solution: tests of significance of means, differences of means, and regres-
sion coefficients.

Fisher, however, starts the chapter with a brief discussion of the large-sample tests 
for a mean or a difference of two means, pointing out that these procedures are what 
today we call distribution-free, i.e., valid for all distributions with finite variance.

Only then does he consider the small-sample t-test, stating that

The distribution of t for random samples of a normal population about zero as mean, is 
given in the table of t.

3 Today such p-values are usually denoted by a lower-case rather than capital p.
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After illustrating the procedure on a sample of ten patients that had already been 
used by Student in 1908, he next discusses the “significance of difference of means 
of small samples.” This case is of particular interest since it is one of the few in 
which today’s approach differs from that presented by Fisher.

The heading of Fisher’s treatment of the two-sample problem reads:
(*)  To test whether two samples belong to the same population, or differ  significantly 

in their means.
The test he proposes for this problem is the two-sample t-test.
However, the dichotomy (*) is clearly incomplete. Realizing this, Fisher in the 

second (1928) edition of the book adds the following paragraph:

It will be noted…that a difference in variance between the populations from which the 
samples are drawn will tend somewhat to enhance the value of t obtained.4 The test, 
therefore, is decisive, if the value of t is significant, in showing that the samples could 
not have been drawn from the same population; but it might conceivably be claimed that 
the difference indicated lay in the variances and not in the means. The theoretical possi-
bility, that a significant value of t should be produced by a difference between the vari-
ances only, seems to be unimportant…; as a supplementary test, however, the significance 
of the difference between the variances may be tested directly by the method of § 41.

In still later editions, Fisher adds yet another paragraph:

It has been repeatedly stated, perhaps through a misreading of the last paragraph, that our 
method involves the “assumption” that the two variances are equal. This is an incorrect 
form of statement; the equality of variances is a necessary part of the hypothesis to be 
tested, namely that the two samples are drawn from the same normal distribution. The 
validity of the t-test is therefore absolute, and requires no assumption whatever.

Fisher concludes this later discussion by pointing out that one could of course ask 
the question: “Might these samples have been drawn from different normal popula-
tions having the same mean?” He states that this problem has been solved (it is 
what is today known as the Behrens-Fisher problem), but that “the question seems 
somewhat academic.”

Despite Fisher’s protest, the modern view considers the testing of the difference 
of two means in two versions:

(i) Assuming nothing about the two variances (the Behrens-Fisher problem) or
(ii) Assuming the two variances to be equal, in which case the t-test is the appropriate 

(and by a number of criteria the best possible) procedure.

This disagreement serves to emphasize the fact that for most of the procedures 
set out in SMRW, Fisher’s way of seeing and doing things still holds sway today. 
It also illustrates that in an argument Fisher rarely gave an inch. Those holding 
views different from his own had “misread” him and their statements were “incorrect.” 
We shall see this attitude repeated in later controversies.

The remainder of Chapter V is concerned with regression. It is shown how the t-test 
also applies to the testing of regression coefficients in linear regression. Fisher then 

4 This statement is correct for some balanced designs but is not correct in general; see, for example, 
Scheffé (1959, p. 353).
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turns to the fitting of “curved regression lines” for the case “when the variability of the 
independent variate is the same for all values of the dependent variate, and is normal 
for each such value.” The chapter concludes with the testing of partial regression coef-
ficients, where the distribution of the test statistic is again found to be Student’s t.

Chapter VI has a somewhat narrower focus: correlation coefficients. It defines 
the correlation coefficient r in a bivariate normal distribution and discusses its 
estimation, and from there progresses to partial correlation. It next takes up the sig-
nificance of an observed correlation coefficient r and states that when r = 0, then

 
22 1 ,= - -t r n r  

has a t-distribution with n – 2 degrees of freedom, and extends this result to partial 
correlation coefficients.

Having thus provided the means for testing that these coefficients are zero, Fisher 
turns to the problem of testing r = r

0
 for r

0
 ¹ 0. For this purpose, he proposes the 

transformation
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and states that z is approximately normally distributed with mean r and standard 
error 1/ 3-n . He cautions that

The distribution of z is not strictly normal, but it tends to normality rapidly as the sample is 
increased, whatever may be the value of the correlation.

After considerable further discussion, Fisher shows in two examples that the approx-
imation is reasonably accurate. As an additional application, he points out that this 
transformation also makes it possible to test the difference between two observed 
correlations.

Chapter VII extends these considerations to the case of intraclass correlations, 
but it does so apologetically. It starts out with the admission that the data to be 
analyzed in this chapter by means of correlations “may be more usefully and accu-
rately treated by the analysis of variance, that is by the separation of the variance 
ascribable to one group of causes, from the variance ascribed to other groups.”

And again, after discussing and illustrating a generalized z-transformation of the 
intraclass correlation coefficient, Fisher states that “a very great simplification is 
introduced into questions involving intraclass correlation when we recognize that in 
such cases the correlation merely measures the relative importance of two groups of 
factors causing variation.”

Still later, he points out that “the data provide us with independent estimates of 
two variances; if these variances are equal the correlation is zero;… . If, however, 
they are significantly different, we may if we choose express the fact in terms of a 
correlation.”

The final sections of the chapter then at last deal directly with tests which arise 
in the analysis of variance. “The test of significance of intraclass correlations is thus 
simply,” Fisher writes, “an example of the much wider class of tests of significance 
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which arise in the analysis of variance. These tests are all reducible to the single 
problem of testing whether one estimate of variance derived from n

1
 degrees of 

freedom is significantly greater than a second such estimate derived from n
2
 degrees 

of freedom. This problem is reduced to its simplest form by calculating z equal to 
half the difference of the logarithms of the estimates of the variance.” Fisher provides 
a table for P = 0.05 and selected values of n

1
 and n

2
.

The remainder of the chapter illustrates the use of the table and contains a brief 
discussion of “analysis of variance into more than two portions.”

The last chapter (Chapter VIII) consists of applications of the analysis of variance 
to a few important situations. The first half of the chapter is concerned with testing 
the structure of regression lines; this includes a discussion of the multiple correla-
tion coefficient, and is an extension of earlier material.

The second half strikes out in a new direction, resulting from Fisher’s work at 
Rothamsted. As he writes, “The statistical procedure of the analysis of variance is 
essential to an understanding of the principles underlying modern methods of 
arranging field experiments. The first requirement which governs all well-planned 
experiments is that the experiment should yield not only a comparison of different 
manures, treatments, varieties, etc., but also a means of testing the significance of 
such differences as are observed.”

In the last pages of the book, he illustrates such analyses first on the case that the 
agricultural plots are assigned to the different treatments (with replication) com-
pletely at random, then into randomized blocks, and finally into Latin squares.

The expansion of this program was to be one of Fisher’s most important tasks 
during the next decade.

2.4  The Reception of SMRW

Fisher was greatly disappointed in the reviews of his book. The most important 
British journal of statistics publishing book reviews was the Journal of the Royal 
Statistical Society (JRSS), and its January issue of 1926 carried a review of Fisher’s 
book signed L. I. The reviewer was Leon Isserlis, a statistician at the Chamber of 
Shipping, with a strong Cambridge mathematics background and graduate studies 
under Karl Pearson.

Isserlis’ review was not very enthusiastic: “We have presented [here],” he wrote, 
“a very full account of the statistical methods favored by the author and of the con-
clusions he has reached on topics, some of which are still in the controversial stage. 
Much is lacking if the book is to be regarded as an authoritative record of achievement 
in statistical method apart from Mr. Fisher’s own contributions.”

After briefly describing the content of the book, the review reaches the 
 conclusion that

The book will undoubtedly prove of great value to research workers whose statistical series 
necessarily consist of small samples, but will prove a hard nut to crack for biologists who 
attempt to use it as a first introduction to statistical method.”
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If Isserlis was not overly enthusiastic, Fisher himself must bear part of the blame. 
In the author’s preface, he asserted:

Little experience is sufficient to show that the traditional machinery of statistical processes 
is wholly unsuited to the needs of practical research. Not only does it take a cannon to shoot 
a sparrow, but it misses the sparrow.

Such wholesale and insulting dismissal of traditional procedures can hardly have 
endeared him to the British establishment.

However, even reviewers who were not offended by Fisher’s attack on traditional 
methods found much to criticize. In particular, they complained about Fisher’s 
dogmatism, the lack of proofs, the emphasis on small samples, and the difficulty of 
the book.

The only review that did justice to Fisher’s achievement came not from Great 
Britain but from America. The reviewer was Harold Hotelling (1927), who had 
obtained his Ph.D. in 1924 from Princeton in topology, and who then took up a 
position as research associate at the Food Research Institute at Stanford University. 
He was so impressed with the book that he submitted a review to the Journal of the 
American Statistical Association without having been asked to do so.

He opens the review by stating that

Most books on statistics consist of pedagogic rehashes of identical material. This comfort-
ably orthodox subject matter is absent from the volume under review, which summarizes for 
the mathematical reader the author’s independent codification of statistical theory and some 
of his brilliant contributions to the subject, not all of which have previously been published.

After some discussion of the content of the book, the review concludes with:

The author’s work is of revolutionary importance and should be far better known in this 
country.

The first edition was soon sold out, and in 1928 Fisher brought out a second edition. 
He was pleased with this success and considered it a vindication. He gave expres-
sion to his feelings in the preface to the new edition, when he wrote:

The early demand for a new edition has more than justified the author’s hope that use could 
be made of a book which, without entering into the mathematical theory of statistical 
methods, should embody the latest results of that theory, presenting them in the form of 
practical procedures appropriate to those types of data with which research workers are 
actually concerned.

He goes on to defend his much-criticized decision not to include proofs by pointing 
out that, “The practical application of general theorems is a different art from their 
establishment by mathematical proof, and one useful to many to whom the other is 
unnecessary.”

The remainder of the preface outlines the changes from the first edition. The most 
important of these is the addition of a new chapter on “The Principles of Statistical 
Estimation.” The presentation is very unusual. Fisher illustrates the concepts of 
consistency, efficiency, relative efficiency, and so on by means of a single example: 
a contingency table arising in genetics, in which all cell probabilities are expressible 
in terms of a single parameter q.
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Before discussing the estimation of q, Fisher notes that, “It is a useful preliminary 
before making a statistical estimate…to test if there is anything to justify estimation 
at all.” He therefore tests for independence (which would specify the value of q) 
and rejects the hypothesis. He then points out that, “Nothing is easier than to invent 
methods of estimation,” and proposes to consider four estimates of q (T

1
 to T

4
), the 

fourth being the maximum likelihood estimate.
The first two are linear functions of the cell frequencies, and Fisher shows how 

to calculate their variances. The other two are more complicated, so he provides 
large-sample approximations to their variances. These asymptotic variances for T

3
 

and T
4
 turn out to be equal, and of this common value he writes that “it is of great 

importance for our problem, for it has been proved that no statistic can have a 
smaller variance, in the theory of large samples, than has the solution of the equa-
tion of maximum likelihood. This group of statistics…are therefore of particular 
value, and are designated efficient statistics.”

He goes on to consider the reciprocal of this minimum asymptotic variance “as a 
numerical measure of the total amount of information, relevant to the value of q, 
which the sample contains.” He further states that “the actual fraction utilized by 
inefficient statistics in large samples is obtained by expressing the random sampling 
variance of efficient statistics as a fraction of that of the statistic in question,” and 
exemplifies the calculation on the estimates of T

1
 and T

2
.

The review of the second edition of SMRW in the Journal of the Royal Statistical 
Society was considerably more favorable than that of the first, and refers to Fisher’s 
contributions as having “already had, and are still more likely to have in the future, 
a far-reaching influence on the subject.” The review must, however, be read with 
some caution for possible bias, since the reviewer, J.O. Irwin (1929), although a 
student of Karl Pearson, was at the time of the review a member of Fisher’s depart-
ment at Rothamsted.

As he had done for the first edition, Hotelling also volunteered a review of the 
second edition (in fact for each of the first seven editions). By that time he was an 
associate professor in the Stanford Mathematics Department.

He refers to the book as “this unique work” and concludes with the advice that

An American using statistics will do well to work through the book, translate it into his own 
tongue, and change his habits accordingly.

A third review by Pearson (1929) led to a controversy which will be considered in 
the next section.

2.5  The Assumption of Normality

Egon Pearson reviewed the second edition of Fisher’s book in the 8 June 1929 issue 
of Nature. The review was more positive than an earlier review he had written of the 
first edition, but it also contained the following critical paragraph:

There is one criticism, however, which must be made from the statistical point of 
view. A large number of the tests developed are based…on the assumption that the 
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population sampled is of the “normal” form. That this is the case may be gathered 
from a careful reading of the text, but the point is not sufficiently emphasized. It does 
not appear reasonable to lay stress on the “exactness” of the tests when no means what-
ever are given of appreciating how rapidly they become inexact as the population sam-
pled diverges from normality. That the tests, for example, connected with the analysis of 
variance are far more dependent on normality than those involving Student’s z (or t) 
distribution is almost certain, but no clear indication of the need for caution in their 
application is given.

Fisher was deeply offended; he felt that his honesty had been impugned, and he 
wrote a blistering reply to Nature which has not been preserved. The editor sent it 
on to Pearson for comment, and Pearson drafted a reply which he showed to Gosset. 
In defense of the criticism in his review, Pearson quoted from a 1929 paper by the 
American economist Howard R. Tolley which showed that at least one reader had 
been misled by Fisher’s book. In this paper, Tolley claimed that

Recently the English school of statisticians has developed formulas and probability tables 
to accompany them which, they state, are applicable regardless of the form of the frequency 
distribution. These formulas are given, most of them without proof, in Fisher’s book (1925). 
… If we accept the statements of those who have developed those newer formulas [i.e., 
Student and Fisher], skew frequency functions and small samples need cause us no further 
difficulty as far as measurement of error is concerned.…

Gosset offered to write to Fisher in an effort to mediate the dispute and in his letter 
referred Fisher to Tolley’s paper. Fisher, somewhat shaken by Tolley’s complete mis-
understanding, gave a very conciliatory reply. After some more correspondence 
back and forth, Fisher, in a letter of 27 June 1929 [80], suggested that Gosset should 
write to Nature in his stead and that he (Fisher) would withdraw his letter.

Fisher’s letter to Gosset is unusually revealing and the following paragraphs shed 
light on Fisher’s attitude toward his book:

In rereading the review, you must have noticed that there was a criticism which must be 
made on statistical grounds. I take this (and so do you) to mean that there was something 
wrong with it as statistics; what was wrong? The claim of exactness for the solutions and 
tests given was wrong, although a careful reader would find that I had kept within the letter 
of the law by hidden allusions to normality.

…

However important the question of normality may be, it is certainly irrelevant to the book he 
[E. S. Pearson] was reviewing. The reviewer takes up the position that he could have admitted 
this if I had mentioned normality more often or in larger type, or if I had made the meaning-
less claim that the solutions are approximate to those of certain undefined problems.

About my examples I think you are right, they are nearly all very imperfect from the point 
of view of a purely theoretical treatise. In a practical treatise, I submit that the only question 
a critic has a right to raise is: – Are the right conclusions drawn, and by the right methods?

Gosset did write, as Fisher had suggested, and his letter was published in the 20 July 
(1929) issue of Nature. After quoting Tolley and absolving Fisher from subscribing 
to Tolley’s views, he continues:

The question of the applicability of normal theory to non-normal material is, however, of 
considerable importance. … I have always believed…that in point of fact “Student’s” dis-
tribution will be found to be very little affected by the sort of small departures from normality 
which obtain in most biological and experimental work. … We should, however, be grateful 
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to Dr. Fisher if he would show us elsewhere on theoretical grounds what sort of modifica-
tion we require to make when the samples…are drawn from populations which are neither 
symmetrical nor mesokurtic.

In his reply of August 17, Fisher rejects Gosset’s suggestion that he should give 
some guidance on how to modify the t-test for data from non-normal populations 
for a variety of reasons, but he hints at the existence of distribution-free tests and at 
taking higher moments into account. He concludes his letter by reiterating that

On the practical side there is little enough room for anxiety, especially among biologists. … 
I have never known difficulty to arise in biological work from imperfect normality.

Thus, in his letter of 27 June 1929 [80], Fisher admits that his claim of exactness 
of various tests was wrong, but he says that he “had kept within the letter of the 
law by hidden allusions to normality.” This suggests a conflicted attitude towards 
the presentation of this material. On the one hand, he wanted to teach his intended 
readers, mostly biologists, who would know little mathematics, how to use his 
methods. For this purpose, the presentation should be as simple and straightfor-
ward as possible, avoiding complications that would cause confusion and raise 
doubts.

On the other hand, he was a scientist and it bothered him to put down statements 
that were false, even if they held “for all practical purposes.” So, to salve his con-
science, he would sometimes add a “hidden allusion” that would prove his honesty 
without disturbing his readers.

A striking example of this strategy can be found in Chapter VI (Section 35). 
After introducing the transform z of the correlation coefficient, Fisher states:

The standard error of z is simpler in form

 1/ 3 ( is the sample size),= -z n ns
 

and is practically independent of the value of the correlation in the population from which 
the sample is drawn.

The verb “is” before s
z
 seems to claim unambiguously that the formula for the 

standard error is exact. But if so, s
z
 is completely independent of the popula-

tion correlation, not only “practically independent.” The added phrase is a hidden 
admission of the fact that the formula is only an approximation. (It is noteworthy 
that in later editions Fisher added the word “approximately” before the formula 
for s

z
).

As another example of the same strategy, consider Fisher’s presentation of the 
distribution of Pearson’s c2-statistic for goodness of fit in Chap. 4 (Sect. 4.1). After 
defining the statistic, Fisher states

The form of the distribution of c2 was established by Pearson in 1900; it is therefore possible 
to calculate…

This statement gives the impression that c2 is one of the exact tests with which the 
book is chiefly concerned. Fisher does not mention that it is in fact a large-sample 
test based on the normal approximation to the multinomial distribution.
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However, in Example 9 in this section, when testing the goodness of fit of a 
Poisson distribution, he casually mentions that:

In applying the c2-test to such a series, it is desirable that the number expected should in no 
group be less than 5, since the calculated distribution of c2 is not very closely realized for 
very small classes.

What is the reader to make of the vague statement, “not very closely realized,” when 
earlier it had been stated unequivocally that the distribution in question was a c2–
distribution? It is again one of those hidden corrections, this time tucked away in an 
example separated by several pages from the original statement.

Unlike the later correction regarding the formula for s
z
, Fisher kept the presentation 

of the c2–distribution unchanged throughout all the editions.

2.6  The Impact of Fisher’s SMRW

Fisher’s SMRW brought together the two testing strands whose starting points were 
discussed in Chap. 1. Both Pearson’s c2 and Student’s small-sample tests had been 
extensively developed by Fisher in the intervening years, and the book thus made a 
wealth of new methods available to laboratory workers. The result was a complete 
change in statistical methodology.

Although reviewers were slow in recognizing this revolutionary develop-
ment, the book made its way. The first edition of 1,050 copies was sold out after 
three years, and the second edition of 1,250 copies in another two. Every two to 
three years necessitated a new edition, which usually contained some improve-
ments and often additions. The size of the editions steadily increased and the 
eleventh edition of 1950 ran to 7,500 copies. The last edition, the fourteenth, 
was published posthumously in 1970 from notes Fisher had prepared before his 
death in 1962.

In 1972, to commemorate Fisher’s death ten years earlier, Oxford University 
Press brought out a one-volume edition of Fisher’s three statistical books, SMRW, 
“The Design of Experiments,” and “Statistical Methods and Scientific Inference,” 
with an introduction by Fisher’s coworker and later successor at Rothamsted, Frank 
Yates. Thus, SMRW is still in print today, 83 years later, a testament to its enduring 
value.

The enormous impact this book had on the field of statistics is indicated by a 
number of later developments, of which I shall mention two.

On 10 May 1950, Fisher received a letter from W. Allen Wallis of the University 
of Chicago5:

This year marks the twenty-fifth anniversary of the publication of Statistical Methods for 
Research Workers. The Journal of the American Statistical Association, of which I have 

5 Published in Bennett (1990).
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recently become editor, hopes to mark this event by one or two articles on the character and 
consequences of that volume. In that connection, I would appreciate your help on two 
points.

First, can you suggest two or three persons whom I might invite to prepare articles? … 
The two names that come first to my mind are Hotelling and Cochran.6…
Second, would it be possible for you to prepare a paper for us on the history of SMRW? …

Fisher replied that

I am sure that the choice of Hotelling and Cochran is an excellent one … . They are, how-
ever, both professional mathematicians, and the book was, of course, written not for math-
ematicians but for practitioners, who, insofar as they understand their fields of application, 
are good judges of the kind of statistics which aids them in their work. They constitute,  
I believe, the real and ultimate judges of such a book as mine, though, of course, the majority 
of them are rather inarticulate in mathematical circles.

I should suggest, therefore…that others from one or more fields of application should 
be invited to show what the book or the ideas which it was intended to express have done 
for their own subjects.

In the event, the March 1951 issue of the Journal carried four articles on SMRW. 
Their authors were Frank Yates from Rothamsted; the mathematician, statistician, 
and economist Harold Hotelling; the chemist Jack Youden; and the biologist Kenneth 
Mather. Together, they provided the comprehensive view that Fisher had hoped for. 
Wallis’s second suggestion of a paper by Fisher himself unfortunately was not 
realized.

A second example of the stature the book had attained can be found in a book 
published in 2005, “Landmark Writings in Western Mathematics, 1640–1940,” edited 
by Grattan-Guinness. Each of its 77 chapters is devoted to a pathbreaking book or 
paper in pure or applied mathematics. The subject of Chapter 67 by the Cambridge 
Statistician A. W. F. Edwards is Fisher’s SMRW.

The chapter begins with some details of the publication history of the book, 
including a list of its translations into French, German, Italian, Spanish, Japanese, 
and Russian. It then provides sections on “The Author” and the “Writing of Statistical 
Methods.” The third section summarizes the contents of the first edition, and this is 
followed with a fairly detailed account of the later editions. The final section (except 
for a brief epilog) deals with the impact of the book. It begins by stating

That Fisher is the father of modern statistics, no one will dispute… 
and then imagines how statistics would have developed if Fisher had not written this 
book.
The author concludes that

This would have made little difference to the dissemination of Fisher’s more theoretical 
work, which would have still formed the backbone of 20th-Century mathematical statistics; 
but the effect of that work on applied statistical practice would have been felt more slowly, 
particularly in biology, including genetics, medicine and the design of agricultural experi-
ments. If, as seems only just, one includes The Design of Experiments in the assessment, the 
impact of Statistical Methods throughout the biological sciences was profound and perma-
nent, and from biology the influence spread rapidly into the social sciences.

6 William Cochran.
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2.7  Snedecor’s “Statistical Methods”: (George Snedecor)

The dissemination of Fisher’s ideas set forth in his “Statistical Methods for Research 
Workers” was greatly furthered in an unexpected way, through a book with the 
shorter title, “Statistical Methods” (and the subtitle, “Applied to Experiments in 
Agriculture and Biology”), by a friend and admirer, George Snedecor (1881–1974).

Snedecor, who in 1933 had become the founding director of a statistical labora-
tory at Iowa State, in 1936 wrote to Fisher that he was working on an elementary 
text “designed to lead the beginner to an appreciation of your books.” Snedecor’s 
text came out in 1937 and covered roughly the same material as Fisher’s SMRW: 
c2-tests, the normal one- and two-sample problem, regression, correlation, and the 
analysis of variance and of covariance. In addition, it included some of the ideas of 
Fisher’s 1935 book on design of experiments, such as factorial experiments, ran-
domized blocks, Latin squares, and confounding.

What distinguished it from Fisher’s book was its style. The mode of presentation 
was much easier, much more user-friendly than Fisher’s very terse way of writing.

Much of Snedecor’s book is written as a conversation between author and reader. 
He constantly asks questions, points out to the reader how a new topic is related to 
ideas covered earlier, and illustrates each idea with numerous examples and exer-
cises. It is also helpful that the material is divided into bite-size sections of usually 
a page or two.

As an example of the style, consider the beginning of Section 2.2, entitled, “The 
experiment described. The mean.”

Imagine a newly discovered apple, attractive in appearance, delicious in flavor, having 
apparently all the qualities of success. It has been christened “King.” Only its yielding 
capacity in various localities is yet to be tested. The following procedure is decided upon. 
King is planted adjacent to Standard in 15 orchards scattered about the region suitable for 
their production. Years later, when the trees have matured, the yields are measured and 
recorded in Table 2.1.
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This table, it is pointed out, shows that King is superior in every orchard and that 
the average difference over the 15 orchards is 6 bushels.

After some preliminary material that makes up Chap. 2, “An experiment designed to 
compare measurements of individuals,” Chap. 3 discusses “Sampling from a normal 
distribution,” and in Sect. 3.8 introduces the t-distribution. In this material, the apple 
example is occasionally used to illustrate the concepts. It resumes its central role in 
the next section which brings the t-test and states:

At last we have reached the goal of this chapter. The aim is to test the significance of the 
mean difference, 6 bushels, between the yields of 15 pairs of apple trees.

The difference is found to be significant at the 1% level, and the section ends by 
asking:

How great is the difference between the two population yields? We do not know. The best 
estimate we have is 6 bushels. In addition, we have the convincing circumstantial evidence 
of significance that King is the better yielder. Most people are satisfied with that informa-
tion. If you are not, we shall try to give you something to think about in a section to follow 
(3.11).

It reads like a suspense story and keeps the reader interested.
The book was an enormous success. It has sold more than 200,000 copies in 

many editions, and was for some years one of the most cited books in the Science 
Citation Index. Fisher’s own books were too difficult for mass appeal. As Fisher’s 
daughter Joan Fisher Box wrote in the biography of her father (p. 313), “It was 
George W. Snedecor … who was to act as midwife in delivering the new statistics 
in the United States”.
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3.1  Start of the Collaboration

How the Neyman-Pearson collaboration came about was told in Sects. 1.1 and 1.4. 
We are lucky to have several sources that enable us to follow the development of 
their joint work in some detail. They are a paper by Pearson (1966), “The Neyman-
Pearson Story,” Neyman’s account reported in Constance Reid’s (1982) Neyman 
biography, and Neyman’s letters to Pearson.

The first step was Pearson’s conversation in the early fall of 1926. Concerning it, 
Pearson (1966) recounts that after receiving Gosset’s letter of 11 May 1926,

From then on a number of new ideas must have begun to take shape. The possibility of getting 
a mathematical entry into the problem by specifying a class of alternative hypotheses 
which should be accepted as “admissible” for formal treatment; the difference between 
what we later distinguished as “simple” and “composite” hypotheses; the “rejection region” 
in the sample space; the “two sources of error.” These were points which we must have 
discussed during the autumn of 1926.

Pearson continues,

It was still necessary to find a principle for determining the choice among possible contours 
in the sample space in such a way that the hypothesis tested became “less likely” and alter-
natives “more likely” as a sample point moved outward across them. From rough notes, it 
seems that the idea of using the likelihood ratio criterion as a method of determining these 
contours took form in November 1926.

It was then that Pearson wrote up some notes on these ideas and sent them to Neyman. 
While these notes and Pearson’s letters to Neyman have not survived, Neyman’s letters, 
beginning with his reply to Pearson’s notes, were preserved by Pearson, and a copy 
brought to California by Constance Reid for use in her book on Neyman.1

Chapter 3
The Neyman-Pearson Theory

1 Neyman’s letters are now in the Manuscripts Collection of the Bancroft Library, University of 
California at Berkeley: Constance Reid Research Materials, BANC MSS 2008/250, Box 1, Folders 
# 1–2, 1–3, 1–9.
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Neyman’s reaction to Pearson’s communication, dated 9 December 1926, shows 
a complete lack of understanding. He begins his letter by stating:

I think to have the possibility of testing it is necessary to adopt a principle such as Student’s, 
but it seems to me also that this principle is equivalent to the principle leading to inverse 
probabilities but it must be generalized, and I think we must have curage2 enough to adopt 
this principle, because without it every test seems to be impossible.

And a few sentences later, referring to Pearson’s likelihood ratio test for the mean 
of a normal distribution, he comments:

What you have done can be expressed in words: wishing to test the probability of hypothesis 
A we have to assume that all hypotheses are a priori equally probable and to calculate the 
probability a posteriori of A.

It is clear from this letter and Pearson’s recollections that the notes must have 
included the principal ideas underlying what was to be the first joint paper: consid-
eration of the alternatives (suggested by Gosset), the two kinds of error, the sample 
space, rejection regions, and the likelihood ratio test (based on Fisher’s maximum 
likelihood estimate).

Of these, the representation of the data as a point in an n-dimenstional space was 
really not new since Fisher had used it with great success in the derivation of his 
small-sample distributions. However, Fisher had applied this idea only in specific 
situations. In that sense, Pearson’s quite general, abstract formulation was an inno-
vation. In fact, Neyman had considerable difficulty with this representation. In his 
fourth letter (of January 5, 1927), he objected:

there is some inconvenience in considering a sample as equivalent to the point of the 
n-dimensional space. The observation of a single point on the surface S x

i
2 = c2 if c2 is 

reasonable, means nothing astonishing, but if this point has the coordinates x
1
 = x

2
 = … = x

n
 

and if n is considerable – it means certainly some thing, which escapes when we consider 
only points.

And on the same issue, two days later:

It seems to me that the idea of the fundamental space and the identity between the sample 
and a single point, which is very like a single observation is rather unfortunate.

However, after this, he appears to have accepted the geometric representation 
and, starting with the next letter of January 25, uses it freely. In addition, as Pearson 
recalls,

It was not long, I think, before Jerzy accepted the utility of the [likelihood ratio] principle, 
but in our first joint paper (1928) we agreed to keep the door open by tackling problems in 
a variety of alternative ways, one of which was based on an inverse probability approach.

2 At the time, Neyman still had trouble with English, and here and in later quotes I retain his spelling 
even when it is incorrect.
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3.2  Likelihood Ratio Tests

The first joint paper of Neyman and Pearson, “On the use and interpretation of 
certain test criteria,” appeared in two parts of 66 and 32 pages, respectively, in the 
1928 volume of Biometrika.

Part I begins with a general discussion of the problem of testing the hypothesis A 
“that the population from which the sample S has been drawn is that specified, namely 
P.” Then it mentions “two distinct methods of approach, one to start from the popula-
tion P, and to ask what is the probability that a sample such as S has been drawn from 
it, and the other the inverse method of starting from S and seeking the probability that 
P is the population sampled.” Next, the necessity of considering alternatives to P is 
mentioned and the two approaches are compared, with the conclusion:

the inverse method may be considered by some the more logical of the two; we shall consider 
first, however, the other solution.

The introduction continues by mentioning the representation of S “by a point in a 
hyperspace whose dimension will depend upon the particular problem considered; 
and to associate the criteria for acceptance or rejection with a system of contours 
in this space, so chosen that in moving out from contour to contour hypothesis A 
becomes less and less probable.”

This sounds like inverse probability, but the statement is modified by a somewhat 
cryptic footnote:

Here and later the term “probability” used in connection with hypothesis A must be taken in a 
very wide sense. It cannot necessarily be described by a single numerical measure of inverse 
probability; as the hypothesis becomes less “probable,” our confidence in it decreases, and the 
reason for this lies in the meaning of the particular contour system that has been chosen.

Finally, a last topic is introduced: the two kinds of error.

 (1) Sometimes, when hypothesis A is rejected, S will in fact have been drawn from P.
(2) More often, in accepting hypothesis A, S will really have been drawn from 

[some alternative population] P ¢.

After the introduction comes a chapter in which the general ideas discussed so 
far are applied to the problem of testing the mean of a normal distribution. The 
authors consider two cases:

 (A) The problem of testing that the mean and standard deviation are both known 
against the alternative that both are unknown.

 (B) Testing that the mean is known and the standard deviation unknown against the 
alternative that both are unknown.

They then introduce the “criterion of likelihood” l, but only for the case that the 
hypothesis completely specifies the distribution P:

 

Likelihood of 
,

Likelihood of (max)

P
l

P
=

¢  
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where P’ denotes any alternative to P. This is followed by deriving the l-test for 
hypothesis A, of which the authors write:

Without claiming that this method is necessarily the “best” to adopt, we suggest that the use 
of this contour system…provides at any rate one clearly defined method of discriminating 
between samples for which hypothesis A is more probable and those for which it is less 
probable (sic!). In the appendix they provide tables for carrying out the test, for sample 
sizes 3 to 50.

Having completed their discussion of hypothesis A, the authors next turn to hypoth-
esis B concerning the subuniverse of normal populations, M(P), with known means 
a and varying standard deviations. However, here they run into a difficulty:

B is really a multiple hypothesis. It only becomes precise upon definition of the manner in 
which s is distributed, that is to say, upon defining the a priori probability distribution of s.

They then discuss the difficulty of specifying such a prior distribution, and conclude 
that “under such conditions the criterion of likelihood will probably be of service. – 
Corresponding to any [sample point] S, we can find the population P out of M(P) for 
which the likelihood is a maximum.” They thus maximize the likelihood not only 
under the alternatives as proposed in their l-test but also under the hypothesis. The 
result is what they would later call the likelihood ratio test. For hypothesis B, they find 
it to coincide with Student’s t-test.

This treatment of the problem is followed by two others, of which we shall only 
mention the one labeled “solutions by the inverse method.” As the authors say:

The ordinary method of inverse probability consists in postulating some function f (a, s) to 
represent the probability a priori that the sampled population is P [i.e., the normal distribu-
tion with mean a and standard deviation s]….

However, they then draw back and state,

The difficulty with this procedure in any practical problem lies in the fact that it is almost 
impossible to express f in exact terms. We prefer therefore to follow a line of argument 
which, while really equivalent to the above with f assumed constant, makes use of the 
principle of likelihood rather than the somewhat vague concept of a posteriori probability.

Formally, the likelihood and the density with constant prior for (a, s) are of course 
equal, so the difference is just a matter of interpretation. However, the likelihood 
interpretation runs into its own difficulty:

Likelihood as defined by Fisher is a quantity which cannot be integrated. With this in the 
strict sense we agree…

They integrate anyway, since without this they cannot calculate the probabilities of 
interest. The resulting procedure is exactly the one a statistician would use who 
believed in the constant prior density, but the authors refuse to admit that this is what 
they are doing. Instead, they give it a rather convoluted likelihood interpretation 
which contradicts the heading of the section: “Solutions by the inverse method.”

This rather strange presentation reflects, I believe, a basic disagreement between 
the two authors. Pearson thought that in the likelihood ratio test, he had found a 
generally satisfactory approach to the testing problem. On the other hand, Neyman, 
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up to this time, had not abandoned his belief in the inverse method, an approach 
with which Pearson (perhaps for political reasons) did not want to be identified. The 
attempt to reconcile these different points of view resulted in a confused and 
confusing account.

After considering a number of examples, the authors tackle the normal two-
sample problem. They mention a number of possible tests, but then settle on their 
own procedure:

We may approach the problem by making use of the principle of likelihood and reaching 
the test given by Fisher. Suppose that we have reason to believe that two samples have been 
drawn from normal populations with the same standard deviation s, but that it is necessary 
to compare the relative probability of two hypotheses (1) that the samples come from identi-
cal populations with mean a, and (2) that while identical as to variability, these are two 
different means a

1
 and a

2
.

They then derive the likelihood ratio test by maximizing the likelihood both under 
(1) and (2), and find that the resulting test is a t-test with n

1
 + n

2
 – 1 degrees of freedom.

Two comments on this passage may be in order: (i) although the authors quote 
Fisher, they deviate from his approach (discussed above in Sect. 2.3) by assuming 
the two standard deviations to be equal. This is a consequence of their need to 
clearly state the alternatives; and (ii) they still speak of the relative probability of the 
two hypotheses, contrary to what they are in fact doing.

The remainder of Part I of this first joint paper extends the likelihood ratio test 
and the authors’ interpretation of the inverse method from the normal to rectan-
gular and exponential distributions. A conclusion section briefly discusses the 
problem of the robustness of the tests against deviations from the assumed distri-
butional form.

Part II of the paper opens with a section entitled, “An extension of the definition 
of likelihood.” It defines the concepts of simple and composite hypothesis, and then 
extends the original definition of likelihood ratio, which assumed the hypothesis to 
be simple, to the composite case as the ratio of the maximum of the likelihood under 
the hypothesis to that under the alternatives. This is followed by a reminder that in 
Part I this ratio had been obtained for the normal case and found to be Student’s t.

Regarding this extended definition, the authors comment:

The value of this criterion in the case of testing composite hypotheses will perhaps be 
questioned. It may be argued that it is impossible to estimate the probability of such a 
hypothesis without a knowledge of the relative a priori probabilities of the constituent 
simple hypotheses. But in general it is quite impossible even to attempt to express our a 
priori knowledge in exact terms.

They conclude that,

we are inclined to think that this ratio of maximum chances or frequencies of occurrence 
provides perhaps the best numerical measure that can be found under the circumstances to 
guide our judgment.

The rest of Part II is concerned with testing goodness of fit for a multinomial distri-
bution. The authors derive the likelihood ratio test and show that when higher-order 
terms are neglected it agrees with Pearson’s c2 test.



34 3 The Neyman-Pearson Theory

This long two-part paper is a great achievement. It introduces the consideration 
of alternatives, the two kinds of error, and the distinction between simple and com-
posite hypotheses. In addition, of course, it proposes the likelihood ratio test. This 
test is intuitively appealing, and Neyman and Pearson show that in a number of 
important cases it leads to very satisfactory solutions. It has become the standard 
approach to new testing problems.

3.3  A New Approach

Let us now return to the Neyman-Pearson correspondence. From the first letter in 
1926 through January 1931, these letters were primarily concerned with likelihood 
ratio tests and the resulting publications, the 1928 paper and a number of follow-up 
papers published between 1929 and 1931.

Both Neyman and Pearson believed that this approach was the right answer. 
However, while Pearson felt that its intuitive appeal, bolstered by its success in the 
situations in which they had examined it, was enough of a justification, Neyman 
thought that something was lacking. If these tests were really the best, it seemed to 
him, it should be possible to prove this.

The first time he raised this issue was in a letter to Pearson of 1 February 1930. 
After some news about his living arrangements and the proposal of a joint book, he 
breaks in with:

I have now a rather exciting point concerning the two tests z and t3 (supposing I am not 
wrong and they are both normally distributed). It seems that we can have an experimental 
proof [his underlining, here and below] that the principle of likelihood “est fait pour quelque 
chose.”

 (1) If the two sampled populations have the common variance and we test the hypothesis 
that a

1
 = a

2
, the appropriate test is the t-test.

 (2) If we do not know anything about the variances, the appropriate test of the same 
hypothesis is the z-test.

As both of them control the errors of rejecting a true hypothesis, the difference in results 
of their application will consist in different frequency of accepting a false one. And this can 
be experimentally proved.

He next describes the sampling experiment he proposes, and concludes the para-
graph with: “In any case, the sampling experiment is interesting, isn’t it?”

And then he adds an afterthought which does not really follow from what has 
gone before:

If we show that the frequency of accepting a false hypothesis is minimum when we use l 
tests, I think it will be quite a thing!”

3  These are the tests of hypotheses A and B of their 1928 paper, discussed in Section 3.2 above.



353.3 A New Approach

What happened next Neyman described to Constance Reid (Reid, 1982, p. 92), who 
reports as follows:

The first step…came suddenly and unexpectedly in a moment which Neyman has never 
forgotten. Late one evening in the winter of 1930, he was pondering the difficulty in his 
little office. Everyone else had gone home, the building was locked. He was supposed to 
go to a movie with Lola [his wife] and some of their friends, and about eight o’clock he 
heard them outside calling for him to come. It was at that moment that he suddenly 
understood.

Neyman’s letter to Pearson (dated 20 February 1930) concerning this insight is 
more prosaic. He writes:

At present I am working on a variation calculus problem connected with the likelihood 
method. The results already obtained are a vigorous argument in favour of the likeli-
hood method. I considerably forgot the variation calculus and until the present time I 
have only results for samples of two. But in all cases considered I have found the 
following.

We shall give this statement in full since it is the first formulation of what was to 
become an elaborate and influential theory of hypothesis testing.

We test a simple hypothesis H concerning the value of some character a = a
0
, and wish to 

find a contour j (x
1
, … , x

n
) = c such that

 (1) the probability P(j
0
a) of a sample point lying inside the contour (which probability is 

determined by the hypothesis H) is equal

 ( )0 ,P εj =a  

 where e is a certain fixed value, say 0.01. (This is for controlling the errors in rejecting a true 
hypothesis) and

 (2) that the probability P(j
1
a) determined by some other hypothesis H¢ that a = a

1
 ¹ a

0
 of 

sample lying inside the same contour be maximum.
Using such contours and rejecting H when S [the sample point] is inside the 

 contour, we are sure that the true hypothesis is rejected with a frequency less than e, 
and that if H (the hypothesis tested) is false and the true hypothesis is, say, H¢, then 
most often the observed sample will be inside j = const. and hence the hypothesis will 
be rejected.

I feel you start to be angry as you think I am attacking the likelihood method! Be quiet! 
In all cases I have considered the j = const. contours are the l contours!

In the next letter, dated March 8, Neyman suggests that he and Egon must “fix a 
certain plan, as we have lot of problems already started and then left in the wood.” 
He lists several such problems, among them:

to finish what I have started to do with the variation calculus. You will understand it in 
a moment. To reduce for a given level the errors of rejecting a true hypothesis, we may 
use any test. Now we want to find a test which would 1) reduce the probability of reject-
ing a true hypothesis to the level £ e and 2) such that the probability of accepting a false 
hypothesis should be minimum. – We find that if such a test exists, then it is the l-test. 
I am now shure [sic] that in a few days I shall be ready. This will show that the “l prin-
ciple” is not only a principle but that there are arguments to prove that it is really “the 
best test.”
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He did indeed complete the argument soon thereafter, and on March 24 sent 
Pearson the proof of what now is known as the Neyman-Pearson Fundamental 
Lemma. However, instead of continuing with the correspondence, we shall now turn 
to the paper in which the authors present their account of these results.

3.4  The Core Results

The paper in question, published in 1933, was entitled, “On the Problem of the Most 
Efficient Tests of Statistical Hypotheses.” After a brief historical introduction, the 
authors announce a very novel point of view: “Without hoping to know whether 
each separate hypothesis is true or false,” they write,

we may search for rules to govern our behavior with regard to them, in following which we 
insure that, in the long run of experience, we shall not be too often wrong.

This behavioral philosophy later became very influential. It also led to a rancorous 
controversy with Fisher, which we shall consider in Sect. 4.5.

Toward the end of the introduction, the authors comment on the relation of the 
present approach to their earlier work. They note that,

In earlier papers we have suggested that the criterion appropriate for testing a given 
hypothesis could be obtained by applying the principle of likelihood. This principle was 
put forward on intuitive grounds after the consideration of a variety of simple cases. It was 
subsequently found to link together a great number of statistical tests already in use, 
besides suggesting certain new methods of attack. It was clear, however, in using it that we 
were still handling a tool not fully understood, and it is the purpose of the present investi-
gation to widen, and we believe simplify, certain of the conceptions previously 
introduced.

The next section is called, “Outline of a General Theory,” and defines a number of 
new concepts, among them simple and composite hypotheses, alternatives to the 
hypothesis, and the two kinds of error. The authors point out that “it is very easy to 
control errors of the first kind,” that is, the probability of false rejection, and then 
formulate the basic criterion for selecting the best rejection region w.

This criterion is [their italics]:

To pick out from all possible w
0
 regions for which P

0
 (w) = e, that region, w

0
, for which  

P
1
(w

0
) is a maximum…; this region (or regions if more than one satisfy the condition) we 

shall term the Best Critical Region for H
0
 with regard to H

1
.

A last important comment concerns the fact that

the best critical region with regard to H
1
 will not [necessarily] be the best critical region 

with regard to H
2
.

“But it will be shown below, “the authors write,

that in certain problems there is a common family of best critical regions for H
0
 with regard 

to the whole class of admissible alternative hypotheses. In these problems we have found 
that the regions are also those given by using the principle of likelihood, although a general 
proof of this result has not so far been obtained when H

0
 is composite.
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In the problems where there is a different best critical region for H
0
 with regard to each 

of the alternatives…, some further principle must be introduced. …We have found here that 
the region picked out by the likelihood method is the envelope of the best critical regions 
with regard to the individual hypotheses of the set. This region appears to satisfy our intui-
tive requirements for a good critical region, but we are not clear that it has the unique status 
of the common best critical region of the former case.

This is an enormously ambitious program, a good part of which is carried out in the 
remainder of the paper. But the importance of the paper goes beyond the specific 
results obtained here. For the first time it states the aim of statistical theory to be 
the systematic search for optimal procedures. Much of the theory developed during the 
next decades was directed toward this end.

After outlining the general theory, the paper in the next section deals with the 
case of simple hypotheses and brings the statement and proof of the basic result, 
now known as the Neyman-Pearson Fundamental Lemma. It states that for testing a 
simple hypothesis against a simple alternative, the test that at a given level maxi-
mizes the probability of rejection is the likelihood ratio test at that level.

The result is illustrated by a number of examples. In particular, it is shown that 
for testing the hypothesis that the mean of a normal distribution is a

0
 when the stan-

dard deviation is known, there exists a common best critical region against the alter-
natives a > a

0
 (namely to reject when the sample mean is too large) and a different 

best critical region against the alternatives a < a
0
. A corresponding result is seen to 

hold for testing of the standard deviation when a is known. The section concludes 
with consideration of the corresponding problems for rectangular distributions.

In the next section, the authors turn to the testing of composite hypotheses and 
here introduce a new condition. They mention that consideration must be given 
again to the two sources of error, and then state that,

In the first place it is evident that a necessary condition for a critical region, w, 
suitable for testing [a composite hypothesis] H

0
¢ is that

 o ( ) = constant = .P w e  

For every simple hypothesis [contained in H
0
¢]. …If this condition is satisfied, 

we shall speak of w as a region of “size” e, similar to W [the sample space] with 
regard to the [nuisance parameters].

The remainder of the section is concerned with characterizing the totality of similar 
regions and the one that maximizes the rejection probability against a particular alterna-
tive. These derivations have since then been simplified and will not be discussed here.

The results are illustrated in a number of examples. In particular, it is shown that 
for testing the mean of a normal distribution when the variance is unknown, Student’s 
t-test is the best similar region against one-sided alternatives. An analogous result is 
obtained for testing the variance when the mean is unknown. Finally, these results are 
extended to the two-sample case.4

4 It should be noted that the terms “power,” “uniformly more powerful,” and “uniformly most pow-
erful” are not used in this paper. They were only introduced in the author’s following paper, also of 
1933.



38 3 The Neyman-Pearson Theory

At this point, there is still a large gap in their work: what to do if there is no common 
best critical region? Neyman raises the question in a letter of 17 August 1931. 
He labels this portion of his letter “A” and writes:

I am considering the question when there is no best critical region with regard to a given 
class of admissible hypotheses. What region should we then choose? I take the most simple 
case when the whole set of admissible hypotheses can be divided into two classes such that 
to each of them corresponds a “best critical region.”

He then considers the problem of testing that the variance of a normal distribution 
s2 is 1 when the mean is 0, and points out that against the alternatives s 2 > 1, there 
exists a best critical region

 
2 2

i 1 ,>xÂ c  

while against alternatives s 2 < 1, it is of the form

 
2 2

i 2 .<xÂ c  

But, if the hypothesis is to be tested against the whole set of alternatives s 2 ¹ 1, 
how should the limits c

1
2 and c

2
2 be determined, he wonders. As one possibility, he 

mentions to choose these constants so that the probability in each tail is e/2, and 
then he breaks off and excitedly calls out:

I think I have got the point! [His underlining.] Suppose we have to test a simple hypothesis 
H

0
 with regard to a class of alternatives C with no common B. C. R. It would be no good to 

use a critical region w, having the following property: the class of alternatives contains a 
hypothesis, say H

1
, such that e

1
 [the probability of rejection under H

1
] is < e. In fact, doing 

so we shall accept H
0
 with larger frequency when it is false (and the true hypothesis is H

1
) 

than when it is true. …
Therefore, the good critical region w

0
 should be chosen in such a way that [the probability 

of rejection under H
1
 is ³ than that under H

0
].

He then determines c
1
2 and c

2
2 satisfying this condition for the problem A of testing 

s 2 = 1 and notes that it “gives the maximum likelihood solution.”
As a second problem, he considers testing the values of both mean a and the variance 

s 2 of a normal distribution, i.e., that a = 0, s = 1, and to his dismay he finds:

it seems that if we use l contours [i.e., the likelihood ratio test] to test the hypothesis H
0
:  

a = 0, s = 1, it shall accept it more often when a = 0, s = 1.1, say, than when H
0
 is true. With 

other words: the true hypothesis will be rejected more often than some of the false ones. … 
I should like to be wrong somewhere. If it is all correct, then the principle of maximum 
likelihood seems to lose its generality. Exceedingly interesting to know what are the condi-
tions of its applicability?

This new development was not published until 1936 in a paper entitled, “Contributions 
to the theory of testing statistical hypotheses.” By now the authors freely use the 
terms “power of a test,” “power function” and “uniformly most powerful test,” and 
they define a test to be unbiassed [sic] if its power against all admissible alternatives 
is ³ its value under the hypothesis. They hope that there might exist a uniformly 
most powerful unbiassed test but begin with the simpler problem of finding what 
they call an unbiassed critical region of type A, namely which maximizes the 
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power locally. Since the power function of an unbiased test of the hypothesis q = q
0
 

has a minimum at q
0
 and therefore a first derivative = 0, the type A test is obtained 

by maximizing the second derivative at q
0
.

The authors find a general method for determining the type A tests and illustrate 
it with the testing of the normal mean, and of the normal variance when the other 
parameter is known, against two-sided alternatives.

Finally, they define a test as being of type A
1
 if the derivative of its power function 

is zero at q = q
0
 and, subject to this condition, the test maximizes the power against 

all admissible alternatives. They point out that this property is close to but not 
identical with being uniformly most powerful unbiased, and show that the type A 
region for testing the variance of a normal distribution is also of type A

1
.

Two years later (1938), this paper was followed by a continuation containing 
parts II and III under the same title. It was to be Neyman’s and Pearson’s last joint 
paper. In part II, they continued the investigation of the existence and structure of 
type A and A

1
 tests, and in part III considered testing hypotheses specifying more 

than one parameter. This latter investigation, begun in a 1937 paper by Neyman, 
introduced tests of type C, which again concerned unbiased tests satisfying certain 
local desiderata.

Since Neyman and Pearson introduced tests of type A and C, one naturally won-
ders whether they also had a concept labeled type B. Such tests were in fact intro-
duced, but in a 1935 paper of which Neyman was the sole author. It extended the 
type A property to situations in which H: q = q

0
 was being tested in the presence of 

additional parameters.
However, neither Neyman alone nor the two authors jointly extended this typol-

ogy to type B
1
 tests, i.e., uniformly most powerful unbiased tests of H:q = q

0
 in the 

presence of nuisance parameters. This extension was carried out by Henry Scheffé 
in 1942. Finally, type C

1
 tests were never mentioned for the simple reason that 

uniformly most powerful unbiased tests of hypotheses specifying more than one 
parameter do not exist. As Neyman wrote in one of his late letters, such hypotheses 
require a new principle. Such a principle – the restriction to invariant tests – was later 
introduced by other authors, but that is no longer part of the Neyman-Pearson story.

3.5  The Process of Joint Work

So far this chapter has been concerned with the ideas and results of Neyman’s and 
Pearson’s joint work. In the present section, we shall consider the circumstances and 
the process of this collaboration, which started in 1926 and ended in 1938 when 
Neyman left England for California. It resulted in a total of ten papers, the most 
important five of which were discussed in the preceding sections.

The collaboration falls into two quite distinct parts. In the early stages, the impor-
tant ideas, including in particular that of the likelihood ratio principle, all come from 
Pearson. In fact, Neyman frequency misunderstands them, and continually tries to 
interpret them in terms of inverse probability.
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On the other hand, Pearson is sold on the likelihood ratio principle, which is 
intuitively appealing and which seems to give reasonable solutions in the cases on 
which they try it out. But for Neyman, as he is gradually catching on, intuitive 
appeal is not enough. If the principle is really as good as it appears to be, there ought 
to be logical justification.

And then one day in early 1930, he sees the light. Since there are two sources of 
error, one of which is being controlled, the best test is the one minimizing the 
other one. And from then on, it is Neyman who has the new ideas and Pearson is 
the reluctant follower. Neyman formulates, and shortly thereafter proves, the 
Fundamental Lemma and realizes that in some special cases there exist what they 
later call uniformly most powerful tests. These turn out to coincide with the likeli-
hood ratio tests.

These concepts and results were written up in the paper, “Most efficient tests…,” 
but its publication caused the authors some difficulties. They seemed to have ruled 
out Biometrika, presumably because Karl Pearson had little sympathy or interest in 
small-sample theory. Neyman then suggested publishing it in Poland, but this would 
have condemned it to obscurity. Eventually, they decided to submit it to the 
Philosophical Transactions of the Royal Society, but with considerable doubt as to 
how it would be received. However, the Transactions did accept the paper and it 
appeared in 1933.

The year 1933 also saw the retirement of Karl Pearson. His position was then 
split: Egon was appointed to succeed him as Head of the Department of Statistics, 
while Fisher became Director of the Galton Laboratory. This affected Egon’s work 
with Neyman in two ways. On the one hand, his new administrative duties left the 
younger Pearson much less time for research. On the other, the following year he 
was able to offer Neyman a position in his department.

Up to that time, after Neyman’s two-year fellowship during 1925–1927, first in 
London and then in Paris, Neyman had held a number of different positions in 
Poland and much of his energy had been devoted to making enough money to sup-
port himself and his wife Lola. In June 1932, he wrote to Egon:

I simply cannot work. The crisis and the struggle for existence [sic] takes all my time and 
energy. Besides, I am not sure that next year I shall not [be] obliged to take some job, I do 
not know where – in trade perhaps, selling coal or handkerchiefs.

With a regular position in England, this was all changed.
The difficulty of finding a suitable place to publish their 1933 paper, and Neyman’s 

becoming a member of Egon’s department, served to revive an old proposal of 
Neyman’s. In a letter of December 1929, after suggesting that their paper be 
published in the Proceedings of the Polish Academy in Krakow, he had added:

I have also another idea, but I do not want to express it in a definite form unless I shall find 
a firm support from you. In Poland every scientific laboratory is trying to publish its own if 
not journal then something of that sort – memoirs, etc. I think that it is not a good idea 
because there are so many different journals treating the same questions and that very many 
even valuable papers disappear – you cannot have or even know about all these journals.

With mathematical statistics of course it is a quite different thing, as there are only very 
few journals consecrated to this science. Should I try? It could be not a regular edition – well, 
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I think that perhaps some time – not at present – we want a propaganda – thus a journal having 
readers – all I have written about it is rather nonsense. Shall we accept the Academy?

The idea of a journal of their own was revived after the difficulties and uncertainties of 
the 1933 paper, and in 1936 led to a new publication:

Statistical Research Memoirs
Edited by
J. Neyman and E.S. Pearson
Volume I

It was published by the Department of Statistics, University of London, University 
College, and was dedicated to the memory of Karl Pearson, who had died earlier 
that year. The dedication read:

To the memory of our Professor
Karl Pearson
27 March 1857 – 27 April 1936
Founder of mathematical statistics, originator of its various applications, teacher and 
inspirer of innumerable research workers of many nations and races.

In the Foreword the editors explained:

It is widely felt that in spite of the existence of a large number of special problems for which 
perfect solutions exist, statistical theory in general in its present state is far from being 
completely satisfactory from the point of view of its accuracy. It is the ambition of the 
Department to contribute towards the establishment of a theory of statistics on a level of 
accuracy which is usual in other branches of mathematics.

The Foreword concludes with the statement that

The Statistical Research Memoirs will contain only papers prepared in the Department of 
Statistics; while the series is not strictly periodical, it is hoped that a volume of over 150 
pages will be issued about once a year.

The first volume ran to 161 pages and contained seven articles. The first of these was 
Part I of the “Contributions to the theory of testing statistical hypotheses,” dealing 
with type A and type A

1
 regions discussed in Sect. 3.4.

Parts II and III appeared in 1938 in the second volume of the Research Memoirs, 
which contained nine papers, including two by Pao-Lu Hsu and one by William 
Feller.

This second volume was also to be the last, and was in fact Neyman’s and 
Pearson’s last collaborative effort. In August 1938, Neyman left for California, and 
this marked the end of their joint work.

3.6  Retrospective

During the more-than-ten years of working together, the two authors’ relation grew 
to a close friendship. This development can be seen in the way Neyman signed his 
letters. During the first two years, he signed them with “yours sincerely” and later 
“yours ever, J. Neyman.”
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In February 1929, they switched to first names and Neyman addressed his letters 
to “Dear Egon” and signed them “yours ever, Jurek.” By the end of the year, Neyman 
signed off with “love from us both,” once even “love and hearty kisses,” and “yours 
‘very much’ ever.”

It thus may seem surprising that their collaboration did not survive their geo-
graphical separation. After all, during much of their early work Pearson had been in 
England and Neyman in Poland, and the collaboration was carried out mainly 
through correspondence. One circumstance that made collaboration more difficult 
this time was that Pearson had many administrative duties as head of his department 
and, since 1936, also as managing editor of Biometrika. But it turns out that there 
was a more basic reason, which Pearson himself spelled out in a letter to Neyman 
of 12 October 1976. This letter was in response to Neyman’s sending him the draft 
of a paper “Frequentist Probability and Frequentist Statistics,” a revised version of 
which was published in vol. 36 of Synthèse.

Pearson wrote:

I received your letter of 24th with your Synthèse paper, and was so delighted that I have 
started devouring it, although only received about five hours ago! Shall I briefly tell you 
why? Will comment in detail shortly, but this is a quick reaction. There is a tale or fable 
about us. [This and the following are underlined in the original.]

From 1926-36 we were working together in excited co-operation. My clumsily defined 
ideas, sharpened by your mathematical formulation, and we went on and on together, until 
by about 1936-37 we had solved between us what seemed the basic problems, and so found 
a statistical philosophy. But the time came when to find new mountains to scale, you were 
forced to tackle more and more mathematically complex problems – tests of “Type” A

1
 or 

B
2
 etc., etc., and I began to lose interest because I was always aiming at attacking types of 

problems with probability tools which seemed to get fairly simply into gear with the way 
which the human reason worked. And “Types” A

x
, B

y
, etc., etc., seemed to me stepping out 

of this field. Then you rightly went to the U.S. and war came. And I suppose we both turned 
our statistically trained minds to different kinds of jobs: bombs, A.A. shells and what not.

As we saw earlier, Pearson had initiated the collaboration by coopting Neyman into 
helping him with his program. Now he terminated it since he had “lost interest” in 
the direction Neyman was going. In fact, as we saw earlier, he had never really been 
fully sympathetic with Neyman’s optimality program, but would have happily 
stopped with the likelihood ratio principle and its intuitive appeal.

Pearson’s letter quoted above continues by recalling a visit by Neyman in 1950 to 
give a series of lectures to Pearson’s group. The lectures were a great disappointment 
to Pearson. He had asked Neyman to talk about “where, after war-time experience 
and years in Berkeley, you had got to from the joint foundation of 1926–1936.”

But instead, Neyman had talked about applied work he had been doing and of 
political turmoil at the University of California “so that,” Pearson wrote, “I, let alone 
my students, got no insight into what you were after all those years thinking about 
N and P.” What Pearson did not realize is that Neyman’s interests had also shifted 
and that in Berkeley he was no longer working on the N.P. theory.

The London visit had also been a disappointment to Neyman. As he reported to 
Constance Reid (1982, p. 223), “the ‘old resonance’ between [him and Egon] had 
seemed to be lacking.”
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Now, after Pearson’s receipt of Neyman’s Synthèse paper, this resonance seems 
to have been reestablished. As Pearson writes toward the end of his October letter:

Well now, this paper I have from you today seems to be providing just what I want, the pres-
ent form of the old J.N. who, though in different style, may have moved on to roughly where 
the old E.S.P. has moved!

The letter is followed by eight pages of notes in which Pearson comments on 
Neyman’s paper. The correspondence continues after Pearson receives a copy of the 
published version of the paper. Pearson thanks Neyman in a long letter of February 
12, 1978, in which he includes some rough notes that he had made after receiving 
Neyman’s first letter of 9 December 1926 discussed in Sect. 3.1 above. Neyman’s 
reply is not available but was answered by Pearson in another letter of March 10, 
1978. In this letter, Pearson reviews some of the work the authors did separately 
after their 1928 paper.

I shall here quote only the following comments on one of these papers by 
Neyman, which throws light on the attitudes of the two authors regarding the 
approach based on inverse probability. Pearson writes:

The eighth paper in your Early Statistical Papers5 series was of course the one you pre-
sented at the I.S.I. meeting in Warsaw. I have eight letters which you wrote to me during 
February and March 1929, trying to persuade me to put my name as a joint author. But you 
had introduced an a priori law of probability…, and I was not willing to start from this 
basis. True we had given the inverse probability as an alternative approach in our 1928 Part 
I paper, but I must in 1927-28 still have been ready to concede to your line of thought. 
However, by 1929 I had come down firmly to agree with Fisher that prior distributions 
should not be used, except in cases where they were based on real knowledge, e.g., in some 
Mendelian problems. You were disappointed, but accepted my decision; after all, the whole 
mathematical development in the paper was yours.

Eventually, Neyman too abandoned his interest in the inverse approach.
By 1935, he opens a paper, “Sur la vèrification de hypothèses statistiques com-

posées” with the sentence [in my translation of the original French]:

One knows that the problem of the verification of hypotheses has been treated since Thomas 
Bayes (1763). The solutions we obtained depended on probabilities a priori. Since these are 
generally unknown, one is obliged to make arbitrary hypotheses about them which make 
the results inapplicable to practical problems.

His conviction of the inapplicability of the inverse method had by then become a 
fundamental part of his statistical philosophy, from which he never wavered.

The 1928 and 1933 papers of Neyman and Pearson discussed in the present 
chapter, exerted enormous influence. The latter initiated the behavioral point of 
view and the associated optimization approach. It brought the Fundamental Lemma 
and exhibited its central role, and it provided a justification for nearly all the tests 
that Fisher had proposed on intuitive grounds.

5 The paper in question was entitled, “Contributions to the theory of certain test criteria,” and was 
reprinted in the volume, “A Selection of Early Statistical Papers of J. Neyman,” Univ. of California 
Press (1967).
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On the other hand, the applicability of the Neyman-Pearson optimality theory 
was severely limited. It turned out that optimum tests in their sense existed only if 
the underlying family of distributions was an exponential family (or, in later exten-
sions, a transformation family). For more complex problems, the earlier Neyman-
Pearson proposal of the likelihood ratio test offered a convenient and plausible 
solution. It continues even today to be the most commonly used approach.
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4.1  Fisher’s Early Reaction

The preceding two chapters describe the two stages of the founding of the field of 
hypothesis testing. The first stage consisted of Fisher’s development of a cohesive 
methodology of basic tests under the assumption of normality. It was followed 
by the Neyman-Pearson theory of optimal tests, which as its major application 
provided a justification of the tests Fisher had proposed on intuitive grounds. What, 
one wonders, was Fisher’s reaction to this new perspective.

Neyman approached Fisher about his and Pearson’s work on optimal tests in a 
letter of February 9, 1932 (published in Bennett (1990), p. 189):

… I do not know whether you remember what I said, when being in Harpenden in January 
1931, about our attempts to build the theory of “the best tests.” Now it is done more or less. 
It follows from the theory that the “Student’s” test, the “t-test” for two samples and some 
tests arising from the analysis of variance are the “best tests,” that is to say, that they guarantee 
the minimum frequency of errors both in rejecting a true hypothesis and in accepting a false 
one. Certainly they must be properly applied.

Presently Dr. Pearson is putting all the results in order. They will form a paper of considerable 
size. We would very much like to have them published in the Philosophical Transactions, 
but we do not know whether anybody will be willing to examine a large paper and eventually 
present it for being printed. The paper contains much of mathematics and not all the statisti-
cians will like it just because of this circumstance.

We think that the most proper critic are you, but we don’t know whether you will be 
inclined to spend your time reading the paper… .

To this appeal, Fisher replied on February 12:

I should be very much interested to see your paper on “the best tests,” as the whole question 
of tests of significance seems to me to be of immense philosophical importance, and the 
work you showed me was surely of great promise. It is quite probable that if the work is 
submitted to the Royal Society, I might be asked to act as referee, and in that case I shall 
certainly not refuse.

Fisher not only read the paper, but read it sufficiently carefully to find a small math-
ematical error (the omission of a condition required for the validity of a statement). 

Chapter 4
Fisher’s Dissent
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When the paper appeared in 1933, the omission was corrected, and a footnote 
acknowledged that, “We are indebted to Dr. R. A. Fisher – for kindly calling our 
attention to the fact that we had originally omitted to refer to this restriction.”

A year after this publication, Fisher published a remarkable paper, “Two new 
properties of mathematical likelihood,” which – in addition to other results – made 
an important contribution to the Neyman-Pearson theory.

The paper falls into two quite different parts. The first part is concerned with 
sufficient statistics, and derives the factorization criterion characterizing 
them. It also argues that the existence of a real-valued sufficient statistic implies 
that the underlying distributions form what is now known as a one-parameter expo-
nential family. (Rigorous statements and proofs by later authors confirmed that this 
claim is essentially correct).

Fisher then goes on to discuss the implications of these results for the Neyman-
Pearson theory. It is, I believe, the only time that he took this theory seriously and even 
used its terminology. He wrote:

The property that where a sufficient statistic exists, the likelihood, apart from a factor 
parameter to be estimated, is a function only of the parameter and the sufficient statistic, 
explains the principal result obtained by Neyman and Pearson in discussing the efficacy 
of tests of significance. Neyman and Pearson introduce the notion that any chosen test 
of a hypothesis H

0
 is more powerful than any other equivalent test, with regard to an 

alternative hypothesis H
1
, when it rejects H

0
 in a set of samples having an assigned 

aggregate frequency e when H
0
 is true, and the greatest possible aggregate frequency 

when H
1
 is true.

Fisher continues with a verbal statement of the Fundamental Lemma, and then 
reminds the reader:

The test of significance is termed uniformly most powerful with regard to a class of alternative 
hypotheses if this property [i.e., maximum power] holds with respect to all of them.

He shows that tests with this property require the existence of a real-valued sufficient 
statistic. And although he does not point this out, it now follows from his earlier 
results that uniformly most powerful tests exist only when the distributions constitute 
a one-parameter exponential family.

It is difficult from this discussion to assess how Fisher felt about the Neyman-
Pearson theory. The tone is neutral, uncommitted. On the one hand, it is not as positive 
as in his earlier letter to Neyman when he asserted that the work was of “great promise.” 
On the other hand, it is not as negative as, for example, in a 1951 letter to William 
Hick (Bennett 1990, p. 144), in which he referred to the same work as “that unnec-
essarily portentous approach to testing of significance represented by the Neyman and 
Pearson critical regions, etc.,” to which he adds, “In fact, I and my pupils throughout 
the world would never think of using them.”

It appears that Fisher’s 1934 paper was written just at the point at which his attitude 
was beginning to change.

The second part of the paper is not directly concerned with hypothesis testing 
(although it has important applications to that problem too), and will be mentioned 
here only briefly. This section is entitled, “A second class of parameters for which 
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estimation need involve no loss of information.” In the opening paragraph, this class 
is described as occurring when,

although the sets of observations which provide the same estimate differ in their likelihood 
functions, and therefore in the nature and quantity of the information they supply, yet when 
samples alike in the information they convey exist for all values of the estimate and occur 
with the same frequency for corresponding values of the parameter.

This definition is not easy to understand but becomes clear in light of the two 
examples discussed by Fisher: location families and location-scale families.

Fisher is considering situations that are invariant under a group of transformations.
The samples that are alike in the information they convey are sample points that 

can be transformed into each by a member of the group (i.e., lie on the same orbit) 
and the corresponding values of the parameter are the orbits under the group induced 
in the parameter space.

It is a striking example of Fisher’s genius that at this early stage he discovered the 
two situations, exponential and transformation families, which permit reduction of the 
data to a space of fixed low dimensions, independent of the sample size. These two situ-
ations later constituted the basis for optimality theories of both testing and estimation.

4.2  The Fourfold Table

Fisher disagreed with the Neyman-Pearson theory not only theoretically but his 
approach led to different tests in a number of cases, which caused much controversy. 
One of these concerned the testing for independence in a 2 × 2 table. Although his 
avowed purpose in writing “Statistical Methods” (SMRW) in 1925 was to provide 
users with an accessible account of the new small-sample methods for significance 
testing, it fell short of this goal in one important respect. For the problems of inde-
pendence and homogeneity in contingency tables, it presented the Pearsonian large-
sample c2 methods (although as corrected by Fisher). The reason was that at the time, 
he had not yet developed an exact small-sample approach for these problems.

Fisher filled this gap in the fourth edition (of 1932) of SMRW, with a short 
section on, “The exact treatment of a 2 × 2 table.” He considers the case of two 
independent series of respectively a + b and c + d binomial trials and the hypothesis 
that the success probability in the two series has a common value p. Since p is 
unknown, he restricts attention to samples in which not only the marginal totals 
a + b and c + d are fixed, but also the totals a + c and b + d. He now points out the 
crucial fact that the conditional probability of a sample (a, b, c, d) given these fixed 
marginal totals is independent of p and is given in fact by

 + + + +( )!( )!( )!( )!/ [ ! ! ! ! !]a b c d a c b d n a b c d  

where n a b c d= + + + . This known distribution can then be used as a basis for a 
test, which has been named Fisher’s exact test. (The test was about simultaneously 
proposed also by Irwin (1935) and Yates (1934). The latter, however, acknowledges 
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that the idea of carrying out the test conditionally on the marginal totals was suggested 
to him by Fisher).

Fisher returns to the problem in Example 1 of a paper, “The logic of inductive 
inference” (1935). He motivates the restriction to the conditional distribution by the 
following argument:

To the many methods of treatment hitherto suggested for the 2 × 2 table, the concept of 
ancillary information [introduced by Fisher in 1925 [42] suggests this new one. Let us blot 
out the contents of the table, leaving only the marginal frequencies. If it be admitted that 
these marginal frequencies by themselves supply no information1 on the point at issue, 
namely, as to the proportionality of the frequencies in the body of the table, we may recognize 
the information they supply as wholly ancillary; and therefore recognize that we are concerned 
only with the relative probabilities of occurrence of the different ways in which the table 
can be filled in, subject to these marginal frequencies… .

Not everyone agreed with Fisher’s conditional approach. For example, George 
Barnard proposed an alternative unconditional test in which the level was controlled 
by considering the maximum probability of an outcome, maximized with respect to 
the unknown common value under the hypothesis. (Barnard sent Fisher a copy in 
1945 (Bennett 1990, pp. 2–4). See also Barnard 1947.) The paper claimed that,

Other things being equal, the “power” of a test, in the sense of Neyman and Pearson, will 
increase with the “volume” of the rejection region chosen. In this sense we can say, roughly, 
that the maximum condition [i.e., Barnard’s test] secures that our test should be as powerful 
as possible, consistent with validity [i.e., control of the level].

In his reply of the same year, Fisher refers “to the case considered by Barnard [this 
was actually not in Barnard’s paper; see Morris De Groot’s 1988 interview with 
Barnard], in which, using three experimental and three control animals, the experi-
mental animals all die and the control animals all survive.” Fisher notes that there 
are only four tables with the same marginals and their conditional probabilities “are 
in the ratio 1:9:9:1; or, in other words, the probability of obtaining the most successful 
outcome by chance is always 1 in 20.”

He then points out that with repeated sampling, outcomes with other marginals 
“will often occur. If it were legitimate to judge the level of significance from 
the proportion of judgments in the whole series of ‘repeated sampling from the 
same population’ [i.e., unconditionally], these cases would be brought in to inflate 
the denominator.” He shows that the maximum probability of the most successful 
outcome is then 1/64 rather than 1/20. At the 5% level, it would then be possible to 
include additional points in the rejection region and thereby increase the power of 
the test. However, Fisher argues:

In my view, the notion of defining the level of significance by “repeated sampling of the same 
population” is misleading in the theory of small samples just because it allows of the uncritical 
inclusion in the denominator of material irrelevant to a critical judgment of what has been 
observed. In 2 of the 64 cases enumerated above, all animals die or all survive. The fact that such 
an unhelpful outcome as these might occur, or must occur with a certain probability, is surely no 
reason for enhancing our judgment of significance in cases where it has not occurred… .

1 This statement is in fact not completely true, though very nearly so. See Plackett (1977).
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Fisher repeats this explanation with only minor changes in a paper of 1948 
[222] and again in his book, “Statistical Methods and Scientific Inference” (1956).

Let us now consider the same problem from a Neyman-Pearson point of view. 
If a test is performed at a conditional level a for all values of the conditioning 
variables, its level also will be a unconditionally. However, because of the discrete-
ness of the conditional distribution in the case of the fourfold table, the conditional 
level of Fisher’s exact test will vary with a, although it will never exceed a. 
The resulting unconditional test will be conservative and not have the property of 
similarity. It was pointed out by K. D. Tocher (1950) that this difficulty could be 
overcome as follows. Consider all the tables having a given set of marginals and 
form a conditional critical region by including them, one by one, according to 
their desirability for rejection of the hypothesis. Continue this process until a 
level a

−
 < a is reached such that inclusion of the next table would result in a level 

a
+
 > a. Instead of definitely including this last table, include it only with (known) 

probability (a−a
−
)/(a

+
−a

−
) and exclude it with probability (a

+
−a)/(a

+
−a

−
). The resulting 

conditional test will have exact level a. It this is done for every possible set of fixed 
marginals, the resulting unconditional test will then have the property of similarity. 
Tocher proved that among all similar tests of level a, the test so constructed is 
uniformly most powerful.

The difficulty with Tocher’s test is that the extraneous randomization involved in 
splitting the last critical table is unacceptable to most statisticians.

Since no reasonable similar test exists, the solution from a Neyman-Pearson 
point of view is to find a test that is close to being similar by balancing conditional 
levels that are sometimes smaller and sometimes larger than the nominal level. 
A large number of such tests have been proposed, and their performance investi-
gated. An excellent account of these proposals is provided by Upton (1982).

4.3  The Behrens-Fisher Problem

The Neyman-Pearson theory was successful in showing that the t-, c2- and F-tests 
for normal means and variances are uniformly most powerful against one-sided 
alternatives among all similar regions. There was, however, one important excep-
tion: The theory was unable to find a reasonable similar region for the problem of 
testing the equality of two normal means when nothing was known about the 
 corresponding two variances. This was another case in which Fisher proposed a 
solution that was unacceptable from a Neyman-Pearson point of view.

The problem (now called the Behrens-Fisher problem) was considered by Fisher 
in 1935 [125]. The paper provided an exposition of his theory of fiducial inference 
which he had first put forward in 1930 [84]. The illustrations included a fiducial 
treatment of the Behrens-Fisher problem.

We shall discuss fiducial inference in Chap. 6, but here briefly sketch Fisher’s 
proposal for testing the difference m ¢−m of two normal means with both variances 
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unknown. Considering a sample of n from the first distribution, Fisher points 
out that

 ,x st= +m  

where x is the sample mean, s2 the usual estimate of the variance, and t has Student’s 
t-distribution with n−1 degrees of freedom. Similarly, for the second sample

 ,x s t′ = ′ + ′ ′m  

where t¢ is distributed independently of t according to Student’s distribution with 
n¢−1 degrees of freedom. Hence

 ( ) ( )x x s t st′ − − ′ − = ′ ′ −m m  (*)

and Fisher writes, “Since s¢ and s are known, the quantity represented on the right 
has a known distribution, though not one that has been fully tabled.” [The distribution 
which was first suggested by Behrens (1929) has since been extensively tabled. See, 
for example, Johnson et al. (1995).]

Considering x , ′x , s and s¢ as fixed known constants, this fiducial distribution 
of m¢−m can now be used to obtain a fiducial test of the hypothesis H: m¢ = m. On the 
other hand, a frequency point of view considers m, m¢, s, and s¢ as unknown 
constants and x  and ′x  as random. Then even when H is true, the distribution of 
(*) depends on the unknown variances s2 and (s¢)2, and it is neither a similar test, 
nor can its level equal the nominal (fiducial) level. This fact was first pointed out by 
Bartlett (1936). Fisher replied briefly in 1937 and more fully in 1939 in a paper 
entitled, “The comparison of samples with possibly unequal variances.” The debate 
went on and on without being very productive.

From a Neyman-Pearson point of view, the Behrens-Fisher test was unsatisfac-
tory because it was not a similar region. But had this theory anything better to offer? 
Bartlett (1936) pointed out in a special case that similar regions did exist, and others 
later generalized his argument. Suppose, for example, that the sample sizes are equal, 
and pair the observations at random, so that Z

i
 = X

i
¢−X

i
 (i = 1, …, n) are independently 

normally distributed with mean z = m¢−m; then the hypothesis m¢ = m is equivalent to 
z = 0 and can be tested by Student’s test. However, again, tests involving such extra-
neous randomization are not considered satisfactory. And without randomization, it 
was later proved by Linnik (1968) that no reasonable similar tests exist.

A more satisfactory approach was initiated by B.L. Welch in a paper of 1938. 
He studies what he calls the validity (i.e., the control of the level for first kind error) 
of three tests. The first test statistic, denoted by u, is the t-statistic appropriate for 
testing m¢ = m when the two variances are assumed to be equal. It divides ′ −x x  by 
the square root of the pooled estimate of the common variance.

In the second statistic, denoted by v, the pooled estimate of variance in the 
denominator is replaced by the sum of the estimates of the two separate variances 
from the two separate samples. The third, finally, is the Behrens-Fisher test.

Welch finds that none of the three statistics do a good job at controlling the first kind 
error at the nominal level. Continuing his investigation in a number of publications, 
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he proposes in 1947 to refer the statistic v to the t-distribution with a random number 
of degrees of freedom, depending on the two estimated variances. For this test, the 
probability of the first kind error is very close to the nominal level. The Welch test was 
expanded by Aspin (1948), and the critical values tabled in Pearson and Hartley’s 
Biometrika Tables of 1954. Chernoff (1949) developed a very general theory of the 
process of asymptotic Studentization that Welch had used to derive his test.

Fisher’s earlier mocking of the objection “to a test of significance that it does not 
satisfy conditions which cannot possibly be satisfied” can no longer be upheld. 
However, Fisher now looks at this condition or requirement from a conditional point 
of view that also motivated his fiducial argument, but this time with a frequentist 
calculation.

In a note of 1956, “On a test of significance in Pearson’s Biometrika Tables  
(No. 11),” he shows for the case of two samples of size seven and significance level 
0.1, that the conditional probability of rejection of Welch’s test when s¢/s = 1 is 
³0.108 for all values of s¢/s (of course under the assumption that m¢ = m). He thus 
shows that for this test, the subset s¢/s = 1 of the sample space is what was later 
called a negatively biased relevant subset, i.e., a subset for which the probability of 
rejection under the hypothesis exceeds the level a by c for some c > 0, for all values 
of the nuisance parameters. (Later, Robinson (1976) proved that no such subsets 
exist for the Behrens-Fisher test).

The situation parallels that of the 2 × 2 table in that: (1) Fisher proposes a test that 
is far from being similar; and (2) no reasonable similar test exists; the Neyman-
Pearson approach prefers approximately similar tests to those proposed by Fisher.

The difficult problem of appropriate reference set for frequentist calculations 
(or equivalently of conditional inference) was ignored by the Neyman-Pearson 
approach. Fisher recognized it and struggled with it (for example with his concept of 
ancillary statistics), but even he was not able to come up with a definitive answer.

4.4  Fixed Significance Levels vs. p-values

As we have seen, a crucial difference between Fisher’s and the Neyman-Pearson 
approach to hypothesis testing was that Fisher considered the problem conditionally 
(for example, by conditioning on an ancillary statistic) while Neyman and Pearson 
evaluated tests unconditionally. This difference led to their disagreement about 
similar regions. Another more theoretical distinction was Fisher’s frequently stated 
opposition to the consideration of alternatives and power (although his concept of 
the sensitivity of a test was a qualitative version of the notion of power).

A frequently claimed third distinction is that of Fisher’s championing p-values, 
in contrast to the use of fixed significance levels by Neyman and Pearson. In the 
present and next sections, we shall consider the views of these authors on this issue 
in some detail.

Fisher discussed the matter early in his 1925 book SMRW. We already pointed 
out in Sect. 2.2 earlier that Fisher’s position was influenced by his inability to reprint 
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Pearson’s c2-tables, and how he justified the new kind of table he published instead. 
It is necessary now to repeat this justification because it is central to the present 
discussion. Fisher wrote,

In preparing this table we have borne in mind that in practice we do not want to know the 
exact value of P for any observed value of c2, but, in the first place, whether or not the 
observed value is open to suspicion.

Whatever may have been his motive for doing so, he here clearly expresses a lack of 
interest in the p-value. He continues:

If P is between .1 and .9 there is certainly no reason to suspect the hypothesis tested. If it is 
below .02 it is strongly indicated that the hypothesis fails to account for the whole of the 
facts. We shall not often be astray if we draw a conventional line at .05 and consider that 
higher values of c2 indicate a real discrepancy.

He spells out his position in more detail in a paper of 1926 [48], in which he states:

It is convenient to draw the line at about the level at which we can say: “Either there is 
something in the treatment, or a coincidence has occurred such as does not occur more 
than once in twenty trials.” This level, which we may call the 5 per cent. point, would 
be indicated, though very roughly, by the greatest chance deviation observed in twenty 
successive trials … .

If one in twenty does not seem high enough, we may, if we prefer, draw the line at one 
in fifty (the 2 per cent. point), or one in a hundred (the 1 per cent. point). Personally, the 
writer prefers to set a low standard at the 5 per cent. point, and ignore entirely all results 
which fail this level.

Fisher kept the wording of the first Edition of SMRW up to the twelfth Edition 
of 1954. However, in the thirteenth Edition of 1958 he changed the last sen-
tence to:

The actual value of P obtainable from the table by interpolation indicates the strength of the 
evidence against the hypothesis. A value of c2 exceeding the 5 per cent. point is seldom to 
be disregarded.

This interest in the p-value suggests that, fairly late in life, Fisher’s attitude had 
changed.

Let us consider what additional information on this question can be obtained 
from some of Fisher’s other writing. In his second statistical book, “The Design of 
Experiments,” which will be discussed in the next chapter, Fisher includes only a 
brief discussion of tests of significance. There, he states that:

It is open to the experimenter to be more or less exacting in respect to the smallness of the 
probability he would require before he would be willing to admit that his observations 
have demonstrated a positive result… . It is usual and convenient for experimenters to 
take 5 per cent. as a standard level of significance, in the sense that they are prepared to ignore 
all results which fail to reach this standard, and, by this means, to eliminate from further 
discussion the greater part of the fluctuations which chance causes have introduced into 
their experimental results.

Unlike the changes he made in the 1958 edition of SMRW, Fisher left this statement 
unchanged even in the latest (seventh) Edition of his “Design” book, which was 
published in 1959.
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Besides his theoretical discussions, we have another source of information regard-
ing Fisher’s attitude on this issue, namely his treatment of applied problems in the 
many examples given in SMRW. These examples provide real data and the testing of 
some hypothesis concerning them. And here his position is clear and did not change 
throughout all 14 editions. His interest was not in p-values, but in deciding whether 
or not the results were significant, where in nearly all cases he drew the line at 5%. 
The following quotations provide some illustrations. The example numbers and text 
are taken from the fourteenth Edition, and only the relevant sentence is cited:

Example 8 … hence n = 3, c2 = 10.87, the chance of exceeding which value is between .01 
and .02; if we take P = .05 as the limit of significant deviation, we shall say that in this case 
the deviations from expectation are clearly significant.

The value of n is now 2; … the value of c2, however, is so much reduced that  
P exceeds .2, and the departure from expectation is no longer significant.

Example 11. The value of P is between .02 and .05, so that the sex difference … is probably 
significant.

Example 12. For n = 9, the value of c2 shows that P is less than .01, and therefore the depar-
tures from proportionality are not fortuitous.

Example 27. For n = 18, this shows that P is less than .01, and the correlation is therefore 
significant.

Example 28. We find t = 2.719, whence it appears from the table that P lies between .02 and 
.01. The correlation is therefore significant.

Example 35. The difference does not exceed twice the standard error, and cannot therefore 
be judged significant.

Example 37. The difference in variability, though suggestive of a real effect, cannot be 
judged significant on these data.

Example 43. The value of z is thus 1.3217 while the 1% point is about .714, showing that 
the multiple correlation is clearly significant. The actual value of the multiple correlation 
may easily be calculated from the above table, … but this step is not necessary in testing the 
significance.

These examples, to which many others could be added, show that Fisher considered 
the purpose of testing to be to established whether or not the results were significant 
at the 5% level, and that he was not particularly interested in the p-values per se. 
However, his approach differed from that of Neyman and Pearson also in other ways; 
not only with respect to similar regions, but also with respect to interpretation. This 
difference will be considered in the next section.

4.5  Fisher’s “Statistical Methods and Scientific Inference”

Three years after his “Design” book, Fisher (jointly with Yates) published an enor-
mously useful and influential book, “Statistical Tables for Biological, Agricultural, 
and Medical Research.” These tables greatly facilitated the use of the tests that 
Fisher had developed, and at the same time illustrated the large variety of situations 
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to which they were applicable. We shall not discuss this book here since it does not 
bear on the issues with which this chapter is concerned.

Instead we shall turn to Fisher’s fourth (and last) book, published in 1956 when 
Fisher was 66. Its purpose was quite different from that of its predecessors. It was 
not to introduce readers to new statistical methods, but “an attempt to consolidate 
the specifically logical gains of the past half-century.”

The book in fact brings very little that is new, but sets out Fisher’s positions on 
the methods and concepts he had initiated, mostly in the 1920s and 1930s. In addition, 
it attempts to demolish alternative approaches that had been developed by others, 
particularly by Neyman and Pearson.

In the present section, we shall consider what the book has to say about signifi-
cance testing.

In the Foreword, Fisher mentions Gosset’s “inaugurating the first stage of the 
process by which statistical methods attained sufficient refinement to be of real 
assistance in the interpretation of data.” Here, of course, he is referring to his own 
work on small-sample tests. He continues:

As a result of his work, problems of distribution were one after another given exact solutions; 
by about 1930 all statistical problems which were thought to deserve careful treatment were 
being discussed in terms of mathematically exact distributions, and the tests of significance 
based upon them. The logical basis of these scientific applications was the elementary one of 
excluding, at an assigned level of significance, hypotheses, or views of the causal back-
ground, which could only by a more or less implausible coincidence have led to what had 
been observed. The “Theory of Testing Hypotheses” was a later attempt, by authors who had 
taken no part in the development of these tests, or in their scientific application, to reinterpret 
them in terms of an imagined process of acceptance sampling, …

It is worth noting that here Fisher avoids naming either himself or Neyman and 
Pearson, although he was not always so reticent. The quoted passage is fairly typical 
for the tone of the whole book.

It should finally be pointed out that Fisher does not mention p-values, but only 
“an assigned level of significance.”

The Foreword is followed by an account of, “The Early Attempts and their 
Difficulties,” which discusses the work of Bayes, Boole, Venn, and other early writers. 
The next chapter is entitled, “Forms of Quantitative Inference,” and begins with a 
section on, “The simple test of significance.”

Much of this section is concerned with refuting a Bayesian approach that would 
assign a posterior probability to the hypothesis being true. Fisher also restates, and 
expands on, his own position, and contrasts it with an alternative view:

The attempts that have been made to explain the cogency of tests of significance in scien-
tific research, by reference to hypothetical frequencies of possible statements, based on 
them being right or wrong, thus seems to miss the essential nature of such tests. A man who 
“rejects” a hypothesis provisionally, as a matter of habitual practice, when the significance 
is at the 1% level or higher, will certainly be mistaken in not more than 1% of such deci-
sions… . However, the calculation is absurdly academic, for in fact no scientific worker has 
a fixed level of significance at which from year to year, and in all circumstances, he rejects 
hypotheses; he rather gives his mind to each particular case in the light of the evidence and 
his ideas.
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The passage clearly is intended as a criticism of Neyman and Pearson, although 
again their names are not mentioned. However, these authors never recommended a 
fixed level of significance that would be used in all cases. On the contrary, in their 
first discussion (in 1928) of the two kinds of error, they write:

These two sources of error can rarely be eliminated completely; in some cases it will be 
more important to avoid the first, in others the second… . From the point of view of math-
ematical theory, all that we can do is to show how the risk of the errors may be controlled 
and minimized. The use of these statistical tools in any given case, in determining just how 
the balance should be struck, must be left to the investigator.

This suggests that the level should not be fixed at a constant value such as the 5% 
recommended by Fisher, but should take into account also the power that can be 
achieved against the alternatives of interest. Thus, Fisher rather incongruously appears 
to be attacking his own past position rather than that of Neyman and Pearson.

Much of the remainder of the chapter is concerned with introducing Fisher’s 
fiducial theory.

The next chapter is called, “Some Misapprehensions about Tests of significance.” 
The first section, entitled, “Tests of significance and acceptance decisions,” con-
trasts Fisher’s view with that of Neyman, Pearson and Abraham Wald. It is followed 
by a section interpreting Student’s t-test from a fiducial point of view. The argument 
is then extended to the case of linear regression. Finally, Fisher takes up the two-by-
two table and the Behrens-Fisher problem in a way very similar to that discussed in 
Sects. 4.2 and 4.3 above. The book then turns to issues other than testing, which we 
shall take up later.

4.6  Inductive Inference vs. Inductive Behavior

In their 1933a paper, Neyman and Pearson suggested an idea which was to have 
repercussions far beyond hypothesis testing. The idea (already mentioned in 
Sect. 3.4 above) was that the statistician’s task is to “search for rules to govern our 
behavior with regard to them.”

Fisher stated his own different philosophy of inference in a far-ranging 1935 
paper to which he gave the title: “The logic of inductive inference.” There, he pro-
posed that:

Everyone who does habitually attempt the difficult task of making sense of figures is, in 
fact, essaying a logical process of the kind we call inductive, in that he is attempting to draw 
inferences from the particular to the general; or, as we may usually say in statistics, from 
the sample to the population.

He returns to this point again toward the end of the paper, when he asserts:

In inductive reasoning, we are forming part of the process by which new knowledge is 
created…. The study of inductive reasoning is the study of the embryology of knowledge, 
of the processes by means of which truth is extracted from its native ore in which it is fused 
with much error.
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In its main body, the paper discusses fairly new concepts that had been introduced 
earlier by Fisher such as likelihood, amount of information, and fiducial inference. 
It was a discussion paper of the Royal Statistical Society, and in the discussion it 
was received with incomprehension and hostility.

The most sympathetic of the discussants was Neyman, but even he stated that,

I can’t help thinking: “What an interesting way of asking and answering questions, but can’t 
I do it differently,”

and later he set forth his own approach:

Now, a system of the theory of statistics, if it is to be built “differently,” must differ from that 
of Professor Fisher in something fundamental, that is to say, in the principle of choice… .

Now what could be considered as sufficiency simple in statistical work? I think the 
basic conception here is the conception of the frequency of errors in judgment.

Three years later Neyman (1938a), without naming him, more explicitly attacks 
Fisher’s concept of inductive reasoning. The following excerpts are my translations 
from the original French.

Some authors attach to statistical methods the term “inductive reasoning.” If, after having 
made the observations and calculated the limits [ 8.04=l  and 11.96l = ], the physician 
decides to assert that

 8.04 11.96,≤ ′ ≤l  (*)

it seems to us that the process that led to this assertion cannot be called inductive reasoning… . 
To see more clearly, let us distinguish between what we can know and what we believe. 
It seems to me that we can know or be sure of only (1) the results of experiences that have 
already taken place, and (2) the consequences of some definitions and postulates under 
which these consequences have been proved. Our attitude toward any other kind of assertion 
can only be described by the terms “belief” or “uncertainty.”…

To decide to “assert” means neither “to know nor to believe.” It is an act of will preceded 
by some experiences and some deductive reasoning… . Consequently, it seems to me that 
the term “inductive reasoning” does not correspond to the nature of the process… . If one 
wants a special term to describe these methods and in particular to describe the decision to 
assert that the inequalities (*) are valid, one may perhaps propose “inductive behavior.”

Neyman returned to the subject in 1947, 1955, and 1957, without adding much that 
was new. It may be worth noting that Pearson did not participate in the discussion. 
Responding in 1955 to Fisher’s attacks on the Neyman-Pearson theory, he concluded 
his paper with: “Professor Fisher’s final criticism concerns the use of the term 
‘inductive behavior’; this is Professor Neyman’s field rather than mine.”

Fisher strongly disagreed with Neyman’s position in a 1955 paper, “Statistical 
methods and scientific induction” [261], and attacked it more stridently in his 
1960 paper, “Scientific thought and the refinement of human reasoning.” There, 
he wrote:

There seems to be in the United States many converts to the opinion of J. Neyman, who so 
recently as 1938 averred that inductive reason positively did not exist, and that no process 
deserving the name of reasoning could be applied to the data of science… .
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Neyman’s doctrine challenged not only the rapidly developing statistical science of the 
20th Century, but its foundations in the 19th and 18th Centuries. On the contrary, it will be my 
thesis that the continuous development of mathematical thought … has come to fruition in 
our own time, by cross-fertilization with the natural sciences, in supplying just such a model 
of the correct use of inductive reasoning, as was supplied by Euclid for deductive logic. 
[In the Foreword to his 1956 book, Fisher expressed himself more strongly by writing that, 
“There is something horrifying in the ideological movement represented by the doctrine 
that reasoning, properly speaking, cannot be applied to empirical data to lead to inferences 
valid in the real world.”]

After some discussion of the nature and role of probability, the 1960 paper turned to 
the subject of tests of significance and became so vituperative that the editors of the 
journal in which it appeared invited Neyman to reply. He did so in a paper of 1961, 
to which he gave the title, “Silver jubilee of my dispute with Fisher.”

In section 3, “The essence of the dispute,” Neyman stated that,

The subject of the dispute may be symbolized by the opposing terms “inductive reasoning” 
and “inductive behavior.” Professor Fisher is a known proponent of inductive reasoning. 
After a conscientious effort to find the exact meaning of this term, I came to the conclusion 
that, at least in the sense of Fisher, the term is empty except perhaps for a dogmatic use 
of certain measures of “rational belief” such as the likelihood function and the fiducial 
probability.

This and some of the other controversies between Fisher and Neyman were the 
results of different temperaments and world views. Fisher relied on his intuition, 
while Neyman strove for logical clarity. In addition, their dispute was fueled by 
aspects that were personal rather than scientific. They too are part of the history, and 
we shall discuss them in the next sections.

4.7  Personal Aspects I

As mentioned in Sect. 4.1, the early relationship of Fisher and Neyman was very 
friendly. Fisher responded quite positively to a draft of the Neyman and Pearson 
paper of 1933a, and he was in fact the referee who recommended publication 
when the paper was submitted to the Transactions of the Royal Society. Neyman 
was grateful and thanked Fisher in a letter of October 16, 1932 (Bennett 1990, 
pp. 189–190):

E. S. Pearson writes that you have recommended our paper for publication. Although it may 
be considered ridiculous to thank a judge, I have intense feeling of gratefulness, which I 
hope you will kindly accept… .

Fisher replies, “It was a great pleasure to hear from you again.” He also mentions a 
small technical error (discussed in Sect. 4.1), which leads to further correspondence.

In a letter acknowledging Fisher’s criticism, Neyman writes that,

I am often thinking that it would be very useful for me to work with you. Unfortunately, this 
requires considerable amount of money – without speaking of your consent – of course.
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Fisher answers, “You may be sure of my consent,” and in the next letter, “I like 
hearing from Poland. Best wishes for a Merry Christmas.”

Up to this point, Neyman’s letters from Poland were addressed to Fisher at 
Rothamstead. But this was about to change as a result of Karl Pearson’s retirement 
in the summer of 1933, as can be seen from the following letter of Neyman’s, 
followed by Fisher’s response:

Dr. Pearson writes me that soon you will be Galton Professor at the University College, 
London. Very probably this means a general reorganization of the Department of Applied 
Statistics and possibly new people will be needed. I know that there are many statisticians 
in England and that many of them would be willing to work under you. But improbable 
things do happen sometimes and you may have a vacant position in your laboratory. In that 
case please consider whether I can be of any use.

Fisher’s reply, though cordial, was not encouraging:

Many thanks for your letter of congratulation. You will be interested to hear that the Dept. 
of Statistics has now been separated officially from the Galton Laboratory. I think Egon 
Pearson is designated as Reader in Statistics. This arrangement will be much laughed at, but 
it will be rather a poor joke, I fancy, for both Pearson and myself. I think, however, we will 
make the best of it. I shall not lecture on statistics, but probably on “the logic of experimen-
tation,” so that my lectures will not be troubled by students who cannot see through a wire 
fence. I wish I had a fine place for you, but it will be long before my new department can be 
given any sort of unity and coherence, and you will be head of a faculty before I shall be 
able to get much done. If in England, do not fail to see me at University College.

It must indeed have been bitter for Fisher, the creator of modern statistics, that under 
this arrangement he was not permitted to teach statistics.

However, Neyman did get an appointment at University College after all – not in 
Fisher’s department, but in that of his friend and collaborator Egon Pearson: first on 
a 3-month visiting appointment and at the end of the term (in the summer of 1934) 
on a regular appointment as a lecturer.

In June of that year, Neyman presented a paper to the Royal Statistical Society. 
The main body of the paper was concerned with the theory of survey sampling, but 
in an appendix he also set forth for the first time his theory of confidence intervals 
and compared it with Fisher’s fiducial limits.

One of the discussants was Fisher, who referred to the “luminous account 
Dr. Neyman had given of the sampling technique.” In discussing the relationship of 
confidence and fiducial limits, he stated that Neyman “had every reason to be proud 
of the arguments he had developed for its perfect clarity.” Thus, though he did not 
quite agree with Neyman on the respective merits of the two approaches, he was 
quite complimentary, and his tone was friendly.

Another paper that Neyman presented in March 1935 did not fare so well. It was 
entitled, “Statistical problems in agricultural experimentation,” and discussed various 
aspects of randomized blocks and Latin squares. In it, he found fault with some 
of Fisher’s work on Latin squares. Fisher, who was the first discussant [128], was 
furious, and his remarks scathing.

He opened the discussion by saying that:

I had hoped that Dr. Neyman’s paper would be on a subject with which the author was fully 
acquainted, and on which he could speak with authority, as in the case of his address to the 
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Society delivered last summer. Since seeing the paper, I have come to the conclusion that 
Dr. Neyman had been somewhat unwise in his choice of topics.

And Fisher concluded with the sentence,

Were it not for the persistent effort which Dr. Neyman and Dr. Pearson had made to treat 
what they speak of as problems of estimation, by means merely of tests of significance, 
I have no doubt that Dr. Neyman would not have been in any danger of falling into the series 
of misunderstandings which his paper revealed.

The explanation for their difference of opinion is that they were considering different 
hypotheses. As Neyman stated in his reply:

The problem I considered is stated on p. 162 as follows: “Our purpose in the field experi-
ment is to compare the average time yields which our objects are able to give when applied 
to the whole field! It is seen that this problem is essentially different from what Professor 
Fisher suggested. So long as the average yields of any treat are identical, the question as to 
whether these treats affect separate yields on a single plot seems to be uninteresting and 
academic, and certainly I did not consider methods for its solution.

At this point, Fisher interrupted with

It may be foolish, but that is what the z test was designed for, and the only purpose for which 
it has been used.

Neyman later (Reid 1982, p. 126) recalls that a week after this meeting, Fisher 
stopped by his room at University College:

And he said to me that he and I are in the same building… . That, as I know, he had published 
a book – and that’s Statistical Methods for Research Workers – and he is upstairs from me so 
he knows something about my lectures – that from time to time I mention his ideas, this and 
that – and that this would be quite appropriate if I were not here in the College but, say, in 
California – but if I am going to be at University College, then this is not acceptable to him. 
And then I said, “Do you mean that if I am here, I should just lecture using your book?” And 
then he gave an affirmative answer. And I said, “Sorry, no. I cannot promise that.” And then 
he said, “Well, if so, then from now on I shall oppose you in all my capacities.”

Reid also reports (p. 124) that,

After the Royal Statistical Society meeting of March 28, relations between workers on the 
two floors of K. P.’s old preserve became openly hostile. One evening, late that spring, 
Neyman and Pearson returned to their department after dinner to do some work. Entering, 
they were startled to find strewn on the floor the wooden models which Neyman had used 
to illustrate his talk on the relative advantages of randomized blocks and Latin squares. 
They were regularly kept in a cupboard in the laboratory. Both Neyman and Pearson always 
believed that the models were removed by Fisher in a fit of anger.

4.8  Personal Aspects II

In his publications after 1935, Fisher for many years ignored Neyman (except for 
some references to the Neyman-Pearson theory in connection with the Behrens-
Fisher problem). For example, there is not a single mention of Neyman in Fisher’s 
1935 book on the design of experiments.
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In part, this may have been due to the fact that in 1938 Neyman left England for 
California so the irritation of daily presence was removed. Also, before long, war 
broke out. All of Neyman’s energy went into war work. On the other hand, to 
Fisher’s great disappointment, the British government was not willing to make use 
of his statistical expertise for this purpose. So most of his efforts during the war 
years, first as Galton Professor of Eugenics at University College, London, and after 
1943 as Balfour Professor of Genetics at Cambridge, were devoted to problems in 
genetics rather than statistics.

Finally, another reason for Fisher’s ignoring Neyman is stated in a 1951 letter to 
Horace Gray, who had brought to Fisher’s attention Neyman’s review of Fisher’s 
Selected Papers, for the Scientific Monthly (Vol. LXII, June 1951).

After first praising Fisher’s early work (while describing him condescendingly as 
“a very able ‘manipulative’ mathematician”), Neyman had written:

In his long scholarly work, Fisher also made frequent attempts at the conceptual side of 
mathematical statistics, and these efforts are duly reflected in this volume. In particular, 
three major concepts were introduced by Fisher and consistently propagandized by him in 
a number of publications. These are mathematical likelihood as a measure of the confidence 
in a hypothesis, sufficient statistics, and fiducial probability. Unfortunately, in conceptual 
mathematical statistics, Fisher was much less successful than in manipulatory, and of the 
three above concepts only one, that of a sufficient statistic, continues to be of substantial 
interest. The other two proved to be either futile or self-congratulatory, and have been more 
or less generally abandoned.

So Neyman had done it again. As in 1935, he had attacked Fisher publicly and without 
provocation. Fisher’s reaction is understandable. In thanking Gray, he wrote:

Neyman is, judging by my own experience, a malicious mischief maker. Probably by now 
this is sufficiently realized in California. I would not suggest to anyone to engage in scientific 
controversy with him, for I think that discussion is only profitable when good faith can be 
assumed in the common aim of getting at the truth.

However, Fisher was mistaken about Neyman’s situation and reputation in California, 
where Neyman was building a first-rate department and his symposia were drawing 
the best people worldwide. At those meetings he was a gracious, enterprising, and 
much-admired host. Of course, Neyman in his review was also in error when he 
announced the early demise of the likelihood concept. Likelihood has continued to 
be considered of first-rate importance.

Fisher did not keep to his resolve not to engage in controversy with Neyman. 
In a 1955 paper, “Statistical methods and scientific induction” [261], he contrasted 
his own approach with that of Neyman (and Wald, whose book on decision theory 
had appeared in 1950 and who had died that same year). His summary at the beginning 
of the paper characterizes the difference as follows:

The attempt to reinterpret the common tests of significance used in scientific research as 
though they constituted some kind of acceptance procedure and led to “decisions” in Wald’s 
sense, originated in several misapprehensions and has led, apparently, to several more.

The three phrases examined here, with a view to elucidating the fallacies they embody, 
are: (i) “repeated sampling from the same population,” (ii) errors of the “second kind,” (iii) 
“inductive behavior.”
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Mathematicians without personal contact with the natural sciences have often been misled 
by such phrases. The errors to which they lead are not always only numerical.

The distinction between scientific work and acceptance procedures (the latter Fisher’s 
interpretation of Neyman’s behavioristic view which Wald had also embraced) consti-
tutes the main point of the paper. After an introductory section, Fisher discusses his 
objection to the evaluation of statistical procedures in terms of, “Repeated sampling 
from the same population.” He illustrates the issue with the debate about the 2 × 2 
table (discussed in Sect. 4.2 above). Referring to Barnard’s suggestion (and later with-
drawal2) of an alternative to Fisher’s test, Fisher writes that,

Professor Barnard has a keen and highly trained mathematical mind, and the fact that he 
was misled into much wasted effort and disappointment should be a warning that the theory 
of testing hypotheses set out by Neyman and Pearson has missed at least some of the essen-
tials of the problem, and will mislead others who accept it uncritically.

However, this and similar references to Neyman and Pearson later in the paper are 
mild compared to those in Fisher’s 1960 paper, “Scientific thought and the refine-
ment of human reasoning” [282]. Here, referring to the Neyman-Pearson theory, 
Fisher states that,

A whole series of erroneous tests of significance were incorporated into statistical teaching, 
and although one by one they have been exposed and discredited, and have seldom gained 
a place among the tests used in genuine research, they have ensured that many young men 
now entering employment in research, or industry, or administration have been partly inca-
pacitated by the crooked reasoning with which they have been indoctrinated.

Why, after his long silence, did Fisher late in life (in 1960 he was 70) lash out so 
violently against his opponents?

Fisher was justifiably proud of what he had achieved. The development of the 
methodology of small-sample tests (including the analysis of variance) alone would 
have constituted a notable lifetime achievement. But he had followed this with the 
creation of a science of experimental design, and of a theory of estimation with 
many new concepts such as likelihood, sufficiency, amount of information, and 
fiducial inference.

And then Neyman, Pearson, and more recently Wald had deformed and, as he 
felt, besmirched his life’s work with ideas that seemed to him completely inappro-
priate. And these ideas were being accepted as important innovations by a new 
generation of statisticians.

The situation is described by Fisher’s daughter Joan Fisher Box in her biography, 
“R. A. Fisher – The Life of a Scientist.” “If he had decided to move to the United 
States in 1937,” she writes,

his contact with statistical developments in America would not have been broken during 
these critical years when new influences made themselves effective. J. Neyman emigrated 
to America in 1939 and A. Wald in 19403; in teaching, theoretical and mathematical aspects 

2 In a 1949 paper, Barnard stated that “further meditation has led me to think that Professor Fisher 
was right after all.”
3 Actually, both moved to the U.S. in 1938.
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of statistics received increasing emphasis. Changes took place in the mood of American 
statisticians which extinguished the enthusiasm that had so charmed Fisher in 1936. When 
he returned to the United States in 1946, he was welcomed by the younger statisticians as a 
great originator and authority certainly, but also as a foreigner whose ways were not always 
their ways, nor his thoughts their thoughts.

This must have been extremely galling to Fisher, and it resulted in his giving expression 
to his anger and frustration rather intemperately.
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5.1  Lady Tasting Tea

As mentioned toward the end of Sect. 2.3, the last pages of SMRW dealt not with 
significance testing but with a new subject: the planning of experiments. Fisher 
extended this brief sketch in a 1926 survey paper, “The arrangement of field experi-
ments.” His interest in experimental design grew out of his work at Rothamsted and 
resulted in many papers dealing with the new ideas and techniques he developed in 
this context. In 1935, he gave a systematic account of the new science of experimen-
tal design he had created in a book, “The Design of Experiments” (DOE). Instead 
of following the details of his work on the subject, the present and following sec-
tions will provide a discussion of this enormously influential book.

The book begins with an introductory chapter that is partly historical. It sets out 
the book’s purpose, and at its center reviews and rejects the approach through inverse 
probability. It argues that,

advocates of inverse probability seem forced to regard mathematical probability, not as an 
objective quantity measured by observed frequencies, but as measuring merely psychological 
tendencies, theorems respecting which are useless for scientific purposes.

Fisher goes on to claim that,

In fact, in the course of this book, I propose to consider a number of different types of 
experimentation, with especial reference to their logical structure, and to show that when 
the appropriate precautions are taken to make this structure complete, entirely valid infer-
ences may be drawn from them, without using the disputed [i.e., Bayesian] axiom.

The first experiment Fisher discusses is described in Chap. II, “The principles of 
experimentation illustrated by a psycho-physical experiment.” This very simple, 
though somewhat artificial, example has acquired much fame under the title, “The 
lady tasting tea.” It is based on an event that really happened one afternoon at 
Rothamsted.1

Chapter 5
The Design of Experiments and Sample Surveys

1 See Box (1978, p. 134).



64 5 The Design of Experiments and Sample Surveys

As Fisher describes the experiment:

A lady declares that by tasting a cup of tea with milk she can discriminate whether the milk 
or the tea infusion was first added to the cup… . Our experiment consists in mixing eight 
cups of tea, four in one way and four in the other, and presenting them to the subject for 
judgment in random order. The subject has been told in advance of what the test will con-
sist, namely that she will be asked to taste eight cups, that these shall be four of each kind, 
and that they shall be presented to her in random order… . Her task is to divide the 8 cups 
into two sets of four, agreeing, if possible, with the treatments received.

He next points out that there are (8
4
) = 70 possible outcomes, so that “a subject 

without faculty of discrimination would in fact divide the 8 cups correctly into 
two sets of 4 in one trial out of 70.” This completes the description of the experi-
ment, to which Fisher adds a section of explanation entitled, “Interpretation and 
its reasoned basis.” This is followed by a section on “The test of significance,” 
which summarizes material from his earlier book SMRW. The next section bears 
the title, “The null hypothesis.” Fisher explains this term by stating that the 
hypothesis to be tested is,

In this case, the hypothesis that the judgments given are in no way influenced by the order 
in which the ingredients have been added… . This hypothesis, which may or may not be 
impugned by the result of an experiment, is again characteristic of all experimentation. 
Much confusion would be avoided if it were explicitly formulated when the experiment is 
designed. In relation to any experiment, we may speak of this hypothesis as the “null 
hypothesis,” and it should be noted that the null hypothesis is never proved or established, 
but it is possibly disproved, in the course of experimentation.

The paragraph ends with a sentence that has often been quoted: “Every experiment 
may be said to exist only in order to give the facts a chance of disproving the null 
hypothesis.”

A central concern of the book is the need for randomization, and Fisher devotes 
the next two sections to this topic. He argues that any experiment without it is 
flawed, and that on the other hand, it “will suffice to guarantee the validity of the test 
of significance, by which the result of the experiment is to be judged.” Randomization 
is a subject to which the book will return again and again.

The last topic addressed in this chapter is how to improve the sensitiveness of an 
experiment. Fisher states that,

By increasing the size of the experiment, we can render it more sensitive, meaning by this 
that it will allow of the detection of a lower degree of sensory discrimination… . Since in 
every case the experiment is capable of disproving, but never of proving this hypothesis, we 
may say that the value of the experiment is increased whenever it permits the null hypoth-
esis to be more readily disproved.

Fisher’s sensitiveness is essentially the same as the Neyman-Pearson concept of 
power. However, unlike the latter, it does not provide a quantitative measure. As we 
know, Fisher was familiar with the Neyman-Pearson theory; in his 1934 paper, he 
had even used the terms uniformly more, and most powerful. By not utilizing the 
idea of power, Fisher deprives himself of the ability to resolve one of the most 
important issues of experimental design, the determination of sample size.
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5.2  An Experiment of Darwin’s

The concepts and techniques introduced in Fisher’s Chap. II are extended in the 
following chapter to the continuous case. It again deals with a single example, an 
experiment carried out by Charles Darwin and reported in his book of 1876. The 
example concerns a comparison of crossed and self-fertilized plants. Three plants of 
each kind were grown in four pots, and Darwin then asked Francis Galton to ana-
lyze the measurements he had made on their sizes.

Fisher proceeds to describe the method used by Darwin, the method of paired 
comparisons. The discussion of various aspects of this design is the principal pur-
pose of the chapter. Fisher points out that,

The method of pairing … illustrates well the way in which an appropriate experimental 
design is able to reconcile two desiderata, which sometimes appear to be in conflict. On the 
one hand we require the utmost uniformity in the biological material, which is the subject 
of experiment, in order to increase the sensitiveness of each individual observation; and, on 
the other, we require to multiply the observations so as to demonstrate as far as possible the 
reliability and consistency of the results… .

However, …, there is no real dilemma. Uniformity is only requisite between the objects 
whose response is to be contrasted (that is, objects treated differently). It is not requisite that 
all the parallel plots under the same treatment shall be sown on the same day, but only that 
each such plot shall be sown as far as possible simultaneously with the differently treated 
plot or plots with which it is to be compared. If, therefore, only two kinds of treatments are 
under examination, pairs of plots may be chosen, one plot for each treatment; and the preci-
sion of the experiment will be given its highest value if the members of each pair are treated 
closely alike, but will gain nothing from similarity of treatment applied to different pairs, 
nor lose anything if the conditions in these are somewhat varied.

Having described the experimental setup, Fisher next discusses the t-test for testing 
the null hypothesis of no difference under the assumption of normality which, he 
says,

By wide experience, has been found to be appropriate to the metrical characters of experi-
mental material in biology.

The first step consists in subtracting,

From the height of each cross-fertilised plant the height of the self-fertilised plant belong-
ing to the same pair. With respect to [the resulting] differences, our null hypothesis asserts 
that they are normally distributed about a mean value at zero, and we have to test whether 
our 15 observed differences are compatible with the supposition that they are a sample from 
such a population.

The section ends with the details of carrying out the t-test, and finds that “the observed 
value of t, 2.148, just exceeds the 5% point, and the experimental result may be 
judged significant, though barely so.”

After some further discussion, Fisher comes to a crucial aspect of the experimen-
tal design. He states that,

Having decided that, when the structure of the experiment consists in a number of indepen-
dent comparisons between pairs, our estimate of the error of the average difference must be 
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based upon the discrepancies between the differences actually observed, we must next 
enquire what precautions are needed in the practical conduct of the experiment to guarantee 
that such an estimate shall be a valid one; … .

In the experiment under consideration, apart from chance differences in the selection of 
seeds, the sole source of the experimental error in the average of our fifteen differences lies 
in the difference in soil fertility, illumination, evaporation, etc., which makes the site of each 
crossed plant more or less favourable to growth than the site assigned to the corresponding 
self-fertilised plant… . If now, when the fifteen pairs of sites have been chosen, …, we then 
assign at random, as by tossing a coin, which site shall be occupied by the crossed and which 
by the self-fertilised plant, we shall be assigning by the same act whether this particular 
ingredient of error shall appear in our average with a positive or negative sign.

…

Randomisation properly carried out … ensures that the estimates of error will take proper 
care of all such causes of different growth rates, and relieves the experimenter from the anxi-
ety of considering and estimating the magnitude of the innumerable causes by which his data 
may be disturbed. The one flaw in Darwin’s procedure was the absence of randomisation.

The last section of the chapter brings a remarkable and surprising insight. Entitled, 
“Test of a wider hypothesis,” the section considers the hypothesis “which merely 
asserts that the two series are drawn from the same population without specifying 
that it is normally distributed.”

Fisher writes:

It seems to have escaped recognition that the physical act of randomisation which, as has 
been shown, is necessary for the validity of any test of significance, affords the means, in 
respect of any particular body of data, of examining the wider hypothesis in which no nor-
mality of distribution is implied.

The basis of this test is the fact that random assignments of the sites within each pair 
implies that the 15 observed differences “would each have occurred with equal 
frequency [i.e., with probability ½] with a positive or negative sign. It is now pos-
sible to calculate the p-value of t within this population of 215 equally likely cases 
and this gives a value of 5.255%, very close to the 5% obtained from Student’s 
t-distribution.”

Although he shows the closeness of the two p-values only in this one example, 
Fisher implicitly suggests that the conclusion holds quite generally. These randomiza-
tion tests, as Fisher points out, are very tedious to carry out, and as a result they only 
came into their own after computers made the calculations easy. A proof that (at least 
asymptotically) Fisher’s conjecture is correct was provided by Hoeffding in 1952.

5.3  Randomized Blocks

After the thorough discussion of randomized paired comparisons, it was easy for 
Fisher to extend the idea to the comparison of more than two treatments, and he 
does so in the next chapter entitled, “An agricultural experiment in randomised 
blocks.” He takes the example of testing “the relative productivity, or yield, of five 
different varieties of farm crop.”
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“To this end,” Fisher writes,

we shall suppose that the experimental area is divided into eight compact, or approximately 
square, blocks, and that each of these is divided into five plots, running from end to end of 
the block, and lying side by side, making forty plots in all. Apart from the differences in 
variety to be used, the whole area is to have uniform agricultural treatment.

In each block the five plots are assigned one to each of the five varieties at random.

He then discusses how to carry out these random assignments.
Having described the experiment, he goes on to consider the “statistical analysis 

of the observations.” The procedure, which Fisher calls an analysis of variance 
[ANOVA], begins with a determination of “the numbers of degrees of freedom, or 
independent comparisons, which can be made between the plots, or relevant groups 
of plots.” Fisher states that,

Between 40 plots, 39 independent comparisons can be made, and so the total number of 
degrees of freedom will be 39. This number will be divided into three parts representing 
the numbers of independent comparisons (a) between varieties, (b) between blocks, and 
(c) representing the discrepancies between the relative performances of different varieties 
in different blocks, which discrepancies provide a basis for the estimation of error.

He then gives a table showing these degrees of freedom as being

Varieties 4
Blocks 7
Error 28
Total 39

Realizing that these numbers need some justification, he explains:

It is easy to see that the number of degrees of freedom for any group of simple comparisons, 
such as those between varieties or between blocks, must be one less than the number of 
items to be compared. In the present instance, in which the plots are assigned within the 
blocks wholly at random, the whole of the remaining 28 degrees of freedom are due simply 
to differences in fertility between different plots within the same block, and are therefore 
available for providing the estimate of error… . The form we have set out is appropriate to 
the question whether the yields given by the different varieties show, as a whole, greater 
differences than would ordinarily be found, had only a single variety been sown on the 
same land. It is appropriate to test the null hypothesis that our 5 varieties give in fact the 
same yields.

Fisher goes on to discuss “the completion of the analysis of variance… . It consists 
in the partition of a quantity known as the sum of squares (i.e., of deviations from 
the mean) into the same three parts as those into which we have already divided the 
degrees of freedom.”

After going into details of the calculation of these three parts, he states that,

In this way, the total sum of squares, representing the total amount of variation due to all 
causes between the 40 yields of the experiment, is divided into the 3 portions relevant to its 
interpretation, measuring respectively the amount of variation between varieties, the 
amount of variation between blocks, and the amount of discrepancy between the perfor-
mances of the different varieties in the different blocks.
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The section concludes by showing how to test the null hypothesis of no difference 
in the yields of the five varieties. Under this hypothesis, the mean squares for varieties 
and for error are independent estimates of the same quantity, the variance of the errors. 
Their ratio therefore has a known distribution [now known as the F-distribution] 
and can be used to test the null hypothesis.

Finally, Fisher points out regarding this test that “as with the t-test, its appropri-
ateness to any particular body of data may be verified arithmetically [i.e., by means 
of a randomization test which does not require the assumption of normality].”

The next section is concerned with the steps to be taken when the null hypothesis 
is rejected. Fisher suggests that one might want then to test each difference of yields. 
Each of these differences (taking account of their signs) can then be tested by means 
of a t-test. However, he warns,

much caution should be used before claiming significance for special comparisons… . 
Comparisons suggested by a scrutiny of the results themselves are open to suspicion; for if 
the variants are numerous, a comparison of the highest with the lowest observed value will 
often appear to be significant, even from undifferentiated material.

This is the problem of multiplicity, and Fisher suggests a remedy: to use a level of 5% 
divided by m(m−1)/2, where m is the total number of varieties. In the comparison of 
20 varieties, for example, 0.05/190 would be used instead of 0.05. Although he does 
not mention it, he was presumably aware of the fact that this procedure guarantees 
that the probability of at least one false rejection is controlled at the 5% level.

Much of the rest of the chapter is concerned with issues specific to agriculture, 
and we shall turn directly to the next chapter.

5.4  Latin Squares

The Latin Square design,2 which forms the topic of Chap. V, is concerned with con-
trolling the effects of two different sources of heterogeneity. Fisher again discusses 
the procedure in terms of an example. He considers the comparison of six agricul-
tural treatments on an experimental area which is divided into 36 equal plots lying 
in 6 rows and 6 columns. He states that “it is then a combinatorial fact that we can 
assign plots to the six treatments such that for each treatment, one plot lies in each 
row and one in each column of the square.”

For a particular field, he writes, “it is not known whether heterogeneity [of the 
soil] will be more pronounced in the one or the other direction in which the field 
is ordinarily cultivated… . The effects are sufficiently widespread to make appar-
ent the importance of eliminating the major effects of soil heterogeneity not only 
in one direction across the field, but at the same time in the direction at right 
angles to it.”

2 Interest in Latin Squares, though not the use Fisher makes of them, goes back at least to the 
eighteenth century; see, for example, Dénes and Keedwell (1974).



695.5 Factorial Designs

To obtain an effective randomization, Fisher considers sets of Latin Squares that 
can be transformed into each other by various types of transformations. He then 
proposes to choose at random (i.e., with equal probabilities) one member of such 
a set.

He next turns to an analysis of variance similar to that used for randomized blocks. 
He points out that, “The 35 independent comparisons among 36 yields give 35 degrees 
of freedom. Of these, five are ascribable to differences between rows, and five to dif-
ferences between columns… . Of the remaining 25 degrees of freedom, 5 represent 
differences between the treatments tested, and 20 represent components of error which 
have not been eliminated, but which have been carefully randomized so as to ensure 
that they shall contribute no more and no less than their share to the errors.”

Finally, he proposes to divide “what we have called the total sum of squares” into 
components corresponding to the various degrees of freedom.

The next two sections deal with common mistakes made in applications of the 
Latin Square design. The first is concerned with errors in the ANOVA, the second 
with the replacement of randomly chosen squares with squares chosen systemati-
cally in an effort to achieve good balance. The last topic treated in the chapter is a 
special kind of Latin Square, called Graeco-Latin Square, which allows the control 
of not only two, but three, different sources of heterogeneity.

5.5  Factorial Designs

Chapters II–V of DOE are closely related, with randomized blocks (Chap. IV) being 
a generalization of randomized pairing (Chaps. II and III), and Latin Squares (Chap. V) 
a refinement of randomized blocks. The next three chapters deal with a new issue. 
Fisher begins Chap. VI by setting forth the commonly held philosophy of experi-
mentation and his disagreement with it:

In expositions of the scientific use of experimentation it is frequent to find an excessive 
stress laid on the importance of varying the essential conditions only one at a time. The 
experimenter interested in the causes which contribute to a certain effect is supposed, by a 
process of abstraction, to isolate these causes into a number of elementary ingredients, or 
factors, and it is often supposed, at least for purposes of exposition, that to establish con-
trolled conditions in which all of these factors except one can be held constant, and then to 
study the effects of this single factor, is the essentially scientific approach to an experimental 
investigation.

Fisher disagrees with this view because, as he writes,

We are usually ignorant which, out of innumerable possible factors, may prove ultimately 
to be the most important, though we may have strong suppositions that some few of them 
are particularly worthy of study. We have usually no knowledge that any one factor will 
exert its effects independently of all others that can be varied, or that its effects are particu-
larly simply related to variations in these other factors.

To illustrate his alternative approach, Fisher considers a study of “the effects 
of variations in composition of a mixture containing four active ingredients.” 
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He assumes that “16 different mixtures are made up in the 16 combinations 
 possible by combining either a larger or smaller quantity of each of the 4 ingre-
dients to be tested.”

He next supposes that six tests are made with each mixture, 96 in all, and considers 
two designs: (1) assign all 96 cases to the experimental units (agricultural plots, 
patients, etc.) completely at random; (2) a randomized block design, with six blocks 
“supposedly more homogeneous than the whole,” with the 16 members of each 
assigned at random.

Before discussing the ANOVA for these two cases, Fisher points out the advan-
tages of such a factorial design. He states that, “The first factor contributing to the 
efficiency of experiments designed on the factorial system is that every trial sup-
plies information upon each of the main questions, which the experiment is designed 
to examine.”

He continues by asserting that,

The advantage of the factorial experiment over a series of experiments, each designed to 
test a single factor, is, however, much greater than this. For with separate experiments we 
should obtain no light whatever on the possible interactions of the different ingredients, … .”

He then goes on to explain first and higher order interactions, and this leads him to 
conclude that:

the 15 independent comparisons of 16 different mixtures … may be resolved into 15 
intelligible components, as shown in the following table:

Effects of single ingredients 4
Interactions of 2 ingredients 6
Interactions of 3 ingredients 4
Interactions of 4 ingredients 1
Total 15

It now only remains to lay out the ANOVA. For the completely randomized 
design, the 95 degrees of freedom are assigned, 15 to treatments and the remaining 
80 to error. In the randomized block design, the division is: 5 to blocks, 15 to treat-
ments, and 75 to error.

In the next section, entitled, “The basis of inductive inference,” Fisher adds a 
third advantage of factorial experiments to those mentioned earlier:

This is that any conclusion … has a wider inductive basis when inferred from an experi-
ment in which the quantities of other ingredients have been varied than it would have from 
any amount of experimentation in which these had been kept strictly consistent. The exact 
standardization of experimental conditions, which is often thoughtlessly advocated as a 
panacea, always carries with it the real disadvantage that a highly standardized experiment 
supplies direct information only in respect to the narrow range of conditions achieved by 
standardisation.

A related advantage is the possibility of including in the experiment what Fisher 
calls subsidiary factors with little loss of precision in the inferences about the main 
factors. In a final section, he points out that in experiments with a very large number 
of factors, the size of the experiment may make replication undesirable. There will 
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then be no degrees of freedom available for the estimate of error. However, he 
writes, “there will be numerous interactions the apparent effects of which are prin-
cipally due to error, and these may be used to provide a measure of the precision of 
the more important comparisons.”

5.6  More Complex Designs

The first six chapters of DOE are easy to read, and the important concepts they 
introduce: randomization, blocking, and factorial experimentation, are presented 
with utmost clarity. However, the topics treated in Chaps. VII–XI: confounding, 
partial confounding, and concomitant measurements, are more complex, and as a 
result these chapters are more difficult to read. We shall not discuss them in detail 
but, to give at least a flavor, shall consider Fisher’s introduction to confounding.

The issue arises in factorial experiments in which the heterogeneity within blocks 
is still thought to be too high. In order to reduce it, the blocks are divided into two or 
more parts, which then form blocks with fewer plots than the number of treatments.

Fisher illustrates the situation with the case of three factors, each of which has two 
levels, say level 1 and level 2 (e.g., treatment and control). There are then eight treat-
ment combinations and the factorial design described above would require blocks 
with eight plots each. In order to reduce heterogeneity, each block is divided into two 
more homogeneous blocks of size 4. To one of these smaller blocks are assigned the 
treatment combinations in which all three treatments are at level 1, and those in 
which one is at level 1 and the other two at level 2, four in all. To the other smaller 
blocks are assigned the combinations in which two of the treatments are at level 1 
(and the remaining at level 2), and that in which all three treatments are at level 2.

With this design, Fisher points out, the third order interaction turns out to be the 
simple contrast between the sums of the treatments in the two blocks of size 4. This 
contrast has therefore been confounded with, i.e., is indistinguishable from, the 
third order interaction. The description of this design is followed by the ANOVA for 
this case, and then by consideration of a second, larger example. The chapter ends 
with an introduction to partial confounding which is discussed more fully in the 
following chapter. Finally, Chap. XI deals with “the increase of precision by con-
comitant measurements. Statistical Control.”

The book ends with two additional chapters, which are, however, less concerned 
with experimental design than with the theory of estimation, a topic we shall take 
up in the next chapter.

5.7  Further Developments

As “Statistical Methods” had done, “The Design of Experiments” established an 
entirely new subject. The present section sketches some of the discussions and fur-
ther considerations that followed Fisher’s presentation.
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5.7.1  Randomization

This concept which stood at the center of Fisher’s approach to experimental design 
did not find favor with everyone. In particular, Fisher’s friend Gosset argued that 
balanced systematic designs were preferable. Some references to this disagreement 
can be found in their correspondence in the 1930s. Gosset’s (“Student’s”) first pub-
lic statement on the issue occurred in a paper of 1936, which led to a series of alter-
nating publications of the two authors, culminating in a posthumous paper of 1938 
by Student, who had died before completing his revisions.

In this paper, Student summarizes the dispute as follows:

He [Fisher] holds that balanced arrangements may or may not lead to biased means accord-
ing to the lie of the ground, but that in any case the value obtained for the error is so mis-
leading that conclusions drawn are not valid, while I maintain that these arrangements tend 
to reduce the bias due to soil heterogeneity and that so far from the conclusions not being 
valid, they are actually less likely to be erroneous than those drawn from artificially ran-
domized arrangements.

In this paper, Student also raises an issue which later writers have considered the 
main drawback of randomization, namely that,

by the luck of the draw [the treatments may] come to be arranged in a very unbal-
anced manner.

This difficulty can of course be avoided by what is called restricted randomiza-
tion, i.e., by eliminating from consideration the most unbalanced arrangements and 
randomizing among the rest. Such an approach was in fact suggested by Fisher in 
the only comment of his on the matter that seems to have been recorded. In Savage 
et al. (1962), cited in Fienberg and Hinkley (1980, p. 45), Savage reports that in 
1952, he asked Fisher:

What would you do if, drawing a Latin Square at random for an experiment, you happened 
to draw a Knut Vik Square? Sir Ronald said he thought he would draw again and that, ideally, 
a theory explicitly excluding regular squares should be developed.

5.7.2  Analysis of Variance (ANOVA)

Regarding Fisher’s ANOVA, there also emerged some difficulties, but they were of 
a very different kind from the problems encountered with randomization. Nobody 
found fault with the ANOVA procedures, everyone agreed that they were enor-
mously useful and one of Fisher’s greatest achievements. The problem was that no 
one was quite sure of what really constituted an ANOVA.

The difficulty in some way originated with Fisher, who never gave a general defi-
nition and who in the chapter of SMRW (fourth Edition) entitled, “Further applica-
tions of the ANOVA,” wrote:

It is impossible in a short space to give examples of all the different applications which may 
be made of this method; we shall therefore limit ourselves to those of the most immediate 
practical importance.
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These examples were systematized in Scheffé’s 1959 book, “The Analysis of 
Variance,” which took as its basic framework linear models with either fixed or random 
effects. Whether Fisher would have agreed with this formulation is hard to tell. In 
DOE, he wrote:

The arithmetical discussion by which the experiment is to be interpreted is known as the 
analysis of variance. This is a simple arithmetical procedure by means of which the results 
may be arranged and presented in a single compact table, which shows both the structure of 
the experiment and the relevant results in such a way as to facilitate the necessary tests of 
their significance.

The description at first sounds as if ANOVA were a data-analytic procedure not 
requiring a model. This is the view taken by some later writers, but it is to some 
extent vitiated by the last part of Fisher’s statement, although even this is ambiguous 
since it only requires that the procedure “facilitates” the test, but does not actually 
make the test part of the procedure.

Attempts were later made to extend ANOVA to other than the linear models with 
normal errors that constituted the subject of Scheffé’s book. When the normality 
assumption is dropped, sums of squares which were central to Fisher’s concept may 
no longer be relevant. A different approach was reviewed by Terry Speed in a 1987 
paper entitled, “What is an analysis of variance?” The paper was followed by com-
ments of 11 discussants, none of whom agreed with either Speed’s definition or that 
of any of the other discussants.

In practice, ANOVA seems to be used mainly in linear models and their extension 
to generalized linear models (McCullagh and Nelder 1983).

5.7.3  Optimality

Like the test discussed in SMRW, the designs of DOE were presented by Fisher 
without much justification, based entirely on his intuitive understanding of what the 
situation demanded. But again later writers found justifications by showing that 
Fisher’s procedures possessed certain optimality properties. A theory of optimal 
designs was initiated by Wald (1943) and Wald’s student Ehrenfeld (1953). However, 
the person most responsible for such a fully developed theory was Kiefer (1985), 
who between 1958 and his early death in 1981, published more than 40 papers on 
the subject. These papers by Jack Kiefer complemented and to some extent 
completed Fisher’s work on experimental design as the Neyman-Pearson theory 
had done for Fisher’s testing methodology.

5.8  Design of Sample Surveys

In all three areas of Fisher’s major statistical work: small-sample (exact) tests, experi-
mental design, and theory of estimation, Neyman played an important complementary 
role. In testing, the Neyman-Pearson theory provided justification for the normal-
theory tests that Fisher had proposed on intuitive grounds. (In a few cases, it later 
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turned out that the two approaches led to different solutions). In design, as will be 
discussed in the present section, Fisher and Neyman developed, about simultaneously 
but independently, theories that had important parallels, but in quite different areas of 
application. Finally, in estimation they tackled a common problem but arrived at very 
different solutions. Estimation will be considered in the next chapter.

The purpose of sampling is to estimate one or more characteristics of a population 
P by means of a sample from the population. Neyman’s principal contribution to 
the design of statistical studies was his 1934 paper, “On the two different aspects of 
the representative method: the method of stratified sampling and the method of pur-
posive selection.” This paper has been described by Fienberg and Tanur (1996) as 
“Neyman’s watershed paper, in which he was able to capture the essential ingredients 
of the problem of sampling.”

The paper starts with an introduction in which Neyman reviews the recent history 
of the representative method of sampling, and emphasizes that,

there are two different aspects of the representative method. One of them is called the 
method of random sampling and the other the method of purposive selection… . The two 
kinds of method were discussed by A. L. Bowley in his book … as being equally to be 
recommended.

He goes on to cite a 1926 report by a commission appointed by the International 
Statistical Institute, which took the same attitude, and to describe an application of 
the purposive method.

It may be worth noting that the distinction between these two approaches corresponds 
roughly to that between randomized and systematic designs discussed by Fisher.

Neyman finally points out that “the theory of purposive selection seems to have 
been extensively presented only in the two papers mentioned, while that of random 
sampling has been discussed probably by more than a hundred authors.” He there-
fore concludes that “it seems justifiable to consider carefully the basic assumptions 
underlying the former. This is what I intend to do in the present paper.”

The introduction is followed by a chapter entitled, “Mathematical theories under-
lying the representative method,” and which is divided into two sections. The first 
bears the title, “The theory of probabilities a posteriori and the work of R. A. Fisher.” 
It mentions the difficulties attending the first of these [i.e., the inverse method] but 
notes that “an approach to problems of this type has been suggested by R. A. Fisher 
which removes the difficulties involved in the lack of knowledge of the a priori 
probability law.” This is Fisher’s fiducial inference, and Neyman states that in 
Appendix I he has “described the main lines in a way somewhat different from that 
followed by Fisher.” He mentions that “the form of this solution consists in deter-
mining certain intervals, which I propose to call the confidence intervals.” We shall 
postpone discussion of this concept to the next chapter.

Section 2 deals with “The choice of the estimates.” Assume some characteristic 
q of a known population P is to be estimated based on a sample from the popula-
tion. Neyman considers only linear estimates of q. If the sample is obtained by some 
random method, Neyman makes use of Markoff’s theory of least squares to find a 
best linear unbiased estimate. If the number of observations is not too small, he 
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claims, the estimate is approximately normally distributed and, suitably Studentized, 
is distributed according to Student’s t. Since this is a known and tabled distribution, 
it can be used to obtain confidence intervals for the parameter being estimated.

To apply this approach to the problem of comparing randomized and purposive 
sampling, Neyman now assumes that the population P is comprised of k subpopula-
tions P

1
,…, P

k,
 from which samples of sizes n

1
,…,n

k
 are to be drawn. The means 

A
1
,…,A

k
 of the populations are unknown, and of the variances it is supposed that 

s
i
2 = s

0
2/P

i
, where s

0
2 is unknown but the divisors P

i
 are known. If the samples have 

been drawn at random, Neyman then applies the Markoff theory to obtain confi-
dence intervals for one or more linear functions of the means A

i
.

In the next chapter, Neyman compares what he calls the two aspects of the 
representative method, first the method of random sampling, then the method of 
purposive sampling. If samples are drawn non-randomly, estimates of means and 
confidence intervals may be biased.

He begins his study of random sampling by noting that there are several types.

(a) The sample Â is obtained by taking at random single individuals from the popu-
lation P. This may be done with or without replacement. (This is now called a 
simple random sample).

(b) The population P is divided into several subpopulations now called strata 
P

1
,…, P

k
 and the sample is obtained by drawing random samples Â

1
,…,Â

k
 

from the strata. The sizes of the strata are denoted by M¢
1
,…,M¢

k
 and those of 

the samples by m¢
1
,…,m¢

k
. (This is now called a stratified random sample).

Before considering a third type of sampling, Neyman points out that in prac-
tice the members of the population are typically grouped (as an example he 
mentions households), and that it is much easier to take a random sample of 
such groups than of individuals. He therefore proposes a third method:

(c) Assuming that the population P of M¢ individuals consists of M
0
 groups, he 

considers the population P whose elements are the groups. A random sample is 
now taken from P. Again, the sampling can be unrestricted or stratified. In view 
of the advantages of the latter, Neyman says he will consider only stratified 
sampling from P. (This is now called a cluster or stratified cluster sample).

Neyman next notes that random sampling is not supported by everyone. In par-
ticular, he refers to work on purposive sampling by Bowley and by the Italian 
statisticians Corrado Gini and Luigi Galvani. He describes their method and intro-
duces a probabilistic structure that allows him to describe the assumptions, based 
on his previous analysis that would make the estimate from this type of purposive 
sampling satisfactory. He then considers the consequences for the method of pur-
posive sampling when these assumptions are not satisfied.

A major conclusion is that if these hypotheses are not satisfied, then with purpo-
sive selection, “we are not able to appreciate the accuracy of the results obtained… .” 
We are very much in the position of a gambler, betting at 1 time ₤100. Hence: “the 
final conclusion which both the theoretical considerations and the above examples 
suggest is that the only method which can be advised for general use is the method 
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of stratified random sampling. If the conditions of the practical work allow, then the 
elements of the sampling units should be individuals. Otherwise we may sample 
groups, which however should be as small as possible.”

The above is a very inadequate summary of this highly original paper, which 
Neyman published in three versions: first in a 1933 Polish pamphlet of 123 pages; 
then in the presentation to the Royal Statistical Society discussed above; and finally 
in the 1937 lectures and conferences delivered at, and published by, the Graduate 
School of the U. S. Department of Agriculture in 1938.

The most important contributions of the paper are:

 1. The extension of stratified random sampling to the case that the elements being 
sampled are groups rather than individuals.

 2. The development of a probabilistic model for purposive selection that made it 
possible to assess its accuracy.

 3. The realization that purposive selection consists of samples of very few, very large, 
sampling units, while on the contrary good accuracy requires many small units.

A fourth contribution, discussed mainly in the appendix, is Neyman’s theory of 
confidence intervals. This will be considered in the next chapter.

Finally, it may be worth noting certain parallels between Fisher’s theory of design 
and Neyman’s theory of sampling. Most importantly, both insist on randomization 
providing the only reliable basis for dependable statistical inference. The other par-
allel is that between blocking (in design) and stratification (in sampling). Of course, 
the settings and details in the two fields of application are quite different. A detailed 
comparison and prehistory of Fisher’s and Neyman’s work in these two areas is 
provided by Fienberg and Tanur (1996).
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6.1  Point Estimation

Throughout the nineteenth century, the most commonly used statistical procedure 
was estimation by means of least squares. In 1894, Karl Pearson broke new ground 
by proposing an alternative approach: the method of moments. Of this method, 
Fisher, in his fundamental paper of 1922 [18] (discussed in Sect. 1.5), wrote that it 
is “without question of great practical utility.” On the other hand, he points out that 
it requires the population moments involved to be finite, and “that it has not been 
shown, except in the case of a normal curve, that the best values will be obtained by 
the method of moments.” And he asserts that “a more adequate criterion is required.” 
For this purpose, he proposes the method of maximum likelihood.

In several sections, Fisher then compares the efficiency of the method of moments 
relative to that of maximum likelihood for a variety of classes of distributions, 
including those of the Pearson curves. For the latter, he finds that the relative effi-
ciency of the method of moments exceeds 80% only when the distribution is close 
to the normal. The comparison shows clearly how very superior maximum likeli-
hood is to Pearson’s approach.

On the general subject of point estimation, Fisher, in his book, “Statistical 
Methods and Scientific Inference,” points out that estimates are of little value without 
an idea of their precision. He writes that,

A distinction without a difference has been introduced by certain writers who distinguish 
“point estimation,” meaning some process of arriving at an estimate without regard to its 
precision, from “interval estimation,” in which the precision of the estimate is to some 
extent taken into account. “Point estimation” in this sense has never been practiced either 
by myself, or by my predecessor Karl Pearson, who did consider the problem of estimation 
in some of its aspects, or by his predecessor Gauss of nearly one hundred years earlier, who 
laid the foundations of the subject.

Despite this disclaimer, Fisher’s early writing suggests that originally he viewed 
estimation as point estimation, much as we do now. Thus, in his basic paper of 1922 
he defines the problems of estimation as follows:

Chapter 6
Estimation
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These involve the choice of methods of calculating from a sample statistical deviates, or as 
we shall call them statistics, which are designed to estimate the values of the parameters of 
a hypothetical population.

Fisher returns to the problem of estimation three years later in a paper entitled 
“Theory of statistical estimation.” He now states,

Problems of estimation arise when we know, or are willing to assume, the form of the fre-
quency distribution of the population, as a mathematical function involving one or more 
unknown parameters and wish to estimate the values of these parameters by means of the 
observational record available. A statistic may be defined as a function of the observations 
designed as an estimate of any such parameter.

In both papers, he thus calls “statistics” what today we would consider to be point 
estimates. He then proceeds to study properties of these statistics such as consis-
tency, sufficiency, efficiency, and so on. We shall not follow this work here, but turn 
to the tangled and complicated story of Fisher’s and Neyman’s approaches to esti-
mation by interval or distribution.

6.2  Fiducial Inference

Fisher’s ultimate solution to the problem of estimation (and to statistical inference 
in general) was what he called fiducial inference. His first publication on this new 
approach to inference was a 1930 paper “Inverse probability.” The paper begins 
with a critique of the inverse (Bayesian) method. This section ends with Fisher’s 
asking:

If, then, we follow writers like Boole, Venn and Chrystal in rejecting the inverse argument 
as devoid of foundation and incapable even of consistent application, how are we to avoid 
the staggering falsity of saying that however extensive our knowledge of the values of x 
may be, yet we know nothing and can know nothing about the values of q?

As an answer to this question, Fisher proposes the concept of likelihood and in par-
ticular estimation by maximum likelihood. After some discussion of these ideas 
which stresses the fact that likelihood is not probability, Fisher turns to another 
answer by stating that “there are, however, certain cases in which statements in 
terms of probability can be made with respect to the parameters of the population.”

Although he restricts the argument to maximum likelihood estimators T, it is in 
fact much more general. Fisher assumes T to have a continuous distribution depending 
on a single parameter q. He then considers the probability

 ( ) ( , )≤ = =P T c F T Pq q  

and now argues,

If we give to P any particular value such as .95, we have a relationship between T and q such 
that T is the 95 per cent value corresponding to a given q, and this relationship implies the 
perfectly objective fact that in 5 per cent of samples T will exceed the 95 per cent value 
corresponding to the actual value of q… .
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And now comes the crucial step:

To any value of T there will moreover be usually a particular value of q to which it bears this 
relationship; we may call this “the fiducial 5 per cent value of q” corresponding to given T. 
If, as usually if not always happens, T increases with q for all possible values, we may 
express the relationship by saying that the true value of q will be less than the fiducial 5 per 
cent value corresponding to the observed value of T in exactly 5 trials in 100… . This then 
is a definite probability statement about the unknown parameter q.

Fisher then illustrates this argument with an example and concludes by saying 
that,

Generally the fiducial distribution of a parameter q for given statistic T may be expressed as
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while the distribution of the statistic T for a given value of the parameter is
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The paper concludes with a comparison of this fiducial approach with that of inverse 
probability.

The passage referred to above as “the crucial step” caused great difficulty to later 
readers. The argument starts with T being a random variable and q an unknown 
parameter and ends with T a fixed value and “a probability statement about the 
unknown parameter q.” This phrase suggests that q has now become a random vari-
able, but it could also be just a rhetorical flourish. An argument for the latter inter-
pretation is that at the time Fisher and Neyman thought that their approaches were 
the same.

If this is what Fisher had thought in 1930, he certainly changed his mind later. In 
his 1956 book SMSI, he stated unequivocally (p. 51),

The fiducial argument uses the observations to change the logical status of the parameter 
from one in which nothing is known of it, and no probability statement about it can be 
made, to the status of a random variable having a well-defined distribution.

After his 1930 paper, Fisher next mentions fiducial inference in a 1935 paper on 
“The logic of inductive inference,” some aspects of which were discussed in Sect. 4.6 
above. The new feature is the identification of the fiducial limits with the set of 
parameters q

0
 for which the hypothesis q = q

0
 is accepted at the given level. This 

interpretation had already been suggested by Neyman in the Appendix to his 1934 
paper.

In 1935, Fisher also published a more extensive treatment of “the fiducial argu-
ment in statistical inference,” in which he emphasizes an aspect that had been 
implicit in the use of maximum likelihood estimates in his 1930 paper. This is the 
requirement that “the statistics used contain the whole of relevant information which 
the sample provides.” As an example, he mentions a statistic t¢, in which the usual 
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denominator of t has been replaced by one derived from the mean error. He claims 
that this would be “logically equivalent to rejecting arbitrarily a portion of the obser-
vational data.”

He continues by saying that,

Dr. J. Neyman has unfortunately attempted to develop the argument of fiducial probability 
in a way which ignores the results from the theory of estimation, in the light of which it was 
originally put forward. His proofs, therefore, purport to establish the validity of a host of 
probability statements many of which are mutually inconsistent.

Fisher neglects to point out that Neyman too strives to obtain a preferred solution, 
namely the one leading to the intervals that are shortest in some suitable sense.

In the last sections of the paper, Fisher extends the fiducial argument to several 
parameters and then applies it to the Behrens–Fisher problem.

As discussed in Sect. 4.3 above, this is the problem of testing that the means m 
and m¢ of two normal distributions with unknown variances are equal. As we have 
seen, conditionally given the two samples, Fisher treats m and m¢ as two independent 
random variables with known distributions from which he derives the distribution of 
m¢−m.

We shall return to the subject of fiducial probability in Sect. 6.5.1

6.3  Confidence Intervals

After having sketched his theory of confidence intervals in the appendix of his 1934 
sampling paper, Neyman provides a full account in a 1937 paper to which he gives 
the title “Outline of a theory of statistical estimation based on the classical theory of 
probability.” He motivates his approach by noting that “the practical statistician 
required some measure of the accuracy of the estimate T. The generally accepted 
method of describing this accuracy consists in calculating the estimate, say S

T
2, of the 

variance V
T
 of T and in writing the result of all the calculations in the form T ± S

T
… . 

This shows that what the statisticians really had in mind in problems of estimation is 
not the idea of a unique estimate, but that of two estimates, having the form, say,

 1 2 and ,= − = +T TT k S T k Sq q  

where k
1
 and k

2
 are certain constants, indicating the limits between which the true 

value of q presumably falls.”
He then considers the probability that the true parameter value lies between these 

limits. He points out that it is legitimate to consider this probability since q  and q  
are random variables, and only the unknown parameter value q is a constant. He 
then requires that the probability of

 ≤ ≤q q q  (*)

1 For more on the fiducial approach, see Zabell (1992).
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be equal to a preassigned level a, no matter what is the true value of q, or, if they are 
present, of any nuisance parameters. He calls q  and q  the lower and upper confi-
dence limits and a the confidence coefficient. After calculating the values of q  and  
q , Neyman writes, the practical statistician must state that (*) holds. This is justi-
fied he asserts, because when following this rule, “in the long run he will be correct 
in 99% (the assumed value of a) of all cases.” He then adds two very important 
comments.

First he points out that “for this conclusion to be true, it is not necessary that the 
problem should be the same in all the cases. For instance during a period of time the 
statistician may deal with a thousand problems of estimation and in each case the param-
eter q to be estimated and the probability law of the x’s may be different.”

As long as the functions q  and q  are properly calculated, Neyman states, and 
 correspond to the same value of a, “the probability of their resulting in a correct 
statement will be the same, a. Hence the frequency of actually correct statements 
will approach a.” This very important point has frequently been overlooked by later 
commentators on Neyman’s work.

On the second aspect, Neyman writes that,

It will be noticed that in the above description the probability statements refer to the problems 
of estimation with which the statistician will be concerned in the future.

He then raises the question of what can be concluded once the sample has been 
drawn.

Suppose 1=q  and = 2q . Can we then say “that in this particular case the prob-
ability of the true value q falling between 1 and 2 is equal to a?” And he replies:

The answer is obviously in the negative. The parameter q is an unknown constant and no 
probability statement concerning its value may be made, that is except for the hypothetical 
and trivial ones that the probability of 1 £ q £ 2 equals 1 if q lies between these limits, and 
0 if it doesn’t.

The next section concerns the fact that a confidence set for q can be viewed as the 
totality of parameter values q

0
 for which the hypothesis H: q = q

0
 is accepted at the 

given level. This equivalence provides a method for constructing confidence sets, 
which then is illustrated on a number of examples.

Finally, the question is taken up of what are “best” confidence intervals. Neyman 
calls confidence intervals shortest if they minimize the probability of covering false 
values of q

0
. He points out that they are uniformly shortest (i.e., minimize the proba-

bility of covering all false values) if the corresponding hypothesis tests are uniformly 
most powerful.

6.4  Some Priority Considerations

Fisher first published his fiducial concept in 1930 [84]; Neyman’s first publication 
in English of his theory of confidence intervals occurred in 1934 in the appendix of 
his paper on sampling. There, he says of his confidence limits q

1
(x) and q

2
(x) that
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they are what R. A. Fisher calls the fiducial limits of q. Since the word ‘fiducial’ has been 
associated with the concept of ‘fiducial probability,’ which has caused the misunderstand-
ings I have already referred to, and which in reality cannot be distinguished from the 
ordinary concept of probability, I prefer to avoid the term and call the intervals [q

1
(x), 

q
2
(x)] the confidence intervals corresponding to the confidence coefficient e.

After describing how to construct these intervals, Neyman adds the following 
footnote:

The theory developed by Fisher runs on somewhat different lines. It applies only to the case 
just described when we know the distribution of x depending on only one unknown character 
[i.e., parameter]. The method I am using seems to have the advantage that it allows an easy 
generalization to the case where there are many unknown parameters… .

Fisher was one of the discussants. Talking about inference without inverse probability, 
he said

the particular aspect of this work, of which Dr. Neyman’s paper was a notable illustration, 
was the deduction of what Dr. Fisher had called fiducial probability. Dr. Neyman had not 
used this term, which he suggested had been misunderstood, but he used instead the term 
‘confidence coefficient’… . When Dr. Neyman said ‘it really cannot be distinguished from 
the ordinary concept of probability’, Dr. Fisher agreed with him; and that seemed to him a 
reason for calling it a probability rather than a coefficient. He qualified it from the first with 
the word fiducial to show that it was probability by the fiducial method of reasoning, then 
unfamiliar and not by the classical method of inverse probability. Dr. Neyman qualified it 
with the word confidence. The meaning was evidently the same… .

Two facts stand out from this interchange:

 1. Both authors believe they are talking about the same concept, though derived in 
different ways.

 2. Neyman acknowledges Fisher’s priority.

It therefore comes as a surprise that in his basic 1937a paper on confidence inter-
vals, Neyman does not at all refer to Fisher’s earlier work on the subject. It seems 
likely that he justified this in that by then he no longer felt that they were dealing 
with the same concept.

However, Fisher bitterly complained about this absence of any acknowledgment 
of his earlier work. In a letter of November 9, 1942 to Maurice G. Kendall (Bennett 
1990, p. 181), he wrote:

The particular innovation of reasoning which you specified in the words, “The essential 
concept of the theory of confidence intervals, if I have understood it correctly, is the replace-
ment of these specified limits by … functions of the sample numbers,” is to be found quite 
explicitly in the paper to which I referred you (Fisher’s 1930 paper on “inverse probability”). 
I may say it took a lot of private coaching by me to get this simple modification into 
Neyman’s head. When he had grasped it, he proceeded, with Pearson’s help, to expound it 
to the world with the minimum of reference to its origin.

Later, Neyman discovered, and acknowledged in the 1952 second edition of his 
“Lectures and Conferences,” that his theory of confidence intervals had important 
forerunners.
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On page 221, he states that “we shall make a very brief review of early papers of 
several authors in which one can discern the germs of the theory of confidence 
intervals.”

He first mentions that,

The idea of estimation by confidence intervals is very clearly and faultlessly stated in a few 
last sentences of a paper by Hotelling published in 1931. However, the statement of this 
idea was not followed by an attempt to develop a systematic theory. The relevant passage is 
very brief and its brevity must have contributed to its being overlooked by many readers, 
including myself.

Neyman then quotes the passage in question. Actually, although Neyman appar-
ently did not know this, Hotelling, in a joint paper with Holbrook Working, had 
already, in 1929, obtained confidence bands for regression curves (Working and 
Hotelling 1929).

Next, Neyman writes, “it would be necessary to refer to papers by R. A. Fisher 
concerned with the so-called ‘fiducial argument.’ The early papers of Fisher given 
to this subject definitely suggest the idea of confidence intervals. Later on, however, 
there appeared to be a substantial difference between the two theories.” (In a later 
section, Neyman discusses the history and connection of fiducial and confidence 
limits in more detail.)

Finally, Neyman mentions that “before either Hotelling or Fisher, the idea of 
confidence intervals is found in papers by Edwin B. Wilson and Stanislas Millot. 
Both authors are concerned with estimating the probability p ...” [in a binomial 
distribution].

What is clear from these references is that the idea of confidence intervals was in 
the air. Neyman’s great achievement was to elevate the discussion from the consid-
eration of isolated examples to a general theory. In addition, this theory included a 
definition of optimal or “shortest” intervals that minimized the probability of covering 
false values.

6.5  Fisher’s Concept of Probability

One way of trying to understand Fisher’s fiducial probability is to study what he 
meant by probability.

Fisher formulated his idea of probability as early as 1922 in his fundamental 
paper “On the mathematical foundations of theoretical statistics.” There, he defined 
the task of the statistician as the reduction of data, and stated that “this object is 
accomplished by constructing a hypothetical infinite population, of which the actual 
data are regarded as constituting a random sample.”

He then explains the meaning of probability:

When we speak of the probability of a certain object fulfilling a certain condition, we imagine 
all such objects to be divided into two classes, according as they do or do not fulfill the 
condition. This is the only characteristic in them of which we take cognisance.
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He goes on to say that probability

is a parameter which specifies a simple dichotomy in an infinite hypothetical population, 
and it represents neither more nor less than the frequency ratio which we imagine such a 
population to exhibit.

Fisher illustrates his definition with the statement that the probability of throwing a 
five with a die is one-sixth. By this we mean, he says, that in

a hypothetical population of an infinite number of throws, with the die in its original condi-
tion, exactly one-sixth will be fives. Our statement will not then contain any false assump-
tion about the actual die, as that it will not wear out with continued use, or any notion of 
approximation, as in estimating the probability from a finite sample, although this notion 
may be logically developed once the meaning of probability is apprehended.

To see in more detail how Fisher thought about probability, we shall take a closer 
look at one of the several papers he wrote on the subject. It is a late paper (1959) 
with the title “Mathematical probability in the natural sciences.”

The first section contains the following statement which is central to his view. 
Of probability statements, he writes that all they

assert is that the exact nature and degree of uncertainty is just as if we know [the subject] to 
have been chosen at random from [a population in the real world]. The subject of probability 
statements … is singular and unique; we have some degree of uncertainty about its value, 
and it so happens that we can specify the exact nature and extent of our uncertainty by means 
of the concept of mathematical probability as developed by the great minds of the 17th 
Century Fermat, Pascal, Leibnitz, Bernoulli and their immediate followers.

In the next paragraph, he illustrates:

The type of uncertainty which the new concept was capable of specifying with exactitude 
was that which confronts a gambler in a game played fairly, and with perfect apparatus. The 
probability statements refer to the particular throw or to the particular shuffling of the cards, 
on which the gambler lays his stake. The state of rational uncertainty in which he is placed 
may be equated to that of the different situation which can be imagined in which his throw 
is chosen at random out of an aggregate of throws, or of shuffling, which might equally well 
have occurred, though such aggregates exist only in the imagination.

The most striking feature of this explanation is that Fisher’s probability concept 
refers to singular events and is a state of mind (rational uncertainty), what today 
would be called an epistemic probability.

In the next section, Fisher starts over again and considers the problem from another 
angle. He states that “the requirements of a correct statement are only three”.

The first is “a conceptual reference set, which may be conceived as a population 
of possibilities of which an exactly known fraction possess some chosen character-
istic.” As an example, he mentions the set of possible throws with a die, [which] 
may be conceived to have exactly 1/6 aces.

The second condition is that “it must be possible to assert that the subject of the 
probability statement belongs to this set.” This requirement, he states, “puts our 
probability statement into the real world.”

Finally, Fisher requires that “no subset can be recognized having a different 
probability. Such subsets must always exist; it is required that no one of them shall 
be recognizable. This is a postulate of ignorance.”
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Against this background, Fisher devotes the next section to explain his concept 
of fiducial probability, of which he states that it is a probability in the sense he has 
explained this notion, and differs only in the way it was derived “by the particular 
argument to which the term fiducial has been applied.”

As in his other expositions of this controversial idea, Fisher provides no general 
account but discusses it in terms of an example. In this case, he uses the estimation 
of the mean m of a normal distribution based on the sample mean X and estimate S2 
of the variance, so that – as he points out – the quantity

 ( ) /= −T X Sm  

has a distribution which is independent both of the unknown parameter m and of the 
unknown variance. “Therefore the value t

P
 can be tabulated such that for any ran-

dom sample from any normal distribution,” he writes,

 “ [ ] < =PP t t P  

for all values of P from 0 to 1.”
Given N observations, one can then calculate x  and s, “and substitute their 

numerical values in the expression for t so obtaining the probability statement

 [ ] .”< + =PP x st Pm  

He continues, “The subject of these probability statements is the unknown m, a 
property of the real world to be determined by observation and experiment like an 
atomic weight.”

Having made this bald and unorthodox statement, Fisher then asks: “on what 
conditions do a system of statements such as I have inferred by the fiducial argument 
represent genuine statements of probability in the real world?” And he explains:

As regards the Reference Set we may recognize that the triad of values (m, x , s) must exist 
for every sample from every normal population, that for some of these samples but not for 
all, the inequality

 < + Px stm  

is satisfied, and whatever may be the true values of the mean and variance of the population 
sampled, the proportion of random samples which satisfy the inequality is exactly P.

He goes on to say that “the second requirement, that our data really belong to this 
reference set, depends … on the adequacy of [the] experimental design.”

Finally, Fisher argues that no subset can be “recognized within the general set.” 
His proof is unconvincing and the assertion was in fact later shown to be false.

Unfortunately, Fisher does not complete this discussion of fiducial probability by 
connecting it with the interpretation of single event probability he had set out in the 
first section of the paper. Had he done so, he might have stated that given the par-
ticular values of m and the observed values of x  and s, the probability p that 

< + Px stm  measures the resulting “state of [the] observer’s rational uncertainty” 
concerning this inequality.
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This is at least one view of fiducial probability that is consistent with the ideas 
expressed in this paper. Whether either then or at other times Fisher really thought 
of it in this way seems impossible to tell.

It should be pointed out that in any case such an interpretation does not justify 
treating m (conditionally, given x  and s) as a random variable with a known distri-
bution as Fisher did, for example, in his solution of the Behrens–Fisher problem.

It is a curious and somewhat ironic fact that the interpretation of the probability 
of a random event once it has been observed as epistemic, suggested in the first part 
of Fisher’s paper, is the way many users think about confidence intervals. As pointed 
out in Sect. 6.3 above, for Neyman probability referred to the frequency of future 
events. Probability as a state of mind was a concept he strongly opposed.
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7.1  A Review

As stated in the Preface, it is the aim of this book to trace the creation of classical 
statistics, and to show that it was principally the work of two men, Fisher and 
Neyman. Since the main story is somewhat lost in the details, let us now review their 
contributions to hypothesis testing, estimation, design, and the philosophy of 
statistics.

7.1.1  Hypothesis Testing

After a small-sample (“exact”) approach to testing was initiated by Gosset 
(“Student”) in 1908 with his t-test, Fisher in the 1920s, under frequent prodding by 
Gosset, developed a battery of such tests, all based on the assumption of normality. 
These tests (based on the t, F, and c2 distributions) today still constitute the bread 
and butter of much of statistical practice.

Fisher’s tests were based solely on his intuition. The right choice of test statistics 
was obvious to him. A theory that would justify his choices was developed by 
Neyman and Pearson in their papers of 1928 and 1933.

Their basic idea was to fix the level of the test at a predetermined value a, inde-
pendent of any nuisance parameters, and – subject to this condition – to maximize 
the power of the test, i.e., its probability of rejecting the hypothesis when it is false. 
It turned out that in all the initial simple cases considered by Fisher, the tests he had 
proposed were optimal in this sense.

The contributions by Fisher on the one hand and by Neyman-Pearson on the 
other, thus fitted seamlessly together to provide an enormously useful methodology 
with a persuasive theoretical underpinning.

More important perhaps than the optimality properties were the practical uses of 
the concept of power. It provided a measure of the effectiveness of the test and a way 
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to determine what sample size was needed to make the test effective against the 
alternatives of interest.

Fisher’s first reaction to the Neyman-Pearson theory was favorable but later he 
changed his mind, calling it in a letter of October 8, 1951 (Bennett 1990, p. 144) 
“that unnecessarily portentous approach to tests of significance represented by the 
Neyman and Pearson critical regions, etc.” He continues to say that, “In fact I and 
my pupils throughout the world would never think of using them.” In particular, 
Fisher never acknowledged that the concept of power might have any use.

Fisher’s opposition to the Neyman-Pearson theory stemmed partly from the fact that 
for some more complicated problems such as the Behrens-Fisher problem, Fisher’s 
fiducial theory led to a very different solution than the Neyman-Pearson approach.

A final issue, which turned out to be of great practical importance, concerned the 
choice of the significance level a. As pointed out in Sect. 2.2, Fisher, in his 1925 
book SMRW, recommended 5% as “a conventional line,” and throughout in his 
work used 5% or 1% if a more stringent requirement was desired.

In contrast, Neyman and Pearson, in their basic paper of 1933, denote the level 
by e but never suggest a particular value for it. The reason for this can be seen in 
their general discussion (in Part II of their paper) of the two kinds of error: false 
rejection and false acceptance. They state that,

From the point of view of mathematical theory all that we can do is to show how the risk of 
the errors may be controlled and minimized. The use of these statistical tools in any given 
case, in determining just how the balance should be struck, must be left to the investigator.

This suggests that they felt in determining e, consideration should be given to the 
power that could be achieved with this value.

In his late, 1956, book SMSI, Fisher protested that “no scientific worker has a 
fixed level of significance at which from year to year, and in all circumstances, he 
rejects hypotheses; he rather gives his mind to each particular case, and his ideas.” 
However, his early recommendation and life-long practice prevailed. The desire for 
standardization trumped the advantages of considering each case on its own merits.

It is a historical curiosity that already Jacob Bernoulli, in his Ars Conjectandi, 
published posthumously in 1713, wrote,

It would be useful if definite limits for moral certainty were established by the authority of 
the magistry. For instance, it might be determined whether 99/100 of certainty suffices or 
whether 999/1000 is required. Then a judge would not be able to favor one side, but would 
have a reference point to keep constantly in mind in pronouncing a judgment.

Fisher’s 5% has now supplied such a reference point.

7.1.2  Design

The contributions of Fisher and Neyman-Pearson to the construction of a fairly 
cohesive subject of hypothesis testing were complementary. Fisher laid the ground-
work by developing a methodology of testing. Neyman and Pearson then created a 
theory to support it.
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When it came to design, the contributions of Fisher and Neyman were made in 
parallel, putting forward very similar ideas, such as the need for randomization, 
and the desirability of randomizing within fairly uniform strata. However, they 
developed these ideas in different contexts, Fisher in agricultural experimentation, 
Neyman in the sampling of human populations. Despite the similarity of those 
two lines of work, many special features kept them apart, and they are considered 
two separate fields.

7.1.3  Interval Estimation

Here again, although both authors contributed, clearly the origin of their work was 
Fisher’s 1930 paper, “Inverse Probability.” Neyman, in his 1934 paper, was intend-
ing to generalize Fisher’s approach and to free it from what seemed to Neyman 
unnecessary restrictions. At first, Fisher and Neyman agreed that they were talking 
essentially about the same thing, although from slightly different points of view. 
However, starting in 1935, Fisher’s ideas about fiducial inference veered off in a 
different direction and it became clear to both authors that fiducial inference and 
confidence intervals were two very different concepts. While Neyman’s theory was 
very clear and has become a standard part of classical statistics, few were able to 
follow Fisher’s fiducial argument.

And yet this does not tell the whole story. For Neyman, probability was long-run 
frequency. Hence, once the numerical values of the confidence limits were known, 
the only probability statements about the parameter still possible were 1 if the inter-
val covered the true value, 0 if it did not. However, though Neyman repeatedly 
stressed this point, many users did not accept it. For them, the predata probability of 
coverage became their postdata degree of certainty that the (now fixed and numeri-
cally known) interval contained the unknown parameter. This was exactly Fisher’s 
interpretation expressed at the beginning of his 1959 paper (quoted in Sect. 6.3 
above). Thus, while Neyman’s confidence intervals became the accepted solution of 
the estimation problem, in practice they were often interpreted in a way that was 
much closer to Fisher’s view than Neyman’s.

7.1.4  The Role of Statistics in the Philosophy of Science

Both Fisher and Neyman believed that they had made important contributions to the 
philosophy of science, but each felt that the other’s views were completely wrong-
headed.

Fisher felt that with his concepts of likelihood and fiducial inference, he had 
made great progress in the age-old problem of induction.

“In inductive reasoning,” he writes in 1932,

we attempt to argue from the particular, which is typically a body of observational material, 
to the general, which is typically a theory applicable to future experience. In statistical 
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language we are attempting to argue from the sample to the population, from which it was 
drawn. Since recent statistical work [i.e., his own] has shown that this type of argument can 
be carried out with exactitude in a usefully large class of cases by means somewhat different 
from those of the classical theory of probability, it may be useful briefly to restate the logi-
cal and mathematical distinctions which have to be drawn.

The importance Fisher attaches to these ideas can be seen from the fact that in 
1934 he made a major presentation to the Royal Statistical Society entitled, “The 
Logic of Inductive Inference.” Here, he states that,

It would not be surprising or exceptional to find mathematicians of this class [i.e., who have 
been trained … almost exclusively in the technique of deductive reasoning] ready to deny 
at first sight that rigorous inferences from the particular to the general were even possible… . 
It will be sufficient here to note that the denial implies, qualitatively, that the process of 
learning by observation, as experiment, must always lack real cogency.

Inductive inference was central to Fisher’s thinking and he probably took more 
pride in his having legitimized induction and, as he believed, put it on a firm founda-
tion, than in any of his other contributions.

Neyman, for the first time, in 1938, in a French presentation of his theory of 
confidence sets, states his objections to the idea of inductive reasoning. He asserts 
that (my translation):

If, after having made the observations and calculated the [confidence] limits, the physician 
claims that [the unknown parameter lies within these limits], the procedure which has led 
to this claim can not be called inductive reasoning.

He then explains the difference between what we can know and what we can 
believe:

It seems to me that we can know only (1) the results of experiments that have already been 
carried out, and (2) the consequences of some definitions and postulates, provided such 
consequences have been proved. Our attitude toward any assertion other than (1) and (2) 
can only be described by the terms “belief” or “doubt.”

Neyman goes on to state his own opposing point of view:

The only reason for the physician to decide to assert that … [the parameter] lies between the 
confidence limits is that in a long series of empirical results the interval will cover the 
parameter in about a = .95 of cases.

But deciding to assert does not mean either “knowing” or “believing.” It is a voluntary 
act preceded by some experience and some deductive arguments… . Consequently it seems 
to me that the term “inductive reasoning” does not correspond to the nature of the procedure 
which begins by certain postulates concerning the observable variables [i.e., by postulating 
a model], and ends up by an assertion. More generally I doubt that there exist cases in which 
the application of the term to a statistical method is later justified. If one wants a special 
term to describe these methods and in particular to describe the decision that the confidence 
limits are valid, one could perhaps propose “inductive behavior” [“comportement 
inductif”].

On one subject, Fisher and Neyman agreed. Fisher, after 1922, and Neyman, after 
1937, were united in their strong opposition to the use of prior distributions (unless 
they were based on substantial empirical evidence).
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7.2  Further Developments

The strength of a new discipline can be judged in part by its usefulness to the work 
of later generations. From this point of view, the new discipline of statistics was 
enormously successful. Fisher’s t- and F- tests, Neyman’s confidence intervals, and 
the ideas of randomization and blocking, are being used the world over, not only in 
agriculture and biology, but in nearly every area of human activity.

However, the vitality of a new discipline must also be measured by its ability 
to grow, to extend to new situations, and to develop beyond its original formulation. 
In the present section we shall briefly discuss some areas of such further develop-
ments.

7.2.1  Multivariate Analysis

An obvious extension of Fisher’s tests for univariate normal samples is to the case 
of samples from multivariate normal distributions. Fisher himself initiated such an 
effort with his early work on correlation coefficients and, in 1931, Hotelling gener-
alized Student’s t-test to the multivariate case. New issues arose such as testing for 
independence, principal components, and canonical correlations. Multivariate anal-
ysis became a flourishing subject of its own.

7.2.2  Bayesian Inference

It seems ironic that one of the most significant developments after Fisher and 
Neyman had established their foundations was to rejuvenate an approach they both 
had strongly opposed and thought to have vanquished: inverse probability. The story 
is complicated and we shall only mention a few highlights.

The nineteenth century approach to inverse probability, championed particularly 
by Laplace, considered the prior distribution to represent complete ignorance. This 
concept, now called objective Bayes, was taken up and improved by the Cambridge 
geophysicist Harold Jeffreys, culminating in his 1939 book, “Theory of Proba-
bility.”

A different Bayesian approach, called subjective, was proposed by Ramsey 
(1926) and Bruno de Finetti in the 1930s.1 It considered probability as a measure of 
a person’s subjective degree of uncertainty about a situation. This view came into its 
own with the publication in 1954 of L. J. Savage’s book, “Foundations of Statistics,” 
in which he derives the existence of such subjective probabilities from a few, quite 
plausible, axioms.

1 For references to early work of Ramsey and de Finetti, see Forcina (1982).
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7.2.3  Statistical Decision Theory

Both Fisher and Neyman thought of testing, estimation, and design as three separate 
theories, which together constitute the field of statistical inference. Starting in the 
late 1930s and culminating in his 1950 book, “Statistical Decision Functions,” 
Abraham Wald conceived of a very general framework, of which these theories 
were special cases. His formulation was so abstract that one might not expect it to 
produce any substantive results. However, one would be wrong. Wald proved that 
any reasonable statistical procedure is a Bayes procedure corresponding to some 
prior distribution (or a suitable limit of such procedures). In addition, he found a 
characterization of minimax procedures (i.e., of procedures that minimize the maxi-
mum risk). He showed that they are Bayes solutions corresponding to a least favor-
able prior or at least favorable sequence of priors.

Mimimax theory turned out to be an influential unifying approach, but the impact 
of Wald’s first result mentioned above was even greater. It suggested a way to gener-
ate good statistical procedures: Find the Bayes solution for some reasonable prior, 
and then examine its frequentist properties to see whether it was satisfactory. The 
difficulty with this proposal is the choice of a reasonable prior. The search for such 
priors, now called reference priors, became an important topic for Bayesians. 
Ultimately, this approach bridges the divide between Bayesian and frequentist 
methodology, although it is, of course, unsatisfactory to subjective Bayesians.

7.2.4  Nonparametric Inference

A limitation of Fisher’s small-sample tests was the assumption of the normality of 
the underlying distributions. Fisher himself had pointed to randomization tests as a 
way out of this problem, but they were difficult to use. An alternative, to replace the 
observations by their ranks, was proposed for testing independence by Hotelling 
and Pabst in 1936. The idea did not get much traction until 1945, when Frank 
Wilcoxon published his one- and two-sample rank tests as alternatives to the cor-
responding t-tests. Because of their great simplicity, they quickly became popular, 
particularly in the social sciences. There was, however, a concern: that these tests 
were very inefficient because replacing the original observations by their ranks dis-
carded much useful information.

To measure this loss of efficiency, Pitman in 1947 introduced the concept of 
asymptotic relative efficiency (ARE), and obtained the surprising result that in the 
normal shift model, the ARE of Wilcoxon to t is 3/p = 0.955. Thus, in the situation for 
which the t-test was designed and is optimal, the efficiency loss is quite small. Later, 
it was shown that for shift models with heavy-tailed distributions, Wilcoxon tends to 
be much more efficient than t, while for no distributions is it much less efficient.

These results turned rank-based versions of the normal theory t- and F-tests into 
serious competitors. In addition, point and interval estimates derived from these rank 
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tests shared their efficiencies. Thus, at least for simple problems, a nonparametric 
methodology became a useful alternative to the parametric methodology Fisher and 
Neyman had developed. (For a detailed comparison of the advantages and disadvan-
tages of the two approaches, see Lehmann (2009).)2

7.2.5  Robustness

The classical Fisher-Neyman theory of statistical inference assumed that the obser-
vations were normally distributed or that their distribution belonged to some other 
given parametric family. Nonparametrics, in contrast, assumed that essentially nothing 
was known about the form of the underlying distribution(s). In 1964, Peter Huber 
proposed an intermediate formulation. He suggested that it is frequently realistic to 
assume that the underlying distribution while not exactly normal is at least approxi-
mately so or, more generally, that it lies in a suitable neighborhood of some given 
distribution. A procedure is robust in Huber’s sense if small deviations from the 
model result in small changes in the performance of the procedure.

In this first 1964 paper, Huber developed a theory of robust estimation of a loca-
tion parameter. He later extended it to other situations, among them the problem of 
testing the neighborhood of one distribution against that of another. For this case, 
Huber proved a beautiful generalization of the Neyman-Pearson Lemma. An impor-
tant contribution to robustness theory was Frank Hampel’s influence function.

Gradually, robustness became a subject in its own right, defined by Huber in his 
book, “Robust Statistics” (Huber 1981; Huber and Ronchetti 2009). The interest in 
the topic can be seen, for example, in the publication of several later books, such as 
Hampel, Ronchetti, Rousseeuw, and Stahel: “Robust Statistics: The Approach 
Based on Influence” (1986), Staudte and Sheather, “Robust Estimation and Testing” 
(1990), and Jureckova and Sen, “Robust Statistical Procedures” (1996).

These developments during the 1940s, 1950s, and 1960s, to which others could 
be added, give an indication of the vigor and success of the discipline that Fisher 
and Neyman had created.

2 Recent advances in computer technology make randomization tests based on the actual values 
practically feasible, although not necessarily more efficient.
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from the bibliography given in the Collected Papers. These are indicated by the 
symbol # preceding the relevant citations. Several of these publications are dis-
played in full within this website and in these cases they have been given new CP 
numbers (e.g., CP92A).

(Adapted from Volume 1 of the Collected Papers of R.A. Fisher, with several 
changes and additions prefixed by #).

   I. Books
   II.  Papers reprinted in the Collected Papers of R.A. Fisher (Adelaide:  

University of Adelaide, 1971–1974)
1. Statistical and Mathematical Theory and Applications (excluding Genetics)
2. Genetics, Evolution and Eugenics
3. Miscellaneous

III.  Published material not reprinted in the Collected Papers of R.A. Fisher (Adelaide: 
University of Adelaide, 1971–1974)
1. Letters to Journals
2. Contributions to Discussions
3. Miscellaneous
4. Reviews published in Eugenics Review
5. Other Reviews

I Books

*Statistical Methods for Research Workers. Edinburgh: Oliver & Boyd, 1925, 1928, 1930, 1932, 
1934, 1936, 1938, 1941, 1944, 1946, 1950, 1954, 1958, 1970. Also published in French, German, 
Italian, Japanese, Spanish and Russian.
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The Genetical Theory of Natural Selection. Oxford: Clarendon Press, 1930; New York: Dover 
Pubns., 1958.  
A Complete Variorum Edition. (With a foreword and notes by J.H. Bennett) Oxford: Oxford 
University Press, 1999.  
see http:\\www.oup.co.uk/isbn/0-19-850440-3

*The Design of Experiments. Edinburgh: Oliver & Boyd, 1935, 1937, 1942, 1947, 1949, 1951, 
1960, 1966. Also published in Italian, Japanese and Spanish.

Statistical Tables for Biological, Agricultural and Medical Research. (With F. Yates) Edinburgh: 
Oliver & Boyd, 1938, 1943, 1948, 1953, 1957, 1963. Also published in Spanish and Portuguese.

The Theory of Inbreeding. Edinburgh: Oliver & Boyd, 1949, 1965.

Contributions to Mathematical Statistics. New York: Wiley, 1950.

*Statistical Methods and Scientific Inference. Edinburgh: Oliver & Boyd, 1956, 1959 ; New York: 
Hafner, 1973.

*Re-issued as Statistical Methods, Experimental Design and Scientific Inference, with a 
Foreword by F. Yates (edited by J.H. Bennett). Oxford: Oxford University Press, 1990.

II Papers reprinted in the Collected Papers of R.A. Fisher (Adelaide: University of Adelaide, 
1971–1974)

1  Statistical and Mathematical Theory and Applications (excluding Genetics)

Year
Paper  
number Title

1912 1 On an absolute criterion for fitting frequency curves. Messeng. Math., 41: 
155–160

1913 2 Applications of vector analysis to geometry. Messeng. Math., 42: 161–178

1915 4 Frequency distribution of the values of the correlation coefficient in 
samples from an indefinitely large population. Biometrika, 10: 507–521

1916 7 Biometrika. Eugen. Rev., 8: 62–64

1920 12 A mathematical examination of the methods of determining the accuracy  
of an observation by the mean error, and by the mean square error.  
Mon. Not. Roy. Ast. Soc., 80: 758–770

1921 14 On the “probable error” of a coefficient of correlation deduced from a 
small sample. Metron, 1: 3–32

15 Studies in crop variation. I. An examination of the yield of dressed grain 
from Broadbalk. J. Agric. Sci., 11: 107–135

16 Some remarks on the methods formulated in a recent article  
on the quantitative analysis of plant growth. Ann. Appl. Biol., 7: 367–372

1922 18 On the mathematical foundations of theoretical statistics. Phil. Trans., 
A, 222: 309–368

19 On the interpretation of X2 from contingency tables, and the calculation of 
P. J. Roy. Statist. Soc., 85: 87–94

20 The goodness of fit of regression formulae, and the distribution of 
regression coefficients. J. Roy. Statist. Soc., 85: 597–612
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Paper  
number Title

21 (With W.A. Mackenzie). The correlation of weekly rainfall. Quart. J. Roy. 
Met. Soc., 48; 234–242

22 (With H.G. Thornton and W.A. Mackenzie). The accuracy of the plating 
method of estimating the density of bacterial populations. Ann. Appl. 
Biol., 9: 325–359

23 Statistical appendix to a paper by J. Davidson on biological studies of 
Aphis rumicis. Ann. Appl. Biol., 9: 142–145

1923 30 Note on Dr. Burnside’s recent paper on errors of observation. Proc. Camb. 
Phil. Soc., 21: 655–658

31 Statistical tests of agreement between observation and hypothesis. 
Economica, 3: 139–147

32 (With W.A. Mackenzie). Studies in crop variation. II. The manurial 
response of different potato varieties. J. Agric. Sci., 13: 311–320

1924 34 The conditions under which X2 measures the discrepancy between  
observation and hypothesis. J. Roy. Statist. Soc., 87: 442–450

35 The distribution of the partial correlation coefficient. Metron, 3: 329–332
36 On a distribution yielding the error functions of several well known 

statistics. Proc. Int. Cong. Math., Toronto, 2: 805–813
37 The influence of rainfall on the yield of wheat at Rothamsted. Phil. Trans., 

B, 213: 89–142
38 A method of scoring coincidences in tests with playing cards. Proc. Soc. 

Psych. Res., 34: 181–185
39 (With S. Odén). The theory of the mechanical analysis of sediments by 

means of the automatic balance. Proc. Roy. Soc. Edinb., 44: 98–115

1925 42 Theory of statistical estimation. Proc. Camb. Phil. Soc., 22: 700–725
43 Applications of “Student’s” distribution. Metron, 5: 90–104
44 Expansion of “Student’s” integral in powers of n–l. Metron, 5: 109–120
45 (With P.R. Ansell). Note on the numerical evaluation of a Bessel function 

derivative. Proc. Lond. Math. Soc., Series 2, 24: liv-lvi
46 Sur la solution de l’équation intégrale de M.V. Romanovsky. C.R. Acad. 

Sci., Paris, 181: 88–89

1926 48 The arrangement of field experiments. J. Min. Agric. G. Br., 33: 503–513
49 Bayes’ theorem and the fourfold table. Eugen. Rev., 18; 32–33
50 On the random sequence. Quart. J. Roy. Met. Soc., 52: 250
51 On the capillary forces in an ideal soil: correction of formulae given by 

W.B. Haines. J. Agric. Sci., 16: 492–503

1927 56 (With J. Wishart). On the distribution of the error of an interpolated value, 
and on the construction of tables. Proc. Camb. Phil. Soc., 23: 912–921

57 (With T. Eden). Studies in crop variation. IV. The experimental determina-
tion of the value of top dressings with cereals. J. Agric. Sci., 17: 548–562

58 (With H.G. Thornton). On the existence of daily changes in the bacterial 
numbers in American soil. Soil Sci., 23. 253–259

1928 61 The general sampling distribution of the multiple correlation coefficient. 
Proc. Roy. Soc., A, 121: 654–673

62 On a property connecting the X2 measure of discrepancy with the method 
of maximum likelihood. Atti Cong. Int. Mat., Bologna. 6: 95–100
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98 Appendix

Year
Paper  
number Title

63 (With L.H.C. Tippett). Limiting forms of the frequency distribution of the 
largest or smallest member of a sample. Proc. Camb. Phil. Soc., 24: 
180–190

64 Further note on the capillary forces in an ideal soil. J. Agric. Sci., 18: 
406–410

65 (With T.N. Hoblyn). Maximum- and minimum-correlation tables in 
comparative climatology. Geogr. Ann., 10: 267–281

66 Correlation coefficients in meteorology. Nature, 121: 712
67 The effect of psychological card preferences. Proc. Soc. Psych. Res., 38: 

269–271

1929 74 Moments and product moments of sampling distributions. Proc. Lond. 
Math. Soc., Series 2, 30: 199–238

75 Tests of significance in harmonic analysis. Proc. Roy. Soc., A, 125: 54–59
76 The sieve of Eratosthenes. Math. Gaz., 14: 564–566
77 A preliminary note on the effect of sodium silicate in increasing the yield 

of barley. J. Agric. Sci., 19: 132–139
78 (With T. Eden). Studies in crop variation. VI. Experiments on the response 

of the potato to potash and nitrogen. J. Agric. Sci., 19: 201–213
79 The statistical method in psychical research. Proc. Soc. Psych. Res., 39: 

189–192
80 Statistics and biological research. Nature, 124: 266–267

1930 83 The moments of the distribution for normal samples of measures of 
departure from normality. Proc. Roy. Soc., A, 130: 16–28

84 Inverse probability. Proc. Camb. Phil. Soc., 26: 528–535
85 (With J. Wishart). The arrangement of field experiments and the statistical 

reduction of the results. Imp. Bur. Soil Sci. Tech. Comm., 10. 23pp

1931 90 (With J. Wishart). The derivation of the pattern formulae of two-way 
partitions from those of simpler patterns. Proc. Lond. Math. Soc., Series 2, 
33: 195–208

91 The sampling error of estimated deviates, together with other illustrations 
of the properties and applications of the integrals and derivatives of the 
normal error function. Brit. Assn. Math. Tab., 1. xxvi-xxxv (3rd ed., 
xxviii-xxxvii, 1951)

92 (With S. Bartlett). Pasteurised and raw milk. Nature, 127: 591–592
# 92A Principles of plot experimentation in relation to the statistical interpreta-

tion of the results. Report of a Conference on the Technique of Field 
Experiments, Rothamsted, 7 May 1931, 11–13

1932 95 Inverse probability and the use of likelihood. Proc. Camb. Phil. Soc., 28: 
257–261

1933 102 The concepts of inverse probability and fiducial probability referring to 
unknown parameters. Proc. Roy. Soc., A: 139: 343–348

103 The contributions of Rothamsted to the development of the science of 
statistics. Annual Report Rothamsted Experimental Station, 43–50

1934 108 Two new properties of mathematical likelihood. Proc. Roy. Soc., A, 144: 
285–307

109 Probability, likelihood and quantity of information in the logic of 
uncertain inference. Proc. Roy. Soc., A, 146: 1–8
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110 (With F. Yates). The 6 x 6 Latin squares. Proc. Camb. Phil. Soc., 30: 
492–507

111 Randomisation, and an old enigma of card play. Math. Gaz., 18: 294–297
112 Appendix to a paper by H.G. Thornton and P.H.H. Gray on the numbers of 

bacterial cells in field soils. Proc. Roy. Soc., B, 115: 540–542
# 112A Contribution to a discussion of J. Neyman’s paper on the two different 

aspects of the representative method. J. Roy. Statist. Soc., 97: 614–619

1935 123 The mathematical distributions used in the common tests of significance. 
Econometrica, 3: 353–365

124 The logic of inductive inference. J. Roy. Statist. Soc., 98: 39–54
125 The fiducial argument in statistical inference. Ann. Eugen., 6: 391–398
126 The case of zero survivors in probit assays. Ann. Appl. Biol., 22: 164–165
127 Statistical tests. Nature, 136: 474
128 Contribution to a discussion of J. Neyman’s paper on statistical problems 

in agricultural experimentation. J. Roy. Statist. Soc., Suppl., 2: 154–157, 
173

129 Contribution to a discussion of F. Yates’ paper on complex experiments. 
J. Roy. Statist. Soc., Suppl., 2: 229–231

1936 137 Uncertain inference. Proc. Amer. Acad. Arts Sci., 71: 245–258
138 The use of multiple measurements in taxonomic problems. Ann. Eugen., 7; 

179–188
139 (With S. Barbacki). A test of the supposed precision of systematic 

arrangements. Ann. Eugen., 7: 189–193
140 The half-drill strip system agricultural experiments. Nature, 138: 1101
141 “The coefficient of racial likeness” and the future of craniometry. J. Roy. 

Anthropol. Inst., 66. 57–63

1937 148 (With E.A. Cornish). Moments and cumulants in the specification of 
distributions. Rev. Inst. Int. Statist., 5: 307–322

149 Professor Karl Pearson and the method of moments. Ann. Eugen., 7: 
303–318

150 (With B. Day). The comparison of variability in populations having 
unequal means. An example of the analysis of covariance with multiple 
dependent and independent variates. Ann. Eugen., 7. 333–348

151 On a point raised by M.S. Bartlett on fiducial probability. Ann. Eugen., 7: 
370–375

1938 155 The statistical utilization of multiple measurements. Ann. Eugen., 8: 
376–386

156 Quelques remarques sur l’estimation en statistique. Biotypologie, 6: 
153–158

157 On the statistical treatment of the relation between sea-level characteristics 
and high-altitude acclimatization. Proc.Roy. Soc., B, 126: 25–29

158 The mathematics of experimentation. Nature, 142: 442–443
159 Presidential address, Indian statistical conference. Sankhyã, 4: 14–17

1939 162 The comparison of samples with possibly unequal variances. Ann. Eugen., 
9: 174–180

163 The sampling distribution of some statistics obtained from non-linear 
equations. Ann. Eugen., 9: 238–249
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164 A note on fiducial inference. Ann. Math. Stat., 10: 383–388
165 “Student”. Ann. Eugen., 9: 1–9

1940 173 On the similarity of the distributions found for the test of significance in 
harmonic analysis, and in Stevens’s problem in geometrical probability. 
Ann. Eugen., 10: 14–17

174 An examination of the different possible solutions of a problem in 
incomplete blocks. Ann. Eugen., 10: 52–75

175 The precision of discriminant functions. Ann. Eugen., 10: 422–429

1941 181 The asymptotic approach to Behrens’s integral, with further tables for the 
d test of significance. Ann. Eugen., 11; 141–172

182 The negative binomial distribution. Ann. Eugen., 11; 182–187
183 The interpretation of experimental four-fold tables. Science, 94: 210–211

1942 186 New cyclic solutions to problems in incomplete blocks. Ann. Eugen., 11: 
290–299

187 Completely orthogonal 9 x 9 squares – a correction. Ann. Eugen., 11: 
402–403

188 The likelihood solution of a problem in compounded probabilities. Ann. 
Eugen., 11: 306–307

189 The theory of confounding in factorial experiments in relation to the 
theory of groups. Ann. Eugen., 11. 341–353

190 Some combinatorial theorems and enumerations connected with the 
numbers of diagonal types of a Latin square. Ann. Eugen., 11: 395–401

1943 193 A theoretical distribution for the apparent abundance of different species. 
J. Anim. Ecol., 12: 54–58

194 Note on Dr. Berkson’s criticism of tests of significance. J. Amer. Statist. 
Assn., 38: 103–104

195 (With W.R.G. Atkins). The therapeutic use of vitamin C. J. Roy. Army 
Med. Corps, 83: 251–252

1945 202 A system of confounding for factors with more than two alternatives, 
giving completely orthogonal cubes and higher powers. Ann. Eugen., 12: 
283–290

203 The logical inversion of the notion of the random variable. Sankhyã, 7: 129–132
204 Recent progress in experimental design. In L’application du calcul des 

probabilités, 19–31. Proc. Int. Inst. Intell. Coop., Geneva, (1939)
205 A new test for 2 x 2 tables. Nature, 156: 388

1946 207 Testing the difference between two means of observations of unequal 
precision. Nature, 158: 713

1947 211 The analysis of covariance method for the relation between a part and the 
whole. Biometrics, 3: 65–68

212 Development of the theory of experimental design. Proc. Int. Statist. 
Conf., 3: 434–439

1948 222 Conclusions fiduciaires. Ann. Inst. Henri Poincaré, 10: 191–213
223 (With D. Dugué). Un résultat assez inattendu d’arithmétique des lois de 

probabilité. C.R. Acad. Sci., Paris, 227: 1205–1206
224 Biometry. Biometrics, 4: 217–219
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# 224A Answer to Question 14 on combining independent tests of significance. 
The American Statistician, 2: 30

1949 230 A biological assay of tuberculins. Biometrics, 5: 300–316

1950 236 The significance of deviations from expectation in a Poisson series. 
Biometrica, 6: 17–24

1951 242 Statistics. In Scientific Thought in the Twentieth Century, (ed. A.E. Heath), 
31–55. London: Watts

# 242A Answer to Query 91 on interaction of quantity and quality in agricultural 
field trials. Biometrics, 7: 433–434

1952 247 Sequential experimentation. Biometrics, 8: 183–187

1953 249 Dispersion on a sphere. Proc. Roy. Soc., A, 217: 295–305

250 Note on the efficient fitting of the negative binomial. Biometrics, 9: 
197–199

251 The expansion of statistics. J. Roy. Statist. Soc., A, 116: 1–6; Amer. Sci., 
42: 275–282, 293

1954 256 The analysis of variance with various binomial transformations. 
Biometrics, 10: 130–139

257 Contribution to a discussion of a paper on interval estimation by M.A. 
Creasy. J. Roy. Statist. Soc., B, 16: 212–213

1955 261 Statistical methods and scientific induction. J. Roy. Statist. Soc., B, 17: 69–78
# 261A Answer to Query 114 on the effect of errors of grouping in an analysis of 

variance. Biometrics, 11: 237

1956 264 On a test of significance in Pearson’s Biometrika Tables (no. 11). J. Roy. 
Statist. Soc., B, 18: 56–60

265 (With M.J.R. Healy). New tables of Behrens’ test of significance. J. Roy. 
Statist. Soc., B, 18: 212–216

1957 267 The underworld of probability. Sankhyã, 18: 201–210
268 Comment on the notes by Neyman, Bartlett and Welch in this Journal. (18, 

288–302) J. Roy. Statist. Soc., B, 19: 179
269 Dangers of cigarette-smoking. Brit. Med. J., 2: 43
270 Dangers of cigarette-smoking. Brit. Med. J., 297–298

1958 272 The nature of probability. Centennial Rev. 2: 261–274
273 Mathematical probability in the natural sciences. Proc. 18th Int. Congr. 

Pharmaceut. Sci.; Metrika, 2:1–10; Technometrics, 1: 21–29; La Scuola in 
Azione, 20: 5–19

274 Cigarettes, cancer and statistics. Centennial Rev., 2: 151–166
275 Lung cancer and cigarettes? Nature, 182: 108
276 Cancer and smoking. Nature, 182: 596

1960 281 (With E.A. Cornish). The percentile points of distributions having known 
cumulants. Technometrics, 2: 209–225

282 Scientific thought and the refinement of human reasoning. J. Oper. Res. 
Soc. Japan, 3: 1–10

283 On some extensions of Bayesian inference proposed by Mr. Lindley. 
J. Roy. Statist. Soc., B, 22: 99–301
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1961 284 Sampling the reference set. Sankhyã, 23: 3–8
285 The weighted mean of two normal samples with unknown variance ratio. 

Sankhyã, 23: 103–114

1962 288 The simultaneous distribution of correlation coefficients. Sankhyã, 24: 1–8
289 Some examples of Bayes’ method of the experimental determination of 

probabilities a priori. J. Roy. Statist. Soc., B, 24. 118–124
290 The place of the design of experiments in the logic of scientific inference. 

Colloq. Int. Cent. Nat. Recherche Scientifique, Paris, No. 110: 13–19; 
La Scuola in Azione, 9: 33–42 (in Italian)

291 Confidence limits for a cross-product ratio. Aust. J. Statist., 4: 41
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