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Foreword

Many books on Six Sigma have appeared in recent decades. Most of them follow a
standard structure: a description of Six Sigma plus some examples of its successful
implementation. And many of them have the same motivation: through Six Sigma
you will achieve huge cost reductions in your organization, quantified as being
between 10 and 30%. It is an appealing claim, especially in the current tough
economic climate, but it is an empirical one; as such, it is hard to prove and, of
course, a gateway to criticism. You will not find that kind of argument in this book.
Its motivation is purely scientific: Six Sigma is “a quality paradigm that translates
the involved scientific methodology into a simple way to apply the scientific
method.” And it really does. When selling a concept within an organization, make
sure that the concept is understood. For decades, scientists have been trying to
sell great ideas to industry with less than stellar success. In my opinion, this is
because, too frequently, we were speaking two different languages. This is a hard
obstacle to overcome. Six Sigma has emerged as one of the solutions to this lack of
understanding.

This solution did not arise from the scientific camp: it came directly from
Motorola and General Electric, two leading industrial organizations. Yet there is
a lesson in this for scientists: If you want to be understood by industry, use the
language of Six Sigma (or a similar one). And, of course, take Six Sigma as an
example of how scientists should work to transfer knowledge and technology to
industry.

This book deals with the use of R within Six Sigma. R is an open platform widely
used in the academic and scientific communities. Its success is based on two main
features: (1) R is robust, rigorous, and efficient and (2) R is free. The latter is a real
example of how to reduce costs: if your company uses expensive software tools,
then this book is an opportunity to reduce them. It’s that simple.

But the book is addressed not just to Six Sigma practitioners. If you do not know
what Six Sigma is, then this could be the book for you. The Six Sigma philosophy
is introduced from the beginning, making the book a self-contained work. In fact,
I strongly recommend the first chapter as a simple and complete description of
Six Sigma. All the facts are there.
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The authors have combined their scientific, technological, industrial, and peda-
gogical skills in this one volume. I know them well.

Prof. Javier Moguerza is an accomplished multidisciplinary scientist. He holds
active membership in the Global Young Academy. As part of his scientific backpack,
he is a specialist in project management. I have seen him work with heterogeneous
groups, always successfully. Applying Six Sigma is a natural way of thinking for
him. He is “cause-and-effect born” or, if you prefer, “Six Sigma born.”

Dr. Andres Redchuk is a Six Sigma Master Black Belt (read the book’s first
chapter to find out what this means). For almost 20 years, he has been working as a
Six Sigma practitioner in the private sector, with more than a hundred projects under
his belt. He informs the book’s industry point of view.

Emilio Lopez is one of the best Ph.D. students we have seen in the Department
of Statistics and Operations Research at Universidad Rey Juan Carlos. He brings
broad industry experience and is currently applying Six Sigma as a tool for academic
improvement.

The result of these authors’ blending is a perfect conciliation of the scientific
and industry points of view. For scientists, the book will describe the needs of the
industrial sector. Industrial practitioners, on the other hand, will find an innovative,
rigorous, and economical way to apply Six Sigma.

Writing a book about Six Sigma is not an easy task. Writing a useful and original
book on Six Sigma is an almost Herculean undertaking. I hope you will benefit from
the fruits of the author’s labor.

Royal Academy of Sciences, Spain David Rios
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Why Six Sigma with R

Six Sigma has grown over the last two decades as a breakthrough Total Quality
Management methodology. With Six Sigma, problems are solved and processes are
improved, taking as a basis one of the most powerful tools of human development:
the scientific method. For the analysis of data, Six Sigma requires the use of
statistical software, with R an open source option that fulfills this requirement. R is a
software system that includes a programming language widely used in academic and
research departments. It is currently becoming a real alternative within corporate
environments.

Many publications deal with R or Six Sigma separately, but none addresses the
use of statistical techniques with R while at the same time focusing on the Six
Sigma methodology. Thus, we were encouraged to write this book and develop an
R package as a contribution to the R Project. The aim of this book is to show how
R can be used as a software tool in the development of Six Sigma projects.

Who Is This Book For?

This book is not intended as a very advanced or technical manual. It is aimed at
addressing the interests of a wide range of readers, providing something interesting
to everybody. To achieve this objective, we have tried to include as few equations
and formulas as possible. When we find it necessary to use them, we follow them
up with simple numerical examples to make them understandable to someone with
basic math skills. The examples clarify the tools presented using the Six Sigma
language and trying to convey the Six Sigma philosophy.

As far as the software is concerned, we have not used complicated programming
structures. Most examples follow the structure function(arguments) →
results. In this regard, the book is self-contained because it includes all the

ix



x Preface

necessary background concepts. Nevertheless, we provide plenty of references to
both generic and specific R books.

Six Sigma practitioners will find a roadmap at the beginning of the main parts of
the book indicating the stage of Six Sigma about to be treated. Moreover, the book
contains a chapter with an overview of the R system and a basic reference guide as
an appendix. Although you may know about Six Sigma, it is advisable to read the
first chapter and check some of the references therein.

Statistical software users and programmers working in organizations using
Six Sigma and related methodologies will find in this book a useful alternative.
Similarly, analysts and advisers of consulting firms will learn new approaches to
their businesses.

Statistics teachers have in a single book the essentials of both disciplines (Six
Sigma and R). Thus, the book can be used as a textbook or reference book for
intermediate-level courses in engineering statistics, quality control, or related topics.

Finally, business managers who wish to understand and acquire the proper
background to encourage their teams to improve their business through Six Sigma
can read selected chapters or sections of the book, focusing on the examples.

How to Read This Book

In this book, we present the main tools used in the Six Sigma methodology and
explain how to implement them using R. Our intention is to show the relevance of
the Six Sigma work flow, the so-called DMAIC cycle (design, measure, analyze,
improve, control). This is why, in some parts of the book, concepts that will be
defined in subsequent chapters are intuitively used in advance. Detailed description
of the concepts can be consulted using the subject index at the end of the book.

The book is organized into seven parts. Part I contains two chapters with the
necessary background information for both Six Sigma and R. Parts II–IV constitute
the path for our intuitive roadmap. This roadmap goes over the DMAIC cycle
throughout its five phases, relating each part to one phase and the main tasks and
tools within it. Finally, Part VII comprises a short description of other important
tools that the reader should know to have a global view of the advanced possibilities
of both Six Sigma and R. An appendix, organized in tables with the main functions
used throughout the book, completes the contents.

The chapters have a common structure with an introduction to the given
topic, followed by an explanation illustrated with straightforward and reproducible
examples. The material used in these examples (data and code) as well as the results
(output and graphics) are included sequentially as the concepts are explained. All
figures include a brief explanation to enhance the understanding of the interpre-
tation. The last section of each chapter includes a summary and references useful
to extend the chapter contents. Finally, some exercises are proposed. The reader
is invited to apply the chapter contents on the helicopter case study presented in
the first chapter. It is a common example used in quality courses and literature.
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A brief guidance is given, leaving freedom to the reader to deal with it in depth at
his/her convenience. Finally, we propose some exercises with solutions at the end
of the book.

Though the book may be read from beginning to end for a straightforward
comprehension of the DMAIC cycle, it can be used also as a reference manual.
You can go directly to a specific chapter to learn (or remember) how to perform
certain tasks. Thus, you may encounter the same topic explained in more than one
way within the book.

We are aware that the book’s contents are only a part of the large number of
existing tools, methods, models, and approaches. It was not our intention to write the
“Bible of Six Sigma with R” as this would deserve several volumes. The book paves
the way to encouraging readers to delve into Six Sigma and R in depth, perhaps
igniting an enthusiasm for both topics that is as strong in the readers as it is in the
authors. To this end, a number of references are provided in each chapter. With the
background acquired in the R system and the references provided (Internet-based
articles and books), it will be easy for Six Sigma practitioners to extend the use of
R to other tools not treated in the book.

Conventions

We use a homogeneous typeset throughout the book so that elements can be easily
identified by the reader. Text in a sans serif font relates to software (e.g., R,
Minitab). Text in teletype font within paragraphs is used for R components
(packages, functions, arguments, objects, commands, variables, etc.).

The commands and scripts are also in teletype font, preceded by a “>”
symbol and enclosed in a gray box with a left darker line:

> #This is an input code example
> my.var <- rnorm(10, 2, 0.5)
> summary(my.var)

The outputs appear just below the command that produces it, enclosed in a gray box
(lighter than the input) and a thin border:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.8231 1.6790 2.1000 1.9640 2.3820 2.5600

The book contains quite a few examples. They start with the string Example
(Brief title for the example). and end with a square (�) below the last line of the
example. In the subsequent continuation of the examples within the chapters, the
string (cont.) is added to the example title.

In the book we will refer to a Black Belt as a person in charge of a Six Sigma
project. Black Belt and other roles are defined in Chap. 1. Perhaps there will be
tasks in the book (especially in the examples) that are not carried out by a Black



xii Preface

Belt; however, we will always use this name for the sake of simplicity. Similarly,
what we say about products will very often be suitable for services, and we use in a
general manner the term customer when referring to customers or clients.

Production

The book was written in .Rnw files. The Eclipse IDE (Integrated Development
Environment) with the plug-in StatET was used as both editor and interface with R.
If you have a different version of R or an updated version of the packages, you might
not obtain exactly the same outputs. The session info of the machine where the code
has been run is as follows:

• R version 2.14.1 (2011-12-22), i686-pc-linux-gnu
• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C,
LC_TIME=es_ES.UTF-8,
LC_COLLATE=en_US.UTF-8, LC_MONETARY=es_ES.UTF-8,
LC_MESSAGES=en_US.UTF-8, LC_PAPER=es_ES.UTF-8,
LC_NAME=es_ES.UTF-8, LC_ADDRESS=es_ES.UTF-8,
LC_TELEPHONE=es_ES.UTF-8, LC_MEASUREMENT=es_ES.UTF-8,
LC_IDENTIFICATION=es_ES.UTF-8

• Base packages: base, datasets, graphics, grDevices, grid, methods, stats, utils
• Other packages: ggplot2 0.8.9, lattice 0.20-0, MASS 7.3-16, nortest 1.0,

plyr 1.7, proto 0.3-9.2, qcc 2.2, qualityTools 1.50, reshape 0.8.4, rj 1.0.3-7,
SixSigma 0.5.0, xtable 1.6-0

• Loaded via a namespace (and not attached): rj.gd 1.0.3-3, tools 2.14.1

Resources

The code and figures included in the book are available at the book’s Web site: http://
www.SixSigmaWithR.com. The SixSigma package and the data sets can also be
downloaded. Links and materials will be updated regularly.
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CRAN Comprehensive R Archive Network
CTQ Critical to Quality
DMAIC Define, Measure, Analyze, Improve, Control
DFSS Design for Six Sigma
DMADOV Define, Measure, Analyze, Design, Optimize, Verify
DMADV Define, Measure, Analyze, Design, Verify
DMEDI Define, Measure, Explore, Develop, Implement
DoE Design of Experiments
DPMO Defects Per Million Opportunities
DPPM Defective Parts Per Million
DPO Defects Per Opportunity
DPU Defects per Unit
EWMA Exponentially Weighted Moving Average
FMECA Failure Mode, Effect and Criticality Analysis
FTY First Time Yield
GAM Generalized Additive Model
GB Green Belt (role)
GLM Generalized Linear Model
GNU GNU’s Not Unix! (a form of licencing software)
GUI Graphical User Interface
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HTML HyperText Markup Language
IDOV Identify, Design, Optimize, Validate
IQR Interquartile Range
ISO International Organization for Standardization
IT Information Technologies
LCL Lower Control Limit
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LT Long Term
MANOVA Multivariate Analysis of Variance
MBB Master Black Belt (role)
MDI Multiple Document Interface
MSA Measurement System Analysis
MSD Mean Squared Deviation
NaN Not a Number
NA Not Available
NN Neural Network
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ODBC Open DataBase Connection
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Q–Q Quantile–Quantile
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RUMBA Reasonable, Understandable, Measurable, Believable, Achievable
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SDI Simple Document Interface
SDMAIC Select, Define, Measure, Analyze, Improve, Control
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objectives)
SPC Statistical Process Control
ST Short Term
SVM Support Vector Machine
UCL Upper Control Limit
USL Upper Specification Limit
VOC Voice of the Customer
VOP Voice of the Process
VSM Value Stream Mapping
Z Sigma score



Part I
Basics

The first part of the book aims at giving the reader the necessary background to
understand both R and Six Sigma. The book is intended to cover a wide range of
readers, from beginners to experts. If you are in the latter group, you may go directly
to Part II.

Part I contains two chapters: Six Sigma in a Nutshell and R from the Beginning.
The former is a brief and concise introduction to the Six Sigma methodology. The
latter explains how to deploy the R system for newcomers and covers basic usage
of the R language and software.

Though these two chapters include material sufficient for reading this book,
more advanced references can be consulted in the Summary and Further Reading
sections.



Chapter 1
Six Sigma in a Nutshell

Science is organised knowledge.
Herbert Spencer

1.1 Introduction

Many total quality management methodologies have been introduced in recent
decades, and Six Sigma has emerged as a breakthrough methodology. Essentially,
the Six Sigma methodology is a quality paradigm that translates the involved
scientific methodology into a simple way to apply the scientific method within every
organization. In fact, according to the International Organization for Standardization
(ISO), “Six Sigma speaks the language of business” [44].

The basis of the Six Sigma methodology is the DMAIC cycle. It consists of five
stages: define, measure, analyze, improve, and control.

Another important issue in the Six Sigma methodology is the strongly defined
roles within the organization. Using martial arts comparisons, the people involved
in Six Sigma projects are classified into champions, master black belts, black
belts, green belts, and even yellow belts, all of them engaged with the Six Sigma
philosophy.

This chapter provides the necessary background to understand Six Sigma as a
management philosophy. It gives a review of the history of Six Sigma in Sect. 1.2.
An overview of the Six Sigma methodology is explained in Sect. 1.3. The two main
concepts in Six Sigma are tackled in Sects. 1.4 and 1.5: the DMAIC cycle and
organization roles, respectively.

1.2 Brief History

The beginning of the Six Sigma methodology dates to the mid-1980s. At that time,
Mikel Harry, known as the “godfather” of Six Sigma, was working for Motorola.

E.L. Cano et al., Six Sigma with R: Statistical Engineering for Process
Improvement, Use R! 36, DOI 10.1007/978-1-4614-3652-2__1,
© Springer Science+Business Media New York 2012
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Together with Bill Smith, he developed a methodology for the solution of problems
following a disciplined approach. Based on this methodology, on January 15, 1987,
Motorola launched a quality program called “The Six Sigma Quality Program.”

But the methodology achieved its highest success in the mid-1990s, when Jack
Welch, Chairman and CEO of General Electric, adopted it as the main business
strategy for that company. It was at that moment that Six Sigma became a
management philosophy based on scientific decision making.

1.3 What Is Six Sigma?

Many definitions of the Six Sigma methodology can be found in the literature. In our
opinion, essentially, the Six Sigma methodology consists of the application of the
scientific method to process improvement. Therefore, it seems convenient to clarify
what we mean by process. A process can be referred to as a group of interdependent
actions directed toward reaching some goal or end. These actions may correspond
to smaller processes. Six Sigma can also be used for the creation of new processes.
In this case, because there is no current process to measure, a set of tools known as
“Design for Six Sigma” can be used.

Thus, when we use Six Sigma for the improvement or creation of a new process,
we apply the scientific method to obtain high-quality processes. The reason for
this is clear: high-quality processes automatically lead to high-quality final outputs,
usually referred as “products.” A simple example will illustrate what we mean by a
high-quality process.

Imagine the administrative process of automatically generating certificates within
a given organization. As a part of this process, a database exists with the first and
last names of the people who might ask for a certificate, for instance, employees.
Imagine that your last name, for instance, Smith, is wrongly stored in the database
as, say, Smoth.

This means that whenever you ask for a certificate, your name will appear in its
misspelled form. Of course, if you file a complaint, the certificate will be corrected.
The simplest way to do this would be as follows: once the certificate has been
generated, a secretary can open it with a word processor and change your last
name from Smoth to Smith. In this way, the certificate (the final output) will be
corrected. However, the next time you ask for a certificate, your last name will again
be misspelled.

A more sophisticated option is to generate an automatic procedure that, once
a complaint about a name is received, sends an alert reporting the problem.
Automatically, the database administrator will correct the wrong last name in the
database, and the certificate will be generated again. In this way, the process will be
improved and the outputs arising from this process will have the desired quality.

In both cases, the final product is good, but in the second case, future products,
future certificates for the same person, will also be good thanks to the process
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improvement and the fact that we now have a higher quality process. To obtain the
second solution of the previous problem, the sophisticated one, we have implicitly
taken the following steps:

1. Ask a question (why is the certificate wrong?).
2. Do some background research (names come from a database).
3. Construct a hypothesis (if names are correct in the database, then names will be

correct in the certificates).
4. Test the hypothesis with an experiment (generate the certificate a second time).

Two additional steps would be helpful:

5. Analyze the data and draw conclusions (for instance, check that previous errors
with names have not been corrected in the database, which is why users keep
complaining).

6. Communicate the results (make a report describing the new procedure to address
complaints).

These steps, which seem a natural way of thinking, correspond exactly to the
steps of the scientific method and, as we will see in what follows, are the key
points of the Six Sigma methodology. Within the Six Sigma lexicon, these steps
are reduced to a five-stage cycle: define, measure, analyze, improve, and control,
also known as the DMAIC cycle.

A new question now arises: What is so new about Six Sigma? The answer is
simple: Six Sigma translates scientific language into an understandable way to apply
the scientific method at any organization. This is the key to Six Sigma success. We
are solving problems and improving processes using as our basis one of the most
powerful tools of human development: the scientific method.

Although in this book we will focus on the use of the R statistical software
package within Six Sigma, it is important to remark that Six Sigma is far from
being just a set of statistical tools. Statistical methods are scientific tools useful
for analyzing data and, therefore, play a very important role within the Six Sigma
methodology. But, as you can deduce from the previous paragraphs, Six Sigma is
more than that: it is a complete methodology for process improvement and, hence,
for the success of organizations.

We do not focus on manufacturing processes. This methodology is general
enough to be applied to any process (e.g., administrative, academic, scientific)
inasmuch as “cost” and “quality” are common final goals of any given improvement
initiative.

1.4 DMAIC Cycle

When Six Sigma is implemented, it must be applied on well-defined projects. Once
the projects or processes have been chosen, the strategy to solve them follows the
above-mentioned DMAIC cycle. This is the basis of the Six Sigma methodology. An
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improvement group (team) must be created to allow process improvements. This
issue will be discussed in Sect. 1.5. Firstly, we give a brief description of all the
stages of the cycle.

1.4.1 Define Phase

With the Define phase, the journey to the problem at hand begins. Initially it must be
determined if the Six Sigma methodology is suitable for the solution of the problem.
The key deliverable for this phase of the DMAIC cycle is the project charter. A
project charter is a statement of the scope, objectives, and participants in a project.
It provides a delineation of roles and responsibilities, outlines the project objectives,
identifies the main stakeholders, and defines the authority of the project.

Important aspects of the project charter are the business case (that is, a brief
description of the business problem), the problem statement, the goal statement,
and the project scope. Also in the define phase, the team develops a list of critical to
quality (CTQ) characteristics.

1.4.2 Measure Phase

The Measure phase is the second DMAIC stage. The objective of this phase is
to glean from the current process as much information as possible. It must be
accurately determined how the process operates.

The key tasks in the Measure phase are the creation of a detailed process map,
the collection of baseline data, and, finally, a summary of the collected data. In most
projects, a basic process map is developed in the Define phase.

The process map provides a visual representation of the process under inves-
tigation. It can also provide additional awareness of process inefficiencies, such
as cycle times or bottlenecks, or identify process requirements that do not add
value to the process. The process map may also give new information about data
collection.

1.4.3 Analyze Phase

The third phase of the DMAIC process is the Analyze phase, where the team sets
out to identify the root causes of the problem under study. Unlike with other simpler
problem-solving strategies, within the Six Sigma methodology the root causes must
be validated by data, leading to what we call “fact-based decisions.”

The process map, the collected data, and any other knowledge accumulated
during the Define and Measure phases should be used to determine the root causes.
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The power of the Analyze phase is provided by the statistical analysis that is
conducted. This higher level of analysis sets Six Sigma apart from other problem-
solving strategies. The statistical techniques commonly used to validate potential
root causes include, among others, analysis of variance (ANOVA), correlation
analysis, scatterplot, or chi-square analysis.

1.4.4 Improve Phase

The objective of the Improve phase is to determine a solution to the problem at
hand. Brainstorming is commonly used to generate a set of potential solutions. It
is important in this phase to involve people who will perform the process regularly.
Their input can be invaluable. In some cases, they even provide the best potential
solution ideas because of their process knowledge. In other words, the combination
of experience and scientific analysis is a guarantee of success.

In addition, you must keep in mind that the term “best” does not mean the
same thing to all people. What the team should strive to find is the best overall
solution. A solution criteria list is another good tool to assist in selecting the best
solution.

Prior to implementation, the team must be sure that the proposed solution actually
works. Pilot programs, computer simulations, and segmented implementation are all
possibilities at this point.

The team should also create a future state process map as part of the Improve
phase. This must be done so that the process can be performed as many times as
necessary to ensure that the correct implementation of the solution is accomplished.

1.4.5 Control Phase

The final phase is the Control phase; its objective, simply put, is to sustain the gains
that were achieved as a result of the Improve phase. A plan detailing the steps to
be taken during the Control phase should be developed and any new potential ideas
discussed. The idea of control in Six Sigma differs from traditional operations. The
way of assuring quality in the CTQ characteristics is through the control of key
input variables, which differs from the traditional (and usually non-value-adding)
final inspection procedure.

Once success is achieved, a celebration may take place. The scale of the
celebration is up to each individual organization, but to create a sustainable
improvement environment, at the very least, the efforts of the various participants
should be recognized.

To finish with this outline of the DMAIC cycle, we show in Fig. 1.1 its connection
with the scientific method. Figure 1.2 demonstrates the interactions among the
different phases.
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DMAIC Cycle Scientific Method

Define

Measure

Analyze

Improve

Control

Ask a Question

Do some background research

Construct a hypothesis

Test the hypothesis with an experiment

Analyze the data and draw conclusions

Communicate results

Fig. 1.1 Relationship between DMAIC cycle and scientific method. There is a sort of correspon-
dence between the phases of the DMAIC cycle and the steps in the scientific method

[D] Define

[M] Measure

[A] Analyze

[I] Improve

[C] Control

Fig. 1.2 Roadmap of the
DMAIC cycle. Interaction
among phases of cycle. There
is feedback between the
distinct phases

1.5 Six Sigma Operational Structure

Six Sigma does not require special changes in the hierarchical structure of an
organization; it only requires operational adjustments. The typical Six Sigma work
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structure is given by the following roles: champion, master black belt (MBB), black
belt (BB), process owner, and green belt (GB). This terminology has its origin in
Mikel Harry’s interest in martial arts.

The Champion is the senior most person responsible for an area of an organiza-
tion, usually the person in charge of a department. The main areas of action must
have a Champion. These areas include human resources, engineering, finance, etc.
She will lead the improvement program within the area she is responsible for and,
therefore, will select the projects with the best improvement opportunities. She must
coordinate her work with the other Champions in the organization.

The Process Owner is the person in charge of a concrete project. He will
report directly to the Champion. As the link to those responsible for the global
improvement strategy, and in particular Champion, he is tasked with controlling
the process he is in charge of. If possible, the Process Owner must be the person
with the highest knowledge of the project or process at hand.

The MBB must possess a thorough knowledge of statistical techniques, planning
techniques, and management. Hierarchically, he will report directly to the organi-
zation’s management board. He will apprise the management board on the general
strategy of the improvement program and the Champions on the selection of the
projects to improve. Moreover, he will be responsible for the Six Sigma training
program. The MBB must be a respected person within the organization, and his
dedication to the improvement program should be full time.

The BB will be responsible for the improvement group created by the Champion
within a given project. He should be sufficiently autonomous to lead a project. In
addition, the BB must have a good knowledge of statistical techniques (one level
below that of the MBB), leaving the specific technical details to the MBB. He will
also see to it that the DMAIC cycle is followed with discipline.

The GB is someone with elementary statistical knowledge who occasionally may
lead a simple improvement project. GB is the ideal level for Project Owners and
intermediate managers.

The hierarchical relation between these roles is described in Figs. 1.3 and 1.4.
Notice that this operational structure is equivalent to an internal consultancy

within the organization. Figures 1.3 and 1.4 could be merged into a single figure,
but for the sake of space, we divided the structure into these two figures, which
correspond to the strategic and the operational levels, respectively.

1.6 Summary and Further Reading

This chapter presented an overview of the Six Sigma methodology from its origin.
Following a brief history of the methodology, we introduced the focal point behind
it: the DMAIC cycle, which serves as the book’s roadmap. Finally, we outlined our
approach to the Six Sigma roles in an organization. The case study used throughout
the book is explained below. We recommend practicing while you read the book to
reinforce what you have learned.
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Management
Board

Master Black Belt
MBB

Champion 1 Champion 2 ... Champion N

Fig. 1.3 Strategic Six Sigma roles. The Champion is the link between the strategic and operational
roles. He creates the improvement groups

Champion

Project 1 Project 2 ... Project M

Black Belt Black Belt Black Belt

Process Owner Process Owner Process Owner

Green Belts Green Belts Green Belts

Intermediate
Managers

Intermediate
Managers

Intermediate
Managers

Other Personel Other Personel Other Personel

Fig. 1.4 Operational Six Sigma roles. The Black Belt is the core of the Six Sigma structure;
process owners are crucial for improvement

Regarding the literature on Six Sigma, it is too large to be exhaustively cited
here. In the book, many references will be cited, including many that report success
stories using the Six Sigma methodology. A seminal work showing Mikel Harry’s
point of view on Six Sigma and its success is [36]. A more recent work is [97].
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Six Sigma with R | Paper Helicopter template
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Fig. 1.5 Paper helicopter template. Designed to be printed on an A4 sheet. Cut and fold according
to lines and arrows. Add paper clip or adhesive tape to make different prototypes

For more details on the evolution of Six Sigma, we recommend the books [76]
and [82]. Specific books on Six Sigma applied to different scenarios such as product
design or small and medium enterprises are [4, 13, 65, 81, 107].



12 1 Six Sigma in a Nutshell

Fig. 1.6 Paper helicopter mounting scheme. The mounted paper helicopter should have this shape.
When descending from a given height, it twists around until it reaches the floor

For references describing and discussing the scientific method, we refer the
interested reader to the classic works [79] and [80].

Case Study

Throughout the book we present a case study widely used in the quality literature.
It first appeared in a paper [9] using an original idea of Kip Rogers of Digital
Equipment. It consists in the construction of a paper helicopter whose design can
vary in its wings and body length, body width, the use of adhesive tape stuck to the
structure, or the inclusion of a paper clip at the bottom.

A template to construct the paper helicopter can be obtained using the function
ss.heli within the SixSigma package. The result is a PDF file in the working
directory with the design shown in Fig. 1.5.

Figure 1.6 shows a scheme for mounting the paper helicopter. The light-gray
strips are for adhesive tape, the strip at the bottom is for a paper clip. These materials
are optional.

There is a vignette in the Six Sigma package with the mounting instructions
of the paper helicopter. Type vignette("HelicopterInstructions") to
open the PDF.
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Throughout the book we will ask you to describe processes, take measurements,
analyze data, improve processes, and control processes related to the paper heli-
copter.

The response characteristic of our product is the flight time. The flying test is
performed by dropping the helicopter in the vertical position from a height of 2 m
and measuring the time it takes to reach the floor. This test is performed with the aid
of a stopwatch, capable of measuring 1/100 s.

Retrieve the template and mount some paper helicopters. Practice measuring the
flight time.



Chapter 2
R from the Beginning

Software is like sex; it’s better when it’s free.

Linus Torvalds

2.1 Introduction

R is a system for statistical computing and graphing. It consists of a language
and a software environment. R has been widely used for academic and research
purposes and is increasingly being deployed in corporate environments. As an
example, companies such as Google and Pfizer have been using R for a long (in
technological terms) time.1 R has its origin in the S language, developed at Bell
Laboratories (see [102]), and it was initially written by Ross Ihaka and Robert
Gentleman in the Department of Statistics of the University of Auckland, New
Zealand [84]. It is a freely available software, under a GNU license, and is supported
by the R Development Core Team. A major strength of R is its extensibility,
through the packages developed by the community of R users, as the SixSigma
package we have developed, available through the CRAN repository, where support
is also given. Furthermore, it is available for a wide range of platforms, including
Windows, Mac, and Linux.

As far as the language is concerned, it is interpreted language easy for nonpro-
grammers to learn. Nevertheless, it has huge possibilities for information technology
(IT) professionals, for instance, through its interaction with other languages such as
C or Fortran.

1An article in the New York Times in January 2009 surprised many professionals and was a
milestone in R’s surging popularity (http://www.nytimes.com/2009/01/07/technology/business-
computing/07program.html).

E.L. Cano et al., Six Sigma with R: Statistical Engineering for Process
Improvement, Use R! 36, DOI 10.1007/978-1-4614-3652-2__2,
© Springer Science+Business Media New York 2012

15

http://www.nytimes.com/2009/01/07/technology/business-computing/07program.html
http://www.nytimes.com/2009/01/07/technology/business-computing/07program.html


16 2 R from the Beginning

Although many companies are still reluctant to use freely available software, the
advantages are worth considering. Hundreds of people work every day to improve
the system and share their experiences, problems, and solutions. Thanks to R’s
community of users and developers, issues related to R are resolved faster than are
issues with paid software. Furthermore, more and more professionals and consulting
companies provide technical support with R solutions. You simply pay for their
services, not for the license.

In this chapter, we provide basic background information to accustom readers to
R and to anticipate subsequent chapters. Following this brief introduction, the first
steps are explained. Then we address data issues, functions, graphics, and statistics
in successive sections. A wider collection of functions is listed in Appendix A
as a short reference guide. Section 2.8 contains additional information helpful for
advancing one’s knowledge of R.

2.2 First Steps

2.2.1 Get and Install

As was mentioned in the introduction, R is freely available software. There is some
confusion about what this means. Indeed, several different concepts merge and there
are several interpretations. In the case of R, free entails both free of charge and open
source. The latter is even more important than the former, especially when trying to
improve systems, such as in the Six Sigma methodology.

Due to its GNU license and the wide support provided by the community, ob-
taining R is easy. We simply have to download from CRAN the files corresponding
to our operating system. The steps to follow are follows:

1. Go to http://cran.r-project.org (Fig. 2.1).
2. Select your operating system. (Henceforth we will assume a Windows system. If

you want R for MacOS or Linux, select the correct link on the CRAN Web
page and follow the instructions.) A complete manual for R installation and
administration is available on the R Project Web site.2

3. Click on “base” (Fig. 2.2).
4. Click on Download R x.xx.x for Windows (Fig. 2.3).
5. Run the downloaded file and follow the wizard to install (Fig. 2.4).

2http://cran.r-project.org/doc/manuals/R-admin.html.

http://cran.r-project.org
http://cran.r-project.org/doc/manuals/R-admin.html
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Fig. 2.1 CRAN Web page. Select the download link suitable for your operating system. A new
page is opened

Fig. 2.2 CRAN Web page. Selection of subdirectory. Select “base” to download and install the
base installation. Links for contributed packages and building tools are also available
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Fig. 2.3 CRAN Web page. Download link for Windows. There may be a newer version by the
time this book is published

Fig. 2.4 R installation wizard. A welcome message is shown at the beginning. Click “Next” to
proceed



2.2 First Steps 19

Fig. 2.5 R’s graphical user interface. The R Console is the window where you interact with R.
Menu and command bars are available

2.2.2 Run and Interact

Once the software is installed, you will have an icon on your desktop. Double click
it to get the R graphical user interface (GUI) shown in Fig. 2.5.3 Although the GUI
has graphical elements like any Windows program (menu bar, tool icons, windows),
the main window to interact with is the R Console.4

Commands

When we start R, some messages are printed in the R Console, and then the cursor
blinks next to the prompt symbol (>), waiting for a command. A command is an

3If you choose SDI (simple document interface) in the custom installation, you only get the R
Console with the menu bar. You can run the SDI or the MDI (multiple document interface)
by adding the option --sdi or --mdi, respectively, to the command line in the shortcut icon
properties, e.g., C:\R\R-2.14.1\bin\i386\Rgui.exe -sdi.
4There are some easy-to-use graphical alternatives to some R functions (Sect. 2.8). They can be
useful when migrating from other systems to R, but we recommend using the R Console and
scripting facilities as much as possible to exploit R’s possibilities.
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Fig. 2.6 R text output. A basic text output for an arithmetic operation. It appears after the INTRO
key is pressed

Table 2.1 R Console
shortcuts Shortcut Result

Arrow up/down Navigate through command history
CTRL+L Clean console
ESC Stop current run
TAB Complete function name

expression that will be evaluated by R when the INTRO key is pressed.5 Once the
command is evaluated, an output may or may not be obtained. The output will be
text, a graphic, or both. The text output will be displayed below the command just
run. For example, if you type a very simple arithmetic operation as a command,
you will obtain the result as output. Type 7+5 at the prompt symbol, and press
INTRO. You should see the result shown in Fig. 2.6. The length of the output varies
depending on the command. You can scroll up and down with the vertical scroll bar
to see the whole output.

Table 2.1 presents some useful shortcuts using the R Console.

5When INTRO is pressed before a command is completed (for example, if a closing bracket ‘)’
is expected), then the prompt symbol changes to +. This is sometimes annoying when learning R
and usually indicates a mistake. Simply press the Esc key to return to the prompt symbol.
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Fig. 2.7 R graphic output A new window is opened when a graphic output is generated by R

The graphic output opens a new graphic device (usually a window inside the
R GUI) displaying the plot you asked for. Type hist(rnorm(100)).6 This
command makes a histogram (Chap. 8) with the data of a 100-sized random sample
from a standard normal random variable (Chap. 9) and outputs the graphic in an R
Graphics window inside the R GUI. Figure 2.7 shows what you must obtain.7

The last command is slightly different from the first one. We have made a call to a
function with an argument. This argument is in brackets, and it can be any R object.
Do not run away; we will explain how to use functions and objects in Sect. 2.4.

The image can be copied and pasted into another application such as a text editor
(Microsoft Word, OpenOffice, . . . ). You can also save it on your computer in a
wide range of formats or even print it.

Scripting

Running commands in the R Console is the fastest way to obtain a result, but the
most efficient way to use R is through scripts. A script is a sequence of commands
in a text file that can be run in R. You can run all the commands in a script, a group
of them, or just one.

6Do not worry about what it means for the moment, just type it.
7The shape of the histogram may be slightly different due to the randomness of the data.
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Fig. 2.8 R script editor. The commands executed from the R Editor are run in the console,
eventually getting the text or output results

In Chap. 13, we detail some advanced editors for scripting. For the moment, we
will use the basic editor provided by the R GUI. To create a script, navigate to File
→ New Script. The R editor is opened, and you can start typing commands.
In Fig. 2.8 the two commands mentioned above are typed (type them yourself in
your editor). You can perform commonly used operations with the text: copy, paste,
select, find, undo, . . . .

To run a command in the script, set the cursor in the line you want to run and
press Ctrl+R. You can select a group of lines or even the whole text and run it.
You can also run all the script through the menu bar (Edit→ Run all).

An important issue in R is the location where objects and files are stored.
This is the Working Directory. The default working directory is the folder
My Documents. You can see your default working directory with the
command getwd(). You can change your working directory with the command
setwd("My directory"), where My directory is the path to the folder
you want to work in. You can also use the menu bar and navigate to File →
Change dir ... .

We advise you to save scripts as often as possible. Otherwise, you may lose
changes. Navigate to File → Save in the menu with the editor window active.
The first time you do this with a script, you will be asked to enter a name for the
file. Type a descriptive name for your script and the extension .R. By default, the
Save script dialog points to the Working Directory, but you can navigate to any
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other.8 Save the script, using the two commands previously mentioned, with the
name sixsigma.R.

Now we can exit R and continue later. You can close the R GUI window using
the mouse or type in the R Console the command q(). A dialog box asking Save
workspace image?will appear. Select No. We will explain what the workspace
is in Sect. 2.3.

When you resume your work in R, you can open the script to edit or run the
commands. Run R again and open the script saved previously. Navigate to File
→ Open Script... and select the file named sixsigma.R. The script is then
opened in the R editor. In this way, you can continue with your work at the same
step where you stopped previously.

Another way to use a script is running it entirely without opening it. Just type
source("sixsigma.R") in the R Console, and all the commands in the script
file will be executed.

There are two special characters in a script. One of them is #. No line begun
with the character # will be executed. This is very useful for commenting the script
for future revisions or for simply omitting some commands temporarily. The other
special character is ;. It is used to separate commands in the same line and can be
used either in the R Console or inside a script.

Installing Packages/Libraries

Once we have installed the base installation of R and know something about the
GUI and the R Console, we can proceed to the use of the contributed packages.
A package or library is an additional module for specific purposes. For example,
the SixSigma package is a module that aims at carrying out Six Sigma projects.
A package may contain functions, data, and documentation and can be developed
by anyone. A package may be contributed to the project, making it available for
others. You can build a package customizing the functionality of R to your needs.

Installing a new package is quite simple. If you know the name of the package
(say SixSigma), just type what follows in the R Console:

install.packages("SixSigma", dependencies=TRUE).

The dialog box will ask for a mirror.9 Select one close to your location; R does
the rest. Some windows may appear indicating the installation progress until the
package is finally installed.

To use an add-on package, you need to load it. Type library(SixSigma)
to load the SixSigma package. Now you can use the functions and the data of
the package. Type example(SixSigma) in the R Console to see a complete
example of the Six Sigma package.

8The working directory will not change.
9A server on the Internet where you can download the package from.
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These tasks can also be performed through the menu bar Packages and the
suitable submenu.

2.2.3 Ask for Help

One of the strengths of R is the amount of documentation available, not to mention
the specialized webs, blogs, and forums. In the Help menu of the R Console, you
can find R manuals in PDF format and links to other documentation. There is also a
set of functions to obtain information from the R Console.

As was mentioned above, a command is a function that may accept argu-
ments. If you need help about a specific function, type ?thefunction, where
thefunction is the name of the function you need help with. The browser
with the documentation on the function is opened, and you can see the syntax,
arguments, value, and other information. If you cannot remember the exact name,
use the function apropos("fun"), where fun is a portion of the name of the
function. You get a list of functions that contain fun in their name. The command
??something, where something is a text string, looks for help files containing
this string in the alias, concept, or title. If you want to see an example of a function,
type example(namefun), where namefun is the name of the function. Practice
with the functions of the SixSigma package, for example example(ss.rr).

Some packages also have demos; type demo("graphics") to see a demon-
stration of the graphics topic. You can request a list of available demos by typing
demo().

Some authors include a special type of documentation for the package: vignettes.
A vignette is a PDF document independent of the R documentation where the
authors explain in detail the topic, usually including examples or methodological
information. You can browse available vignettes in an Internet browser by typing
browseVignettes() or open it directly if you know the topic, for example,
vignette("grid").

If you want to navigate through the full help functionality, type help.start(),
and your default browser10 will open the documentation in HTML format.

There is also information available online. On the R Project’s Web site (http:
\www.r-project.org) you can find a documentation section in the left sidebar, with
links to Manuals, FAQs, The R Journal, Wiki, Books, Certification, and Other. Click
on those links if you want to get involved in the “R philosophy.” An interesting
resource is the CRAN Task Views (http://cran.r-project.org/web/views/). In every
Task View, packages, links and tools related to a specific topic are gathered and
briefly explained.

Henceforth, we explain the principal functions used in R through simple exam-
ples and their output. Appendix A represents a basic reference for these functions.

10Though the browser opens, the documentation is in the computer, not on the Internet.

http:www.r-project.org
http:www.r-project.org
http://cran.r-project.org/web/views/
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2.3 Coping with Data

2.3.1 Data Types

The simplest type of data we find in R is a single value, which can be a number,
a character string, or a logical value (TRUE/FALSE). Data are saved in variables11

using the assign function (<-). For example, if we want to save the value 24 in the
variable machine.age, we use the following command:

> machine.age <- 24

Table 2.2 presents some special data values. The data can be arranged in varied
types of collections. The main data types are listed in Table 2.3. We will show
examples of these kinds of objects in the following sections.

2.3.2 Creating Data Objects

The values of a vector may be assigned with the function c (combine):

> my.vector <- c(10, 20, 30, 40)

Another way to insert data into a vector is with the function scan(). The R
Console accepts data until INTRO is pressed with no data. To invoke a data object,
just type its name in the R Console:

> my.vector

Table 2.2 Special data
values in R Value Meaning

NA Not available
NaN Not a number

(
e.g. 0

0

)
Inf Infinite
NULL No value

Table 2.3 Main R data types

Data Type Description

vector A collection of values of the same type
matrix A structure of values with rows and columns of the same type
array Same as matrix but with more than two dimensions
list An ordered collection of objects (components) that may be of

different types and lengths
factor For classifying categorical data; has levels and labels
data.frame A collection of variables and records (or observations)

11A temporary space to save information and assign a name.
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[1] 10 20 30 40

To create a matrix , we use the function matrix:

> my.matrix <- matrix(c(10, 20, 30, 40, 12, 26, 34, 39),
nrow = 4, ncol = 2)

> my.matrix

[,1] [,2]
[1,] 10 12
[2,] 20 26
[3,] 30 34
[4,] 40 39

We can set names for columns and rows:

> colnames(my.matrix) <- c("myFirstCol", "mySecondCol")
> rownames(my.matrix) <- c("Case1", "Case2", "Case3",

"Case4")
> my.matrix

myFirstCol mySecondCol
Case1 10 12
Case2 20 26
Case3 30 34
Case4 40 39

Arrays are similar to matrices but with more dimensions. The equivalent
arguments dim and dimnames may be used.

A list may contain different types of objects:

> my.list <- list(lvector = my.vector,
lmatrix = my.matrix)

> my.list

$lvector
[1] 10 20 30 40

$lmatrix
myFirstCol mySecondCol

Case1 10 12
Case2 20 26
Case3 30 34
Case4 40 39

Factors aim at creating levels of categorical data:

> my.factor <- factor(c(1,0,1,1),levels = c(0, 1),
labels = c("Incorrect", "Correct"))

> my.factor

[1] Correct Incorrect Correct Correct
Levels: Incorrect Correct
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Data frames are the best way to manage data in R. A data frame is a list of
variables. Each variable contains data, of any type. All columns must have the same
length. To create a data frame, we specify every column:

> my.data.frame <- data.frame(CTQ = my.vector,
state = my.factor, aux = my.matrix)

> my.data.frame

CTQ state aux.myFirstCol aux.mySecondCol
Case1 10 Correct 10 12
Case2 20 Incorrect 20 26
Case3 30 Correct 30 34
Case4 40 Correct 40 39

We can add and remove columns (variables) from a data frame:12

> my.data.frame$machine <- as.factor(c(1, 1, 2, 2))
> my.data.frame$aux.myFirstCol <- NULL
> my.data.frame

CTQ state aux.mySecondCol machine
Case1 10 Correct 12 1
Case2 20 Incorrect 26 1
Case3 30 Correct 34 2
Case4 40 Correct 39 2

Sometimes we just want to know about the structure of a data frame. There are
two very useful functions to do that. The function str prints the class of an object
and its structure (number of observations and variables), and the data frame has as
many lines as columns, showing the type and the first values of each column:

> str(my.data.frame)

`data.frame': 4 obs. of 4 variables:
$ CTQ : num 10 20 30 40
$ state : Factor w/ 2 levels "Incorrect","Correct":

2 1 2 2
$ aux.mySecondCol: num 12 26 34 39
$ machine : Factor w/ 2 levels "1","2": 1 1 2 2

The head function returns the first part of the object included as the first
argument, corresponding to the number of rows indicated in the second argument
(very useful when you have a very large data set):

> head(my.data.frame, 2)

CTQ state aux.mySecondCol machine
Case1 10 Correct 12 1
Case2 20 Incorrect 26 1

12See next section to find out what the $ symbol is for.



28 2 R from the Beginning

2.3.3 Accessing Data

We already know that by calling a data object, we get all its values. But what if we
want a specific subset or just a single value? Some functions extract, summarize, or
group data. We will see them in the next section. For now we will talk about indices
and subscripts. A data object has a number of elements. Each element is identified
by an index, that is, the position it occupies inside the object. If we want to get the
third element in the my.vector object, we type:

> my.vector[3]

[1] 30

Thus, to filter the elements of a data object, we include a subscript between
square brackets. Hence, a subscript is an expression indicating which elements of a
data object will be returned. This subscript can be as complex as you want, so you
get exactly what you need.

For an object with more than one dimension, the subscript may be cut through
commas (,). If you do not do this, you will search in the whole object, not just in the
row or column you need. To understand the difference, you need to realize what the
length of a data object is. The following examples illustrate the difference between
various objects:

> length(my.vector)

[1] 4

> length(my.matrix)

[1] 8

> dim(my.matrix)

[1] 4 2

> length(my.matrix[, 1])

[1] 4

> dim(my.data.frame)

[1] 4 4

> length(my.data.frame[1,])

[1] 4
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For example, let us obtain the element in the third row, second column of our
matrix:

> my.matrix[3, 2]

[1] 34

We can obtain the entire row or column by leaving blank the other dimension (an
empty dimension means get everything). The following command retrieves “all the
rows of the second column”:

> my.matrix[, 2]

Case1 Case2 Case3 Case4
12 26 34 39

The elements of a list can be extracted through subscripts or through their names
using the operator $. The single square brackets return a list with one element.

> my.list[1]

$lvector
[1] 10 20 30 40

The double square brackets and the named item return an object whose class is
that of the element extracted.

> my.list[[1]]

[1] 10 20 30 40

> my.list$lvector

[1] 10 20 30 40

Although both elements seem the same, the element obtained with the
my.list[1] command is a list and should preferably not be used as a numeric
vector, whereas the element obtained with the my.list[[1]] command is in fact
a numeric vector and can be straightforwardly used within algebraic operations. You
can realize the difference by practicing with the class() function (Sect. 2.4):

> class(my.list[1])

[1] "list"

> class(my.list[[1]])

[1] "numeric"

> class(my.list$lvector)
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[1] "numeric"

In a data frame, we can also use both subscript strategies, with indices or with
names:

> my.data.frame[, 2]

[1] Correct Incorrect Correct Correct
Levels: Incorrect Correct

> my.data.frame$machine

[1] 1 1 2 2
Levels: 1 2

Both strategies can be merged, and inside a subscript we can insert logical
conditions to accurately find the desired element:

> my.data.frame$machine[my.data.frame$state=="Incorrect"]

[1] 1
Levels: 1 2

As you have guessed, with the previous command we have obtained the machine
that produced the incorrect item in our very simple data set.

2.3.4 Importing and Exporting Data

In Sect. 2.4, we explain how to save and load a data object in R. This is the most
effective way to work with data in R. On the other hand, R has lots of data sets
ready to load in the workspace. You can see those included in the base package
by typing data() in the R Console. Other packages (including the SixSigma
package) have their own data sets (type data(package="Six Sigma").

To load one of these data sets in the workspace, for example cpus from the
MASS package, type:

> data(cpus, package = "MASS")

It is very common in statistical analysis, and especially in Six Sigma projects, to
use data sets with different formats. The best way to deal with this is to convert the
data from that source to a text file and then import it into R. Suppose you have a
Microsoft Excel spreadsheet with the results of the performance of a process. First,
save the spreadsheet as a .csv file (e.g., test.csv). Then, save the data in a data
frame as follows:

> data.test <- read.csv("test.csv",
header = TRUE, sep = ";")

> str(data.test)
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`data.frame': 19 obs. of 3 variables:
$ Id : int 1 2 3 4 5 6 7 8 9 10 ...
$ Laboratory: int 1 1 1 1 1 1 1 1 1 2 ...
$ Length : num 9.7 7.65 8.96 6.32 11.51 ...

An even faster way to import data from a spreadsheet is by copying the data in
the clipboard and then reading them from there in R. Once you have copied the
range you want to import, type in the R Console:

> copied.data <- read.table("clipboard", header = TRUE)

R allows for importing data from different formats through the base installation
as well as through add-on packages. The packages RODBC and foreign deal with
ODBC sources and other statistical software, respectively.

The package XLConnect allows one to import data from Microsoft Excel
files easily.13 Using this package, files can also be manipulated (see the package
documentation if you have an interest in other features). To import the file named
test.xlsx directly, type:

> library(XLConnect)

XLConnect 0.1--7 by Mirai Solutions GmbH <xlconnect@mirai-
solutions.com>

http://www.mirai-solutions.com ,
http://miraisolutions.wordpress.com

> wb <- loadWorkbook("test.xlsx")
> data.test <- readWorksheet(wb, sheet = 1)
> str(data.test)

`data.frame': 20 obs. of 4 variables:
$ Id : num 1 2 3 4 5 6 7 8 9 10 ...
$ Laboratory: chr "A" "A" "A" "A" ...
$ Length : num 9.7 7.65 8.96 6.32 11.51 ...
$ Diameter : num 3.14 2.93 5.83 3.3 5.66 ...

To import a Minitab portable worksheet (.mpt) and many other file formats (like
SPSS) we can use the functions in the foreign package:

> #SPSS file
> data.spss <- read.spss(test.sav)
> #Minitab file
> data.minitab <- read.mtp(test.mtp)

As far as exporting data is concerned, our advice is to apply the same main rule:
save the data in a standard text format, and then import them from this file to your
destination program:

> write.csv(my.data.frame,file = "mydata.csv")

13It requires Java in the Operating System, and package RJava in R.
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2.4 Objects and Functions

In the previous section, we used objects and functions. In R, as is explained in [16],
everything is an object, and every object has a class.

2.4.1 Objects

Let us find out the class of some of the objects we created in the last section.

> class(my.vector)

[1] "numeric"

> class(my.data.frame)

[1] "data.frame"

Everything means “everything.” Even a function is an object:

> class(c)

[1] "function"

Data objects may be coerced from one type to another (if possible):

> as.character(my.vector)

[1] "10" "20" "30" "40"

> as.data.frame(my.matrix)

myFirstCol mySecondCol
Case1 10 12
Case2 20 26
Case3 30 34
Case4 40 39

The objects we create are stored in the workspace, and all of them are available
in the current R session. We can check all the objects of the session:

> objects() #Equivalent function: ls()

[1] "addObject" "ccNormal" "ccPoint"
[4] "cc.tree" "chapters" "cpus"
[7] "data.test" "gencc" "gencc2"
[10] "gencc3" "gen.run" "i"
[13] "machine.age" "make.roadmap" "my.data.frame"
[16] "my.factor" "my.list" "my.matrix"
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[19] "my.var" "my.vector" "newDataset"
[22] "smsSets" "ss.bookTable" "s.y2"
[25] "s.y3" "s.y4" "s.y5"
[28] "test" "testfiels" "testfiels"
[31] "testlist" "wb" "wdBook"
[34] "x"

We can remove objects or even get rid of them all:

> rm(machine.age)
> # rm(list=ls()) removes all the objects
> objects()

[1] "addObject" "ccNormal" "ccPoint"
[4] "cc.tree" "chapters" "cpus"
[7] "data.test" "gencc" "gencc2"
[10] "gencc3" "gen.run" "i"
[13] "make.roadmap" "my.data.frame" "my.factor"
[16] "my.list" "my.matrix" "my.var"
[19] "my.vector" "newDataset" "smsSets"
[22] "ss.bookTable" "s.y2" "s.y3"
[25] "s.y4" "s.y5" "test"
[28] "testfiels" "testfiels" "testlist"
[31] "wb" "wdBook" "x"

Unless you select yes when you are asked about saving the workspace image
just before exiting R, the data and other objects will be erased. You can save some
or all of the session objects and load them later when you run another R session.

> save(my.data.frame, file = "mydata.Rdata")
> #Only an object is saved
> save.image(file = "myimage.Rdata")
> rm(list = ls())
> objects()

character(0)

> load("myimage.Rdata")
> objects()

[1] "addObject" "ccNormal" "ccPoint"
[4] "cc.tree" "chapters" "cpus"
[7] "data.test" "gencc" "gencc2"
[10] "gencc3" "gen.run" "i"
[13] "make.roadmap" "my.data.frame" "my.factor"
[16] "my.list" "my.matrix" "my.var"
[19] "my.vector" "newDataset" "smsSets"
[22] "ss.bookTable" "s.y2" "s.y3"
[25] "s.y4" "s.y5" "test"
[28] "testfiels" "testfiels" "testlist"
[31] "wb" "wdBook" "x"

As you have guessed, we saved the workspace image, then we removed all the
objects, and finally we restored all the objects from the file system.
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Table 2.4 Arguments for matrix function

Argument Default value Description

data NA Optional data vector
nrow 1 Desired number of rows
ncol 1 Desired number of columns
byrow FALSE Way of filling a matrix
dimnames NULL List of length 2 for names of

rows and columns

2.4.2 Functions

Using the functions, we create objects or do something with them, usually passing
them as arguments of the function. The arguments of a function are thoroughly
explained in the documentation of the function, and we can pass them explicitly, by
naming them, or implicitly, by putting them in the expected position.

For example, you already know the function matrix. It accepts the arguments
in Table 2.4.14

The following two commands return exactly the same object:

> matrix(1:4, 2, 2)

[,1] [,2]
[1,] 1 3
[2,] 2 4

> matrix(nrow = 2, ncol = 2, data = 1:4)

[,1] [,2]
[1,] 1 3
[2,] 2 4

When an argument is not passed to the function, the function assumes the
default value. There is a special argument, symbolized by “...”. It means that further
arguments may be passed, depending on the specific function.

Given that a function is an object, we must always call the function with brackets,
even if it has no arguments or we want the default ones. Otherwise we will get the
function as an object, instead of the returning value of the function. Next, we show
the difference:

> objects()

[1] "addObject" "ccNormal" "ccPoint"
[4] "cc.tree" "chapters" "cpus"
[7] "data.test" "gencc" "gencc2"

14Type ?matrix to see the documentation.
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[10] "gencc3" "gen.run" "i"
[13] "make.roadmap" "my.data.frame" "my.factor"
[16] "my.list" "my.matrix" "my.var"
[19] "my.vector" "newDataset" "smsSets"
[22] "ss.bookTable" "s.y2" "s.y3"
[25] "s.y4" "s.y5" "test"
[28] "testfiels" "testfiels" "testlist"
[31] "wb" "wdBook" "x"

> objects

function (name, pos = -1, envir = as.environment(pos), all.
names = FALSE,
pattern)

{
if (!missing(name)) {

nameValue <- try(name, silent = TRUE)
if (identical(class(nameValue), "try-error")) {

name <- substitute(name)
if (!is.character(name))

name <- deparse(name)
warning(sQuote(name), "converted to character

string")
pos <- name

}
else pos <- nameValue

}
all.names <- .Internal(ls(envir, all.names))
if (!missing(pattern)) {

if ((ll <- length(grep("[", pattern, fixed = TRUE)))
&&
ll != length(grep("]", pattern, fixed = TRUE))) {
if (pattern == "[") {

pattern <- "\\["
warning("replaced regular expression pattern

`[' by '\\\\['")
}
else if (length(grep("[^\\\\]\\[<-", pattern))) {

pattern <- sub("\\[<-", "\\\\\\[<-", pattern)
warning("replaced `[<-' by `\\\\[<-' in

regular expression pattern")
}

}
grep(pattern, all.names, value = TRUE)

}
else all.names

}
<bytecode: 0x900c5b4>
<environment: namespace:base>
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2.5 Operators and Functions Commonly Used

Now we present some examples of operators and functions commonly used in R.
More functions are listed in Appendix A, with a short description. See the R manuals
referred to in Sect. 2.2.3. The result of a function depends on the type of data passed
as argument. Thus, if you pass a vector to a function that operates over a single
value (e.g., square root), then the output will be a vector of the same length and the
square root of each component. Other functions return a single value as the result of
applying the function to the whole data object (e.g., the mean for a set of values).

2.5.1 Operators

Arithmetic and logical operations can be performed over data:

> 3.14 * my.vector

[1] 31.4 62.8 94.2 125.6

> sqrt(my.vector[3])

[1] 5.477226

> my.vector[3] >= my.vector[2]

[1] TRUE

There is a special operator for the product of matrices:

> my.vector%*%my.matrix

myFirstCol mySecondCol
[1,] 3000 3220

See Table A.10 in Appendix A for additional operators.

2.5.2 Mathematical Functions

We can compute mathematical operations over data:

> cos(pi)

[1] -1
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> exp(-2)

[1] 0.1353353

> round(data.test$Length)

[1] 10 8 9 6 12 8 9 11 10 14 9 9 13 9 9 7 11
[18] 9 11 10

See Table A.12 in Appendix A for additional mathematical functions.

2.5.3 Functions for Vectors

Some functions produce a result over all the values of a vector, for example, if we
want to know the mean of our vector:

> mean(my.vector)

[1] 25

Set operations can also be performed with vectors:

> A <- union(my.vector, -3)
> is.element(-3, A)

[1] TRUE

See Table A.13 in Appendix A for additional vector functions and Table A.11 for
more set functions.

2.5.4 Loop and Summary Functions

A special group of functions allows us to summarize the information of a data object.
For example, if we want to count the number of data taking each different value of
the state variable in our data frame, we just type:

> table(my.data.frame$state)

Incorrect Correct
1 3

We can apply a function to all the elements of a data object. For example, we can
obtain the mean for every element of our list/vector/matrix:

> lapply(my.list, mean)
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$lvector
[1] 25

$lmatrix
[1] 26.375

> sapply(my.list, mean)

lvector lmatrix
25.000 26.375

In a matrix, we can apply a function to make operations on rows (1 as the second
argument) or columns (2 as the second argument) with the function apply:

> apply(my.matrix, 1, mean)

Case1 Case2 Case3 Case4
11.0 23.0 32.0 39.5

> apply(my.matrix, 2, mean)

myFirstCol mySecondCol
25.00 27.75

A special function to summarize data in R is summary. This function is a
generic R function. By generic, we mean that you can use it with arguments of
different classes. For instance, when applying it to a data object, we obtain some
statistics:

> summary(my.data.frame)

CTQ state aux.mySecondCol machine
Min. :10.0 Incorrect:1 Min. :12.00 1:2
1st Qu.:17.5 Correct :3 1st Qu.:22.50 2:2
Median :25.0 Median :30.00
Mean :25.0 Mean :27.75
3rd Qu.:32.5 3rd Qu.:35.25
Max. :40.0 Max. :39.00

Appendix A contains more functions for summarizing data. See Tables A.13,
A.14, and A.7.

2.6 Graphics in R

One of the strengths of R is its powerful and versatile graphics system. The
graphics package of the base installation can perform many types of graphics.
Run the demos for graphics, persp, image, and plotmath to see some
examples.
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Fig. 2.9 Plotting curves and math expressions. The first command plots the density function of
the normal probability distribution; the second command plots the mathematical expression of the
function

The base graphics are perfect for learning R, but once you become a regular R
user (we expect you will achieve that soon with the aid of this book), we recommend
using more advanced packages to plot advanced graphics. The grid, lattice,
ggplot2, and sp packages produce stunning graphics. In Sect. 2.8 we provide
references, including some Web sites, to learn more about R graphics.

2.6.1 Plotting Functions

Using R we can plot any function and graph any mathematical expression (Fig. 2.9).

> curve(dnorm(x), -4, 4)
> text(-3, 0.3,

expression(frac(1, sqrt(2 * pi)) * " " * e^{-frac(x^2,
sqrt(2))}))

The function plot produces a different figure depending on the data object used
as argument.
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Fig. 2.10 A basic scatterplot. A cloud of points represents the values of the two numeric variables.
A regression line was added to the plot

2.6.2 Bivariate Plots

When we want to represent the relation between two variables, we can produce
several types of plots, depending on the nature of the explanatory variable. When
both variables are continuous, we can use a scatterplot (Fig. 2.10).

> plot(data.test$Length, data.test$Diameter)
> abline(lm(Diameter~Length, data = data.test))

We have superposed a regression line with the function abline. It is the first
time we have used the ∼ symbol. This tilde is intended to separate the two terms
of a formula. The left side of the ∼ symbol is for the dependent variable/s, and the
right side for the independent variable/s. We will also use formulas in Part IV for
data modeling.

There are many options for plotting, even in the graphics package. The
preceding plot can be customized as much as desired using the following code
(Fig. 2.11).

> par(bg = c("#FCFCFC"))
> plot(data.test$Length, data.test$Diameter,

main = "My first plot",
sub = "This is a plot by Six Sigma with R book",
pch = 16, las = 1,
col = "orange",
ylab = "Diameter", xlab = "Length")
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Fig. 2.11 Improved scatterplot. In this improved chart, we have changed the colors and symbols
(dots and lines), in addition to the foreground color. Title, subtitle, and axis labels have been
customized

> abline(l\,m(Diameter ~ Length, data = data.test),
lty = 2, lwd = 3, col = "lightblue")

When the explanatory variable is a factor, the plot function produces the so-called
box plot (Fig. 2.12).

> plot(as.factor(data.test$Laboratory), data.test$Diameter)

For factors and discrete variables, bar plots (Fig. 2.13) are used.

> someData <- factor(rep(1:4, 14:11))
> plot(someData)

Univariate continuous data are usually represented with a histogram, which is a
sort of bar plot. We can superpose a density line, as in Fig. 2.14.

> hist(data.test$Diameter, freq = FALSE, col = "gray")
> lines(density(data.test$Diameter), lty = 2, lwd = 2)
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2.6.3 Pie Plots

For categorical data, pie plots (Fig. 2.15) can be used.

> pie(table(someData))

More plot functions are listed in Table A.19 in Appendix A. Useful options and
arguments for graphic functions can be found in Table A.17. We will explain in
detail the plots and charts used within Six Sigma and how to use them with R in
Parts II–VI.



2.7 Statistics 43

Histogram of data.test$Diameter

data.test$Diameter

D
en

si
ty

2 3 4 5 6 7 8

0.05

0.00

0.10

0.15

0.20

0.25

0.30

Fig. 2.14 Histogram with density line. The width of the bids corresponds to the width of the
classes into which the continuous variable has been divided

1

2

3

4

Fig. 2.15 Pie plot. The angle
of each sector is proportional
to the counts of the category
represented

2.7 Statistics

2.7.1 Samples and Combinatorial Computations

We can extract a random sample from a vector:

> sample(my.vector,2)
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[1] 20 10

Other combinatorial computations can be carried out:

> factorial(5)

[1] 120

> choose(5, 2)

[1] 10

See Table A.16 in Appendix A for additional sampling functions.

2.7.2 Random Variables

We can easily generate random values for a probability distribution. For example,
if we want to obtain a sample of size 5 from a normal process with mean 5.2 and
standard deviation 0.5, the following commands should be used.

> rnorm(5, 5.2, 0.5)

[1] 5.759547 4.809685 5.650381 5.283937 5.758157

If we want to find out the probability that this distribution will be lower than 5.6,
we use:

> pnorm(5.6, 5.2, 0.5)

[1] 0.7881446

We can also obtain the quantile or density values for a given value of the
probability and variable, respectively:

> qnorm(0.9, 5.2, 0.5)

[1] 5.840776

> dnorm(5.6, 5.2, 0.5)

[1] 0.5793831

See Table A.15 in Appendix A for additional probability distributions.
We will explain in detail the statistical tools used in Six Sigma and how to use

them with R in Parts II–VI.
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2.8 Summary and Further Reading

This chapter provided basic background information on R that will be useful in
following the rest of the book. We reviewed a wide array of functions of the
R system, and we learned how to install, run, and interact with that system.
Commands, functions, and objects should no longer be something alien for you
after having read this chapter. We also imported, saved, and edited several types
of data and then performed some operations with those data. Finally, some of the
graphics and statistical tools to be explained thoroughly in subsequent chapters were
introduced.

Nevertheless, some specialized books are available to the reader interested in
learning how to exploit R for a successful Six Sigma project. [112] and [18] may
serve as complete guides to the R system. [102] and [16] go one step beyond;
we highly recommend them to improve your R knowledge. For improving and
customizing graphics, [91], [105], and [74] are excellent guides.

There are abundant electronic resources on the Internet for learning and practic-
ing with R. Some of our favorites are listed below:

• http://en.wikipedia.org/wiki/R_(programming_language)
• http://rwiki.sciviews.org/doku.php
• http://rgm2.lab.nig.ac.jp/RGM2
• http://en.wikibooks.org/wiki/R_Programming
• http://journal.r-project.org/
• http://rseek.org/
• https://r-forge.r-project.org/
• http://www.r-bloggers.com/
• http://www.statmethods.net/

The R manuals are free, online, and updated resources that you can consult
whenever you need:

• An introduction to R: http://cran.r-project.org/doc/manuals/R-intro.pdf;
• To learn the R language definition: http://cran.r-project.org/doc/manuals/R-lang.

pdf;
• To write R extensions: http://cran.r-project.org/doc/manuals/R-exts.pdf;
• To learn about R data import/export: http://cran.r-project.org/doc/manuals/R-

data.pdf;
• To perform R installation and administration: http://cran.r-project.org/doc/

manuals/R-admin.pdf;
• To understand R internals: http://cran.r-project.org/doc/manuals/R-ints.pdf;
• To consult the R reference index: http://cran.r-project.org/doc/manuals/

fullrefman.pdf.

Entire books related to R are also freely available. These include [25,45,64], and
[51]. [73] is available online under a Creative Commons license and in a bound print
version from Chapman & Hall. Search the Web to find other books.

http://en.wikipedia.org/wiki/R_(programming_language)
http://rwiki.sciviews.org/doku.php
http://rgm2.lab.nig.ac.jp/RGM2
http://en.wikibooks.org/wiki/R_Programming
http://journal.r-project.org/
http://rseek.org/
https://r-forge.r-project.org/
http://www.r-bloggers.com/
http://www.statmethods.net/
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-lang.pdf
http://cran.r-project.org/doc/manuals/R-lang.pdf
http://cran.r-project.org/doc/manuals/R-exts.pdf
http://cran.r-project.org/doc/manuals/R-data.pdf
http://cran.r-project.org/doc/manuals/R-data.pdf
http://cran.r-project.org/doc/manuals/R-admin.pdf
http://cran.r-project.org/doc/manuals/R-admin.pdf
http://cran.r-project.org/doc/manuals/R-ints.pdf
http://cran.r-project.org/doc/manuals/fullrefman.pdf
http://cran.r-project.org/doc/manuals/fullrefman.pdf
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As far as the interface is concerned, several alternatives exist to the R Console.
However, we recommend getting used to the R Console and then deciding which
of the other interfaces fits your needs better. RCommander15 is a good option
for beginners. It is available for all platforms. RKWard16 is a pretty good looking
interface for Linux. JGR 17 and SciViews-R18 are other suitable options.

For those who need to go further and make programs with R, two projects
outshine the rest. RStudio19 provides a clean and easy-to-install interface. Fur-
thermore, you can produce scientific and professional documentation through its
Sweave/LATEX editor by literate programming. This latest feature is also available
in Eclipse through the plugins StatET20 and TexLipse (see [104]). This is the
more complete environment in which to program, though it is not very easy to
set up.21 Nevertheless, there is a straightforward implementation available called
Architect.22 See [60] to find out more about literate programming.

Case Study

Choose any paper helicopter prototype defined in Chap. 1 and take 10 measurements
of the flight time. Select your favorite method to enter data in R (directly as vectors
and data frames, importing from a spreadsheet, or something else). Save the data in
an R data file (.RData).

Use the R Console as well as the R editor to create and save a script with your
commands.

Obtain a summary of the data and construct some plots. We will extend the case
study thoughout the book to perform more analyses and construct more plots.

Practice

2.1. Install the SixSigma package yourself.

2.2. Save the data in Table 2.5 into a data frame. Get a summary of its variables.
Save the data frame in a .csv file.

15http://www.rcommander.com/.
16http://rkward.sourceforge.net/.
17http://www.rforge.net/JGR/.
18http://www.sciviews.org/SciViews-R/.
19http://www.rstudio.org/.
20http://www.walware.de/goto/statet.
21There is a very good post explaining all the processes at http://www.r-bloggers.com/getting-
started-with-sweave-r-latex-eclipse-statet-texlipse/.
22http://www.openanalytics.eu.

http://www.rcommander.com/
http://rkward.sourceforge.net/
http://www.rforge.net/JGR/
http://www.sciviews.org/SciViews-R/
http://www.rstudio.org/
http://www.walware.de/goto/statet
http://www.r-bloggers.com/getting-started-with-sweave-r-latex-eclipse-statet-texlipse/
http://www.r-bloggers.com/getting-started-with-sweave-r-latex-eclipse-statet-texlipse/
http://www.openanalytics.eu
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Table 2.5 Data for practice
1, Chap. 2

Failure time Temp Factory

1 0.29 63.89 A
2 0.32 63.38 B
3 1.21 65.05 C
4 0.95 62.31 C
5 0.14 68.04 B
6 2.00 59.12 B
7 0.81 62.80 A
8 0.88 61.89 B

2.3. Make some plots using the data frame from the previous problem. Choose the
correct plot for each variable.

2.4. Produce a table showing the number of items in each factory. Create a vector
with temperatures corresponding to failure times lower than 1.



Part II
R Tools for the Define Phase

Roadmap of the DMAIC Cycle

[D] Define

[M] Measure

[A] Analyze

[I] Improve

[C] Control

You are here

In this part of the book, tools useful during the Define phase are introduced.
In this phase, customer needs must be stated and the processes and products to

be improved must be identified.
We will introduce two of the most representative tools: process mapping and loss

function analysis.



Chapter 3
Process Mapping with R

A problem well stated is a problem half solved.

Charles Franklin Kettering

3.1 Introduction

Process mapping is a tool to retrieve information about a process. This information
will be used in the phases of the Six Sigma project to be discussed later, and many
of the measurements, analyses, and conclusions will be based on this information.
The result of the process mapping is a map of a process. This map stems from the
Project Charter and should be modified during the development of the project.

Process mapping begins with a top-level map, identifying the inputs and outputs
of the process. Then the process is broken down into simpler steps, where param-
eters and features are identified as well. The study and classification of parameters
will guide the posterior analysis of the relationship between the parameters and the
critical to quality (CTQ) characteristics.

In this chapter, we will give an outline of process mapping. A short introduction
is given in Sect. 3.2. Sections 3.3–3.5 show a method for building process maps and
describe how to draw them with R. Section 3.6 contains some thoughts about dia-
grams. Finally, Sect. 3.7, Summary and Further Reading, provides references to find
out more about process mapping and diagrams in R. You can practice using this tool
with the indications in the Case Study and Practice sections at the end of the chapter.

3.2 Process Mapping as a Problem-solving Method

Process mapping can be considered a technique for solving problems. A process
map helps in the posterior application of analytic methods to solve problems.

A basic problem-solving flow is the one in Fig. 3.1. The process map describes
the current situation of a process, and it is fundamental to identifying root causes. In

E.L. Cano et al., Six Sigma with R: Statistical Engineering for Process
Improvement, Use R! 36, DOI 10.1007/978-1-4614-3652-2__3,
© Springer Science+Business Media New York 2012
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The Problem Arises

Current Situation Study

Root Causes Identification

Search Solutions

Apply and Check Solutions

Fig. 3.1 A problem-solving
flow. A systematic method
helps to get rid of the
problems’ causes. The
process mapping includes
mainly the first three stages
and, in some cases, part of the
fourth stage

other words, the process map is an eye-opener. It identifies the stakeholders of the
process (owner, customer, supplier, . . . ), bottlenecks, lean, and time waste.

While building the process map, we may also identify where measurements
should be taken for the forthcoming analyses, and some possible solutions could
arise.

The guidelines to construct a process map are provided in the Define phase by
the Project Charter (Sect. 1.4 in Chap. 1). However, the process map should be
alive and, thus, revised and updated when necessary. To obtain the data for the
process map, several techniques can be used. The direct observation and review of
documentation (manuals, articles, . . . ) is one example, but other collaborative tools
are very useful. These include brainstorming, meetings, surveys, and workshops.
Usually information provided by the expert (owner, experienced staff, . . . ) is the
most interesting and valuable material.

3.3 Strategies for Process Mapping

Any chart that represents the flow of a process is a process map. A Six Sigma project
may have different process maps. Thus, in the Define phase, we usually have a top-
level map (“as is”) which we will describe in Sect. 3.3.1, whereas in the Improve
phase we have a final process map. This final process map should be similar to the
ideal state map (“to be”) developed in the Improve phase.

Mainly two specific types of process maps are used in Six Sigma. One is the
SIPOC, which represents the flow of the process from supplier (S) to customer (C).
The inner letters are from inputs, process, and outputs (Fig. 3.2). The other is the
VSM (value stream map). This type of process map not only represents the flow of
the process but also identifies which steps add value to the final product/service.
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SUPPLIERS INPUTS PROCESS OUTPUTS CUSTOMERS

Fig. 3.2 SIPOC flow. The SIPOC flow chart represents the natural flow of a process or service
from supplier to customer

A more sophisticated outline of the process can be made by arranging the boxes
into rows representing the stakeholders involved in the process, and the columns
correspond to the time in the flow of the process, with arrows connecting the
different steps.

We will not go into the details of SIPOC or VSM. We will simply describe a
simple two-stage process mapping strategy that is common to all process maps.

3.3.1 Two-stage Process Mapping

The most common way to construct process maps is through two stages. In the first
stage, a top-level map is defined. In the second stage, the process is broken down into
simpler steps. We begin with the top-level map, which contains only the inputs and
the outputs of the process, whereas the process is a black box (at this stage). In this
way, we focus on finding the most important output, that is, the key characteristics
of the process (product or service), known as the CTQ characteristics. The outputs
are represented by a Y , and we may refer to them as “the Y s” of the process.

While identifying the inputs, we should take into account the six Ms: machines,
methods, materials, measurements, mother nature (environment), and manpower
(people). The goal is to deduce which inputs are influencing the CTQ characteristics.
The inputs are represented by an X , and we may refer to them as “the Xs” of the
process.

Example 3.1 (Pizza restaurant). The manager of a restaurant wants to study the
process of making and serving a pizza. First, he needs to make a top-level process
map. After collecting some data from his staff, he determines that the inputs are the
ingredients, the cook, the oven, and the plates; the outputs are temperature, taste,
tenderness, weight, radius, and time to be served. In this case, these outputs are the
main features of the pizza, that is, the CTQ characteristics.

A simple diagram of the top-level map (Fig. 3.3) can be drawn with this code in
R (see [72] for more details about drawing diagrams with R):
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INPUTS
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Oven
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OUTPUTS (Y)
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Fig. 3.3 Top-level process
map for pizza example. The
inputs and outputs are
identified outside of the
process. The process is a
black box that will be
analyzed later

> grid.roundrect(width = .25,
height = unit(1.8, "inches"),
x = 0.25)

> grid.text("INPUTS\n\nIngredients\nCook\nOven\nPlates",
x = 0.25,
y = 1,
just = "top")

> grid.roundrect(width = .25,
height = unit(1.8, "inches"),
x = 0.75)

> grid.text("OUTPUTS (Y)\n\nTemperature\nTaste\nTenderness\
nWeight\nRadius\nTime",
x = 0.75,
y = 1,
just = "top")

> grid.lines(x = c(0.375, 0.625),
y = c(0.5, 0.5),
arrow = arrow())

You can apply formatting to texts and lines. The position and alignment of the
elements are not difficult to understand as they are based on coordinates. In Sect. 3.7,
you will find resources on grid graphics. ��

3.3.2 Drilling Down into the Process Steps

As we have already mentioned, the second stage in process mapping is the
breakdown of the process into simpler steps.

This breakdown of the top-level process map may look like an easy task.
However, many obstacles must be overcome. The stakeholders of the process
usually go on the defensive. They may feel threatened, and usually they are reluctant
to change. So the first challenge for the Black Belt is to choose the best strategy to
motivate the staff to obtain more precise information about the process.

The breakdown can be done sequentially as well, that is, by splitting the process
into simpler steps. Each step (task, activity, subprocess) is named and described.
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The steps have their own inputs and outputs. The inputs of the first step are the Xs.
The outputs of the last step are the Y s. For intermediate steps, the outputs of a given
step are the inputs of what follows.

Once we have broken down the process, we can focus on each step. We must
identify the parameters of the process in that specific step. The parameters are called
the xs (not equal to the Xs defined previously), and they represent all factors or
variables that may have an influence over the features of the product at the output of
the process. The features of the step are those characteristics that define its quality.
They are called the ys of the process (not equal to the Y s defined previously). To
distinguish between these two, notice that the capital letters correspond to the inputs
and outputs of the process, whereas the small letters correspond to the inputs and
outputs of the intermediate steps within the process.

The relationship y = f (x) (how the parameters influence the features) is the basis
of the next steps in the DMAIC cycle. Once the xs and ys have been measured, we
will plot and analyze them to design experiments, test hypotheses, and obtain results
for improvements. Thus, this is a very important task in a Six Sigma project.

3.4 Step-by-Step Process Mapping

The procedure to define a process map may be structured into the five steps
described in the following sections.

3.4.1 Identifying Inputs and Outputs

As was already mentioned, the inputs are the Xs of the process. In addition to the
six Ms, we can identify additional ones such as energy, regulations, or any others.
Regarding the output, it will be a product or a service. The CTQ characteristics of
the output are the Y s of the process. At this stage, these CTQ characteristics must
have already been identified.

3.4.2 Listing the Project Steps

This task may be executed sequentially. The more detailed our breakdown of the
process, the more accurate will be the posterior analysis. The steps may be classified
into two groups: those that add value to the product and those that do not add value
(e.g., transport, storing, inspection, . . . ).
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3.4.3 Identifying the Outputs of Each Step

An output is produced at every step. It may be an in-process product, materials, data,
etc., or it may be features of the final product, which may change from one step to
another. As previously described, these in-process output/features are the ys of the
process.

3.4.4 Identifying the Parameters of Each Step

The parameters affecting the process at a specific step are known as the xs of the
step. These parameters are the ones that clearly influence the output/features of
the product. This influence can be with respect to quality, cost, or other important
aspects of the company. To detect the xs of a given step, we may use the techniques
in Sect. 3.2.

3.4.5 Classifying the Parameters

While detecting the parameters in a step of the process, we must assess their
influence in the features and how this influence is produced. Thus, the parameters
must be classified in one of the following groups:

N Noise: Noncontrollable factors
C Controllable factors: May be varied during the process
P Procedure: Controllable factors through a standard procedure
Cr Critical: Those with more influence on the process

Example 3.2 (Pizza restaurant (cont.)). The process of making and serving a pizza
can be broken down into the following steps:

• Prepare the dough.
• Spread the toppings.
• Bake the pizza.
• Deliver the pizza to the customer.

We assume that the inputs of each step are the output of the previous step. The
inputs for the first stage are the xs defined previously (ingredients, cook, oven, and
plates). Next, we describe in detail the parameters and outputs corresponding to each
step (with the classification of the parameters in brackets).

First step: Dough:

• Parameters: cook (C), brand of flour (C), proportion of water (P).
• Outputs: dough (density, toughness, and thickness).
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Second step: Toppings:

• Parameters: cook (C), brand of ingredients (Cr), amount of ingredients (P),
preparation time (Cr).

• Outputs: raw pizza (diameter, weight, thickness).

Third step: Baking:

• Parameters: cook (C), queue (N), baking time (Cr).
• Outputs: baked pizza (temperature, tenderness, taste).

Fourth step: Deliver:

• Parameters: waiter (C), queue (N).
• Outputs: pizza on table (temperature, taste, tenderness, weight, radius, time).

Next, we save the names of the inputs, outputs, and steps of the process into R
objects:

> inputs <-c ("Ingredients", "Cook", "Oven", "Plates")
> outputs <- c("temperature", "taste", "tenderness",

"weight", "radius", "time")
> steps <- c("DOUGH", "TOPPINGS", "BAKE", "DELIVER")

Then we save the names of the outputs of each step in lists (creating first the list
object). The outputs of a step are the inputs of what follows:

> io <- list()
> io[[1]] <- list("X's")
> io[[2]] <- list("Dough", "ingredients", "Cooker")
> io[[3]] <- list("Raw Pizza", "Cooker", "Oven Plate")
> io[[4]] <- list("Baked Pizza", "Plate")

Finally, we save the names, parameter types, and features:

> param <- list()
> param[[1]] <- list(c("Cook", "C"),

c("flour brand", "C"),
c("prop Water", "P"))

> param[[2]] <- list(c("Cook", "C"),
c("Ing.Brand", "Cr"),
c("amount", "P"),
c("prep.Time", "Cr"))

> param[[3]] <- list(c("Cook","C"),
c("queue", "N"),
c("BakeTime", "Cr"))

> param[[4]] <- list(c("Waiter","C"),
c("queue", "N"))

> feat <- list()
> feat[[1]] <- list("Density", "toughness", "thickness")
> feat[[2]] <- list("Diameter", "Weight", "thickness")
> feat[[3]] <- list("temperature", "tenderness", "taste")
> feat[[4]] <- list("temperature", "taste", "tenderness",

"weight", "radius", "time")

Now we have all the data stored in variables. ��



58 3 Process Mapping with R

Table 3.1 Arguments of ss.pMap function

Argument Description

steps Vector of characters with names of “n” steps
inputs.overall Vector of characters with names of overall inputs
outputs.overall Vector of characters with names of overall outputs
input.output Vector of lists with names of inputs of ith step, which will be the

outputs of the (i−1)th step
x.parameters Vector of lists with list of x parameters of process; the parameter is

a vector with two values: name and type
y.features Vector of lists with list of y features of step; the feature is a vector

with two values: name and type
main Main title of process map
sub Subtitle of process map
ss.col List of colors for lines of process map

3.5 Drawing a Process Map with the Six Sigma Package

We have provided the SixSigma package with a function that makes use of the
grid package capabilities to draw process maps. The name of the function is
ss.pMap, and it accepts the arguments in Table 3.1.

Example 3.3 (Pizza restaurant (cont.)). Once we have all the data in variables, we
proceed to draw the process map for the pizza example. We call the ss.pMap
function to draw the process map in Fig. 3.4.

> ss.pMap(steps, inputs, outputs,
io, param, feat,
sub = "Pizza Process Project")

��

3.6 Why Should I Use R for Drawing Diagrams?

Now we wish to motivate the advantages of using R to make diagrams instead of
other so-called user-friendly programs. In principle, it may seem easier to draw
boxes and arrows using the mouse with any drawing program (e.g., Dia ([59]),
Microsoft Visio). Under the GUI paradigm (using a drawing program), you need
to open the drawing program, modify it, check the aspect, export the image, import
it into the report and check against the outline. Repeat these steps every time you
change or generate a new diagram. The main advantage of doing it with R is that the
diagram is reproducible. Every time you generate it, it will have the same aspect.

This feature is especially useful when you are using reproducible research
techniques (Chap. 13). Thus, if you have the code inside the report of your project,
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Fig. 3.4 Process map for pizza example. The whole process is visualized using the ss.pMap
function

when you make a change in the code, the diagram will be rendered again and
automatically updated in the report. Therefore, in the long term it is worthwhile
to learn how to generate diagrams with R. As an example, most diagrams in this
book have been created with R code.
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3.7 Summary and Further Reading

Process mapping is a very important tool in the Define phase of the DMAIC cycle.
The source for its construction is the Project Charter, and it consists in describing the
steps that a process entails and the identification of inputs, outputs, parameters, and
features. The relationship between the parameters and the features of the process
will be the main thread in subsequent phases of a Six Sigma project. Hence,
collecting this information is not a trivial matter.

In this chapter, we provided a brief introduction to process mapping. Some
process mapping strategies were mentioned (SIPOC, VSM). A two-stage method
to construct process maps was outlined through the breakdown of the process into
simpler steps. We showed how to classify parameters according to their influence
and nature using an intuitive example. This example was used to draw both top-level
and detailed process maps.

The grid package has a significant amount of documentation. See the help
(help(package = "grid")) for a list of functions for drawing diagrams or
any annotation in an R graph. There are also several vignettes with complete
explanations and assorted examples. Type vignette(package = "grid")
to see a list of vignettes in the package. Then type vignette("foo") to obtain
a PDF document on the topic foo (e.g., vignette("moveline")). If you plan
to utilize the graphic features of R, [74] is a must-read. You can find more resources
about graphics with R at the Web site of this book’s author.1

Not all books about Six Sigma explain the process mapping tool. [2] presents
value stream mapping as an extension of process mapping. [82], [92], and [22] have
brief introductions to the topic. A book entirely aimed at building process charts
is [30].

Case Study

Make a process map for the paper helicopter project. First, make a top-level map,
identifying the inputs and the outputs. Then, make a breakdown of the process from
your point of view, following the steps described in Sect. 3.4. Identify the parameters
and the features in each step, and classify the parameters.

Try to draw the top-level map using the same code as in the pizza example,
changing the names. Draw a process map with the ss.pMap function in the
SixSigma package.

Hint: You can use the example("ss.pMap") command to see an example of
the process map for the paper helicopter project, and then try to generate it following
the instructions given in this chapter.

1http://www.stat.auckland.ac.nz/~paul/.

http://www.stat.auckland.ac.nz/~paul/


3.7 Summary and Further Reading 61

Practice

3.1. Draw a top-level map for the process of making an invoice in an administrative
department of an office. You need the inputs (data, computer, operator) and the
outputs (invoice). You can print some features of the invoice that may be important,
e.g., number of pages, color, paper size, etc.

3.2. Draw a process map for the process of doing the laundry, using three steps:
prepare, wash, and hang. Image the inputs and the outputs and include some
parameter and feature examples.



Chapter 4
Loss Function Analysis with R

Defects are not free. Somebody makes them, and gets paid for
making them.

W. Edwards Deming

4.1 Introduction

Most features defining a product are not usually important to the customer. Only
a few of them are critical to quality (CTQ), in particular, those defining what
the customer expects. To meet these expectations, the processes involved in the
development of the final product should be correct. This is the Six Sigma way:
high-quality processes lead automatically to high-quality products.

This relates to the concept of cost of quality (COQ), which is the cost of
having a low-quality product (from the customer’s perspective). Some managers still
think that this concept is equivalent to total quality cost, which corresponds to the
amount of money expended in implementing quality methodologies and improving
processes. To avoid misunderstandings, we will refer to COQ as the cost of poor
quality. The cost of poor quality will result in a quantifiable loss for the organization
and for society in general. This loss can be modeled by a function. In Six Sigma,
this function is based on the variability of the process.

In this chapter we will analyze the quality loss function introduced by Taguchi
and explain how to use it to calculate the average loss of a process. In Sect. 4.5,
we link this tool with other phases of the design, measure, analyze, improve, and
control cycle. Use of the SixSigma package for a simple loss function analysis is
explained in Sect. 4.6. This simple model is known as “nominal-the-better.” More
complex models are briefly summarized in Sect. 4.7.

E.L. Cano et al., Six Sigma with R: Statistical Engineering for Process
Improvement, Use R! 36, DOI 10.1007/978-1-4614-3652-2__4,
© Springer Science+Business Media New York 2012
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4.2 Cost of Poor Quality

Throughout the history of quality management, many definitions of quality have
been advanced. In most of them, the concept of adequateness to customer needs
remains, regardless of the formulation. If we look for a formal definition, the
principal source is the ISO Standards (ISO 9000:2008 Standard), where we find
the following definition of quality:

“Degree to which a set of inherent characteristics fulfills requirements.”

The requirements, or customer needs, must be a characteristic of the product or
service that can be measured. Thus, requirements are usually a target value and a
tolerance around the target, and they can be expressed as the interval between the
lower specification limit (target minus tolerance) and the upper specification limit
(target plus tolerance).

The characteristic used to measure quality by assessing the requirements is called
CTQ (acronym for critical to quality), already defined in previous chapters. In the
real world, there is variation in a process, and what we have is a sample of measures
within an interval (time, batch, . . . ). This sample has a probability distribution. If the
process is normally distributed, the actual values of the CTQ characteristic surround
the mean of the process with some variation (Fig. 4.1).

Observed value of the characteristic

fr
eq

ue
nc

y

TLSL USL

Variation

Fig. 4.1 Frequency distribution of observed values and requirement limits. In a normal distributed
process, the observed values surround the target. Far from the mean are the smallest frequencies
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Fig. 4.2 Cost of poor quality under classical approach. The dotted line represents the cost of poor
quality when the observed value of the CTQ characteristic varies. In this paradigm, the cost only
is produced when the CTQ characteristic is outside the specification limits

When the CTQ characteristic lies outside of the specification limits, that is,
quality is poor, the company incurs a cost that obviously must be calculated. This
cost may be produced by both measurable (scrapping, rework, waste, forfeit, . . . )
and unmeasurable (bad reputation, dissatisfied staff, . . . ) losses. The former can be
calculated directly, but the latter must be estimated somehow.

Under a classical approach to quality (Fig. 4.2), we can multiply the number of
defective items by the cost of poor quality in a period and take this fact as the cost
of poor quality. This is far from scientific, and so under the Six Sigma approach to
quality, we need a better tool. This tool is the Taguchi loss function described in the
following sections.

4.3 Modeling the Loss Function

4.3.1 Some Notation

Let us define some of the symbols to be used. The CTQ characteristic will be
represented by Y . The loss function will provide a number indicating the value of
the cost in monetary units ($, €, £, . . . ). This cost depends directly on the value of



66 4 Loss Function Analysis with R

the CTQ. Thus, we say that the loss is a function of the observed value and represent
it by L(Y ). This entails that for every value of the CTQ characteristic, we only have
one value of the loss (cost).

The target value of the CTQ characteristic is denoted by Y0 and the tolerance
by Δ . Let the cost of poor quality at Y = Y0 +Δ be L0. That is:

L0 = L(Y0 +Δ). (4.1)

4.3.2 Taguchi Loss Function

As was mentioned in the previous section, it is not enough to have a CTQ
characteristic inside the specification limits. In fact, a definition of quality under
the Six Sigma approach should approximate the target with as little variation as
possible. Then the loss function should be related to the distance from the target.
[99] defined the loss function (known as the Taguchi loss function) as

L(Y ) = k(Y −Y0)
2. (4.2)

This function has the following properties:

• The loss when the observed value is equal to the target is zero.
• The loss increases when the observed value moves away from the target.
• The constant k is indicative of the risk of having more variation (Fig. 4.3).

Once we have evaluated the cost of poor quality for an individual item as
described in Sect. 4.2, we can calculate the constant k, replacing the target value
Y0 by its value in (4.2) and taking into account the cost at L0 defined in (4.1).

Example 4.1 (Bolts). A factory makes bolts whose CTQ characteristic is the diam-
eter of the bolts. Suppose that the Master Black Belt wants to assess the process of
making 10-mm bolts. The following data are known:

• The customer will accept the bolts if the diameter is between 9.5 and 10.5 mm.
• When a bolt fails to meet the requirements, it is scrapped, and the cost estimation

is 0.001 monetary units.

Thus the target is

Y0 = 10,

the tolerance of the process is

Δ = 0.5mm,

and the cost at Y0 +Δ is

L0 = L(Y0 +Δ) = 0.001.
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Fig. 4.3 Taguchi loss function. When the observed value of the CTQ characteristic is exactly the
target, there is no cost. The further we move away from the target, the higher the cost of poor
quality. The constant k indicates how fast the cost rises as the distance to the target increases

As was mentioned, we can easily compute the value of the constant k with the
formula of the loss function:

L(Y ) = k(Y −Y0)
2,

L(Y0 +Δ) = k((Y0 +Δ)−Y0) = L0,

k×Δ = L0,

k =
L0

Δ
.

This formula is always the same. Hence, we can model the loss function knowing
the tolerance (Δ ) and the cost of poor quality of an individual item (L0).

In the case at hand, k is equal to

> 0.001/0.5

[1] 0.002

So the loss function for the process of making bolts is

L(Y ) = 0.002(Y − 10)2,
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L(Y)=0.002 (Y−10)2

Fig. 4.4 Taguchi loss function for bolt example. This is the graphical representation of Taguchi’s
loss function for k = 0.0002

and we can plot the function in R with the following code (see the result in
Fig. 4.4):

> curve(0.002 * (x - 10)^2, 9, 11,
lty = 1,
lwd = 2,
ylab = "Cost of Poor Quality",
xlab = "Observed value of the characteristic",
main = expression(L(Y) == 0.002 ~ (Y - 10)^2))

> abline(v = 9.5, lty = 2)
> abline(v = 10.5, lty = 2)
> abline(v = 10, lty = 2)
> abline(h = 0)
> text(10, 0.002, "T", adj = 2)
> text(9.5, 0.002, "LSL", adj = 1)
> text(10.5, 0.002, "USL", adj = -0.1)

��
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Table 4.1 Data for bolt
example

10.4042 10.0578 9.7491 10.0475 10.1301
10.2584 10.1098 10.0436 9.9468 9.6706
9.9478 10.1013 10.2102 10.1539 9.7827
10.2678 9.8838 9.6940 10.1691 9.8784
10.1144 9.8491 10.2111 10.0913 9.9463
9.9830 10.1462 10.0127 10.0299 10.0379
10.3977 9.9481 10.3018 9.6780 10.1120
10.2947 10.1443 10.0357 10.0244 10.1306
10.2469 9.8660 9.9973 9.7712 9.7274
10.0433 9.8711 9.9762 9.8510 10.1934

4.4 Average Loss Function

In the previous section we obtained the quality loss function for a single item. The
aim of the loss function analysis is to calculate the cost of poor quality for a process
over a period of time.

Therefore, if we have n elements in a period or set of items, the average loss per
unit (L) is obtained by averaging the individual losses. Thus:

L =
∑n

i=0 k
(
Yi −Y0

)2

n
= k× ∑n

i=0

(
Yi −Y0

)2

n
.

Notice that the second factor is the mean squared deviation (MSD). Hence, the
average loss per unit in a given sample (period, batch, . . . ) is simply expressed by

L = k(MSD). (4.3)

Example 4.2 (Bolts (cont.)). To calculate the average loss function for the bolt
factory, we need a sample of bolts. Let us suppose that a random sample of 50
bolts has been correctly obtained. Their diameters are listed in Table 4.1. The data
are available as a data frame in the SixSigma package. Type ss.data.bolts
to see them. The unitary average loss can be obtained with the following code:

> 0.002*(sum((ss.data.bolts$diameter-10)^2))/length(ss.data.
bolts$diameter)

[1] 6.74413e-05

��

4.5 Use of Loss Function Within DMAIC Cycle

In the Measure phase, loss function analysis is used to obtain the expected loss (in
average) of a group of items (e.g., within a period, a batch, a region, etc.). This is
simply the multiplication of the number of items in the group by the average loss
per item.
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Example 4.3 (Bolts (cont.)). The factory has a production of 100,000 bolts per
month. Thus the expected loss in a month is

> 100000 * 0.002 * (sum((ss.data.bolts$diameter - 10)^2))/
length(ss.data.bolts$diameter)

[1] 6.74413

��
Loss function analysis is not an isolated tool. For example, it can be used to

set the tolerance limits for customers and suppliers on a scientific basis using
knowledge about customer perceptions of specifications. This eventually leads to
designing the acceptance sampling plan.

In the Improve phase, the quality loss function is used to ascertain the economic
impact of a new method, material, etc. In other words, it represents a way to quantify
improvements.

4.6 Loss Function Analysis with Six Sigma Package

A specific function in the SixSigma package performs loss function analysis. To
show its performance, we will use the data described in the previous sections. The
function is called ss.lfa, and it accepts the arguments in Table 4.2. The function
returns a list with the elements in Table 4.3.

Table 4.2 Arguments for ss.lfa function

Argument Description

lfa.data Data frame with data sample
lfa.ctq Name of field in data frame containing data
lfa.Delta Process tolerance
lfa.Y0 Process target
lfa.L0 Cost of poor quality at tolerance limit
lfa.size Number of items to calculate total loss in a group
lfa.output String with type of output: “text,” “plot,” “both”)
lfa.sub Subtitle of graphic output

Table 4.3 Values returned
by ss.lfa function

Value Description

lfa.k Constant k for loss function
lfa.lf Expression with loss function
lfa.MSD Mean squared differences from target
lfa.avLoss Average loss per unit of the process
lfa.Loss Total loss of process (if size is provided)
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If “both” or “plot” is passed as the lfa.output argument, then a graphic is
generated with the algebraic expression of the function and its graphic, in addition
to the data and the computations.

Another function evaluates the loss function at a specific value of Y (the CTQ
characteristic). Type help("ss.lf") to see how to use it.

Example 4.4 (Bolts (cont.)). To obtain the output of the loss function analysis for
the bolt project, we use the following command:

> ss.lfa(ss.data.bolts, "diameter", 0.5, 10, 0.001,
lfa.sub = "10\,mm. Bolts Project",
lfa.size = 100000, lfa.output = "both")

$lfa.k
[1] 0.002

$lfa.lf
expression(bold(L == 0.002 %.% (Y - 10)^2))

$lfa.MSD
[1] 0.03372065

$lfa.avLoss
[1] 6.74413e-05

$lfa.Loss
[1] 6.74413

When passing the string “both” or “text” as an argument of the lfa.output
function we obtain a list of the elements mentioned above. Thus, for example, the
total loss is 6.7441.

The input and output values and the expression of the function and its graphical
representation are depicted in Fig. 4.5. ��

4.7 Other Models

In the preceding sections, we assumed that the CTQ characteristic had a target value
with a surrounding tolerance. This model is called “nominal-the-better.”

Not all the processes fit this model. Specifically, there are processes with only one
specification limit (upper or lower). Next, we describe briefly these two possibilities.

Smaller-the-Better Characteristic

A smaller-the-better characteristic has only an upper specification limit (USL).
Above this value, the product does not accomplish the customer specification. Thus,
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Fig. 4.5 Loss function analysis for bolt example. The Taguchi loss function for the bolt example
is plotted in the graphic. The specification limits and the target are also represented as vertical lines.
Below the graphic is the algebraic expression of the function. On the right-hand side of the output,
we have the input data (variable, target, tolerance, cost at tolerance limit, and size of production
set) and the computed output data (mean, constant k, MSD, average loss, and total loss)

the ideal target value is defined as zero. For example, the CTQ characteristic of a
heat exchanger could be heat losses. Another example is any service in which the
CTQ characteristic is the time to serve a client (process, customer, telephone call,
order, . . . ). The equation corresponding to the loss function for this kind of processes
is as follows:

L = kY 2.

The graphical representation of the function has the shape in Fig. 4.6.

Larger-the-Better Characteristic

The larger-the-better characteristic corresponds to the case of only a lower specifi-
cation limit (LSL). In this case, the initial target value is infinity. Typical examples
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Fig. 4.6 Smaller-the-better loss function. The loss is minimized as the observed value of the
characteristic decreases. The higher the observed value, the larger the cost of poor quality amounts

are the resistance of a material or the strength of a weld. The equation of the loss
function for this model is as follows:

L =
k

Y 2 .

In this case, the graphical representation is shown in Fig. 4.7.
The computations for the analysis of loss functions for smaller-the-better and

larger-the-better characteristics may be done in a similar way to that described for
the nominal-the-better model. In [99] you can check some other applications of the
loss function analysis.

4.8 Summary and Further Reading

This chapter gave a brief introduction to quality loss function analysis. In the
framework of quality, this loss function was introduced by Genichi Taguchi and
is thus also known as the Taguchi loss function.

First, the concept of COQ was discussed. Then, we modeled the cost function and
performed calculations for the “nominal-the-better” model. We used an example and
functions from the base installation of R and from the SixSigma package.
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Fig. 4.7 Larger-the-better loss function. The loss is minimized as the observed value of the
characteristic increases. The lower the observed value, the larger the cost of poor quality amounts

A straightforward explanation of the Taguchi quality loss function can be found
in the “Michigan Chemical Process Dynamics and Controls Open Textbook” (see
[53]). Other good references for the Taguchi methods are those by [89] and [99].

Case Study

Analyze the loss function for the paper helicopter project. Estimate the cost of poor
quality when the flight time does not meet customer specifications (e.g., cost of the
sheet, cost of the operator building, etc.). Set an arbitrary target and tolerance based
on your experience from previous chapters.

Model the function and run the ss.lfa function from the SixSigma package
to find out your average loss. Estimate the number of helicopters you can build in a
month and get the total loss from the output of the function.
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Practice

4.1. Write the loss function for a process whose target value is 15, tolerance is 2,
and cost of poor quality at the tolerance limit is 350.

4.2. Consider a process where bottles are to be filled with wine. The target of
the bottle-filling process is 750 cl, and the specification limits are 740 and 760 cl.
Suppose that the mean cost of poor quality of a bottle is $1.25.

What is the algebraic expression of the loss function? Try to plot it with R as in
the bolt example.

4.3. Use the data of the process in ss.data.ca to perform a loss function
analysis using the ss.lfa function in the SixSigma package.

What is the average loss? If the number of bottles filled in a month is 12,500,
what is the total loss?



Part III
R Tools for the Measure Phase

[I] Improve

[C] Control

Roadmap of the DMAIC Cycle

[D] Define

[M] Measure

[A] Analyze

You are here

In this part of the book, tools useful during the Measure phase are introduced.
In this phase, the baseline and target performance of the process must be

determined, the input/output variables of the process defined, and the measurement
systems validated.

We will introduce three of the most representative tools: measurement system
analysis, Pareto analysis, and process capability analysis.



Chapter 5
Measurement System Analysis with R

If you cannot measure it, you cannot improve it.

Lord Kelvin

5.1 Introduction

A measurement system analysis (MSA), also known as a gage R&R study, identifies
and quantifies the sources of variation that influence the measurement system. R&R
stands for repeatability and reproducibility. It is a very important matter in Six
Sigma because if the variability of the measurement system is not controlled, then
the process cannot be improved. To perform a gage R&R study, several of the
individual tools described in other chapters of the book may be used, such as control
charts, analysis of variance (ANOVA), and plots.

The principal types of studies are crossed studies and nested studies. This chapter
shows how to use these tools individually with R and provides an interpretation of
the outputs from the SixSigma package for crossed studies.

First, we provide some definitions according to international standards. Then we
explain how to collect data for an MSA with an example that is used throughout
the chapter. Finally, a numerical and graphical analysis is performed and the results
are explained.

5.1.1 Definitions

The most important activity in the Measure phase is the MSA. MSA is used to
quantify the amount of variation coming from the measurement system. Commonly,
MSA is known as gage R&R, where, as we have already mentioned, R&R stands
for repeatability and reproducibility.

E.L. Cano et al., Six Sigma with R: Statistical Engineering for Process
Improvement, Use R! 36, DOI 10.1007/978-1-4614-3652-2__5,
© Springer Science+Business Media New York 2012
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So it is very important to have an accurate measurement system. This is not the
same as “exact”: there is always some variability in a process. A good measurement
system has only random variability due to the inherent variation of the item being
measured. It must have no significant variability produced by appraisers (operators,
machines, etc.), parts, time, or another factor.

Regarding the concepts involved in MSA, some of the principal definitions used
throughout this chapter can be found in ISO 3534 (Statistics):

Accuracy The closeness of agreement between a test result and the accepted
reference value.

Trueness The closeness of agreement between the average value obtained from a
large series of test results and an accepted reference value.

Precision The closeness of agreement between independent test results obtained
under stipulated conditions.

Repeatability Precision under repeatability conditions (where independent test
results are obtained using the same method on identical test items in the same
laboratory by the same operator using the same equipment within short intervals
of time).

Reproducibility Precision under reproducibility conditions (where test results are
obtained using the same method on identical test items in different laboratories with
different operators using different equipment).

In summary, repeatability may be defined as the inherent variability of the
measurement system (under similar conditions) and reproducibility as the variability
under different conditions (groups), for instance, operators, machines, or day of the
week.

5.2 Data Analysis

5.2.1 Data Collection

As in all statistical research, randomization is very important in Six Sigma. Thus,
we must randomly select the parts (prototype, piece, mechanical items, service
activities) and assign them to the appraisers (machines, meters, operators, . . . ), again
randomly.

In what follows, we will consider n measures of each part (n ≥ 2) within each
appraiser. Let a and b be the number of parts and the number of appraisers,
respectively. Let us save the data as a data frame with one numeric variable (the
feature to measure) and two factors (parts and appraisers). Thus, we have n× a× b
observations.
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Table 5.1 Battery voltage
measures Voltmeter Battery Run Voltage

1 1 1 1 1.4727
2 1 1 2 1.4206
3 1 1 3 1.4754
4 1 2 1 1.5083
5 1 2 2 1.5739
6 1 2 3 1.4341
7 1 3 1 1.5517
8 1 3 2 1.5483
9 1 3 3 1.4614
10 2 1 1 1.3337
11 2 1 2 1.6078
12 2 1 3 1.4767
13 2 2 1 1.4066
14 2 2 2 1.5951
15 2 2 3 1.8419
16 2 3 1 1.7087
17 2 3 2 1.8259
18 2 3 3 1.5444

Example 5.1 (Voltage in batteries). A battery manufacturer makes several types of
batteries for domestic use. The Black Belt of the company must start a Six Sigma
project in order to improve the 1.5-volt battery production line. He has identified the
voltage output as the CTQ characteristic in the Define phase. Now the measurement
system must be evaluated before starting other analyses.

There are two voltmeters available, and three different batteries are randomly
picked up from the end of the production line. The voltage in each battery is
measured with each voltmeter three times.1 The results are listed in Table 5.1.

In this example, the parts are the batteries (a = 3) and the appraisers are the
voltmeters (b = 2). As the measurement is taken three times (n = 3), there are 3×
2× 3 = 18 measurements. Let us save the data in a data frame using the following
commands:

> voltmeter <- factor(rep(1:2, each = 9))
> battery <- factor(rep(rep(1:3, each = 3), 2))
> run <- factor(rep(1:3, 6))
> voltage <- c(1.4727, 1.4206, 1.4754, 1.5083, 1.5739,

1.4341, 1.5517, 1.5483, 1.4614, 1.3337,
1.6078, 1.4767, 1.4066, 1.5951, 1.8419,
1.7087, 1.8259, 1.5444)

> batteries <- data.frame(voltmeter, battery,
run, voltage)

You can type batteries to see and check the data. ��

1It is supposed to be done randomly.
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Fig. 5.1 Variability decomposition. The total variability can be split into gage R&R variability
(from the inherent randomness of the process) and part-to-part variability (not due to the
measurement system)

5.2.2 First Approach to Analysis of Variance (ANOVA)

As was already mentioned, the key point is the identification of the variability
sources within the measurement system. The statistical technique known as analysis
of variance (ANOVA) allows us to find out who is responsible for that variation.

A reasonable measurement system should have random variability due to the
inherent variation of the item that is been measured and no variability arising by
appraisers operations, parts, etc. To perform ANOVA, the statistical functions lm
and anova from the stats package can be used. This package is included in
the R base installation. To assess the measurement system, the variability must
be split into the elements shown in Fig. 5.1. The Gage R&R variability is due to
the inherent randomness of the process, and it can be split into repeatability and
reproducibility. The part-to-part variability is the variability element that is not due
to the measurement system.

An ANOVA table provides all the information we need to compute all of the
components mentioned in Fig. 5.1. In Chap. 9, a more thorough explanation of
ANOVA will be given.

Let us consider an ANOVA table with two factors, A and B, corresponding
respectively to parts and appraisers. The ANOVA table provides variability infor-
mation for both factors A and B, for the interaction and for the so-called residuals
of the model. This variability information is divided into sum of squares, mean of
squares, and information regarding statistical tests.

Example 5.2 (Batteries (cont.)). With the following command we obtain an
ANOVA table for the battery measurements:

> anova(lm(voltage ~ battery + voltmeter +
battery * voltmeter,

data = batteries))

Analysis of Variance Table

Response: voltage
Df Sum Sq Mean Sq F value Pr(>F)

battery 2 0.063082 0.031541 1.9939 0.1788
voltmeter 1 0.044442 0.044442 2.8095 0.1195
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battery:voltmeter 2 0.018472 0.009236 0.5839 0.5728
Residuals 12 0.189821 0.015818

��
Repeatability can be obtained directly from the table as the residual mean square.

The rest of the components of the total variability in Fig. 5.1 can be calculated as
follows:

σ2
Appraiser =

MSB−MSAB
a× n

,

σ2
Interaction =

MSAB−MSE
n

,

σ2
Reproducibility = σ2

Appraiser +σ2
Interaction,

σ2
Gage R&R = σ2

Repeatability +σ2
Reproducibility,

σ2
Part to Part =

MSA−MSAB
b× n

,

σ2
Total = σ2

Gage R&R +σ2
Part to Part,

where a and b are the number of levels of each factor, n is the number of replicated
measures, and MSA, MSB, MSAB, and MSE correspond respectively to the mean
of squares of A and B, the interaction between factors (AB), and the error. If any
component is negative, it must be taken as zero ([94]).

Example 5.3 (Battery voltage (cont.)). Repeatability can be measured directly from
the residual mean squares in the ANOVA table (third column, fourth row), so that
σ2

Repeatability is

> anova(lm(voltage ~ battery + voltmeter +
battery * voltmeter,

data=batteries))[3][4,1]

[1] 0.01581842

The appraiser variability (in this case, due to the voltmeter) σ2
Appraiser is

> (0.0444 - 0.0092) / (3*3)

[1] 0.003911111

The variability due to the interaction between the battery and the voltmeter
σ2

Interaction is

> (0.0092 - 0.0158) / 3

[1] -0.0022
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This value should not be negative, and therefore we take it as zero. Thus the
reproducibility σ2

Reproducibility amounts to:

> 0.0039 + 0

[1] 0.0039

The gage R&R variation σ2
Gage R&R takes the value

> 0.0158 + 0.0039

[1] 0.0197

The part-to-part variation σ2
Part to Part will be

> (0.0315 - 0.0092) / (2 * 3)

[1] 0.003716667

Finally, the total variation σ2
Total is

> 0.0037 + 0.0197

[1] 0.0234

��

5.2.3 Assessing the Measurement System

For a measurement system to be accurate, the contribution of the gage R&R
variability to the total variability should be lower than 10%. A value between 10
and 30% may be acceptable. A value larger than 30% represents a bad measurement
system.

To evaluate this fact, we use the square roots of the variabilities, that is, the
standard deviations. We will describe this concept in detail in Chap. 9.

The contribution of each source of variation is then computed over the total
Study Var:2

%Gage R&R Variation =
σGage R&R

σTotal
.

Another useful metric is the number of distinct categories. It is calculated using
the formula

No Cat =
σPart to Part

σGage R&R
× 1.41

2The study var is defined as the standard deviation of each source of variation, multiplied by 5.15
(5.15 standard deviations cover 99% of data).
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and rounding to the nearest lower integer (1 if lower than 1). The number of distinct
categories should be greater than or equal to four ([69]). This value measures the
relationship between the variability due to the measurement system and the inherent
variability. If it is lower than 4, then the gage R&R variability is large compared to
the inherent variability. Otherwise, the relationship between both variabilities can
be considered adequate.

Example 5.4 (Battery voltage (cont.)). The contribution of the Gage R&R variabil-
ity to the overall variation of the process %Gage R&R Variation is as follows:

> (sqrt(0.0197) / sqrt(0.0234)) * 100

[1] 91.75404

This means that most of the variation of the process is due to the gage R&R
variability. The number of distinct categories No Cat is

> (0.0037 / sqrt(0.0197)) * 1.41

[1] 0.03716959

As was mentioned above, we take this value to be 1. These results confirm the
inadequacy of the current measurement system. ��

5.3 Using the SixSigma Package

The graphics and the numeric computations are collected in the ss.rr function of
the SixSigma package. The syntax of the function is

> ss.rr(var, part, appr, data, main, sub)

It accepts the arguments in Table 5.2. After running it, you obtain a text output
with an ANOVA table, the details of the sources of variance, and some graphics, in
particular:

• Bar chart for contribution percentage of each variation source,
• Measured values by appraiser plot,

Table 5.2 Arguments for
ss.rr function Parameter Description

var Measured variate
part Factor for parts
appr Factor for appraisals (operators, machines, . . . )
data Data frame containing variates
main Main title of graphic output
sub Subtitle of graphic output (the recommended

project name)
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• Measured values by part plot,
• Mean measured values by part and appraiser,
• Mean control chart for R&R study,
• Range control chart for R&R study.

Example 5.5 (Battery voltage (cont.)). The text and graphic output for the battery
data can be obtained and saved in an R object using the following command:

> my.rr <- ss.rr(var = voltage, part = battery,
appr = voltmeter,
data = batteries,
main = "Six Sigma Gage R&R Measure",
sub = "Batteries Project MSA")

Analysis of Variance Table

Response: var
Df Sum Sq Mean Sq F value Pr(>F)

part 2 0.063082 0.031541 1.9939 0.1788
appr 1 0.044442 0.044442 2.8095 0.1195
part:appr 2 0.018472 0.009236 0.5839 0.5728
Repeatability 12 0.189821 0.015818

Gage R&R
VarComp %Contrib

Total Gage R&R 0.0197301 84.15
Repeatability 0.0158184 67.46
Reproducibility 0.0039117 16.68
appr 0.0039117 16.68
part:appr 0.0000000 0.00

Part-To-Part 0.0037174 15.85
Total Variation 0.0234476 100.00

StdDev 5.15*SD %StudyVar
Total Gage R&R 0.14046387 0.7233890 91.73

Repeatability 0.12577122 0.6477218 82.14
Reproducibility 0.06254358 0.3220995 40.84
appr 0.06254358 0.3220995 40.84
part:appr 0.00000000 0.0000000 0.00

Part-To-Part 0.06097048 0.3139980 39.82
Total Variation 0.15312609 0.7885994 100.00

Number of Distinct Categories= 1

The results of the MSA show that the %StudyVar due to R&R (second table, first
row, third column) is 91.73%, larger than 30%. In addition, the number of distinct
categories is equal to 1. This small number of categories, together with such a large
percentage of variability, is the worst possible result for a measurement system.

To find out where the problem with the measurement system is, we can use some
graphical tools. These tools will be explained in detail in Chap. 8. Figure 5.2 shows
the charts that will help us to identify the causes of the problem. ��
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Fig. 5.2 Charts for MSA of battery example. In the top left plot we see graphically that our
measurement system is in trouble
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5.3.1 Interpreting the Charts

A bar plot can be generated to see the contribution of each component to the total
variance. Thus we will be able to detect at a glance if the measurement problems
come from the repeatability or reproducibility.

Example 5.6 (Battery voltage (cont.)). The plot in the top left in Fig. 5.2 is a bar
chart representing the contribution of each component to the total variance. It
is intended to detect at a glance if the measurement problems come from the
repeatability or the reproducibility. In this case, it is clear that the process has
problems with the repeatability and the reproducibility values, as their contribution
is in both cases larger than 10%, with repeatability being approximately twice
reproducibility. ��

Using strip plots and line plots representing the effects, we can see if the
difference between appraisers is the problem or if the interaction between appraisers
and parts is important.

Example 5.7 (Battery voltage (cont.)). The first two plots in the right column in
Fig. 5.2 show every measure as a point in the graph. In the top plot, the x-axis
represents the batteries, and a line has been plotted linking the means of each
prototype. In the middle plot, the x-axis represents the voltmeters. The bottom plot
shows the interaction between the two factors operators and prototypes. The means
of the pairs battery × voltmeter are represented by points and linked by lines.

With these plots we can detect if there is any interaction between operators and
prototypes (which would be a problem) or differences between operators. In the
case at hand, we detect that the first battery seems to have a lower voltage than the
rest, but its variability is similar to that of the others, so this is not a problem for the
measurement system. However, the plot by appraiser indicates apparent differences
between the voltmeters. Means and variabilities are different, and this is a problem
for our measurement system. The lines in the interaction plot do not cross each
other, so interaction between factors is irrelevant. ��

Finally, control charts can be plotted by group and with the control limits
adapted for R&R studies. For the mean control chart, the center line and the
limits are:

Center Line = x,

Upper Limit = x+
3

d2
√

n
R,

Lower Limit = x− 3
d2
√

n
R;
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and for the range control chart:

Center Line = R,

Upper Limit = R×
(

1+
d3

d2

)
,

Upper Limit = R×
(

1− d3

d2

)
,

where d2 and d3 are the famous Shewart’s constants to construct control charts
([69]), x is the overall average, and R is the average range. Control charts will be
tackled in Chap. 12.

Within a gage R&R study, most points in the x chart should be outside the control
limits. This is due to the fact that the plot represents part-to-part variation (same
operator, same prototype), while the limits apply to the overall data. Otherwise, the
measurement system would be considered inadequate. However, in the range control
chart, all of the points should be inside the control limits.

Example 5.8 (Battery voltage (cont.)). In Fig. 5.2, all the points in the x control
chart are within the limits. When the limits are not drawn, it is because they are
outside the chart’s margins. In addition, several points in the range control chart
lie outside the limits. These two facts confirm that the measurement system is not
working properly.

It is apparent that our measurement system is not working properly. The main
problem is the voltmeters (appraisers). Thus, before proceeding with the Six Sigma
project, the Black Belt should calibrate the voltmeters, or just replace them and
repeat the MSA, until the measurement system becomes correct. ��

5.4 Summary and Further Reading

Measurement is not a trivial question in quality. If we are making decisions about
data that have been wrongly measured, we may obtain inadequate results. So it is
very important to conduct an MSA as a preliminary stage in any Six Sigma project.
Once the measurement system is working properly, we will be able to analyze the
data. In this chapter, we explained how to perform an MSA using several statistical
tools. We used functions both in the base installation of R and in the SixSigma
package and explained how to obtain the facts and figures through a battery factory
example. The qualityTools package, [88], also contains functions for MSA.

Readers interested in the standards and rules for MSA may consult [110] and
[42]. [43] is a more generic standard. For an in-depth discussion of MSA, [2] is
a practical guide. For foundations and more academic explanations, see [69]. [3]
dedicates an easy-to-follow chapter to MSA. A book dedicated to gage R&R studies
is the one by [12]. In [101], some practical extensions to gage R&R studies are
proposed.



90 5 Measurement System Analysis with R

Table 5.3 Practice:
Compound in a pastry batch

Lab Batch Run Comp

1 1 1 1 0.2616
2 1 1 2 0.2511
3 1 2 1 0.2821
4 1 2 2 0.2790
5 1 3 1 0.2384
6 1 3 2 0.2368
7 2 1 1 0.2462
8 2 1 2 0.2561
9 2 2 1 0.2791
10 2 2 2 0.2802
11 2 3 1 0.2343
12 2 3 2 0.2351
13 3 1 1 0.2484
14 3 1 2 0.2435
15 3 2 1 0.2753
16 3 2 2 0.2809
17 3 3 1 0.2385
18 3 3 2 0.2407

Case Study

Make four different prototypes of the paper helicopter. Use the ss.heli function
to retrieve the template. Ask three friends or colleagues to help act as operators
(appraisers). Take three measurements of the flight time with each prototype and
each operator. Remember to randomize the way you take the measurements. Save
the data in a data frame, and run the ss.rr function to obtain the plots and facts
of the MSA. Is it correct? Repeat the measurements until the MSA reflects only
significant variation due to the parts.

Practice

5.1. The data in Table 5.3 are from a bakery that makes several types of pastries.3

Customer satisfaction is related to the amount of a given compound in the chocolate
used. To evaluate the measurement system, three laboratories are used to determine
the amount of the compound in the pastries. Identify the appraisers, the parts, and
their lengths. How many measurements were taken from each batch?

5.2. Using the bakery data in Table 5.3, conduct an MSA and record your
conclusions.

3It is available in the SixSigma package as a data object called ss.data.pastries. You can
save the data in a data frame yourself.



Chapter 6
Pareto Analysis with R

Causa latet: vis est notissima. [The cause is hidden, but the
result is known.]

Ovid

6.1 Introduction

Pareto analysis is a technique that can be used in several stages of a Six Sigma
project. In the Measure phase of the design, measure, analyze, improve, and control
(DMAIC) cycle, we use it to prioritize the possible causes of defects and then focus
on the important ones.

The basis of Pareto analysis is the Pareto principle, which applies to many
processes in real life. Roughly speaking, the Pareto principle states that most
effort/benefit (approximately 80%) is due to a limited number of key actions
(approximately 20%). It is also known as the 80/20 rule. A search for these key
actions is usually made using a Pareto chart, a tool that allows us to see at a glance
the results of a Pareto analysis.

In this chapter, we review the foundations of Pareto analysis in Sects. 6.2
and 6.2.1. In Sect. 6.3, we apply the Pareto principle to detect important improve-
ment opportunities in a Six Sigma project. We use R to plot Pareto charts in
Sect. 6.4. Finally, in Sect. 6.5 we introduce other uses of the Pareto principle within
Six Sigma projects.

6.2 Pareto Principle

Vilfredo Pareto (1848–1923) was an Italian economist whose most famous contri-
bution was the principle known by his name. He was also a philosopher, engineer,
sociologist, and political scientist. The Pareto principle was a result of Pareto’s

E.L. Cano et al., Six Sigma with R: Statistical Engineering for Process
Improvement, Use R! 36, DOI 10.1007/978-1-4614-3652-2__6,
© Springer Science+Business Media New York 2012
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observations about the distribution of wealth in the 19th century.1 He observed
that 80% of the wealth was owned by 20% of the population.2 Hence, the Pareto
principle is also known as the 80/20 rule. It appears in many real-life situations, and
therefore it is sometimes considered a natural principle. For example:

• 80% of the profits comes from 20% of the customers.
• 20% of the employees do 80% of the work.
• 20% of patients use 80% of care resources.
• 80% of cost of quality is produced by 20% of the sources of error.

The last example corresponds to the main application of the Pareto principle in
Six Sigma. We will explain how to use it in the following sections.

6.2.1 Pareto Principle as a Problem-solving Technique

The Pareto principle is used to prioritize the actions to take from a given list of
options. In this sense, the Pareto chart is an eye-opener. You can see at a glance
where the best results are to be achieved if you focus on “the vital few rather than
on the trivial many.” This expression was coined by Joseph M. Juran and remains
in the literature and jargon on quality. However, Juran himself confessed that those
“many” may be nontrivial, and he preferred the expression “the vital few and the
useful many” [47]. Thus, we should focus on the trivial few but not dismiss the
useful many in subsequent approaches to the problem.

In problem-solving methods, identification of the root causes of a problem is
critical to finding robust solutions (see, for instance, Fig. 3.1 in Chap. 3). To identify
the possible causes, we can use several techniques (e.g., brainstorming) and tools
(cause-and-effect diagrams, affinity diagrams, etc.).

Once the possible causes have been identified, selection of the critical ones can be
done in various ways. Following the Pareto Principle, the natural result should be an
80/20 distribution of the causes. If we do not have an 80/20 distribution, we should
rearrange our data by grouping or splitting the causes depending on the distribution
we have reached (Fig. 6.1).

This is actually the challenge of Pareto analysis: selection of the main character-
istics that lead to measuring the relevance of a problem. In the next section, we will
show different methods of conducting a Pareto analysis.

1In those days, wealth was measured as the land an individual owned.
2Nowadays this relationship is nearly 99% and 1%, respectively.
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Fig. 6.1 Distribution of causes in a Pareto analysis. The distribution on the left approximates an
80/20 distribution. The center distribution needs to split the causes to focus on the important ones.
The distribution on the right needs to group causes

6.3 Pareto Analysis in Six Sigma

The Pareto chart is considered one of the seven basic tools for quality control:

1. Histogram
2. Check sheet
3. Pareto chart
4. Cause-and-effect diagram
5. Defect concentration diagram
6. Scatter diagram
7. Control chart

They are also known as the magnificent seven tools of statistical process control
(SPC) or the seven QC (quality control) tools. Quality was mainly developed during
the 20th century in Japan, where number seven has a special meaning ([99]). For
Pareto analysis we will use another of the magnificent seven jointly with the Pareto
chart: the cause-and-effect diagram.

6.3.1 Identifying Causes

If we want to improve a process, the first thing we must do is identify where we
can improve it. Eventually the process will be improved by reducing the variability.
As a result, we will obtain a process with a reduced number of defects and reduced
costs.

The current situation within the DMAIC cycle is as follows. We have described
the process with the process map, and we have identified the parameters (x) that
influence the features of the process (y). Thus these parameters can engender
problems with the process. Now, with the support of the process map and other
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Six Sigma Cause−and−effect Diagram

Construction Example
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Fig. 6.2 Cause-and-effect diagram for construction example. In the head of the fish we have the
effect we want to investigate. Each main fishbone represents a group. An individual cause stems
from the main fishbone

suitable techniques (brainstorming, six Ms, five whys, affinity diagrams, etc.), we
can identify the causes of errors that may arise in the process. As a result, a list of
causes is created. We can group the causes into categories on several levels. The
causes are then arranged in a fishbone shape, with the causes recorded in the fish
bones and the effect (usually the CTQ characteristic) in the head of the fish. This
will be the so-called cause-and-effect diagram also known as the fishbone diagram
or the Ishikawa diagram, after its originator, Kaoru Ishikawa.

Example 6.1 (Construction project). In the construction of a building, a CTQ
characteristic might be the fulfillment of a deadline, as unfulfillment can lead to
failure.

Using the techniques such as those described previously, the Six Sigma team
identified the following events that can cause a delay in the schedule: weather, errors
in planning, delay of suppliers, inadequate operators, customer specifications/de-
lays, defects in materials, and permissions.

A cause-and-effect diagram allows us to arrange the information in such a way
as to make it easier to interpret. We can create a cause-and-effect diagram with the
ss.ceDiag function of R’s SixSigma package (Fig. 6.2):
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> b.effect <- "Delay"
> b.groups <- c("Personnel", "Weather",

"Suppliers", "Planning")
> b.causes <- vector(mode = "list",

length = length(b.groups))
> b.causes[1] <- list(c("Training", "Inadequate"))
> b.causes[2] <- list(c("Rain", "Temperature", "Wind"))
> b.causes[3] <- list(c("Materials", "Delays",

"Rework"))
> b.causes[4] <- list(c("Customer", "Permissions",

"Errors"))
> ss.ceDiag(b.effect, b.groups, b.causes, sub = "Construction

Example")

Type ?ss.ceDiag to learn more about the ss.ceDiag function. ��

6.3.2 Measuring the Effect

Now that we have identified the possible causes of the problem, we need to measure
the effect.

A first approach is to consider two easy and intuitive dimensions of the problem:
the number of errors and the cost of the errors. Depending on the process being
used, the data can derive from historical data, sampling, or even simulation.

Counting the number of errors arising from a cause is easy, but it is not enough.
We may have a large number of defects that are unimportant to customers or do
not cause a significant increase in the cost of the process. Thus, the selection of the
measurement units, and the measurement itself, is a critical task in Pareto analysis.

Example 6.2 (Construction project (cont.)). The Black Belt in the construction
company has investigated why a sampling of deadlines on projects developed in
the last 2 years went unfulfilled.

He has also estimated the cost of these delays for the company (larger labor force,
extra payments, etc.).

We will save the data in a data frame with a factor whose levels are the possible
causes (we use the b.causes list created previously to draw the cause-and-effect
diagram), and with two variables, (namely: number of unfulfilled deadlines and
estimated cost).

> b.data <- data.frame(cause=factor(unlist(b.causes)),
count = c(5,1,3,1,2,18,20,4,15,2,4),
cost = c(50,150,50,10,20,180,200,10,5,20,150))

��
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6.3.3 Building a Pareto Chart

The Pareto chart is a bar chart representing the causes on the x-axis and the effects on
the y-axis, where the bars are sorted in descending order by magnitude of the effect.
To make the chart easier to interpret, some enhancements are usually included in
such charts:

1. A secondary y-axis on the left from 0 to 100, representing the cumulative
percentage of the effect measurement.

2. A line chart linking the cumulative percentages of each cause.
3. Auxiliary lines from the axis identifying the 80/20 rule, that is, which causes are

responsible for 80% of the effect.

To summarize, let us create a step-by-step algorithm to create our Pareto chart:

1. Identify the causes.
2. Choose the appropriate measurement units.
3. Obtain the data.
4. Sort by importance.
5. Figure the cumulative percentage.
6. Plot a bar chart for the measurements.
7. Plot a line chart for the cumulative percentages.
8. Find the causes responsible for 80% of the effect.

In the next section, we will demonstrate how to build a Pareto chart using R. Then
we will focus on the selected causes and show how to use it for the improvement of
the process to reduce errors.

6.4 Pareto Charts in R

As a Pareto chart is essentially a sorted bar chart, it is easy to plot it with R using
the standard graphics package.

A straightforward way to create a Pareto chart for Six Sigma projects is by using
the specific functions in the qcc and qualityTools packages.

Example 6.3 (Construction project (cont.)). Let us plot our Pareto chart with data
from the construction example using R. First, we can plot a single bar plot (Fig. 6.3)
and include the cumulative percentages as an annotation. The barplot function
returns a vector with the position of the bars on the x-axis. We use this vector to
print the values of the cumulative percentage in the appropriate spot on the chart.
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Fig. 6.3 Pareto chart with
base graphics. Ordering the
values in the data frame
makes it easy to plot a Pareto
chart with the barplot
function. We can annotate the
plot with the cumulative
percentages using the text
function

> pChart <- barplot(rev(sort(b.data$count)),
names.arg = b.data$cause[order(b.data$count,

decreasing = TRUE)],
las = 2)

> text(pChart,
rep(0.5,11),
sort(round(cumsum(100 * (b.data$count/sum(b.data$count))[

order(b.data$count, decreasing = TRUE)]), 1)))

The qcc package includes the pareto.chart function (Fig. 6.4). It provides
a text output with the data.

> library(qcc)
> b.vector <- b.data$count
> names(b.vector) <- b.data$cause
> pareto.chart(b.vector, cumperc = c(80))

The qualityTools package includes the paretoChart function to plot
Pareto charts (Fig. 6.5).

> require(qualityTools)
> paretoChart(b.vector,

las = 2,
percentVec = c(0, 0.5, 0.80, 1))

Pareto Analysis for b.vector
---

Frequency 20 18 15 5 4 4
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Cum. frequency 20 38 53 58 62 66
Percentage 26.7% 24.0% 20.0% 6.7% 5.3% 5.3%
Cum. percentage 26.7% 50.7% 70.7% 77.3% 82.7% 88.0%

Frequency 3 2 2 1 1
Cum. frequency 69 71 73 74 75
Percentage 4.0% 2.7% 2.7% 1.3% 1.3%
Cum. percentage 92.0% 94.7% 97.3% 98.7% 100.0%

Frequency 20.00000 18.00000 15.00000 5.000000
Cum. frequency 20.00000 38.00000 53.00000 58.000000
Percentage 26.66667 24.00000 20.00000 6.666667
Cum. percentage 26.66667 50.66667 70.66667 77.333333

Frequency 4.000000 4.000000 3 2.000000
Cum. frequency 62.000000 66.000000 69 71.000000
Percentage 5.333333 5.333333 4 2.666667
Cum. percentage 82.666667 88.000000 92 94.666667

Frequency 2.000000 1.000000 1.000000
Cum. frequency 73.000000 74.000000 75.000000
Percentage 2.666667 1.333333 1.333333
Cum. percentage 97.333333 98.666667 100.000000
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Fig. 6.4 Pareto chart in qcc package. You can choose a palette of colors and the horizontal lines
for the cumulative percentage
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Fig. 6.5 Pareto chart in qualityTools package. You can choose the ticks for the right axis
(cumulative percentages). It plots a table below the chart with the values and the percentages

Both functions require a numeric vector with labeled components, instead of a
data frame. See the documentation for the packages to find out more about these
functions. ��

6.5 Other Uses of the Pareto Chart

As was mentioned in Sect. 6.2.1, the Pareto principle is a tool for solving problems.
Thus, we can use the Pareto chart anywhere in our project to improve our processes.

In the initial stages of a Six Sigma implementation, we may have to select a
project from a list of available projects. Some authors even transform the DMAIC
cycle into the SDMAIC strategy, where S stands for Select. Therefore, selecting a
project is an important task for a Master Black Belt. To make this selection, we can
use a Pareto chart, choosing the appropriate measurement units, e.g., expected cost
reduction, and focusing on the vital few projects that will allow us to achieve 80%
of the savings.

Another stage where we will probably use a Pareto chart will be during the
Improve phase. In the initial steps of the design of an experiment, we usually
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measure many possible effects, and a Pareto chart is one of the techniques used to
select the important ones when we do not have enough data to conduct, for instance,
a hypothesis test.

6.6 Summary and Further Reading

In this chapter, we explained the foundations of a simple and useful tool in Six
Sigma: the Pareto chart. It can be used when we have to prioritize a list of elements,
such as the causes of failure in our process, in order to differentiate between the
“vital few” (20%) and the “useful many” (80%). In conjunction with the Pareto
chart, we used the cause-and-effect diagram to identify the possible causes of error.

We plotted Pareto charts with R through base and contributed packages. Other
uses of the Pareto chart were also presented.

More advanced options beyond the scope of this book include the use of
lattice ([91]) and ggplot2 ([105]) graphics, which allow for the customization
of Pareto charts using annotations, multiple charts, etc.

Examples of the 80/20 rule in real life can be found in the philosophical guide
[55]. The works by Ishikawa can be consulted in [41]. The magnificent seven are
mentioned in many quality-control books, e.g., [69] or [99]. [47] is the sixth edition
of a classic text by the founder of the Pareto principle for quality control.

Case Study

Think about the helicopter project, and try to list the factors that can cause defects
in the paper helicopter, leading to worse flight times.

Group the causes and create a cause-and-effect diagram. You can use just paper
and pencil, but once you have finished with it, try to plot it with R.

If you have time, try to measure the errors making lots of helicopters with
different conditions (different operators, paper, wind, etc.). You can also invent or
simulate the data.

Save the data into an R data frame and plot a Pareto chart. Analyze the results,
and figure out where you will have to focus your attention to produce optimal
improvements.

Practice

6.1. In the construction example, we plotted a Pareto chart by number of defects.
Plot the chart for cost of error.

6.2. Select the causes you must focus on to improve the construction process. Can
you select them from only one of the charts?



Chapter 7
Process Capability Analysis with R

One cannot develop taste from what is of average quality
but only from the very best.

Johann Wolfgang von Goethe

7.1 Introduction

Capability analysis is a very important part of the Measure phase in a Six Sigma
project. It is also part of classical statistical process control. Through capability
analysis we can measure how the process performance fits the customer/client
requirements. These requirements must be translated into the specification limits for
the characteristic of interest, and they can be one-sided (only upper or lower limit)
or two-sided (upper and lower limits). Over the years, many advances have been
made, especially with respect to nonnormality, nonlinearity, processes with multiple
characteristics, and many others. Variation (short-term and long-term), yield, DPU,
DPO, DPMO, DPPM, RTY, and Z (the sigma score of the process) are used to
measure process performance.

In this chapter, we will go over specifications (Sect. 7.2), process performance
(Sect. 7.3), their relationship (Sect. 7.4), and the capability indices (Sect. 7.5). We
will illustrate the concepts through a practical example.

7.2 Specifications

The specifications are the voice of the customer.1 Under a Six Sigma paradigm,
the process must fulfill the customer requirements. These requirements must be

1Note that the customer can be external or internal, a person, or another process within the
organization.

E.L. Cano et al., Six Sigma with R: Statistical Engineering for Process
Improvement, Use R! 36, DOI 10.1007/978-1-4614-3652-2__7,
© Springer Science+Business Media New York 2012
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quantified in some way to be attainable. Sometimes the specifications are defined
by the customer, and sometimes not. In this case, the specifications are estimated
through marketing studies, know-how, or some other means.

The specification limits are the numerical expressions of the customer require-
ments. For example, we must produce bulbs that last at least 10,000 h, supply an
order in less than 2 days, or answer a phone call before 4 rings.

The numbers mentioned in the previous paragraph are the target of the process.
Because that is an ideal (unreachable because of the natural variations in the
process), usually the specifications are a range with upper and lower bounds.
For example, the length of a nail can be between 9.5 and 10.5 mm, or the
service time at a counter cannot be more than 5 min. The upper and lower limits
are abbreviated as USL and LSL, respectively (upper specification limit, lower
specification limit). Thus, the USL is a value above which the process performance
is unacceptable, and the LSL is a value below which the process performance is
unacceptable.

The specifications must be realistic. A well-known method to evaluate the
validity of the specifications in Six Sigma is RUMBA, which stands for:

R Reasonable
U Understandable
M Measurable
B Believable
A Achievable

Figure 7.1 represents the variation of a characteristic against its specification
limits.

7.3 Process Performance

Once we have realized what our process must achieve, we need to know what our
process is doing. This is the so-called voice of the process (VOP). A simplification
could be (and actually it has been for a long time) that the process is right when the
current value of the characteristic is within the specification limits.

In the Six Sigma methodology, this approach is not enough. The process is right
when we are approximating the target, with as little variation as possible. This
can be easily understood under the concept of the Taguchi loss function (Chap. 4).
As we see in Fig. 7.2, the further we move away from the target, the higher the
cost, and so the worse the performance of our process. Thus, the position of the
characteristic value within the limits is important. The dotted line is the cost of poor
quality under the traditional approach. The dashed line is the cost of poor quality in
the Six Sigma approach.
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Fig. 7.1 Specification limits. The real value of a characteristic varies according to its probability
distribution. The upper limit (USL), lower limit (LSL), and target (T) are the references to assess
the capability of the process

Another important difference between the classical and the Six Sigma approach
is the hidden factory concept. The yield (Y ) of a process is the amount of “good
stuff” produced by the process. It can be assessed once the process is finished,
counting the items that fit the specifications:

Y =
total− defects

total
.

In Six Sigma, we must also take into account the rework in the middle of the
process. Thus, regardless of the number of correct items at the end of the process,
we count the correct items as “first time” correct items and calculate the first-time
yield (FTY ):

FTY =
total− rework− defects

total
.

The difference between Y and FTY is what the hidden factory is “producing”.

Example 7.1 (Winery). In a winery, the key characteristic of the product is the
volume in a bottle of wine. The target is 750 cl. The specification limits for the
process are 740 (LSL) and 760 (USL) cl.
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Fig. 7.2 Taguchi’s loss function. The cost of poor quality rises as the observed value of the
characteristic moves away from the target

Suppose that on a given day, the winery has bottled 1,915 bottles of wine, five of
which were rejected just before packaging for being outside the specifications. The
yield of the process, traditionally, is

> (1915 - 5) / 1915

[1] 0.997389

But after a review, the Six Sigma Black Belt finds out that during insertion of
the corks, 12 bottles had to be processed again due to excess wine. So the first-time
yield of the process is

> (1915 - 5 - 12) / 1915

[1] 0.9911227

Consequently, the first-time yield is lower than the final yield. ��
When a process is formed by several linked processes, we calculate first the FTY

of each individual process and then the rolled throughput yield (RTY ) of the overall
process. It is calculated by multiplying the FTY of every chained process:

RTY =
n

∏
i=1

FTYi = FTY1 ×FTY2 ×·· ·×FTYn−1 ×FTYn,
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where n is the number of individual processes and the Greek letter pi (Π ) stands for
“multiply.”

Example 7.2 (Winery (cont.)). In our winery, we have three processes in the filling
line:

1. Fill bottle.
2. Insert cork.
3. Label bottle.

Let 3, 12, and 5 be the number of bottles outside of the specification limits in
each subprocess. Then the RTY is:

> ((1915-3)/1915) * ((1915-12)/1915) * ((1915-5)/1915)

[1] 0.9895864

��
Defects are the complementary of yield. The simplest measurement for defects

is DPU (defects per unit):

DPU = 1−FTY =
defects
total

.

We assume that “unit” can refer to whatever we do: products, services, processes,
operations, transactions, etc.

To be able to make comparisons, DPO (defects per opportunity) and its multiple
DPMO (defects per million opportunities) are used. Thus, we can compare the
defect rate of processes regardless of their complexity, for example, between a big
server with 100 parts and a PC with 50:

DPO =
number of defects

number of opportunities
,

DPMO = DPO× 106.

Example 7.3 (Winery (cont.)). In the case of the winery, a possible unit to consider
is the batch. If we consider the previous data as a batch, the DPU would be

> 3 + 12 + 5

[1] 20

As every batch may have a different size, we should use DPMO to make
comparisons:

> ((3 + 12 + 5) / 1915) * 10^6

[1] 10443.86
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Table 7.1 Arguments for ss.ca.yield function

Argument Description

defects Numeric vector with number of defects in
each item/batch

rework Numeric vector with number of items
reworked in each item/batch

opportunities Numeric value with number of opportunities

��
You can obtain all the performance measures mentioned above using the function

ss.ca.yield included in the SixSigma package. It accepts the arguments in
Table 7.1.

Example 7.4 (Winery (cont.)). We use the same data as was previously used for the
arithmetic computation, adding a vector with the number of reworked bottles in each
batch (1, 2, and 4).

> ss.ca.yield(c(3, 5, 12), c(1, 2, 4), 1915)

Yield FTY RTY DPU DPMO
1 0.9895561 0.9859008 0.9859563 20 10443.86

��

7.4 Process vs. Specifications

The sigma score of a process (Z), or simply the sigma, is the most famous metric
for Six Sigma practitioners. So do not be surprised if you are asked for the sigma
of your process. Actually, this simple number conveys how your process fits your
customer specifications. A process with a sigma equal to 6 may be considered an
“almost perfectly” designed process. This sigma value implies that less than 3.4
DPMO will be attained.

The sigma is the number of standard deviations that fit between the specification
limit and the mean of the process. To calculate it, we need the specification limits
(Sect. 7.2) and a sample of the key characteristic we are evaluating to estimate the
mean, x, and the standard deviation, σ . x and σ will be explained thoroughly in
Chap. 9).

Z = min

{
(USL− x)

σ
,

(x−LSL)
σ

}
.

Depending on which kind of standard deviation we use, we obtain the short-
term (ST) or long-term (LT) sigma score (see Chap. 9 to understand the difference
between short-term and long-term variation). We usually get the short-term and then
estimate the long-term score as
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Table 7.2 DPMO through
sigma scores

ZLT DPMO

1 690,000
2 308,000
3 66,800
4 6,210
5 233
6 3.4

Table 7.3 Arguments
for ss.ca.z function Argument Description

x Vector with data of key process
characteristic

LSL Lower specification limit of process
USL Upper specification limit of process
LT Indicates if data are from long-term

performance
f.na.rm Indicates if NAs must be ignored

ZLT = ZST − 1.5.

This long-term sigma score can be translated immediately in terms of DPMO
using Table 7.2. The 1.5 value is a source of criticism in the literature because of its
arbitrary (empirical) nature. In the original Six Sigma conception, it was assumed
that even when the Six Sigma quality level is satisfied by a process, its mean may
still suffer disturbances up to 1.5 standard deviations from the target value. It is
just a way of stating that processes are not stable forever, and this behavior should
be modeled somehow. This choice “has proven to be a useful way to think about
process performance” [69]. Do not be shortsighted in this regard. As mentioned in
Chap. 1, the importance of Six Sigma is that its stages of application (the DMAIC
cycle) are supported by the scientific method.

Example 7.5 (Winery (cont.)). In the winery, the actual volume in a 20-bottle
sample was measured after the filling process. The data are in Table 7.4. What is
the sigma of this process?

The function ss.ca.z calculates the Z of the process. The function uses the
parameters in Table 7.3. First we save our data in a vector (see Chap. 2 for other
options for input data):

> x<-c(755.81, 750.54, 751.05, 749.52, 749.21, 748.38,
748.11, 753.07, 749.56, 750.08, 747.16, 747.53,
749.22, 746.76, 747.64, 750.46, 749.27, 750.33,
750.26, 751.29)

> ss.ca.z(x,740,760)

[1] 3.139539

So our process has a sigma of 3.1395 (less than 66,800 DPMO). ��
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Table 7.4 Data for winery
example

Volume

1 755.81
2 750.54
3 751.05
4 749.52
5 749.21
6 748.38
7 748.11
8 753.07
9 749.56
10 750.08
11 747.16
12 747.53
13 749.22
14 746.76
15 747.64
16 750.46
17 749.27
18 750.33
19 750.26
20 751.29

7.5 Capability Indices

Capability indices directly compare the customer specifications with the perfor-
mance of the process. They are based on the fact that the natural limits or effective
limits of a process are those between the mean and ±3 standard deviations. It can
be shown that 99.7% of data are contained within these limits.

Figure 7.3 shows graphically the effective width of the process. Thus, the
capability of a process (Cp) is calculated using the formula

Cp =
USL−LSL

6σST
.

This formula does not allow us to check whether the process is centered in the
mean (which is desirable). To deal with this issue, we use the adjusted capability
index (Cpk):

Cpk = min

{
USL− x

3σST
,

x−LSL
3σST

}
.

Sometimes long-term indices are used instead of short-term ones. They are
denoted by Pp and Ppk. We can compare these indices with the previous ones to
identify improvement opportunities. For example, if Cp = Pp and Cpk = Ppk, then
the process is likely too biased.
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Number of SD's
−4 −2 0 2 4

99.7% (Natural Tolerance Limits)

μ−3σ μ+3σFig. 7.3 Natural tolerance
limits or effective limits.
Between the mean and three
standard deviations lie 99.7%
of data

Like the sigma score, capability indices help us to determine how well a process
is meeting customer specifications. In general, a Cpk of 1.33 is acceptable, but 1.67
is usually the goal.

The indices that we are dealing with are estimations based on the samples
available. As such, they have a statistical variation that is highly influenced by the
sample size. So it is considered a good practice to obtain confidence intervals for
the indices. The formulas and bases for this can be found in [69].

Example 7.6 (Winery (cont.)). We are going to calculate the Cp and Cpk indices, and
their confidence intervals, for the filling process. The ss.ca.cp and ss.ca.cpk
functions perform the calculations to obtain the capability indices:

> ss.ca.cp(x,740, 760)

[1] 1.584136

> ss.ca.cpk(x,740, 760)

[1] 1.546513

So the process capability is acceptable, but it can be improved to reach the desired
1.67 value for Cpk. The confidence intervals are obtained when we add the parameter
ci to the functions:

> ss.ca.cp(x, 740, 760, ci = TRUE)
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[1] 1.084600 2.083046

> ss.ca.cpk(x, 740, 760, ci = TRUE)

[1] 1.033560 2.059466

��

7.6 Capability Study with SixSigma Package

Dissemination of the Six Sigma results is very important for practitioners, especially
Master Black Belts, in order to spread the Six Sigma thinking throughout the
organization. A summary of a capability analysis can be obtained in R with
the function ss.study in the SixSigma package. It accepts the arguments in
Table 7.5.

Example 7.7 (Winery (cont.)). Let us run the capability study for the winery
example.

> ss.study.ca(x, LSL = 740, USL = 760,
Target = 750, alpha = 0.5,
f.su = "Winery Project")

Figure 7.4 is the graphical output of the function. The top chart is a histogram of
the sample data, which includes the target and the specification limits. Density lines
are plotted for the empirical and theoretical density functions.

The bottom chart is a quantile–quantile chart (Q–Q plot) to verify if the data
are normally distributed. When they are, the points are approximately on a straight
line. In addition, the most common numerical tests are shown as well. Normality is
accepted when the p-value of the hypothesis test is larger than 0.05. We will describe
hypothesis tests in detail in Chap. 10.

On the right-hand side of the figure, we have the facts of the analysis. The
specification limits are those that we have entered in the function. The process

Table 7.5 Arguments for
ss.ca.study function

Argument Description

xST Data of sample (short-term)
xLT Data of long-term process performance
LSL Lower specification limit
USL Upper specification limit
T Target
alpha Type I error for confidence intervals
f.na.rm Indicates if NAs must be ignored
f.main Output title
f.sub Output subtitle
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Six Sigma Capability Analysis Study

Winery Project

LSL

Target

USL

740 745 750 755 760

Check Normality

Shapiro−Wilk Test
p−value:  0.07506

Lilliefors (K−S) Test
p−value:  0.2291

Normality accepted when p−value > 0.05

Density Lines Legend

Density ST

Theoretical Dens. ST

Specifications
LSL: 740

Target: 750
USL: 760

ProcessShort Term

Mean: 749.7625
SD: 2.1042

n: 20
Zs: 3.14

Long Term

Mean: NA
SD: NA

n: 0
Zs: 1.64

DPMO: 50550.5

IndicesShort Term

Cp: 1.5841
CI: [1.4,1.7]

Cpk: 1.5465
CI: [1.4,1.7]

Long Term

Pp: NA
CI: [NA,NA]

Ppk: NA
CI: [NA,NA]

Fig. 7.4 Capability study output

performance and the indices are calculated with the short-term and long-term
data provided. In this example, we have no long-term data. A confidence interval
(CI) is calculated for the capability indices. We can see that the capability index
(1.547) is quite acceptable, though it can be improved to reach the desired 1.67
value. Furthermore, the estimation of the long-term sigma indicates that we could
have problems if the long-term variation turns out to be much higher than the short-
term one. ��

7.7 Summary and Further Reading

In this chapter, we explained the relationship between the specifications of a
process and its performance. First, the specifications were defined. Then, the process
performance was measured and some metrics calculated (yield, FTY, RTY, DPU,
DPMO). And, finally, we put both together through the sigma of the process (Z) and
the capability indices (Cp, Cpk)
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The capability analysis tool was illustrated with an example involving a win-
ery. We obtained the sigma and the capability indices for a bottle-filling pro-
cess as well as global output with charts and facts. We used the functions
ss.ca.z, ss.ca.cp, ss.ca.cpk, and ss.study.ca, which are available in
the SixSigma package. Other R packages containing capability analysis functions
are qcc [93]; qAnalyst [98]; and qualityTools [88].

Now you can proceed with the capability analysis for the paper helicopter
project and the proposed practice. You can also study some topics in more depth.
Explanations about statistical issues and formulas can be found in [69]. A good
starting point, with straightforward explanations, is [34]. A good visual reference is
[46]. A detailed compilation of the various capability indices can be found in [77].

Case Study

The most important key characteristic of the paper helicopter is the flight time.
Now that you have experience measuring the flight time, decide your specification
limits (LSL and USL). Take 20 measurements of one prototype and save the data
in a vector. Obtain the sigma and the indices with R. Run the capability study and
comment on the output. Is your process capable?

Practice

7.1. Consider a process whose specification limits are LSL = 4 and USL = 14. We
also know that the mean is 10 and standard deviation is 2. Calculate the sigma of
the process.

7.2. If you successfully improve the process described in Practice 7.1 and lower the
standard deviation to 1, by approximately how much will you reduce the DPMO?



Part IV
R Tools for the Analyze Phase

[D] Define

[M] Measure

[A] Analyze

[I] Improve

[C] Control

Roadmap of the DMAIC Cycle

You are here

In this part of the book, tools useful during the Analyze phase are introduced.
In this phase, data are used to establish the key process inputs and their relation

to the process outputs.
We will introduce the most representative tools, including charts and statistical

tools for the analysis of data. Probability and inference are explained in a compre-
hensive way.



Chapter 8
Charts with R

The greatest value of a picture is when it forces us to notice
what we never expected to see.

John Tukey

8.1 Introduction

Charts are particularly important in Six Sigma projects. The aim of a chart is usually
to support the interpretation of data. Hence, providing an adequate explanation of
data through charts is crucial. Two-dimensional charts can be used as the basis for
more complex representations, and multidimensional data can be shown through
extensions of these charts.

Before describing the main charts used in Six Sigma projects, in this section
we are going to explain some important concepts regarding charts in general.
Sections 8.2–8.7 detail the most important types of charts. In Sects. 8.8 and 8.8.4
we provide some advanced features for charting.

8.1.1 Use of Charts

When talking about charts, the adage a picture is worth a thousand words comes to
mind. A graphical representation of data helps us to have a better understanding of
our process. But we must realize that charts are just a way to interpret data; they are
not the data or the conclusions themselves. Charts are useful in every step of a Six
Sigma project, and in fact they are used not only in the Analyze phase of the design,
measure, analyze, improve, and control cycle, but in the whole cycle.

Charts are very useful in the early stages of analysis, when we need a description
of the process to make conjectures, figure out relationships, and plan further
research. Thus, descriptive analysis is the most important mission of charts. In the
final step of our analysis, when we present our results, charts will probably be the

E.L. Cano et al., Six Sigma with R: Statistical Engineering for Process
Improvement, Use R! 36, DOI 10.1007/978-1-4614-3652-2__8,
© Springer Science+Business Media New York 2012
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x−axis
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Fig. 8.1 Two-dimensional
chart foundation. The
horizontal axis is called the
x-axis, and the vertical axis is
called the y-axis. Most charts
are based on these concepts,
representing one variable
(independent) on the x-axis,
and another (dependent) on
the y-axis

business card of our conclusions. Hence, choosing the appropriate type of chart to
communicate our advances or proposals is crucial. A poor chart in a report may ruin
good work performed during the project. In the middle, we will probably have used
a lot of different charts to interpret the information provided by the data until we
reach the final conclusions.

8.1.2 Background Concepts

Most charts we use in statistics (and thus in Six Sigma) are two-dimensional charts.
These two dimensions are represented as two axes, namely the x-axis (horizontal)
and the y-axis (vertical) (Fig. 8.1). Each axis represents a different variable. If we
want to display the relationship between two variables, the x-axis is usually assigned
to the independent variable and the y-axis to the dependent variable.

The nature of the variables we are measuring in each dimension determines the
scale of the chart. Most times the chart will be right for us, but sometimes we will
need to adjust the scale of the chart to enhance its ability to talk about the data. We
may choose different scales. Thus, we can use a logarithmic scale for one of the
dimensions or for both. We can also set an aspect ratio between the two dimensions
(e.g., y-axis doubles x-axis). The scale must be clearly shown in the chart to avoid
wrong interpretations or misunderstandings.

Another decision about our chart is fixing its limits. Space is infinite, but the piece
of paper or the screen where we are going to display our chart is not. Therefore, we
must choose the limits of our axes, and these limits must allow a clear visualization
of the data without hiding any relevant information. It is advisable to append some
figures to the chart, or even a table with the data that are being plotted.

Example 8.1 (Printer cartridge). Table 8.1 shows the data of a sample of 24 printer
cartridges of a given brand. They are from three different fillers, and there are
two types of cartridge: color and black. The volume and density in each cartridge
were measured. The data set ss.data.pc in the SixSigma package contains
these data. As an example of axis scaling, we have plotted a scatterplot of the two
continuous variables (volume and density) with different settings for the axes. See
how the chart changes in Fig. 8.2.
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Table 8.1 Data for printer cartridge example

pc.col pc.filler pc.volume pc.density pc.batch pc.op

1 C 1 16.75 1.25 1 A
2 C 2 18.01 1.11 1 B
3 C 3 15.64 1.14 1 C
4 C 1 18.03 1.09 1 D
5 C 2 13.78 1.15 2 A
6 C 3 16.76 1.12 2 B
7 C 1 14.69 1.35 2 C
8 C 2 15.20 1.18 2 D
9 C 3 14.21 1.46 3 A

10 C 1 15.96 1.19 3 B
11 C 2 18.15 1.28 3 C
12 C 3 14.23 1.28 3 D
13 B 1 16.86 1.30 4 A
14 B 2 14.28 1.11 4 B
15 B 3 16.13 1.27 4 C
16 B 1 15.92 1.34 4 D
17 B 2 16.86 1.20 5 A
18 B 3 16.34 1.20 5 B
19 B 1 15.42 1.54 5 C
20 B 2 16.79 1.31 5 D
21 B 3 15.31 1.14 6 A
22 B 1 14.82 1.22 6 B
23 B 2 17.27 1.26 6 C
24 B 3 15.69 1.33 6 D
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Fig. 8.2 Different visualizations for the same data. (a) was plotted using the default settings
(scales adjusted automatically). (b) was plotted with the axes enlarged. (c) was plotted with the
same scales on the two axes

Figure 8.2a is plotted with the default settings of the plot function:

> plot(pc.volume ~ pc.density,
data = ss.data.pc,
pch = 16)
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Figure 8.2b is plotted with the default limits changed:

> plot(pc.volume ~ pc.density,
data = ss.data.pc,
xlim = c(0,5),
ylim = c(0,25), pch=16)

Figure 8.2c is plotted applying the same scale on both axes:

> plot(pc.volume ~ pc.density,
data = ss.data.pc,
asp = 1,
pch = 16)

We will describe scatterplots in detail in Sect. 8.4. ��
Last but not least: what are we going to plot in the chart? The two main

elements to choose from are dots or lines. We may use different types of dots
(filled circle, unfilled circle, triangle, etc.) and different types of lines (solid,
dotted, dashed, etc.) to distinguish different blocks of information (e.g., the data for
different countries in a given time series). Moreover, we can merge both symbols or
use more elaborate ways to identify data (see below).

Often two dimensions are not enough to represent reality. We have several
options to visualize multidimensional data, but they are extensions of two dimen-
sions, so the concepts introduced previously are applicable.

Here are some options that will be used throughout this chapter:

• Colors and symbols to distinguish other variables;
• Annotations (you may print text inside a plot to identify the value of another

variable);
• Multiple charts; this is the most extended way to represent multidimensional

data. We can plot a matrix of charts where each chart plots two of the variables.
Usually, all charts in a matrix are plotted using the same scale.

Once you have measured the variables you want to analyze, you may follow this
guideline to generate the best chart:

• Choose the variables you want to visualize.
• Find out what types of variable you have (factor, discrete, continuous).
• Decide what characteristic of the data you need: variation, relationship, distribu-

tion, location, amount, etc.
• Choose the chart that will best show what you need to know.
• Carefully choose the scale of your chart.
• Plot the chart several times until you have what you really need. Maybe you will

have to transform the data, or even acquire different or more data.

In the following sections, we will explain with examples some charts that are
widely used in Six Sigma projects. We will use functions in the graphics
package, included in the base installation of R, with different arguments in the
commands, to show varied visualizations. As we explained in Chap. 2, you can
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retrieve the documentation of the functions by typing ?somefunction, where
somefunction is the name of the function we are using (e.g., barplot). You
also have a quick reference guide in Appendix A.

8.2 Bar Chart

A bar chart is a very simple chart where some quantities are shown as the height of
bars. Each bar represents a factor where the variable under study is being measured.
A bar chart is usually the best graphical representation for counts.

Example 8.2 (Printer cartridge (cont.)). The printer cartridge manufacturer
distributes its product to five regions. An unexpected amount of defective cartridges
has been returned in the last month. The bar plot in Fig. 8.3 is a straightforward way
to see the data in Table 8.2 (available in the SixSigma package within the data set
ss.data.pc.r). We use the following code in R:

re
gi

on
.1

re
gi

on
.2

re
gi

on
.3

re
gi

on
.4

re
gi

on
.5

Barplot of defects by region
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80

100

Printer cartdrige example

Fig. 8.3 Bar plot of defects by region (printer cartridge example). We can make some variations
easily: sort the data to obtain a Pareto chart, set colors of the bars, or flip horizontally passing the
argument horiz = TRUE
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Table 8.2 Defects by region
for printer cartridge example

pc.regions pc.def.a pc.def.b pc.def

1 region.1 37.00 63.00 100.00
2 region.2 17.00 48.00 65.00
3 region.3 38.00 39.00 77.00
4 region.4 41.00 43.00 84.00
5 region.5 13.00 54.00 67.00

> with(ss.data.pc.r,
barplot(pc.def,

names.arg = pc.regions,
las = 2,
main = "Barplot of defects by region",
sub = "Printer cartridge example"))

> abline(h = 0,
col = "#666666")

��
Some variations exist of bar charts. A Pareto chart (Chap. 6) is a sorted bar chart

(highest to lowest bars). A horizontal bar chart is a bar chart with the factors on
the y-axis. The histogram described in the next section is a special bar chart for
continuous variables. We can plot several bars (adjacent or stacked) when we have
more than one category to display.

Example 8.3 (Printer cartridge (cont.)). We can plot the bar chart for each type of
cartridge within the same plot, even with a legend, using the following command
(Fig. 8.4):

> barplot(as.matrix(ss.data.pc.r[,2:3]),
las = 1,
beside = TRUE,
legend = ss.data.pc.r[,1],
args.legend = list(x=3.5,y=60),
main = "Barplot of defects by region and type",
sub = "Printer Cartridge Example")

> abline(h = 0,
col = "#666666")

��

8.3 Histogram

A histogram is a bar chart for continuous variables. This bar chart shows the
distribution of the measurements of variables. On the x-axis, each bar represents an
interval of the possible values of a variable. The height of the bars (that is, the y-axis)
depends on the frequency (relative or absolute) of the measures within each interval.
The rule is that the area of the bars should be proportional to the frequencies.
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Fig. 8.4 Multiple bar plot for
printer cartridge example.
The regions are plotted twice:
one for each type of cartridge.
This way we can see at a
glance all the information in
the table

The histogram is used to find the distribution of a variable, that is:

• Is the variable centered or biased?
• What is the variation like? Are the observations close to the central values, or is

it a spread distribution?
• Is there any pattern that would prompt further analysis?
• Is it a normal distribution?

Figure 8.5 has some patterns that we can identify in a histogram.
To make a histogram of our data, we first determine the number of bins (bars)

that we are going to plot. Then, we decide on the width of the intervals (usually
the same for all intervals) and count the number of measures within each interval.
Finally, we plot the bars. For intervals with equal widths, the height of the bars will
be equal to the frequencies. R will do all the calculations automatically, but we can
always change the default settings in order to obtain the best visualization for our
histogram.

Example 8.4 (Printer cartridges (cont.)). Figure 8.6 has the histograms for the
variables volume and density in the ss.data.pc data set (Table 8.1). We generate
them using the following code:

> hist(ss.data.pc$pc.volume,
main="Printer Cartridge Volume",
xlab="Volume",
col="#DDDDDD")
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Fig. 8.5 Various histogram patterns. (a) represents a normal distribution, with most of the values
around the mean and centered (mean is equal to the median and mode). (b) is another normal
distribution, but with higher peakedness (leptokurtik) than a standard normal. (c) suggests that we
may have two different groups of data, with distinct means. (d) is a right-skewed distribution in
which high values are less frequent than low values

> hist(ss.data.pc$pc.density,
breaks = "FD",
main = "Printer Cartridge Density",
xlab = "Volume",
col = "#DDDDDD")

The breaks argument allows us to set the number of bins. We could pass a fixed
number or use the Sturges, Scott, or FD method. We could also use a customized
function to compute the number of breaks (intervals).

The following code generates an improved histogram for the variable volume
superposing a density line for a theoretical normal distribution whose mean is 16
and standard deviation is 1. An annotation beside the line shows the parameters.



8.3 Histogram 123

Printer Cartridges Volumea b

Volume

F
re

qu
en

cy

13 14 15 16 17 18 19

0

1

2

3

4

5

6

7

Histogram of Volume

Printer Cartridges Density

Volume

F
re

qu
en

cy

1.0 1.1 1.2 1.3 1.4 1.5 1.6

0

2

4

6

8

10

Histogram of Density

Fig. 8.6 Histograms for printer cartridge example. The data in (a) (volume) look like the stem
from a normal distribution around 16. The data in (b) (density) are right skewed, with most values
near 1

A density line of the distribution and grid lines are also plotted. The result is shown
in Fig. 8.7.

> hist(ss.data.pc$pc.volume,
main = "Printer Cartridge Volume",
xlab = "Volume",
col = "#BBBBBB",
border = "white",
bg = "red",
freq = FALSE,
ylim = c(0,0.4))

> curve(dnorm(x,16,1),
add = TRUE,
lty = 2,
lwd = 2)

> lines(density(ss.data.pc$pc.volume),
lwd = 2)

> text(label = expression(paste(mu==16,
"; ",
sigma==1,
sep = "")),

x = 16.5,
y = 0.4,
adj = c(0,1))

> grid()
> box()

��
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Fig. 8.7 Histogram with density lines (cartridge example). In this histogram, we have changed
the color of the bins. The solid line is a density line for the data. The dashed line is the theoretical
density line for a normal distribution. The parameters of this theoretical distribution have been
annotated within the chart

8.4 Scatterplot

A scatterplot is an important tool to reveal relationships between two variables.
In statistical language, these relationships can be subsumed into the concept of
correlation. Thus, we may have three types of correlation between two variables:

• Positive correlation: high values of one of the variables lead to high values of the
other one.

• Negative correlation: high values of one of the variables lead to low values of the
other one.

• No correlation: the variables are independent.

Within a Six Sigma project, discovering the relationship between the Y s and Xs
of the process is an important task. This relationship will be measured in terms of the
correlation among the variables. Once we have discovered the relationship, we will
have to prove that the independent variable is causing the variation of the dependent
variable. The starting point to this analysis is the scatterplot. We will describe in
depth the concept of correlation in Chap. 9.
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Fig. 8.8 Scatterplot patterns. When the relationship between two variables is clear, we get one
of these patterns. (a) shows a positive correlation, (b) a negative correlation. In (c), there is no
correlation: the variables are independent

Correlation describes how variables vary, but this variation is not necessarily due
to a cause-and-effect relation.

In the scatterplot, the x-axis represents the independent variable and the y-axis
the dependent variable. In this way, plot each pair (x,y) obtaining a cloud of points.
We can obtain the three patterns shown in Fig. 8.8 corresponding to the relations
mentioned above.

The scatterplot is mainly used when we have two continuous variables. However,
it can be used also when the independent variable is a factor. The difference will be
that we will have the dots aligned over the position of the factor value.

To make a scatterplot with R, we use the function plot, using the vectors that
contain the data as arguments. We can use symbolic expressions (also known as
model formulae) to call the function. Type ?formula to learn more about model
formulae with R.

Example 8.5 (Printer cartridge (cont.)). In the ss.data.pc data set, we have
two continuous variables: pc.volume and pc.density. If we want to check
whether the density and the volume are related, the first thing we have to do is
generate a scatterplot to find patterns for this relation. We use the following code to
produce the scatterplot in Fig. 8.9.

> plot(pc.volume ~ pc.density,
data = ss.data.pc,
main = "Searching correlation between Density

and Volume",
col = "#666666",
pch = 16,
sub = "Printer Cartridge Example",
xlab = "Volume of Ink",
ylab = "Density")

> grid()

��



126 8 Charts with R

1.1 1.2 1.3 1.4 1.5

14

15

16

17

18

Searching correlation between Density
and Volume

D
en

si
ty

Volume of Ink
Printer Cartridge Example

Fig. 8.9 Scatterplot for
printer cartridge example.
The density is plotted on the
x-axis, the volume on the
y-axis. We can see that the
cloud of points does not
follow any pattern, so the
variables are independent

We can reveal other types of relationships such as nonlinear ones. This topic is
beyond the scope of this book. Nevertheless, you can find out more about statistical
modeling in the Summary and Further Reading sections of this and subsequent
chapters.

8.5 Run Chart

A run chart is a bidimensional chart where the x-axis represents a time line and
on the y-axis is plotted a variable that we want to monitor. This variable may be a
critical to quality (CTQ) characteristic of our process or a parameter that affects it.
These types of charts are also called time-series charts when we have a time scale on
the x-axis (for example, the number of orders received every day). The scale of the
x-axis may not necessarily be temporal (for example, the volume of some recipients
whose production is sequential).

Thus, we will have a number of subgroups where a characteristic is measured,
and we have the order of the subgroups (notice that a subgroup may contain only
one element). Usually a centered line is plotted in a run chart. It may represent a
target, the mean of the data, or any other value.

Run charts allow us to detect patterns that can be indicative of changes in a
process. Changes entail variability and, thus less quality. In particular, if we detect
cycles, trends, or shifts, we should review our process (Fig. 8.10).
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Fig. 8.10 Patterns in a run chart. We can identify patterns in a run chart. (a) has no pattern.
(b) looks like a wave (ups and downs). (c) presents a clear shift from the eighth run. Finally,
(d) presents an ascending trend

To create a run chart with R, we must plot the variable we want to study on the
y-axis and the number of runs on the x-axis. If we have the data sorted by run, we
can automatically plot the values using the vector of response data.

Example 8.6 (Printer cartridge (cont.)). We want to monitor the volume in the
cartridges, available in the dataset ss.data.pc. Suppose that the target value for
the volume is 16. Using the following code we get the Run Chart in Fig. 8.11.



128 8 Charts with R

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24

12

14

16

18

20

Run Chart for the Volume

V
ol

um
e

Run
Printer Cartridge Example

Fig. 8.11 Run chart for printer cartridge example. Here we have 24 sorted observations. No pattern
(trend, cycle, or shift) is apparent in the process evolution

> plot(ss.data.pc$pc.volume,
type = "b",
pch = 16,
ylim = c(12,20),
axes = FALSE,
main = "Run Chart for the Volume",
sub = "Printer Cartridge Example",
xlab = "Run",
ylab = "Volume")

> axis(1,
at = 1:24,
cex.axis = 0.7)

> axis(2)
> box()
> grid()
> abline(h = 16,

lwd = 2)

To obtain a better visualization of the data, we made the following improvements
from the default settings of the plot function:

• We added title, subtitle, and customized x-axis and y-axis labels.
• We dropped the axes in the plot function and then added them with the axis

function. In this way, we were able to display all the ID numbers of the runs.
• We added a grid and a box to the plot.

��



8.6 Tier Chart 129

8.6 Tier Chart

A tier chart is similar to a run chart. We use tier charts when we have more than
one observation in each run (e.g., batches, days, etc.). With the tier chart we can
see short-term variation and long-term variation jointly in a single chart. Short-term
variation is the variation within each subgroup, whereas long-term variation is the
variation among all the groups.

To create a tier chart, we plot vertical lines at the position of each run from the
higher to the lower value. Then, the single values are plotted as a point or as a
vertical segment.

Example 8.7 (Printer cartridge (cont.)). Let us assume that the sample of 24
cartridges comes from 6 different batches and that they are sequentially measured.
That is, cartridges 1 to 4 are from batch 1, 5 to 8 are from batch 2, and so on. The
information is in the variable pc.batch.

We can create the plot using the stripchart function and adding one line for
each subgroup (Fig. 8.12):
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Fig. 8.12 Tier chart for printer cartridge example. First we plotted a strip chart and then added
lines for every subgroup (batch)
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> stripchart(pc.volume ~ pc.batch,
data = ss.data.pc,
pch = "-",
cex = 3,
xlab = "Batch",
ylab = "Volume",
ylim = c(12,20),
vertical = TRUE,
main = "Tier Chart for Volume",
sub = "Printer Cartridge Example")

> grid()
> for (i in 1:6){
lines(x = rep(i,2),

lwd = 3,
col = "#666666",
y = c(max(ss.data.pc$pc.volume[

ss.data.pc$pc.batch==i]),
min(ss.data.pc$pc.volume[

ss.data.pc$pc.batch==i])))
}
> abline(h = 16,

lwd = 2)

��

8.7 Box–Whisker Chart

The box–whisker chart is also known as the box plot. It graphically summarizes the
distribution of a continuous variable. The sides of the box are the first and third
quartiles (25th and 75th percentile, respectively). Thus, inside the box we have
the middle 50% of the data. The median is plotted as a line that crosses the box.
The extreme whisker values can be the maximum and minimum of the data or other
limits beyond which the data are considered outliers. The limits are usually taken as

[Q1− 1.5× IQR,Q3+1.5× IQR],

where Q1 and Q3 are the first and third quartiles, respectively, and IQR is the
interquartile range (Q3–Q1). We can replace 1.5 with any value in the boxplot
function of R. The outliers are plotted beyond the whiskers as isolated points and
can be labeled to identify the index of the outliers.

The box plot tells us if the distribution is centered or biased (the position of the
median with respect to the rest of the data), if there are outliers (points outside the
whiskers), or if the data are close to the center values (small whiskers or boxes).
This chart is especially useful when we want to compare groups and check if there
are differences among them.

Example 8.8 (Printer cartridge (cont.)). In a production line, we have three fillers
for the printer cartridges. We want to determine if there are any differences among
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Fig. 8.13 Box–whisker charts for printer cartridge example. The volume of the cartridges filled
filler 2 is more spread out than those filled by fillers 1 and 3. There are no outliers and the data are
quite centered

the fillers and identify outliers (for instance, errors in data entry). We obtain the box
plot in Fig. 8.13 for each group with the following code:

> boxplot(pc.volume ~ pc.filler,
data = ss.data.pc,
col = "#CCCCCC",
main = "Box Plot of Volume by Filler",
sub = "Printer Cartridge Example",
xlab = "Filler",
ylab = "Volume")

��
We can save the box plot in an object and have access to the data used to plot

the box–whisker chart. This is very useful for identifying outliers or for conducting
further analysis.

Example 8.9 (Printer cartridge (cont.)). Let us plot a box–whisker chart again for
all the data with the following code. We also changed the range value for outliers to
0.7. We obtain one outlier, corresponding to the 11th row of the data set (Fig. 8.14).
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Fig. 8.14 Labeling outliers
in a box plot. In this chart, we
modified the default value of
the range argument. We used
a vector as input data instead
of a formula because we do
not want to analyze the
groups separately

> my.bp <- boxplot(ss.data.pc$pc.volume,
col = "#CCCCCC",
main = "Box Plot of Volume",
sub = "Printer Cartridge Example",
ylab = "Volume",
range = 0.7)

> text (x = rep(1, length(my.bp$out)),
y = my.bp$out,
labels = which(ss.data.pc$pc.volume==my.bp$out),
pos = 4)

> str(my.bp)

��

8.8 Other Charts

Many types of charts may be plotted based on bidimensional charts like those
described in previous sections. It is not pleasant to be constrained to the sometimes
strict default settings of the software we are using. R overcomes this limitation. We
can plot almost anything we need by adjusting some parameters in the graphical
functions.

We will plot some charts commonly used in Six Sigma just using the appropriate
arguments in the base R functions. The multivariate chart is an exception: we will
use lattice graphics, which is a powerful package to display multivariate data.
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8.8.1 Group Chart

In a group chart, we identify the points in the chart, showing the group they belong
to. It is useful when the characteristic we are measuring is produced by different
process streams or is measured in different locations. The higher and lower values
of each group are usually linked by lines.

Example 8.10 (Printer cartridge (cont.)). Suppose that the four printer cartridges
in each batch are labeled according to the operator that sells the cartridge (A, B,
C, and D). The information is contained in the variable pc.op. With the following
code we obtain the group chart in Fig. 8.15. At first we do not plot anything in the
chart (pch = ""), and then we plot graphical elements (a gray rectangle, dots,
labels, and lines).

> stripchart(pc.volume ~ pc.batch,
vertical = TRUE,
data = ss.data.pc,
pch="",
xlab = "Batch",
ylab = "Volume",
ylim = c(12,20),
main = "Group (Operator) Chart for Volume",
sub = "Printer Cartridge Example")

> rect(par("usr")[1],
par("usr")[3],
par("usr")[2],
par("usr")[4],
col = "#CCCCCC")

> box(col = "#CCCCCC")
> grid(col = "#EEEEEE")
> points(pc.volume ~ pc.batch,

data = ss.data.pc,
pch = 19)

> with(ss.data.pc,
text(label = pc.op,

x = pc.batch,
y = pc.volume,
pos = 4))

> lines(aggregate(pc.volume ~ pc.batch,
data = ss.data.pc,
max),

lwd=2)
> lines(aggregate(pc.volume ~ pc.batch,

data = ss.data.pc,
min),

lwd=2)

��
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Fig. 8.15 Group chart for printer cartridge example. For measurements coming from different
process streams or taken indifferent locations, we can use this type of chart to identify the group
(stream or location) each measurement belongs to

8.8.2 Location Charts

Consider a characteristic that must be measured at several locations of a part. If we
want to measure this characteristic in a set of different parts, then we can use location
charts to represent it. For each part, the x-axis represents the locations and the y-axis
corresponds to the value of the characteristic at each location. Different symbols or
colors can be used to distinguish the response values corresponding to each part.

We can plot several types of location charts: location run chart, location tier chart,
location box–whisker chart, or any other customized chart with the location always
on the x-axis. This kind of chart can be plotted in a similar way to the representations
described above, taking into account that their interpretation is different.

8.8.3 Multivariate Chart

Multivariate charts are used to detect graphically which factors can affect the CTQ
characteristic. In exploratory analysis, we can plot historical data to discover which
factors may be important to design experiments. The idea is to plot individual
measurements jointly with the average values of the factors involved.
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The mvPlot package function in the qualityTools package builds mul-
tivariate charts using the standard graphics of R. See the documentation on the
package and the function to find out more about the use of this function.

We can build our customized multivariate chart using the lattice package
[91]. We can arrange the layout of several charts in rows and columns and plot by
group using colors, symbols, and annotations to display several variables.

Example 8.11 (Printer cartridge (cont.)). We are going to use an extended data set
of the printer factory for the multivariate chart (ss.data.pc.big). We have all
the combinations for the four factors mentioned previously [color (2), operator (3),
filler (3), and batch (4), instead of the (6) we had before]. This data set has 72
observations (2× 3× 3× 4). You can see the structure of the data set with the str
command:

> str(ss.data.pc.big)

'data.frame': 72 obs. of 5 variables:
$ filler : Factor w/ 3 levels "1","2","3": 1 2 3 1 2 3 1 2

3 1 \ldots
$ batch : Factor w/ 4 levels "1","2","3","4": 1 1 1 2 2 2

3 3 3 4 \ldots
$ col : Factor w/ 2 levels "B","C": 1 1 1 1 1 1 1 1 1 1

\ldots
$ operator: Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1

1 1 \ldots
$ volume : num 16.8 18 15.6 18 13.8 \ldots

Graphics obtained with the lattice package may be plotted with the standard
options using model formulae (symbolic expressions) to obtain the most frequently
used charts. We can also use advanced features using panel functions to customize
the multivariate charts. This is the code to get the multivariate chart in Fig. 8.16:

> require(lattice)
> #compute the overall mean
> o.mean <- mean(ss.data.pc.big$volume)
> mvChart <- xyplot (volume ~ filler | col * operator,

main="Multi-vari chart for Volume by color and operator "
,

xlab = "Filler",
ylab ="Volume",
data = ss.data.pc.big,
groups = batch,
panel = function (x, y, \ldots,

groups, subscripts){
#horizontal lines
panel.grid(h = -1, v = 0,

col = "#CCCCCC")
#points and lines for the measurements
panel.stripplot(x, y,

groups = groups,
subscripts = subscripts,
type="b")
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#this line is for the mean of all the batches
#for each color, operator and filler
panel.linejoin(x, y,

groups = groups,
subscripts = subscripts,
horizontal = FALSE,
col = "#000000",
type= "a",
lwd= 4)

#A square for the overall mean
panel.points(mean(as.numeric(x)), o.mean,

cex=2,
pch=15,
col = "#CCCCCC")

#this is for the mean inside each sub-plot
panel.points(mean(as.numeric(x)),mean(y),

cex=1.5,
pch=2)

},
#this is for the legend above the chart
auto.key = list(title="batch",

lines = TRUE,
points = TRUE,
columns = 4))

> print(mvChart)

��

8.8.4 More About Charts

In addition to the methods described in previous sections, we can use other
techniques to display multivariate data:

• Auxiliary axes for superposed plots.
• Perspective. We can visualize three-dimensional data by plotting a perspective of

the three dimensions (space) rather than two dimensions (plane) just by adding a
third axis to the plot.

• Bubbles. You may plot circles whose area is proportional to the value of another
variable.

Most charts in this chapter were obtained using functions in the graphics
package. The only exception was the multivariate chart, where we used lattice
graphics. Many others advanced packages exist that generate sophisticated charts
and graphs.

In addition to lattice, we can use the package ggplot2, which uses the
grammar of graphics (see [106]). Interactive plots are possible with the iplots
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Fig. 8.16 Multivariate chart for printer cartridge big data frame. We plotted different lines joining
measurements in the same batch. The gray square represents the overall mean, and the triangles
are at the mean of each subplot. We can see that the plots for operator 3 (top) look different from
the rest (lower values and less variation)

package. We recommend visiting the Graphics Task View at CRAN1 to stay up-to-
date on the topic.

1http://cran.r-project.org/web/views/Graphics.html.

http://cran.r-project.org/web/views/Graphics.html
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We also have several ways to plot geographical data using the packages described
in the spatial task view at textsfCRAN.2 For example, you can color and annotate
the regions in a part of the world according to the number of failures of your process
using the package rworldmap.

Other important feature you may use to improve your charts is the low-level
graphics manipulation. Use the grid package to access directly the your chart’s
canvas and the mathematical annotation to text-draw (type ?plotmath at the
command prompt).

8.9 Summary and Further Reading

In this chapter, we introduced some important concepts about charting. The Black
Belt can use these concepts to build the most appropriate chart to explain the
data at hand. A set of charts was created through simple R functions from the
graphics package in the base installation. Enhancements such as annotations and
superimposing were made, and a more complex multivariate chart was plotted using
the lattice package.

The more you advance in your graphical analysis, the more you will realize that
you need to customize your charts. Reference [18] devotes a chapter to R graphics.
It is worthwhile studying the graphical capabilities of R. You can start with the
book [74], which contains an in-depth description of the R graphics system. For the
specific types of graphics in the lattice and ggplot2 packages, see [91] and
[105], respectively. For interactive and dynamic graphics, consult [17]. Regarding
charts for spatial data, the book [8] is advisable.

A nice free resource is [64]. There is also a compilation of resources and
applications in the task view at CRAN devoted to graphics (http://cran.at.r-project.
org/web/views/Graphics.html).

Case Study

Plot graphics of your paper helicopter data. You can plot histograms and box plots
for the flight time. Try to plot the flight time data aggregated and separated by group
(e.g., operator, prototype, etc.). Draw bar plots with counts of nonconformance
parts. Practice with your data plotting all the types of charts you have learned. You
can measure or simulate new variables and situations (e.g. countries, factories, etc.).

2http://cran.r-project.org/web/views/Spatial.html.

http://cran.at.r-project.org/web/views/Graphics.html
http://cran.at.r-project.org/web/views/Graphics.html
http://cran.r-project.org/web/views/Spatial.html
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Practice

8.1. Plot a bar chart for the total volume of cartridges by filler.

Hint: Use the aggregate function to appropriately transform the data of the
ss.data.pc data frame. See ?agregate.

8.2. Using the ss.data.pc.big data frame, plot a run chart for the cartridge
volume in batch 1. Do you detect any pattern in the data?

Hint: Use indexing to filter data. See ?Extract.



Chapter 9
Statistics and Probability with R

Statistics are like bikinis. What they reveal is suggestive, but
what they conceal is vital.

Aaron Levenstein

9.1 Introduction

Most definitions of statistics entail several actions over data. These operations may
vary depending on the field of applications where statistics are used. Some of the
more frequently mentioned ones are collection, analysis, and interpretation. Other
applications include classify, summarize, represent, or make an inference. We can
summarize these definitions in the expression data science. Likewise, statisticians
are becoming data scientists, sharing fields of knowledge with computer scientists,
mathematicians, engineers, bioresearchers, and others.

On the other hand, a clear division between descriptive statistics and inferential
statistics is usually made. Descriptive statistics deals with the description of data
by organizing and summarizing them. Exploratory data analysis uses descriptive
statistics to figure out the underlying process behind data to make better inferences
in subsequent steps of data analysis. Data representation, described in Chap. 8, is
often considered part of descriptive statistics. Inferential statistics tries to draw
conclusions about the process at hand through the available data. Probability theory
and its methods help to validate these conclusions scientifically.

There is another trend that has come out in two different approaches of statistics:
the frequentist approach and the Bayesian approach. Although this book is focused
on the frequentist approach, the authors are confident in the stunning applications of
Bayesian inference to Six Sigma. Nevertheless, this would deserve a new book by
itself.

This chapter deals with descriptive statistics and probability, including central
tendency measurements, variability measurements, random variables, and proba-
bility distributions, with a special focus on the binomial and normal probability
distributions.

E.L. Cano et al., Six Sigma with R: Statistical Engineering for Process
Improvement, Use R! 36, DOI 10.1007/978-1-4614-3652-2__9,
© Springer Science+Business Media New York 2012
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9.1.1 Variables and Observations

Before explaining how to make calculations over data, we are going to review some
basic concepts about statistics from an R perspective. The data we want to analyze
are measurements or observations of a characteristic in a set of items. These items
can be people, processes, parts, or some individual unit in a set where we can
observe the characteristic under study.

The characteristic we are observing is a variable because it is expected not to
be constant among the items.1 In terms of probability theory, a characteristic is
a random variable with a given probability distribution (Sect. 9.3). Importantly,
statistical analyses are based on the underlying probability distribution of the data.

These raw data are usually organized in matrices, that is to say, a set of rows
and columns representing the observations and the variables, respectively. Thus,
row n corresponds to the nth item, and column m corresponds to the mth variable.
Consequently, the value anm is the observed value of the mth variable in the nth item.

There are two main types of variables: quantitative variables and qualitative
variables. When the observed characteristic can be measured using some scale, we
have a quantitative variable. When the observed characteristic is a description or
a categorization of an item, we have a qualitative variable. Furthermore, quanti-
tative variables can be classified in continuous and discrete variables. Continuous
variables can take any value within an interval, for example, temperature or length.
Discrete variables can take a countable number of values (finite or infinite), for
example, number of defects in a batch or number of correct parts until the first
failure.

We can use several R object types to store data:

vector Unidimensional objects to store one variable.
factor Unidimensional objects to store one qualitative variable. The possible

values of the variable are called levels.
matrix Multidimensional objects to store several variables of the same type.
data.frame Multidimensional objects to store several variables of any type.

Each column of a data frame is a vector or a factor. This is a more appropriate
object for data analysis.

With the following code, we create a vector, a factor, and a matrix, and then we
put it all together in a data frame (see Sect. 2.7.2 in Chap. 2 for random variable
generation with the rnorm function):

> my.vector <- c(12.5, 13.6, 12.7, 12.1, 13.0, 12.5)
> my.factor <- factor(c(rep("Red", 3), "Yellow", rep("Blue",

2)))
> my.matrix <- matrix(rnorm(18),

ncol = 3)
> my.data.frame <- data.frame(var1 = my.vector,

1In what follows we will use both “variable” and “characteristic.”
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color = my.factor,
my.matrix)

> my.data.frame

var1 color X1 X2 X3
1 12.5 Red -0.2241475 0.3537150 0.1992208
2 13.6 Red 1.1190943 -2.3537350 -0.6604397
3 12.7 Red -0.7806308 -1.2595080 -1.6183023
4 12.1 Yellow 0.9007623 0.2303545 0.5165678
5 13.0 Blue 0.1678742 1.6569767 -1.2069046
6 12.5 Blue 1.1163146 -0.3124438 -1.2862550

9.1.2 Summary Tables

Usually, raw data are difficult to interpret because the number of observations
increases. Thus, many times the first operation we do with the data is to build a
frequency table. For a discrete variable, the frequency of a value of the variable
is the number of times this particular value appears. The relative frequency is the
fraction of times the value appears. We use the R function table to get frequency
tables:

> my.freqTable <- table(my.data.frame$color)
> my.freqTable

Blue Red Yellow
2 3 1

> my.relTable <- my.freqTable / nrow(my.data.frame)
> my.relTable

Blue Red Yellow
0.3333333 0.5000000 0.1666667

For continuous variables, we need to arrange the data into classes. For example,
if we want to count the positive and negative values for the variable X1 in the data
frame my.data.frame, we first create a new factor variable. We can use the cut
function or indexing techniques.

> my.data.frame$X1disc <- cut(my.data.frame$X1,
c(-Inf, 0, Inf),
labels = c("negative", "positive"))

> table(my.data.frame$X1disc)

negative positive
2 4
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We can summarize the information of two variables with a 2×2 frequency table:

> table(my.data.frame$X1disc, my.data.frame$color)

Blue Red Yellow
negative 0 2 0
positive 2 1 1

For the sake of simplicity, this sample data frame is very short, but it is possible
to have a data set with hundreds or thousands of observations.

9.1.3 Population and Sample

Let us go back to the inference concept. A statistical analysis tries to learn or
demonstrate something about a characteristic of a population based on a sample
of this population. This is due to the fact that we do not usually have access to all
the items of the population, just a reduced sample of them. The reason we cannot
access the entire population can be economic (expensive measurement methods),
social, legal, or other.

The sampling method will determine the validation of the results. A randomized
sample extraction is mandatory in order for the results to be scientifically acceptable.
Random number generation has been a big challenge in statistics and computer
science in recent decades. Type ?RNG in the R Console to learn more about how
R deals with it. If we have a list with the items of the population, we can extract a
randomized sample of them. The sample size is the number of items we select from
the population, and it will be a critical factor in subsequent analyses.

Example 9.1 (Guitar strings). The quality manager of a company that produces
guitar strings wants to study the resistance to tension of the strings produced one
day. Obviously, testing the resistance of the whole population is not possible. Every
day, the company produces 1,000 strings of each type (E1, B2, G3, D4, A5, E6),
and once manufactured, they are packaged and numbered.

To select a random sample of the strings, we use the R function sample. For a
sample size of 20 items:

> sample(1:1000, 20)

[1] 90 474 356 216 571 2 714 264 153 288 67 922
[13] 132 803 749 366 937 98 302 485

The numbers randomly selected are the number of the strings we have to pick
up to make the tension resistance test. Every time you run the command, you get a
different sample.
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The process is repeated for the six types of strings, and the resistance is measured
on a scale that ranges from 1 to 10. The ss.data.strings data frame contains
the entire data set plus more variables. We will use it throughout this chapter and
subsequent ones to illustrate the concepts explained. ��

9.1.4 Special Data Values

There are several important issues we should consider regarding the individual
values of a sample. One is the fact that sometimes not all data are available. We say
that these unavailable data are missing data. Before doing the computations needed
for the statistical analysis, we will have to decide what to do with these items in the
data set. We can simply drop them for a specific calculation, or even delete them
from the data frame. Or we can assign a value to these missing “cells” of the matrix.
There are several techniques for this task that are outside the scope of this book (the
simplest is to assign the mean to these missing values).

In R, a special value is used for missing data: NA (Not Available). In many
functions, we can pass an argument indicating what to do with missing values.
We can also check whether a value is missing using the is.na function:

> data.test <- c(2, 4, 2, NA, 5)
> is.na(data.test)

[1] FALSE FALSE FALSE TRUE FALSE

> mean(data.test)

[1] NA

> mean(data.test, na.rm = TRUE)

[1] 3.25

Another special kind of data we have to be aware of are outliers. They are
extreme data that are far from the rest of the data. We must analyze them to detect if
these outlying data are wrong (e.g., due to typing errors, measurement errors, etc.).
The unusual data should be monitored as they might show new trends or changes in
our process and eventually become out of control.

A possible decision about outliers can be to disregard or remeasure them (when
possible). Finally, sometimes extreme data are outliers for a specific model but not
for other more sophisticated models.
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9.2 Descriptive

9.2.1 Measures of Central Tendency

The central values of a data set are the simplest way to summarize the data. A central
measure value is a number around which the data vary. Three important central
tendency measures are mainly used in any statistical analysis:

1. The sample mean is the average value. This is the most widely used measure due
to its mathematical properties. The main inconvenience is that it is sensitive to
outliers (values far from the central values):

x̄ =
∑xi

n
.

2. The median is the value that divides the data into two halves: one containing
the higher values, the other containing the lower values. It is not influenced by
outliers. If we have an even number of data, the average value of the two central
values is taken.

3. The mode is the most frequent value (or range of values in a continuous variable).
In a frequency table, is the value that has the maximum frequency.

Other central values are useful for some disciplines such as the geometric
mean and the harmonic mean. Furthermore, some variations of the mean are used
for specific data structures, such as the weighted mean and the trimmed mean.
References in Sect. 9.4 treat these concepts in detail.

Example 9.2 (Guitar strings (cont.)). The data in ss.data.strings data frame
contain the resistance test level for each string sampled. To compute the average
resistance of all the strings, we use the mean function:

> mean(ss.data.strings$res)

[1] 6.666667

We have also a function for the median:

> median(ss.data.strings$res)

[1] 7

To compute the mode, we first need the frequency table and then search the value
that is more frequent:

> res.freq <- table(ss.data.strings$res)
> res.freq

1 2 3 4 5 6 7 8 9 10
1 3 9 3 7 23 22 44 5 3
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> res.freq[which(res.freq == max(res.freq))]

8
44

We obtain only one mean and one median, but we can obtain more than one value
for the mode. A symmetric data distribution will have similar values for the mean,
the median, and the mode. ��

9.2.2 Measures of Variability

Variability is statistics’ reason for being. With respect to process improvement, it
entails a reduction in the variability. It is clearly not enough to study the mean of our
process when we are trying to improve it. We need to know how data are clustered
around the central values.

The variance is the most important measure of variability due to its mathematical
properties. It is the average squared distance from the mean, and we will represent
it by σ̂2:

σ̂2 =
∑n

i=1(xi − x̄)2

n
.

Another estimator for the variance of a population with better mathematical
properties than σ̂2 is the sample variance, computed in a slightly different way and
represented by s2:

s2 =
∑n

i=1(xi − x̄)2

n− 1
.

The variance is in square units compared with the mean. Hence, the standard
deviation is the most commonly used variability measure:

s =

√
∑n

i=1(xi − x̄)2

n− 1
.

The range (R) is the difference between the maximum value and the minimum
value, but it is strongly influenced by extreme values. Nevertheless, when we have
few data, it is used as a robust method to estimate the variability (see [69]):

R = max(x)−min(x).

If we want to measure the variability around the median, the appropriate measure
is the median absolute deviation (MAD), that is:

MAD = Median(|xi −Median(x)|).
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Similarly to the median, we can compute the quartiles. These are the values that
divide the data into four parts. Thus the median is the second quartile (Q2). The first
quartile (Q1) is the value that has 25% of data below it, and the third quartile (Q3)
is the value above which 25% of data remain. The interquartile range (IQR) is a
measure of variability that avoids the influence of outliers. This range contains the
middle 50% of the data:

IQR = Q3 −Q1.

Example 9.3 (Guitar strings (cont.)). To compute the sample standard deviation of
the string resistance, we use the sd function:

> sd(ss.data.strings$res)

[1] 1.857681

The IQR function computes the interquartile range:

> IQR(ss.data.strings$res)

[1] 2

We can calculate the quartiles (or even any quantile, e.g., 10%) with the
quantile function :

> quantile(ss.data.strings$res, c(0.10, 0.25, 0.75))

10% 25% 75%
3 6 8

The range function returns a vector with two values: the maximum and the
minimum. So to compute the range (R), we apply the diff function to this vector:

> diff(range(ss.data.strings$res))

[1] 9

We can obtain a summary of the descriptive statistics of a variable by using the
summary function over it:

> summary(ss.data.strings[, 2:3])

type res
A5:20 Min. : 1.000
B2:20 1st Qu.: 6.000
D4:20 Median : 7.000
E1:20 Mean : 6.667
E6:20 3rd Qu.: 8.000
G3:20 Max. :10.000

For a factor (qualitative variable), what you get is the frequency of each level.
��
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Fig. 9.1 Long-term and short-term variability. In the short term, the variability is constant over
time. In the long term, there are ups and downs that reflect assignable causes that should be
identified

Long-term and Short-term Variation

In process improvement, the sustainability of the results is an inherent objective. We
will use this sustainability concept to support the following explanation.

When we are measuring a process, we take a sample limited to a specific time
span (e.g., one day). This data sample will be affected by the so-called short-term
variability. This short-term variability is due to common causes, uncontrollable and
random.

In the long term, if we take samples at different moments, a long-term variability
appears between the successive samples. This long-term variability is due to
assignable causes that should be identified and eradicated. An illustrative example
is presented in Fig. 9.1.

We can compute the long-term variability as the sample standard deviation of the
whole data set. The short-term variability can be computed also with the complete
data set using the average range(R̄):

σST =
R̄

d2(2)
,
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where R̄ =
∑n−1

i=1 Ri
n−1 and d2 is the mean of the random variable W (relative range)

defined as W = R
σ for two-sized samples (it only depends on the sample size; its

value is 1.128). Ri is, in turn, the range between two subsequent measurements, that
is, Ri = |xi − xi+1|.

9.3 Probability

There exist several definitions of probability. One is the relative frequency explained
in Sect. 9.1.2, that is, the frequency as a fraction of the sample size. This can be
called the empirical probability. Another is the classic definition suitable for trials
where a finite number of equiprobable events can occur. Here, the probability of
an event is the number of favorable cases for this event over the total number
of outcomes possible.2 This definition can be called the theoretical probability.
The two approaches are linked by the law of large numbers, which states that
as the sample size increases, the empirical probability is closer to the theoretical
probability. Under the Bayesian approach, expert knowledge in the form of the
a priori probability distribution is used to set probabilities through a likelihood
function, resulting in a posterior probability distribution.

In any case, for discrete sample spaces (the sample space is the set of all possible
outcomes of a trial), we have a function that returns the probability of an event:

f (x) = P(X = x).

For continuous sample spaces, the previous definitions break down, and we
use the cumulative distribution function (cdf). This is a function that returns the
probability that the outcome of the trial will be less than or equal to a given value3:

F(x) = P(X ≤ x).

The probability density function is a derivative of the cumulative distribution
function, thus:

f (x) =
dF(x)

dx
,

and we can obtain probabilities using integration:

P(a ≤ X ≤ b) =
∫ b

a
f (x)dx.

2For the simplest example of tossing a coin, the total outcomes possible are 2, and the number of
favorable cases for the event Heads is 1. Thus the probability of getting heads is 1

2 = 0.5.
3The cdf is also suitable for discrete distributions.
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All in all, probability is a quantitative representation of the likelihood that an
event will happen. Thus, a probability is expressed as a number between 0 and 1.
An event will never occur if its probability equals 0. An event must occur if its
probability equals 1. Another important property is that the sum of the probability
of an event (X) and the probability of its complement (notX , the event does not
occur) equals 1. Then

P(not X) = 1−P(X)

for discrete distributions, and

P(X ≥ x) = 1−P(X ≤ x) = 1−F(x)

for continuous distributions.

Example 9.4 (Guitar strings (cont.)). A string is considered defective if it resists
less than 3 in the resistance test (that is, 1 or 2). Thus we can calculate the probability
of a string’s being defective using the empirical definition. The number of defective
strings is easily found through the frequency table:

> table(ss.data.strings$res)

1 2 3 4 5 6 7 8 9 10
1 3 9 3 7 23 22 44 5 3

Or it can be directly computed using indexing and selection in the vector of data:

> sum(ss.data.strings$res < 3)

[1] 4

The size of the sample is:

> nrow(ss.data.strings)

[1] 120

So the probability of a string’s being defective is

> sum(ss.data.strings$res < 3) / nrow(ss.data.strings)

[1] 0.03333333

and therefore the probability of its not being defective is

> 1 - (sum(ss.data.strings$res < 3) / nrow(ss.data.strings))

[1] 0.9666667

��
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9.3.1 Random Variables

A phenomenon is said to be deterministic if its outcome can be precisely known
before it occurs. Otherwise, we are talking about stochastic phenomena. Most real-
life situations are stochastic, that is, we do not know exactly what will be the result of
an event, although we probably are aware of which set of results can occur. When we
can assign a value to any of the events that may occur, we have a random variable.
Random variables can be discrete (the number of possible events are countable) or
continuous (the variable can take any value within an interval).

For discrete random variables, the probability distribution assigns a probability
to each possible value. For continuous random variables, the probability of a set of
values is measured as the area under the curve of the probability density function
over this set of values. With these two tools we can compute the counterparts of
the mean and the variance of a population. The mean is called the expectation and
is represented by μ , and the variance is represented by σ . The variance is usually

Discrete Continuous

μ E[X ] = ∑n
i=1 xiP(xi) E[X ] =

∫ ∞
−∞ x f (x)dx

σ Var[X ] = ∑n
i=1(xi −μ)2P(xi) Var[X ] =

∫ ∞
−∞(x−μ)2 f (x)dx

calculated using the following equation,4 suitable for both discrete and continuous
distributions:

Var[X ] = E[X2]− (
E[X ]

)2
.

Importantly, statistical inference consists in making inferences about a popu-
lation by estimating its probability distribution, using a sample. Thus, the iden-
tification of a probability distribution will help us to make inferences about the
population’s properties. In the following sections we will explain two of the most
important probability distributions (one discrete and one continuous). We will use
them to make inferences in Chap. 10.

9.3.2 Binomial Distribution

The binomial distribution is the appropriate distribution to deal with proportions.
It is defined as the total number of successes in n independent trials. By independent
trial we mean the so-called Bernoulli trial, whose outcome can be success or failure,
with p being the probability of success. The binomial distribution is absolutely
determined by the parameters n and p, and its probability function is

4As a result of the fact that Var[X ] = E[(X −μ)2].
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P(X = x) =

(
n
x

)
px(1− p)n−x,

where
(n

x

)
= n!

x!(n−x)! and n! (n-factorial) is calculated as

n× (n− 1)× (n−2)× . . .× 2× 1.

It can be shown that the mean of a binomial distribution is

μ = E[X ] = np,

and the variance takes the value

σ2 =Var[X ] = np(1− p).

Example 9.5 (Guitar strings (cont.)). In our example, each tension test is a
Bernoulli trial that can result in success (usually a defective outcome is considered
a success in statistical terms) or failure (not defective). The historical proportion
of defective strings in the factory is 1%. Then the random variable defined by
“number of defects in a sample of 120 strings” follows a binomial distribution
whose parameters are n = 120 and p = 0.01. The mean and variance of this random
variable are E[X ] = n× p = 1.2 and Var[X ] = p× (1− p) = 0.0099, respectively.

With this information, we can compute the probability of getting exactly four
defects with the dbinom function:

> dbinom(4, 120, 0.01)

[1] 0.02560162

To calculate the distribution function, that is, the probability of getting four or
fewer defects, we use the pbinom function:

> pbinom(4, 120, 0.01)

[1] 0.9926167

For example, the probability of getting more than three defects is 1−P(X ≤ 3):

> 1 - pbinom(3, 120, 0.01)

[1] 0.03298491

��
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μ − 3σ μ − 2σ μ − σ μ + σ μ + 2σ μ + 3σμ

Fig. 9.2 Normal distribution. Between the mean and three standard deviations fall 99.7% of the
data. Between the mean and two standard deviations fall 95.5% of the data. Between the mean and
one standard deviation fall 68.3% of the data

9.3.3 Normal Distribution

The normal distribution, also known as the Gaussian distribution, is the most
important probability distribution for continuous variables. It is determined by two
parameters, the mean (which in this case coincides with the median and the mode)
and the variance, and has the following probability density function:

f (x) =
1

σ
√

2π
exp

[
− (x− μ)2

2σ2

]

whose shape is shown in Fig. 9.2.
The relevance of the normal distribution is due to the central limit theorem, which

states that the sum of n random variables (regardless of its mean, variance, and
distribution) approximates a normal distribution as n increases. Normally, a process
is the result of many other subprocesses, and therefore the normal distribution
appears in many real-world processes such as human measurements (e.g., height
and weight of people) or industrial processes.

Example 9.6 (Guitar strings (cont.)). Before testing the resistance of the sampled
strings, some measurements were taken. The variable len in the data frame
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Fig. 9.3 Looking for the normal shape. With the histogram and the density line we can see if the
data are normally distributed

ss.data.strings contains the length of each string. To see if this variable can
be modeled as a normal distribution, we can plot a histogram and a density line
(Fig. 9.3):

> hist(ss.data.strings$len,
freq=FALSE,
col="#CCCCCC",
border="#FFFFFF")

> lines(density(ss.data.strings$len), lwd=2)

We can confirm normality using the quantile–quantile plot (Fig. 9.4), plotted
using the following code:

> qqnorm(ss.data.strings$len, pch = 16)
> qqline(ss.data.strings$len)

If we assume that the length of the strings is normal with mean 950 mm and
standard deviation 0.25,5 the probability of finding a string shorter than 949.5 mm is

5We assume that these are the values defined in our manufacturing process.
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Fig. 9.4 Quantile–quantile plot. If the data are from a normal distribution, the points are
approximately over a straight line

> pnorm(949.5, 950, 0.25)

[1] 0.02275013

If we want to know the length that is longer than 99% of the strings, we use the
qnorm function:

> qnorm(0.99, 950, 0.25)

[1] 950.5816

Thus, 99% of the strings are shorter than 950.5816 mm. ��
A useful operation for the normal distribution is standardization. A standard

normal distribution is a normal distribution whose mean is 0 and variance is 1.
We can convert any normal distribution with parameters μ and σ into a Standard
Normal Distribution with the following transformation:

Z =
X − μ

σ
.
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Fig. 9.5 Hypergeometric distribution. Number of elements of class A when extracting a sample
of k items from a set of m+ n elements, where there are m elements of class A and n elements
of class Ā (not A). This distribution is the counterpart of the binomial when the population is
finite (small enough). We can use this distribution to approximate the binomial when the ratio
sample/population is small (< 0.1). p = n

n+m is the probability of success (class A). μ = kp; σ 2 =

kp(1− p); P(x) =
((n+m)p

x )((n+m)(1−p)
k−x )

(n+m
k )

R function: phyper()

Thus, if X ∼ N(μ ,σ), then Z ∼ N(0,1), which will be useful for inference in the
following sections.

9.3.4 Other Useful Distributions

The binomial and normal distributions are the most important ones for process
improvement, but there are many others that may describe a process. We in-
clude in Figs. 9.5–9.17 a brief summary of some of them, including a graphical
example, their means, variances, and probability density functions, as well as
the R functions necessary to obtain probabilities. We recommend changing the
parameters of the probability density functions plotted to see how they vary.
Type ?Distributions for a complete list of distributions supported by R. See
Sect. 9.4 for additional references.

Hypergeometric (discrete) distribution (Fig. 9.5):

> p.m = 4; p.n = 7; p.k = 4
> curve(dhyper(x, m = p.m, n = p.n, k = p.k),

from = 0, to = p.k, type = "h", lwd = 4,
ylab = "Probability", xlab = "Elements in class A",
ylim = c(0,0.5), n = 5)

> abline(h = 0)
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Fig. 9.6 Geometric
distribution. Number of trials
until first success occurs,
where p is the probability of
success. μ = 1/p ;

σ 2 =(1−p)
p2 ;

P(x) = p(1− p)x−1.R
function: pgeom()

Geometric (discrete) distribution (Fig. 9.6):

> p.prob <- 0.15
> curve(dgeom(x, prob = p.prob),

from = 0, to = 40, type = "h", lwd = 2,
ylab = "Probability", xlab = "Items extracted until first

success",
ylim = c(0,0.16), n = 41)

> abline(h = 0)

Negative binomial (discrete) distribution (Fig. 9.7):

> p.size = 3; p.prob=0.2
> curve(dnbinom(x, size = p.size, prob = p.prob),

from = 3, to = 40, type = "h", lwd = 2,
ylab = "Probability", xlab = "Number of trials until 3

events",
ylim = c(0,0.08), n = 38)

> abline(h = 0)

Poisson (discrete) distribution (Fig. 9.8):

> p.lambda = 5
> curve(dpois(x, lambda = p.lambda),

from = 0, to = 20, type = "h", lwd = 4,
ylab = "Probability", xlab = "Number of successful

experiments per unit",
ylim = c(0,0.20), n = 21)

> abline(h = 0)
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Fig. 9.7 Negative binomial
distribution. Number of
Bernoulli trials until r
successes are achieved. The
geometric distribution is a
special case of the negative
binomial when r = 1.
μ = r

p ; σ 2 = r(1−p)
p2 ;

P(x) =
(x−1

r−1

)
pr(1− p)x−r .

R function: pnbinom()
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Fig. 9.8 Poisson
distribution. The Poisson
distribution is suitable when
we are counting the number
of events per unit (time, area,
volume, etc.). The parameter
λ is the average number of
times the event occurs, e.g.,
the number of errors per hour
in a service.
μ = λ ;σ 2 = λ ;

P(x) = e−λ λ x

x! .
R function: ppois()

Exponential (continuous) distribution (Fig. 9.9):

> p.rate = 1
> curve(dexp(x, rate = p.rate),

from = 0, to = 5, type = "l", lwd = 2,
ylab = "Probability Density", xlab = "Random Variable X",
ylim = c(0,1))

> abline(h = 0)

lognormal (continuous) distribution (Fig. 9.10):

> p.meanlog = 0; p.sdlog = 1
> curve(dlnorm(x, meanlog = p.meanlog, sdlog = p.sdlog),

from = 0, to = 6, type = "l", lwd = 2,
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Fig. 9.9 Exponential
distribution. The exponential
distribution appears when we
measure the time until an
event occurs in a Poisson
process (e.g., number of
clients per hour for a service,
number of lost packages per
minute in a network). The
rate is the λ parameter of the
distribution (e.g., 20 clients
per hour).
μ = 1

λ ; σ 2 = 1
λ 2 ;

f (x) =λ e−λx.
R function: pexp()
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Fig. 9.10 Lognormal
distribution. When the
logarithm of a variable
follows a normal distribution,
the variable is lognormal.
This fact appears in many
natural processes as a result
of the central limit theorem.
Let μN and σ 2

N be the mean
and variance respectively of
the variable log(X).

μ = eμN+ σ 2
2 ;

σ 2 = e2μN+σ2
N (eσ2

N −1) ;
f (x) =

1
xσN

√
2π exp

[
− (ln(x)−σN )

2

2σ2
N

]
. R

function: plnorm()

ylab = "Probability Density", xlab = "Random Variable X>0
",

ylim = c(0,0.8))
> abline(h = 0)

Uniform (continuous) distribution (Fig. 9.11):

> p.min = 0; p.max = 1
> curve(dunif(x, min = p.min, max = p.max),

from = -0.5, to = 1.5, type = "l", lwd = 2,
ylab = "Probability Density", xlab = "Random Variable X",
ylim = c(0,1.2))

> abline(h = 0)
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Fig. 9.11 Uniform
distribution. In a uniform
distribution between a and b,
the probability density is
constant in the interval [a b].
The uniform distribution is
especially useful for
generating random numbers.
We use the R function
runif for this purpose.
μ = b+a

2 ;
σ 2 = 1

12 (b−a)2 ;
f (x) = 1

b−a , a ≤ x ≤ b.
R function: punif()
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Fig. 9.12 Gamma
distribution. The gamma
distribution is defined by two
parameters: shape (r) and rate
(λ ). By changing the
parameters of a gamma
distribution, we get different
shapes.
μ = r

λ ;
σ 2 = r

λ 2 ;

f (x) = 1
(r−1)! λ rxr−1e−λx.

R function: pgamma()

Gamma (continuous) distribution (Fig. 9.12):

> p.shape = 3; p.rate = 1
> curve(dgamma(x, shape = p.shape, rate = p.rate),

from = 0, to = 10, type = "l", lwd = 2,
ylab = "Probability Density", xlab = "Random Variable X",
ylim = c(0,0.4))

> abline(h = 0)
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Fig. 9.13 Beta distribution.
The beta distribution has two
shape parameters (say, a
and b). It is used in Bayesian
inference, as it appears as the
a priori distribution of other
distributions. It is defined for
values between 0 and 1.
μ = a

a+b ;

σ 2 = ab
(a+b)2(a+b+1

;

f (x) = kxa−1(1− x)b−1 ;

k = Γ (a+b)
Γ (a)Γ (b) .

R function: pbeta()

Beta (continuous) distribution (Fig. 9.13):

> p.shape1 = 3; p.shape2 = 2
> curve(dbeta(x, shape1 = p.shape1, shape2 = p.shape2),

from = 0, to = 1, type = "l", lwd = 2,
ylab = "Probability Density", xlab = "Random Variable X",
ylim = c(0,2))

> abline(h = 0)

Weibull (continuous) distribution (Fig. 9.14):

> p.shape = 2; p.scale = 2.5
> curve(dweibull(x, shape = p.shape, scale = p.scale),

from = 0, to = 6, type = "l", lwd = 2,
ylab = "Probability Density", xlab = "Random Variable X",
ylim = c(0,0.6))

> abline(h = 0)

Student’s t (continuous) distribution (Fig. 9.15):

> p.df = 19
> curve(dt(x, df = p.df),

from = -5, to = 5, type = "l", lwd = 2,
ylab = "Probability Density", xlab = "Random Variable X",
ylim = c(0,0.5))

> abline(h = 0)
> lines(rep(qt(0.95, 19),2), c(0,dt(qt(0.95, 19),19)))
> text(qt(0.95, 19),0,paste(round(qt(0.95, 19),2)), adj=c

(0.5,1.1))
> text(0,0.2,"95%")
> text(2,0,"5%", adj=c(0.1,-0.5))
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Fig. 9.14 Weibull
distribution. The Weibull
distribution can be modeled
by two parameters: scale (λ )
and shape (k). The Weibull
distribution model has many
time-to-failure random
variables and is widely used
in reliability analysis.
μ = λΓ

(
1+ 1

k

)
;

σ 2 =
λ 2

[
Γ
(
1+ 2

k

)−Γ 2
(
1+ 1

k

)]
;

Γ (n) = (n−1)! ;
f (x) = k

λ(
x
λ
)k−1

e(−x/λ )k
.

R function: pweibull()
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Fig. 9.15 Student’s t
distribution. Student’s t
distribution has only one
parameter: degrees of
freedom. This is a sampling
distribution used in inference.
Its main use is for finding
quantiles for a given
confidence level or
significance level. We use the
R function qt. For example,
to find the value t19,0.95 (19
degrees of freedom) with 0.95
probability below), type
qt(0.95, 19).
R function: pt()

Chi-square (χ2)(continuous) distribution (Fig. 9.16):

> p.df = 19
> curve(dchisq(x, df = p.df),

from = 5, to = 50, type = "l", lwd = 2,
ylab = "Probability Density", xlab = "Random Variable X",
ylim = c(0,0.08))

> abline(h = 0)
> lines(rep(qchisq(0.95, 19),2), c(0,dchisq(qchisq(0.95, 19)

,19)))
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Fig. 9.16 Chi-square (χ2)
distribution. This is another
sampling distribution used in
inference, with degrees of
freedom as parameter.
Similarly to Student’s t
distribution, we can find
quantiles for a given
confidence level or
significance level using R. To
find the value χ2

19,0.95 (19
degrees of freedom) with 0.95
probability below, type
qchisq(0.95, 19).
R function: pchisq()

> text(qchisq(0.95, 19),0,paste(round(qchisq(0.95, 19),2)),
adj=c(0.5,1.1))

> text(20,0.02,"95%")
> text(32,0,"5%", adj=c(0.1,-0.5))

F (continuous) distribution (Fig. 9.17):

> p.df1 = 19; p.df2 = 15
> curve(df(x, df1 = p.df1, df2 = p.df2),

from = 0, to = 4, type = "l", lwd = 2,
ylab = "Probability Density", xlab = "Random Variable X",
ylim = c(0,1))

> abline(h = 0)
> lines(rep(qf(0.95, 19, 15), 2), c(0, df(qf(0.95, 19, 15)

,19, 15)))
> text(qf(0.95, 19, 15),0,paste(round(qf(0.95, 19, 15), 2)),

adj=c(0.5,1.1))
> text(1,0.4,"95%")
> text(2.5,0,"5%", adj=c(0.1,-0.5))

9.4 Summary and Further Reading

In this chapter we provided a brief review of the most important concepts of statistics
and probability. Although this is the toughest part for a Six Sigma practitioner, it is
very important to master these concepts in order to apply the scientific method and
reach valid results. In the next chapter, statistical inference is tackled to complete
the background needed for the Analyze phase of the DMAIC cycle.
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Fig. 9.17 F distribution.
The F distribution is the last
sampling distribution we will
mention in this book. It has
two parameters, both for
degrees of freedom, as it is a
quotient between two χ2

variables over their degrees of

freedom: Fn,m = χ2
n /n

χ2
m/m

.

To find the value F19,15,0.95
(19 and 15 degrees of
freedom) with 0.95
probability below, type
qf(0.95, 19).
R function: pf()

To enhance your knowledge of probability and statistics, see [45], on both
statistics and R, and [40], on probability. Reference [20] is another excellent book
regarding statistics with R, and [69] contains thorough statistical explanations.

Case Study

Compute descriptive statistics for your paper helicopter data, including measure-
ments of central tendency and variability. Decide on a threshold for your correct
helicopter and make a table with the number of correct and incorrect items (you
should have several of them).

Now set a percentage of defects you are allowed to manufacture, and compute the
probability of having the actual number of defects (use the binomial distribution).
Analyze the flight time, and find out which distribution the data follows. Is it
normal? Compute the percentage of defective items you will have in the long term
under the threshold defined in the previous paragraph.

Practice

9.1. Using the ss.data.strings data frame, save in a new data frame the data
corresponding to type E1 strings. Compute descriptive statistics for the resistance.
Do you think it is a symmetric distribution?

9.2. In an industrial process, the proportion of defects is 0.001. If we take a sample
of 100 items, what is the probability of having less than 5 defective units?



Chapter 10
Statistical Inference with R

All models are wrong; some models are useful.
George E.P. Box

10.1 Introduction

Statistical inference is the branch of statistics whereby we arrive at conclusions
about a population through a sample of the population. We can make inferences
concerning several issues related to the data, for example, the parameters of
the probability distribution, the parameters of a given model that explains the
relationship between variables, goodness of fit to a probability distribution, and
differences between groups (e.g., regarding the mean or the variance).

In Six Sigma projects, improvement is closely linked to the effect that some
parameters of the process (input) have on features of the process (output). Statistical
inference provides the necessary scientific basis to achieve the goals of the project
and validate its results.

In this chapter, some basic statistical inference tools and techniques suitable for
Six Sigma are reviewed. In Sect. 10.2, confidence intervals and point estimation
are explained. Hypothesis-testing concepts are very important for every inference
analysis. You can read about them in Sect. 10.3. Regression and analysis of variance
(ANOVA) are the main techniques to study the relationship between variables.
Sections 10.4 and 10.5 explain how to use them with R.

10.2 Confidence Intervals

10.2.1 Sampling Distribution and Point Estimation

Through point estimation, one or more parameters of a population’s probability
distribution can be inferred using a sample. A function over the values of the sample

E.L. Cano et al., Six Sigma with R: Statistical Engineering for Process
Improvement, Use R! 36, DOI 10.1007/978-1-4614-3652-2__10,
© Springer Science+Business Media New York 2012
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is called a statistic. For example, the sample mean is a statistic. When we make
inferences about the parameters of a population’s probability distribution, we use
statistics. These statistics have, in turn, a probability distribution. That is, for every
sample extracted from a given population, we have a value for the statistic. In this
way, we may build a new population of values (of the statistic) that follows some
probability distribution.

The probability distribution of a statistic is a sampling distribution, and the
properties of this distribution allow us to know if the statistic is a good estimator
of the parameter under study. Some important properties to study about a statistic to
find out if it is a good estimator are unbiasedness, mean square error, consistency,
and asymptotic distribution. An estimator is unbiased if its expectation equals the
real value of the parameter.

To distinguish the actual value of a parameter from its estimator, a hat ( ˆ ) is
placed over the symbol of the estimator (e.g., σ̂2 is the estimator for the variance
σ2). We will not explain in detail the properties of the statistics or explain how to
study sampling distributions. We will simply introduce some of the most important
statistics for estimating proportions, means, and variances.

For binomial distributions, the sample proportion is an unbiased estimator:

p̂ =
x
n
.

That is, the number of events (x) in n Bernoulli experiments over the number of
experiments. The mean and the variance of the statistic are1

μ p̂ = p,

σ2
p̂ =

p(1− p)
n

.

The sample mean is an unbiased estimator of the population mean:

μ̂ = x̄,

μx̄ = μ ,

σ2
x̄ =

σ2

n
.

For the variance the unbiased estimator is the sample variance, defined as

s2 =
∑n

i=1(xi − x̄)2

n− 1
,

whose expectation is the population variance (E[ŝ2] = σ2).

1For sampling distributions, we set the symbol of the statistic a subscript.
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The sample standard deviation is not an unbiased estimator of the population
standard deviation. In its place we can use the following unbiased estimator:

σ̂ =
s
c4
,

where c4 is a constant that depends only on the sample size:

c4 =

(
2

n− 1

) 1
2 Γ (n/2)

Γ
[
(n− 1)/2

],

where Γ (·) can be evaluated using the gamma R function. You can compute this
constant using the ss.cc.getc4 function in the SixSigma package.

An unbiased estimator for the standard deviation σ of a normal distribution used
in many applications of engineering statistics and quality control is

σ̂ =
R
d2

,

where R is the range of the data in the sample (that is, the difference between the
maximum and the minimum) and d2 is the mean of the random variable W (relative
range) defined as

W =
R
σ
.

The mean of this random variable is constant and depends only on the sample
size n. It can be computed numerically using integration. The ss.cc.getd2
function2 in the SixSigma package returns the constant d2 for a given sample
size:

> ss.cc.getd2(20)

d2
3.734949

Example 10.1 (Guitar strings). Let us reproduce the example in Chap. 9. The
quality manager of a company that produces guitar strings wants to study the
resistance to tension of the strings produced one day. Obviously, testing the
resistance of the whole population is not possible. Every day, the company produces
1,000 strings of each type (E1, B2, G3, D4, A5, E6), and once the strings are made,
they are packaged and numbered.

We can do computations over the sample data to obtain estimators of the mean
and variance3 for tension resistance in the ss.data.strings data set:

2It in turn uses the ptukey function (see ?ptukey).
3R provides the sample variance. If you need the population variance, just multiply it by n−1

n .
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> mean(ss.data.strings$res)

[1] 6.666667

> var(ss.data.strings$res)

[1] 3.45098

For the proportion of defective strings, the estimator p̂ is

> sum(ss.data.strings$res<3)/nrow(ss.data.strings)

[1] 0.03333333

The unbiased estimator for the standard deviation using the sample standard
deviation can be computed as follows:

> c(Sigma.Est = sd(ss.data.strings$res)/ss.cc.getc4(nrow(ss.
data.strings)))

Sigma.Est.c4
1.861588

We can estimate the standard deviation through the range, using the constant d2:

> c(Sigma.Est = diff(range(ss.data.strings$res))/ss.cc.getd2(
nrow(ss.data.strings)))

Sigma.Est.d2
1.749553

��
We have obtained an estimation for the parameter of interest for our process.

However, any estimation is linked to some uncertainty, and therefore we will have to
deal with some error level. To quantify this uncertainty, we use interval estimation.
Interval estimation consists in giving bounds for our estimation (LL and UL, upper
and lower limits). These limits are calculated so that we have confidence in the fact
that the real value of the parameter is contained within them. This fact is stated
as a confidence level and expressed as a percentage. The confidence level reflects
the percentage of times that the real value of the parameter is assumed to be in the
interval when repeating the sampling. Usually the confidence level is represented by
100× (1−α)%, with α the confidence coefficient. The confidence coefficient is a
measure of the error in our estimation. Common values for the confidence level are
99, 95, or 90%, corresponding, respectively, to α = 0.01, α = 0.05, and α = 0.1.

A confidence interval is expressed as an inequality.4 If θ is a parameter, then
[LL,UL] means LL ≤ θ ≤UL.

4In Bayesian statistics, the credible interval is the counterpart of the confidence interval, which has
a probabilistic meaning.
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10.2.2 Proportion Confidence Interval

As we explained in Chap. 9, when we are dealing with proportions, the binomial
distribution is the appropriate probability distribution to model a process. The
typical application of this model is the calculation of the fraction of nonconforming
items in a process.

Due to the central limit theorem (see Sect. 9.3.3 in Chap. 9), we can construct a
confidence interval for the proportion using the following formula:

p̂± z1− α
2

√
p̂(1− p̂)

n
,

where z1− α
2

is the quantile of the standard normal distribution that leaves a
probability of α

2 on the right-hand side. This is the classical way to construct
a confidence interval for the proportion when the sample size n is large and p̂
is not small (under these circumstances, the normal distribution can be used to
approximate the binomial distribution). The R function binom.test provides
an exact confidence interval for the probability of success. However, in [1] it is
shown that “approximate results are sometimes more useful than exact results,
because of the inherent conservativeness of exact methods.” In this regard, the
approximation performed by the prop.test function may provide more accurate
results. Likewise, the binconf function in the Hmisc package allows us to use
different methods and compare the results.

Example 10.2 (Guitar strings (cont.)). To construct a 95% confidence interval for
the proportion of defective strings using the normal approximation, we first obtain
the value of the standard normal distribution for a probability of α

2 = 0.025:

> def.z <- qnorm(0.975)

The point estimator for the proportion is

> est.p <- sum(ss.data.strings$res<3)/nrow(ss.data.strings)

Therefore, our confidence interval is

> est.p + (c(LL=-1,UL=1) * def.z * sqrt((est.p*(1-est.p))/
nrow(ss.data.strings)))

LL UL
0.001216316 0.065450351

The previous normal approximation may not be adequate, given that p is small.
A suitable alternative is to use the prop.test function, which provides the
following interval:

> (prop.test(x = sum(ss.data.strings$res<3),
n = nrow(ss.data.strings)))$conf.int
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[1] 0.01073155 0.08825263
attr(,"conf.level")
[1] 0.95

We can compare different methods with the binconf function:

> require("Hmisc")
> binconf(x = sum(ss.data.strings$res<3),

n = nrow(ss.data.strings), method = "all")

PointEst Lower Upper
Exact 0.03333333 0.009155506 0.08314872
Wilson 0.03333333 0.013037551 0.08258034
Asymptotic 0.03333333 0.001216316 0.06545035

As a general rule, the result of the prop.test is the best option. ��

10.2.3 Mean Confidence Interval

Thanks to the central limit theorem, for large5 sample sizes we can construct
confidence intervals for the mean of any distribution using the following formula:

x̄± zα/2
σ√

n
.

Usually, σ is unknown. In this case, instead of σ and the normal quantile z,
we must use the sample standard deviation (s) and Student’s t quantile with n− 1
degrees of freedom (tα/2,n−1). A thorough explanation of this important concept is
outside the scope of this book. The degrees of freedom can be thought of as the
number of data minus the number of constraints used to estimate the parameter
under study. Therefore, the confidence interval takes the following form:

x̄± tα/2,n−1
s√
n
.

Example 10.3 (Guitar strings (cont.)). We want to build a 95% confidence
interval for the mean of the tension resistance of the strings in the data set
ss.data.strings. Assuming that the population variance is unknown, we
need the appropriate value of the t distribution:

> res.t <- qt(0.975, nrow(ss.data.strings) - 1)
> res.t

[1] 1.9801

5A sample size n ≥ 30 is considered large.
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This value will be multiplied by the standard deviation of the mean, that is:

> sd.mean <- sd(ss.data.strings$res)/sqrt(nrow(ss.data.
strings))

> sd.mean

[1] 0.1695823

And finally we can give the confidence interval:

> mean(ss.data.strings$res) + c(LL = -1, UL = 1) * (res.t *
sd.mean)

LL UL
6.330877 7.002457

If we know the actual value of the population variance, then we must use a
different formula to construct the confidence interval. For example, if we know
(through historical data or any other accepted procedure) that the variance of the
resistance is 4, then we construct the confidence interval using the following code:

> res.z <- qnorm(0.975)
> sd.mean <- 2 / sqrt(nrow(ss.data.strings))
> mean(ss.data.strings$res) + c(LL = -1, UL = 1) * (res.z *

sd.mean)

LL UL
6.308828 7.024505

��

10.2.4 Variance Confidence Interval

Sometimes we need to find out if the variance of a process is within a given range.
Confidence intervals are a fast way to verify this issue. There are two important
differences between mean and variance confidence intervals:

• Methods for variance are more sensitive to the normality assumption. Thus, a
normality test is advisable for validating results.

• The statistic used to construct the confidence interval (χ2) for the variance is not
symmetric, unlike z or t. Therefore, the limits are not symmetric with respect to
the point estimator.

The formulas to construct the confidence interval are as follows:

(n− 1)s2

χ2
1−α/2,n−1

≤ σ ≤ (n− 1)s2

χ2
α/2,n−1

.
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Example 10.4 (Guitar strings (cont.)). In the guitar string factory, the length of
each string was measured before the resistance was tested. To compute a confidence
interval for the variance of the length, we first compute the χ2 quantiles:

> len.chi <- c(qchisq(0.975, nrow(ss.data.strings)),
qchisq(0.025, nrow(ss.data.strings)))

> len.chi

[1] 152.21140 91.57264

Next, we calculate the bounds of the confidence interval:

> len.ci <- ((nrow(ss.data.strings)-1) * var(ss.data.strings$
len)) / len.chi

> len.ci

[1] 0.05591480 0.09294119

We can obtain a confidence interval for the mean along with a graphical
output and a normality test with the function ss.ci in the SixSigma package
(Fig. 10.1):

> ss.ci(len, data = ss.data.strings, digits = 3)

Mean = 950.016; sd = 0.267
95% Confidence Interval= 949.967 to 950.064

LL UL
949.9674 950.0640

��
Confidence intervals can also be obtained using the functions for hypothesis

testing available in R (we will talk about hypothesis tests in the next section). The
hypothesis testing functions in R return an htest object. One of the components
of these types of objects is conf.int, which contains a confidence interval for the
data and the confidence level specified.

Example 10.5 (Guitar strings (cont.)). To obtain automatically a confidence inter-
val for the mean of the length of the strings, we first save the object returned by the
t.test function and then extract the conf.int component:

> my.test <- t.test (ss.data.strings$len)
> my.test$conf.int

[1] 949.9674 950.0640
attr(,"conf.level")
[1] 0.95

��
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Fig. 10.1 Confidence interval for guitar string example. The output shows the confidence interval
and the facts used to construct it. A normality test (including a quantile–quantile plot) and a
histogram with a density plot are shown to validate the model assumptions

10.3 Hypothesis Testing

In statistical inference, hypothesis testing is intended to confirm or validate some
conjectures about the process we are analyzing. Importantly, these hypotheses are
related to the parameters of the probability distribution of the data. For example, if
we have data from a process that are normally distributed and we want to verify if
the mean of the process has changed with respect to the historical mean, we should
make the following hypothesis test:

H0 : μ = μ0,

H1 : μ 	= μ0,
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where H0 denotes the null hypothesis and H1 denotes the alternative hypothesis.
Thus we are testing H0 (“the mean has not changed”) vs. H1 (“the mean has
changed”).

Hypothesis testing can be performed in two ways: one-sided tests and two-sided
tests. An example of the latter is when we want to know if the mean of a process has
increased:

H0 : μ = μ0,

H1 : μ > μ0.

Hypothesis testing tries to find evidence about the refutability of the null hypothe-
sis using probability theory.6 We want to check if a new situation (represented by the
alternative hypothesis) is arising. Subsequently, we will reject the null hypothesis
if the data do not support it with “enough evidence.” The threshold for enough
evidence is decided by the analyst, and it is expressed as a significance level α
(similarly to the confidence intervals explained in Sect. 10.2). A 5% significance
level is a widely accepted value in most cases.

To verify whether the data support the alternative hypothesis, a statistic (related
to the underlying probability distribution) is calculated. If the value of the statistic
is within the rejection region, then the null hypothesis is rejected. If the statistic is
outside the rejection region, then we say that we do not have enough evidence to
accept the alternative hypothesis (perhaps it is true, but the data do not support it).

Usually the refutability of the null hypothesis is assessed through the p-value
stemmed from the hypothesis test. If the p-value is larger than α , then H0 should not
be rejected, otherwise H0 must be rejected. The p-value is sometimes interpreted as
the probability that the null hypothesis is true. This interpretation is not correct. The
p-value is the probability of finding a more extreme sample (in the sense of rejecting
H0) than the one that we are currently using to perform the hypothesis test. So if the
p-value is small, the probability of finding a more extreme sample is small, and
therefore the null hypothesis should be rejected. Otherwise, if the p-value is large,
the null hypothesis should not be rejected. The concept of “large” is determined by
the significance level (α). In practice, if p < α , then H0 is rejected. Otherwise, H0

is not rejected. Thus, for instance, if the confidence level is 95% (α = 0.05) and
the p-value is smaller than 0.05, we do not accept the null hypothesis taking into
account empirical evidence provided by the sample at hand.

There are some functions in R to perform hypothesis tests, for example, t.test
for means, prop.test for proportions, var.test and bartlett.test for
variances, chisq.test for contingency table tests and goodness-of-fit tests,
poisson.test for Poisson distributions, binom.test for binomial distribu-
tions, shapiro.test for normality tests. Usually, these functions also provide a
confidence interval for the parameter tested.

6We will not explain in detail the foundations of hypothesis testing. Some good references can be
found in Sect. 10.6.
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Example 10.6 (Guitar strings (cont.)). We can perform a hypothesis test to verify
if the length of the strings is different from the target value of 950 mm:

H0 : μ = 950,

H1 : μ 	= 950.

> t.test(ss.data.strings$len,
mu = 950,
conf.level = 0.95)

One Sample t-test

data: ss.data.strings$len
t = 0.6433, df = 119, p-value = 0.5213
alternative hypothesis: true mean is not equal to 950
95 percent confidence interval:
949.9674 950.0640
sample estimates:
mean of x
950.0157

As the p-value is (much) greater than 0.05, we accept that the mean is not
different from the target.

We can also compare two means, for example, for two types of strings. To
compare the length of the string types E6 and E1, we use the following code:

>data.E1 <- ss.data.strings$len[ss.data.strings$type == "E1"]
>data.E6 <- ss.data.strings$len[ss.data.strings$type == "E6"]
>t.test(data.E1, data.E6)

Welch Two Sample t-test

data: data.E1 and data.E6
t = -0.3091, df = 36.423, p-value = 0.759
alternative hypothesis: true difference in means is not equal

to 0
95 percent confidence interval:
-0.1822016 0.1339911
sample estimates:
mean of x mean of y
949.9756 949.9997

Again, we cannot accept the alternative hypothesis, and therefore we do not reject
that there are no differences between the length of the two types of strings (that is,
we do not reject the null hypothesis). If we want to compare the variances between
the two types of strings, we can use the var.test function:

> var.test(data.E1, data.E6)
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F test to compare two variances

data: data.E1 and data.E6
F = 1.5254, num df = 19, denom df = 19, p-value
= 0.3655
alternative hypothesis: true ratio of variances is not equal

to 1
95 percent confidence interval:
0.6037828 3.8539181
sample estimates:
ratio of variances

1.525428

In this case, the statistic used is the ratio between variances, and the null
hypothesis is “the ratio of variances is equal to 1,” that is, the variances are equal.

We can also compare proportions using the prop.test function. Do we have
the same defects for every string type? For example, with the following code we can
compare types E1 and A5:

> defects <- data.frame(type = ss.data.strings$type, res = ss
.data.strings$res < 3)

> defects <- aggregate(res ~ type, data = defects, sum)
> prop.test(defects$res, rep(20,6))

6-sample test for equality of proportions
without continuity correction

data: defects$res out of rep(20, 6)
X-squared = 5.1724, df = 5, p-value = 0.3952
alternative hypothesis: two.sided
sample estimates:
prop 1 prop 2 prop 3 prop 4 prop 5 prop 6

0.05 0.00 0.00 0.10 0.00 0.05

The p-value for the hypothesis test of equal proportions is 0.39 (larger than 0.05),
so we cannot reject the null hypothesis, and therefore we do not reject that the
proportions are equal.

A normality test to check if the data follow a normal distribution can be
performed with the shapiro.test() function:

> shapiro.test(ss.data.strings$len)

Shapiro--Wilk normality test

data: ss.data.strings$len
W = 0.9846, p-value = 0.1902

The statistic used to perform this hypothesis test is the Shapiro–Wilk statistic. In
this test, the hypotheses are as follows:

H0 : The data are normally distributed.

H1 : The data are not normally distributed.
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The p-value is 0.19. As it is larger than 0.05, we cannot reject the hypothesis of
normality for the data, so we do not have enough evidence to reject normality. Other
normality tests can be performed using the nortest package. ��

Finally, regarding hypothesis testing, the concepts error type I and error type II
should be introduced. A type I error occurs when we reject the null hypothesis and
it is true. We commit a type II error when we do not reject the null hypothesis and it
is false. The probability of the former is represented as α , and it is the significance
level of the hypothesis test (1−α is the confidence level). The probability of the
latter is represented as β , and the value 1−β is the statistical power of the test.

In statistics, committing a type I error is considered more severe than committing
a type II error, and that is one reason why α is fixed before the test is performed.
The statistical power of the test is usually used to find the appropriate sample
size to conduct a hypothesis test. The R functions power.prop.test and
power.t.test can be used to determine the power or the sample size.

Example 10.7 (Guitar strings (cont.)). Using the results of the initial study, the
Black Belt plans to perform a new analysis to find out the sample size needed to
estimate the mean length of the strings with a maximum error of δ = 0.1 cm. He
sets the significance level (α = 0.05) and the power (1−β = 0.90). The sample size
can be determined using the following command:

> power.t.test(delta = 0.1, power = 0.9, sig.level = 0.05,
sd = sd (ss.data.strings$len))

Two-sample t test power calculation

n = 151.2648
delta = 0.1

sd = 0.2674321
sig.level = 0.05

power = 0.9
alternative = two.sided

NOTE: n is number in *each* group

Therefore, for the new study he must select a sample of 152 strings. ��

10.4 Regression

10.4.1 Model Identification

One of the most important inferences to be made in a Six Sigma project concerns the
relationship between the critical to quality (CTQ) characteristics of our process (Y s)
and the process parameters (Xs), that is, the variables that affect the process. This
relationship is represented as a function where the value of the Y s can be inferred
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from knowledge of the Xs, plus some error (ε):

Y = f (X)+ ε. (10.1)

This function is a statistical model, with some parameters that must be estimated.
Moreover, the error of the model must be assessed.

Regression is the statistical technique used to estimate the f function in (10.1).
The easiest case is the simple linear regression, where f corresponds to a straight
line. If we have only one independent variable (y) and one dependent variable (x),
the regression model is

y = β0 +β1x+ ε,

and the parameters to be estimated are β0 (the intercept of the straight line) and β1

(the slope of the straight line). So the estimated model will be

ŷ = β̂0 + β̂1x.

The difference between the estimated values and the actual values in the sample,
ŷ− y, are the residuals. The residuals are used to check and validate the model.

Before fitting the regression model, we need to find some evidence regarding
the linear relation between the variables. The appropriate statistic to have a first
approximation is the correlation coefficient, defined as

r =
sxy

sxsy
,

where sxy =
∑(xi−x̄)(yi−ȳ)

n−1 is the covariance between the two samples and sx and sy

are the sample standard deviations of x and y, respectively. This coefficient ranges
from −1 to 1. There is no correlation when it equals 0, perfect positive correlation
when it is 1, and perfect negative correlation when it is −1.

The graphical tool suitable for detecting at a glance the relationship between the
two variables is the scatterplot (Chap. 8).

Example 10.8 (Guitar strings (cont.)). During the resistance test of the strings, a
new measure was taken for those strings with a level of tension larger than 8. This
measure is related to the sound volume produced by the string, which is considered
a CTQ characteristic.

The Black Belt wonders whether the length of the strings is related to the sound
volume. First, a new data frame is created to remove the missing data (those strings
that broke down before achieving a level of tension equal to 8). Next, the correlation
coefficient is calculated:

> data.sound <- na.omit(ss.data.strings)
> cor(data.sound$sound, data.sound$len)

[1] 0.7904747
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Fig. 10.2 Basic regression
scatterplot. The regression
line is plotted passing the
adjusted model as an
argument to the abline
function

The value of the coefficient (0.79) shows that there is positive correlation between
the two variables.

To confirm this relationship, we construct a scatterplot. Using the following code
we can plot it using R standard graphics, including the regression line (Fig. 10.2):

> plot(data.sound$len, data.sound$sound)
> abline(lm(sound ~ len, data = ss.data.strings))

It is apparent that the longer a string is, the higher the sound it produces. We
can plot a more sophisticated regression chart including a smooth line, confidence
bands, and more information about the data (coloring the points according to string
type) using the ggplot2 package (Fig. 10.3) by typing the following code:

> qplot(len, sound, data = data.sound,
geom = c("point", "smooth"),
xlab = "String length",
ylab = "String sound") +

geom_point(aes(col=type)) +
opts(title = "Scatterplot for regression")

��

10.4.2 Model Fitting

Once we have identified the model, we estimate it, that is, we calculate β̂0 and β̂1.
The function lm fits linear models (see Sect. 10.4.4 for additional models). The R
functions that fit models accept certain specific arguments for the model to be fitted.
There are two essential common arguments: data and formula. The former
is the data frame where the data are stored, containing the variables we want to
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Fig. 10.3 Sophisticated scatterplot using ggplot2 package. The line and bounds are computed
using the loess function, which fits a polynomial regression. The smoothness can be adjusted
by changing the span argument in the qplot function. It is also possible to include just the
regression line. The points are colored according to string type to identify possible patterns

study. The latter is a special R expression to represent functions in symbolic form.
It consists of two terms connected by the special tilde operator ∼. The term on
the left is for the response or dependent variable. The term on the right is for the
independent or explanatory variables. For example, for the simple linear regression
model y = β0 +β1x, the expression to pass as formula is y ∼ x (assuming that we
have two vectors named x and y in the R workspace).

The term on the right-hand side can consist of a single variable or a series of
terms combined with some operators indicating the influence in the model (+, -, :,
*, ˆ, %in%). The following special symbols can be used to specify terms: 0 (avoid
intercept), “.” (all but the response), and 1 (empty model). Type ?formula in the
R console to learn more about model formulae in R.

Example 10.9 (Guitar strings (cont.)). The linear model to estimate the relationship
between the sound (response) and length of strings is
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> lm(sound ~ len, data = data.sound)

Call:
lm(formula = sound ~ len, data = data.sound)

Coefficients:
(Intercept) len

-68346.72 72.03

By simply executing the lm function, we obtain the coefficients. These coeffi-
cients provide the formula for our model:

sound =−68346.72+ 72.03× length.

The usual way to proceed is to save the model in an object and access the
elements in it. The elements stored in a lm model are listed below. The typical
output for regression can be obtained with the summary generic function over a
model object:

> my.model <- lm(sound ~ len, data = data.sound)
> names(my.model)

[1] "coefficients" "residuals" "effects"
[4] "rank" "fitted.values" "assign"
[7] "qr" "df.residual" "xlevels"
[10] "call" "terms" "model"

> summary(my.model)

Call:
lm(formula = sound ~ len, data = data.sound)

Residuals:
Min 1Q Median 3Q Max

-41.438 -7.483 -1.345 10.369 36.252

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -68346.719 7497.948 -9.115 3.30e-12
len 72.025 7.892 9.126 3.18e-12

Residual standard error: 15.32 on 50 degrees of freedom
Multiple R-squared: 0.6249, Adjusted R-squared: 0.6173
F-statistic: 83.28 on 1 and 50 DF, p-value: 3.181e-12

In this output, we obtain, after the call of the function, some statistics about the
residuals distribution. Next, the coefficients and the result of their hypothesis tests
are shown. The null hypothesis in these tests is “the parameter equals 0.” Therefore,
as the p-values are very small, we accept that the parameters are not zero. In the last
part of the output, the R-squared statistic shows the proportion of the variability of
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the response that is explained by the linear model. The hypothesis test performed
next is for testing the overall goodness of fit of the regression model. For simple
linear models, the p-value is the same as that for the slope of the regression line.

The values returned for the parameters correspond to an estimation. We can
compute a confidence interval for these estimators using the confint function
over the model object:

> confint(my.model)

2.5 % 97.5 %
(Intercept) -83406.79017 -53286.64744
len 56.17277 87.87787

Other functions that can be run with a model as argument include plot,
residuals, predict, and anova, among others. ��

10.4.3 Model Validation

Once we have estimated the model, we need to validate the assumptions we made
before fitting the model. For linear models, the main assumption is the normality
and independence of the residuals. To verify the assumptions, we can use analytical
tools such as a normality test for the residuals using the shapiro.test function
or graphical tools such as those provided by the generic plot function over the
model object.

Example 10.10 (Guitar strings (cont.)). Once we have fitted the model, we can
perform a normality test over the residuals:

> shapiro.test(residuals(my.model))

Shapiro-Wilk normality test

data: residuals(my.model)
W = 0.9903, p-value = 0.9455

We cannot reject the null hypothesis (residuals are normal), so we accept
normality for the residuals of the regression model.

The graphical output provided by the generic plot function is shown in
Fig. 10.4. In the following code, the first line allows us to print in a single window
the four graphics produced:

> par(mfrow=c(2,2))
> plot(my.model)

��
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Fig. 10.4 Graphic output for linear regression model. The plot in the top left is a scatterplot
of the residuals vs. the fitted values (the lack of patterns confirms the normality); the plot in the
top right is a quantile–quantile plot for normal distributions (the points are approximately over
a straight line, again confirming normality). The plot in the bottom left is a scatterplot for the√|standardized residuals| vs. the fitted values. It is similar to the first one, and a triangular shape
would be indicative of a lack of homoscedasticity (constant variance, which is one of the model
assumptions). The last plot (bottom right) shows Cook’s distance for all the points. Those points
outside of the 0.5 line affect the parameter estimation and might be outliers

10.4.4 Other Models

So far, we have built step by step a simple linear regression model. In practice,
many other models may describe our process. The first extension of the simple
regression model is the multiple regression model, where we can include more than
one independent variable, just adding up more terms on the right side of the formula.
R can also fit models with different types of variables, including factors. When more
than one variable is present, a variable selection technique should be considered.
We can automatically select the significant variables with the function step over a
model object. If we prefer to do it by ourselves, the function update.formula
allows us to modify the model without rewriting the whole formula.
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For multiple regression models, a new assumption is very important: the inde-
pendent variables must be uncorrelated among each other. When this issue cannot
be avoided, ridge regression is an alternative. The functions lm.ridge (MASS
package), ridge (survival package), and lpridge (lpridge package) can
fit regression models by ridge regression.

Other extension of the linear models are the generalized linear model (GLM),
which allows us to deal with nonnormal data and adjust models of different families
(binomial, Poisson, etc.). The R function glm is the appropriate one to fit these
models. The generalized additive model (GAM) and mixed models are alternatives
when we do not have linear relationships. The gam and mgcv packages contain
functions for fitting these kinds of models.

State-of-the-art techniques to predict and estimate relationships between vari-
ables include neural networks (NN), partial least-squares (PLS) regression, and
support vector machine (SVM). Packages for these techniques are available at
CRAN: AMORE, monmlp, nnet, and neuralnet for NN; pls, plsdof,
plspm, plsRglm, plsgenomics, plsRbeta, and plsRcox for PLS; and
e1071, kernlab, and RWeka for SVM.

Example 10.11 (Guitar strings (cont.)). We can try to fit a multiple regression
model by adding the variable res to our model to find out if tension also contributes
to the sound. We can update the model with the following code:

> new.model <- update(my.model, . ~ . + res )

or just rewrite the formula:

> new.model <- lm(sound ~ len + res, data = data.sound)

Now we can see the model summary:

> summary(new.model)

Call:
lm(formula = sound ~ len + res, data = data.sound)

Residuals:
Min 1Q Median 3Q Max

-41.194 -7.949 -1.641 10.702 36.496

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -68604.720 7604.325 -9.022 5.47e-12
len 72.285 8.001 9.035 5.24e-12
res 1.361 4.054 0.336 0.739

Residual standard error: 15.46 on 49 degrees of freedom
Multiple R-squared: 0.6257, Adjusted R-squared: 0.6104
F-statistic: 40.96 on 2 and 49 DF, p-value: 3.496e-11

The new estimate parameter for resistance (1.361) is not significantly different
from zero (p-value = 0.739). Therefore, we do not need it in the model. We can
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automatically select the significant variables with the step function over the full
model using the backward method7:

> step(new.model, direction = "backward")

Start: AIC=287.67
sound ~ len + res

Df Sum of Sq RSS AIC
- res 1 26.9 11735 285.79
<none> 11708 287.67
- len 1 19502.4 31210 336.66

Step: AIC=285.79
sound ~ len

Df Sum of Sq RSS AIC
<none> 11735 285.79
- len 1 19545 31280 334.77

Call:
lm(formula = sound ~ len, data = data.sound)

Coefficients:
(Intercept) len

-68346.72 72.03

As expected, the model obtained contains only the explanatory variable len. ��

10.5 Analysis of Variance

Analysis of variance (ANOVA) is the appropriate statistical technique to analyze the
relationship between variables when the explanatory variables are qualitative (also
called factors). The possible values of the factors are called levels. When we have
only one factor with two levels, we can perform a t-test to test the difference between
means, as explained in Sect. 10.3. Otherwise, we use one-way ANOVA. One-way
means the principal effects to be evaluated, that is, the effect of belonging to one of
the groups determined by the levels. Two-way ANOVA is performed when we have
more than one factor and we are interested in measuring the effect of second-order
interactions (that is, if the response in one level of a factor depends on the level of
another factor). Similarly, we can perform multiway ANOVA. However, it is very
unlikely to improve our analysis with more than third-order interactions.

7We can choose one of the following methods in the step function: backward, forward, or both.
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Fig. 10.5 Group box plots for guitar string example. The power needed for strings D4 and G3
seems to be different from the rest. We need to verify if this difference is significant

10.5.1 Model Identification

The counterpart of the scatterplot to reveal a possible relationship between the
response and the factors is the box plot by groups. It consists in plotting in the
same graphic box plots for each group defined by the factor levels.

Example 10.12 (Guitar strings (cont.)). A measurement of the power needed to
pluck a string at a tension level of 8 was taken during the tension test. The Black
Belt wants to know if there are differences between the various types of strings
for this important characteristic. First, we should plot the box plots for the groups
(Fig. 10.5):

> boxplot(power ~ type, data = data.sound)

We can see that strings D4 and G3 look different from the rest. ��
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10.5.2 Model Fitting and Validation

We can use the functions aov and lm to perform the ANOVA. When using lm, the
ANOVA table is printed calling the function anova over the object. The effects of
each factor level are the parameters to estimate in the model:

yi j = μ +αi + εi j,

where αi is the effect of level i. In practice, μ is replaced by the sample mean of the
first level (reference level), and the effects are related to the reference level.

Example 10.13 (Guitar strings (cont.)). We fit the model with the lm function8 and
save the result in an object:

> model.power <- lm(power ~ type, data = data.sound)
> names(model.power)

[1] "coefficients" "residuals" "effects"
[4] "rank" "fitted.values" "assign"
[7] "qr" "df.residual" "contrasts"
[10] "xlevels" "call" "terms"
[13] "model"

This object contains 13 components. By calling the generic anova function over
the model, we get the following ANOVA table:

> anova(model.power)

Analysis of Variance Table

Response: power
Df Sum Sq Mean Sq F value Pr(>F)

type 5 0.57869 0.115739 4.8131 0.001273
Residuals 46 1.10615 0.024047

The ANOVA table shows a hypothesis test where the null hypothesis is “all the
effects are equal to 0.” As the p-value is lower than 0.05, we can reject the null
hypothesis and accept that there are differences among the means of the groups.

The parameters are stored in the component coefficients of the model
object, and they can be printed using the summary function. The number of
parameters is equal to the number of levels in the factor. The intercept parameter is
the mean of the response for the first level, and the remaining parameters represent
the effect of this level on the mean of the first level. We can also obtain a confidence
interval for each parameter:

> summary(model.power)

8The aov function can also be used. The difference is basically the presentation of the results.
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Call:
lm(formula = power ~ type, data = data.sound)

Residuals:
Min 1Q Median 3Q Max

-0.304940 -0.104136 -0.002825 0.076641 0.308359

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.07123 0.05169 59.416 < 2e-16
typeB2 -0.07609 0.06970 -1.092 0.28065
typeD4 -0.32267 0.07535 -4.282 9.32e-05
typeE1 -0.06081 0.07815 -0.778 0.44048
typeE6 -0.10966 0.07125 -1.539 0.13065
typeG3 -0.22355 0.07815 -2.861 0.00634

Residual standard error: 0.1551 on 46 degrees of freedom
Multiple R-squared: 0.3435, Adjusted R-squared: 0.2721
F-statistic: 4.813 on 5 and 46 DF, p-value: 0.001273

> confint(model.power)

2.5 % 97.5 %
(Intercept) 2.9671822 3.17527524
typeB2 -0.2163871 0.06420548
typeD4 -0.4743378 -0.17099267
typeE1 -0.2181127 0.09649442
typeE6 -0.2530739 0.03376260
typeG3 -0.3808542 -0.06624708

The intervals corresponding to types D4 and G3 do not contain a zero value and
therefore differ from the intercept. However, types B2, E1, and D6 do not differ with
respect to A5 (intercept).

We can make pairwise comparisons between all the groups using the function
pairwise.t.test:

> pairwise.t.test(power, type,
p.adj = "bonferroni",
data = ss.data.strings)

Pairwise comparisons using t tests with pooled SD

data: power and type

A5 B2 D4 E1 E6
B2 1.00000 - - - -
D4 2.9e-05 0.00018 - - -
E1 1.00000 1.00000 0.00023 - -
E6 1.00000 1.00000 0.00304 1.00000 -
G3 0.00409 0.01852 1.00000 0.01882 0.16540

P value adjustment method: bonferroni
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The output is a matrix with p-values corresponding to the individual hypothesis
tests comparing the means. We can see that G3 and D4 are different from the rest of
the string types, but there is no difference between them.

To visualize the effects, we can plot a simple chart using the plot.design
function (Fig. 10.6) or a dot plot with the sample means linked by lines using the
ggplot2 package (Fig. 10.7).

> plot.design(power ~ type, data = data.sound)

> qplot(type, power, data = ss.data.strings) +
stat_summary(fun.y = mean, geom = "line",

aes(group = 1), col = "orangered") +
stat_summary(fun.y = mean, geom = "point",

shape = 17, size = 3, col = "red") +
opts(title = "Effects of factor Type of string")

��

10.5.3 Additional Models and Related Tools

ANOVA is the suitable analytical tool to use after an experiment has been done. The
correct design of that experiment is crucial for the results to be acceptable. Design
of experiments (DoE) will be explained in some detail in Chap. 11.

When we are jointly analyzing factors and continuous variables as explanatory
variables, analysis of covariance (ANCOVA) allows us to study interactions between
both types of variables.
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Fig. 10.7 Effects of string type. The means look quite different for types D4 and G3, with D4
having the lower mean value

Multivariate analysis of variance (MANOVA) is an extension that is used when
more than one response variable may be influenced by some dependent variables.
The R functionmanova accepts the same arguments as the aov function, expecting
a matrix of continuous variables as the left-side component of the formula.

10.6 Summary and Further Reading

In this chapter we reviewed the basics of statistical inference. Point and interval
estimation are the techniques used to make inferences about the parameters and
probability distribution of a population. Hypothesis testing can be used throughout
any inference analysis, with the interpretation results relying on the important
concepts of p-value and null/alternative hypotheses.
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Inference about the relationship of variables starts with linear models, such as
regression or ANOVA. The main R functions and their outputs were explained.
However, one of the most common statistical mistakes made in inference is to infer
cause-and-effect correspondence from that relationship. It is not enough by itself,
as there may be many other unstudied variables that are the real cause of some
effect. DoE, described in the next chapter, will help to confirm those cause-and-
effect relationships.

Extensions of the linear models can be read in [24]. The free resources [45] and
[25] contain a number of R examples explaining the inference techniques reviewed
in this chapter. The book [38], freely available on the book’s Web site, is a nice
reference on state-of-the-art prediction and estimation techniques. Regarding SVM,
a complete review with applications is the work in [68]. References [18] and [20]
discuss the application of statistics with R. Moreover, almost all books on Six Sigma
contain entire chapters devoted to statistical inference.

Case Study

Estimate the parameters of the probability distribution of the flight time (mean
and variance) and calculate a confidence interval. Test if the flight time follows a
normal distribution. Obtain a confidence interval for the proportion of defects using
any valid criterion for what constitutes a defect. Fit a regression model using as
response variable the flight time and as independent variable any other measurable
characteristic of the prototypes or the environment (e.g., temperature, wind speed).
Determine if the estimated parameters are significant. Make an ANOVA using the
flight time as the response and any categorical variable as the independent variable
(e.g., a design characteristic, operator). Fit a model and determine if there are
differences between the groups.

Practice

10.1. Test the normality hypothesis for the resistance of the strings.

10.2. Fit a linear model using the resistance of the strings as the response variable
and the length of the strings as the independent variable. Is the linear model a good
model to explain this relationship?

10.3. Determine whether the length of the strings is related to the type of string
using ANOVA.
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In this part of the book, tools useful during the Improve phase are introduced.
In this phase, the relationship between the input variables and the response is

verified and the new process operating conditions are statistically validated.
We will describe the most representative tool: design of experiments (DoE).



Chapter 11
Design of Experiments with R

Sometimes the only thing you can do with a poorly designed
experiment is to try to find out what it died of.

R. A. Fisher

11.1 Introduction

Design of experiments (DoE) is one of the most important tools in the Six Sigma
methodology. According to [2] it is the “jewel of quality engineering.” It is the
essence of the Improve phase and the basis for the design of robust processes.
However, DoE is not improvement itself. In fact, some authors include DoE within
the Analyze phase of the design, measure, analyze, improve, and control (DMAIC)
cycle; see, for instance, [82]. An adequate use of DoE will lead to the improvement
of a process, but a bad design can result in wrong conclusions and engender the
opposite effect: inefficiencies, higher costs, and less competitiveness.

In this chapter, we present the foundations of DoE and introduce the essential
functions in R to perform it and analyze its results. We will describe 2k factorial
designs using a variation of the example described in [10]. This example is
representative of how DoE should be used to achieve the improvement of a process
in a Six Sigma way. The chapter is not intended as a thorough review of DoE.
The idea is to introduce a simple model in an intuitive way. For more technical or
advanced training, a number of references are given at the end of the chapter.

11.2 Importance of Experimenting

With the analytical tools presented in previous chapters (and in the following one),
we can perform observational studies. In these kinds of studies we act as an external
observer. In other words, we do not have any influence on the variables we are
measuring. We just collect the data and analyze them using the appropriate statistical
technique (e.g., regression, analysis of variance (ANOVA)).

E.L. Cano et al., Six Sigma with R: Statistical Engineering for Process
Improvement, Use R! 36, DOI 10.1007/978-1-4614-3652-2__11,
© Springer Science+Business Media New York 2012
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DoE allows us to control the values of the Xs of the process and then measure
the value of the Y s to discover what values of the independent variables will allow
us to improve the performance of our process (the dependent variable or response).
Moreover, we can manage the effects of other variables beyond our control using
blocking techniques.

Experiments seem to be scientists’ stuff. So do we need experiments for
industrial and service activities? The answer is given by the following quote: “An
engineer who does not know experimental design is not an engineer.” This comment
was made by an executive of the Toyota Motor Company to one of the authors of
the book by [11], where it is included along with other quotations. In this regard,
we have emphasized several times that Six Sigma consists in the application of the
scientific method to process improvement, and experiments are an essential part of
the scientific methodology of work.

Nevertheless, when we rely on the analysis of data gathered directly during the
normal performance of a process, there are some risks pertaining to the conclusions.
Next, we briefly list these risks, which should be taken into account.

11.2.1 Inconsistent Data

Noise factors such as aging, procedure modifications, repairs, and other circum-
stances that vary as time changes are generally not measured along with the
variables of interest of a process. Thus, data automatically recorded may not be
consistent, and conclusions based on their analysis may not be correct.

11.2.2 Variable Value Range

When measuring the process during its day-to-day performance, the variables are
supposed to be under control, that is, within the control limits of the process. This
fact may hide the real relationship between the variables because the independent
variable (X) is inside the operation range and its performance outside this range is
unknown. Figure 11.1 illustrates an example of this situation.

11.2.3 Correlated Variables

When two or more explanatory variables are correlated (Sect. 10.4, Chap. 10), the
data gathered during the normal operation of a process (without experimentation)
may lead to wrong conclusions. Thus we can obtain two different, misleading
situations. The former is known as the confusion of effects and is produced when
responses vary in the same sense of two correlated factors. Thus we do not know
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same data set
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which of the factors causes the variation in the response. The latter is called the
hidden variable and is produced when one of the correlated factors has not been
measured, and we may infer that the variation is caused by the measured one (when
there is no cause-and-effect relation). Figure 11.2 illustrates an example of these
situations.

11.3 Experimentation Strategies

We can deal with the risks explained in the previous section through
experimentation. Cause-and-effect relationships can be determined by changing the
levels of the factors and measuring the effects. Before explaining the computation of
the effects using statistical techniques, let us have a look at the different strategies
we can follow in the stages prior to experimentation.

11.3.1 Planning Strategies

Experimentation is usually expensive, and we have limited resources to carry out
our experiments. So we must decide how to use them. The more trials we do, the
more money we spend on the experiment. In Sect. 10.5, we described what we
mean by factors and levels. In what follows, roughly speaking, we will refer to
the explanatory variables as factors and the discretized values of these variables as
levels. In fact, the number of trials increases exponentially as we add more factors
or levels.

The decision on how to allocate our budget is made in the planning of the
experiment. We can decide between several planning strategies:

No planning. Everybody agrees that this is a bad way of conducting an experiment.
However, it happens often enough. This is the trial-and-error approach: we conducts
one experiment after another until the budget is spent, following some criteria, often
based on intuition or conjectures rather than on science or data analysis.

Plan everything at the beginning. Once the experiment has been defined
(essentially, the factors whose effects in the response should be assessed), the entire
budget is allocated to performing all the possible experiments, setting different
levels for each factor within the range the analyst has decided on (for example,
through observational studies, bibliography, or some other method). The down side
of this planning strategy is that it does not take into account intermediate results,
and we would probably spend money on experiments that contributed nothing to
our knowledge of the process.

Sequential planning. The Six Sigma way of experimenting is to plan the
experiments sequentially. In a first stage, a reduced number of trials will be
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conducted to make decisions about the next stage. This first stage should consume
part of the budget (between 25 and 40%, depending on the researcher). Most of
the budget should be spent in subsequent stages, taking into account previous
results.

11.3.2 Factor Levels and Replications

In the sequential planning strategy described above, the factor levels can be modified
in the direction of the experiment objective. For example, imagine a continuous
explanatory variable (factor) that has been discretized into two levels (low, usually
represented by the symbol “−,” and high, represented by the symbol “+”). If we
are interested in the increase in the response variable, and a first experiment shows
that the effect of a given factor raises the response to a high level (+), in the next
experiment we should try a higher level of the factor to find out if the response
improves its performance even more and not spend money in the other direction, that
is, the low level (−). Note that factors and levels are usually represented by a design
matrix with one column for each factor, one row for each different experimental
condition, and a symbol in the cells representing the factor level.

Example 11.1 (Pizza dough). Let us define now the experiment that will be used
throughout the chapter. It is a variation of the example described in [10].

A food manufacturer is searching for the best recipe for its main product: a
pizza dough sold in retailers across its market area. To discover this magic formula,
the managers decided to perform an experiment to determine the optimal levels of
the three main ingredients in the pizza dough: flour, salt, and baking powder. The
other ingredients are fixed as they do not affect the flavor of the final cooked pizza.
The flavor of the product will be determined by a panel of experts who will give
a score to each recipe. Therefore, we have three factors that we will call flour,
salt, and bakPow, with two levels each (− and +). We can then construct a data
sheet to record the measured data using the following code:

> pizzaDesign <- expand.grid(flour = gl(2, 1, labels = c("-",
"+")),

salt = gl(2, 1, labels = c("-", "+")),
bakPow = gl(2, 1, labels = c("-", "+")),
score = NA)

> pizzaDesign

flour salt bakPow score
1 - - - NA
2 + - - NA
3 - + - NA
4 + + - NA
5 - - + NA
6 + - + NA
7 - + + NA
8 + + + NA
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Note that we have eight different experiments (recipes) including all the possible
combinations of the three factors at two levels. ��

When we have more than one factor, the sequential planning can be carried out
changing one factor at a time, with the others kept fixed. This is the wrong approach
as there may be interactions among the factors, that is, the combination of levels of
different factors may affect the response. For instance, when there is an interaction
between two factors, the effect of one of them on the response depends on the value
of the other factor. Therefore, to discover the main effects and the interactions, we
should vary more than one level at a time, performing experiments in all the possible
combinations.

However, as we remarked above, experimentation is expensive, and the number
of factor levels to test increases the number of experiments. This is the reason why
two-level factor experiments (denoted by 2k) are the most widely used.

Finally, to study the variation under the same experimental conditions, we will
need to replicate the experiment, making more than one trial per factor combination.
The number of replications depends on several aspects (e.g., budget).

11.3.3 Progressive Experimentation

In practice, the way to proceed with Six Sigma experimentation is a progressive
(and sometimes iterative) method. First, performing screening experiments, we
study a set of factors to discard those that do not affect the response and then select
the important ones. A priori, we may think that some of them do not cause variation
in the response, but the benefit of including them in the experiment is that we will
have scientific evidence. Moreover, underlying interactions will be properly tested.
Once the significant effects have been identified, characterizing experiments are
conducted, estimating the effects and studying the residuals to model the Y = f (X)
function that governs the process. Finally, optimization experiments will help to find
the operational optimum value for our process.

11.3.4 Model Assumptions

Remember that we are at the Improve phase of the DMAIC cycle, and we have
arrived here after having defined the process and the project objectives. Moreover,
we have achieved an appropriate Measurement system (Chap. 5), and we know the
process capability (Chap. 7) and the cost of poor quality (Chap. 4).

To validate the results, we must reiterate the importance of randomization. Once
you have fixed the factors and the levels of an experiment, measurements must be
taken randomly. Thus, if we have an ordered list of all the combinations of factor
levels, before starting measuring the response, we must set the random order in
which they are going to be measured.
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The suitable statistical technique to analyze experiments is analysis of variance
(ANOVA), described in Chap. 10. There are two main assumptions in this type of
model: (1) the normality and independence of residuals and (2) homoscedasticity
(constant variance). A systematic strategy for randomization is useful for achieving
the former, whereas the latter may be checked using hypothesis tests (Chap. 10).

Example 11.2 (Pizza dough (cont.)). Once an experiment has been designed, we
will proceed with its randomization. We can add a column to the design matrix with
the randomized order of the trials and sort the rows of the design matrix following
a random order:

> pizzaDesign$ord <- sample(1:8, 8)
> pizzaDesign[order(pizzaDesign$ord),]

flour salt bakPow score ord
5 - - + NA 1
1 - - - NA 2
7 - + + NA 3
2 + - - NA 4
4 + + - NA 5
6 + - + NA 6
8 + + + NA 7
3 - + - NA 8

Each time you repeat the command you get a different order due to
randomization.

Finally, we can print the data frame in the appropriate media for the team member
in charge of registering the value of the response (in this case, the scores given by
the experts to each recipe). We will see how to generate automatic reports with R in
Chap. 13.

Pizzas may be labeled with the number of the corresponding recipe, and then
the scores are recorded in the form. We can have as many forms as experiment
replications. ��

11.4 2k Factorial Designs

2k factorial designs are those whose number of factors to be studied are k, all of
them with 2 levels. The number of experiments we will have to carry out to obtain a
complete replication is precisely the power 2k (2 to the k). If we want n replications
of the experiment, then the total number of experiments is n× 2k.

Using ANOVA, we will estimate the effect of each factor and interaction
and assess which of these effects are significant. Let us represent the factors by
uppercase latin letters (A, B, . . . ). The main effects are usually represented by greek
letters (α , β , . . . ) corresponding to the latin letter of the factor, and the effects of
interactions by the combination of the letters representing the factors whose effects
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interact. For example, for a 2k experiment with three factors and n replications, the
statistical model is

yi jkl = μ +αi +β j + γk +(αβ )i j +(αγ)ik +(β γ)kl +(αβ γ)i jk + εi jkl , (11.1)

i = 1,2; j = 1,2; k = 1,2; l = 1 . . .n,

εi jkl ∼ N(0,σ) independent,

where

μ is the global mean of the response,
αi is the effect of factor A at level i;
β j is the effect of factor B at level j;
γk is the effect of factor C at level k;
(αβ )i j is the effect of the interaction of factors A and B at levels i and j,
respectively;
(αγ)ik is the effect of the interaction of factors A and C at levels i and k, respectively;
(β γ) jk is the effect of the interaction of factors B and C at levels j and k,
respectively;
(αβ γ)i jk is the effect of the interaction of factors A, B and C at levels i, j, and k,
respectively;
εi jkl is the random error component of the model.

Example 11.3 (Pizza dough (cont.)). The experiment is carried out by preparing
the pizzas at the factory following the package instructions, which had been tested
previously as the better conditions to prepare the pizza, namely: “bake the pizza for
9 min in an oven at 180◦C.”

After a blind trial,1 the scores given by the experts to each of the eight (23)
recipes in each replication of the experiment are those in Table 11.1.

To perform the ANOVA in R, we keep the data in a data frame where each row
corresponds to one of the individual experiments. You can do this by combining the
design matrix created previously and assigning the response values using a vector or
any other input data method available in R (Chap. 2). Using the following code you
obtain an R data.frame object with the data in Table 11.2. The ss.data.doe1
data set is available in the SixSigma package.

> ss.data.doe1 <- data.frame(repl = rep(1:2, each = 8),
rbind(pizzaDesign[, -6], pizzaDesign[, -6]))

> ss.data.doe1$score <- c(5.33, 6.99, 4.23, 6.61,
2.26, 5.75, 3.26, 6.24,
5.7, 7.71, 5.13, 6.76,
2.79, 4.57, 2.48, 6.18)

1The experts do not know the recipe used for each individual pizza.
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Table 11.1 Pizza dough
recipe scores

Replication 1 Replication 2

Recipe 1 5.33 5.70
Recipe 2 6.99 7.71
Recipe 3 4.23 5.13
Recipe 4 6.61 6.76
Recipe 5 2.26 2.79
Recipe 6 5.75 4.57
Recipe 7 3.26 2.48
Recipe 8 6.24 6.18

Table 11.2 Data for pizza dough example

Repl Flour Salt BakPow Score Ord

1 1 − − − 5.33 2
2 1 + − − 6.99 4
3 1 − + − 4.23 8
4 1 + + − 6.61 5
5 1 − − + 2.26 1
6 1 + − + 5.75 6
7 1 − + + 3.26 3
8 1 + + + 6.24 7
9 2 − − − 5.70 2
10 2 + − − 7.71 4
11 2 − + − 5.13 8
12 2 + + − 6.76 5
13 2 − − + 2.79 1
14 2 + − + 4.57 6
15 2 − + + 2.48 3
16 2 + + + 6.18 7

We can get the average for each recipe:

> aggregate(score ~ flour + salt + bakPow,
FUN = mean, data = ss.data.doe1)

flour salt bakPow score
1 - - - 5.515
2 + - - 7.350
3 - + - 4.680
4 + + - 6.685
5 - - + 2.525
6 + - + 5.160
7 - + + 2.870
8 + + + 6.210

The best recipe seems to be the one with a high level of flour and a low level of
salt and baking powder. We must fit a linear model and perform an ANOVA to find
the significant effects. We use the lm function to fix the model:
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> doe.model1 <- lm(score ~ flour + salt + bakPow +
flour * salt + flour * bakPow +
salt * bakPow + flour * salt * bakPow,

data = ss.data.doe1)

Once we have saved the model into a model object, we obtain an ANOVA table
using the summary function:

> summary(doe.model1)

Call:
lm(formula = score ~ flour + salt + bakPow + flour * salt +

flour *
bakPow + salt * bakPow + flour * salt * bakPow, data = ss

.data.doe1)

Residuals:
Min 1Q Median 3Q Max

-0.5900 -0.2888 0.0000 0.2888 0.5900

Coefficients:
Estimate Std. Error t value

(Intercept) 5.5150 0.3434 16.061
flour+ 1.8350 0.4856 3.779
salt+ -0.8350 0.4856 -1.719
bakPow+ -2.9900 0.4856 -6.157
flour+:salt+ 0.1700 0.6868 0.248
flour+:bakPow+ 0.8000 0.6868 1.165
salt+:bakPow+ 1.1800 0.6868 1.718
flour+:salt+:bakPow+ 0.5350 0.9712 0.551

Pr(>|t|)
(Intercept) 2.27e-07
flour+ 0.005398
salt+ 0.123843
bakPow+ 0.000272
flour+:salt+ 0.810725
flour+:bakPow+ 0.277620
salt+:bakPow+ 0.124081
flour+:salt+:bakPow+ 0.596779

Residual standard error: 0.4856 on 8 degrees of freedom
Multiple R-squared: 0.9565, Adjusted R-squared: 0.9185
F-statistic: 25.15 on 7 and 8 DF, p-value: 7.666e-05

Looking at the p-values, we can figure out, with a high level of confidence, that
the main effects of the ingredients flour and baking powder are significant, while
the effect of the salt is not significant. Interactions among the ingredients are neither
2-way nor 3-way, making them insignificant.

Now, we can simplify the model, excluding the nonsignificant effects. Thus, the
new model with the significant effects is

> doe.model2 <- lm(score ~ flour + bakPow,
data = ss.data.doe1)

> summary(doe.model2)



11.4 2k Factorial Designs 207

Call:
lm(formula = score ~ flour + bakPow, data = ss.data.doe1)

Residuals:
Min 1Q Median 3Q Max

-0.84812 -0.54344 0.06062 0.44406 0.86938

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.8306 0.2787 17.330 2.30e-10
flour+ 2.4538 0.3219 7.624 3.78e-06
bakPow+ -1.8662 0.3219 -5.798 6.19e-05

Residual standard error: 0.6437 on 13 degrees of freedom
Multiple R-squared: 0.8759, Adjusted R-squared: 0.8568
F-statistic: 45.87 on 2 and 13 DF, p-value: 1.288e-06

And we can obtain the coefficients for the model with the coef function:

> coef(doe.model2)

(Intercept) flour+ bakPow+
4.830625 2.453750 -1.866250

Therefore, the statistical model for our experiment is

ŝcore = 4.8306+ 2.4538×flour− 1.8662× bakPow, (11.2)

expressed in terms of the coefficients of the model. In the preceding equation, the
possible values for the flour and bakPow factors are 0 for the low level (−), and 1
for the high level (+).

This codification of the factors is different from that in (11.1), in which the
possible values for the factors are −1 for the low level and +1 for the high level.
To calculate the effects, the coefficients must be divided by two, and the equivalent
model to (11.1) will be

ŝcore = 5.1244+ 1.2269×flour− 0.9331× bakPow, (11.3)

where 5.1244 is the overall average score. For instance, in this formulation of the
model, passing flour from level −1 to level +1 implies an increase of 2.4538 in the
average score of the recipe.

If we want to change from the model given by (11.3) to the model given by
(11.2), then all we have to do is calculate the coefficients by duplicating the effects
and calculating the intercept as

ȳ−α1 −β1 = 5.124375− 1.226875− (−0.933125)= 4.8306. (11.4)

> as.numeric(mean(ss.data.doe1$score) -
coef(doe.model2)[2]/2 -
coef(doe.model2)[3]/2)
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[1] 4.830625

Thus, the recipe with a high level of flour and low level of baking powder will
be the best one, regardless of the level of salt (high or low). The estimated score for
this recipe is 4.8306+ 2.4538×1+(−1.8662)×0= 7.284:

> coef(doe.model2)[1] + coef(doe.model2)[2]

(Intercept)
7.284375

We obtain the same result using the effect formula:

ŷ = 5.124375+ 1.2269×1+(−0.9331)× (−1)= 7.2844.

> mean(ss.data.doe1$score) +
coef(doe.model2)[2]/2 *(1) +
coef(doe.model2)[3]/2 *(-1)

flour+
7.284375

We can obtain the estimations for all the experimental conditions (including the
replications) using the predict function:

> predict(doe.model2)

1 2 3 4 5 6
4.830625 7.284375 4.830625 7.284375 2.964375 5.418125

7 8 9 10 11 12
2.964375 5.418125 4.830625 7.284375 4.830625 7.284375

13 14 15 16
2.964375 5.418125 2.964375 5.418125

The estimation for experimental conditions 2, 4, 10, and 12 are the same (7.2844)
as the salt factor has been removed from the model.

We can also compute a confidence interval for each parameter:

> confint(doe.model2)

2.5 % 97.5 %
(Intercept) 4.228435 5.432815
flour+ 1.758401 3.149099
bakPow+ -2.561599 -1.170901

To graphically visualize the main effects, the plot function can be used. In this
case, points and lines showing the effects will be plotted. For example, to represent
the effects for the factor flour (Fig. 11.3) we type

> plot(c(-1, 1), ylim = range(ss.data.doe1$score),
coef(doe.model1)[1] + c(-1, 1) * coef(doe.model1)[2],
type="b", pch=16)

> abline(h=coef(doe.model1)[1])
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Fig. 11.3 Simple effect plot. We can simply plot lines and points representing the coefficients, a
horizontal line for the intercept and linked points for the effects

We may also plot charts to visualize the effects with the ggplot2 package.
Using the following code we plot the main effects of the two factors in the same
plot (Fig. 11.4):

> prinEf <- data.frame(Factor = rep(c("A_Flour",
"C_Baking Powder"), each = 2),

Level = rep(c(-1, 1), 2),
Score = c(aggregate(score ~ flour, FUN = mean, data =

ss.data.doe1)[,2],
aggregate(score ~ bakPow, FUN = mean, data =

ss.data.doe1)[,2]))
> p <- ggplot(prinEf,

aes(x = Level, y = Score)) +
geom_point() +
geom_line() +
scale_x_continuous(breaks = c(-1, 1)) +
facet_grid(. ~ Factor) +
stat_abline(intercept = mean(ss.data.doe1$score),

slope = 0, linetype = "dashed") +
opts(plot.background = theme_rect(colour = 'black'))

> print(p)

The effects of the interaction can be plotted by typing (Fig. 11.5)
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Fig. 11.4 Factor effects in pizza experiment. The effect of the flour is positive, whereas the effect
of the baking powder is negative

> intEf <- aggregate(score ~ flour + bakPow,
FUN = mean, data = ss.data.doe1)

> p <- ggplot(intEf, aes(x = flour, y = score, color = bakPow
)) +
geom_point() +
geom_line(aes(group=bakPow)) +
stat_abline(intercept = mean(ss.data.doe1$score),

slope = 0,
linetype = "dashed",
color = "black")

> print(p)

Diagnostics of the model should be made by analyzing the residuals. We can plot
the standard charts for linear models (Fig. 11.6):

> par(mfrow=c(2,2))
> plot(doe.model2)
> box("outer")
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Fig. 11.5 Plot of interactions between factors. The lines do not cross, and therefore there is no
interaction between the two factors plotted (flour and baking powder)

Finally, we should verify the normality of the residuals with a normality test. Let
us try two of them:

> shapiro.test(residuals(doe.model2))

Shapiro-Wilk normality test

data: residuals(doe.model2)
W = 0.9065, p-value = 0.1023

> lillie.test(residuals(doe.model2))

Lilliefors (Kolmogorov-Smirnov) normality test

data: residuals(doe.model2)
D = 0.1891, p-value = 0.1313

Given that the p-values are large for both tests, we do not reject the normality of
the residuals. ��
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Fig. 11.6 Model diagnostics for pizza experiment. There are no clear patterns in the residuals.
The normal q–q plot is not straight enough

11.5 Design of Experiments for Process Improvement

We have described a full DoE, but performing experiments may not be enough to
improve a process. For instance, perhaps not all the X of the process have been
identified, or some Xs may depend on external conditions and therefore are not
under our control. Under these circumstances, one possibility is to design products
that are robust to the environment (robust design). This consists of including noise
factors within the experiment. These noise factors are those that may affect the
CTQ characteristics, but they are not under our control. We must identify all the
possible noise factors, and in this regard, the operational structure described in
Chap. 1 becomes crucial. We can obtain valuable information about these external
conditions from the process owner.

Example 11.4 (Pizza dough (cont.)). After a few weeks, the social media manager
from the marketing department reported to the board of directors that some bad
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comments had been gathered from social media (mainly Facebook and Twitter)
regarding a bad experience involving consumers of the pizza dough. The flavor of
the pizzas made with the dough was not satisfactory.

To investigate the reasons, they decided to tackle the problem from a Six Sigma
perspective. During the Measure phase, an accurate identification of the possible
factors affecting the flavor of the pizza was made. A vital piece of information was
provided by the process owner (the team member who came up with the preparation
instructions). She pointed out that the exact baking conditions (temperature= 180◦C
and time = 9 min) were critical to achieve the flavor desired by customers.

Further research about how the customers were preparing pizzas showed that not
everybody (actually, almost nobody) followed the preparation instructions in the
box accurately. Therefore, a new design was proposed by the Black Belt to conduct
new research about the pizza dough recipe. He decided to include two noise factors
with two levels each: time (7 and 11 min, t− and t+, respectively) and temperature
(160◦C and 200◦C, T− and T+, respectively). Now we have a 25 factorial design,
with the following design matrix:

> pizzaDesign2 <- expand.grid(flour = gl(2, 1, labels = c("-"
, "+")),

salt = gl(2, 1, labels = c("-", "+")),
bakPow = gl(2, 1, labels = c("-", "+")),
temp = gl(2, 1, labels = c("-", "+")),
time = gl(2, 1, labels = c("-", "+")),
score = NA)

> pizzaDesign2

flour salt bakPow temp time score
1 - - - - - NA
2 + - - - - NA
3 - + - - - NA
4 + + - - - NA
5 - - + - - NA
6 + - + - - NA
7 - + + - - NA
8 + + + - - NA
9 - - - + - NA
10 + - - + - NA
11 - + - + - NA
12 + + - + - NA
13 - - + + - NA
14 + - + + - NA
15 - + + + - NA
16 + + + + - NA
17 - - - - + NA
18 + - - - + NA
19 - + - - + NA
20 + + - - + NA
21 - - + - + NA
22 + - + - + NA
23 - + + - + NA
24 + + + - + NA
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Table 11.3 Robust experimental data

Flour Salt BakPow T180t9 T − t− T + t− T − t+ T + t+ Mean Sd

1 − − − 5.52 3.67 5.12 4.18 3.90 4.48 0.64
2 + − − 7.35 3.37 4.52 5.05 2.94 4.65 0.98
3 − + − 4.68 0.96 4.91 5.29 1.17 3.40 2.34
4 + + − 6.69 3.59 5.89 5.62 3.87 5.13 1.18
5 − − + 2.52 1.92 3.05 1.73 1.70 2.18 0.64
6 + − + 5.16 3.14 5.01 5.54 2.90 4.35 1.32
7 − + + 2.87 1.21 1.86 3.04 1.31 2.06 0.84
8 + + + 6.21 5.80 6.11 5.98 5.96 6.01 0.12

25 - - - + + NA
26 + - - + + NA
27 - + - + + NA
28 + + - + + NA
29 - - + + + NA
30 + - + + + NA
31 - + + + + NA
32 + + + + + NA

The Black Belt decided to make two replications. Given that we have to
perform 25 = 32 experiments per replication, a total of 64 observations were taken.
Table 11.3 summarizes the data, showing the average result per recipe and noise
factor combination. The whole set of data is contained in the ss.data.doe2 data
frame of the SixSigma package.

The average (“Mean” column) and standard deviation (“Sd” column) for each
experiment are in Table 11.3. Notice that now the recipe with the best average score
and the smallest variability is that with the three original factors at their high level.
This recipe is the most convenient one taking into account the noise factors. This is
an example of how Six Sigma can be used to improve processes through DoE. ��

11.6 Summary and Further Reading

In this chapter, we provided a very brief introduction to the statistical technique
known as design of experiments (DoE). The practical case presented is a very
representative example of how DoE can be used within a Six Sigma project. The 23

design used throughout the chapter can be immediately extended to any 2k factorial
design.

A detailed description of DoE would entail writing a whole book. In this regard,
a world-class reference on DoE is the book [11]. This reference includes more
advanced ANOVA models such as, for instance, split-plot designs. A nice reference
on two-level factorial experimentation is that by [66]. Other good works are the
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books [70] or [5]. These two books can be complemented with their respective
R companions, [58] and [103], freely available on the Internet. These companion
documents develop the examples in the books using R.

The books mentioned above include more complex models such as 2k−p

fractional factorial designs (useful when only a fraction of experimental trials is
available) or response-surface designs (useful to find optimal process settings).
A complete book on response-surface design is [75].

Regarding optimal experimental design (a technique to obtain optimum designs
according to some statistical criterion), the article [63] is a comprehensive introduc-
tion. The book [85] uses R to tackle some areas of this topic.

Furthermore, Taguchi’s work on robust experimental design, in [99], may be
consulted.

There is a project devoted to industrial DoE with R. The information is available
at [32]. The project includes two analysis packages (DoE.base and FrF2) and
two interface packages (DoE.wrapper and RcmdrPlugin.DoE).

A complete collection of resources regarding DoE with R is the CRAN Task
View on DoE & Analysis of Experimental Data [31]. In addition to the packages
included in the above-mentioned project, the AlgDesign, conf.design, and
crossdes packages are available for generic DoE. Other packages with DoE func-
tionalities are qualityTools (containing methods associated with the DMAIC
cycle), agricolae (with experimental designs applied to agriculture and plant
breeding), and rsm (for response-surface designs). This task view is frequently
updated, and we strongly recommend consulting it periodically.

Case Study

Based on your experience with helicopter production, try to determine the causes
affecting the performance of the process and flight time. Design an experiment
to find out the cause-and-effect relationships between the factors that you have
identified (e.g., dimensions, accessories) and the response.

Randomize the experiment and take the measurements. Save the data and fit an
ANOVA model using R. Estimate the effects and check to see which of the effects
are significant. Write the formula of the underlying model.

Practice

11.1. Obtain the design matrix for a 24 experiment and create a randomized table
to register the response.

11.2. Conduct an ANOVA for the complete experiment described in Sect. 11.5.



Part VI
R Tools for the Control Phase

[D] Define

[M] Measure

[A] Analyze

[I] Improve

Roadmap of the DMAIC Cycle

You are here [C] Control

In this part of the book, tools useful during the Control phase are introduced.
In this phase, the gains achieved in the previous phases must be monitored and

the new process conditions documented. Moreover, sustainability of the new process
structure needs to be guaranteed.

We will introduce mistake-proofing strategies and Control Charts, the most
representative control tool.



Chapter 12
Process Control with R

Special causes of variation may be found and eliminated.
Walter A. Shewhart

12.1 Introduction

Engineers usually associate statistical process control (SPC) with a set of charts to
monitor whether the outputs of a process are in or out of control. This is the classic
approach to quality control (QC) and consists in adjusting processes only when
their outputs are out of control. Under this approach, inspection is a standard way to
proceed. One of the goals of modern QC is to reduce the need for inspection.

Six Sigma process control aims at sustaining the improvements achieved
throughout the other stages of the DMAIC cycle. Under the Six Sigma paradigm,
control is established over the variables affecting the critical to quality (CTQ)
characteristics.

In this chapter, we first introduce some concepts of mistake-proofing strategies
for process control. Then, control charts and their representation with R are
explained. Finally, other topics related to SPC are touched upon along with the
available R packages.

12.2 Mistake-proofing Strategies (Poka-Yoke)

In Six Sigma, the control issues start in the design stage of the product. This means
that processes must be designed to be self-controlled, avoiding the influence of
external factors such as, for example, operators, users, and tools. The old term used
to define this approach of control is “fool-proofing” (becoming “idiot-proofing”
in more colloquial parlance). The more polite expression “mistake-proofing” was
finally adopted using the Japanese words “poka” (mistake)and “yoke” (avoid).

E.L. Cano et al., Six Sigma with R: Statistical Engineering for Process
Improvement, Use R! 36, DOI 10.1007/978-1-4614-3652-2__12,
© Springer Science+Business Media New York 2012
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This is why these techniques are known as poka-yoke methods. A classic example
of mistake-proofing design is the 3.5-in. diskette, which cannot be inserted upside
down.

To achieve mistake-proofing processes, the objective must be zero defects. This
implies that the design of the process should make it impossible to generate an error.
In general, the more complex the poka-yoke method, the higher its cost.

Example 12.1 (Particle board factory). A particle board factory produces boards
of several sizes. The key CTQ characteristics of the process are the dimensions, the
thickness, and the density of the boards, in accordance with customer requirements.

Let us suppose that the process consists in obtaining the raw materials, making
the particle boards, sawing them up into pieces as ordered by a customer, and
packing and delivering them. An important task, and a possible source of errors,
is the selection of the appropriate type of board (thickness and density) for each
customer order.

An example of a poka-yoke method for this process is to store the boards
in clearly separated and locked spaces. Before the operator takes the board, he
must enter the board characteristics using his computer keyboard; then the space
corresponding to the board specifications is automatically unlocked. In this way,
it will be impossible for the operator to take a wrong board. Additional strategies
could be implemented such as, for instance, designing and using specific wrappers
that can only be used with boards corresponding to the width of the wrapper. ��

12.3 What to Control

Under the Six Sigma approach, once we have identified the Xs of the process (the
variables that cause the variation in the CTQ characteristics, i.e., Y s of the process)
all we have to do is control these Xs. If the variability of the Xs is under control,
then the process will perform correctly, leading to the required Y s and, therefore,
high-quality products.

Example 12.2 (Particle board factory (cont.)). One of the key characteristics (Y ) of
the particle boards is their density. After some Six Sigma research, it is determined
that the most important variable of the process affecting the density of the particle
boards is the raw material humidity. Therefore, process control charts will be made
according to a control plan measuring the humidity of the raw materials (X). ��

We have already seen that under the Six Sigma paradigm the Xs of the process
must be controlled. In some cases, the Y s of the process may also be monitored.
In any case, monitoring only the Y s is not an option because this situation implies
refusing to learn about the causes of the bad performance of the process.
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12.4 Control Chart Basics

Control charts are the tool one should use to monitor the performance of variables
involved in processes. Next we describe the basics of control charts and their
interpretation.

12.4.1 The Chart

A control chart is a two-dimensional chart (Chap. 8) whose y-axis represents the
variable we are monitoring. The values of the characteristic are plotted sequentially
in the order in which they have arisen. Depending on the type of data we are
analyzing, these values can be individual values or group means. Thus, the x-axis
of the chart is an identification number of the set of items assessed (individual item
or group). The values are plotted as points and linked with straight lines to identify
patterns that show significant changes in the process performance. Along with the
sequence of observations for the variable we are monitoring, three important lines
are plotted:

1. Center line (CL). This is the mean of the sampled variables. The monitored values
vary around this mean.

2. Lower control limit (LCL). This is the value below which it is very unlikely for
the variable to occur.

3. Upper control limit (UCL). This is the counterpart of the LCL on the up side of
the variable. The LCL and UCL are symmetric if the probability distribution of
the variable is symmetric (e.g., normal).

12.4.2 Chart Interpretation

The usual way to proceed with control charts follows a two-phase approach.
In phase I, reliable control limits are estimated using a preliminary sample. From
that point on, in phase II, the subsequent samples are plotted in a chart with the
former control limits. For the sake of simplicity, in what follows we will plot the
charts in a single phase, although in practice it should be done in two phases.

When the individual observations of the X are within the control limits, the
process will be statistically under control. The control limits are completely different
from the specification limits, that is, the limits beyond the process will not be
accepted by the customer (Chap. 7). The control limits are computed as a confidence
interval (Chap.10) that comprises a high proportion of the values. Typical control
limits are those between the mean and three standard deviations (μ ± 3σ ). For a
normal probability distribution these limits include 99.7% of the data. Thus, there
is only a probability of 0.3% for an individual observation to be outside the
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Fig. 12.1 Control charts vs. probability distribution. The control chart shows the sequence of the
observations. The variation around the central line provides an idea of the probability distribution
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Special cause

Fig. 12.2 Identifying special causes through individual points. When an individual point is
outside the control limits, an investigation into the cause should be started to eliminate the root
of the problem

specification limits. Moreover, a control chart adds information about the variation
of the process. Figure 12.1 shows how both types of information are related.

Variation of the characteristic within the control limits is due to common causes,
whereas variation outside the control limits is due to special causes. Common causes
arise from randomness and cannot be eliminated. Special causes prompt variability
that is not a consequence of randomness. Thus, when a point is outside the control
limits, the (special) cause must be identified, analyzed, and eradicated (Fig. 12.2).
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Special causes can also generate other persistent problems in a process. They
can be identified through patterns in the chart. Three important patterns that we can
detect are trends, shifts, and seasonality (Fig. 12.3). Other evidence to detect an out-
of-control process are nine or more points to one side of the mean, or two out of
three points beyond the center line plus or minus two standard deviations.

12.4.3 Sampling Strategy

Sometimes all the items produced are monitored, and the control charts are produced
in run time. This is only possible for specific processes in which information related
to the process performance can be automatically recorded by electronic means, or
for highly reliable products that need to pass a verification step at the end of the
production line before being delivered to the customer.

Most times control charts are plotted using data samples. In previous chapters we
insisted on the importance of randomization. This is a must also when monitoring
processes through control charts. Moreover, some particular concerns are to be taken
into account with respect to control chart sampling:

• The larger the sample size, the higher the probability of detecting an error. On the
down side, usually the cost associated with control increases with sample size.

• Samples are usually taken in subgroups (e.g., batches, days, departments), and
these subgroups and their size should be rationally chosen.

• The subgroups must be independent of each other.
• A trade-off between independence and homogeneity should be attained in the

measurements within the subgroups.
• Measurements must be recorded in chronological order, as they are produced.
• The sample size can be small when the process is under control and its capability

exceeds the minimum requirements.

All in all, a general rule for rational control chart sampling could be “the sample
represents the production under regular conditions.” Think about this every time you
plan to obtain a sample for controlling a process.

12.5 Plotting Process Control Charts

In this section, we describe the main types of control charts that can be used
depending on the type of variable being monitored. For continuous variables, we can
use individual and moving-range charts (I/MR charts) for complete monitoring and
average and range charts (x̄−R) or average and standard deviation charts (x̄− s) for
randomized monitoring through samples. For qualitative variables (attribute data)
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Fig. 12.3 Patterns in control charts. We can identify several patterns in a control chart: recurring
cycles (a), shifts (b), and trends (c)
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Type
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p Chart

u Chart
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x−s Chart

Fig. 12.4 Decision tree for
basic process control charts.
First, check your variable
type. If it is a continuous
variable, the chart depends on
the group size. If it is an
attribute variable, the chart
depends on what you want to
monitor (proportion of
defects or number of defects
per unit)

we can use p charts to control the proportion of defects and u charts to control the
number of defects per unit. A decision tree summarizing the different options is
shown in Fig. 12.4.

The R packages qcc, IQCC, and qAnalyst plot several types of control
chart. We will use some functions in these packages for plotting control charts
corresponding to the examples. Nevertheless, we provide the formulas for the
control lines (center, upper limit, and lower limit) so as to allow you to plot your
own control charts with the R graphical functions in the packages graphics,
lattice, ggplot2, and many others, just plotting points and lines and adding
control lines (CL, UCL, LCL). In this way, you can customize any feature of your
control chart.

12.5.1 Notation for Computing Control Lines

We must compute the values for the center line (CL) and the upper and lower limit
lines (UCL and LCL, respectively). We will use the following notation:

n Number of elements sampled in each group (equal sample sizes);
k Number of groups;
ni Number of elements sampled in the ith group (unequal sample sizes);
Di Number of defects in the ith group;
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¯̄x Overall sample mean;
x̄i Sample mean of group i;
s̄ Average standard deviation;
si Standard deviation of group i;
d2 Mean of random variable W = R

σ ;
d3 Standard deviation of random variable W = R

σ ;
c4 Constant for estimating σ as σ̂ = s

c4
.

Textbooks contain tables with “Shewhart’s constants for constructing control
charts.” These tables are useful for teaching and assessing, but they make no sense
when we are using computers. Actually, all of those constants can be computa-
tionally obtained using R. In particular, the ss.cc.getc4, ss.cc.getd2, and
ss.cc.getd3 functions return values of c4, d2, and d3, respectively, passing as
argument sample size n.

12.5.2 Variable Control Charts

The charts described in this section are suitable for monitoring continuous variables.
For each group of control chart two plots are made, one for monitoring the central
tendency and another for monitoring the variation.

Individual and Moving-range Charts (I/MR)

Sometimes we do not have groups of measurements. Reasons for this fact include
that it simply makes no sense to have groups, or that every item is being automat-
ically monitored. The center line and control limits for the individual control chart
are computed as follows:

CL = ¯̄x =
∑xi

n
i = 1 . . .n,

UCL = ¯̄x+ 3
MR
d2

,

LCL = ¯̄x− 3
MR
d2

,

where MR is the moving-range average, computed as

MR =
∑k

i=2 MRi

k− 1
; MRi = |xi+1 − xi|.
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The center line and the control limits for the moving-range control chart are

CL = MR,

UCL = MR×
(

1+
3d3

d2

)
,

LCL = MR×
(

1− 3d3

d2

)
.

If the LCL formula results in a negative number, then the LCL is taken as zero.
The d2 and d3 constants are calculated for n = 2, as we are computing the range
between two consecutive items.

Example 12.3 (Particle board factory (cont.)). A control plan has been designed to
sustain the improvements achieved through previous Six Sigma projects. The Black
Belt wants to asses complete lots of raw materials as they are received in the factory.
Each batch has 30 items. As we want to control the individual values, the sample
size is n = 1, and there are k = 30 groups. The data frame ss.data.pb1 in the
SixSigma package contains the values of humidity for each lot.

The qcc package flows to generate control charts, starts creating a
qcc.groups object using the function identically named, with the vectors
containing the measurements and the group identification as arguments. Next, a
qcc object has to be created over the qcc.groups object, indicating the type of
control chart. Once the qcc object is created, we can perform two actions over it, a
summary and a plot, using the generic functions summary and plot, respectively.
Firstly, we prepare data objects and obtain text output with the generic summary
function:

> require(qcc)
> pb.groups.one <- with(ss.data.pb1, qcc.groups(pb.humidity,

pb.group))
> pb.xbar.one <- qcc(pb.groups.one, type="xbar.one")
> summary(pb.xbar.one)

Call:
qcc(data = pb.groups.one, type = "xbar.one")

xbar.one chart for pb.groups.one

Summary of group statistics:
Min. 1st Qu. Median Mean 3rd Qu. Max.
9.783 10.720 11.670 11.750 12.760 14.150

Group sample size: 30
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xbar.one Chart
for pb.groups.one

Group

G
ro

up
 s

um
m

ar
y 

st
at

is
tic

s

1

8

10

12

14

16

LCL

UCL

CL

Number of groups = 30
Center = 11.7454
StdDev = 1.391386

LCL = 7.571247
UCL = 15.91956

Number beyond limits = 0
Number violating runs = 0

Fig. 12.5 Individual control chart. In this case, the process is statistically controlled. There are no
individual points beyond the control limits or other suspicious patterns

Number of groups: 30
Center of group statistics: 11.7454
Standard deviation: 1.391386

Control limits:
LCL UCL

7.571247 15.91956

The text output includes some summary statistics and the control limits. Then we
can plot the individual control chart with the generic plot function (Fig. 12.5):

> plot(pb.xbar.one)

For phase II of control charting, you can pass the center line and the limits to the
qcc function as arguments. They can be taken from the components center and
limits of a qcc object previously saved, for example:
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> plot(qcc(data = pb.groups.one,
type = "xbar.one",
center = pb.xbar.one$center,
limits = pb.xbar.one$limits))

Notice that we have used the same data set as that used to calculate the control
limits (in this case we obtain the same chart as that in Fig. 12.5). To plot a chart with
the same control limits and new data arising from the process, the only thing we
have to do is change the data argument.

As there is no option for moving-range charts in the qcc package, we will use
the qAnalyst package. As with the qcc package, we must create an spc object
and then call the generic functions:

> require(qAnalyst)
> pb.mr <- with(ss.data.pb1, spc(pb.humidity, sg = 2, type="

mr"))
> print(pb.mr)

mr chart of pb.humidity

pb.humidity main stats
------------------------------------------

value
Total observations 30.000000
complete observations 30.000000
missing observations 0.000000
number of groups 1.000000
Mean 11.745404
min 9.783126
max 14.150043
total std. dev. 1.236948
average range 1.569483

The generic print function returns only some stats, but the generic summary
function also returns information about the tests performed, probability, and the
individual values of the plotted points (Ri):

> summary(pb.mr)

mr chart of pb.humidity

pb.humidity main stats
------------------------------------------

value
Total observations 30.000000
complete observations 30.000000
missing observations 0.000000
number of groups 1.000000
Mean 11.745404
min 9.783126
max 14.150043
total std. dev. 1.236948
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average range 1.569483

Control chart tests results
------------------------------------------

Matrix of points failing required tests

All tests successful

Probability of having such a number of Test1 failing points:
0.9973002

Probability of having a number of Test1 failing points
greater or equal to:

1

Control chart elements table
------------------------------------------

points lcl3s lcl2s lcl1s center line ucl1s
1 NA NA NA NA NA NA
2 1.26104 0 0.52316 1.0463 1.5695 2.7563
3 2.36949 0 0.52316 1.0463 1.5695 2.7563
4 2.38330 0 0.52316 1.0463 1.5695 2.7563
5 4.24504 0 0.52316 1.0463 1.5695 2.7563
6 2.97527 0 0.52316 1.0463 1.5695 2.7563
7 2.06458 0 0.52316 1.0463 1.5695 2.7563
8 0.50367 0 0.52316 1.0463 1.5695 2.7563
9 0.98972 0 0.52316 1.0463 1.5695 2.7563
10 1.75021 0 0.52316 1.0463 1.5695 2.7563
11 2.19208 0 0.52316 1.0463 1.5695 2.7563
12 3.92027 0 0.52316 1.0463 1.5695 2.7563
13 2.63488 0 0.52316 1.0463 1.5695 2.7563
14 2.58481 0 0.52316 1.0463 1.5695 2.7563
15 1.85428 0 0.52316 1.0463 1.5695 2.7563
16 0.20995 0 0.52316 1.0463 1.5695 2.7563
17 0.93413 0 0.52316 1.0463 1.5695 2.7563
18 0.51340 0 0.52316 1.0463 1.5695 2.7563
19 0.92735 0 0.52316 1.0463 1.5695 2.7563
20 1.36862 0 0.52316 1.0463 1.5695 2.7563
21 1.47827 0 0.52316 1.0463 1.5695 2.7563
22 0.49094 0 0.52316 1.0463 1.5695 2.7563
23 2.45189 0 0.52316 1.0463 1.5695 2.7563
24 1.58140 0 0.52316 1.0463 1.5695 2.7563
25 0.34312 0 0.52316 1.0463 1.5695 2.7563
26 1.51285 0 0.52316 1.0463 1.5695 2.7563
27 0.35563 0 0.52316 1.0463 1.5695 2.7563
28 0.63719 0 0.52316 1.0463 1.5695 2.7563
29 0.70122 0 0.52316 1.0463 1.5695 2.7563
30 0.28038 0 0.52316 1.0463 1.5695 2.7563

ucl2s ucl3s
1 NA NA
2 3.9432 5.13
3 3.9432 5.13
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4 3.9432 5.13
5 3.9432 5.13
6 3.9432 5.13
7 3.9432 5.13
8 3.9432 5.13
9 3.9432 5.13
10 3.9432 5.13
11 3.9432 5.13
12 3.9432 5.13
13 3.9432 5.13
14 3.9432 5.13
15 3.9432 5.13
16 3.9432 5.13
17 3.9432 5.13
18 3.9432 5.13
19 3.9432 5.13
20 3.9432 5.13
21 3.9432 5.13
22 3.9432 5.13
23 3.9432 5.13
24 3.9432 5.13
25 3.9432 5.13
26 3.9432 5.13
27 3.9432 5.13
28 3.9432 5.13
29 3.9432 5.13
30 3.9432 5.13

Finally, we can plot the control chart in Fig. 12.6 using the generic plot
function:

> plot(pb.mr, cex=list(cexStrip=1.5, cexAxes=1))

Using the cex argument we can change the size of the labels and titles. ��

X̄ – R Chart

The center line and control limits for the x̄ control chart are computed as follows:

CL = ¯̄x,

ULC = ¯̄x+R× 3
d2
√

n
,

LCL = ¯̄x−R× 3
d2
√

n
,

where R is the average range, computed as

R =
∑k

i=1 Ri

k
, Ri = max{x ∈ Xi}−min{x ∈ Xi}.
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Fig. 12.6 Moving-range control chart. All the points are inside the control limits. The lower
control limit is zero

The following formulas are for the R control chart:

CL = R,

ULC = R×
(

1+
3d3

d2

)
,

LCL = R×
(

1− 3d3

d2

)

LCL is taken as zero when the formula results in a negative number, and constants
d2 and d3 are computed using the size of the groups.

Example 12.4 (Particle boards factory (cont.)). In the production line, the humidity
of raw materials is measured again before starting the manufacture of the board. Five
samples of each lot are obtained, and the total number of lots is 20. The data are in
the ss.data.pb2 data frame in the SixSigma package.

Using the following code we create the x̄ chart for the 20 groups of size 5.
Figure 12.7 is obtained by typing plot(pb.xbar). To obtain the s chart, you
only have to change the value of the type argument in the qcc function.

> pb.groups.xbar <- with(ss.data.pb2, qcc.groups(pb.humidity,
pb.group))

> pb.xbar <- qcc(pb.groups.xbar, type="xbar")
> summary(pb.xbar)

Call:
qcc(data = pb.groups.xbar, type = "xbar")

xbar chart for pb.groups.xbar
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xbar Chart
for pb.groups.xbar
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Fig. 12.7 x̄ control chart. There is a point outside the control limits corresponding to group 16.
The special cause must be identified

Summary of group statistics:
Min. 1st Qu. Median Mean 3rd Qu. Max.
11.05 11.72 12.05 12.07 12.50 13.38

Group sample size: 5
Number of groups: 20
Center of group statistics: 12.07026
Standard deviation: 0.8878313

Control limits:
LCL UCL

10.87911 13.26141

��
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X̄ – S Chart

The center line and control limits are computed as follows:

CL = s̄ =
∑k

i=1 si

k
,

ULC = s̄×
⎛
⎝1+ 3

√
1− c2

4

c4

⎞
⎠,

LCLZ = s̄×
⎛
⎝1− 3

√
1− c2

4

c4

⎞
⎠, (12.1)

where si is the sample standard deviation within each group.

12.5.3 Attribute Control Charts

The charts described in this section are suitable for monitoring qualitative
(attributes) variables. The p chart is the appropriate one when the characteristic we
want to monitor and control is a proportion. It is based on the binomial distribution.
Otherwise, the u chart is suitable for monitoring and control the number of defects
per unit, which is based on the Poisson distribution.

p Chart

A typical use of the p chart is to control the proportion of defects per time unit, e.g.,
the number of wrong invoices per week. In these cases, the sizes are not equal in all
the groups, and we have stepwise control limits. Thus, equal group sizes represent a
particular case for the following formulas. The center line and the control limits are
computed as follows:

CL = p̄ =
∑k

i=1 Di

∑k
i=1 ni

,

ULCi = p̄+ 3

√
p̄(1− p̄)

ni
,

LCLi = p̄− 3

√
p̄(1− p̄)

ni
,

where Di is the number of defects in the ith group.
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Table 12.1 Data for p chart example

pb.group pb.humidity pb.group pb.humidity pb.group pb.humidity pb.group pb.humidity

1 14.32 6 10.44 11 11.36 16 13.87
1 12.22 6 12.35 11 11.56 16 13.78
1 12.42 6 12.42 11 11.21 16 13.56
1 11.81 6 11.70 11 13.57 16 13.10
1 11.69 6 10.48 11 12.30 16 12.57
2 11.35 7 13.87 12 13.35 17 13.31
2 11.24 7 12.90 12 12.58 17 11.85
2 13.23 7 11.65 12 12.42 17 10.00
2 11.82 7 12.59 12 11.14 17 11.12
2 12.03 7 10.98 12 13.57 17 12.68
3 10.86 8 14.37 13 11.85 18 12.13
3 11.01 8 11.60 13 10.84 18 12.74
3 11.69 8 13.27 13 11.75 18 12.95
3 10.70 8 12.08 13 12.24 18 11.90
3 11.05 8 11.37 13 10.91 18 13.19
4 12.18 9 11.40 14 11.57 19 12.39
4 11.71 9 10.33 14 11.34 19 10.90
4 12.13 9 13.49 14 10.93 19 13.47
4 12.11 9 11.47 14 11.49 19 12.97
4 12.52 9 12.36 14 9.93 19 12.48
5 11.93 10 11.71 15 11.62 20 12.38
5 12.07 10 10.98 15 11.32 20 12.99
5 13.83 10 11.91 15 12.32 20 13.31
5 11.35 10 10.30 15 12.96 20 11.74
5 11.10 10 11.93 15 11.97 20 13.24

Example 12.5 (Particle board factory (cont.)). A CTQ characteristic for the service
processes of the particle board factory is the proportion of on-time delivered orders
(Y ). In the framework of a Six Sigma project, it was discovered that one of the
factors affecting the delivery time is the lack of appropriate raw materials when
the order arrives at the factory. Therefore, a control plan is designed to monitor
and control the proportion of out-of-stock orders. As the number of orders received
every day is not constant, the control chart will present stepwise control limits. The
ss.data.bp3 data frame in the SixSigma package contains the daily stockouts
and number of orders in a given month of 22 production days (Table 12.1).

The p chart in Fig. 12.8 is plotted using the following code with the qcc package:

> with(ss.data.pb3,
plot(qcc(stockouts, orders, type ="p"))

)

��
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Fig. 12.8 p chart for particle board example. There is a point on the 11th day that is out of control

u Chart

The center line and the control limits are computed as follows:

CL = ū =
∑k

i=1 Di

∑k
i=1 ni

,

ULCi = ū+ 3

√
ū
ni
,

LCLi = ū− 3

√
ū
ni
,

where Di is the number of defects in the ith group.
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The command for plotting the control chart with the qcc package is the same,
passing "u" as the type argument. Though the data structure is the same, the type
of data is completely different: proportion of defects vs. number of defects per unit.

12.6 Summary and Further Reading

We have described so far the most representative control charts and the concepts
needed for an overall understanding of the topic. In the literature there exist a variety
of charts, for instance, np charts or c charts for attribute variables and exponentially
weighted moving average charts (EWMA) for continuous variables. For multiple-
characteristic processes there are also several possibilities for control charting such
as three-way charts or Hotelling T2 multivariate charts. The book by [69] describes
in detail these and other charts. The qcc package, [93], contains tools for some of
these charts, and other useful functions for Six Sigma projects such as, for instance,
operating characteristic (OC) curves or process capability analysis. Other packages
containing useful functions for SPC are IQCC, [86]; qAnalyst, [98]; spc, [54];
and spcadjust, [28].

Other classical SPC tools that may be useful for Six Sigma projects are accep-
tance sampling and reliability analysis. Acceptance sampling is a technique used to
accept or reject a material lot, using statistics and sampling. Several sampling strate-
gies exist, including single, double, and multiple. The AceptanceSampling R
package [52] deals with acceptance sampling plans and the related OC functions.
Another interesting topic is reliability, that is, the probability that a system will
survive after functioning for a period of time under certain conditions. There are
several suitable probability models for system reliability; see, for instance, [96].
The survival R package contains useful functions for this topic; see [100].

Time-honored references in statistical quality control are [69] and [47]. [2] con-
tains some case studies and advanced methods. [49] and [34] present straightforward
explanations and guides for SPC.

Case Study

Construct control charts for the X variables you have identified while developing
your Six Sigma project over the course of reading this book. Plot attribute control
charts for the number of defects or any other qualitative variable affecting the CTQ
characteristic. Plot variable control charts for the continuous Xs. Look for the special
causes motivating the out-of-control points and arrange the necessary actions to
eradicate them.
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Practice

12.1. Plot the s control chart for the ss.data.pb2 data frame.

12.2. In the particle board factory example described in the chapter, the CTQ
characteristic defined as “number of customer complaints” (Y ) is due to dents in
the boards (X). To monitor this variable, the number of dents per square meter is
automatically measured using precision cameras before packaging the pieces to be
delivered to customers. The data corresponding to 80 orders on a given day are in
the ss.data.pb4 data frame. Plot the u control chart for the ss.data.pb4
data frame.



Part VII
Further and Beyond

The last part of the book is a chapter of miscellanea where we name, list, or describe
other tools and methodologies related to Six Sigma to provide the reader with a
global view of the advanced possibilities of both Six Sigma and R.



Chapter 13
Other Tools and Methodologies

Instruction does much, but encouragement everything.
Johann Wolfgang von Goethe

13.1 Introduction

In this last part of the book, we outline some tools and methodologies that deserve
at least a mention to encourage the reader to go further and beyond with Six Sigma
and R. In this chapter, Sect. 13.2 briefly describes a useful tool for the Analyze
and Improve phases: failure mode, effects, and criticality analysis (FMECA).
Sections 13.3 and 13.4 summarize design for Six Sigma (DFSS) and lean quality
approaches, respectively. Section 13.5 reviews the Gantt chart, a universally used
tool for project planning. In Sect. 13.6, some advanced R topics are tackled to reveal
the stunning possibilities of the system.

13.2 Failure Mode, Effects, and Criticality Analysis

FMECA is a tool to understand process risk. Action plans for managing risk are the
results of this tool. FMECA was devised by NASA early in the U.S. Apollo space
program in the 1960s. In the late 1970s, automotive companies, driven by liability
cost issues, began to incorporate FMECA into the management of their processes.
Many automotive, aeronautics, and electronics companies use FMECA principles
for new product/process introduction.

FMECA can be used within processes (P-FMECA), designs (D-FMECA), or
systems (S-FMECA). The purpose of a P-FMECA is to identify potential failure
in terms of the process purpose (e.g., scrapped parts). D-FMECA is used to detect
future potential component failure in terms of component function (e.g., forms not
understood by a customer). S-FMECA evaluates failures within the system and in

E.L. Cano et al., Six Sigma with R: Statistical Engineering for Process
Improvement, Use R! 36, DOI 10.1007/978-1-4614-3652-2__13,
© Springer Science+Business Media New York 2012
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Table 13.1 FMECA risk matrix

Failure Corrective or
Component mode Effect Causes P S D RPN preventive action

interfaces with other systems (e.g., failures to meet regulatory standards). Basically,
FMECA is based on risk matrices that use the following concepts:

• Potential failure modes, the probability (P) of failure;
• Effects of failure, severity (S) of failure;
• Chances of detection of failure, detectability (D) of failure;
• Prioritized list of risks, criticality or risk priority number (RPN) of failure, where

RPN = P× S×D.

Table 13.1 displays an empty typical risk matrix for FMECA.
Such tables may be generated using R as a reporting tool. We will show how to

generate reports within R in Sect. 13.6.3.

13.3 Design for Six Sigma

DFSS is a methodology to design new products and processes free of defects or to
redesign existing ones. This is especially useful when new processes or products are
to be designed or created, with no previous experimentation or data available.

Whereas there is a consensus on the DMAIC cycle as the best strategy to carry
out Six Sigma projects, there are several distinct improvement cycles used for DFSS,
namely:

DMADV Define, Measure, Analyze, Design, and Verify;
DMADOV Define, Measure, Analyze, Design, Optimize, and Verify;
IDOV Identify, Design, Optimize, and Validate;
DMEDI Define, Measure, Explore, Develop, and Implement.

In our view, DMADV is the more convenient approach. The first three stages
are the same as in the DMAIC cycle and after them the redesign of the product is
decided. Once the new design is approved, it is validated in the Verify phase.

DFSS is less extended than Six Sigma because the number of projects that need
a complete design is smaller. Moreover, it is usually easier to improve something
that already exists than to redesign it entirely.
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13.4 Lean

Lean, or lean manufacturing, is a management philosophy derived from the Toyota
Production System. Many lean techniques are simple and common sense. However,
in practice only a few companies have achieved truly world-class operational
efficiency. Lean techniques are often mistakenly associated with volume manufac-
turing. Nevertheless, the same principles are also applied in, for example, project
management, engineering, supply chain, finance, human resources.

Efficient processes and operations are correlated with the elimination of non-
value-adding activity (waste), in other words, producing only what is required,
when it is required, and doing things right the first time. Lean concepts are aimed
at identifying and eliminating waste. In this regard, waste entails the following
inefficiencies:

• Overproduction,
• Inventory,
• Motion,
• Waiting,
• Transportation,
• Overprocessing,
• Defects (scrap/rework).

Lean manufacturing works in the following way:

1. Removing waste in terms of time, material, and cost from the value stream results
in more capacity to deliver on time.

2. Waste removal usually contributes to process-variation reduction. The process
becomes more robust and, therefore, on quality.

3. On-time and on-quality delivery at every step in the process will greatly support
on-cost performance.

13.5 Gantt Chart

A Gantt chart is a type of horizontal bar chart useful for planning and scheduling
projects. It shows project tasks and responsibilities mapped out over the project
calendar time. Every bar in a Gantt chart represents a task. The x-axis is time scaled,
and the bars are plotted from the task starting date to the task finishing date. Thus,
such charts make clear not only the duration of tasks but also the relationships and
interactions among them. A Gantt chart is a visual tool very helpful for the following
purposes:

• Monitoring a project’s progress;
• Illustrating the start and finish dates of project activities;
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• Showing the current schedule status using the percentage of work finished within
activities completed;

• Planning how long a project should take;
• Laying out the order in which tasks need to be carried out;
• Depicting project milestones, deadlines, and other significant events.

The R packages plan, [50], and plotrix, [61], provide functions for plotting
Gantt charts. For instance, the following example for the plotrix package1

returns the Gantt chart in Fig. 13.1:

> require(plotrix)
> Ymd.format <- "%Y/%m/%d"
> gantt.info <- list(labels =

c("First task"," Second task", "Third task",
"Fourth task", "Fifth task"),

starts = as.POSIXct(strptime(
c("2012/01/01", "2012/02/02", "2012/03/03",

"2012/05/05", "2012/09/09"),
format = Ymd.format)),
ends = as.POSIXct(strptime(

c("2012/03/03", "2012/05/05", "2012/05/05",
"2012/08/08", "2012/12/12"),

format = Ymd.format)),
priorities = c(1, 2, 3, 4, 5))

> vgridpos <- as.POSIXct(strptime(c("2012/01/01",
"2012/02/01", "2012/03/01", "2012/04/01",
"2012/05/01", "2012/06/01", "2012/07/01",
"2012/08/01", "2012/09/01","2012/10/01",
"2012/11/01", "2012/12/01"),

format = Ymd.format))
> vgridlab <- month.abb
> gantt.chart(gantt.info, main = "Calendar date Gantt chart

(2012)",
priority.legend = TRUE, vgridpos = vgridpos,
vgridlab = vgridlab, hgrid = TRUE)

13.6 Some Advanced R Topics

13.6.1 Programming

One of the strengths of R is that it is not only a statistical software but also
a programming language. The R language is a scripting programming language
that is interpreted line by line. It allows control structures such as conditions and
loops. Regarding loops, we can avoid most loops by operating directly over R data

1Type example(plot.gantt) to see a similar example for the plan package.
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Calendar date Gantt chart (2012)

Jan Mar May Jul Aug Oct Dec

Fifth task

Fourth task

Third task

 Second task

First task

Priorities

High Low

Fig. 13.1 Gantt chart. In a Gantt chart, each task is represented as a bar whose length is
proportional to its time assigned within the project

structures such as vectors or matrices. Loops are in general computationally less
efficient than the application of functions over data objects. For example, let us
suppose that we have a vector with 10 values from a Poisson distribution. We want to
create a new vector with random values from a standard normal distribution whose
mean is the value in the original vector if it is greater than 3. We can perform this
task with a typical loop:

> set.seed(666)
> my.vector <- rpois(10, 5)
> my.result <- numeric()
> for (i in 1:10){

if (my.vector[i] > 3) {
my.result <- c(my.result, rnorm(1, my.vector[i]))

}
}
> my.result

[1] 7.758396 8.693815 3.197480 4.207759 9.957968
[6] 7.150043
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Note that the blocks inside the control structures are between braces “{” and “},”
and the statements to evaluate the control structure are between parentheses
“(” and “).” The set.seed function allows us to obtain reproducible results when
generating random numbers.

Instead of doing all that work in a “looping” programming paradigm, the correct
way to obtain the same result in R is by using a single command:

> set.seed(666)
> my.vector <- rpois(10, 5)
> sapply(my.vector[my.vector > 3], function(x) rnorm(1, x))

[1] 7.758396 8.693815 3.197480 4.207759 9.957968
[6] 7.150043

Functions are the heart of R programming. A function is a script that creates a
function object, ready to be used in the system. A function object requires the
creation of two elements: the body and the formal arguments. For example, if we
want to create a function for the variance estimator σ̂2, we can create the function
popVar with the following code:

> popVar <- function(x){
var(x) * ((length(x) - 1) / length(x))

}

The body function is between braces, and the formal arguments are between
parentheses after the reserved word “function.” Once the function is available in
the R workspace, it can be called from the R Console or included within other
functions or script files:

> popVar(my.vector)

[1] 8.36

The R language is very versatile and can be as complex as the user needs it
to be. A user who knows nothing about programming can write its scripts just
for repetitive tasks. An analyst can build programs for more complex analyses.
Programmers can develop complete applications to customize R for their company’s
needs. Parallel computing is supported for high-performance computational needs.
It is also possible to create customized menus and interfaces, and eventually to
develop a package to encompass all customizations, regardless of whether it is
shared with the R community or not.

13.6.2 R User Interfaces

The R Console is the first interface an R user must have a thorough knowledge
of. As a user advances in the use of R, a better interface is advisable. There are
several options, and there will probably be more in the future. The selection will
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depend on the user’s preferences and reasons for using R. EMACS and ESS2

are the favorites for many programmers. ECLIPSE is a complete IDE (integrated
development environment) for any programming purposes, and the StatET plugin3

allows you to create complete R projects and even debug code. RStudio4 also
provides an integrated interface, including an object explorer. All of them have
enhanced editors to create scripts and be more productive.

13.6.3 Reporting

We can generate very sophisticated documents with R. The main concept in this
regard is “literate programming,” which consists in the generation of a report
generated from a combination of content and data analysis code. A process will
blend all the stuff (content and data analysis results), creating the final document.
The main advantages of this system are that (1) it facilitates reproducible research,
in the sense that under different circumstances (another analyst, at a future time),
the results will be reproducible; and (2) any change in the analysis is automatically
updated in the charts or parts of the document where the change should have an
effect. Thus, we will be more productive and have fewer errors. Therefore, R is a
perfect companion for Six Sigma projects.

The “native” tool for literate programming in R is the Sweave function.5

This function converts a file containing R code and LATEX code6 into a dvi or
pdf document with any content, accurately formatted and prepared for delivery or
publication.

For example, the following code in an .Rnw file parsed with the Sweave
function produces a table with the design matrix described in Chap. 11. We use
the xtable function in the xtable package.

> require(xtable)
> my.table <- xtable(pizzaDesign[order(pizzaDesign$ord),1:4])
> align(my.table) <- "|c|ccc|c|"
> print(my.table, caption.placement = "top",

NA.string="____")

The complete content of the file (e.g., foo.Rnw) is

\documentclass[a4paper]{article}
\usepackage[OT1]{fontenc}
\usepackage{Sweave}

2http://ess.r-project.org/
3www.walware.de/goto/statet
4http://rstudio.org/
5Visit http://www.statistik.lmu.de/~leisch/Sweave/ to learn more about Sweave.
6Visit http://www.latex-project.org/ to learn more about LATEX.

http://ess.r-project.org/
www.walware.de/goto/statet
http://rstudio.org/
http://www.statistik.lmu.de/~leisch/Sweave/
http://www.latex-project.org/
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Six Sigma with R book - Practice Chapter DoE

Book reader

January 23, 2012

Please fill in the scores of each recipe:

flour salt score
5 - - +
1 - - -
7 - + +
2 + - -
4 + + -
6 + - +
8 + + +
3 - + -

bakPow

Fig. 13.2 PDF file with
design matrix. The document
was generated merging text
and R code using the
Sweave function

\begin{document}

\title{Six Sigma with R book - Practice Chapter DoE}
\author{Book reader}

\maketitle

Please fill in the scores of each recipe:

<<results = tex>>=
require(xtable)
my.table <- xtable(pizzaDesign[order(pizzaDesign$ord)

, 1:4])
align(my.table) <- "|c|ccc|c|"
print(my.table, caption.placement = "top",

NA.string = "____")
@

\end{document}

Save the file to the work directory. Now you can generate the pdf file with the
following commands:

> Sweave("foo.Rnw")
> require(tools)
> texi2dvi("foo.tex", pdf = TRUE)

The first command creates a LATEX file, whereas the second command converts
the LATEX file into the pdf file in Fig. 13.2. You can include any plot, table, or output
provided by the R code, along with any tests, figures, tables, pictures, etc. within
the LATEX code.

All the vignettes in your R installation are created using this technique. You can
find a list of examples by typing browseVignettes(). The corresponding.Rnw
files are in the doc folder of the package installation directory.
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13.7 Summary and Further Reading

A tool set for DFSS and Lean can be found in [46]. Reference [23] is a good
reference for DFSS focused on services. The book [71] can be consulted for a Six
Sigma approach to Lean.

For mastering R programming we recommend the book [16], after reviewing
the R language definition manual at CRAN.7 The knitr, [111], and pgfSweave
packages extend the Sweave functionality. odfWeave allows for merging of open
document format documents with R code instead of LATEX.

Case Study

Think about how you can apply these tools to the paper helicopter project.
Determine how you can run the tools with R.

7http://cran.r-project.org/doc/manuals/R-lang.pdf

http://cran.r-project.org/doc/manuals/R-lang.pdf


Appendix A
R Basic Reference Guide

This appendix is intended to provide a brief but broad collection of functions
commonly used in R. See references and Sect. 2.8 in Chap. 2 to study R in depth.
Type help(foo) in the R Console to see the documentation and the complete
list of arguments for the function foo.

Remember that R is case sensitive, and a is not equal to A.

Table A.1 Help functions

Function Action

help() or ? Opens help about a topic
help.search() or ?? Returns list of topics containing some text
apropos() Returns list of functions containing some text
find() Tells what package something is in
find() Shows which libraries and dataframes are attached
example() Runs example for a topic
demo() Runs demo about a topic
args() Returns syntax of a function
attach() Makes variables in a dataframe accessible by name
detach() For a dataframe, stops accessibility by name; for a package, unloads it

Table A.2 Functions for packages and workspace

Function Action

library() Loads package or shows available package
save.image() Saves all objects of R session
save() Saves list of objects to file
load() Loads objects from file system to R session
rm() Removes objects
source() Runs script in file
sink() Sends output to text file instead of R Console
savehistory() Saves command history of session
loadhistory() Loads previously saved history
q() Exits R

E.L. Cano et al., Six Sigma with R: Statistical Engineering for Process
Improvement, Use R! 36, DOI 10.1007/978-1-4614-3652-2,
© Springer Science+Business Media New York 2012

251



252 A R Basic Reference Guide

Table A.3 Constants
and special values

Expression Value

letters 26 lowercase letters
LETTERS 26 uppercase letters
month.abb Three-letter abbreviation of months
month.name English names of months
pi π constant
NA Not available
NaN Not a number (e.g. 0

0 )
Inf Infinite
NULL No value
1i Imaginary constant

√−1

Table A.4 Operators
for objects

Operator Operation

<- Assigns value
[ ] Subscript vector
[[ ]] Subscript list
: Generates sequences
∼ Model formula
$ List indexing

Table A.5 Functions for data types

Create Verify Convert Description

character() is.character() as.character() String type
numeric() is.numeric() as.numeric() Numeric type
logical() is.logical() as.logical() Logical data
vector() is.vector() as.vector() One-dimensional data
matrix() is.matrix() as.matrix() Two-dimensional data
array() is.array() as.array() Any dimensional data
factor() is.factor() as.factor() Categorical variable in a

vector
list() is.list() as.list() Collection of objects of

different types
data.frame() is.data.frame() as.data.frame() Data set as a list of

vectors
integer() is.integer() as.integer() Integers
ts() is.ts() as.ts() Time-series objects
complex() is.complex() as.complex() Complex vector (real

and imaginary parts)
class() Returns the class of any

object
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Table A.6 Functions for importing and exporting data

Function Action

read.table() Imports text files
read.csv(), read.csv2() Imports csv files
read.delim() Imports delimited text files
read.spss() Imports SPSS files
read.mtp() Imports Minitab files
read.arff() Imports Weka files (Data mining)
read.dta() Imports Stata binary files
write.table() Writes a text file
write.csv() Writes a csv file
writeClipboard() Saves data in Clipboard to paste in

other applications

Table A.7 Functions for managing data

Function Action

c() Concatenates elements
seq() Generates regular sequences
rep() Replicates values
length() Gets or sets length of an object
sort() Sorts vectors
rev() Reverses vectors
order() Returns permutation of vector indices
rank() Returns position of each vector element
unique() Returns unique values of a vector
duplicated() Returns indices that contain duplicated values
which() Gives TRUE indices of logical object
levels() Returns levels of a factor
unlist() Converts a list into a vector
cut() Converts a vector into a factor
transform() Transforms a dataframe
aggregate() Gets subtotals of variables in data set
subset() Gets subset of data set

Table A.8 String functions Function Action

nchar() Counts number of characters
in a string

substr() Returns a substring
paste() Builds a string with

substrings
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Table A.9 Functions
for exploring data

Function Action

data() Loads a data set
head() Returns first rows of a data set
tail() Returns last rows of a data set
str() Returns structure of data set
attributes() Accesses object attributes

Table A.10 Operators Operator Meaning

+, -, *, / Arithmetic operators
%/% Integer division
%% Remainder of a division

(modulo)
%*% Matrix multiplication
ˆ Powers
>, >=, <, <=, ==, != Relational operators
!, &, | Logical operators

Table A.11 Set operations Function Action

union() Set union
intersection() Set intersection
setdiff() Set difference
setequal() Set equality
is.element() Set membership

Table A.12 Mathematical
functions Function Meaning

sqrt() Square root
log(), exp() Logarithmic and

exponential
functions

sin(), cos(), tan(),
asin(), acos(), atan()

Trigonometry
functions

cosh(), sinh(), tanh(),
acosh(), asinh(),
atanh()

Hyperbolic functions

round(), trunc(),
ceiling(), floor()

Different ways to
round a number

abs() Returns absolute
value of a number
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Table A.13 Vector functions

Function Meaning

max(), min() Maximum and minimum values in vector
sum(), prod() Sum and product
mean(), var(), sd() Sample mean, variance, and standard deviation
median() Median value in vector
range() Vector with a maximum and minimum
cor() Correlation between vectors
cumsum(), cumprod(),

cummax(), cummin()
Cumulative functions

colMeans(), colSums(),
rowMeans(), rowSums()

Totals by rows or columns for dataframes and
matrices

ifelse() Returns a value for each component depending
on a logical expression

Table A.14 Summarize functions

Function Action

apply Applies function to margins in matrix or vector
lapply Applies function to all elements of list or vector
tapply Applies function to ragged array
sapply Friendly version of lapply
summary Returns summary of object; for data objects, some statistics
table Returns data frequency table
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Table A.16 Sampling
and combinatorial Function Action

set.seed() Sets seed for replicable randomization
sample() Extracts sample from a set
choose() Computes binomial coefficient

Table A.17 Graphic
functions Function Action

plot() Produces different types of plots
boxplot() Produces boxplot
hist() Produces histogram
coplot() Conditional plots
dotchart() Produces dot chart
stripchart() Produces 1-D scatterplot
mosaicplot() Produces mosaic plot
matplot() Plots matrix columns
pairs() Matrix of scatterplots
persp() Produces perspective plot (three dimensions)
spineplot() Produces spine plot and spinogram
text() Superposes text on a plot
abline() Prints line in plot
lines() Superposes line on a plot
points() Superposes points on a plot
polygon() Draws polygon
xspline() Draws an X-spline
identify() Identifies point in a plot with mouse

Table A.18 Plot arguments Argument Meaning

type Type: p(points), l(lines), b(both),
h(histogram), s(steps)

main Main title
sub Subtitle
xlab Label for x axis
ylab Label for y axis
asp yx aspect ratio
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Table A.19 Graphic parameters

Parameter Description Values

col Color Names, numbers, hex codes
lwd Line width Number
lty Line type Number
pch Point symbol Number
las Style of axis labels Number
cex Magnifying ratio Number (1 default)

Table A.20 Hypothesis tests and confidence intervals

Function Task

binom.test Exact test for binomial distributions
bartlett.test Tests equal variances
chisq.test Test for congingency tables and goodness-of-fit tests
lillie.test Normality test
pairwise.t.test Pairwise comparison with correction for multiple testing
poisson.test Test for Poisson distribution parameter
prop.test Test for proportions
shapiro.test Normality test
t.test Test for means
var.test Test for comparing variances

Table A.21 Model fitting

Package Function Models

lm stats Linear model
anova stats Gets ANOVA table for a model
manova stats Performs multivariate ANOVA
glm stats Generalized linear model
gam gam Generalized additive model
gam mgcv Generalized additive model
lm.ridge MASS Linear models by ridge regression
coef stats Extracts coefficients from a model
predict stats Computes predictions for data input based on a model
confint stats Gets a confidence interval for model parameters
residuals stats Gets residuals of a model
step stats Selects variables for a model
update stats Updates and refits formula of a model
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Table A.22 SixSigma package data sets

Function Task

ss.data.bolts Bolts example, Chap. 4
ss.data.ca Winery example, Chap. 7
ss.data.doe1, ss.data.doe2 Pizza dough example, Chap. 11
ss.data.pastries Pastries exercise, Chap. 5
ss.data.pc, ss.data.pc.big,

ss.data.pc.r
Print cartriges example, Chap. 8

ss.data.strings Guitar strings example, Chaps. 9 and 10
ss.data.rr Data for a paper helicopter experiment

Table A.23 SixSigma package functions

Function Task

ss.ceDiag Cause-and-effect diagram
ss.pMap Process map
ss.lfa Loss function analysis
ss.lfa Computes loss function value
ss.rr Gage R&R study
ss.study.ca Capability analysis study
ss.ca.cp Capability index
ss.ca.cpk Corrected capability index
ss.ca.yield Computes yield of a process
ss.ci Confidence interval for mean and normality test
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Table A.24 Cited packages

Package Use Reference

base, stats, utils, grid,
graphics, tools

Base packages [84]

AcceptanceSampling Acceptance sampling [52]
AMORE Neural network modeling [62]
e1071 SVM, data mining, classification [21]
kernlab Data mining, classification, SVM [48]
foreign Data format conversion [83]
gam General additive model (inference) [37]
ggplot2 Elegant graphics using grammar of

graphics
[105]

Hmisc Harrell miscellaneous (useful functions
for many tasks by Frank E. Harrell)

[35]

knitr Report generation [111]
lattice Lattice graphics [91]
lpridge Ridge regression [95]
MASS Support functions and data sets for

Venables and Ripley’s MASS
[102]

mgcv Generalized additive and other models [109]
monmlp Neural network modeling [14]
neuralnet Neural network modeling [27]
nnet Neural network and multinomial

log-linear models
[102]

nortest Normality test [33]
odfWeave Reporting [57]
plan Gantt chart [50]
plotrix Gantt chart and other plots [61]
pls Partial least squares (PLS) regression [67]
plsdof Partial least squares (PLS) regression [56]
plspm Partial least squares (PLS) regression [90]
plsRbeta Partial least squares (PLS) regression [26]
plsRcox Partial least squares (PLS) regression [6]
plsRglm Partial least squares (PLS) regression [7]
qAnalyst Control chart and capability analysis [98]
qcc Quality control chart [93]
qualityTools Methods associated with DMAIC cycle [88]
RODBC Data source connection [87]
RWeka SVM and other data mining tools [39, 108]
SixSixgma Six Sigma tools and data sets for examples

in this book
[15]

sp Spatial data analysis [78]
spc Statistical process control computations [54]
spcadjust Calibration of control charts
survival Survival analysis (including ridge

regression); reliability studies
[100]

XLConnect Import/export, manipulate Microsoft
Excel files

[29]

xtable Elegant tables for reports and publications [19]
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Solutions

Practice for Chap. 2

2.1

> install.packages("SixSigma", dependencies = TRUE)

Select a mirror close to your location when prompted.

2.2

> FailureTime <- c(0.29, 0.32, 1.21, 0.95, 0.14, 2, 0.81,
0.88)

> Temp <- c(63.89, 63.38, 65.05, 62.31, 68.04, 59.12, 62.80,
61.89)

> Factory <- c("A", "B", "C", "C", "B", "B", "A", "B")
> sol1a <- data.frame(FailureTime,

Temp, Factory = as.factor(Factory))
> summary(sol1a)
> write.csv(sol1a, file = "sol1a.csv")

2.3

> plot(sol1a$Temp, sol1a$FailureTime)
> boxplot(sol1a$FailureTime ~ sol1a$Factory)
> hist(sol1a$Temp)

2.4

> table(sol1a$Factory)
> sol3 <- sol1a$Temp[sol1a$FailureTime < 1]
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Practice for Chap. 3

3.1

> grid.roundrect(width = .25,
height = unit(1.8, "inches"),
x = 0.25)

> grid.text("INPUTS\n\nData\nComputer\nOperator",
x = 0.25,
y = 0.66,
just = "top")

> grid.roundrect(width = .25,
height = unit(1.8, "inches"),
x = 0.75)

> grid.text("OUTPUTS (Y)\n\nInvoice\n(pages,\nsize,\ncolor)",
x = 0.75,
y = 0.66,
just = "top")

> grid.lines(x = c(0.375, 0.625),
y = c(0.5, 0.5),
arrow = arrow())

3.2

> inputs <-c ("Clothes", "Machine", "Powder")
> outputs <- c("dryness", "cleanness", "time", "creases")
> steps <- c("PREPARE", "WASH", "HANG OUT")
> io <- list()
> io[[1]] <- list("Clothes", "Machine", "Powder")
> io[[2]] <- list("Clothes", "MachineState")
> io[[3]] <- list("dryness", "cleanness", "time")
> param <- list()
> param[[1]] <- list(c("type", "P"), c("amount", "N"))
> param[[2]] <- list(c("time", "Cr"), c("Powder.Brand", "Cr

"),
c("weight", "P"), c("MachineAge", "Cr"))

> param[[3]] <- list(c("WindSpeed", "N"), c("temperature",
"N"),

c("location", "C"))
> feat <- list()
> feat[[1]] <- list("cleanness")
> feat[[2]] <- list("cleanness", "time", "dryness")
> feat[[3]] <- list("cleanness", "time", "creases")
> ss.pMap(steps, inputs, outputs,

io, param, feat,
sub = "Laundry Process")
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Practice for Chap. 4

4.1
L(Y ) = 175(Y − 15)2

4.2
Formula:

L(Y ) = 0.125 · (Y − 750)2

Graphic of function:

> curve(0.125*(x-750)^2,
from = 735, to = 765)

4.3 Loss function analysis:

> ss.lfa(ss.data.ca, "Volume", 10, 750, 1.25, 850)

The average cost is $0.53 and the total loss is $452.9.

Practice for Chap. 5

5.1

The variable lab (laboratory) is the appraiser factor (three levels), and the
variable batch is the part factor, also with three levels. Two measures of each
batch were taken in each laboratory.

5.2
The command to run the MSA is as follows:

> ss.rr(var = comp, part = batch, appr = lab,
data = ss.data.pastries)

This is a good measurement system. The number of distinct categories is greater
than 4 (6) and the %Study Var for R&R is lower than 30%. However, this value
(20.27%) is not lower than 10%, and the measurement system may be improved.
The plots confirm these results.

Practice for Chap. 6

6.1
First we create the data from the example:

> b.effect <- "Delay"
> b.groups <- c("Personnel", "Weather", "Suppliers", "

Planning")
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> b.causes <- vector(mode="list", length=length(b.groups))
> b.causes[1] <- list(c("Training", "Inadequate"))
> b.causes[2] <- list(c("Rain", "Temperature", "Wind"))
> b.causes[3] <- list(c("Materials", "Delays", "Rework"))
> b.causes[4] <- list(c("Customer", "Permissions", "Errors"))
>

We can plot a cause-and-effect diagram:

> ss.ceDiag(b.effect, b.groups, b.causes, sub="Construction
Example")

> b.data <- data.frame(cause = factor(unlist(b.causes)),
count = c(5, 1, 3, 1, 2, 18, 20, 4, 15, 2, 4),
cost = c(50, 150, 50, 10, 20, 180, 200, 10, 5, 20, 150))

Next we plot the Pareto chart:

> require(qcc)
> b.vector <- b.data$cost
> names(b.vector) <- b.data$cause
> pareto.chart(b.vector, cumperc = c(80))

6.2 We need the two charts in order to choose the adequate causes to focus on.
If we only use the Pareto chart for the count of errors, then we will select

“Customer” as one of the “vital few.” However, in the cost chart, it is apparent that
delays due to customer needs do not generate a high cost. It is due to the fact that
a new specification usually involves a revision of the contract and, therefore, an
extended deadline without extra costs.

Using the cost chart, the factors to focus on are the delay in the receipt of
materials, quality of materials, inadequateness of the personnel, and planning errors.

Practice for Chap. 7

7.1
With σ = 2:

Z = min

{
(14− 10)

2
,
(10− 4)

2

}
= min2,3 = 2,

ZLT = ZST − 1.5 = 2× 1.5= 0.5.
With σ = 1:

Z = min

{
(14− 10)

1
,
(10− 4)

1

}
= min4,6 = 4,

ZLT = ZST − 1.5 = 4× 1.5= 2.5,

7.2 Now we have less than 308,000 DPMO (previously we had more than 690,000
DPMO).
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Practice for Chap. 8

8.1

> newData <- aggregate(pc.volume ~ pc.filler,
sum, data = ss.data.pc)

> barplot(newData$pc.volume,
names.arg = newData$pc.filler,
main = "Total volume by filler")

8.2

> newData <- ss.data.pc.big[ss.data.pc.big$batch == 1,5]
> plot(newData, type = "b")

There seems to be a descendant trend over time.

Practice for Chap. 9

9.1 To save the subset:

> data.stats.prob1 <- ss.data.strings[ss.data.strings$type ==
"E1",]

> summary(data.stats.prob1$res)

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.00 5.75 6.50 6.20 8.00 9.00

> sd(data.stats.prob1$res)

[1] 2.067289

> IQR(data.stats.prob1$res)

[1] 2.25

The mean and median are not equal, so the distribution might not be symmetric.
We can generate a boxplot to see the data from the summary.

> boxplot(data.stats.prob1$res)

9.2

> pbinom(4, 100, 0.01)

[1] 0.9965677
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Practice for Chap. 10

10.1
Using the shapiro.test function:

> shapiro.test(ss.data.strings$res)

Using the ss.ci function from the SixSigma package:

> ss.ci(res, data = ss.data.strings)

These data are nonnormal. We need other methods for inference.

10.2

> prob2.model <- lm(res ~ len, data = ss.data.strings)
> summary(prob2.model)

The linear model is not good for these data. The p-value for the goodness-of-fit
hypothesis test is very high (0.7149). Furthermore, the R-squared statistic is very
low.

10.3 Solution using lm function:

> prob3.model1 <- lm(len ~ type, data = ss.data.strings)
> summary(prob3.model1)

Solution using aov function:

> prob3.model2 <- aov(len ~ type, data = ss.data.strings)
> summary(prob3.model2)

The length of the strings is independent of the type of string (p-value > 0.05).
Plotting the effects:

> qplot(type, len, data = ss.data.strings) +
stat_summary(fun.y = mean, geom = "line",

aes(group = 1), col = "orangered") +
stat_summary(fun.y = mean, geom = "point",

shape = 17, size = 3, col = "red") +
opts(title = "Effects of factor Type of string on Length"

)

Practice for Chap. 11

11.1

> myDesign <- expand.grid(factor1 = gl(2, 1, labels = c("-",
"+")),

factor2 = gl(2, 1, labels = c("-", "+")),
factor3 = gl(2, 1, labels = c("-", "+")),
factor4 = gl(2, 1, labels = c("-", "+")),
response = NA)
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> myDesign$ord <- sample(1:16, 16)
> myDesign[order(myDesign$ord),]

11.2
The formula in the following code allows one to check up to three-way

interactions.

> model.prob1 <- lm(score ~ (.-repl)^3 , data = ss.data.doe2
)

> summary(model.prob1)

There are some important interactions; therefore, we keep them in the model
jointly with the significant main effects.

> selectionvar <- step(model.prob1, method="backwards")
> summary(selectionvar)
> coef(selectionvar)

Practice for Chap. 12

12.1

> pb.groups.s <- with(ss.data.pb2,
qcc.groups(pb.humidity, pb.group))

> pb.s <- qcc(pb.groups.s, type = "S")
> summary(pb.s)
> plot(pb.s)

12.2
As the number of errors is registered by surface unit, the sample size for each

group is 1, and we will have straight control limit lines. The u chart is plotted with
the following command:

> with(ss.data.pb4,
plot(qcc(defects, sizes = rep(1, 80), type = "u")))
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A
AMORE, 186

B
base

∼, 40, 182
<- (assign), 25
[ ], 28
[[ ]], 29
$, 29
apply, 38
as.character, 32
as.data.frame, 32
c, 25, 81
choose, 44
class, 29, 32
colnames, 26
cos, 36
cut, 143
data.frame, 27, 81, 95, 178, 204
diff, 148, 170
dim, 28
exp, 36
expand.grid, 201, 213
factor, 26, 81
factorial, 44
for, 245
function, 246
gamma, 169
getwd, 22
gl, 201
if, 245
is.element, 37
is.na, 145
lapply, 37

length, 28
list, 26, 95
load, 33
ls, 32
matrix, 26, 34
mean, 37, 146, 169, 173
names, 97, 183, 189
nrow, 151, 170–174
objects, 32, 34
order, 97
q, 23
range, 170
rbind, 204
rev, 97
rm, 33
round, 36
rownames, 26
sample, 43, 203
sapply, 37, 246
save, 33
save.image, 33
scan, 25
set.seed, 245
setwd, 22
sort, 97
source, 23
sqrt, 36, 171, 173
sum, 151, 170, 171
summary, 38, 148, 183, 189, 206
table, 37, 143, 146, 151
union, 37
vector, 95

E
e1071, 186
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F
foreign, 31

read.mtp, 31
read.spss, 31

G
gam, 186
ggplot2, 39, 100

facet_grid, 209
geom_line, 209
geom_point, 209
geom_point, 181
ggplot, 209
opts, 181, 191, 209
qplot, 181, 191
scale_x_continuous, 209
stat_abline, 209
stat_summary, 191

graphics, 38, 225
abline, 40, 41, 68, 128, 130, 181, 208
axis, 128
barplot, 97, 120
box, 210
boxplot, 131, 132, 188
curve, 39, 68, 123
grid, 123, 125
hist, 41, 121, 123, 155
lines, 41, 123, 130, 133, 155
par, 41, 184, 210
pie, 42
plot, 39–41, 117, 125, 128, 181, 184, 208,

210
plot.design, 191
points, 133
stripchart, 130, 133
text, 39, 68, 97, 123, 132, 133

grid, 39
grid.lines, 54
grid.roundrect, 54
grid.text, 54

H
Hmisc, 171

binconf, 171, 172

I
IQCC, 225

K
kernlab, 186

L
lattice, 39, 100, 225

xyplot, 135
lpridge, 186

lpridge, 186

M
MASS, 186

lm.ridge, 186
mgcv, 186
monmlp, 186

N
neuralnet, 186
nnet, 186
nortest

lillie.test, 211

P
plan, 244
plotrix, 244

gantt.chart, 244
pls, 186
plsdof, 186
plsgenomics, 186
plspm, 186
plsRbeta, 186
plsRcox, 186
plsRglm, 186

Q
qAnalyst, 225

plot.spc, 231
print.spc, 229
spc, 229
summary.spc, 229

qcc, 96, 225
pareto.chart, 97
plot.qcc, 228
qcc, 227, 232, 235
qcc.groups, 227, 232

qualityTools
mvPlot, 135
paretoChart, 97

R
RODBC, 31
RWeka, 186
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S
SixSigma

ss.ca.cp, 109
ss.ca.cpk, 109
ss.ca.yield, 106
ss.ca.z, 107
ss.cc.getc4, 169, 170
ss.cc.getd2, 169
ss.ceDiag, 95
ss.ci, 174
ss.data.bolts, 69
ss.data.doe1, 204
ss.getd2, 170
ss.heli, 12
ss.lf, 71
ss.lfa, 70
ss.pMap, 58
ss.rr, 85
ss.study, 110

sp, 39
stats

aggregate, 178, 205
anova, 82, 184, 189
aov, 189
bartlett.test, 176
binom.test, 171, 176
chisq.test, 176
coef, 207
confint, 184, 189, 208
cor, 180
dbinom, 153
dnorm, 44
glm, 186
IQR, 148
lm, 82, 181, 182, 189, 206
manova, 192
median, 146
na.omit, 180
pairwise.t.test, 190
pbeta, 162
pbinom, 153
pchisq, 164
pexp, 160
pf, 165
pgamma, 161
pgeom, 158
phyper, 157
plnorm, 160
plot.lm, 184
pnbinom, 159
pnorm, 44, 155
poisson.test, 176
power.prop.test, 179
power.t.test, 179
ppois, 159

predict, 184, 208
prop.test, 171, 176, 178
pt, 163
ptukey, 169
punif, 161
pweibull, 163
qchisq, 164, 174
qf, 165
qnorm, 44, 156, 171, 173
qqline, 155
qqnorm, 155
qt, 163, 172
quantile, 148
residuals, 184
rnorm, 44
runif, 161
sd, 148, 170, 173
shapiro.test, 176, 178, 184, 211
step, 185
t.test, 174, 176, 177
update.formula, 185
var, 169, 174
var.test, 176, 177

survival, 186
ridge, 186

U
utils

?, 24
??, 24
apropos, 24
browseVignettes, 24
data, 30
demo, 24
example, 24
head, 27
help.start, 24
install.packages, 23
read.csv, 30
read.table, 31
str, 27, 81, 135
Sweave, 247, 248
texi2svi, 248
vignette, 12, 24
write.csv, 31

X
XLConnect

loadWorkbook, 31
readWorksheet, 31

xtable, 247
xtable, 247
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Symbols
2k factorial design, 203
NA, 145
6 M’s, 53
80/20 distribution, 92
80/20 rule, 92

A
acceptance sampling, 70, 237
accuracy, 80
affinity diagram, 94
alternative hypothesis, 176
analysis of covariance, 191
analysis of variance, 82, 187, 203
ANCOVA, 191
ANOVA, 82, 187, 203

model fitting, 189
multi-way, 187
one-way, 187
two-way, 187

area under the curve, 152
argument, 34
assignable causes, 149
attributes control charts, 234
atypical data, 145
average, 146
average loss function, 69
average range, 89, 149
axis, 116

x, 116
y, 116

a priori probability, 150

B
bar chart, 96

base
range, 148

Bayesian inference, 141
Bayesian probability, 150
Bernoulli experiment, 152, 168
binomial distribution, 152, 157, 171, 234
blind trial, 204
blocking, 198
box plot, 41, 130, 188
box–whisker chart, 130
brainstorming, 7, 52, 94
bubbles, 136

C
c chart, 237
capability

adjusted index, 108
indices, 108
of a process, 108

capability analysis, 237
cause-and-effect, 200
cause-and-effect diagram, 93
cause-and-effect relationship, 125, 193
center control line, 221
center line, 225
central limit theorem, 154, 171, 172
central tendency, 146
characterizing experiments, 202
chart, 115

limits, 116
chart patterns, 223
class, 32, 143
classical probability, 150
clipboard, 31
coefficients, 207
columns, 38, 142
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combinatorial, 44
Command, 19
common causes, 149, 222
conditions, 244
confidence coefficient, 170
confidence interval, 109, 167, 176

mean, 172
proportion, 171
variance, 173

confidence level, 170, 179
confusion of effects, 198
continuous variable, 142
control, 219
control chart, 88, 221
control limits, 88, 89, 198, 221, 226, 227, 231,

232, 234, 236
Cook’s distance, 185
coordinates, 54
correlation, 124, 180, 198

negative, 180
positive, 180

correlation coefficient, 180
cost of poor quality, 63, 64
cost of quality, 63
covariance, 180
CRAN, 16
CTQ, 6, 53, 63, 64, 179, 212, 219
cumulative distribution function, 150
cycle, 126

D
data frame, 27
data science, 141
data scientist, 141
data types, 25, 32
dataframe, 142
default value, 34
Defect, 105

per Unit, 105
defective, 65
Defects

per Opportunity, 105
defects, 95

per million opportunities, 105
degrees of freedom, 172
density, 41, 44
density probability function, 152
dependent variable, 124, 182, 198
descriptive analysis, 115
descriptive statistics, 141
design matrix, 201
design of experiments, 99, 191, 197
deterministic event, 152

device, 21
dfss, 242
DFSS cycles, 242
dimension, 28, 116
discrete variable, 142
DMAIC, 5

analyze, 6
control, 7
define, 6
improve, 7
measure, 6

DoE, 197
DPMO, 107

E
ECLIPSE, 247
effect, 100
effective limits, 108
efficient process, 243
empirical probability, 150
error type I, 179
error type II, 179
estimator, 147, 168
EWMA, 237
Excel, 30
expectation, 152
experiment, 198
experiment replication, 201, 202
experimental conditions, 201, 202
experimentation strategy, 200
explanatory variable, 182
exploratory data analysis, 141
export data, 31

F
factor, 26, 41, 142, 187, 200, 203
factor levels, 187, 200
factorial design, 203
features, 55
fishbone diagram, 94
flow chart, 52
FMECA, 241
formula, 40
fraction of nonconforming, 171
freely available software, 16
frequency, 143
frequency table, 143
function, 21

arguments, 246
body, 246

function value, 36
functions, 34
future state process map, 7
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G
Gage R&R, 79
gantt chart, 243
generalized additive model, 186
generalized linear model, 186
geometric mean, 146
ggplot2, 225
group chart, 133

H
harmonic mean, 146
hat, 168
histogram, 41, 110, 120
homoscedasticity, 185
hypergeometric distribution, 157
hypothesis testing, 174, 175, 203

I
I/MR chart, 226
IDE, 247
import data, 31
improve phase, 70
Improvement, 197
inconsistent data, 198
independent variable, 124, 182, 198
indices, 28
individual control chart, 226
inference, 144, 152, 167
inferential statistics, 141
inputs, 53
inspection, 219
interaction, 83, 187, 191, 202
interaction effect, 203
interactions plot, 209
interquartile range, 148
interval estimation, 170
IQR, 148
Ishikawa diagram, 94
Ishikawa, Kaoru, 94
ISO, 64, 80

J
Juran, Joseph M., 92

K
key characteristic, 106

L
larger-the-better, 72

latex, 247
law of large numbers, 150
LCL, 221, 225
lean manufacturing, 243
length, 28
library, 23
likelihood, 151
linear relation, 180
list, 26
literate programming, 247
location chart, 134
long term variability, 106
long term variation, 129
long-term variability, 149
loops, 244
loss function, 63, 65, 102
lower control limit, 221
LSL, 102

M
magnificent seven, 93
main effect, 202, 203
main effects plot, 209
MANOVA, 192
mathematical expression, 39
mathematical function, 39
matrix, 26, 142
maximum, 147
mean, 106, 146, 152
mean of squares, 82
mean squared deviation, 69
mean-range chart, 231
mean-sd chart, 234
measure phase, 69
measurement system analysis, 79
median, 146
median absolute deviation,

147
minimum, 147
Minitab, 31
missing data, 145
mistake-proofing, 219
mistake-proofing design, 219
mixed models, 186
mode, 146
model, 204, 207
model diagnostics, 210
moving range, 226
moving range chart, 226
multiple regression, 185
multivariate analysis of variance,

192
multivariate chart, 134
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N
natural limits, 108
neural networks, 186
noise factor, 198, 212
nominal-the-better, 73
normal distribution, 154, 157, 171, 221
normality, 211
normality test, 173, 178, 184, 211
not available, 145
np chart, 237
null hypothesis, 176, 179
number of distinct categories, 84

O
object, 21, 32
observation, 142
observational study, 197
OC curve, 237
one-at-a-time, 202
one-sided test, 176
operational structure, 212
optimization experiments, 202
outlier, 130, 145, 146
outputs, 53

P
p chart, 234
p-value, 176, 206, 211
package, 23
parallel computing, 246
parameter, 167, 175, 180
parameters, 55, 93

classification, 56
Pareto chart, 93, 120
Pareto Principle, 91
Pareto, Vilfredo, 91
perspective, 136
phase I (control charts), 221
phase II (control charts), 221
pie plot, 42
pilot program, 7
planning, 243
plot, 40
PLS, 186
point estimation, 167
Poisson distribution, 234
poka-yoke, 219, 220
population, 144, 152, 167
population mean, 168
population variance, 168
posterior probability, 150
precision, 80

probability, 150
probability density function, 150
probability distribution, 44, 142, 152, 167
probability function, 150
probability theory, 141
problem solving, 92
process, 4

breakdown, 54
steps, 54

process improvement, 4, 147, 198, 212
process map, 6, 51

final, 52
ideal, 52
top level, 52

process mapping, 51
process owner, 212
program block, 246
program statement, 246
progressive experimentation, 202
project charter, 6, 52
prompt symbol, 19

Q
QC, 219
qualitative variable, 142, 187
quality, 64
quality control, 219
quantile–quantile chart, 110
quantitative variable, 142
quartile, 148

R
R

Console, 19
Editor, 22
formulas, 181
graphics, 21, 38
GUI, 19
Help, 24
Installation, 16
Licence, 16
package installation, 23
session, 32
workspace, 32
workspace image, 33

R functions, 246
R language, 244
random sample, 43, 144
random variable, 142, 152
randomization, 202, 223
randomness, 222
range, 147, 169
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rational groups, 223
raw data, 142, 143
redesign, 242
reference level, 189
refutability, 176
regression, 180

model fitting, 181
model validation, 184

regression coefficients, 183
regression line, 40
rejection region, 176
relative frequency, 143, 150
relative range, 150, 169, 226
reliability, 237
reliability analysis, 237
repeatability, 79, 80
replication, 201
reproducibility, 79, 80
reproducible research, 58, 247
requirements, 64, 101
residuals, 180, 183
response, 182, 198, 202
restore data, 33
ridge regression, 186
risk, 200, 241
risk matrix, 242
RNG, 144
robust design, 212
robust process, 197
roles

BB, 9
champion, 9
green belt, 9
MBB, 9
process owner, 9

root cause, 6, 51, 92
row, 142
rows, 38
RUMBA, 102
run chart, 126, 128

S
sample, 144, 152, 167

order, 203
sample mean, 168
sample proportion, 168
sample size, 144, 150, 223
sample space, 150
sample standard deviation, 169
sample variance, 147, 168
sampling, 223
sampling distribution, 168
save data, 33

scale, 116
scatterplot, 40, 124, 180
scheduling, 243
scientific method, 4, 198
screening experiments, 202
Script, 21
seasonality pattern, 223
segmented implementation, 7
select project, 99
sequential experimentation, 200
Shapiro–Wilk, 178
Shewart’s constants, 89
shift, 126
shift pattern, 223
short term variability, 106
short-term variability, 149
short-term variation, 129
Sigma

Score, 106
significance level, 176, 179
significant effect, 202
simulation, 7
SIPOC, 52
six Ms, 94
Six Sigma

methodology, 3, 4
project, 5
roles, 9

SixSigma package
Installation, 46

smaller-the-better, 71
solution criteria list, 7
SPC, 219, 237
special causes, 222
special characters, 23

;, 23
#, 23

Special Values
Inf, 25
NA, 25
NaN, 25
NULL, 25

specification limits, 64, 102, 110, 221
specifications, 101
split-plot design, 214
spreadsheet, 30
SPSS, 31
stakeholder, 52
standard deviation, 106, 147
standard normal distribution, 156
standardization, 156
statistic, 168, 173, 176
statistical inference, 167
statistical power, 179
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statistician, 141
stochastic event, 152
structure, 27
Student t, 172
study var, 86
subgroup, 223
subscript, 28, 30
subset, 28
sum of squares, 82
summarize, 37
symmetric distribution, 147

T
t-test, 187
Taguchi, 63, 66, 215
Taguchi loss function, 63
target, 64, 66, 102, 110
Task View, 24
tier chart, 129
time series, 126
tolerance, 64, 66
tolerance limits, 70
trend, 126, 145
trend pattern, 223
trial, 200, 202
trial-and-error, 200
trimmed mean, 146
trivial many, 92
trueness, 80
two-dimensional chart, 221
two-dimensional charts, 116
two-sided test, 176

U
u chart, 236
UCL, 221, 225
unbiasedness, 168
uncertainty, 170

upper control limit, 221
useful many, 92
USL, 102

V
value stream, 243
variability, 147
variable, 27, 142
variables control charts, 226
variables selection, 185
variance, 147, 152, 168
vector, 25, 142
vignette, 24, 248
vital few, 92
Voice of the Customer, 101
Voice of the Process, 102
VSM, 52

W
waste, 243
weighted mean, 146
Working Directory, 22

X
Xs of the process, 220

Y
Yield, 103
yield

first-time yield, 103
rolled throughput yield, 104

Ys, 220

Z
zero defects, 220
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