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Preface

Nowadays, the intensive use of an automatic data acquisition systems and the use of

on-line computers for process monitoring have led to an increased occurrence of

industrial processes with two or more correlated quality characteristics, in which

the statistical process control and the capability analysis should be performed using

multivariate methodologies.

Unfortunately, despite the availability of increased computing capabilities, in

the Multivariate Statistical Quality Control (MSQC) framework the software

solutions are limited or restricted in their level of success and ease of use for

dealing with the problems of industry or promoting academic instruction.

The aim of this book is to present the most important MSQC techniques

developed in R language, across the most important theoretical aspects (without

pretending to be a book in statistical theory) of the use of the software and the

solution of problems. The choice of R is motivated by the fact that the R language

has become the “lingua franca” of the data analysis and it is an easy-to-use, open

source, free, multiplatform, and very flexible software. Further, R has a mounting

community of users; it has been growing up in solutions for corporations and the

acceptance in the academia.

This is a succinct, comprehensible and accessible text that provides the core of

the MSQC tools across illustrative examples done by hand and using computer

software presenting the code snippets. The following word cloud shows the main

topics approached in this book in proportion to the font size.

The first chapter provides a very short introduction to R language, statistical

procedures, and the main aspects concerning Statistical Quality Control (SQC).

Chapters 2 and 3 constitute the kernel of this book in which the design and

interpretation of multivariate control chart and the computation of multivariate

process capability indices are covered. Chapter 5 approaches the tools for assessing

multivariate normality and independence, and Chap. 6 contains two study cases

integrating the knowledge acquired in previous sections. This text could be read in

the order desired by the reader.

Ideal to postgraduate courses in SQC, Quality Engineering, Industrial Statistics,

and Industrial Engineering it could nonetheless be used for advanced undergraduate
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students. It includes the MSQC R package, available at http://www.cran.r-project.

org/package¼MSQC from CRAN (the Comprehensive R Archive Network) and

holds the eleven dataset used.

The examples code and the solutions to all exercises are available at the author

web page (https://sites.google.com/site/edgarsantosfernandez/). This site can be

also consulted for additional information and for the list of errata.The reports of

suggestions, errors or omissions are most welcome at: edgar.santos@etecsa.cu.

The book assumes the reader has an elemental background in matrix algebra,

statistics, and practically no computer skills in R.

It provides statisticians, scientists, engineers, practitioners, and students a modern

and practical overview about the most accepted techniques on MSQC of the last

years across the examples and exercises.

In other words, it supplies the knowledge and the computational tools necessary

for solving the main problems presented in this field and for practically nothing.

Santa Clara, Cuba Edgar Santos-Fernández
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Chapter 1

A Small Introduction

1.1 A Small Introduction

1.1.1 A Brief on R

R is high-level and open-source programming language focused mainly in statistical

processing. It is based on the recognized S language and allows the integration with

others as C, C++, Fortran, Java, Python, etc.

There are many characteristics which have placed it in the elite of the statistical

computing software. It is an easy-to-use, flexible, and powerful software with an

excellent performance regarding its competitors. Besides it is multiplatform, that is,

runs over UNIX, Windows, and Mac OS. Moreover, and last but not least, it is

absolutely free; contrasting with the high cost of similar proprietary software.

Another remarkable feature is that it constitutes one of the biggest knowledge

and technology transfer to developing countries.

The R software per se consists barely in a few megabytes including the basic

function, which is frequently updated. This philosophy allows a lightly main

program kept by the user with only additional applications called packages.

These packages are available through the Comprehensive R Archive Network

(CRAN).

Applications in R cover a wide range of disciplines such as Bioinformatics,

Econometrics, Environmetrics, etc.

A remarkable feature of R is the huge community of users worldwide which

have developed an extensive documentation and help sources including a mailing

list with keen users.

A fact that upholds the above said is the exponential growth of literature about

programming, graphics, etc. and the large amount of publications that refer

applications or processing in R.

E. Santos-Fernández, Multivariate Statistical Quality Control Using R,
SpringerBriefs in Statistics 14, DOI 10.1007/978-1-4614-5453-3_1,
# Springer Science+Business Media New York 2012
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1.1.2 R Installation and Managing

The R installation is very simple. Just download the suitable version for your

platform from a desired CRAN at http://cran.r-project.org/ and install it.

When R is opened, appears the R console with a message indicating the

following information: the version, the platform, and the important statement that

R comes without any warranty, the way to cite R and the packages in publications,

etc. Besides that, in contributors() the R-core Team and contributors appear.

In this console the cursor is placed after the > symbol called prompt that

indicates availability. On the other hand when + symbol appears, it means that

the computation is not completed. Using the Up arrow key it is possible to invoke

the last computation. One unique characteristic of the language is the assignment

operator <� instead of the symbol ¼ (Fig. 1.1).

All the content of this book has been produced in Windows, so any suggestion or

report of inaccuracy is welcome.

All the examples in this book are contained in the MSQC package available at

http://www.cran.r-project.org/package¼MSQC and to install it just type:

> install.packages("MSQC")

selecting the desired CRAN.

Thus, to load it

> library("MSQC")

Fig. 1.1 R console in Windows

2 1 A Small Introduction
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1.1.3 General Principles of Data Manipulation

The input data in R can be carried out in a simple way: using read.table: specifying

the path

> data<�read.table("C:\\data.txt")

or

> data<�read.table(file.choose())

selecting the path where the file is located.

Besides files can be imported from another statistical software such as SPSS and

MINITAB using the foreign package or from an Excel file with the gdata package.

Another useful input tool is the scan() function that makes it possible to read

from the console. For instance:

> data <� scan()

1: 0.677

2: 0.852

. . .
11: 0.633

12: 0.637

13:

Read 12 items

This creates a vector named data with the 12 elements read.

In this book mainly three types of data structures are used: vectors, matrices, and

arrays.

The vectors are the simplest structures in R. A vector can be composed by a

unique element or by more than one, for instance vec <� 0 or vec <� 1:12.

A matrix is a two-dimensional set of data achieved using e.g.:

> data <� matrix(data, nrow ¼ 6, ncol ¼ 2)

Finally, an array allows a set of data with more than two dimensions.

> array(data, c(2,3,2))

produces a three-dimensional array

1.1.4 Datasets Used

Using the function data() it is possible to visualize all datasets included both in

default datasets package and incorporated in other installed packages. The MSQC

package includes the following datasets:

> data(package¼"MSQC")

dowel: Diameter and length of a manufacturing process of a dowel pin

carbon: Carbon fiber tubing

1.1 A Small Introduction 3



bimetal: A bimetallic strip used in a thermostat

industrial: A bivariate industrial process

water: A water quality test

mech: A mechanical process

glass: Glass manufacturing

rskewed: Right-skewed distribution

sabathia: A pitching log of C.C. Sabathia

archery: Target archery

1.1.5 The R Help

The R help is one of its strengths and can be exploited in different ways. When the

function exists and the name is known, the most simple way is by using directly in

the console the ? symbol followed by the function name. For example, after the

installation of the MSQC package

> ? mult.chart

Then an html page opens showing elements of help such as usage, arguments,

details, value, note, references, and examples. Occasionally the user ignores the

exact number of the function then using help.search allows to search into the

documentation database. For instance:

> help.search("capability indices") shows information about the mpci function.

Conversely in the main menu the option Help provides a lot of categories to

evacuate doubts. The first cluster gives information about frequently asked question

(FAQ) and pdf manuals.

The second refers to the previous help function introduced and the last one about

the R-Project home page and CRAN.

R home page provides a lot of information in the section Documentation.

Furthermore, the search on the web offers solutions to common problems.

Another important source about the operating are the examples incorporated at

the end of the function documentation. They could be pasted directly to the console

or using:

> example(MSQC)

Mathematical functions

Using ?S4groupGeneric; R returns the group of generic function with many

categories e.g.: Arith, Compare, Logic, Math, Summary, etc.

Operators

The operator in R can be achieved as:

> ?Syntax

The most used ones in this book are:

arithmetics: +, -, *, /, ^,etc.

logical: <, >, <¼, >¼, ¼¼, !¼, etc.

and the component $

4 1 A Small Introduction



1.1.6 Graphics in R

Another strength of the language is the high quality graphics produced. There are

many Internet sites and books that cover the vast fields of graphics in R. The

selection of the type of function to use depends on the nature of the data. The

next table shows the main graphical function used in this book (Table 1.1).

Over an existing graph the forms presented in the following table can be added

(Table 1.2):

By using help(par) parameters are obtained that can be used to customize the

graphical representation (Table 1.3).

On the other hand, xlab and ylab allow the labeling of axes while xlim and ylim

the coordinates ranges.

The graphics in R can be saved in many formats such as pdf, png, jpeg, bmp,

postscript, etc. using for instance:

> postscript("foo.eps", width ¼ 5.0, height ¼ 4.0)

> plot(runif(20))

> dev.off()

or simply with a right-click on the graph and choosing copy or save.

Table 1.1 Graphical

function used in this book
Function Description

plot Scatterplot

qqnorm Quantile–Quantile plot

barplot Bar plot

pairs Matrix of scatterplot

hist Histogram

Table 1.2 Low level

graphics
Function Description

points Add points by given coordinates

lines Draws a line

rect Draws a rectangle

arrows Draws a arrow

Table 1.3 Some of the

graphical parameters
Parameter Description

lty Line type

col Colors

pch Plotting symbol

mfrow, mfcol Multiple graphs

1.1 A Small Introduction 5



1.1.7 Probability Distributions

R includes the probability density function, the distribution function, the quantile

function, and the random number generation for the main theoretical probability

distributions which are shown in Table 1.4:

In the next chapters the beta, chi-squared, F, gamma, log-normal, and normal

distribution mainly will be used. Let us analyze some basic examples.

The area under the normal distribution between �3 and 3 standard deviations is

computed as:

> pnorm(3)- pnorm(�3)

[1] 0.9973

To generate a sample of size n ¼ 15 from a gamma distribution with shape and

scale parameter 1:

> set.seed(1234) # fixing the seed

> x <� rgamma(15,1,1); print(x)

[1] 0.011 0.747 0.786 0.117 0.922 0.176 1.437 0.157 0.220 3.528

[11] 0.063 0.147 0.599 0.213 0.504

Table 1.4 Built in probability distributions

Distribution Density function Distribution function Quantile function

Random number

generation

Beta dbeta pbeta qbeta rbeta

Binomial dbinom pbinom qbinom rbinom

Cauchy dcauchy pcauchy qcauchy rcauchy

Chi-squared dchisq pchisq qchisq rchisq

Exponential dexp pexp qexp rexp

F df pf qf rf

Gamma dgamma pgamma qgamma rgamma

Geometric dgeom pgeom qgeom rgeom

Hypergeometric dhyper phyper qhyper rhyper

Log-normal dlnorm plnorm qlnorm rlnorm

Multinomial dmultinom pmultinom qmultinom rmultinom

Negative binomial dnbinom pnbinom qnbinom rnbinom

Normal dnorm pnorm qnorm rnorm

Poisson dpois ppois qpois rpois

Student’s t dt pt qt rt

Uniform dunif punif qunif runif

Weibull dweibull pweibull qweibull rweibull
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1.1.8 Descriptive Statistics

The aim of the descriptive statistics is to summarize quantitative information about

a dataset and usually is divided in:

– measures of central tendency

– measures of dispersion

– measures of shape

The measures of central tendency provide information about the central position

of the data.

The most used of these measures is the arithmetic mean.

The arithmetic mean is the average of a group of observation and it is the

preferred measure

x ¼
Xn
i¼1

xi n= (1.1)

where x1, x2,. . .,xn are the observations and n the samples size.

The median is the value that divides the ranked data into two equal parts. In odd

samples the median is the middle value while in even samples it is computed as the

average of the two central values.

Odd samples:

Me ¼ xn=2 (1.2)

Even samples:

Me ¼ xn=2 þ xn=2þ1

� �
2= (1.3)

The mode is the most frequent occuring value. A dataset could have one, many,

or neither mode.

The geometric mean: is another type of mean calculated as:

g ¼
Yn
i¼1

xi

 !1=n

(1.4)

The harmonic mean is a mean computed as:

h ¼ nPn
i¼1

1=xi

(1.5)
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The computation of these measures of central tendency is extremely easy. For

instance

> mean(x)

[1] 0.6417593

> median(x)

[1] 0.219502

When the sample is small the mode can be selected visually ranking the data.

> sort(x)

[1] 0.011 0.063 0.117 0.147 0.157 0.176 0.213 0.220 0.504 0.599

[11] 0.747 0.786 0.922 1.437 3.528

As x was obtained via random number generation with eight decimal places and

the sample size is only n ¼ 15, it is practically impossible to get equal values.

Therefore x does not have mode.

On the other hand the geometric and the harmonic mean respectively:

> prod(x) ^ (1 / length(x))

[1] 0.30

> 1 / mean(1 / x)

[1] 0.10

The measures of dispersion determine the deviation respect to the mean. The

most commonly used are:

The variance that is the second central moment and is given by:

s2 ¼
Xn
i¼1

xi � xð Þ n� 1= (1.6)

where X is the arithmetic mean.

The standard deviation is the most common measure and results in the square

root of the variance.

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

xi � xð Þ n� 1=

s
(1.7)

The range is the simplest measure.

R ¼ xmax � xmin (1.8)

The computation in R is as follows:

> sd(x)

[1] 0.89

> var(x)

[1] 0.80

8 1 A Small Introduction



The function range returns a vector with the minimum and maximum values. So,

the range is the difference of these values.

> diff(range(x))

[1] 3.52

The measures of shape provide information about the shape and distribution

of the data.

The skewness is an index that measures the asymmetry of the data. Negative

values indicate the presence of tail on to the left and positive values to the opposite

direction. It is given by:

g1 ¼
1

n

Xn
i¼1

xi � xð Þ3 1

n

Xn
i¼1

xi � xð Þ2
" #3=2,

(1.9)

The kurtosis measures the peakedness of the distribution.

g2 ¼
Xn
i¼1

xi � xð Þ4 n� 1ð ÞS2�
(1.10)

where S is the standard deviation.

Often the kurtosis “excess” is used due to the fact that in a normal distribution

the kurtosis is equal to three. When this index takes negative values it is said that the

distribution is platykurtic while positive values indicate leptokurtic distribution.

Histogram is a useful technique for assessinggraphically the skewness and kurtosis.

R does not bring internal function to determine both skewness and kurtosis.

However, they can be computed as follows:

> moments <� function(x,r){

> sum((x � mean(x)) ^ r) / length(x)}

> skew<�function(x){

> moments(x,3) / (moments(x,2) * sqrt(moments(x,2)))}

> kurtosis <� function(x) {

> moments(x,4) / (moments(x,2) * moments(x,2))}

Then:

> skew(x)

[1] 2.44

and

> kurtosis(x)

[1] 8.47
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1.1.9 Statistical Inference (Hypothesis Testing)

Hypothesis testing is normally integrated by three parts: establishing of the

hypotheses, calculation of the statistics, and computation of the p-value.
The simplest used ones are associated to the mean and variance comparison. For

instance, the t test is employed to check if the mean is significant close to a target

when the sample size n < 30.

Suppose we need to prove that the random number generated from a uniform

distribution

Ho : m ¼ 0:5

H1 : m 6¼ 0:5

> set.seed(1234)

> x <� runif(20)

> t.test(x, mu ¼ 0.5)

One Sample t-test
data: x

t ¼ �0.47, df ¼ 19, p-value ¼ 0.64

alternative hypothesis: true mean is not equal to 0.5

95% confidence interval:

0.35 0.60

sample estimates:

mean of x

0.47

Being the p-value greater than the significance value a¼0.05, the probability of

Type I error is large. Therefore, there is no evidence to reject the null hypothesis

(Ho). Besides, the test provides a 95% confidence interval to the mean.

Another hypothesis testing can be found by using apropos(".test")

1.1.10 A Short Introduction to Statistical Process Control (SPC).
Univariate Control Charts

The introduction of the control chart dates back to the pioneer work of Walter A.

Shewhart in 1920. It is based on the principle that in the normal distribution,

99.73% of the observations are between � 3s.
A control chart is a graphical tool that allows to monitoring a quality character-

istic through the time respect to a central line and an upper and lower control limit.

When one or more samples fall outside the control limits indicates the presence

of a special cause; that is, a nonrandom shift has occurred. Consequently this

assignable cause must be detected and eliminated.
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When the process works without special causes, it is said that the process is in-

control.

The X Chart which is the most studied and employed chart is based on the

confidence interval for the mean

X � Za=2s=
ffiffiffi
n

p � m�X þ Za=2s=
ffiffiffi
n

p
(1.11)

With a probability of 1-a the mean will be in this interval. Za/2 it is usually

substituted by 3 resulting

X � 3s=
ffiffiffi
n

p � m�X þ 3s=
ffiffiffi
n

p
(1.12)

Often in practice, the parameters m and s are unknown and must be estimated.

Finally the chart results in

CL ¼ X UCL ¼ X þ A2R LCL ¼ X � A2R (1.13)

where

X ¼
Xm

k¼1
Xk m= (1.14)

Xk ¼
Xn

i¼1
Xi n= (1.15)

And

R ¼
Xm

k¼1
Rk m= (1.16)

being Rk¼max(Xk)-min(Xk) (1.16) and A2 a constant selected according to the

sample size.

The X Chart can also be computed using the standard deviation.

CL ¼ X UCL ¼ X þ A3S LCL ¼ X � A3S (1.17)

Normally the X chart is used jointly with a chart such as R and S chart to

monitoring the process dispersion.

The R chart is as follows

CL ¼ R UCL ¼ D4R LCL ¼ D3R (1.18)

While the S chart
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CL ¼ S UCL ¼ B4S LCL ¼ B3S (1.19)

D3, D4, B3, and B4 are constants tabulated for the sample size.

In R the computation could be performed using the function qcc from the

package named in the same way.

The construction of the chart is illustrated in the following example.

> library("qcc")

> set.seed(20)

fixing the seed of the generator.

> x <� round(rnorm(120,20,2),2)

> length <� matrix(x, ncol ¼ 4, byrow ¼ TRUE)

> par(mfrow ¼ c(1,2))

> qcc(length, type ¼ "xbar", std.dev ¼ "RMSDF"); qcc(length, type ¼ "R")

(Fig. 1.2)

> qcc(length, type ¼ "R")

1.1.11 Univariate Process Capability Indices (Cp, Cpk and Cpm)

Process capability can be conceived as the field in quality control focused on the

determination of the feasibility by the process to fulfill with specifications.

Normally, the process capability is expressed in ratios or indices between

tolerances and process performance. It is said that a process is capable when almost

all of the samples are between the specifications limits.

Most capability studies consider normality, so the natural tolerance limits are

placed 3s above and below of the mean.

In literature many indices have been proposed to measure the capability, being

the most recognized the following:

Cp ¼ USL� LSL

6s
(1.20)

Cpk ¼ min
USL� m

3s
;
m� LSL

3s

� �
(1.21)

Cpm ¼ USL� LSL

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ m� Tð Þ2

q (1.22)

T ¼ USL� LSL

2
(1.23)
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Fig. 1.2 (a) Xbar and (b) R chart for the simulated example

1.1 A Small Introduction 13



S Chart
for length

Group

G
ro

up
 s

um
m

ar
y 

st
at

is
tic

s

1 3 5 7 9 12 15 18 21 24 27 30

0
1

2
3

4

LCL 

UCL

CL

Number of groups = 30
Center = 1.813038

StdDev = 1.967875

LCL = 0

UCL = 4.108429

Number beyond limits = 0

Number violating runs = 0

Fig. 1.3 S chart for the simulated example

Cp<1

LSL USL

Cp=1

LSL USL

Cp=1.33

LSL USL

Cp=1.63

LSL USL

Fig. 1.4 Cp index for many process dispersions



where USL and LSL are the upper and lower specification limits respectively and T

the target. This last one is often fixed as the midpoint of specifications.

For more details see e.g.: (Kotz and Lovelace 1998) or (Montgomery 2004).

The parameters of the distribution are practically unknown and consequently s
must be replaced by S. In this case the term process performance is often used.

Figure 1.4 displays four possible scenarios for Cp. In all cases the process mean

coincides with the target.

When Cp ¼ 1 it is expected the 0.27% of nonconforming products. Whereas for

values of 1.33 and 1.63, 64, and 1 ppm respectively.

Returning to the example about the length, the computation in R is as follows

> cap <� qcc(length, type ¼ "xbar", nsigmas ¼ 3, plot ¼ FALSE)

> process.capability(cap, spec.limits ¼ c(14,26)) (Fig. 1.5)

Since the indices Cp, Cpk, and Cpm are bigger than 1, consequently, the process

is capable.

Process Capability Analysis
for length

14 16 18 20 22 24 26

LSL USLTarget

Number of obs = 120Target = 20
Center = 20.01292
StdDev = 1.975878

LSL = 14
USL = 26

Cp     = 1.01
Cp_l  = 1.01
Cp_u = 1.01
Cp_k = 1.01

Cpm  = 1.01

Exp<LSL 0.12%
Exp>USL 0.12%
Obs<LSL 0%
Obs>USL 0%

Fig. 1.5 Univariate capability indices for the simulated example
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Chapter 2

Multivariate Control Charts

With the enhancements in data acquisition systems it is usual to deal with processes

with more than one correlated quality characteristic to be monitored. A common

practice is to control the stability of the process using univariate control charts. This

practice increases the probability of false alarm of special cause of variation.

Therefore, the analysis should be performed through a multivariate approach;

that is, the variables must be analyzed together, not independently.

In this chapter we present the multivariate normal distribution, the data structure

of the multivariate problems dealt in this book, the mult.chart function that allows

the computation in R, and the most used multivariate control charts:

– The control ellipsoid or w2 control chart
– The T2 or Hotelling chart

– The Multivariate Exponentially Weighted Moving Average (MEWMA) chart

– The Multivariate Cumulative Sum (MCUSUM) chart

– The chart based on Principal Components Analysis (PCA)

2.1 The Multivariate Normal Distribution

Themultivariate normal distribution (MVN) is the core of the multivariate statistical

analysis. This is due to the fact that the sampling distributions of multivariate

distributions exhibit approximately normality due to the central limit theorem.

In the univariate case if a random variable is normally distributed with mean m
and variance s2 it has a density function:

f ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2ps2

p e�
ðx�mÞ=s½ �2

2 ; (2.1)

where �1<x<1:

E. Santos-Fernández, Multivariate Statistical Quality Control Using R,
SpringerBriefs in Statistics 14, DOI 10.1007/978-1-4614-5453-3_2,
# Springer Science+Business Media New York 2012
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The multivariate generalization is as follows. The upper part of exponent in the

function can be written as

ðx� mÞ2=s2 ¼ ðx� mÞðs2Þ�1ðx� mÞ: (2.2)

Since in multivariate normal distribution, the number of random variables is

ðpÞ � 2, then the generalization of (2.2) is

ðx� mÞ0ðSÞ�1ðx� mÞ (2.3)

known as the Mahalanobis distance, where m is the p� 1 vector of expected values,

m0 ¼ m1 m2 � � � mp
� �

(2.4)

and S the p� p variance–covariance matrix:

S ¼

s11 s12 � � � s1p
s21 s22 � � � s2p
..
. ..

. . .
. ..

.

sp1 sp2 � � � spp

2
6664

3
7775 (2.5)

Finally, replacing in (2.1) the (2.2) by (2.3) and the constant 1ffiffiffiffiffiffiffi
2ps2

p by 1

ð2pÞp=2 Sj j1=2
we have

f ðxÞ ¼ 1

ð2pÞp=2 Sj j1=2
e�

ðx�mÞ0 ðSÞ�1ðx�mÞ
2 ; (2.6)

where �1<xi<1.

The notation used to denote a p-variate dataset with MVN is Npðm;SÞ.
The bivariate case (p ¼ 2 variables) is the most studied and applied in the

practice. In this case the parameters of the distribution are given by the mean vector

m ¼ m1
m2

� �
, and the covariance matrix S ¼ s11 s12

s21 s22

� �
.

The computation of the inverse of S results as follows:

S�1 ¼ 1

s11s22 � s122
s22 �s12
s21 s11

� �
: (2.7)

Replacing and standardizing into (2.6) it is relatively easy to achieve the density

function:

f ðx1;x2Þ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s11s22ð1�r212Þ

p �e
� 1
2ð1�r2

12
Þ

x1�m1ffiffiffiffiffi
s11

p
� �2

þ x2�m2ffiffiffiffiffi
s22

p
� �2

�2r212
x1�m1ffiffiffiffiffi

s11
p

� �
x2�m2ffiffiffiffiffi

s22
p

� �� �	 

:

(2.8)
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Example 2.1

In order to perform in R a graphical representation of a bivariate normal distribution

with mean vector m ¼ 0

0

� �
and covariance matrix S ¼ 10 3

3 6

� �
we have

> mu <� c(0,0)

> sigma <� matrix(c(10,3,3,6),2,2)

> rho <� sigma[1,2] / (sqrt(sigma[1,1] * sigma[2,2]))

Defining the mean vector, the covariance matrix, and the correlation coefficient:

> var1 <� seq(�12,12,.7)

> var2 <� var1

> f <� matrix(0, length(var1), length(var1))

> for( i in 1:length(var1)){

> for(j in 1:length(var1)){

> f[i,j] <� 1/(2 * pi * sqrt(sigma[1,1] * sigma[2,2] * (1-rho ^ 2)))*exp(�1 /

(2 * (1-rho ^ 2)) * ((var1[i] - mu[1]) ^ 2 / sigma[1,1] + (var2[j] - mu[2]) ^ 2 /

sigma[2,2]-2 * rho * ((var1[i] - mu[1]) * (var2[j] - mu[2])) / (sqrt(sigma[1,1]) *

sqrt(sigma[2,2]))))}}

> persp(var1, var2, f, xlab ¼ "Variable 1", ylab ¼ "Variable 2", zlab ¼ "f(var1,

var2)", theta ¼ 30, phi ¼ 30, r ¼ 50, d ¼ 0.2, expand ¼ 0.6, ltheta ¼ 90, lphi ¼
180, nticks ¼ 4)

Then R shows the bivariate density function (Fig. 2.1a).

Moreover it is possible to represent in a two-dimensional form using a contour

plot (Fig. 2.1b):

> contour(var1, var2, f, xlab ¼ "Variable 1", ylab ¼ "Variable 2", nlevels ¼ 8,

drawlabels ¼ F, xlim ¼ c(�8,8), ylim ¼ c(�8,8))

2.2 Data Structure

In order to provide a better comprehension in this section we offer a summary of the

data structure and notation used for all methods.

As it is shown in Fig. 2.2, almost all the problems studied in this book deal with k

samples of size n, taken from p quality characteristics or variables.

Where xijk is the ith observation of the jth quality characteristics on the kth

sample.

Often the parameters of the distribution (m and s) are unknown and must be

estimated through ��x and S, respectively, which are computed as follows:

xj ¼
Pm

k¼1 �xjk
m

; (2.9)
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where

�xjk ¼
Pn

i¼1 xijk
n

: (2.10)

The case when the samples are composed by only one observation is called

individual observations and will be studied in next sections.

On the other hand, S is estimated as

S ¼

�S21
�S12 � � � �S1p

�S12 �S22 � � � �S2p

..

. ..
. . .

. ..
.

�S1p �S2p � � � �S22

; (2.11)
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Fig. 2.1 (a) Bivariate density function. (b) Contour plot of a bivariate normal distribution
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where the diagonal elements are variances associated to the characteristics p and the

non-diagonal are the covariances. Being

�S2j ¼
Pm

k¼1 S
2
jk

m
(2.12)

with

S2jk ¼
Pn

i¼1 xijk � �xjk
� �2
n� 1

(2.13)

and

�Sjl ¼
Pm

k¼1 Sjlk
m

(2.14)

with j 6¼ l being

Sjlk ¼
Pn

i¼1 xijk � �xjk
� �

xijk � �xlk
� �

n� 1
: (2.15)

The mean vector (Xmv) is obtained in R as x.jk <� apply(3D.array, 1:2, mean).

First calculating the mean of each sample (see (2.10)), and then using the

colMeans function (see (2.9)):

Xmv <� colMeans(x.jk)

With respect to the sample covariance matrix, it can be achieved directly using

the function covariance included in MSQC package:

S <� covariance(x)

2.3 The mult.chart Function

The performing of the multivariate control chart in R can be carried out with the

function mult.chart which is a general function that allows to compute the most

accepted and diversified continuous multivariate chart such as

– w2

– Hotelling T2

– MEWMA

– MCUSUM according to Crosier (1988)

– MCUSUM by Pignatiello and Runger (1990)
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The selection of the chart to use is done by specifying the argument type ¼ “t2,”

“mewma,” “mcusum,” or “mcusum2” in the same order previously introduced.

For more details about the function see the package manual:

> help(package ¼ "MSQC")

In the function x must be a matrix or an array and jointly with type are the only

compulsory arguments.

Other important functionalities are the Phase that can be I or II (being I for

default) and the significance level (alpha) fixed in 0.01.

As it is shown in the next section, the covariance matrix (S) and mean vector

(Xmv) can be entered to be used in Phase II.

Finally the function mult.chart returns:

– The T2 statistics

– The Upper Control Limit (UCL)

– The sample covariance matrix (S)

– The mean vector (Xmv)

– And if any point falls outside of the UCL and its decomposition

The execution of the function takes few hundredth of a second as can be tested by

> system.time(mult.chart(dowel1, type ¼ "chi", alpha ¼ 0.05))

2.4 Contour Plot and x2 Control Chart

In multivariate normal distribution the density is described by an ellipsoid centered

at mean vector with axes in direction to the eigenvectors (e) of the covariance

matrix, setting m as the origin and with length

� c
ffiffiffiffi
lj

p
ej (2.16)

being

x� mð Þ0S�1 x� mð Þ ¼ c2: (2.17)

If x follows Npðm;SÞ then ðx� mÞ0ðSÞ�1ðx� mÞ is w2a;p. Therefore,

x� mð Þ0S�1 x� mð Þ � w2a;p: (2.18)

Example 2.2

To illustrate the construction of an ellipsoid contour consider the dataset called

dowel that comprises 40 samples from two correlated quality characteristics (diam-

eter and length) collected from a manufacturing process of a dowel pin.
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To call the dataset, just use

> data("dowel1")

The construction of the control ellipse for dowel1 results as follows. Setting the

significance level:

> alpha <� 0.05 and

> p <� ncol(dowel1)

Then the mean vector and the covariance matrix are estimated:

> Xmv <� colMeans(dowel1)

The function colMeans was used directly due to the fact that this is a problem of

individual observations:

> S <� covariance(dowel1)

So we have

m0 ¼ 0:50 1:00½ � and S ¼ 4.91e� 05 8:58e� 05

8.58e� 05 4.20e� 04

� �
.

The computation of the eigenvalues and eigenvectors is based on the R function

eigen:

> DDe <� eigen(S)$values

> Ue <� eigen(S)$vectors

For more details see help function.

Then we have

l0 ¼ 4:39e�04 3:02e�05½ �, e10 ¼ 0:22 �0:98½ �, and e2
0 ¼ �0:98 0:22½ �.

Plotting the ellipsoid origin given by Xmv. (at 0.50, 1.00) with the respective

axes labels and ranges:

> plot(Xmv[1], Xmv[2], xlim ¼ c(0.46,0.54), ylim ¼ c(0.95,1.06), xlab ¼ "diame-

ter", ylab ¼ "length",pch ¼ 3)

The direction of the ellipsoid axes is given by the eigenvectors:

> inc <� atan ((Xmv[2] + Ue[2,1] - Xmv[2]) / (Xmv[1] + Ue[1,1] - Xmv[1]))

Then we must compute the lengths regarding the x- and y-axes as follows:

> b <� (sqrt(DDe[1]) * sqrt(qchisq(1 - alpha,p))) * sin(inc)

> a <� (sqrt(DDe[1]) * sqrt(qchisq(1 - alpha,p))) * cos(inc)

> d <� (sqrt(DDe[2]) * sqrt(qchisq(1 - alpha,p))) * sin(inc)

> c <� (sqrt(DDe[2]) * sqrt(qchisq(1 - alpha,p))) * cos(inc)

Finally, we trace the axes using

> arrows(Xmv[1], Xmv[2], Xmv[1] + a, Xmv[2] + b)

> arrows(Xmv[1], Xmv[2], Xmv[1] - a, Xmv[2] - b)

> arrows(Xmv[1], Xmv[2], Xmv[1] - d, Xmv[2] + c)

> arrows(Xmv[1], Xmv[2], Xmv[1] + d, Xmv[2] - c)
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The ellipse results by connecting the axes extremes.

Fortunately it is relatively easy to draw an ellipse in R, making use of this

algorithm:

> angle <� seq(0, 2 * pi, length.out ¼ 200)

> ch <� cbind(sqrt(qchisq(1 - alpha,2)) * cos(angle), sqrt(qchisq(1 - alpha,2)) *

sin(angle))

> lines(t(Xmv - ((Ue %*% diag(sqrt(DDe))) %*% t(ch))),type ¼ "l")

Figure 2.3a shows the result.

This procedure is known as confidence ellipsoid. Figure 2.3b shows the addition

of the points of the dowel1 array:

> points(dowel1)

Obtaining no points outside the ellipse, there is no evidence of special causes;

therefore the process is in-control. Notice that if the limits from the univariate

individual control chart are plotted, how much this area differs to the confidence

ellipse. In fact, four points fall outside to this area (Fig. 2.4).

The difficulty to identify the points beyond the confidence ellipsoid is one of the

main drawbacks of the tool, although it can be solved by inserting the sample

number in plot when the amount of points is not large.

Another disadvantage is the complexity to construct the ellipsoid when p > 2

which can be solved using the w2 control chart that results by plotting the test

statistics:

nðx� mÞ0ðSÞ�1ðx� mÞ ¼ w2a;p; (2.19)

where n is the sample size and the upper control limit:

UCL ¼ w2a;p: (2.20)
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Fig. 2.3 (a) Confidence ellipse with the axes for the dowel1 dataset. (b) Scatterplot for the dowel1

dataset with the confidence ellipse
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When m and S are estimated through a sufficiently large sample then the w2 chart
can be used although the parameters are unknown.

Through the function mult.chart

> mult.chart(dowel1, type ¼ "chi", alpha ¼ 0.05)

The function returns (Fig. 2.5):

Showing results alike to the control ellipsoid. An advantage of this chart is that it

allows the evolution of the samples along time.
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Fig. 2.5 w2 control chart for the dowel1 dataset
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Below a guidance on the use of Phases in control charts is given. Usually, studies

are split into two phases, one different from the other.

Phase I: In this phase a retrospective analysis is applied to assess if the process is

in-control since the first sample was collected. These studies are used when control

charts are established for the first time and with the aim of bringing the process to

statistical control. Here a deep understanding and analysis are required before the

establishment of the in-control state.

Phase II: In this phase the control charts are employed to verify if the process

remains in-control. Here the process variability is monitored using the mean and

covariance achieved from Phase I.

For more details see Woodall (2000).

Then, using the in-control mean and covariance matrix it is possible to control

future production (Phase II) for dowel2 array also stored in the MSQC package.

Employing the control ellipse of Phase I just add the Phase II points as

> data("dowel2")

> points(dowel2,pch ¼ 4)

The argument pch ¼ 4 allows to differentiate the points. One point falls outside

the 95th confidence ellipsoid, indicating the presence of special cause in the process

(Fig. 2.6).

Conversely the w2 control chart can be used.

The mean vector and covariance matrix of the in-control Phase I process are used

as the parameters of the distribution:

> vec <� (mult.chart(dowel1, type ¼ "chi", alpha ¼ 0.05)$Xmv)

> mat <� (mult.chart(dowel1, type ¼ "chi", alpha ¼ 0.05)$covariance)
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Fig. 2.6 Phase II confidence

ellipsoid for the dowel2

dataset
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Finally they are passed in the function mult.chart:

> mult.chart(dowel2, type ¼ "chi", Xmv ¼ vec, S ¼ mat, alpha ¼ 0.05)

The fourth sample falls beyond the UCL; as a consequence, there is evidence of

special causes, and then the process is out-of-control (Fig. 2.7).

2.5 Hotelling T2 Control Chart (Phase I)

The origin of the T2 control chart dates back to the pioneer works of Harold Hotelling

who applied this method to the bombsight problem in Second World War. The

Hotelling (1947) procedure has become without doubt the most applied in multivari-

ate process control and it is the multivariate analogous of the Shewhart control chart.

For that reason, it is also known as multivariate Shewhart control chart.

Often in practice the parameters m and S are unknown and consequently must be

estimated across the unbiased estimators �x and S. Based on the multivariate

generalization of the t statistic from univariate normal theory:

t ¼ �x� m
S=

ffiffiffi
n

p (2.21)

making

t2 ¼ ð�x� mÞ2
S2=n

¼ nð�x� mÞ S2
� ��1ð�x� mÞ; (2.22)
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so the generalization results in

T2 ¼ nðX � XÞ0ðSÞ�1ðX � XÞ (2.23)

with �X and S being the vector of means and the covariance matrix, respectively.

The statistics T2 follows an F distribution with p and (mn � m � p + 1) degrees

of freedom. Therefore for establishing the control in Phase I the UCL results in

UCL ¼ pðm� 1Þðn� 1Þ
mn� m� pþ 1

Fa; p;mn�m�pþ1: (2.24)

While for monitoring future observations (Phase II) the limit is given by

UCL ¼ pðmþ 1Þðn� 1Þ
mn� m� pþ 1

Fa; p;mn�m�pþ1: (2.25)

Here, (2.25), the number of samples (m) refers to the preliminary samples taken

to establish the in-control state (Phase I). Notice that this chart lacks lower control

limits (LCL) analogously to the w2 chart.
This chart is employed in introductory multivariate studies and has a good

performance in detection of large shifts in the mean.

According to Lowry and Montgomery (1995) the application of this chart

requires a number of quality characteristics between 2 and 10, taking more than

20 samples (often more than 50) of size 2, 3, or 10. These values are sometimes

limited by the very nature of the problem, though.

The following example explains the construction of this chart.

Example 2.3

In the manufacturing process of a specific carbon fiber tubing three correlated

quality characteristics are measured: inner diameter, thickness, and length of the

tubes in inches. The dataset named carbon1 contains the information of 30 samples

of size 8 taken and summarized in Table 2.1.

The sample mean vector, sample covariance, and correlation matrix result as

follows:

�x ¼
0:99
1:04
49:98

2
4

3
5; S� 100 ¼

0:25 0:36 0:67
0:36 1:45 1:02
0:67 1:02 5:92

2
4

3
5; r ¼

1 0:63 0:57
0:63 1 0:38
0:57 0:38 1

2
4

3
5:

It can be easily appreciated the direct correlation among the variables; being

significant between the inner diameter with the others.

As we are in the presence of a trivariate process, it is possible a spatial

representation. Figure 2.8 shows the three-dimensional scatterplot with the 99%

ellipsoid. All the points of the swarm are inside the ellipsoid.

A scatterplot matrix is presented below and corroborates the information offered

by the correlation matrix about the direct correlation between variables (Fig. 2.9)):

pairs(carbon1,labels¼c("inner diameter", "thickness", "length"))
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Table 2.1 Carbon fiber data

Subgroup mean Variance (�100) Covariance (�100)

Sample

Inner

(X1)

Thickness

(X2)

Length

(X3) S21 S22 S23 S12 S13 S23 T2

1 1.03 1.08 50.16 0.15 1.19 2.98 �0.08 0.40 �0.42 4.99

2 0.97 0.95 49.92 0.40 1.01 6.38 0.16 1.03 0.25 4.66

3 1.01 1.05 50.14 0.17 0.99 1.96 0.31 0.38 0.81 3.28

4 1.00 1.05 49.91 0.26 1.14 5.73 0.36 �0.29 0.82 1.93

5 0.96 1.00 49.83 0.43 3.25 12.37 0.92 1.91 4.61 5.62

6 1.03 1.07 50.05 0.30 1.52 1.69 0.43 0.30 �0.48 4.64

7 0.96 1.02 49.95 0.17 0.58 4.34 0.03 0.34 0.74 5.50

8 1.00 1.02 50.02 0.17 0.79 6.16 0.11 �0.11 0.32 0.87

9 1.00 1.10 50.03 0.20 1.43 1.87 0.34 �0.07 �0.88 2.87

10 0.99 1.02 50.00 0.13 0.53 6.58 0.11 0.18 �0.13 0.49

11 1.01 1.10 50.01 0.18 1.31 3.41 0.11 0.19 0.36 2.40

12 1.02 1.07 49.99 0.24 0.81 3.41 0.05 0.70 0.67 1.98

13 0.97 1.00 49.96 0.48 2.36 17.72 0.98 2.44 5.17 2.36

14 1.01 1.05 50.04 0.13 1.08 7.20 0.18 0.16 1.98 0.96

15 1.00 1.06 50.02 0.24 1.14 7.80 0.26 1.01 0.43 0.35

16 1.00 1.03 49.99 0.39 1.66 3.69 0.71 0.98 1.27 0.22

17 1.00 1.04 49.99 0.10 1.27 7.71 0.00 0.44 �2.09 0.05

18 0.98 1.00 49.94 0.18 1.56 5.40 0.26 0.85 2.22 0.86

19 0.98 0.96 49.93 0.24 1.61 5.68 0.55 0.18 0.55 3.43

20 1.01 1.07 50.02 0.37 2.55 4.91 0.64 1.16 3.33 1.08

21 0.98 1.03 49.96 0.28 0.39 7.21 0.15 1.39 0.64 0.45

22 0.99 1.04 50.07 0.23 2.46 8.24 0.60 0.70 1.74 2.74

23 0.95 0.92 49.86 0.41 1.82 2.69 0.73 0.40 0.32 9.43

24 1.00 1.09 50.05 0.15 0.75 9.27 0.12 0.69 �0.29 2.93

25 0.99 1.01 49.96 0.51 1.87 7.08 0.56 1.56 1.63 0.46

26 0.99 1.02 49.89 0.12 0.75 7.04 0.19 0.59 1.34 1.34

27 0.99 1.03 49.84 0.24 3.80 7.47 0.72 0.87 2.20 3.39

28 1.01 1.04 49.97 0.06 0.80 2.46 0.14 0.08 0.05 1.97

29 1.03 1.10 50.07 0.19 1.29 2.38 0.43 0.36 0.72 3.54

30 1.01 1.08 49.97 0.33 1.75 6.78 0.69 1.27 2.73 1.40

49.8

50.0

50.2

thickness

inner diameter

length

0.90 0.95 1.00 1.05 1.21.1
1.0

0.9

Fig. 2.8 3D scatterplot with the 99% confidence region



After this explanatory analysis let us compute the T2 statistics:

T2 ¼ nð �X � �XÞ0ðSÞ�1ð �X � �XÞ

T2
1 ¼ 8� 1:03 1:08 50:16½ � � 0:99 1:04 49:98½ �f g0�

0:25 0:36 0:67

0:36 1:40 1:00

0:67 1:00 5:92

2
64

3
75

0
B@

1
CA
�1

1:03 1:08 50:16½ � � 0:99 1:04 49:98½ �f g

T2
1 ¼ 4:99:

After that, proceed in the same manner for the others 29. Whereas the limit is

computed as

UCL ¼ pðm� 1Þðn� 1Þ
mn� m� pþ 1

Fa; p; mn�m�pþ1

inner diameter
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Fig. 2.9 Matrix of scatterplot
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UCL ¼ 3ð30� 1Þð8� 1Þ
30 	 8� 30� 3þ 1

F0:01;3;30	8�30�3þ1 ¼ 609

208
F0:01;3;30	8�30�3þ1 ¼ 11:35:

To perform this computation in R we will use the dataset called carbon1:

> data("carbon1")

> mult.chart(type ¼ "t2", carbon1)

The output is shown in (Fig. 2.10).

Notice that no points fall beyond the UCL; therefore, the process is in statistical

control. In order to work with any object of the function output just use the $

operator. For instance, to acquire only the T2 statistics type

> mult.chart(type ¼ "t2", carbon1)$t2

2.6 Interpretation, Decomposition, and Phase II

In control chart when one or more points fall outside of control limits then there is

evidence that the process has suffered a nonrandom shift.

In univariate alternative the statistics proceeds from only one variable, but in

multivariate problems the identification of the source that causes the out-of-control

signal is more complex.
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[,1]

[1,] 4.99
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[30,] 1.40

$Xmv
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[,1]   [,2]   [,3]

[1,] 0.0025 0.0036 0.0067

[2,] 0.0036 0.0140 0.0100

[3,] 0.0067 0.0100 0.0590

Fig. 2.10 Hotelling control chart of the carbon1 dataset
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The issue usually named decomposition determines which variables are respon-

sible for the variation when a nonrandom signal occurs. A frequent practice consists

in performing a univariate chart although this analysis is often inefficient.

In the same way Alt (1985) proposed the use of Bonferroni control limits. After

that, this field has been widely investigated. See for instance Murphy (1987),

Doganaksoy et al. (1991), Wierda (1994), etc. The method suggested by Mason

et al. (1995) is the most widely accepted to face the decomposition, though.

Example 2.4

Return to the carbon data to illustrate a decomposition technique.

Being the process in control in the previous Example 3.3 the mean vector and the

covariance matrix from Phase I were used to monitor the process in future production

(Phase II). 25 samples of size n ¼ 8 were obtained, which are summarized in

Table 2.2.

The computation of the statistics using the in-control sample mean and covari-

ance matrix is the following:

T2
1 ¼ 8	 1:01 1:07 49:88 �½ � 0:99 1:04 49:98½ �f g0�

0:25 0:36 0:67

0:36 1:45 1:02

0:67 1:02 5:92

2
64

3
75 100=

0
B@

1
CA
�1

� 1:01 1:07 49:88 �½ � 0:99 1:04 49:98½ �f g;

T2
1 ¼ 4:84; and so forth for the others.

The UCL in Phase II results in

UCL ¼ pðmþ 1Þðn� 1Þ
mn� m� pþ 1

Fa;p;mn�m�pþ1

Table 2.2 Carbon fiber data of the Phase II

Subgroup means Subgroup means

Sample

Inner

(X1)

Thickness

(X2)

Length

(X3) T2 Sample

Inner

(X1)

Thickness

(X2)

Length

(X3) T2

1 1.01 1.07 49.88 4.84 14 1.04 1.07 50.14 6.64

2 1.00 1.01 49.93 1.49 15 1.02 1.08 50.11 2.73

3 1.00 1.03 49.96 0.33 16 0.99 1.04 50.11 4.58

4 1.02 1.19 50.15 14.19 17 1.02 1.06 50.03 2.64

5 1.01 0.99 50.03 4.68 18 0.98 1.04 49.89 2.17

6 1.01 1.04 50.02 0.68 19 0.99 1.02 49.80 5.51

7 1.02 1.03 50.17 6.49 20 1.03 1.05 50.13 6.79

8 0.99 1.06 50.06 3.27 21 1.00 1.08 50.06 1.72

9 1.01 1.04 49.98 1.63 22 1.03 1.07 50.20 6.52

10 0.99 1.03 49.92 0.65 23 1.00 1.05 50.04 0.81

11 0.98 1.05 49.95 1.27 24 1.01 1.04 49.93 3.02
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UCL ¼ 3ð30þ 1Þð8� 1Þ
30� 8� 30� 3þ 1

F0:01;3;30�8�30�3þ1 ¼ 651

208
F0:01;3;30�8�30�3þ1 ¼ 12:13:

Analyzing the T2 values in Table 2.2 it is easy to determine that the fourth

sample falls beyond UCL. This is evidence that a shift took place.

The method also called MYT decomposition (Mason et al. 1995) deals with

the identification of the contribution of each individual variable and all the possible

combinations increasing the group size. The scheme they proposed can be described

as follows:

1. Compute the T2 statistics (each variable independently)

T2
j ¼ n xj � �xj

� �2
S2j

(2.26)

where �xj and S2j are the mean and the variance of the jth variable.

2. Compare with their corresponding threshold according to the phase and the

sample size. For instance for individual observations in Phase II:

UCL ¼ pðmþ 1Þðm� 1Þ
mðm� pÞ Fa;p;m�p: (2.27)

3. Then exclude the variables that satisfy:

T2
j >UCL: (2.28)

4. Construct the T2 statistics for the combinations of the remaining variables; e.g.:

T2
ðx1;x2Þ.

5. Exclude variables whose T2 exceed the limits. For p ¼ 2 the limits are:

UCL ¼ 2ðmþ 1Þðm� 1Þ
mðm� 2Þ Fa;2;m�2: (2.29)

6. Carry out iteratively until the last combination that includes all the quality

characteristics.

Returning to the example, the decomposition of the 4th sample using this

methodology results in

�X4;j ¼ 1:02 1:19 50:15½ �; T2
1 ¼ 2:44; T2

2 ¼ 12:26; T2
3 ¼ 3:82

UCL ¼ 1ð30þ 1Þð30� 1Þ
30ð30� 1Þ F0:01;1;30�1 ¼ 7:85:
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AsT2
2 ¼ 12:26>7:85,x2 contributes significantly to the out-of-control signal, and

consequently it is excluded.

All combinations that includex2, i.e.:T
2
ðx1;x2Þ,Tðx2;x3Þ

2
, andT2

ðx1;x2;x3Þ are eliminated.

Only the pair T2
ðx1;x3Þ remains to be checked:

T2
ðx1;x3Þ ¼ 8 	 1:02 50:15½ � � 0:99 1:04½ �f g0 	 0:0025 0:0067

0:0067 0:0592

� �
:�1

	 1:02 50:15½ � � 0:99 1:04½ �f g ¼ 4:15

The UCL associated is

UCL ¼ 2ð30þ 1Þð30� 1Þ
30ð30� 2Þ F0:01;2;30�2 ¼ 9:77:

As T2
ðx1;x3Þ does not exceed the UCL the combination of x1 and x3 does not

contribute to the signal.

In order to compute in R the T2 chart with the new 25 samples in Phase II it is

necessary to use the values of the mean vector, the covariance matrix, and their

sample size stored in colm:

> Xmv <� mult.chart(carbon1, type ¼ "t2") $Xmv

> S <� mult.chart(carbon1, type ¼ "t2") $covariance

> colm<�nrow(carbon1)

then

> data("carbon2")

> mult.chart(carbon2, type ¼ "t2", Xmv ¼ Xmv, S ¼ S, colm ¼ colm)

The results are presented above (Fig. 2.11).

The process is out-of-control since the fourth sample falls outside the UCL.

When this happens the mult.chart function returns a table with the T2 value of the

decomposition, the UCL, and the p-value for all possible combinations of variables.
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Fig. 2.11 Hotelling control

chart of the carbon2 dataset

in Phase II
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The following point(s) falls outside the control limits[1] 4:

$‘Decomposition of‘

[1] 4

t2 Decomp UCL p-Value 1 2 3

[1,] 3.3800 6.9823 0.0763 1 0 0

[2,] 12.2223 6.9823 0.0015 2 0 0

[3,] 4.0347 6.9823 0.0540 3 0 0

[4,] 12.3549 9.7767 0.0001 1 2 0

[5,] 4.8015 9.7767 0.0158 1 3 0

[6,] 12.9364 9.7767 0.0001 2 3 0

[7,] 13.6477 12.1347 0.0000 1 2 3

The first three rows present for each of the quality characteristic analyzed

(decomposed individually). The x2 represents the source of variability since p-value

¼ 0.0015. Obviously all the combinations that include x2 exceed their respective

value of UCL. Finally, the same results are obtained.

2.6.1 T2 for Individuals

In the previous section we have studied rational subgroup cases in which each

sample is composed by more than one observation.

However, in many processes, due to its own nature, it can only measure one

observation at each time interval. This case is frequently named for individuals.

It means that in data structure of the process only one observation per variable is

recorded at the time m therefore, n ¼ 1.

In this case T2 bears only few modifications:

T2 ¼ ðX � XÞ0ðSÞ�1ðX � XÞ (2.30)

and evidently the control limits must be modified due to the absence of n. In this

case, Tracy et al. (1992) propose for Phase I:

UCL ¼ ðm� 1Þ2
m

ba;p=2; m�p�1ð Þ=2; (2.31)

where b is the beta distribution with p/2 and (m � p � 1)/2 degree of freedom at

significance level alpha (a).
Conversely at Phase II the limit is placed at

UCL ¼ pðmþ 1Þðm� 1Þ
m2 � mp

Fa;p;m�p: (2.32)
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Presumably, the traditional calculation of S is limited for the lack of subgroups,

wherefore many estimators have been suggested.

Sullivan and Woodall (1996a) examined the use of the cumulative sum of

differences regarding the mean by its transpose:

Ssw ¼
Pm
k¼1

xi � xð Þ xi � xð Þ0

m� 1
: (2.33)

On the other hand, Holmes and Mergen (1993) proposed the difference among

consecutive observations instead of the difference respecting the mean:

Shm ¼

x2 � x1
x3 � x2

..

.

xm � xm�1

2
6664

3
7775

x2 � x1
x3 � x2

..

.

xm � xm�1

2
6664

3
7775
0

2 m� 1ð Þ : (2.34)

The following example shows the construction of the T2 chart when n ¼ 1.

Example 2.5

Bimetal thermostat has innumerable practical uses. These types of thermostats hold

a bimetallic strip composed by two strips of different metals that convert the

changing of temperature in mechanical displacement due to the difference in

thermal expansion.

Certain type of strip composed of brass and steel is analyzed in a quality

laboratory by testing the deflection, curvature, resistivity, and hardness in low

and high expansion sides. Table 2.3 shows 28 samples taken by the quality control

department.

The construction of the scatterplot matrices provides a graphical vision of the

association of the variables (Fig. 2.12):

> pairs(bimetal1, labels ¼ c("deflection","curvature","resistivity","Hardness low

side","Hardness high side"))

The sample mean vector and the correlation matrix result in

X ¼

21:02
40:02
15:19
22:02
26:01

2
66664

3
77775; r ¼

1:00 0:61 0:38 0:40 0:60
0:61 1:00 0:59 0:51 0:85
0:38 0:59 1:00 0:22 0:50
0:40 0:51 0:22 1:00 0:32
0:60 0:85 0:50 0:32 1:00

2
66664

3
77775:
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The computation of Ssw is as follows:

Ssw ¼
Pm
k¼1

xi� xð Þ xi� xð Þ0

m�1
¼ 1

28�1

20:84

39:84

14:98

21:88

25:87

2
6666664

3
7777775

0

�

21:02

40:04

15:19

22:02

26:01

2
6666664

3
7777775

08>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

�

20:84

39:84

14:98

21:88

25:87

2
6666664

3
7777775
�

21:02

40:04

15:19

22:02

26:01

2
6666664

3
7777775

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
þ

:::þ

21:14

39:93

15:19

22:02

26:01

2
6666664

3
7777775

0

�

21:02

40:04

15:19

22:02

26:01

2
6666664

3
7777775

08>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

�

21:14

39:93

15:19
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26:01

2
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3
7777775
�

21:02

40:04

15:19

22:02

26:01

2
6666664

3
7777775

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
:

Table 2.3 Bimetal data of the Phase I

Sample Deflection Curvature Resistivity

Hardness low

expansion side

Hardness high

expansion side

T2

using

“sw”

T2

using

“hm”

1 21.15 40.24 14.95 22.24 26.24 1.82 1.66

2 21.10 39.99 14.79 21.62 25.92 1.05 0.82

3 20.95 39.82 14.91 22.04 25.95 1.51 1.45

4 21.03 40.01 14.89 21.74 26.19 8.63 8.27

5 21.21 40.03 15.03 22.32 25.86 8.69 7.72

6 21.37 40.31 15.21 22.03 26.08 2.08 2.44

7 20.70 39.90 14.75 21.67 25.86 3.57 3.77

8 20.87 39.89 15.04 21.89 26.02 7.94 9.17

9 21.27 40.14 15.20 22.27 26.23 8.16 8.24

10 20.97 40.13 14.98 22.11 26.22 3.39 4.24

11 21.34 40.20 14.91 21.99 25.89 2.69 2.17

12 20.92 39.87 14.90 21.76 25.93 6.34 5.84

13 20.83 40.00 15.15 22.20 26.02 4.71 4.66

14 20.84 39.90 15.06 22.08 26.07 2.09 1.8

15 20.95 40.16 14.97 22.20 26.25 4.85 5.14

16 20.75 39.80 14.71 22.01 25.66 11.57 11.84

17 21.00 40.05 15.10 22.36 26.10 1.13 1.29

18 21.21 40.26 15.05 22.15 26.17 1.55 1.14

19 21.03 39.87 14.98 22.05 26.07 8.74 10.92

20 21.01 39.84 14.97 21.89 26.19 11.4 12.49

21 21.08 40.00 14.78 22.20 25.90 0.77 0.74

22 21.08 39.78 14.96 22.02 26.09 5.61 5.30

23 20.69 39.77 14.92 21.91 25.87 5.18 4.29

24 20.88 39.85 15.00 21.79 26.00 3.53 3.32

25 21.01 40.02 15.06 21.92 26.08 9.24 7.10

26 21.01 39.95 14.78 22.02 25.86 5.07 4.34

27 21.07 40.08 15.40 22.15 26.06 1.55 1.43

28 20.97 39.87 14.99 21.77 25.91 2.14 2.12
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Finally

Ssw ¼

0:092 0:025 0:038 0:028 0:027
0:026 0:019 0:026 0:016 0:017
0:038 0:026 0:106 0:016 0:023
0:028 0:016 0:016 0:054 0:011
0:027 0:017 0:023 0:011 0:022

2
66664

3
77775:

So, the T2 statistics is calculated as

T2 ¼ ðX � �XÞ0ðSÞ�1ðX � �XÞ;

deflection

39.8 40.1 21.6 22.0

20
.7

21
.0

21
.3

39
.8

40
.1

curvature

resistivity

14
.7

15
.1

21
.6

22
.0 Hardness

low side

20.7 21.0 21.3 14.7 15.1 25.7 26.0
25

.7
26

.0Hardness
high side

Fig. 2.12 Scatterplot matrices of the bimetal1 dataset
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T2
1 ¼

20:84

39:84

14:98

21:88

25:87

2
6666664

3
7777775

0

�

21:02

40:04

15:19

22:02

26:01

2
6666664

3
7777775

08>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

�

0:092 0:025 0:038 0:028 0:027

0:026 0:019 0:026 0:016 0:017

0:038 0:026 0:106 0:016 0:023

0:028 0:016 0:016 0:054 0:011

0:027 0:017 0:023 0:011 0:022

2
6666664

3
7777775

�1

�

20:84

39:84

14:98

21:88

25:87

2
6666664

3
7777775
�

21:02

40:04

15:19

22:02

26:01

2
6666664

3
7777775

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
;

T2
1 ¼ 1:82; and so forth for the others (that can be found in Table 2.3).

On the other hand, to calculate Shm

Ssw ¼

x2 � x1

x3 � x2

..

.

xm�1 � xm�2

2
66664

3
77775

x2 � x1

x3 � x2

..

.

xm�1 � xm�2

2
66664

3
77775

0

2 m� 1ð Þ ¼ 1

2 28� 1ð Þ
20:89� 20:84 39:94� 39:84 � � � 25:97� 25:87

21:13� 20:89 40:12� 39:94 � � � 26:11� 25:97

..

. ..
. ..

. ..
.

21:14� 20:96 39:93� 40:03 . . . 25:98� 25:94

2
66664

3
77775

�

20:89� 20:84 39:94� 39:84 � � � 25:97� 25:87

21:13� 20:89 40:12� 39:94 � � � 26:11� 25:97

..

. ..
. ..

. ..
.

21:14� 20:96 39:93� 40:03 . . . 25:98� 25:94

2
66664

3
77775

0

Shm ¼

0:090 0:029 0:041 0:027 0:031
0:029 0:021 0:031 0:017 0:018
0:041 0:031 0:121 0:007 0:026
0:027 0:017 0:007 0:065 0:012
0:031 0:018 0:026 0:012 0:021

2
66664

3
77775:
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In the same manner to compute the statistics:

T2
1 ¼

20:84

39:84

14:98

21:88

25:87

2
6666664

3
7777775

0

�

21:02

40:04

15:19

22:02

26:01

2
6666664

3
7777775

08>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

�

0:090 0:029 0:041 0:027 0:031

0:029 0:021 0:031 0:017 0:018

0:041 0:031 0:121 0:007 0:026

0:027 0:017 0:007 0:065 0:012

0:031 0:018 0:026 0:012 0:021

2
6666664

3
7777775

�1

�

20:84

39:84

14:98

21:88

25:87

2
6666664

3
7777775
�

21:02

40:04

15:19

22:02

26:01

2
6666664

3
7777775

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

T2
1 ¼ 1:66 and so successively for the others.

With a ¼ 0.05 the UCL results in

UCL ¼ ðm� 1Þ2
m

ba;p=2; m�p�1ð Þ=2 ¼
ð28� 1Þ2

28
b0:05;5=2; 28�5�1ð Þ=2 ¼ 14:53:

0 5 10 15 20 25

0

5

10

15

Sample

T
2

UCL= 14.53

[1] "Hotelling Control Chart"

$ucl

[1] 14.53

$t2

[,1]

[1,]  1.82

[2,]  1.05

... 

[27,]  1.55

[28,]  2.14

$Xmv

[1] 21.02 40.02 15.19 22.02 26.01

$covariance

[,1]  [,2]  [,3]  [,4]  [,5]

[1,] 0.092 0.025 0.038 0.028 0.027

[2,] 0.025 0.019 0.026 0.016 0.017

[3,] 0.038 0.026 0.110 0.016 0.023

[4,] 0.028 0.016 0.016 0.054 0.011

[5,] 0.027 0.017 0.023 0.011 0.021

Fig. 2.13 Hotelling control chart with method ¼ “sw” method and using the bimetal1 dataset
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The mult.chart function detects automatically when x is a matrix or an array with

depth n ¼ 1 and computes S across any of the two methods that can be defined by

the user using method ¼ “sw” or “hm” or equally using the initials “s” or “h.” Even

if method is missing the default way is “sw”:

> mult.chart(type ¼ "t2", bimetal1, method ¼ "sw", alpha ¼ 0.05)

The output is shown in (Fig. 2.13)

In contrast to compute using the Holmes and Mergen (1993) method:

> mult.chart(type ¼ "t2", bimetal1, method ¼ "hm", alpha ¼ 0.05)

obtaining (Fig. 2.14):

Notice that the function’s output by using each method differs in the statistics

and in the covariance matrix. In this example, comparing the two graphs, it can be

seen that no significant difference was obtained from Holmes and Mergen (1993)

and Sullivan and Woodall (1996a).

Now the extension of the example is possible by performing a control in the

future production (Phase II) using the in-control mean and covariance obtained.

The collected data of this production is stored in bimetal2.

Obviously it is needed to fix the in-control parameters:

> colm <� nrow(bimetal1)

>vec <� mult.chart(type ¼ "t2", bimetal1, method ¼ "sw", alpha ¼ 0.05)$Xmv

0 5 10 15 20 25

0

5

10

15

Sample

T
2

UCL= 14.53

[1] "Hotelling Control Chart"

$ucl

[1] 14.53

$t2

[,1]

[1,]  1.66

[2,]  0.82

...

[27,]  1.43

[28,]  2.12

$Xmv

[1] 21.02 40.02 15.19 22.02 26.01

$covariance

[,1]  [,2]   [,3]   [,4]  [,5]

[1,] 0.090 0.029 0.041 0.027 0.030

[2,] 0.029 0.021 0.031 0.017 0.018

[3,] 0.041 0.031 0.120 0.007 0.026

[4,] 0.027 0.017 0.007 0.065 0.012

[5,] 0.030 0.018 0.026 0.012 0.021

Fig. 2.14 Hotelling control chart with method ¼ “hm” method and using the bimetal1 dataset
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First computing the covariance matrix according to the sw method:

>mat <� mult.chart(type ¼ "t2", bimetal1, method ¼ "sw", alpha ¼ 0.05)

$covariance

and mat2 for the covariance with hm proposal.

>mat2 <� mult.chart(type ¼ "t2", bimetal1, method ¼ "hm", alpha ¼ 0.05)

$covariance

> data("bimetal2")

To achieve both outputs in the same graphs:

par(mfrow ¼ c(2,1))

> mult.chart(type ¼ "t2", bimetal2, Xmv ¼ vec, S ¼ mat, method ¼ "sw", alpha ¼
0.05)

> mult.chart(type ¼ "t2", bimetal2, Xmv ¼ vec, S ¼ mat2, method ¼ "hm", alpha

¼ 0.05)

The chart using the sw method detects nonrandom shifts at the points 8 and 17

while that using the hm method detects the samples 8, 9, and 17.

Finally, both methods almost present similar sensitivity in this practical problem

(Fig. 2.15).
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UCL= 16.05
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UCL= 16.05

Fig. 2.15 Hotelling control chart in Phase II with both “sw” and “hm” method and using the

bimetal2 dataset
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2.7 Generalized Variance Control Chart

In the same manner as that in univariate control chart, the monitor of the process

mean is coupled with a dispersion chart; monitoring the process variability results

extremely useful in multivariate issues. This is because in the multivariate

Shewhart chart it was assumed that the process dispersion remained constant.

This hypothesis must be checked in practice.

To date various methods have been proposed for the simultaneous monitoring of

variability but clearly the generalized variance chart is the most accepted. For more

details see for example Alt (1985) or Montgomery (2004). The term generalized
variance is known as the determinant of the covariance matrix.

This type of chart results by plotting the determinant of the covariance matrix

along with the natural upper and lower control limits.

When the covariance matrix S is known the parameters of the chart result in

UCL ¼ Sj j b1 þ 3b2
1=2

� �
(2.35)

CL ¼ b1 Sj j (2.36)

LCL ¼ max
Sj j b1 � 3b2

1=2
� �

0

	
; (2.37)

where

b1 ¼ 1

n� 1ð Þp
Yp
j¼1

n� jð Þ (2.38)

and

b2 ¼ 1

n� 1ð Þ2p
Yp
j¼1

n� jð Þ
Yp
i¼1

n� iþ 2ð Þ �
Yp
i¼1

n� ið Þ
" #

: (2.39)

Notice that n must be higher than the number of quality characteristics (p).

Frequently S is unknown and is estimated through S based on the relationship:

Sj j ¼ b1 Sj j (2.40)

Therefore the parameters result in

UCL ¼ Sj j
b1

b1 þ 3b2
1=2

� �
(2.41)
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CL ¼ Sj j (2.42)

LCL ¼ max
Sj j
b1

b1 � 3b2
1=2

� �
0

8<
: : (2.43)

Taking into account that S is positive-definite matrix, the LCL lacks of sense for

negative values.

Example 2.6

Let us return to the carbon fiber data from Example 3.3 in which 30 samples of three

quality characteristics of size n ¼ 8 were taken.

In this case S is unknown and in consequence S was estimated:

S� 100 ¼
0:25 0:36 0:67
0:36 1:40 1:00
0:67 1:00 5:92

2
4

3
5:

Then, the central line is CL ¼ Sj j ¼ 9:53� 10�7.

Secondly

b1 ¼ 1

8� 1ð Þ3
Y3
j¼1

8� jð Þ ¼ 1

343
� 7� 6� 5 ¼ 0:6122

b2 ¼ 1

8� 1ð Þ6
Y3
j¼1

8� jð Þ
Y3
i¼1

8� iþ 2ð Þ �
Y3
i¼1

8� ið Þ
" #

¼ 1

117649
� 7� 6� 5

� 9� 8� 7� 7� 6� 5ð Þ ¼ 0:5248

and finally

UCL ¼ 9:53� 10�7

0:6122
0:6122þ 3� 0:52481=2

� �
¼ 4:3386� 10�6

LCL ¼ max
9:53� 10�7

0:6122
0:6122� 3� 0:52481=2

� �
0

8<
:

LCL ¼ max
�2:4314� 10�6

0

(
¼ 0:

The elements of the sample covariance matrix and the corresponding determi-

nant for each sample are presented in Table 2.4.
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The points to be plotted are the determinants of the covariance of each sample.

For instance for the first sample:

detðS1Þ ¼
0:15 �0:08 0:40
�0:08 1:19 �0:42
0:40 �0:42 2:98

2
4

3
5


 ¼ 3:10� 10�7:

Performing in R is done through the gen.var function that only requires as

argument an array of dimensions: p� m� n. For instance (Fig. 2.16):

> gen.var(carbon1)

Then R returns:

All points fall inside the control limits; therefore, there is no signal of out-of-

control associated to the process variability.

Table 2.4 Bimetal data for the generalized variance chart

Means Variances (�100) Covariances (�100)

Sample

Inner

(X1)

Thickness

(X2)

Length

(X3) S1 S2 S3 S12 S13 S23 det(S)

1 1.03 1.08 50.16 0.15 1.19 2.98 �0.08 0.40 �0.42 3.10E�07

2 0.97 0.95 49.92 0.40 1.01 6.38 0.16 1.03 0.25 1.44E�06

3 1.01 1.05 50.14 0.17 0.99 1.96 0.31 0.38 0.81 7.00E�08

4 1.00 1.05 49.91 0.26 1.14 5.73 0.36 �0.29 0.82 5.00E�07

5 0.96 1.00 49.83 0.43 3.25 12.37 0.92 1.91 4.61 1.94E�06

6 1.03 1.07 50.05 0.30 1.52 1.69 0.43 0.30 �0.48 1.40E�07

7 0.96 1.02 49.95 0.17 0.58 4.34 0.03 0.34 0.74 2.70E�07

8 1.00 1.02 50.02 0.17 0.79 6.16 0.11 �0.11 0.32 6.90E�07

9 1.00 1.10 50.03 0.20 1.43 1.87 0.34 �0.07 �0.88 2.00E�07

10 0.99 1.02 50.00 0.13 0.53 6.58 0.11 0.18 �0.13 3.70E�07

11 1.01 1.10 50.01 0.18 1.31 3.41 0.11 0.19 0.36 7.20E�07

12 1.02 1.07 49.99 0.24 0.81 3.41 0.05 0.70 0.67 1.90E�07

13 0.97 1.00 49.96 0.48 2.36 17.72 0.98 2.44 5.17 8.60E�07

14 1.01 1.05 50.04 0.13 1.08 7.20 0.18 0.16 1.98 3.60E�07

15 1.00 1.06 50.02 0.24 1.14 7.80 0.26 1.01 0.43 6.70E�07

16 1.00 1.03 49.99 0.39 1.66 3.69 0.71 0.98 1.27 9.00E�08

17 1.00 1.04 49.99 0.10 1.27 7.71 0.00 0.44 �2.09 3.20E�07

18 0.98 1.00 49.94 0.18 1.56 5.40 0.26 0.85 2.22 1.30E�07

19 0.98 0.96 49.93 0.24 1.61 5.68 0.55 0.18 0.55 4.30E�07

20 1.01 1.07 50.02 0.37 2.55 4.91 0.64 1.16 3.33 3.00E�08

21 0.98 1.03 49.96 0.28 0.39 7.21 0.15 1.39 0.64 3.00E�08

22 0.99 1.04 50.07 0.23 2.46 8.24 0.60 0.70 1.74 1.20E�06

23 0.95 0.92 49.86 0.41 1.82 2.69 0.73 0.40 0.32 4.00E�07

24 1.00 1.09 50.05 0.15 0.75 9.27 0.12 0.69 �0.29 5.20E�07

25 0.99 1.01 49.96 0.51 1.87 7.08 0.56 1.56 1.63 1.50E�06

26 0.99 1.02 49.89 0.12 0.75 7.04 0.19 0.59 1.34 2.10E�07

27 0.99 1.03 49.84 0.24 3.80 7.47 0.72 0.87 2.20 1.61E�06

28 1.01 1.04 49.97 0.06 0.80 2.46 0.14 0.08 0.05 7.00E�08

29 1.03 1.10 50.07 0.19 1.29 2.38 0.43 0.36 0.72 1.20E�07

30 1.01 1.08 49.97 0.33 1.75 6.78 0.69 1.27 2.73 1.80E�07



2.8 Multivariate Exponentially Weighted Moving

Average Control Chart

MEWMA is the natural multivariate extension of the EWMA chart proposed by

Roberts (1959). It was introduced by Lowry et al. (1992) and is more sensible in

detecting nonrandom changes in the process and based on the principle of the

weighted average of the previously observed vectors.

Despite the fact that it is used mainly for individual observations (n ¼ 1) it can

be utilized in rational subgroup case as it will be explained later. It is also a chart for

Phase II.

The MEWMA chart has the statistics:

T2 ¼ Zi
0S�1

Zi
Zi>h; (2.44)

where

Zi ¼ lXi þ 1� lð ÞXi�1 (2.45)

being Zo ¼ 0, l is diagonal p� pmatrix of the smoothing constant with 0< li � 1,

although in practice there is no reason to employ different values of l in the same

problem. Practically, the most often used value of l is 0.1.

In a particular case, when rational subgroups are obtained, i.e., n > 1, just

replace Xi by �Xi.
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+
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−
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Observation
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t(S

)

UCL= 4.34e−06

CL= 9.5e−07

LCL= 0

[1] "Generalized Variance Control
Chart"

$`Upper Control Limit`

[1] 4.3e -06

$`Lower Control Limit`

[1] 0

$stat

[,1]

[1,] 3.1e -07

[2,] 1.4e -06

...

[29,] 1.2e -07

[30,] 1.8e -07

Fig. 2.16 Generalized variance control chart using the carbon1 dataset
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Lowry et al. (1992) provide two alternatives to compute the Sz, the exact

covariance matrix:

SZi ¼
l 1� 1� lð Þ2i
h i

2� l
Sð Þ (2.46)

and the named asymptotic covariance matrix

SZi ¼
l

2� l
Sð Þ (2.47)

the first one having a better performing.

Moreover, they point out that the ARL performance of the chart depends only on

noncentrality parameter y:

y ¼ m1 � m0ð Þ0S m1 � m0ð Þ� �1=2
; (2.48)

where m1 is the mean vector for Phase II. Notice that when l ¼ 1 MEWMA chart is

transformed on T2 chart.

One of the main troubles on this chart is the selection of the h or UCL. Prabhu

and Runger (1997) presented computed tables, based on the Markov chain

approach, to choose the UCL according to the parameters l, p, y, and ARL.

On the other hand, Bodden and Rigdon (1999) proposed a FORTRAN program

to compute either the UCL for given values of ARL, l, and p or ARL for values of

UCL, l, and p. These programs can be obtained on StatLib site at http://lib.stat.

cmu.edu/jqt/31-1.

Example 2.7

To illustrate the MEWMA chart, return to Example 3.3 of the carbon fiber tubes.

With

S� 100 ¼
0:25 0:36 0:67
0:36 1:40 1:00
0:67 1:00 5:92

2
4

3
5 it is easy to obtain

SZ1 � 105 ¼
0:1 1� 1� 0:1ð Þ2�1

h i
2� 0:1

0:25 0:36 0:67
0:36 1:40 1:00
0:67 1:00 5:92

2
4

3
5

100

¼
2:49 3:59 6:69
3:59 14:49 10:2
6:69 10:25 9:21

2
4

3
5
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Z1 ¼ lX1þ 1�lð ÞX1�1 ¼ 0:1X1þ 1�0:1ð ÞX1�1 being

X1 ¼ 1:03 1:08 50:16½ � � 0:99 1:04 49:98½ � then:

Z1 ¼
0:0034
0:0043
0:0172

2
4

3
5 and finally

T2
1 ¼ Z1

0S�1
Z1
Z1 ¼

0:0034
0:0043
0:0172

2
4

3
5
0

�
2:49 3:59 6:69
3:59 14:49 10:2
6:69 10:25 9:21

2
4

3
5 105
�8<

:
9=
;

�1

�
0:0034
0:0043
0:0172

2
4

3
5

¼ 0:6236

and so forth for all values of i.

Using the program by Bodden and Rigdon (1999) with ARL ¼ 200, l ¼ 0.1,

and p ¼ 3, UCL ¼ 10.81 is obtained.

The execution in R of the MEWMA control chart is furthermore through the

mult.chart function specifying type ¼ “mewma.”

Another argument to be entered is lambda and in its absence the function works

with the default value 0.1.

In the MEWMA chart the covariance matrix could be used in three different

ways to estimate S in the same way as the T2 is computed through the matrix of the

mean sample covariance for rational subgroups, and for individual observations,

using the methods by Sullivan and Woodall (1996b) and Holmes and Mergen

(1993).

For the computation of the UCL, mult.chart uses the method suggested by

Bodden and Rigdon (1999). A drawback is that the amount of the choices to select

lambda, p, and ARL is limited as follows:

p for values 2,3,. . .,10
lambda for 0.1, 0.2,. . .,0.9
ARL only 200

However the user can enter as argument the desired UCL obtained for instance

by Prabhu and Runger (1997) or Bodden and Rigdon (1999).

To carry out the previous example in R, just:

> mult.chart(type ¼ "mewma", carbon1)

Then R prompts:

Notice in Fig. 2.17 that no alarm is given since no point falls beyond the UCL.

The assumption of the central limits theorem is not satisfied in case of individual

observations; therefore in practice the normality assessing must be done.

Borror et al. (1999) proved how EWMA chart is robust regardless whether data

follows a normal distribution or not. Later, Testik and Runger (2003) prove through

a Monte Carlo simulation how the MEWMA chart is robust to non-normal data.

That is, MEWMA is a nonparametric chart, so it can be used with suitable

performance independently of the distribution of the data, the latter being one of

the most striking properties.
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2.9 Multivariate Cumulative Sum Control Chart

The MCUSUM control chart appears as the multivariate extension of the CUSUM

control chart originally proposed by Page (1961). It is focused on improving the

sensitivity regarding the previously introduced T2 chart by detecting small shifts on

the process and is based on the principle of accumulating information of the former

observations. As well as the MEWMA chart, MCUSUM is a Phase II chart.

There are four main alternatives accepted to construct an MCUSUM chart which

are exposed below.

The first of these suggestions was introduced by Woodall and Ncube (1985).

They proposed the individual monitoring of the mean vector through the utilization

of univariate CUSUM charts. Analogous to CUSUM there is also a two-side chart.

Its statistics is given by

S�i;j ¼ min

0

S�i�1;j þ
�Xi;j � m0;j
s0;j=

ffiffiffi
n

p þ k�j

8<
:

9=
;

Sþi;j ¼ max

0

Sþi�1;j þ
�Xi;j � m0;j
s0;j=

ffiffiffi
n

p þ kþj

8<
:

9=
;;

(2.49)
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Fig. 2.17 MEWMA control chart with l ¼ 0.1 using the carbon1 dataset
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where m0,j is the jth element of the m vector, s0,j is the (j � j)th diagonal element of

S matrix, and k is a constant. Notice that when i ¼ 1 then S�i;j and Sþi;j ¼ 0.

The control limits are

UCL ¼ hþj
LCL ¼ h�j : (2.50)

After that, Healy (1987) suggested a procedure to detect shifts in mean based on

the linear combination of variables:

Si ¼ max
0

Si�1 þ a0 Xi � k

	 

; (2.51)

where

a0 ¼ m1 � m0ð Þ0 S0

n

� ��1

m1 � m0ð Þ0 S0

n

� ��1
m1 � m0ð Þ

h i1=2 (2.52)

and

k ¼ 0:5
m1 � m0ð Þ0 S0

n

� ��1
m1 � m0ð Þ

m1 � m0ð Þ0 S0

n

� ��1
m1 � m0ð Þ

h i1=2 : (2.53)

This chart includes the control limits:

UCL ¼ h:

On the other hand, Crosier (1988) presented two multivariate procedures. Here

we present the version of the better ARL performance.

The statistics is

T2
i ¼ S

0
i

S
n

� ��1

Si

" #1=2

>h; (2.54)

where

Si ¼
0 if Ci � k

Si�1 þ �Xi � moð Þ 1� k
Ci

� �
if Ci>k

(
; (2.55)

where S0 ¼ 0, k > 0, and

Ci ¼ Si�1 þ �Xi � moð Þ0 S
n

� ��1

Si�1 þ �Xi � moð Þ
" #1=2

: (2.56)
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Likewise, the limit is

UCL ¼ h:

Finally Pignatiello and Runger (1990) proposed likewise two MCUSUM charts,

the following resulting as the better performance alternative:

T2
i ¼ max

0

Si
0 S

n

� ��1
Si

h i1=2(
� kni (2.57)

where

Si ¼
Xi

j¼i�niþ1

Xi � m0
� �

(2.58)

and

ni ¼ ni�1 þ 1 if T2
i�1>0

1 otherwise

	
(2.59)

UCL ¼ h:

Although we have introduced these four approaches, only the last two will be

applied in this section.

Example 2.8

Returning to the example of the carbon data and beginning for Crosier (1988)

method we have

S0 ¼ 0, k > 0, and

C1¼

1:01 1:07 49:88½ �� 0:99 1:04 49:98½ �f g0�
0:25 0:36 0:67

0:36 1:40 1:00

0:67 1:00 5:92

2
664

3
775=100=8

0
BB@

1
CCA
�1

� 1:01 1:07 49:88½ �� 0:99 1:04 49:98½ �f g

2
666664

3
777775

1=2

:

¼2:3591

After that, if C1 > k then

S1 ¼ 1:01 1:07 49:88½ � � 0:99 1:04 49:98½ �f g 1� 0:5

2:3591

� �
:

S1 ¼ 0:0138 0:0266 �0:0828½ �
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The statistics results in

T2
1 ¼ 0:0138 0:0266 �0:0828½ �0 �

0:25 0:36 0:67

0:36 1:40 1:00

0:67 1:00 5:92

2
64

3
75=100=8

0
B@

1
CA

�1

�

½ 0:0138 0:0266 �0:0828 �

2
6664

3
7775
1=2

:

T2
1 ¼ 1:86

The other values are calculated in the same manner.

In the case of the Pignatiello and Runger (1990) MCUSUM we have

n1 ¼ 1 and then S1 ¼ 1:01 1:07 49:88½ � � 0:99 1:04 49:98½ �f g;
so

T2
i ¼ max

0

0:0138 0:0266 �0:0828½ �0�
0:25 0:36 0:67

0:36 1:40 1:00

0:67 1:00 5:92

2
664

3
775=100=8

0
BB@

1
CCA

�1

� 0:0138 0:0266 �0:0828½ �

2
666666664

3
777777775

1=2

8>>>>>>>>>>><
>>>>>>>>>>>:

�0:5�1:

T2
i ¼1:86

The other values of T2 can be computed in the same way.

The execution in R of the Crosier (1988) and Pignatiello and Runger (1990)

MCUSUM charts it is also carried out using the mult.chart function specifying

type ¼ “mcusum” and “mcusum2,” respectively.

Furthermore the arguments k and h must be entered although when these

parameters are missing the function works with the default values 0.5 and 5.5,

respectively. MCUSUM chart uses the same ways as T2 and MEWMA to estimate

the covariance matrix S.

In order to execute the previous example in R, just (Fig. 2.18):

> data("carbon2")

> Xmv <� mult.chart(carbon1, type ¼ "t2") $Xmv

> S <� mult.chart(carbon1, type ¼ "t2") $covariance

> mult.chart(type ¼ "mcusum", carbon2, Xmv ¼ Xmv, S ¼ S)

Then R returns:

Specifying type ¼ “mcusum2” R compute (Pignatiello and Runger 1990). The

results obtained are presented in Fig. 2.19.

Finally signals of out-of-control are obtained; comparing the two results, it can

be seen that Crosier (1988) chart provides a better sensitivity with signal since the

seventh sample.
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Fig. 2.19 MCUSUM control chart according to Pignatiello and Runger (1990) using the carbon1
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Fig. 2.18 MCUSUM control chart according to Crosier (1988) using the carbon1 dataset
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2.10 Control Chart Based on Principal Component

Analysis (PCA)

The PCA is a multivariate technique focused on the orthogonal transformation of a

correlated dataset to obtain a linear combination of variables called principal
component and with the aim of reducing the dimensionality.

If x is a vector from 1 to p quality characteristics with eigenvalues: l1 � l2 �
::: � lp then the linear combination can be chosen:

c1 ¼ e11x1 þ e12x2 þ � � � þ e1pxp
c2 ¼ e21x1 þ e22x2 þ � � � þ e2pxp

..

.

cp ¼ ep1x1 þ ep2x2 þ � � � þ eppxp

; (2.60)

where eij is the jth element from the ith eigenvector and cj the axes of the new

coordinates system by rotating the original. This new axes represent the directions

of maximum variability.

The principal components are chosen by maximizing the variance as much as

possible.

The variance of the principal components is given by their eigenvalue and

proportion of the variance explained is determined as

lj ðl1= þ l2 þ . . . lpÞ: (2.61)

There are many methods to decide the number of principal components (which

are described in the next chapter).

The score of the principal components cj is determined by substituting the

eigenvector values and the original observation of x1, x2, . . ., xp in each cj.

The use of PCA in multivariate charts is due to the feasibility of reducing

the dimensionality of the original dataset without a significant loss of information.

Jackson (1991) proposed three applications of PCA in control chart: the

Hotelling chart applied to the principal component scores, the control chart to

the residual, and the univariate control chart for each score.

In this context, only the first approach will be studied. This application is based

on the following principle. Suppose a process with 5 or 6 quality characteristics is

being studied and it is possible that after a PCA the first two or three components

explain more than 80% of the total variability and consequently can be controlled

through 2D or 3D ellipsoid.

To illustrate this point the next example shows this clearly.

Example 2.9

Returning to the bimetal data introduced in Sect. 3.6.
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To carry out the PCA in R just:

> eigen(covariance(bimetal1)) achieving the eigenvalues and eigenvectors

$values

[1] 0.170 0.066 0.040 0.015 0.002

$vectors

[,1] [,2] [,3] [,4] [,5]

[1,] 0.597 0.548 0.511 �0.288 �0.004

[2,] 0.273 0.041 �0.074 0.525 �0.802

[3,] 0.641 �0.734 �0.075 �0.201 0.056

[4,] 0.299 0.395 �0.851 �0.140 0.108

[5,] 0.262 0.058 0.067 0.763 0.585

And to perform the summary of the principal components:

> summary(prcomp(bimetal1))

Then R shows:

Importance of components:

PC1 PC2 PC3 PC4 PC5

Standard deviation 0.412 0.257 0.199 0.122 0.048

Proportion of variance 0.580 0.225 0.136 0.051 0.008

Cumulative proportion 0.581 0.806 0.942 0.992 1.000

This analysis can be complemented in a graphical way, for instance performing

an elemental Pareto chart:

First get the variance through the standard deviation of the components:

> varian <� (prcomp(bimetal1)$sdev) ^ 2

Then, to store the proportion of variance and the cumulative proportion:

> perc <� varian / sum(varian)

> cumperc <� cumsum(perc)

Finally plotting the cumulative proportion as:

> plot(cumperc, type ¼ "o", xlim ¼ c(0.5, length(cumperc) + 0.5), ylim ¼ c(0,1),

xlab ¼ "component", ylab ¼ "percent") and adding the barplot

> barplot(perc, add ¼ TRUE, width ¼ 1, beside ¼ TRUE, col ¼ "gray", space ¼ c

(0,0.5))

As a result, the first two components are responsible for 80.61% of the

variability. Therefore the original dimension of the problem has been reduced to

a two-dimensional problem (Fig. 2.20).

Using

> prcomp(bimetal1)$x or

> predict(prcomp(bimetal1))
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Then R prompts the data from the principal components scores

PC1 PC2 PC3 PC4 PC5

[1,] �0.369 �0.013 0.052 �0.087 0.031

[2,] �0.286 0.135 �0.046 0.020 0.022

. . .

[27,] �0.018 �0.101 �0.002 �0.039 �0.054

[28,] �0.149 0.146 0.240 �0.037 0.018

Now, two alternatives can be taken:

1. Consider the parameters known or assume sufficiently a large dataset and

execute a w2 control ellipse or a w2 chart.
2. Assume the parameters unknown and perform an F control ellipse or a T2 control

chart.

Suppose we decide to adopt the first one. To plot the first two components with

the respective w2 confidence ellipse:

> a <� predict(prcomp(bimetal1))[,1:2]

> S <� covariance(a)

> Xmv <� colMeans(a)

Then plotting using the ellip function:

> plot(ellip(type¼"chi", a, alpha ¼ 0.01),type¼"l", xlim ¼ c(�1.6,1.6), ylim ¼ c

(�1,1), xlab¼ "z1", ylab¼ "z2")

> points(Xmv [1], Xmv [2], pch ¼ 3) to include the centre or target

> points(a, cex ¼ 0.75) and adding the points to the ellipse.
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0Fig. 2.20 Pareto chart of

the principal components

summary using the carbon1

dataset
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On the contrary, if we select the second alternative which supposes the

parameters of the distribution are unknown, then add an ellipsoid in dashed line

to the existing one are unknown, then a wider ellipsoid results, as shown by the

dashed line (Fig. 2.21):

points(ellip(type ¼ "t2", a, alpha ¼ 0.01), type ¼ "l", lty ¼ 3)

The control ellipsoid for the alternative with unknown parameters is less restric-

tive. In both cases, all the points are inside the confidence ellipsoid. Similar result

can be obtained executing a w2 and Hotelling chart as can be seen in next figure

(Fig. 2.22):

> par(mfrow ¼ c(1,2))

> mult.chart(a, type ¼ "chi", alpha ¼ 0.01)

> mult.chart(a, type ¼ "t2", alpha ¼ 0.01)

Now analyzing the future production (Phase II) stored bimetal2 dataset, we

have:

First, we use in the R graphics device the graph obtained in (Fig. 2.21) before the

construction of the X2 and Hotelling chart. Then to save the first two principal

components scores:

> b <� cbind(predict(prcomp(bimetal2))[,1 : 2], 1 : nrow(bimetal2))

After that, to add the points to the existing graph:

> points(b[, 1], b[, 2], pch ¼ 4, cex ¼ 0.75)

And finally to incorporate the sample number:

> text(b[,1],b[,2], labels ¼ b[,3], cex ¼ 0.6, pos ¼ 1, offset ¼ 0.5)

unknown (Fig. 2.23):
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Fig. 2.21 Scatterplot for

the principal component

scores with the confidence

ellipses in Phase I
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Likewise now using a Phase II w2 and Hotelling chart:

vec <� (mult.chart(a, type ¼ "chi", alpha ¼ 0.01)$Xmv)

mat <� (mult.chart(a, type ¼ "chi", alpha ¼ 0.01)$covariance)

par(mfrow ¼ c(1,2))

mult.chart(b[,1:2], type ¼ "chi", Xmv ¼ vec, S ¼ mat, alpha ¼ 0.01)

mult.chart(b[,1:2], type ¼ "t2", Xmv ¼ vec, S ¼ mat, alpha ¼ 0.01)

As a result the 18th sample falls outside of ellipse contour and to the UCL.

Notice that previous analysis with T2 chart for individuals in Sect. 3.6 emitted an

out-of-control signal in three moments.

In the output of the T2 chart it can be shown that the source of the variability is

associated to the first principal component (Fig. 2.24):

t2 decomp ucl p-value 1 2

[1,] 14.8626 7.9509 0.0006 1 0

[2,] 0.0123 7.9509 0.9125 2 0

[3,] 14.8749 11.8877 0.0000 1 2

2.11 Exercises

2.1. Two correlated quality characteristics are controlled in an industrial process.

The indust1 and indust2 dataset represent the data obtained in two different

moments. For indust1 dataset:

0 5 10 15 20 25

0

5

10

15

a b

Sample

T
2

T
2

UCL= 9.21

0 5 10 15 20 25

0

5

10

15

Sample

UCL= 11.89

Fig. 2.24 (a) w2 and (b) Hotelling control chart of the principal component scores in Phase II
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(a) Determine the correlation.

(b) Perform a scatterplot.

(c) Construct the 95th confidence ellipsoid.

(d) Compute a w2 chart.
(e) Verify if the process is under control using a Hotelling control chart.

Compare the UCL with that achieved in one w2 chart.
Suppose that it was found that the process is under statistical control in the

moment where the indust1 dataset was collected. For the future production

collected in indust2 dataset:

(f) Use the confidence ellipsoid constructed in (c) to control in Phase II.

(g) Compute the T2 and MEWMA control chart using the in-control mean

vector and a covariance matrix obtained from indust1.

(h) Compare the former results with the MCUSUM chart according to Crosier

(1988).

2.2. The dataset called water1 consists of five variables (pH, phosphates (mg/L),

nitrates (mg/L), dissolved oxygen, and total solids (mg/L)) measured in a

water quality test. Consider for all clauses alpha ¼ 0.05.

(a) Determine the matrix of correlation coefficient.

(b) Construct a scatterplot matrix.

(c) Is it correct to use a w2 chart in this problem?

(d) Contruct a Hotelling control chart for water1 array. Is the process in

statistical control?

(e) The former results achieved are carried out with the default method ¼ “

sw,” for computing the covariance matrix in individual observation case.

Compare this previous result with the ones obtained with the “hm”

method.

(f) Are the MEWMA and MCUSUM capable to detect significantly causes in

the process?

(g) The water2 represents a dataset composed by measures of a new stage.

Construct the T2 chart in Phase II. Is the process in control? Compare the

UCL regarding the default alpha value 0.01.

(h) If any points fall beyond of the UCL, determine the source(s) of variation

through the decomposition of T2.

(i) Compute the MCUSUM by Crosier (1988) and according to Pignatiello

and Runger (1990).

(j) Perform the MEWMA chart by using lambda 0.2 and 0.8.

(k) Perform a control chart based on PCA for the first two principal

components. Compare the result with other charts. How many variance

can be explained by the first two principal components?

2.3. Seven variables collected from a mechanical process are available at dataset

named mech1 and mech2.

(a) Perform a control chart based on PCA analysis with alpha ¼ 0.01. If any

point falls outside the confidence ellipsoid identify it.
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(b) How many variance can be explained by the first two principal

components.

(c) Construct the Hotelling control chart using the hm method for computing

the variance. If there is an out-of-control signal, determine the source.

(d) Is the MCUSUM more sensitive to the shift?

2.4. Three variables are measured with the aim to establish a multivariate monitor-

ing program in a manufacturing process. The positive correlation between

these quality characteristics was checked. The data collected are stored in the

dataset called glass1.

(a) Construct the generalized variance chart. Discuss the results.

(b) Perform the T2 control chart.

(c) Construct the MEWMA chart using lambda ¼ 0.2 and 0.7.

(d) Perform the MCUSUM chart using UCL ¼ 5.

(e) With the previous analysis accomplished: Is there evidence of out-of-

control signal?

2.5. After a careful analysis performed in the previous exercise, the in-control state

of the process was established with the aim of controlling future production.

(a) 32 samples were gathered in dataset glass2. Execute an analysis to deter-

mine if the process remains in statistical control.

(b) After that, 25 samples were collected. Perform the same analysis of the

former clause. Compare the results.
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Chapter 3

Multivariate Process Capability Indices (MPCI)

In the previous chapter itwas explained how the evaluation of the process performance

composed by many correlated quality characteristics should be carried out through a

multivariate approach. In this chapter multivariate proposals of process capability

are presented considering the most important developments in this field.

A capability index can be described as a ratio of the engineering specification to

the process spread that provides information about satisfaction of the requirements.

Some of the earliest, significant works in this field were by Chan et al. (1991),

Bothe (1992), and Pearn et al. (1992).

Since then, many indices have been proposed; among which the most recognized

are by Hubele et al. (1991), Taam et al. (1993), Shahriari et al. (1995), and Chen

(1994). Wang et al. (2000) performed a comparative study from these last methods

and discussed their usefulness.

Wang and Chen (1998), Xekalaki and Perakis (2002), and Wang (2005)

suggested indices based on principal component analysis as an extension of the

univariate Cp, Cpm, Cpk and Cpmk, and Shinde and Khadse (2008) pointed out that

the issue finding transformed the tolerance region for these indices.

Pearn and Kotz (2006) offered a review of this field and updated it in 2004 and

Yum and Kim (2012) performed an extensive bibliographical review on process

capability.

More recently, Pan and Lee (2010) proposed a modification to the Taam et al.

(1993) index to avoid overestimation; Scagliarini (2011) studied the presence of

measurement errors in indices base on PCA, and Tano and Vännman (2011)

performed a comparison of the confidence intervals.

The number of approaches or proposals have increased significantly in recent

years. Shinde and Khadse (2008) classified the indices into four categories based on:

1. Ratio of the volume tolerance region to a process region, e.g., Taam et al. (1993),

Shahriari et al. (1995), Pan and Lee (2010), etc.

E. Santos-Fernández, Multivariate Statistical Quality Control Using R,
SpringerBriefs in Statistics 14, DOI 10.1007/978-1-4614-5453-3_3,
# Springer Science+Business Media New York 2012
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2. The use of principal component analysis (PCA), e.g., Wang and Chen (1998),

Xekalaki and Perakis (2002), Wang (2005), etc.

3. The probability of the nonconforming product as inWierda (1993), Chen (1994),

Chen et al. (2003), Castagliola and Castellanos (2005), etc.

4. Others.

3.1 The mpci Function

The measure of the process capability in the multivariate perspective can be

implemented with the mpci function, which is a general function. This function

allows to compute the most accepted capability indices as:

– Shahriari et al. (1995) vector

– Taam et al. (1993) index

– Pan and Lee (2010) proposal

– Wang and Chen (1998) indices employing PCA

– Xekalaki and Perakis (2002) indices

– Wang (2005) indices

The selection of the kind of index to use is done by specifying the argument

index ¼ “shah”, “taam”, “pan”, “wang”, “xeke” or “wangw” in the same order as

they are introduced.

The function contains three compulsory arguments: x, which must be a matrix or

data frame and the lower and upper specification limits, LSL, and USL, respec-

tively. The target of the process could be specified and in case of missing values it is

calculated as midpoint of the engineering tolerances.

In bivariate cases the logical argument graphic allows to achieve a graphical

representation of the indices. For the specific case of p ¼ 3 quality characteristics,

the use of three-dimensional graph using the rgl package is illustrated in Sect. 3.5.

For the first three indices, alpha is the proportion of nonconforming products

(conventionally fixed in 0.0027). In the case of the indices based on PCA, alpha is

the significance level for the methods described below.

For these last indices the npc argument allows to specify the number of

components to retain. The function is also capable of developing five methods to

select the components by introducing method ¼ 1, 2, . . . , or 5 or the name of the

routine, e.g., method ¼ “Percentage.”
After the execution mpci returns a list that contains a vector for the Shahriari

et al. (1995) proposal, a list of four indices in indices that employ PCA and a single

value for the Taam et al. (1993) and Pan and Lee (2010) indices.

The help of the function offers more details. See help (package ¼ “MPCI”) and

for other examples see Santos-Fernández and Scagliarini (2012).
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3.2 Multivariate Process Capability Vector

The Multivariate Process Capability Vector was introduced by Shahriari et al.

(1995) based on the pioneer work of Hubele et al. (1991). It consists of a three-

component vector which is defined as:

½CpM;PV; LI�; (3.1)

and is based on the assumption that the process follows a multivariate normal

distribution.

The first component of this vector is CpM that is a ratio of the areas or volumes

between the engineering tolerances and the modified process region.

CpM ¼
Qp
i¼1

ðUSLi � LSLiÞ
Qp
i¼1

ðUPLi � LPLiÞ

2
664

3
775
1=p

(3.2)

p being the number of quality characteristics.

Both areas and volumes are rectangles in bivariate process and rectangle prism

in a three-dimensional case.

The area defined by the engineering tolerance is shown in Fig. 3.1 as the external

rectangle. On the other hand, the modified process region is constructed as the

smallest rectangle that circumscribes the ellipsoid or contour named process
region. The ellipsoid is a probability density contour centered at the process

mean, which is constructed by the spectral decomposition of the covariance matrix

centered at the mean vector as it was shown in the previous chapter.

Process Region
Tolerance Region
Modified Process Region
Target
Process Mean

LSL1 USL1UPL1LPL1

LSL2

LPL2

UPL2

USL2

Fig. 3.1 Graphical

representation of the modified

process region

3.2 Multivariate Process Capability Vector 65



The borders of the process region: the lower process limits (LPLi) and the upper

process limits (UPLi) are computed by solving the system of equation of the first

derivatives of the quadratic form according to Nickerson (1994).

ðX � mÞ0 Sð Þ�1ðX � mÞ ¼ w2a;p (3.3)

with a w2 distribution with p degrees of freedom and significance level a.
The solutions of the equation for each dimension are given by:

LPLi ¼ mi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2a;p det S

�1
i

� �
det S�1
� �

s
; UPLi ¼ mi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2a;p det S

�1
i

� �
det S�1
� �

s
(3.4)

where det() are the determinants and Si
�1 is the matrix achieved by deleting the ith

column and row.

Values of CpM greater than 1, indicate that the modified process region is

smaller than the engineering tolerance region.

The second component (PV) of the vector is the nearness between the target and

the process mean, expressed by the hypothesis that

PV ¼ P T2 >
pðm� 1Þ
m� p

Fp;m�p

� �
; (3.5)

where

T2 ¼ nðX � mÞ0ðSÞ�1ðX � mÞ (3.6)

and Fp;m�p the F distribution with and m � p degrees of freedom respectively.

PV takes values between 0 and 1, and values near zero point out that the process

mean is distant to the process target.

Finally, the third component (LI) compares the locations of the modified process

region and the engineering tolerance, showing when any part of the process region

falls outside the tolerance region.

Values of LI ¼ 0 imply at least in one direction the tolerance region is exceeded.

LI ¼ 1 if modified process region is containedwithin the engineering tolerance region:
0 otherwise

�

Summing up, the Shahriari et al. (1995) vector provides a comparison of the

volumes of the region, the closeness of the centers and the extensions of the regions.

In this example the computation of the Shahriari et al. (1995) vector in bivariate

case is presented.

Example 3.1

In Sect. 2.4 is introduced an example of a dowel manufacturing process in which 40

samples of the diameter and the length were taken. The process has the following
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tolerances: LSL1 ¼ 0.47 and USL1 ¼ 0.53 for the diameter and LSL2 ¼ 0.90 and

USL2 ¼ 1.10 for the length.

The mean vector and the covariance matrix are respectively:

�x0 ¼ 0:5009 1:0018½ � and S ¼ 4.9087e� 05 8.5849e� 05

8.5849e� 05 4.1994e� 04

� 	

According to the information given in the problem the engineering tolerances

result is as follows: LSL0 ¼ 0:47 0:90½ � and USL0 ¼ 0:53 1:10½ �.
Therefore, the target of the process can be estimated as the midpoint of the

tolerances: Target’ ¼ 0:50 1:00½ �:
The modified process region result for i ¼ 1

LPL1 ¼ m1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2a;p det S

�1
1

� �
det S�1
� �

s

¼ 0:5009þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w20:0027;2 � det 4.1994e� 04�1
� �

det
4.9087e� 05 8.5849e� 05

8.5849e� 05 4.1994e� 04

� 	�1
 !

vuuuut ¼ 0:4767

The other values are obtained in the same fashion:

LPL2 ¼ 0:9313; UPL1 ¼ 0:5250 and UPL2 ¼ 1:0723:

The area obtained from plotting these points is the minimum bounding rectangle

of the confidence ellipsoid so called modified process region.
Then the CpM result:

CpM ¼
Qp
i¼1

ðUSLi � LSLiÞ
Qp
i¼1

ðUPLi � LPLiÞ

2
664

3
775
1=p

¼ 0:53� 0:47ð Þ � 1:10� 0:90ð Þ
0:5250� 0:4768ð Þ � 1:0723� 0:9313ð Þ

� 	2
¼ 1:3291

The second component of the vector (PV) is computed as:

PV ¼ PðT2 >
pðm� 1Þ
m� p

Fp;m�pÞ ¼ PðT2 >
2ð40� 1Þ
40� 2

F2;40�2Þ

¼ Pð0:0159> 2ð39Þ
38

F2;38Þ ¼ 0:7351

3.2 Multivariate Process Capability Vector 67



since:

T2 ¼ nðX � mÞ0ðSÞ�1ðX � mÞ

¼ 0:5009

1:0018

� 	
� 0:50

1:00

� 	� �0
� 4.9087e� 05 8.5849e� 05

8.5849e� 05 4.1994e� 04

� 	�1

� 0:5009

1:0018

� 	
� 0:50

1:00

� 	� �
¼ 0:0159

In the calculation of the third component (LI) of the vector, the process

specifications are compared to the tolerances are compared, being one if it satisfies

the condition:

LSLi < LPLi and USLi >UPLi

In this case

0:47< 0:4768; 0:90< 0:9313 and 0:53> 0:5250; 1:10> 1:0723:

As per results the modified process region is contained by the tolerance region,

therefore LI ¼ 1. This last result can be verified in graphical form likewise.

Finally the Shahriari et al. (1995) vector results:

½CpM;PV;LI� ¼ ½ 1:3290 0:7351 1 �

Since CpM is higher than 1, this indicates that the process modified region is

smaller than the tolerance region. The value of PV is not enough near 0 to assert that

there is a significant difference between the center of the process and the process

target. Finally, the value of LI ¼ 1 signifies that the process region is inside in the

engineering region. Summarizing, the process was founded capable to fulfill the

specifications.

The computation of this vector is done by using the function mpci and using the

argument “shah” to specify the index to use:

> library("MPCI")

> data("dowel1")

> LSL <- c(0.47, 0.90); USL <- c(0.53, 1.10); Target <- c(0.50, 1.00)

Note that the tolerances are entered by introducing a vector of lower

specifications and the other of upper specifications.

> mpci(index ¼ "shah", dowel1, LSL, USL, Target, graph ¼ TRUE)

The argument graph provides in a two-dimensional case (p ¼ 2) a graphical

representation. The output is shown below (Fig. 3.2).

The graph above shows the process control ellipse with its bounded rectangle

and the engineering tolerance region.

68 3 Multivariate Process Capability Indices (MPCI)



3.3 Multivariate Capability Index

Another widely accepted multivariate index is the MCpm proposed by Taam et al.

(1993). It is defined as the ratio of the volumes of the ellipsoids of the modified

tolerance region to the process region given by the control ellipsoid, see Fig. 3.3.

On the contrary to the first component of the vector of Shahriari et al. (1995), which

is computed as the ratio of the rectangles in bivariate case or hypercubes for more

dimensions, the MCpm is the ratio of the ellipsoids.

The modified tolerance region is the largest ellipsoid constructed in the tolerance

region and centered at the target.

The index is computed as:

MCpm ¼ vol: R1ð Þ
vol: R2ð Þ ; (3.7)

where R1 and R2 are the modified tolerance region and the confidence ellipsoid

respectively. This ratio can be estimated as:

MCpm ¼ Cp

D
(3.8)

with

Cp ¼ vol:ðtolerance regionÞ
vol:ðestimated process regionÞ (3.9)

and the numerator is the hyperellipsoid with volume determined as:
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Process Region
Tolerance Region
Modified Process Region
Target
Process Mean

Fig. 3.2 Graphical

representation of the areas

in Shahriari’s method

[1] “Shahriari et al. (1995)

Multivariate Capability

Vector”

$CpM

[1] 1.33

$PV

[,1]

[1,] 0.74

$LI

[1] 1
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vol:ðtolerance regionÞ ¼
2pp=2

Qp
j¼1

lj

pG p=2ð Þ (3.10)

where lj is the length of the semi-axes. On the other hand:

vol:ðestimated process regionÞ ¼ Sj j1=2 pKð Þp=2 G p=2þ 1ð Þ½ ��1; (3.11)

where K is the percentile of the w2 distribution and

D ¼ 1þ m

m� 1
ðX � mÞ0ðSÞ�1ðX � mÞ

h i1=2
: (3.12)

Therefore,

MCpm ¼ vol: R1ð Þ
Sj j1=2 pKð Þp=2 G p=2þ 1ð Þ½ ��1

n o
� 1þ m

m�1
ðX � mÞ0ðSÞ�1ðX � mÞ

h i1=2
(3.13)

When the value of the index is >1 and the process mean vector is equal to the

target, this implies that the process volume is smaller than the modified tolerance

region.

Example 3.2

To illustrate the computation of the MCpm index, recall the dowel data analyzed in

the previous section.

Process Region
Tolerance Region
Modified Tolerance Region

Target
Process Mean

LSL1 USL1

LSL2

USL2

Fig. 3.3 Graphical

representation of the modified

tolerance region
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vol: R1ð Þ ¼
Yp
i¼1

ðUSLi � LSLiÞ � 2pð Þp=2
p� G p=2ð Þ

¼ 0:53� 0:47ð Þ � 1:10� 0:90ð Þ � 2� 3:1416ð Þ2=2
2� G 2=2ð Þ ¼ 0:0094

then

Sj j1=2 pKð Þp=2 G p=2þ 1ð Þ½ ��1 ¼ det
4.9087e� 05 8.5849e� 05

8.5849e� 05 4.1994e� 04

� 	�1
 !( )1=2

� 3:1416� wa;p
� �2=2

G 2=2þ 1ð Þ½ ��1 ¼ 0:0043

and

1þ m

m� 1
ðX � mÞ0ðSÞ�1ðX � mÞ

h i1=2
¼ 1þ 40

40� 1

0:5009

1:0018

� 	
� 0:50

1:00

� 	� �0(
� 4.9087e� 05 8.5849e� 05

8.5849e� 05 4.1994e� 04

� 	�1

� 0:5009
1:0018

� 	
� 0:50

1:00

� 	� �)1=2

¼ 1:0081

Then,

MCpm ¼ 0:0094

0:0043� 1:0081
¼ 2:1860:

To perform the example in R, the argument index ¼ “taam” must be specified.

> mpci(index ¼ "taam", dowel1, LSL, USL, Target, graph ¼ TRUE)

Then R prompts:

This index finds also capable the process and obtain a greater value than CpM

(Fig. 3.4).

3.4 Revision of the Multivariate Capability Index

A more recent proposal is due to Pan and Lee (2010), which is a special case of the

Taam et al. (1993) index. The authors pointed out that the Taam et al. (1993) index

could suffer an overestimation if the quality characteristics are not independent.

In this case the tolerance region is given by:
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ðX � TÞ0 A�ð Þ�1ðX � TÞ ¼ w2p;1�a; (3.14)

where

A�
ij ¼ rij

USLi � LSLi

2
ffiffiffiffiffiffiffiffiffiffiffiffi
w2p;1�a

q
0
B@

1
CA USLj � LSLj

2
ffiffiffiffiffiffiffiffiffiffiffiffi
w2p;1�a

q
0
B@

1
CA (3.15)

and rij is the correlation coefficient between i and j. Finally the proposed index

results in:

NMCpm ¼ A�j j
Sj j

� �1=2

(3.16)

The figure below shows the slanted ellipsoid with longdash (lty ¼ 5) as line type

(Fig. 3.5).

Example 3.3

Recall the dowel1 dataset to present the index in bivariate case.

For i ¼ 1 and j ¼ 1

A�
11 ¼ r11

USL1 � LSL1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
w2p;1�a

q
0
B@

1
CA USL1 � LSL1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w22;0:9973

q
0
B@

1
CA ¼ 1� 0:53� 0:47

2
ffiffiffiffiffiffiffiffiffiffiffi
11:83

p
� �2

¼ 7:6e�5;
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[1] “Taam et al. (1993)

Multivariate Capability Index
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$MCpm
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and so on for the others.

Then,

A� ¼ 7:6e� 5 15:2e� 5

15:2e� 5 84:5e� 5

� 	
and det(S) ¼ 1.32e�8. Finally NMCpm ¼ 1:77.

The computation in R is as follows (Fig. 3.6):

> mpci(index ¼ "pan", dowel1, LSL ¼ LSL, USL ¼ USL, graph ¼ TRUE)

Process Region
Tolerance Region
Modified Tolerance Region

Target
Process Mean
slanted ellipsoid

LSL1 USL1

LSL2

USL2

Fig. 3.5 Graphical

representation of the revised

region with the Taam’s

modified tolerance region
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Fig. 3.6 Graphical

representation of the areas

in Pan’s method

[1] “Pan and Lee (2010)

Multivariate Capability
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3.5 Multivariate Process Capability in a Presence of Rational

Subgroup—A Three-Dimensional Case

The computation of process capability indices requires that the process operates under

statistical control. Therefore sometimes both process capability and control chart are

used simultaneously. In fact Montgomery (2004) pointed out that “the control chart

should be regarded as the primarily technique of process capability analysis.”

In capability indices introduced in previous sections the process region

constituted the control ellipsoid approached in Sect. 3.4; but so far only the

individual observation case was analyzed.

The rational subgroup analysis has not been diversified yet, but it can be useful

when both capability studies and control chart are studied together.

Example 3.4

Sect. 2.5 introduced the carbon fiber process, in which 28 samples of three quality

characteristics were collected. The sample size of each sample was eight. In this

process the specifications are given by: LSL ¼ [0.60, 0.30, 49.00], USL ¼ [1.40,

1.70, 51.00], and Target ¼ [1.00, 1.00, 50.00].

In presence of rational subgroups the area or volume of the swarm of points is

reduced and consequently the limits and the specifications shrink it. The confidence

ellipsoid according to the sample mean is given by.

To calculate the first component of the Shahriari et al. (1995) vector to the

carbon1 dataset:

> p <- 3

> LSL <- c( 0.60, 0.30, 49.00); USL <- c(1.40, 1.70, 51.00); Target <- c(1.00,

1.00, 50.00)

Computing the process region through the proc.reg function for individual

observations:

> carbon <- matrix(c(carbon1[,1,], carbon1[,2,], carbon1[,3,]),ncol ¼ 3)

> LPL <- proc.reg(carbon, alpha ¼ 0.01)$LPL

> UPL <- proc.reg(carbon, alpha ¼ 0.01)$UPL

Computing the process region of the rational subgroups:

> x.jk <- apply(carbon1,1:2,mean)

> LPLm <- proc.reg(x.jk, alpha ¼ 0.01)$LPL

> UPLm <- proc.reg(x.jk, alpha ¼ 0.01)$UPL

> Center <- (UPLm + LPLm) /2

Then, for proportionality the news specification limits results in:

> LSLm <- Target - (Target - LSL) * (Center - LPLm) / (Center - LPL)

> USLm <- Target + (Target - LSL) * (Center - LPLm) / (Center - LPL)

Finally the index results in:

> CpM <- (prod(USLm - LSLm) / prod(UPL - LPL)) ^ (1 / p)

1.6547
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To perform the graphical representation we use the larg.ellip function

The rgl package is required to make the three-dimensional plot.

> library(rgl)

> larg.ellip(LSLm, USLm, n ¼ 15, add ¼ FALSE, box ¼ FALSE ,xlim ¼ c

(0.80,1.150),ylim ¼ c(0.65,1.5), zlim ¼ c(49.5,50.5), xlab ¼ "", ylab ¼ "",

zlab ¼ "", col ¼ "#D55E00", alpha ¼ 0.2) that builds the largest ellipsoid

centered at the target.

> plot3d(ellipse3d(cov(x.jk), center ¼ colMeans(x.jk), level ¼ 0.99), type ¼
"wire", col ¼ 3, alpha ¼ 0.2, add ¼ TRUE)

Afterwards, plot the points

> plot3d(x.jk, size ¼ 4, cex ¼ 2, box ¼ FALSE, add ¼ TRUE),

and make the cuboids or prisms of the specifications and the modified process

region using the prism function.

> prism(LSLm, USLm, add ¼ TRUE,col ¼ "#D55E00")

> prism(LPLm, UPLm, add ¼ TRUE,col ¼ 3)

The graph obtained allows to visualize it in three dimensions by moving through

the axis. In this figure the external prism results in the tolerance region, and the

modified tolerance region is represented in the gray ellipsoid. On the other hand,

the process region is shown in wire type with its respective modified process region

(the external prism that bounds the confidence ellipsoid).

Notice that the first component of the Shahriari et al. (1995) vector is the ratio of

both prisms whereas in Taam et al. (1993) the ratio of the ellipsoids always using

the volume relative to the tolerances as numerator.

This graph also allows the process monitoring, being the control ellipsoid the

w2 control chart. In this case no points fall outside the confidence boundaries, then

the process seems to be in control (Fig. 3.7).

When the process mean and covariance matrix are known, a it was explained in

Chap. 2, then the limits should be replaced. Then,
pðm�1Þðn�1Þ
mn�m�pþ1

Fa;p;mn�m�pþ1 must be

substituted by wa,p
2 limits to find the exact limits.

3.6 Multivariate Capability Indices Based on Principal

Component Analysis

Many indices based on principal component analysis (PCA) have been proposed in

the last years. Some of the most accepted are the indices suggested by Wang and

Chen (1998), Xekalaki and Perakis (2002), and Wang (2005). As this approach

begins with a PCA, the uncorrelated variables are obtained and the dimensionality

reduction is allowed.
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These indices are based on the spectral decomposition of the covariance matrix

S ¼ UDU0 (3.17)

where U is the eigenvectors matrix and D the diagonal matrix of the eigenvalues.

D ¼ diagðl1; l2; . . . ; lpÞ (3.18)

The ith principal component results in PCi ¼ ui
0x.

And the engineering specifications (Upper, Lower Specification and Target) are

transformed as

LSLPCi
¼ ui

0LSL; USLPCi
¼ ui

0USL; TPCi
¼ ui

0T; (3.19)

where i ¼ 1; 2; . . . ; p is the ith principal component.

Normally the first components are responsible for most of the variability,

therefore the dimensionality can be reduced without significant lost of information.

The problem consists on how many components should be retained. In the next

section five methods are introduced to deal with this issue.

The proposal by Wang and Chen (1998) is the multivariate extension of the

univariate Cp, Cpk, Cpm, and Cpmk indices.

MCp ¼
Yu
i¼1

Cp;PCi

 !1=u
; (3.20)

where

Cp;PCi
¼ USLPCi

� LSLPCi

6sPCi

; (3.21)
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where u is the number of principal component and sPCi
¼ ffiffiffiffi

li
p

.

Likewise MCpk, MCpm, and MCpmk are obtained by replacing Cp;PCi
by Cpk;PCi

,

Cpm;PCi
, and Cpmk;PCi

respectively, where

Cpk;PCi
¼ min

USLPCi
� m

3sPCi

;
m� LSLPCi

3sPCi

� 

(3.22)

Cpm;PCi
¼ USLPCi

� LSLPCi

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2PCi

þ m� Tð Þ2
q (3.23)

and,

Cpkm;PCi
¼ USLPCi

� LSLPCi
ð Þ=2� m� USLPCi

þ LSLPCi
ð Þ=2½ �j j

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2PCi

þ m� Tð Þ2
q (3.24)

Example 3.5

To illustrate the computation of the Wang and Chen (1998) index recall the

bimetal1 data introduced in Example 2.9 from the Sect. 2.10. The vectors with

the engineering specification are:

LSL ¼ 19:0 39:0 13:0 20:2 24:5½ �
USL ¼ 23:0 41:0 17:0 23:8 27:5½ �

Target ¼ 21:0 40:0 15:0 22:0 26:0½ �

From this dataset the eigenvector and eigenvalues results in:

U ¼

0:5968 0:5476 0:5108 0:2881 0:0044
0:2731 0:0408 �0:0739 �0:5246 0:8019
0:6413 �0:7344 �0:0752 0:2014 �0:0561
0:2988 0:3948 �0:8505 0:1404 �0:1083
0:2620 0:0575 0:0673 �0:7626 �0:5848

D ¼ 0:1700 0:0659 0:0396 0:0148 0:0023

Consequently the new specifications are given by:

LSLPCi
¼ ui

0LSL ¼ 42:78 11:83 �9:68 �28:21 14:11½ �
USLPCi

¼ ui
0USL ¼ 50:14 12:76 �10:95 �29:09 13:37½ �

TPCi
¼ ui

0T ¼ 47 12 �10 �29 14½ �
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From Example 2.9, it was determined that the first two principal components

were responsible for the 80.61% of the variability. Therefore the dimension of the

problem could be reduced to a bivariate alternative.

For the first principal component the Cp index is:

Cp;PC1
¼ USLPC1

� LSLPC1

6sPC1

¼ 50:14� 42:78

6� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1700

p ¼ 2:98

And likewise for the other, being:

Cp;PC2
¼ 0:60

Finally the MCp is

MCp ¼
Yp
i¼1

Cp;PCi

 !1=p
¼ 2:98� 0:60ð Þ1=2 ¼ 1:34

Using (3.22)–(3.24) the other indices results in:

MCpk ¼ 1:13; MCpm ¼ 1:24 and MCpmk ¼ 1:04

The computation in R is based on the mpci function and is as follows:

> mpci(index ¼ "wang", bimetal1, LSL, USL, Target, method ¼ 1, perc ¼ 0.80)

“Wang and Chen (1998) Multivariate Process

Capability Indices (PCI) based on PCA”

$MCp $MCpm

$‘number of principal components’ [1] 1.34 [1] 1.24

[1] 2 $MCpk $MCpmk

[1] 1.13 [1] 1.04

As in the index by Wang and Chen (1998) the principal components are taken

having the same importance even when the first ones take more weight than the

others; Xekalaki and Perakis (2002) proposed to correct that weighting according to

the variance explained by the principal components.

MXPCp ¼
Pu
i¼1

liCp;PCi

Pu
i¼1

li
(3.25)

MXPCpk, MXPCpm, and MXPCpmk are similarly achieved.

The calculation of the Xekalaki and Perakis (2002) index is presented in the

following example.
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Example 3.6

Using the same engineering specifications and number of the principal components

in the bimetal1 dataset

MXPCp ¼
P2
i¼1

liCp;PCi

P2
i¼1

li

¼ 0:17� 2:98þ 0:07� 0:6

0:17þ 0:07
¼ 2:31

MXPCpm ¼ 2:17; MXPCpk ¼ 2:18 and MXPCpmk ¼ 2:05

The use of the function mpci in this context is as follows:

> mpci(index ¼ "xeke", bimetal1, LSL, USL, Target, method ¼ 1, perc ¼ 0.80)

“Xekalaki and Perakis (2002) Multivariate Process Capability Indices

(PCI) based on PCA”

$MCp $MCpm

$‘number of principal components’ [1] 2.31 [1] 2.17

[1] 2 $MCpk $MCpmk

[1] 2.18 [1] 2.05

On the other hand, Wang (2005) suggests another way to weight the principal

components using the weighted geometric mean. The proposed indices result in:

MWCp ¼
Yu
i¼1

Cli
p;PCi

 !1=Pu
i¼1

li

(3.26)

and so on for MWCpk, MWCpm, and MWCpmk.

Example 3.7

This example computes the indices according to the Wang’s (2005) method.

MWCp ¼
Y2
i¼1

Cli
p;PCi

 !1=P2
i¼1

li

¼ 2:980:17 � 0:60:07
� �1= 0:17þ0:07ð Þ ¼ 1:90

MWCpk ¼ 1:70; MWCpm ¼ 1:77; MWCpmk ¼ 1:58

To perform these indices in R just use the argument index ¼ “wangw” in mpci

function.

> mpci(index ¼ "wangw", bimetal1, LSL, USL, Target, method ¼ 1, perc ¼ 0.80)

“Wang (2005) Multivariate Process Capability Indices(PCI) based on PCA” $MCp $MCpm

$ ‘number of principal components’ [1] 1.91 [1] 1.77

2 $MCpk $MCpmk

[1] 1.70 [1] 1.58
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3.7 Methodology to Select the Number of Principal Components

In previous sections, it was tackled how the principal components analysis allow

the dimensionality reduction of the data in which 1 � l � p principal components

can be obtained. There are many methods in order to decide how many principal

components should be retained or used, with the aim to avoid the loss of significant

information.

Rencher (2002) proposed the next four methods and we add a fifth.

Method 1 or Percentage: This technique guarantees at least the percent specified of

Cumulative Proportion of explained variance. This is normally fixed on 80%.

Example 3.8

In Example 2.5 a dataset called bimetal1 collected from a certain type of strip

composed of brass and steel with five quality characteristics and 28 samples was

introduced.

Using summary (princomp(bimetal1)) R shows a summary that includes the

standard deviation, the proportion of variance explained, and the cumulative pro-

portion of the eigenvalues (Table 3.1).

If the threshold of the 80% is used then the first two components should be

retained.

Method 2 or Average: The second method is based on retaining the principal

components whose eigenvalues are greater than the average of the eigenvalues.

Xp

i¼1
li=p

The eigenvalues are easily computed:

eig <- eigen(cov(bimetal1))$values; print(eig)

[1] 0.169984728 0.065883347 0.039640343 0.014847291 0.002264529

If mean(eig)¼0.05852405, therefore only the first two components comply with

this condition.

Method 3 or Scree: The scree graph is a visual procedure that plots the eigenvalue

size throughout the eigenvalue number. It allows to determine which components

are significant apart from the straight line formed by the last eingenvalues.

In the example the scree graph shows that the first component is separated from

the straight line, therefore the first principal component should be retained (Fig. 3.8).

Table 3.1 Importance of components

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 0.40486 0.25205 0.19551 0.11965 0.04673

Proportion of variance 0.58091 0.22515 0.13547 0.05074 0.00774

Cumulative proportion 0.58091 0.80606 0.94152 0.99226 1.00000
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Method 4 or Bartlett (1954) Test: This method is a statistical test designed to ignore

the principal components not significantly different from the rest and assumes

multivariate normality. Usually this method produces a number of principal

components larger than the former methods. For more details see the following

example: Rencher (2002)

H0 : l1 ¼ l2 ¼ ::: ¼ lp
H1 : li 6¼ lj for some i 6¼ j

l ¼
Xp

i¼p�kþ1
li=k (3.27)

where k is the sequence p, p � 1, p � 2, . . ., 1

w2 ¼ n� 2pþ 11

6

� �
k ln l�

Xp
i¼p�kþ1

ln li

 !
(3.28)

w2 � w2a;1=2ðk�1Þðkþ2Þ (3.29)

The results of the practical and theoretical w2s are (Table 3.2):
This implies that the first four are significantly different from each other.

Therefore according to the Bartlett’s Test in this case the first four principal

components should be retained.

Method 5 or Anderson (1963) Test: Another method widely used is the Anderson

Test that differentiates also the principal components significantly different from

the others.
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H0 : l1 ¼ l2 ¼ ::: ¼ lp
H1 : li 6¼ lj for some i 6¼ j;

where k ¼ 1, 2, . . ., p

w2 ¼ �u
Xp
i¼kþ1

ln lið Þþu p� kð Þ ln
Pp

i¼kþ1 li
p� k

� �
(3.30)

w2 � w2a;1=2ðp�k�1Þðp�kþ2Þ (3.31)

The results are shown in Table 3.3:

This method found the first four eingenvalues significantly different, as a result

the first four must be retained.

3.8 Exercises

3.1. The indust1 dataset represents the data obtained from an industrial process in

which two correlated quality characteristics are controlled. The engineering

tolerances are: LSL1 ¼ 2.8, LSL2 ¼ 5.5, USL1 ¼ 5.5, and USL2 ¼ 8.7. Use

alpha ¼ 0.0027.

(a) Compute the Shahriari et al. (1995) vector. Interpret the result of each

component of the vector.

(b) Determine the capability index MCpm according to Taam et al. (1993).

Compare the result with the first component of the Shahriari et al. (1995)

vector.

Table 3.2 Values of

the statistical test Eigenvalue k w2 w2a;1=2ðk�1Þðkþ2Þ
0.16998 5 93.80 33.20

0.06588 4 56.57 25.26

0.03964 3 39.82 18.21

0.01485 2 19.06 11.83

0.00226 1 0 0

Table 3.3 Values of

the statistical test. Eigenvalue k w2 w2a;1=2ðk�1Þðkþ2Þ
0.16998 0 103.37 33.20

0.06588 1 62.34 25.26

0.03964 2 43.88 18.21

0.01485 3 21.01 11.83

0.00226 4 0 0
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(c) Compute the Pan and Lee (2010) index and contrast it with the two

previous indices.

(d) Compare the Taam et al. (1993) index using alpha ¼ 0.001 with the

achieved in clause (b).

3.2. The dataset called water1 consists on five variables (pH, phosphates (mg/L),

nitrates (mg/L), dissolved oxygen, and total solids (mg/L)) measured in a

water quality test. For all clauses consider alpha ¼ 0.001. The following

vectors represent the specifications: LSL ¼ [3.00, 0.01, 0.01, 88.00, 145.00]

and USL ¼ [11.00, 0.50, 1.30, 110.00, 200.00].

(a) Compute the correlation matrix.

(b) Compare the Taam et al. (1993) with the Pan and Lee (2010) index.

(c) Determine if the modified process region is contained by the tolerance

region.

(d) Assess the closeness of the process mean with the tolerance target value.

(e) Compute the capability indices according to Wang and Chen (1998) using

the method ¼ 1 to select the number of principal components.

(f) Compare the values achieved using the two first principal components in

the Wang (2005) and Xekalaki and Perakis (2002) indices.

(g) According to the Scree graph. How many principal components should be

retained?

3.3. The dataset mech1 represents the data obtained from seven quality

characteristics collected from a mechanical process. Use alpha ¼ 0.0027 and

the following vectors are the engineering specifications:

LSL ¼ [5.00, 33.00, 3.50, 3.00, 1.00, 37.00, 118.00].

USL ¼ [15.00, 37.00, 6.50, 17.00, 41.00, 43.00, 122.00].

(a) Compute the Shahriari et al. (1995) vector.

(b) Assess the closeness between the process mean and the engineering target

value.

(c) Determine if the modified process region is contained by the tolerance

region.

(d) Compute the Wang (2005) indices using the Scree graph.

(e) Determine the Xekalaki and Perakis (2002) indices using method 4 (Bart-

lett Test). How many principal components were retained?

(f) Is this last result significantly different if two principal components are

retained?

(g) Compute both Taam et al. (1993) and Pan and Lee (2010) indices. Discuss

the results.

3.4. Three variables were collected and stored in glass1 dataset to develop a

capability study. The dataset is presented in rational subgroups because it

was gathered initially to perform a multivariate process monitoring program.

To transform it to a 2D array or matrix use.
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glass <- matrix(c(glass1[,1,], glass1[,2,], glass1[,3,]),ncol ¼ 3)

The specifications for each variable are defined by the interval: [9.00,

11.00], [0.50, 3.50], and [3.5, 6.50] respectively.

(a) Compute the three indices based on tolerance and process region ratios

(Shahriari et al. 1995; Taam et al. 1993; Pan and Lee 2010). Compare the

results.

(b) Calculate the indices based on PCA. Discuss the results achieved.

3.5. In the previous chapter it was studied a manufacturing process of certain type

of carbon tubing, composed by three quality characteristics and in Sect. 3.4 it

was studied as a rational subgroup case. The rational subgroup can be

eliminated using

carbon <- matrix(c(carbon1[,1,], carbon1[,2,], carbon1[,3,]),ncol ¼ 3)

obtaining a 2D array. In this process the specifications are given by:

LSL ¼ [0.60, 0.30, 49.00]

USL ¼ [1.40, 1.70, 51.00]

Target ¼ [1.00, 1.00, 50.00]

(a) Compare the Pan and Lee (2010) NMCpm index with the first component

of the Shahriari et al. (1995) vector using alpha ¼ 0.0001.

(b) Contrast both indices but setting the midpoint between specifications as

Target.

3.6. Consider the first two quality characteristics of the water1 dataset and the

following specifications:

LSL1 ¼ 3.00, LSL2 ¼ 0.01, USL1 ¼ 10.5 and USL2 ¼ 0.45. The Target of

the process is given by: T1 ¼ 7.00, LSL2 ¼ 0.23 Use alpha ¼ 0.001.

(a) Calculate the Shahriari et al. (1995) vector. Interpret the result of each

component of the vector and obtain the graphical representation. Explain

the result graphically.

(b) Compute the capability index MCpm according to Taam et al. (1993) and

the NMCpm by Pan and Lee (2010). Explain graphically how both indices

are computed.

3.7. Which of the following indices is computed as the ratio of the largest ellipsoid

centered at the target to the process region?

– Wang (2005) indices

– Taam et al. (1993) MCpm

– Shahriari et al. (1995) first component.

3.8. Reconsider the dataset called mech1 to the exercise 3.3. Exclude the variables

x1 and x6 using:

mech <- mech1[,c(�1,-6)].
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(a) Determine if the modified process region is contained by the tolerance

region using alpha ¼ 0.0002.

(b) Estimate the Pan and Lee (2010) index.

(c) Calculate the capability indices according to Wang (2005) using the

method ¼ 2 to select the number of principal components.

(d) Compare the values achieved using the two first principal components in

the Wang and Chen (1998) and Xekalaki and Perakis (2002) indices.
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Chapter 4

Tools of Support to MSQC

4.1 Tools of Support to MSQC

As a general rule, normality and independence of the data is required in Statistical

Process Control and the multivariate extensions are not the exception. In a multi-

variate control chart with the use of rational subgroups according to the central

limits theorem certain grade of normality is achieved. But in alternatives called

charts for individuals, this rule is not satisfied. The same occurs in capability indices

that rarely are computed using subgroups.

Many authors have proposed nonparametric alternatives to deal with the

departures of normality and techniques based on PCA as the studied in Sects.

2.10 and 3.6 which are robust to the lack of normality.

However, nowadays it results quite unproblematic to test multivariate normality

and randomness. In this chapter we introduce a wide range of tools to fulfill these

requirements.

4.1.1 Graphical Methods

The first section of this chapter will examine two graphical techniques: histogram

and Q-Q plot that facilitate the assumption of normality.

Histogram is a graphical technique that allows a visual summary of the data. It

provides information about the center, the spread, the skewness, and the existence

of outliers. (NIST / SEMATECH e-Handbook of Statistical Methods).

A visual inspection of a histogram permits to establish an initial hypothesis of

the distribution; in this case a bell-shaped is desired.

Although histograms are basically used in univariate scenarios, univariate

normality per se does not imply multivariate normality; if a departure from normal-

ity is founded in individual variables, this has a negative effect in the

multinormality.

E. Santos-Fernández, Multivariate Statistical Quality Control Using R,
SpringerBriefs in Statistics 14, DOI 10.1007/978-1-4614-5453-3_4,
# Springer Science+Business Media New York 2012
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Example 4.1

In this example we will illustrate the use of histogram in a multivariate context. For

that, return to the bimetal dataset introduced in Sect. 2.6.

To put multiple figures in one graph device the parameter mfrow can be used by

specifying mfrow¼ c(n,m) being n the number of figures by row and m by columns.

> par(mfrow ¼ c(3,2))

As for each quality characteristic a histogram is desired—a simple loop is used.

> for( i in 1 : ncol(bimetal1) ){

> x <� bimetal1[,i]

> mean<�mean(bimetal1[,i])

> sd<�sd(bimetal1[,i])

> hist(x, prob ¼ TRUE, main ¼ paste( "Histogram for ", colnames(bimetal1)[i] ),

xlab ¼ "")

Finally, adding the normal curve

> points(curve(dnorm(x, mean ¼ mean, sd ¼ sd), add ¼ TRUE),type ¼ "l")}

From this chart we can appreciate that most of the classes are located in the center,

no significant skewness is revealed, no long tails are presented, and no considerable

outliers are detected. The form of the classes does not differ drastically to the normal

shape. Finally, there is no visual evidence to reject the univariate normality hypothesis.

This visual inspection can be complemented with the quantile-quantile plot, or

simply Q-Q plot.

The Q-Q plot is a graphical tool for comparing a two dataset or a dataset with a

theoretical distribution. The most common use is to plot the quantiles against a
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reference line from a normal distribution. When the points fall approximately over

the line there is evidence that both come from an identical distribution.

The performing of a Q-Q plot in R is done through the qqnorm function.

Example 4.2

To construct a Q-Q for each variable from bimetal1 dataset:

> par(mfrow ¼ c(3,2))

> for( i in 1 : ncol(bimetal1) ){

> qqnorm(bimetal1[,i], main ¼ paste( "Q-Q plot for ", colnames(bimetal1)[i] ) )

And to include the reference line from the normal distribution

> qqline(bimetal1[,i])

> }

From these graphs it appears that each variable is normally distributed since no

departure from diagonal line is presented (Fig. 4.2).

4.1.2 Marginal Normality Test

Although in a p-variate data the marginal normality does not imply joint normality,

deviation from normality frequently affects the marginal distributions.
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There are many well-known univariate normality tests like: w2, Anderson-Darling,
Kolmorov-Smirnov, D’Agostino, Jarque-Bera, and Shapiro-Wilks tests, etc.

In this section, we present an approach to the last three previously mentioned tests.

4.1.2.1 The D’Agostino (1970) Test

The D’Agostino(1970) test is based on the power transformation of the sample

kurtosis and skewness. It consists of three tests: for skewness, kurtosis, and an

omnibus (see D’Agostino et al. 1990) for an excellent exposition of the method.

The skewness test is used to test

Ho:
ffiffiffiffiffi
b1

p ¼ 0 i.e.: the data lacks of skewness against

H1:
ffiffiffiffiffi
b1

p 6¼ 0 there is evidence of skewness.

Let

Y ¼
ffiffiffiffiffi
b1

p nþ 1ð Þ nþ 3ð Þ
6 n� 2ð Þ

� �1=2
(4.1)

and

B ¼ 3 n2 þ 27n� 70ð Þ nþ 1ð Þ nþ 3ð Þ
n� 2ð Þ nþ 5ð Þ nþ 7ð Þ nþ 9ð Þ (4.2)

Where n is the sample size. Using the Johnson’s unbounded (SU) the X(√b1) has
a normal distribution, being:

X
ffiffiffiffiffi
b1

p� �
¼ d log

y

a
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y

a

� �2
þ 1

r !
(4.3)

where d and a are determined as:

d ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðWÞp (4.4)

and

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

W2 � 1

r
(4.5)

with

W2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 B� 1ð Þ

p
� 1 (4.6)

90 4 Tools of Support to MSQC



The kurtosis test is based on the following hypothesis

Ho: b2 ¼ 3 and H1: b2 6¼ 3

The mean and variance are computed as follows:

E b2ð Þ ¼ 3 n� 1ð Þ
nþ 1

(4.7)

and

var b2ð Þ ¼ 24m m� 2ð Þ m� 3ð Þ
mþ 1ð Þ2 mþ 3ð Þ mþ 5ð Þ (4.8)

Then standardizing b2

x ¼ b2 � E b2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var b2ð Þp (4.9)

and calculating the statistics

Z b2ð Þ ¼
1� 2

9A

� �� 1�2=A

1þx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2= A�4ð Þ

p
� �1=3
ffiffiffiffiffiffiffiffiffiffiffi
2=9A

p (4.10)

where

A ¼ 6þ 8ffiffiffiffiffiffiffiffiffiffiffiffiffi
b1 b2ð Þp 2ffiffiffiffiffiffiffiffiffiffiffiffiffi

b1 b2ð Þp þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

b1 b2ð Þ
	 
s" #

(4.11)

and

b1 b2ð Þ ¼ 6 m2 � 5mþ 2ð Þ
mþ 7ð Þ mþ 9ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 mþ 3ð Þ mþ 5ð Þ
m m� 2ð Þ m� 3ð Þ

s
(4.12)

The Z(b2) statistics has approximately a normal distribution

4.1.2.2 Omnibus Test

In order to integrate both tests, D’Agostino and Pearson (1973) proposed an

omnibus test with the following statistics

K2 ¼ Z2
ffiffiffiffiffi
b1

p� �
þ Z2 b2ð Þ (4.13)
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where K2 follows a w2 distribution with two degrees of freedom.

K2 � w2a;2 (4.14)

Example 4.3

To illustrate the use of the D’Agostino test in R, use the function DAGOSTINO

included in the MSQC package, as follows:

> for (i in 1 : 5){

> DAGOSTINO(bimetal1[,i])}

The Table shows the results achieved (Table 4.1)

As a result of the Skewness Test, no significant lack of symmetry is presented.

Certain grade of skewness is obtained in the resistivity though, corroborating the

result obtained for the histogram in Fig. 4.1.

Table 4.1 Results of the D’Agostino Test for each variable of the bimetal dataset

D’Agostino Test for the deflection

Skewness

Skewness coefficient: 0.08

Statistics: 0.21

p-value: 0.83

Kurtosis

The kurtosis coefficient: 3.04

Statistics: 0.59

p-value: 0.56

Omnibus Test

Chi-squared: 0.39

Degree of freedom: 2

p-value: 0.82

D’Agostino Test for the curvature

Skewness

Skewness coefficient: -0.07

Statistics: -0.18

p-value: 0.85

Kurtosis

The kurtosis coefficient: 2.75

Statistics: 0.17

p-value: 0.86

Omnibus Test

Chi-squared: 0.06

Degree of freedom: 2

p-value: 0.97

D’Agostino Test

for the resistivity

Skewness coefficient:

-0.61

Statistics: -1.5

p-value: 0.13

Kurtosis

The kurtosis

coefficient: 3.14

Statistics: 0.71

p-value: 0.47

Omnibus Test

Chi-squared: 2.76

Degree of freedom: 2

p-value: 0.25

D’Agostino Test for the low

expansion side

Skewness

Skewness coefficient: -0.04

Statistics: -0.11

p-value: 0.92

Kurtosis

The kurtosis coefficient: 4.16

Statistics: 1.67

p-value: 0.09

Omnibus Test

Chi-squared: 2.81

Degree of freedom: 2

p-value: 0.25

D’Agostino Test for the high

expansion side

Skewness

Skewness coefficient: 0.23

Statistics: 0.58

p-value: 0.56

Kurtosis

The kurtosis coefficient: 2.29

Statistics: -0.71

p-value: 0.48

Omnibus Test

Chi-squared: 0.85

Degree of freedom: 2

p-value: 0.66
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Conversely, the Kurtosis Test detects a positive grade of peakness in a low

expansion side variable since the kurtosis coefficient was 4.16 although not signifi-

cant at alpha ¼ 0.05 (see p-value: 0.09)

On the other hand the omnibus test does not found departures from normality.

According to this test, there is no evidence for rejecting the normality

assumption.

4.1.2.3 The Jarque and Bera (1980) Test

The Jarque and Bera (1980) Test is an elegant and powerful goodness of fit test,

likewise based on kurtosis and skewness. It is defined as:

JB ¼ m

6
S2 þ 1

4
K � 3ð Þ2

� �
(4.15)

where m is the sample size and S and K the skewness and kurtosis respectively.

The JB statistics follows a w2 distribution with two degrees of freedom.

For more details see Jarque and Bera (1980), Jarque and Bera (1987), or Jarque

(2010).

Jarque (2010) offers the significance points table although statistical software

usually computes the p-values as:

p-value¼1 - pchisq(STATISTIC, df ¼ 2) or p-value ¼ 1 – w2JB,2

At least three R packages include this test. They are: tseries, moments, and

lawstat.

In this context we use the first one:

> library("tseries")

Example 4.4

Using the jarque.bera.test function for each quality characteristics from the

bimetal1 dataset:

Jarque-Bera Test

data: bimetal1[, 1]

X-squared ¼ 0.22,

df ¼ 2, p-value ¼ 0.90

Jarque-Bera Test

data: bimetal1[, 3]

X-squared ¼ 1.87,

df ¼ 2, p-value ¼ 0.39

Jarque-Bera Test

data: bimetal1

[, 5]

X-squared ¼ 0.57,

df¼ 2, p-value¼ 0.75

Jarque Bera Test

data: bimetal1[, 2]

X-squared ¼ 1.74, df ¼ 2,

p-value ¼ 0.42

Jarque Bera Test

data: bimetal1[, 4]

X-squared ¼ 0.96, df ¼ 2,

p-value ¼ 0.62

Notice that according to the p-values the normality assumption cannot be

rejected at alpha level ¼ 0.05 or 0.10.
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4.1.2.4 The Shapiro and Wilk (1965) Test

The Shapiro and Wilk (1965) Test has become one of the most popular tests due to

its high performance.

The null hypothesis H0 is the sample that proceeds from a normal distribution

and possesses the statistics

W ¼
Pm
1

aixðiÞ

� �2
Pm

1 xi � x
(4.16)

where

a0 ¼ a1; a2; :::; amð Þ ¼ w0V�1 w0V�1
� � 0V�1w

� �� ��1=2
(4.17)

and w the normal scores and V its covariance matrix.

They proposed the approximation of a’ as:

â
0
i ¼

2wk 1< k<m

â2
1

1�2â2
1

Pm�1

k¼2

â21

	 
1=2

i ¼ 1;m

8<
: (4.18)

where

â
0
1 ¼ â

0
m ¼ g m� 1ð Þ m� 20

gðmÞ m>20


(4.19)

being

gðmÞ ¼ G 1
2
ðmþ 1Þ� �

ffiffiffi
2

p
G 1

2
mþ 1

� � (4.20)

Using the approximation:

gðmÞ ¼ 6mþ 7

6mþ 13

	 

expð1Þ
mþ 2

mþ 1

nþ 2

	 
n�2
" #1=2

(4.21)

Royston (1982) proposed the transformation of W for 7�m� 2000 to normality

as follows:

x ¼ 1�Wð Þl (4.22)
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and

z ¼ x� mxð Þ
sx

(4.23)

R includes the built-in function shapiro.test() to compute this test.

Example 4.5

The example below illustrates its use over the bimetal1 dataset. Using this function

individually for every quality characteristic

Shapiro-Wilk normality test

data: deflection

W ¼ 0.98, p-value ¼ 0.86

Shapiro-Wilk normality test

data: curvature

W ¼ 0.98, p-value ¼ 0.89

Shapiro-Wilk normality test

data: resistivity

W ¼ 0.97, p-value ¼ 0.46

Shapiro-Wilk normality test

data: low expansion side

W ¼ 0.97, p-value ¼ 0.46

Shapiro-Wilk normality test

data: high expansion side

W ¼ 0.98, p-value ¼ 0.78

On the other hand, Thode (2010) offers an excellent presentation of the most

powerful test and suggests a test based on moments like Shapiro-Wilks, Anderson-

Darling, and Jarque Bera. For more details see Thode (2002).

4.1.3 Assessing Multivariate Normality

Though the literature reflects that the proposals to test multivariate normality

exceed the 50 methods (see e.g.: (Mecklin and Mundfrom 2004)) these tools are

rarely applied in MSPC publications. This is due to the fact that as a general rule

these methods lack of simplicity and the software availability is limited.

Three of the most powerful tests are introduced in this section.

4.1.3.1 Mardia (1970) Skewness and Kurtosis Test

The Mardia (1970) test is a generalization of the univariate skewness and kurtosis

test and becomes one of the most popular ones on assessment of multivariate

normality. The multivariate skewness and kurtosis are given by:

b1;p ¼ 1

n2

Xn
i¼1

Xn
j¼1

g3jk (4.24)

b2;p ¼ 1

n

Xn
i¼1

g2jj (4.25)
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1 where:

g3jk ¼ xj � x
� �0S�1 xk � xð Þ� �3

(4.26)

and

g2jj ¼ xj � x
� �0S�1 xj � x

� �� �2
(4.27)

Mardia (1970, 1974) provides the percentiles for b1,p and b2,p for many values of

p (quality characteristics) and many numbers of samples (m).

Mardia also proposed for b1,p an approximation to the w2 distribution as follows:

b1;p
pþ 1ð Þ mþ 1ð Þ mþ 3ð Þ
6 mþ 1ð Þ pþ 1ð Þ � 6½ � � w2a; p pþ1ð Þ pþ2ð Þ½ �=6 (4.28)

while for b2,p a normal approximation, being:

b2;p � N p pþ 2ð Þ; 8p pþ 2ð Þ=mð Þ (4.29)

The Mardia test is available from QRMlib and dprep R packages.

Example 4.6

Then, to illustrate the Mardia Test return to the bimetal1 dataset.

Using the QRMlib package:

> MardiaTest(bimetal1)

The R returns

$skewness

[1] 6.982112

$p.value

[1] 0.585327

$kurtosis

[1] 33.77373

$p.value

[1] 0.3490892

Regarding the p-value for skewness and kurtosis, there is no evidence of

departures from normality.

4.1.3.2 Henze and Zirkler (1990) Test

Henze and Zirkler (1990) proposed a multivariate normality test based on the

empirical characteristic function. A wide number of simulation studies point out

the high performance of this test. See e.g.: (Thode 2002)

The statistics is given by:

96 4 Tools of Support to MSQC



T ¼ 1

n2

Xp
k

Xm
j¼1

e�
b2

2
yj�ykj j

2

þ 1þ 2b2
� ��m=2 � 2 1þ b2

� ��m=2 1

n

Xm
j¼1

e
� b2

2 1þb2ð Þy
2
j

(4.30)

where

yj � yk
�� ��2 ¼ xj � xk

� �0
S�1 xj � xk
� �

(4.31)

yj
2 ¼ xj � x

� �0
S�1 xj � x
� �

(4.32)

and

b ¼ 1ffiffiffi
2

p n 2mþ 1ð Þ
4

� �1= mþ4ð Þ
(4.33)

T has a lognormal distribution with mean

T ¼ 1� 1þ 2b2
� ��m=2

1þ mb2

1þ 2b2
þ m mþ 2ð Þb4

2 1þ 2b2ð Þ2
 !

(4.34)

and variance

varðTÞ ¼ 2 1þ 4b2
� ��m=2 þ 2 1þ 2b2

� ��m
1þ 2mb4

1þ 2b2ð Þ2 þ
3m mþ 2ð Þb8
4 1þ 2b2ð Þ4

" #

� 4w�m=2 1þ 3mb4

2w
þ m mþ 2ð Þb8

2w2

� �
(4.35)

where

w ¼ 1þ b2
� �

1þ 3b2
� �

(4.36)

T � Lm;s where

m ¼ log
T
4

varðTÞ þ T
2

 !1=2
2
4

3
5 (4.37)

s ¼ log
varðTÞ þ T

2

T
2

 !" #1=2
(4.38)

The HZ.test function is available on the MSQC package

4.1 Tools of Support to MSQC 97



Example 4.7

The following example shows the application of the test using also the bimetal1

data:

> HZ.test(bimetal1)

p-value HZ statistic

[1] 0.61 0.77

According to the results obtained, p-value ¼ 0.77, which is a high value; there is

no evidence to reject the assumption of multivariate normality.

4.1.3.3 Royston (1992)Test

Another powerful test was proposed by Royston (1983) which is a multivariate exten-

sion of the Shapiro and Wilks normality test (see Royston 1982, 1983, 1992, 1995).

The statistic recommended by Royston is

H ¼
e
Pp
j¼1

R
0
j

p
(4.39)

where

Rj ¼ F�1 F �Zj
� �
2

� � �2

(4.40)

There are two ways to compute Zj according to the number of observations:

For 4� n� 11

Zj ¼
log g� log 1�Wj

� �� �� �� m
s

(4.41)

Wj is the statistics of the univariate Shapiro-Wilks test. (See the previous

section.)

where

g ¼ �2:273þ 0:459n (4.42)

m ¼ 0:544� 0:39978nþ 0:025054n2 � 0:0006714n3 (4.43)

s ¼ exp 1:3822� 0:77875nþ 0:062767n2 � 0:0020322n3
� �

(4.44)

and for 12 < ¼ x < ¼ 2000
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Zj ¼
log 1�Wj

� �þ g� m
s

(4.45)

where g ¼ 0

m ¼ �1:5861� 0:31802 logðnÞ þ 0:083751 logðnÞ½ �2

þ 0:0038915 logðnÞ½ �3 (4.46)

s ¼ exp �0:4803� 0:082676 þ 0:062767 logðnÞ½ �2 � 0:0030302 logðnÞ½ �3
� �

(4.47)

Otherwise, e in the H statistics is given by:

e ¼ m

1þ m� 1ð Þc (4.48)

Where

c ¼

Pp
j¼1

Pm
k¼1

c5ij � m

m2 � m
(4.49)

and

c5ij ¼ r5ij 1� 0:715 1� rij
� �0:715

v

" #
(4.50)

being rij the correlation and

v ¼ 0:21364 þ 0:015124log2ðnÞ � 0:0018034log3ðnÞ (4.51)

Royston’s H statistics follow approximately a w2 distribution with e degrees of

freedom.

This function is also included in the MSQC package and the usage is as follows

Example 4.8

> Royston.test(bimetal1)

Then R prompts:

test.statistic p.value

1.18 0.94

With the p-value obtained, there is no evidence of departure from multivariate

normality at significance level of 0.05.
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4.1.4 Solutions to Departures from Normality

Practically, it is common to get variables with non-normal distribution and one

alternative is to transform the data. The transformation of the data is the application

of a mathematical function to the original dataset.

In a multivariate context this solution could be addressed to a marginal or

multivariate approach. In this section two marginal solutions and one multivariate

are introduced.

There are many simple transformations used in practice: √x, log(x), arcsin(√x),
etc (see, e.g., (Juran and Godfrey 1998) Sect. 4.4)

Another is the well-known Box-Cox Transformation (BCT) that is probably the

most used one for practitioners and professionals of quality control. Finally, another

type of transformation (although not so well known) is the Johnson’s system of

distributions recognized as the Johnson Transformation (JT)

4.1.4.1 Box-Cox Transformation (BCT)

The family of Box-Cox is a power transformation suggested by Box and Cox

(1964). It is given by:

yi ¼
xli � 1

l
for l 6¼ 0

log xið Þ for l ¼ 0

8<
: (4.52)

where xi is the original dataset, l (lambda) is the power and yi the new observations.

One alternative, in order to find the optimal value of l, is using the value that

maximizes the logarithm of the likelihood function. For more details see Box and

Cox (1964) or Venables and Ripley (2002).

The BCT is widely used to improve the normality in some practical situations

and a lot of statistical packages provide this application. An advantage is the easy

algorithm to transform the data while a disadvantage is that it does not allow

negative data values, though it can be solved by adding a constant to the original

dataset.

There are many functions in R that perform the BCT transformation but we will

use the powerTransform included in car package.

4.1.4.2 Johnson Transformation (JT)

The Z family of distributions was presented in Johnson (1949) and is composed by

three distributions named Unbounded (SU), Lognormal (SL), and Bounded (SB)

which allow to transform into a normal distribution through selecting one of the

three of them. The transformations are:
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SU Z ¼ gþ �sinh�1
x� e
l

� �
(4.53)

where

Z, l>0, �1< g<1, �1< e<1, and �1< x<1

SL Z ¼ gþ �ln�1 x� eð Þ (4.54)

where

Z>0, �1< g<1, �1< e<1 and e< x

SB Z ¼ gþ � ln
x� e

lþ e� x

	 

(4.55)

where

Z, l>0, �1< g<1, �1< e<1 and e< x< eþ l

Chou et al. (1998) proposed a methodology to transform non-normal data using

the method of percentiles distribution. The method optimizes the transformation

based on the parameter estimates suggested by Slifker and Shapiro (1980), finding

the best fit to the standard normal distribution applying the Shapiro-Wilk test of

normality, selecting the function that gives the largest statistic (W) or p-value.

The Johnson package allows carrying out the JT according to the method

described here.

4.1.4.3 Multivariate Box-Cox Transformation (MBCT)

Velilla (1993) offered a multivariate extension of the Box-Cox Transformation. Let

l ¼ l1; l2; :::; lp
� �

a vector of the transformation parameters which after the follow-

ing transformation X lð Þ ¼ X
l1ð Þ
1 ;X

l2ð Þ
2 ; :::;X

lpð Þ
p

	 

of the original variables, produce

a multivariate normal distribution with mean (m(l)) and covariance (S(l)) both of

the transformed variables. The l vector is selected as the value that maximizes the

log-likelihood function. See for details Velilla (1993) or Weisberg (2005).

The powerTransform function from the car package also allows computing this

transformation.

Example 4.9

This example proceeds from a bivariate manufacturing process with a right-skewed

distribution that can be found in rskewed data frame (Fig. 4.3).

A simple visual inspection allows verifying the presence of non-normality.

This is confirmed by the Royston (1992) and Henze and Zirkler (1990) test.

> HZ.test(rskewed)

p-value HZ statistic

[1] 0.00 1.95

Royston.test(rskewed)
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test.statistic p.value

26.75 0.00

The Mardia Test prompts the a similar result

First, applying the BCT we have:

> library("car")

> rskewed.bct <� matrix(0,nrow(rskewed),ncol(rskewed))

> for (i in 1 : 2){

> lambdas <� powerTransform(rskewed[,i])$lambda

> rskewed.bct[,i] <� bcPower(rskewed[,i],lambdas)}

Then, applying the MVN test

> HZ.test(rskewed.bct)

p-value HZ statistic

[1] 0.09 0.72

> Royston.test(rskewed.bct)

test.statistic p.value

6.93 0.03

The Royston test detects a presence of departure from normality after the transfor-

mation at a ¼ 0.05.

Converselly, the JT produces a success adjustment

> rskewed.jt <� matrix(0,nrow(rskewed),ncol(rskewed))

> for (i in 1 : 2){rskewed.jt[,i] <� RE.Johnson(rskewed[,i])$transformed}

> HZ.test(rskewed.jt)

p-value HZ statistic

[1] 0.60 0.38

> Royston.test(rskewed.jt)

test.statistic p.value

0.22 0.90
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Fig. 4.3 Histogram to the

rskewed data frame
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Finally using the MBCT

> rskewed.mbct <� matrix(0, nrow(rskewed), ncol(rskewed))

> lambdas <� powerTransform(rskewed)$lambda

> rskewed.mbct <� bcPower(rskewed,lambdas)

> HZ.test(rskewed.mbct)

p-value HZ statistic

[1] 0.10 0.70

> Royston.test(rskewed.mbct)

test.statistic p.value

6.81 0.03

This last method in the same manner to the BCT does not produce a better

transformation than JT.

4.1.5 The Autocorrelation Problem

One of the requisites in control chart is the independence of the data; although, in

practice this assumption is rarely checked and this could produce false alarms. It is

well known that decay processes often produce variables with time dependence (see

e.g.: (Mason et al. 1996) and (Mason and Young 2001) for more details.)

The presence of autocorrelation is often confirmed by plotting current

observations versus preceding ones in scatter plot e.g.: xt vs. xt-1.

To illustrate this, analyze the waiting time between eruptions in the faithful

dataset.

> f1 <� faithful[,2]

> f2 <� matrix(0, 1, length(f1))

> for (i in 1 : length(f1)){f2[i] <� f1[i + 1]}

> plot(f1, f2, xlab ¼ "x(t)", ylab ¼ "x(t + 1)")

There is strong evidence of correlation between successive pairs. The well

known autocorrelation plot or correlogram introduced by Box and Jenkins (1976)

is one of the most used tools to check independence (Fig. 4.4).

The autocorrelation is computed as:

rh ¼ Ch

Co
(4.56)

Where

� 1� rh � 1

Ch ¼
Pm�h

t¼1

ðxt � xÞðxtþh � xÞ
m

(4.57)
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is the covariance and

Co ¼
Pm
t¼1

ðxt � xÞ2

m
(4.58)

the variance

and m and h the sample size and the lag respectively.

The rh is plotted against two control limits frequently called confidence bands

computed as:

CL ¼ � Z1�a=2ffiffiffiffi
m

p : (4.59)

When an rh fall outside of the confidence bands, it is said that there is evidence of

autocorrelation or dependence.

For more details see e.g.: Box and Jenkins (1976) or Chatfield (1989).

R provides the built-in function acf that computes the autocovariance or auto-

correlation function.

Example 4.10

Coming back to the bimetal1 dataset, the marginal independence could be assessed.

> par(mfrow ¼ c(3,2))

> for( i in 1 : ncol(bimetal1) ){

> par(mar ¼ c(4.1,4.5,1,1))

> acf(bimetal1[,i],lag ¼ 7,las ¼ 1)}

Notice that when lag ¼ 0 the correlation is 1. This can be proved easily in

formula x.

There is no evidence of relation between adjacent observations; that is, there is

marginal randomness.

This tool can be complemented with the use of another such as: Box-Pierce,

Ljung-Box or Runs Test (Fig. 4.5).
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Fig. 4.4 xt vs xt+1 scatter plot

for the waiting time between

eruptions faithful
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When time dependence is detected the problem should be addressed in two

different ways: by using a specific control chart such as the proposal by Apley and

Tsung (2002) and Kalagonda and Kulkarni (2004) or by modifying the data

removing the autocorrelation effects. About the latter point a possible solution is

to decompose it in multivariate autoregressive model and analyze the resultant

residuals which should present independency and MVN (Mason and Young 2001).

4.1.6 Exercises

4.1. In Example 2.2, Sect. 2.4 a bivariate data frame called dowel1 was introduced.

(a) Perform a histogram for each quality characteristic. Does the obtained data

allow foreseeing normality in data?

(b) Compute the D’Agostino test and assess the skewness, kurtosis and omni-

bus tests obtained.

(c) Verify the marginal normality using the Shapiro-Wilks test.

(d) Assess the multivariate normality using the Royston test.

(e) Construct the marginal ACF. Discuss the results
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Fig. 4.5 Correlograms for each individual of the bimetal1 data frame
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4.2. The dataset indust1 holds the information of two correlated quality

characteristics from an industrial process.

(a) Construct the Q-Q plot. Discuss the results.

(b) Verify the lack of time dependence using lag ¼ 5

(c) Compute the Jarque-Bera test. Assess the marginal normality.

(d) Does the Shapiro-Wilks test achieve the same results?

(e) Compute the Mardia test. Discuss the results.

4.3. Recall the data frame named water1 from a water quality test that consists on

five variables (pH, phosphates (mg/L), nitrates (mg/L), dissolved oxygen and

total solids (mg/L)).

(a) Use the D’Agostino test to evaluate marginal normality using alpha¼ 0.05.

Do all variables exhibit normality?

(b) Plot a histogram to complement this result.

(c) Compute the Henze-Zirkle and Mardia test. Are there departures from

multivariate normality?

(d) Construct a correlogram to prove lack of autocorrelation

4.4. For the seven variables collected from a mechanical process available at dataset

named mech1:

(a) Use both graphical techniques studied to establish the assumption of

normality.

(b) Compute the Jarque-Bera and Shapiro-Wilks tests and compare the results.

(c) Demonstrate the randomness using the acf function.

(d) According to the Henze-Zirkle and Royston. Assess the multivariate

normality.

4.5. The gilgais dataset from MASS package presents the level of pH, electrical

conductivity and chloride content from the soil in gilgai territory, New South

Wales, Australia. For the first 50 samples and the characteristic pH at depth

30–40 cm and 80–90 cm:

(a) Evaluate the multivariate normality using the Henze-Zirkle and Royston

tests.

(b) If any of the previous tests detects non normality presence, transform the

dataset using BCT, JT and MBCT. Compare the methods according to the

results obtained.

(c) Evaluate the autocorrelation level with a lag ¼ 6 .

4.6. The Rubber data frame included in the MASS package, contain the measure

from a rubber tyre accelerated testing.

(a) Test multivariate normality at alpha ¼ 0.1.

(b) Perform a Q-Q plot. Discuss the results.

(c) Determine the presence of time dependence in all variables.
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Chapter 5

Study Cases

5.1 Study Case #1. Pitching Controlling

In this study case the application of the main tools covered in this text is introduced

in baseball, specifically over the pitcher performance. According to the Major

League Baseball (MLB) the strike zone is “that area over home plate, the upper

limit of which is a horizontal line at the midpoint between the top of the shoulders

and the top of the uniform pants, and the lower level is a line at the hollow beneath

the kneecap. . .”
It is a pentagonal prism with 20 in. (1.66 ft) of width and the height is determined

by the size of the batter in the position of swinging the pitched ball. Although this

height is different for each batter it normally has a dimension from 1.6 up to 3.5 ft

over the home. The umpire calls strike when the pitch falls into this area and the

batter does not swing.

Although the pitchers move the ball strategically in different positions of the

strike zone trying the hitter not make contact with it, often the performance of the

pitcher is measured by the skill to put the ball into the strike zone at high speed.

In this case we use data collected by the pitcher logs at the (MLB) database

(http://gd2.mlb.com/components/game/mlb/) for the pitcher C.C. Sabathia from the

New York Yankees. Two datasets were selected from games against Tampa Bay:

the first on July 10, 2011 and on August 12, 2011 the second. Both are stored in the

package as sabathia1 and sabathia2 respectively.

The pitcher logs provide a lot of information about each pitch but in our study we

work with the start speed (given in mph) of the pitch, and the location (in feet) as it

crosses the home. This last point is measured regarding a coordinate system in

which the origin is at the point of the home plate. The z-axis is the vertically

oriented while x-axis horizontally oriented at the catcher’s right.

Only the fastball pitches are considered and each sample is a batter by averaging

all the variables of pitch. Notice that a player bats several times in the play.

Performing the analysis in R.

> data("sabathia1")

E. Santos-Fernández, Multivariate Statistical Quality Control Using R,
SpringerBriefs in Statistics 14, DOI 10.1007/978-1-4614-5453-3_5,
# Springer Science+Business Media New York 2012
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using:

> colMeans(sabathia1); covariance(sabathia1); cor(sabathia1)

it is obtained

x ¼
0:1074
2:9430
94:4108

2
4

3
5 ; S ¼

0:22 0:09 0:05
0:09 0:27 �0:25
0:05 �0:25 1:50

2
4

3
5 and r ¼

1 0:37 0:09
0:37 1 �0:39
0:09 �0:39 1

2
4

3
5: Notice the direct correlation between the first two

variables, being negative between the vertical position and the speed. The

scatterplot matrix visually confirms this (Fig. 5.1).

> pairs(sabathia1)

An initial useful analysis can be carried out by constructing a three-dimensional

scatterplot with a confidence ellipsoid (Fig. 5.2).

x location
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92
93

94
95

96
97

start speed

Fig. 5.1 Scatter plot matrix of vertical and horizontal location and start speed
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> library(rgl)

> plot3d(ellipse3d(cov(sabathia1), centre ¼ colMeans(sabathia1), level ¼ 0.99),

xlab ¼ "", ylab ¼ "", zlab ¼ "",type ¼ "wire", col ¼ "gray1", alpha ¼ 0.2)

> points3d(sabathia1, size ¼ 4, cex ¼ 2, add ¼ TRUE)

By moving through the coordinates it can be seen that all observations fall inside

these boundaries. No outliers are detected. Then performing a Hotelling chart

(Fig. 5.3).

> mult.chart(type ¼ "t2", sabathia1)

Since no points fall outside the UCL then there is no evidence to reject the in-

control state in the process. The final score shows that.

Then, setting this first game to analyze the second game as Phase II or future

observations, using the Phase I estimates of mean vector and covariance matrix as

follows:

> colm < - nrow(sabathia1)

> vec < - (mult.chart(sabathia1,type ¼ "t2")$Xmv)

> mat < - (mult.chart(sabathia1,type ¼ "t2")$covariance)

Using

> data("sabathia2")

> par(mfrow ¼ c(1,2))

> mult.chart(type ¼ "t2", sabathia2, Xmv ¼ vec, S ¼ mat, colm ¼ colm)

>

93
94

95
96

97
98

4.0

92
91

3.5

3.0

2.5

2.0

1.5

−1.0
−0.5

0.0
0.5

1.0

Fig. 5.2 Three dimensional

scatter plot with confidence

ellipsoid
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Then, R prompts:

The following(s) point(s) fall outside the control limits[1] 16 20

$‘Decomposition of‘

[1] 16

t2 decomp ucl p-value 1 2 3

[1,] 12.5255 8.0686 0.0016 1 0 0

[2,] 10.7037 8.0686 0.0031 2 0 0

[3,] 4.2001 8.0686 0.0511 3 0 0

[4,] 16.8950 12.1448 0.0000 1 2 0

[5,] 18.1565 12.1448 0.0000 1 3 0

[6,] 11.3942 12.1448 0.0003 2 3 0

[7,] 19.4116 16.1352 0.0000 1 2 3

$‘Decomposition of‘

[1] 20

t2 decomp ucl p-value 1 2 3

[1,] 0.4091 8.0686 0.5282 1 0 0

[2,] 9.6004 8.0686 0.0048 2 0 0

[3,] 0.8664 8.0686 0.3609 3 0 0

[4,] 13.4175 12.1448 0.0001 1 2 0

[5,] 1.3922 12.1448 0.2671 1 3 0

[6,] 15.0562 12.1448 0.0001 2 3 0

[7,] 22.4067 16.1352 0.0000 1 2 3

The analysis displays the points 16 and 20 beyond the UCL, i.e.: the pitcher

seems to be out-of-control. The decomposition of the T2 statistics shows how in

sample 16 both locations on the horizontal and vertical axes (x) were out-of-control.
In contrast, in batter number 20 only the location on the vertical causes the alarm.

In order to improve fast detection of small shifts in the process, we can compute

the MEWMA and MCUSUM charts.

For instance, MEWMA detects the shifts on the mean at the 10th batter, see

Fig. 5.4(b) and the MCUSUM according to (Crosier 1988) and (Pignatiello and

Runger 1990) at the 9th and 10th batters respectively (Fig. 5.5).

Notice that this study does not intend to prove per se when the pitchers are in

control or not. There are many other important variables to be analyzed. The aim is to

propose a tool for monitoring the statistical control over the strike zone and the speed.

0

5

10

15
Hotelling Control Chart

Sample
5 1510 20

T
2

UCL= 13.31

Fig. 5.3 Hotelling control

chart for the sabathia1 data

[1] "Hotelling Control Chart"

$ucl

[1] 13.31

$t2

[,1]

[1,] 4.37

[2,] 1.65

. . .
[22,] 6.95

[23,] 6.06

$Xmv

[1] 0.11 2.94 94.41

$covariance

[,1] [,2] [,3]

[1,] 0.220 0.092 0.051

[2,] 0.092 0.270 -0.250

[3,] 0.051 -0.250 1.500
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Another important aspect to be considered is that although the pitcher is under

statistical control over the variables measured, he could hit and the score could

show a false alarm.

After that, a capability study for individual observations is performed using the

umpire strike zone as specifications. The first game analyzed that was used as Phase

I had in the home plate the umpire Ron Kulpa. The strike zone was constructed as

the boundary rectangle of the confidence ellipse given by all the balls called strike

in this game and stored in the kulpa dataset. So, using the proc.reg function the

limits are computed.

> data("kulpa")

> LSL < - as.vector(proc.reg(kulpa, alpha ¼ 0.1)$LPL)

> USL < - as.vector(proc.reg(kulpa, alpha ¼ 0.1)$UPL)

Notice that alpha ¼ 0.1 was used to avoid an extensive area.

> data("sabathia.ind")

> par(mfrow ¼ c(1,3))

> mpci(index ¼ "shah", sabathia.ind, LSL¼LSL ,USL¼USL, alpha¼0.1, graph ¼
TRUE)

>mpci(index¼ "taam", sabathia.ind, LSL¼ LSL ,USL¼USL, alpha¼ 0.1, graph

¼ TRUE)

> mpci(index ¼ "pan", sabathia.ind, LSL ¼ LSL ,USL ¼ USL,alpha ¼ 0.1, graph

¼ TRUE)
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Hotelling Control Charta b
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MEWMA Control Chart

Sample

UCL= 10.81

Fig. 5.4 (a) Hotelling and (b) MEWMA control chart for the sabathia2 data
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[1] "Shahriari et al. (1995)

Multivariate Capability

Vector"

$CpM

[1] 0.94

$PV

[,1]

[1,] 6.72e-05

$LI

[1] 0

[1] "Taam et al. (1993)

Multivariate Capability

Index (MCpm)"

$MCpm

[,1]

[1,] 0.73

[1] "Pan and Lee (2010)

Multivariate Capability Index

(NMCpm)"

$NMCpm

[,1]

[1,] 0.73

Figure 5.6 shows the output of the three indices computed. Notice the difference

between the target and the process mean expressed in a extremely low value of PV

in (Shahriari et al. 1995) index. The main swarm is located over the high part of the

strike zone and the process region is not contained into the tolerance region,

therefore LI ¼ 0.

On the other hand, the area ratio of (Shahriari et al. 1995) produced a high value

(0.94) while (Taam et al. 1993) and (Pan and Lee 2010) achieved lower values (0.73).

Realize that the called proportion of non conforming product in industry (in this

case: balls fallen outside the umpire strike zone) is on average on one third

according to MLB statistics.
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Fig. 5.5 MCUSUM control chart by (Crosier 1988) (a) and (Pignatiello and Runger 1990) (b) for

the sabathia2 data
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These indices could be useful to perform a comparison among pitchers and

against the different umpire strike zone which varies in each game.

Finally it is checked the assumption of MVN with the Henze-Zirkler and

Royston test

HZ.test(sabathia1)

p-value HZ statistic

[1] 0.75 0.49

HZ.test(sabathia2)

p-value HZ statistic

[1] 0.69 0.52

Royston.test(sabathia1)

test.statistic p.value

1.49 0.68

Royston.test(sabathia2)

test.statistic p.value

1.61 0.65

and the lack of time dependence:

> par(mfrow ¼ c(2,3))

> for( i in 1 : ncol(sabathia1) ){par(mar ¼ c(4.1,4.5,3,1))

> acf(sabathia1[,i],lag ¼ 7,las ¼ 1, main ¼ colnames(sabathia1)[i])}

> for( i in 1 : ncol(sabathia2) ){ par(mar ¼ c(4.1,4.5,3,1))

> acf(sabathia2[,i],lag ¼ 7,las ¼ 1, main ¼ colnames(sabathia2)[i])}

Notice that no departures from normality and no autocorrelation are achieved

(Fig. 5.7).
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Fig. 5.6 MPCI for the sabathia1 data (Shahriari et al. 1995), (Taam et al. 1993) and (Pan and Lee

2010)
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This study case shows the huge spectrum of application of the multivariate

quality control in which were used in combination multivariate control chart and

multivariate process capability indices to evaluate the pitcher performance and the

ability to fulfill the strike zone specifications.

5.2 Study Case #2. Target Archery

The target archery is a competitive sport governed by theWorld Archery Federation

(WA) wherein the archers shoot at round target at varying distances. What is

established in the Olympic Games is the 122 cm face for a distance of 70 m.

The individual competition is arranged on two stages. The first one is the ranking

round in which each archer shoots 72 arrows in 12 ends of six arrows. After that,
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Fig. 5.7 Correlogram for both sabathia1 and sabathia2 data
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the second stage begins with the matches of the first ranked against the sixty-fourth,

the second against the sixty-third, and so on; shooting 18 arrows in ends of three

arrows. The winners move forward until completing three loops. Then the eight

remaining archers continue the elimination stage shooting 12 arrows in ends of

three arrows being the champion the undefeated.

The dataset called archery1 consists on the 72 shoots in ends of three arrows of

the ranking round of a specific archer and the archery2, the 54 shoots of the

elimination round with the same subgroup size. Notice that the information is

given in x and y coordinates but in the archery competition the scoring is based

on the location of the arrows over concentric rings with score values established.

The Fig. 5.8 shows the scatter plot of the individuals throws over the target of

122 cm.

> data("archery1")

> data("archery2")

The argument of the correlation function does not allows an array but using

> cor(cbind(c(archery1[,1,]),c(archery1[,2,]))) we can compute the correlation.

We have:

r ¼ 1 0:37
0:37 1

� �

After that the Hotelling control chart is computed for the ranking round

> mult.chart(archery1, type ¼ "t2") then R returns:
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Fig. 5.8 Scatter plot with for both archery data

5.2 Study Case #2. Target Archery 115



According to the Hotelling chart the process seems to be in control since no

evidence of assignable causes are presented. Now the analysis can be

complemented with the generalized variance chart. This graph does not report a

non-random operation either (Fig. 5.9).

> gen.var(archery1)

Suppose it is desired to use the ranking round as Phase I and to control the future

observation storage on archery2 from the eliminatory (Fig. 5.10):

> colm < - nrow(archery1)

> vec < - (mult.chart(archery1,type ¼ "t2")$Xmv)

> mat < - (mult.chart(archery1,type ¼ "t2")$covariance)

> par(mfrow ¼ c(2,2))

> mult.chart(archery2,type ¼ "t2", Xmv ¼ vec, S ¼ mat, colm ¼ colm)

> mult.chart(archery2,type ¼ "mewma", Xmv ¼ vec, S ¼ mat)

> mult.chart(archery2,type ¼ "mcusum", Xmv ¼ vec, S ¼ mat)

> mult.chart(archery2,type ¼ "mcusum2", Xmv ¼ vec, S ¼ mat)

Then R prompts:

The following(s) point(s) fall outside the control limits[1] 18

$‘Decomposition of‘

[1] 18
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Fig. 5.9 Hotelling and generalized variance chart for archery1 data
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t2 decomp ucl p-value 1 2

[1,] 11.4353 7.8065 0.0035 1 0

[2,] 0.0008 7.8065 0.9778 2 0

[3,] 13.3752 11.4390 0.0003 1 2

The Hotelling chart detects the 18th sample beyond UCL. The decomposition

shows that the cause is due to a horizontal shift. While the weighted chart like the

MEWMA chart does not detect non-random shifts and conversely (Crosier 1988)

performs an early detection from sixth sample. The (Pignatiello and Runger 1990)

chart accomplishes similar results.

To illustrate the misleading results that can be obtained with these charts when

the requisites are not met and how the misuse could cause adjustment in the process

when is not necessary, let us check the multivariate assumption.

> HZ.test(apply(archery1,1:2,mean))

p-value HZ statistic

0.07 0.73

> HZ.test(apply(archery2,1:2,mean))

p-value HZ statistic

0.43 0.40

> Royston.test(apply(archery1, 1:2, mean))

test.statistic p.value

7.02 0.03

> Royston.test(apply(archery2, 1:2, mean))

test.statistic p.value

3.49 0.18

As a result, the strong evidence leads to reject the multinormality in the first data.

As a result a transformation is required. Using the Johnson Transformation:

> arch.mean1<- apply(archery1,1:2,mean); arch.mean2<- apply (archery2, 1:2,

mean)

> arch.trans1<- matrix(0, nrow(arch.mean1), ncol(arch.mean1))
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Fig. 5.10 Hotelling, MEWMA and MCUSUM control chart for archery2 data
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> arch.trans2<- matrix(0, nrow(arch.mean2), ncol(arch.mean2))

> library("Johnson")

> arch.trans1[,1]<- RE.Johnson(arch.mean1[,1])$transformed; arch.trans1[,2]<-

RE.Johnson(arch.mean1[,2])$transformed

> arch.trans2[,1]<- RE.Johnson(arch.mean2[,1])$transformed; arch.trans2[,2]<-

RE.Johnson(arch.mean2[,2])$transformed

The MVN test over the transformed data is shown

> HZ.test(arch.trans1)

0.32 0.48

> HZ.test(arch.trans2)

0.99 0.15

> Royston.test(arch.trans1)

test.statistic p.value

2.48 0.29

> Royston.test(arch.trans2)

test.statistic p.value

0.44 0.80

Notice the suitable p-values achieved with this transformation. After this, the

presence of autocorrelation is assessed.

> par(mfrow¼c(2,2))

> for( i in 1 : ncol(arch.trans1) ){par(mar¼c(4.1,4.5,3,1))
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Fig. 5.11 Correlograms for both archery1 and archery2 after the transformation

118 5 Study Cases



> acf(arch.trans1[,i],lag¼7,las¼1, main¼colnames(arch.trans1)[i])}

> for( i in 1 : ncol(arch.trans2) ){ par(mar¼c(4.1,4.5,3,1))

> acf(arch.trans2[,i],lag¼7,las¼1, main¼colnames(arch.trans2)[i])}

As a result no time dependece is found. Therefore, there is no evidence to reject

the randomness assumption or independence (Figs. 5.11).

Then, returning to the control chart analysis and performing the same analysis,

the following results are achieved: in the ranking round the archer seems to be under

statistical control since no out-of–control signal was presented. So, using this round

to control the future observation (Phase II) of the elimination round, no evidence of

shifts in the process was obtained. This result differs significantly to the initial

analysis and shows that the non-normal presence could produce of false alarm

(Fig. 5.12).
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