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Preface

Nowadays, the intensive use of an automatic data acquisition systems and the use of
on-line computers for process monitoring have led to an increased occurrence of
industrial processes with two or more correlated quality characteristics, in which
the statistical process control and the capability analysis should be performed using
multivariate methodologies.

Unfortunately, despite the availability of increased computing capabilities, in
the Multivariate Statistical Quality Control (MSQC) framework the software
solutions are limited or restricted in their level of success and ease of use for
dealing with the problems of industry or promoting academic instruction.

The aim of this book is to present the most important MSQC techniques
developed in R language, across the most important theoretical aspects (without
pretending to be a book in statistical theory) of the use of the software and the
solution of problems. The choice of R is motivated by the fact that the R language
has become the “lingua franca” of the data analysis and it is an easy-to-use, open
source, free, multiplatform, and very flexible software. Further, R has a mounting
community of users; it has been growing up in solutions for corporations and the
acceptance in the academia.

This is a succinct, comprehensible and accessible text that provides the core of
the MSQC tools across illustrative examples done by hand and using computer
software presenting the code snippets. The following word cloud shows the main
topics approached in this book in proportion to the font size.

The first chapter provides a very short introduction to R language, statistical
procedures, and the main aspects concerning Statistical Quality Control (SQC).

Chapters 2 and 3 constitute the kernel of this book in which the design and
interpretation of multivariate control chart and the computation of multivariate
process capability indices are covered. Chapter 5 approaches the tools for assessing
multivariate normality and independence, and Chap. 6 contains two study cases
integrating the knowledge acquired in previous sections. This text could be read in
the order desired by the reader.

Ideal to postgraduate courses in SQC, Quality Engineering, Industrial Statistics,
and Industrial Engineering it could nonetheless be used for advanced undergraduate
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students. It includes the MSQC R package, available at http://www.cran.r-project.
org/package=MSQC from CRAN (the Comprehensive R Archive Network) and
holds the eleven dataset used.

The examples code and the solutions to all exercises are available at the author
web page (https://sites.google.com/site/edgarsantosfernandez/). This site can be
also consulted for additional information and for the list of errata.The reports of
suggestions, errors or omissions are most welcome at: edgar.santos@etecsa.cu.

The book assumes the reader has an elemental background in matrix algebra,
statistics, and practically no computer skills in R.

It provides statisticians, scientists, engineers, practitioners, and students a modern
and practical overview about the most accepted techniques on MSQC of the last
years across the examples and exercises.

In other words, it supplies the knowledge and the computational tools necessary
for solving the main problems presented in this field and for practically nothing.

Santa Clara, Cuba Edgar Santos-Fernandez



Acknowledgments

I am immensely special thanks to the R core team and contributors for the creation
and development of the R language and environment; to the Springer Team Marc
Strauss, Hannah Bracken and Susan Westendorf who made this project possible;
and to my friend and mentor Michele Scagliarini for his collaboration and help, and
for being a true coauthor of the mpci function, without which this text could have
never been possible.

I would like to acknowledge the contribution of Professors William H. Woodall
and Ramanathan Gnanadesikan and also Matias Salibian-Barrera, Pat Farrell, Scott
Ulman, Surajit Pal, Uwe Ligges, Kurt Hornik, Achim Zeileis, and Michel Marrero-
Gonzalez.

I also thank Ricardo Reyes Perera and Maritza Garcia Pallas for the revisions of
this book. I would also like to give special thanks to the Universidad Central de Las
Villas and to the Empresa de Telecomunicaciones de Cuba S.A. (ETECSA) for the
support.

Heartfelt thanks to Carmen Fernandez Ferrer to whom this book is dedicated for
the inspiration and to Caroline, Laura and Alex and to my other siblings Isis and
Alejandro for the enthusiasm, to Silvio for the encouragement, to Jessica for the joy
she brings to my life, and to my father Eugenio Santos Miyares (Cuqui)
(1950-2011) and Georgina Ferrer Riera (1924-2000) whom are always in our
memory.

In short, to all those who contributed to this project and to my family for the
patience and the support during the writing of this book.

vii






Contents

1 A Small Introduction ....................................
1.1 A Small Introduction.................ccovvevnn.....
1.1.1. ABriefonR.............L.

1.1.2 R Installation and Managing ..............

1.1.3  General Principles of Data Manipulation .

1.1.4 Datasets Used ..........cooviviviniiinnn...

1.1.5 TheRHelp....ooooiiiiiiiiiii i

1.1.6  GraphicsinR................oooiii

1.1.7  Probability Distributions ..................

1.1.8  Descriptive StatisticS ............cevueenn..

1.1.9  Statistical Inference (Hypothesis Testing)

1.1.10 A Short Introduction to Statistical Process
Control (SPC). Univariate Control Charts

1.1.11 Univariate Process Capability Indices

(Cp,Cpkand Cpm) ......ccovvnneinninnn..

2 Multivariate Control Charts...........................

2.1  The Multivariate Normal Distribution ............

22 DataStructure...........ccoiiiiiiiiiiiiiininannn..

2.3 The mult.chart Function...........................

2.4  Contour Plot and %* Control Chart ...............

2.5  Hotelling T? Control Chart (Phase I).............

2.6  Interpretation, Decomposition, and Phase II.......

2.6.1 T2 for IndividualS ..........c.coveeuven. ..

2.7  Generalized Variance Control Chart ..............
2.8  Multivariate Exponentially Weighted Moving

Average Control Chart...............cooovevnn..n.

2.9  Multivariate Cumulative Sum Control Chart.....
2.10 Control Chart Based on Principal Component

Analysis (PCA) ...ooviiiiiiii i

211 EXEICISES ..vviieieiie et eie e ieieeeennnns

SN U DLW — — —

—

10

ix



X Contents

3 Multivariate Process Capability Indices MPCI) ...................... 63
3.1 Thempei Function.......... ...t 64
3.2 Multivariate Process Capability Vector............c...ooiiiiin 65
3.3 Multivariate Capability Index ............coooiiiiiiiii i 69
3.4 Revision of the Multivariate Capability Index ...................... 71
3.5 Multivariate Process Capability in a Presence
of Rational Subgroup—A Three-Dimensional Case ................ 74
3.6 Multivariate Capability Indices Based on
Principal Component AnalysiS.........covvuiiiiieiiinrinneeennennn. 75
3.7 Methodology to Select the Number
of Principal COmpONents ........oveuuveiuneiiieeiineineenineennnnns 80
3.8 EXEICISES « .ttt 82
4 Tools of Support to MSQC ... ... i 87
4.1 Tools of Support to MSQC ......oiiiiiiiiii i 87
4.1.1 Graphical Methods .........cooiviiiiiiiiiiiiiiiniiie i, 87
4.1.2 Marginal Normality Test...........covviiiviiiniiniina... 89
4.1.3 Assessing Multivariate Normality .....................coon. 95
4.1.4 Solutions to Departures from Normality .................... 100
4.1.5 The Autocorrelation Problem .......................ooo o 103
41,6 EXEICISES .ooviiiiiiiiiiiiiiiiiii e 105
5 StUAY CaSeS ... ettt et 107
5.1 Study Case #1. Pitching controlling .........................oooi. 107
5.2 Study Case #2. Target Archery ..o, 114
References .. ........cooooiiiiiiiii i e 121



Chapter 1
A Small Introduction

1.1 A Small Introduction

1.1.1 A BriefonR

R is high-level and open-source programming language focused mainly in statistical
processing. It is based on the recognized S language and allows the integration with
others as C, C++, Fortran, Java, Python, etc.

There are many characteristics which have placed it in the elite of the statistical
computing software. It is an easy-to-use, flexible, and powerful software with an
excellent performance regarding its competitors. Besides it is multiplatform, that is,
runs over UNIX, Windows, and Mac OS. Moreover, and last but not least, it is
absolutely free; contrasting with the high cost of similar proprietary software.

Another remarkable feature is that it constitutes one of the biggest knowledge
and technology transfer to developing countries.

The R software per se consists barely in a few megabytes including the basic
function, which is frequently updated. This philosophy allows a lightly main
program kept by the user with only additional applications called packages.

These packages are available through the Comprehensive R Archive Network
(CRAN).

Applications in R cover a wide range of disciplines such as Bioinformatics,
Econometrics, Environmetrics, etc.

A remarkable feature of R is the huge community of users worldwide which
have developed an extensive documentation and help sources including a mailing
list with keen users.

A fact that upholds the above said is the exponential growth of literature about
programming, graphics, etc. and the large amount of publications that refer
applications or processing in R.

E. Santos-Fernandez, Multivariate Statistical Quality Control Using R, 1
SpringerBriefs in Statistics 14, DOI 10.1007/978-1-4614-5453-3_1,
© Springer Science+Business Media New York 2012
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. RGui (32-bit) @@@
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Copyright (C) 2012 The R Foundation for Statistical Computing
15BN 3-500051-07-0
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You are welcome to redistribute it under certain conditions.
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‘help.start()' for an HTHL browser interface to help.
Type 'q()' to quic R.

[Previously saved workspace restored]

Fig. 1.1 R console in Windows

1.1.2 R Installation and Managing

The R installation is very simple. Just download the suitable version for your
platform from a desired CRAN at http://cran.r-project.org/ and install it.

When R is opened, appears the R console with a message indicating the
following information: the version, the platform, and the important statement that
R comes without any warranty, the way to cite R and the packages in publications,
etc. Besides that, in contributors() the R-core Team and contributors appear.

In this console the cursor is placed after the > symbol called prompt that
indicates availability. On the other hand when + symbol appears, it means that
the computation is not completed. Using the Up arrow key it is possible to invoke
the last computation. One unique characteristic of the language is the assignment
operator <— instead of the symbol = (Fig. 1.1).

All the content of this book has been produced in Windows, so any suggestion or
report of inaccuracy is welcome.

All the examples in this book are contained in the MSQC package available at
http://www.cran.r-project.org/package=MSQC and to install it just type:

> install.packages("MSQC")
selecting the desired CRAN.
Thus, to load it

> library("MSQC")


http://cran.r-project.org/
http://www.cran.r-project.org/package=MSQC
http://www.cran.r-project.org/package=MSQC
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1.1.3 General Principles of Data Manipulation

The input data in R can be carried out in a simple way: using read.table: specifying
the path

> data<—read.table("C:\\data.txt")

or

> data<—read.table(file.choose())
selecting the path where the file is located.

Besides files can be imported from another statistical software such as SPSS and
MINITAB using the foreign package or from an Excel file with the gdata package.

Another useful input tool is the scan() function that makes it possible to read
from the console. For instance:

> data <— scan()
1: 0.677
2:0.852

11: 0.633

12: 0.637

13:

Read 12 items

This creates a vector named data with the 12 elements read.

In this book mainly three types of data structures are used: vectors, matrices, and
arrays.

The vectors are the simplest structures in R. A vector can be composed by a
unique element or by more than one, for instance vec <— 0 or vec <— 1:12.

A matrix is a two-dimensional set of data achieved using e.g.:

> data <— matrix(data, nrow = 6, ncol = 2)

Finally, an array allows a set of data with more than two dimensions.
> array(data, c(2,3,2))

produces a three-dimensional array

1.1.4 Datasets Used

Using the function data() it is possible to visualize all datasets included both in
default datasets package and incorporated in other installed packages. The MSQC
package includes the following datasets:

> data(package="MSQC")
dowel: Diameter and length of a manufacturing process of a dowel pin
carbon: Carbon fiber tubing
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bimetal: A bimetallic strip used in a thermostat
industrial: A bivariate industrial process

water: A water quality test

mech: A mechanical process

glass: Glass manufacturing

rskewed: Right-skewed distribution

sabathia: A pitching log of C.C. Sabathia
archery: Target archery

1.1.5 TheR Help

The R help is one of its strengths and can be exploited in different ways. When the
function exists and the name is known, the most simple way is by using directly in
the console the ? symbol followed by the function name. For example, after the
installation of the MSQC package

> ? mult.chart

Then an html page opens showing elements of help such as usage, arguments,
details, value, note, references, and examples. Occasionally the user ignores the
exact number of the function then using help.search allows to search into the
documentation database. For instance:

> help.search("capability indices") shows information about the mpci function.

Conversely in the main menu the option Help provides a lot of categories to
evacuate doubts. The first cluster gives information about frequently asked question
(FAQ) and pdf manuals.

The second refers to the previous help function introduced and the last one about
the R-Project home page and CRAN.

R home page provides a lot of information in the section Documentation.
Furthermore, the search on the web offers solutions to common problems.

Another important source about the operating are the examples incorporated at
the end of the function documentation. They could be pasted directly to the console
or using:

> example(MSQC)

Mathematical functions
Using ?S4groupGeneric; R returns the group of generic function with many
categories e.g.: Arith, Compare, Logic, Math, Summary, etc.

Operators

The operator in R can be achieved as:
> ?Syntax

The most used ones in this book are:
arithmetics: +, -, *, /, Aetc.

logical: <, >, <=, >=, ==, |=, etc.
and the component $
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Table 1.1 Graphical

- P Function Description

function used in this book
plot Scatterplot
qgnorm Quantile—Quantile plot
barplot Bar plot
pairs Matrix of scatterplot
hist Histogram

Table. 1.2 Low level Function Description

graphics - - - -
points Add points by given coordinates
lines Draws a line
rect Draws a rectangle
arrows Draws a arrow

Table' 1.3 Some of the Parameter Description

graphical parameters -
Ity Line type
col Colors
pch Plotting symbol
mfrow, mfcol Multiple graphs

1.1.6 Graphicsin R

Another strength of the language is the high quality graphics produced. There are
many Internet sites and books that cover the vast fields of graphics in R. The
selection of the type of function to use depends on the nature of the data. The
next table shows the main graphical function used in this book (Table 1.1).

Over an existing graph the forms presented in the following table can be added
(Table 1.2):

By using help(par) parameters are obtained that can be used to customize the
graphical representation (Table 1.3).

On the other hand, xlab and ylab allow the labeling of axes while xlim and ylim
the coordinates ranges.

The graphics in R can be saved in many formats such as pdf, png, jpeg, bmp,
postscript, etc. using for instance:

> postscript("foo.eps”, width = 5.0, height = 4.0)
> plot(runif(20))
> dev.off()

or simply with a right-click on the graph and choosing copy or save.
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Table 1.4 Built in probability distributions

Random number

Distribution Density function Distribution function Quantile function generation
Beta dbeta pbeta gbeta rbeta
Binomial dbinom pbinom gbinom rbinom
Cauchy dcauchy pcauchy qcauchy rcauchy
Chi-squared dchisq pchisq qchisq rchisq
Exponential dexp pexp gexp rexp

F df pf qf rf
Gamma dgamma pgamma qgamma rgamma
Geometric dgeom pgeom gqgeom rgeom
Hypergeometric ~ dhyper phyper ghyper rhyper
Log-normal dlnorm plnorm glnorm rlnorm
Multinomial dmultinom pmultinom gqmultinom rmultinom
Negative binomial dnbinom pnbinom qnbinom rnbinom
Normal dnorm pnorm gnorm rnorm
Poisson dpois ppois gpois rpois
Student’s t dt pt qt rt
Uniform dunif punif qunif runif
Weibull dweibull pweibull qweibull rweibull

1.1.7 Probability Distributions

R includes the probability density function, the distribution function, the quantile
function, and the random number generation for the main theoretical probability
distributions which are shown in Table 1.4:

In the next chapters the beta, chi-squared, F, gamma, log-normal, and normal
distribution mainly will be used. Let us analyze some basic examples.

The area under the normal distribution between —3 and 3 standard deviations is
computed as:

> pnorm(3)- pnorm(—3)
[1] 0.9973

To generate a sample of size n = 15 from a gamma distribution with shape and
scale parameter 1:

> set.seed(1234) # fixing the seed

> x <— rgamma(15,1,1); print(x)

[1] 0.011 0.747 0.786 0.117 0.922 0.176 1.437 0.157 0.220 3.528
[11] 0.063 0.147 0.599 0.213 0.504
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1.1.8 Descriptive Statistics

The aim of the descriptive statistics is to summarize quantitative information about
a dataset and usually is divided in:

— measures of central tendency
— measures of dispersion
— measures of shape

The measures of central tendency provide information about the central position
of the data.

The most used of these measures is the arithmetic mean.

The arithmetic mean is the average of a group of observation and it is the
preferred measure

X=> xi/n (1.1)
i=1

where Xxi, X»,. . .,X, are the observations and n the samples size.

The median is the value that divides the ranked data into two equal parts. In odd
samples the median is the middle value while in even samples it is computed as the
average of the two central values.

Odd samples:

Me = x,/» (1.2)
Even samples:
Me = (x,2 + Xy /241) /2 (1.3)

The mode is the most frequent occuring value. A dataset could have one, many,
or neither mode.
The geometric mean: is another type of mean calculated as:

n 1/n
g= (][~ (1.4)
i=1
The harmonic mean is a mean computed as:

n

h=-
> 1/x
=

(1.5)
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The computation of these measures of central tendency is extremely easy. For
instance

> mean(X)
[1] 0.6417593
> median(x)
[1] 0.219502

When the sample is small the mode can be selected visually ranking the data.

> sort(x)
[110.011 0.063 0.117 0.147 0.157 0.176 0.213 0.220 0.504 0.599
[11] 0.747 0.786 0.922 1.437 3.528

As x was obtained via random number generation with eight decimal places and
the sample size is only n = 15, it is practically impossible to get equal values.
Therefore x does not have mode.

On the other hand the geometric and the harmonic mean respectively:

> prod(x) A (1 / length(x))
[1] 0.30

> 1 /mean(1 / x)

[1]0.10

The measures of dispersion determine the deviation respect to the mean. The
most commonly used are:
The variance that is the second central moment and is given by:

n

=3 (-%/n—1 (1.6)

i=1

where X is the arithmetic mean.
The standard deviation is the most common measure and results in the square
root of the variance.

i=1

s:\/i(x,-—x)/n—l (1.7

The range is the simplest measure.
R = Xmax — Xmin (1.8)

The computation in R is as follows:

> sd(x)
[1] 0.89
> var(x)
[1] 0.80
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The function range returns a vector with the minimum and maximum values. So,
the range is the difference of these values.

> diff(range(x))
[1]3.52

The measures of shape provide information about the shape and distribution
of the data.

The skewness is an index that measures the asymmetry of the data. Negative
values indicate the presence of tail on to the left and positive values to the opposite
direction. It is given by:

" n 3/2
g :% Z (x; —2)3/ [’11 Z (x; —)‘()21 (1.9)

The kurtosis measures the peakedness of the distribution.

n

=Y (i-0"/(n-1s’ (1.10)

i=1

where S is the standard deviation.

Often the kurtosis “excess” is used due to the fact that in a normal distribution
the kurtosis is equal to three. When this index takes negative values it is said that the
distribution is platykurtic while positive values indicate leptokurtic distribution.

Histogram is a useful technique for assessing graphically the skewness and kurtosis.

R does not bring internal function to determine both skewness and kurtosis.
However, they can be computed as follows:

> moments <— function(x,r){
> sum((x — mean(x)) * r) / length(x)}

> skew< —function(x){
> moments(x,3) / (moments(X,2) * sqrt(moments(x,2))) }

> kurtosis <— function(x) {

> moments(x,4) / (moments(x,2) = moments(x,2))}
Then:

> skew(x)

[1] 2.44

and

> kurtosis(x)

[1] 8.47
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1.1.9 Statistical Inference (Hypothesis Testing)

Hypothesis testing is normally integrated by three parts: establishing of the
hypotheses, calculation of the statistics, and computation of the p-value.

The simplest used ones are associated to the mean and variance comparison. For
instance, the ¢ test is employed to check if the mean is significant close to a target
when the sample size n < 30.

Suppose we need to prove that the random number generated from a uniform
distribution

H,:un=20.5
Hy:u#0.5

> set.seed(1234)

> x <— runif(20)

> t.test(x, mu = 0.5)

One Sample #-test

data: x

t = —0.47, df = 19, p-value = 0.64
alternative hypothesis: true mean is not equal to 0.5
95% confidence interval:

0.35 0.60

sample estimates:

mean of x

0.47

Being the p-value greater than the significance value 0=0.05, the probability of
Type I error is large. Therefore, there is no evidence to reject the null hypothesis
(Ho). Besides, the test provides a 95% confidence interval to the mean.

Another hypothesis testing can be found by using apropos(".test")

1.1.10 A Short Introduction to Statistical Process Control (SPC).
Univariate Control Charts

The introduction of the control chart dates back to the pioneer work of Walter A.
Shewhart in 1920. It is based on the principle that in the normal distribution,
99.73% of the observations are between =+ 3o.

A control chart is a graphical tool that allows to monitoring a quality character-
istic through the time respect to a central line and an upper and lower control limit.

When one or more samples fall outside the control limits indicates the presence
of a special cause; that is, a nonrandom shift has occurred. Consequently this
assignable cause must be detected and eliminated.
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When the process works without special causes, it is said that the process is in-
control.

The X Chart which is the most studied and employed chart is based on the
confidence interval for the mean

X = Zypo VA< u<X +Zypo/Vn (L11)

With a probability of 1-o the mean will be in this interval. Za/2 it is usually
substituted by 3 resulting

X —30/Vn<u<X+3g/vn (1.12)

Often in practice, the parameters p and ¢ are unknown and must be estimated.
Finally the chart results in

CL=X UCL=X+AR LCL=X—AR (1.13)
where
X = > Xi/m (1.14)
X, = Z;’:lx,-/n (1.15)
And
R=Y"" Ri/m (1.16)

being Ry=max(Xy)-min(Xy) (1.16) and A2 a constant selected according to the
sample size.
The X Chart can also be computed using the standard deviation.

CL=X UCL=X+A43S LCL=X—A;S (1.17)

Normally the X chart is used jointly with a chart such as R and S chart to
monitoring the process dispersion.
The R chart is as follows

CL=R UCL=D4R LCL =Ds;R (1.18)

While the S chart
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CL=S UCL=B,S LCL=B;S (1.19)

D3, Dy, B3, and B, are constants tabulated for the sample size.

In R the computation could be performed using the function gcc from the
package named in the same way.

The construction of the chart is illustrated in the following example.

> library("qcc")

> set.seed(20)

fixing the seed of the generator.

> x <— round(rnorm(120,20,2),2)

> length <— matrix(x, ncol = 4, byrow = TRUE)

> par(mfrow = c(1,2))

> qcc(length, type = "xbar", std.dev = "RMSDF"); qcc(length, type = "R")
(Fig. 1.2)

> qcc(length, type = "R")

1.1.11 Upnivariate Process Capability Indices (Cp, Cpk and Cpm)

Process capability can be conceived as the field in quality control focused on the
determination of the feasibility by the process to fulfill with specifications.

Normally, the process capability is expressed in ratios or indices between
tolerances and process performance. It is said that a process is capable when almost
all of the samples are between the specifications limits.

Most capability studies consider normality, so the natural tolerance limits are
placed 3o above and below of the mean.

In literature many indices have been proposed to measure the capability, being
the most recognized the following:

USL — LSL
Cp=—— =

1.20
o (1.20)
L—u u—LSL
Cpk = min( S5L —# #—LS (1.21)
30 30
L — LSL
602 + (u—T)?
r_ USL—LSL (1.23)

2
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Process Capability Analysis
for length
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Number of obs = 120Target=20 Cp =1.01 Exp<LSL 0.12%
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StdDev = 1.975878 USL=26 Cp_u=1.01 Obs<LSL 0%

Cp_k=1.01 Obs>USL 0%
Cpm =1.01

Fig. 1.5 Univariate capability indices for the simulated example

where USL and LSL are the upper and lower specification limits respectively and T
the target. This last one is often fixed as the midpoint of specifications.

For more details see e.g.: (Kotz and Lovelace 1998) or (Montgomery 2004).

The parameters of the distribution are practically unknown and consequently G
must be replaced by S. In this case the term process performance is often used.

Figure 1.4 displays four possible scenarios for Cp. In all cases the process mean
coincides with the target.

When Cp = 1 it is expected the 0.27% of nonconforming products. Whereas for
values of 1.33 and 1.63, 64, and 1 ppm respectively.

Returning to the example about the length, the computation in R is as follows

> cap <— gcc(length, type = "xbar", nsigmas = 3, plot = FALSE)
> process.capability(cap, spec.limits = c(14,26)) (Fig. 1.5)

Since the indices Cp, Cpk, and Cpm are bigger than 1, consequently, the process
is capable.



Chapter 2
Multivariate Control Charts

With the enhancements in data acquisition systems it is usual to deal with processes
with more than one correlated quality characteristic to be monitored. A common
practice is to control the stability of the process using univariate control charts. This
practice increases the probability of false alarm of special cause of variation.

Therefore, the analysis should be performed through a multivariate approach;
that is, the variables must be analyzed together, not independently.

In this chapter we present the multivariate normal distribution, the data structure
of the multivariate problems dealt in this book, the mult.chart function that allows
the computation in R, and the most used multivariate control charts:

— The control ellipsoid or %> control chart

— The T? or Hotelling chart

— The Multivariate Exponentially Weighted Moving Average (MEWMA) chart
— The Multivariate Cumulative Sum (MCUSUM) chart

— The chart based on Principal Components Analysis (PCA)

2.1 The Multivariate Normal Distribution

The multivariate normal distribution (MVN) is the core of the multivariate statistical
analysis. This is due to the fact that the sampling distributions of multivariate
distributions exhibit approximately normality due to the central limit theorem.

In the univariate case if a random variable is normally distributed with mean p
and variance o7 it has a density function:

flx) = e 2 2.1)
where — co<x<oo.

E. Santos-Fernandez, Multivariate Statistical Quality Control Using R, 17
SpringerBriefs in Statistics 14, DOI 10.1007/978-1-4614-5453-3_2,
© Springer Science+Business Media New York 2012
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The multivariate generalization is as follows. The upper part of exponent in the
function can be written as

(x—w?/o* = (x—w)(e®) " (x — ). 2.2)

Since in multivariate normal distribution, the number of random variables is
(p) > 2, then the generalization of (2.2) is

(x—w)'(Z) " (x = p) (2.3)
known as the Mahalanobis distance, where p is the p x 1 vector of expected values,

/

Wo=1[{m m o] (2.4)

and X the p X p variance—covariance matrix:

011 012 - Oyp
021 Oxn - Oy

=1 . .. . (2.5)
Opt Op2 ' Opp

. . . l 1
Fhmally, replacing in (2.1) the (2.2) by (2.3) and the constant Toret by PRREIE
we have

1 - (x—ﬂ)/(iz)"(x—u) >
f(X)_(Z’I‘[)p/2|Z|1/2€ I ( . )

where — oo<x;<o0.
The notation used to denote a p-variate dataset with MVN is N, (u, X).
The bivariate case (p = 2 variables) is the most studied and applied in the
practice. In this case the parameters of the distribution are given by the mean vector
an 612}
o2 02|
The computation of the inverse of X results as follows:

U= {Z ! } , and the covariance matrix £ = [
2

1 _
e —— {“22 “‘2} Q.7)
011022 — 0127 [ 021 011

Replacing and standardizing into (2.6) it is relatively easy to achieve the density
function:

L sl ey ene) e}

fxi,x)=
21\/011022(1—p7,)
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Example 2.1
In order to perform in R a graphical representation of a bivariate normal distribution
with mean vector u = {8] and covariance matrix £ = { 130 2] we have

> mu <— ¢(0,0)
> sigma <— matrix(c(10,3,3,6),2,2)
> rho <— sigma[1,2] / (sqrt(sigma[1,1] * sigma[2,2]))

Defining the mean vector, the covariance matrix, and the correlation coefficient:

> varl <— seq(—12,12,.7)

> var2 <— varl

> f <— matrix(0, length(varl), length(varl))

> for( i in l:length(varl)){

> for(j in 1:length(varl)){

> fli,j] <— 1/(2 * pi * sqrt(sigma[1,1] * sigma[2,2] * (1-rho » 2)))*exp(—1/
(2 * (1-tho A 2)) * ((varl[i] - mu[1]) A 2 / sigma[1,1] + (var2[j] - mu[2]) A2/
sigmal[2,2]-2 * rho * ((varl[i] - mu[1]) * (var2[j] - mu[2])) / (sqrt(sigma[1,1]) *
sqrt(sigmal[2,21))}}

> persp(varl, var2, f, xlab = "Variable 1", ylab = "Variable 2", zlab = "f(varl,
var2)", theta = 30, phi = 30, r = 50, d = 0.2, expand = 0.6, Itheta = 90, Iphi =
180, nticks = 4)

Then R shows the bivariate density function (Fig. 2.1a).
Moreover it is possible to represent in a two-dimensional form using a contour
plot (Fig. 2.1b):

> contour(varl, var2, f, xlab = "Variable 1", ylab = "Variable 2", nlevels = 8,
drawlabels = F, xlim = ¢(—8.,8), ylim = ¢(—8,8))

2.2 Data Structure

In order to provide a better comprehension in this section we offer a summary of the
data structure and notation used for all methods.

As it is shown in Fig. 2.2, almost all the problems studied in this book deal with k
samples of size n, taken from p quality characteristics or variables.

Where x; is the i"™ observation of the j"™ quality characteristics on the k™
sample.

Often the parameters of the distribution (1 and o) are unknown and must be
estimated through X and S, respectively, which are computed as follows:

I = M’ (2.9)

] m
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Fig. 2.1 (a) Bivariate density function. (b) Contour plot of a bivariate normal distribution
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Fig. 2.2 Graphical representation of the data structure

where

D i1 Xijk

Xjx =
/ n

(/)

T xlpl prl T xnpl

‘xlp2 x2p2 e xan

xlpm x2pm e xnpm

(2.10)

The case when the samples are composed by only one observation is called
individual observations and will be studied in next sections.
On the other hand, S is estimated as

5% S, - S:lp
S1a §% e Sy

Sy Syp 0 8

@2.11)
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where the diagonal elements are variances associated to the characteristics p and the
non-diagonal are the covariances. Being

S = Zk;‘% (2.12)

with

2 iy (v — ijk)z

Sk = = (2.13)

and
S = %Sﬂk (2.14)

with j # [ being

Sy D (i — %) (e = %) (2.15)

n—1

The mean vector (Xmv) is obtained in R as x.jk <— apply(3D.array, 1:2, mean).
First calculating the mean of each sample (see (2.10)), and then using the
colMeans function (see (2.9)):

Xmv <— colMeans(x.jk)

With respect to the sample covariance matrix, it can be achieved directly using
the function covariance included in MSQC package:

S <— covariance(x)

2.3 The mult.chart Function

The performing of the multivariate control chart in R can be carried out with the
function mult.chart which is a general function that allows to compute the most
accepted and diversified continuous multivariate chart such as

Hotelling T2
MEWMA
— MCUSUM according to Crosier (1988)

MCUSUM by Pignatiello and Runger (1990)
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The selection of the chart to use is done by specifying the argument type = “t2,”
“mewma,” “mcusum,” or “mcusum?2” in the same order previously introduced.
For more details about the function see the package manual:

> help(package = "MSQC")

In the function x must be a matrix or an array and jointly with type are the only
compulsory arguments.

Other important functionalities are the Phase that can be I or II (being I for
default) and the significance level (alpha) fixed in 0.01.

As it is shown in the next section, the covariance matrix (S) and mean vector
(Xmv) can be entered to be used in Phase II.

Finally the function mult.chart returns:

— The T? statistics

— The Upper Control Limit (UCL)

— The sample covariance matrix (S)

— The mean vector (Xmv)

— And if any point falls outside of the UCL and its decomposition

The execution of the function takes few hundredth of a second as can be tested by

> system.time(mult.chart(dowell, type = "chi", alpha = 0.05))

2.4 Contour Plot and x* Control Chart

In multivariate normal distribution the density is described by an ellipsoid centered
at mean vector with axes in direction to the eigenvectors (e) of the covariance
matrix, setting p as the origin and with length

+ /e (2.16)
being
(x =) (x—p) =2 (2.17)
If x follows N, (1, ) then (x — u)'(Z)™" (x — 1) is 72,,. Therefore,
(x—w)Z ' (x—p) < Xi,;r (2.18)
Example 2.2
To illustrate the construction of an ellipsoid contour consider the dataset called

dowel that comprises 40 samples from two correlated quality characteristics (diam-
eter and length) collected from a manufacturing process of a dowel pin.
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To call the dataset, just use
> data("dowell")

The construction of the control ellipse for dowell results as follows. Setting the
significance level:

> alpha <— 0.05 and
> p <— ncol(dowell)

Then the mean vector and the covariance matrix are estimated:
> Xmv <— colMeans(dowell)

The function colMeans was used directly due to the fact that this is a problem of
individual observations:

> S <— covariance(dowell)

So we have

7~ 1050 1.00] and 5 = |[491e—05 858 —05

8.58¢ —05 4.20e — 04 |°
The computation of the eigenvalues and eigenvectors is based on the R function
eigen:

> DDe <— eigen(S)$values
> Ue <— eigen(S)$vectors

For more details see help function.
Then we have

M =[4.39 —04 3.02¢—05], )/ =[0.22 —0.98], and ;' =[—0.98 0.22].

Plotting the ellipsoid origin given by Xmv. (at 0.50, 1.00) with the respective
axes labels and ranges:

> plot(Xmv[1], Xmv[2], xlim = ¢(0.46,0.54), ylim = ¢(0.95,1.06), xlab = "diame-
ter", ylab = "length",pch = 3)
The direction of the ellipsoid axes is given by the eigenvectors:

> inc <— atan (Xmv[2] + Ue[2,1] - Xmv[2]) / (Xmv[1] + Ue[1,1] - Xmv[1]))
Then we must compute the lengths regarding the x- and y-axes as follows:

> b <— (sqrt(DDe[1]) * sqrt(qchisq(1 - alpha,p))) * sin(inc)

> a <— (sqrt(DDe[1]) * sqrt(qchisq(1 - alpha,p))) * cos(inc)

> d <— (sqrt(DDe[2]) * sqrt(qchisq(1 - alpha,p))) * sin(inc)
> ¢ <— (sqrt(DDe[2]) * sqrt(gchisq(1 - alpha,p))) * cos(inc)

Finally, we trace the axes using
> arrows(Xmv[1], Xmv[2], Xmv[1] + a, XmV[2] + b)
> arrows(Xmv[1], Xmv[2], Xmv[1] - a, Xmv[2] - b)

> arrows(Xmv[1], Xmv[2], Xmv[1] - d, Xmv[2] + ¢)
> arrows(Xmv[1], Xmv[2], Xmv[1] + d, XmV[2] - ¢)
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Fig. 2.3 (a) Confidence ellipse with the axes for the dowell dataset. (b) Scatterplot for the dowell
dataset with the confidence ellipse

The ellipse results by connecting the axes extremes.
Fortunately it is relatively easy to draw an ellipse in R, making use of this
algorithm:

> angle <— seq(0, 2 * pi, length.out = 200)

> ch <— cbind(sqrt(qchisq(1 - alpha,2)) * cos(angle), sqrt(qchisq(1 - alpha,2)) *
sin(angle))

> lines(t(Xmv - (Ue %*% diag(sqrt(DDe))) %*% t(ch))),type = "1")

Figure 2.3a shows the result.
This procedure is known as confidence ellipsoid. Figure 2.3b shows the addition
of the points of the dowell array:

> points(dowell)

Obtaining no points outside the ellipse, there is no evidence of special causes;
therefore the process is in-control. Notice that if the limits from the univariate
individual control chart are plotted, how much this area differs to the confidence
ellipse. In fact, four points fall outside to this area (Fig. 2.4).

The difficulty to identify the points beyond the confidence ellipsoid is one of the
main drawbacks of the tool, although it can be solved by inserting the sample
number in plot when the amount of points is not large.

Another disadvantage is the complexity to construct the ellipsoid when p > 2
which can be solved using the %> control chart that results by plotting the test
statistics:

nx—p) (Z) ' (x—p) = Xi,;w (2.19)

where n is the sample size and the upper control limit:

UCL = 7, (2.20)
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Fig. 2.5 7 control chart for the dowell dataset

When p and X are estimated through a sufficiently large sample then the x> chart
can be used although the parameters are unknown.

Through the function mult.chart

> mult.chart(dowell, type = "chi", alpha = 0.05)

The function returns (Fig. 2.5):

Showing results alike to the control ellipsoid. An advantage of this chart is that it
allows the evolution of the samples along time.
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Below a guidance on the use of Phases in control charts is given. Usually, studies
are split into two phases, one different from the other.

Phase I: In this phase a retrospective analysis is applied to assess if the process is
in-control since the first sample was collected. These studies are used when control
charts are established for the first time and with the aim of bringing the process to
statistical control. Here a deep understanding and analysis are required before the
establishment of the in-control state.

Phase II: In this phase the control charts are employed to verify if the process
remains in-control. Here the process variability is monitored using the mean and
covariance achieved from Phase 1.

For more details see Woodall (2000).

Then, using the in-control mean and covariance matrix it is possible to control
future production (Phase II) for dowel2 array also stored in the MSQC package.

Employing the control ellipse of Phase I just add the Phase II points as

> data("dowel2")
> points(dowel2,pch = 4)

The argument pch = 4 allows to differentiate the points. One point falls outside
the 95th confidence ellipsoid, indicating the presence of special cause in the process
(Fig. 2.6).

Conversely the % control chart can be used.

The mean vector and covariance matrix of the in-control Phase I process are used
as the parameters of the distribution:

> vec <— (mult.chart(dowell, type = "chi", alpha = 0.05)$Xmv)
> mat <— (mult.chart(dowell, type = "chi", alpha = 0.05)$covariance)
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Finally they are passed in the function mult.chart:
> mult.chart(dowel2, type = "chi", Xmv = vec, S = mat, alpha = 0.05)

The fourth sample falls beyond the UCL; as a consequence, there is evidence of
special causes, and then the process is out-of-control (Fig. 2.7).

2.5 Hotelling T> Control Chart (Phase I)

The origin of the T control chart dates back to the pioneer works of Harold Hotelling
who applied this method to the bombsight problem in Second World War. The
Hotelling (1947) procedure has become without doubt the most applied in multivari-
ate process control and it is the multivariate analogous of the Shewhart control chart.
For that reason, it is also known as multivariate Shewhart control chart.

Often in practice the parameters |l and £ are unknown and consequently must be
estimated across the unbiased estimators X and S. Based on the multivariate
generalization of the t statistic from univariate normal theory:

Y
f= N 2.21)
making
- 2
p_E—w n(@ - p)($2) " (5 — ), (2.22)




28 2 Multivariate Control Charts

so the generalization results in

T2 =nX-X)(S) "X -X) (2.23)

with X and S being the vector of means and the covariance matrix, respectively.
The statistics T follows an F distribution with p and (mn — m — p + 1) degrees
of freedom. Therefore for establishing the control in Phase I the UCL results in

pm—1)(n—1)

UCL =
mn—m—p+1

Fo:,p, mn—m—p+1- (224)

While for monitoring future observations (Phase II) the limit is given by

pm+1)(n—1)

UCL =
mn—m—p+1

Fa,p,17zn7n17p+l- (225)

Here, (2.25), the number of samples (m) refers to the preliminary samples taken
to establish the in-control state (Phase I). Notice that this chart lacks lower control
limits (LCL) analogously to the % chart.

This chart is employed in introductory multivariate studies and has a good
performance in detection of large shifts in the mean.

According to Lowry and Montgomery (1995) the application of this chart
requires a number of quality characteristics between 2 and 10, taking more than
20 samples (often more than 50) of size 2, 3, or 10. These values are sometimes
limited by the very nature of the problem, though.

The following example explains the construction of this chart.

Example 2.3
In the manufacturing process of a specific carbon fiber tubing three correlated
quality characteristics are measured: inner diameter, thickness, and length of the
tubes in inches. The dataset named carbonl contains the information of 30 samples
of size 8 taken and summarized in Table 2.1.

The sample mean vector, sample covariance, and correlation matrix result as
follows:

0.99 0.25 036 0.67 1 063 0.57
Xx=| 104 |; Sx100= (036 145 1.02|; r=]063 1 0.38
49.98 0.67 1.02 592 0.57 038 1

It can be easily appreciated the direct correlation among the variables; being
significant between the inner diameter with the others.

As we are in the presence of a trivariate process, it is possible a spatial
representation. Figure 2.8 shows the three-dimensional scatterplot with the 99%
ellipsoid. All the points of the swarm are inside the ellipsoid.

A scatterplot matrix is presented below and corroborates the information offered
by the correlation matrix about the direct correlation between variables (Fig. 2.9)):

pairs(carbonl,labels=c("inner diameter", "thickness", "length"))



Table 2.1 Carbon fiber data

Subgroup mean

Variance (x100) Covariance (x100)

Inner Thickness Length

Sample (X;) (X2) (X3) Soi Sy Sus Si2 NE Sa3 T
1 1.03 1.08 50.16 0.15 1.19 298 —0.08 040 —0.42 4.99
2 0.97 0.95 49.92 040 1.01 638 0.16 1.03 0.25 4.66
3 1.01 1.05 50.14 0.17 099 196 031 038 0.81 3.28
4 1.00 1.05 4991 0.26 1.14 573 036 —0.29 0.82 1.93
5 0.96 1.00 49.83 043 325 1237 092 191 461 5.62
6 1.03 1.07 50.05 0.30 1.52 1.69 043 030 —0.48 4.64
7 0.96 1.02 49.95 0.17 0.58 434 0.03 034 0.74 550
8 1.00 1.02 50.02 0.17 0.79 6.16 0.11 —-0.11 0.32 0.87
9 1.00 1.10 50.03 0.20 143 1.87 034 —0.07 —0.88 2.87
10 0.99 1.02 50.00 0.13 0.53 6.58 0.11 0.18 —0.13 049
11 1.01 1.10 50.01 0.18 1.31 341 0.11 0.19 036 240
12 1.02 1.07 49.99 0.24 0.81 341 0.05 0.70 0.67 1.98
13 0.97 1.00 49.96 0.48 236 17.72 098 244 5.17 2.36
14 1.01 1.05 50.04 0.13 1.08 720 0.18 0.16 198 0.96
15 1.00 1.06 50.02 0.24 1.14 7.80 026 1.01 043 035
16 1.00 1.03 49.99 0.39 1.66 3.69 0.71 098 1.27 0.22
17 1.00 1.04 49.99 0.10 1.27 7.71 0.00 044 -2.09 0.05
18 0.98 1.00 49.94 0.18 1.56 540 026 0.85 2.22 0.86
19 0.98 0.96 49.93 0.24 1.61 5.68 0.55 0.18 0.55 343
20 1.01 1.07 50.02 037 255 491 064 1.16 3.33 1.08
21 0.98 1.03 49.96 0.28 0.39 7.21 0.15 139 0.64 045
22 0.99 1.04 50.07 0.23 246 824 0.60 0.70 1.74 2.74
23 0.95 0.92 49.86 041 1.82 269 073 040 032 943
24 1.00 1.09 50.05 0.15 0.75 927 0.12 0.69 —0.29 293
25 0.99 1.01 49.96 0.51 1.87 7.08 0.56 156 1.63 046
26 0.99 1.02 49.89 0.12 0.75 7.04 0.19 059 134 1.34
27 0.99 1.03 49.84 024 380 747 072 087 220 3.39
28 1.01 1.04 49.97 0.06 0.80 246 0.14 0.08 0.05 197
29 1.03 1.10 50.07 0.19 1.29 238 043 036 0.72 3.54
30 1.01 1.08 49.97 033 1.75 6.78 0.69 127 2.73 140
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Fig. 2.8 3D scatterplot with the 99% confidence region
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Fig. 2.9 Matrix of scatterplot

After this explanatory analysis let us compute the T statistics:

T2 =n(X - X)'(S)' (X - X)

T2 =8 x {[1.03 1.08 50.16] —[0.99 1.04 49.98]}'x

025 036 0.67]\"
036 140 1.00| | {[1.03 1.08 50.16]—[0.99 1.04 49.98]}
0.67 1.00 5.92

T? = 4.99.

After that, proceed in the same manner for the others 29. Whereas the limit is
computed as

UL P =D =1,

o, p, mm—m—p+1
mn—m—p+1 *7 r
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[1] "Hotelling Control Chart" 12
$Sucl UCL=11.35
[1]11.35 10
$t2 g

[.1]

o

[1,] 4.99 F 6+
[2,] 4.66 4
[29,] 3.54 2
[30,] 1.40 0
$Xmv
[1] 0.99 1.04 49.98
$covariance

L1 L2 (3]
[1.] 0.0025 0.0036 0.0067
[2.] 0.0036 0.0140 0.0100
[3.] 0.0067 0.0100 0.0590

Fig. 2.10 Hotelling control chart of the carbonl dataset

3(30—1)(8 — 1) 609

UCL = F +8—30—3+1 = =—=F +8—30—3+1 = 11.35.
3058 —30 3 4 1 001330:8-30-311 = 55610.013,30:8-30-3+1

To perform this computation in R we will use the dataset called carbonl:

> data("carbonl")
> mult.chart(type = "t2", carbonl)

The output is shown in (Fig. 2.10).

Notice that no points fall beyond the UCL; therefore, the process is in statistical
control. In order to work with any object of the function output just use the $
operator. For instance, to acquire only the T? statistics type

> mult.chart(type = "t2", carbon1)$t2

2.6 Interpretation, Decomposition, and Phase II

In control chart when one or more points fall outside of control limits then there is
evidence that the process has suffered a nonrandom shift.

In univariate alternative the statistics proceeds from only one variable, but in
multivariate problems the identification of the source that causes the out-of-control
signal is more complex.
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Table 2.2 Carbon fiber data of the Phase II

Subgroup means Subgroup means

Inner  Thickness Length Inner  Thickness Length
Sample (X;) (X2) (X3) T’ Sample (X;) (X3) (X3) T’
1 1.01 1.07 49.88 484 14 1.04 1.07 50.14 6.64
2 1.00 1.01 49.93 149 15 1.02 1.08 50.11 2.73
3 1.00 1.03 49.96 0.33 16 0.99 1.04 50.11 4.58
4 1.02 1.19 50.15 14.19 17 1.02 1.06 50.03 2.64
5 1.01 0.99 50.03 4.68 18 0.98 1.04 49.89 2.17
6 1.01 1.04 50.02 0.68 19 0.99 1.02 49.80 5.51
7 1.02 1.03 50.17 6.49 20 1.03 1.05 50.13 6.79
8 0.99 1.06 50.06 327 21 1.00 1.08 50.06 1.72
9 1.01 1.04 49.98 1.63 22 1.03 1.07 50.20 6.52
10 0.99 1.03 49.92 0.65 23 1.00 1.05 50.04 0.81
11 0.98 1.05 49.95 1.27 24 1.01 1.04 49.93 3.02

The issue usually named decomposition determines which variables are respon-
sible for the variation when a nonrandom signal occurs. A frequent practice consists
in performing a univariate chart although this analysis is often inefficient.

In the same way Alt (1985) proposed the use of Bonferroni control limits. After
that, this field has been widely investigated. See for instance Murphy (1987),
Doganaksoy et al. (1991), Wierda (1994), etc. The method suggested by Mason
et al. (1995) is the most widely accepted to face the decomposition, though.

Example 2.4
Return to the carbon data to illustrate a decomposition technique.

Being the process in control in the previous Example 3.3 the mean vector and the
covariance matrix from Phase I were used to monitor the process in future production
(Phase II). 25 samples of size n = 8 were obtained, which are summarized in
Table 2.2.

The computation of the statistics using the in-control sample mean and covari-
ance matrix is the following:

T? =8x{[1.01 1.07 49.88]—[0.99 1.04 49.98]} x

0.25 0.36 0.67 !
0.36 1.45 1.02|/100 | x{[1.01 1.07 49.88]—[0.99 1.04 49.98]},
0.67 1.02 5.92

T? = 4.84, and so forth for the others.
The UCL in Phase II results in

:p(m—l- (n—1)

UCL
mn—m—p+1

o,p,mn—m—p-+1
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330+ 1)(8 —1 651
( I ) 0.01,3,30x8—30—3+1 = 7~=10.01,330x8-30-3+1 = 12.13.

L —
ue 208

T 30x8—-30—-3+1

Analyzing the T? values in Table 2.2 it is easy to determine that the fourth
sample falls beyond UCL. This is evidence that a shift took place.

The method also called MYT decomposition (Mason et al. 1995) deals with
the identification of the contribution of each individual variable and all the possible
combinations increasing the group size. The scheme they proposed can be described
as follows:

1. Compute the T statistics (each variable independently)

2y — Xj)z
I, = — g (2.26)
J
where X; and Sf are the mean and the variance of the j"™ variable.
2. Compare with their corresponding threshold according to the phase and the
sample size. For instance for individual observations in Phase II:

(m+1)(m-1)

4
UCL = ) 2.27
m(m _ p) op,m=p ( )

3. Then exclude the variables that satisfy:
T;>UCL. (2.28)

4. Construct the T? statistics for the combinations of the remaining variables; e.g.:
2
(x1x2)°

5. Exclude variables whose T exceed the limits. For p = 2 the limits are:

2m+1)(m—1)

L =
ue m(m — 2)

Foc72,m—2~ (229)

6. Carry out iteratively until the last combination that includes all the quality
characteristics.

Returning to the example, the decomposition of the 4th sample using this
methodology results in

X, =[1.02 1.19 50.15]; Ti=244; T;=1226; T;=3.82

130+ 1)(30 — 1)

I —
ve 30(30— 1)

Foo1,130-1 = 7.85.
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Fig. 2.11 Hotelling control 15
chart of the carbon2 dataset ])
in Phase II UCL= 12.13
10
3\
'_
5 —
0 —

T T T T T
5 10 15 20 25
Sample

AsT3 = 12.26>>7.85,x, contributes significantly to the out-of-control signal, and
consequently it is excluded.

. . . . 2 2 2 . .
All combmat;ons that include x,, i.e.: T(X1 ) T(XZ_),}) , and T(X1 o) ATE eliminated.

Only the pair T( ) remains to be checked:

0.0025 0.00677 _
Tl = 8% {[1.02 50.15] —[0.99 1.04]}’*{ ] !

0.0067 0.0592
*{[1.02 50.15] —[0.99 1.04]} =4.15

The UCL associated is

2(30+ 1)(30 — 1)
30(30 —2)

UCL = Foo1230—2 = 9.77.

As Tél_n) does not exceed the UCL the combination of x; and x; does not
contribute to the signal.

In order to compute in R the T2 chart with the new 25 samples in Phase II it is
necessary to use the values of the mean vector, the covariance matrix, and their
sample size stored in colm:

> Xmv <— mult.chart(carbonl, type = "t2") $Xmv

> S <— mult.chart(carbonl, type = "t2") $covariance

> colm<—nrow(carbonl)

then

> data("carbon2")

> mult.chart(carbon2, type = "t2", Xmv = Xmv, S = S, colm = colm)

The results are presented above (Fig. 2.11).

The process is out-of-control since the fourth sample falls outside the UCL.
When this happens the mult.chart function returns a table with the T value of the
decomposition, the UCL, and the p-value for all possible combinations of variables.
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The following point(s) falls outside the control limits[1] 4:
$‘Decomposition of

(114

2 Decomp UCL p-Value 1 2 3
[1,] 3.3800 6.9823 0.0763 1 0 0
[2,] 12.2223 6.9823 0.0015 2 0 0
[3,] 4.0347 6.9823 0.0540 3 0 0
[4,] 12.3549 9.7767 0.0001 1 2 0
[5,] 4.8015 9.7767 0.0158 1 3 0
[6,] 12.9364 9.7767 0.0001 2 3 0
[7,] 13.6477 12.1347 0.0000 1 2 3

The first three rows present for each of the quality characteristic analyzed
(decomposed individually). The x, represents the source of variability since p-value
= 0.0015. Obviously all the combinations that include x, exceed their respective
value of UCL. Finally, the same results are obtained.

2.6.1 T2 for Individuals

In the previous section we have studied rational subgroup cases in which each
sample is composed by more than one observation.

However, in many processes, due to its own nature, it can only measure one
observation at each time interval. This case is frequently named for individuals.

It means that in data structure of the process only one observation per variable is
recorded at the time m therefore, n = 1.

In this case T bears only few modifications:

=X -X)(S)"' (X - X) (2.30)

and evidently the control limits must be modified due to the absence of n. In this
case, Tracy et al. (1992) propose for Phase I:

(m—1)°

UCL = Brx‘p/Z,(m—pfl)/Zv (231)

where P is the beta distribution with p/2 and (m — p — 1)/2 degree of freedom at
significance level alpha (o).
Conversely at Phase II the limit is placed at

pm+1)(m—1)

UCL = 5
m* — mp

Fopm—p- (2.32)
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Presumably, the traditional calculation of S is limited for the lack of subgroups,
wherefore many estimators have been suggested.

Sullivan and Woodall (1996a) examined the use of the cumulative sum of
differences regarding the mean by its transpose:

Sew = . (2.33)

On the other hand, Holmes and Mergen (1993) proposed the difference among
consecutive observations instead of the difference respecting the mean:

/

X2 — X1 X2 — X1
A3 — X2 X3 — X2
Xm — Xm—1 Xm — Xm—1
Spm = (2.34)
" 2(m—1)

The following example shows the construction of the T* chart when n = 1.

Example 2.5

Bimetal thermostat has innumerable practical uses. These types of thermostats hold
a bimetallic strip composed by two strips of different metals that convert the
changing of temperature in mechanical displacement due to the difference in
thermal expansion.

Certain type of strip composed of brass and steel is analyzed in a quality
laboratory by testing the deflection, curvature, resistivity, and hardness in low
and high expansion sides. Table 2.3 shows 28 samples taken by the quality control
department.

The construction of the scatterplot matrices provides a graphical vision of the
association of the variables (Fig. 2.12):

"o "non

> pairs(bimetall, labels = c("deflection","curvature",

side","Hardness high side"))

resistivity","Hardness low

The sample mean vector and the correlation matrix result in

21.02 1.00 0.61 0.38 0.40 0.60
40.02 0.61 1.00 0.59 0.51 0.85
X=11519|; r={038 059 1.00 022 0.50
22.02 0.40 0.51 0.22 1.00 0.32

26.01 0.60 0.85 0.50 0.32 1.00
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Table 2.3 Bimetal data of the Phase 1
T? T?
Hardness low  Hardness high using  using
Sample Deflection Curvature Resistivity expansion side expansion side “sw”  “hm”
1 21.15 40.24 14.95 22.24 26.24 1.82 1.66
2 21.10 39.99 14.79 21.62 25.92 1.05 0.82
3 20.95 39.82 14.91 22.04 25.95 1.51 1.45
4 21.03 40.01 14.89 21.74 26.19 8.63 8.27
5 21.21 40.03 15.03 22.32 25.86 8.69 7.72
6 21.37 40.31 15.21 22.03 26.08 2.08 2.44
7 20.70 39.90 14.75 21.67 25.86 3.57 3.77
8 20.87 39.89 15.04 21.89 26.02 7.94 9.17
9 21.27 40.14 15.20 22.27 26.23 8.16 8.24
10 20.97 40.13 14.98 22.11 26.22 3.39 4.24
11 21.34 40.20 14.91 21.99 25.89 2.69 2.17
12 20.92 39.87 14.90 21.76 2593 6.34 5.84
13 20.83 40.00 15.15 22.20 26.02 4.71 4.66
14 20.84 39.90 15.06 22.08 26.07 2.09 1.8
15 20.95 40.16 14.97 22.20 26.25 4.85 5.14
16 20.75 39.80 14.71 22.01 25.66 11.57 11.84
17 21.00 40.05 15.10 22.36 26.10 1.13 1.29
18 21.21 40.26 15.05 22.15 26.17 1.55 1.14
19 21.03 39.87 14.98 22.05 26.07 874 10.92
20 21.01 39.84 14.97 21.89 26.19 11.4 12.49
21 21.08 40.00 14.78 22.20 25.90 0.77 0.74
22 21.08 39.78 14.96 22.02 26.09 5.61 5.30
23 20.69 39.77 14.92 21.91 25.87 5.18 4.29
24 20.88 39.85 15.00 21.79 26.00 3.53 3.32
25 21.01 40.02 15.06 21.92 26.08 9.24 7.10
26 21.01 39.95 14.78 22.02 25.86 5.07 4.34
27 21.07 40.08 15.40 22.15 26.06 1.55 1.43
28 20.97 39.87 14.99 21.77 25.91 2.14 2.12
The computation of S, is as follows:
20.847" [21.027’ 20.84 21.02
m
> (xl-——)(xi—x)’ | 39.84 40.04 39.84 40.04
Sgp == = 1498 — 1519 »x<{ [1498 | —[15.19| y+
m—1 28 —1
21.88 22.02 21.88 22.02
25.87 26.01 25.87 26.01
21.147" [21.027' 21.14 21.02
39.93 40.04 39.93 40.04
.t 15.19| — | 15.19 X 15.19 | — [ 15.19
22.02 22.02 22.02 22.02
26.01 26.01 26.01 26.01
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Fig. 2.12 Scatterplot matrices of the bimetall dataset
Finally
0.092 0.025 0.038 0.028 0.027
0.026 0.019 0.026 0.016 0.017
Sqw = 10.038 0.026 0.106 0.016 0.023
0.028 0.016 0.016 0.054 0.011
0.027 0.017 0.023 0.011 0.022

So, the T? statistics is calculated as

T = (X -X)(8)" (X - X),
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20.84
39.84
14.98
21.88
25.87
20.84

39.84

X 14.98
21.88
25.87

21.02
40.04
15.19
22.02
26.01
21.02]
40.04
15.19
22.02

26.01 |

Interpretation, Decomposition, and Phase II

0.092
0.026
x | 0.038
0.028
0.027

0.025
0.019
0.026
0.016
0.017

0.038
0.026
0.106
0.016
0.023

0.028
0.016
0.016
0.054
0.011

39

0.027
0.017
0.023
0.011
0.022

le = 1.82, and so forth for the others (that can be found in Table 2.3).

On the other hand, to calculate S,

X2 — X1 X2 — X1
X3 — X2 X3 — Xp
- Xm—1 — Xm—2 Xm—1 — Xm—2 1
" 2(m—1) - 2(28—1)
20.89 —20.84 39.94 —39.84 25.97 —25.87
21.13 —20.89 40.12 —39.94 26.11 — 25.97
21.14 —20.96 39.93 —40.03 25.98 —25.94
20.89 — 20.84 39.94 —39.84 2597 — 25877’
21.13 —20.89 40.12 —39.94 26.11 — 25.97
X
21.14 —20.96 39.93 —40.03 25.98 —25.94
0.090 0.029 0.041 0.027 0.031
0.029 0.021 0.031 0.017 0.018
Swm = 10.041 0.031 0.121 0.007 0.026
0.027 0.017 0.007 0.065 0.012
0.031 0.018 0.026 0.012 0.021



40 2 Multivariate Control Charts

[1] "Hotelling Control Chart"
$ucl 159 UCL= 14.53
[1] 14.53
$t2

[.1]
[1,] 1.82
[2,] 1.05
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T2

[27] 1.55 5
[28,] 2.14
$Xmv
[1] 21.02 40.02 15.19 22.02 26.01
$covariance
L1 [2] [3] [4] L.S) 0 10 15 20 25
[1,] 0.092 0.025 0.038 0.028 0.027 Sample
[2,] 0.025 0.019 0.026 0.016 0.017
[3.] 0.038 0.026 0.110 0.016 0.023
[4,] 0.028 0.016 0.016 0.054 0.011
[5,] 0.027 0.017 0.023 0.011 0.021

o1 -

Fig. 2.13 Hotelling control chart with method = “sw” method and using the bimetall dataset

In the same manner to compute the statistics:

20.84 21.02 0.090 0.029 0.041 0.027 0.031
39.84 40.04 0.029 0.021 0.031 0.017 0.018
TP=1{ | 1498 | — | 1519 ] ¢ x [0.041 0.031 0.121 0.007 0.026
21.88 22.02 0.027 0.017 0.007 0.065 0.012
25.87 26.01 0.031 0.018 0.026 0.012 0.021
20.84 21.02]
39.84 40.04
x ¢ | 1498 | — | 15.19
21.88 22.02
25.87 26.01 |

T? = 1.66 and so successively for the others.
With o = 0.05 the UCL results in

(m—1) (28 — 1)

2
UCL = Tﬂ%,p/l(m—p—l)/Z = Tﬁ0<05,5/27(28—5—1)/2 = 14.53.
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[1] "Hotelling Control Chart"
Sucl 187 UCL= 14.53
[1] 14.53
$t2

L1]
[1,] 1.66
[2,] 0.82

10

T2

27.] 143 5
28] 2.12

$Xmv

[1] 21.02 40.02 15.19 22.02 26.01

$covariance 0

L1 21 031 (4] 03 0 5 10 15 20 25
[1] 0.090 0.029 0.041 0.027 0.030 Sample
[2.] 0.029 0.021 0.031 0.017 0.018
[3.] 0.041 0.031 0.120 0.007 0.026
[4] 0.027 0.017 0.007 0.065 0.012
[5.] 0.030 0.018 0.026 0.012 0.021

Fig. 2.14 Hotelling control chart with method = “hm” method and using the bimetall dataset

The mult.chart function detects automatically when x is a matrix or an array with
depth n = 1 and computes S across any of the two methods that can be defined by
the user using method = “sw” or “hm” or equally using the initials “s” or “h.” Even
if method is missing the default way is “sw™:

> mult.chart(type = "t2", bimetall, method = "sw", alpha = 0.05)

The output is shown in (Fig. 2.13)
In contrast to compute using the Holmes and Mergen (1993) method:

> mult.chart(type = "t2", bimetall, method = "hm", alpha = 0.05)

obtaining (Fig. 2.14):

Notice that the function’s output by using each method differs in the statistics
and in the covariance matrix. In this example, comparing the two graphs, it can be
seen that no significant difference was obtained from Holmes and Mergen (1993)
and Sullivan and Woodall (1996a).

Now the extension of the example is possible by performing a control in the
future production (Phase II) using the in-control mean and covariance obtained.
The collected data of this production is stored in bimetal2.

Obviously it is needed to fix the in-control parameters:

> colm <— nrow(bimetall)
>vec <— mult.chart(type = "t2", bimetall, method = "sw", alpha = 0.05)$Xmv
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Fig. 2.15 Hotelling control chart in Phase II with both “sw” and “hm” method and using the
bimetal2 dataset

First computing the covariance matrix according to the sw method:

>mat <— mult.chart(type = "t2", bimetall, method = "sw", alpha = 0.05)
$covariance

and mat2 for the covariance with hm proposal.

>mat2 <— mult.chart(type = "t2", bimetall, method = "hm", alpha = 0.05)
$covariance

> data("bimetal2")

To achieve both outputs in the same graphs:

par(mfrow = c¢(2,1))

> mult.chart(type = "t2", bimetal2, Xmv = vec, S = mat, method = "sw", alpha =
0.05)

> mult.chart(type = "t2", bimetal2, Xmv = vec, S = mat2, method = "hm", alpha
=0.05)

The chart using the sw method detects nonrandom shifts at the points 8 and 17
while that using the hm method detects the samples 8, 9, and 17.

Finally, both methods almost present similar sensitivity in this practical problem
(Fig. 2.15).
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2.7 Generalized Variance Control Chart

In the same manner as that in univariate control chart, the monitor of the process
mean is coupled with a dispersion chart; monitoring the process variability results
extremely useful in multivariate issues. This is because in the multivariate
Shewhart chart it was assumed that the process dispersion remained constant.
This hypothesis must be checked in practice.

To date various methods have been proposed for the simultaneous monitoring of
variability but clearly the generalized variance chart is the most accepted. For more
details see for example Alt (1985) or Montgomery (2004). The term generalized
variance is known as the determinant of the covariance matrix.

This type of chart results by plotting the determinant of the covariance matrix
along with the natural upper and lower control limits.

When the covariance matrix X is known the parameters of the chart result in

UCL = |3 (b1 + 3b2‘/2) (2.35)
CL = b3 (2.36)
ap 12

LCL = max{ 21y 03b2 ) ) (2.37)

where

1 P
by = —J 2.38
: (n—l)p,»ljl(n 2 (239
and

1 P

by=—— [[(n— ﬁn—z—i—Z ~I[n-0| (2.39)

(n—1) j=1 i=1 i=1

Notice that n must be higher than the number of quality characteristics (p).
Frequently ¥ is unknown and is estimated through S based on the relationship:

IS| = b1|Z] (2.40)

Therefore the parameters result in

18| 1/2
veL =1 (b +3b, ) (2.41)
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=S| (2.42)
N 12
LCL = max{ p, (”1 —3by ) : (2.43)
0

Taking into account that S is positive-definite matrix, the LCL lacks of sense for
negative values.

Example 2.6
Let us return to the carbon fiber data from Example 3.3 in which 30 samples of three

quality characteristics of size n = 8 were taken.
In this case X is unknown and in consequence S was estimated:

0.25 036 0.67
§Sx100= 036 140 1.00
0.67 1.00 5.92

Then, the central line is CL = |S| = 9.53 x 10~".

Secondly
R (8~ ) == x 7% 6 x 5= 0.6122
SRRTIEIEE § S VE -
=
1 3 3 3 1
b 8 — 8—i+2) — 7x6x5
2= (8_1)6111( )[H -] ] 7649 <" O
X (9% 8x7—7x6x5)=0.5248
and finally
9.53 x 1077 .
22 E /2) _ -6
UCL == (0.6122 +3 % 0.5248 43386 x 10
9.53 x 1077 12
LCL — maxd g ey (061223 x 0.5248'2)
0
—2.4314 x 107°
LCL = max{ 0 x =0.

The elements of the sample covariance matrix and the corresponding determi-
nant for each sample are presented in Table 2.4.



Table 2.4 Bimetal data for the generalized variance chart

Means Variances (x100) Covariances (x 100)
Inner Thickness Length

Sample (X;) (X3) (X3) S Sy S; Si2 Si3 Sa3 det(S)

1 1.03 1.08 50.16 0.15 1.19 298 —0.08 040 —0.42 3.10E-07
2 0.97 0.95 49.92 040 1.01 638 0.16 1.03 0.25 144E-06
3 1.01 1.05 50.14 0.17 099 196 031 038 0.81 7.00E—-08
4 1.00 1.05 49.91 026 1.14 573 036 —0.29 0.82 5.00E-07
5 0.96 1.00 49.83 043 325 1237 092 191 4.61 1.94E-06
6 1.03 1.07 50.05 0.30 152 1.69 043 0.30 —0.48 1.40E-07
7 0.96 1.02 49.95 0.17 058 434 0.03 034 0.74 2.70E-07
8 1.00 1.02 50.02 0.17 079 6.16 0.11 —-0.11 0.32 6.90E—07
9 1.00 1.10 50.03 020 143 187 034 —-0.07 —0.88 2.00E—07
10 0.99 1.02 50.00 0.13 053 658 0.11 0.18 —0.13 3.70E—-07
11 1.01 1.10 50.01 0.18 131 341 0.11 0.19 0.36 7.20E-07
12 1.02 1.07 49.99 0.24 081 341 005 070 0.67 1.90E—-07
13 0.97 1.00 49.96 048 236 17.72 098 244 5.17 8.60E—07
14 1.01 1.05 50.04 0.13 1.08 720 0.18 0.16 198 3.60E—07
15 1.00 1.06 50.02 024 1.14 780 026 1.01 043 6.70E-07
16 1.00 1.03 49.99 0.39 1.66 3.69 071 098 1.27 9.00E—08
17 1.00 1.04 49.99 0.10 127 7.71 0.00 044 -2.09 3.20E—-07
18 0.98 1.00 49.94 0.18 156 540 026 085 222 1.30E-07
19 0.98 0.96 49.93 024 1.61 568 055 0.18 0.55 4.30E-07
20 1.01 1.07 50.02 0.37 255 491 064 1.16 3.33 3.00E-08
21 0.98 1.03 49.96 028 039 721 015 139 0.64 3.00E-08
22 0.99 1.04 50.07 023 246 824 060 0.70 1.74 1.20E—-06
23 0.95 0.92 49.86 041 182 269 073 040 0.32 4.00E-07
24 1.00 1.09 50.05 0.15 0.75 927 0.12 0.69 —0.29 5.20E-07
25 0.99 1.01 49.96 0.51 187 7.08 056 1.56 1.63 1.50E—06
26 0.99 1.02 49.89 0.12 075 7.04 0.19 059 134 2.10E-07
27 0.99 1.03 49.84 0.24 380 7.47 072 087 220 1.61E-06
28 1.01 1.04 49.97 0.06 080 246 0.14 0.08 0.05 7.00E-08
29 1.03 1.10 50.07 0.19 129 238 043 036 0.72 1.20E-07
30 1.01 1.08 49.97 033 175 678 0.69 127 2.73 1.80E-07

The points to be plotted are the determinants of the covariance of each sample.
For instance for the first sample:

0.15 —-0.08 0.40

det(S;) = || —0.08 1.19 —042

040 —-042 298

=3.10x 107".

Performing in R is done through the gen.var function that only requires as
argument an array of dimensions: p X m X n. For instance (Fig. 2.16):

> gen.var(carbonl)

Then R returns:
All points fall inside the control limits; therefore, there is no signal of out-of-
control associated to the process variability.
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[1] "Generalized Variance Control
Chart"

$ Upper Control Limit'
[1] 4.3¢ -06
$'Lower Control Limit’
[1]0
$stat
[.1]
[1,] 3.1e-07
[2,] 1.4e -06

UCL= 4.34e-06

det(S)

CL=9.5e-07

LCL=0

0e+00

[29.] 1.2¢ -07 0 5 10 20 30
[30,] 1.8¢ -07 Observation

Fig. 2.16 Generalized variance control chart using the carbonl dataset

2.8 Multivariate Exponentially Weighted Moving
Average Control Chart

MEWMA is the natural multivariate extension of the EWMA chart proposed by
Roberts (1959). It was introduced by Lowry et al. (1992) and is more sensible in
detecting nonrandom changes in the process and based on the principle of the
weighted average of the previously observed vectors.

Despite the fact that it is used mainly for individual observations (n = 1) it can
be utilized in rational subgroup case as it will be explained later. It is also a chart for
Phase II.

The MEWMA chart has the statistics:

T° =Z/%,'Zi>h, (2.44)
where
Zi =X+ (1 — )X (2.45)

being Z, = 0, A is diagonal p x p matrix of the smoothing constant with 0 < 4; < 1,
although in practice there is no reason to employ different values of A in the same
problem. Practically, the most often used value of A is 0.1.

In a particular case, when rational subgroups are obtained, i.e., n > 1, just
replace X; by X;.
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Lowry et al. (1992) provide two alternatives to compute the X, the exact
covariance matrix:

Yy = z 2.46
4 2—1 ( ) ( )
and the named asymptotic covariance matrix

ZZI 2 1 z 247

the first one having a better performing.
Moreover, they point out that the ARL performance of the chart depends only on
noncentrality parameter 0:

0 = [(11 — 1) =1ty — 1)) "*, (2.48)

where 1 is the mean vector for Phase II. Notice that when A = 1 MEWMA chart is
transformed on T? chart.

One of the main troubles on this chart is the selection of the h or UCL. Prabhu
and Runger (1997) presented computed tables, based on the Markov chain
approach, to choose the UCL according to the parameters A, p, 0, and ARL.

On the other hand, Bodden and Rigdon (1999) proposed a FORTRAN program
to compute either the UCL for given values of ARL, A, and p or ARL for values of
UCL, A, and p. These programs can be obtained on StatLib site at http://lib.stat.
cmu.edu/jqt/31-1.

Example 2.7
To illustrate the MEWMA chart, return to Example 3.3 of the carbon fiber tubes.
With
0.25 0.36 0.67
Sx100= 1036 1.40 1.00 | itis easy to obtain
0.67 1.00 5.92
0.25 0.36 0.67
ol 036 1.40 1.00
0-1[1*(1*0-1) 0.67 1.00 5.92
2-0.1 100
249 359 6.69
= (359 1449 102
6.69 10.25 9.21

Sz, x 10° =


http://lib.stat.cmu.edu/jqt/31-1
http://lib.stat.cmu.edu/jqt/31-1
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Zl:i)_(1+(1—;u))_(1,1:0.1)_(14—(1—0.1))_(1,1 being
X, =[1.03 1.08 50.16]—[0.99 1.04 49.98] then:

0.0034
Z; = | 0.0043 | and finally
0.0172
0.0034 7' 249 359 6.69 1 [0.0034
T} =2/%;'Z, = 00043 | x{ [359 1449 102|/10° 5 x | 0.0043
0.0172 6.60 1025 9.1 0.0172
= 0.6236

and so forth for all values of i.

Using the program by Bodden and Rigdon (1999) with ARL = 200, A = 0.1,
and p = 3, UCL = 10.81 is obtained.

The execution in R of the MEWMA control chart is furthermore through the
mult.chart function specifying type = “mewma.”

Another argument to be entered is lambda and in its absence the function works
with the default value 0.1.

In the MEWMA chart the covariance matrix could be used in three different
ways to estimate S in the same way as the T is computed through the matrix of the
mean sample covariance for rational subgroups, and for individual observations,
using the methods by Sullivan and Woodall (1996b) and Holmes and Mergen
(1993).

For the computation of the UCL, mult.chart uses the method suggested by
Bodden and Rigdon (1999). A drawback is that the amount of the choices to select
lambda, p, and ARL is limited as follows:

p for values 2,3,...,10
lambda for 0.1, 0.2,...,0.9
ARL only 200

However the user can enter as argument the desired UCL obtained for instance
by Prabhu and Runger (1997) or Bodden and Rigdon (1999).
To carry out the previous example in R, just:

> mult.chart(type = "mewma", carbonl)

Then R prompts:

Notice in Fig. 2.17 that no alarm is given since no point falls beyond the UCL.

The assumption of the central limits theorem is not satisfied in case of individual
observations; therefore in practice the normality assessing must be done.

Borror et al. (1999) proved how EWMA chart is robust regardless whether data
follows a normal distribution or not. Later, Testik and Runger (2003) prove through
a Monte Carlo simulation how the MEWMA chart is robust to non-normal data.
That is, MEWMA is a nonparametric chart, so it can be used with suitable
performance independently of the distribution of the data, the latter being one of
the most striking properties.
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[1] "MEWMA Control Chart" 12
UCL=10.81

$ucl 10 -
[1] 10.81 o
$t2 N

L1] =67
(1] 0.62 4
[2,] 0.30 5
0 %8s oo
[29.] 0.07 T T T T T T

0 5 10 15 20 25 30

[30,] 0.12 Sample
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[1] 0.99 1.04 49.98
$covariance

LI [2] 3]
[1.] 0.0025 0.0036 0.0067
[2.] 0.0036 0.0140 0.0100
[3.1 0.0067 0.0100 0.0590

Fig. 2.17 MEWMA control chart with A = 0.1 using the carbon] dataset

2.9 Multivariate Cumulative Sum Control Chart

The MCUSUM control chart appears as the multivariate extension of the CUSUM
control chart originally proposed by Page (1961). It is focused on improving the
sensitivity regarding the previously introduced T? chart by detecting small shifts on
the process and is based on the principle of accumulating information of the former
observations. As well as the MEWMA chart, MCUSUM is a Phase II chart.

There are four main alternatives accepted to construct an MCUSUM chart which
are exposed below.

The first of these suggestions was introduced by Woodall and Ncube (1985).
They proposed the individual monitoring of the mean vector through the utilization
of univariate CUSUM charts. Analogous to CUSUM there is also a two-side chart.
Its statistics is given by

0
S =min¢ _ Xi,j_,uo_j _
1 S™, . +—+k;
T
(2.49)
0
ST = max Yi‘—ﬂ()'
iyj K I A TR S ()
1 0/ V/n MY
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where L ; is the jth element of the p vector, 6 ; is the (j X j)th diagonal element of
2 matrix, and k is a constant. Notice that when i = 1 then S,_J and Sfj =0.
The control limits are
UCL = h;r
LCL = h; . (2.50)

After that, Healy (1987) suggested a procedure to detect shifts in mean based on
the linear combination of variables:

0
S = max{ Sii+d Xi—k }, (2.51)
where
— ) (B!
o’ (m/ Zuo_)l(n) - (2.52)
[(/h — 1) (70) (g — Mo)}
and
Pty _
b= 05— =) G “0)1/2. (2.53)
{(H — o) (27) Ho)}

This chart includes the control limits:
UCL = h.

On the other hand, Crosier (1988) presented two multivariate procedures. Here
we present the version of the better ARL performance.

The statistics is
2\
T? = lsi(;> S,»] >h, (2.54)

where

0 if Ci<k
Si = (Sf—lJrXi*Ha)(l*cﬁl) if Ci>k >

where So = 0, k > 0, and

(2.55)

1/2

_ L2\ ! _
Ci= [(Si-1 +Xi — 1) (;) (Si-1 +Xi — /‘0)] : (2.56)
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Likewise, the limit is
UCL = h.

Finally Pignatiello and Runger (1990) proposed likewise two MCUSUM charts,
the following resulting as the better performance alternative:

0
T = max{ [S',(z)—l S'] 12 — kn; (2.57)
where
Si= > (Xi— ) (2.58)
j=i—ni+1
and

_Jnmatl if T2 >0
" { 1 otherwise (2.59)

UCL = h.

Although we have introduced these four approaches, only the last two will be
applied in this section.

Example 2.8
Returning to the example of the carbon data and beginning for Crosier (1988)
method we have

So =0,k > 0, and

{[1.01 1.07 49.88]—[0.99 1.04 49.98]}' x 12
| /025 036 0.67 B
" 0.36 1.40 1.00 | /100/8 | x{[1.01 1.07 49.88]—[0.99 1.04 49.98]}
0.67 1.00 5.92
=2.3591

After that, if C; > k then

0.5
Sy ={[1.01 1.07 49.88]—1[0.99 1.04 49.98]}(123591).
S; =[0.0138 0.0266 —0.0828] '
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The statistics results in

1 1/2
0.25 0.36 0.67
72 [0.0138 0.0266 —0.0828]" x 0.36 1.40 1.00|/100/8 X
: 0.67 1.00 592
[0.0138 0.0266 —0.0828]
T: = 1.86
The other values are calculated in the same manner.
In the case of the Pignatiello and Runger (1990) MCUSUM we have
ny = 1and then S; = {[1.01 1.07 49.88] —[0.99 1.04 49.98]},
SO
0
- 1. 1/2
0.25 0.36 0.67
[0.0138 0.0266 —0.0828]'x | |0.36 1.40 1.00|/100/8
T? = max —0.5x1.
0.67 1.00 5.92
x [0.0138 0.0266 —0.0828]
T} =1.86

The other values of T? can be computed in the same way.

The execution in R of the Crosier (1988) and Pignatiello and Runger (1990)
MCUSUM charts it is also carried out using the mult.chart function specifying
type = “mcusum” and “mcusum?2,” respectively.

Furthermore the arguments k and h must be entered although when these
parameters are missing the function works with the default values 0.5 and 5.5,
respectively. MCUSUM chart uses the same ways as T> and MEWMA to estimate
the covariance matrix S.

In order to execute the previous example in R, just (Fig. 2.18):

> data("carbon2")

> Xmv <— mult.chart(carbonl, type = "t2") $Xmv

> S <— mult.chart(carbonl, type = "t2") $covariance

> mult.chart(type = "mcusum", carbon2, Xmv = Xmv, S = S)

Then R returns:

Specifying type = “mcusum2” R compute (Pignatiello and Runger 1990). The
results obtained are presented in Fig. 2.19.

Finally signals of out-of-control are obtained; comparing the two results, it can
be seen that Crosier (1988) chart provides a better sensitivity with signal since the
seventh sample.
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Fig. 2.18 MCUSUM control chart according to Crosier (1988) using the carbonl dataset
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Fig. 2.19 MCUSUM control chart according to Pignatiello and Runger (1990) using the carbonl

dataset
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2.10 Control Chart Based on Principal Component
Analysis (PCA)

The PCA is a multivariate technique focused on the orthogonal transformation of a
correlated dataset to obtain a linear combination of variables called principal
component and with the aim of reducing the dimensionality.

If x is a vector from 1 to p quality characteristics with eigenvalues: 41 > 1, >
... > /p then the linear combination can be chosen:

cp =enxytepxy+ - F+epx

Cy = e1X] +enXy + -+ expXy 2.60)

Cp = €p1X1 + €pXn + -+ eppXp

where ¢j; is the j™ element from the i™ eigenvector and cj the axes of the new
coordinates system by rotating the original. This new axes represent the directions
of maximum variability.

The principal components are chosen by maximizing the variance as much as
possible.

The variance of the principal components is given by their eigenvalue and
proportion of the variance explained is determined as

2if (21 + 2o+ .. Ap). (2.61)

There are many methods to decide the number of principal components (which
are described in the next chapter).

The score of the principal components c; is determined by substituting the
eigenvector values and the original observation of x;, X, ..., X, in each c;.

The use of PCA in multivariate charts is due to the feasibility of reducing
the dimensionality of the original dataset without a significant loss of information.

Jackson (1991) proposed three applications of PCA in control chart: the
Hotelling chart applied to the principal component scores, the control chart to
the residual, and the univariate control chart for each score.

In this context, only the first approach will be studied. This application is based
on the following principle. Suppose a process with 5 or 6 quality characteristics is
being studied and it is possible that after a PCA the first two or three components
explain more than 80% of the total variability and consequently can be controlled
through 2D or 3D ellipsoid.

To illustrate this point the next example shows this clearly.

Example 2.9
Returning to the bimetal data introduced in Sect. 3.6.


http://dx.doi.org/10.1007/978-1-4614-5453-3_3#Sec6_3
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To carry out the PCA in R just:

> eigen(covariance(bimetall)) achieving the eigenvalues and eigenvectors
$values
[17 0.170 0.066 0.040 0.015 0.002

$vectors

[.1] [.2] [,3] [4] [,5]
[1,] 0.597 0.548 0.511 —0.288 —0.004
[2,] 0.273 0.041 —-0.074 0.525 —0.802
[3,] 0.641 —0.734 —0.075 —0.201 0.056
[4,] 0.299 0.395 —0.851 —0.140 0.108
[5,] 0.262 0.058 0.067 0.763 0.585

And to perform the summary of the principal components:
> summary(prcomp(bimetall))

Then R shows:
Importance of components:

PC1 PC2 PC3 PC4 PC5
Standard deviation 0.412 0.257 0.199 0.122 0.048
Proportion of variance 0.580 0.225 0.136 0.051 0.008
Cumulative proportion 0.581 0.806 0.942 0.992 1.000

This analysis can be complemented in a graphical way, for instance performing
an elemental Pareto chart:
First get the variance through the standard deviation of the components:

> varian <— (prcomp(bimetal1)$sdev) » 2
Then, to store the proportion of variance and the cumulative proportion:

> perc <— varian / sum(varian)
> cumperc <— cumsum(perc)

Finally plotting the cumulative proportion as:

> plot(cumperc, type = "0", xlim = c(0.5, length(cumperc) + 0.5), ylim = ¢(0,1),
xlab = "component", ylab = "percent") and adding the barplot

> barplot(perc, add = TRUE, width = 1, beside = TRUE, col = "gray", space = ¢
(0,0.5))

As a result, the first two components are responsible for 80.61% of the
variability. Therefore the original dimension of the problem has been reduced to
a two-dimensional problem (Fig. 2.20).

Using

> prcomp(bimetal1)$x or
> predict(prcomp(bimetall))
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Then R prompts the data from the principal components scores

PC1 PC2 PC3 PC4 PC5
[L,] —0.369 —0.013 0.052 —0.087 0.031
[2,] —0.286 0.135 —0.046 0.020 0.022
[27.] —0.018 —0.101 —0.002 —0.039 —0.054
[28,] —0.149 0.146 0.240 —0.037 0.018

Now, two alternatives can be taken:

1. Consider the parameters known or assume sufficiently a large dataset and
execute a x> control ellipse or a y? chart.

2. Assume the parameters unknown and perform an F control ellipse or a T? control
chart.

Suppose we decide to adopt the first one. To plot the first two components with
the respective x> confidence ellipse:

> a <— predict(prcomp(bimetall))[,1:2]
> S <— covariance(a)
> Xmyv <— colMeans(a)

Then plotting using the ellip function:

> plot(ellip(type="chi", a, alpha = 0.01),type="1", xlim = ¢(—1.6,1.6), ylim = ¢
(—=1,1), xlab= "z1", ylab= "z2")

> points(Xmv [1], Xmv [2], pch = 3) to include the centre or target

> points(a, cex = 0.75) and adding the points to the ellipse.
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On the contrary, if we select the second alternative which supposes the
parameters of the distribution are unknown, then add an ellipsoid in dashed line
to the existing one are unknown, then a wider ellipsoid results, as shown by the
dashed line (Fig. 2.21):

points(ellip(type = "t2", a, alpha = 0.01), type = "I", Ity = 3)

The control ellipsoid for the alternative with unknown parameters is less restric-
tive. In both cases, all the points are inside the confidence ellipsoid. Similar result

can be obtained executing a x> and Hotelling chart as can be seen in next figure
(Fig. 2.22):

> par(mfrow = c(1,2))
> mult.chart(a, type = "chi", alpha = 0.01)
> mult.chart(a, type = "t2", alpha = 0.01)

Now analyzing the future production (Phase II) stored bimetal2 dataset, we
have:

First, we use in the R graphics device the graph obtained in (Fig. 2.21) before the
construction of the X* and Hotelling chart. Then to save the first two principal
components scores:

> b <— cbind(predict(prcomp(bimetal2))[,1 : 2], 1 : nrow(bimetal2))
After that, to add the points to the existing graph:

> points(b[, 1], b[, 2], pch = 4, cex = 0.75)
And finally to incorporate the sample number:

> text(b[,1],b[,2], labels = b[,3], cex = 0.6, pos = 1, offset = 0.5)
unknown (Fig. 2.23):
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Fig. 2.23 Principal component scores with the confidence ellipses in Phase II
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Fig. 2.24 (a) * and (b) Hotelling control chart of the principal component scores in Phase TI

Likewise now using a Phase II 32 and Hotelling chart:

vec <— (mult.chart(a, type = "chi", alpha = 0.01)$Xmv)

mat <— (mult.chart(a, type = "chi", alpha = 0.01)$covariance)
par(mfrow = c(1,2))

mult.chart(b[,1:2], type = "chi", Xmv = vec, S = mat, alpha = 0.01)
mult.chart(b[,1:2], type = "t2", Xmv = vec, S = mat, alpha = 0.01)

As a result the 18th sample falls outside of ellipse contour and to the UCL.
Notice that previous analysis with T> chart for individuals in Sect. 3.6 emitted an
out-of-control signal in three moments.

In the output of the T2 chart it can be shown that the source of the variability is
associated to the first principal component (Fig. 2.24):

2 decomp ucl p-value 1 2
[1,] 14.8626 7.9509 0.0006 1 0
[2,] 0.0123 7.9509 0.9125 2 0
[3.] 14.8749 11.8877 0.0000 1 2

2.11 Exercises

2.1. Two correlated quality characteristics are controlled in an industrial process.
The industl and indust2 dataset represent the data obtained in two different
moments. For indust] dataset:


http://dx.doi.org/10.1007/978-1-4614-5453-3_3#Sec6_3
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(a) Determine the correlation.

(b) Perform a scatterplot.

(c) Construct the 95™ confidence ellipsoid.

(d) Compute a xz chart.

(e) Verify if the process is under control using a Hotelling control chart.
Compare the UCL with that achieved in one % chart.
Suppose that it was found that the process is under statistical control in the
moment where the industl dataset was collected. For the future production
collected in indust2 dataset:

(f) Use the confidence ellipsoid constructed in (c) to control in Phase II.

(g) Compute the T> and MEWMA control chart using the in-control mean
vector and a covariance matrix obtained from industl1.

(h) Compare the former results with the MCUSUM chart according to Crosier
(1988).

The dataset called waterl consists of five variables (pH, phosphates (mg/L),
nitrates (mg/L), dissolved oxygen, and total solids (mg/L)) measured in a
water quality test. Consider for all clauses alpha = 0.05.

(a) Determine the matrix of correlation coefficient.

(b) Construct a scatterplot matrix.

(c) Is it correct to use a x2 chart in this problem?

(d) Contruct a Hotelling control chart for waterl array. Is the process in
statistical control?

(e) The former results achieved are carried out with the default method =
sw,” for computing the covariance matrix in individual observation case.
Compare this previous result with the ones obtained with the “hm”
method.

(f) Are the MEWMA and MCUSUM capable to detect significantly causes in
the process?

(g) The water2 represents a dataset composed by measures of a new stage.
Construct the T? chart in Phase II. Is the process in control? Compare the
UCL regarding the default alpha value 0.01.

(h) If any points fall beyond of the UCL, determine the source(s) of variation
through the decomposition of T.

(i) Compute the MCUSUM by Crosier (1988) and according to Pignatiello
and Runger (1990).

(j) Perform the MEWMA chart by using lambda 0.2 and 0.8.

(k) Perform a control chart based on PCA for the first two principal
components. Compare the result with other charts. How many variance
can be explained by the first two principal components?

Seven variables collected from a mechanical process are available at dataset
named mechl and mech?2.

(a) Perform a control chart based on PCA analysis with alpha = 0.01. If any
point falls outside the confidence ellipsoid identify it.
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(b) How many variance can be explained by the first two principal
components.

(c) Construct the Hotelling control chart using the hm method for computing
the variance. If there is an out-of-control signal, determine the source.

(d) Is the MCUSUM more sensitive to the shift?

Three variables are measured with the aim to establish a multivariate monitor-
ing program in a manufacturing process. The positive correlation between
these quality characteristics was checked. The data collected are stored in the
dataset called glass].

(a) Construct the generalized variance chart. Discuss the results.

(b) Perform the T? control chart.

(c) Construct the MEWMA chart using lambda = 0.2 and 0.7.

(d) Perform the MCUSUM chart using UCL = 5.

(e) With the previous analysis accomplished: Is there evidence of out-of-
control signal?

After a careful analysis performed in the previous exercise, the in-control state
of the process was established with the aim of controlling future production.

(a) 32 samples were gathered in dataset glass2. Execute an analysis to deter-
mine if the process remains in statistical control.

(b) After that, 25 samples were collected. Perform the same analysis of the
former clause. Compare the results.



Chapter 3
Multivariate Process Capability Indices (MPCI)

In the previous chapter it was explained how the evaluation of the process performance
composed by many correlated quality characteristics should be carried out through a
multivariate approach. In this chapter multivariate proposals of process capability
are presented considering the most important developments in this field.

A capability index can be described as a ratio of the engineering specification to
the process spread that provides information about satisfaction of the requirements.

Some of the earliest, significant works in this field were by Chan et al. (1991),
Bothe (1992), and Pearn et al. (1992).

Since then, many indices have been proposed; among which the most recognized
are by Hubele et al. (1991), Taam et al. (1993), Shahriari et al. (1995), and Chen
(1994). Wang et al. (2000) performed a comparative study from these last methods
and discussed their usefulness.

Wang and Chen (1998), Xekalaki and Perakis (2002), and Wang (2005)
suggested indices based on principal component analysis as an extension of the
univariate Cp,, Cp,py, Cp and C,pyi, and Shinde and Khadse (2008) pointed out that
the issue finding transformed the tolerance region for these indices.

Pearn and Kotz (2006) offered a review of this field and updated it in 2004 and
Yum and Kim (2012) performed an extensive bibliographical review on process
capability.

More recently, Pan and Lee (2010) proposed a modification to the Taam et al.
(1993) index to avoid overestimation; Scagliarini (2011) studied the presence of
measurement errors in indices base on PCA, and Tano and Vannman (2011)
performed a comparison of the confidence intervals.

The number of approaches or proposals have increased significantly in recent
years. Shinde and Khadse (2008) classified the indices into four categories based on:

1. Ratio of the volume tolerance region to a process region, e.g., Taam et al. (1993),
Shahriari et al. (1995), Pan and Lee (2010), etc.

E. Santos-Fernandez, Multivariate Statistical Quality Control Using R, 63
SpringerBriefs in Statistics 14, DOI 10.1007/978-1-4614-5453-3_3,
© Springer Science+Business Media New York 2012
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2. The use of principal component analysis (PCA), e.g., Wang and Chen (1998),
Xekalaki and Perakis (2002), Wang (2005), etc.

3. The probability of the nonconforming product as in Wierda (1993), Chen (1994),
Chen et al. (2003), Castagliola and Castellanos (2005), etc.

4. Others.

3.1 The mpci Function

The measure of the process capability in the multivariate perspective can be
implemented with the mpci function, which is a general function. This function
allows to compute the most accepted capability indices as:

— Shahriari et al. (1995) vector

— Taam et al. (1993) index

— Pan and Lee (2010) proposal

— Wang and Chen (1998) indices employing PCA
— Xekalaki and Perakis (2002) indices

— Wang (2005) indices

The selection of the kind of index to use is done by specifying the argument
index = “shah”, “taam”, “pan”, “wang”, “xeke” or “wangw” in the same order as
they are introduced.

The function contains three compulsory arguments: x, which must be a matrix or
data frame and the lower and upper specification limits, LSL, and USL, respec-
tively. The target of the process could be specified and in case of missing values it is
calculated as midpoint of the engineering tolerances.

In bivariate cases the logical argument graphic allows to achieve a graphical
representation of the indices. For the specific case of p = 3 quality characteristics,
the use of three-dimensional graph using the rgl package is illustrated in Sect. 3.5.

For the first three indices, alpha is the proportion of nonconforming products
(conventionally fixed in 0.0027). In the case of the indices based on PCA, alpha is
the significance level for the methods described below.

For these last indices the npc argument allows to specify the number of
components to retain. The function is also capable of developing five methods to
select the components by introducing method = 1, 2, ..., or 5 or the name of the
routine, e.g., method = “Percentage.”

After the execution mpci returns a list that contains a vector for the Shahriari
et al. (1995) proposal, a list of four indices in indices that employ PCA and a single
value for the Taam et al. (1993) and Pan and Lee (2010) indices.

The help of the function offers more details. See help (package = “MPCI”) and
for other examples see Santos-Fernandez and Scagliarini (2012).
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3.2 Multivariate Process Capability Vector

The Multivariate Process Capability Vector was introduced by Shahriari et al.
(1995) based on the pioneer work of Hubele et al. (1991). It consists of a three-
component vector which is defined as:

[CpM, PV, LI], (3.1)

and is based on the assumption that the process follows a multivariate normal
distribution.

The first component of this vector is CpM that is a ratio of the areas or volumes
between the engineering tolerances and the modified process region.

)4 1/p
[T (USL; — LSL;)

oM = |2 (3.2)

11 (UPL; — LPL;)
i=1

p being the number of quality characteristics.

Both areas and volumes are rectangles in bivariate process and rectangle prism
in a three-dimensional case.

The area defined by the engineering tolerance is shown in Fig. 3.1 as the external
rectangle. On the other hand, the modified process region is constructed as the
smallest rectangle that circumscribes the ellipsoid or contour named process
region. The ellipsoid is a probability density contour centered at the process
mean, which is constructed by the spectral decomposition of the covariance matrix
centered at the mean vector as it was shown in the previous chapter.

USLZ_.....M,.____________________I
| — Process Region )
1 — - Tolerance Region |
| - — Modified Process Region ,
| e Target '
| + Process Mean )
UPL, - ' \
! I
! |
! |
! I
! I
! |
! |
! |
LPLy oo : )
|
|
TIPS T R
Fig. 3.1 Graphical
representation of the modified ! I I I
LSL; LPL, UPL, USL,

process region
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The borders of the process region: the lower process limits (LPL;) and the upper
process limits (UPL;) are computed by solving the system of equation of the first
derivatives of the quadratic form according to Nickerson (1994).

X-wE 'X-p=1r, (3.3)

with a y? distribution with p degrees of freedom and significance level o.
The solutions of the equation for each dimension are given by:

fpdet) L )
det(z 1) P det(z 1) '

where det() are the determinants and Zi_l is the matrix achieved by deleting the ith
column and row.

Values of CpM greater than 1, indicate that the modified process region is
smaller than the engineering tolerance region.

The second component (PV) of the vector is the nearness between the target and
the process mean, expressed by the hypothesis that

—1
PV =p (Tz > p(mL_p) F,,,m,,> , (3.5)

where

T° = n(X —w)'(S)" (X - p) (3.6)

and F,,,_p, the F distribution with and m — p degrees of freedom respectively.

PV takes values between 0 and 1, and values near zero point out that the process
mean is distant to the process target.

Finally, the third component (LI) compares the locations of the modified process
region and the engineering tolerance, showing when any part of the process region
falls outside the tolerance region.

Values of LI = 0 imply at least in one direction the tolerance region is exceeded.

1] — 1 if modified process region is contained within the engineering tolerance region.
“ 10 otherwise

Summing up, the Shahriari et al. (1995) vector provides a comparison of the
volumes of the region, the closeness of the centers and the extensions of the regions.

In this example the computation of the Shahriari et al. (1995) vector in bivariate
case is presented.

Example 3.1
In Sect. 2.4 is introduced an example of a dowel manufacturing process in which 40
samples of the diameter and the length were taken. The process has the following
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tolerances: LSL; = 0.47 and USL; = 0.53 for the diameter and LSL, = 0.90 and
USL, = 1.10 for the length.
The mean vector and the covariance matrix are respectively:

4.9087e — 05 8.5849¢ — 05

- _
¥ =[0.5009 1.0018] and $ = g's019. 05 4.1994¢ — 04

According to the information given in the problem the engineering tolerances
result is as follows: LSL' =[0.47 0.90] and USL’ = [0.53 1.10].

Therefore, the target of the process can be estimated as the midpoint of the
tolerances: Target’ = [0.50 1.00].

The modified process region result fori = 1

det(=71)
Y0022 X det(4.1994e — 047")
t ( {4.90876: — 05 8.5849 — 05]1>
€

LPL, = u, +

= 0.5009 + =0.4767

8.5849%9¢ — 05 4.1994e — 04

The other values are obtained in the same fashion:
LPL, =0.9313; UPL, =0.5250 and UPL, = 1.0723.
The area obtained from plotting these points is the minimum bounding rectangle
of the confidence ellipsoid so called modified process region.

Then the CpM result:

1/p

]

(USL; — LSL;)

CpM =

]

(UPL; — LPL;)

Li

Il
-

B (0.53 — 0.47) x (1.10 — 0.90) > L3291
~ 1(0.5250 — 0.4768) x (1.0723 —0.9313)]

The second component of the vector (PV) is computed as:

pim—1) . 2(40-1)
PV =P(I°>————Fypp) =P(T* > ———>
4 (T°> m—p P p) (T°> 20 -2

2(39)
38

F40-2)

= P(0.0159 > Fa38) = 0.7351
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since:

T =n(X - p)'(S)"' (X — )
0.50097 [0.507Y  [4.9087e — 05 8.5849e — 057"
X
1.0018 1.00 8.5849¢ — 05 4.1994e — 04

([?38?2] i)

In the calculation of the third component (LI) of the vector, the process
specifications are compared to the tolerances are compared, being one if it satisfies
the condition:

LSL; <LPL; and USL;>UPL;

In this case
0.47<0.4768; 0.90<0.9313 and 0.53>0.5250; 1.10>1.0723.

As per results the modified process region is contained by the tolerance region,
therefore LI = 1. This last result can be verified in graphical form likewise.
Finally the Shahriari et al. (1995) vector results:

[CpM,PV LI} =[1.3290 0.7351 1]

Since CpM is higher than 1, this indicates that the process modified region is
smaller than the tolerance region. The value of PV is not enough near O to assert that
there is a significant difference between the center of the process and the process
target. Finally, the value of LI = 1 signifies that the process region is inside in the
engineering region. Summarizing, the process was founded capable to fulfill the
specifications.

The computation of this vector is done by using the function mpci and using the
argument “shah” to specify the index to use:

> library("MPCI")
> data("dowell")
> LSL <- ¢(0.47, 0.90); USL <- ¢(0.53, 1.10); Target <- c(0.50, 1.00)

Note that the tolerances are entered by introducing a vector of lower
specifications and the other of upper specifications.

> mpci(index = "shah", dowell, LSL, USL, Target, graph = TRUE)

The argument graph provides in a two-dimensional case (p = 2) a graphical
representation. The output is shown below (Fig. 3.2).

The graph above shows the process control ellipse with its bounded rectangle
and the engineering tolerance region.
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Fig. 3.2 Graphical =
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3.3 Multivariate Capability Index

Another widely accepted multivariate index is the MCpm proposed by Taam et al.
(1993). It is defined as the ratio of the volumes of the ellipsoids of the modified
tolerance region to the process region given by the control ellipsoid, see Fig. 3.3.
On the contrary to the first component of the vector of Shahriari et al. (1995), which
is computed as the ratio of the rectangles in bivariate case or hypercubes for more
dimensions, the MCpm is the ratio of the ellipsoids.

The modified tolerance region is the largest ellipsoid constructed in the tolerance
region and centered at the target.

The index is computed as:

vol.(Ry)

MCpm = ———=
b vol.(Ry)’

3.7)

where R; and R, are the modified tolerance region and the confidence ellipsoid
respectively. This ratio can be estimated as:

Cp
M =— 3.8
Cpm D (3.8)

with

vol.(tolerance region)

Cp =

= 3.9
vol.(estimated process region) (39

and the numerator is the hyperellipsoid with volume determined as:
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Fig. 3.3 Graphical
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j=1
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272 11

vol.(tolerance region) = ——— (3.10)

( )T/

where ; is the length of the semi-axes. On the other hand:
vol.(estimated process region) = |S|"*(rK)"*[T(p/2 + 1)] ', (3.11)

where K is the percentile of the > distribution and
m i~ 1/2
D= [1 X () (X - u)} . (3.12)
Therefore,
[.(R
MCpm = 7 ) lvo () — ) - 1/2
{112y I p/2+ D] o [T+ 525 (= ) (8) ' X - )

(3.13)

When the value of the index is >1 and the process mean vector is equal to the
target, this implies that the process volume is smaller than the modified tolerance
region.

Example 3.2
To illustrate the computation of the MCpm index, recall the dowel data analyzed in
the previous section.
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ﬁ Q@n?
vol.(Ry) USL; — LSL;)
L1 p x T (p)2)

= (0.53 — 0.47) x (1.10 — 0.90) x

(2 x 3.1416)*2

X T(2)2) = 0.0094

then

_ 1/2
4.9087e — 05 8.5849¢ — 057"

S|V (mKYPC(p/2 + 17" = { det { }

IS (=K T (p/2 + 1) N 85849 — 05 4.1994¢ — 04

x (3.1416 x 7,,)**[T(2/2 + 1) " = 0.0043

and

14— w9 K -]

_{1+ 40 ({0.5009] [0.50])’ {4.9087605 8.5849¢ — 057"

40— 1\[1.0018]  [1.00 8.584% — 05 4.1994e — 04
050097 [os07y]"
8 ([1.0018} - {1.00])} = 10081
Then,
0094
MCpm = —— 2005 1560,

0.0043 x 1.0081

To perform the example in R, the argument index = “taam” must be specified.
> mpci(index = "taam", dowell, LSL, USL, Target, graph = TRUE)

Then R prompts:
This index finds also capable the process and obtain a greater value than CpM
(Fig. 3.4).

3.4 Revision of the Multivariate Capability Index

A more recent proposal is due to Pan and Lee (2010), which is a special case of the
Taam et al. (1993) index. The authors pointed out that the Taam et al. (1993) index
could suffer an overestimation if the quality characteristics are not independent.
In this case the tolerance region is given by:
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Fig. 3.4 Graphical e
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where

. USL; — LSL; USL; — LSL;
if =T J J (315)

2 Xlz),lfo: 2 X127‘lfoz

and rj; is the correlation coefficient between i and j. Finally the proposed index
results in:

A\ 2
NMCpm = ( 5 ) (3.16)

The figure below shows the slanted ellipsoid with longdash (Ity = 5) as line type
(Fig. 3.5).

Example 3.3
Recall the dowell dataset to present the index in bivariate case.
Fori=1landj =1

. USL, — LSL, | | USL, — LSL, 0.53 — 0.47\’ s
A =1 =1x (=2 =20 =7.6077,
2v/11.83

2 X;z;,pu 2\/ X%,0.9973
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Fig. 3.5 Graphical
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and so on for the others.
Then,

[76e—5 152¢—5
T 152 -5 845¢—5

The computation in R is as follows (Fig. 3.6):
> mpci(index = "pan", dowell, LSL = LSL, USL = USL, graph = TRUE)

A* and det(S) = 1.32e—8. Finally NMCpm = 1.77.



74 3 Multivariate Process Capability Indices (MPCI)

3.5 Multivariate Process Capability in a Presence of Rational
Subgroup—A Three-Dimensional Case

The computation of process capability indices requires that the process operates under
statistical control. Therefore sometimes both process capability and control chart are
used simultaneously. In fact Montgomery (2004) pointed out that “the control chart
should be regarded as the primarily technique of process capability analysis.”

In capability indices introduced in previous sections the process region
constituted the control ellipsoid approached in Sect. 3.4; but so far only the
individual observation case was analyzed.

The rational subgroup analysis has not been diversified yet, but it can be useful
when both capability studies and control chart are studied together.

Example 3.4

Sect. 2.5 introduced the carbon fiber process, in which 28 samples of three quality
characteristics were collected. The sample size of each sample was eight. In this
process the specifications are given by: LSL = [0.60, 0.30, 49.00], USL = [1.40,
1.70, 51.00], and Target = [1.00, 1.00, 50.00].

In presence of rational subgroups the area or volume of the swarm of points is
reduced and consequently the limits and the specifications shrink it. The confidence
ellipsoid according to the sample mean is given by.

To calculate the first component of the Shahriari et al. (1995) vector to the
carbonl dataset:

>p<-3
> LSL <- ¢( 0.60, 0.30, 49.00); USL <- c(1.40, 1.70, 51.00); Target <- c(1.00,
1.00, 50.00)

Computing the process region through the proc.reg function for individual
observations:

> carbon <- matrix(c(carbonl[,1,], carbonl[,2,], carbonl1[,3,]),ncol = 3)
> LPL <- proc.reg(carbon, alpha = 0.01)$LPL
> UPL <- proc.reg(carbon, alpha = 0.01)$UPL

Computing the process region of the rational subgroups:

> x.jk <- apply(carbonl,1:2,mean)

> LPLm <- proc.reg(x.jk, alpha = 0.01)$LPL
> UPLm <- proc.reg(x.jk, alpha = 0.01)$UPL
> Center <- (UPLm + LPLm) /2

Then, for proportionality the news specification limits results in:

> LSLm <- Target - (Target - LSL) * (Center - LPLm) / (Center - LPL)
> USLm <- Target + (Target - LSL) * (Center - LPLm) / (Center - LPL)

Finally the index results in:

> CpM <- (prod(USLm - LSLm) / prod(UPL - LPL)) A (1 / p)
1.6547
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To perform the graphical representation we use the larg.ellip function
The rgl package is required to make the three-dimensional plot.

> library(rgl)

> larg.ellip(LSLm, USLm, n = 15, add = FALSE, box = FALSE xlim = ¢
(0.80,1.150),ylim = c(0.65,1.5), zlim = ¢(49.5,50.5), xlab = "", ylab = "",
zlab = "", col = "#D55E00", alpha = 0.2) that builds the largest ellipsoid
centered at the target.

> plot3d(ellipse3d(cov(x.jk), center = colMeans(x.jk), level = 0.99), type =
"wire", col = 3, alpha = 0.2, add = TRUE)

Afterwards, plot the points
> plot3d(x.jk, size = 4, cex = 2, box = FALSE, add = TRUE),

and make the cuboids or prisms of the specifications and the modified process
region using the prism function.

> prism(LSLm, USLm, add = TRUE,col = "#D55E00")
> prism(LPLm, UPLm, add = TRUE,col = 3)

The graph obtained allows to visualize it in three dimensions by moving through
the axis. In this figure the external prism results in the tolerance region, and the
modified tolerance region is represented in the gray ellipsoid. On the other hand,
the process region is shown in wire type with its respective modified process region
(the external prism that bounds the confidence ellipsoid).

Notice that the first component of the Shahriari et al. (1995) vector is the ratio of
both prisms whereas in Taam et al. (1993) the ratio of the ellipsoids always using
the volume relative to the tolerances as numerator.

This graph also allows the process monitoring, being the control ellipsoid the
Xz control chart. In this case no points fall outside the confidence boundaries, then
the process seems to be in control (Fig. 3.7).

When the process mean and covariance matrix are known, a it was explained in
Chap. 2, then the limits should be replaced. Then pm=1)(n=1) op.mn—m—p+1 MUst be

; 5. . 7 mn—m—p+1
substituted by ¥, limits to find the exact limits.

3.6 Multivariate Capability Indices Based on Principal
Component Analysis

Many indices based on principal component analysis (PCA) have been proposed in
the last years. Some of the most accepted are the indices suggested by Wang and
Chen (1998), Xekalaki and Perakis (2002), and Wang (2005). As this approach
begins with a PCA, the uncorrelated variables are obtained and the dimensionality
reduction is allowed.
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These indices are based on the spectral decomposition of the covariance matrix

T =UDU' (3.17)

where U is the eigenvectors matrix and D the diagonal matrix of the eigenvalues.
D =diag(Z,22,...,%p) (3.18)

The ith principal component results in PC; = u;'x.
And the engineering specifications (Upper, Lower Specification and Target) are
transformed as

LSLPC,. = u,»’LSL; USLPCi = I/tl‘,USL; TPC,- = u,-'T, (319)

where i = 1,2, ..., p is the ith principal component.

Normally the first components are responsible for most of the variability,
therefore the dimensionality can be reduced without significant lost of information.
The problem consists on how many components should be retained. In the next
section five methods are introduced to deal with this issue.

The proposal by Wang and Chen (1998) is the multivariate extension of the
univariate Cp, Cp, Cpm, and Cppy indices.

v 1/v
MC, = ([ Cpre. | (3.20)
i=1

where

USLpc, — LSLpc,

3.21
oo (3.21)

Cppc; =
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where v is the number of principal component and opc, = V/4;.
Likewise MC,, MC,,p,, and MCp, are obtained by replacing Cp.pc; by Cpr.pc,
Cpm:pc;» and Cp,.pc, Tespectively, where

USLpc. — — LSLpc.

Cpipc, = ming ——2G —H K Pe (3.22)
T 3opc; 3opc;
USLpc, — LSL
Compe, = — = (3.23)
64/ Opc, + (1 —T)
and,

(USLpc, — LSLpc,)/2 — |1 — [(USLpc, + LSLpc,) /2| (3.24)

Cpkm;PCi - > >
3\/0pc, + (u—T)

Example 3.5

To illustrate the computation of the Wang and Chen (1998) index recall the
bimetall data introduced in Example 2.9 from the Sect. 2.10. The vectors with
the engineering specification are:

LSL=1[19.0 39.0 13.0 202 24.5]
USL=1[23.0 41.0 17.0 238 27.5]
Target = [21.0 400 150 22.0 26.0]

From this dataset the eigenvector and eigenvalues results in:

0.5968 0.5476  0.5108  0.2881 0.0044
0.2731 0.0408 —0.0739 —-0.5246 0.8019
U= 06413 -0.7344 -0.0752 0.2014 —0.0561
0.2988 0.3948 —0.8505 0.1404 —0.1083
0.2620  0.0575 0.0673 —0.7626 —0.5848

D = 0.1700 0.0659 0.0396 0.0148 0.0023
Consequently the new specifications are given by:

LSLpc, = u/LSL = [42.78 11.83 —9.68 —2821 14.11]
USLpc, = u/USL = [50.14 12.76 —10.95 —29.09 13.37]
Tre, = u/T =[47 12 —10 —29 14]


http://dx.doi.org/10.1007/978-1-4614-5453-3_2
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From Example 2.9, it was determined that the first two principal components
were responsible for the 80.61% of the variability. Therefore the dimension of the
problem could be reduced to a bivariate alternative.

For the first principal component the Cp index is:

o USLpe, —LSLpc, _50.14-4278 _
e 60pc, T 6 x 01700

And likewise for the other, being:
Cp.pc, = 0.60
Finally the MC, is
p 1/p
MC, = (H c,,;PC,> = (2.98 x 0.60)"/* = 1.34
i=1
Using (3.22)—(3.24) the other indices results in:
MCp =1.13, MCp,, =124 and MCpp = 1.04

The computation in R is based on the mpci function and is as follows:

> mpci(index = "wang", bimetall, LSL, USL, Target, method = 1, perc = 0.80)

“Wang and Chen (1998) Multivariate Process $MCp $MCpm
Capability Indices (PCI) based on PCA”
$‘number of principal components’ [17 1.34 [1] 1.24
[112 $MCpk $MCpmk
(1] 1.13 [1] 1.04

As in the index by Wang and Chen (1998) the principal components are taken
having the same importance even when the first ones take more weight than the
others; Xekalaki and Perakis (2002) proposed to correct that weighting according to
the variance explained by the principal components.

Z j~1'Cp:PC,-
MXPC, ==

v

(3.25)
i=1

MXPC ., MXPCp,y,, and MXPCp,; are similarly achieved.
The calculation of the Xekalaki and Perakis (2002) index is presented in the
following example.
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Example 3.6
Using the same engineering specifications and number of the principal components
in the bimetall dataset

2
2:C
,-:Zl PPC 017 % 2.98 +0.07 x 0.6
MXPC, = - —231
2 0.17 + 0.07
DA
i=1

MXPC,,, =217, MXPCp =2.18 and MXPCp; = 2.05

The use of the function mpci in this context is as follows:

> mpci(index = "xeke", bimetall, LSL, USL, Target, method = 1, perc = 0.80)

“Xekalaki and Perakis (2002) Multivariate Process Capability Indices $MCp $MCpm
(PCI) based on PCA”
$‘number of principal components’ [1]2.31 [1] 2.17
[112 $MCpk $MCpmk
[1]2.18 [1] 2.05

On the other hand, Wang (2005) suggests another way to weight the principal
components using the weighted geometric mean. The proposed indices result in:

) l/i)'i
MWC, = (H Cj;gpa> (3.26)
i=1

and so on for MWC, MWC,,,, and MWC .

Example 3.7
This example computes the indices according to the Wang’s (2005) method.

2 1/2&'
MWC, = <H C;:;PC;) R (2.980'17 % 0.60'07)1/(0‘1”0‘07) —1.90
i=1

MWCy = 1.70;  MWC,,, = 1.77;  MWCpyy = 1.58

To perform these indices in R just use the argument index = “wangw” in mpci
function.

> mpci(index = "wangw", bimetall, LSL, USL, Target, method = 1, perc = 0.80)

“Wang (2005) Multivariate Process Capability Indices(PCI) based on PCA” $MCp $MCpm

$ ‘number of principal components’ [1]1.91 [1]1.77

2 $MCpk $MCpmk
[1] 1.70 [1]1.58
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3.7 Methodology to Select the Number of Principal Components

In previous sections, it was tackled how the principal components analysis allow
the dimensionality reduction of the data in which1 < 1 < p principal components
can be obtained. There are many methods in order to decide how many principal
components should be retained or used, with the aim to avoid the loss of significant
information.
Rencher (2002) proposed the next four methods and we add a fifth.

Method 1 or Percentage: This technique guarantees at least the percent specified of
Cumulative Proportion of explained variance. This is normally fixed on 80%.

Example 3.8

In Example 2.5 a dataset called bimetall collected from a certain type of strip
composed of brass and steel with five quality characteristics and 28 samples was
introduced.

Using summary (princomp(bimetall)) R shows a summary that includes the
standard deviation, the proportion of variance explained, and the cumulative pro-
portion of the eigenvalues (Table 3.1).

If the threshold of the 80% is used then the first two components should be
retained.

Method 2 or Average: The second method is based on retaining the principal
components whose eigenvalues are greater than the average of the eigenvalues.

RN
Zi:] 4ifp
The eigenvalues are easily computed:

eig <- eigen(cov(bimetall))$values; print(eig)

[1] 0.169984728 0.065883347 0.039640343 0.014847291 0.002264529

If mean(eig)=0.05852405, therefore only the first two components comply with
this condition.

Method 3 or Scree: The scree graph is a visual procedure that plots the eigenvalue
size throughout the eigenvalue number. It allows to determine which components
are significant apart from the straight line formed by the last eingenvalues.

In the example the scree graph shows that the first component is separated from
the straight line, therefore the first principal component should be retained (Fig. 3.8).

Table 3.1 Importance of components

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
Standard deviation 0.40486 0.25205 0.19551 0.11965 0.04673
Proportion of variance 0.58091 0.22515 0.13547 0.05074 0.00774

Cumulative proportion 0.58091 0.80606 0.94152 0.99226 1.00000
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Fig. 3.8 Scree graph for the Scree graph for eigenvalue
eigenvalues
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Method 4 or Bartlett (1954) Test: This method is a statistical test designed to ignore
the principal components not significantly different from the rest and assumes
multivariate normality. Usually this method produces a number of principal
components larger than the former methods. For more details see the following
example: Rencher (2002)

H() . i] = /12 = ...= }vp
H,:2; #4; forsome i#j
- P
L= ik (3.27)

where k is the sequence p,p — I,p — 2, ..., 1

2p+11 - P
2 )
= (n ~ % ) (k InA _, E 1ln/1,> (3.28)

i=p—k+

L2100 @) (3.29)

The results of the practical and theoretical Xzs are (Table 3.2):

This implies that the first four are significantly different from each other.
Therefore according to the Bartlett’s Test in this case the first four principal
components should be retained.

Method 5 or Anderson (1963) Test: Another method widely used is the Anderson
Test that differentiates also the principal components significantly different from
the others.
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Table 3.2 Values of

. 2
the statistical test Eigenvalue k X Lo, /2(k=1)(k+2)
0.16998 5 93.80 33.20
0.06588 4 56.57 25.26
0.03964 3 39.82 18.21
0.01485 2 19.06 11.83
0.00226 1 0 0
Table 3.3 Values of ; ) )
the statistical test. Eigenvalue k Z Lo 1/2(k=1) (k+2)
0.16998 0 103.37 33.20
0.06588 1 62.34 25.26
0.03964 2 43.88 18.21
0.01485 3 21.01 11.83
0.00226 4 0 0
H()I/I] :/12:...:/1,,
Hy :J; # 2; forsome i# ],
wherek =1,2,...,p
i P
==Y In(i)+v(p —k)ln (%) (3.30)
=kt 1 p
2 2
X2 Lot f2(p—k=1) (p—k+2) (33D

The results are shown in Table 3.3:

This method found the first four eingenvalues significantly different, as a result

the first four must be retained.

3.8 Exercises

3.1. The industl dataset represents the data obtained from an industrial process in
which two correlated quality characteristics are controlled. The engineering
tolerances are: LSL; = 2.8, LSL, = 5.5, USL; = 5.5, and USL, = 8.7. Use

alpha = 0.0027.

(a) Compute the Shahriari et al. (1995) vector. Interpret the result of each

component of the vector.

(b) Determine the capability index MCpm according to Taam et al. (1993).
Compare the result with the first component of the Shahriari et al. (1995)

vector.
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3.2.

3.3.

3.4.

(c) Compute the Pan and Lee (2010) index and contrast it with the two
previous indices.

(d) Compare the Taam et al. (1993) index using alpha = 0.001 with the
achieved in clause (b).

The dataset called waterl consists on five variables (pH, phosphates (mg/L),
nitrates (mg/L), dissolved oxygen, and total solids (mg/L)) measured in a
water quality test. For all clauses consider alpha = 0.001. The following
vectors represent the specifications: LSL = [3.00, 0.01, 0.01, 88.00, 145.00]
and USL = [11.00, 0.50, 1.30, 110.00, 200.00].

(a) Compute the correlation matrix.

(b) Compare the Taam et al. (1993) with the Pan and Lee (2010) index.

(c) Determine if the modified process region is contained by the tolerance
region.

(d) Assess the closeness of the process mean with the tolerance target value.

(e) Compute the capability indices according to Wang and Chen (1998) using
the method = 1 to select the number of principal components.

(f) Compare the values achieved using the two first principal components in
the Wang (2005) and Xekalaki and Perakis (2002) indices.

(g) According to the Scree graph. How many principal components should be
retained?

The dataset mechl represents the data obtained from seven quality
characteristics collected from a mechanical process. Use alpha = 0.0027 and
the following vectors are the engineering specifications:

LSL = [5.00, 33.00, 3.50, 3.00, 1.00, 37.00, 118.00].
USL = [15.00, 37.00, 6.50, 17.00, 41.00, 43.00, 122.00].

(a) Compute the Shahriari et al. (1995) vector.

(b) Assess the closeness between the process mean and the engineering target
value.

(c) Determine if the modified process region is contained by the tolerance
region.

(d) Compute the Wang (2005) indices using the Scree graph.

(e) Determine the Xekalaki and Perakis (2002) indices using method 4 (Bart-
lett Test). How many principal components were retained?

(f) Is this last result significantly different if two principal components are
retained?

(g) Compute both Taam et al. (1993) and Pan and Lee (2010) indices. Discuss
the results.

Three variables were collected and stored in glassl dataset to develop a
capability study. The dataset is presented in rational subgroups because it
was gathered initially to perform a multivariate process monitoring program.
To transform it to a 2D array or matrix use.
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3.5.

3.6.

3.7.

3.8.

3 Multivariate Process Capability Indices (MPCI)

glass <- matrix(c(glass1[,1,], glass1[,2,], glass1[,3,]),ncol = 3)

The specifications for each variable are defined by the interval: [9.00,
11.00], [0.50, 3.50], and [3.5, 6.50] respectively.

(a) Compute the three indices based on tolerance and process region ratios
(Shahriari et al. 1995; Taam et al. 1993; Pan and Lee 2010). Compare the
results.

(b) Calculate the indices based on PCA. Discuss the results achieved.

In the previous chapter it was studied a manufacturing process of certain type
of carbon tubing, composed by three quality characteristics and in Sect. 3.4 it
was studied as a rational subgroup case. The rational subgroup can be
eliminated using

carbon <- matrix(c(carbonl[,1,], carbonl[,2,], carbonl[,3,]),ncol = 3)
obtaining a 2D array. In this process the specifications are given by:
LSL = [0.60, 0.30, 49.00]

USL = [1.40, 1.70, 51.00]

Target = [1.00, 1.00, 50.00]

(a) Compare the Pan and Lee (2010) NMCpm index with the first component
of the Shahriari et al. (1995) vector using alpha = 0.0001.

(b) Contrast both indices but setting the midpoint between specifications as
Target.

Consider the first two quality characteristics of the waterl dataset and the
following specifications:

LSL, = 3.00, LSL, = 0.01, USL; = 10.5 and USL, = 0.45. The Target of
the process is given by: T = 7.00, LSL, = 0.23 Use alpha = 0.001.

(a) Calculate the Shahriari et al. (1995) vector. Interpret the result of each
component of the vector and obtain the graphical representation. Explain
the result graphically.

(b) Compute the capability index MCpm according to Taam et al. (1993) and
the NMCpm by Pan and Lee (2010). Explain graphically how both indices
are computed.

Which of the following indices is computed as the ratio of the largest ellipsoid
centered at the target to the process region?

— Wang (2005) indices
— Taam et al. (1993) MCpm
— Shabhriari et al. (1995) first component.

Reconsider the dataset called mechl to the exercise 3.3. Exclude the variables
x; and X¢ using:

mech <- mechl[,c(—1,-6)].
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(a) Determine if the modified process region is contained by the tolerance
region using alpha = 0.0002.

(b) Estimate the Pan and Lee (2010) index.

(c) Calculate the capability indices according to Wang (2005) using the
method = 2 to select the number of principal components.

(d) Compare the values achieved using the two first principal components in
the Wang and Chen (1998) and Xekalaki and Perakis (2002) indices.



Chapter 4
Tools of Support to MSQC

4.1 Tools of Support to MSQC

As a general rule, normality and independence of the data is required in Statistical
Process Control and the multivariate extensions are not the exception. In a multi-
variate control chart with the use of rational subgroups according to the central
limits theorem certain grade of normality is achieved. But in alternatives called
charts for individuals, this rule is not satisfied. The same occurs in capability indices
that rarely are computed using subgroups.

Many authors have proposed nonparametric alternatives to deal with the
departures of normality and techniques based on PCA as the studied in Sects.
2.10 and 3.6 which are robust to the lack of normality.

However, nowadays it results quite unproblematic to test multivariate normality
and randomness. In this chapter we introduce a wide range of tools to fulfill these
requirements.

4.1.1 Graphical Methods

The first section of this chapter will examine two graphical techniques: histogram
and Q-Q plot that facilitate the assumption of normality.

Histogram is a graphical technique that allows a visual summary of the data. It
provides information about the center, the spread, the skewness, and the existence
of outliers. (NIST / SEMATECH e-Handbook of Statistical Methods).

A visual inspection of a histogram permits to establish an initial hypothesis of
the distribution; in this case a bell-shaped is desired.

Although histograms are basically used in univariate scenarios, univariate
normality per se does not imply multivariate normality; if a departure from normal-
ity is founded in individual variables, this has a negative effect in the
multinormality.

E. Santos-Fernandez, Multivariate Statistical Quality Control Using R, 87
SpringerBriefs in Statistics 14, DOI 10.1007/978-1-4614-5453-3_4,
© Springer Science+Business Media New York 2012
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Example 4.1
In this example we will illustrate the use of histogram in a multivariate context. For
that, return to the bimetal dataset introduced in Sect. 2.6.

To put multiple figures in one graph device the parameter mfrow can be used by
specifying mfrow = c(n,m) being n the number of figures by row and m by columns.

> par(mfrow = c(3,2))
As for each quality characteristic a histogram is desired—a simple loop is used.

> for(iin 1 : ncol(bimetall) ){

> X <— bimetall[,i]

> mean<—mean(bimetal1[,i])

> sd<—sd(bimetal1[,i])

> hist(x, prob = TRUE, main = paste( "Histogram for ", colnames(bimetal1)[i] ),
xlab ="")

Finally, adding the normal curve

> points(curve(dnorm(x, mean = mean, sd = sd), add = TRUE),type = "1")}

From this chart we can appreciate that most of the classes are located in the center,
no significant skewness is revealed, no long tails are presented, and no considerable
outliers are detected. The form of the classes does not differ drastically to the normal
shape. Finally, there is no visual evidence to reject the univariate normality hypothesis.

This visual inspection can be complemented with the quantile-quantile plot, or
simply Q-Q plot.

The Q-Q plot is a graphical tool for comparing a two dataset or a dataset with a
theoretical distribution. The most common use is to plot the quantiles against a
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Fig. 4.1 Histogram of the individual variables in the bimetall dataset
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Fig. 4.2 The Q-Q plot of the individual variables in bimetall dataset

reference line from a normal distribution. When the points fall approximately over
the line there is evidence that both come from an identical distribution.
The performing of a Q-Q plot in R is done through the qgqnorm function.

Example 4.2
To construct a Q-Q for each variable from bimetall dataset:

> par(mfrow = ¢(3,2))

> for(iin 1 : ncol(bimetall) ){

> qqnorm(bimetal1[,i], main = paste( "Q-Q plot for ", colnames(bimetal1)[i] ) )
And to include the reference line from the normal distribution

> qqline(bimetal 1[,i])

>}

From these graphs it appears that each variable is normally distributed since no
departure from diagonal line is presented (Fig. 4.2).

4.1.2 Marginal Normality Test

Although in a p-variate data the marginal normality does not imply joint normality,
deviation from normality frequently affects the marginal distributions.
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There are many well-known univariate normality tests like: y2, Anderson-Darling,
Kolmorov-Smirnov, D’ Agostino, Jarque-Bera, and Shapiro-Wilks tests, etc.
In this section, we present an approach to the last three previously mentioned tests.

4.1.2.1 The D’Agostino (1970) Test

The D’Agostino(1970) test is based on the power transformation of the sample

kurtosis and skewness. It consists of three tests: for skewness, kurtosis, and an

omnibus (see D’Agostino et al. 1990) for an excellent exposition of the method.
The skewness test is used to test

H,: v/b; = 0 i.e.: the data lacks of skewness against
H;: v/b; # 0 there is evidence of skewness.

Let

n n 1/2

and

3(n? +27n —70)(n + 1)(n +3)
(n=2)(n+3)(n+7)(n+9)

B= 4.2)

Where n is the sample size. Using the Johnson’s unbounded (SU) the X(vb;) has
a normal distribution, being:

_ Y »?
X(/br) = é10g (a + (a) + 1) 4.3)
where 6 and o are determined as:
P — (4.4)
and

with

W?>=2B—-1)—1 (4.6)
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The kurtosis test is based on the following hypothesis
Hy: b, =3 and Hy: by # 3

The mean and variance are computed as follows:

3(n—1
E(by) = (n”+ 1 ) 4.7)
and
24m(m — 2)(m — 3)
by) = 4.8
var(by) EE I —— (4.8)
Then standardizing b,
¥ = LE(M (4.9)
var(bz)
and calculating the statistics
1/3
(1-8) - [
Z(by) = VO 4.10
where
8 2 4
A=6+ +4/ 1+ ) (4.11)
Bi(b2) L/ Bi(b2) pi(b2) ]
and

6(m* — 5m +2) m+5
by) = 4.12
Pr(b2) = (m+T7)(m+9) \/m —2)(m—13) (“412)

The Z(b,) statistics has approximately a normal distribution

4.1.2.2 Omnibus Test

In order to integrate both tests, D’Agostino and Pearson (1973) proposed an
omnibus test with the following statistics

K2 =72(\/br) +Z2(b2) 4.13)
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Table 4.1 Results of the D’Agostino Test for each variable of the bimetal dataset

D’Agostino Test for the deflection D’Agostino Test for the curvature

Skewness

Skewness coefficient: 0.08
Statistics: 0.21

p-value: 0.83

Kurtosis

The kurtosis coefficient: 3.04
Statistics: 0.59

p-value: 0.56

Omnibus Test
Chi-squared: 0.39

Degree of freedom: 2
p-value: 0.82

D’Agostino Test for the low
expansion side

Skewness

Skewness coefficient: -0.04

Statistics: -0.11

p-value: 0.92

Kurtosis

The kurtosis coefficient: 4.16

Statistics: 1.67

p-value: 0.09

Omnibus Test

Chi-squared: 2.81

Degree of freedom: 2

p-value: 0.25

Skewness

Skewness coefficient: -0.07
Statistics: -0.18

p-value: 0.85

Kurtosis

The kurtosis coefficient: 2.75
Statistics: 0.17

p-value: 0.86

Omnibus Test

Chi-squared: 0.06

Degree of freedom: 2
p-value: 0.97

D’Agostino Test for the high
expansion side

Skewness

Skewness coefficient: 0.23

Statistics: 0.58

p-value: 0.56

Kurtosis

The kurtosis coefficient: 2.29

Statistics: -0.71

p-value: 0.48

Omnibus Test

Chi-squared: 0.85

Degree of freedom: 2

p-value: 0.66

D’Agostino Test
for the resistivity
Skewness coefficient:
-0.61
Statistics: -1.5
p-value: 0.13
Kurtosis
The kurtosis
coefficient: 3.14
Statistics: 0.71
p-value: 0.47
Omnibus Test
Chi-squared: 2.76
Degree of freedom: 2
p-value: 0.25

where K? follows a x> distribution with two degrees of freedom.

Example 4.3

2 2
K=~ sz‘Z

4.14)

To illustrate the use of the D’Agostino test in R, use the function DAGOSTINO
included in the MSQC package, as follows:

> for (iin 1 :5){

> DAGOSTINO(bimetal1[,i])}

The Table shows the results achieved (Table 4.1)
As a result of the Skewness Test, no significant lack of symmetry is presented.
Certain grade of skewness is obtained in the resistivity though, corroborating the
result obtained for the histogram in Fig. 4.1.
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Conversely, the Kurtosis Test detects a positive grade of peakness in a low
expansion side variable since the kurtosis coefficient was 4.16 although not signifi-
cant at alpha = 0.05 (see p-value: 0.09)

On the other hand the omnibus test does not found departures from normality.

According to this test, there is no evidence for rejecting the normality
assumption.

4.1.2.3 The Jarque and Bera (1980) Test

The Jarque and Bera (1980) Test is an elegant and powerful goodness of fit test,
likewise based on kurtosis and skewness. It is defined as:

_mio 1o o0
JB—6[S +4(K 3)} (4.15)

where m is the sample size and S and K the skewness and kurtosis respectively.

The JB statistics follows a x> distribution with two degrees of freedom.

For more details see Jarque and Bera (1980), Jarque and Bera (1987), or Jarque
(2010).

Jarque (2010) offers the significance points table although statistical software
usually computes the p-values as:

p-value=1 - pchisq(STATISTIC, df = 2) or p-value = 1 — XZJB,Z

At least three R packages include this test. They are: tseries, moments, and
lawstat.
In this context we use the first one:

> library("tseries")

Example 4.4
Using the jarque.bera.test function for each quality characteristics from the
bimetal1 dataset:

Jarque-Bera Test Jarque-Bera Test Jarque-Bera Test
data: bimetall[, 1] data: bimetal1[, 3] data: bimetall
X-squared = 0.22, X-squared = 1.87, [, 5]

df = 2, p-value = 0.90 df = 2, p-value = 0.39 X-squared = 0.57,

df =2, p-value = 0.75

Jarque Bera Test Jarque Bera Test
data: bimetall[, 2] data: bimetall[, 4]
X-squared = 1.74, df = 2, X-squared = 0.96, df = 2,

p-value = 0.42 p-value = 0.62

Notice that according to the p-values the normality assumption cannot be
rejected at alpha level = 0.05 or 0.10.
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4.1.2.4 The Shapiro and Wilk (1965) Test

The Shapiro and Wilk (1965) Test has become one of the most popular tests due to
its high performance.

The null hypothesis Hy is the sample that proceeds from a normal distribution
and possesses the statistics

m 2
o)
W = 4.16
X —X 1o
where
d = (ar, @, yay) =WV [(WV) (VW) (4.17)
and w the normal scores and V its covariance matrix.
They proposed the approximation of a as:
2wy l<k<m
a = 2 om=l N2 (4.18)
! <12‘d2 > d%) i=1m
U k=2
where
s v fgm—=1) m<20
a, =a, = {g(m) m=20 (4.19)
being
T[i(m+1
V2D Am+1)
Using the approximation:
6m +7 (1) fm+1\"" v
m exp m
= 4.21
gtm) <6m+13> m+2<n+2) ] *-21)

Royston (1982) proposed the transformation of W for 7 < m <2000 to normality
as follows:

x=(1-Ww)" (4.22)
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and

B (4.23)

Ox
R includes the built-in function shapiro.test() to compute this test.

Example 4.5
The example below illustrates its use over the bimetall dataset. Using this function
individually for every quality characteristic

Shapiro-Wilk normality test Shapiro-Wilk normality test
data: deflection data: curvature

W = 0.98, p-value = 0.86 W = 0.98, p-value = 0.89
Shapiro-Wilk normality test Shapiro-Wilk normality test
data: resistivity data: low expansion side

W = 0.97, p-value = 0.46 W = 0.97, p-value = 0.46

Shapiro-Wilk normality test
data: high expansion side
W = 0.98, p-value = 0.78

On the other hand, Thode (2010) offers an excellent presentation of the most
powerful test and suggests a test based on moments like Shapiro-Wilks, Anderson-
Darling, and Jarque Bera. For more details see Thode (2002).

4.1.3 Assessing Multivariate Normality

Though the literature reflects that the proposals to test multivariate normality
exceed the 50 methods (see e.g.: (Mecklin and Mundfrom 2004)) these tools are
rarely applied in MSPC publications. This is due to the fact that as a general rule
these methods lack of simplicity and the software availability is limited.

Three of the most powerful tests are introduced in this section.

4.1.3.1 Mardia (1970) Skewness and Kurtosis Test
The Mardia (1970) test is a generalization of the univariate skewness and kurtosis

test and becomes one of the most popular ones on assessment of multivariate
normality. The multivariate skewness and kurtosis are given by:

bip= n_lz Z Z g;k (4.24)

i=1 j=1

1 n
bop =" Zl:gf, (4.25)
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1 where:

g =y -3 (-3 (4.26)

and

&= [(y-%)=" (-7 4.27)

Mardia (1970, 1974) provides the percentiles for b, ;, and b, ;, for many values of
p (quality characteristics) and many numbers of samples (m).
Mardia also proposed for b; ;, an approximation to the x? distribution as follows:

(p+1)(m+1)(m+3)
P m DL 1) -6 Lalplp +1)p2) 6 (4.28)

while for b, ;, a normal approximation, being:

brp ~N(p(p+2),8p(p + 2)/m) (4.29)

The Mardia test is available from QRMIib and dprep R packages.

Example 4.6
Then, to illustrate the Mardia Test return to the bimetall dataset.
Using the QRMIib package:

> MardiaTest(bimetall)

The R returns
$skewness

[1] 6.982112
$p.value

[17 0.585327
$kurtosis

[1] 33.77373
$p.value

[1] 0.3490892

Regarding the p-value for skewness and kurtosis, there is no evidence of
departures from normality.

4.1.3.2 Henze and Zirkler (1990) Test

Henze and Zirkler (1990) proposed a multivariate normality test based on the
empirical characteristic function. A wide number of simulation studies point out
the high performance of this test. See e.g.: (Thode 2002)

The statistics is given by:
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P m

—m —m/2 1 2
nzzze 2|)/ )k| + +2b2) /2 -2 1_|_b2 /an 21+h2
(4.30)
where
v —yk\z = (g —x)' S (5 — ) (4.31)
' = (5 —%)'s(x —x) (4.32)
and
1 2 NRLER)
po L [n@m+1) (4.33)
V2 4
T has a lognormal distribution with mean
= —m/2 mb? m(m + 2)b*
T=1-(1+20%)""(1+ + 4.34
( ) ( L+20%  2(1+2p2)° (339

and variance

2mb* 3m(m+2)b®
(142b2)*  4(1+2p2)*

—m/2 1+

var(T) =2(1 +4b*) """ +2(1 +2b%) "

3mb* 2)bt
_4Wm/2|:1+ m +m(m+ ) :|

2w 2w?
(4.35)
where
= (1+0*)(1+3p%) (4.36)
T ~ L, , where
T4 1/2
p=log|| ——= (4.37)
var(T)+ T
) 1/2
T)+T
o= [log (%) (4.38)
T

The HZ.test function is available on the MSQC package
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Example 4.7
The following example shows the application of the test using also the bimetall
data:

> HZ.test(bimetall)
p-value  HZ statistic
[1]0.61 0.77

According to the results obtained, p-value = 0.77, which is a high value; there is
no evidence to reject the assumption of multivariate normality.

4.1.3.3 Royston (1992)Test

Another powerful test was proposed by Royston (1983) which is a multivariate exten-
sion of the Shapiro and Wilks normality test (see Royston 1982, 1983, 1992, 1995).
The statistic recommended by Royston is

H="" (4.39)

where

R} = {(1)1 [q)(;Z’)] }2 (4.40)

There are two ways to compute Z; according to the number of observations:
For4<n<11

7= log{y — [IOg(; - W]} - (4.41)

W; is the statistics of the univariate Shapiro-Wilks test. (See the previous

section.)
where
7= —2.273 4+ 0.459n (4.42)
i = 0.544 — 0.39978n + 0.025054n> — 0.00067 14n1° (4.43)
o = exp(1.3822 — 0.77875n + 0.062767n> — 0.0020322n° ) (4.44)

and for 12 < = x < = 2000
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log(1—W,) +7 —
7, == VZ’)” & (4.45)

where y =0

1= —1.5861 — 0.31802log(n) + 0.083751[log(n)]*
+0.0038915[log(n)]’ (4.46)

= exp(—0.4803 — 0.082676 + 0.062767[log(n)]* — 0.0030302[1og(n)]3)

(4.47)
Otherwise, e in the H statistics is given by:
m
= 4.48
‘1t (m—1)c (448)
Where
p m
S5 cfi —-m
c=10 (4.49)
m?> —m
and
0.715
0.715(1 —ry;
S=r1- (1=r5) (4.50)
' v
being rj; the correlation and
v = 0.21364 + 0.015124log? () — 0.0018034log> (1) (4.51)

Royston’s H statistics follow approximately a y~ distribution with e degrees of
freedom.
This function is also included in the MSQC package and the usage is as follows

Example 4.8

> Royston.test(bimetall)
Then R prompts:
test.statistic p.value

1.18 0.94

With the p-value obtained, there is no evidence of departure from multivariate
normality at significance level of 0.05.
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4.1.4 Solutions to Departures from Normality

Practically, it is common to get variables with non-normal distribution and one
alternative is to transform the data. The transformation of the data is the application
of a mathematical function to the original dataset.

In a multivariate context this solution could be addressed to a marginal or
multivariate approach. In this section two marginal solutions and one multivariate
are introduced.

There are many simple transformations used in practice: vx, log(x), arcsin(vx),
etc (see, e.g., (Juran and Godfrey 1998) Sect. 4.4)

Another is the well-known Box-Cox Transformation (BCT) that is probably the
most used one for practitioners and professionals of quality control. Finally, another
type of transformation (although not so well known) is the Johnson’s system of
distributions recognized as the Johnson Transformation (JT)

4.1.4.1 Box-Cox Transformation (BCT)

The family of Box-Cox is a power transformation suggested by Box and Cox
(1964). It is given by:

i1
L )\,
y=d o Jor 470 (4.52)

log(x;) for 2=0

where x; is the original dataset, A (lambda) is the power and y; the new observations.
One alternative, in order to find the optimal value of A, is using the value that
maximizes the logarithm of the likelihood function. For more details see Box and
Cox (1964) or Venables and Ripley (2002).

The BCT is widely used to improve the normality in some practical situations
and a lot of statistical packages provide this application. An advantage is the easy
algorithm to transform the data while a disadvantage is that it does not allow
negative data values, though it can be solved by adding a constant to the original
dataset.

There are many functions in R that perform the BCT transformation but we will
use the powerTransform included in car package.

4.1.4.2 Johnson Transformation (JT)

The Z family of distributions was presented in Johnson (1949) and is composed by
three distributions named Unbounded (SU), Lognormal (SL), and Bounded (SB)
which allow to transform into a normal distribution through selecting one of the
three of them. The transformations are:
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SU Z =1y + ysinh™! (x - 8) 4.53)

where
n,A>0, —co<y<oo, —oo<e<oo,and — oo <x< o0

SL Z=y+nn'(x—¢) (4.54)

where
nN>0, —oco<y<oo, —oo<e<ooand e <x

xX—¢
SB Z=) In{— 4.55
/+nn(i+s—x> (4.55)

where
n,A>0, —co<y<oo, —co<e<ooand e<x<e+ A

Chou et al. (1998) proposed a methodology to transform non-normal data using
the method of percentiles distribution. The method optimizes the transformation
based on the parameter estimates suggested by Slifker and Shapiro (1980), finding
the best fit to the standard normal distribution applying the Shapiro-Wilk test of
normality, selecting the function that gives the largest statistic (W) or p-value.

The Johnson package allows carrying out the JT according to the method
described here.

4.1.4.3 Multivariate Box-Cox Transformation (MBCT)

Velilla (1993) offered a multivariate extension of the Box-Cox Transformation. Let
A= [/11, A2y ey i,,]a vector of the transformation parameters which after the follow-

ing transformation X*) = (X 5) ">,X£)'2>, ...,X,g)*”)) of the original variables, produce

a multivariate normal distribution with mean (u("\)) and covariance (EO“)) both of
the transformed variables. The A vector is selected as the value that maximizes the
log-likelihood function. See for details Velilla (1993) or Weisberg (2005).

The powerTransform function from the car package also allows computing this
transformation.

Example 4.9
This example proceeds from a bivariate manufacturing process with a right-skewed
distribution that can be found in rskewed data frame (Fig. 4.3).
A simple visual inspection allows verifying the presence of non-normality.
This is confirmed by the Royston (1992) and Henze and Zirkler (1990) test.

> HZ.test(rskewed)
p-value HZ statistic
[1]1 0.00 1.95
Royston.test(rskewed)
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The Mardia Test prompts the a similar result
First, applying the BCT we have:

> library("car™)

> rskewed.bct <— matrix(0,nrow(rskewed),ncol(rskewed))

> for (iin 1 : 2){

> lambdas <— powerTransform(rskewed[,i])$lambda

> rskewed.bct[,i] <— bcPower(rskewed],i],Jambdas)}

Then, applying the MVN test

> HZ.test(rskewed.bct)

p-value HZ statistic

[1] 0.09 0.72

> Royston.test(rskewed.bct)

test.statistic p.value

6.93 0.03

The Royston test detects a presence of departure from normality after the transfor-
mation at o = 0.05.

Converselly, the JT produces a success adjustment

> rskewed.jt <— matrix(0,nrow(rskewed),ncol(rskewed))

> for (iin 1 : 2){rskewed.jt[,i] <— RE.Johnson(rskewed[,i])$transformed}

> HZ.test(rskewed.jt)

p-value HZ statistic

[1] 0.60 0.38

> Royston.test(rskewed.jt)

test.statistic p.value

0.22 0.90
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Finally using the MBCT

> rskewed.mbct <— matrix(0, nrow(rskewed), ncol(rskewed))
> lambdas <— powerTransform(rskewed)$lambda

> rskewed.mbct <— bcPower(rskewed,lambdas)

> HZ.test(rskewed.mbct)

p-value HZ statistic

[1]0.10 0.70

> Royston.test(rskewed.mbct)

test.statistic p.value

6.81 0.03

This last method in the same manner to the BCT does not produce a better
transformation than JT.

4.1.5 The Autocorrelation Problem

One of the requisites in control chart is the independence of the data; although, in
practice this assumption is rarely checked and this could produce false alarms. It is
well known that decay processes often produce variables with time dependence (see
e.g.: (Mason et al. 1996) and (Mason and Young 2001) for more details.)

The presence of autocorrelation is often confirmed by plotting current
observations versus preceding ones in scatter plot e.g.: X; VS. X._1.

To illustrate this, analyze the waiting time between eruptions in the faithful
dataset.

> fl <— faithfull,2]

> 2 <— matrix(0, 1, length(f1))

> for (i in 1 : length(f1)){f2[i] <— f1[i + 1]}
> plot(fl, f2, xlab = "x(t)", ylab = "x(t + 1)")

There is strong evidence of correlation between successive pairs. The well
known autocorrelation plot or correlogram introduced by Box and Jenkins (1976)
is one of the most used tools to check independence (Fig. 4.4).

The autocorrelation is computed as:

Ch
= — 4.56
T c, (4.56)
Where
—-1< ry <1

3
L

(xt - 7‘) (xr+h - 7()

4.57)
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is the covariance and

c, == (4.58)

the variance
and m and h the sample size and the lag respectively.

The 1y, is plotted against two control limits frequently called confidence bands
computed as:

Zl—fx/2
vm

When an 1y, fall outside of the confidence bands, it is said that there is evidence of
autocorrelation or dependence.

For more details see e.g.: Box and Jenkins (1976) or Chatfield (1989).

R provides the built-in function acf that computes the autocovariance or auto-
correlation function.

Example 4.10
Coming back to the bimetall dataset, the marginal independence could be assessed.

CL=+ (4.59)

> par(mfrow = ¢(3,2))

> for(iin 1 : ncol(bimetall) ){

> par(mar = c(4.1,4.5,1,1))

> acf(bimetall[,i],lag = 7,las = 1)}

Notice that when lag = 0 the correlation is 1. This can be proved easily in
formula x.

There is no evidence of relation between adjacent observations; that is, there is
marginal randomness.

This tool can be complemented with the use of another such as: Box-Pierce,
Ljung-Box or Runs Test (Fig. 4.5).
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Fig. 4.5 Correlograms for each individual of the bimetall data frame
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When time dependence is detected the problem should be addressed in two
different ways: by using a specific control chart such as the proposal by Apley and
Tsung (2002) and Kalagonda and Kulkarni (2004) or by modifying the data
removing the autocorrelation effects. About the latter point a possible solution is
to decompose it in multivariate autoregressive model and analyze the resultant
residuals which should present independency and MVN (Mason and Young 2001).

4.1.6 Exercises

4.1. In Example 2.2, Sect. 2.4 a bivariate data frame called dowell was introduced.

(a) Perform a histogram for each quality characteristic. Does the obtained data

allow foreseeing normality in data?

(b) Compute the D’ Agostino test and assess the skewness, kurtosis and omni-

bus tests obtained.
(c) Verify the marginal normality using the Shapiro-Wilks test.
(d) Assess the multivariate normality using the Royston test.
(e) Construct the marginal ACF. Discuss the results
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4.2.

4.3.

4.4.

4.5.

4.6.
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The dataset industl holds the information of two correlated quality
characteristics from an industrial process.

(a) Construct the Q-Q plot. Discuss the results.

(b) Verify the lack of time dependence using lag = 5

(c) Compute the Jarque-Bera test. Assess the marginal normality.
(d) Does the Shapiro-Wilks test achieve the same results?

(e) Compute the Mardia test. Discuss the results.

Recall the data frame named waterl from a water quality test that consists on
five variables (pH, phosphates (mg/L), nitrates (mg/L), dissolved oxygen and
total solids (mg/L)).

(a) Use the D’ Agostino test to evaluate marginal normality using alpha = 0.05.
Do all variables exhibit normality?

(b) Plot a histogram to complement this result.

(c) Compute the Henze-Zirkle and Mardia test. Are there departures from
multivariate normality?

(d) Construct a correlogram to prove lack of autocorrelation

For the seven variables collected from a mechanical process available at dataset
named mechl:

(a) Use both graphical techniques studied to establish the assumption of
normality.

(b) Compute the Jarque-Bera and Shapiro-Wilks tests and compare the results.

(c) Demonstrate the randomness using the acf function.

(d) According to the Henze-Zirkle and Royston. Assess the multivariate
normality.

The gilgais dataset from MASS package presents the level of pH, electrical
conductivity and chloride content from the soil in gilgai territory, New South
Wales, Australia. For the first 50 samples and the characteristic pH at depth
30-40 cm and 80-90 cm:

(a) Evaluate the multivariate normality using the Henze-Zirkle and Royston
tests.

(b) If any of the previous tests detects non normality presence, transform the
dataset using BCT, JT and MBCT. Compare the methods according to the
results obtained.

(c) Evaluate the autocorrelation level with a lag =6 .

The Rubber data frame included in the MASS package, contain the measure
from a rubber tyre accelerated testing.

(a) Test multivariate normality at alpha = 0.1.
(b) Perform a Q-Q plot. Discuss the results.
(c) Determine the presence of time dependence in all variables.



Chapter 5
Study Cases

5.1 Study Case #1. Pitching Controlling

In this study case the application of the main tools covered in this text is introduced
in baseball, specifically over the pitcher performance. According to the Major
League Baseball (MLB) the strike zone is “that area over home plate, the upper
limit of which is a horizontal line at the midpoint between the top of the shoulders
and the top of the uniform pants, and the lower level is a line at the hollow beneath
the kneecap. ..”

It is a pentagonal prism with 20 in. (1.66 ft) of width and the height is determined
by the size of the batter in the position of swinging the pitched ball. Although this
height is different for each batter it normally has a dimension from 1.6 up to 3.5 ft
over the home. The umpire calls strike when the pitch falls into this area and the
batter does not swing.

Although the pitchers move the ball strategically in different positions of the
strike zone trying the hitter not make contact with it, often the performance of the
pitcher is measured by the skill to put the ball into the strike zone at high speed.

In this case we use data collected by the pitcher logs at the (MLB) database
(http://gd2.mlb.com/components/game/mlb/) for the pitcher C.C. Sabathia from the
New York Yankees. Two datasets were selected from games against Tampa Bay:
the first on July 10, 2011 and on August 12, 2011 the second. Both are stored in the
package as sabathial and sabathia2 respectively.

The pitcher logs provide a lot of information about each pitch but in our study we
work with the start speed (given in mph) of the pitch, and the location (in feet) as it
crosses the home. This last point is measured regarding a coordinate system in
which the origin is at the point of the home plate. The z-axis is the vertically
oriented while x-axis horizontally oriented at the catcher’s right.

Only the fastball pitches are considered and each sample is a batter by averaging
all the variables of pitch. Notice that a player bats several times in the play.

Performing the analysis in R.

> data("sabathial")
E. Santos-Fernandez, Multivariate Statistical Quality Control Using R, 107
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Fig. 5.1 Scatter plot matrix of vertical and horizontal location and start speed

using:
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> colMeans(sabathial); covariance(sabathial); cor(sabathial)

it is obtained
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Notice the direct correlation between the first two

variables, being negative between the vertical position and the speed. The
scatterplot matrix visually confirms this (Fig. 5.1).

> pairs(sabathial)

An initial useful analysis can be carried out by constructing a three-dimensional
scatterplot with a confidence ellipsoid (Fig. 5.2).
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Fig. 5.2 Three dimensional
scatter plot with confidence
ellipsoid
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> library(rgl)

> plot3d(ellipse3d(cov(sabathial), centre = colMeans(sabathial), level = 0.99),
xlab = "", ylab = "", zlab = "",type = "wire", col = "grayl", alpha = 0.2)

> points3d(sabathial, size = 4, cex = 2, add = TRUE)

By moving through the coordinates it can be seen that all observations fall inside
these boundaries. No outliers are detected. Then performing a Hotelling chart
(Fig. 5.3).

> mult.chart(type = "t2", sabathial)

Since no points fall outside the UCL then there is no evidence to reject the in-
control state in the process. The final score shows that.

Then, setting this first game to analyze the second game as Phase II or future
observations, using the Phase I estimates of mean vector and covariance matrix as
follows:

> colm < - nrow(sabathial)

> vec < - (mult.chart(sabathial type = "t2")$Xmv)

> mat < - (mult.chart(sabathial,type = "t2")$covariance)

Using

> data("sabathia2")

> par(mfrow = c(1,2))

> mult.chart(type = "t2", sabathia2, Xmv = vec, S = mat, colm = colm)
>
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Fig. 5.3 Hotelling control

Hotelling Control Chart
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chart for the sabathial data 15
[1] "Hotelling Control Chart"
$ucl

UCL=13.31

[1] 13.31
$t2

[,1] _
[1,]4.37 10
[2,] 1.65

T2

[22,] 6.95
[23,] 6.06
$Xmv 5
[110.11 2.94 94.41

$covariance

[11 [,2] [3]

[1,] 0.220 0.092 0.051

Ny
[2,]1 0.092 0.270 -0.250 0+
[3,] 0.051 -0.250 1.500

Then, R prompts:

Sample

The following(s) point(s) fall outside the control limits[1] 16 20

$‘Decomposition of*

[1] 16

t2 decomp ucl p-value 1 2 3

[1,] 12.5255 8.0686 0.0016 1 0 0
[2,] 10.7037 8.0686 0.0031 200
[3.]4.2001 8.0686 0.0511 300
[4,] 16.8950 12.1448 0.0000 1 2 0
[5.] 18.1565 12.1448 0.0000 1 3 0
[6,] 11.3942 12.1448 0.0003 2 3 0
[7,] 19.4116 16.1352 0.0000 1 2 3

$‘Decomposition of*
[1]20
t2 decomp ucl p-value 1 2 3

[1,] 0.4091 8.0686 0.5282 100
[2,]19.6004 8.0686 0.0048 2 0 0
[3,1 0.8664 8.0686 0.3609 3 0 0
[4,] 13.4175 12.1448 0.0001 12 0
[5.] 1.3922 12.1448 0.2671 1 3 0
[6,] 15.0562 12.1448 0.0001 23 0
[7.] 22.4067 16.1352 0.0000 1 2 3

The analysis displays the points 16 and 20 beyond the UCL, i.e.: the pitcher
seems to be out-of-control. The decomposition of the T statistics shows how in
sample 16 both locations on the horizontal and vertical axes (x) were out-of-control.
In contrast, in batter number 20 only the location on the vertical causes the alarm.

In order to improve fast detection of small shifts in the process, we can compute

the MEWMA and MCUSUM charts.

For instance, MEWMA detects the shifts on the mean at the 10th batter, see
Fig. 5.4(b) and the MCUSUM according to (Crosier 1988) and (Pignatiello and
Runger 1990) at the 9th and 10th batters respectively (Fig. 5.5).

Notice that this study does not intend to prove per se when the pitchers are in
control or not. There are many other important variables to be analyzed. The aim is to
propose a tool for monitoring the statistical control over the strike zone and the speed.
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Fig. 5.4 (a) Hotelling and (b) MEWMA control chart for the sabathia2 data

Another important aspect to be considered is that although the pitcher is under
statistical control over the variables measured, he could hit and the score could
show a false alarm.

After that, a capability study for individual observations is performed using the
umpire strike zone as specifications. The first game analyzed that was used as Phase
I had in the home plate the umpire Ron Kulpa. The strike zone was constructed as
the boundary rectangle of the confidence ellipse given by all the balls called strike
in this game and stored in the kulpa dataset. So, using the proc.reg function the
limits are computed.

> data("kulpa")

> LSL < - as.vector(proc.reg(kulpa, alpha = 0.1)$LPL)

> USL < - as.vector(proc.reg(kulpa, alpha = 0.1)$UPL)

Notice that alpha = 0.1 was used to avoid an extensive area.

> data("sabathia.ind")

> par(mfrow = c(1,3))

> mpci(index = "shah", sabathia.ind, LSL=LSL ,USL=USL, alpha=0.1, graph =
TRUE)

> mpci(index = "taam", sabathia.ind, LSL. = LSL ,USL = USL, alpha = 0.1, graph
= TRUE)

> mpci(index = "pan", sabathia.ind, LSL = LSL ,USL = USL,alpha = 0.1, graph
= TRUE)
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MCUSUM Control Chart by Crosier MCUSUM Control Chart by Pignatiello
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Fig. 5.5 MCUSUM control chart by (Crosier 1988) (a) and (Pignatiello and Runger 1990) (b) for
the sabathia2 data

[1] "Shahriari et al. (1995)  [1] "Taam et al. (1993) [1] "Pan and Lee (2010)
Multivariate Capability Multivariate Capability Multivariate Capability Index
Vector" Index (MCpm)" (NMCpm)"

$CpM $MCpm $NMCpm

[1]10.94 [,1] [.1]

$PV [1,]0.73 [1,]0.73

[1]

[1,] 6.72e-05

$LI

[1]10

Figure 5.6 shows the output of the three indices computed. Notice the difference
between the target and the process mean expressed in a extremely low value of PV
in (Shahriari et al. 1995) index. The main swarm is located over the high part of the
strike zone and the process region is not contained into the tolerance region,
therefore LI = 0.

On the other hand, the area ratio of (Shahriari et al. 1995) produced a high value
(0.94) while (Taam et al. 1993) and (Pan and Lee 2010) achieved lower values (0.73).

Realize that the called proportion of non conforming product in industry (in this
case: balls fallen outside the umpire strike zone) is on average on one third
according to MLB statistics.
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Fig. 5.6 MPCI for the sabathial data (Shahriari et al. 1995), (Taam et al. 1993) and (Pan and Lee
2010)

These indices could be useful to perform a comparison among pitchers and
against the different umpire strike zone which varies in each game.

Finally it is checked the assumption of MVN with the Henze-Zirkler and
Royston test

HZ.test(sabathial) HZ .test(sabathia2)
p-value HZ statistic p-value HZ statistic
[110.75 0.49 [110.69 0.52
Royston.test(sabathial) Royston.test(sabathia2)
test.statistic p.value test.statistic p.value
1.49 0.68 1.61 0.65

and the lack of time dependence:

> par(mfrow = c(2,3))

> for(iin I : ncol(sabathial) ){par(mar = c(4.1,4.5,3,1))

> acf(sabathial[,i],lag = 7,las = 1, main = colnames(sabathial)[i])}
> for(iin 1 : ncol(sabathia2) ){ par(mar = c(4.1,4.5,3,1))

> acf(sabathia2[,i],lag = 7,las = 1, main = colnames(sabathia2)[i])}

Notice that no departures from normality and no autocorrelation are achieved
(Fig. 5.7).
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Fig. 5.7 Correlogram for both sabathial and sabathia2 data

This study case shows the huge spectrum of application of the multivariate
quality control in which were used in combination multivariate control chart and
multivariate process capability indices to evaluate the pitcher performance and the
ability to fulfill the strike zone specifications.

5.2 Study Case #2. Target Archery

The target archery is a competitive sport governed by the World Archery Federation
(WA) wherein the archers shoot at round target at varying distances. What is
established in the Olympic Games is the 122 cm face for a distance of 70 m.

The individual competition is arranged on two stages. The first one is the ranking
round in which each archer shoots 72 arrows in 12 ends of six arrows. After that,
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Fig. 5.8 Scatter plot with for both archery data

the second stage begins with the matches of the first ranked against the sixty-fourth,
the second against the sixty-third, and so on; shooting 18 arrows in ends of three
arrows. The winners move forward until completing three loops. Then the eight
remaining archers continue the elimination stage shooting 12 arrows in ends of
three arrows being the champion the undefeated.

The dataset called archeryl consists on the 72 shoots in ends of three arrows of
the ranking round of a specific archer and the archery2, the 54 shoots of the
elimination round with the same subgroup size. Notice that the information is
given in x and y coordinates but in the archery competition the scoring is based
on the location of the arrows over concentric rings with score values established.

The Fig. 5.8 shows the scatter plot of the individuals throws over the target of
122 cm.

> data("archeryl")
> data("archery2")

The argument of the correlation function does not allows an array but using
> cor(cbind(c(archeryl[,1,]),c(archery1[,2,]))) we can compute the correlation.
We have:

[ 1037
“ 1037 1

After that the Hotelling control chart is computed for the ranking round

> mult.chart(archeryl, type = "t2") then R returns:
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Fig. 5.9 Hotelling and generalized variance chart for archeryl data

According to the Hotelling chart the process seems to be in control since no
evidence of assignable causes are presented. Now the analysis can be
complemented with the generalized variance chart. This graph does not report a
non-random operation either (Fig. 5.9).

> gen.var(archeryl)

Suppose it is desired to use the ranking round as Phase I and to control the future
observation storage on archery2 from the eliminatory (Fig. 5.10):

> colm < - nrow(archeryl)

> vec < - (mult.chart(archeryl,type = "t2")$Xmv)

> mat < - (mult.chart(archeryl,type = "t2")$covariance)

> par(mfrow = c(2,2))

> mult.chart(archery2,type = "t2", Xmv = vec, S = mat, colm = colm)
> mult.chart(archery2,type = "mewma", Xmv = vec, S = mat)

> mult.chart(archery2,type = "mcusum", Xmv = vec, S = mat)

> mult.chart(archery2,type = "mcusum?2", Xmv = vec, S = mat)

Then R prompts:
The following(s) point(s) fall outside the control limits[1] 18

$‘Decomposition of*
[1] 18
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Fig. 5.10 Hotelling, MEWMA and MCUSUM control chart for archery2 data

t2 decomp ucl p-value 1 2
[1,] 11.4353 7.8065 0.003510

[2,] 0.0008 7.8065 0.9778 2 0
[3,] 13.3752 11.4390 0.0003 1 2

The Hotelling chart detects the 18th sample beyond UCL. The decomposition
shows that the cause is due to a horizontal shift. While the weighted chart like the
MEWMA chart does not detect non-random shifts and conversely (Crosier 1988)
performs an early detection from sixth sample. The (Pignatiello and Runger 1990)
chart accomplishes similar results.

To illustrate the misleading results that can be obtained with these charts when
the requisites are not met and how the misuse could cause adjustment in the process
when is not necessary, let us check the multivariate assumption.

> HZ.test(apply(archery1,1:2,mean))
p-value HZ statistic

0.07 0.73

> Royston.test(apply(archeryl, 1:2, mean))
test.statistic p.value

7.02 0.03

> HZ.test(apply(archery2,1:2,mean))
p-value HZ statistic

043 0.40

> Royston.test(apply(archery2, 1:2, mean))
test.statistic p.value

3.490.18

As aresult, the strong evidence leads to reject the multinormality in the first data.
As a result a transformation is required. Using the Johnson Transformation:

> arch.meanl<- apply(archeryl,1:2,mean); arch.mean2<- apply (archery2, 1:2,
mean)
> arch.trans1<- matrix(0, nrow(arch.meanl), ncol(arch.meanl))
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Fig. 5.11 Correlograms for both archeryl and archery?2 after the transformation

> arch.trans2<- matrix(0, nrow(arch.mean2), ncol(arch.mean?2))

> library("Johnson")

> arch.trans1[,1]<- RE.Johnson(arch.meanl[,1])$transformed; arch.trans1[,2]<-
RE.Johnson(arch.mean1[,2])$transformed

> arch.trans2[,1]<- RE.Johnson(arch.mean2[,1])$transformed; arch.trans2[,2]<-
RE.Johnson(arch.mean2[,2])$transformed

The MVN test over the transformed data is shown

> HZ.test(arch.trans1)

0.32 0.48

> Royston.test(arch.trans1)
test.statistic p.value

2.48 0.29

> HZ.test(arch.trans2)
0.99 0.15

> Royston.test(arch.trans2)
test.statistic p.value

0.44 0.80

Notice the suitable p-values achieved with this transformation. After this, the
presence of autocorrelation is assessed.

> par(mfrow=c(2,2))
> for(iin 1 : ncol(arch.transl) ){par(mar=c(4.1,4.5,3,1))
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Fig. 5.12 Control charts for both archeryl and archery?2

> acf(arch.trans1[,i],Jlag=7,las=1, main=colnames(arch.trans1)[i]) }
> for(iin 1 : ncol(arch.trans2) ){ par(mar=c(4.1,4.5,3,1))
> acf(arch.trans2[,i],lag=7,las=1, main=colnames(arch.trans2)[i]) }

As a result no time dependece is found. Therefore, there is no evidence to reject
the randomness assumption or independence (Figs. 5.11).

Then, returning to the control chart analysis and performing the same analysis,
the following results are achieved: in the ranking round the archer seems to be under
statistical control since no out-of—control signal was presented. So, using this round
to control the future observation (Phase II) of the elimination round, no evidence of
shifts in the process was obtained. This result differs significantly to the initial
analysis and shows that the non-normal presence could produce of false alarm
(Fig. 5.12).
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